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Magic Wavelengths and
Dipole-Dipole Interactions in
Ultracold RbCs Molecules

Luke Michael Fernley

Ultracold polar molecules have become the subject of burgeoning fields
of research in recent years owing to their prospects in quantum simulation,
quantum computation and precision measurement. Their relatively large
ground state dipole moment, coupled with a complex internal structure forms
an incredibly powerful toolbox in which to perform quantum science experi-
ments. Unfortunately, spatial confinement using light, which is necessary for
many of the aforementioned applications, causes differential ac Stark shifts
between quantum states, limiting coherence times and stifling their applica-
bility. By accessing a so-called magic condition, this effect can be eliminated.

This thesis presents work towards producing a quantum simulator based
on a bulk gas of 87Rb133Cs molecules. We develop a magic wavelength trap
by exploring nominally forbidden transitions from the X1Σ+ ground state to
b3Π0 states. By tuning our trapping laser between transitions to different
vibrational states of b3Π0, we can arbitrarily tune the difference in polaris-
ability between pairs of rotational states and engineer second-scale coherence
times. When we trap our molecules in a superposition of rotational states
that exhibit a dipole moment in the laboratory frame, we observe the effects
of long-range dipole-dipole interactions between molecules. These dipole-
dipole interactions form the basis for quantum simulation and computation
applications, observations of which marks an important milestone for realis-
ing a quantum simulator using 87Rb133Cs. We then demonstrate a route to
ground state 87Rb133Cs molecules that is compatible with a protocol for load-
ing Feshbach molecules into an optical lattice, developed by researchers at the
University of Innsbruck. This method can be combined with a magic wave-
length trap to produce a sample of 87Rb133Cs molecules in a magic lattice.
Finally, we engineer synthetic dimensions that simulate simple single-particle
Hamiltonians by coupling multiple rotational states in 87Rb133Cs. This forms
the foundations for utilising rotational states of diatomic molecules as a plat-
form for exploring synthetic dimensions.
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Chapter 1

Introduction

1.1 Quantum science with ultracold neutral

atoms

The field of ultracold atomic research has exhibited exciting growth in recent
decades, ignited by the pioneering work of [1–3] at the turn of the mil-
lennium. Scientific minds around the world turned their attention towards
interacting atomic systems, spurred on by the prospect of a plethora of scien-
tific and technological applications in the fields of quantum metrology [4, 5],
quantum computation and simulation [6–8] and quantum chemistry [9, 10]
just to name a few.

An aspect that is of particular interest to us is that of quantum simula-
tion. For these applications, neutral atoms become the foundation on which
to imprint and extract information using their internal quantum states. The
internal states then act as analogies to the properties of their simulated coun-
terpart. As an example, the hyperfine states of atoms can be used to encode
pseudo-spins to engineer the Hamiltonians found in condensed matter physics
such as the Ising spin or Bose-Hubbard models [11–14].

Realising a successful quantum simulator is predicated on a few general
requirements:

1. Access to tunable long-range interactions.

2. Interaction times are appropriately long.

3. Sufficient quantum coherence.

12



Chapter 1 - Introduction 13

Let’s examine the first point above. Long-range interactions facilitate
entanglement between neighbouring atoms in a quantum simulator. Short-
range collision-based interactions are not desirable 1. The key to engineer-
ing long-range interactions with neutral atoms is utilising their magnetic
or electric dipole moments. Interactions between dipoles are hence termed
‘dipole-dipole’ interactions with interaction strength given by [17, 18]

Vdd =
(di · dj) r

2 − 3 (di · r)(dj · r)

r5
, (1.1)

where di (dj) is the dipole moment of the ith (jth) dipole and r is the
vector connecting the two dipoles with magnitude r.

Considering the case where dipoles are aligned in the same spatial direc-
tion as illustrated in Fig. 1.1(a), Eq. 1.1 reduces to the form

Vdd =
Cdd

4π

1 − 3 cos2(θ)

r3
, (1.2)

where Vdd is the strength of the dipole-dipole interaction and Cdd is the
dipole-dipole coupling constant which is proportional to the product of the
magnitude of the dipole moments of the interacting dipoles. r is the magni-
tude of the separation and θ is the angle between the axis of the direction
of the dipoles and a vector connecting interacting dipoles. Dipoles can be
aligned through the presence of an external field.

The second condition requires that interactions occur on the time scale
of typical interaction strengths. This is dependent on the interplay between
dipolar interaction strength and the interaction time, and allows the resulting
Hamiltonian to carry out significant evolution owing exclusively to the dipo-
lar interactions. Ensuring enough interaction time is achieved by spatially
confining the atom, or ‘trapping’, for example in an optical lattice potential
as illustrated in Fig. 1.1(b). The value of Cdd in Eq. 1.2 is a property of
the interacting states and r in Eq. 1.2 is dictated by the distance between
‘sites’ where trapped atoms reside. The key is to engineer a system where the
interacting dipoles are close enough together and held for a long enough time.

The final requirement is more subtle. Quantum states of atoms must
maintain their appropriate character to protect the fidelity of the interac-
tions. The evolution of quantum states is fragile and susceptible to influence

1Collisions lead to loss and chaotic effects [15, 16].
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E

θ

Vdd

(a) (b)
Vdd

Figure 1.1: Dipole-dipole interactions and dipoles in lattices. (a) Dipole-dipole
interaction with interaction strength Vdd between two dipoles aligned using an

external field,
−→
E . (b) Dipoles confined to a 2D lattice potential aligned or anti-

aligned using an external field, appropriate for simulating models such as XXZ
Hamiltonians.

by external fields. It’s important to eliminate or at least minimise these ef-
fects.

1.1.1 Why polar molecules?

Unfortunately, the majority of neutral atoms with practical cooling mecha-
nisms do not possess a large dipole in their ground quantum state. There are
notable exceptions such as Dysprosium [19], Erbium [20] and Chromium [21]
which have a substantial magnetic dipole moment µ owing to the high ground
state angular momentum. Given typical experimental parameter orders of
magnitude, µ ∼ 10 Bohr magneton, µB, and separations ∼ 500 of nm we can
expect interaction strengths of ∼ 10 Hz.

Alternatively, one can take advantage of exciting ground state neutral
atoms to an excited state with a large principal quantum number, n. Increas-
ing the Kepler radius of the electron orbital brings with it an exceptionally
large electric dipole moment, d, that scales with n4 [22, 23]. These atoms are
known as ‘Rydberg’ atoms. Current experiments typically access n between
50 and 60 (leading to an electric dipole moment of between ∼100 and 1000
Debye, D, 1 D ∼ 3.335×1030 C·m.), allowing for exceedingly fast Hamilto-
nian evolution times [24]. With typical experimental spacing of ∼ 1µm, the
interaction strength is on the order of ∼100 MHz.
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Both magnetic atoms and Rydberg atoms are spatially confined using
optical trapping potentials [25], however in the case of Rydberg atoms, inter-
action times are limited by radiative lifetimes. Rydberg atoms decay rapidly
from their Rydberg state. As the principal quantum number of the Rydberg
atom increases, the lifetime of the state increases with a dependence of n3

leading to typical Rydberg atom lifetimes on the order of ∼ 10/100µs 2. For
magnetic atoms, the ground states possess a permanent dipole moment and
so support long lifetimes.

Regarding the third requirement in section 1.1, magnetic atoms are lim-
ited in coherence by magnetic field noise to ∼ 500µs [27]. For quantum
computing purposes, magnetic atoms are typically doped in nanophotonic
structures, yielding coherence times exceeding 1 second [28, 29]. Typically,
sources of decoherence in a Rydberg atomic system arise from differential
ac Stark shifts caused by the trapping light or from motional states of the
trapped atoms [30] 3. However, in Rydberg systems, coherence times are
on the order of 1 × 104 greater than the Rydberg state lifetime [26], hence
lifetime is typically the limiting factor in the case of Rydberg atoms.

However, there is another option, straying away from the realm of atoms
and instead looking towards polar molecules. Molecules offer a middle ground
between magnetic and Rydberg atoms. Polar molecules possess a substantial
molecule-frame electric dipole moment of order ∼1 D in their ground state.
With the typical experimental spacing of molecules (∼500µm in an optical
lattice), interaction strengths are of the order ∼1 kHz. Moreover, molecules
have a rich internal structure which serves as a powerful toolbox in which to
encode and store quantum information as presented in Fig. 1.2 4. Moreover,
the multitude of hyperfine states available in each rotational manifold allows
for great tunability of dipolar interaction strength with external fields [31],
making polar molecules fantastically versatile.

Quantum simulators based on dipolar molecules may be used to under-
stand complex many-body phenomena, such as those underpinning quantum
magnetism [17, 32–35], superconductivity [36] and quantum phase transi-
tions [37–39]. Simulation architectures exploit the rotational structure of
ground state dipolar molecules. The symmetry of rotational states leads to
a net zero lab frame dipole moment. However, coupling different rotational

2Rb87 in the 70 S1/2 Rydberg state exhibits a lifetime of 150µs [26]
3Rydberg atom coherence times have been extended to 1.5 seconds using XY16-128

pulse sequences [26].
4The structure of 87Rb133Cs is discussed in more detail in chapter 2
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Figure 1.2: Atomic and molecular energy level structures. The inset cartoon
shows the degree of freedom causing splittings in each case. (a) 52S1/2

87Rb Breit-
Rabi diagram. (b) 87Rb133Cs rovibrational and hyperfine structure. Top left,
vibrational energy splitting on the order of ∼1.5THz. Top right, rotational energy
splitting of the lowest energy vibrational state. Energy splitting between lowest
and second-lowest rotational states ∼1GHz. Lower plot, the hyperfine structure
of the lowest rovibrational state of 87Rb133Cs. 32 different hyperfine states are
present.

states using an external electric or microwave field induces tunable dipolar
interactions. These rotational states are anharmonically separated on the
order of ∼GHz, allowing for specific addressing of rotational state couplings.

As with Rydberg atoms, ultracold dipolar molecules are confined using
optical traps. Recently, researchers have begun exploring and controlling
the internal structure of polar molecules for use in quantum science [40–43],
however short coherence times between different rotational states have made
observations of dipolar interactions difficult, primarily caused by differential
ac Stark shifts from the trapping light [44–49]. In this work, we develop a
method of accessing dipolar interactions by engineering long coherence times
in 87Rb133Cs molecules (hereafter RbCs). This is accomplished by tuning
the wavelength of the trapping light to access a so-called magic condition
where differential ac Stark effects are eliminated. Additionally, we present a
method for transferring molecules to the ground state which is compatible
with a technique for loading molecules into an optical lattice developed by the
University of Innsbruck [50] and present results utilising different rotational
energy states of RbCs as a method of simulating real spatial dimensions.
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1.2 Creating ground state ultracold molecules

Methods for creating ultracold ground state polar molecules generally fall
into one of two categories; direct and indirect methods. Direct methods in-
volve producing ground state diatomic molecules and subsequently cooling
and trapping them with laser light. Indirect methods involve creating sepa-
rate ultracold samples of each atomic species and associating them using a
photon (photoassociation) or by sweeping an external magnetic field over an
interspecies Feshbach resonance (magnetoassociation).

Direct methods utilise transitions to different electronic states as the basis
for a laser cooling scheme. With a greater number of states available and a
greater number of photons to be scattered to reach a given temperature, it is
often more difficult to laser cool molecules compared to atoms. Certain cri-
teria about the molecular structure must be fulfilled for effective production
of ground state molecules using direct methods [51]. As with the laser cool-
ing of atoms, molecules must possess an excited state with a suitably short
lifetime and can form part of a cooling cycle which is sufficiently closed [52].

There is no vibrational quantum number selection rule that governs elec-
tronic transitions. Instead, the decay rates along different pathways from
an excited state are given by wavefunction overlap which is described by
the Franck-Condon matrix. The most appropriate molecules for direct cool-
ing have a highly-diagonal Franck-Condon matrix with minimal intervening
electronic states, minimising decay outside the proposed cooling cycle. In
these schemes, minimial change to the molecular geometry occurs during ex-
citation. As with atomic cooling schemes, repump lasers are implemented
to pump the populations back into the cooling cycle [53]. These typically
target transitions to other vibrational states in the electronic ground state.
Diatomic molecules which have been cooled and trapped with lasers include
SrF [54], CaF [55, 56], YO [57], YbF [58], BaH [59] and TiO [60]. It is also
noted that molecules such as Sr2 have been created using STIRAP and then
a second STIRAP sequence can be used to transfer molecules to the ground
state [61].

Photoassociation is a fantastic tool for molecular spectroscopy [62, 63]
and for probing the scattering properties of atoms [64, 65], however it can
also be implemented to create ground state molecules. The general princi-
ple is that colliding atoms with energy EFA can absorb a photon, γPA, and
associate into a bound state as illustrated in Fig. 1.3(a). The molecule then
occupies an excited electronic state which readily decays, in some instances
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Figure 1.3: Photoassociation and magnetoassociation diagrams. Blue and red
curves are the ground and excited electronic states respectively. The green curve
is the Feshbach state that is occupied after the magnetoassociation presented in
(b). (a) Photoassociating atoms into molecules. Transitions from atoms in a free
atom pair state with energy EFA (grey horizontal line) to an excited state (red
horizontal line) are facilitated by a photon, γPA. Molecules in the excited state
potential then readily decay through various channels. The relative probabilities of
a molecule following specific decay channels are dictated by Franck-Condon factors.
(b) Magnetoassociating atoms into molecules. Applying an external magnetic field
allows the tuning of energy of the bound state, EFB, with respect to the free atom
pair state. Sweeping the magnetic field over the region these states are degenerate
in energy forms a weakly bound Feshbach molecule. The Feshbach molecule is
then transferred to the ground state with hyperfine resolution using STIRAP, a
two-photon transition facilitated by pump and Stokes lasers, γpump and γStokes.

to the ground state [66]. However, the multitude of electronic, vibrational,
rotational and hyperfine decay pathways makes ground state production us-
ing photoassociation an undesirable approach.

Magnetoassociation, which we adopt in our experiment, uses a Feshbach
resonance to create a weakly bound molecule which is then transferred to a
more deeply bound state with a two-photon transfer process. Pioneered in
2003 by researchers in JILA in the creation of K2 [67], magnetoassociation
has become arguably the most robust route to diatomic molecules. In the
context of creating heteronuclear molecules, the process begins with a high
phase-space-density mixture of two species in an external magnetic field. The
magnetic moment of the free atoms is typically different to that of bound
states, allowing the relative energy of the free atoms and bound states to
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be controlled by varying the strength of the external field as illustrated in
Fig. 1.3(b). If the magnetic field is swept over the region where the bound
state and the free atoms are degenerate in energy, the free atom state can
adiabatically follow an avoided crossing, forming a weakly-bound Feshbach
molecule. This process is described using Landau-Zener theory [68]. The
Feshbach molecules are then transferred to a more deeply bound ground
state with stimulated Raman adiabatic passage (STIRAP). Heteronuclear
diatomic molecules created using Feshbach association include KRb [69, 70],
RbCs [71, 72],NaK [73–76], NaRb [77], NaCs [78], LiK [79] and NaLi [80].

1.3 Polar molecule applications

We shall briefly summarise some of the many applications of polar molecules.

1.3.1 Quantum simulation

Consider the situation where molecules are confined to individual lattice sites
in the limit where site depth is sufficient that tunnelling between sites is ne-
glected. Two rotational states can be used to encode pseudo-spin information
describing many-body systems with spin states |↑⟩ and |↓⟩ being “mapped”
onto rotational states. Rotational states are defined using |N,MN⟩ where
N is the rotational quantum number and MN the projection of N onto the
quantisation axis. With single-site occupancy in a 2-dimensional optical lat-
tice and dipolar interactions between sites defined by Eq. 1.1, the system
dynamics are described by the XXY Hamiltonian [81, 82]

ĤXXZ =
1

2

∑
i ̸=j

1 − 3 cos2 θij
r3

[
J⊥
2

(
S+

i S
−
j + S−

i S
+
j

)
+ JzS

z
i S

z
j

]
, (1.3)

where Si,j are spin-1/2 operators and θij is the angle between the dipole
moments and the vector connecting different dipoles i and j. J⊥ describes
the dipole-dipole coupling strength and Jz describes Ising interactions. The
specific values of J⊥ and Jz can be tuned by varying the states used to encode
pseudo spins.

By considering two sets of |N,MN⟩ states, we can show the tunability
of interaction strengths by simply changing the states used in the simula-
tion. For {|↓⟩ , |↑⟩ = {|0, 0⟩, |1, 0⟩}, J⊥ = 2d2↓↑ for and Jz = (d↑ − d↓)

2. For
{|↓⟩ , |↑⟩ = {|0, 0⟩, |1, 1⟩}, J⊥ = −d2↓↑̃ and Jz = (d↑̃ − d↓)

2 [83, 84]. d↓, d↑
and d↑̃ are the dipole moments given by the expectation value of the dipole
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operator d. d↓↑ represents the transition dipole moment for the |0, 0⟩ → |1, 0⟩
transition, ⟨0, 0| d |1, 0⟩ [85, 86]. Similarly, d↓↑̃ pertains to the |0, 0⟩ → |1, 1⟩
transition. Tuning the values of J⊥ and Jz allows the simulation of different
models. For example, setting J⊥ = 0, Jz = 0 or J⊥ = Jz transforms Eq. 1.3
into the Ising, XY and Heisenberg models respectively.

Moving away from the tight binding limit whereby molecules can tunnel
between lattice sites, the system is described by the Bose-Hubbard model
given by [87, 88]

ĤBH = −J
∑
⟨i,j⟩

b̂†i b̂j + V
∑
i<j

n̂in̂j

r3ij
−
∑
i

µn̂i, (1.4)

where ⟨i, j⟩ represents the nearest-neighbour sites i and j, b̂†j(b̂i) are the
bosonic creation (annihilation) operator of the lattice site i and h.c. is the
hermitian conjugate. V is the dipolar interaction between sites separated by
a distance r and n̂i is the number operator at site i. µ is the chemical poten-
tial. Tuning the dipole-dipole interaction facilitates Mott-solid to superfluid
phase transitions.

Finally, without the need for lattice confinement, the internal quantum
states of molecules can be harnessed to simulate spatial positions in real di-
mensions [89, 90]. This is known as a synthetic dimension. For example, with
diatomic molecules, a real 1-dimensional landscape, such as the position of a
particle in a 1-dimensional optical lattice potential, can be imitated as a syn-
thetic dimension engineered using rotational angular momentum states. The
rotational energy states form the analogy for positions in an optical lattice
where each site in the real lattice potential can be mapped onto a rota-
tional energy state of the molecule. Tunnelling between sites in the synthetic
dimension is controlled by varying the power of the microwaves that cou-
ple different rotational states together. Synthetic dimensions offer a highly
tunable structure compared to their real-dimensional counterpart, can be en-
riched by dipolar interactions [91, 92] and combined with real dimensions to
simulated higher-dimensional systems [93, 94].

1.3.2 Quantum computation

Binary data can be encoded onto a superposition of two quantum states, |0⟩
and |1⟩, forming a qubit. Qubits are the building blocks of quantum comput-
ers which are transformed in calculations using ”gate” operations. Typically,
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molecular gates are proposed using an array of individual tight optical poten-
tials called tweezers [95] although schemes for molecular gates using an array
of molecules have been proposed which could be accomplished with lattice
potentials [96]. Using tweezers, the position of molecules can be controlled
so that quantum states can be initialised, stored and read-out away from the
locations where gate operations are performed. We highlight a proposal from
Ni et al. [97] for an iSWAP gate using two polar molecules.

In [97], dipole-dipole interactions facilitate the exchange of ground and
excited states between the molecules. Consider two molecules occupying
separate hyperfine states in the ground rotational manifold, given by |0⟩ and
|1⟩. A microwave π-pulse transfers the molecule in |1⟩ to an excited state
|e⟩. |e⟩ is chosen such that there is a transition dipole moment coupling
to both |0⟩ and |1⟩. The molecule-molecule interaction is described in the
{|0, 0⟩ , |0, e⟩ , |e, 0⟩ |e, e⟩} basis with the first and second positions in the state
labelling referring to the first and second molecule respectively by

Û = e−iĤt/h̄ =


1 0 0 0
0 cos(Ω t) i sin(Ω t) 0
0 i sin(Ω t) cos(Ω t) 0
0 0 0 1

 , (1.5)

where Ω = D/r3, D is the dipole-dipole interaction strength and r is
the intermolecular distance. To perform an iSWAP operation, t = π/(2 Ω).
Recently, researchers in Princeton and Harvard Universities [40, 42] have
produced an experiment that deterministically prepares Bell states pairs of
molecules in reconfigurable tweezer arrays. They demonstrate the iSWAP
gate proposed in [97] with ∼0.8 fidelity, limited by single molecule decoher-
ence times.

Many current quantum computing architectures have problems with scal-
ability [98]. Forming a large Hilbert space for more advanced computations
is difficult. Minimising this issue can be accomplished by using higher-
dimensional quantum bits, known as qudits, which hold more information
than qubits. In Sawant et al. [99], they proposed a protocol for utilising dif-
ferent rotational states of dipolar molecules as a qudit platform which demon-
strated that the number of d-dimensional qudits which hold the equivalent
information of n qubits is about n/log2(d). The current record for the num-
ber of logical qubits used in gate operations is held by the Lukin group [100]
with 48 logical qubits based on reconfigurable Rydberg atom tweezer ar-
rays. In the RbCs lab in Durham, we have reached up to N = 6 [101]. A



Chapter 1 - Introduction 22

7-dimensional qudit system comprising 17 molecules would contain similar
information to the one demonstrated in [100].

1.3.3 Measurement of fundamental constants

A diatomic molecule’s state energies are sensitive to perturbations in exter-
nal electric fields, making them prime candidates for precision measurement.
Most prominently, polar molecules are utilised for measuring the electron
electric dipole moment (eEDM) [102]. CP symmetry violation, which is in-
cluded in many extensions to the standard model of particle physics, predicts
a non-zero value of the eEDM [103]. Placing limits on the value of the eEDM
disproves some of the standard model extensions.

The internal electric field serves as a probe for the eEDM. The eEDM
would either be aligned or anti-aligned to the molecule’s electric field leading
to an energy shift equal to de · Emol where de is the eEDM and Emol is the
electric field across the molecule. The experiments at the forefront of eEDM
precision measurement are the ACME collaboration using ThO [104], Impe-
rial College London using YbF [105] and JILA using HfF+ molecules [106].
The latter of these three boasts the most the most accurate eEDM limit to
date of |de| < 4.1 × 10−30 e cm at 90% confidence.

1.4 Current experimental progress overview

in Durham

As will become apparent in later chapters (particularly chapter 3), the bulk
RbCs experiment in Durham is a culmination of almost two decades of work
from many different Master’s, post-graduate and post-doctorate researchers.
In an effort to contextualise the results presented in this thesis, Fig. 1.4
presents a summary of key experimental milestones.
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Figure 1.4: Overview of the steps to observing dipole-dipole interactions between
ultracold RbCs molecules in the lab and when each of the steps was established
at Durham University. First, we produce an ultracold mixture of Rb and Cs
atoms [107–109]. Next, we ramp the magnetic field over an interspecies Feshbach
resonance, creating weakly-bound Feshbach molecules [110–112]. We then trans-
fer the Feshbach molecules to their electronic and rovibrational ground state using
STIRAP [113–116]. Using external fields, we manipulate the internal states of the
molecules, presenting a rich energy landscape that can be used as the foundation
for quantum science [49, 101, 117–120]. By engineering long-coherence times be-
tween different rotational quantum states, we observe dipolar interactions in our
sample [121]. In the future, the immediate plan will be to confine molecules in an
optical lattice potential and begin to simulate tunable lattice-spin models.
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1.5 Thesis overview

This thesis is structured as follows:

In chapter 2, we introduce the theoretical background necessary for un-
derstanding the results presented in this thesis. We begin by outlining the
structure of RbCs molecules. We then describe the interactions between
RbCs molecules and external fields, before giving a brief insight into how
utilising these interactions can lead to engineering tunable many-body Hamil-
tonians.

Chapter 3 concentrates on the details of the experimental setup. We
summarise the methods we employ in creating ultracold ground state RbCs
molecules in the laboratory. We discuss recent experimental upgrades, in-
cluding the replacement of the atomic dispensers and an ion pump. Finally,
we detail the installation and characterisation of new microwave antennae.

In chapter 4, we introduce a scheme to produce magic optical traps for
different pairs of rotational states of RbCs using light tuned close to an
electronic transition. We conduct a comprehensive investigation into the
low-lying vibrational, rotational and hyperfine structure of the excited state
potential. Next, we identify the laser detunings required for producing rota-
tionally magic traps before performing Ramsey experiments near the magic
wavelength, demonstrating its prospects for engineering long quantum co-
herence times between different rotational states of RbCs.

In chapter 5, we prove the efficacy of the magic trapping protocol investi-
gated in chapter 4 by trapping our molecular sample and performing a series
of Ramsey experiments. We present world-record coherence times between
different rotational states of diatomic polar molecules. These long coherence
times facilitate the observation of dipolar interactions in our bulk gas. We
coarsely tune the strength of the interactions in our sample by initialising
our molecules in different superpositions of rotational states.

In chapter 6, we explore a route for creating ground state RbCs that
is compatible with a method for producing a low-entropy sample of RbCs
molecules in an optical lattice, demonstrated by researchers at the University
of Innsbruck. We associate atoms into molecules using a Feshbach resonance
at a magnetic field different to our typical experimental procedure before
presenting a method of accessing a near-threshold bound state suitable for
transferring to the ground state via STIRAP. We then directly measure the
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diagonal and off-diagonal elements of the STIRAP Hamiltonian by perform-
ing spectroscopy and Rabi oscillations on the relevant transitions.

Chapter 7 focuses on utilising different rotational states of RbCs as a syn-
thetic dimension landscape. By coupling different rotational states simulta-
neously, we engineer Hamiltonians analogous to single-particle dynamics in
a one-dimensional optical lattice potential.
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Chapter 2

Theoretical Background

2.1 Introduction

In this chapter, we will provide an overview of the theoretical framework
that underpins the results presented in this thesis. Many of the concepts
discussed herein apply not only to RbCs molecules but also to the structure
and interactions of other diatomic molecules. We will begin by presenting
a comprehensive description of the relevant structure of RbCs, arranged ac-
cording to progressively lower energy scales. We will then describe the state-
sensitive interactions of RbCs with external electromagnetic (EM) fields and
using EM fields to access different rotational and hyperfine states. Finally, we
will discuss the interactions between molecules through their electric dipole
moments.

2.2 Structure of RbCs

A chief benefit to utilising diatomic molecules as a platform for quantum
computation and simulation lies in their rich internal quantum structure.
Unlike atoms, molecules possess not only electronic and hyperfine internal
degrees of freedom contributing to the energy of a given state but also de-
grees of freedom associated with vibration and rotation. The Hamiltonian
describing the internal energy of a given molecular state is

ĤInt = ĤElectronic + ĤVibrational + ĤRotational + ĤHF, (2.1)

where ĤElectronic, ĤVibrational, ĤRotational and ĤHF are the terms relating
to electronic, vibrational, rotational and hyperfine degrees of freedom and
typically contribute on the order of ∼100 THz, ∼ 1.5 THz, ∼GHz and ∼MHz
to the overall energy of a state respectively.

27
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Figure 2.1: Hund’s cases (a) and (c).

2.2.1 Quantum numbers for diatomic molecules

Dissecting the energy level structure of diatomic molecules is initially ad-
dressed by defining a set of good quantum numbers used to describe our
states. Good quantum numbers are determined by which of Hund’s cases is
appropriate to describe the coupling of the angular momenta of the molecule.
The relevant Hund’s cases for RbCs are (a) and (c), presented in Fig. 2.1.
Angular momenta quantum numbers used in Hund’s cases are [124]:

• L: the total electronic orbital angular momentum, L = lRb + lCs

• S: the total electron spin angular momentum, S = sRb + sCs

• J: the total angular momentum, J = L + S + R

• R: the rotational angular momentum of the nuclei

• N: the total angular momentum excluding spin, N = J - S 1

• I: the total nuclear spin angular momenta, I = iRb + iCs.

Hund’s cases are adopted in accordance with the relative coupling
strength of L coupling to the internuclear axis via electrostatic forces, the
coupling of the orbital and spin angular momenta (L and S) and the coupling
of L and S to the total angular momentum J [125]. In both instances, (a)
and (c), the coupling of L and S to J is relatively weak, allowing J to serve
as a good quantum number.

Hund’s case (a) asserts that the orbital angular momentum, L, is strongly
coupled to the internuclear axis, while the coupling of L and S is weak in

1For the ground state N = J.
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comparison. This weak coupling enables the projections of L and S with re-
spect to the internuclear axis to be well-defined and are denoted as Λ and Σ
respectively. Their summation is given the label Ω . In this case, the vector
Ω points along the internuclear axis, with magnitude Ω , combines with R
to give J. Additionally, I couples to J resulting in a new quantum number
describing the total angular momenta F.

In Hund’s case (c), the coupling between L and S is stronger than the
coupling between L and the internuclear axis. Therefore, it’s useful to define
a new quantum number Ja which is the vectorial sum of the total orbital
and spin angular momenta, Ja = L + S. The projection of Ja onto the
internuclear axis defines Ω . Ω then couples with R to form J.

Hund’s case (a) has good quantum numbers S , Σ , Λ, Ω , J , I and F . This
case is typically applicable for describing low-lying J states [126]. Hund’s
case (c) features good quantum numbers Ja, Ω and J and is used to describe
states of large nuclear separations.

The electronic potentials for Rb and Cs interactions arise from the inter-
play between repulsive Coulomb forces, attractive Van der Waals forces and
short-range chemical bonding effects. Coulomb interaction varies as R−12

whereas the Van der Waals interaction varies as R−6, resulting in a charac-
teristic Lennard-Jones potential shape where R is the distance separating the
two nuclei [127] as shown in 2.2(a). At short interatomic distances, repulsive
coulomb interaction dominates, causing a rapid increase in potential energy
as R tends to zero. At large interatomic distances however, the potential
tends towards the free atom energy as R tends to ∞. Between these two
extremes, if a minimum can be found with sufficient depth, bound molecu-
lar states can be supported. The ground electronic state potential supports
∼120 vibrational states [128].

The term symbols used to denote electronic states take the form
n(2S+1)Λ±

Ω. Here, n denotes the relative energies of potentials and is rep-
resented by a letter. Beginning from the ground state and proceeding in
order of ascending energy n is X, A, B, C etc 2. n symbols in upper case and
lower case refer to singlet and triplet states respectively. The quantum num-
ber Λ is represented using capital Greek letters Σ, Π, ∆ for Λ = 0, 1, 2 etc.
Ω is only specified when necessary to distinguish between different values of

2Although, this convention is sometimes broken. n is defined with respect to discovered
states at the time.
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L. ± refers to reflection symmetry in a plane containing the internuclear axis.

We typically couple to three electronic energy states in our experiment:
a3Σ where our Feshbach state lies; b3Π which we utilise to access an inter-
mediate excited state to facilitate STIRAP transfer; and X1Σ+ which is the
electronic ground state. b3Π is also used to engineer magic wavelength traps
which is discussed in detail in later chapters. We use “primes” to denote
quantum numbers of particular states as shorthand. For example, v, v′ and
v′′ are the vibrational quantum numbers of the Feshbach, excited and ground
states respectively. Coupling between b3Π and X1Σ+ is forbidden due to se-
lection rules, however it is weakly allowed due to the existence of spin-orbit
coupling causing mixing between the b3Π+ and A1Σ+ states [129, 130].

2.2.2 Vibrational structure

At energies near the bottom of the electronic potential, the potential appears
approximately harmonic. Therefore, an appropriate estimation of the energy
level splitting can be obtained by treating the system as a quantum harmonic
oscillator [131]. Energies of vibrational states are therefore given by

Ev = h̄ωv

(
v +

1

2

)
, (2.2)

where h̄ is the reduced Planck’s constant, ωv is the vibrational angu-
lar frequency of state v. Consequently, vibrational state wavefunctions are
described by Hermite polynomials as presented in Fig. 2.2(b). The energy
difference between v′′ = 0 and v′′ = 1 in RbCs is h× 1.49270 THz [128]. In
electronic transition, there is no selection rule purely regarding change of vi-
brational quantum numbers. Transition strength is instead governed through
arguments related to Frank-Condon overlapping of the relevant wavefunc-
tions combined with rotational transition dipole moment calculations [132–
134].
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Figure 2.2: Overview of RbCs structure at various energy scales. (a) Relevant molecular potentials of RbCs based on
calculations found in [135]. (b) Vibrational splitting of X1Σ+ potential. Hermite wavefunctions for each vibrational state
are illustrated. (c) Rotational splitting of X1Σ+(v′′ = 0). (d) and (e) Zeeman structure of N = 0 and N = 1 rotational
energy levels respectively. States with MF =+6, +5 and +4 labelled with green, red and blue colours respectively. Inset in
(e) shows the hyperfine splitting at low magnetic fields for N = 0.
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2.2.3 Rotational structure

Diatomic molecules can be modelled as two masses separated by an effective
distance r. This is known as the “rigid rotor” model. By examining the
associated kinetic energy, given the symmetry about the internuclear axis,
we arrive at rotational energies given by

ERigid(N) = BvN(N + 1), (2.3)

where N is the rotational quantum number and Bv is the rotational con-
stant of a given vibrational state. The ground vibrational states in RbCs
have a rotational constant of Bv′′=0 = 490.173 994(45) MHz [136].

However, molecules are not entirely rigid. As we consider higher ro-
tational energy states, centrifugal distortion effects begin to have a non-
negligible influence on the rotational energies. To account for centrifugal
distortion, we introduce a correction term, resulting in rotational energies
are given by

ERot(N) = BvN(N + 1) −DvN
2(N + 1)2, (2.4)

where Dv denotes the centrifugal distortion term. For low-lying rotational
states of the vibrational ground state, centrifugal corrections are on the order
of hundreds of Hz [137].

The rigid rotor model supports wavefunctions described by spherical har-
monics [138]:

ψR,N,MN
= ARe

−iMNϕPMN
N (cos θ) = YN,MN

(θ, ϕ), (2.5)

where R is an index relating to the appropriate normalisation constant,
A, MN is the projection of N onto the quantisation axis, P denotes the as-
sociated Legendre polynomial and Y is the symbol for spherical harmonics.

An important feature of rotational states is made evident by Eq. 2.4.
Rotational energy levels are anharmonically spaced, illustrated in Fig. 2.2(c).
This allows us to experimentally address the coupling between two pairs of
rotational states independently with ease.

2.2.4 Hyperfine structure

The finest energy contribution to the overall Hamiltonian in RbCs originates
from the interactions of nuclear spins. 87Rb and 133Cs possess nuclear spin



Chapter 2 - Theoretical Background 33

magnitudes IRb=3/2 and ICs=7/2 respectively. We can define a hyperfine
Hamiltonian as [124, 136, 139, 140]

ĤHF =
∑

i=Rb,Cs

Vi ·Qi +
∑

i=Rb,Cs

ciN · Ii

+ c3IRb · T · ICs + c4IRb · ICs.

(2.6)

The first term results from the interaction between the nuclear quadrupole,
Qi, with the electric-field gradient caused by electron distribution, Vi, for
each nucleus. The second term relates to the coupling between nuclear spins
and the magnetic field produced by the rotation of the molecule. The third
and fourth terms correspond to tensor and scalar interactions between the
nuclear spins of each atom respectively.

For the rotational ground state of RbCs, the first two terms are zero and
c3 is a factor of ∼100 smaller than c4. As illustrated in the inset of Fig. 2.2(e),
in the absence of external fields, we observe 4 distinct manifolds correspond-
ing to F = 2, 3, 4 and 5. These are separated by factors of c4.

Hyperfine interactions split rotational manifolds into (2N + 1)(2iRb +
1)(2iCs + 1) energy levels leading to 32 states in N = 0, 96 in N = 1 etc.
This splitting becomes apparent in the presence of external fields as shown
in Fig. 2.2(d) and (e).

In this work, molecular energies for X1Σ+ states are calculated by diago-
nalising an“effective” Hamiltonian which only includes rotational, hyperfine
and external field contributions. We use [141, 142] in our calculations.

2.3 RbCs state control

It’s important to understand the interactions of the molecule with external
fields and with each other. In the presence of external fields, an absolute
Hamiltonian describing the energies of RbCs can be formed with the addition
of an external term to Eq. 2.1:

ĤTot = ĤInt + ĤExt. (2.7)

In this section, we provide a brief overview of the external field interac-
tions that are relevant to our experiment.
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2.3.1 Zeeman effect

The magnetic moment associated with RbCs arises solely from the contri-
butions of nuclear spin magnetic moments. By virtue of Rb and Cs being
alkali atoms, the outermost electrons in the two nuclei are paired, resulting in
no contribution to the overall magnetic moment. The RbCs molecular mag-
netic moment is therefore on the order of µN/µB smaller than their individual
atomic counterparts. The Zeeman Hamiltonian is defined as

ĤZeeman = −grµNN ·B −
∑

i=Rb,Cs

gi (1 − σi)µNIi ·B, (2.8)

where gr is the rotational g-factor of the molecule and gi is the rotational
g-factor of each atom (i = Rb, Cs). σi denotes the nuclear shielding factor
of the atom. Zeeman shifts in molecular states are presented in Fig. 2.2 (d)
and (e).

Our experiments typically operate at 181.5 G. In this “mid” magnetic
field regime, nuclear spins are not well-defined. Instead, there is mixing
between states of different nuclear spin. This ultimately leads to our general
labelling convention used throughout this work of (N,MF )k where MF is the
projection of the total angular momentum onto the quantisation axis, MF =
MN + mIRb

+ mICs
, and k is an index counting up in increasing energy. k is

omitted for nuclear spin-stretched states.

2.3.2 ac Stark effect in RbCs

Interactions of atoms or molecules with a time-varying electric field, for in-
stance off-resonant light, generate perturbations in their respective energy
level structure given by the equation

ĤAC = −α · I
2ϵ0c

, (2.9)

where c is the speed of light, ϵ0 is the vacuum permittivity, α is the polar-
isabiliy and I is the intensity of the field experienced by the atom or molecule.

Unlike atoms, the anisotropy of diatomic molecules leads to molecules
having two polarisabilities associated with them. The polarisability parallel
to the internuclear axis, α∥ and the one orthogonal to the internuclear axis,
α⊥. It’s therefore helpful to adopt a coordinate system that defines the po-
larisability of the molecule with respect to these axes, shown in Fig 2.3.
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Figure 2.3: Coordinate system for describing ac Stark shifts in RbCs. A light

wave propagating along −→n with an electric field vector,
−→
E , orthogonal to the

direction of propagation.
−→
E is at an angle β with respect to the quantisation axis

provided by the magnetic field,
−→
B , and θ with respect to the internuclear axis.

Using the basis of −→a ,
−→
b and −→c , where −→c is the vector parallel to the in-

ternuclear axis and −→a and
−→
b are vectors orthogonal to this, we can construct

a vector polarisability matrix,

α =

 α⊥ 0 0
0 α⊥ 0
0 0 α∥

 . (2.10)

The intensity of a Gaussian beam is given by

I =
cϵ0n

2
|
−→
E |2, (2.11)

where n is the refractive index of the material the light is propagating
through. Using our molecular coordinates, we can define a vector associated
with the electric field of the propagating light,

−→
E = E

 0
sin θ
cos θ

 . (2.12)

We can rewrite Eq. 2.9 using 2.10, 2.11 and 2.12 as

ĤAC = − I

2ϵ0c

[
α∥ cos2 θ + α⊥ sin2 θ

]
. (2.13)
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Here we have set n = 1. It is often useful to separate contributions to
the overall polarisability into their isotropic and anisotropic components. We
hence rewrite Eq. 2.13 as

ĤAC = − I

2ϵ0c

[
α(0) + α(2)P2(cos θ)

]
, (2.14)

where P2 is the second Legendre polynomial. α(0) is termed the ‘isotropic’
polarisability and is the same for all rotational energy levels, N , and α(2) is
the ‘anisotropic’ polarisability and is, in general, different for different values
of N . These polarisabilities are given the forms:

α(0) =
1

3

(
α∥ + 2α⊥

)
(2.15)

α(2) =
2

3

(
α∥ − α⊥

)
. (2.16)

Let’s now apply this perturbation to a molecular state. We apply light
linearly polarised with a propagation vector −→n parallel to −→x at an angle
β to the magnetic field. We find the matrix elements of this perturbation
become [143]

⟨N ′, M ′
N |Iα|N,MN⟩

=Iα(0)δNN ′δMNM ′
N

+ Iα(2)
∑
M

d2M0(β)(−1)M
′
N

√
(2N + 1) (2N ′ + 1)

×
(
N ′ 2 N
0 0 0

)(
N ′ 2 N

−M ′
N M MN

)
,

(2.17)

where dM0(β) is the reduced Wigner-D matrix rotating the polarisability
tensor by the angle β, MN is the projection of N along the quantisation axis
and terms in two-rowed parentheses are Wigner-3j symbols.

The form of Eq. 2.17 presents an important phenomenon. Matrix ele-
ments with |N ′ - N | ≠ 0, 2 or |M ′

N−MN | > 2 do not feature any contribution
from the second term in Eq. 2.17, therefore each MN projection is perturbed
in energy equally. However, for N = N ′ = 1, the matrix elements do have a
contribution from the second term. This can be interpreted as the anisotropic
component of the polarisability, α(2), mixing different projections of MN . We
can show this explicitly by presenting the form of Eq. 2.17 for the case where
N = 1 with basis MN = 0, +1, -1:
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Figure 2.4: ac Stark shifts in N = 1 RbCs interacting with a linearly polarised
oscillating electric field for light polarised (a) parallel and (b) orthogonal with
respect to the quantisation axis. States coloured by the transition dipole moment
(TDM) magnitude coupling from the (0,+5) ground state with σ+, π and σ−

transitions that correspond to ∆MF = 1,0 and -1 being coloured green, blue and
red respectively.

⟨1,M ′
N |Iα|1,MN⟩ = Iα(0)+

Iα(2)

5

 2P2(cos β) − 3√
2

sin β cos β + 3√
2

sin β cos β

− 3√
2

sin β cos β −P2(cos β) 3
2

sin2 β

+ 3√
2

sin β cos β 3
2

sin2 β −P2(cos β)

 .
(2.18)

The ac Stark shifts in RbCs for N = 1 states in the presence of light
polarised parallel and orthogonal to the quantisation axis is presented in
Fig. 2.4. We can see from Eq. 2.18 that another important result is evident,
the diagonal terms associated with mixing MN = 0 is twice that and the
opposite sign of MN = ±1. This means that ac Stark shifts associated with
coupling states with the sameMN are twice the magnitude as for ∆MN = ±1.

2.3.3 Coupling rotational states

Different rotational states are accessed in RbCs by driving electronic tran-
sitions with microwaves. At 181.5 G, we operate in a regime where nuclear
spins are sufficiently coupled and MF is a good quantum number. Electric
transition dipole moments are calculated in the |N,MN⟩ basis to be
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Figure 2.5: Rotational coupling in RbCs. (a) Zeeman structure of (i) N = 2,
(ii) N = 1 and (iii) N = 0 rotational states. A magnetic field of 181.5G is
indicated with the vertical dashed line. States highlighted in blue, red and purple
correspond to (0,+5), (1,+5)0 and (2,+5)0 respectively. (b) State compositions as
a function of magnetic field for the coloured states in (a) for (i) N = 2, (ii) N = 1
and (iii) N = 0. The colours in the plots correspond to the magnitude of the
components of the nuclear spin states of the state coloured in (a). The dominant
character at 181.5G is presented in the plot in the |N,MN ,mRb,mCs⟩ basis. Code
adapted from Tom Hepworth’s MSci project [142, 144]. (c) Spherical harmonic
wavefunctions for different values of |MN |. The transition dipole moments for
(0,+5) → (1,+5)0 and (1,+5)0 → (2,+5)0 at 181.5G given in blue and red
respectively. Transitions of ∆N > 1 are forbidden. Wavefunction compositions
for each N state are represented by the opacity of the squares surrounding the
relative wavefunctions.

d = d0
√

(2N + 1) (2N ′ + 1)(−1)MN

(
N 1 N ′

−MN M M ′
N

)(
N 1 N ′

0 0 0

)
,

(2.19)
where d0 is the molecular frame dipole moment (1.225 D [145, 146], D ∼

3.34 ×10−30 C m). M = MN −M ′
N = -1, 0 and +1 which correspond to σ+,

π and σ− transitions respectively.

An important aspect of rotational transitional dipole moments is made
evident from Eq. 2.19. If N = N ′, the transition dipole moment is zero. Pure
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Figure 2.6: Dipole-dipole interactions. (a) Dipoles orientated arbitrarily and
(b) dipoles aligned along a common axis. The moment of dipole i (j) is given by
di (dj),

−→r is the vector connecting the two dipoles with magnitude r, Vdd is the
dipole-dipole interaction energy and θ is the angle between the quantisation axis
in the −→z direction and −→r .

N states possess no dipole moment. To realise dipole moments in the lab
frame, a mixture of states with opposing parities is necessary. This breaks
the symmetry of the spherical harmonic wavefunctions. The transition dipole
moment for N = 0 → N = 1 states is d0/

√
3.

Selection rules for rotational transitions are ∆N = ±1 and ∆MF = 0,±1.
As illustrated in Fig. 2.5(b), states with non-nuclear-spin-stretched pro-
jections are a mixture of different nuclear spin states. Transitions with
∆MF = 0,+1 and -1 are given the names π, σ+ and σ− respectively.

2.3.4 Dipole-dipole interactions

Consider two dipoles situated in arbitrary positions and orientations in space
as shown in Fig. 5.8(a). The dipole-dipole interaction energy is then given
by [17, 18]

Vdd =
(di · dj) r

2 − 3 (di · r)(dj · r)

r5
, (2.20)

where di (dj) is the dipole moment of the ith (jth) dipole and r is the
vector connecting the two dipoles with magnitude r.

N and MN define the spherical harmonic wavefunction of a given state
as illustrated in Fig. 2.5(c). MN is given with respect to a quantisation axis.
Therefore, we consider the case where interacting dipoles are aligned along
the quantisation axis, shown in Fig. 5.8(b). This simplifies Eq. 2.20 to
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Vdd =
(di · dj) (1 − 3 cos2 θ)

r3
, (2.21)

where θ is the angle between the quantisation axis and r. Eq. 2.21
presents two important attributes about dipole-dipole interactions, their rela-
tively long-range (∝1/r3) and anisotropic character (dependence on θ). Typi-
cal dipole-dipole interaction strengths for diatomic molecules with separation
distances achievable in optical tweezers (∼1µm) are on the order of kHz [97].

For two molecules in equal superpositions of states, the dipole-dipole
interaction energy is [36, 121, 147, 148]

Vdd =
1 − 3 cos2 θ

r3

(
d0 · d0 +

d1 · d−1 + d−1 · d1

2

)
, (2.22)

where d0 = dz, d±1 = ∓( dx ± idy)/
√

2 are the spherical components of
the dipole operator. This expression only considers the case where the total
change in angular momentum of the molecules is zero.

Considering two molecules labelled i and j confined to a common plane,
we will briefly discuss how dipole-dipole interactions can be used to encode
pseudospins for quantum simulation using the different |N,MN⟩ states. We
will focus on cases where N = 0, 1 and MN = 0,±1 for simplicity.

We can map our |N,MN⟩ states onto spins as {|↓⟩ , |↑⟩ = {|0, 0⟩, |1, 0⟩}
or {|↓⟩ , |↑⟩ = {|0, 0⟩, |1, 1⟩}. First, let’s concentrate on the former.

In this case, only d0 components are considered due to selection rules.
The dipole-dipole interaction, Eq. 2.22, is described with basis |↑i↑j⟩,
|↑i↓j⟩ , |↓i↑j⟩ , |↓i↓j⟩ as

Vdd =
1 − 3 cos2 θ

r3


d2↑ 0 0 d2↓↑
0 d↓d↑ d2↓↑ 0
0 d2↓↑ d↓d↑ 0
d2↓↑ 0 0 d2↓

 , (2.23)

where d↓, d↑ are ⟨0, 0| d |0, 0⟩ and ⟨1, 0| d |1, 0⟩ respectively. In the absence
of external fields, these terms are zero [85, 86]. The other components, d↓↑,
correspond to dipole-dipole interaction facilitated “flip-flopping”, exchang-
ing |↑⟩ and |↓⟩ states between molecules. The d↑↓ terms in |↑i↑j⟩ ⟨↓i↓j| and
its conjugate are also flip-flops but correspond to a total change in angular
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momentum of 2 and are typically far off-resonant.

For the case of {|↓⟩ , |↑⟩ = {|0, 0⟩, |1, 1⟩}, we consider only the d±1 terms
in Eq. 2.22 [84]. Here, we replace d↑ etc terms with d↑̃. The dipole-dipole
interaction is

Vdd =
1 − 3 cos2 θ

r3


d2↑̃ 0 0 d2↓↑̃

0 d↓d↑̃ −
d2
↓↑̃
2

0

0 −
d2
↓↑̃
2

d↓d↑̃ 0

d2↓↑̃ 0 0 d2↓

 . (2.24)

A few important distinctions between Eq. 2.23 and 2.24 are worth high-
lighting. The flip-flopping term has a factor of -1/2 difference between the
cases. The minus sign is a consequence of the (−1)MN coefficient in Eq. 2.19.
The factor of a half appears from the fact that only d1d−1 or d−1d1 in Eq. 2.22
acts in the cases of |↑i↓j⟩ ⟨↑i↓j| and its conjugate. This can be interpreted as
the average interaction between dipoles rotating within the plane of confine-
ment as being half as strong as the interaction between dipoles oscillating
orthogonal to the plane of confinement.



Chapter 3

Experimental Overview and
Microwave Control

Work in the bulk gas RbCs laboratory in Durham has spanned decades. The
experiment as it stands today is the culmination of the efforts of many gen-
erations of undergraduate, PhD and post-doctoral researchers [107, 110, 111,
113, 117, 149–151]. One major benefit of this long history is that new mem-
bers of the group can promptly delve into cutting-edge physics, given that
the experimental groundwork has already been laid. However, long-running
experiments naturally lead to their own set of difficulties. The complexity,
not to mention the idiosyncrasies that one must get to grips with before be-
ing able to run the experiment can be a real challenge. Moreover, with the
setup being relatively old compared to other ultracold atomic physics exper-
iments, we decided to undertake major refurbishments which occurred in the
last six months of my PhD in order to increase productivity. These refur-
bishments included the renewal of atomic dispensers and one of the vacuum
ion pumps and the addition of an antenna array which were accomplished
successfully. In this chapter, we will outline the procedure for producing
ultracold ground state RbCs molecules and will outline the crucial compo-
nents in our experimental setup. We also present results in creating and
characterising microwave antennae.

3.1 Making ultracold RbCs molecules

3.1.1 Atomic mixtures

Our experiment comprises two vacuum chambers and magneto-optical traps
(MOTs). The first, the pyramid MOT, serves as a source of cold 87Rb and

42
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Figure 3.1: Experimental setup overview. (a) Vacuum chambers and magnetic
field coils. The imaging beam enters the vacuum chamber through the viewport
indicated by the red circle. Rb dispenser feed-through on the opposite side of the
pyramid chamber (not pictured). (b) Dipole trap and imaging laser setup (MOT
beams omitted). STIRAP beam enters using a periscope. Only the final mirror of
the periscope is shown.

133Cs (hereafter Rb and Cs) atoms. These atoms are subsequently captured
in the second “science” cell where molecules are created and experiments are
conducted. An overview of the vacuum chambers is presented in Fig. 3.1(a)

During experimental operation, current is passed through commercial dis-
pensers (SAES) containing Rb and Cs that reside on the outer edge of the
pyramid MOT mirrors via vacuum feed-throughs. This releases atoms into
the chamber. The pyramid MOT then cools the atoms and an imbalance in
trapping beams forces them through an aperture in the mirrored structure,
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creating a beam of cold atoms directed towards our “science cell” (fused sil-
ica cell) with internal dimensions of 20 mm by 20 mm by 83 mm and 2 mm
thick walls. The cell is not AR coated [149, 150]. The cell is surrounded by
copper coils shown in the inset of Fig. 3.1(a), providing magnetic field control.

In the science cell, two conventional MOTs are loaded (one for each
species), each comprising 6 counter-propagating laser beams. After the MOT
fluorescence has reached a given set point, a compressed-MOT stage be-
gins. We then perform optical molasses cooling on both species before op-
tically pumping each of them into a magnetically trappable state, (fRb =
1,mfRb

= −1) and (fCs = 3,mfCs
= −3).

Next, both atomic species are loaded into a common magnetic trap.
Forced RF evaporation of Rb is performed, while Cs is sympathetically cooled
through interspecies elastic collisions with Rb. We then load the atoms into
a crossed-optical dipole trap (xODT) by ramping on two 1550 nm beams il-
lustrated in Fig. 3.1(b). Using adiabatic passage facilitated by the addition
of an RF-field, we transfer our atoms into their respective hyperfine ground
states (fRb = 1,mfRb

= +1) and (fCs = 3,mfCs
= +3). The xODT intensity

is then decreased, allowing the most energetic atoms to escape and reduc-
ing the average temperature of the atomic mixture. At this stage, atoms of
both species have a temperature of ∼300 nK and a phase-space density of
∼0.1 [117].

3.2 Feshbach association

We associate Rb and Cs atoms into RbCs molecules by ramping our bias
magnetic field over an interspecies Feshbach resonance at 197 G [71, 72], adi-
abatically following the avoided crossing as illustrated in Fig. 3.2(b).

To associate in the experiment, the magnetic bias field is quickly (on
the order of 100 µs) ramped to ∼217 G. We then hold for ∼1 ms to al-
low the field to stabilise before decreasing to ∼0.4 G above the 197 G res-
onance. We perform the association by sweeping our magnetic field at a
rate of ∼250 G/s, forming weakly-bound Feshbach molecules. When labelling
molecular bound states near the dissociation threshold, we adopt the notation
n(fRb, fCs)L(mfRb

,mfCs
) [71]. Here, n represents the vibrational quantum

number counting down from the least-bound state. L denotes the quantum
number associated with the rotational angular momenta of the atoms about
the centre-of-mass of the molecule, represented by the letters s, p, d etc cor-
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Figure 3.2: Magnetic ramp association and dissociation steps. (a) Binding energy
of near-threshold bound states for RbCs molecules as a function of magnetic field
around 190G. Binding energy is given relative to the dissociation energy of Rb
and Cs in their spin-stretched hyperfine ground state at a given magnetic field.
Filled and unfilled red markers denote the locations where STIRAP and Stern-
Gerlach separation are performed respectively. (b) Association and (c) dissociation
sequence using the Feshbach resonance at 197G. Note, (b) and (c) are not direct
enlargements of a region in (a).

responding to L = 0, 1, 2 etc. The quantum numbers that denote each state
are determined through experimental spectroscopy [128]. As presented in
Fig. 3.2(a), after association we occupy the |−1(1, 3)s(1, 3)⟩ state which runs
nearly parallel to the free atomic state with binding energy of 110(2) kHz.

We reduce the magnetic field to occupy the |−2(1, 3)d(0, 3)⟩ state fol-
lowing the red path in Fig. 3.2(a). At this point, we exploit the different
magnetic-moment-to-mass ratio of atoms and molecules to perform Stern-
Gerlach separation. We apply a magnetic field gradient such that the atoms
are over-levitated while the molecules are exactly levitated, resulting in non-
associated atoms being removed from our trap [152]. Typically ∼8000 Fesh-
bach molecules are produced in this manner. Over the next ∼20 ms, the
magnetic field gradient is ramped off and the xODT intensity is increased,
transferring the molecules to a purely optical trap. We typically lose about
half the molecules during this step due to heating. Due to xODT trap ge-
ometry, the size of the molecular cloud is ∼30µm by ∼10µm.

To detect our molecular population, we rapidly reverse the magnetic field
ramp performed in our association sequence so as not to follow the avoided
crossing as illustrated in Fig. 3.2(c). After jumping the avoided crossing, the
molecules occupy a state with energy greater than that of the atomic thresh-
old. Consequently, the molecules dissociate into their constituent atoms. We
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Figure 3.3: STIRAP overview. (a) Relevant energy levels used in STIRAP
transfer. (b) Laser pulse scheme used in STIRAP, x-axis shared with (c). (c)
Population in ground and the n = -6 Feshbach state.

then image the atoms using conventional absorption imaging. Imaging light
is provided by an “imaging” beam that is incident along the long axis of the
cell. The imaging light is collected by an emCCD camera (Andor iXon 885)
as shown in Fig. 3.1. We image in situ, providing a lower limit on detection
of ∼100 atoms. The molecular population is then given by the mean popu-
lation of each atomic species.

3.3 STIRAP

After creating weakly-bound Feshbach molecules, the final step is to trans-
fer to the X1Σ+ state using stimulated Raman adiabatic passage (STIRAP).
This is achieved by realising a Λ-type energy level structure, coupling both
the Feshbach state, |F ⟩ and the ground state |G⟩ to a common excited state
|E⟩ using two lasers. By carefully modulating of the intensity of the lasers,
we are able to transfer the molecules from the Feshbach state to the ground
state without populating the excited state.

To perform STIRAP following the association at 197 G and Stern-Gerlach
separation, we tune our magnetic bias field to 181.5 G, transferring our popu-
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lation to a n = -6 state. This bias field persists when performing experiments
unless otherwise specified.

We couple the Feshbach state, |F ⟩ = |−6(2, 4)d(2, 4)⟩, to a state in the
b3Π1 potential, |E⟩ = |b3Π1, v

′ = 29, N ′ = 1, M ′
F = +4⟩ using the “pump”

laser (λ = 1557 nm). The specific state |E⟩ is selected for its favourable
coupling with both |F ⟩ and |G⟩ [153]. Coupling between |E⟩ and |G⟩ =
|X1Σ+, v ′′ = 0, N ′′ = 0,M ′′

F = +5⟩ is provided by the “Stokes” laser (λ =
977 nm). Fig. 3.3(a) shows the states involved in STIRAP. |G⟩ is a specific
hyperfine state of v′′ = 0, N ′′ = 0. With vertically polarised Stokes light, we
access MF = +4 states and with horizontally polarised light, we access MF =
+3, +5 [145]. Light from both lasers is combined using a dichroic mirror on
the experimental table and is directed towards the molecules at normal in-
cidence to the science cell using a common mirror via a periscope setup [113].

We can model the Λ-type system using the |F ⟩, |E⟩, |G⟩ basis with the
following Hamiltonian [154]:

ĤSTIRAP =
h̄

2

 0 Ωp 0
Ωp 2∆p ΩS

0 ΩS 2 (∆p − ∆S)

 , (3.1)

where Ωp and ΩS are the Rabi frequencies of the pump and Stokes tran-
sitions respectively and ∆p and ∆S are the detunings from resonance of the
pump and Stokes lasers respectively.

If we tune the lasers to be on the two-photon resonance (∆p = ∆S = 0),

the eigenstates of ĤSTIRAP can be given analytically as∣∣a+〉 = sin θ sinϕ|F ⟩ + cosϕ|E⟩ + cos θ sinϕ|G⟩∣∣a0〉 = cos θ|F ⟩ − sin θ|G⟩∣∣a−〉 = sin θ cosϕ|F ⟩ − sinϕ|E⟩ + cos θ cosϕ|G⟩
(3.2)

where θ and ϕ are “mixing angles” defined as

tan θ =
Ωp

ΩS

(3.3)

and

tan 2ϕ =

√
Ω2

p + Ω2
S

∆p

. (3.4)
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We want to utilise the |a0⟩ eigenstate or “dark state” during STIRAP.
This eigenstate crucially lacks an |E⟩ component, meaning there is no occu-
pation of the excited state. Performing a “counter-intuitive” pulse sequence
allows the transfer of the molecule population from |F ⟩ to |G⟩ using the dark
state.

Beginning with our Stokes light on and pump off, we find that Eq. 3.3
becomes zero and |a0⟩ ≡ |F ⟩. Similarly, if the pump light is on and the Stokes
light is off, |a0⟩ ≡ |G⟩. By ramping the Stokes light off and the pump light
on, we are able to transfer the population completely without populating the
excited state, shown pictorially in Fig. 3.3(b-c). However, in our experimen-
tal setup, we are limited in STIRAP transfer efficiency by the adiabaticity
of the evolution of the dark state we can achieve.

The waists of STIRAP laser beams at the molecules are both ∼35µm
with peak laser powers of ∼11 mW and ∼7.6 mW for pump and Stokes re-
spectively. We estimate our STIRAP lasers to have a linewidth of ∼1 kHz.
Details of the locking setup can be found in [113, 155]. We achieve typical
one-way transfer efficiencies of 92(1)%. The STIRAP process is reversed for
detecting ground state molecule population.

When necessary, STIRAP light (and light from other lasers) is coupled
into a wavemeter (Bristol instruments 621 wavelength meter) for frequency
referencing. The wavemeter provides an absolute frequency reference with
an accuracy of 60 MHz.

3.4 Magnetic field coils

To generate the magnetic fields required in the science cell, we use five pairs
of copper coils, each with the plane of the coils aligned horizontally as pre-
sented in Fig. 3.1(a). These coils are fixed in place with two Tufnol epoxy
glass mounts (grade 10G/40, “G10”), separated vertically by a ∼32.5 mm
gap, allowing the science cell to lie between. The innermost and outermost
coils are also arranged in an anti-Helmholtz configuration. They provide the
levitation gradient and MOT fields respectively. The last three, labelled from
inner-most to outer-most are Bias 1, Bias 2 and Bias 3 coils, arranged in a
Helmholtz configuration. These provide bias fields of up to ∼1000 G. Bias 1
can produce the larger (up to ∼300 G) contribution to the overall magnetic
field while Bias 3 produces a smaller (up to ∼60 G) contribution. The Bias
1 and Bias 3 coils produce the fields we require for our purposes and so Bias
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2 is disconnected. We use Bias 1 to provide a large offset in the magnetic
field. We use Bias 3 as a means of finely controlling the aggregate magnetic
field strength at the molecules.

The current flowing through the coils is regulated by an array of field-
effect transistors (FETs). The gate voltage applied to the FETs is determined
by a proportional-integral-derivative (PID) feedback loop, which monitors
the current in the coils. This current is compared to a reference voltage pro-
vided by a field-programmable gate array (FPGA), which is connected to our
experimental computer and controlled with the Durham experimental termi-
nal software (DExTer). Feedback electronics are then employed to maintain
the current in each coil pair stable to within approximately 1 part in 1000.
To adjust the current supplied to a specific coil pair, we simply modify the
voltage set point in DExTer.

3.4.1 Magnetic field calibration

We calibrate our magnetic field by observing Zeeman shifts in the ground
state 87Rb hyperfine levels, |f = 1,mf = 1⟩ → |f = 2,mf = 2⟩. The effective
Hamiltonian used to calculate the energy of a given hyperfine state of 87Rb
occupying 5S1/2 at a particular magnetic field is

ĤRb = ĤHF + ĤZeeman (3.5)

where ĤHF is the hyperfine state structure component and

ĤZeeman =
µB

h̄
(gSS + gLL + gII) ·B (3.6)

is the contribution from the magnetic field interaction. Here, gS, gL and
gI correspond to electron spin, electron orbital and nuclear g-factors respec-
tively. µB is the Bohr magneton, h̄ is the reduced Planck’s constant and B
is the applied magnetic field.

Using our microwave horn (AtlanTecRF AS6366), we drive the
|f = 1,mf = 1⟩ → |f = 2,mf = 2⟩ transition with a Rabi frequency on the
order of kHz. We subsequently utilise the Stern-Gerlach effect by applying
a magnetic field gradient to spatially separate atoms in f = 1 and f = 2
states, allowing us to measure both populations. We then repeat the process
for different microwave frequencies as presented in Fig. 3.4(a). The slight
asymmetry suggests the magnetic field had not quite settled before the mi-
crowave pulse. We can reference the transition frequency to the Zeeman shift
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Figure 3.4: Magnetic field calibration. (a) Example spectroscopy of 87Rb hyper-
fine transition at ∼360G, showing the population of both relevant states. States
labelled (f ,mf ) (b) Breit-Rabi diagram relevant hyperfine states. Blue arrows in-
dicate the transitions used in calibration. Inset, centre frequency of calibration
features as a function of Bias 3 voltage set point.

of the relevant states, shown by the Breit-Rabi diagram in Fig. 3.4(b) and
discern the corresponding magnetic field.

We repeat this process for various Bias coil voltage set points. This
confirms the linearity of our set point and magnetic field relationship as
presented in the inset in Fig. 3.4(b). We are typically limited in determining
the magnetic field at our atoms/molecules by the uncertainty in centres of
the spectroscopic features. We typically know the magnetic field on the order
of ∼5 mG.

3.5 Vacuum upgrades

The dispensers only contain a finite amount of alkali metal and eventually
run out. For the duration of my PhD, the experiment was effectively running
with depleted dispensers. Also throughout my PhD, the 55 L/s pump drew
<1 mA during operation whereas the 40 L/s drew around 7 mA (both have a
maximum pump current of 10 mA). We did not monitor the pressure of the
vacuum chambers directly. Instead, we roughly inferred the quality of the
vacuum by the amount of current each ion pump draws as it’s operating. We
concluded the possibility of a poor vacuum in the science cell.
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The primary symptom of these factors was that the MOT load at the
start of the day would be a few seconds, but increase to minutes after over
the course of a day. It took at least one day of not running the experiment
for the MOT load time to return to its initial rate, rendering consecutive
days of experiments unfeasible. We decided to replace the dispensers and
40 L/s ion pump to rectify it.

3.5.1 Pulling out and breaking vacuum

We first move the vacuum chambers as a single piece away from the optics,
coils and G10 coil mounts that surround the science cell to provide space
for maintenance. The pyramid MOT and 1550 nm xODT optics are situated
on breadboards which are moved to a separate table, clearing a path for the
vacuum chambers to move. A ratchet strap system is then attached to the
experimental table and the base on which the vacuum chambers sit. The
chambers are then slowly winched away from the science MOT coils while
base plates are screwed into the table on either side of the vacuum setup as
it moves, providing a stabilising track.

Once the chambers are positioned away from the science MOT coils and
optics as pictured in Fig. 3.5(a), we detach the up to air valve and connect a
vacuum pump (Pfeiffer vacuum turbo pump) via vacuum bellows. The pump
is then activated, decreasing the pressure in the bellows and poppet valve,
as presented by the blue line in Fig. 3.5(b). Pressure is measured using the
Pfeiffer pump’s internal monitoring system. After the pressure decrease be-
gins to slow, we turn both ion pumps off and open the poppet on the poppet
valve by loosening the screw.

Next, we attach a Nitrogen canister to the vacuum pump, allowing Nitro-
gen to fill the chambers. Nitrogen is an inert gas that prevents moisture in
the air from attaching to the inside of the vacuum chambers when the inside
is exposed. When the pressure inside the chambers is about the pressure in
the room 1, we turn off the vacuum pump. Coils surrounding the pyramid
MOT are then removed.

The old 40 L/s ion pump is removed and the new one is installed (Agi-
lent Vaclon Plus). The new dispensers are spot-welded onto a pair of feed-
throughs. The old feed-throughs are removed and the new ones are placed.

1This is monitored using an inflatable rubber ball that is connected to the tube carrying
Nitrogen from the canister to the pump.
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Figure 3.5: Pulling out the vacuum chambers and first decompression steps.
(a) Vacuum chambers pulled away from the science MOT coils and surrounding
optics. The purple shaded region is the poppet valve referenced in the text. (b)
Pressure measured in the Pfeiffer as a function of time during decompression of
the poppet valve and second decompression after maintenance. Ion pump and
dispensers replaced in double-headed arrow region. Exponential curves to guide
the eye.

To accomplish this, the pyramid viewport is removed so that the new dis-
pensers can be bent into position correctly. We subsequently reseal the vac-
uum chambers by reattaching the pyramid viewport and reactivating the
Pfeiffer pump. The pressure is then allowed to decrease until it starts to
plateau as shown by the red line in in Fig. 3.5(b).

3.5.2 Baking vacuum and activating dispensers

To achieve ultra-high vacuum, it is necessary to bake the chamber at high
temperature [156, 157]. We heat the vacuum setup using three heater tapes
wrapped around the chambers, flanges, ion pumps, feed-throughs and bel-
lows. The glass cell is encased in an aluminium cylindrical tube for protection
during the baking process. The tube is secured to the vacuum setup with a
set of screws, fastening it around the flange at the base of the cell. It is then
supported by a homemade aluminium stand which is in turn screwed to the
optical bench. We tape down nine thermocouples to different components of
the setup for temperature monitoring. The whole structure is then wrapped
in aluminium foil to provide insulation as pictured in Fig. 3.6(a).

We heat the setup, steadily increasing the temperature over a few days
up to ∼180 ◦C. Pressure and the mean temperature of all nine thermocou-
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(a) (b)

Figure 3.6: Vacuum baking and pressure/temperature monitoring. (a) Vacuum
chambers and bellows surrounded by heater tape and aluminium foil. (b) Pressure
measured in the Pfeiffer (blue unfilled markers) and mean temperature of all nine
thermocouple readings (red filled markers) during the baking stage as a function
of time.

ples during the baking process are presented in Fig. 3.6(b). As temperature
increases, the moisture absorbed into the inner walls of the chambers is ex-
pelled and the pressure rises. The temperature is subsequently decreased in
the next few days until the heater tapes are turned off. Connections between
the vacuum feed-throughs and dispenser power supplies are then installed.

Next, we activate our new dispensers by passing high current through
them. Current is supplied to each of the dispenser sets in turn, beginning
at 0 A and increasing up to 4.9 A and 5.5 A for Cs and Rb respectfully in
∼0.5 A steps every 10 seconds for a period of ∼100 seconds and then turned
off. Activation causes the relevant dispensers to produce an incandescent
glow as pictured in Fig. 3.7. We typically pass ∼3 A of through the dis-
pensers during normal operation. After activating each of the dispensers,
the non-evaporable getter (NEG) power cable is connected.

We then perform a second baking stage, similar to the first, to remove
unwanted particulates released after activation. We increase the temperature
up to ∼150 ◦C over two days. The temperature is then reduced to ∼80 ◦C
in ∼1 day and the NEG is activated for around 1 hour causing pressure to
increase sharply. The NEG cable is then disconnected and the pressure is
given time to stabilise. Finally, the ion pumps are turned on, the poppet is
closed, the up to air valve is reattached and closed and the heater tapes are
turned down until they can be removed. The foil is removed and the vacuum
chambers are then pushed back along the optics base track to their original
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Figure 3.7: Incandescence of a set of Rb dispensers during activation. Pyramid
MOT mirrors visible as the square object in the centre of the viewport. Other atom
dispensers are arranged around the pyramid mirrors in a hexagonal formation.

position.

3.6 Microwave sources

X1Σ+ RbCs molecules rotational energy manifolds are spaced with GHz sep-
aration. Accessing different rotational states requires microwave emitters
which usually come in the form of antennae. In our experiment, we have a
homemade linear λ/4 antenna, a commercial microwave horn and a home-
made dipole antennae array. The latter is a recent addition whereas the
former two have been a permanent part of the experiment for years [117].
With the exception of the horn, all our microwave sources can be considered
“omnidirectional” (they have no directional pattern in a given plane).

3.6.1 Microwave generators

Microwave sources are connected via SMA cables to analogue signal gener-
ators. We use the following microwave generators in our experiment: 2 ×
Agilent MXG N51832, 2 × Agilent E4400B, Agilent E4421B, 2 × Windfreak
SynthHD (v2) and a Windfreak SynthNV. All sources are connected to the
same external 10 MHz GPS disciplined oscillator (Jackson Labs Fury) for fre-
quency referencing when necessary. Microwave pulsing is controlled through
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a TTL signal provided by DExTer or by using the internal pulsing function
of the signal generators.

3.6.2 Linear monopole and microwave horn

A homemade λ/4 antenna is installed to drive N ′′ = 0 → N ′′ = 1 rotational
transitions. The antenna consists of a 1 mm diameter copper wire soldered to
the pin of a female SMA connector. A square ceramic-filled PTFE compos-
ite (Rogers Corp. RO3003) is soldered to the ground of the SMA connector
forming a reflective ground plate. The antenna is taped to the lower G10
and aligned along the long-axis of the cell as shown in Fig. 3.8.

We use a microwave horn (AtlanTecRF AS6366) which is specified for
∼2 GHz to 13 GHz to drive transitions between rotational states withN ′′ ≥ 1.
The horn is equipped with an output designed to produce circularly polarised
light. However, positioning the horn along our quantisation axis will result
in MOT beams being blocked. It is instead positioned at ∼30 ◦ angle from
the quantisation axis above the cell and outside G10 as shown in Fig. 3.8.
The microwaves propagate through the G10 and coils.

3.6.3 Characterising microwave polarisation

We first characterise the polarisation of our current microwave sources by
performing a series of Rabi oscillations on σ+, σ− and π transitions. Produc-
ing a microwave source with well-defined polarisation is a powerful tool for
quantum state control. The rich hyperfine structure of ultracold molecules
becomes problematic when attempting high-fidelity state transfer, owing to
off-resonant coupling to neighbouring states 2. When coupling to neighbour-
ing rotational states, ∆MF = +1, -1, 0 transitions are driven by right-handed
circular, left-handed circular and vertically polarised microwaves respectfully
in our experiment. Consider the case of a well-defined microwave source with
right-handed circular polarisation at the molecules. Only ∆MF =1 transition
are available. Beginning in the spin-stretched ground state, only the spin-
stretched state in each rotational manifold is coupled to. This allows the
driving of transition with high Rabi frequency without fear of off-resonantly
coupling to different hyperfine states, providing a “cleaner” landscape in
which to perform quantum science experiments. Also, microwave sources

2This is especially true when coupling to higher rotational energy states due to the
hyperfine state population and N relationship described in section 2.2.4.
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Figure 3.8: Microwave sources diagram. Top Tufnol G10 omitted for viewing
purposes. Reflective base plate for the λ/4 monopole antenna shown in blue.
RG174 cables dipole antennae components shown in black.

with well-defined polarisations have been used in ultracold diatomic molecule
experiments to enhance the ratio between elastic and inelastic collisions in
the sample. This technique is known as “microwave shielding” [158–162].

With the exception of our horn, all microwave sources are housed between
the Tufnol coil mounts surrounding the cell 3. We operate in the near-field
regime, where the angular distribution of the microwave field is indepen-
dent of the distance from the antenna [163]. Additionally, the microwaves
interact with the surrounding magnetic field coils and optics near the cell,
making testing antennae using a separate “probe” antenna in experiment
unreliable [164]. Instead, we determine the polarisation of our microwave
sources in-situ by driving σ+, σ− and π rotational transitions in RbCs with
the same power and comparing the resulting Rabi frequencies in each case.

When driving a given transition between two quantum states, the Rabi
frequency is defined as [165]

Ωi,j =
di,j · |E⃗|

h̄
, (3.7)

3The horn is found to be sufficiently directional for our purposes and thus can reside
further from the cell.
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Figure 3.9: Example microwave source polarisation determination experiment.
(a) Breit-Rabi diagram of the rotational ground state and first rotationally excited
state’s hyperfine structure. Darker state in the N ′′ = 0 subplot denotes our initial
state, (0,+5). Rotational transitions denoted by the black arrow to the relevant
N ′′ = 1 states shown by the unfilled points. The transition dipole moment for each
∆MF = 1, -1 and 0 are given by the intensity of green, red and blue colouring
respectively. (b) Rabi oscillations driven by our antenna, coupling to (i) (1,6), (ii)
(1, 4)0 and (iii) (1, 5)0.

where di,j is the transition dipole moment and E⃗ the electric field vec-
tor. Values of di,j are calculated using [141]. For X1Σ+ state RbCs at
181.5 G, hyperfine states in the low-lying rotational manifolds are separated
by ∼100 kHz. We assume when varying the frequency within this range the
change in the amplitude of the electric field vector, |E⃗|, at the molecules is
negligible providing the microwave generator power remains constant.

We then perform Rabi oscillations on the transitions (0,M ′′
F ) → (1,M ′

F )
for M ′

F = M ′′
F , M ′′

F +1 and M ′′
F −1 at a fixed power with resonant microwave

fields. Particular (1,M ′
F ) states are chosen by their significant di,j values

as presented in Fig. 3.9(a). Resulting Rabi oscillations are subsequently fit-
ted with a sinusoidal function to extract their frequencies as illustrated in
Fig. 3.9(b).

By comparing Rabi frequencies and their corresponding transition dipole
moments, we can construct a polarisation matrix for a given microwave
source:
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Source f
(MHz)

χ+ χ0 χ−

Linear monopole ∼980 0.353(13) 0.793(12) 0.496(14)

Horn ∼1960 0.359(5) 0.918(12) 0.165(7)

Horn ∼2940 0.454(7) 0.452(14) 0.77(3)

Horn ∼3920 0.456(7) 0.59(2) 0.67(3)

Table 3.1: Polarisation of microwaves produced by λ/4 antenna and Horn.

χ =

 χ+

χ−
χ0

 , (3.8)

where χ+, χ− and χ0 correspond to the electric field polarisation driving
σ+, σ− and π transitions. We normalise χ such that χ2

+ + χ2
− + χ2

0 = 1.

We can now rewrite equation 3.7 in matrix form using the σ+, σ− and π
transition basis:  Ω+

Ω−
Ωπ

 =
1

h̄

 d+
d−
d0

 · χT|E⃗| (3.9)

where Ω+,−,π and d+,−,π denote the Rabi frequency and transition dipole
moments of σ+, σ− and π transitions respectively.

We repeat our measurements for our different microwave sources as pre-
sented in table 3.1. Uncertainties are dominated by the fittings to Rabi
oscillations. Results for higher frequencies involved initialising our molecule
population in different N ′′ states before performing Rabi oscillations. The
microwave horn is designed for a 2 to 13 GHz range and was subsequently
tested at multiple frequencies. The measurements are of the polarisations of
the microwaves at the molecules, not the emitter, given their dependence on
their placement with respect to the quantisation axis and the interactions of
the emitted microwaves with the surrounding objects.
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3.6.4 Engineering arbitrary polarisations using phased-
arrays

The polarisation of microwaves at our molecular sample emitted by a single
antenna at a given frequency cannot be tuned without physically changing
the dimensions of the antenna or moving the antennae in the experiment.
Neither of which produces reliable results. Instead, using multiple antennae
at once causes interference between waves of polarisations that drive a given
transition. This allows suppression or amplification of coupling depending on
the relative phases of the interfering waves. We perform a proof-of-concept
experiment by changing the relative phase of the microwaves emitting from
two different sources and observing variations in the Rabi frequency of a
given transition.

Our experiment is equipped with four out-of-vacuum U-shaped electrodes
positioned above and below the science cell, fixed in Tufnol G10 mounts. To-
gether, they can produce a maximum DC electric field of 1.5 kV/cm across
our molecular sample [166]. Electrodes are shown in Fig. 3.10(a) 4. By
connecting function generators to these electrodes, we drive rotational tran-
sitions in ground state RbCs.

We resonantly drive (0,+5) → (1,+5)0 transitions using one of the top
electrodes, as illustrated in Fig. 3.10(b)(i), using an MXG microwave gen-
erator. We then drive the same transition using a bottom electrode with a
separate MXG. We tune the power of the signal generator connected to the
bottom electrode such that each electrode drives the transition with the same
Rabi frequency as shown in Fig. 3.10(b)(ii). Both MXGs are clocked together
by daisy-chaining the GPS frequency reference from one to the other. This
allows their relative phase relationship to be robust throughout our exper-
iment. We observe no detectable relative phase drift when we connect our
signals to an oscilloscope.

We then fix the microwave time to perform a π/2-pulse if we were to drive
the transition using a single electrode. Next, we pulse on both electrodes and
vary the relative phase of the microwaves. As presented in Fig. 3.10(b)(iii),
when we observe a full-contrast variation in ground state population as we
change the relative phase of the microwaves. Rabi frequency is minimised
when the microwaves are in phase and maximised when out of phase.

4Images of stopwatch uploaded to WikipeadiaCommons.org by Videoplasty.com. Image
of MXG found on TestWall.com.
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Figure 3.10: Electrode relative phase experiment. (a) Experimental setup di-
agram. (b) Population in the (0,+5) state as a function of pulse time with mi-
crowaves resonantly driving the (0,+5) → (1,+5)0 transition using the (i) top and
(ii) bottom electrodes. (iii) (0,+5) population as a function of the relative phase
of the microwaves at a pulse time of 40µs.

3.6.5 Dipole antennae array

Replacing atomic dispensers and the vacuum pump described in section. 3.5
required physically moving the vacuum chambers away from the magnetic
coils and surrounding optics. This provided an opportunity for installing
an array of four linear dipole antennae arranged in a crossed formation as
presented in Fig. 3.8. The symmetry of the array is ideal for engineering
arbitrary polarisations and its proximity to the cell is beneficial considering
the 1/r2 power relationship.

We produce four identical homemade dipole antennae from 2 mm diam-
eter copper enamel-coated wire. One length of wire is soldered to the to
the inner conductor of a 50 Ohm coaxial cable (RG174) and another to the
grounded “screening” of the RG174 5. Using our Windfreak SynthNV mi-

5This array was nicknamed “Plankton” given its similarity in appearance to the Sponge-
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crowave generator and a directional coupler (Mini-Circuits ZFDC-10-5-S+),
we create a scalar-network analyser setup as presented in Fig. 3.11. We
observe dips in the return-loss spectra, signifying frequencies where the an-
tenna emits more power than it reflects. We cut the “arms” of the antenna to
the correct length such that a dip in the return-loss spectra exists at ∼1 GHz.

The antennae are then glued to the inside of the Tufnol coil mounts with
fast-set epoxy, creating an antenna array as shown in Fig. 3.8. These an-
tennae are bent into positions to avoid direct contact with the cell whilst
maintaining a symmetric array layout. Array antennae are labelled by posi-
tion furthest along each cardinal direction as illustrated in Fig. 3.8.

We then perform the polarisation characterisation measurement as con-
ducted with the other microwave sources in section 3.6.3. These results
are presented in table 3.2. Engineering right-circularly polarised microwaves
would involve producing strongly vertically polarised microwaves with each
pair of parallel dipole antennae and then implementing a relative phase shift
between the two pairs.

bob SquarePantsTM character of the same name.

Source f
(MHz)

χ+ χ0 χ−

North dipole antenna ∼980 0.234(12) 0.764(5) 0.602(7)

South dipole antenna ∼980 0.386(14) 0.782(9) 0.49(2)

East dipole antenna ∼980 0.696(3) 0.676(3) 0.270(2)

West dipole antenna ∼980 0.1092(10) 0.979(3) 0.170(14)

Table 3.2: Polarisation of microwaves produced by different dipole antennae.
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DUT G
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n
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Figure 3.11: Antenna scalar-network analyser setup. The output of the Wind-
freak SynthNV is connected to the output port of the directional coupler via a
50Ohm attenuator. The device under test (DUT) is attached to the input port of
the directional coupler. The coupled port from the directional coupler is connected
to the input port of the SynthNV. The SynthNV is connected via a USB to a PC
which displays the gain of the input port as the frequency of the output is varied.
The SynthNV general user interface is shown on the extreme right-hand side. The
curve presents gain as a function of frequency. Vertical/horizontal lines serve as
markers.



Chapter 4

Magic Spectroscopy

4.1 Introduction

Many quantum simulation and computation architectures incorporating neu-
tral atoms and molecules rely on optical trapping for the spatial confinement
of particles [6–8, 17, 32–35]. However, trapping induces inhomogeneous dif-
ferential ac Stark shifts in quantum states, often restricting quantum co-
herence during experiments. For dipolar molecules, ensuring long coherence
times between rotational energy states is essential for making quantum sim-
ulation and computation feasible. The solution involves accessing a so-called
rotationally ‘magic’ condition whereby the energy of relevant rotational states
are shifted equally, eliminating differential effects. Magic trapping schemes
have been an invaluable tool for engineering high fidelity atomic and molecu-
lar clocks with the magic relating to shifts in electronic and vibrational states
respectively [167–169]. However, a rotationally magic condition for diatomic
molecules has proved difficult to access.

Although many rotationally magic wavelengths have been identified for
different molecules [170, 171], their applicability is often limited by the prox-
imity to electronic transitions. Nearby transitions cause unintended photon
scattering in the trap, limiting the states lifetime. Guan et al. [172] have
identified a magic wavelength condition for RbCs at 181 G which is com-
patible with long trap lifetimes owing to its existence at a relatively large
detuning from nearby electronic states. Moreover, unlike in the case of other
molecular magic detunings, an external electric field is not required [47, 170].
This relatively large detuning coupled with the relatively small energy split-
ting of RbCs rotational states decreases the difference in magic detuning for
different rotational states and lays the foundation for a multiply-rotationally

63
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magic trap.

In this chapter, we begin by presenting the relevant theoretical back-
ground involved in creating magic wavelengths in RbCs. We then report a
comprehensive investigation into the transitions used in accessing magic rota-
tional conditions using high-resolution spectroscopy. Finally, we demonstrate
the magic condition is accessed by performing a series of Ramsey experiments
with different rotational states.

4.1.1 RbCs rotational magic background

Examining the form of Eq. 2.16, it’s evident that satisfying the condition of
α⊥ = α∥ causes α(2) to vanish. This eliminates differential ac Stark shifts
between N ′′ = 0 states and higher rotational states. The values of α⊥ and
α∥ in free space are given by background polarisabilities, αbg

⊥ and αbg
∥ in the

molecule frame derived from the contributions from all the far-detuned rovi-
bronic states [173–175]. α⊥ and α∥ can be approximated as αbg

⊥ and αbg
∥ in

the presence of light far-detuned from an electronic transition. However, in
the presence of light tuned near electronic transitions, α⊥ and α∥ are modified
according to their detunings to the transitions. For Σ molecules like RbCs
in the electronic ground state, α∥ is derived from the sum over all allowed
Σ → Σ transitions and α⊥ is derived from the sum over all allowed Σ → Π
transitions.

We can achieve the magic condition for RbCs by tuning our light be-
tween nominally forbidden transitions to the b3Π0 potential [172], as shown
in Fig. 4.1(a). These transitions are weakly allowed due to mixing between
b3Π and the nearby A1Σ+. Coupling to the A1Σ+ component allows tuning of
α∥, while the α⊥ component remains nearly constant as the nearest transition
to a 1Π potential is detuned by over 100 THz [130]. We can therefore find a
detuning where α∥ = α⊥, leading to α(2) = 0 as illustrated in Fig. 4.1(c). This
transition is accessed with laser light of ∼1145 nm. For spectroscopic experi-
ments, we will refer to the laser providing ∼1145 nm light as our ‘probe’ laser.

Throughout this chapter, we sometimes refer to X → b using the
shorthand ′′ and ′ to negate the need for X and b. For example, the
X1Σ+(v′′ = 0, N ′′ = 0) → b3Π0(v

′ = 0, N ′ = 1) transition can be written as
v′′ = 0, N ′′ = 0 → v′ = 0, N ′ = 1.
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Figure 4.1: Relevant RbCs transitions and the scheme for a rotationally magic
trap. (a) Electronic potentials of RbCs. The vertical red arrow labelled ‘probe’
indicates the forbidden X1Σ+(v′′ = 0) → b3Π0(v

′ = 0, 1, 2) transitions that are
the subject of investigation. The dashed purple arrows indicate the pump and
Stokes transitions used in the transfer of RbCs to the ground state. The inset
illustrates the rotational transitions in the ground state which we drive coherently
with microwave (mw) fields. (b) The molecule-frame polarisabilities as a function
of the probe laser detuning near the lowest X1Σ+ → b3Π0 transitions. Solid
and dashed lines indicate α∥ and α⊥ respectively. (c) Zoom in around the magic

detuning region. The blue dot-dash and dotted lines indicate the isotropic (α(0))
and anisotropic (α(2)) polarisabilities respectively.

4.1.2 RbCs rotational magic theory

In the absence of hyperfine interactions, the polarisability near the lowest
X1Σ+ → b3Π0 transitions for molecules in X1Σ+ with well defined N ′′,M ′′

N

can in general be approximated by [172]
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αN ′′,MN′′ =∑
v′

−3πc2

2ω3
v′

[
AN ′′

MN′′ (β)
h̄Γv′

∆v′ + LN ′′
+BN ′′

MN′′ (β)
h̄Γv′

∆v′ +RN ′′

]
+
[
AN ′′

M ′′
N

(β) +BN ′′

M ′′
N

(β)
]

(αbg
∥ − αbg

⊥ ) + αbg
⊥ , (4.1)

where c and h̄ are the speed of light in a vacuum and the reduced Planck
constant respectively. ∆v′ is the detuning of the light from the transition,
with transition energy h̄ωv′ and linewidth Γv′ . The linewidth is related to
the transition dipole moment µv′ by [25]

Γv′ =
ωv′

3πϵ0h̄c3
|µv′ |2, (4.2)

where ϵ0 is the vacuum permittivity. This does not include the angular
factors that govern the relative decay rates to different rotational states,
which are incorporated into AN ′′

M ′′
N

(β) and BN ′′

M ′′
N

(β). In this work, we primarily

consider stretched states with |M ′′
N | = N ′′. For these states

AN ′′

±N ′′(β) =
N ′′

2(2N ′′ + 1)
sin2 β (4.3)

and

BN ′′

±N ′′(β) =
2N ′′2 + 3N ′′ + 2

2(2N ′′ + 1)(2N ′′ + 3)
(4.4)

− N ′′(2N ′′ − 1)

2(2N ′′ + 1)(2N ′′ + 3)
cos2 β

where β is the angle between the polarization of the laser with respect to
the quantisation axis. Note, that equivalent angular factors for states with
M ′′

N = 0 are given in [172]. The energies LN ′′ of the N ′ = N ′′− 1 branch and
RN ′′ of the N ′ = N ′′ + 1 branch are

LN ′′ = N ′′(N ′′ + 1)B̃v′′ − [N ′′(N ′′ − 1) − 2]B̃v′ (4.5)

and

RN ′′ = N ′′(N ′′ + 1)B̃v′′ (4.6)

− [(N ′′ + 1)(N ′′ + 2) − 2]B̃v′ ,
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where B̃v′′ and B̃v′ are rotational constants for the X1Σ+ and the b3Π0

states respectively at 181 G. We consider these “effective” rotational con-
stants. In all calculations shown in this work, the sum in Eq. 4.1 includes
vibrational states up to v′ = 3. Contributions to Eq. 4.1 are of diminishing
magnitude for increasing values of v′ for given values of N ′′ and M ′′

N , primar-
ily owing to decreasing transition linewidths.

The dependence of the polarisability of a given state on β is caused by
non-zero α(2). Therefore, to find where α(2) = 0 we must find where the
polarisability becomes independent of β. We find a simple analytic solution
for where this condition is met in the limit of no rotational structure, i.e.
setting B̃v′′ = B̃v′ = 0 such that LN ′′ = RN ′′ = 0. By only considering
the contribution from a single transition in isolation, calculating the partial
derivative of the polarisability with respect to β and setting it to be zero, we
find

∂αN ′′,M ′′
N

∂β
= (4.7)(

∂AN ′′

±N ′′

∂β
+
∂BN ′′

±N ′′

∂β

)(
3πh̄c2Γv′

2ω3
v′∆

− (α∥ − α⊥)

)
= 0.

For this condition to be met for all values of β, the right-hand term must
be zero, and by rearrangement we can therefore find the approximate magic
detuning

∆ =
3πh̄c2Γv′

2ω3
v′(α∥ − α⊥)

(4.8)

that is independent of N ′′,M ′′
N , and β. Note, that an equivalent expres-

sion is derived in [172] by taking the first term of a Taylor-expansion of the
right-hand side of Eq. 4.1 with respect to LN ′′ and RN ′′ . Using our value of
Γv′=0 given in this chapter, we determine the magic detuning in the absence
of rotational structure given by Eq. 4.8 to be 210(23) GHz. In practice, the
true magic detuning is different to that expected from Eq. 4.8 by ∼14%. The
largest effect is due to the proximity of neighbouring electronic transitions.
However, there are also small effects due to the presence of the rotational
structure.
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Figure 4.2: Homebuilt probe laser setup. (a) Setup for scanning transfer cavity
frequency locking and intensity modulation before light is transferred to the ex-
perimental table via an optical fibre. Optical isolator denoted by “OI” in Stokes
path. (b) Experimental table setup. The position of the final lens before the cell is
changed depending on the beam waist we need at the molecules. 1550 nm xODT
setup presented faintly for reference.

4.2 Experimental setup

We utilise two 1145 nm probe lasers for spectroscopic measurements, a home-
built external cavity diode laser and a Toptica DL pro.

The homebuilt laser is based upon an Innolume GC-1180-100-TO-200-B
gain chip. This provides light in the range 1129 nm to 1154 nm. The laser can
provide up to 20 mW of optical power at the molecules. Where higher powers
than this are used, the light from this laser seeds a tapered amplifier, “TA”
(Toptica Eagleyard TA-1135-0500-1), that boosts the power at the molecules
up to ∼100 mW, shown in Fig. 4.2(a). Depending on the intensity required,
we use beam waists ranging from 20µm to 440µm at the molecules. The
beam waist is adjusted by varying the position of the final lens before the
beam reaches the molecules as illustrated in Fig. 4.2(b). The 1/e radius of
the molecule cloud in the plane orthogonal to the laser propagation is 7µm;
at the smallest beam waists used, there is therefore significant variation of
the intensity across the sample. The light is linearly polarised and propagates
in the plane parallel or orthogonal to the magnetic bias field that defines the
quantisation axis, adjusted using a half-wave plate.

We can tune the frequency of the homebuilt probe laser over a 6.5 THz
range with single-mode character by manually adjusting the angle of the feed-
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back grating that forms the external cavity. Smaller adjustments to the laser
frequency (< 10 GHz) are made by varying the voltage supplied to a piezo
that controls the displacement of the grating. When required, we stabilise
the laser frequency with reference to the Stokes laser using an Arduino-based
scanning transfer cavity lock (STCL) [176] that feeds back to the piezo volt-
age.

For higher precision spectroscopic measurements, 1145nm light is pro-
vided by a Toptica DL pro laser which produces around 30 mW directly out
of a fibre-coupled output. About 3% of light is picked off using a beam sam-
pler for frequency-locking as shown in Fig 4.3(a). Locking light is then passed
through a fibre EOM before being delivered to the ultra-low-expansion cav-
ity shown in 4.3(b). The rest of the light is delivered to 4.3(c). Here, light
is split at a polarising beam splitter (PBS) cube. The reflected path of the
PBS cube passes through a variable frequency AOM before being sent via
an optical fibre to the main experimental table shown in 4.3(d). Two shut-
ters (SRS - SR474) are implemented to prevent light leaking through the
first order of the AOM from providing unwanted ac Stark shifts. On the
main table, light is directed towards the molecules using a series of PBS
cubes and wave plates. Transmitted light through the glass cell is collected
on a photodiode for monitoring. 1.27(13) mW of laser light is applied to
the molecules with a beam waist of 1.09(3) mm, providing a peak intensity
of 6.8(7)×102 W/m2. This beam waist ensures negligible intensity variation
across the sample. The AOM is used to pulse the light that illuminates the
molecules. We send an 80 MHz signal from our Agilent MXG analogue signal
generator which enables pulses of laser light with ∼20 ns resolution. When
necessary, we change between horizontal and vertical probe polarisation, by
simply adding or removing the final half-wave plate and PBS cube in the
laser path before reaching the molecules in Fig. 4.3(d).

4.2.1 Scanning transfer cavity locking

We implement a scanning transfer cavity locking technique to frequency sta-
bilise our home-built probe laser, constructing a setup based on the experi-
mental design described in Subhankar et.al [176]. The prime motivation for
utilising this technique was the relatively low cost of equipment compared
to other locking schemes and a pragmatic approach regarding the degree of
frequency stability that was necessary to undertake the planned experiments
at the time.

As the name suggests, the locking method involves transferring the fre-
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Figure 4.3: Experimental layout for spectroscopy measurements. (a) 1145nm
Light picked off laser output for PDH locking. (b) PDH locking setup, constructed
with the help of Fritz von Gierke (Masters student). (c) The beam split to provide
a signal to the wavemeter and then passed through variable frequency AOM. (d)
Experimental table setup. 1550 nm xODT setup presented faintly.

quency locking stability from one laser to another using a scanning optical
cavity. Light from our Stokes laser is picked off before being transferred to
the experimental table. The picked-off light is coupled into a Fabry-Pérot
interferometer, or etalon (Toptica FPI 100) as shown in Fig. 4.2. The inter-
ferometer receives a saw tooth voltage signal produced by a Toptica MiniScan
102 scan generator, causing the cavity length to scan. We observe uniformly-
spaced peaks in the etalon photo-diode signal from our Stokes laser. We then
also couple our probe laser into the etalon, producing a second set of peaks.
We work in a regime where a single cavity scan yields three peaks, two Stokes
peaks with a single probe peak in between.

Given our Stokes laser when locked has a short-term stability of several
100 Hz [155], relative positional drifts we observe in neighbouring Stokes and
probe etalon peaks are attributed to variations in the frequency of the probe
laser. These relative peak positions form the basis of a proportion-integral-
derivative (PID) feedback mechanism to frequency stabilise the probe laser.

The PID feedback is provided by an Arduino Due microcontroller with
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an 84 MHz internal clock reference, onto which is uploaded code found at
[176] and modified by members of the Fraunhofer Centre for Applied Pho-
tonics [177]. Input and output signals connecting to the microcontroller
pass via a shielding board, a printed circuit board (PCB), components of
which we have modified for our setup. Onto the shielding board, Bayonet
Neill–Concelman (BNC) connectors are attached.

The microcontroller receives inputs from the saw-tooth scan TTL trigger
and etalon photodiode signal. The rising edge of the TTL triggers an acqui-
sition step. Referencing the TTL rising edge, the microcontroller acquires
the time-position of the first three peaks from the etalon photodiode through
its 12-bit analogue-to-digital converter.

The arrival time of a given etalon peak is simply given by

ti =
Li

α
, (4.9)

where Li is length of the cavity and α is the speed of the cavity scan.
We can infer the relative frequency deviation of our probe laser by using the
stable free spectral range (FSR) of the Stokes laser as a reference. Stokes
and probe peak relative positions can be represented by the ratio

r =
tS − tp
tS′ − tS

=
LS − Lp

LS′ − LS

, (4.10)

where subscripts S, S ′ and p refer to the first and second Stokes peaks
and the probe peak detected by the microcontroller respectively. Forming
this ratio eliminates any α dependence. The servo loop acts to maintain a
given value of r.

Outputs of the microcontroller are 3.3 V DAC pins with 12-bit resolution
of which two are used in locking. One output provides the voltage to stabilise
the value of r by adjusting the piezo frequency controller of our probe laser.
The second is sent to the cavity piezo scan controller, producing an offset to
the scan in an effort to prevent etalon peaks from drifting beyond our scan
range due to environmental variations.

4.2.2 STCL testing

To test the efficacy of our STCL system, we perform a beat note measure-
ment. We are unable to conduct a beat measurement using our the Stokes
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Figure 4.4: Beat note analysis. Blue and red data sets correspond to the MTS
and STCL beat and the MTS and SAT beat respectively. (a) Frequency of beat
minus mean frequency as a function of time observed on the frequency counter.
(b) Histogram of the data in (a). (c) Allan deviation plot of the data in (a).

and probe lasers considering the relatively large difference in frequency. In-
stead, we use two ∼852 nm lasers that are used to provide the repump and
cooling light for the Cs MOT. The cooling laser is locked using modulation
transfer spectroscopy (MTS) [178] and the repump is locked using saturated
absorption spectroscopy (SAT) [179] in typical experimental protocols. We
replace the SAT locking scheme for the repump laser with STCL. Light from
both lasers is coupled into the same fibre before being transferred to the ex-
perimental table. Reflected light off a PBS cube at the output of this fibre is
then collected onto an EOT ET-3000 InGaAs photodiode, providing a beat
signal.

A beat signal of ∼30 MHz is sent to a frequency counter (Tektronix
FCA3003) with a frequency resolution of ∼3×10−5 Hz. We measure the beat
frequency over a ∼16 minute period for both the SAT and STCL combina-
tions. Results are presented in Fig. 4.4. When the repump laser is unlocked
and the cooling is locked, we observe a drift in the beat signal of 100.0(10) kHz
a second (data not shown).

Fitting the resulting histograms in Fig. 4.4(b) with a Gaussian function,
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we can extract an estimate of the short-term linewidths for the locks. The
full-width half maxima (FWHM) are 0.101(4) MHz and 3.97(4) MHz for the
MTS and SAT and MTS and STCL beats respectively. The Allan deviation
of each data set are presented in Fig. 4.4(c).

After this beat measurement, we improve the STCL for experiments pre-
sented in chapter 5 by introducing a low-pass filter in the path between the
etalon photodiode and the Arduino. This prevents noise in our photodiode
signal causing false-positive detections of peaks. These unwanted detections
inadvertently prompted the Arduino to output an incorrect signal to the
laser piezo controller, causing jumps in laser frequency. We also optimise the
voltage input to the laser from the Arduino by attenuating the Arduino’s
output. This increases the resolution of frequency adjustment to the laser
that the Arduino is capable of performing.

We modify the Arduino code used in the STCL, inherited from the Fraun-
hofer Centre for Applied Photonics by exporting the positions of the peaks
detected to a .csv file. The relative positions of the peaks are then converted
into the frequency deviation of the laser. We produce a histogram of Vexum
trapping laser frequency (discussed in chapter 5) over a ∼12 minute period.
The standard deviation of the resulting histogram is 0.761(10) MHz.

4.2.3 PDH locking

Our Toptica 1145 nm laser frequency is referenced to an ultra-low expansion
(ULE) cavity. This setup is presented in Fig 4.3(a) and (b). The lock-
ing scheme is similar to that which frequency stabilises the STIRAP lasers
described in chapter 3 [155]. The experimental setup was constructed and
optimised with the help of Fritz von Gierke (Masters student).

During high-resolution spectroscopy, we ascertain relative detunings of
spectroscopic features by referencing to cavity modes. The cavity has a
free spectral range at 1145nm of 1496.7551729(9) MHz and a line width of
40.490(5) kHz. Previous work on the equivalent STIRAP setup showed a
24-hour stability of the lasers on the order of ∼100 Hz [155]. We estimate a
short-term linewidth of ∼5 kHz by analysing the error signal used for locking.
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probe

Figure 4.5: Vibrational structure of b3Π0. (a) Diagram of low-lying vibrational
states of b3Π0. Data for plot provided by Jeremy Hutson’s group [180]. (b)
Spectroscopy of X1Σ+(v′′ = 0, N ′′ = 1) → b3Π0(v

′ = 2, N ′ = 0), (c) b3Π0(v
′ =

1, N ′ = 0) and (d) b3Π0(v
′ = 0, N ′ = 0) transitions from the spin-stretched N ′′ = 1

state using horizontally polarised probe light. Horizontal axis given with respect
to the centre of the fitting.

4.3 b3Π0 vibrational structure at 181.5G

We investigate the low-lying vibrational states of the b3Π0 potential by per-
forming spectroscopy on the X1Σ(v′′ = 0, N ′′ = 1) → b3Π0(v

′ = 0, 1, 2, N ′ =
0) transitions from the X1Σ+ spin-stretched state, (N ′′ = 1,M ′′

F = +6). This
transition is rotationally closed; there is only one allowed transition to b3Π0

for each vibrational state given the selection rules ∆N = ± 1 and ∆MF =
± 1. First, we apply a resonant ∼50µs π-pulse using our 1 GHz monopole
antenna, coherently transferring our molecules from (0,+5) to (0,+6). We il-
luminate our molecular sample with a 500µs square pulse of probe light from
the laser locked to the ULE cavity. Light is polarised orthogonal to the quan-
tisation axis with a peak intensity of 6.8(7)×102 W/m2 at the molecules. The
natural linewidth of the b3Π0(v

′ = 0) state is expected to be ∼ 20 kHz [181]
and the partial linewidth of the X1Σ(v′′ = 0, N ′′ = 1) → b3Π0(v

′ = 0, N ′ = 0)
transition is expected to be ∼15.5 kHz [172]. Converting the partial linewidth
into a transition dipole moment using Eq. 4.2, we expect a Rabi frequency
on the order of a few MHz with our peak intensity. A 500µ s probe pulse on
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v′ f (GHz)

1 261570.03(6)

2 263063.77(6)

3 264553.72(6)

Table 4.1: Absolute X1Σ+(v′′ = 0, N ′′ = 1) → b3Π0(v
′, N ′ = 0) transition

frequencies.

resonance should cause the molecule population to decrease to zero as the
molecules decay to unobservable states.

After the probe pulse, we perform a second identical microwave π-pulse,
transferring the population to (0,+5) and measure it. We then vary the probe
laser frequency, observing a decrease in population as we resonantly couple
to an excited state due to the effects of photon scattering. At this beam
intensity, the resulting feature is power broadened. Therefore, we decrease
the power by placing non-discriminant (ND) filters in the beam path as in-
dicated in Fig. 4.3(c) and perform a subsequent spectroscopic measurement
over the width of the feature observed at higher power. We then repeat this
process until we are in a regime where features can be resolved but do not
saturate. Results from this spectroscopy are presented in Fig. 4.5.

The absolute transition frequencies are presented in table. 4.1. Uncer-
tainty is dominated by the uncertainty of our wavemeter. We determine the
vibrational splitting to a greater precision by using the ULE cavity modes
as a frequency reference. The energy splittings between v′ = 0 and v′ = 1
states and between v′ = 1 and v′ = 2 states are 1493.78241(3) GHz and
1489.96082(3) GHz respectively.

4.4 b3Π0 rotational structure at 181.5G

We determine the effective rotational constant of the b3Π0(v
′ = 0, 1) states,

B̃v′ , by performing the same sequence described in sec. 4.3 using vertically
polarised probe light. Omitting or including the microwave pulses described
in sec. 4.3 allows the N ′′ = 0 → N ′ = 1 or N ′′ = 1 → N ′ = 2 transitions
to be accessed. Results of the spectroscopies of transitions coupling to the
b3Π0(v

′ = 0) states are presented in Fig. 4.6.
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By examining Eq. 2.3 1, we can use the relative frequencies of the tran-
sitions to determine B̃v′ . Splittings between rotational transitions are pre-
sented by the black double-headed arrows in Fig. 4.6(d). We can calculate
the rotational constant of the excited state using 2

B̃v′ =
f1→2 − f1→0

6
, (4.11)

where f1→2 and f1→0 are the transition frequencies for N ′′ = 1 → N ′ = 2
and N ′′ = 1 → N ′ = 0 respectively. To calculate an accurate value of the
true rotational constant, we require a model of the hyperfine structure of
b3Π0 which is not currently understood.

As an estimate of the effective rotational constant, we can consider the
mean position of the hyperfine features presented in Fig. 4.6. The uncer-
tainty in B̃v′ is dominated by the hyperfine splitting. We find that B̃v′=0 =
516.4(12) MHz and B̃v′=1 = 515.5(9) MHz respectively. This agrees well with
the B̃v′=0 = 510 MHz rotational constant predicted in [172].

4.4.1 Zeeman shifts of the excited state

We investigate Zeeman shifts in the excited state by performing spectroscopy
of transitions as a function of magnetic field, utilising the same experimental
procedure conducted in section 4.3. Results are presented in Fig. 4.7. We
assume at this magnetic field regime, the Zeeman shifts are linear.

Using our extensive knowledge of the X1Σ+ hyperfine structure and their
respective Zeeman shifts from equation 2.8, we extract b3Π0 state magnetic
moments, µ, by comparing ground state Zeeman shifts to shifts in transition
frequencies as a function of magnetic field. These results are presented in
tables 4.2, 4.3 and 4.4. We note that the b3Π0(v

′ = 0, 1, 2, N ′′ = 0) states
possess the same magnetic moment within uncertainty.

4.4.2 HF structure overview

We perform a comprehensive investigation of the hyperfine structure of
b3Π0(v

′ = 0, 1, 2) at 181.5 G by implementing the same procedure described
in section 4.3 for probe light polarised both vertically and horizontally at the

1We ignore the centrifugal distortion as we are investigating low-lying rotational states.
2The rotational constant can also be extracted in other manners, however this method

yields the smallest uncertainty. Other calculations of rotational constant agree within
error.
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Figure 4.6: Rotational structure of b3Π0(v
′ = 0). Laser detuning given with re-

spect to the N ′′ = 1 → 0 transition. (a-c) Spectroscopy of N ′′ = 0 → N ′ = 1 and
(e-g) N ′′ = 1 → N ′ = 2 transitions using vertically polarised light. (d) Overview
of rotational structure of b3Π0(v

′ = 0). Green, red and blue data correspond to
N ′′ = 1 → N ′ = 0, N ′′ = 0 → N ′ = 1 and N ′′ = 1 → N ′ = 2 transition respec-
tively. Green data presented in Fig. 4.5(d). Energy splitting between rotational
transitions presented as black double-headed arrows. Inset presents relevant rota-
tional energy levels.

molecules.
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Figure 4.7: Zeeman shifts in X1Σ+(v′′ = 0) → b3Π0(v
′ = 0) transitions shown

in Fig. 4.6. Green, red and blue lines correspond to transition frequencies of
N ′′ = 1 → N ′ = 0, 0 → 1 and 1 → 2 respectively. Laser detuning given relative
to the N ′′ = 1 → N ′ = 0 transition frequency at 181.5G. Zeeman shifts show
for different plot laser detuning ranges, (a) 3500MHz, (b-d) 18MHz and (e-g)
0.7MHz.

The narrowest feature we were able to observe was ∼13 kHz, although
all widths of features fell into the a 13 to 20 kHz range. Considering the
∼5 kHz short-term linewidth of the PDH locking scheme, we can attribute
these widths to molecular transition linewidths.

In tables 4.2, 4.3 and 4.4, we also give the peak intensity of probe light
used in each instance. We attribute the power difference in obtaining spec-
troscopies for different transitions to relative transition strengths.

We performed spectroscopy using both horizontal and vertically polarised
probe light for X1Σ+(v′′ = 0, N ′′ = 0, 1) → b3Π0(v

′ = 0, N ′′ = 0, 1, 2) transi-
tions. However, we only performed spectroscopy on the X1Σ+(v′′ = 0, N ′′ =
0, 1) → b3Π0(v

′ = 1, 2) transitions using vertically polarised light and only
investigated the X1Σ+(v′′ = 0, N ′′ = 1) → b3Π0(v

′ = 2) transition for v′ = 2.
These transitions are useful for modelling the structure b3Π0 and for possibly
informing the rotational magic detunings outlined in [172].
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v′ = 0

N ′′ → N ′ θ (◦) ∆f (MHz) IPeak
(mW/m2)

Z
(kHz/G)

µ (µN)

1 → 0 90 0 2.9(2) -10.29(12) -18.82(16)

0 → 1 0 2004.7916(18) 0.70(5) -16.33(14) -26.7(2)

0 → 1 0 2015.9430(9) 7.0(5) -5.05(5) -11.9(7)

0 → 1 0 2019.345(2) 2.3(2)×103 -3.58(12) -10.01(16)

1 → 2 0 3091.3523(14) 7.5(5) -11.37(16) -20.2(2)

1 → 2 0 3100.7183(8) 7.5(5) -3.8(6) -10.3(7)

1 → 2 0 3103.6272(11) 7.5(5)×102 -2.4(3) -8.4(3)

0 → 1 90 2005.606(9) 4.3(4)×103 - -

0 → 1 90 2011.7140(15) 1.36(14)×104 - -

0 → 1 90 2015.607(3) 7.7(8) - -

0 → 1 90 2015.789(2) 7.7(8) - -

0 → 1 90 2022.7573(11) 1.28(13) - -

1 → 2 90 3089.983(4) 4.3(4)×103 - -

1 → 2 90 3092.062(10) 1.36(14)×103 - -

1 → 2 90 3093.774(5) 4.3(4)×105 - -

1 → 2 90 3095.149(10) 4.3(4)×105 - -

1 → 2 90 3096.695(10) 1.00(10)×105 - -

1 → 2 90 3097.027(8) 1.00(10)×105 - -

1 → 2 90 3100.674(2) 1.36(14) - -

Table 4.2: Features identified in spectroscopy of X1Σ+(v′′ = 0) → b3Π0(v
′ = 0)

transitions. Frequency is given with respect to the N ′′ = 1 → N ′ = 0 transition.
IPeak is the peak intensity used to perform the spectroscopy on the transition in
each case. Z is the Zeeman shift of the transition and µ is the corresponding
magnetic moment of the excited state derived from the Zeeman shift.

4.5 Linewidths

4.5.1 Partial linewidths

We characterise the transition dipole moments (TDMs) for the v′′ = 0, N ′′ =
0→ v′ = 0, 1, 2, N ′ = 1 transitions by measuring the off-resonant light shifts
in the v′′ = 0, N ′′ = 0 state. The change in energy of the v′′ = 0, N ′′ = 0
state illuminated by probe of intensity I is given by [182]
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v′ = 1

N ′′ → N ′ θ (◦) ∆f (MHz) IPeak
(mW/m2)

Z
(kHz/G)

µ (µN)

1 → 0 90 0 2.83(8) -10.3(2) -18.8(3)

0 → 1 0 2003.596(2) 3.7(2) -15.68(8) -25.88(10)

0 → 1 0 2014.197(2) 1.13(11)×103 -6.37(8) -13.67(10)

0 → 1 0 2014.465(2) 14.3(3) -4.5(2) -11.3(2)

1 → 2 0 3087.249(2) 118(5) -11.16(13) -19.96(17)

1 → 2 0 3096.148(2) 3.7(2)×102 -4.6(2) -11.3(2)

1 → 2 0 3096.370(2) 3.7(2) -3.26(5) -9.60(6)

Table 4.3: Features identified in spectroscopy of X1Σ+(v′′ = 0) →b3Π0(v
′ = 1)

transitions. Frequency given with respect to the N ′′ = 1 → N ′ = 0 transition.
IPeak is the peak intensity used to perform the spectroscopy on the transition in
each case. Z is the Zeeman shift of the transition and µ is the corresponding
magnetic moment of the excited state derived from the Zeeman shift.

v′ = 2

N ′′ → N ′ θ (◦) ∆f (MHz) IPeak
(mW/m2)

Z
(kHz/G)

µ (µN)

1 → 0 90 0 12.9(5) -10.0(2) -18.4(3)

Table 4.4: X1Σ+(v′′ = 0, N ′′ = 1) → b3Π0(v
′ = 2, N ′′ = 0) transition. IPeak

is the peak intensity used to perform the spectroscopy. Z is the Zeeman shift of
the transition and µ is the corresponding magnetic moment of the excited state
derived from the Zeeman shift.

δEv′′=0,N ′′=0 =
3πc2

2ω3
0

Γv′

∆
I, (4.12)

where ∆ is the laser detuning with respect to the transition. By measur-
ing light shifts in proximity to each transition we can determine the partial
linewidth and corresponding TDM using Eq. 4.2.

We examine light shifts in the v′′ = 0, N ′′ = 0 state, δEv′′=0,N ′′=0, us-
ing the STIRAP two-photon transfer sequence described in section 3.3. We
assume shifts in transition frequency only arise from shifts in energy of the
v′′ = 0, N ′′ = 0 state, noting that the probe light is far detuned from transi-
tions from the excited or Feshbach states. We set the intensity of the light to
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Figure 4.8: Determining the transition dipole moment of electronic transitions.
(a) Effect of ac Stark shifts on the v′′ = 0, N ′′ = 0 state. Spectroscopy using Stokes
laser (i) in free space and (ii) in the presence of probe light +30MHz detuned from
the v′′ = 0, N ′′ = 0 → v′ = 0, N ′ = 1 transition. (b) Light shifts in v′′ = 0, N ′′ = 0
as a function of probe laser detuning with respect to the v′′ = 0, N ′′ = 0 →
v′ = 0, N ′ = 1 transition.

be 3.5(4) × 104 W m−2 using 1.5(1) mW, focused to a 168(5)µm waist such
that the light shifts are significant and measurable over a frequency range
of ∼100 MHz. The homebuilt probe laser is used for this measurement and
is frequency-stabilised using STCL. Probe light is only applied during the
second STIRAP sequence used in the detection stage of our experiments and
is horizontally polarised at the molecules.

We perform spectroscopy of the Stokes transition by scanning the fre-
quency of the Stokes laser and measuring molecule population. Peaks in
the molecule population correspond to the Stokes laser becoming resonant
with the transition are shown in Fig 4.8(a)(i). Data is fitted with a Gaus-
sian function and the centre of the fit is extracted with a ∼10 kHz uncertainty.

In the presence of probe light, we observe shifts in the Stokes transition as
shown in Fig. 4.8(a)(ii). Light shifts become greater the closer in proximity
the probe frequency is to a X→b transition as shown in Eq. 4.12. We re-
peat the spectroscopy for various probe laser detunings, producing the data
presented in Fig. 4.8(b). The difference in noise between data sets shown
in Fig. 4.8(a)(i) and Fig. 4.8(a)(ii) is attributed to inhomogenous intensity
of probe light across the molecular population. This effect is exacerbated
at smaller laser detunings. Data is then fitted with Eq. 4.12, with specific
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Figure 4.9: Characterising total linewidths. (a) Lifetime of v′′ = 0, N ′′ = 0
molecules in the 1550 nm xODT (i) without probe light, (ii) illuminated by probe
light +90MHz and (iii) +75MHz detuned from the v′′ = 0, N ′′ = 0 → v′ = 0, N ′ =
1 transition. (b) v′′ = 0, N ′′ = 0 molecule loss rate in the presence of probe light
as a function of detuning from the v′′ = 0, N ′′ = 0 → v′ = 0, N ′ = 1 transition.

details of the fitting procedure given in section 4.9. Similar methods are
used to determine partial linewidths of the v′′ = 0, N ′′ = 0 → v′ = 1, N ′ = 1
and v′′ = 0, N ′′ = 0 → v′ = 2, N ′ = 1 transitions. Our best estimates of
the linewidths are Γ0 = 11.1(1.2) kHz, Γ1 = 7.2(9) kHz and Γ2 = 2.2(2) kHz.
These correspond to transition dipole moments of µ0 = 0.58(3), µ1 = 0.46(3)
and µ2 = 0.253(14) Debye respectively.

4.5.2 Total linewidths

The excited state linewidth Γe
v′ depends on all available decay pathways from

the excited state, and so will, in general, be greater than the partial linewidth
measured in section. 4.5.1. We investigate the transition v′′ = 0, N ′′ = 0 →
v′ = 0, 1, N ′ = 1. This transition is not rotationally closed. Molecules that
are excited to v′ = 0, N ′ = 1 can decay to either N ′′ = 0 or N ′′ = 2 states
in X1Σ+. Moreover, MN may not be conserved, giving only a one-third
probability of decay to N ′′ = 0 without considering possible decay to other
vibrational states or the a3Σ electronic state. We ignore the decay channels
to the a3Σ state as they account for <1% of decays from the low-lying vibra-
tional states of b3Π0 [183].

We determine the excited state linewidth, Γe
0, of the v′ = 0, N ′ = 1 state

by observing the effects of photon scattering near the v′′ = 0, N ′′ = 0 →
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v′ = 0, N ′ = 1 transition using ground state molecules confined to the xODT.
First, we observe the population of v′′ = 0, N ′′ = 0 molecules confined in the
xODT as a function of time. In the absence of probe light, molecules in the
dipole trap are lost owing to collisional processes [184, 185]. This yields a
background loss rate in our experiment presented by the data in Fig. 4.9(a)(i).

Maintaining the same probe laser parameters used in section 4.5.1, we
apply horizontally polarised probe light to molecules in the xODT and in-
vestigate the lifetime of molecules for a range of probe laser detunings. The
probe laser increases the loss rate in molecule population due to photon-
scattering of probe light when the laser is tuned close to the v′′ = 0, N ′′ = 0
→ v′ = 0, N ′ = 1 transition. This effect becomes greater at smaller laser
detunings as shown in Fig. 4.9(a)(ii) and (iii). Using Γ0 obtained from sec-
tion 4.5.1, we fit the photon scattering rate as a function of laser detuning
shown in Fig. 4.9(b) with [45]

γsc =
3πc2

2h̄ω3
0

Γv′Γ
e
v′

∆2
I (4.13)

and obtain a excited state linewidth, Γe
0 = 20(3) kHz. We repeat the

experiment for the v′′ = 0, N ′′ = 0 → v′ = 1, N ′ = 1 transition which yields
Γe
1 = 103(15) kHz.

4.6 Finding the rotationally magic detuning

Using spectroscopy of microwave transitions between different X1Σ+(v′′ = 0)
rotational states, we coarsely map out the differential ac Stark shifts between
pairs of X1Σ+(v′′ = 0) rotational states in the presence of light tuned between
between X→b electronic transitions. We then increase the probe beam inten-
sity and concentrate our efforts around the regions where the ac Stark shift in
rotational transitions is eliminated, identifying rotationally magic detunings.

4.6.1 Coarse spectroscopy

We choose to interrogate the transition (N ′′ = 0,M ′′
F = +5) → (1,+6) so

that all spins remain stretched such that M ′′
N is a good quantum number for

both states 3. For states that are not spin-stretched, the only good quantum

3At the 181.5G magnetic field used in our experiments, m′′
Rb and m′′

Cs are not generally
good quantum numbers as the magnetic field is not high enough to fully decouple the
nuclear spins.
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Figure 4.10: Coarse spectroscopy. (a) ac Stark shift of the (N ′′=0,M ′′
N=+5)→

(1,+6) transition as a function of probe laser detuning. The solid line indicates the
expectation from Eq. 4.1 with constants fixed at the values found in section 4.9.
Inset, example spectroscopy of the rotational transition, observed as variation in
the molecule number Nmol as a function of microwave frequency fmw, for a negative
(empty circles) and positive (filled circles) ac Stark shift. Here, the microwave
frequency axis is plotted with respect to the transition frequency measured in the
absence of probe light, f∗

mw = 980.38566(3)MHz.

numbers are N ′′ and M ′′
F = M ′′

N +m′′
Rb +m′′

Cs [136].

To perform spectroscopy, we pulse on microwaves for 1 ms, with the mi-
crowave power set to approximately perform a π pulse when tuned to reso-
nance. This causes an apparent loss of molecules as the population is coher-
ently transferred into the rotationally excited state where they can no longer
be detected. We then measure the number of molecules remaining as a func-
tion of the microwave frequency and fit the result with a Gaussian function
to extract the centre of the loss feature. Typical uncertainties in the centre
of the loss features are <100 Hz.

To measure the ac Stark shift we compare the transition energy measured
with and without the probe light. The probe light is produced by the home-
built laser and horizontally polarised at the molecules with a peak intensity
of ∼ 106 W m−2 (approximately 10 mW of laser power focused to an 80µm
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waist). At this stage, we do not actively stabilise the frequency of the probe
laser, and we estimate a passive stability of ±100 MHz during this measure-
ment.

The observed ac Stark shift is shown as a function of the probe laser
detuning in Fig. 4.10. We observe poles where the differential polarisability
changes sign indicating the locations of transitions to v′ = 0, 1, 2. Magic
detunings for the (0,+5)→ (1,+6) transition are found where the ac Stark
shift becomes zero. This occurs three times over the frequency range we have
investigated at detunings marked with (i), (ii) and (iii) in Fig. 4.10.

4.6.2 High-resolution spectroscopy

To more precisely determine the rotationally magic laser frequencies we in-
crease the intensity of the probe light to maximise the effects of ac Stark
shifts. Here, we set the intensity to be ∼ 107 W m−2 by reducing the waist
to 20µm.

In Fig. 4.11(a), we present ac Stark shift measurements around the magic
condition closest to v′ = 0 for the three rotational transitions that connect the
spin-stretched states (0,+5) and (3,+8). In addition, we have also measured
ac Stark shifts for the non-spin stretched transition from the stretchedN ′′ = 0
state to the lowest energy N ′′ = 1,M ′′

F = 5 state. This is composed of an
admixture of spins in the |N ′′,M ′′

N ,m
′′
Rb,m

′′
Cs⟩ basis

0.924 |1, 0, 3

2
,
7

2
⟩ − 0.370 |1, 1, 1

2
,
7

2
⟩ + 0.091 |1, 1, 3

2
,
5

2
⟩ ,

and is therefore predominantly M ′′
N = 0 in character.

For each transition, we show the ac Stark shift as a function of the probe
laser frequency for light polarised either parallel or perpendicular to the quan-
tisation axis. The results for each combination of transition and polarisation
are fitted with a straight line to determine where the ac Stark shift becomes
zero. For the measurements presented here, at 188(4) GHz the differential
ac Stark shift between each pair of rotational states is zero, presented in
Fig. 4.11(a) as the detuing at which all lines cross. As such, we do not re-
solve a dependence of the magic condition on the states or laser polarisation
in this work. However, we note that in chapter 5 where we perform Ramsey
interferometry using trapped samples, we were able to resolve small varia-
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Figure 4.11: ac Stark shifts in X1Σ+ microwave transitions as a function of
probe light detuning around magic detunings. (a) ac Stark shifts for various
transitions labelled by the dominant (N ′′,M ′′

N ) components around the magic
detuning close to the X1Σ+(v′ = 0) → b3Π0(v

′ = 0) transition. In each
case, empty (filled) circles indicate measurements with vertically (horizontally)
polarised light. Each data set is fit with a linear function with uncertainties
given as the shaded regions. (b,c) Equivalent measurements focusing only on
the N ′′ = 0,M ′′

N = 0 → N ′′ = 1,M ′′
N = 1 transition around the magic conditions

closest to transitions to b3Π0(v
′ = 1, 2). Smaller detuning ranges are investigated

compared to Fig. 4.10 due to larger intensity of probe light.

tions in magic detunings depending on the target transition.

We have also examined the magic conditions near transitions to the v′ =
1, 2 states as illustrated in Fig. 4.11(b) and (c). We present the ac Stark
shift in the (0,+5) → (1,+6) transition as a function of probe detuning with
vertical and horizontal laser polarisation. In each case, we reference the probe
detuning to the closest vibrational transition. We observe that the magic
condition is satisfied at lower detunings from higher vibrational transitions.
This corresponds to magic trapping potentials that are more sensitive to
noise in trap light frequency.



Chapter 4 - Magic Spectroscopy 87

4.7 Ramsey interferometry at rotationally

magic detuning

To confirm coherence between different rotational states is maximised at the
magic detuning, we perform Ramsey interferometry in the presence of probe
light. For this, we use the magic condition closest to the X1Σ+(v′′ = 0) →
b3Π0(v

′ = 0) transition. We keep the intensity of the light at 107 W cm−2

and set the polarisation to be horizontal. To perform Ramsey interferom-
etry, we first apply a resonant π/2 pulse (Rabi frequency of 4.3(1) kHz) in
free space, creating an equal superposition of (0,+5) and (1,+6) states. We
then switch on the probe light, which is frequency-stabilised with the STCL.
The state is allowed to freely evolve for 1 ms, before the light is switched off
and a second π/2 pulse is applied with a variable phase relative to the first
pulse. We observe a Ramsey fringe in the number of molecules detected in
the N ′′ = 0 state as a function of the phase of the second microwave pulse.
The sequence is repeated for various probe laser detunings. The contrast of
the Ramsey fringes reaches a maximum when the light is tuned to magic, as
shown in Fig. 4.12(a).

By fixing the π/2 pulses in phase, we also observe Ramsey fringes as
oscillations in the number of molecules in N ′′ = 0 as a function of evolution
time, T , in the presence of probe light. The frequency of these oscillations
is equal to the detuning of the microwaves from resonance. We increase
the Rabi frequency of the microwaves to 8.1(1) kHz to enable transfer with
high fidelity with the microwave frequency detuned by ∼ 3 kHz. We show the
time evolution of the Ramsey fringes in Fig. 4.12 when (c) -47.1 GHz detuned
from the rotationally magic detuning, and (d) at magic. In each plot, the
dotted line indicates the number of molecules remaining without the Ramsey
sequence; we observe loss of molecules over time as they fall out the detection
region due to gravity. When detuned from the rotationally magic detuning
by -47.1 GHz, we observe a coherence time of 0.37(5) ms. When the light is
tuned to magic, however, the coherence time is significantly enhanced with
no discernible loss of coherence over the 2.8 ms interrogation time.

4.8 STIRAP magic

Tuning the laser frequency between transitions to the b3Π0 potential allows
us to set the polarisability of a single rotational state in the X1Σ+ potential
to an arbitrary value. As an example, we show how differential ac Stark
shifts between the N ′′ = 0 state and the weakly-bound state to which it is
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Figure 4.12: Ramsey interferometry in the probe light. The probe intensity is
∼ 107Wcm−2 and the light is linearly polarised perpendicular to the magnetic
field. (a) Interferometry using a superposition of the N ′′ = 0,M ′′

N = 0 and N ′′ =
1,M ′′

N = 1 states for various probe laser frequencies. The Ramsey time is fixed at
T = 1ms. Ramsey fringes are observed as a variation in the molecule number Nmol

as a function of the phase difference between the π/2 pulses. Nmol is plotted as a
fraction of the total number N tot

mol. The detuning of the probe laser from magic is
given above each panel. (b,c) Ramsey fringes observed as oscillations in Nmol as
a function of time with the probe (b) detuned from magic by -47.1 GHz and (c)
at magic. Here, Nmol is plotted as a fraction of the molecule number at T = 0,
N init

mol. Black dotted lines show the loss of molecules over the Ramsey time due to
untrapped molecules leaving the detection region.

coupled during STIRAP can be eliminated. Such ac Stark shifts can other-
wise drastically reduce the efficiency of the STIRAP [115]. The polarisability
of this weakly-bound state is α′ = h× 68.5 Hz W−1 cm2, simply given by the
sum of the atomic polarisabilities. We assume that this is independent of the
laser frequency as the light is far detuned from nearby transitions from this
state. Our goal therefore is to set the laser frequency at a detuning where
the N ′′ = 0 polarisability is equal to this value.

We measure the light shift between these states using STIRAP in the
presence of probe light with a peak intensity of ∼ 108 W m−2, achieved using
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a 34µm waist in combination with a tapered amplifier. We keep the fre-
quency of the pump laser constant, vary the Stokes laser, and observe a peak
in the molecule number when the STIRAP efficiency is maximised.

We measure the optimum Stokes detuning with and without the probe
light to determine the light shift of the ground state relative to the weakly-
bound Feshbach state. We fit each set of results using Eq. 4.1 with the
linewidths of the neighboring transitions and the background polarisabilities
as free parameters. This yields an estimate of the STIRAP magic detun-
ings between the first and second lowest-energy pairs of adjacent electronic
transitions as +0.45(12) THz and +0.6(3) THz respectively.

4.9 Analysis of results

We judiciously combine our experimental results in a way to accurately cal-
culate transition linewidths and background polarisabilities. First, using our
rotational and STIRAP magic detuning results as fixed parameters, we fit
the coarse rotational transition light shift results presented in Fig. 4.10 with
equation 4.1. This fitting allows for the extraction of the ratio of transition
linewidths which dictate the magic detunings. The absolute values of the
transition linewidths are calculated by fitting all the ac Stark shift and pho-
ton scattering data sets for each transition simultaneously, fixing the ratio of
the partial linewidths. This fitting procedure is the source of the linewidths
quoted in 4.5.1 and 4.5.2. Finally, we refit the the coarse rotational transi-
tion light shift results with the magic detunings and the linewidths as fixed
parameters. Values of the parallel and perpendicular background polarisabil-
ities of αbg

⊥ = 49(7) HzW−1cm2 and αbg
∥ = 125(9) HzW−1cm2 respectively are

then extracted from this fitting. These background polarisability values agree
very well with the predicted αbg

⊥ = 34 HzW−1cm2 and αbg
∥ = 127 HzW−1cm2

[172]. Results from our fittings are presented in table 4.5.

Relative gradients of light shift spectroscopy of magic conditions as pre-
sented in Fig. 4.11(b-c) are not consistent with expectation. The light shift
should have a greater sensitivity to detuning for magic conditions at higher
absolute probe laser frequencies owing to smaller relative detunings positions.
We attribute this inconsistency to day-to-day drifts in laser intensity over the
course of our measurements.
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Theory This work

v′ f (THz) Γv′ (kHz) f (THz) Γv′ (kHz) Γe
v′ (kHz)

0 261.533 15.5 261.571 87(6) 11.1(1.2) 20(3)

1 263.036 6.9 263.065 63(6) 7.2(9) 103(15)

2 264.533 1.5 264.555 60(6) 2.2(2) -

Table 4.5: Transition frequencies, partial linewidths and total linewidths. Theo-
retical predictions taken from [172].

4.10 Summary

To summarise, we have performed high-resolution spectroscopy of the
X1Σ+ →b3Π0(v

′ = 0, 1, 2) transitions, resolving hyperfine states in the b3Π0

potential. We identified the absolute frequencies of the electronic transitions
to different v′ states and, using the locking ultra-low expansion cavity as a
frequency reference, determined relative transition frequencies to ∼30 kHz
precision.

Using our relative transition frequencies, we determined the rotational en-
ergy splittings for the low-lying vibrational states of the b3Π0 potential. We
extract effective rotational constants for v′ = 0 and v′ = 1 as 516.4(12) MHz
and 515.5(9) MHz respectively. We have determined the partial linewidths
for the X1Σ+(v′′ = 0, N ′′ = 0) → b3Π(v′ = 0, 1, 2, N ′ = 1) transitions and
total linewidths of the b3Π(v′ = 0, 1, 2, N ′ = 1) states by observing ac Stark
shifts in the X1Σ+(v′′ = 0, N ′′ = 0) state and the effects of photon scattering
in the presence of probe light respectively. The rotationally magic and magic
STIRAP detunings have been identified between the low-lying vibrational
states of b3Π0.

We have proved that using the rotationally magic detuning engineers
long-lived coherence times between different rotational states by performing
a series of Ramsey sequences, providing a fantastic outlook for utilising this
detuning for optical trapping of RbCs in quantum science architecture.



Chapter 5

Magic Trapping and
Dipole-Dipole Interactions

5.1 Introduction

Accessing and controlling dipole-dipole interactions between diatomic molecules
are key to realising their prospects as platforms for encoding and entangling
qubits [95–97, 186], qudits [120], psuedo-spins [17, 32, 33, 36, 38, 88, 187, 188]
and synthetic dimensions [189–191]. So far, dipolar interactions have
been harnessed to investigate spin-1/2 XY models in a range of geome-
tries [43, 44, 85, 192, 193] and to engineer iSWAP gates that prepare pairs
of tweezer-confined molecules in maximally-entangled Bell states [192, 193].
The energy scales associated with dipolar interactions are of order ∼1 kHz
given typical experimental parameters, meaning quantum states must remain
coherent over many milliseconds in order to resolve the dipolar physics. The
duration of coherence times in experiments is typically limited by spatially
varying and state-dependent light shifts from the optical trapping potential.
Utilising rotationally magic wavelength traps eliminates differential ac Stark
shifts between different rotational states, allowing for observations of inter-
actions at these small energy scales.

Recently, experiments using 23Na87Rb molecules in a near-magic optical
lattice reported rotational coherence times of 56(2) ms [44]. Various other
methods of extending rotational coherence times such as modifying the po-
larisation [45–48] or the intensity of the trapping light [49]. To date, the
longest rotational coherence time reported without rephasing is 93(7) ms for
single CaF molecules confined to optical tweezers with the polarisation set
to a magic angle; this was extended to 470(40) ms using a spin-echo se-

91
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quence [47]. In an effort to prolong coherence times between different rota-
tional states of RbCs and access dipolar interactions, we utilise the rotational
magic detuning region between transitions to the v′ = 0 and v′ = 1 states
identified in chapter 4.

In this chapter, we report world-record coherence times between different
rotational states of dipolar molecules. We begin by giving a brief summary of
magic wavelengths in the context of trapping potentials as well as introduc-
ing the rotational states we utilise throughout this chapter. Next, we present
our experimental setup and characterise the lifetimes of molecular samples
in our trap, demonstrating our methods are compatible with long lifetimes.
We then introduce a procedure of using Ramsey sequences to identify magic
detunings for different pairs of rotational states. Using Ramsey sequences,
we show that trapping with the light tuned to the magic detuning produces
a trapping potential that supports long coherence times. These coherence
times are chiefly limited by dipole-dipole interactions in the case of dipolar
mixtures. Finally, we investigate tuning the strengths of interactions dipolar-
mixtures by preparing different superpositions of rotational states in the trap.

5.2 Magic trapping overview

We concentrate our efforts on the rotationally magic detuning that exists
between transitions to the b3Π0(v

′ = 0) and b3Π0(v
′ = 1) state, presented in

Fig. 5.1(a). The magic detuning between the v′ = 0 and v′ = 1 transitions
exists at the largest detuning relative to the nearest electronic transition as
illustrated in Fig. 4.11. This yields the magic condition most favorable for
engineering long coherence times as the differential polarisability between
states is least sensitive to variations in laser detuning. Moreover, the larger
detuning decreases the effects of photon scattering which limits lifetimes in
the trap.

In Fig. 5.1(b-c), we illustrate the effect of laser detuning on the trapping
potential experienced by the (N ′′ = 0,M ′′

N = 0) and (N ′′ = 1,M ′′
N = 0)

states, which we label as |0⟩ and |1⟩ respectively. At magic, we access the
condition where the polarisabilities associated with |0⟩ and |1⟩ (α|0⟩ and α|1⟩)
are equal, producing a trap where the difference in trapping potential expe-
rienced by each state is independent of the beam intensity sampled.

In this chapter, we utilise states that experience similar Zeeman shifts,
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Figure 5.1: Magic trapping overview. (a) Reminder of parallel and perpendicular
polarisability variation as we tune the laser between transitions to v′ = 0 and v′ = 1
vibrational levels of the b3Π potential. (b) Polarisability for states |0⟩ and |1⟩ as
a function of laser detuning from the transition to b3Π(v′ = 0). At a detuning of
∼0.186THz, the trap is rotationally magic and the polarisability for both states
is the same. (c) Schematic of the relative trap potential for laser detunings such
that (i) α|1⟩ < α|0⟩, (ii) α|1⟩ = α|0⟩, (iii) α|1⟩ > α|0⟩. (d) Relevant rotational states
in this work labelled by (N ′′,M ′′

N ). Wavefunctions for each state are shown with
phase information for the states used in this work represented by the colour.

minimising decoherence associated with magnetic field noise. The largest
contribution to the magnetic moment is generally provided by the nuclear
spins, and so we choose states that have the same nuclear spin projections
m′′

Rb = 3/2, m′′
Cs = 7/2. Full composition of the states used in this chapter,

calculated using [141] and given in the uncoupled basis (N ′′, M ′′
N , m′′

Rb, m′′
Cs)

are
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|0⟩ ≡1.000 |0, 0, 3/2, 7/2⟩
|1⟩ ≡0.924 |1, 0, 3/2, 7/2⟩ − 0.370 |1, 1, 1/2, 7/2⟩

+ 0.091 |1, 1, 3/2, 5/2⟩
|1⟩ ≡1.000 |1, 1, 3/2, 7/2⟩
|2⟩ ≡0.934 |2,−1, 3/2, 7/2⟩ − 0.220 |2, 1,−1/2, 7/2⟩

− 0.207 |2, 0, 3/2, 5/2⟩ + 0.168 |2, 0, 1/2, 7/2⟩
− 0.056 |2, 2,−3/2, 7/2⟩ + 0.055 |2, 1, 1/2, 5/2⟩
+ 0.039 |2, 2,−1/2, 5/2⟩ − 0.005 |2, 2, 1/2, 3/2⟩
− 0.001 |2, 1, 3/2, 3/2⟩ − 0.001 |2, 2, 3/2, 1/2⟩

|2̂⟩ ≡1.000 |2, 2, 3/2, 7/2⟩ .
The coefficients are each given to 3 decimal places. State wavefunctions

are presented as the coloured plots in Fig. 5.1(d).

5.3 Magic trapping setup

Magic trapping light is produced by a Vexlum Valo SF laser. It produces up
to 4 W of light at the magic frequency for N ′′ = 0 and N ′′ = 1 states between
transitions to v′ = 0 and v′ = 1. We can tune the laser within ±20 GHz of this
frequency without any appreciable difference in output power or beam qual-
ity. We lock the Vexlum using the scanning transfer cavity lock (STCL, see
chapter 4), with the Stokes laser as the reference. The STCL stabilising feed-
back signal is connected to the piezo offset input at the rear of the Vexlum.
We estimate the stability of the laser frequency to be ±0.761(10) MHz over
the course of each measurement conducted in this chapter.

The Vexlum output light is split into three paths, two paths lead to the
experiment and form the beams of the trap. Light from the other path is
coupled to the wavemeter and etalon for absolute frequency referencing and
frequency locking. The Vexlum setup is presented in Fig. 5.2(a). The paths
are created using a series of PBS cubes and half-wave plates. The two beams
(B1 and B2) that are transferred the the experiment are passed through sep-
arate AOMs. B1 passes through an AOM driven by a fixed-frequency driver
at 80 MHz whereas B2 passes through an AOM driven at 90 MHz. This pre-
vents lattice effects from the beams crossing at the molecules with the same
polarisation. The beams are then delivered to the experiment via optical fi-
bres (standard Thorlabs APC patch cables). We limit the coupling of ∼1 W
of light into each of B1 and B2 fibres to avoid fibre input port damage.
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On the experimental side, the outputs of B1 and B2 are transmitted
through separate PBS cubes, ensuring light from both beams is horizontally
polarised at the molecules as presented in Fig. 5.2(b). The beams are directed
towards the molecules using two launching mirrors. Leaked light through the
mirrors are collected on photodiodes for power monitoring. The beams are
not actively stabilised but are passively stable to <5% variation over the
course of each measurement. Light from B1 after traversing through the cell
is then collected on a second photodiode for experimental troubleshooting
purposes. The beams have a waist of 50µm at the molecules and cross at an
angle of 20 ◦. For ground state molecules, the trap frequency experienced at
the magic frequency is [ωx,ωy,ωz] = [29(1),144(5),147(5)] Hz for a peak laser
intensity of 14 kW/cm2.

With the exception of results in Fig. 5.3(b), molecules are transferred to
the magic trap by ramping the power in the 1145 nm light for over 30 ms, and
then the power in the 1550 nm trap off over a further 5 ms. We then briefly
turn the magic trapping light off while we transfer to the |0⟩ state using
STIRAP to avoid spatially varying ac Stark shifts. For the measurements
in Fig. 5.3(b), we increased the power in the 1550 nm trap after the removal
of atoms with Stern-Gerlach separation and transferred to the magic trap
following ground-state transfer.

5.3.1 Lifetimes in the magic trap

We characterise the lifetimes of molecular samples in our magic trap by ob-
serving the population of molecules as a function of hold time, demonstrating
our procedure is compatible with long trap lifetimes. The magic detuning
exists only ∼186 GHz from the v′ = 0 transition, prompting concerns of loss
of molecules due to photon scattering. We then compare results to a trap of
1064 nm light that is delivered down the same paths as the magic trap. The
1064 nm trap intensity is such that in both the magic and 1064 nm traps, the
molecules experience the same trap frequencies.

We begin the measurement after a hold time in the trap of 0.4 s to lower
the density of molecules and therefore reduce collisional losses [185, 194]. We
measure the population of molecules in state |0⟩ as a function of time in each
trap, producing the data presented in Fig. 5.3(b). Data is fitted with the ex-
ponential function Nmol = N init

mole
−kt where N init

mol is the molecular population
at time t = 0 and k characterises the loss rate from the trap. We extract
a loss rate of k1145 = 0.61(5) s−1 with 1145 nm light, and k1064 = 0.56(7) s−1
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(a

Figure 5.2: Magic trap setup. (a) Vexlum laser split into three beams. B1 and
B2 are relatively detuned by 10MHz after passing through two different AOMs and
are transferred by optical fibres to the experiment. The third beam is delivered
to the wavemeter and etalon through a third fibre. (b) Experimental-side dipole
trap configuration. B1 and B2 are transmitted through separate PBS cubes and
launched off mirrors towards the molecules. Photodiodes used for power monitor-
ing purposes.

with 1064 nm light. This is consistent with the hypothesis that the rate of
loss is not dependent on the wavelength.

To estimate the upper limit to the photon rate, we calculate the difference
in these scattering rates k1145 - k1064 = 0.05(9) s−1, assuming no correlation in
the uncertainty of the two measurements. We construct confidence intervals
using the approach of Feldman and Cousins [195] assuming that k1145 ≥ k1064.
At the 95% confidence level, this indicates that the difference in loss rate must
be below 0.23 s−1. This is broadly consistent with the expected single photon
scattering rate which we calculate to be 0.4(1) s−1 from the linewidths found
in chapter 4.

When molecules are prepared in superpositions of rotational states con-
nected by dipole-allowed transitions, they exhibit an oscillating dipole mo-
ment in the laboratory frame. The resulting dipole–dipole interactions sig-
nificantly affect the collisional loss rate [185]. We compare loss from the
magic trap for molecules prepared in either |0⟩, |1⟩ or in the superposition
1√
2

(|0⟩ + |1⟩) as illustrated in Fig. 5.3(c). For the dipolar superposition,
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c
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Figure 5.3: Lifetime of molecules in the trap. (a) Cartoon showing loss mecha-
nism for molecules in the trap. Colliding molecules forming the collisional complex
(RbCs)2. The complex is then excited by a photon from the trapping light, γ. The
excited state then decays to undetectable atom/molecule combinations. (b) Com-
parison of molecule loss in the magic trap (filled squares) compared to an equivalent
trap using 1064 nm light (empty stars). (c) Comparison of loss from the 1145 nm
trap for molecules prepared in either |0⟩, |1⟩ or in the superposition 1√

2
(|0⟩+ |1⟩).

Exponential fits are shown for all results.

we observed a loss rate that is 2.5 times greater than for molecules in either
|0⟩ or |1⟩. Therefore, the interrogation time available for dipolar samples is
much shorter than for non-interacting samples.

5.4 Identifying the rotationally magic detun-

ing with Ramsey

To identify the magic detuning for different pairs of rotational states, we per-
form a Ramsey experiment visualised as the Bloch spheres in Fig. 5.4(a) with
molecular samples trapped using different frequencies of light. In the exam-
ple shown, a π/2 pulse of resonant microwaves first prepares the molecules in
an equal superposition of states 1√

2
(|0⟩ + |1⟩). This is then allowed to freely

evolve for a time, T , during which the Bloch vector precesses around the
equator at a rate proportional to the detuning of the microwaves from reso-
nance. Finally, a second π/2 pulse with variable phase Φ is used to project
back onto the state |0⟩ for detection. We implement a different sequence
of microwave pulses depending on the superposition of rotational states and
whether a spin-echo pulse is necessary as illustrated in Fig. 5.4(b).

For a given pair of states, we fix the Ramsey time and measure the
contrast of Ramsey fringes as a function of the laser detuning. Fringe
contrasts and associated uncertainties and calculated using the Bootstrap
method [196, 197]. We observe maximum fringe contrast when the trap light
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Figure 5.4: Bloch spheres and pulse sequences. (a) Bloch sphere representation
of the Ramsey interferometry sequence. For each step, the dotted and solid red
arrows represent the initial and final Bloch vector respectively. Solid black arrows
indicate the axis about which the Bloch vector is rotated using coherent π/2 pulses
performed on microwave transitions between the neighbouring rotational states.
In the example shown, a π/2 pulse first prepares the molecules in an equal super-
position of states 1√

2
(|0⟩ + |1⟩). This is then allowed to freely evolve for a time,

T . Finally, a second π/2 pulse with variable phase Φ is used to project back onto
the state |0⟩ for detection. Ramsey fringes are observed as a variation in molecule
number Nmol in state |0⟩ as a function of Φ. (b) Pulse sequences used in Ramsey
interferometry. The solid line with red fill indicates microwave transitions driven
between N ′′ = 0 and 1 rotational states, and the dotted line with blue fill indicates
transitions driven between N ′′ = 1 and 2. Sequences are used for the combinations
(i) 1√

2
(|0⟩+ |1⟩), 1√

2
(|0⟩+ |1⟩), (ii) 1√

2
(|0⟩+ |2̂⟩) and (iii) 1√

2
(|1⟩+ |2⟩). In each case

the top (bottom) sequence shows the sequence without (with) a spin-echo pulse.
To measure a Ramsey fringe, the phase of the last π/2 pulse is varied

is tuned to the magic detuning as shown in Fig. 5.5(a), indicating that the
coherence time for that combination of states has been maximised.

We repeat for multiple combinations of states, presented in Fig. 5.5(b).
Microwave pulses used for each combination of states are presented in
Fig. 5.4(b) as the sequences without spin-echo pulses. The frequency on the
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Figure 5.5: (a) Example Ramsey fringes for case (i); the molecule number
detected in state |0⟩ is plotted as a fraction of the total number N tot

mol. The
detuning of trapping light with respect to magic is given above each subplot.
(b) Fringe contrast as a function of trap laser detuning from the transition to
b3Π(v′ = 0) for state combinations and Ramsey times (i) 1√

2
(|0⟩+ |1⟩), T = 20ms;

(ii) 1√
2
(|0⟩+ |1̄⟩), T = 30ms; (iii) 1√

2
(|1⟩+ |2̄⟩), T = 30ms. Results for the combi-

nation (iv) 1√
2
(|0⟩+ |2̂⟩) are shown for Ramsey times of T = 40ms (empty circles)

and T = 175ms (filled circles). The lines show Gaussian fits to each of the results
to identify the magic detuning.

horizontal axis is the average frequency of the two trapping beams. There is a
small ∼ 1 GHz variation in the magic detuning that depends upon the states
chosen; this is due to coupling to different rotational levels of the excited
vibrational states [172]. The width of the feature depends on the sensitivity
of the light shifts to the laser frequency and is inversely proportional to the
Ramsey time. We frequency stabilise the trapping light to the centre of the
relevant feature in Fig. 5.5(b) for maximum coherence times.

5.5 Long coherence times

We first measure the coherence time for a non-interacting sample of molecules
by examining the coherence between |0⟩ and |2̂⟩; these are two states not
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linked by an electric dipole-allowed transition. We use a pulse sequence
composed of one-photon π/2 and π pulses on the electric dipole-allowed
transitions |0⟩ ↔ |1̄⟩ and |1̄⟩ ↔ |2̂⟩ as illustrated in Fig. 5.4(b). We mea-
sure the contrast of the Ramsey fringes as a function of time, normalised to
the number of molecules remaining in the sample, as shown by the empty
circles in Fig. 5.6. We fit the results with a Gaussian model for decoher-
ence, where the fringe contrast C(t) = exp[−(T/T ∗

2 )2], and find a coherence
time T ∗

2 = 0.78(4) s.

We remove most of the decoherence effects limiting the coherence time
by introducing a single spin-echo pulse halfway through the Ramsey time;
this is an effective π pulse between |0⟩ and |2̂⟩ that reverses the direction
of precession around the Bloch sphere, thereby cancelling out single particle
dephasing from static inhomogeneities. We discuss sources of decoherence
later in this chapter. The result is shown by the filled circles in Fig. 5.6.
We now observe no loss of fringe contrast over 0.7 s. We do not measure
for longer times as molecule loss diminishes the signal-to-noise ratio; for all
measurements shown at least 500 molecules are detected at the maximum of
the Ramsey fringe.

We fit our results using the Gaussian model, with confidence intervals
defined using the Feldman and Cousins approach, to estimate a minimum
coherence time consistent with our results to be T2 > 1.4 s at the 95% con-
fidence level. This represents the suppression of all decoherence at the de-
tectable precision of our experiment.

5.6 Observation of dipole-dipole interactions

For superpositions of states that lead to oscillating dipoles, dipolar inter-
actions also cause dynamics of Ramsey contrast and therefore introduce an
additional source of decoherence. The dipole-dipole interactions in the sys-
tem are described by Eq. 2.22.

We examine the coherence between |0⟩ and |1̄⟩. An equal superposition
of these states produces a dipole that rotates around the quantisation axis
with magnitude given by the transition dipole moment d0/

√
3. However,

due to the factor of 2 in the denominator of the final term of Eq. 2.22,
this contributes an effective dipole d = d0/

√
6 = 0.5 D in the lab frame.

At the peak densities in our experiments, this corresponds to an interac-
tion strength of ∼ h × 2 Hz. The fringe contrast measured as a function
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Figure 5.6: Second-scale coherence between different rotational states. (a) Fringe
contrast as a function of the Ramsey time for non-interacting 1√

2
(|0⟩+ |2̂⟩) (black

circles) and dipolar 1√
2
(|0⟩ + |1̄⟩) (blue squares) superpositions. Empty markers

indicate measurements using a standard Ramsey sequence, and filled markers in-
dicate measurements performed with the addition of a single spin-echo pulse. The
non-interacting results are fitted using a Gaussian model for decoherence, and the
dipolar results are fitted assuming an exponential decay in fringe contrast. The
blue lines indicate the decay in fringe contrast from MACE simulations [121, 198].
Uncertainties in the fits and simulations are shown by the shaded regions. The
fringes observed for 1√

2
(|0⟩ + |2̂⟩) with and without spin echo at T = 0.7 s are

shown in the inset.

of time is shown in Fig. 5.6 by the blue squares, with (filled) and without
(empty) a spin-echo pulse. We see a dramatic reduction in the coherence
time measured using either sequence when compared to the non-interacting
case. Moreover, the results are no longer well described by the Gaussian
model. Instead, we fit the results assuming an exponential decay of fringe
contrast C(t) = exp(−T/TDDI

2 ).

We find a 1/e coherence time of 89(5) ms without spin echo and
TDDI
2 =157(14) ms with spin echo using the sequence presented in Fig. 5.4(b)(i).

The residual ac Stark shifts that affect the results without spin echo vary de-
pending on the combination of states; we expect that the uncertainty in
the magic detuning is dominant for this dipolar combination as collisional
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losses and dipolar decoherence limit the Ramsey time used during the op-
timisation. However, the difference in coherence time between dipolar and
non-interacting samples that is observed with the spin-echo pulse can be at-
tributed to dipole-dipole interactions alone.

Dipole-dipole interactions in our sample are modelled by K. R. A. Hazzard
et al. using moving-average cluster expansion (MACE) simulations [121, 198]
as presented as the blue lines in Fig. 5.6. For their calculations, molecules
are in fixed positions in space, possibly attributing to the disagreement in
decoherence rate with respect to the experiment, especially at earlier Ramsey
times.

5.7 Spin echo efficacy

We characterise the efficacy of the spin echo pulse by performing a spin echo
sequence with 1√

2
(|0⟩ + |2̂⟩) at a fixed hold time and vary the trapping laser

detuning. We fix the hold time to 200 ms which corresponds to ∼20% longer
than the longest Ramsey time we probe our dipolar mixture. Observing max-
imum fringe contrast at 200 ms using a spin echo sequence with 1√

2
(|0⟩+ |2̂⟩)

corresponds to a trapping wavelength sufficiently close to magic that differ-
ential ac Stark shifts from trapping light are negligible.

We observe Ramsey fringe contrast at 200 ms as a function of laser detun-
ing, producing the data presented in Fig. 5.7(a). The resulting data is then
fitted with a Gaussian function. We extract a 1σ width from the Gaussian
fitting of 46(3) MHz. We therefore consider differential ac Stark shifts from
trapping light to be a negligible source of decoherence for measurements up
to 200 ms provided that we stabilise our trapping light to within ∼15 MHz
of the magic detuning.

5.8 Phase slip in Ramsey fringes

We observe a variation in the phase of the Ramsey fringes of spin echo se-
quences with 1√

2
(|0⟩ + |2̂⟩) as a function of time. The relative phase with

respect to the phase of the Ramsey fringe at Ramsey time T = 0 is pre-
sented in Fig. 5.7(b). We fit the relative phase as a function of time with the
quadratic function ∆Φ = a T 2. The fitted value of a is -3.76(5) rad/s2.

This relative phase slip does not lead to any appreciable loss of coherence,
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Figure 5.7: Spin echo efficacy and phase slip. (a) Fringe contrast as a function
of laser detuning for spin echo sequence with 1√

2
(|0⟩ + |2̂⟩) at 200ms. (b) Fringe

phase for spin echo sequence with 1√
2
(|0⟩ + |2̂⟩) as a function of Ramsey time.

Quadratic fit to guide the eye.

though it indicates a time-varying shift in the energies of the states, causing
a different phase to accrue over the two halves of the spin-echo sequence.
At the longest Ramsey time we investigate (0.7 seconds), we observe a phase
shift of -1.75(3) rad, corresponding to a mean shift in the energies between
the two halves of the spin-echo sequence of 0.88(2) Hz.

5.9 Tuning dipole-dipole interactions

We tune the strength of the dipole-dipole interactions by creating superposi-
tions using different combinations of different states. In Fig. 5.8(a) we show
the coherence time measured with a single spin echo pulse as the effective
dipole moment is varied from 0.31 D to 0.65 D. The laser frequency is set to
maximise the coherence time for each state combination.

As expected, we see that the coherence time is inversely proportional to
the magnitude of the interaction strength Uij ∝ d2, which confirms that dipo-
lar interactions are dominant as presented in Fig. 5.8(a). Dipole oscillations
for each dipolar superposition are presented in Fig. 5.8(b).
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Figure 5.8: Tuning dipole-dipole interactions in the magic trap. (a) Coherence
time in the presence of dipole-dipole interactions for superpositions of different
states. We plot the 1/e coherence time measured with spin echo as a function of
the effective lab-frame dipole moment. The combinations used are (i) 1√

2
(|1⟩+|2̄⟩);

(ii) 1√
2
(|0⟩+ |1̄⟩); (iii) 1√

2
(|0⟩+ |1⟩). The fringe contrast as a function of time for

each state combination is shown in the top right inset. The bottom left inset
shows the coherence time plotted as a function of 1/d2. (b) Wavefunctions for
dipolar superpositions as a function of time (phase, ϕ). The resultant dipoles are
illustrated as white arrows with (i) and (ii) yielding dipoles rotating around the
quantisation axis, and (iii) resulting in a dipole that oscillates up and down at a
frequency proportional to the difference in energy between the states.

5.10 Sources of non-dipolar decoherence

We characterise sources of decoherence in our trap in the absence of dipolar
interactions. These effects are most-evident in Fig. 5.6 as the non-spin echo
data points for the superposition 1√

2
(|0⟩ + |2̂⟩), owing to the lack of dipolar

interactions in this mixture. Here, the coherence time, T ∗
2 is limited by the

variation in the energy between the two-state, ∆E

T ∗
2 =

h

∆E
, (5.1)

where h is the Planck constant. For our calculations, we assume ∆E is
the 2σ variation in transition energy.

5.10.1 Instability in trap laser frequency

We directly measure the coefficient relating the light shift to the change in
laser frequency for the |0⟩ and |2⟩ states to be 6.0(2)×10−7. This was accom-
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plished by measuring the Ramsey oscillation rate when the sample is trapped
using different frequencies. The short-term linewidth of our laser stabilised
using the STCL is 0.761(10) MHz. The 2σ variation in the laser frequency
therefore corresponds to 2 × 6.0(2)×10−7 × 0.761(10) MHz = 0.91(3) Hz
which we is assume equal to ∆E/h, yielding a limit on T ∗

2 of 1.10(4) s.

5.10.2 Uncertainty in magic from Ramsey optimisa-
tion

We measure the magic detuning for a given state combination as shown in
Fig. 5.5(b). For the states |0⟩ and |2̂⟩, our most precise measurement of the
magic detuning is found using a Ramsey time of T = 175 ms, which has 1σ
uncertainty of 3 MHz. A systematic detuning of 3 MHz leads to an average
light shift experienced by the molecules of 6 ×10−7 × 3 MHz = 1.8 Hz. Spatial
variation in this light shift causes decoherence. We estimate this variation
from the known geometry of the trap beam and assume a thermal cloud
of molecules at equilibrium at a temperature of ∼ 1µK. From this, the 2σ
variation in the light shift experienced will be 13% of the average, i.e. there
is spatial variation in the light shift of 0.13×1.8 = 0.234 Hz. This puts a limit
on T ∗

2 of 4.3 s.

5.10.3 10MHz difference in trapping beams

There is a 10 MHz frequency difference between the two beams that form the
magic trap to eliminate interference effects. When set symmetrically about
the magic frequency, there will be a light shift of 6 ×10−7× ±5 MHz = ±3 Hz.
The effects from each beam are broadly cancelled as the intensities are set
to be the same. However, variation in the relative intensities of the beams
will vary as molecules move around the trap. We estimate from the known
geometry of the trap beams and assuming a thermal cloud of molecules at
equilibrium that the 2σ variation in the beam balance is only 2%. This leads
to a variation in the light shift of 0.12 Hz that corresponds to a limit on T ∗

2

of 8.3 s.

5.10.4 Magnetic field instability and total coherence
limit

Additionally, a small differential magnetic moment between the states of
0.0124µN limits the coherence time to 10.6 s associated with magnetic field
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noise (∼10 mG).

Combining all contributions provides an expected limit on the coherence
time of 0.74 s (1/(1/1.1 + 1/4.3 + 1/8.3 + 1/10.6)), in excellent agreement
with our observations.

5.11 Summary

In conclusion, we have demonstrated the efficacy of utilising magic wave-
lengths to extend coherence times between different rotational states in RbCs.
We set up a sufficiently high-intensity crossed-optical dipole trap at the
N ′′ = 0 and N ′′ = 1 rotational magic frequency between transitions to v′ = 0
and v′ = 1. We then characterised the lifetime of molecules that were con-
fined to the trap and observed a decrease in the lifetime when molecules were
prepared in a dipolar superposition, consistent with results presented in [185].

We presented a method of identifying the magic detuning for different
pairs of rotational states by optimising the fringe contrast observed when
performing a Ramsey sequence. After identifying the relevant magic detun-
ings, we prepared our molecules in 1√

2
(|0⟩+ |2̂⟩) and trapped them with light

at the magic frequency for states |0⟩ and |2̂⟩. We observe a coherence time of
T ∗
2 = 0.78(4) s which was extended to T2 > 1.4 s at the 95% confidence level

using a single spin-echo pulse.

When preparing our molecular sample in a dipolar superposition of states,
we observed a significant reduction in coherence time. We coarsely tuned the
strength of dipole-dipole interactions in our sample by preparing different
superpositions of states. We observed a linear relationship between the spin-
echo coherence time and the reciprocal of the effective dipole moment squared
for a given superposition, confirming that dipolar interactions were the dom-
inant cause of limiting coherence times.

Finally, we characterised other sources of decoherence in our setup. Com-
bining all contributions provides an expected limit on coherence time with-
out any spin-echo pulses of 0.74 s which is in excellent agreement with the
1√
2
(|0⟩ + |2̂⟩) coherence time results. Our results demonstrate an important

milestone in realising RbCs molecules for use in quantum science experi-
ments. Unlocking dipolar interactions paves the way for producing effective
quantum computation and quantum simulation architecture.

.



Chapter 6

Towards Molecules in Lattices

6.1 Introduction

For many quantum science applications using diatomic polar molecules, ar-
rays of single ground state molecules are required [32, 34, 199–202]. Op-
tical lattice potentials provide the confinement, but reliably loading the
lattice with a high percentage of single-site occupancy has proved diffi-
cult [43, 44, 203].

In 2017, Reichsöllner and Schindewolf et. al [50] at the University of
Innsbruck demonstrated a procedure for efficiently loading atom pairs into
individual optical lattice sites using dual-species Mott-insulator states of Rb
and Cs atoms. These atom pairs were then associated to form RbCs Feshbach
molecules with single-site occupancy using a Feshbach resonance at 352.74 G.
However, a pathway to the electronic ground state was not experimentally
explored as they did not have a functioning STIRAP system. The STIRAP
transitions at 181.5 G we utilise in other chapters are not available at this
magnetic field as we associate using a different resonance.

In this chapter, we establish a method for transferring RbCs molecules
into the ground state that is compatible with the Innsbruck method for pro-
ducing molecules in lattices. First, we outline the procedure demonstrated
in Innsbruck and present the corresponding route to ground state RbCs. We
then associate molecules using the relevant Feshbach resonances and perform
spectroscopy of the pump transition as a function of magnetic field until we
occupy an appropriate state for STIRAP. We present a method of accessing
the appropriate state using RF-assisted jumping over an avoided crossing
before directly measuring the STIRAP transition frequencies and coupling

107
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strengths via spectroscopy and Rabi oscillations.

6.2 Innsbruck Method

In [50], the process begins with two spatially-separated Bose–Einstein con-
densates (BECs) of Rb and Cs in separate optical potentials. Making
molecules from two BECs requires that the BECs are miscible. In a quantum
degenerate mixture of atomic gases of Rb and Cs, the miscibility of the BECs
is governed by the parameter [204, 205]

∆ ∼ aRbCs√
aRbRbaCsCs

, (6.1)

where aRbCs, aRbRb and aCsCs are the intraspecies and interspecies scat-
tering lengths for Rb and Cs respectively. If ∆ < 1 (∆ > 1), the BECs
are miscible (immiscible). However, if ∆ < -1, the mixture is miscible but
unstable against collapse. Fortunately, we can use an interspecies Feshbach
resonance to tune aRbCs. A wider resonance is favourable as it gives more
control over aRbCs.

Both species are in their spin-stretched hyperfine ground state at a mag-
netic field of B ∼21 G. Here, the scattering lengths are aRbCs ∼650 a0,
aRbRb ∼100 a0 and aCsCs ∼220 a0 as shown in Fig. 6.1(a). This renders
the species immiscible. An optical lattice potential of 1064 nm light is then
ramped on over both clouds to an intensity whereby the Cs cloud crosses
the superfluid (SF) to Mott-insulator (MI) transition and the Rb remains a
superfluid 1. Now that the Cs is in an MI state, three-body Cs-Cs-Cs losses
are eliminated due to suppression of tunnelling between sites, allowing the
magnetic field to be varied without worrying about aCsCs values. Next, the
Rb is pushed towards the Cs so that it spatially overlaps. As this happens,
the magnetic field is increased to a zero-point crossing of the interspecies
scattering length at 354.95 G, near a wide (width = 2.70(47) G [71]) inter-
species Feshbach resonance at 352.74 G. Access to this wide Feshbach reso-
nance allows for reliable tuning of the interspecies scattering length around
the zero-point crossing. The gradient of aRbCs at the zero-point crossing near
the 352.74 G resonance is ∼0.3 a0/mG whereas for the resonance at 197 G it
is ∼9 a0/mG.

1Rb requires a greater intensity of trapping light to enter the MI regime due to the
interplay between on-site interaction strength and the inter-site hopping parameter [206].
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Figure 6.1: Scattering lengths and miscibility using calculations from Jeremy
Hutson’s group [180]. (a) Inter and intra-species scattering lengths of 87Rb and
133Cs in their respective hyperfine ground states. The green boxes at 191.7G and
352.74G mark the Feshbach resonance we usually use to associate Rb and Cs
atoms and the resonance used in the Innsbruck method respectively. (b) Eq. 6.1
as a function of magnetic field. Below the horizontal dashed line, the species are
miscible. Purple shaded region shows the miscible and stable region relevant to
the Innsbruck method.

In the region of -501 a0 < aRbCs < 499 a0 (354.0 G < B < 362.1 G),
the quantum degenerate mixtures are miscible and stable, illustrated in
Fig. 6.1(b) as the purple region. This allows the Rb SF and Cs MI to overlap
while three-body losses are suppressed. The depth of the optical potential
is then increased by increasing the power of the lattice beams, causing Rb
to also cross the SF to MI state transition. This produces a sample with a
pair of atoms confined to each lattice site. Finally, the interspecies Feshbach
resonance at 352.74 G is ramped over to associate the pairs of atoms into
molecules, creating one molecule per lattice site with near 100% efficiency.
Innsbruck demonstrated that greater than 30% of atoms in the initial BEC
are converted into molecules using this method. Efficiency is limited by Cs
MOT insulator loading, Cs intraspecies losses and 3-body interspecies loss
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Figure 6.2: (a) STIRAP scheme showing relevant electronic state potentials.
(b) Zeeman structure of the excited state. Theory fitted to experimental spec-
troscopy of pump transitions at 181.5G and 217G obtained by the University of
Innsbruck. STIRAP1 and STIRAP2 are the STIRAP pump transitions for 181.5G
and 305G respectively. Figure based on theory produced by Dr. Arpita Das at
Innsbruck [123].

mechanisms.

6.3 Theoretical calculations

Theoretical calculations combined with experimental investigation provided
an appropriate pump transition for STIRAP [123] at ∼305 G, presented as
“STIRAP2” in Fig. 6.2(b). At this field, a Feshbach state with a dominant s-
wave character exists which is beneficial for excited state coupling. We utilise
the same rovibrational excited state for STIRAP at 305 G as for STIRAP at
181.5 G, b3Π1(v

′ = 29, N ′ = 1). This state is chosen for its optimum singlet-
triplet mixing with A1Σ+ that is required for transferring to X1Σ+ [153].

However, the excited state at the different magnetic fields comprises dif-
ferent nuclear spin projections. At 181.5 G we use an excited state with
nuclear spins m′

iRb
= 3/2, m′

iCs
= 7/2, whereas at 305 G we propose using a

state with m′
iRb

= 1/2, m′
iCs

= 5/2. The excited state at 305 G does not have
desirable nuclear spin projections for coupling to the absolute ground state
of RbCs. Instead, we will transfer to a (0,+4) state of X1Σ+.
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6.4 Shorthand state notation

In this chapter, we find it useful to adopt shorthand notation for labelling
bound states using L and the absolute value of the n quantum numbers. For
instance, we label (-6(2,4)s(1,3)) state as “s6”. In cases of states with mixed
character, we give both angular momenta but with the dominant character
wave is given first. A state with a mix of s and d wave characters but a
dominant d wave character would be given the label “ds6”.

When we wish to denote a state in magnetic field regions above and below
an avoided crossing, we use ′ to distinguish between the two. ds6′ is at a lower
magnetic field compared to ds6. The state predicted to be appropriate for
STIRAP is the sd6 state at 305 G.

6.5 Associating at ∼352.74G

We search for the Feshbach resonance at 352.74 G by varying the magnetic
field and observing the effects of three-body loss rates of our dual-species
atomic sample in the xODT.

The interspecies scattering length near an interspecies Feshbach resonance
is described by

a(B) = abg

(
1 − ∆

B −B0

)
, (6.2)

where abg is the background interspecies scattering length, ∆ is the width
of the resonance feature and B0 is the magnetic field at the centre of the
resonance [72]. It’s clear from the form of Eq. 6.2 that as we approach a res-
onance, the scattering length approaches ±∞. This is shown by the poles in
Fig. 6.3(b). The three-body loss rate scales as a4 [207], leading to a dramatic
increase in three-body loss rate from the trap as we approach an interspecies
resonance.

After the atom evaporation step, we jump the magnetic field from 21 G
to a magnetic field near the interspecies Feshbach resonance positions [146]
and hold for 5 seconds in the xODT. We then repeat for various magnetic
fields during the 5-second hold time and measure the Cs population. Cs is
considered the “probe” species as the relative Cs and Rb populations make
Cs more sensitive to 3-body losses [72]. Results of this measurement are
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Figure 6.3: Feshbach resonance search. (a) Theoretical calculations of the bind-
ing energy of bound states as a function of magnetic field. (b) RbCs interspecies
scattering length as a function of magnetic field. (c) Cs population as a function
of holding magnetic field. Purple vertical dashed lines correspond to the positions
of features in (b). Data for plots (a) and (b) are provided by Jeremy Hutson’s
group.

presented in Fig. 6.3(c). Other resonances around 310 G are also observed.

By sweeping down across the resonance at 352.74 G at a rate of
∼2.5 G/ms, we associate atoms into molecules occupying the weakly-bound
s1 state that runs approximately parallel to the free-atomic energy, presented
in Fig. 6.3(a). ∼8000 molecules are produced in this process based on previ-
ous experimental calibrations.

We ramp down the magnetic field after association so that we find an ap-
propriate region for Stern-Gerlach separation. The avoided crossing between
the g2 and the ds6 state, shown in Fig. 6.4(b), allows us to tune the mag-
netic moment of the molecule between +1.1 µB and -1.4 µB. We decrease
the xODT intensity and tune the magnetic moment to around -0.9 µB and
apply a 32 G/cm magnetic field gradient, exactly levitating the molecules
and removing the atoms from the trap in 15 ms.

We then increase the xODT intensity, transferring the molecules into a
purely optical potential and typically lose about half the molecules through
heating, collisional and photon-scattering processes. To detect molecules, we
ramp the magnetic field back over the Feshbach resonance at 352.74 G to
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Figure 6.4: Mapping bound states of RbCs after association at 352.74G. (a)
Example pump spectroscopy using 500µs square pulse. (b) Experimental data
overlaying theoretical mapping of bound molecular states only included L ≤2. g-
state with L =4 binding energy presented as green dotted line at ∼16.8MHz.

dissociate and image the resulting atoms.

6.6 Searching for strong STIRAP transitions

We perform spectroscopy of the pump transition as a function of magnetic
field, mapping out a path to sd6 for STIRAP. Following Stern-Gerlach sepa-
ration, the magnetic field is ramped to a given set point in 2 ms. A subsequent
1 ms hold time is then employed to allow the magnetic field to stabilise. The
molecules are then released from the xODT and a square pulse of vertically
polarised pump light is applied for 500µs. We repeat for different values
of pump detuning, observing a decrease in molecule population as we be-
come resonant with the transition. The resulting loss feature is fitted with a
Gaussian function and the centre of the loss feature is extracted as presented
in Fig. 6.4(a). Typically, we determine the centre of the fit to <160 kHz.
We then repeat for different magnetic fields as illustrated in Fig. 6.4(b). At
∼308 G, the molecules follow the avoided crossing between the g2 and ds6
states as the magnetic field is ramped down.

6.7 RF-assisted avoided crossing jumping

To access the sd6 state, we must devise a method of jumping the avoided
crossing between g2 and ds6. This could be achieved with microwave π pulses
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or fast magnetic field ramps. In our experiment however, we chose to adopt
the hybrid-transfer procedure developed by Lang et. al [208], as it had been
previously demonstrated and should be relatively robust to noise in the mi-
crowave power/frequency and the magnetic field.

The transfer scheme relies on the preparation of RF-dressed states. We
begin with two molecular energy states, |u⟩ and |l⟩. In the absence of inter-
actions between |u⟩ and |l⟩, they would cross at a magnetic field B0. The
system is described by the Hamiltonian

ĤFree = h̄

(
0 V|u⟩|l⟩/2

V|u⟩|l⟩/2 ∆µ|u⟩|l⟩∆B

)
, (6.3)

where ∆B = |B0−B| with B being the applied magnetic field and ∆µ|u⟩|l⟩
is the difference in magnetic moment of |u⟩ and |l⟩. The analytic solutions
for the eigenenergies of eigenstates |u⟩ and |l⟩ are

E|u⟩ =
h̄

2

(
(µ|u⟩ + µ|l⟩)∆B +

√
∆µ2

|u⟩|l⟩∆B
2 + V 2

|u⟩|l⟩

)
(6.4)

E|l⟩ =
h̄

2

(
(µ|u⟩ + µ|l⟩)∆B −

√
∆µ2

|u⟩|l⟩∆B
2 + V 2

|u⟩|l⟩

)
, (6.5)

respectfully. These eigenenergies are shown by the grey lines in Fig. 6.5(a).

Consider the addition of a blue-detuned RF-photon that couples the two
states |u⟩ and |l⟩. When extending this model to include an RF field, it’s
beneficial to adopt a dressed-state formalism whereby we can consider the
energies of the states associated with ĤFree being perturbed by an integer
multiple of the energy of a photon [209]. Using the rotating wave approxi-
mation by assuming small photon detuning, we arrive at a new dressed-state
Hamiltonian

ĤDress =

(
E|u⟩ h̄ΩRF/2

h̄ΩRF/2 E|l⟩ + γRF

)
. (6.6)

ΩRF is the Rabi frequency of the coupling between states |u⟩ and |l⟩ caused
by our RF-photon and γRF is the energy of the RF photon. The Hamiltonian
is not time-dependent as we are sufficiently detuned to prevent Rabi oscilla-
tions between |u⟩ and |l⟩.

Here, we have perturbed the eigenstate of |l⟩ by the energy of a pho-
ton while |u⟩ remains unperturbed. The presence of RF coupling between
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Figure 6.5: Avoided crossing and transfer scheme. (a) Diagram of avoided cross-
ing between ds6/sd6 (black solid line) and the g2 state (green dashed line). Re-
sulting avoided crossing coupled eigenvalues of |u⟩ and |l⟩ states presented as grey
solid lines. Ω|u⟩|l⟩, indicated by the purple arrow is the Rabi frequency associated
with the coupling between states |u⟩ and |l⟩. (b) RF-assisted dressed-state scheme
used to facilitate jumping. Orange solid lines denote the RF-dressed states. γRF

is the energy of the RF photon. ΩRF is the Rabi frequency associated with the
coupling between |u′⟩ and |l′⟩ at the circled avoided crossings.

states shown by the off-diagonal elements in the ĤDress Hamiltonian creates
new avoided crossings between the E|u⟩ and E|l⟩ + γRF states, presented in
Fig. 6.5(b) as the orange lines. These new dressed states with RF-coupling
are denoted as |u′⟩ and |l′⟩.

In the experiment, we implement a transfer scheme using an RF field with
a frequency of 400 kHz and a Rabi frequency of ∼38 kHz 2, provided by a
copper coil placed directly below the cell and driven with a sinusoidal pulse
from an arbitrary function generator. The transfer scheme comprises three
distinct steps as illustrated in Fig. 6.6(a):

(i) With the RF-field on, we ramp the magnetic field from high to low
so that the initial state follows the dressed state projection |u′⟩ to the
centre of the avoided crossing in 30µs with the xODT off.

(ii) We switch off the RF field, projecting the dressed-state Hamiltonian
eigenstate |u′⟩ onto the bare Hamiltonian state |l⟩ and recapture the
molecules in the xODT.

2This was determined by performing Rabi oscillations on the |u⟩ and |l⟩ states.
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-

-

Figure 6.6: RF transfer scheme and one and two-way transfer population. (a)
RF transfer scheme showing dressed-state (dashed orange lines) and bare (solid
grey lines) energies of molecular states near ds6/g2 avoided crossing region. (b)
Detected molecule population as a function of Rabi frequency of avoided crossing
coupling for one-way and two-way transfer.

(iii) We continue the magnetic field ramp away from the avoided crossing.

We can assess the efficiency of our hybrid transfer method by observing
the detected population after we jump the avoided crossing once or twice
in succession. The probability of a molecule does not traverse the avoided
crossing is given by the Landau-Zener probability model [210]

POnce = exp

(
− 2πΩ2

RF

Ḃ∆µ̇|u⟩|l⟩

)
, (6.7)

where Ḃ is the rate of change of the magnetic field and ∆µ̇|u⟩|l⟩ is the rate
of change of the difference in magnetic moment of |u⟩ and |l⟩. It therefore
follows that the probability of a molecule being observed after two successive
avoided crossing ramps is

PTwice =

(
1 − exp

(
− 2πΩ2

RF

Ḃ∆µ̇|u⟩|l⟩

))2

+ exp

(
− 4πΩ2

RF

Ḃ∆µ̇|u⟩|l⟩

)
. (6.8)

We repeat the experiment with varying powers of RF Rabi frequency and
fit the data to the Landau-Zener probability model as shown in Fig. 6.5(b).
We extract a value of ∆µ̇|u⟩|l⟩ = 6.8(4)×104 J/G/s by considering a constant
magnetic field change of 1.5×104 G/s during traversal.
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6.8 Continued pump spectroscopy and pump

Rabi oscillations

We perform pump spectroscopy after RF-assisted transfer to confirm the
occupation of the sd6 state. We adapt the sequence described in Sec. 6.6
with the addition of two jumps over the avoided crossing between g2 and ds6
states, one before and one after the pump pulse. These results are presented
in Fig. 6.7(a) as the unfilled data points.

We decrease the magnetic field by ∼3 G and perform STIRAP at 305 G
where the absolute pump transition frequency is 192573.4(1) GHz. Uncer-
tainty is limited by the precision of the wavemeter. The Zeeman shift of the
transition is 3.090(14) MHz/G.

We directly measure the off-diagonal elements of the STIRAP Hamilto-
nian by observing a Rabi oscillation on the pump transition with our pump
laser locked to 192573.4(1) GHz. After transferring the molecules to sd6 at
305 G, we release the molecules from the xODT. The molecules are then il-
luminated by the pump light for a fixed time before being recaptured in the
dipole trap and reversing the state transfer and association sequence to mea-
sure the molecule population. We repeat this process for varying pump light
pulse times. Results of this measurement are presented in Fig. 6.7(b). Error
bars are the standard error of three repeated sequences.

Results from the Rabi oscillation are fitted with a damped sinusoidal
function in order to extract a frequency. The extracted Rabi frequency is
632(16) kHz. This corresponds to an intensity normalised Rabi frequency
of 0.8(1) kHz

√
Ip/ (mWcm−2). Dephasing of the oscillation is caused by

inhomogeneous intensity sampling of our molecules across the cloud [154]
and loss in molecular population as a function of pulse time is attributed to
the existence of decay channels from the excited state to other states that we
don’t detect. This coupling strength is the same within uncertainty as the
corresponding pump transition used for STIRAP at 181.5 G.

6.9 Stokes Spectroscopy at 305G

We implement the same STIRAP pulse sequence described in chapter 3.3,
transferring the population to a rovibrational ground state of the X1Σ+ po-
tential. The sequence is then reversed after 5µs of pump light exposure and
the molecule population is measured. If the Stokes light becomes resonant
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Figure 6.7: Continued pump spectroscopy and Rabi oscillation of pump transi-
tion. (a) Pump spectroscopy of sd6 state accessed by jumping avoided crossing
using RF-photon assistance. (b) Pump Rabi oscillation at 305G showing Fesh-
bach molecule population as a function of pulse time. Inset shows the pump pulse
sequence used.

with a transition, the molecules will complete a return transfer back to the
Feshbach state and we will observe a peak in population. If the Stokes light
is off-resonant with a transition, the pump leg of the STIRAP sequence will
transfer molecules from the Feshbach state to the excited state but they will
not return. The pump duration is sufficient that all Feshbach molecules are
removed, leading to no observed molecule population when the Stokes is off-
resonant with a transition.

Angular momentum selection rules limit the accessible X1Σ+ states we
can access. Our excited state in the STIRAP scheme at 305 G has M ′

F = +4,
therefore we can only transfer to X1Σ+ states with total angular momenta
projections M ′′

F = +3, +4 or +5. M ′′
F = +3, and +5 are accessed by light

polarised orthogonal to the quantisation axis whereas M ′′
F = +4 is accessed

by light polarised parallel to the quantisation axis. We can modify the po-
larisation of light by simply inserting a half-wave plate in the Stokes path
before the light is transported to the experimental table via a polarisation-
maintaining fibre.

We measure the population of molecules as a function of Stokes laser fre-
quency for light polarised both parallel and orthogonal to the quantisation
axis as presented in Fig. 6.8. Experimental data in Fig. 6.8(a) (Fig. 6.8(b))
are fit with a Gaussian function (the sum of multiple Gaussian functions).
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Figure 6.8: Stokes spectroscopy at 305G. Population of ground state molecules
as a function of Stokes detuning with respect to the transition to the (0, 4)1 state
with Stokes light polarised (a) parallel and (b) orthogonal to the magnetic field.
The detuning is given with respect to the b3Π1(v

′ = 29, N ′ = 1) → X1Σ+(v′′ =
0, N ′′ = 0,MF = +4, k = 1) transition. Theoretical calculations for TDMs of each
transition are presented as vertical lines at their respective frequencies, calculated
by Arpita Das et. al [123]. Inset in (a) presents a diagram of the pulse sequence
used.

Theoretically predicted transition dipole moments are also presented for each
of the transitions in the frequency range as vertical bars overlaying the ex-
perimental data.

The absolute value of the Stokes frequency for transition to the rotational
ground state of the X1Σ+ potential is 306831.2(1) GHz. By observing the
number of molecules we detect after a round-trip STIRAP sequence with the
Stokes light fixed to the centre of the feature in Fig. 6.8(a) and comparing to
the initial population, we calculate the maximum one-way transfer efficiencies
of 85(4)% and 92(7)% for parallel and perpendicular polarisation respectively.
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6.10 Identifying ground state occupancy with

MW spectroscopy

We confirm the quantum numbers of the X1Σ+ states we access using mi-
crowave spectroscopy of rotational transitions, extracting transition frequen-
cies and comparing them to the transition frequencies predicted by the-
ory [141].

Figure 6.9: Ground state occupation after STIRAP transfer. (a-c) Microwave
spectroscopy of the strongest three transitions between N ′′ = 0 and N ′ = 1.
Microwave frequencies given relative to the centre frequency of fitting. (d) and
(e) present TDMs for each available transition from (d) (0,+4)1 and (e) (0,+4)0
states in units of molecule-frame dipole moment, calculated using [141]. Centre
frequencies of (a-c) spectra are indicated by vertical dotted lines. σ−, σ+, and π
transitions from (0,+4)1 are coloured blue, red and green respectively.

After the STIRAP pulse sequence at 305 G using Stokes light polarised
parallel to the quantisation axis tuned to the centre of the feature in
Fig. 6.8(a), we apply an approximate π pulse in 100µs using our monopole
antenna at frequencies around the strongest three rotational transitions and
measure the molecular population. We repeat the process for different mi-
crowave frequencies. When microwaves are tuned on resonance with a tran-
sition, we observe a decrease in population as presented in Fig. 6.9(a-c). We
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Figure 6.10: Rabi oscillation on Stokes transition at 305G. Error bars are the
result of the standard error of 3 repeat measurements. Inset presents the pulse
sequence used.

fit each data with a Gaussian function and extract resonant frequencies of
the transitions.

Given the polarisation of the Stokes light, we should be occupying an
MF = +4 state after STIRAP transfer. Considering the good agreement
with the theoretical transition frequencies shown in table 6.1, we can con-
firm our occupation of the (0, 4)1 state after STIRAP.

Using our results from microwave spectroscopy, we reference the Stokes
detuning in Fig. 6.8 to the resonant frequency of the transition to the (0, 4)1
state. Despite the broad agreement with the relative detunings of the transi-
tions, given the substantial transition dipole moments of transitions to other
hyperfine states shown by the vertical lines in both Fig. 6.8(a) and (b), we ex-
pected to observe more features in our detuning range. We attribute the lack
of features to the effects of interference between different STIRAP transfer
channels [123, 211]. This can modify STIRAP efficiency and make spec-
troscopy features narrower. It’s possible that our 100 kHz spacing in data
collection is too large to resolve the narrower features that interference could
cause.
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N ′′ = 1 state, (N ′′,MF )k fTheory (MHz) fExp (MHz)

(1, 5)2 980.328 980.329(2)

(1, 4)3 980.446 980.4474(13)

(1, 3)2 980.282 980.2839(3)

Table 6.1: Rotational transition frequencies from (0, 4)1. fTheory and fExp corre-
spond to the theoretical and experimental transition frequencies respectively.

|B|/G Transition Initial/final state Excited state
ExpTDM

(10−4ea0)

181.5
pump a3Σ+(-6(2,4) d(2,4))

b3Π1(-1,3/2,7/2)
8.1(1) [154]

Stokes X1Σ+(0, 5)0 28.0(3) [154]

305
pump a3Σ+(-6(2,4) d(1,3))

b3Π1(+1,1/2,5/2)
7.2(1)

Stokes X1Σ+(0, 4)1 5.1(6)

Table 6.2: Measured Transition dipole moments for STIRAP transitions at 181.5
and 305G. Excited states are labelled by (M ′

N , m′
iRb

, m′
iCs

). ExpTDM is the tran-
sition dipole moment measured in experiment.

6.11 Stokes Rabi oscillation at 305G

Finally, to fully characterise the STIRAP process at 305 G, we measure Rabi
oscillations on the Stokes transition coupling to the (0, 4)1 state. To do this,
we apply a square pulse of Stokes laser light between STIRAP pulses for var-
ious pulse times with the Stokes frequency locked to the centre of the feature
in Fig. 6.8(a). We fit a Rabi frequency 250(7) kHz to the resulting oscillation
presented in Fig. 6.10. This corresponds to an intensity normalised Rabi
frequency of 0.40(5) kHz

√
Ip/ (mWcm−2).

Collating our results in table 6.2, we can see that our pump transition
at 305 G has similar coupling strength to that used at 181.5 G however the
Stokes transition is about a factor of 5 weaker. We attribute this to hyperfine
state composition. The excited and ground states associated with the 305 G
Stokes transition are not spin-stretched, leading to weaker coupling.

6.12 Summary

In summary, we have explored and characterised a procedure for RbCs ground
state transfer that is compatible with the Innsbruck method for efficiently
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mixing Rb and Cs BECs in an optical lattice. We have identified a route
for accessing a bound state at 305 G which has desirable characteristics for
high STIRAP ground state transfer efficiency. In accessing the appropriate
bound state, we have developed a method to jump over an avoided cross-
ing between the g2 and sd6 states at ∼308 G. We employed an RF-assisted
avoided crossing protocol which traverses the avoid crossing with near 100%
efficiency.

After we access a region where strong STIRAP coupling exists, we ob-
serve one-way transfer efficiencies of 85(4)% and 92(7)% for parallel and
orthogonal Stokes polarisations respectively. To confirm the particular elec-
tronic and rovibrational ground state we occupy after STIRAP transfer, we
performed microwave spectroscopy of the strongest available rotational tran-
sitions. Results of which coincide very well with our theoretical predictions
of transition frequencies from (0, 4)1, confirming our X1Σ+ state occupancy.
We directly measured the TDMs of both of the STIRAP transitions which
are comparable to TDMs of the STIRAP transitions 181.5 G. This work lays
the foundation for future experiments to load ground state RbCs into optical
lattices efficiently.



Chapter 7

Synthetic Dimensions in RbCs

7.1 Introduction

Synthetic dimensions have become a burgeoning field of research in recent
years due to their potential as a powerful tool for simulating models in
condensed matter physics [212–214]. Moreover, combining real dimensional
space with synthetic dimensions offers an exploration into higher-dimensional
physics [94, 215, 216]. The concept simply put is using the internal quan-
tum states of a system as a method of simulating real spatial dimensions,
whereby each real dimension lattice site is mapped onto a quantum state. By
coupling multiple states together, arbitrary geometries with a unique level of
tunability are realised. Tuning the tunnelling rates in the real dimension can
be simulated by adjusting the strengths of coupling between adjacent energy
states. Additionally, on-site potentials can be controlled by adjusting the
detunings of coupling fields. The ability to generate arbitrary structures in
the synthetic dimension has sparked investigations in constructing complex
and non-trivial topological arrangements [89, 92, 217–220].

Dipolar molecules offer a fantastic platform for creating synthetic dimen-
sions in which rotational states are mapped to real dimensional sites. Ro-
tational spacing is anharmonic, leading to specific addressing of couplings
between rotational states with ease. The multitude of hyperfine states al-
lows for the creation of topological structures with different dimensions [189].

In this chapter, we lay the groundwork for exploring synthetic dimensions
in RbCs. We begin by giving an overview of the structure of RbCs in the
context of realising synthetic dimensions. We discuss the complications that
arise from off-resonant hyperfine state coupling in our experiment. Next, we

124
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present results in controlling the relative site depth in the synthetic dimension
by realising a two-level structure and changing the detuning of the coupling
microwave field. We then demonstrate our control over hopping amplitudes
in the synthetic dimension by adjusting the power of microwaves in a three-
level system. Finally, we attempt to realise more complicated structures that
exhibit non-trivial topological properties. These latter efforts ultimately fall
short due to experimental complications.

7.2 Synthetic dimensions in RbCs

We utilise RbCs rotational energy levels as a platform for synthetic dimen-
sions. Each rotational state is mapped onto discrete spatial positions of the
analogous real dimension, for example, sites in an optical lattice as illustrated
in Fig. 7.1. The lattice potential landscape can be described using two sets
of parameters, the site-to-site hopping amplitudes and relative site depths.

For our model, we consider the sites to be degenerate in energy in the
absence of detunings. The hopping parameters, ti,j where i and j are site
labels, are mapped onto the Rabi frequencies Ωi,j in the synthetic dimension.
Likewise, the relative site depths in the real dimension Vi are controlled in
the synthetic dimension by adjusting the detunings of microwaves that cou-
ple neighbouring rotational states. This is made evident by examining the
Hamiltonians describing the real and synthetic dimensions. The Hamilto-
nians that describe four different synthetic lattice sites/rotational states in
the bases {|1⟩ , |2⟩ , |3⟩ , |4⟩} and {|N ′′ = 1⟩ , |N ′′ = 2⟩ , |N ′′ = 3⟩ , |N ′′ = 4⟩}
respectively are

ĤLattice =


V1 t12 0 0

t12 V2 t23 0

0 t23 V3 t34

0 0 t34 V4

 (7.1)

ĤSynth =
h̄

2


0 Ω12 0 0

Ω12 −2∆12 Ω23 0

0 Ω23 −2 (∆12 + ∆23) Ω34

0 0 Ω34 −2 (∆12 + ∆23 + ∆34)

 ,

(7.2)
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Figure 7.1: Synthetic dimension mapping. (a) Real spatial dimension of a 1-
dimensional lattice potential. ti,j and Vi correspond to hopping amplitudes be-
tween synthetic sites i and j and the site depth of i respectively. (b) Synthetic
dimension of rotational states of RbCs. Ωi,j denotes the Rabi frequency coupling
states i and j. ∆i,j is the relative detuning of the photon coupling states i and j.

where ĤLattice and ĤSynth are the lattice and synthetic dimensional Hamil-

tonians respectively. Eigenvalues and eigenstates for ĤSynth are presented
analytically in chapter 9 for systems of up to 4 synthetic lattice sites in the
absence of detunings.

However, the complex hyperfine structure of RbCs complicates the syn-
thetic dimension framework. When coupling between different rotational
states, we resolve the hyperfine structure, leading to off-resonant coupling
to nearby hyperfine states. We build our synthetic dimension using spin-
stretched states (“target” states). The nearest states we can off-resonantly
couple to are presented in Fig. 7.2. Owing to a microwave source with poorly
defined polarisation, discussed in chapter 3, we have the possibility of cou-
pling to various hyperfine states. However, target states are typically 10 kHz
to 100 kHz from neighbouring hyperfine states and the transition dipole mo-
ments (TDMs) of the target transitions are substantially larger than transi-
tions to other states, making this problem negligible for the majority of the
experiments performed in this chapter.

When constructing our synthetic dimensions, we determine the resonant
frequencies of transitions by performing microwave spectroscopy for each
transition in isolation using 1 ms square microwave pulses. The transition
frequency is typically known to <100 Hz. We then calibrate Rabi frequencies
by performing a series of Rabi oscillations on the respective transitions in
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isolation for different microwave powers.
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Figure 7.2: Rotational synthetic dimension map in RbCs. (a) Real dimension hopping analogue to our rotational synthetic
dimension. Our target sites are presented as the red potentials. However, off-resonant coupling to neighbouring hyperfine
states leads to the occupation of other sites, shown as the faint blue and green parabolas. Relative detuning and coupling in
the synthetic dimension with respect to the target state are presented as relative depths of sites and opacity respectively. (b)
Available hyperfine states in our synthetic dimension, going (i) down and (ii) up in rotational quantum number at 181.5G.
States are presented as vertical lines with their relative heights of each line denoting their TDM when coupling to an ∆N = ±1
target states in units of the molecule’s lab frame dipole moment (d0 = 1.23 D). Red lines are the spin-stretched target states
of each rotational energy level. Grey arrows link the spin-stretched states and indicate the direction of transition. Blue and
green lines in each N ′′ section represent π and σ− transitions from the N ′′-1 rotational energy level respectfully. Each line
is labelled by the M ′′

F quantum number.
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7.3 Controlling relative synthetic lattice site

depths

We control the relative site depths in our synthetic dimension by tuning the
frequency of the microwaves that couple adjacent rotational states. We cre-
ate a synthetic dimension using the spin-stretched states (N ′′ = 1, M ′′

F = 6)
and (2,7). The synthetic dimension is then ‘probed’ using the (0,5) → (1,6)
transition with Rabi frequency Ωp. We occupy the regime where Ωp << Ωi,j

for all combinations of i and j so that we consider (0,5) to be isolated from
the synthetic dimension. By varying the detuning of the probe transition ∆p

and measuring the population of the (0,5) state, we observe features corre-
sponding to eigenenergies of the synthetic dimension.

We connect the MXG signal generator to the monopole antenna to pro-
duce microwaves that drive the (0,5) → (1,6) transition with the MXG power
set that Ωp ∼ 0.5 kHz when on resonant. An output of a WindfreakV2 is
connected to the microwave horn which drives the (1,6) → (2,7) transition.
We fix the value of Ω12 to ∼ 2.2 kHz, the exact values of Ωp and Ω12 are
extracted from the fitting of the data set.

We begin by fixing the frequency of the microwaves driving the (1,6) →
(2,7) transition to 2.5 kHz above the resonant frequency (∆12 = +2.5 kHz).
We then perform a square pulse of both microwaves for 1 ms in free space.
Next, we vary the value of ∆p in 0.375 kHz steps and measure the ground
state population for three repeats, producing the spectroscopy represented
by the bottom row in Fig. 7.3(b). We then repeat the process for different
values of ∆12. The data presented in (b) is then fitted simultaneously ex-
tracting Ωp = 0.52(2) kHz and Ω12 = 2.14(2) kHz. These fitting parameters
are then used to produce the theory plot presented in Fig. 7.3(a).

By considering the eigenvectors of our two-level system, given in chap-
ter. 9, we can relate our results to the real dimensional analogue. As we vary
∆12, we are effectively changing on-site potentials in our synthetic dimension.
If we vary ∆12 from far red (blue) detuning regime to blue (red), a particle
in the real dimension exchanges most probable site occupancy.

7.4 Controlling synthetic lattice site hopping

We control the hopping amplitudes in our synthetic dimension by chang-
ing the Rabi frequency of the coupling between adjacent rotational states.
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Figure 7.3: Controlling relative site depths in a two-site synthetic dimension.
(a) Theoretical modelling and (b) experimental results of ground state population
Npop/N

tot
pop represented by colour as a function of ∆p and ∆12. Red dotted lines

in (a) indicate the eigenvalues of each eigenvector. (c) Cartoon of analogous real
dimension. As the value of ∆12 varies from red (blue) detuning regime to blue
(red), a particle changes most probable site occupation.

This is accomplished by simply tuning the power of the microwave genera-
tors. We create a synthetic dimension that comprises (1,6), (2,7) and (3,8)
spin-stretched states. As in section 7.3, we employ a probe microwave field,
coupling (0,5) and (1,6) states with a Rabi frequency ∼ 0.625 kHz when on
resonance. This value was chosen to increase the depth of the spectroscopic
features we expect to observe. Both outputs of a WindfreakV2 microwave
generator are combined using a power splitter (Mini-circuits ZFRSC-183-S+)
which is subsequently connected to the microwave horn that drives the (1,6)
→ (2,7) and (2,7) → (3,8) transitions.

We fix the value of Ω12 to ∼ 2.2 kHz and set the Ω23 to 0 kHz by having
the microwaves coupling the (2,7) and (3,8) states off. We perform a 1 ms
square pulse of both microwaves in free space and measure the ground state
population for different values of ∆p. With Ω23 = 0 kHz, we revert to a two-
level Autler-Townes splitting as observed in Fig. 7.3.

We then apply microwaves resonant with the (2,7)→(3,8) transition dur-
ing the 1 ms microwave pulse and repeat for various WindfreakV2 powers,
producing the spectra presented in Fig. 7.4(b). Ω23 is varied linearly up to an
expected Ω23/Ω12 ratio of 2. We then fit all spectra simultaneously, extracting
values of Ωp = 0.588(10) kHz, Ω12 = 2.32(2) kHz and ΩMax

23 = 4.44(10) kHz.
ΩMax

23 is the maximum value of Ω23 we obtain. From these fitted values, we
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Figure 7.4: Controlling the hopping between adjacent sites in the synthetic di-
mension. (a) Theoretical modelling and (b) experimental results of Npop/N

tot
pop

represented by colour as a function of ∆p and Ω23/Ω12. Red dotted lines in (a)
denote the eigenvalues of each eigenvector of the three-level model described in
the text. (c-e) Example spectra data for (c) Ω23/Ω12 = 1.35(3), (d) Ω23/Ω12 =
0.77(2) and (e) Ω23/Ω12 = 0.

report the maximum ratio of Ω23 to Ω12 of 1.91(5). Using the parameters
extracted from the fit, we produce the corresponding theory plot illustrated
in Fig. 7.4(a). As we increase the ratio Ω23/Ω12, we begin to observe a feature
at ∆p = 0 as illustrated in Fig. 7.4(c-e) which is composed of only |N ′′ = 1⟩
and |N ′′ = 3⟩.

7.5 SSH model

The Su-Schrieffer-Heeger (SSH) model, devised by W. P. Su, J. R. Schrieffer
and A. J. Heeger in 1979 [221, 222] is a model that describes the effects of
doping on the electrical conductivity of a polyacetylene, (CH)x, molecule.
The polyacetylene structure is that of periodic alternating weak and strong
bonds linking adjacent Carbon atoms. A simple analogy of the tight-binding
model is often presented when describing the SSH whereby the state of an
electron in a 1-dimensional crystal lattice with a two-site unit cell is con-
sidered. Inter and intra-cell hopping amplitudes are denoted as v and w
respectively. Plotting out the energy dispersion relation across the Brillouin
zone, in the cases where w ̸= v, a band gap is present. However, if w = v
there is no gap. As such, the act of varying the ratio of w/v elicits an insu-
lator ↔ conductor transition.

Depending on the boundary conditions, the SSH becomes one of the sim-
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plest models to exhibit non-trivial topological properties, indicated by the
existence of ‘edge-states’ at zero energy. These edge states are remarkably
robust to local deformations of the SSH structure such as changes in bulk
hopping amplitudes and site depths. This robustness is linked to the topo-
logical nature of the SSH model and is hence termed ‘topological protec-
tion’ [223]. The conditions for realising a non-topological structure is that
an even number of sites are present and the couplings to the edge sites in the
finite chain are weak. Topological protection has been demonstrated using
SSH structured synthetic dimensions manufactured from momentum states
in BECs [224], photonic lattices [225] and Rydberg atom states [92].

In RbCs, we construct a 4-level synthetic dimension using the N ′′ = 1
to N ′′ = 4 spin-stretched states. We employ a second WindfreakV2 output
and power splitter to combine the three RF signals that drive the transitions
in our SSH, which is then connected to our microwave horn. Microwaves
coupling neighbouring rotational states are set to resonance. We set the Ω12

= Ω34 ∼ 2 kHz. The form of Eq. 7.2 that describes our SSH is

ĤSSH =
h̄

2


0 ΩA 0 0

ΩA 0 ΩB 0

0 ΩB 0 ΩA

0 0 ΩA 0

 , (7.3)

where ΩA = Ω12 = Ω34 and ΩB = Ω23. In the real dimension analogue,
t12 = t34 = v and t23 = w.

As we perform spectroscopy of the (0, 5) → (1, 6) transition with Ωp

∼ 0.7 kHz and ΩA ∼1.6 kHz as a function of ΩB/ΩA, we expect to recover
the plot illustrated in Fig. 7.5(a). In the region ΩB >> ΩA, we revert to
an Autler-Townes doublet. In the real dimension, this corresponds to a
dimerised configuration of two pairs of sites in isolation, as presented in
Fig. 7.5(b). As ΩB/ΩA increases, we transition from a topologically trivial
to a non-trivial regime where two eigenvalues corresponding to edge states
tend to zero energy and valence/conduction band eigenvalues diverge.

However, we instead observed a drastic asymmetry in the resulting spec-
tra, to such an extent that at regions of ΩB/ΩA ∼ 3, we could not resolve
valence and conduction band features. We therefore did not continue to pro-
duce a full mapping of Fig. 7.5(a) experimentally. We attribute this problem
to deviations in Rabi frequencies in our SSH after calibration. This could be
in part due to changes in the attenuation from the path of the microwave
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Figure 7.5: Probing the SSH synthetic dimension. (a) Theoretical plot of ∆p

as a function of the ratio ΩB/ΩA up to ΩB/ΩA = 5. The colour indicates the
ground state population, Nmol/N

tot
mol. Red dotted lines indicate the eigenvalues

of eigenstates. (b) Cartoon of real dimension structure for different regimes of
ΩB/ΩA (w/v).

generator to the source. The calibration involved Rabi oscillations on transi-
tions in isolation. Our RF combining setup may attenuate signals differently
when all microwaves are on. Secondly, the Rabi frequencies drifted notice-
ably over a few hours, presumably due to sensitive connections between the
microwave generators and the emitters. For future attempts at realising the
SSH, power calibration should be performed with Rabi oscillations with all
microwaves on but with relevant microwaves detuned. Care should be taken
to not adjust the connections in the microwave setup to avoid unwanted Rabi
frequency drifts after calibration.

7.6 Summary

In this chapter, we presented a method of realising synthetic dimensions us-
ing rotational states of RbCs. We began by outlining the structure of RbCs
in the context of engineering synthetic dimensions, highlighting the complex-
ities caused by hyperfine levels.

Next, we demonstrated our ability to control relative site depths in the
synthetic dimension by changing the detunings of microwaves that couple
neighbouring rotational states in a two-level system. We then demonstrated
our methods of controlling hopping amplitudes in the synthetic dimension by
adjusting the relative microwave powers. These proof-of-concept measure-
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ments show the versatility and relative ease that the structure of synthetic
dimensions can be adjusted. We then discussed the construction of non-
trivial topological structures in our synthetic dimension. When attempted
to be realised experimentally, we encountered difficulty.

We contextualise our results as an immediate outlook for future experi-
ments using a more robust experimental setup. The chief improvement would
involve producing a microwave source with robust output power and well-
defined polarisation, avoiding off-resonant couplings to non-spin-stretched
hyperfine states when larger Rabi frequencies are involved. This will be ac-
complished in future using the newly installed dipole antenna array described
in chapter 3.



Chapter 8

Conclusion

Our goal throughout this work has been to access dipolar interactions in RbCs
molecules and to develop methods of producing a sample of optically confined
molecules. Dipolar interactions in a lattice provide a fantastic platform for
performing quantum simulation experiments. Moreover, coupling multiple
rotational states together to realise a synthetic dimension can be used in
isolation and alongside the spatial lattice dimension to explore new physics.

8.1 Summary

We began this thesis by outlining the theoretical framework used through-
out. We discussed the internal structure of RbCs molecules and how applying
external fields can be used to encode pseudo-spins that form the foundation
for quantum simulation experiments with the addition of dipolar interactions.

In chapter 3, we introduced our experimental setup. We outlined the typ-
ical experimental sequence carried out to produce and image ground state
molecules. Towards the end of chapter 3, we presented work on maintaining
and improving the experiment by installing new atomic dispensers, a new ion
pump and a dipole antenna array. The dipole array will be used in the future
to engineer a microwave source with well-defined polarisation, beneficial for
coupling rotational states with high fidelity.

Spurred on by theoretical calculations performed by Guan et al. [172],
we performed a comprehensive investigation into the electronic transitions
used to create a rotationally magic trap for RbCs. We set up two new laser
locking mechanisms and used the effects of photon scattering to identify
X1Σ+(v′′ = 0) → b3Π0(v

′ = 0, 1, 2) transitions with hyperfine state resolu-

135
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tion. By performing spectroscopy from different ground states, we extracted
effective rotational constants for the b3Π0(v

′ = 0, 1) states. We observed ac
Stark shifts in STIRAP transitions and lifetimes of ground state molecules in
the presence of the probe light to extract partial and total linewidths. Using
microwave spectroscopy on the (0,5) → (1,6) transition, we coarsely mapped
out differential ac Stark shifts in the presence of probe light around transi-
tions to low-lying vibrational states of b3Π0 in order to identify rotationally
magic detunings. By increasing the probe beam intensity and repeating
the measurement for different combinations of rotational states, we observed
a detuning which is nearly magic for many rotational states. Finally, we
performed a series of Ramsey interferometry experiments using different ro-
tational states to demonstrate rotational coherence time is maximised when
molecules are illuminated with light at a magic detuning.

Following our spectroscopic measurements in chapter 4, we trapped our
molecular sample in a crossed-optical dipole trap which could be tuned to the
rotationally magic frequency for different pairs of low-lying rotational states.
First, we demonstrated our trap was compatible with long sample lifetimes
by observing molecule population in the trap as a function of time for both
magic wavelength light and 1064 nm light with matching trap frequencies.
We repeat the measurement in the magic trap with a dipolar mixture, ob-
serving a faster loss rate, coinciding with results demonstrated by Gregory
et al. [185]. Next, we performed a set of Ramsey measurements on molecules
in the magic trap using a superposition of different rotational states. The
Ramsey fringe contrast is maximised at the magic frequency for each pair of
states, signifying the detuning which would result in a maximum coherence
time. We then trapped our molecular sample in a non-dipolar superposition,
observing coherence times of >1.4 s at the 95% confidence interval. When we
performed the same experiment with a dipolar superposition, we observed
a substantial reduction in coherence time, confirming the existence of long-
range dipole-dipole interactions in our sample. We then coarsely adjusted
the strength of dipole-dipole interactions by preparing different superposi-
tions of rotational states. We observed a coherence time proportional to the
reciprocal of the dipole moment squared.

In chapter 6, we demonstrated a route to ground state RbCs in collabora-
tion with researchers at the University of Innsbruck that is compatible with
the Innsbruck method for loading RbCs Feshbach molecules into a lattice
demonstrated by Reichsöllner and Schindewolf et al. in [50]. We began by
outlining the procedure conducted in [50]. Next, we identified the magnetic
fields where interspecies Feshbach resonances exist by observing the effects of
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three-body loss when tuning the external magnetic field close to a Feshbach
resonance. We then associated atoms into molecules using the Feshbach res-
onance 352.74 G and performed a series of spectroscopy experiments on the
pump transition as a function of magnetic field. We observed that the Fesh-
bach molecule population followed an avoided crossing between the ds6 and
g2 states, away from the sd6 state with desirable characteristics for STIRAP.
We jumped the avoided crossing with the addition of an RF-photon and
accessed the sd6 state, following a procedure demonstrated in [208]. Next,
we directly measured the diagonal and off-diagonal elements of the STIRAP
Hamiltonian by performing spectroscopy and Rabi oscillations on the pump
and Stokes transitions. We identified the ground state occupancy after STI-
RAP by performing spectroscopy on microwave transitions from the ground
state.

In chapter 7, we explored utilising rotational states of RbCs as a platform
for synthetic dimensions. We demonstrated how changing the Rabi frequen-
cies and detunings of microwaves that couple adjacent rotational states can
be adjusted to vary hopping amplitudes and site depths in our synthetic di-
mension. These results form the basis for realising arbitrary and non-trivial
geometries in which to investigate new physics.

8.2 Outlook

The work in this thesis presents a key milestone in utilising RbCs molecules
in quantum science. The advent of a rotationally magic trap could form
the basis for many exciting experiments to come. The procedure of loading
molecules into lattices outlined in chapter 6 could be applied to a lattice of
rotationally magic wavelength and the multiply rotationally magic detuning
window presents a fantastic opportunity for performing interacting synthetic
dimension experiments.

8.2.1 Plans for a magic lattice

The immediate plan for the bulk gas laboratory in Durham is to install a
magic optical lattice. The Innsbruck method for loading molecules into lat-
tices using 1064 nm light applies to loading with 1145 nm given their similar
polarisabilities at these wavelengths [226]. Also, the agreement between mag-
netic moments of b3Π0(v

′ = 0, 1, 2, N ′ = 0) states calculated in chapter 4 im-
plies the magic detuning for a given pair of states and polarisation shouldn’t
vary drastically between 181.5 G and 305 G. Initially, a 1-dimensional (1D)
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vertical lattice will be installed and subsequent horizontal lattices will added
using a bow-tie configuration. However, the installation of a simple 1D magic
lattice brings with it many interesting prospects.

8.2.2 Interactions in 1D lattice pancakes.

The lattice geometry we expect from our single retro-reflected beam is that
of pancakes. Molecules are confined to flat disks with periodic λ/2 spacing
in the axis of propagation of the trapping beams. We propose a possible
experiment which probes the inter and intra-pancake dipolar interactions as
illustrated in Fig. 8.1. First, ground state molecules are loaded into the lat-
tice sites. A separate ‘shift’ beam is applied to ∼ half the sites, causing
ac Stark shifts in energy states of the molecules in these sites. A resonant
microwave field coupling (N ′′ = 0, M ′′

F = 5) to a (1,5) state is then applied,
creating an equal superposition of (0,5) and (1,5) states for the molecules
in sites with the absence of the shift beam. The process is repeated but ac
Stark shifted regions swapped and resonant microwaves driving the (0,5) →
(1,6) transition is applied, creating a superposition between (0,5) and (1,6).

With the shift beam turned off, dipole-dipole interactions between
molecules confined to the same pancake and molecules of neighbouring pan-
cakes will cause decoherence of Ramsey fringes. Interacting dipoles of dif-
ferent superpositions only occur if the N ′′ = 1 states are degenerate. This
condition can be accessed using an external magnetic or electric field. In
this case, five dipolar interaction terms are present. Interactions between
molecules of (0,5) and (1,5) superpositions in the same lattice site and be-
tween neighbouring lattice sites, V π

dd and V π∗
dd respectively as presented in

Fig. 8.1(c). Similar terms correspond to molecules occupying (0,5) and (1,6)

superpositions. Finally, a V
σ/π∗
dd term corresponds to dipolar interactions be-

tween sites at the boundary of the different superpositions.

The choice of states, regions shifted and timings between microwave
pulses can be used in tandem to produce a highly-tunable XXZ Hamilto-
nian, similar to the systems described in [85, 227] with extra terms relating
to different dipolar interactions.
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Figure 8.1: Interacting lattice pancakes. Molecules confined to optical lattice
pancakes spatially separated by λ/2. (a) Molecules in the upper group of pancakes
ac Stark shifted, effectively detuning the microwaves that excite a π transition
between rotational states in the lower pancake population. (b) The process is
repeated but swapping the ac Stark shifted regions and driving a σ transition.
(c) With the ac Stark shifting beam turned off, inter and intra-pancakes dipole-
dipole interactions occur. At the boundary between the ac Stark shifted regions
in (a) and (b), inter-pancake dipole-dipole interactions comprise dipoles rotating
both around the quantisation axis and oscillating parallel to the quantisation axis
providing an external field makes the N ′′ = 1 states degenerate, as presented by
the faint purple arrows.

8.2.3 3-level interacting system

The proximity of magic detunings for different combinations of rotational
states are presented in chapter 5 provide an exciting prospect. A superpo-
sition of three (or more) rotational energy states in a magic potential could
facilitate the observations of interactions in systems no longer described by
spin-1/2 formalisation.

The theory presented in chapter 4 dictates that magic detunings are de-
fined by the N ′′ and M ′′

N quantum numbers. To achieve the longest coherence
time between three rotational states, it’s desirable to use two N ′′ = 0 states
as each will have a well-defined M ′′

N of 0. In Fig. 8.2, we illustrate a possible
three-level Λ-type system that uses two N ′′ = 0 states.

In our proposal, we consider states that are coupled via one σ− and one σ+

transition as presented in Fig. 8.2(a). States in the figure are labelled using
N ′′ and M ′′

F . The value of the subscript k can be tailored in accordance with
the optimal suppression of off-resonant couplings and the desired strengths
of dipolar interactions. If a superposition of states was created using the σ−

transition, rotating dipoles in Fig. 8.2(b)(i) would result. However, rotating
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Figure 8.2: Interacting three-level system. (a) Possible Λ-type rotational energy
level system. σ− transition from the absolute ground state (0,5) to a (1,4) state
which is in turn coupled to a (0,3) state. (1,4)→ (0,3) is a σ+ transition. Subscripts
k for each state omitted. (b) Rotating dipole superpositions created using (i) σ−

and (ii) σ+ transitions.

dipoles in Fig. 8.2(b)(ii) would result from creating a superposition using the
σ+ transition. This system is realised when the two states in N ′′ = 0 are
separated in energy on the order of dipolar interaction strength, which could
be accomplished with the addition of an external field.

Generating a superposition of all three states produces long-range interac-
tions described by spin-1 interacting Hamiltonians such as the Bose-Hubbard
Hamiltonian [228, 229]. Hyperfine state-selective coupling forms an ideal
platform for realising tunable spin-1 interacting systems.

8.2.4 Interacting SSH model

The addition of dipolar interactions enriches synthetic dimension systems,
creating energy perturbations on the synthetic lattice sites. Topologically
trivial and non-trivial phase transitions can be mediated by interactions be-
tween particles on synthetic lattice sites [91] and interacting synthetic dimen-
sions in Rydberg atoms demonstrated that controlling the relative strengths
of dipolar interactions and hopping amplitudes suppresses hopping in the
synthetic dimension [92].

Considering a four-level SSH synthetic dimension structure with dipolar
interactions as illustrated in Fig. 8.3, we can begin to realise many-body
Hamiltonians that capture topological insulator phase transitions [230].
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V

V12dd V23dd V34dd

v vw
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Figure 8.3: Interacting SSH model. Real dimension analogue of the synthetic
dimension that comprises four rotational states in an SSH configuration. Dipole-
dipole interaction between sites i and j, V ij

dd, can be tuned using different rotational
states and relative microwave phase relations. The inter-site hopping terms v and
w are tailored using different microwave powers with w >> v to enter the SSH
regime. The depths of sites V are all degenerate however, the addition of dipolar
interactions breaks this degeneracy.

ĤSSH∗ =
∑
⟨i,j⟩

(
tij ĉ

†
j ĉi + h.c.

)
+ V ij

dd

∑
⟨i,j⟩

n̂in̂j, (8.1)

where ⟨i, j⟩ represents the nearest-neighbour sites i and j, ĉ†j(ĉi) are the
fermionic creation (annihilation) operator of the lattice site i and h.c. is the
hermitian conjugate. tij are replaced with v and w in the SSH model with
w >> v. V ij

dd is the dipolar interaction between sites i and j and n̂i is the
number operator at site i.

8.3 Concluding remarks

In this work, we have presented methods of accessing long-range dipole-
dipole interactions between RbCs molecules, a key milestone in realising
their applications for quantum science. We have explored the structure of the
excited state potential that is used to produce rotationally magic traps and
chartered a possible avenue for producing ground state RbCs in an optical
lattice. Utilising the tools presented in this thesis opens up new grounds for
future exploration of quantum science with ultracold molecules. The field
is growing evermore expansive and groups around the world are producing
beautiful results, encouraging other researchers to examine the rich quantum
landscape ultracold polar molecules have to offer.
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Appendix

9.1 Analytical solutions to multi-level sys-

tems

We present the analytical solutions for eigenvalues and eigenvectors of sys-
tems which comprise multiple rotational states. We have adopted the con-
vention that eigenvalues, λ, are numbered from the lowest to highest energy,
i.e the energy of λ1 < the energy of λ2 < λ3 etc. The eigenstate with eigenen-
ergy λ1 is |Ψ1⟩ etc. For systems involving >2 rotational states, we have set
the detunings of coupling microwaves to zero. We label the Rabi frequency
coupling neighbouring rotational states and the detuning on the microwaves
as Ωij and ∆ij respectively, where i and j correspond to the connected states
N and N + 1. However, for the SSH model, it’s more appropriate to use the
notation ΩA and ΩB where ΩA = Ω12 = Ω34 and ΩB = Ω23.

9.1.1 2-level eigenvalues and eigenvectors

The 2-level system is equivalent to Autler-Townes splitting.

E0,1 =
−∆12

2
±
√

Ω2
12 + ∆2

12

2
(9.1)
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|Ψ1⟩ =
∆12 −

√
Ω2

12 + ∆2
12

Ω12

√
1 +

∣∣∣∣∆12−
√

Ω2
12+∆2

12

Ω12

∣∣∣∣2
|N = 1⟩+

1√
1 +

∣∣∣∣∆12−
√

Ω2
12+∆2

12

Ω12

∣∣∣∣2
|N = 2⟩

(9.2)

|Ψ2⟩ =
∆12 +

√
Ω2

12 + ∆2
12

Ω12

√
1 +

∣∣∣∣∆12+
√

Ω2
12+∆2

12

Ω12

∣∣∣∣2
|N = 1⟩+

1√
1 +

∣∣∣∣∆12+
√

Ω2
12+∆2

12

Ω12

∣∣∣∣2
|N = 2⟩

(9.3)

9.1.2 3-level eigenvalues and eigenvectors

The 3-level analytical solutions are equivalent to that in the STIRAP Λ-type
scheme.

λ1 = −
√

Ω2
A + Ω2

B

2
(9.4)

λ2 = 0 (9.5)

λ3 =

√
Ω2

A + Ω2
B

2
(9.6)

|Ψ1⟩ =
1√
2

[
ΩA√

Ω2
A + Ω2

B

|N = 1⟩ − |N = 2⟩ +
ΩB√

Ω2
A + Ω2

B

|N = 3⟩

]
(9.7)

|Ψ2⟩ = − ΩB√
Ω2

A + Ω2
B

|N = 1⟩ +
ΩA√

Ω2
A + Ω2

B

|N = 3⟩ (9.8)

|Ψ3⟩ =
1√
2

[
ΩA√

Ω2
A + Ω2

B

|N = 1⟩ + |N = 2⟩ +
ΩB√

Ω2
A + Ω2

B

|N = 3⟩

]
(9.9)
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9.1.3 4-level SSH eigenvalues and eigenvectors

We have labelled the eigenvalues and eigenstates in accordance with their
topological significance instead of their number, i.e |ΨValence⟩ instead of |Ψ1⟩
etc.

λ1 = λValence =
1

4

(
−
√

4ΩA
2 + ΩB

2 − ΩB

)
= −ΩA

4

(
R +

√
R2 + 4

)
(9.10)

λ2 = λEdge1 =
1

4

(
ΩB −

√
4ΩA

2 + ΩB
2
)

=
ΩA

4

(
R−

√
R2 + 4

)
(9.11)

λ3 = λEdge2 =
1

4

(√
4ΩA

2 + ΩB
2 − ΩB

)
=

ΩA

4

(√
R2 + 4 −R

)
(9.12)

λ4 = λConduction =
1

4

(√
4ΩA

2 + ΩB
2 + ΩB

)
=

ΩA

4

(
R +

√
R2 + 4

)
, (9.13)

where R = ΩB

ΩA
.

It’s unwieldy to write out the eigenstate solutions in full. Instead we label
the coefficient of the compositions using either κ or τ .

|ΨValence⟩ = −κ |N = 1⟩ + τ |N = 2⟩ − τ |N = 3⟩ + κ |N = 4⟩ (9.14)

|ΨEdge1⟩ = τ |N = 1⟩ − κ |N = 2⟩ − κ |N = 3⟩ + τ |N = 4⟩ (9.15)

|ΨEdge2⟩ = τ |N = 1⟩ + κ |N = 2⟩ − κ |N = 3⟩ − τ |N = 4⟩ (9.16)

|ΨConduction⟩ = κ |N = 1⟩ + τ |N = 2⟩ + τ |N = 3⟩ + κ |N = 4⟩ , (9.17)

where

κ =
1√

R2 +R
√
R2 + 4 + 4

(9.18)

τ =
1√

R2 −R
√
R2 + 4 + 4

. (9.19)
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A. L. Marchant, and S. L. Cornish, New J. Phys. 17, 055006 (2015).

[156] “Agilent high and ultra-high vacuum for science research,”
https://www.agilent.com/cs/library/training/Public/UHV_

Seminar_Handbook.pdf, accessed: 03-04-2024.

[157] “Leybold vacuum bake out: its importance and implemen-
tation,” https://www.leybold.com/en-uk/knowledge/blog/

vacuum-bake-out, accessed: 03-04-2024.

[158] J. Lin, G. Chen, M. Jin, Z. Shi, F. Deng, W. Zhang, G. Quéméner,
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