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Abstract

Explainability is a critical pillar of responsible AI, however, there remain sev-

eral unexplored areas in the field. This thesis focuses on two key areas to en-

hance interpretability for the end user: utilising large language models (LLMs)

to describe, in text, what the data in a table is showing, and creating and ap-

plying a new framework to applying SHapley Additive exPlanations (SHAP)

explanations to text-tabular datasets. Firstly, this thesis introduces the novel

task of taking a set of performance metrics - such as accuracy, precision and

F1 score - and fine-tuning LLMs to explain this information. To do so, we

collect and provide a dataset and experiment with a deep encoding of the

metric information to enable clearer comprehension of the data table. The

second chapter extends the text generation approach to explain classification

decisions, using a second novel dataset of expert-written explanations to ex-

plain a numerical explanation: a set of feature importance values indicating

which input the underlying model found most important to the decision. In

fine-tuning LLMs on this dataset, experimenting with augmentation and a

simplified question-answer task, we demonstrate the capacity to generate un-

derstandable and accurate natural language explanations. Further capitalising

on the theme of explainability across multiple modalities, this thesis provides

a solution to the inability to generate a numerical explanation for text-tabular

datasets. Specifically, this thesis proposes a novel multi-modal masker that

facilitates the production of SHAP values for any text-tabular dataset, for any

method of combining the two modalities. In an extensive analysis, this thesis

reveals the issues that arise when adapting the multi-modal dataset to a single

modality (text) and applying the existing unimodal masker. Subsequently, we

examine the impact that combination strategies and language models have on
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SHAP values. Finally, we apply the proposed method to a veterinary dataset,

using the generated explanations to carry out a deep-dive on which features

models found most important and the reasons why PetBERT, an LLM pre-

trained on a veterinary corpus, performs better than BERT, a general LLM.
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Chapter 1

Introduction

The advent of machine learning (ML) has catalysed an era of unprecedented com-

putational innovation, transforming industries, revolutionising research methodolo-

gies, and altering the way we interact with technology. Machine learning algorithms

now curate our digital experiences, inform critical decisions in healthcare, optimise

logistics in transportation, and play an increasingly significant role within various

other domains. These algorithms can now perform tasks ranging from the trivial,

like recommending a movie, to the monumental, like assisting in diagnosing com-

plex diseases.

In recent years, perhaps nowhere has the rapid development of ML been more evid-

ent than in the field of Natural Language Processing (NLP). NLP advancements

have enabled functionalities such as instantaneous language translation, sophistic-

ated chatbots, and advanced text analysis models that mimic human-like language

understanding. As readily available tools such as ChatGPT demonstrate the abil-

ity to generate coherent and contextually relevant text, the applications of NLP

continue to grow, penetrating both general-use technology and specialised sectors.

However, the remarkable leaps in machine learning capabilities come with newfound

responsibilities. Among the most pressing is the notion of explainability: an ac-

knowledgement that for ML to be responsibly integrated into society, its decisions

and processes need to be transparent and interpretable. The foundation of this
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thesis rests upon the premise that explainability is not merely an academic fancy

but a key tenet of responsible AI development and deployment. In areas where

decisions have significant repercussions, such as healthcare, finance, and law, the

ability to explain an ML model’s reasoning is not just beneficial but often necessary

for legal, ethical, and practical reasons.

Interpretability in machine learning is not only about understanding why a predic-

tion was made but also how we can understand the results that are being presented

to us. Machine learning is a complex field, often requiring background knowledge to

comprehend the given results. This thesis aims to use the capabilities of language

models to provide additional interpretability detail as well as to extend existing

explanation techniques to new domains, all under the banner of bringing explain-

ability to a wider audience in a manner that is accessible and understandable.

1.1 Motivation

A common trait for many a researcher, but one that is no less true for me, is an

intellectual curiosity, a desire to figure out why something works and performs the

way that it does. I have also found a certain joy in teaching, helping people come

to grips with a new topic and helping them understand something complex. Simply

put, I enjoy figuring things out and then communicating them in a way for others

to understand. I believe this was a key part of my underlying motivation and why

explainability has been a consistent theme in each bit of work I have done here at

Durham.

Aside from explainability, another key development throughout my time spent at

Durham has been the rapid transition to and development of deep learning and

large language models (LLMs) in particular. I wanted to work in both of these

fields and in this thesis, I find the niche of the two: firstly using language models

to produce text that is itself an explanation of a different problem, and subsequently

developing an explainability method to explain language models in the context of
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text-tabular modelling. The field of explainability is no longer new, therefore I

chose to operate in the niche of multi-modal machine learning and explainability.

Data-to-text tasks have models producing text that require comprehension of an

input table, such as question-answer or summarisation tasks. I sought to operate

in this space, utilising large language models to do so.

This thesis can be split into two separate, but connected parts: first I use language

models to explain (in the literary sense) what is being shown by a numerical table,

first narrating a table of performance metrics and second a set of feature importance

values. The aim is to augment what is already there, giving users extra context in

order for them to better understand what they are being shown. Secondly, I work

with explainability in the machine learning context. Proposing a novel framework

for text-tabular datasets, I make it possible to generate SHAP explanations for any

model, for any combination method for the first time in this multi-modal context.

In doing this I hope to move the dial on explainability one step further, allowing

end users and machine learning practitioners alike to understand what’s going on

that little bit easier.

1.2 Research Questions

To summarise, the overarching goal is to bring explainability to more places, making

it easier for people to understand machine learning outputs, but also to bring it to

more places. Specifically, the two research questions that this thesis aims to answer

are:

1. Research Question 1: This study aims to answer the question, to what

extent can large language models be trained to produce text to enhance the

understanding of a machine learning problem? Language models should be

trained to produce text that complements the machine learning output and

provides an additional manner in which the user can understand the problem
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2. Research Question 2: Secondly, this study aims to answer the question,

considering there is currently no way of producing SHAP explanations for

text-tabular data, can a method be devised to bring SHAP explanations to

this domain? The goal is to produce SHAP explanations for any text-tabular

problem, no matter the dataset or experimental setup.

1.3 Publications

Each project contributing to this thesis has been submitted for publication or

published in peer-reviewed journals or conference proceedings. These are detailed

below:

• Generating Textual Explanations for Machine Learning Models

Performance: A Table-to-Text Task

– James Burton, Isaac Ampomah, Amir Enshaei and Noura Al Moubayed

– Proceedings of the Thirteenth Language Resources and Evaluation Con-

ference (LREC 2022)

– Chapter 3

• Natural Language Explanations for Machine Learning Classifica-

tion Decisions

– James Burton, Amir Enshaei and Noura Al Moubayed

– 2023 International Joint Conference on Neural Networks (IJCNN)

– Chapter 4

• SHAP Explanations for Multimodal Text-Tabular Models

– James Burton and Noura Al Moubayed

– Under Review at Nature Scientific Reports

– Chapter 5
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• Explainable Text-Tabular Models for Predicting Mortality Risk in

Companion Animals

– James Burton, Sean Farrell, Peter-John Mäntylä Noble and Noura Al

Moubayed

– Nature Scientific Reports

– Chapter 6

1.4 Thesis Structure

This thesis begins with Chapter 1, this chapter, where explainability and large

language models are introduced, setting the scene for the rest of the thesis. In this

chapter, a motivations section is laid out to provide an indication as to why these

research questions have been chosen and details of publications are listed.

Chapter 2 is an extensive review of the relevant literature. It introduces Natural

Language Processing and discusses the language models and evaluation metrics

used in this thesis. Subsequently, it will cover text-tabular machine learning and

explainability, giving a background on specific techniques used with a deep dive on

SHAP, a key tenet of Chapters 5 and 6.

In Chapter 3, I propose a new task: take a set of metrics detailing a machine

learning model’s performance (including, for example, accuracy, precision and F1

score) and train a language model to describe the model’s performance in text,

with the aim of making it simpler for non-experts to understand what the metrics

are describing. I collect a new dataset -collected from computer science experts -

and fine-tune pre-trained language models to generate informative and analytical

passages of text. I propose an improvement to the model’s structure, the Metric

Processing Unit, to more deeply encode the metric information and provide higher

quality textual explanations.
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Chapter 4 introduces another new task, once more with the goal of translating

technical information into an accompanying passage of text. In this case, the task

begins with feature importance values (the output of a certain category of explain-

ability techniques) that numerically describe how important each input feature was

to the outcome of a machine learning classification model. A second novel data-

set is collected to train language models to translate the numerical explanation -

the feature importance values - into a textual explanation. Finally, the numerical

explanations are probed more directly by creating a question-answer task with a

large, synthetically generated training set.

Chapter 5 continues with the theme of explainability, but more directly. The

research gap in explainability for text-tabular models is addressed, bringing to

light the errors that occur when coercing the multimodal input to fit the existing

unimodal text masker and a novel multi-modal masking framework that extends

SHAP to text-tabular datasets is proposed. With this framework, it is possible to

generate SHAP feature importance values for any dataset, any text model and any

method of combining the two modalities. Extensive experimentation is conducted

across all three of these domains as well as an investigation into whether unimodal

errors - focusing on the attributing of importance to static text template values -

are more prevalent for certain modalities or other feature properties.

In Chapter 6 the multimodal masking framework is applied to identify risk factors

of pet mortality in a corpus of veterinary electronic health records. Once more,

different combination methods and text models are tested, in particular comparing

BERT with PetBERT, a model specifically pre-trained for veterinary data. An

analysis of the similarities and differences is presented, then opening it up to a

more granular level, this chapter looks at the individual words, phrases and tabular

feature values that are most influential in mortality prediction.

Chapter 7 brings the thesis to a conclusion by looking back at the work as a whole.

It puts forward the case for continued explainability research and scrutinises each

part of the thesis to make recommendations for future strategies for data-to-text
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applications.

Finally, Chapter 8 is an appendix containing graphs and figures from Chapter 5

that are not vital for the story of the Chapter 5, but are included to be complete.

1.5 Contributions

A machine learning model’s performance is usually assessed by a set of metrics.

Some metrics are intuitive, but others are less easy to understand, especially for an

end user. With this in mind, in Chapter 3 a new task is created aiming to bridge

this gap and make it easier for people to understand a table of machine learning

metrics by training language models to produce a textual summary to complement

the set of metrics. Other data-to-text tasks exist, but this is a novel task. A large

part of the contribution for this chapter is the dataset of table-text pairs, however,

it also includes experiments with augmentation and the introduction of a way to

more deeply encode the metric information.

Chapter 4 continues to address the first research question of making machine learn-

ing outputs more understandable by training large language models. The same

comparisons as the last chapter apply here also: other data-to-text tasks exist but

this is a novel task. As far as we are aware, no other work has been done to take the

feature importance scores of an explainability output and translate it into some-

thing more understandable and approachable. Alongside the novelty of the task,

another novel dataset of numerical-textual explanation pairs forms a large part of

this chapter’s contribution.

Chapter 5 provides arguably the most significant contribution of this thesis. As

Chapter 2 will discuss in more detail, in recent years there has been research done

to bring explainability to the text-image domain, but the text-tabular domain has

been left untouched. This chapter ports SHAP to this domain, allowing SHAP

explanations to be produced for text-tabular datasets for the first time. This is a

significant contribution as now it opens the door to a vast range of possible analyses
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in an area where it was previously not possible to get a joint understanding as to

why a prediction had been made.

Chapter 6 provides a deep dive into a veterinary text-tabular dataset. As Chapter

2 will discuss, previous work had looked at predicting pet mortality given a set of

tabular features (such as age and breed) and textual features (such as the free-text

clinical notes). It was possible to get an answer to determine which text or tabular

feature was the most important when taken in isolation, but never in combination.

With the tool introduced in Chapter 5, we can now see where each text feature

ranks alongside each text feature as the most important, as it should be considering

our predictive models are using both feature types together.
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Chapter 2

Literature Review

This chapter will give a background on the relevant information for this thesis.

It will introduce Natural Language Processing and LLMs, including specifics on

the models used throughout this study, as well as the evaluation metrics that are

used in later chapters to assess said models. Text-tabular machine learning is also

reviewed, covering techniques, terminology and specific tasks. It finishes with a

review of explainability, aiming to give a background on the subject and cover

the explainability methods that are used in later sections, with a special focus on

SHAP.

2.1 Natural Language Processing

Natural Language Processing (NLP) is a distinct and significant branch of artifi-

cial intelligence that covers the communication, understanding and processing of

Natural Language by computers. Emerging as a field in the 1950s (Johri et al.,

2021), first aiming to produce a machine capable of translating foreign language

automatically, NLP has expanded into many aspects of day-to-day life, from gram-

mar checking to AI virtual assistants such as Siri and Alexa. Beyond consumer

products, NLP also covers domains such as sentiment analysis (Dang et al., 2020),

document summarisation (Gupta and Gupta, 2019) and text classification (Minaee

et al., 2021), indeed any task involving text, whether that be written or spoken.
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The difficulty of NLP tasks comes from the fact that computers require information

to be structured, whereas language is just the opposite. Language has an inherently

complex nature: it can be ambiguous; words can carry multiple meanings; there

can be wordplay, idioms, sarcasm and humour, all of which make understanding

the true meaning of text difficult for a machine only built to work with 0s and 1s.

2.1.1 Modelling NLP

Before 2017, NLP tasks were usually tackled using Recurrent Neural Networks

(RNNs) (Rumelhart et al., 1986), which, by design, process sequences of data by

feeding the outputs of a neuron back in as an input in a recurrent fashion. RNNs

were known to suffer from the short-term memory problem so varieties of RNN

called Long Short Term Memory networks (LSTMs) (Hochreiter and Schmidhuber,

1997) and later Gated Recurrent Units (GRUs) (Cho et al., 2014) were developed

to tackle this problem and look to give the RNN a longer-term memory.

LSTMs learn to remember what is important and forget what is not as they pass

over the input sequence, updating its internal hidden state, which is then passed

in alongside the next input (the next word) in the sequence. Once the RNN has

reached the end of the sentence, the hidden state then contains information about

the whole sentence and can then be used as input for a sequence-to-sequence task,

such as translation. Sequence-to-sequence tasks take the input of the initial RNN

(the encoder) and pass it into another RNN (the decoder). The decoder then uses

the encoded vector and outputs the target sequence one token at a time.

In 2017, the seminal ‘Attention is All You Need’ (Vaswani et al., 2017) was pub-

lished, introducing the transformer, which profoundly changed the NLP field. In-

stead of being limited to one encoded vector containing all of the information

about the encoded sentence, the transformer utilised multi-head self-attention to

learn how each input in a sequence relates to each other, which is then combined

with feed-forward layers to produce a highly contextualised encoding of the input
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sequence. Transformers do not suffer from the same short-term memory problem

as RNNs as they process all of the inputs at the same time instead of sequentially

and are, therefore, able to parallelise and stack encoders one on top of each other

to learn deep relations between the input words.

2.1.2 Deep Learning Models in This Study

In this thesis, a selection of different language models are used. This subsection will

aim to give a background of those models and briefly describe how they work. This

thesis involves direct experimentation with all language models discussed here.

2.1.2.1 BERT

Bidirectional Encoder Representations from Transformers (BERT), as introduced

by Devlin et al. (2018), represents a significant advancement in language modelling.

BERT is constructed by stacking a series of transformers, which are instrumental

in its ability to process language data efficiently. Another key advantage of BERT

is in its use of self-supervised learning; whereas an LSTM needs to be trained from

scratch each time, BERT is pre-trained with a Masked Language Modelling (MLM)

and Next Sentence Prediction (NSP) objective to allow it to gain an understanding

of linguistic rules and context.

A major benefit of BERT is the practicality it offers for adaptation. Since the

model is pre-trained to understand the general structure and flow of language,

typically, one only needs to train the topmost layers of the network to adapt it to

a specific task. This secondary training phase is known as fine-tuning the model.

Fine-tuning is significantly faster and more resource-efficient than training a new

language model from scratch.
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(a)

(b)

Figure 2.1: BERT’s MLM (a) and NSP (b) objectives
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2.1.2.2 DistilBERT

Powerful models are, of course, useful, but another important consideration is how

resource-intensive they are. Sanh et al. (2019) proposes DistilBERT, a model that

is 40% smaller and 60% faster than BERT, but still retains 97% of the language

capabilities. DistilBERT is trained to distil the knowledge contained by BERT

into a smaller structure. It does this by using a triple loss, combining the same

MSM objective with two more objectives: a cosine loss to match BERT’s hidden

representation and a distillation loss to mirror BERT’s predicted probabilities.

DistilBERT does not use BERT’s NSP objective.

2.1.2.3 DistilRoBERTa

A Robustly Optimised BERT Pretraining Approach (RoBERTa) (Liu et al., 2019)

is an iteration of BERT which modifies key parts of the training procedure, re-

moving the Next Sentence Prediction objective, training with larger mini-batches

over more data and dynamically altering the masking. In exactly the same fashion

as with DistilBERT, DistilRoBERTa (Sanh et al., 2019) was created as a distilled,

streamlined version of the full model, utilising a smaller footprint to emulate the

performance of RoBERTa.

2.1.2.4 DeBERTa

He et al. (2021b) propose a novel architecture, innovating on BERT and RoBERTa

by incorporating two key modifications. Firstly, the previously unified content and

position representation are separated into two, thereby serving the model with a

clearer understanding of the input text. Secondly, the MLM objective is adjusted

so as to take into account the absolute position of the masked word in the sentence.

The resulting model is named Decoding-Enhanced BERT With Disentangled At-

tention, or DeBERTa.
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The authors subsequently released an update to DeBERTa (v3 (He et al., 2021a)),

where they utilised two further improvements. ELECTRA Clark et al. (2020) - a

model not used in this thesis - swapped the MLM objective for Replaced Token

Detection (RTD), where instead of estimating a masked word, the model is now

concurrently trained as a discriminator and must identify whether a token is original

or has been replaced. In this update to DeBERTA, the authors make the swap from

MLM to RTD but alter the training procedure slightly: the generator, which is in

charge of initiating the token corruptions, and the discriminator are now trained

with separate embeddings to avoid their distinct training objectives clashing. This

thesis uses this latest update.

2.1.2.5 T5 model

T5 (Raffel et al., 2020) is a transformer-based model trained in a multitask fashion

on a variety of unsupervised and supervised NLP tasks, including summarisation,

classification, and translation. This neural model treats all text-based language

problems as a text-to-text generation task (Raffel et al., 2020). The training process

is shown in Fig. 2.2.

Figure 2.2: Diagram of the T5 training process, all tasks are converted into text
such that the same model can be used.
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2.1.2.6 BART model

Bidirectional and Auto-Regressive Transformers, or BART (Lewis et al., 2020),

is a transformer-based denoising autoencoder. During pre-training, BART is fed

input text that has been corrupted in various ways, expanding on the token masking

used in BERT. In addition to token masking, BART also applies sentence shuffling,

token deletion, document rotation and span infilling, providing a more varied and

challenging objective. The model must reconstruct the original, uncorrupted text.

The wider variety of tasks forces BART not only to learn the relationship between

neighbouring words, but also how sentences within a document relate to each other.

For this reason, BART can be highly effective in summarisation and text-generation

tasks.

2.2 PetBERT and SAVSNET

The previous section described some general-purpose language models that are

used throughout this thesis. In Chapter 5, SHAP for text-tabular datasets will be

presented. In Chapter 6, SHAP will be applied to a specific text-tabular dataset

to explain the predictions of a trained model on a particular task. This section will

begin by detailing the particular veterinary dataset (SAVSNET) that is used. It

will then cover the trained language model (PetBERT) that forms the base of all

the experiments. Finally, this section will give a thorough description of the task

that is being explained, namely using the information in SAVSNET to predict the

one-month mortality of a given companion animal.

2.2.1 SAVSNET Dataset

Electronic health records have been collected since March 2014 by SAVSNET

(Sánchez-Vizcaíno et al., 2015), comprising a sentinel network of 253 volunteer

veterinary practices found across the United Kingdom. Generally, veterinary prac-
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tices with practice management software compatible with the SAVSNET data ex-

change are recruited based on convenience. Within these participating practices,

data is collected from each booked consultation (where an appointment has been

made to see a veterinary practitioner or nurse). All owners attending these practices

can opt out of data collection at the time of consultation. Data is collected on a

consultation-by-consultation basis and includes information such as species, breed,

sex, neuter status, age, owner’s postcode, insurance and microchipping status and,

crucially to this study, a free-text clinical narrative outlining the events that oc-

curred within that consultation. Appended to all the SAVSNET Electronic Health

Record (EHR) datasets are high-level International Classification Disease 11 (ICD)

codings. These syndromic labels can provide a broad overview of the themes within

the clinical narrative, a free-text field.

300 manually labelled records were used to train binary classifiers, one classifier for

each of the 20 possible labels. These binary classifiers were subsequently applied

to the remainder of the dataset (Farrell et al., 2023a). Sensitive information, such

as personal identifiers, was cleaned from the data. SAVSNET has ethical approval

from the University of Liverpool Research Ethics Committee (RETH000964).

2.2.2 PetBERT

PetBERT (Farrell et al., 2023a) is based on the BERT-base model, which - as ex-

plained above - was previously pre-trained to perform two tasks simultaneously:

Masked Language Modeling (MLM) and Next Sentence Prediction (NSP). Pet-

BERT underwent a similar training process: starting from the pre-trained BERT-

base model, PetBERT was additionally pre-trained on a large dataset of over 500

million tokens from the SAVSNET first opinion veterinary corpus, exposing it to

clinical language used in veterinary contexts. Note that it is still referred to as

pre-training - as opposed to fine-tuning - because the objectives are still MLM

and NSP, not a downstream task. Furthermore, all parameters are trained, unlike

fine-tuning, where typically only the output layer is trained.
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2.2.3 Mortality Prediction with PetBERT on SAVSNET

In Farrell et al. (2023b) the authors fine-tuned PetBERT in order to predict whether

or not a companion animal would die, based on a particular consultancy or set of

consultancies in the SAVSNET dataset. To do so, labels needed to be created.

To curate the datasets for training the initial component of the predictive mortal-

ity models, the authors searched for narratives containing references to death or

euthanasia. This search used a generalised Python regular expression to identify

pertinent terms, including ‘euthanasia’, ‘put to sleep (PTS)’, and ‘died’. The de-

tailed regex pattern is provided below in Equation 2.1.

euth|dead|died|pts|put to sleep|pento|doa|crem|burial|bury|qol|quality|ashes|scatter|casket

(2.1)

Subsequently, random sampling was performed to select 250 cases that were sus-

pected to involve mentions of death or euthanasia. These selected cases underwent

manual inspection to validate whether they conformed to the predefined case defin-

ition of ‘declaration of death occurring within the consultation’. Notable instances

of false positives included conversations of potential future euthanasia events or

instances where euthanasia was discussed in an advisory context by the attend-

ing practitioner. Instances where the euthanasia event did not occur within the

same consultation were excluded or used as the controls in equal proportion to the

number of cases.

A semi-supervised teacher-student model approach was adopted in line with the

methodology employed by Zeki et al. (2019). This approach used a small subset of

manually annotated records to train a small binary sequence classification model,

which achieved an F1 Score of 98.3% on the test set. This model was subsequently

applied to the entire dataset to identify animals meeting the criteria. To ascertain

the effectiveness of this extraction method, a random sample of 200 records was in-

dependently reviewed by a practising clinician to validate the model’s performance
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and suitability for the continuation of the study.

For the animals identified to have died by the above binary sequence classifica-

tion task, the authors took the consultation preceding the declaration of death.

To create a balanced dataset, animals stated to be alive by the binary sequence

classification model were pulled at equal quantities to the number of animals that

had died. Narratives for cases where the animal had only a single narrative in its

history (the one detailing its death) were discarded. Within both the case and

controls, where incomplete data exists, such as missing breed, age, sex, geograph-

ical information, or where an animal appeared in both case and control datasets,

these records were also deleted. All high-level ICD codings that the animal has

previously amassed were summed together. The frequencies of each ICD coding

were used to represent each animal’s approximate clinical history and maximise

the availability of tokens for the penultimate clinical narrative for PetBERT.

2.3 Evaluation Metrics

This thesis uses several automatic metrics to judge the quality of generated text.

The metrics employed to assess the quality are BLEU (Papineni et al., 2002),

METEOR (Banerjee and Lavie, 2005), BLEURT (Sellam et al., 2020) and PAR-

ENT (Dhingra et al., 2019). This section details how each metric is calculated.

BLEU, and METEOR compute the surface-level similarity between the generated

texts and only the human (reference) texts.

2.3.1 BLEU

The BiLingual Evaluation Understudy, known as BLEU, is a relatively old method

that is still commonly used to this day. It is designed to be used for translation,

assessing how close a translated text is to the original, high-quality reference text.

The idea is to calculate the n-gram overlap, that is, the number of times n-tokens in
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the candidate match that in the reference. In order to penalise candidate sentences

that are too short, a brevity penalty, BP, is added.

Mathematically we have

BLEU = BP · exp
(

N∑
n=1

wn log pn

)
(2.2)

BP =


1 if c > r

exp
(
1 − r

c

)
if c ≤ r

(2.3)

N is the number of n-grams, wn is the weights for each n-gram precision. pn is the

modified n-gram precision, which is the number of correct n-grams in the candidate

translation divided by the total number of n-grams in the candidate translation. c

is the length of the candidate sentence and r is the length of the target sentence.

The values of the BLEU score range between 0 and 1 where 1 means a perfect match

with the reference translation and 0 means no overlap. Note that the relationship

between BLEU and human judgment is not linear, so small differences in BLEU

score may not correlate to differences in translation quality.

The default n-gram for BLEU is 4 as this is the score with the highest correla-

tion with human judgement (Papineni et al., 2002), and typically, a balanced set

of weights is used such that w_n = 1/N . This is used throughout this thesis.

Therefore, the number of 1-gram overlaps, 2-gram, 3-gram and 4-gram overlaps

are calculated, each weighted evenly.

As an effective metric for judging machine translation, a criticism of BLEU is that

it is not well designed for other tasks. In a review of 34 papers over the last 15

years, Reiter (2018) conclude that decisions should not be based solely on BLEU

as correlations between BLEU scores and human evaluations can vary. BLEU is

optimising a ‘surrogate’ target, that being word overlap, which does not always

align with the intended target.
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2.3.2 BLEURT

The aim of BLEURT (Sellam et al., 2020) was to improve BLEU by drawing on

the abilities of LLMs to better capture the finer differences between sentences;

LLMs predict the scores of automatic metrics before being fine-tuned on human

annotations to better mirror human preference.

BLEURT starts with a large corpus of sentence translations and then applies a

selection of automatic metrics, including BLEU, ROUGE (Lin, 2004), BERTScore

(Zhang et al., 2020), and back-translation. A BERT model, which has already been

pre-trained with a language modelling objective, is further pre-trained to predict

an amalgamation of the automatic metric set. Finally, this model is fine-tuned on a

smaller dataset of human-annotated translations in order to align the metric better

with human preference. In a sense, it is similar to the distilled models discussed

in Section 2.1.2, where instead of predicting the output of other models, BLEURT

is learning to emulate other metrics. One could also draw parallels to ensemble

models (discussed later in Section 2.4.1) as a selection of outcomes are pooled into

a single score.

2.3.3 METEOR

METEOR, an acronym for Metric for Evaluation of Translation with Explicit OR-

dering, was proposed by Banerjee and Lavie (2005). The goal was to address some

of the issues that occur with BLEU, an inherently precision-based metric. First, the

candidate and reference sentences are aligned, such that each unigram in the can-

didate sentences is matched to 0 or 1 unigram in the reference sentence. Whereas

BLEU only counts exact matches, METEOR is slightly more sophisticated and

will look for matches in three ways, moving on to the next only if it doesn’t find

a match in the previous. These modules are an exact matcher, a stemmer and a

synonym finder. An example is shown in 2.1.
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Table 2.1: Examples of pairs of words and how they will be mapped by each module
of the METEOR matching process

Module Candidate Reference Match
Exact Walk Walk Yes
Stemmer Walking Walk Yes
Synonymy stroll Walk Yes

Unigram precision, P , is calculated as

P = m

wt
(2.4)

Unigram recall, R, is calculated as

R = m

wr
(2.5)

where m is the number of unigrams in the candidate translation that are also

found in the reference translation, wt is the number of unigrams in the candidate

translation and wr is the number of unigrams in the reference translation. Whereas

BLEU only directly controls recall, METEOR uses a balance of both recall and

precision:

Fmean = 10PR

R + 9P
(2.6)

10 and 9 are optimised parameter values that were selected by Banerjee and Lavie

(2005). METEOR controls fluency by also creating a penalty term, p, which is cal-

culated by looking at how many matched ‘chunks’ that the candidate and reference

sentences can be split into. As a formula:

p = 0.5
(

c

um

)3
(2.7)

where c is the number of chunks and um is the number of mapped unigrams.

Together we have the meteor score M as

M = Fmean(1 − p) (2.8)

21



2.3.4. PARENT

2.3.4 PARENT

Precision And Recall of Entailed Ngrams from the Table or PARENT (Dhingra

et al., 2019) is a metric specifically designed for a data-to-text task. Dhingra et al.

(2019) argued that BLEU and METEOR sometimes penalise generated text for

including additional information, correct according to the table but missing in the

reference text. In a translation task, it is right to have a gold standard reference

text, but for a data-to-text task (the authors focus on captioning a table from

Wikipedia), the provided text may not be the only correct way of describing the

data. In response, they proposed PARENT, a data-to-text evaluation metric that

takes into consideration the information present in the table.

Specifically, all information in the table is represented as tuples of entities, attrib-

utes and values. The final score is a combination of both precision and recall of

the n-gram overlap between both the candidate and the reference texts and the

candidate text and the table.

2.4 Text-Tabular Machine Learning

Data can take on many forms or ‘modalities’, from text to tabular, from audio

to image. However, these distinct data types often require very different models

to process their specific characteristics optimally. For instance, as discussed in

Section 2.1.1, language is most often processed using transformer-based models.

Tabular data, on the other hand, presents a distinctly separate challenge due to

its structured nature, penchant for missing values and the need to manage both

numerical and categorical data fields.

Tasks are often restricted to only tabular input or only text input. However, there

are many instances where a dataset might be multi-modal; in other words, it may

have inputs of both types of data. In practice, this would be a structured tabular

dataset with unstructured text fields. A useful taxonomy outlining the stages of
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multi-modal modelling - and one that provides the language used later in this

section - can be found in Sleeman et al. (2021). Briefly, it describes:

1. Preprocessing and Feature Extraction: Data is cleaned, and high-level

features are extracted. This covers data augmentation, handling missing

values and any other steps necessary to undertake pre-modelling.

2. Data fusion: Early, late or hybrid fusion describes when the combination

of the modalities happens, but one also needs to outline how this is done. A

simple but effective method is concatenation, where the representation of one

modality is appended to the representation of another.

3. Primary Learner: The majority of the learning process happens here. This

could happen jointly or independently, with a model trained separately on

each modality.

4. Final Classifier: When modalities are trained separately, a final stage is

needed to combine the results together. In a jointly trained model, the

primary learner and the final classifier are one and the same.

2.4.1 Ensemble Learning

One common technique is to have the final classifier as an ensemble. Ensemble

learning is a robust strategy for the combination of multiple models, either from

the same or different modalities. It is based on a very human concept of the

ability of a collection of individuals to outperform the singular, known as wisdom

of the crowd, which can be traced back to Aristotle (wisdom of the multitude) and

discussed more recently in Simoiu et al. (2019) and Yi et al. (2012). An often cited

example by Galton (1907), who at a village fair collected the guesses of 787 people

for the weight of an ox and famously observed that the median guess of 1,197 lbs

was just a single pound away from the true value.
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The driving principle behind ensemble methods is that while single individuals,

or models, may have unique strengths and weaknesses, their aggregation can both

amplify their predictive capabilities and mitigate the impact of their individual

errors. Hence, an ensemble will perform best when the underlying models or base

learners are diverse. Of course, models using different data sources (or modalities)

fit this description.

Predictions from individual learners can be combined in various ways, such as a

simple weighting, which is most suitable when model performance is comparable

(Sagi and Rokach, 2018). A non-even weighting is suitable when performance

differs, with one strategy being to assign weight based on the individual model’s

performance on a validation set (Opitz and Shavlik, 1995).

XGBoost (Chen and Guestrin, 2016) and LightGBM (Ke et al., 2017) - two popular

and effective methods - are based on an ensemble of simple decision trees, plus

gradient boosting, which iteratively refines the predictions by focusing on correcting

the errors made by previous trees in the sequence. These have shown to be effective

on structured, tabular data, even outperforming deep learning models (Shwartz-Ziv

and Armon, 2022) (Grinsztajn et al., 2022) or being more robust to less informative

features (Hollmann et al., 2022).

2.4.2 Text Generation from Structured Data

For text-tabular datasets, a common natural language generation (NLG) task is to

use the information in the table to produce an answer in a question-answer task

(Yin et al., 2020; Bao et al., 2018), or generating summaries or captions (Suadaa

et al., 2021a; Puduppully and Lapata, 2021).

Earlier work on data-to-text generation predominantly used rule-based methods

(Goldberg et al., 1994; Reiter and Dale, 1997; Strauss and Kipp, 2008). These

methods generate natural language text by employing linguistic rules and heuristics

to select and populate pre-defined templates. However, a typical NLG system
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requires different sets of rules to perform content determination, text planning,

sentence planning and surface realisation modules (Goldberg et al., 1994; van der

Lee et al., 2017). This makes traditional NLG models difficult to maintain and less

generalised.

Recently, leveraging deep neural methods for NLG has been shown to outperform

existing rule-based methods (Wen et al., 2015; Liu et al., 2018; Puduppully et al.,

2019; Parikh et al., 2020; Suadaa et al., 2021b). These models are usually trained

end-to-end without the need for pre-defined linguistic rules. In broader terms,

transfer learning has been shown to produce close to state-of-the-art performance

for downstream NLP tasks with a limited amount of the dataset by utilising large

pre-trained language models (Devlin et al., 2019; Radford et al., 2019). Further-

more, Peng et al. (2020); Chen et al. (2020b) argue that pre-trained language

models (GPT-2 (Radford et al., 2019) and T5 (Raffel et al., 2020)) can indeed

improve performance on structured data-to-text task.

2.4.3 Traditional ML Models as Primary Learner: Extracting

Features from Text

For when using a model specifically suited for tabular data is desired, it is rare to

use a separate transformer model for the text. Typically, methods will simply look

to extract features from the text that are fed directly into a tabular model directly.

For example, Shin et al. (2019) aimed to incorporate various sets of clinical notes,

alongside structured tabular data. They compared a logistic regression model which

took in all the tabular data as well as all of the text data (in a Term Frequency-

Inverse Document Frequency, ie TF-IDF, form) as a baseline and found that using

an ensemble, where logistic regression models were used to make predictions for

each individual clinical notes/structured dataset, not only improved on the baseline,

but also was able to handle missing information and capture information from long

documents.

25



2.4.4. LLMs as Primary Learning: Using Text Directly

Khaleghi et al. (2021) predicts the surgical classification using unstructured surgical

notes and procedure descriptions alongside structured tabular data such as patient

age and case type to predict the set of procedures in the surgery room. As in Shin

et al. (2019), the authors use TF-IDF, in this case, to extract the frequency of

medical terms. In a similar task, Alekhya and Sasikumar (2022) used a fuzzy logic

ruleset to extract features out of the text data, feeding it directly into an SVM

alongside extracted tabular data for a healthcare dataset.

Azri et al. (2023) uses user information and tweets (containing text and images)

to solve a rumour classification task. Once more, the text is distilled down to its

component features, with the extracted information including length of tweet and

number of exclamation marks. The authors experiment with late and early fusion

to combine structured data, extracted text features (and image features extracted

in a similar manner) and find the best performance with a stacking method from

Wolpert (1992) (where a meta-model is used to predict from the predictions of base

models).

2.4.4 LLMs as Primary Learning: Using Text Directly

In Gu and Budhkar (2021), the authors present a toolkit for using transformers

with text and tabular data, illustrated in Figure 2.3. It is designed to be sufficiently

general enough for implementing a number of different fusion methods and final

classifiers including attention, concatenation of input representations and ensem-

bling. The research is primarily to publish the framework, however, the authors

do experiment with one regression dataset and two classification datasets.

Shi et al. (2021) conducts a more thorough evaluation, with the goal being to test

Automatic Machine Learning (AutoML) strategies across a number of datasets,

all containing text and tabular data. One simple early-fusion method the authors

use is to convert all inputs to strings and train a text model. In this case, there

is no need for separate models for each data source, and a single model is tasked
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Figure 2.3: Text and tabular Toolkit

with learning the relationships between the inputs. In essence, this is what the

T5 model, explained in Section 2.1.1, is designed to do. The authors test this all-

text method alongside other methods, such as using the text embedding directly

as a feature or a stack-ensemble where a meta-model is used to learn from tabular

features and base-model predictions. In this work, the stack model performs best

overall. This work is one of the few examples that use transformers (in conjunction

with other models) to process the text information as opposed to extracting out

tractable features to be used by ML methods.

2.5 Explainability

2.5.1 What is Explainability?

As noted by Vilone and Longo (2021), there is no consensus on how explainability

should be defined; in this work, we use the concept of explainability to refer to how

understandable the prediction of a given model is. It is the quality of how well the

why question gets answered, i.e., why this model made this prediction. Which part
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of the input did it rely upon the most? Is there a bias in the model that we can

reveal by asking the why question? Explainability is important, and it is a broad

field. Firstly, a model can either be intrinsically explainable - a white box model

- or not: a black box model. A linear model is a classic example of a white box

model; we can look at the coefficients and the values to see exactly how the model

arrived at the prediction. A simple decision tree is another example of a white box

model. A neural network is the archetypal example of a black box model; we can

check the calculations are correct, and we know in a general sense that the model

used backpropagation to train, but we can gain no insight as to why specifically

the model predicted the way it did. In the age of deep learning, most models are

not inherently explainable; even decision trees lose their explainable quality once

they become too deep or we add several decision trees in an ensemble to form a

random forest.

For black box models, we require an additional step, applying an additional al-

gorithm to elicit an explanation. These algorithms can be grouped; further, some

can be used on only certain model types, others are agnostic to the model choice,

some provide global explanations which describe the behaviour of the model on the

whole, whereas others provide local explanations which explain the reason a par-

ticular instance was predicted the way it was. Danilevsky et al. (2020) focuses on

the perspective of an end-user seeking to understand how the model arrives at its

result. In their review, 46/50 of papers are local explanations and 4/50 are global.

Taking a step back from the intricacies of algorithm development, Miller (2018) took

a different approach; the authors provide a comprehensive review of psychological

literature so as to shine a light on what humans look for in an explanation from

other humans and, therefore, erects a target for machine explanations to aim for.

They highlighted that explanations should be contrastive: they are a response to

a particular case asking what caused event A to happen instead of event B; this

type of explanation is described as a counterfactual. Humans also prefer selective

explanations, those that focus on a reduced number of causes; assembling a mental
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image of the problem becomes easier the fewer categories one has to keep account

of. I suggest that this could be counter-productive. Humans prefer problems that

are easier to solve (Murawski and Bossaerts, 2016). We are efficient creatures,

and therefore, if we believe even complex issues can be explained away by an easy

answer, we reduce our cognitive strain. However, this does not mean it is the right

thing to do.

2.5.2 Why Do We Want Explainability?

As models have become more powerful and have been used for more and more

things, concerns have been raised about the ability to justify the predictions that

have been made. This is particularly the case when the stakes are high, such as

in healthcare or legal scenarios where decisions can have serious implications. For

example, racial bias was found in the COMPAS dataset (Angwin et al., 2022),

a dataset that is used to predict the rate at which criminals re-offend. A model

used for prediction could ingrain that bias, making future decisions based on past

(biased) decisions. Being able to assess the reasons as to why a prediction has been

made provides another check to ensure fairness.

In 2021, the European Union proposed the AI act (European Commission, 2021),

a piece of legislative framework aimed at regulating the development and deploy-

ment of AI systems within its member states. This act divides application areas into

different risk levels, each with a corresponding level of regulatory oversight. Ex-

ploitative systems, such as behavioural manipulation or social scoring, are banned

outright. High-risk systems, those which have the potential to affect the rights

of citizens, must follow strict rules on transparency and must be assessed before

deployment and throughout their life cycle.

However, some analysis of the regulation interprets the ruling as a call for proper

regulation and human oversight rather than explicitly calling for transparency-by-

design models or the use of XAI techniques (Panigutti et al., 2023).
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2.5.3 Style of Explanations for Text

According to Ding et al. (2022), explanations for text and tabular data fall into the

following categories: Feature Importance, Rules, Prototype and Counterfactual.

2.5.3.1 Feature Importance

Feature importance is considered the most common type of explanation (Ding et al.,

2022; Danilevsky et al., 2020). Each input feature is assigned a value as to how

influential it was to the decision. As such, the sign and magnitude characterise how

the particular feature affected the instance being explained. A negative sign implies

a negative feature importance, in other words, a feature that contributed against

the direction of prediction. LIME (Ribeiro et al., 2016a) and SHAP (Lundberg

and Lee, 2017a) are prime examples and are explained in detail in the following

section.

2.5.3.2 Rule-based Explanations

Rule-based explainability techniques refer to methods that produce human-intelligible

rules to describe how input features of a model are logically connected to its out-

put. For example, "if age of dog is over 15, then prescribed drug should be..." can

be described as an if-then rule. Often, techniques involve the extraction of if-then

rules such as these(Wang and Rudin, 2014; van der Waa et al., 2021). Anchors

(Ribeiro et al., 2018) represent a rule-based development from the same authors

as LIME, with the algorithm producing rules that act as sufficient conditions for a

local prediction.

2.5.3.3 Prototypes

In a prototype explanation, the output is given as a similar example or examples

from the dataset to provide the user with a knowledge of how other similar entries
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were treated by the model. Providing the central instance in a cluster also fits the

description of a prototype.

2.5.3.4 Counterfactuals

Similarly to prototype explanations, counterfactual explanations also provide a pre-

viously labelled example in order to provide a real-world case for the user. However,

counterfactual explanations will provide examples with an opposing label, answer-

ing what would need to be different about the input in order for the prediction to

change. Counterfactual explanations are common as humans as this mirrors the

human desire for contrastive explanations (Miller, 2018). Examples include Poyi-

adzi et al. (2020), who ensured that counterfactuals were feasible and actionable,

and Mothilal et al. (2020), who generated a diverse set of counterfactuals in order

to convey the complexity of the task to the user.

2.5.4 SHAP

At its core, SHAP (Lundberg and Lee, 2017a) leverages the concept of Shapley

values (Shapley, 1952) to quantify the individual contribution of each feature to

a model’s prediction. By simulating coalitions of present and absent features and

observing the corresponding changes in output, SHAP derives the marginal con-

tributions of each feature to the final prediction (Molnar, 2020). For an original

feature of x, a simulated present or absent feature is x′ ⊂ [0, 1]M where M is the

maximum number of coalitions. The marginal contribution assigned to each fea-

ture i is denoted as ϕi . g(x′) is the explanation model consisting of the feature

importance values multiplied by the corresponding x′ value.

g(x′) = ϕ0 +
M∑

i=1
ϕix

′
i (2.9)
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2.5.4.1 Properties of SHAP

SHAP carries three desirable properties that differentiate SHAP from the tech-

niques mentioned in the following section (Section 2.5.6).

The properties are:

1. Local Accuracy: Local Accuracy denotes that the prediction of the simpli-

fied model for the data point x′ must equal the original prediction f(x). This

is missing in LIME, where an approximated linear model has no guarantees

of bisecting the original data point.

f(x) = g(x′) = ϕ0 +
M∑

i=1
ϕix

′
i (2.10)

2. Missingness: SHAP revolves around simulating the presence and absence

of features. Missingness states that if the feature is missing in the original

model, then it must be given zero feature importance.

x′
i = 0 =⇒ ϕi = 0 (2.11)

3. Consistency: If simplified input x′
i increases or stays the same, then its

feature importance value ϕi should not decrease.

fx(z0) = f(hx(z0)) and z0 \ i denotes setting z′
i = 0. For any two models f

and f ′, if

f ′
x(z′) − f ′

x(z′ \ i) ≥ fx(z′) − fx(z′ \ i) (2.12)

for all inputs z′ ∈ {0, 1}M , then

ϕi(f ′, x) ≥ ϕi(f, x). (2.13)

In full, the formula for calculating SHAP values is as follows:

ϕi(f, x) =
∑

z′⊆x′

|z′|!(M − |z′| − 1)!
M ! [fx(z′) − fx(z′ \ i)] (2.14)
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where |z′| denotes the number of non-zero entries in the vector z′, and z′ ⊆ x′

indicates all z′ vectors where the non-zero entries are a subset of the non-zero

entries in x′.

2.5.5 Implementing SHAP

In practice, SHAP requires three components to elicit an explanation: a model, an

explainer, and a masker. The explainer’s role is to dictate which coalitions are to

be formed, which calls on the masker to realise these binary coalitions as model-

compatible inputs. These inputs are subsequently used by the model to generate a

prediction. The choice of explainer and masker, both classes of the SHAP library,

depends on the format of the data.

2.5.5.1 Explainers

There exist several variants of the explainer class, such as model-specific SHAP

explainer classes designed to elicit speed increases for certain model types or those

that trade reduced computation for an approximated version of SHAP.

Here, the focus is on two explainers. The Permutation explainer follows the formula

laid out in Equation 2.14 and is the default for a model-agnostic approach using

tabular datasets. As the name suggests, every possible permutation of feature

combinations is trialled in order to get an exact calculation.

When dealing with text inputs or tabular data with many features, calculating the

result of every possible coalition can be computationally intensive, especially for

long text inputs that may consist of hundreds of tokens. The preferred solution

is to use the Partition explainer, which organises features into a hierarchy and

recursively calculates Shapley values. The resulting values are known as Owen

values in game theory. For text, the partition hierarchy is created using a scoring

system that clusters neighbouring tokens together, favouring tokens belonging to
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the same word or not separated by punctuation. When used for tabular features,

features are grouped based on their correlation.

For tabular data, the masker uses a background dataset to sample missing features,

replacing missing features with a random sample and then integrating over the

marginal distribution. For text data, an absent word piece is replaced with a mask

token.

Figure 2.4: A partition tree for the text input ‘Movie sucked, should have gone
home. I wasn’t a fan.’

Figure 2.4 shows an example of the resulting hierarchy, known as a partition tree.

The closer to the x-axis, the closer the relationship between the words. One can

see that words belonging to the same sentence are grouped more closely, whereas

the separate sentences are the most different.

2.5.5.2 Maskers

SHAP hinges upon the simulation of present and absent features in order to make

its calculations. Shapley values solved a game-theory problem, where players -

either contributing or not - wanted to know how much of the total outcome they

were deserving of.

Outside of this scenario, it is not always straightforward to set what it means for

a feature to be absent. Maskers, whose task is to realise these simulated absences,

work in different ways depending on the category of input: here, this subsection

discusses how masking functions for text features and tabular features.
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For text, the process is quite simple: each absent text feature - each word piece

is treated as a separate feature - is replaced with a [MASK] token. Note that

words can be made of more than one word-piece and that punctuation is also to

be accounted for. 1s and 0s represent the desired coalition of present and absent

features.

Masterpiece of a film .

1 1 1 1 0 1

Masterpiece of a [MASK] .

As for tabular features, it is slightly more complex as there is no guarantee that an

empty or NULL value has any meaning for a particular model; hence a different

approach is used.

Manufacturer Price (£’000s) Colour
Alfa Romeo 35 Green

0 1 1

Manufacturer Price (£’000s) Colour
Renault 35 Green
Ford 35 Green

Here, absent tabular features are replaced value(s) from a background dataset, if

absent features are chosen to be replaced by more than one value, then the outcomes

for all background replacements are calculated and a mean is taken. The SHAP

documents suggest that 1, 10, 100 or 1000 are reasonable choices for the number of

samples to take. In this example, ‘Alfa Romeo’ is replaced by two: ‘Renault’ and

‘Ford’.

2.5.6 Other Explainability Methods

The intricacies of how SHAP works are key in understanding the contributions of

Chapters 5 and 6. However, Chapter 4 also revolves around the outputs of explain-
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ability methods: feature importance values produced by a selection of techniques

are used as the input to a language model. SHAP was covered previously, so here,

in this section, the remaining feature importance-based explainability techniques

used in Chapter 4 are described.

2.5.6.1 LIME

Proposed by Ribeiro et al. (2016a), LIME constructs a local approximation for each

prediction to be explained. The idea of LIME is to build a simple, linear surrogate

model in the vicinity of the instance that needs to be explained. Points around the

instance are sampled, with closer points having more influence than ones further

away, and then a linear model is fit to this newly sampled data. By observing

the weights of the new linear model, one can now get a sense of which input

features are the most important. Despite their generality, LIME has a relatively

high computational cost due to the need to process the whole sample to provide a

single explanation (Bodria et al., 2020).

2.5.6.2 Integrated Gradients

Integrated Gradients (Sundararajan et al., 2017a) (IG) is a gradient-based method

seeking to trace the path of the model prediction by computing the gradient of the

model’s prediction with respect to the input features. IG is not a model-agnostic

method, although it is flexible: IG can be applied to any differentiable model. Fur-

thermore, it requires no extra adjustments to the original model and no additional

approximator model to be created. The first method to simply calculate the gradi-

ent was First Derivative Saliency (Simonyan et al., 2013); however, the significant

issue with saliency is that it becomes insensitive when predictions saturate due to

the ReLU function. Integrated Gradients improved on the original saliency method

by considering all points along the straight line path from baseline (zero vector) to

input. Gradients are computed at each point and then accumulated.
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2.5.6.3 Layerwise Relavence Propagation

Layer-wise Relevance Propagation, or LRP (Bach et al., 2015), is another gradient-

based method originally designed for images. The influence of each input feature

is calculated by backpropagating through the network, satisfying a layer-wise con-

servation principle. The goal is for the predicted scalar value to be distributed

amongst the input features. This is done for each target class separately. Later, it

was developed for use in NLP by Arras et al. (2016), where instead of pixels, the

text input is represented by a vector.

2.5.7 Multi-modal Explainability

Multimodal explainability remains an emerging field. This section gives a brief

overview on the developments that have been in the text-image domain, which is

not a focus of this thesis but is relevant to getting some insight on how multiple

modalities are combined together. Chapter 4 will address the gap in the research,

namely the lack of options to generate explanations for text-tabular problems.

In the text-image domain, which is not the focus of this thesis, there have been

some developments in bringing existing explainability techniques to multi-modal

problems. For example, Lyu et al. (2022) proposes DIME (pictured in Figure 2.5),

which adapts LIME to work for text and images. The individual contributions

of each modality are calculated separately and combined with a derivation of the

interaction effect to get an explanation that reflects the behaviour of the multi-

modal model.

Figure 2.5: Lyu et al. (2022) proposes DIME: a multi-modal adaptation of LIME
for the text-image domain.
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Figure 2.6: Parcalabescu and Frank (2023) propose MM-SHAP, adapting SHAP
for text-image datasets by blocking images into patches.

Similarly, (Parcalabescu and Frank, 2023) propose MM-SHAP (pictured in Fig-

ure 2.6 to provide SHAP explanations for text-image problems. Interestingly, the

authors combine SHAP with the accuracy score of the model (typically, explan-

ations are calculated independently of performance) to get an indication of how

much each modality is positively contributing to the outcome, with a key focus

on assessing the presence of unimodal collapse: a problematic issue for text-image

datasets. Images are split into blocks, typically 4x4, but adapted such that text

and image inputs have a similar number of features. This will reduce the overall

computation and avoid calculating coalitions for each individual pixel, however,

the explanations lack a certain precision that is gained by assessing every pixel, as

in Lyu et al. (2022).

Although the body of work on explainability is extensive, and adaptations for

the text-image domain are growing, there is still a noticeable gap for multi-modal

text-tabular explainability. Shi et al. (2021) briefly touches on it in their text-

tabular research (although this is not their principal focus). However, it is limited:

text features are treated as a whole; SHAP values are reported on a feature level

where whole text feature values are substituted for other instances. This suffers

from the same lack of precision as Parcalabescu and Frank (2023). To get a true

representation of how each tabular feature and each word within text features

contribute to the outcome, a new method must be devised. This is the area that
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will be addressed in Chapter 5.

2.5.8 A Summarisation of the Research Gaps

The deep learning revolution began with the ‘Attention is All You Need’ paper and

led to the development of transformer-based large language models such as BERT,

DeBERTa and T5. To an exponentially larger extent than the previous generation

of models (such as the LSTM), these models could ingest and ‘remember’ vast

swathes of information. One disadvantage of these models (that LSTMs share,

but not simpler linear models) is their black-box nature, implying an inability to

understand how a particular decision had been reached.

Explainability, in general, has experienced a slower rate of development than other

research areas, such as those more likely to lead to a bigger, better and more

commercially viable model. One such underexplored domain is using large lan-

guage models themselves to provide additional context and a helpful text-based

explanation to make it easier for end users and machine learning practitioners to

understand the output of a machine learning decision.

As discussed in Sections 2.5.4 - 2.5.6, for purely text-based data there are a handful

of options for producing explanations such as SHAP and LIME from 2017 and 2016

respectively. However, when the data is multi-modal the options become sparser.

Section 2.5.7 covered some of the options that have been developed for the text-

image domain, such as DIME or MM-SHAP where LIME and SHAP, respectively,

were adapted to fit this multi-modal problem. However, for text-tabular machine

learning problems, we find a gap in the research, with no method available to

generate explanations for text-tabular data. As Chapter 5 will discuss, the one

caveat is that one can use SHAP for text if one acts as if the multi-model input is

all text, but this leads to errors and is limited to a specific model setup. A general

solution remains missing.
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Chapter 3

Generating Textual Explanations

for Machine Learning Models

Performance: A Table-to-Text

Task

This chapter proposes a new NLG task aimed at translating a series of evaluation

metrics into an analytical narrative describing a model’s performance. The goal

is to demystify model performance scores for non-experts who may lack a clear

understanding of what each metric represents or the implications of the result.

Furthermore, this chapter introduces a novel dataset to enable the training of this

task. This dataset consists of numerical tables along with corresponding expert-

written textual explanations.

This chapter will experiment with this new task and dataset by fine-tuning pre-

trained language models (T5 and BART) to generate analytical textual explana-

tions conditioned on the information in the tables. A neural module is proposed,

Metrics Processing Unit (MPU), to improve the performance of the baselines in

terms of correctly verbalising the information in the corresponding table. The

evaluation and analysis conducted indicate that exploring pre-trained models for
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data-to-text generation leads to better generalisation performance and can produce

high-quality textual explanations.

To summarise:

• This chapter proposes a new data-to-text task: starting with metrics that

describe a model, produce text that accurately and fluently describes what

the metrics are saying

• An expert-written dataset is collected to enable models to do this task

• This chapter proposes a method to linearise the data into text

• This chapter proposes the MPU, an adaption to the model structure to better

encode metric information

• The dataset is augmented by permuting the order of the metrics in the lin-

earised data

• A selection of models are trained using linearised data with and without the

MPU. Training is done on both the original and permuted datasets.

3.1 Introduction

The performance of trained ML models is widely reported using numerical tables

(for example, see the table in Fig. 3.1) and graphs. However, background and

domain knowledge are required to make sense of the graphs and tables. Therefore,

non-experts will find it more challenging to fully understand the implications of

the model’s scores across the metrics. In response, a study on training neural

models is conducted to generate textual explanations that analytically describe

the classification performance of machine learning models.

The generated textual explanation is based on the evaluation metrics’ scores achieved,

along with information on the underlying dataset (class labels and dataset distri-

bution across the classes) of an arbitrary classification problem. The neural models
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Dataset Imbalanced (62% and 38%)

Labels C1 and C2

 

Metrics

Sensitivity Precision Accuracy AUC

Value 90.32 89.13 90.73 95.87

Rate HIGH HIGH HIGH HIGH

Given the machine learning problem under consideration, the model 
achieved a high accuracy  score of 90.73% with a corresponding high 
AUC score of 95.87%. Also, the precision score  is 89.13% and the 
recall/sensitivity score is 90.32%. From the dataset distribution 
provided, we can conclude that only the precision score and sensitivity 
score are important to accurately assess the performance of the model 
on this ML task. The scores achieved across these metrics are very 
high which imply that  prediction decisions for the majority of the test 
cases will be correct. The recall and precision score motivate a higher 
trust in output predictions.

Textual Summary

Classification Performance Summary

Figure 3.1: A table summarising the classification performance of a classifier.

are trained on table-explanation pairs annotated by computer science experts. Due

to the limited size of this dataset, experiments are conducted by fine-tuning the

pre-trained language models T5 (Raffel et al., 2020) and BART (Lewis et al., 2020).

These pre-trained models treat all text-based language tasks as text-to-text gen-

eration; therefore, following Moryossef et al. (2019); Chen et al. (2020a); Suadaa

et al. (2021b), the performance summary tables are linearised as flat strings. How-

ever, converting structured data to flat strings can result in the loss of important

information and relations (Mager et al., 2020; Hoyle et al., 2021; Suadaa et al.,

2021b). Therefore, exploring strategies to improve the encoding of the structured

data can further improve the quality of the generated output texts. To this end, a

neural module is proposed, the MPU, to improve the performance of the pre-trained

language models in terms of producing textual explanations and verbalising cor-

rectly the information in the corresponding table. The MPU is employed to learn

a semantic representation by directly encoding the information about the metrics

from the table. The encoder combines the MPU’s output representation with the

embedding of the linearised representation to generate the contextualised joint rep-

resentation information passed to the decoder. The contributions of this work are

as follows:

• Introducing a new dataset for generating analytical textual explanations de-

42



3.2. Proposed Dataset

scribing the performance of classifiers on several machine learning tasks. The

textual explanations are written by computer science experts and checked

manually to ensure that they accurately reflect or verbalise the information

in the corresponding performance table. To the best of our knowledge, this

is the first of its kind to focus on explaining the performance of ML models.

• Proposing a neural module, the MPU, which improves the encoding of the

information about the metrics, ensuring that the outputs of the pre-trained

models accurately verbalise the performance report summarised by the re-

lated table.

• Experimenting with state-of-the-art neural models to demonstrate the op-

portunities and challenges for future research on this table-to-text generation

task.

3.2 Proposed Dataset

As stated above, the methodology contributions can be split into two parts: the

introduction of a new dataset and developing improvements so as to better encode

the information in the table of metrics. This section details the proposed dataset.

3.2.1 Dataset collection

To acquire the dataset for this study, different ML models were trained on 59

classification tasks across different application domains. Across each classification

task, five different classifiers were trained. These classification models include ran-

dom forest, support vector machines, logistic regression and K-nearest neighbour

(KNN). For simplicity, only the common classification metrics (accuracy, precision,

AUC, recall, specificity, F1-score, and F2-score) were considered.

To collect the dataset, we required annotators with background knowledge of what

is meant for each of the metrics. Data quality is important, so therefore computer

43



3.2.1. Dataset collection

science experts solicited to provide the analytical textual explanations. In order to

be as fair as possible, we approached all of the computer science researchers in the

office either studying for a PhD or working as a post-doc. From this group, this

summed to ten expert annotators in total. Again in the name of fairness, tasks

were randomly assigned to each participant and the same style of questioning was

used for all participants. The annotators were all provided with the same style

of document to fill in the annotations, either as a pdf or through a web platform.

An example of a document used to collect annotations is provided in Figure 3.2.

This task does not require the annotators to provide any personal information,

however, the annotators were informed of the nature of the task and all ten gave

their consent for the answers to be used in this study.

The concept of good performance or a high score is all relative; certain domains

require a far higher level of accuracy to be considered successful, medicine being

a key example. For this reason, the annotators were also asked to give each of

the metric scores on a 3-point scale (High, Moderate, and Low). As part of the

annotation collection, annotators were provided with a summary of the task. In

this manner, applications of this work can provide their own guide as to what they

deem as high, moderate and low. These ratings are used to enrich the metric tables

that are passed to the model, providing it with additional context and enhanced

numerical reasoning.

Each annotator was provided with the following information:

• A description summarising the objective and the nature of the task at hand

• Definitions of all the metrics used in this example

• Scores of the metrics

• Information on the data split between the classes

They were then instructed to respond to the following:
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Table 3.1: Statistics of the model performance narrations dataset

Property Original Augmented
Size of train set 725 4529
Size of test set 100 100
Unique words 3548 3548
Min. summary length 35
Max. summary length 160
# summaries with 2 sentences 113 579
# summaries with 3 sentences 347 1844
# summaries with >3 sentences 365 2206

• ‘Provide a summary of the scores achieved by the model across the evaluation

metrics.’

• ‘Discuss the overall performance of the model as shown by the values of the

evaluation metrics. (Your answer should capture the implications of achieving

such scores across the different metrics.)’

3.2.2 Dataset Composition

In total, collected 1010 expert annotations were collected. Each submission was

subsequently manually checked for accuracy by comparing it to the corresponding

metric table. Out of 1010 submissions, 825 passed this stage and provided a strong,

accurate representation of the information in the table. Subsequently, 100 table-

explanation pairs were randomly sampled to be used as the test set, with the

remaining 725 pairs forming the training set.

3.2.3 Dataset Augmentation

As the dataset is relatively small, augmentation is used to increase the size of the

training set. As each metric table has no inherent order, it is possible to increase

the size without generating any new instances simply by reordering metrics within

the existing instances. When processed, the input will contain the same narratives,
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Machine Learning Models Performance Assessment

Accuracy Recall Specificity F1-Score

Model A 62.67 69.2 53.25 68.64

Performance Narration

Click here for more information on the classification task: E-Commerce Shipping �

Title: E-Commerce Shipping

Task Summary:An international e-commerce company based wants to discover key insights from their customer database. They want to use

some of the most advanced machine learning techniques to study their customers.The company sells electronic products. One problem they

are interested in is predicting the likelihood of a shipped package getting to the customer on time or not. The data science team were tasked to

train machine learning models that can be used to make shipping decisions in terms of answering the question: "Given the available logistics

and factors, will the package arrive on time?". A model trained on this task will predict the label C2 (if the package will not arrive on time) and

C1 (if the package will arrive on time).

 The table below contains the scores of some evaluation metrics showing the prediction performance of classification models trained on the

classification problem above. In the following sections, you are asked to access the classification performance of the model based on only the set of

evaluation metrics provided. See the annotation guide for definitions of the metrics shown.

Click here for more information on the evaluation metrics below

Metric Definition

Accuracy The percentage of the test sample correctly classified by the model. The higher the score the “better” the model.

Recall This tries to answer the question: What proportion of actual positives was identified correctly? A recall score of X% implies the model

correctly identifies X% of all positive examples.The higher the score the “better” the model.

Specificity Specificity refers to the true negative rate, and summarises how well the negative class was predicted.

F1-Score Is the harmonic mean of the Recall score and Precision score providing a trade-off between the scores. The higher the score the “better” the

model.

Class Labels: C1 and C2

59.7% and 40.3% are the proportions of the training data belonging to class labels C1 and C2, respectively.

 In a sentence, summarize the scores achieved by Model A across the different metrics.

 What are the implications of the scores of the following metrics: F1-Score, Specificity and Recall?

�

Metric Description

Model A

Accuracy Recall Specificity F1-Score

Figure 3.2: An example of the document used to collect annotations
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3.2.3. Dataset Augmentation

Dataset Imbalanced (62% and 38%)

Labels C1 and C2

 

Metrics

Sensitivity Precision Accuracy AUC

Value 90.32 89.13 90.73 95.87

Rate HIGH HIGH HIGH HIGH

Given the machine learning problem under consideration, the model 
achieved a high accuracy  score of 90.73% with a corresponding high 
AUC score of 95.87%. Also, the precision score  is 89.13% and the 
recall/sensitivity score is 90.32%. From the dataset distribution 
provided, we can conclude that only the precision score and sensitivity 
score are important to accurately assess the performance of the model 
on this ML task. The scores achieved across these metrics are very 
high which imply that  prediction decisions for the majority of the test 
cases will be correct. The recall and precision score motivate a higher 
trust in output predictions.

Textual Summary

Classification Performance Summary

Figure 3.3: An example of a classification performance report table (containing the
score with respect to each metric along with information on the distribution of the
underlying data across the two classes: C1 and C2) and the corresponding textual
explanation.

but the processed version of the table, as well as the input representation from the

proposed neural module, will be different.

In image-based problems, the word augmentation is used to describe altering the

image in some way, perhaps with a rotation, translation or addition of noise. In

text-based problems, it is rarer to have the opportunity to create an augmented

dataset. However, by reordering the metrics, or in other words through a permuta-

tion, we can create an expanded text dataset without adding more data. Note that

this thesis will use the terms augmentation and permutation interchangeably.
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The thought behind augmentation was twofold: first, reordering the features will

signal to the model that the order of the data does not matter, and it should look

for other markers to obtain the right information. Secondly, increasing the size of

a relatively small dataset will give the model additional training data, boosting its

chances of performing well on the test set. This process increased the training set

size from 725 to 4529 table-explanation pairs. Table 3.1 provides some statistics

about the dataset.

3.3 Proposed Improvements

3.3.1 Problem Definition

In this work, the input to the NLG models is a numerical table containing the class

names, names, values, annotator ratings of each of the metrics, and a dataset distri-

bution indicator. Specifically, the metrics table T = [C, M, V, R, D] is represented

as:

• The list of class labels, C = [C1, C2, · · · , Ck]

• The list of metric names, M = [m1, m2, · · · , mn]

• The list of metric values, V = [v1, v2, · · · , vn]

• The list of annotator ratings, R = [r1, r2, · · · , rn]

• An indication of whether the dataset was balanced or not,

D ∈ {is_balanced, is_imbalanced}

where k is the number of labels in the example, and n represents the number of

metrics in each sample. n_max represents the maximum number of metrics for a

sample in the dataset. The target is to generate an analytical textual explanation:

a passage of text that should be fluent and factually supported by T .
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3.3.2. Linearisation only

3.3.2 Linearisation only

Fundamentally, we recognised that using a pre-trained language model was going

to be key to producing coherent passages of text. Firstly, a model that is already

capable of understanding language is inherently useful. Secondly, the relatively

small size of the dataset would make it difficult to learn both the rules of language

and the specificities of this particular task without additional fine-tuning. Even

with a limited amount of data, fine-tuning pre-trained language models, such as

BART and T5, has been shown to produce high-quality texts (Peng et al., 2020;

Su et al., 2021; Suadaa et al., 2021b), therefore it was a choice with clear upside.

However, BART and T5 were not trained on any table-to-text generation task, and

as such, this data-to-text task is reframed as a text-to-text generation problem,

following Chen et al. (2020a); Suadaa et al. (2021b); Hoyle et al. (2021).

Before introducing the proposed improvements, a baseline is outlined. Whereas

in the following section, adjustments are made to the model structure, here the

models are unchanged; the only task is to form the metric table into a text input.

To form the input table into text, following Moryossef et al. (2019); Chen et al.

(2020a); Suadaa et al. (2021b), the input table is linearised into a flat string. In

this chapter, the linearisation is performed by concatenating metric information,

class labels, and the dataset distribution based on the following template:

<MetricsInfo> m1 | VALUE_r1 | v1 && m2 | VALUE_r2 | v2 && · · · && mn |

VALUE_rn | vn <|section-sep|> <TaskDec> ml_task | dataset_dist | D &&

ml_task | class_labels | C1, C2, · · · , and Ck <|section-sep|> <|table2text|>

Red text indicates values replaced by those in the table, whereas black text in-

dicates part of the template. An example is given below; Figure 3.3 shows the

numerical table pre-linearisation.
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3.3.3. Metrics Processing Unit

<MetricsInfo> auc | VALUE_HIGH | 95.87% && precision | VALUE_HIGH |

89.13% && accuracy | VALUE_HIGH | 90.73% && sensitivity | VALUE_HIGH |

90.32% <|section-sep|> <TaskDec> ml_task | dataset_dist | is_imbalanced &&

ml_task | class_labels | C1 and C2 <|section-sep|> <|table2text|>

Once linearised into strings, LLMs can be fine-tuned with this dataset. During

training, each string is tokenised and fed into an LLM. The LLM encoder then

converts the tokens into a vector representation of the string, which is then passed

to the decoder, which in turn will iteratively generate output tokens. This is the

typical manner in which LLMs are fine-tuned; no further alterations are made to

the models for these baseline experiments. To make clear the difference between

this experiment and the proposed changes from the proceeding section, the process

structure is illustrated in Figure 3.4.

3.3.3 Metrics Processing Unit

One drawback of using only the linearised data input is that it can fail to capture

information and relations within structured data (Suadaa et al., 2021b; Mager et al.,

2020; Hoyle et al., 2021). In this task the goal is to provide textual explanations

that accurately represent the information in the metric table, therefore strategies

are explored to improve data representation so as to give the text model a method

to more effectively encode the numerical information. To this end, we extend the

linearised input with a semantic representation of the metric table generated by a

custom neural network, which is referred to as the MPU. The MPU, as shown in

Fig. 3.5, comprises two main parts: the initial embedding of the metrics, values and

ratings, followed by a comprehensive combining of the three initial embeddings,

which results in a single consolidated representation of the metrics, values and

ratings.
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3.3.3. Metrics Processing Unit

Figure 3.4: An illustration of the pipeline without the MPU. A numerical explan-
ation is linearised; it passes through the encoder-decoder of a text model, finishing
with the desired text output. Green text indicates the dimensions of the object.

Scores Embedding Unit

For each metric m ∈ M , we used the text model encoder to generate an embedding

m̂i. Not all entries will have the same number of tokens, so each embedding here

is padded to max_tokens=8. Each m̂i is then concatenated together to form M̂ .

The maximum number of scores for a single instance in the dataset is 8; this

work will call this nmax. So as each is the same length, M̂ is padded up to a

maximum length of nmax∗max_tokens so that each for each instance M̂ is of shape

(nmax ∗ max_tokens, d) where d is the dimension of the text model’s embedding

size. Finally, self-attention is applied to M̂ to get our hidden representation of

the metrics hm. The same steps are repeated to get hidden representations of an

instance’s values, hv, and its ratings, hr.

51



3.3.3. Metrics Processing Unit

Figure 3.5: Architecture of the MPU employed to learn to hs from the list of
metric names M , metric values V and annotator ratings R. Green text indicates
the dimensions of the object.
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3.3.3. Metrics Processing Unit

Figure 3.6: An illustration of the table-to-text neural generator trained to pro-
duce the textual explanation based on the encoded linearised table ht and metrics-
ratings-values semantic representation, hs, learned by the MPU.
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Interaction Module

This module combines the representations of the metrics, values and ratings (hm, hv

and hr respectively) into a single representation of the scores, hs. It concatenates

hm and hr and passes them through a linear layer and the ReLU activation function,

before adding hr to get a conjoined metric and rating representation, which will be

called ĥm. In parallel, the equivalent is done with hv and hr, concatenating the two,

passing them through a linear layer and ReLU and adding hr to get a conjoined

value and rating representation, which is called ĥr. To join ĥm and ĥr, the two

are concatenated, passed through another linear layer and all three representations

hm, hv and hr are added. Finally, regularisation is added in the form of Layer Norm

and Dropout before arriving at the final representation of the scores: hs. To be

compatible with the text encoder and decoder representations, the shape of hs is

(nmax∗ max_tokens, d).

Entire Process

Figure 3.6 shows how the whole process fits together. The numerical information

is linearised - as per the template detailed above - and passed through the encoder

of the text model to get a representation of the table, ht. ht is then concatenated

with the output of the MPU, hs, and passed into the text model decoder. The text

model decoder will then output the text.

3.4 Results

To test the impact of the proposed improvements, this chapter experimented with

variants of pre-trained T5 and BART language models, namely T5-small, T5-base,

T5-large, BART-base, and BART-large. Each variant of T5 and BART has the

same model structure but differs in the number of parameters.

This chapter experimented with each LLM four times: twice using the MPU (once

using the original dataset, once using the augmented version), and twice without the
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MPU. For each experiment, the model is trained five times with different random

seeds, and the generation performance of the models is reported, based on the

average scores for each evaluation metric. For each model variant, ‘+MPU’ refers

to models trained with linearisation and the MPU and the absence of ‘+MPU’

refers to models trained simply with linearisation.

3.4.1 Automatic Evaluation

This section presents the automated evaluation of the trained models. Table 3.2

and Table 3.3 show the scores achieved by the models across the selected evaluation

metrics: BLEU, METEOR, PARENT, and BLEURT, where Table 3.2 is holding

the scores of models trained on the original dataset and Table 3.3 with those trained

on the augmented dataset.

Permuted vs Original

In general, training on the augmented dataset led to improved scores. For example,

while BART-large scored 28.09 BLEU and 35.55 METEOR when trained on the

original dataset, it scored 45.57 BLEU and 46.41 METEOR when trained on the

permuted dataset. In fact, training on the permuted dataset leads to increased

BLEU and METEOR scores for every model. For the PARENT metric, permuta-

tion was only better in half the experiments, with all large models doing worse

on this metric. Furthermore, for BLEURT, training on the permuted dataset only

lead to an improved score in 3 of the 10 experiments, with all large models and all

but one base models showing a better score on the original dataset.

Effect of Metrics Processing Unit

According to Table 3.3, augmenting the linearised representation with the semantic

representations of the metrics information in the table further improves the gener-

ation performance of the underlying models. The T5-small benefited most among

all the models. Specifically, there is a +2.75, +3.94, +1.92, and +0.6 increase in
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3.4.1. Automatic Evaluation

the BLEU, METEOR, PARENT and BLEURT, respectively. Furthermore, T5-

small+MPU is shown to have the best match to both the reference text and the

source table, according to PARENT. It outperforms the next best models, BART-

base+MPU and BART-large+MPU, by +0.77 PARENT and +0.78 PARENT, re-

spectively. Furthermore, despite having a poor surface-level match to the reference

texts according to BLEU and METEOR, it achieves the best BLEURT score,

meaning its outputs are fluent and semantically equivalent to the reference texts.
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Table 3.2: Evaluation of generation performance of the neural models on the ori-
ginal dataset (725 data-text training pairs). ‘+ MPU’ detonates training the variant
of the pre-trained baselines with the MPU.

BLEU METEOR PARENT BLEURT
T5-small 26.00±0.81 32.64±0.66 30.70±0.51 53.12±0.34
T5-small + MPU 26.70±1.12 33.34±1.14 29.39±1.24 53.69±0.72
T5-base 32.83±1.70 35.81±1.36 31.70±0.80 55.51±0.47
T5-base + MPU 32.59±3.60 36.80±1.53 30.36±1.80 55.14±0.36
T5-large 35.11±2.93 38.38±1.69 32.73±2.01 55.67±0.51
T5-large + MPU 32.27±2.40 36.69±1.11 32.58±2.61 55.84±1.04
BART-base 26.91±3.76 34.90±1.34 31.46±2.33 56.30±0.42
BART-base + MPU 28.79±2.84 35.59±0.93 29.71±3.10 55.13±0.61
BART-large 28.03±2.64 35.55±2.86 32.90±2.39 54.40±1.54
BART-large + MPU 30.13±1.80 38.15±1.93 34.68±1.10 56.48±0.23

Table 3.3: Evaluation of generation performance of the neural models on the per-
muted dataset. ‘+ MPU’ detonates training the variant of the pre-trained baselines
with the MPU. The models are fine-tuned with five different random seeds, and
the scores are based on the average and standard deviation.

Model BLEU METEOR PARENT BLEURT
T5-small 37.83±2.25 39.46±1.83 32.12±1.16 55.52±0.22
T5-small + MPU 40.58±1.95 43.40±1.05 34.04±0.65 56.15±0.40
T5-base 46.31±0.89 47.45±0.35 30.99±0.70 54.09±0.30
T5-base + MPU 45.46±0.60 47.75±0.40 31.33±0.67 54.46±0.19
T5-large 45.70±0.73 47.11±0.31 31.08±0.63 54.53±0.20
T5-large + MPU 46.03±0.75 47.53±0.41 31.58±0.73 54.63±0.42
BART-base 44.83±1.03 47.83±0.22 32.79±0.86 54.71±0.16
BART-base + MPU 45.75±0.84 47.83±0.64 33.26±0.96 55.26±0.31
BART-large 45.57±1.96 46.41±1.44 32.29±2.12 51.29±1.76
BART-large + MPU 46.98±0.73 47.52±1.50 33.27±0.6 51.25±1.67
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Table 3.4
(a) Example of the model performance narrations generated by the fine-tuned T5 and BART models based on the table data (converted into flat-string). Sentences and
phrases conveying correct information according to the related table are highlighted in blue, while incorrect ones are marked in red.

Model Generated

Table <MetricsInfo>auc | VALUE_HIGH | 95.87% && precision | VALUE_HIGH | 89.13% && accuracy | VALUE_HIGH | 90.73% &&
sensitivity | VALUE_HIGH | 90.32% && sensitivity | also_known_as | recall <|section-sep|><TaskDec>ml_task | data_dist |
is_imbalanced && ml_task | class_labels | C1 and C2 <|section-sep|> <|table2text|>

Reference Given the machine learning problem under consideration, the model achieved a high accuracy score of 90.73% with a corresponding
high AUC score of 95.87%. Also, the precision score is 89.13%, and the recall/sensitivity score is 90.32%. From the dataset
distribution provided, we can conclude that only the precision score and sensitivity score are important to accurately assess the
performance of the model on this ML task. The scores achieved across these metrics are very high, which implies that prediction
decisions for the majority of the test cases will be correct. The recall and precision scores motivate a higher trust in output
predictions.

T5-small The performance of the classifier on this binary classification task as evaluated based on the precision, AUC, accuracy, and sensitivity
achieved the scores 89.13%, 90.32%, 95.87%, and 90.73% respectively. These scores support the conclusion that this model will be
highly effective at correctly classifying most test cases/samples with only a few misclassifications. Furthermore, the confidence in
predictions related to the label C2 is very high.

T5-small
+MPU

The algorithm’s ability to correctly classify test samples as either C1 or C2 was assessed based on the metrics accuracy, AUC,
precision, and sensitivity. It scored 90.73%, 95.87%, 89.13% and 90.32%, respectively. As shown in the table, we can confirm that
the algorithm has a very high classification performance and will be very effective at correctly labelling most test cases drawn from
any of the different classes.

T5-base On this imbalanced classification task, the trained model scored 90.32% (recall), 90.73% (accuracy), and 95.87% (AUC). From the
precision score, it is obvious that the model has a moderately high false-positive rate hence the confidence in predictions related to
the C2 label is very high. However, based on the sensitivity and precision scores, we can see that some examples belonging to C1
are likely to be misclassified as C2. This is further supported by the high accuracy and AUC scores.

T5-base
+MPU

The classifier scored close to perfect scores across all the metrics (i.e. Precision, AUC, Accuracy and Sensitivity). From the results
table, we can see that it scored 90.73% (accuracy), 90.32% (sensitivity), and 95.87% (AUC). Surprisingly, these scores were achieved
even though the dataset was imbalanced. With such high scores for precision and sensitivity, the model is shown to have a lower
misclassification error rate. Overall, this model has relatively high classification performance, and hence will struggle to correctly
identify the labels for only a few test cases belonging to the different classes.



(b) Example of the model performance narrations generated by the fine-tuned T5 and BART models based on the table data (converted into flat-string). Sentences and
phrases conveying correct information according to the related table are highlighted in blue, while incorrect ones are marked in red.

Model Generated

Table <MetricsInfo>auc | VALUE_HIGH | 95.87% && precision | VALUE_HIGH | 89.13% && accuracy | VALUE_HIGH | 90.73% &&
sensitivity | VALUE_HIGH | 90.32% && sensitivity | also_known_as | recall <|section-sep|><TaskDec>ml_task | data_dist |
is_imbalanced && ml_task | class_labels | C1 and C2 <|section-sep|> <|table2text|>

Reference Given the machine learning problem under consideration, the model achieved a high accuracy score of 90.73% with a corresponding
high AUC score of 95.87%. Also, the precision score is 89.13%, and the recall/sensitivity score is 90.32%. From the dataset
distribution provided, we can conclude that only the precision score and sensitivity score are important to accurately assess the
performance of the model on this ML task. The scores achieved across these metrics are very high, which implies that prediction
decisions for the majority of the test cases will be correct. The recall and precision scores motivate a higher trust in output
predictions.

T5-large Evaluating the performance of the model on this classification task produced the scores: 95.87% for AUC, 90.73% for accuracy,
89.13% precision, and 90.32% for sensitivity(recall). From the recall and precision scores, we can see that the classification algorithm
is very effective at correctly classifying most unseen test cases or samples with onlya small margin of error (the misclassification
error rate is 9.27%). The very high accuracy coupled with the very low precision score demonstrates its capability to correctly
identify the correct class labels for several test instances.

T5-large
+MPU

The classifier scored close to perfect scores across all the metrics (i.e. Precision, AUC, Accuracy and Sensitivity). From the results
table, we can see that it scored 89.13%(Precision), 90.32% (sensitivity), 95.87% (AUC), and 90.73%(Accuracy). Since the dataset
was imbalanced, it would be wise to analyze prediction performance based on the balance between the recall and precision scores.
The precision and sensitivity scores show how good the model is at correctly recognising the observations under the different classes
(C1 and C2). In summary, the models are likely to have a lower misclassification error.

BART-base The classification performance scores achieved by the model on this binary classification task are as follows: (1) AUC score of 95.87,
(2) Accuracy equal to 90.73%, (3) Precision score equal 89.13%, and (4) Sensitivity (sometimes referred to as the recall) score is
90.32%. These scores across the different metrics suggest that this model is very effective and can accurately identify the true labels
for several test cases/samples with a small margin of error (actually, the misclassification error is 9.27%)

BART-
base+MPU

The scores achieved by the AI algorithm on this binary classification task are as follows (1) AUC score of 95.87%, (2) Accuracy
equal to 90.73%, and (3) Precision score equal 89.13%. These scores across the different metrics suggest that this model is very
effective and can accurately identify the true labels for the majority of the cases with a small margin of error. Furthermore, the
precision and recall scores indicate that the likelihood of misclassifying C1 cases as C2 is very marginal (that is, it has a very low
false-positive rate).



(c) Example of the model performance narrations generated by the fine-tuned T5 and BART models based on the table data (converted into flat-string). Sentences and
phrases conveying correct information according to the related table are highlighted in blue, while incorrect ones are marked in red.

Model Generated

Table <MetricsInfo>auc | VALUE_HIGH | 95.87% && precision | VALUE_HIGH | 89.13% && accuracy | VALUE_HIGH | 90.73% &&
sensitivity | VALUE_HIGH | 90.32% && sensitivity | also_known_as | recall <|section-sep|><TaskDec>ml_task | data_dist |
is_imbalanced && ml_task | class_labels | C1 and C2 <|section-sep|> <|table2text|>

Reference Given the machine learning problem under consideration, the model achieved a high accuracy score of 90.73% with a corresponding
high AUC score of 95.87%. Also, the precision score is 89.13%, and the recall/sensitivity score is 90.32%. From the dataset
distribution provided, we can conclude that only the precision score and sensitivity score are important to accurately assess the
performance of the model on this ML task. The scores achieved across these metrics are very high, which implies that prediction
decisions for the majority of the test cases will be correct. The recall and precision scores motivate a higher trust in output
predictions.

BART-
large

The performance of the model on this binary classification task, as evaluated based on the precision, AUC, accuracy, and sensitivity,
scored 89.13%, 95.87%, 90.73%, and 90.32% respectively, implying that it is a very effective model. These scores indicate that the
likelihood of misclassifying test samples is very marginal. However, the scores were expected the dataset was perfectly balanced
between the two class labels C1 and C2.

BART-
large+MPU

On this imbalanced classification task, the trained model reached an AUC score of 95.87, an accuracy of 90.73, with a precision
and sensitivity scores equal to 89.13 and 90.32, respectively. These results/scores are very impressive as one can conclude that this
model is almost perfect with higher confidence in its prediction decisions. In summary, only a small number of test cases are likely
to be misclassified as indicated by the accuracy, sensitivity, and precision.



3.4.2. Quality Analysis

3.4.2 Quality Analysis

Table 3.4 shows the performance textual explanations generated by the models

under consideration based on the table shown in Fig. 3.3. Sentences and phrases

conveying correct information according to the related table are highlighted in

green, while incorrect ones are marked in red. As shown, the generators are able to

produce high-quality classification performance summaries capturing the inform-

ation presented in the input structured data. However, there were a number of

cases where the generators failed to accurately verbalise the content of the related

performance metric table. The errors are mainly from the models trained without

MPU, and among these models, only BART-base produced a correct verbalisa-

tion of the input table. The summary from T5-small is mostly valid; however,

the metrics (AUC, accuracy and sensitivity) and their corresponding scores are

mentioned in the wrong order. The T5-base model made an incorrect assessment

of the precision and recall scores when it concluded that the ‘false-positive rate’ is

moderately high. In the case of the T5-large, it stated that the precision is very low

even though it was rated ‘HIGH’. BART-large produced a wrong statement about

the distribution of the dataset between the classes, C1 and C2. Augmenting the

linearised representations with the metrics-values-ratings, contextual information

from MPU allow the T5 and BART models to generate accurate analytical textual

explanations based on the related table.

3.5 Conclusion

This chapter presented a new NLG dataset for generating textual explanations

that describe the performance of classification models. Presenting the generated

texts along with the numerical tables will allow for a better understanding of the

classification performance of ML models. Baselines were trained by fine-tuning

state-of-the-art pre-trained models: T5 and BART. Experimental results show the

feasibility of utilising these large pre-trained language models to generate fluent

61



3.5. Conclusion

and accurate statements based on structured data. However, analysis suggests

that neural models, in some instances, produce statements containing wrong in-

formation according to the input table. This weakness can be attributed to the

direct linearisation of the input tables. To address this problem, this chapter in-

troduced the MPU, which, when combined with the linearised input, produced the

best performance across the different T5 and BART variants.
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Chapter 4

Natural Language Explanations

for Machine Learning

Classification Decisions

This chapter addresses the challenge of providing understandable explanations for

machine learning classification decisions. To do this, this chapter introduces a

dataset of expert-written textual explanations paired with numerical explanations,

forming a data-to-text generation task. BART and T5 language models are fine-

tuned on this dataset to generate natural language explanations by linearising the

information represented by explainable output graphs. Additionally, the numerical

explanations are probed more directly by fine-tuning BART and T5 on a question-

answer task and achieved an accuracy of 91% with T5.

4.1 Introduction

In recent years, there has been an effort to increase transparency in the decision-

making process of black-box models used for predictions and incorporate XAI tech-

niques. This is not least - as discussed in Section 2.5 - to be compliant with

the proposed AI act (European Commission, 2021) and avoid model bias. Many
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types of explanation exist, however in this chapter will focus on four commonly

used XAI techniques: Local Interpretable Model-Agnostic Explanations (LIME)

(Ribeiro et al., 2016b), SHapley Additive exPlanations (SHAP) (Lundberg and

Lee, 2017b), Integrated Gradients (IG) (Sundararajan et al., 2017b), and Layer-

wise Relevance Propagation (LRP) (Binder et al., 2016). Although distinct, these

techniques all produce feature importance values that quantify the contribution of

each feature to the prediction. The details of each method are outlined in Sections

2.5.4 and 2.5.6

Graphs and figures are commonly used to communicate the contributions of each

variable used to arrive at a given prediction. These graphs produced by XAI

techniques indicate which features are positive (supporting the prediction output),

negative (contradicting the prediction output), and neutral (having a negligible in-

fluence on the prediction decision). However, for non-experts, it can be challenging

to fully understand these figures.

Large, pre-trained language models are trained on a vast text corpus, giving them

a broad generalised understanding of language. Fine-tuning these models for spe-

cific tasks has been shown to improve their task-specific understanding, even with

limited training data (Peng et al., 2020; Su et al., 2021; Suadaa et al., 2021b). Two

such language models are T5 (Raffel et al., 2020), and BART (Lewis et al., 2020).

T5 is a multitask-trained transformer model trained on several unsupervised and

supervised NLP tasks, such as classification, summarising, and translation. BART

(Lewis et al., 2020) is a transformer-based denoising autoencoder trained to recon-

struct the original text from a corrupted input. A more thorough explanation of

these models can be found in Section 2.1.2.

This chapter proposes a new task: given a classifier prediction and a subsequent

local-level explanation, produce a narrative that describes the explanation. The

narrative should be fluent and factually accurate to provide clarity to the end

user when provided alongside a figure. The task is designed to be ambivalent to

the choice of explainability technique. The only requirement is that the classifier
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produces a probability estimation across the classes and that the XAI technique

produces a score for each input feature.

To achieve this task, consulted computer science experts with knowledge of explain-

ability were consulted to create a new dataset: TEXtual Explanation Narratives

(TEXEN). TEXEN comprises local-level explainability outputs and written nar-

ratives that explain in plain text what the numerical explanations are showing.

After sifting for quality and factual accuracy, TEXEN contains 496 explanation-

text pairs.

T5 and BART are subsequently fine-tuned on this dataset to generate automatic

textual explanations. They are also trained on an augmented version of TEXEN,

using the same narratives but reshuffled feature names to artificially increase the

size of the training set. Finally, the task is simplified and a question-answer model

is trained to respond to questions more directly.

To summarise, the contributions of this chapter are as follows:

• A new dataset for generating textual explanations of a given classification

decision is introduced. The textual explanations are written by computer

science experts and checked manually to ensure that they appropriately reflect

the contribution of input features, as produced by numerical explainability

methods. To the best of our knowledge, this study is the first of its kind to

focus on generating textual explanations via neural NLG.

• Experimentation and evaluation with state-of-the-art neural pre-trained lan-

guage models demonstrate the opportunities and challenges for future re-

search on this structured data-to-text generation task.

• Further comparisons are made when simplifying to a more structured question-

answer task, with a large synthetically generated training set.
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4.2 Background: Numerical Explanation Pipeline

In a typical explainability pipeline, a trained classifier will first make a prediction.

To make a local-level explanation, the XAI technique will utilise the prediction

and the classifier to yield importance scores for each input feature. For clarity,

this chapter refers to the set of features, feature importance scores and prediction

probabilities as a numerical explanation. An example is shown in Figure 4.1. This

is to differentiate it from the object of this task: a textual explanation that looks

to describe the same set of objects, but in natural language.

Predicted Label high quality

Prediction Probabilities
low quality: 5.63%
high quality: 94.37%

Attributions
Feature Name Importance Value
volatile acidity 0.10
sulphates 0.09
alcohol 0.07
total sulphur dioxide 0.05
residual sugar -0.04
fixed acidity 0.02
citric acid 0.02
chlorides -0.02
free sulphur dioxide -0.01
pH -0.01
density 0.00

Figure 4.1: An example of a numerical explanation

A typical numerical explanation pipeline is pictured in Figure 4.2. A numerical

explanation pipeline aims to explain why a classifier made the decision it did for

a particular input data record. This work will only consider explanation methods

that produce feature importance scores that can then be shown as a graph. A

numerical explanation pipeline consists of the following:
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4.2. Background: Numerical Explanation Pipeline

Classifier

Given a test case, a trained classifier generates the classification output decision.

This prediction is in the form of class labels and their respective predicted probab-

ilities.

Explainer

The explainer’s task is to generate feature importance scores for each input feature

which explains the classification decision of the particular test case, given a trained

classifier and the prediction decision. These feature importance scores are then

represented as a graph, the final output of a typical local-level explanation. In this

paper, the explainability techniques used are LIME, SHAP, IG, and LRP.
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4.2. Background: Numerical Explanation Pipeline

Classifier
Prediction
low_quality:  0.0563
high_quality: 0.9437

Explainer

Feature Importance
vol. acidity 0.10
sulphates: 0.09
...

Explanation Processor

Textual Explanation Generator

Processed input
Predicted class is C2, value of 94.37%. Other classes and values are C1 5.63%.
The top features are [ F4, F6,..., and F7 ] with values of [ 0.10, 0.09,..., and 0.00 ]
Positive features are [ F4, F6,..., and F7 ]. Negative features are [ F8, F1,..., and
F6]. Lowest impact features are [ F3, F1,..., and F7 ] with values of [ 0.02,
-0.02,..., and 0.00 ].

Post-Processor

Output (with true names)
'The case is labelled as "high quality" by the classifier, with the likelihood of this
being correct equal to 94.37%, suggesting that there is a slight chance of about
5.63% that this decision could be wrong. The above prediction by the classifier is
mainly based on the values of the features volatile acidity, sulphates, total sulfur
dioxide, and alcohol, which, according to ...

Numerical explanation pipeline Textual explanation pipeline

Input data

alcohol : 12.3
citric acid : 0
...
volatile acidity : 0.7

Output (with placeholders)
'The case is labeled as C2 by the classifier, with the likelihood of this being
correct equal to 94.37%, suggesting that there is a slight chance of about 5.63%
that this decision could be wrong. The above prediction by the classifier is mainly
based on the values of the features F4, F6, F10, and F9, which, according to ...

Figure 4.2: A typical numerical explanation pipeline
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4.3 Summarisation Task: Proposed Dataset

4.3.1 Dataset Collection

The data collection process involved TEXEN consists of pairs of explanations: one

output of a local-level explanation method (a numerical explanation) and written

narrative which describes in plain text what the numerical explanation is showing

(a textual explanation). An example of a textual narrative is shown in Fig. 4.3).

The wine is labelled as "high quality" by the classifier,
with the likelihood of this being correct equal to 94.37%,
suggesting that there is a slight chance of about 5.63% that
this decision could be wrong. The above prediction by the
classifier is mainly based on the values of the features
volatile acidity, sulphates, total sulfur dioxide, and alcohol,
which, according to the analysis performed, offer strong
positive support for the prediction. The other variables
with a positive influence on the decision are citric acid,
fixed acidity, and density, further cementing the belief in
the decision made here. The 5.63% likelihood of the "low
quality" can be blamed on the negative influence of
chlorides, residual sugar, free sulfur dioxide, and pH,
decreasing the likelihood of the "high quality" label
assigned to the wine under consideration. In summary, the
confidence level of 94.37% in the "high quality" label
assignment is mainly due to the strong positive influence
of sulphates, volatile acidity, and alcohol.

Textual Explanation

Figure 4.3: An example of a textual explanation corresponding to Fig. 4.1

First, to collect the numerical explanations, a selection of models were trained on

a selection of tasks. Ten different model types were used, including Support Vec-

tor Machines, Logistic Regression, Deep Neural Networks, and Random Forests.

Using random samples from the test sets, local-level explanations were generated

using four XAI techniques: LIME, SHAP, IG, and LRP. These techniques gener-

ated numerical scores for each input feature, indicating their relative influence on

the classification decision. However, it is necessary to reiterate that these scores
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4.3.1. Dataset Collection

do not reflect the accuracy of the classifier but rather provide insight into which

features were most important in the decision-making process. Statistics on how

the numerical explanations were collected are in Table 4.1.

Table 4.1: Statistics on data used for numerical explanation generation

Property Value

Datasets used: 40
Models used 10
Records per dataset: Mean / S.D. 11.7 / 3.4
Records per model: Mean / S.D. 42.7 / 34.3
Input features per record: Mean / S.D. 18.7 / 15.0

The same methodology of recruiting annotators as Chapter 3 was also used here

as once more this was a difficult task which required some expertise in the field.

Namely, all researchers in the office either studying a PhD or completing a post-doc

were asked to take part in the annotation. By recruiting annotators in this way,

we make it as unbiased as we can. In total, eight of these computer science experts

took part in the annotation. Similarly to Chapter 3 we did not expect there to be

any sort of personal information that could link the annotations to the annotator.

Certain annotators may have a particular writing style, say, but we did not consider

this to be a significant issue. All were informed of the nature of the research and

all gave their consent to be a part of the study.

To collect narratives, eight computer science experts were shown a chart (as in Fig.

4.4) and asked to summarise it in a single text box. These narratives are intended to

describe the prediction as a whole. The charts simply represent feature importances

in a graphical manner. The feature importance values came from LIME, SHAP,

Integrated Gradients and LRP but this task is designed to be ambivalent to the

choice of method. The focus is simply on taking a set of feature importance values

and translating this into a textual narrative. In the same manner, as the previous

chapter, annotators were provided a document, an example of which is shown in

Figure 4.5, either through a web platform or directly as a pdf.

70



4.3.1. Dataset Collection

In the previous chapter, the same questions were asked to each annotator for each

example. However, in this chapter several variations of each question are used so

as to elicit a more varied set of responses. A breakdown of the questions used

and how many times they appeared in the final dataset is detailed in the following

subsection

Feature name Val
volatile acidity 0.0969394812

sulphates 0.0911348029

alcohol 0.0733620383

total sulphur dioxide 0.0519188387

residual sugar -0.0351906774

fixed acidity 0.0248738781

citric acid 0.0238264422

chlorides -0.022157631

free sulphur dioxide -0.0132990832

pH -0.0129784543

density 0.0040836917

low quality 0.05

high quality 0.94

Figure 4.4: An example output graph from LIME, corresponding to Fig. 4.1
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Figure 4.5: An example of the document provided to annotators to collect the textual explanations.



4.3.2. Question Breakdown

In order to guide the annotators, they were asked to provide textual explanations

that answered the variants of the following questions:

i Summarise the prediction made for the test case under consideration along

with the likelihood of the different possible class labels.

ii Summarise the top features influencing the model’s decision.

iii Summarise the features with moderate to low influence on the model’s de-

cision.

iv Compare the features with positive contributions to those with negative con-

tributions resulting in the classification decision.

4.3.2 Question Breakdown

Specifically, the train set contains exactly these questions.

For 99 cases the format is:

• ‘In a single sentence, state the prediction output of the model for the selected

test case along with the confidence level of the prediction (if applicable).’

• ‘In no less than three sentences, provide a brief overview of the features with

a higher impact on the model’s output prediction.’

• ‘Describe the degree of impact of the following features: [0-4 fts (after first

7-9)]’ (3 times there are 0)

For 78 cases the format is:

• ‘For this test instance, provide information on the predicted label along with

the confidence level of the model’s decision.’

• ‘Summarise the top features influencing the model’s decision along with the

respective directions of influence on the prediction.’
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• ‘Summarise the direction of influence of the features [the next 3-4 features

(after first 2-4)] with moderate impact on the prediction made for this test

case.’

For 53 cases the format is:

• ‘Summarise the prediction for the given test example?’

• ‘In two sentences, provide a brief overview of the features with a higher impact

on the model’s output prediction.’

• ‘Compare and contrast the impact of the following attributes [3-4 random

features] on the model’s prediction of [C1/C2].’

• ‘Summarise the set of features has little to no impact on the prediction?’

For 20 cases the format is:

• ‘Summarise the prediction for the given test example?’

• ‘For this test case, summarise the top features influencing the model’s de-

cision.’

• ‘For these top features, what are the respective directions of influence on the

prediction?’

• ‘Provide a statement on the set of features that have limited impact on the

prediction of [C1/C2] by the model for the given test example?’

For 39 cases the format is:

• ‘Summarise the prediction made for the test under consideration along with

the likelihood of the different possible class labels.’

• ‘Provide a statement summarising the ranking of the features as shown in the

feature impact plot.’
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• ‘Compare the direction of impact of the features: [2-5 top features].’

• ‘Summarise the direction of influence of the features [the next 3-4 features]

with moderate impact on the prediction made for this test case.’

• ‘Provide a statement on the features with the least impact on the prediction

made for this test case.’

For 44 cases the format is:

• ‘Provide a statement summarising the prediction made for the test case.’

• ‘For the current test instance, describe the direction of influence of the fol-

lowing features: [2-5 top features]’

• ‘Compare and contrast the impact of the following features [the next 3-4

features] on the model’s prediction of [C1/C2].’

• ‘Describe the degree of impact of the following features: [the next 0-4 fea-

tures]?’ (usually 4 unless there are not enough features)

For 39 cases the format is:

• ‘Provide a statement summarising the ranking of the features as shown in the

feature impact plot.’

• ‘Summarise the direction of influence of the features [2-5 top features] on the

prediction made for this test case.’

• ‘Compare the direction of impact of the features: [the next 3-4 features].’

• ‘Describe the degree of impact of the following features:[the next 0-4 features]’

For 3 cases the format is:

• ‘Summarise the prediction made for the test under consideration along with

the likelihood of the different possible class labels.’
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• ‘Summarise the direction of influence of the variables [2-3 top features] on

the prediction made for this test case.’

• ‘Compare the direction of impact of the variables: [the next 3-4 features].’

• ‘Describe the degree of impact of the following variables: [the next 3-4 fea-

tures]?’

4.3.3 Dataset Composition

We collected 700 textual explanations from the experts, which were manually

checked to ensure they correctly articulated the information in the correspond-

ing explanation graph. A majority (469) were shown to accurately capture the

information and correctly answer the questions posed to the annotators. Feature

and class names were substituted for placeholders and randomised to prevent train-

test leakage. The data was divided randomly into training, validation, and test sets

(328/47/94). Statistics about the dataset introduced are summarised in Table 4.2.

Table 4.2: Statistics for the local-level textual explanation dataset

Property Value

Size: Train / Validation / Test 328 / 47 / 94
Words per narrative: Mean / S.D. 188 / 47
Unique words 2466

4.3.4 Augmented Dataset

It was hypothesised that the limited training set might impede model performance,

therefore this chapter proposes a new augmented training set constructed from

the original numerical explanation narrative pairs and substituting it in a newly

randomised set of feature and class name placeholders. For each item in the training

set of TEXEN, the feature and class names were re-randomised ten times so that the

augmented dataset contains 3421 records (train/validation/test split: 3280/47/94).
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Validation and test sets do not undergo this augmentation process such that the

direct comparison between models can occur.

Aside from the feature and class placeholders, the narratives will remain identical;

the work does not attempt to rewrite the narratives in a new way. By re-randomising

placeholders, it loosens the dependency on learning spurious correlations and en-

courages the model to learn the link between the features and feature values in the

input and the features mentioned in the text.

4.4 Summarisation Task: Proposed Methodology

The purpose of the textual explanation generation task is to complement the exist-

ing numerical explanation pipeline, presenting a parallel pathway that converts the

quantitative numerical explanations into accessible and easily understandable text.

The goal is not to replace the numerical explanation, but to supplement it, com-

municating the same information that the graph or numerical summary conveys,

but in a manner that is more intuitive for a non-expert audience.

This methods section will illustrate the proposed textual explanation pipeline, as

shown in Figure 4.6, right side. This method first converts a dataset-specific input

into one that is dataset agnostic, allowing for more generalisibility. Secondly, there

is the trained language model and finally the post-processing that converts the

anonymised text back into that which relates to the input features.

4.4.1 Problem Definition

Given a numerical explanation, the task is to produce a narrative that explains in

text what the graph is showing. Formally, a numerical explanation consists of the

following:

m class names

c = [c1, ..., cm] , (4.1)
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their associated class probabilities

p = [p1, ..., pm] , (4.2)

n feature names

f = [f1, ..., fn] (4.3)

and their associated feature importance values

v = [v1, ..., vn] . (4.4)

The n+ features with values vi ≥ 0 and the n− features with values vj < 0 such

that n+ + n− = n are formally defined as

f+ =
[
f+

i , ..., f+
n+

]
(4.5)

and

f− =
[
f−

j , ..., f−
n−

]
, (4.6)

respectively, where f+ and f− are subsets of f , such that

f = f+ ∪ f−. (4.7)

4.4.2 Textual Explanation Pipeline

The proposed textual explanation pipeline has three components:

• An Explanation Processor that converts a numerical explanation into an in-

put string with placeholder features and class names

• A language model trained for text-to-text generation

• A post-processor to replace the placeholders with actual feature and class

names.

In this task, there are class names, probabilities, feature names and feature import-

ance values for each input. Therefore, in order to use text-based language models,

this structured data had to be formatted into an appropriate string template.
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Classifier
Prediction
low_quality:  0.0563
high_quality: 0.9437

Explainer

Feature Importance
vol. acidity 0.10
sulphates: 0.09
...

Explanation Processor

Textual Explanation Generator

Processed input
Predicted class is C2, value of 94.37%. Other classes and values are C1 5.63%.
The top features are [ F4, F6,..., and F7 ] with values of [ 0.10, 0.09,..., and 0.00 ]
Positive features are [ F4, F6,..., and F7 ]. Negative features are [ F8, F1,..., and
F6]. Lowest impact features are [ F3, F1,..., and F7 ] with values of [ 0.02,
-0.02,..., and 0.00 ].

Post-Processor

Output (with true names)
'The case is labelled as "high quality" by the classifier, with the likelihood of this
being correct equal to 94.37%, suggesting that there is a slight chance of about
5.63% that this decision could be wrong. The above prediction by the classifier is
mainly based on the values of the features volatile acidity, sulphates, total sulfur
dioxide, and alcohol, which, according to ...

Numerical explanation pipeline Textual explanation pipeline

Input data

alcohol : 12.3
citric acid : 0
...
volatile acidity : 0.7

Output (with placeholders)
'The case is labeled as C2 by the classifier, with the likelihood of this being
correct equal to 94.37%, suggesting that there is a slight chance of about 5.63%
that this decision could be wrong. The above prediction by the classifier is mainly
based on the values of the features F4, F6, F10, and F9, which, according to ...

Figure 4.6: A typical numerical explanation pipeline is on the left. The proposed, complimentary textual explanation pipeline is on the right. The
predicted probabilities and feature importance values are processed into a template, values in blue. The Textual Explanation Generator is trained with
placeholders, the Post-Processor replaces placeholders for actual names (in pink).



4.4.2. Textual Explanation Pipeline

Explanation Processor

The input to the explanation processor is a numerical explanation, as defined

above. At this stage c, p, f and v are reordered from highest absolute value

to lowest to match the presentation of the output graphs. A set of class name

placeholders C1, ..., Cm is shuffled and substituted in for each item in c. This

approach is repeated for feature names, where each feature name in f is substituted

for a placeholder in the shuffled set of F1, ..., Fn. Substitution is done so the model

can transfer its learning from task to task; furthermore, tokenised inputs will not

have to be truncated due to long feature names. This step is also crucial to prevent

the model from learning from tasks it has seen before.

Following Moryossef et al. (2019); Chen et al. (2020a); Suadaa et al. (2021b), the

final stage of the ‘Explainer Processor’ involves linearisation of the data into a flat

string: p, v and the newly substituted c and f are formatted into the template

below. A cap, top_n, set at min(n, 10) or min(n, 20) during training, is used to

limit the number of top features passed into the model and positive and negative

features are subsets of the capped top features, such that top_n+ + top_n− =

top_n; the lowest impact features are not affected. Note that the top features and

values are formatted so that only the final value is preceded by ‘and’.

Predicted class is <c1>, value of <p1>. Other classes and values are

<c2> <p2> & ... & <cm> <pm>. Top features are [<f1>, ..., and

<ftop_n>], with values [<v1, ..., and <vtop_n>]. Positive features are

[<f+
i >, ..., and <f+

top_n+>]. Negative features are [<f−
j >, ..., and

f−
top_n−>]. Lowest impact features are [<fn−4>, ..., and <fn>] with

values [<vn−4>, ..., and <vn>].

Textual Explanation Generator

The tokenised inputs are passed into a pre-trained language model. This chapter

experiments with both T5 and BART. These language models are trained in a
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sequence-to-sequence fashion, using the collected textual explanations (with place-

holders substituted in) as reference texts. In training, this is the final stage. In

testing, the output (with placeholders) is passed to the Post-Processor.

Post-Processor

The function of the post-processor is simply to reverse the placeholder substitu-

tion process. Using regular expressions, class and feature name placeholders are

identified and mapped back to the original string values. This stage is not active

during training when the model requires a consistent way of representing the data,

but only during inference when it is helpful to report the true names.

4.4.3 Baseline

As a baseline for comparison, using the base models the input was translated into

a fixed template style, similar to the model input but with values removed and set

top_n as min(n, 3):

Predicted class is <c1>, value of <p1>. Other classes and values are

<c2> <p2> & ... & <cm> <pm>. Top features are [<f1>, ..., and

<ftop_n>]. Positive features are [<f+
i >, ..., and <f+

top_n+>]. Negative

features are [<f−
j >, ..., and f−

top_n−>]. Lowest impact features are

[<fn−4>, ..., and <fn>].

4.5 Summarisation Task: Results

We fine-tune T5-base and BART-base models on the TEXEN and TEXEN-Augmented

datasets. All experiments are run until validation performance has not increased for

three epochs in a row. Once this limit has been reached, the best model is chosen,

as decided by the lowest loss on the validation set. During inference, the neural
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generators generate textual explanations via beam search; examples of generated

narrations are shown in the Error Analysis section (Fig. 4.7 and Fig. 4.8).

4.5.1 Automatic Evaluation

The quality of the output textual explanations is assessed using automatic metrics

METEOR (Banerjee and Lavie, 2005), BLEU (Papineni et al., 2002), and BLEURT

(Raffel et al., 2020). The BLEU and METEOR scores are employed to measure

the surface-level similarity of the reference texts and the machine-generated text.

On the other hand, the BLEURT score is a semantic equivalence-based metric that

indicates how well the machine-produced text communicates the meaning of the

reference text. A more detailed description of all evaluation metrics can be found

in Section 2.3. We report the BLEU, BLEURT, and METEOR scores achieved on

the test set in Table 4.3. Compared to the baselines, all models show a notably

improved performance in all three reported metrics.

4.5.2 Error Analysis

We also conduct an error analysis on 30 records from the test set, generating

narratives for each of our experiments and counting errors. Due to time constraints,

we choose to focus on BART. We sifted through each sentence of each narration,

classifying them as either:

• Classification: Talking about the predicted class probability

• Top features: Mentioning the most influential features

• Named groups: Referring to positive, negative, moderately influential or

least influential features

• Unnamed groups: Typically of the form ‘among these...’ or ‘all the remain-

ing features...’
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• Summary: General statements summarising the decision

If the sentence contained an error or did not make sense, then a one was tallied for

that sentence, else zero. Table 4.4, for each of the sentence types, shows, for each

model, how many times each sentence appeared and the proportion of sentences of

that type that contained an error across the 30 analysed narrations.

Analysing the results, the model is more consistent at producing error-free sen-

tences of certain types than others. ‘Classification’, and ‘Top features’ sentences

are usually in a more consistent style in the collected narratives, which could be

why the models were more successful at generating them. Using top_n of 10, rather

than 20, tended to decrease the error rate, particularly in ‘Unnamed groups’, which

the models found difficult. As shown in Fig. 4.7 and Fig. 4.8, the Textual Explana-

tion Generators struggled with specific phrases that grouped or excluded previously

mentioned features and made a claim about the said group.

For all models except base-10, training on TEXEN-Augmented caused a lower error

rate, demonstrating that providing more training data with re-randomised place-

holders allows the model to learn the input-narrative relationship more effectively

and make fewer false claims. Using BART-large also yielded a lower error rate,

most notably in ‘Summary’ sentences where the generated narrative will tend to

make broader statements without mentioning specific features, instead describing

general patterns.
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Table 4.3: Evaluation of textual explanation generation performance of the neural
models. Avg. Rank refers to the mean in-column rank. Best in-column scores are
in bold. (base / large) refers to base or large models, (10 / 20 ) refers to top_n
and Aug refers to the use of TEXEN-Augmented, as opposed to TEXEN.

Experiment BLEU BLEURT METEOR Avg. Rank

BART

base-20 0.16 -0.25 0.36 6.7
base-20-Aug 0.17 -0.23 0.36 5.0
base-10 0.15 -0.19 0.34 8.0
base-10-Aug 0.16 -0.23 0.36 6.3
large-20 0.14 -0.28 0.37 9.3
large-20-Aug 0.15 -0.27 0.35 10.7
large-10 0.14 -0.25 0.34 12.7
large-10-Aug 0.14 -0.26 0.35 10.3
Baseline 0.08 -0.62 0.25 17.3

T5

base-20 0.16 -0.22 0.34 8.7
base-20-Aug 0.17 -0.27 0.35 6.3
base-10 0.17 -0.31 0.35 9.0
base-10-Aug 0.17 -0.28 0.35 8.3
large-20 0.17 -0.17 0.34 7.7
large-20-Aug 0.18 -0.37 0.34 9.7
large-10 0.18 -0.22 0.34 5.3
large-10-Aug 0.17 -0.34 0.34 11.3
Baseline 0.05 -0.62 0.25 17.7

84



Table 4.4: Error analysis of BART generated textual explanations per sentence type. Lowest error rate in bold. (base / large) refers to BART-base and
BART-large, (10 / 20 ) refers to top_n and Aug refers to the use of TEXEN-Augmented, as opposed to TEXEN.

Experiment Classification Top Unnamed Groups Named Groups Summary Total
Count Error Rate Count Error Rate Count Error Rate Count Error Rate Count Error Rate Count Error Rate

base-20 34 12% 29 14% 39 79% 17 53% 61 44% 180 42%
base-20-Aug 34 15% 30 3% 48 67% 39 41% 52 46% 203 38%
base-10 32 13% 30 13% 37 49% 25 52% 58 19% 182 27%
base-10-Aug 35 6% 30 10% 41 61% 29 62% 63 35% 198 35%
large-20 37 8% 32 22% 23 91% 42 43% 71 27% 205 33%
large-20-Aug 31 10% 29 7% 38 68% 21 33% 62 24% 181 29%
large-10 30 13% 34 15% 24 67% 31 42% 57 18% 176 27%
large-10-Aug 34 9% 29 14% 36 53% 30 40% 51 14% 180 25%



large-10: For the case under consideration, the model predicts class "Leave" with a probability of 57.83%,
implying that there is only a 42.17% chance that "Stay" could be the correct label. The above prediction decision is
mainly based on the values of OverTime, NumCompaniesWorked, and RelationshipSatisfaction which are shown
to have very strong positive attributions, increasing the odds in favour of labelling the given case as "Leave". On the
contrary, all the remaining features such as MaritalStatus, Department, or Age negatively contribute to the
decision made here. In terms of the direction of influence of each input feature, it can be concluded that the joint
positive attribution outweighs the contributions of negative features hence the confidence level associated with the
predicted label for this case.

large-10-aug: The classifier is 57.83% certain that "Leave" is the correct label for the case under consideration,
implying that there is a 42.17% chance that it could be "Stay" instead. The classification decision above is mainly
based on the influence of features such as OverTime, NumCompaniesWorked, and RelationshipSatisfaction.
Among these top influential features, only MaritalStatus has a negative impact, swinging the verdict in favour of
any of the other labels. Other positive features with moderate influence include Education, EducationField, or
BusinessTravel. However, considering the direction of effect of each input feature, it can be concluded that they are
irrelevant to the prediction made here since their respective attributions are very close to zero. In simple terms, we
can conclude that the model is not 100.0% confident in the assigned label given its level of certainty.

Reference: 'The test case or example under consideration is labelled as "Leave" with a modest level of confidence because the probability that "Stay" is the correct label is
approximately 42.17%. The input features with the highest influence on the prediction above are OverTime, NumCompaniesWorked, RelationshipSatisfaction, MaritalStatus,
YearsSinceLastPromotion, and Department, and those with moderate contributions are Age, Education, EducationField, BusinessTravel, JobLevel, JobInvolvement, and
WorkLifeBalance. The influence of MonthlyRate, YearsAtCompany, Gender, PerformanceRating, JobRole, TrainingTimesLastYear, and EnvironmentSatisfaction can be
described as moderately low. However, not all the features are considered by the classifier to arrive at the decision made for the given case. Irrelevant features include
YearsWithCurrManager, DailyRate, YearsInCurrentRole, and TotalWorkingYears. The positive features driving the prediction in favour of the predicted label are OverTime,
NumCompaniesWorked, RelationshipSatisfaction, YearsSinceLastPromotion, Education, JobLevel, and EnvironmentSatisfaction. Overall, the majority of the influential
features have negative attributions that decrease the probability that "Leave" is the correct label, explaining the uncertainty associated with the prediction decision made by the
classifier.'

Figure 4.7: Example of generated textual explanations and reference narration. The numerical explanation is shown here graphically on the left. The
numerical explanation has feature and class names randomised and is fit into a template, as described in Section 4.4.2. Top right and centre show the
output of two trained textual explainers, the difference being that large-10-aug has been trained on TEXEN-Augmented and large-10 trained on TEXEN.
At the bottom, the reference text is shown. This is the narrative that was collected when the annotator was provided with the graph in this figure.
Features, classes and values are in bold. Errors are in red.



large-10:  For the case under consideration, the model predicted "Basic" with 99.30% certainty, implying that
there is only a 0.70% chance that "Luxury" could be the correct label. The prediction decision above is mainly
based on the influence of the following features: isNewBuilt, hasYard, and hasPool which are shown to have
very strong positive attributions, increasing the odds of labelling the given case as "Basic". On the contrary, all
the remaining features such as hasStormProtector, made, or hasGuestRoom negatively contribute to the
prediction made here. All in all, it is valid to conclude that the classifier is very certain about the assigned label
considering the degree of impact of each input feature.

large-10-aug: The classifier is 99.30% certain that the correct label for this case is "Basic", implying that there
is only a 0.70% chance that "Luxury" could be the true label. The classification decision above is mainly based
on the influence of features such as isNewBuilt, hasYard, and hasPool. On the other hand, some of the least
relevant features are shown to have negative attributions, shifting the verdict in the opposite direction. These
negative features include floors, cityCode,and basement. However, considering the predicted likelihoods across
the classes, it can be concluded that all the remaining features positively contribute to the prediction made here.
As a matter of fact, the top positive features increasing the odds in favour of labelling the given case as "Basic".
In contrast, those with moderate contributions contradicting the model's decision regarding the appropriate label
are price, or cityPartRange. To put it concisely, when you take into account the very high degree of certainty
associated with the assigned label, one has to look at the attribution analysis to understand why the confidence
level is quite high.

Reference: Considering the values of the input features, the classifier generates the label "Basic" with close to 100% confidence, since the prediction probability of "Luxury" is
only 0.70%. The above classification judgement is mainly due to the influence of the features isNewBuilt, hasPool, and hasYard mainly because the classifier places more
emphasis on their values than the remaining ones. Among these top features, hasYard is the one exhibiting negative influence, shifting the prediction decision towards the least
probable class, "Luxury" and away from "Basic". Conversely, isNewBuilt and hasPool are referred to as positive features since they increase the odds of the assigned "Basic"
label instead of "Luxury". Finally, unlike all the aforementioned, the values of attic, cityPartRange, garage, and hasStorageRoom have little impact on the classification output
decision made here.

Figure 4.8: Another example of generated textual explanations and reference narration. Same format as in Fig. 4.7.



4.6. Q&A Task

4.6 Q&A Task

4.6.1 Introduction

In the previous task, the goal was to generate a passage of text all at once. Here

we look to simplify the task; we wanted to see how models would perform when we

reduced the task to a question-answer problem. With this question-answer task,

we use synthetically generated explanations for the training set and a variety of

questions that address the information that annotators tended to speak about in

the collected narrations.

4.6.2 Proposed Dataset

Here we investigate question-answering using synthetically generated numerical ex-

planations by assigning random feature attributions and class values to class and

feature placeholders. A training dataset of 27,000 records and a validation data-

set of 3,000 records are generated in this manner. The question-answer pairs are

created by randomly selecting a question from a pool of 8 templates for each numer-

ical explanation. The test set consists of 469 records, using numerical explanations

from the TEXEN train, validation, and test sets combined. For the test set, one

question-answer pair is generated per numerical explanation.

Numerical explanations are synthetically generated in the following manner: Classes

C1 and C2 have a random percentage probability (0.00%-100.00%) assigned to

them, such that probabilities p1 + p2 = 1. top_n is set as a random number

between 6-20, and then each of which is given a random feature placeholder and a

random feature attribution between -0.50 and 0.50.

Predicted class is <c1>, value of <p1>. Other classes and values are

<c2> <p2> & ... & <cm> <pm>. Top features are [<f1>, ..., and

<ftop_n>], with values [<v1, ..., and <vtop_n>]. Positive features are
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4.6.2. Proposed Dataset

[<f+
i >, ..., and <f+

top_n+>]. Negative features are [<f−
j >, ..., and

f−
top_n−>]. Lowest impact features are [<fn−4>, ..., and <fn>] with

values [<vn−4>, ..., and <vn>]. Answer the following question: <Q>

The input string (above) is in the same format as in the textual explanation gen-

eration task but with an additional prompt and subsequent question, Q, which is

selected at random from the eight question templates below. The questions are in

bold.

Questions:

1. What is the prediction for class X? Class X is randomly chosen. The

required answer is the predicted class probability for class X.

2. What is the value of X? X is a random feature name from the input. The

answer is the value associated with feature X.

3. Of the top X features, which are positive? X is a random number

between 2-5 inclusive. The task is to return the subset of the X most influ-

ential features that have a feature importance value greater than 0.

4. Of the top X features, which are negative? This follows the same

pattern as above, but for feature importance values less than 0.

5. Of these features [ft_list], which support the prediction? ft_list is

a list of 2-5 features, chosen at random from the input. The task is to return

the subset of features from ft_list with a feature importance value greater

than 0.

6. Of these features [ft_list], which are against the prediction? This

follows the same pattern as above but for feature importance values less than

0.
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4.6.3. Results

7. Which features have an absolute value greater than X? X is a random

float between 0.30-0.45 inclusive. The goal is to return a list of features with

a value above X.

8. Which are the X least important features? X is a random number

between 2-5 inclusive. The task is to return a list of the X features with the

lowest feature importance scores.

For questions 1 and 2, the answer is a single value, while the answers to questions

3-8 are lists of features separated by commas or blank if there is no correct answer.

4.6.3 Results

We train BART-base and T5-base models on the Question-Answer dataset and

report the per-question accuracy in Table 4.5. Analysing the results, one can

see that the models found some questions more straightforward; questions 1 and

2, which asked for a single class and feature value, scored the highest, perhaps

because only a single figure was required instead of a list. For questions that need

a list of numbers as an answer, if the generation matched the string exactly, then

it was given a one, else zero. T5 scored especially highly, with an average accuracy

of 91%. Examples are shown in Fig. 4.9

Table 4.5: Question Answer results

Question Accuracy

BART-base T5-base

Value of class X? 94% 100%
Value of feature X? 87% 99%
Of top X, which are positive? 59% 85%
Of top X, which are negative? 76% 97%
Of ft_list, which support? 62% 90%
Of ft_list, which are against? 82% 92%
Which features are >X? 73% 87%
X least important features? 39% 73%
Total 73% 91%
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4.6.3. Results

Q: Of the top 4 features, which are
positive?
A: F5, F8, F1
T5 Pred: F5, F8, F1
BART Pred: F5, F8, C1
Q: Of the top 5 features, which are
negative?
A: F4, F11
T5 Pred: F4, F11
BART Pred: F4, F11
Q: Which features have an absolute
value greater than 0.38?
A: 
T5 Pred: 
BART Pred: 
Q: Which are the 2 least influential
features?
A: F8, F11
T5 Pred: F8, F11
BART Pred: F8, F11
Q: What is the value of F5?
A: 0.01
T5 Pred: 0.01
BART Pred: 0.01
Q: Of the top 5 features, which are
positive?
A: F16, F19, F12, F17
T5 Pred: F16, F19, E12, C17
BART Pred: F16, F19, C12, f17

Q: Of these features [F1, F8, F10,
F3], which support the prediction?
A: F1, F10, F3
T5 Pred: F1, F10, F3
BART Pred: F1, F10, C3
Q: Of the top 4 features, which are
positive?
A: F8, F1, F7
T5 Pred: F8, F1, F7
BART Pred: F8, F1, C7
Q: What is the value of F3?
A: -0.05
T5 Pred: -0.05
BART Pred: -0.05
Q: What is the value of F17?
A: 0.01
T5 Pred: 0.01
BART Pred: 0.02
Q: Of the top 2 features, which are
negative?
A: F7
T5 Pred: F7
BART Pred: [blank]
Q: Of these features [F4, F20, F30],
which are against the prediction?
A: F20
T5 Pred: F20
BART Pred: F20

Figure 4.9: Example of questions, reference answers and predictions from both
models. Errors are in red.
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4.7 Discussion and Conlusion

As demonstrated by these two tasks, these models are able to provide extra clarity

to assist in machine learning interpretability. While further comparisons could

strengthen these conclusions, our principal aim was to introduce the task and

methodology. We recognise that some may consider the dataset small; however,

the difficulty of collecting quality narrations meant it was very costly and time-

consuming to generate. As a result, this dataset represents the largest possible

dataset we had the means to collect, and we are pleased to make it publicly available

to benefit other researchers in the field.

The question-answer task was designed to cover the information held in numer-

ical explanations; however, we acknowledge that the current set of questions may

not cover all possible scenarios. Nevertheless, by using synthetic explanations,

our dataset generation process allows for easy adaptation to encompass a new or

expanded set of questions to suit specific needs.

In this work, we introduced a new NLG dataset of numerical-textual explanation

pairs and trained T5 and BART to describe the output of feature importance-

based explainers. When paired with the explainability graph, we aim to give users

a better understanding of what the explanation means and, therefore, a better

understanding of a given prediction decision. Automatic evaluation metrics show

evidence of fluent explanations and error analysis yield reduced error rates when

using TEXEN-Augmented. we also trained question-answer models for more struc-

tured answers and find T5-base gives us an overall accuracy of 91%. In the future,

we plan to explore and utilise multi-modal modelling strategies, such as image cap-

tioning approaches, to directly use the explanation graphs without the linearisation

steps.
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Chapter 5

SHAP Explanations for

Multimodal Text-Tabular Models

In this chapter, we address the research gap in explainability for multimodal ma-

chine learning, specifically for text-tabular data. We expose the errors that arise

when pre-forming the data into text and applying the existing text masker and

present a novel multimodal masking framework that extends SHAP to text-tabular

datasets. In an extensive study, We examine the impact that combination strategies

and language models have on SHAP explanations. Notably, the choice of combin-

ation method considerably influences the features identified as most important by

the model. Furthermore, these findings reveal that methods converting all input

to text tend to assign greater relative importance to text features over tabular

features.

5.1 Introduction

As addressed in Chapter 2, despite the increasing popularity of multimodal tasks,

there remains a gap in the research for producing explanations for these models.

While there has been some work into text-image explainability (Parcalabescu and

Frank, 2023; Lyu et al., 2022), text-tabular remains unexplored. A popular tool for
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5.1. Introduction

explaining unimodal models - and explained in detail in Section 2.5.4 - is SHapley

Additive exPlanations (SHAP) (Lundberg and Lee, 2017a), a game theory-based

approach that relies on simulating coalitions of present and absent features. When

multimodal data is fit to a single modality (for example, text, a method which we

refer to All-Text) before the masking phase, it is possible to elicit an explanation.

However, masking tabular features as if they were text can lead to erroneous token

groupings and importance values assigned to non-feature tokens. To address this,

we propose a novel multimodal masker, a complementary addition to the SHAP

library. By fusing the previously separated text and tabular maskers and by defer-

ring input formation until after the masking stage, we make it possible to generate

SHAP explanations for any text-tabular model while also avoiding the pitfalls of

the unimodal masker and the All-Text method. With this approach, text and

tabular features are treated consistently, no matter how they are combined.

This framework, which is made publicly available, facilitates for the first time the

generation of SHAP values for any text-tabular dataset and for any method of

combining the two modalities. Moreover, we propose a series of experiments to

compare the SHAP explanations of various combination methods on text-tabular

datasets. By training four different text models, each on nine datasets and further

with five combination methods, we intend not only to showcase the utility of the

masker but also to gain insight as to which features drive performance, whether

those features differ across experiments, and how reliance on each modality changes.

To summarise, the contributions of this chapter are the following:

• An exposure and analysis of the issues surrounding the current unimodal

masker and an exploration of factors that may cause.

• A novel multimodal masking framework to allow the generation of SHAP

values for any text-tabular dataset whilst ensuring that each modality is

treated consistently.
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5.2. Background: Limitations of Using Unimodal Masker for Multimodal Explanations

• Extensive experimentation using the framework, assessing the effects chan-

ging text model and combination method have on nine different datasets.

5.2 Background: Limitations of Using Unimodal

Masker for Multimodal Explanations

Generating SHAP explanations for multimodal inputs poses a challenge within the

existing framework as it is inherently designed for unimodal data representations.

Consequently, the generation of SHAP explanations is only possible in the All-Text

scenario where one is training a text model and has already formed the data into

a single modality (text). With any other approach, it is not possible to elicit a

SHAP explanation. In addition to this limitation, we illustrate the problems that

arise when using the unimodal masker for the All-Text method.

All-Text requires moulding an input into a string template, following a format

such as Column name: Column value, delineated by ‘|’. However, when one forms

this input prior to the masking call, the masker is unable to distinguish between

tabular feature, text feature, or string template. Figure 5.1 (top) illustrates the

process of using the unimodal masker and All-Text. As shown, each word piece

of the tokenised input is now open to being selected as present or absent in a

coalition. However, as the masker is treating the input as if it were a passage of

text, tabular features are not sampled from a background dataset as is precedent.

Instead, as demonstrated in the top right of the figure, tabular features can be split

into multiple tokens and masked separately.

Furthermore, the string template, which is present and immutable for all instances

and thereby necessarily has no impact between one instance and another, has no

way of being recognised as such in the unimodal framework. Instead, as shown at

the top of Figure 5.1 (top), template tokens will be treated as input features.

These issues are exacerbated further when the partition explainer is used, specific-
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5.2. Background: Limitations of Using Unimodal Masker for Multimodal Explanations

ally during the formation of the partition hierarchy. The partition explainer saves

compute by grouping tokens that form part of the same word or sentence together

in order to reduce total number of computed coalitions. Details of the process

are found in Section 2.5.5. Neighbouring tokens are grouped but do not take into

account whether neighbours are members of the same or differing features, leading

to incorrect grouping, separation of tokens and unrealistic and misleading explan-

ations. In Figure 5.2, one can see each one of the numeric, tabular features being

split up to form erroneous groups. We show a portion of the example below, with

one group highlighted in red.

Year: 2010 | Runtime (Minutes): 98 | Rating: 6.8 | Votes 157499 ...

When this group is absent, one is left with a misleading and unrealistic 8 minutes

as a movie runtime.

Year: 2010 | Runtime (Minutes): 8 | Votes 157499 ...
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Figure 5.1: Comparison of masking processes with a multimodal text-tabular input, contrasting the current SHAP library’s unimodal masker with the
proposed multimodal masker. Using the unimodal masker in this scenario is only possible when the input is preformed into a string. Top: Each token in
the string input can be either absent (swapped for [MASK] token) or present. Note that tabular features are divided into tokens (e.g., ‘Cocker Spaniel’),
and string template tokens, which should be omnipresent, can be absent(e.g., ‘:’). Bottom: Coalitions are formed, keeping tabular features as they are,
while text features are split into tokens. Absent tabular features are sampled from a background dataset, while text tokens are replaced with [MASK]
tokens. Once masked, features are reformed into an instance set, ready to be formatted for any multimodal model.



All-Text (Unimodal)

All-Text

Stack-Ensemble

Figure 5.2: Three SHAP explanations of the same instance, all using text model= DistilBERT, dataset = imdb. Red indicates features that support the
prediction, blue indicates those contributing in the opposite direction. Neighbouring work tokens with the same colour indicate membership of the same
group for the given grouping threshold. Top: Using the original SHAP library’s unimodal masker, combination method=All-Text. Middle: Using the
proposed multimodal masker and combination method=All-Text. Bottom: Using the proposed multimodal masker and combination method=Stack-
Ensemble.



5.3. Proposed Multimodal Masker

5.3 Proposed Multimodal Masker

In this study, we introduce a novel multimodal masker that incorporates both text

and tabular features without needing to first convert to a single modality in order

to extend SHAP’s capabilities for multimodal data. Our objective is to ensure

that text and tabular features are treated consistently, no matter whether it is in

an unimodal or multimodal scenario or which combination method is chosen. We

condense these changes into a single masker class and a simple model wrapper such

that it can be easily integrated into the existing SHAP framework. Finally, we also

make adjustments to the SHAP plotter, as illustrated in Figure 5.2 (middle, bot-

tom). For clarity, we plot tabular column names and values together and add a label

to indicate which features are text. During experimentation, we generate SHAP

values for each combination of three independent variables: combination method

(CM), text model (TM), and dataset (DS). we analyse the resulting explanations;

notably, we compare the explanations gathered by the proposed novel multimodal

masker versus an unimodal one using the All-Text combination method.

Figure 5.1 (bottom) demonstrates the process of an explainer forming a coalition

and then using the multimodal masker to form the model-compatible input. The

key to the process is deferring the model input formation to after the masking call.

In doing so, the proposed masker takes the unformatted features as input, separ-

ating out text and tabular features. In this process, text and tabular features are

separated such that absent tokens text tokens are substituted for a mask token, and

absent tabular features are sampled from a background dataset, as would be the

case with unimodal data. This results in a masked instance set with present and

absent features realised (one for each background dataset sample), as seen on the

far right of the diagram. This set is then passed to the model prediction function,

and the average prediction is used by the explainer to calculate the SHAP values.

We wrap the model prediction with a simple function to convert the masked in-

stance set to a model-compatible input. For example, one can divert tabular and
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5.4. Experimentation

text features to a tabular and text model, respectively, in a Weighted-Ensemble, or

format each instance to a string template for the All-Text approach. In maintain-

ing the separation, we make this process completely agnostic of the combination

method. To ensure compatibility with the partition explainer, we add functionality

to create a joint partition hierarchy for a multimodal input. Following precedent,

tabular features use feature correlations, while neighbouring are grouped using the

existing SHAP scoring method. The hybrid hierarchy is created by merging the

two hierarchies at the highest level, thereby preventing the grouping of tabular

features and word tokens.

5.4 Experimentation

5.4.1 Combination Methods

In the experimentation part of this study, we utilise five combination methods to

merge text and tabular features, as illustrated in Figure 5.3: Weighted-Ensemble

(using three different weights), Stack-Ensemble, and All-Text. These strategies are

explained in this section.

Weighted-Ensemble: Tabular and text models are trained separately, and their

predictions are combined with a weighted sum. We use w as the weight of the text

model prediction and (1 − w) as the weight of the tabular model prediction. In

this study, the tabular model is a LightGBM (Ke et al., 2017), and we experiment

with three values of w: 0.25, 0.50, and 0.75.

Stack-Ensemble: Similar to the Weighted-Ensemble, text and tabular models are

trained independently on their respective features. However, in the Stack-Ensemble,

a meta-model is introduced. This model is trained on the validation set using the

predictions from both the tabular and text models, along with the original tab-

ular inputs. The goal is to learn, based on the values of the tabular features,

which predictions from either the tabular or text models should be given more
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5.4.1. Combination Methods

emphasis. This approach allows for a more nuanced and adaptive combination of

the predictions, potentially capturing interdependencies between the two modal-

ities. LightGBMs are used as the tabular and meta models in our experiments.

This strategy often performed best for Shi et al. (2021), although, in this study, we

do not undertake k-fold cross-validation used to train the meta-model in order to

reduce computation.

All-Text: In this method, all inputs, including tabular data, are treated as text,

enabling us to leverage the capabilities of large language models. All features are

fit to a string template and used to fine-tune a text model. In our experiments, we

use a template in the form of Column name: Column value, delineated by ‘|’. An

example is shown in Figure 5.2 (top).
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Figure 5.3: Combination methods used in this study. Left: A Weighted-Ensemble. Middle: A Stack-Ensemble. Right: All-Text.



5.4.2. Text Models

5.4.2 Text Models

The pre-trained language models that we finetune are BERT (Devlin et al., 2018),

DeBERTa (He et al., 2020), DistilBERT (Sanh et al., 2019), and DistilRoBERTa

(Sanh et al., 2019). In order to isolate the differences to the independent variables

in question, for each TM-DS, we only train two text models. One is trained for

All-Text, which uses all features, and one, which only uses the tabular features, for

the Weighted-Ensembles and Stack-Ensemble.

5.4.3 Datasets

The datasets used are from Shi et al. (2021), consisting of five multiclass and four

binary classification tasks. We prepare the datasets in two different ways. The

first, for the All-Text method, simply involves converting all values to strings. The

second involves preparing the text and tabular features separately. Text features are

converted to strings, numeric tabular features are left as they are, and categorical

tabular features are ordinally encoded. For two of the datasets (airbnb and imdb),

some of the features needed to be removed so as not to exceed the token limit of

the text models. Preprocessing details and all final datasets are made available

on the project’s GitHub and Hugging Face repositories, respectively. The original

test sets are used; the original train sets are divided into train and validation sets

using an 85:15 split. After training the models, we find similar results to Shi et al.

(2021) and report the results in Table 5.2. However, in some cases, our trained

Stack-Ensemble models overfit and perform poorly on the test data. In order for

our analysis of explanations to be valid, out of 216 experiments, we exclude 17

models that perform notably worse than others on the same dataset. For channel,

we omit all All-Text and All-Text (Unimodal) results; for salary and wine we omit

all Stack-Ensemble results and for prod we omit Stack-Ensemble for DistilBERT.
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Table 5.1: Dataset information. This represents the dataset characteristics post-processing.

Dataset ID Train Test #Tab. Fts #Text Fts Task Metric Prediction Target
prod 5,091 1,273 1 1 multiclass accuracy sentiment associated with product review
salary 15,841 3,961 1 5 multiclass accuracy salary range in data scientist job listings
airbnb 18,316 4,579 35 5 multiclass accuracy price label of Airbnb listing
channel 20,284 5,071 16 1 multiclass accuracy news category to which article belongs
wine 84,123 21,031 2 3 multiclass accuracy which variety of wine (type of grape)
imdb 800 200 7 1 binary roc-auc whether film is a drama
fake 12,725 3,182 2 3 binary roc-auc whether job postings are fake
kick 86,502 21,626 6 3 binary roc-auc whether Kickstarter project will achieve funding goal
jigsaw 100,000 25,000 29 1 binary roc-auc whether social media comments are toxic



5.4.4. Generating SHAP Values

Table 5.2: Performance of trained classifiers that are subsequently used to generate
explanations. * indicates models that are excluded from explanation analysis due
to poor performance relative to dataset peers. WE: Weighted-Ensemble

airbnb channel fake imdb jigsaw kick prod salary wine
(acc) (acc) (roc) (roc) (roc) (roc) (acc) (acc) (acc)

BERT WE (w=.25) .416 .544 .887 .851 .927 .748 .891 .431 .796
WE (w=.50) .421 .543 .928 .861 .941 .782 .881 .467 .826
WE (w=.75) .404 .502 .939 .857 .949 .776 .785 .479 .825
Stack-Ensemble .364 .466 .905 .822 .931 .755 .730 *.239 *.072
All-Text .387 *.254 .962 .828 .961 .781 .905 .481 .826

DeBERTa WE (w=.25) .418 .544 .871 .857 .927 .747 .891 .438 .781
WE (w=.50) .418 .540 .908 .872 .936 .779 .884 .468 .811
WE (w=.75) .400 .445 .921 .859 .944 .769 .811 .476 .810
Stack-Ensemble .351 .447 .905 .820 .928 .738 .874 *.277 *.078
All-Text .377 *.317 .959 .797 .955 .776 .888 .458 .817

DistilBERT WE (w=.25) .420 .545 .874 .853 .932 .741 .891 .394 .793
WE (w=.50) .419 .546 .919 .865 .946 .774 .879 .450 .822
WE (w=.75) .389 .481 .934 .852 .951 .768 .797 .456 .822
Stack-Ensemble .372 .449 .909 .811 .916 .749 *.665 *.171 *.022
All-Text .380 *.319 .961 .815 .962 .788 .901 .458 .819

DistilRoBERTa WE (w=.25) .419 .544 .865 .846 .941 .741 .891 .435 .798
WE (w=.50) .414 .547 .908 .853 .955 .784 .885 .468 .825
WE (w=.75) .387 .488 .927 .831 .961 .783 .796 .471 .824
Stack-Ensemble .380 .459 .919 .831 .903 .770 .885 *.329 *.037
All-Text .390 *.313 .958 .772 .964 .795 .904 .471 .821

5.4.4 Generating SHAP Values

For each dataset, we randomly select 100 instances from the test set to be explained.

For experiments using the multimodal masker, a background dataset of size 100 (the

default size for unimodal tabular SHAP) is randomly selected from the training set.

Each TM-CM experiment on a dataset will explain the same 100 instances and use

the same background dataset. We generate SHAP values for the selected instances

for each TM-CM-DS combination using the multimodal masker. We also compute

SHAP values for the same 100 instances for each TM-DS combination using the

unimodal text masker and the All-Text combination method, we refer to these as

All-Text (Unimodal).

105



5.5. Results

5.5 Results

We utilise a process similar to the SHAP package’s summary plot function to

account for the varying label counts and token quantities across instances. To be

precise, for each instance, there are T tokens, each belonging to one of F features.

Each token has associated SHAP values for L labels. First, we sum the SHAP values

for each token, t ∈ T , belonging to a feature, f ∈ F . We then take the absolute

value and sum across each label, l ∈ L. Condensing results in this manner yields a

single SHAP value for each feature in each instance, indicating how important the

feature was to the model. we refer to this as feature importance or ϕ.

ϕf =
∑
l∈L

|
∑
t∈f

SHAPValuet,l| (5.1)

5.5.1 Template Analysis: Summary Plot Example

First, we look to understand how significant of an issue the problems are with

All-Text (Unimodal). Figure 5.4 shows a summary plot produced by the SHAP

library for DS=imdb, TM=DisBERTa. The mean absolute SHAP value is charted

for each of the labels (two, in this case). The average is across the whole set of 100

explained test set examples. Here, we have split up the input such that each input

is made up of two parts: the feature template and the feature value. For example,

here, the feature template is in red and the feature value is in blue for the Runtime

(Minutes) feature:

‘... | Runtime (Minutes): 98’

This summary plot is of the imdb dataset where the model predicts whether a film

is a drama or not, so therefore, it is not surprising that the Description feature

value is the most important and we also see the Description feature template as

the second most important. However, the six next most important features are all

feature templates. In fact, for all features bar Description, the feature template is
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5.5.1. Template Analysis: Summary Plot Example

Figure 5.4: SHAP summary plot for imdb test set where TM=DisBERTa and
CM=All-Text (Unimodal). The mean absolute SHAP value is plotted on the x-
axis for each of the features (y-axis). The features have been split up into two,
with the template parts being labelled as [Templ.]. This is to demonstrate the
erroneous importance being assigned to template values when using CM=All-Text
(Unimodal).

given a higher feature importance than the feature value despite being identical in

every example.

Looking back to an individual SHAP plot in Figure 5.2, one can see the cause.

As highlighted in Section 5.2, the template is being given an artificial level of

importance with Unimodal SHAP asking the (invalid) question of ‘What happens

if this feature template is absent?’ and simulating two numerical feature values

conjoin. Figure 5.4 points towards this being the case for the entire dataset, not

just an odd example.
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5.5.2. Template Analysis: Summary Plot for All Experiments

5.5.2 Template Analysis: Summary Plot for All Experiments

First, we wish to point out the relationship between the summary plot shown in

Figure 5.4 and feature importance, ϕ. The summary plot shows the mean absolute

feature importance for each feature and each label; in Figure 5.4, this is shown in

blue for the True label and red for the False label. Note that for a binary problem,

this is necessarily equal for both labels. ϕ is simply the mean absolute feature

importance summed across labels; graphically, in this example, for each feature

value and feature template, the red and the blue stacked bars become one.

In Figure 5.5, we stack ϕs for each template feature and template value and use

the following colour scheme:

• Green: Text feature value

• Purple: Tabular feature value

• Orange: Text feature template

• Blue: Tabular feature template

Following the summary plot explored in Figure 5.4, this has now formed the bottom

bars labelled ‘disbert’ in Figure 5.5(e). The only text feature for this dataset is

Description; the previously blue and red mean absolute SHAP value for the feature

value becomes a single green bar, and the Description template becomes the orange

bar. All other features are tabular and they are summed to form the purple and

blue bars for the feature values and feature templates, respectively.

Analysing the charts, one can see that this is not isolated to the imdb dataset. In

fact, for most of the experiments, one can see that feature templates get assigned

a substantial proportion of the total ϕ, tabular feature templates in particular.

Indeed for TM=[jigsaw, imdb, channel and airbnb], the summed ϕ for the tabular

feature templates exceeds that of the values. Furthermore, for airbnb, tabular fea-

ture templates carry higher importance than both text and tabular feature values.
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5.5.2. Template Analysis: Summary Plot for All Experiments
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5.5.2. Template Analysis: Summary Plot for All Experiments
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Figure 5.5: Stacked mean feature importance charts for each of the four text models,
for each of the nine datasets when CM=All-Text (Unimodal). These are equivalent
to the SHAP summary chart in Figure 5.4, but stacked horizontally. For each
bar, each colour represents the level of importance assigned to text feature values
(green) and templates (orange) and tabular features (purple) and templates (blue).
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5.5.3. Template Analysis: Checking for Trends

5.5.3 Template Analysis: Checking for Trends

Our goal was to explore any overarching reasons that would cause a template

feature to be weighted more highly. We checked to see if there were any trends

between

• Number of tokens in feature and template importance

• Feature value importance and template importance

• Feature value importance, split by text and tabular features, and absolute

feature importance

To be clear, all of these experiments are done with All-Text (Unimodal) as this is

the only combination method which yields feature importance values for templates.

The other combination methods, that use the multimodal masker, do not assign

importance to template tokens by design.

5.5.3.1 Is Template Feature Importance Affected by Length of

Feature?

In Figure 5.6, each of the nine plots represents a point for each instance, for each

feature for a particular dataset, coloured by text model. We use a log scale on

both axes, considering that feature importances have a wide range. One can see no

particular relationship between how long a particular feature is and how important

the template is for that same feature.
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5.5.3.1. Is Template Feature Importance Affected by Length of Feature?

Figure 5.6: Scatter plot exploring if there is a relationship between the number
of tokens in a feature (x-axis) with the absolute feature importance given to the
template value of the measured feature (y-axis).
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5.5.3.2. Does an Important Feature Value Lead to an Important Feature Template?

5.5.3.2 Does an Important Feature Value Lead to an Important

Feature Template?

Similarly, in Figure 5.7, each of the nine plots represents a point for each instance,

for each feature for a particular dataset, coloured by text model. Here, we hypo-

thesised that a larger importance value for a feature’s value would lead to a higher

importance value for that feature’s template. Some feature values were much longer

than others, so therefore for each set of tokens in a feature value, we looked at the

feature importance of each token and took the median value. This is plotted on

the x-axis against the absolute value of the feature’s template (y-axis).

Figure 5.7: Scatter plot exploring if there is a relationship between median feature
importance value number of tokens in a feature (x-axis) with the absolute feature
importance given to the template value of the measured feature (y-axis).
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5.5.3.3. Do Some Text Models or Combination Methods Assign More Importance to
Template Tokens?

Once more, a log scale is used for both axes. One can see a general trend between

the two variables, although the severity of said relationship varies substantially

between datasets with wine having a particularly loose fit.

5.5.3.3 Do Some Text Models or Combination Methods Assign More

Importance to Template Tokens?

In Figure 5.5, we saw that when accumulated, tabular feature templates were

often greater than the text feature equivalent. Therefore, we wanted to answer

whether it was specifically because they were a tabular feature that they gained

higher feature importance. In Figure 5.8, for each dataset, for each text model, we

represent the distribution of absolute feature template importance for every feature

of every instance with a box plot. Tabular features form red box plots and text

features form blue box plots with green dots representing the mean. After Figure

5.5, we was expecting to see tabular template values score more highly than the

text equivalent, however, this is not the case. In fact, although for most datasets

the plots are very similar, for jigsaw and channel datasets the median text feature

template is substantially higher than the tabular equivalent.

At first glance, this goes against what we saw in Figure 5.5; however, we theorise

that this is down to the dissimilarity in the number of text and tabular features. In-

deed, jigsaw and channel (together with airbnb) have the greatest disparity between

the number of features for each modality. A higher median and interquartile range,

as shown in the box plots, suggests a large number of these tabular features are

unimportant and ignored, whereas jigsaw and channel only have a single text fea-

ture.

These results show that the more important a language model finds a feature,

generally, the more important it will find the template value of the same feature.

However, one cannot say that simply because a feature is one modality or another

leads to a template value being assigned more or less importance.
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5.5.3.3. Do Some Text Models or Combination Methods Assign More Importance to
Template Tokens?

Figure 5.8: Absolute importance of a feature’s template, against that feature’s
status as a text or tabular feature, further split by text model.
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5.5.4. All Feature Analysis: Comparing Ranking of Features

5.5.4 All Feature Analysis: Comparing Ranking of Features

5.5.4.1 Top Five Features

We wish to answer the question: Are the same features always the most important?

Specifically, for each dataset, we wanted to see whether the same inputs to the

model are deemed as important when we change the underlying text model or

combination method. For example, ‘room type’ is the most important feature

for the airbnb dataset with text model as DistilBERT and combination method

as stack, but is that still the case when we change to a different model? This

will give an indication as to whether certain features in the data have an inherent

importance, or alternatively does our choice of experiment determine which features

are focused on? To make an assessment on this, first, we plotted bar charts of the

top features by feature importance; here, the template is treated as a single feature.

This is shown in Figures 5.9.

These sets of charts offer three conclusions: first, there are certainly differences in

how features are ranked; second, the scale of the ϕ values vary across experiments;

and third, within experiments, ϕ values do not appear to be normally distributed

across features, frequently with a single feature much more important than the

others, and/or a long tail of unimportant features, although this is not shown in

the charts which only graph the top five for each experiment.
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Figure 5.9: Top five features for each of the datasets, combination methods and text models.



5.5.4.2. Kendall’s Tau

5.5.4.2 Kendall’s Tau

For each experiment, we compare the order of features, ranked by ϕ from most to

least important, to allow comparisons across different experiments. Therefore, we

chose to use Kendall’s rank correlation coefficient, or Kendall’s τ (Kendall, 1938),

a non-parametric test to measure rank correlation. It is scored between -1 and 1,

with identical rankings scoring 1 and opposite scoring -1.

τ = Number of concordant pairs − Number of discordant pairs
Total number of pairs (5.2)

For each TM-DS, for each of the 100 instances, we compare the ordering of features

ranked by ϕ by calculating Kendall’s τ between each pairing of CM and summarise

the results in Table 5.3. The non-summarised results can be found in Table 8.1.

We find that the three Weighted-Ensembles are the most similar to each other, as

expected with their shared methodology. On the other hand, All-Text and All-Text

(Unimodal) are most dissimilar to those with the most focus on tabular features:

Stack-Ensembles. In general, All-Text is more similar to the remaining CMs than

All-Text (Uni).

Similarly, for each CM-DS, for each of the 100 instances, we calculate Kendall’s

τ between each pairing of TM and summarise the results in Table 5.4. The non-

summarised results can be found in Table 8.2. One can see that changing TM

causes less change in ϕ rankings than changing CM, with all pairs scoring a mean τ

of 0.69-0.75. DeBERTa is the most different of the text models by a slight amount,

likely because of the different way that it tokenizes, with spaces treated as part of

the tokens.
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Table 5.3: Mean (SD) Kendall’s τ comparing the ϕ rankings of each combination
method. Self-comparisons are trivially perfectly correlated (τ = 1) and are omitted.
Each result in is an average of n=3600 τ ’s (100 instances by 9 DSs by 4 TMs).
Note for each excluded experiment, n will be less by 100. WE refers to Weighted-
Ensemble and w indicates the weighting of the text model. AT refers to All-Text
and AT (Uni.) refers to the unimodal version of All-Text.

AT (Uni.) AT WE (w=.25) WE (w=.50) WE (w=.75)
All-Text .46 (.32)
WE (w=.25) .30 (.33) .36 (.38)
WE (w=.50) .38 (.34) .45 (.37) .83 (.17)
WE (w=.75) .40 (.34) .46 (.37) .69 (.24) .85 (.16)
Stack .18 (.32) .25 (.43) .63 (.25) .62 (.29) .55 (.31)

Table 5.4: Mean (SD) Kendall’s τ comparing the ϕ rankings of each text model.
Self-comparisons are trivially perfectly correlated (τ = 1) and are omitted. Each
result is an average of n=5400 τ ’s (100 instances by 9 DSs by 6 CMs). Note for
each excluded experiment, n will be less by 100.

DistilBERT BERT DistilRoBERTa
BERT .75 (.27)
DistilRoBERTa .73 (.29) .71 (.29)
DeBERTa .70 (.28) .69 (.28) .69 (.30)

5.5.5 All Feature Analysis: Are Text and Tabular Features

Weighted Differently?

Furthermore, we investigate whether the weighting of text and tabular features

differ depending on the TM or CM used. As there is no guarantee of equal numbers

of each feature type, we evaluate the difference between the average text ϕ and

tabular ϕ, referring to this difference as ∆. We choose the median as ϕ is not

normally distributed across instances.

∆ = ϕMedian Text Feature − ϕMedian Tabular Feature (5.3)

For each DS-TM combination, we test to see whether ∆ differed between CMs. Sim-

ilarly, for each DS-CM combination, we test to see whether ∆ differed between TMs.

∆ follows a non-normal distribution so we use the Kruskal-Wallis test (Kruskal and
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Wallis, 1952). The Kruskal-Wallis test, otherwise known as a one-way ANOVA on

ranks, is a non-parametric test for hypothesis testing between subjects for a non-

normal continuous variable. The alternative hypothesis is that not all population

medians are equal. ε̂2
ordinal is the effect size of the Kruskal-Wallis test and indicates

the percentage of the variation in the dependent variable that is explained by the

independent variable.

We choose to focus here on one experiment, although similar charts for other

experiments can be found in Figures 8.1 and 8.2. In Figure 5.10, we compare

∆’s for each CM when DS=fake and TM=BERT. The significant Kruskal-Wallis

testχ2
Kruskal Wallis(5) = 241.30, p = 4.03e − 50 indicates that all medians are not

equal, as is clear visually. Additionally, ε̂2
ordinal = 0.40 indicates that 40% of the

variation in ∆ is explained by the changes in the combination method. Figure 5.10

also shows non-significant pairwise tests, indicated with a bar. As Kruskal-Wallis

tests if a group of populations are the same, in order to compare two groups, Dunn’s

test (Dunn, 1961) is appropriate. These tests have the Holm multiple-comparison

adjustment applied.
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5.5.5. All Feature Analysis: Are Text and Tabular Features Weighted Differently?

Considering ε̂2
ordinal for each experiment, we report the results in Tables 5.5 and

5.6. Table 5.5 shows the proportion of variance in ∆ explained by the changes

in combination method for each of the four text models. Table 5.6 shows the

proportion of variance in ∆ explained by the changes in the text model for each of

the six combination methods.

Table 5.5: Effect size by model. We report the Mean (SD) effect size of the Kruskal-
Wallis test (ε̂2

ordinal) when we test to see what proportion of the variance in the
dependent variable, ∆, can be explained by changes in the independent variable:
combination method.

airbnb channel fake imdb jigsaw kick prod salary wine
BERT 0.46 0.53 0.40 0.66 0.40 0.23 0.54 0.31 0.56
DeBERTa 0.47 0.52 0.45 0.50 0.46 0.33 0.56 0.29 0.48
DistilBERT 0.46 0.53 0.46 0.53 0.44 0.25 0.67 0.40 0.66
DistilRoBERTa 0.45 0.48 0.43 0.57 0.29 0.23 0.74 0.37 0.60
Mean (SD) .46 (.01) .52 (.02) .44 (.02) .57 (.06) .40 (.07) .26 (.04) .63 (.08) .34 (.04) .58 (.07)

Table 5.6: Effect size by method. We report the Mean (SD) effect size of the
Kruskal-Wallis test (ε̂2

ordinal) when we test to see what proportion of the variance
in the dependent variable, ∆, can be explained by changes in the independent
variable: text model.

airbnb channel fake imdb jigsaw kick prod salary wine
All-Text 0.19 NaN 0.28 0.06 0.18 0.09 0.40 0.24 0.04
All-Text (Uni.) 0.06 NaN 0.33 0.09 0.36 0.09 0.18 0.05 0.12
WE (w=.25) 0.12 0.08 0.21 0.00 0.35 0.05 0.06 0.05 0.04
WE (w=.50) 0.13 0.13 0.26 0.00 0.35 0.07 0.16 0.06 0.11
WE (w=.75) 0.13 0.14 0.28 0.01 0.35 0.08 0.16 0.07 0.14
Stack 0.03 0.23 0.09 0.11 0.30 0.10 0.15 NaN NaN
Mean (SD) .11 (.05) .15 (.05) .24 (.08) .05 (.04) .32 (.06) .08 (.02) .19 (.10) .09 (.07) .09 (.04)

Table 5.7: To represent a single experiment, we take the median ∆ and report
the Mean (SD) for each Combination Method. Higher values of ∆ indicate a
higher weighting of text features compared to tabular features. The median ∆
for an experiment represents 100 instances. Each result is an average of n=36
experiments (4 TMs by 9 DSs) and w indicates the weighting of the text model.

Combination Method Median ∆
All-Text (Unimodal) .08 (.29)
All-Text .15 (.37)
Weighted Ensemble (w=.25) -.03 (.16)
Weighted Ensemble (w=.50) .09 (.14)
Weighted Ensemble (w=.75) .22 (.19)
Stack Ensemble -.06 (.23)

Taking the median ∆ from each of the 199 experiments (the labelled dark red circles
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Table 5.8: To represent a single experiment, we take the median ∆ and report the
Mean (SD) for each Text Model. Higher values of ∆ indicate a higher weighting
of text features compared to tabular features. The median ∆ for an experiment
represents 100 instances. Each result is an average of n=54 experiments (6 CMs
by 9 DSs).

Text Model Median ∆
BERT .05 (.29)
DistilBERT .10 (.21)
DistilRoBERTa .10 (.28)
DeBERTa .06 (.25)

in Figure 5.10 show six of them), we average over text model and combination

method and report the summary statistics in Tables 5.7 and 5.8 respectively. We

see that changing the text model has much less of an impact than changing the

combination method. Looking at Table 5.7, the three Weighted-Ensembles follow a

predictable pattern, with the preference for text over tabular features as w increases

from 0.25 through to 0.75. Specifically, we see ∆ increasing as the weighting of

the text model predictions increases. When comparing ∆ for All-Text and All-

Text (Unimodal), we observe that unimodal explanations put a higher weight on

tabular features (reflecting a lower ∆). Stack-Ensembles, on average, placed the

lowest relative emphasis on text features. We hypothesise this to be a consequence

of tabular features appearing twice in the training process, first at the initiation of

the tabular model and then during the meta-model.
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5.5.6 All Feature Analysis: Explainability Consistency

In order to compare the quality of our multimodal masker with the unimodal

masker, we first point out that both retain all the qualities of a SHAP explanation,

namely local accuracy, missingness and consistency. However, another method

of explanation quality was proposed in Watson et al. (2022), which looked at how

consistent entire explanations were when regenerating SHAP values after retraining

the same model architecture with a different random seed. A simple linear model,

M , is trained to classify between the SHAP values of models a and b, and α is the

number of comparisons made. The metric is scaled to be between 0 and 1, with a

perfectly confused linear model with 50% accuracy scoring 1.

C = 1 −
Σ(a,b)2 ∗ |M(a, b) − 0.5|

α
(5.4)

We choose to experiment with TM=DistilRoBERTa and DS=fake for strong per-

formance and a similar number of text and tabular features. We finetune the text

model four times with four different random seeds, then generate SHAP values

from the same 1000 test set instances using both maskers using CM=All-Text. For

each masker, a linear model is trained with 10-fold cross-validation to distinguish

each of the six unique pairings (α = 6). Table 5.9 shows the results.

Table 5.9: Using CM=All-Text, TM=DistilRoBERTa and DS=fake, we compare
explanation consistency when using multimodal and unimodal maskers.

Combination Method Explanation Consistency
All-Text (Unimodal) .659
All-Text .853

5.5.7 Reordering and Retraining Based on Feature Importance

Order

Here, we aim to test whether the order of features can be manipulated to achieve

greater performance on the test set. For each experiment, we reorder the features
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in the All-Text template based on how important each feature was ranked. For

each experiment, we train two new models: one based on how features were ranked

using the multimodal masker and one based on how features were ranked using the

unimodal masker. The newly ordered features are fit to the string template from

most to least important. We report the results in Table 5.10.

Assessing the results, there is no clear improvement from reordering the features.

The differences between the two new models and the original are small with no

clearly best-performing strategy. Therefore, we cannot say that reordering makes a

significant difference, nor that using the unimodal masker rankings over multimodal

- or vice versa - provided a significant change in performance.

Table 5.10: Model results based on models retrained with inputs reordered from
most to least important. The ranking of features and subsequent retraining was
done twice, first from All-Text (Unimodal), (results under UM Reorder) and second
from All-Text, which uses the multimodal masker (results under MM Reorder). We
also report the original score from Table 5.2.

airbnb channel fake imdb_genre jigsaw kick prod_sent salary wine
(Acc.) (Acc.) (ROC) (ROC) (ROC) (ROC) (Acc.) (Acc.) (Acc.)

BERT Original .387 .254 .962 .828 .961 .781 .905 .481 .826
UM Reorder .378 .254 .955 .804 .962 .521 .905 .469 .826
MM Reorder .374 .254 .941 .837 .957 .788 .905 .473 .829

DeBERTa Original .377 .317 .959 .797 .955 .776 .888 .458 .817
UM Reorder .378 .254 .955 .767 .962 .789 .888 .451 .821
MM Reorder .381 .332 .956 .777 .957 .792 .888 .459 .819

DistilBERT Original .380 .319 .961 .815 .962 .788 .901 .458 .819
UM Reorder .358 .319 .961 .815 .964 .784 .901 .463 .819
MM Reorder .377 .317 .958 .813 .963 .786 .901 .471 .816

DistilRoBERTa Original .390 .313 .958 .772 .964 .795 .904 .471 .821
UM Reorder .366 .321 .958 .760 .958 .790 .907 .471 .821
MM Reorder .371 .299 .962 .760 .959 .789 .904 .470 .826

5.6 Conclusion

In this study, we enable the generation of SHAP values for any text-tabular com-

bination method for the first time. This novel multimodal masker facilitates the

masking of text and tabular features without first requiring conversion into a single

modality. This opens up new avenues for explainability in multimodal models, al-

lowing one to gain insights into new combination methods for the first time. We
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addressed the limitations of the existing unimodal masker, which restricted the

generation of SHAP explanations to the All-Text combination method. By defer-

ring input formation until after the masking stage and treating text and tabular

features consistently regardless of how they are combined, one can avoid the pitfalls

of the unimodal approach.

Through extensive experimentation across nine datasets, we explored how changing

text models and combination methods affect the resulting explanations. In partic-

ular, we find All-Text models favour textual features, whereas Weighted-Ensembles

with a low text weighting w, and Stack-Ensembles - which see each tabular fea-

ture twice - favour tabular features. Across all datasets, changing the combination

method had a greater impact on feature importance rankings than changing the

text model. Finally, we retrained and regenerated SHAP values for CM=All-Text,

TM=DistilRoBERTa, and DS=fake and found that the multimodal masker pro-

duces more consistent explanations than the unimodal masker.

Although we experimented with many datasets, text models, and several combin-

ation methods, there are still other factors that were omitted and could be experi-

mented with. For All-Text, only a single style of string template was used. Future

work could explore how explanations are affected when templates are varied. Fur-

thermore, this work focuses on the initial implementation and subsequent analysis;

further work could target speed and efficiency gains with specific configurations

for certain model types and combination methods, as have been developed for the

original SHAP library.

5.7 Additional Material

134



Chapter 6

Explainable Text-Tabular Models

for Predicting Mortality Risk in

Companion Animals

In this chapter, we apply the multimodal masking framework from the previous

chapter (Chapter 5) to identify risk factors for companion animal mortality in first-

opinion veterinary EHRs from across the United Kingdom. As clinical datasets

contain a range of modalities, from the free-text of clinician notes to structured

tabular data entries, there was a clear opportunity to apply the framework to

provide comprehensive explanations. As in Chapter 5, we present five multimod-

ality approaches, with the best-performing method utilising PetBERT, a language

model pre-trained on a veterinary dataset (see Section 2.2).

we investigate the important features, demonstrating PetBERT’s inclination to en-

gage more with free-text narratives compared to BERT-base. The investigation

also explores the important features on a more granular level, identifying distinct

words and phrases that substantially influenced an animal’s life status prediction.

PetBERT showcased a heightened ability to grasp phrases associated with veterin-

ary clinical nomenclature, signalling the productivity of additional pre-training of

language models.
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6.1 Introduction

Life expectancy serves as a fundamental metric for understanding human and an-

imal populations’ overall health and well-being (Roser et al., 2013). Understanding

life expectancies permits insights into the health status of a populace and aids in

the identification of health disparities and inequalities between specific regions.

Tools designed for monitoring mortality play a vital role in assisting researchers in

pinpointing events occurring earlier in life that may reduce overall lifespan. Never-

theless, national mortality rates for companion animals are not subject to regular

monitoring. The surveillance of EHRs collected from primary-care veterinary prac-

tices represents a valuable means to gain insights into companion animals’ current

population health status and we discuss one particular dataset collected by the

Small Animal Veterinary Surveillance Network (SAVSNET) in Section 2.2.

Despite their potential, it is challenging to harness the total utility of first-opinion

veterinary EHRs on a large scale. The implementation of disease coding frame-

works, while advantageous for researchers, often proves counter-intuitive in clin-

ical practice and impractical for everyday use. Previous studies have underscored

records annotated by clinicians as part of their routine responsibilities as being

particularly susceptible to inaccuracies and omissions (Lloyd and Rissing, 1985;

Zafirah et al., 2018). Adopting an unstructured, free-text format in contempor-

ary veterinary EHRs while affording clinicians greater linguistic flexibility presents

challenges in developing automated systems (Mcdonald, 1997; Rosenbloom et al.,

2017).

Combining this free text field with tabular data points summing up their clinical

history has been used by Farrell et al. (2023b) to train models predicting the

mortality of companion animals in the SAVSNET dataset. However, the limited

arsenal of explainability techniques means that current methods, such as SHAP

(Lundberg and Lee, 2017a) or LIME (Ribeiro et al., 2016a), are insufficient, as

they can only address one modality at a time. Consequently, a compelling need
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6.1. Introduction

arises to develop comprehensive explainability systems for deep learning models

in clinical contexts that capture all the available data and ensure that healthcare

practitioners make clinical decisions with confidence and trust.

This chapter builds upon the previous research by applying the novel multimodal

masking framework that was introduced in Chapter 5 to the veterinary clinical

domain. We extend the work of Farrell et al. (2023b), applying five combination

techniques of combining modalities for mortality prediction. Using the multimodal

masking framework, we generate SHAP explanations for all techniques and invest-

igate the reasons for performance differences, particularly the improvement when

using an additionally pre-trained large language model (PetBERT) that is tailored

to veterinary clinical records.

The investigation delves into the unique words, phrases and individual tabular val-

ues to directly compare which characteristics significantly affect the prediction of

an animal’s living status. By incorporating multiple modalities, including breed,

age, deprivation scores, and clinical narratives, we unveil the features contributing

to increased mortality risk. The implications of this research extend beyond an-

imal welfare and highlight the potential of a multimodality explanation framework

applicable across diverse tasks.

To summarise, the contributions of this chapter are as follows:

• The training of a selection of models across five combination types and two

text models to predict companion animal mortality from a veterinary text-

tabular dataset.

• An application of the multimodal masking framework proposed in the previ-

ous chapter to generate explanations for each of the methods and a subsequent

analysis of the risk factors associated with animal mortality.

• A more granular investigation on the individual words, phrases and tabular

values that are most influential for a model prediction.
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6.2 Dataset

For the dataset, we start with the SAVSNET dataset, prepared for mortality pre-

diction in Farrell et al. (2023b), using the semi-supervised mortality labels as pre-

diction targets. Whereas the authors build a model for predicting mortality 1-12

months in advance, we look only at predicting mortality 1 month in advance so

that our analysis can focus on the difference between combination methods and

text models. Furthermore, we make adjustments as to which features are counted

as text and tabular, treating categorical features with more than 30 unique values

as text features, namely breed and region. This was done to avoid extensive one-hot

encoding or ordinally encoding variables with no linear relationship.

6.3 Method

6.3.1 Model Training

we determine whether an animal known to have died within 28 days of the last

given consultation can be identified using all five combination methods from the

previous chapter, first with BERT as the language model and then repeat with

PetBERT as the language model, for a total of 10 experiments. SAVSNET data

contains a mixture of free-text and tabular features, so in this study, we utilise five

different methods of training a model with both modalities. Figure 6.1 outlines

the combination methods. As in Chapter 5, we use the All-Text approach, three

Weighted-Ensembles models and a Stack-Ensemble. In the All-Text approach, all

features are fit to a string template and fed to a large language model; the following

format is utilised:

Column name 0: Column value 0 | Column name 1: Column value 1 | ...

For the Weighted-Ensembles, text and tabular models are trained separately, and

their predictions are combined in weighted sum, with w as the weight of the text
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6.3.2. Model Evaluation

model prediction and 1-w as the weight of the tabular model prediction). Once

more, we experiment with three values of w: 0.25, 0.50 and 0.75. The Stack-

Ensemble method also requires separately trained text and tabular models but

also has a third model, a meta-model, trained on the tabular features and the text

and tabular predictions using the validation set. All tabular and meta-models are

light gradient boosting classifiers (Ke et al., 2017).

Meta Model
(trained on validation set)

Tab. Model 
Prediction

Text Model 
Prediction

Tabular 
Features

Text 
Features

Tabular 
Features

+

1-w w

Text 
Features

Tabular 
Features

Instance Fitted to String 
Template

Weighted-Ensemble Stack-Ensemble All-Text

Text 
Model

Tab. Model 
Prediction

Text Model 
Prediction

Text 
Features

Tabular 
Features

Tabular 
Model

Text 
Model

Text 
Model

Tabular 
Model

Figure 6.1: Combination methods used in this study, first seen in Chapter 5. Left:
A Weighted-Ensemble. Middle: A Stack-Ensemble. Right: All-Text.

6.3.2 Model Evaluation

For each text model-combination method pair, we evaluate the performance against

a test dataset selected from the 2m records set aside from the initial pre-training of

PetBERT in Farrell et al. (2023b). Therefore, this test set contained records that

had not been seen by PetBERT in either the initial masked learning step or in the

downstream classifications step. Following the original PetBERT paper (Farrell

et al., 2023b), we report performance using the F1 score, see Table 6.1a. For added

information, we also report accuracy in Table 6.1b.
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Table 6.1: Test set F1 (a) and accuracy (b) scores for all models. We also report the
scores when only the text columns are used to train the language models, labelling
this All Text (Txt fts only). WE refers to Weighted-Ensemble

(a) F1 scores on test set

PetBERT BERT
Stack .828 .821
WE w=.25 .822 .823
WE w=.50 .844 .828
WE w=.75 .828 .800
All Text .831 .823
All Text (Txt fts only) .811 .783
Tabular Model .802

(b) Accuracy scores on test set

PetBERT BERT
Stack .820 .807
WE w=.25 .809 .810
WE w=.50 .832 .817
WE w=.75 .814 .785
All Text .823 .816
All Text (Txt fts only) .794 .766
Tabular Model .789

6.3.3 Generating SHAP values

The goal is to explore the reasons for the similarities and differences in the per-

formances and investigate why PetBERT outperformed BERT for four of the five

combination methods. To do so, we generate SHAP values for each combination of

the two independent variables: combination method (CM) and text model (TM).

To isolate the differences in explanations to the independent variables, we choose

the same 1000 randomly selected test-set examples to be explained for each TM-CM

combination.
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6.4 Results

To account for the variations observed in label counts and token quantities across all

instances, we utilise a process similar to those developed within the original SHAP

package’s summary plot function. Whereas tabular features produce a single SHAP

value, text features produce a SHAP value for each word piece. Therefore, we sum

the SHAP values such that each feature is represented by a single value. Specifically,

there are T tokens for each instance, each belonging to one of F features. Each

token has associated SHAP values for L labels, which for this binary classification

task is 2. First, the SHAP values for each token are summed, t ∈ T , belonging to

a feature, f ∈ F before converting to the absolute value and sum across each of

the two labels, l ∈ [alive, dead]. Therefore, a single SHAP value for each feature

in each instance indicates how important the feature was to the model. We refer

to this as feature importance or ϕ.

ϕf = |
∑
t∈f

SHAPvaluet,l=alive| + |
∑
t∈f

SHAPvaluet,l=dead| (6.1)

Note that this is the same feature importance formula as the previous chapter.

However, for clarity, the formula is written verbosely for alive and dead as there

are only two labels and a single dataset, instead of a sum across all labels.

6.4.1 Which Features are the Most Important?

Typically, to see how important a feature is across the entire dataset, one would use

a SHAP summary plot, which shows mean absolute SHAP values for each feature,

averaged across the entire dataset. In this analysis, we use mean ϕ. To compare

across experiments, for each TM-CM pair, we plot mean ϕ as a proportion of the

sum of all mean absolute ϕ for that pair. This is shown in Figure 6.2.

For each of the three Weighted-Ensembles, one can see a linear increase in the

reliance on textual features as w, the text model weighting, increases, a pattern
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seen for both BERT and PetBERT. When w=0.25, age at consult is the most

important feature overall, whereas for w=0.50 and 0.75, clinical narrative is the

most important. The Stack-Ensembles follow the pattern of PetBERT relying

on clinical narrative more than BERT, however, with age at consult as the most

influential feature. The All-Text models represent the only experiments where

tabular features are fed into a text model. These results demonstrate that despite

this, language models can indeed extract use out of tabular features with both

PetBERT All-Text and BERT All-Text focusing on age at consult the most.
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Figure 6.2: Mean feature importance, by feature, as a proportion of the sum of all mean absolute feature importance. Each row indicates the proportion
for a particular model, as indicated on the y-axis. We look across all experiments to find the six most influential features, colouring the remaining
features as lime-green in an other category. The size of each coloured bar indicates the feature’s relative overall importance to the particular model, with
cumulative proportion on the x-axis. The order of the colours is the same for each row, in order of highest to lowest proportion across all experiments.
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6.4.2 How Similarly are Features Ranked?

In this section, we look at how statistically similar the rankings of features are for

a given instance. To do so, we use Kendall’s rank correlation coefficient(Kendall,

1938), or Kendall’s τ . A description of Kendall’s τ is given in Section 5.5.4.2.

In Figure 6.2, results were averaged across all instances and then reported. Here,

we calculate Kendall’s τ for each instance and then average, reporting the mean

and standard deviation of the statistic to facilitate a more nuanced examination.

In Tables 6.2, 6.3 and 6.4, for a particular comparison, we calculate τ between

the two rankings for each of the 1000 instances and then report the mean and

standard deviation of those 1000 scores in the table. In Table 6.2, for each of the

five combination methods, we compare the similarity between rankings when using

BERT versus PetBERT. In Table 6.3, we compare each of the five combination

methods against each other when fixing TM=BERT, whereas in Table 6.4, we do

the same but fix TM=PetBERT.

Following evidence in Figure 6.2 of both All-Text models focusing almost entirely

on two features, one can see these models as the most dissimilar to other combin-

ation methods with scores between 0.43-0.52 for BERT (Table 6.3) and 0.31-0.41

for PetBERT (Table 6.4). Despite this, they are also dissimilar to each other with

a mean τ of just 0.37 (Table 6.2), which suggests that even if the remaining fea-

tures are similarly small in magnitude (from Figure 6.2), they are not often in a

similar order. For both text models, the two most similar combination method

pairs are [Weighted-Ensemble w=.50, Weighted-Ensemble w=.25 ] and [Weighted-

Ensemble w=.50, Weighted-Ensemble w=.75 ]. With a shared methodology, simil-

arity is expected; with only the weighting on the prediction changing, it will only

be the ordering of the tabular features relative to the text features that differ.

Table 6.2 shows how much of a difference changing text model has when fixing

the combination method and shows high mean scores of 0.80-0.81 for each of the

Weighted-Ensembles, indicating a similar ordering of features for a given instance.
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6.4.2. How Similarly are Features Ranked?

Table 6.2: Mean (SD) Kendall’s τ comparing the ϕ rankings of BERT vs PetBERT
for each of the five combination methods. Self-comparisons are trivially perfectly
correlated (τ = 1) and are omitted. For each entry, we calculate Kendall’s tau for
each of the n=1000 instances and report the Mean (SD). WE refers to Weighted-
Ensemble with w indicating text model weighting.

Method Model A vs Model B Mean (Std)
All-Text 0.37 (0.23)
WE 25 0.81 (0.11)
WE 50 BERT vs PetBERT 0.81 (0.14)
WE 75 0.80 (0.18)
Stack 0.70 (0.15)
Combined BERT vs PetBERT 0.70 (0.24)

Table 6.3: Mean (SD) Kendall’s τ comparing the ϕ rankings of each of the com-
bination methods against each other, split by BERT models. Self-comparisons are
trivially perfectly correlated (τ = 1) and are omitted. For each entry, we calculate
Kendall’s tau for each of the n=1000 instances and report the Mean (SD). WE
refers to Weighted-Ensemble with w indicating text model weighting.

BERT, by method All-Text WE 25 WE 50 WE 75
WE 25 0.43 (0.19)
WE 50 0.50 (0.21) 0.73 (0.16)
WE 75 0.52 (0.24) 0.56 (0.20) 0.70 (0.19)
Stack 0.45 (0.19) 0.71 (0.14) 0.64 (0.17) 0.53 (0.20)

Table 6.4: Mean (SD) Kendall’s τ comparing the ϕ rankings of each of the combin-
ation methods against each other, split by PetBERT models. Self-comparisons are
trivially perfectly correlated (τ = 1) and are omitted. For each entry, we calculate
Kendall’s tau for each of the n=1000 instances and report the Mean (SD). WE
refers to Weighted-Ensemble with w indicating text model weighting.

PetBERT, by method All-Text WE 25 WE 50 WE 75
WE 25 0.31 (0.19)
WE 50 0.36 (0.21) 0.72 (0.15)
WE 75 0.41 (0.25) 0.55 (0.19) 0.71 (0.19)
Stack 0.33 (0.21) 0.66 (0.15) 0.66 (0.17) 0.55 (0.20)

145



6.4.3. Comparing the Two Most Influential Features

6.4.3 Comparing the Two Most Influential Features

Here, we look at another way of comparing the different models; we aim to get

a more general idea of how the two most influential features (clinical narrative, a

text feature, and age at consult, a tabular feature) are treated using each of the

five combination methods. For each of the 1000 instances, we examine the differ-

ence in feature importance between these two features. In Figure 6.3(a), we plot

the difference between these two for each of the five combination methods when

TM=PetBERT and repeat for TM=BERT in Figure 6.3(b). Once more, one can

see greater importance being placed on clinical narrative than age at consult for

PetBERT when compared to BERT, with all combination methods scoring a higher

median difference. For All-Text experiments, one can see far longer tails in the dif-

ference distributions than the other methods. This again provides evidence of the

importance of both features, differences further away from 0 indicating many cases

where age at consult is key, clinical narrative is not, and vice versa. Furthermore,

one can also see the increased reliance on text features, in this case, clinical nar-

rative, with the difference growing more positive as w increases from 0.25 through

to 0.75.

6.4.4 Top Phrases and Tabular Values

So far, we have considered all features as a whole, summing SHAP values for

individual words to provide an overall score of importance for the entire feature,

and comparing text features to tabular features. In Figure6.2 clinical narrative (a

text feature) was seen to be the most influential. In a text-only context, one can

use the original SHAP library to identify individual word pieces that are the most

influential across an entire set of predictions. Using the multimodal SHAP, for the

first time, one can directly compare individual words to individual tabular feature

values. To avoid analysing fragments of words, we set a grouping threshold such

that word pieces are grouped into words and phrases.
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Figure 6.3: The difference in feature importance (SHAP) between the clinical nar-
rative free-text field and age, plotted for PetBERT (a) and BERT (b), for each of
the 1000 instances, for each of the five combination methods. The highly signific-
ant p-values (both p=0.00) for both Kruskal-Wallis tests indicate that the median
differences for each of the combination methods are not the same; 38% and 37%
of the variance in the differences are down to the changing of combination method
for (a) and (b) respectively. Comparing (a) and (b), one can see higher median
differences for PetBERT, indicating a higher reliance on the clinical narrative than
BERT. As for combination methods, the preference for the text feature increases
as w, the text model weighting, increases.
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6.4.4. Top Phrases and Tabular Values

Using the optimal model, PetBERT Weighted-Ensemble, w=0.50, we look at the

1000 instances and find the phrases and tabular values that were the most influen-

tial. As a comparison, we also repeat the analysis for BERT Weighted-Ensemble,

w=0.50. For those that appear more than once, we take a mean average. The

top and bottom 20 items are found in Table 6.5, where top and bottom refer to

those that contribute the most towards predictions of alive and dead, respectively.

Looking more broadly at the top and bottom 100 phrases and tabular values, the

tabular feature age at consult dominates. For the PetBERT model, of the top 100

entries, all 100 were based on low age at consult values and 89 entries from the

bottom 100 were based on high age at consult values.

Similarly, in the BERT model, 99 out of the top 100 and 89 of the bottom 100 were

from low and high age at consult values, respectively. In Figure 6.2, we identified

that age at consult was an important feature, and here we indeed confirmed that

older animals are more likely to be found within predictions of dead and vice verse

for predictions of alive. The median age at consultation was 7.1 for the highest

and 13.58 for the lowest. The median average for age at consult in the dataset was

calculated to be 6.29.
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Table 6.5: Phrases or instances of tabular features with the highest and low-
est SHAP values across all instances for the best performing model, PetBERT
Weighted-Ensemble w=0.50 and its BERT equivalent. A positive number indic-
ates that the phrase contributes towards a prediction of alive, whereas a negative
number contributes towards a prediction of dead.

(a) BERT Weighted Ensemble, w=0.50

value phrase
0.25 age_at_consult = 0.61
0.25 alert and responsive hydra-

tion normal.
0.24 age_at_consult = 1.55
0.24 age_at_consult = 0.37
0.24 age_at_consult = 0.93
0.24 age_at_consult = 1.19
0.24 age_at_consult = 0.99
0.24 age_at_consult = 3.17
0.24 age_at_consult = 0.69
0.24 age_at_consult = 1.34
0.24 age_at_consult = 0.29
0.24 age_at_consult = 1.36
0.24 age_at_consult = 1.51
0.24 age_at_consult = 1.83
0.23 age_at_consult = 2.29
0.23 age_at_consult = 3.07
0.23 age_at_consult = 1.59
0.23 age_at_consult = 0.27
0.23 age_at_consult = 0.23
0.23 age_at_consult = 1.32
... ...
-0.14 age_at_consult = 18.01
-0.14 age_at_consult = 16.08
-0.14 age_at_consult = 16.25
-0.14 age_at_consult = 17.91
-0.14 and has been eating more

the past couple of weeks.
-0.14 age_at_consult = 17.85
-0.14 age_at_consult = 20.9
-0.14 lost weight
-0.14 age_at_consult = 17.9
-0.14 age_at_consult = 19.24
-0.14 age_at_consult = 17.21
-0.14 thining
-0.14 / less mobile.
-0.16 Strong pulses.
-0.16 generally slowing
-0.16 hearing with old age
-0.18 down with age
-0.20 QOL etc
-0.20 age related?
-0.21 some mucless mass loss but

(b) PetBERT Weighted Ensemble,
w=0.50

value phrase
0.25 age_at_consult = 0.61
0.24 age_at_consult = 1.55
0.24 age_at_consult = 0.37
0.24 age_at_consult = 0.93
0.24 age_at_consult = 1.19
0.24 age_at_consult = 0.99
0.24 age_at_consult = 3.17
0.24 age_at_consult = 0.69
0.24 age_at_consult = 1.34
0.24 age_at_consult = 0.29
0.24 age_at_consult = 1.36
0.24 age_at_consult = 1.51
0.24 age_at_consult = 1.83
0.23 age_at_consult = 2.29
0.23 age_at_consult = 3.07
0.23 age_at_consult = 1.59
0.23 age_at_consult = 0.27
0.23 age_at_consult = 0.23
0.23 age_at_consult = 1.32
0.23 age_at_consult = 0.24
... ...
-0.14 age_at_consult = 17.06
-0.14 age_at_consult = 18.22
-0.14 age_at_consult = 17.72
-0.14 age_at_consult = 17.57
-0.14 age_at_consult = 16.09
-0.14 age_at_consult = 18.01
-0.14 age_at_consult = 16.08
-0.14 age_at_consult = 16.25
-0.14 age_at_consult = 17.91
-0.14 age_at_consult = 17.85
-0.14 age_at_consult = 20.9
-0.14 age_at_consult = 17.9
-0.14 age_at_consult = 19.24
-0.14 age_at_consult = 17.21
-0.15 ongoing history
-0.15 for older cat
-0.19 of nasal tumour
-0.23 hearing with old age
-0.24 his age
-0.28 generally slowing down

with age



6.4.4. Top Phrases and Tabular Values

Table 6.6: Word and phrases with highest and lowest feature importance (SHAP)
values, grouped by high-level category. [High/Low] represents those that contrib-
ute most to a prediction of [alive/dead]. Phrases from BERT Weighted-Ensemble,
w=0.50 and PetBERT Weighted-Ensemble, w=0.50 are found on the left and right
respectively. PetBERT’s increase in performance can be attributed to its greater
likelihood of identifying shorthand or medical terms, as demonstrated by the in-
creased frequency and greater complexity of words in the ‘Medications’ and ‘Vac-
cinations’ categories. N.B. "DUDE" = ’Defecating, urinating, drinking and eating’,
"BAR" = ’Bright And Responsive’, "NAD" = Nothing Abonroaml Detected, "CE"
= ’Clinical Examination’, "f/w" = flea and wormer treatment, "kc" = kennel cough
"nobivac tricat" = vaccine for feline calicivirus, feline herpes virus type 1 and feline
panleucopenia virus, "rhd" = rabbit haemorrhagic disease vaccine, "lepto4" = Can-
ine leptospirosis vaccine, "DHP" = distemper, hepatitis (canine adenovirus) and
canine parvovirus vaccine, "BCS" = ’Body Condition Score’

BERT Weighted-Ensemble, w=0.50 PetBERT Weighted-Ensemble, w=0.50

C
on

tr
ib

ut
in

g
m

os
t

to
a

pr
ed

ic
ti

on
of

al
iv

e

Category N Example Category N Example
Symptoms
and Health
Conditions

22 "hydration good",
"moulting", "DUDE normal"

"DUDE all ok"

Symptoms
and Health
Conditions

18 "spay wound",
"checks over fine",

"No concerns", "BAR"
Veterinary
Treatments
and Procedures

15 "express anal glands",
"skin improving",

"deep oral exam", "trimmed"

Medications 15 "worming", "endectrid",
"easecto", "quantex"

Physical
Examination
Findings

11 "ears are fine", "coat good",
"nothing abnormal detected",

"perineum normal"

Physical
Examination
Findings

14 "abdo palp NAD",
"otherwise NAD",

"CE unremarkable"
Medications 8 "advise drops", "analgesia"

"wormer", "spot on"
Advice
Given to
Pet Owners

13 "advised joint supplements",
"adv re neuter",

"discussed kc vaccine"
Advice Given
to Pet
Owners

7 "explained to owner",
"Advised regular bathing",
"bring back if concerned"

Vaccinations 12 "nobivac tricat",
"rhd", "lepto4",

"DHP/ L4 + KC given"
Vaccination 6 "administered vaccine",

"vaccine", "booster given"
Weight and Body
Condition score

6 "BCS 5/9 good growth.",
"nice weight", "28kg", "8kg"

Pet Behaviour 6 "very well behaved",
"biting", "not biting, "demean"

Dental Conditions
and Treatments

5 "teeth are great", "Dentition"
"teeth good", "teeth clean"

Category N Example Category N Example
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Symptoms
and Health
Conditions

25 "muscle mass loss",
"dysuria", "constipated",

"vomiting"

Diagnoses 24 "mammary tumours",
"Bladder cystitis",

"osteoarthritis"
Age Related
Issues

14 "age-related hearing loss",
"old dog", "given age",

"getting very old"

Symptoms
and Health
Conditions

14 "mobility issues", "Blind",
"Weak", "ulcerated"

Food Diet 10 "not eating for 3 days",
"drinking ok", "not eating well"

"been eating more",

Quality of Life
and Euthanasia
Considerations

13 "euthanase", "palliative",
"medical management",

"quality of life"
Owner’s
Observations
and Concerns

10 "O reports is drinking",
"o aware decline inevitable",

"o concerned coughing"

Medical
Procedures
Further Testing

10 "bloods", "biopsy results",
"Ultrasound", "drain"

Medications 8 "Continue with steroid",
"butorphanol", "prescription",

"prednisolone"

Age
Related
Issues

8 " slowing down with age",
"age related?", "old age",

"surgery too risky with age"
Weight and Body
Condition Score

8 "seems to have lost weight",
"lost weight","lost 100g"

Medications 6 "prednisolone", "mirtazapine",
"chemo", "Vivitonin"

Vitals and Physical
Examination
Findings

7 "Bladder not palpable",
"exam - senile", "Strong pulses"
"R thyroid slightly enlarged",

Owner’s
Observations
and Concerns

6 "o aware decline inevitable",
"doesn’t want investigation",

"o mentioned happier"
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Continuing with our analysis of the top performing PetBERT model (Weighted-

Ensemble w=0.50) and its BERT equivalent, we assess which types of phrases

are most influential and how they compare to tabular features other than age at

consult. We remove the dominant tabular feature and examine the new top 100

and bottom 100 lists of phrases and values. To summarise this information, we

group each term into 10-12 high-order categories for each list. We count the items

in each category and report the seven most populous groups for the top and bottom

list, both for PertBERT and BERT. These results are displayed in Table 6.6, along

with examples that typify each group. This representation conveys that the clinical

language focused on by each model differs significantly, even if they fall under the

same designated category.

We further illustrate this point with a specific example shown in Figure 6.4, once

more using Weighted-Ensemble, w=0.50. In this case, the true outcome was alive;

the PetBERT Weighted-Ensemble predicted this correctly, whereas the BERT equi-

valent did not. One can see that both text models recognise ‘no evidence fleas’ as

a positive sign. Similarly, erythematous - a typically non-serious reddening of the

skin - was contributed towards an alive prediction for both models. However, the

critical difference was that PetBERT identified ‘SCC L’ as shorthand for Squamous

Cell Carcinoma, Left (ear) and a clear indicator that this particular animal is not

likely to survive. The BERT model did not recognise this as the case and, in fact,

regarded ‘SCC L’ as a positive sign for this animal.

6.5 Discussion

An abundance of data lies within the vast volumes of EHRs collected by initiat-

ives such as SAVSNET. These records extend far beyond textual narratives alone,

offering a diversity of modalities to be explored. Nevertheless, the path to har-

nessing the full potential of these rich datasets is challenging. While immensely

powerful, the nature of deep learning frameworks becomes a source of complexity
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in the context of multimodality predictions. The principal challenge in this en-

deavour is the innate need for explainability within these frameworks, limiting the

ability to extract comprehensive insights from complex AI models and their predic-

tions. This is of paramount importance in the clinical domain, where transparency

and interpretability are critical for gaining trust and acceptance among healthcare

professionals and regulatory bodies.

This chapter continues and applies our prior research to this field, allowing us to

get insight into a host of multimodal methods for the first time. We use the mul-

timodal masking framework designed to engage in feature masking based on their

respective modalities, ensuring uniform and consistent treatment of features, there-

fore fostering predictability in unimodal and multimodal contexts. This addresses

the challenge of generating SHAP explanations for multimodal inputs, extending

beyond the traditional unimodal context. In this study, we applied the framework

to a text-tabular dataset of EHRs sourced from first-opinion veterinary practices

across the United Kingdom to understand the features associated with mortality.

We examined the level of importance assigned to each feature and found a diverse

set of preferences between combination methods, but overall, a strong preference

for the free-text clinical narrative and the tabular feature age at consult. For

all combination methods tested, PetBERT found an increased relative importance

(a)

(b)

Figure 6.4: Contrasting explanations for an example where BERT (a) was in-
correct and PetBERT (b) was correct, both Weitghed-Ensemble, w=0.50. Words
and phrases coloured [red/blue] indicate those that the model found to contribute
towards a prediction of [alive/dead]. Both ensembles share an identical tabular
model; therefore, we show the subset of the input from the clinical narrative to
better exhibit the difference in explanations.
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for clinical narrative when compared to BERT, a difference most pronounced in

the Stack-Ensembles. The Weighted-Ensembles appeared similar to each other,

with no other comparison between combination methods scoring higher than that

between the Weighted Emsembles w=0.50 and w=0.25. This is consistent with

what one would expect as the same model structure is used, differing by a linear

transformation.

More generally, we found that changing the combination method had a greater

impact on which features were attended to than changing the text model. For this

particular dataset, both the underlying text and tabular models scored similarly

well. Therefore, the differences in F1 scores for the ensemble models were also sim-

ilar despite differing feature contributions. A much-reduced importance for other

tabular features in the All-Text models suggests that information contained in these

features, such as a cancer diagnosis in neoplasms, is already broadly covered in the

free-text clinical narrative and is therefore ignored by the text models. However,

in the same vein, we suggest that not all information was captured as results in

Table 6.1 show that for both text models, All-Text was outperformed by Weighted-

Ensemble w=0.50. The ICD labels represent a broad clinical history of a given

animal; therefore, there will be instances where there is an overlap of events within

the ICD set and the free-text narrative and other times where the label represents

clinical events from many years prior.

Unsurprisingly, there was a notable enhancement in model performance arising

from the additional pre-training of PetBERT on 500 million tokens from veterin-

ary clinical narratives when compared to the standard BERT-base model. F1 and

accuracy performance improvements of 2% were observed, compared to the BERT-

base model employing the same evaluation strategy within the best-performing

method. While this outcome aligns with our initial expectations, our methodolo-

gical analysis offers insight into the divergent utilisation of distinct data modalities

within the models.
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To understand the performance of both models on a more granular level, we ex-

plored the types of words, phrases and tabular values that were most influential

for each model. This was overwhelmingly predominated by age at consult. A gen-

eral and expected trend emerged, suggesting older ages were more likely to die

than lower ages. To better discern the difference between BERT and PetBERT,

we looked at the words, phrases and tabular values without the presence of age

at consult. Notably, there were overlaps observed here; for instance, discussions

around vaccination were a common theme associated with animals predicted to be

alive within the next 28 days. This emphasis between the two models aligns with

the inherent logic that one typically would not vaccinate a severely ill animal.

Other examples include references to ‘no concerns’ categorised into the ‘physical ex-

amination findings’, which appeared as the third most common category of phrases

in both PetBERT and BERT. Phrases such as ‘other NAD [Nothing Abnormal De-

tected]’ and ‘CE [Clinical Examination] unremarkable’ are unlikely to be used for

animals expected to die imminently. Conversely, for words and phrases attributed

to an animal approaching death, we observed a shared emphasis on discussions

related to symptoms and health conditions. However, the significance of this indic-

ator was more pronounced in the BERT model than in PetBERT. This approach

also revealed that PetBERT exhibits a heightened ‘understanding’ across veterin-

ary clinical free-text. This advantage enables PetBERT to interpret the veterinary

clinical language associated with these subject matters more effectively than reg-

ular English, on which BERT was initially trained. Distinctly, PetBERT selected

more definitive diagnoses as a more significant indicator, such as in ‘mammary tu-

mours’. Overall, words and phrases around cancers and mass growths emerged as

noteworthy indicators in both models, although more so in PetBERT.

Although both models identified signs of vaccination as a positive indication, the

words and phrases differed. PetBERT selected specific vaccination names such as

‘lepto4’ and ‘nobivac tricat’, whereas BERT used more generalised terms such as

‘booster’ and ‘vaccine’. When thinking about the generalised corpora that BERT
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was trained on, there is a frequent theme where veterinary-specific terminology is

not well understood, but phrases shared with human clinical medicine are present.

Another example is within the ‘medications’ category, BERT’s utilisation of drug

names ‘steroids’, ‘butorphanol’, and ‘prednisolone’ are all authorised drugs used fre-

quently in human medicine. However, drugs such as ‘Vivitonin’, which was utilised

by PetBERT, are authorised solely for dogs in the UK. Increased comprehension

of phrases pertinent to diagnostic diseases, drug names, and diagnostic tests could

attest to PetBERT’s superior clinical proficiency.

The EHR data used in this study offers valuable insights into death occurrences

among the dogs and cats analysed. However, the depth of this analysis is contin-

gent upon the information recorded by the veterinary practitioners. Consequently,

these models are limited to capturing only those conditions or events explicitly doc-

umented in the EHRs. Any unrecorded or overlooked aspects cannot be accounted

for in this analysis. The framework we have employed is fundamentally under-

pinned by SHAP and transformers, both of which are computationally expensive.

This computational burden can lead to prolonged processing times, potentially lim-

iting the scalability of this approach, especially when working with larger datasets

or in real-time clinical settings.

In the context of All-Text, a single style of string template was the exclusive choice.

In future investigations, exploring the impact of diverse template styles on explan-

ations could be beneficial. The initial study developed a classifier that identified

animals that have died with an F1 score exceeding 98.3%. Both the previous study

and this study characterised the outputs for use within the prediction of mortality

risk modelling. Therefore, it is likely that some data used within this study was

incorrectly misclassified. While this level of misclassification is unlikely to impact

the overall findings substantially, it is a point of consideration when interpreting

individual predictions or decisions based on the model’s output. Furthermore, the

dataset used in this study was sourced from participating veterinary practices. Con-
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6.5. Discussion

sequently, the findings presented here may only partially represent the broader UK

companion animal population. As the national coverage of participating practices

within the Small Animal Veterinary Surveillance Network (SAVSNET) expands,

these issues of coverage bias may be mitigated.

To conclude, this study investigated the complex dynamics governing the interac-

tion between deep learning models and data modalities in the context of veterin-

ary clinical EHRs. The findings suggest that the changing modality combination

method has a more substantial influence on which features models find important,

whereas both text models in this study tended to rank similar features as important.

Additionally, PetBERT, having undergone additional pre-training, demonstrated

enhanced comprehension of phrases related to cancer, drug names, and diagnostic

tests, suggesting its superior proficiency in veterinary clinical language compared to

BERT. The study highlights the capacity of language models to extract valuable in-

sights from clinical narratives, providing contextual factors that inform predictions

regarding animal well-being. The comparative analysis of both modalities within

a uniform framework has significantly enabled the comprehension and interpreta-

tion of the overall model prediction and enabled a per-input feature comparison,

regardless of whether that be a text or tabular value.

156



Chapter 7

Concluding Remarks

Each chapter in this thesis has seen the introduction of a novel technique, dataset or

application, first to use language models to enhance the explainability of numerical

outputs and secondly to address the research gap for text-tabular explanations.

This chapter will summarise our contributions and discuss limitations and future

work.

7.1 On the Importance of Continued Explainability

Research

The landscape of AI has witnessed a significant evolution, as detailed in Chapter 2

of this thesis, particularly through the emergence and rapid development of LLMs.

These advancements have not only pushed the boundaries of what AI can achieve

but also have catapulted themselves into the forefront of public consciousness,

further propagating this cycle of advancement. Amidst this rapid growth, I argue

that it is imperative that explainability keeps pace with the broader field and that

we continue to find ways of making the output of machine learning decisions more

approachable and interpretable.

In response to this need, in this thesis I aimed to extend the horizons of explain-

ability just that little bit further by harnessing language models expanding ex-
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7.1. On the Importance of Continued Explainability Research

plainability to the text-tabular subfield, therefore bringing explanations to a wider

audience in an accessible and understandable manner.

This began in Chapter 3, where the focus was on leveraging the capabilities of LLMs

to translate technical performance metrics into easily comprehensible textual de-

scriptions. This initiative underscored the potential of language models in making

complex information more accessible and understandable to a broader audience.

Chapter 4 built upon these foundations, redefining what a machine learning ex-

planation could look like by generating textual narratives rather than numerical

or graphical outputs. This chapter not only defined another new data-to-text task

but also directly engaged with explaining machine learning outputs, providing an

additional layer of context to help remove the barriers to comprehension.

Following the exploration of explanations as textual narratives, I ventured deeper

into the realm of explainability in Chapter 5. Acknowledging a research gap high-

lighted in Chapter 2, concerning the lack of explainability methods for text-tabular

datasets, I created a novel multimodal masker for SHAP to bridge this gap. This

adaptation was significant as it marked the first time it was possible to bring one

of the most widely used explainability methods to the text-tabular context, mark-

ing a significant leap forward in multi-modal interpretability. Through a series of

experiments, this chapter scrutinised the effects of porting the previous unimodal

masker for use in multimodal scenarios, unveiling insights into feature importance

distribution and the efficacy of different explanation combination methods and text

models.

Using the multi-modal masker, in Chapter 6 I showcased the practical implications

and insights that can be gleaned from extending explainability to the text-tabular

domain. Through a detailed analysis of the SARS veterinary dataset, this chapter

shed light on how the tailored PetBERT was able to outperform BERT-base, not-

ably highlighting the superior capability of PetBERT in understanding veterinary

shorthand. This deep dive demonstrated the importance of tailored pre-training
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7.2. Strategies for Data-to-Text Applications

for specific domain applications, but more significantly emphasised the tangible

benefits that can be derived from continuing to advance the field.

To conclude, I hope that this thesis underlines the value and the importance of con-

tinued progression within the explainability domain and that rapid advancements

across the wider field are a motivation and not a distraction in making models more

transparent, understandable, and ultimately, more trustworthy.

7.2 Strategies for Data-to-Text Applications

In this thesis, the central focus has been on making the outputs of machine learning

more comprehensible to a broader audience. The work undertaken in Chapters

3 and 4 was pivoted around using of LLMs to translate what is conventionally

represented in numbers or graphs into natural language. In both chapters, the

complexity of the tasks warranted an in-depth understanding of the subject field.

Therefore I solicited the help of computer science experts to curate high-quality

datasets for both of these new and specialised data-to-text tasks, a fundamental

component of these chapter’s contribution. To make the most of a relatively small

number of samples, I used a number of techniques and strategies that I believe

would be useful for other data-to-text tasks, especially those also with limited data

availability.

One approach successfully deployed in Chapters 3 and 4 was data augmentation.

Data augmentation, often tricky to do accurately with text tasks, was possible in

this scenario. When feeding in metrics as input in Chapter 3, I increased the size

of the dataset with no additional text narrations simply by randomising the order

in which the metrics were passed into the model. In this manner the model could

learn not to focus on the ordering of the metrics, but instead the relationships

between the metric names, values and the textual output.

Chapter 4 once more showed the efficacy of using data augmentation in a data-

to-text task. When the numerical explanations were fit to a string template and
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7.3. Limitations and Future Work

their feature names were anonymised and replaced with a template, I recognised

that this was a space for augmentation. Once more, this time by re-randomising

the attribution of placeholders, I was able to cement the relationship between the

input and the output and demonstrate the potential of data augmentation as an

effective strategy in data-constrained data-to-text tasks.

Moreover, each chapter delves into additional methodologies for ingraining the ne-

cessary relationships within the models. In Chapter 3, I introduced the Metric

Processing Unit as a novel means for the T5 and BART language models to as-

similate the correlation between metric values and the generated textual output.

This adaptation yielded the best performance across both model variants. Chapter

4 presented a greater challenge, given the expectation for the model to grasp the

content of numerical explanations—which might be entirely or almost entirely un-

familiar. I found success when being more precise with what I was asking the

model, reducing complexity and stripping back the problem to a question-answer

task such that the models only have to provide targeted answers as opposed to

a more generalised summarisation task. Here the T5 model achieved an overall

accuracy of 91%.

7.3 Limitations and Future Work

While I believe this thesis offers substantial insight and advancements in the field,

I acknowledge that there is room for further development. Although discussions

of potential future work are mentioned in individual chapters, I consolidate and

examine these aspects in detail here within the broader context of this work.

One primary limitation of the Natural Language Explanation tasks in Chapters 3

and 4 is the size of the datasets. Due to the availability and cost associated with

acquiring assistance from computer science PhD candidates for data collection, the

dataset is not as expansive as I would have preferred. Although employing experts

was a deliberate choice to facilitate a dataset of high quality, the relatively small
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7.3. Limitations and Future Work

size could affect the generalisability and robustness of models trained on these

datasets.

An interesting option for future work - particularly applicable to the Metric to

Text task of Chapter 3 - would be to attempt to imbue a deeper sense of mathem-

atical understanding into the models in order to learn the numerical relationships

between each of the metrics. One possible approach to achieve this could be to

incorporate this into a mathematical pre-training regimen or, alternatively, in an

auxiliary parallel task during fine-tuning. This would allow models first to un-

derstand mathematical structures, properties, and relationships from a dedicated

mathematical dataset. However, a risk is that one could be substituting mathem-

atical understanding for reduced linguistic proficiency.

Furthermore, for these two tasks I confront one of the other principal challenges:

precisely evaluating the quality of the generated tasks. Current evaluation metrics,

primarily designed for translation and summarisation, do not always adequately

capture the subtlety needed in this task. In particular, error analysis in Chapter

4 revealed a propensity of the models to make incorrect factual statements about

a group of features; a comment summarising ‘all remaining features’, for example,

needs to be exact and specific wording makes a difference. With the advent of

advanced models such as GPT-4, in a future analysis, I would like to use these

LLMs directly to develop a more effective method for evaluating the accuracy of

statements.

In the aforementioned error analysis, I began to categorise sentences into different

classes. If I were to label each sentence of the dataset with an indicator as to which

type of statement is being made, I believe this would give the model yet more clues

as to how the input relates to the output. Further motivation to do this comes

from the question and answer section, where I demonstrated the value of breaking

up the task into constituent parts.

In Chapter 5, the creation of the multi-modal masker opens the doors to a whole
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7.3. Limitations and Future Work

suite of analysis. I experimented with changing text models, combination methods,

and datasets, but there are many more directions that further analysis could take.

For example, I would like to extend this experimentation to examine the effects of

using different styles of text templates. I would look for performance differences,

but the principal would be to see whether this affects the features a model finds

important. Moreover, this could shed light on which templates exacerbate the

issues related to the unimodal masker.

Additionally, crafting model-specific implementations of the masker that accelerate

the generation of explanations would be worthwhile. The original SHAP library

now offers a whole host of explainers tailored to diverse model types, such as

neural networks, GPU implementations, and tree-based models. Creating faster,

more focused explanations could greatly enhance the method’s utility and favour

its adoption by a broader audience.

Another intriguing area for future work involves utilising the masker to track how

explanations evolve across modalities during the model training process. Stopping

training and generating explanations at various stages of training could reveal in-

sights into which types of features are learned first and whether this differs across

various combination methods and text models.

In Chapter 6, I applied the multimodal masker to do a deep dive on SAVSNET. This

is a real-world dataset, so in future analysis, I would like to use the work I have done

to inform future decisions. Although, more often than not, the models were able to

handle veterinary shorthand, explicitly defining the shorthand present could be a

method to improve model performance. A pet’s age is the most important feature in

this analysis, so much so that in the original PetBERT paper (Farrell et al., 2023b),

separate models were trained for each of the three age bands, which had notably

different performances. Extending our explainability analysis to models banded

by age would give an insight as to which words and features cause a particular

prediction for young, adult and old animals. In a similar fashion, Farrell et al.

(2023b) also trained models to predict further than one month in the future -
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another route for further analysis.

7.3.1 Epilogue

In the course of this thesis, I have endeavoured to present additional insights and

contexts that underpin various decisions and tasks. Specifically, in Chapters 3 and

4, I took this on in the form of data-to-text generation, training models capable of

crafting narratives that offer users an alternative textual perspective on the data

being presented. Both of these tasks involved carving out a new niche in data-to-

text, and in both instances, a new task and dataset were proposed and created.

Although relatively small, they are high in quality, and I hope these can provide a

springboard for future research.

As artificial intelligence becomes increasingly integrated into our daily lives, the

demand for greater transparency and understanding of these systems intensifies.

The forthcoming EU AI Act is set to establish stricter standards for the operation

of black-box models, mandating adherence to principles of safety and fairness.

In Chapter 5, I tackled a substantial research gap to enable users to generate

explanations in a domain that previously was just not possible. It is our aspiration

that this work will pave the way for researchers to gain a new perspective on

why text-tabular models are making their decisions and advance the field of AI

interpretability.
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Appendix
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Table 8.1: Comparing the similarity of combination method feature rankings. Kendall’s Tau is measured for each combination method with each other
combination method, for each of the four text models, for each of the nine datasets. AT refers to All-Text, AT (U) refers to All-Text (Unimodal) and WE
refers to Weighted-Ensemble.

(a) Airbnb

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.37 0.25 0.22 0.29
WE .25 0.25 0.41 0.21 0.34 0.22 0.49 0.19 0.42
WE .50 0.24 0.43 0.80 0.23 0.40 0.79 0.20 0.45 0.76 0.20 0.47 0.80
WE .75 0.20 0.38 0.58 0.73 0.22 0.37 0.58 0.74 0.15 0.35 0.50 0.68 0.19 0.45 0.58 0.74
Stack 0.23 0.41 0.75 0.74 0.60 0.22 0.36 0.73 0.75 0.64 0.21 0.44 0.72 0.73 0.55 0.20 0.45 0.74 0.76 0.64

(b) Channel

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.26 0.10 0.23 0.29
WE .25 -0.13 -0.17 0.01 -0.13 -0.04 -0.23 -0.06 -0.23
WE .50 -0.04 -0.08 0.87 -0.07 -0.03 0.87 0.05 -0.15 0.87 0.02 -0.14 0.86
WE .75 -0.03 -0.06 0.81 0.93 -0.11 0.03 0.78 0.90 0.09 -0.12 0.78 0.91 0.04 -0.11 0.78 0.91
Stack -0.04 -0.06 0.64 0.68 0.67 0.00 -0.09 0.67 0.64 0.59 -0.01 -0.21 0.66 0.64 0.60 0.00 -0.17 0.66 0.64 0.61

(c) Fake

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.72 0.65 0.66 0.56
WE .25 0.71 0.76 0.53 0.58 0.59 0.77 0.47 0.48
WE .50 0.76 0.79 0.90 0.57 0.63 0.95 0.62 0.79 0.96 0.48 0.40 0.77
WE .75 0.71 0.68 0.69 0.79 0.59 0.64 0.86 0.91 0.62 0.82 0.93 0.96 0.49 0.41 0.73 0.96
Stack 0.45 0.52 0.60 0.53 0.33 0.30 0.30 0.65 0.63 0.57 0.54 0.57 0.64 0.62 0.61 0.33 0.33 0.22 0.26 0.25



(d) Imdb

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.27 0.33 0.37 0.34
WE .25 0.15 0.02 0.04 0.04 -0.17 -0.03 0.06 0.10
WE .50 0.29 0.20 0.81 0.16 0.23 0.80 -0.04 0.12 0.81 0.17 0.23 0.82
WE .75 0.32 0.28 0.65 0.82 0.21 0.29 0.62 0.80 0.08 0.26 0.58 0.74 0.22 0.31 0.59 0.75
Stack 0.05 -0.12 0.41 0.31 0.23 -0.13 -0.19 0.36 0.21 0.10 -0.40 -0.34 0.42 0.29 0.13 0.02 -0.11 0.43 0.34 0.19

(e) Jigsaw

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.06 0.05 0.01 0.10
WE .25 -0.04 0.16 -0.04 -0.01 0.07 -0.15 0.08 0.07
WE .50 -0.04 0.17 0.95 -0.03 0.01 0.97 0.07 -0.14 0.96 0.07 0.09 0.96
WE .75 -0.03 0.17 0.91 0.93 -0.02 0.01 0.92 0.94 0.09 -0.14 0.90 0.93 0.08 0.10 0.92 0.94
Stack -0.01 0.12 0.85 0.85 0.86 -0.04 0.01 0.82 0.83 0.84 0.08 -0.15 0.83 0.83 0.83 0.06 0.07 0.82 0.83 0.81

(f) Kick

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.50 0.35 0.50 0.43
WE .25 0.40 0.56 0.26 0.53 0.35 0.53 0.36 0.59
WE .50 0.45 0.61 0.78 0.31 0.60 0.79 0.48 0.60 0.77 0.40 0.61 0.76
WE .75 0.44 0.57 0.57 0.78 0.31 0.56 0.55 0.75 0.51 0.59 0.56 0.78 0.41 0.55 0.55 0.78
Stack 0.37 0.54 0.55 0.60 0.60 0.26 0.56 0.61 0.70 0.61 0.42 0.58 0.67 0.75 0.66 0.40 0.58 0.61 0.74 0.71



(g) Prod

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.62 0.46 0.12 0.30
WE .25 0.62 1.00 0.46 1.00 0.12 1.00 0.30 1.00
WE .50 -0.16 -0.06 -0.06 0.42 0.44 0.44 0.32 0.52 0.52 0.26 0.72 0.72
WE .75 -0.56 -0.94 -0.94 0.12 0.52 0.02 0.02 0.58 0.44 0.00 0.00 0.48 0.14 -0.32 -0.32 -0.04
Stack 0.62 1.00 1.00 -0.06 -0.94 0.46 1.00 1.00 0.44 0.02 0.12 1.00 1.00 0.52 0.00 0.30 1.00 1.00 0.72 -0.32

(h) Salary

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.58 0.66 0.58 0.66
WE .25 0.53 0.59 0.49 0.51 0.60 0.45 0.59 0.52
WE .50 0.56 0.55 0.93 0.54 0.56 0.89 0.61 0.39 0.93 0.63 0.54 0.90
WE .75 0.57 0.54 0.91 0.99 0.55 0.55 0.84 0.95 0.60 0.36 0.90 0.98 0.64 0.56 0.85 0.95
Stack 0.39 0.30 0.54 0.61 0.61 0.44 0.49 0.55 0.66 0.70 0.51 0.27 0.61 0.67 0.68 0.51 0.47 0.58 0.68 0.71

(i) Wine

DistilBERT BERT DistilRoBERTa DeBERTa
AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75 AT (U) AT WE .25 WE .50 WE .75

AT 0.88 0.86 0.83 0.68
WE .25 0.28 0.27 0.35 0.34 0.42 0.42 0.38 0.37
WE .50 0.68 0.68 0.59 0.74 0.73 0.60 0.79 0.78 0.62 0.56 0.69 0.64
WE .75 0.82 0.85 0.41 0.83 0.83 0.81 0.48 0.89 0.82 0.83 0.46 0.84 0.63 0.77 0.43 0.79
Stack 0.70 0.66 0.45 0.79 0.75 0.74 0.72 0.43 0.78 0.79 0.65 0.63 0.55 0.73 0.64 0.52 0.59 0.52 0.72 0.63



Table 8.2: Comparing the similarity of text model feature rankings. Kendall’s Tau is measured for each text model with each other text model, for each of
the six combination methods, for each of the nine datasets. WE refers to Weighted-Ensemble, Dis.B refers to DistilBERT, Dis.R refers to DistilRoBERTa
and DeB refers to DeBERTa.

(a) Airbnb

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 0.69 0.69 0.91 0.91 0.89 0.77
Dis.R 0.56 0.50 0.56 0.50 0.89 0.89 0.85 0.86 0.80 0.79 0.76 0.78
DeB. 0.53 0.51 0.58 0.53 0.51 0.58 0.90 0.92 0.89 0.89 0.91 0.84 0.89 0.90 0.79 0.76 0.76 0.77

(b) Channel

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT NaN NaN 0.93 0.94 0.97 0.65
Dis.R NaN NaN NaN NaN 0.94 0.95 0.95 0.95 0.97 0.96 0.63 0.65
DeB. NaN NaN NaN NaN NaN NaN 0.94 0.93 0.95 0.94 0.93 0.95 0.96 0.94 0.96 0.66 0.65 0.65

(c) Fake

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 0.76 0.76 0.90 0.85 0.71 0.51
Dis.R 0.83 0.71 0.83 0.71 0.92 0.87 0.88 0.86 0.72 0.85 0.63 0.36
DeB. 0.78 0.62 0.72 0.78 0.62 0.72 0.64 0.60 0.62 0.56 0.46 0.51 0.76 0.53 0.54 0.49 0.28 0.39

(d) Imdb

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 0.44 0.44 0.9 0.9 0.91 0.65
Dis.R 0.49 0.38 0.49 0.38 0.9 0.82 0.87 0.81 0.85 0.82 0.74 0.78
DeB. 0.38 0.46 0.38 0.38 0.46 0.38 0.87 0.8 0.9 0.85 0.8 0.86 0.83 0.83 0.86 0.66 0.71 0.71



(e) Jigsaw

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 0.34 0.34 0.95 0.93 0.91 0.83
Dis.R 0.19 0.26 0.19 0.26 0.94 0.97 0.93 0.95 0.9 0.92 0.81 0.85
DeB. 0.26 0.27 0.07 0.26 0.27 0.07 0.97 0.95 0.95 0.97 0.94 0.94 0.94 0.92 0.92 0.8 0.82 0.78

(f) Kick

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 0.77 0.77 0.77 0.72 0.74 0.68
Dis.R 0.62 0.63 0.62 0.63 0.81 0.74 0.77 0.70 0.79 0.76 0.64 0.62
DeB. 0.67 0.67 0.65 0.67 0.67 0.65 0.80 0.72 0.83 0.76 0.67 0.81 0.79 0.74 0.84 0.64 0.63 0.67

(g) Prod

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 1.00 1.00 1.00 -0.18 -0.08 NaN
Dis.R 1.00 1.00 1.00 1.00 1.00 1.00 -0.26 0.72 -0.02 0.78 NaN 1.00
DeB. 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 -0.10 0.56 0.56 0.26 0.30 0.36 NaN 1.00 1.00

(h) Salary

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 0.46 0.46 0.51 0.58 0.63 NaN
Dis.R 0.42 0.35 0.42 0.35 0.49 0.6 0.53 0.66 0.55 0.71 NaN NaN
DeB. 0.53 0.57 0.43 0.53 0.57 0.43 0.36 0.54 0.51 0.45 0.6 0.56 0.48 0.66 0.62 NaN NaN NaN



(i) Wine

All Text All Text (Uni.) WE w=.25 WE w=.50 WE w=.75 Stack
Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R Dis.B BERT Dis.R

BERT 0.90 0.90 0.83 0.85 0.93 NaN
Dis.R 0.92 0.89 0.92 0.89 0.80 0.80 0.85 0.88 0.88 0.85 NaN NaN
DeB. 0.82 0.83 0.85 0.82 0.83 0.85 0.74 0.76 0.75 0.74 0.80 0.80 0.83 0.82 0.84 NaN NaN NaN
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Figure 8.1: In order to compare which combination method assigns more re-
lative importance to text or tabular features, I plot ∆ = ϕMedian Text Feature −
ϕMedian Tabular Featureon the y-axis and combination method on the x-axis for each
of the nine datasets with text model=BERT. Each differently coloured plot repres-
ents the distribution of ∆’s for a single combination method, each with 100 coloured
dots representing ∆ for each of the 100 instances. For each plot, the distribution is
also represented by a violin plot, which emphasises the non-normal distributions,
a box plot, which indicates the spread of the data, and a labelled red dot, which
indicates the median. A higher ∆ indicates that a higher relative importance is
assigned to text features over tabular features. The Kruskal-Wallis test statistic is
significant for all nine of the datasets, meaning that the alternative hypothesis of
not all medians being equal is accepted. WE refers to Weighted-Ensemble and w
indicates the weighting of the text model.
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Figure 8.2: In order to compare which text model assigns more relative importance
to text or tabular features, I plot ∆ = ϕMedian Text Feature − ϕMedian Tabular Featureon
the y-axis and combination method on the x-axis for each of the nine datasets
with combination method=All-Text. Each differently coloured plot represents the
distribution of ∆’s for a single text model, each with 100 coloured dots representing
∆ for each of the 100 instances. For each plot, the distribution is also represented
by a violin plot, which emphasises the non-normal distributions, a box plot, which
indicates the spread of the data, and a labelled red dot, which indicates the median.
A higher ∆ indicates that a higher relative importance is assigned to text features
over tabular features. The Kruskal-Wallis test statistic is significant for all nine
of the datasets, meaning that the alternative hypothesis of not all medians being
equal is accepted.
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