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Abstract

The past decade has seen significant enhancements in the development of communication-
based Brain-Computer Interface (BCI) spellers. These devices often harness brain-based bio-
signals via Electroencephalography (EEG) for speller control. To increase the scope of speller
viability and functionality we first developed a simplistic emoji-based visual speller paradigm
using the P300 bio-signal. The inclusion of emojis over traditional letters, numbers and char-
acters is predicted to enable richer emotional communication capabilities to end-point users
with the most severe forms of paralysis. Here is presented a staggered exploration of stimulus
design formats ranging between 3, 5 and 7 target emoji arrays positioned from agreeable to
disagreeable. In the final iteration of the experimental procedure, a closed-loop system is as-
sessed using 3 neurotypical subjects. This necessitated the real-time capture, pre-processing,
classification, and prediction presentation of subject dry-EEG data. The highest-performing
single-subject achieved 83% offline classification accuracy for an analysis variant utilizing
SMOTE oversampling data augmentation. The final chapter of the thesis focuses on the op-
timization of pre-processing frequency filters for SSVEP-based bio-signal classification us-
ing a range of convolutional neural networks (ShallowConvNet, DeepConvNet, EEGNet &
EEGNetSSVEP). All analyses were computed utilizing the open-source 12-target, 10-subject
Nakanishi SSVEP Numpad repository. These investigations revealed a positive trend in op-
timized low-pass filter cutoffs for networks presenting with a greater number of trainable pa-
rameters, or a higher model layer count. These results align with current cutting-edge CNN
SSVEP classifier research and suggest the effective extraction of SSVEP harmonics is de-
pendent on network complexity. Further, the optimization of aggregated, cross-subject data
pre-processing frequency filter cutoffs is shown to enhance subject-level classification per-
formance for both high and low-complexity networks. These methods provide a guideline
for research into the optimization of cross-subject dataset pre-processing stages and outline a
paradigm for the optimal comparison of CNNs for SSVEP classification.
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Chapter 1

Introduction

1.1 Positioning Statement

The work conducted herein was performed under the challenging conditions arising from the
COVID-19 pandemic. The circumstances surrounding the PhD ultimately had a dramatic in-
fluence on the research conducted herein. Chapters 2, 3 and 4 of the thesis comprise the totality
of all 1st-hand experimentation undertaken. The progress of this research was hampered sig-
nificantly by the onset of the COVID-19 virus and its associated complications. Specifically,
in-person research was restricted, preventing the collection of additional data. This led to an
adaptation of the overall thesis, focusing on the methods of optimising the numerous vari-
ables associated with EEG pre-processing and neural network-based classification methods.
The pandemic also introduced many non-research-related issues, these included disruption
to in-person experimentation and data collection, isolation from the university community,
compromised supervisory contact (migrated to Zoom), moving home twice in the space of 9
months as well as the exacerbation of PhD-related stresses and anxieties. The author’s intent
in outlining these factors is to illustrate the context in which this work was undertaken and
provide clarity on the somewhat disconnected nature of the two independent research projects
defined herein.



2 Introduction

1.2 Motivation

The motivation for this thesis, as explored across the studies detailed in Chapters 3, 4, and
5, is rooted in a commitment to advancing the field of alternative and augmentative com-
munication systems, particularly for a specific subset of the patient population whose ability
to communicate through volitional means is severely compromised. These individuals, of-
ten facing the sudden or gradual loss of the ability to vocalize, are typically treated with a
series of communication aid interventions. The range of interventions varies widely, from
speech therapy, pictographic boards and eye-code systems to platforms that leverage more ad-
vanced technologies such as eye-tracker messaging and browser platforms, custom-residual
movement systems, and Brain-Computer Interface (BCI) communication devices. The main-
tenance of communication between the patient, clinicians, caregivers, friends and family is
crucial. The real and perceived reduction in autonomy and agency experienced by patients
can have a dramatic negative influence on clinical outcomes and Quality of Life (QoL).

1.2.1 Patient-Centered Treatment and Issues of Consent

In the case of patients with progressive disorders, questions of consent and guardianship are
addressed before the onset of a complete-locked-in state via the implementation of Advance
Care Planning (ACP) strategies. This involves regular collaborative decision-making on treat-
ment and goals between clinicians, caregivers, and patients before the loss of any commu-
nicative ability [1]. Alternatively, for individuals without any means of discernible effective
communication, the corresponding legal guardians are consulted and any initial attempts to
assist a patient with for example, a BCI-based speller, are performed in the absence of direct
consent [2]. Once some level of communication is established the clinicians can of course at
this point follow the appropriate guidelines. This is not an ideal set of circumstances and is
typically reserved for patients with traumatic brain injury-related aetiological pathways. The
means by which researchers justify the use of so-called in-direct consent via legal guardians
are informed by the study of patient populations with progressive disorders. This involves con-
ducting repeated surveys with patients as their ability to functionally communicate degrades
[3, 4]. These findings provide clinicians with data to identify the core needs of these patients
before the attainment of a complete-locked-in state.
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1.2.2 Quality of Life

As noted above, communication aids are crucial for individuals with severe dysarthria or
anarthria (complete loss of volitional speech) due to several key considerations relating to
consent and treatment outcomes. The inability to communicate as has a dramtic impact on the
quality of life for both patients and their caregivers. There is a well-documented relationship
between communication difficulties and significant psychological distress, including height-
ened feelings of depression, loneliness, and a sense of being a burden. In [5], researchers
revealed that the inability to communicate effectively exacerbates the psychological suffering
of ALS patients. These individuals often reported feeling isolated and overwhelmed by their
condition, which not only diminishes their overall well-being but also was shown to increase
their desire to end their lives prematurely. The study underscores the critical importance of
addressing communication challenges in ALS patients as a means of improving their mental
health and overall quality of life. Among the several variants of ALS, Bulbar onset is the most
severe. This involves the degeneration of the brain stem, particularly the medulla oblongata
[6] and can cause dramatic loss in speech and swallowing functions early in the disease, lead-
ing to rapid deterioration in communication and quality of life.

Notably, Bulbar onset ALS patients, as opposed to Limb, Respiratory or Axial onset patients,
often present with significantly poorer quality of life outcomes. As detailed in [7], this decline
is primarily due to the drastically lower degree of independence experienced by these patients,
as the early loss of speech and swallowing functions severely impacts their daily lives and
ability to communicate. Research involving self-reports of ALS patient attitudes demonstrate
that loss of speech and dysarthria more generally has a dramatic negative impact on QoL rat-
ing scales. Along these very same lines, the same paper [7] found significant differences in
reported depression between ALS Bulbar onset patients using communication aids and those
receiving only speech therapy. Specifically, communication aids were associated with lower
levels of depression and a better overall mood, highlighting their crucial role in improving
QoL for individuals with severe speech impairments. Along these very same lines, [8] re-
ported higher functional independence, a greater ability to convey basic needs and a higher
perceived ability to participate in social activities for near-locked-in patients using eye-tracker
systems, as opposed to ETRAN letter boards.

Additionally, case study reports have been detailed noting the successful transition from eye-
tracker-based systems to P300-based Brain-Computer interface systems [9]. As will be noted
and elaborated on in the subsequent Literature Review Chapter, these systems are operated via
brain-based bio-signals and can enable the operation of assistive communication devices for
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individuals with late-stage ALS or severe tetraplegia following a decline in ocular dexterity.
Further, research undertaken to gauge the attitudes and preferences of prospective patients to
utilize such advanced technologies indicates a strong willingness to use these devices [10].
This interest in the use of such methods is however qualified by certain operational demands
relating to speed of communication, system complexity, selection prediction accuracy, cost,
maintenance and comfort [3]. The principle aim of this thesis is to contribute to the corpus of
knowledge surrounding the development of communication-based Brain-Computer Interfaces
in the ultimate pursuit of improving the QoL and clinical outcomes of individuals with the
severest forms of tetraplegia.

1.3 Target Population and Aetiology

The following research is aimed at the development and improvement of BCI-speller tech-
nologies for target patient populations presenting with quadriplegia, anarthria (incapable of
vocalization) and retained functional vision and movement in one or both eyes. In this in-
stance, the diagnostic definition of quadriplegia follows UK medical standards as the absence
of volitional control of the head and all four limbs. More specifically, this blend of condi-
tions is termed Incomplete-Locked-In-Syndrome (ILIS). Crucially, patients presenting with
ILIS demonstrate, at minimum, the retention of voluntary motor control for blinking and ver-
tical eye movements. This differs from the so-called Complete Locked-In Syndrome, defined
as quadriplegia with residual motor control. Due to these restrictions, the aforementioned
target populations can not utilize eye-tracking technologies for communication. Further, the
increased severity of the condition typically introduces additional complications to the suc-
cessful deployment of communication devices owing to a higher incidence of fatigue. Note,
that this is a broad generalization and each patient’s clinical circumstances vary substantially
from case to case.

The most typical aetiology of ILIS involves traumatic injury to the brainstem or ventral pons
via haemorrhage[11] or ischemia [12]. Further, progressive disorders characterized by the
degradation of the central nervous system can also lead to this unique blend of conditions.
These include but are not restricted to, Central Pontine Myelinolysis (CPM), cancerous tu-
mour formation (thoracic level and above), Amyotrophic Lateral Sclerosis (ALS) and multiple
sclerosis [13]. Notably, individuals presenting with severe degenerative motor disorders can
progress to Complete-Locked-In Syndrome (CLIS). This is characterized by the absence of
all volitional motor control in tandem with a state of wakefulness [14]. For instances in which
wakefulness can not be established, the patient would likely be re-diagnosed as in a so-called
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‘vegetative state’.

In the initial stages of such degenerative disorders, patients may retain the capacity for vo-
calized speech, with even the ability to embellish any utterances with emotive inflexions to
provide additional communicative context. As the conditions progress, the standard vocal-
based communications can be complemented with pictorial or alphabet-based boards featur-
ing images or characters. In the final stages, highly simplistic spelling devices can be used
either independently or with assistance from a clinician to answer simple binary questions. As
stated earlier, numerous patients can not use these highly simplistic communication systems
due to the eventual loss of reliable control over any muscle groups, even ocular-based move-
ment including blinks and smooth saccades [15].

Crucially, the rate of degeneration varies significantly across individuals and is highly linked
to the aetiological pathway of the patient’s condition [12]. The most severe outcomes and
lowest incidence for recovery are described for individuals with a traumatic injury-based ILIS
and CLIS relating to damage of the pons or brainstem. Further, previous research demon-
strates that just 40-60% of all patients do not survive past the first 4 months post-injury [16].
These data suggest that BCI researchers must advance the capabilities of BCI-speller devices
to enhance life quality for end-point patient users with both highly limited long-term mortality
rates and for those individuals with degenerative disorders. Note, that at no point in this thesis
is data collected from the aforementioned patient populations. To clarify, studies relating to
the thesis herein are purely developmental and all research was conducted in lab settings with
typical-healthy subjects. It is the author’s intention for this work to function as a foundation
for potential future implementations with real end-point user patient populations.

1.4 Emoji-based P300 Speller Rationale

The development of Brain-Computer Interfaces (BCIs) for individuals with severe commu-
nication impairments often centres around optimizing alphanumeric speller systems. These
systems typically feature a grid matrix, usually 6 x 6 in dimension, containing letters and
numbers. To facilitate communication, the system employs a time-locked flashing sequence
of these targets. Concurrently, an Electroencephalograph (EEG) records brain activity, cap-
turing changes in micro-voltage across the scalp in response to these visual stimuli. In a P300
speller system, the user focuses on a specific target letter or number, and approximately 300
milliseconds after the target is highlighted, a positive deflection in the EEG signal is detected,
propagating from the frontal (Fz) to the central (Cz) and anterior (Pz) electrode locations. De-
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spite their potential, these speller systems often lead to user complaints of fatigue, eye strain,
and high cognitive load, as highlighted by [17], who identified these issues as significant bar-
riers to user acceptance and effective use of BCIs.

The use of dense target arrays in BCIs, which display many letters and numbers, is prob-
lematic for individuals with severe communication impairments due to high rates of visual
impairment in this population. Studies, such as [18], report that up to 66% of near-locked-in
patients have significant visual deficits, making it difficult for them to effectively use eye-
tracker based systems. This limitation underscores the need for alternative communication
methods better suited to their sensory challenges. Given these obstacles, studies have found
that potential patient users often prefer and achieve higher classification accuracies with two-
step selection systems in BCIs. In these systems, target letters and numbers are first grouped
into clusters on the screen during an initial selection phase. Users then select individual tar-
gets from these clusters in a secondary step. Research by [19] and [20]supports this approach,
showing that clustering reduces the cognitive load and visual strain, leading to more efficient
and accurate communication for ALS patient groups.

For many individuals with severe communication impairments, such as those with congenital
disorders like cerebral palsy or stroke patients with aphasia, text-based communication meth-
ods are often unfeasible. For instance, cerebral palsy can restrict language acquisition and
comprehension, making traditional text communication impractical [21]. Similarly, stroke pa-
tients with aphasia may struggle with language comprehension to the extent that text-based
methods are unviable [22]. In such cases, alternative low-tech methods such as communica-
tion books or customizable software systems that use symbolic representations of objects or
actions provide a practical substitute. These enable individuals to communicate more effec-
tively without relying on text or vocalization-based methods. Tools such as these help bridge
the communication gap by allowing users to express needs and ideas through images and sym-
bols.

A handful of studies report the use of symbols, in place of traditional letters and numbers,
principally to regulate environmental controls. In most instances, these systems involve pre-
senting between 3 and 12 symbols to address basic functional needs such as emergency alerts,
light switching, television controls, temperature regulation, and telephone call activation [23–
25]. Additionally, more sophisticated systems have been developed that integrate P300s with
electromyographic (EMG) signals in a cluster-based tree design [26]. In these advanced sys-
tems, users start by selecting options from a main interface that presents a range of operational
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sub-classes, including bed controls, television operations, and wheelchair commands. This hi-
erarchical approach allows users to navigate through various levels of control with relative
ease. The perceived complexity of using this method was found to be relatively low across
both ALS and typical healthy user, suggesting that long-term implementation could signifi-
cantly enhance the independence of patients and lead to notable improvements in their quality
of life.

The International Classification of Functioning, Disability, and Health (ICF) is a framework
designed to assess and describe health and disability comprehensively by evaluating body
functions, activities, participation, and environmental factors, aiming to enhance understand-
ing and support across various aspects of functioning. Environmental BCI systems, as dis-
cussed above, address the participation category by enabling telephone control; however, these
systems are often impractical for individuals with severe incomplete locked-in syndrome due
to the absence of volitional speech or residual movement needed to operate text-based input
systems.

Communicative participation refers to the ability to engage effectively in interactions and ex-
change information in various life situations. To better quantify this outcome measure, the
self-report Communicative Participation Item Bank (CPIB) was developed [27]. The CPIB
helps highlight the impact of patient conditions on everyday communication, including con-
versations with strangers, group discussions, and telephone calls. This tool has been used to
assess the relationship between CPIB items and functional capacities associated with volitional
communication control, particularly speech severity (self-reported speech ability), speech us-
age, and swallowing severity (self-reported swallowing ability). Research has demonstrated
that speech severity items accounted for the greatest variance in CPIB responses in a sample of
70 patients with ALS, Parkinson’s disease, multiple sclerosis, and head/neck cancer [28]. Ex-
trapolating these findings to individuals who rely on simple eye codes as their primary means
of communication underscores the profound social isolation experienced by these patient pop-
ulations.

Further, in one of the most thorough evaluations of potential CLIS patients’ device prefer-
ences to date, the authors revealed that emotional expressivity also was categorized as a highly
attractive attribute of any prospective communication-based BCI device [29]. Arguably one
of the most widely implemented means of emotional expressivity in text-based communi-
cations is emojis. These ideograms, originally introduced by Japanese telecom companies
to cut down on electronic pager-message length, feature humanoid faces typically yellow in
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colouration and vary dramatically in valence and content [30]. The first implementation of a
compacted pictorial unit in text-based communications is arguably the emoticon [31]. This
describes a sequence of pre-existing characters typically arranged to depict an emotional state
and often operates as a paralinguistic element to suffix a statement (for example, ’ : ) ’ ). This
describes a method of clarifying the intended meaning of a text communication via the use
of a qualifying icon. These language tools can assist in reducing ambiguity [32], enhancing
emotional expressivity [33] and crucially, increasing communication efficiency [34]. Note,
that the emoji is arguably more effective in terms of information transfer due to the single
character length, and in terms of emotional richness, expressivity [35–37] and impact [38] as
compared to emoticons (for review see, [39]).

Moreover, the inclusion of emojis into natural language networks has enabled experimenters
to demonstrate the significant influence of emojis in text-based messages [30, 40].Further,
the generalized application of emoji across large subject populations [37] has been shown,
alongside numerous stratified differences in terms of region [41], gender and age [42, 43].
These suggest that the scope for universal understanding is inherent to emoji application, as
well as the ability for specified usage, arguably providing emoji with greater flexibility, albeit
lower specificity, than purely text-based communication methods. It could be argued that the
hybridized integration of emoji and text-based communications has become ubiquitous with
individualized expression in the digital age. Along these very same lines, these tools must be
offered to BCI speller users to realise these same individualization goals for the ultimate pur-
pose of enhancing patient quality of life. In pursuit of these aims, the author proposes a study
investigating the viability of an emoji-based emotional communication experimental protocol
utilizing the P300 waveform.

As is discussed at length in the following chapter (see, subsection 2.6 Emoji-based Speller De-
signs), it is the author’s understanding that emoji have only been utilized once in communication-
based BCI studies. As described in [44], a series of 4 emoji were positioned within a 3 x 4
matrix of functional operations and environmental control messages, including temperature
regulation, hunger, disagreement and confusion. Here, the authors utilized a convolutional
neural network (CNN) for the clasification of signal images to predict user target selections
with a cross-subject accuracy of 90%. This previous research is highly promising and it is
the author’s belief that contributing to this area of BCI development could have substantial
impacts on the future quality of life for end-point patient users following additional research
and development.
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Objective The P300 emoji speller system outlined in this thesis is designed as an alterna-
tive communication platform aimed at improving the expressive capabilities of individuals
who are unable to communicate through traditional means. The system employs an innova-
tive approach by utilizing emojis, which are mapped to a reduced, one-dimensional pleasure
valence scale, allowing for more nuanced emotional communication. The objective here is
to demonstrate the operational viability of this method in a lab setting with typical healthy
subjects, laying the groundwork for future implementations with real patient populations. A
thorough literature review located in the subsequent chapter outlines all necessary concepts in
detail regarding EEG systems, BCI configurations and the P300 waveform. This leads onto a
discussion of similar, yet distinct prior implementations of image-based BCI systems in order
to orient the worked defined here (see, Chapters 3, 4 & 5) within the broader literature.

1.5 Systematic Optimization of SSVEP-based CNN Classi-
fication Rationale

As noted above, the vast majority of communication-based BCI systems focus on the use
of alphanumeric target arrays. In cases where patients retain the linguistic and cognitive ca-
pacity to utilize large alphanumeric arrays, the steady-state visual evoked potential (SSVEP)
waveform is frequently employed as a control signal [45]. SSVEP is an oscillatory signal
primarily propagated over the occipital lobe following the fixation on a stimulus flickering at
frequencies between 6 and 15 Hz [46]. These systems are among the highest-performing BCIs
developed to date, capable of supporting up to 160 targets [47] with information transfer rates
(ITR) exceeding 100 bits per minute (bpm) [48–51], 200bpm [52–54] and in some case over
300bpm [53, 55].

Over the past decade, iterative improvements to the widely implemented classification method,
Filter-Bank Canonical Correlation Analysis (FBCCA), along with advancements in stimulus
design and pre-processing techniques, have led to substantial performance gains. Tradition-
ally, a subject’s data was correlated solely with perfect sinusoids at the stimulus target flicker-
ing rates. However, advanced methods now integrate subject data into the reference filter-bank
comparisons and modify stimulus presentation methods to increase signal separability, such as
through phase offsetting, leading to significant increases in system accuracy and Information
Transfer Rates (ITRs).
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Arguably, one of the most impactful advancements has been incorporating the signal har-
monics of the reference sinusoids into the comparative Filter-Bank stages [56]. This involves
applying multiple bandpass filtering stages to the user’s EEG data to isolate both the base
stimulus frequencies and their harmonics in the upper-frequency ranges, thereby enhancing
classification accuracy [48]. For instance, instead of merely correlating an input signal con-
taining noisy EEG data around 6 Hz against perfect sinusoids at 6, 7, and 8 Hz, the signal is
filtered to analyze the expression of all relevant harmonics, such as 6, 12, 18 and 24 Hz, as
well as the harmonics of 7 Hz (e.g., 14, 21 and 28 Hz). This significantly boosts classification
accuracy as the relative distance between target waveform harmonics increases with each or-
der .

These advanced techniques have also been adopted by researchers using convolutional neural
networks (CNNs) to achieve similar outcomes. By expanding the pre-processing filter range to
approximately 0.1-80 Hz [54, 57], compared to the original range of around 1-30 Hz [58–61],
both the principal and harmonic features of the SSVEP signal can be captured. This broader
range has been successful in enhancing the performance of CNN-based BCI systems, how-
ever, the relationship between CNN model design and the optimal pre-processing parameters
for data filtering has yet to be systematically quantified, indicating an opportunity for further
research in this area.

Objective Here the author presents a programmatic system developed in Python for optimiz-
ing signal pre-processing filter cutoff frequencies across a range of established CNN classifiers
in SSVEP-based BCI spelling applications. The methods outlined here can be broadly adapted
for the large-scale optimization of any conceivable pre-processing parameter stage. This work
focuses on the critical step of determining data filter ranges, given the significant benefits of
including higher frequency ranges to capture harmonic components. The findings are intended
not for direct reimplementation but to serve as a guide for conserving resources by providing
data-driven estimations for setting pre-processing parameters based on the configuration of a
given network. A significant expansion on all topics noted here is positioned in the following
literature review chapter.
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1.6 PhD Outline and Objectives

In an effort to comprehensively present all related concepts, this thesis begins with a thor-
ough literature review. It then details a series of experiments (Experiments 1, 2, and 3) fo-
cused on developing a P300-based emoji speller for emotion communication, exploring vari-
ous pre-processing methods, stimulus designs, and analytical approaches for P300 evaluation.
Following this, the thesis addresses the optimization of convolutional neural network (CNN)
classifiers for Steady-State Visual Evoked Potential (SSVEP)-based BCI systems. The final
chapter summarizes the research findings and their implications, with additional details and
supplementary information provided in the Appendix.





Chapter 2

Literature Review

2.1 Chapter Outline

This literature review comprehensively covers all aspects of the project, starting with detailed
discussions of EEG technical hardware and the bio-signals employed, specifically the P300
and SSVEP. The review delves into the foundational concepts and nuances of Brain-Computer
Interface (BCI) technology, providing a thorough examination of its technical features and
advancements. A critical analysis of existing emoji and pictographic BCI spellers developed
to date is also included, offering a historical and technical perspective on how these systems
have evolved. Furthermore, this chapter presents an in-depth exploration of Convolutional
Neural Networks (CNNs) and models that are directly relevant to the research conducted in
this thesis. The literature review is designed to serve as a reference point, offering clarification
and insight into the technical and theoretical aspects discussed throughout.

2.2 EEG Signals and Hardware Overview

Before any broader discussions on BCI and more specifically EEG-based BCI research, it is
first necessary to outline the technical definitions of EEG and provide a brief history of the
hardware and bio-signal acquisition device more generally. The aforementioned EEG systems
typically feature arrangements of electrodes positioned over the skull according to the stan-
dardized international 10-20 system. These electrodes register differences in micro-voltage
(μV) across the lateral surface of brain tissues [62]. At the single-cellular level, neurones
undergoing an action potential exhibit a movement of charged particles over the respective
axon leading to the generation of a primary electrical current and corresponding magnetic
field. Further, the collective action potential of multiple neighbouring neurones can then com-
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pound into larger magnetic fields. These so-called ‘primary currents’ are utilized in Mag-
netoencephaolgraphy (MEG) applications and include functional connectivity research [63],
pre-surgical mapping [64–66] and post-surgical evaluation [67, 68].

Following the initial excitation event, a secondary magnetic field is propagated to balance
the variance in electrical potential over the neurone, accordingly, these are termed secondary
currents. The interplay between these fields introduces variance in μV amplitudes across the
scalp and is registered by EEG-based data acquisition systems. Numerous cognitive and be-
havioural phenomena have been robustly associated with distinct and replicable changes in μV
patterns (for review see, [69]). Typically, these are characterized by an increase in related μV
amplitude (Event-Related Potentials) or a change in the prevalence of specific signal frequen-
cies. Invasive EEG methods are relatively prevalent in surrounding literature, this involves the
positioning of electrodes directly on (depth electrodes) or near (sub-dural electrodes) target
brain regions. Further, so-called sub-dermal corkscrew electrodes can also be embedded di-
rectly into the scalp [70]. These methods are utilized nearly exclusively in surgical settings
for obvious reasons related to patient well-being, setup times and staff training constraints.

The most common format of EEG-based devices is the non-invasive variant in which elec-
trodes, housed in a flexible cap, are positioned against the scalp. As the electrodes in these
systems are significantly further from the brain tissues compared to the invasive methods, nu-
merous guidelines are observed to ensure the collection of high-quality signals. The most
common measurement for quality control relating to EEG signal acquisition is the impedance
(Ω) level. This describes the ease with which an alternating current can move over a conduc-
tive surface. Note, that impedance contrasts with resistance, as this describes an analogous
process relating to direct current. In the simplest terms, the lower the level of impedance,
the greater the EEG signal quality. Note, that failure to address high impedance levels before
data collection has been shown to markedly influence both signal-to-noise ratios [71, 72] and
signal coherence [73].

2.2.1 Wet vs. Dry EEG

The vast majority of EEG systems available to clinicians, researchers and consumers can be
categorized as either wet or dry devices. The so-called wet systems involve the application of
a conductive gel to each electrode in the array assembly. These gels (hydrophilic polymers)
contain ionic compounds, typically salts, to enhance the signal-to-noise ratio of brain-based
bio-signals to the electrodes [74]. The process can be relatively time-consuming and necessi-
tates the provision of subject hair cleansing facilities that can dramatically extend experimental
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testing times and place time constraints on the duration of wet EEG data capture. Further, op-
erators must be precise in the application of these gels to avoid electrode coupling. This occurs
in instances where conductive gel traces from neighbouring electrode sites meet and the μV
amplitude readings from the affected sensors become confounded due to cross-interference.
This is especially problematic for ambulatory assessments or experiments involving even mod-
erate physical movement from test subjects. Despite these drawbacks, wet EEG systems are
positioned as the gold standard in non-invasive EEG research as these methods achieve the
highest resolution signals since impedance values below 5kΩ are easily achievable. Note,
that the 5kΩ threshold is a well-established industry standard in non-invasive EEG research
[75, 76].

In contrast, dry systems forgo the application of conductive gels and alternatively opt for
the use of electrodes with electro-conductive coatings with active noise-shielding properties.
Further, dry-EEG sensors are typically engineered to maximise scalp contact via the use of
so-called feet-style probes to parse through individual subject hair follicles. Additionally, as
these sensors are typically embedded into plastic housings, as opposed to soft caps, spring
and foam-based pressure modules are often affixed to the sensor assembly to modify the fit
of the device according to the shape of each subject’s skull. These devices have been shown
to produce EEG signals with extremely high correlations to those collected via wet system
setups [77]. Despite this, the ability to achieve sub-5kΩ signals is markedly reduced. This
is somewhat offset by significantly higher deployability, further advantages include greater
wearability, higher subject recruitment potential, a reduced training curve, enhanced portabil-
ity and increased accommodation for ambulatory testing.

Note, that in the past the benefits of dry-electrode rapid deployability were negated by low
user comfort ratings due to the initial commonly adopted pin-style design. Previous research
comparing the performance and usability of a range of dry and wet electrode types notes that
the active dry gold pin-based electrodes produced by BrainProducts Gmbh were ranked as
significantly less comfortable by users [78]. These evaluations were conducted against other
user reports featuring the standard flat ring-shaped golden electrodes (EasyCap GmbH) used
for wet-EEG, hybrid dry multi-spikes (Quasar Inc.) and passive dry solid gel (BrainProducts
Gmbh) electrodes. Crucially, there was no significant difference in the perceived comfort be-
tween the latter three electrode variants, with the dry electrode systems retaining the advantage
in terms of a lower setup time.
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2.3 EEG vs. Alternative Brain-based Bio-Signal Acquisition
Methods

When comparing non-invasive EEG systems to other methods of brain-based bio-signal acqui-
sition such as functional magnetic resonance imaging (fMRI) it is clear these devices demon-
strate significantly reduced spatial resolution. This in combination with the low penetration
of the systems (1-2cm) means that signals are poorly localized and research into sub-thalamic
structures is unviable. These issues are principally related to the positioning of the sensors on
the scalp. Broadly, the interference resulting from both the skull and cerebrospinal fluid ulti-
mately places significant limitations on the spatial resolution of any non-invasive EEG system
[79]. Further, the chaotic trajectory that characterizes the EEG signal introduces additional
complexity as numerous factors including, electrical noise, subject attentiveness and skin con-
ductivity can lead to minute-by-minute changes in waveform quality. These can obfuscate
researcher efforts to consistently replicate past results and divergent outcomes are common
within the same subject even for the same experimental session [80–82].

The highly dimensional attributes of the data paired with the expression of numerous non-
linear components place significant demands on experimenters and the techniques imple-
mented to extract relevant neural signatures. Despite this, EEG systems feature some of the
highest temporal resolution performance statistics of any bio-signal acquisition device class.
These qualities arguably provide EEG-based methods with the highest potential for BCI ap-
plications owing to the significantly higher upper estimates of resultant information transfer
rates. Additionally, EEG-based bio-signals present with the largest number of ultra-low la-
tency waveforms, with the SSVEP requiring just 80-160ms for expression over the visual and
associated cortices [83–85]. This low-latency expression paired with high temporal resolution
provides a compelling case for the adoption of EEG systems as the primary BCI data acquisi-
tion platform.

Further, fMRI systems are typically housed in either hospital or university campuses and re-
quire a complement of professionals to operate and maintain, making their deployment in BCI
applications unviable. The less invasive EEG methods, as noted above, provide additional
obstacles such as clinician costs, surgical risk, added hygiene considerations, lower patient
quality of life and dramatically diminished repeatability [86, 87]. This final consideration is
key as the long-term positioning of recording equipment in or on target brain tissues invariably
leads to scar tissue formation and loss of effective neural signal acquisition. Moreover, previ-
ous research involving the consultation of prospective BCI end-point users found only 1 of 17
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subjects professed an interest in any form of BCI device requiring a sub-dural implant. This
is likely owing to previous trauma associated with post-surgical recovery and the perceived
risk of clinical complications worsening or accelerating their current conditions [88]. In sum-
mary, these considerations taken together provide a strong case for the pursuit of non-invasive
EEG-based BCI research over alternative data acquisition methods.

2.4 Brain-Computer Interface Definition and Terminolgy

Brain-Computer Interfaces (BCIs) are defined as assistive devices utilizing control signals
localized to the brain. These systems are typically deployed to aid or replace communica-
tion or mobility functions [89–91]. Note, that these do not fall under the same classification
as Neural-Computer Interfaces (NCIs), which operate via the collection of control signals
from the peripheral nervous system, this includes the use of electromyography (EMG) and
eye-tracking [92–94]. Further, so-called Human-Computer Interfaces (HCIs) describe a more
generic terminological grouping encompassing both BCIs and NCIs as both involve the con-
nectivity of computer systems with human users. This comprises a wide array of technologi-
cal considerations such as ergonomic constraints in keyboard design, software system graphic
user interface (GUI) layouts, and the positioning of sensors in wearable devices. The broader
discipline of HCI has had a significant impact on the development of BCIs by providing the
theoretical framework and guiding principles for future technologies based principally on the
concept of functionality [95].

As noted above, BCI systems have been developed primarily to restore communication and
mobility to individuals with severe paralysis. This covers wheelchair control [96], exo-skeleton
commands [97], motor vehicle operation [98] as well as prosthetic hand manipulation in real-
world and simulated VR contexts [99, 100]. More broadly, specialized methods for environ-
mental control such as lighting operation in the so-called internet-of-things (IoT) have also
been explored yet lie outside the scope of this thesis [101]. Further, systems have been devel-
oped for web browsing [102], online/smartphone messaging [103, 104], video-game partici-
pation [105], musical composition [106, 107] and crucially, spelling or text entry [108]. At the
base level, all BCI systems require hardware for bio-signal acquisition and a corresponding
signal amplification unit.

Note that recently many systems have integrated both of these devices into one unit, espe-
cially for ambulatory applications. Further, all BCI systems implement some minimal level
of signal pre-processing, followed by feature extraction and target classification. Finally, all
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closed-loop methods implement a feedback system. This could be configured as a graphical
interface or coded series of tones used to update the user on the command issued by the BCI
hardware and software ensemble. This relay of information post-classification allows the user
to monitor the performance of the system and crucially, implement changes in response to po-
tential errors. Instances involving the real-time or online feedback of this information are the
gold standard in BCI research as these typically represent methods with the highest ecological
validity.

The most prominent means of evaluating BCI-based system performance relate to the met-
rics Accuracy of Classification (AoC) and information transfer rate (ITR). The former defines
the hit rate of a given classification system and describes the relative number of correct predic-
tions against the number of errors. This is typically expressed either as a percentage between
0 and 100% or in non-integer format between 0 and 1. The former is used to compare BCI
systems in terms of speed and is described in the equation positioned below (see, Equation
1). Initially, this statistic was computed to evaluate telecoms-based systems and was adopted
at a later stage to determine BCI system performance [109]. Here N corresponds to the total
number of targets, in a BCI speller context this relates to the amount of numbers, letters or
characters on screen. Further, P refers to the probability of accurate target classification and T
denotes the data capture duration period per target. Note, that this algorithmic configuration
relates to the computation of offline BCI performance. The addition of all the time needed
to calculate the prediction and adequately reset for the next trial must be accommodated to
produce valid online performance approximations. Note, that Equation 2 represents the ITR
metric in a per-minute format, this is often transposed into bits per second. The studies dis-
cussed herein all utilise a bpm presentation format.

Equation 1.

B = log2(N)+P∗ log2(P)+(1−P)∗ log2((1−P)/(N −1))
Equation 2.

bpm = B∗ (60/T )

The analysis of any BCI system must consider both AoC and ITR metrics as a relative
imbalance can lead to significant decreases in real-world functionality. For example, high-
accuracy and low-ITR BCI systems are impractical owing to latency and responsiveness is-
sues. Further, low-accuracy and high-ITR systems suffer from the need to edit or amend
output commands, repeatedly stunting the user during live operation. It is clear, that balance
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is needed to instil user confidence in the system and foster its adoption for communication
or mobility purposes. In previous research, additional measures such as Average Precision
(AP) are used to indicate the relative positioning or pattern of classifications. This is strongly
related to the phenomenon of overfitting, which describes the biased selection of a target or
specific prediction directionality. In these instances, the classifier could be defined as precise
as the groupings of predictions made are highly consistent, irrespective of the actual accuracy
metrics. Recently, discussions surrounding classifier precision have been superseded by de-
scriptions of the incidence of confusion, as relating to confusion matrices. This effectively
describes the same process from the orthogonal conceptual standpoint (for further informa-
tion see, Figure 3.7). In sum, researchers aim to produce robust classifiers demonstrating high
accuracy and precision in tandem with high ITR (bpm) metrics.

2.4.1 BCI Sub-Classes

The most basic distinctions in BCI classifications relate to the locus of the control signal as
originating either exogenously or endogenously, in other words in response to an external
stimulus or internally generated commands respectively. More specifically, an exogenous BCI
requires the use of an external device to excite the corresponding brain-based bio-signal, such
as a computer monitor or series of tones. These bio-signals are propagated reflexively, that
is to say, without user intention. The only volitional control for the use of such systems is to
direct gaze or attention over the intended target stimulus. Along these very same lines, these
systems are characterised via the use of so-called bottom-up dynamics as in the case of for
example SSVEP waveforms. Conversely, endogenous BCI functions according to top-down
control signals. These involve directed, conscious efforts from the user that require no external
stimuli and cover systems that operate via imagined motor movements. In these contexts, se-
lection commands are assigned to user limbs and even individual constituent limb structures,
for example, hands and whole arm movement.

Often in mobility-based prostheses, there exists a one-to-one mapping between the limb and
the desired movement vector, in other instances these are mapped to more generic mobility de-
vices or communication system commands [94, 110]. The systems utilizing these endogenous
control features arguably possess greater scope for application as no functional control over
any muscle groups is required to operate the systems. In contrast, these methods suffer from
the limited number of mappable limb areas, high latencies in signal propagation, a steep user
learning curve and a high rate of fatigue induction as opposed to alternative exogenous-based
BCI platforms. Owing to these considerations such methods are typically reserved for patient
populations with the most severe forms of paralysis. Note, that many such systems are now
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in development implementing hybrid control designs. These typically allocate endogenous
systems to engage and terminate more elaborate exogenous interfaces. This integration allows
viable user populations to benefit from the volitional control features of endogenous systems
and the added functionality of exogenous-based platforms [111].

Additional terminological definitions exist in defining the numerous approaches researchers
have undertaken in developing BCI systems concerning so-called Active and Reactive BCI,
both of which map closely onto the aforementioned endogenous and exogenous BCI classi-
fications. In this instance, the distinctions relate purely to the presence or absence of user
intention, as compared to the previous classifications that focus solely on the location of the
casual event linked to a given bio-signal propagation [112]. Along these lines, active BCI
utilizes a signal that is the result of direct, volitional control. In comparison, reactive systems,
utilize waveforms such as the P300 and SSVEP that are propagated exclusively via exposure
to external stimuli and can not be activated dynamically. As these definitions map so closely
the terms are often utilized interchangeably. A further classification relates to Passive BCI,
this involves removing any component of directed user intention and operates similarly to a
signal monitoring system. These applications can include emotional state tracking or atten-
tiveness controls to assist in the optimal operation of certain technological platforms.

Finally, definitions relating to the specifics of the control system are important to note. Some
platforms operate according to predesignated time-locked blocks, known as synchronous BCI
[113]. This is done to standardize the inputs for the classification system and these rigid pa-
rameters allow for greater control over the behaviour of a given BCI system. Conversely,
asynchronous systems place the locus of control closer to the user, as the operational dura-
tions of the system are more fluid. In real-world terms, a synchronous BCI speller could be
programmed to collect a pre-coded number of target letters, numbers and characters over the
course of a specified number of trial runs. This operationalization typically comes at the cost
of relinquishing the ability to begin each spelling run to clinicians, as opposed to the user. In
an asynchronous format, the ability to engage and disengage the spelling protocol would be
controlled via the user and arguably provides for greater independence and higher potential
quality of life outcomes [114]. Despite this, the ability to keep these systems running con-
tinuously in the background during periods in which the user does not wish to operate the
system is problematic owing to system setup times and potential signal degradation issues.
Ultimately, platforms intended for use as asynchronous BCI have similar functional outcomes
and can complicate the process for researchers in terms of development. Again, the syn-
chronous methods typically map alongside reactive or exogenous systems, with asynchronous
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methods reserved primarily for bio-signals that can be propagated endogenously [115]. Note,
that all methods described in this thesis are classified as exogenous, active and asynchronous,
EEG-based BCI spellers.

2.5 BCI Configuration and Control Signals

The EEG data acquisition format was selected for the research herein owing to the relatively
economical hardware costs, non-invasive methodology and ultra-high temporal resolution
[46]. Past research has demonstrated repeatedly that EEG-based methods can perform well
in clinical spelling settings and these systems arguably display the most promise due to the
potential advances in signal processing and classification techniques currently being explored
[116, 117]. Crucially, the control signal and corresponding acquisition device selections are
highly dependent on patient user requirements. The authors herein assert that the EEG plat-
form and the related SSVEP and P300 control signals provide the best solution for the target
patient population and corresponding functional task: communication via BCI Speller. The
field of BCI Speller development aims to enhance or restore communication-based functions
for individuals with severe paralysis. This covers the transfer of information in numerous
formats including text, numbers, symbols, characters, pictorial icons and binary selection pro-
cesses (for example yes vs. no paradigms). In the past simple alphabet, boards have been re-
placed with complex branched hex-layouts [91] and currently fully-complimented keyboards
are used, traditionally presented via a computer monitor and visually augmented to generate
corresponding control signals (exogneous, reactive). The following subsections outline the
two most popular control signals available, P300 (2.5.1) and SSVEP (2.6.1) waveforms.

2.5.1 P300

The P300 waveform has been utilized widely in neuroscience literature for numerous BCI and
non-BCI-related applications. These include neurological diagnosis, attention and intention
research, facial recognition and expression studies, cognitive workload, treatment viability as-
sessments and many more. The signal is classified as an Event-Related Potential (ERP), this
describes a waveform propagated as a positive or negative deflection that is temporally locked
to an external stimulating event (see, Figure 2.1). Typically, the P300 is characterized by the
expression of a large positive deflection 300ms following the onset of an experimental event
[118, 119], resulting in a μV amplitude change of around 5-20μV [120]. Note, that there exist
numerous sub-components related to the P300 including the N50 and N100. Additionally, the
P300 can be sub-categorized within the component into an earlier, P3a, and later P3b wave-
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form sub-class [121].

The initial P3a component is characterized by a larger relative increase in μV amplitude be-
tween 250-280ms, as compared to the P3b (300-400ms) [122]. The early P3a has been shown
to primarily respond in instances of unanticipated modification to experimental stimuli [123],
task conditions involving the subject actively ignoring the experimental stimuli [124] and the
unexpected early stopping of a task [121]. In contrast, the P3b expression is task-based and
relates primarily to the recognition of an unlikely yet expected modification of target stim-
uli. The study of these sub-components, associated responsiveness to task conditions and the
temporal relationships between the waveforms have both informed and corrected numerous
theories of working memory, for example, the context-updating theory [122].

Figure 2.1: The plot shown here is reproduced from [125]. Here, oddball probability is used to ex-
plore how memory capacity affects neural responses to infrequent auditory stimuli. This approach
involves manipulating learning tasks and oddball probabilities to provide valuable insights into mem-
ory function and its variability by analyzing how the brain’s response to unexpected events reflects
underlying memory processes. This oddball experimental implementation involved subjects listening
to a sequence of tones, consisting of frequent low-tone standards and infrequent high-tone oddballs.
The subjects form an internal memory of past tones, which they use to predict future tones and respond
accordingly. The plot shows the average EEG trace for oddball trials across different blocks, with
each block corresponding to a specific oddball probability (OP) indicated in the legend. The traces are
colour-coded to reflect these probabilities, demonstrating how the average response to oddball tones
varies with the frequency of their occurrence. Note that the image shown here is published under a
Creative Commons Attribution 4.0 International License. To view a copy of this license, please visit:
https://creativecommons.org/licenses/by/4.0/.
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Interestingly, the expression of these waveforms can vary across subjects in terms of pre-
cise onset, typically falling within the 250-400ms range [126]. The signals originate from the
central Fpz and Cz electrode locations and travel anteriorly towards the parietal regions [127].
Initially, auditory-based stimuli formed the basis of most early investigations into the P300
waveform [118] and have since expanded into the visual sensory modality. Visual methods for
inducing P300 responses can include the manipulation of stimuli via flashing, rotation, colour
inversion, resizing, flipping and highlighting. Essentially, any means of increasing the relative
salience of a given target as compared to previously displayed neighbouring targets are likely
viable candidates for the reliable propagation of the P300 waveform. Crucially, the waveform
is exogenously generated and also highly dependent on top-down mechanisms including fa-
tigue, attention and stimulus probability estimation. Further, given these top-down effects, the
signal presents with a relatively high latency refractory response before returning to baseline.
Additionally, the repeated stimulation of the P300 waveform leads to ever-decreasing subse-
quent peaks, leading to trials in the later experimental stages as demonstrating reduced signal
quality [128]. To overcome these issues hybrid methods implementing an array of augmenta-
tion techniques into the same experimental session can be utilized to mitigate these issues.

The utilization of the P300 waveform has been encouraged due to the robust, replicable nature
of the signal and critically, owing to the gaze independence of the visually-based ERP variant.
In other words, the propagation of the P300 waveform for visual stimuli does not require di-
rect fixation of a given target stimulus. In the past, it has been frequently asserted that subjects
need only attend the region in which the visual stimuli are positioned to generate the wave-
form. Note, that some literature casts doubt on the degree of gaze independence expressed
by the P300 [129, 130]. Both referenced studies found that P300 amplitude decreased as a
function of fixation distance from the attended target.

The reduced expressivity of the waveform translated into lower classification accuracies in
a P300-based speller experiment and suggests a classification of semi-gaze independence is
more applicable under these conditions [129]. Despite these caveats, P300-based systems
arguably possess greater scope for application, especially in patient populations with sub-
optimal ocular control for whom eye-tracker or SSVEP-based systems are unviable. No-
tably, the P300 and associated sub-components (N100) demonstrate reduced expressivity in
amyotrophic-lateral sclerosis patients, as compared to healthy age-matched controls. Cru-
cially, these lower amplitudes did not translate into significantly different functional perfor-
mance in terms of classification accuracy or information transfer rate [131]. Further, the
P300 waveform has been successfully implemented in numerous P300-based systems for both
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healthy, typical [132, 133] and crucially, real-world, clinical settings [134, 135] (for review
see, [136]).

One of the most widely implemented experimental formats utilized to illicit the P300 is the
oddball paradigm. In the most simplistic configuration, a singular target is presented to the
subjects, often via a computer monitor. The stimulus is coded to present either a common,
standard target, for example, a white square and in so-called deviant trials a non-standard
stimulus is presented, for example, a black square. Over the course of the trial, the order of
presentation for standard or deviant trials can be hard-coded or operated according to a prob-
ability function. Note, that the ratio of standard to deviant trials must be biased towards the
presentation of the standard target stimulus or ensure the subjects perceive the deviant trial
presentations as unexpected events. Following the deviant trial, the P300 waveform propaga-
tion is induced and this enables researchers to determine the classification of a given deviant
trial independently of the exact stimulus presentation sequence.

The P300 oddball response has been widely utilized in various research contexts, including
memory studies, to investigate how the brain processes rare or unexpected stimuli. This re-
search approach involves presenting a frequent standard stimulus interspersed with occasional
oddball stimuli that deviate from the norm. Notably, the P300 peak is inversely related to
the probability of presentation or the relative degree of surprise associated with a stimulus.
This relationship has been documented [137] and highlights how the magnitude of the P300
response decreases as the probability of an event increases, indicating a diminished surprise
effect. As seen in [138] a large drop in the P300 area under the curve, a reduced prevalence of
associated N200 waveform components and higher component latencies were observed for a
checkerboard stimulus layout where target oddball probability increased from 20% to 50% to
80%.

It is crucial to note that the peaking features of the associated signals are reduced and not
completely absent from the 50% oddball probability trials, much in the same way these at-
tributes are retained yet diminished in the above Figure (see, Figure 2.1) as shown in [125].
This is likely because the P300 response is not solely dependent on the precise probability of
stimulus occurrence but also on the subjective probability perceived by the participant. Pre-
vious research emphasises that the P300 response reflects not only the objective rarity of a
stimulus but also how surprising it is to the individual, based on their expectations and learn-
ing experiences [139]. Further, it has been demonstrated that simply decreasing the probability
of the target stimulus by increasing the number of non-target stimuli can have adverse effects
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on the P300 response. As discussed in [19, 20, 128, 140–142], task difficulty, probability, and
inter-stimulus intervals all impact the P300 response, indicating that an excessive increase in
non-target stimuli might negatively affect the quality of the neural response, potentially lead-
ing to reduced sensitivity and reliability in detecting the oddball stimuli.

It is important to highlight that the experimental variants can be arranged to manipulate the
stimulus intensity or introduce a reward-based feedback mechanism to modify the P300 wave-
form expression alongside deviant trial frequency ratios to influence the resultant ERP prop-
erties (phase and amplitude). Note, that the traditional oddball paradigm format demonstrates
a greater incidence of P3b propagation [143]. Along these very same lines, all subsequent
P300-based BCI operating according to the oddball design methodology are effectively tar-
geting this later P300 sub-component. Note, that the excessive expression of P3a components
could indicate poor subject instruction.

The properties of the P300 noted above led to the use of this waveform in the world’s first
BCI implementation [144]. Namely, the ability to reproduce the signal in a wide range of the
general public [145] and the relative simplicity of experimental design needed for elicitation
have lead to the numerous research groups to investigate this signal in a BCI context. Since
the publication of this seminal work, the P300 has been widely deployed as a control signal in
multiple BCI studies across the globe and innumerable contexts spanning communication and
mobility applications. Concerning the BCI speller literature, P300 research greatly influenced
the advancement and standardization of graphical user interfaces for the selection of letters,
numbers and symbols. These initial systems typically functioned via the presentation of 6 ×
6 target character matrices. Each row and column is pre-coded to generate a relative deviant
augmentation event (for example colour inversion) over the course of the trial. At a minimum,
each trial involves the augmentation of all stimulus targets twice, once in the corresponding
row and once for the corresponding column. Note, that each row and column augmentation is
done individually, often featuring a delay between the execution of subsequent sequences.

For a given attended target, one trial should feature two corresponding P3b waveforms. The
researchers can cross-reference the pair of temporal deflections and predict the onset of the
initial triggering event. Using these two data points it is possible to deduce the target intended
for spelling as each character possesses a unique combination of time-locked augmentations.
There exist modifications to this base-level paradigm that integrate multiple trials per letter
spelt to boost classification accuracy. Note, that the increase in signal quality via averaging
leads to additional processing time and a faster rate of P300 waveform amplitude degradation.
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This implementation is often restricted via experimental features that reduce the accuracy of
the system. The double flash problem describes the common incidence of the same target
undergoing individual row and column augmentations in succession. This can significantly
reduce the amplitude of the P300 in response to the second augmentation event as the related
cerebral regions and corresponding signals have not fully reset to baseline. In other words, the
intended re-induction of the P300 waveform occurs before the completion of the refractory
period and can significantly attenuate the respective signal expression.

Additionally, the row and column augmentation scheme must be randomised to avoid sub-
ject memorisation as the P3b functions via the presence of an unlikely, yet expected change
in task-relevant stimuli. Along these lines, any knowledge of the augmentation order before
the trial initiation would render the trials intended as deviant to be predictable. This need
to consistently modify the order of row and column augmentations can lead to the use of
presentation schemes that position stimuli closely in temporal space. Further, after repeated
propagation of the P300 waveform, the latency of the signal reduces and can drift significantly.
This complicates the process of identifying the correct time-locked deflection and in turn, the
intended character for selection. These experimental obstacles are termed adjacency errors
and also apply in the spatial domain. This relates to the unintentional direction of attention
and or fixation of characters neighbouring the target stimuli. Researchers can mitigate these
issues via the use of algorithmic methods to ensure for example that the augmentation of the
first row is not immediately followed via the augmentation of the second row. Despite, this
only a limited number of row and column augmentation schemes are available under these
constraints, in response to these complications alternative methods of stimulus presentation
have been explored.

Arguably the most effective means of visual-P300 generation for BCI-spelling developed to
date is the asynchronous paradigm [146]. This involves assigning targets with unique aug-
mentation sequences, independent of row or column positioning. For example, a hypothetical
trial period could consist of 6 time-locked augmentation events. Distally positioned (spatial
domain) targets are grouped, e.g. A, Q and 1, together to augment during the 1st sequence.
Further, A, G and 9 are grouped to augment in the 2nd sequence. Essentially, the arrangement
of rows and columns is replaced with spatially optimized groupings to maximise the individ-
ual target signal profiles over the course of the trial. These techniques dramatically reduce the
incidence of both double flash and adjacency errors and also require significantly fewer aug-
mentations per character selected. Further, studies demonstrate that subject-specific attributes
can be used to modify the parameters of the stimuli to boost performance. This includes tuning
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intra-trial intervals between the onset of subsequent trials, reducing the number of trials per
letter spelt, and tailoring the degree of either temporal or spatial separation of augmentations.
Moreover, these systems have been integrated into an automated update scheme and change
in response to user performance in real-time to further boost speller usability [146].

The utilization of these methods has shown real-world online performance in healthy, typical
subjects exceeding 95% classification accuracy at between 94 and 120 bpm for a 72-target (8
× 9) matrix composed of letters, numbers, symbols and interface controls [146]. Note, that the
theoretical maximum throughput of this system is 258 bpm, with some subjects demonstrat-
ing zero errors over the course of dozens of characters spelled. These results suggest that the
relatively low latency of the P300 waveform (300ms) can be offset via extensive optimization
of the stimulus augmentation protocols. These impressive performance metrics are attained
via the systematic development of both stimulus design methods and analysis techniques. The
bleeding edge of P300-based BCI speller research at present nearly exclusively deploys Step
Wise Discriminant Analysis (SWLDA) for the classification of the respective bio-signals. This
method is an extension of Fisher’s Discriminant Analysis (FDA) and it involves a binary clas-
sification, determining if data does or does not contain a P300 by optimizing a discriminant
function [147].

In terms of the Row/ Column paradigm, feature vectors are constructed from segments of EEG
time series parsed into around 500ms chunks after the initiation of each flash event. Training
data are concatenated across channels, to form a temporal image of brain activity across all
electrode locations sampled. The discriminant function is optimized with a subset of sample
data to identify features relevant to discerning between classes. In other words, data features
which contribute to the maximal separation of classes are added to the discriminant function.
Further, during this process features calculated as the least significant for the task of class
prediction are continuously removed. SWDLA is a constrained and efficient, non-exhaustive
search method. These models can over-fit and even demonstrate convergence failure (inability
to reach maximal accuracy) if the data used contain significant artefacts, or, do not possess an
even distribution of class examples.

The technique has been shown to outperform several alternative analyses including peak
picking, covariance and area assessment [144]. Improvements in hardware, operating sys-
tem efficiency, stimulus display techniques and averaging in pre-processing, have resulted in
researchers continually enhancing the performance of P300-based BCI systems [148]. Adap-
tations to the SWDLA include the addition of a regularization parameter which updates the
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discriminant function in response to misclassification. This is intended to reduce the influ-
ence of abnormal data and enhance the analyses’ generalizability across subjects [149, 150].
SWLDA has also been shown to outperform novel analytical techniques such as support vec-
tor machines [147] and multi-layer perceptrons [151, 152].

In consideration of the past research discussed herein, a variant of the SWLDA method is de-
ployed for the classification of the P300 waveform in a simplified emoji-based BCI-emotional
communication context (see Chapters 3, 4, & 5). Recent studies demonstrate that the use of
face-stimuli overlaying [153], emotional stimuli [154] and the application of colour to stimulus
targets [155] can all assist in boosting P300 waveform amplitudes in the short term, ensuring
the retention of viable waveforms for detection and classification over the course of protracted
recording sessions. Along these very same lines, the efficacy of emoji-based stimuli is as-
sessed for viability to inform future speller applications featuring integrated character-emoji
keyboard configurations.

2.6 Emoji-based Speller Designs

At the time of the research conducted herein, emoji-based speller targets had yet to be im-
plemented into a pure emotional expressivity BCI communication platform. The research
conducted thus far related specifically to the usage of emoji stimuli as augmentation overlay
objects. Note here, that an augmentation overlay refers to the programmatic, time-locked oc-
clusion of a stimulus. The term augmentation relates to the transformation of visual stimulus
properties and overlay relates to the quality of this transformation, as characterised by the
occlusion of said stimulus. This method, as dictated by its perceptual qualities, is restricted
to the visual domain. In the context of a classic visual-P300 BCI speller, the augmentation
overlay would be the white square that is overlayed onto the spatial position of given speller
targets to induce the evoked potential.

The studies in question probed the efficacy of replacing overlay squares with emoji stimuli
in P300 speller contexts and demonstrated significant increases in classifier accuracy [156],
with future studies successfully applying these findings in alternative BCI tasks [157]. These
results align with studies demonstrating a similar effect utilizing human facial images as over-
lay objects [153]. It has been suggested that these increases in performance are likely owing to
a boost in P300 peaking fostered by the usage of stimulus augmentation objects with a higher
level of emotionality and salience [158].
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Arguably [44] demonstrates the first use of an emoji integrated array in a P300 speller context.
The study made use of a row/column paradigm featuring a 3 × 4 emoji-icon integrated array
composed of 4 face-based emoji and 8 non-face-based icons consisting of pictograms relating
to user states, for example cold, warmth, hunger, and thirst. The paper describes the imple-
mentation of a deep convolutional neural network (DCNN) (see subsections 2.6.3 & 2.6.4)
trained to classify images of the EEG waveforms captured. The methods revealed high classi-
fication accuracies for both targets (90%) and non-targets (95%), significantly outperforming
both the LDA and Logistic Regression analysis evaluated.

Despite these impressive results, the author of this thesis asserts that the arrangement of these
facial emoji stimuli in the emoji-icon integrated array is suboptimal, and the range of emo-
tional expressivity is highly limited. In contrast, previous research into the measurement of
human emotions has established the benefits of arranging scales across the continuous dimen-
sions of arousal (low to high) and pleasure (low to high) [159]. Along these very same line,
the author of this thesis aims to investigate the efficacy of an emoji-based emotional com-
munication platform utilizing a reduced, one-dimensional pleasure valence scale. Note, that
throughout the following text, the term pleasure and affective scales are used interchangeably.
Further, it must be stated that the author of this thesis has decided to focus solely on a single
continuous dimensional scale, affect, as opposed to both the affective and arousal scales to ini-
tially determine the operational viability of this method. It is asserted that even in this reduced
format, the implementation of a scale is more conducive to effective emotional communica-
tion as compared to the randomised grid format employed in [44]. Future adaptations of this
paradigm could feature a hybrid series of scales for increased clarity in emotional expression,
this is discussed further in Conclusion chapter, subsection 7.2.1: Future Research.

2.6.1 Steady-State Visually Evoked Potentials

The literature surrounding current exogenous-based BCI paradigms also heavily features the
application of the Steady State Visual Evoked Potential (SSVEP) as a brain-based control
signal. This describes an oscillatory waveform propagated over the surface of occipital and
parietal lobes [46, 160]. The signal is detectable as a periodic, phase-locked waveform in
response to a 5 Hz stimulus, increasing in amplitude up to 15 Hz and degrading in quality
following a non-linear trajectory up to 60 Hz [161]. Owing to these bio-physical constraints,
the optimal and commonly used range of SSVEP stimulus frequencies lies between 8 and 15
Hz. These waveforms differ substantively from comparative ERP-based signals such as the
P300 waveform, as the SSVEP is purely bottom-up. The signals can be elicited by fixation
or attending a flickering visual stimulus. In this instance, flickering refers to the rapid presen-
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tation and removal of, for example, a white overlay square or the cycling of stimulus colour
inversions. The rate of flicker in the target stimulus is mirrored in the oscillations observed
over the aforementioned brain regions. This enables researchers and clinicians to deduce the
stimuli fixated or attended by a given subject through the pre-processing and classification of
data acquired from relevant target regions.

The latency of the SSVEP components (80-160ms) is extremely low in comparison to al-
ternative brain-based bio-signals [83, 85]. This suggests the theoretical upper information
transfer limit of SSVEP-based systems is significantly higher than those utilizing Sensorimo-
tor Rhythms (SMR) (2000-40000 ms) [110] or P300 waveforms (300ms). Further, the signal
presents with a short refractory period and robust signal propagation following repeated elici-
tation. Previous research across a large subject pool (53 participants), shows that the SSVEP
can be repeatedly elicited for a 4-target array (8-15 Hz target stimuli) in 95.5% of experi-
mental trials [162]. Along these very same lines, similar investigations revealed just 89%

of subjects achieved over 80% classification accuracies for a P300-based experimental setup
[145]. These figures dropped significantly for additional evaluations utilizing SMR-based sys-
tems that showed just 19% of subjects could reach the same accuracy threshold [163]. In sum,
these SSVEP properties, in concert with the primarily bottom-up propagation pathway, ensure
that subject fatigue and task learning curves are restricted principally to the stimulus presenta-
tion format, as opposed to higher attentional mechanisms. These qualities position the SSVEP
waveform as a highly favoured bio-signal for utilization in BCI applications [46].

Note, that it is problematic to determine the supremacy of any of the discussed waveforms
from these handful of comparative assessments. This is owing primarily to the differences
in experimental design especially relating to the number of targets on screen. The availabil-
ity of research directly comparing the limits of applicability for SSVEP or P300-based visual
BCI spellers is highly limited and primarily restricted to the assessment of hybrid systems.
These typically test the performance of sole SSVEP and P300 experimental variants against
novel hybrid designs [164, 165]. Both of these papers detail significantly higher classification
accuracies and corresponding ITR values at the single-subject level for the hybrid vs. single
bio-signal based platforms. Despite this, owing to the relatively small number of subjects uti-
lized researchers are restricted in the scope of any conclusions made.

Further, there do exist some significant obstacles unique to the SSVEP waveform that can
restrict the scope of this bio-signal in BCI applications. The optimal range of frequencies for
signal elicitation (8-15 Hz) possesses extensive overlap with the bandwidth of photic epileptic
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seizure induction sensitivity thresholds [166]. The incidence of epilepsy is typically projected
at below 1%, further, the photic variant of this condition constitutes between 15 and 20% of
individuals affected. In sum, the likelihood of this impacting the end-point user population is
minimal. Despite this, considerable efforts must be undertaken in the pre-screening stage of
any experimental investigations before SSVEP stimulus exposure. Moreover, recent research
suggests that temporally stable SSVEP frequencies could be viable for some subjects and be-
spoke adjustments to programmed flicker rates could be introduced to avoid low-frequency
oscillations with a greater overlap in the photic epilepsy sensitivity ranges [167].

Additionally, the SSVEP has traditionally been classified as a so-called gaze-dependent wave-
form [168–170]. This limits the number of available BCI end-point users by restricting de-
ployment to populations presenting with dextrous control in at least one eye. Further, it could
be argued that the use of eye-tracking speller platforms is more suited to patients with this
retained functionality owing to the significantly lower latency of ocular saccades, as com-
pared to the SSVEP signal. Despite this, numerous studies show that the SSVEP would be
better defined as a semi-gaze-dependent signal [171, 172]. The majority of studies involve the
presentation of multiple flickering targets during concurrent EEG and eye-tracking data acqui-
sition. Typically, subjects are instructed to either fixate and attend to a cued stimulus or gaze
at a centrally positioned fixation cross while attending to a cued target. The authors of [173]
found that in 71% of the trials assessed viable SSVEP waveforms were propagated during the
pure attention condition. These results suggest that some top-down attentional mechanisms
influence the expression of the SSVEP waveform, introducing the possibility of widening the
established scope of SSVEP-based BCI applications to a larger patient pool. It must be noted
that these assessments were largely conducted using ultra-low density target arrays (4 targets
on screen) and do not assist researchers in gauging the viability of an exclusively attention-
based SSVEP BCI speller for the high-density target matrices deployed in modern speller
graphic user interfaces.

The layout of SSVEP-based BCI spellers broadly replicates the same keyboard-style arrange-
ments described in the P300 subsection positioned above (2.5.1). Previously, the number of
targets onscreen was highly limited by the narrow bandwidth of the optimal SSVEP elicita-
tion range and the refresh rate of corresponding presentation monitors. Firstly, only 8 integer
valued frequencies exist between the 8-15 Hz optimized range. Further, the frequency of a
given target must be divisible by the refresh rate of the given presentation screen and produce
an integer value. For instances involving non-integer values, the software controlling the re-
spective flickering stimuli will round up or down the corresponding signal. For example, a
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monitor with a 60 Hz refresh rate is updated 60 times over the course of one second. In the
circumstance of being programmed to present an 11 Hz signal, the monitor is instructed to
flicker every 5.45 frames (60 Hz ÷ 11 Hz). This is not possible, as only a 5th or 6th frame
is available for update. In these instances, the hardware simply rounds up, updating every 6
frames.

This results in a decoherence of the intended and actual frequencies presented to the sub-
ject. Along these very same lines, only factors of 60 Hz in the optimal range SSVEP range are
viable for a 60 Hz monitor (10, 12, 15 Hz), significantly restricting the number of consistently
reproducible waveforms. These issues can be somewhat alleviated via the use of ultra-high
refresh rate LED-based monitors. Despite this, for a reasonable increase in the number of
viable presentation frequencies a significantly higher refresh rate is demanded. For example,
the lowest number containing the factors 8, 9 and 10 is 360. Owing to these issues, the cost
of acquiring these hardware presentation devices becomes prohibitive and in turn, diminishes
the ease of deployability in clinical and research applications.

The limitations imposed by the need for integer-valued target frequencies have since been
overcome via the implementation of the approximation method [174]. This involves iteratively
alternating between the presentation of two pre-coded frequencies over one refresh cycle. For
example, the calibrated interleaving of a 10 Hz (60 ÷ 10 = 6 frames per second) and 12 Hz
(60 ÷ 12 = 5 frames per second) signal can lead to the exogenous propagation of an 11 Hz
SSVEP waveform. This enables researchers to utilize target frequencies non-divisible by the
monitor refresh rate and dramatically increase the density of corresponding speller matrices.
Note, that this increase in available target frequencies also leads to a drop in discriminability
between the targets. In other words, more robust classifiers are needed to distinguish between
9 and 10 Hz signals, as opposed to 10 and 12 Hz signals.

These complications have been addressed via the so-called Joint Phase Frequency Method
(JPFM). This involves applying a graded phase offset to target stimuli positioned proximally
in frequency space. In other words, to decrease the correlation of, for example, 9 and 10 Hz
flicker signals and corresponding SSVEP waveforms, the 9 Hz signal is programmed with a
0° phase angle and the respective 10 Hz signal is assigned a 180° phase angle. This shifts
the initiation point of a given signal from the peak (0°) to the trough (180°) and results in
a dramatic decrease in correlation between neighbouring target frequency integer values for
the same time point. These stimulus developments have assisted in producing arguably the
highest-performing BCI spellers to date in terms of classification accuracy, information trans-
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fer rate and stimulus density [175].

2.6.2 Cutting-Edge Classification Methods for SSVEPs: Filter-Bank Canon-
ical Correlation Analysis

Currently, the majority of the highest-performing BCI speller systems utilize variants of the
Filter-Bank Canonical Correlation Analysis (FBCCA) method to decode SSVEP target wave-
forms (for review see, [176]). For the standard CCA method, target classification involves de-
termining the highest correlational coefficient between a suite of reference target signals and
all subsampled signals acquired in the corresponding EEG electrode data matrix [177, 178].
This was later expanded into the so-called FBCCA method by increasing the scope of refer-
ence signals and input signal pre-processing stages to include the computation of coefficients
of target frequency harmonic components. In this instance, both reference sinusoids and sub-
ject data are parsed into blocks via frequency filters to isolate 2nd and 3rd-order harmonic
sub-components. These adaptations increased cross-subject average ITRs from 95 bpm [179]
to over 150 bpm [56]. These harmonic components are essentially reflections of a given target
signal in frequency space, for example, the spectrogram of an 8 Hz signal produces relative
power deflections at the corresponding 2nd, 3rd and 4th-order harmonic components for 16,
24 and 32 Hz respectively (see, Table 6.1). Note, that the intensity of each subsequent har-
monic is reduced proportionally to the noise embedded in the respective multivariate signal. In
other words, despite the reduction in overall signal power, the prevalence of associated noise
is relative, leaving the signal-to-noise ratio within tolerable levels for effective target signal
extraction [176].

Further, the blending of subject-specific signals acquired during pre-screening evaluations
with the sinusoidal reference waveforms dramatically enhanced the performance of the corre-
sponding so-called Combined CCA method [180].Briefly, in typical SSVEP stimuli paradigms,
the flicker frequencies available for presentation are limited to the factors of the monitor re-
fresh rate. For example, a 60 Hz screen can successfully present flicker frequencies of 60, 30,
20, 15, 12, 10, 6 5, 4, 3, 2 and 1 Hz. As the optimal range of SSVEP is restricted to just 8-15
Hz only 3 SSVEP waveforms would reliably be reproduced using a 60 Hz monitor. Using this
method, the only means of increasing the number of available factors in the desired range is
the deployment of a monitor with a higher refresh rate.
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Figure 2.2: Here is presented a series of images depicting the virtual numpad stimuli utilized in the
reference experiment conducted by [180]. The upper left quadrant shows the numpad during the rest
period and the upper right quadrant illustrates the means of cueing subjects via the overlay of a red
square on the target number. Note, that these figures were developed independently of the original
article. The lower half of the figure displays a visualisation of a 10 Hz flicker frequency. Positioned
above the plot is a representation of a given target number, as the signal oscillates between the amplitude
bounds (dotted line) the target number is augmented from standard to an inverted colour representation
to generate the flicker. As seen from the plot a total of 5 full cycles are presented over the course
of 0.5 seconds indicating that the signal is oscillating at a frequency of 10 Hz. The dashed line is
presented alongside the solid line to provide further insight into how modifying the phase angle via the
introduction of the temporal offset of a given signal can lead to a dramatic decrease in correlation. This
is highly effective for enhancing the discriminability of targets with similar frequencies.
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The JPFM dramatically increases the number of available flicker rates using two tech-
niques. Firstly, the phase angle of each target flicker rate profile is modified, meaning the
initiation point of targets differs over the given frequency cycle. In other words, some targets
are initiated with the cycle at the peak and others at the trough. This significantly decreases the
correlation between two signals even for the same frequency (see, Figure 2.2, lower graphic).
Further, the method employs a system of rapidly interchanging between two distinct signal
profiles for example 10 Hz and 15 Hz to generate an averaging effect that leads to the propa-
gation of a 12.5 Hz SSVEP oscillation (for further info see, original article [180]). At the start
of each trial, subjects were cued to attend each target (4 seconds) according to a randomised
fixation protocol via the temporary presentation of a red overlay square (1 second). These
assessments were conducted over 15 blocks consisting of 12 trials each leading to a total of
180 trials per subject and over the 10 subjects tested a total of 1800 trials were collected.
Throughout the stimulus presentation period, concurrent wet EEG data acquisition was per-
formed using the BioSemi ActiveTwo EEG system at 2048 Hz, as per [180], across 8 channels
(O1, Oz, O2, PO7, PO3, POz, PO4 and PO8) and referenced against the Cz electrode. Note,
all data were later downsampled to 256 Hz offline.

Here, the authors [180] tested numerous Canonical Correlational Analysis (CCA) methods.
The authors report impressive classification performance and ITRs for the so-called Com-
bination Method. This is a blended approach incorporating standard CCA reference signal
matrices and subject-specific individual template matrices, (see, Table 2.1). This effectively
tunes the Combination CCA method at the subject level to provide a bespoke set of reference
signals unique to the subject tested [180, 181].
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Subjects Accuracy (%) ITR

1 78.89 63.33

2 71.67 52.34

3 94.44 92.49

4 99.44 105.47

5 100.00 107.55

6 99.44 105.47

7 98.33 102.14

8 100.00 107.55

9 98.89 103.76

10 86.67 76.72

Mean 92.78 91.68

Table 2.1: Here is presented a table displaying the performance metrics relating to the Combination
Method for 1-second data chunks reported in the reference article cited above [180]. Note, that all ITR
metrics were computed offline and calculated independently from the original article as these are not
stated directly in the main body of the text.

Is should be clear from the discussion above, advances at the cutting edge of SSVEP-based
speller performance are related to the symbiotic development of pre-screening, stimulus de-
sign and classification method enhancements. Along these very same lines, the inclusion of
task-related component analysis (TRCA) has been implemented following a pre-experimental
localizer to develop subject-specific spatial filters to parse redundant non-SSVEP-based back-
ground noise from subsequent trials [182]. These are then implemented in real-time within the
online pre-processing pipeline to enhance the expression of task-relevant SSVEP target wave-
forms. The aforementioned enhancements allowed for the effective use of data lengths below
400 ms per character spelt and crucially, maintained functional classification accuracies. Note,
that typical durations for optimal SSVEP-based speller systems require 500-1000ms for reli-
able operation.

Further, the use of Bayesian methods to optimize and modify data capture durations in real-
time for so-called dynamic stopping protocols has enabled researchers to attain cross-subject
average ITR values of 353 bpm [55]. Finally, the use of multiple sequential coding for intro-
ducing more than two phase and frequency signal pairs (4) in one monitor refresh cycle [178]
to further differentiate target stimuli on screen has been explored in real-time assessments
[47]. These build upon the original suggestions outlined in the approximation method [174]
and proved effective in developing a functional SSVEP-based speller with 160 targets, oper-
ating at an average cross-subject accuracy of 87% with a mean ITR of 78 bpm. In sum, these



2.6 Emoji-based Speller Designs 37

impressive results demonstrate that the functional properties of the SSVEP enable researchers
to fully explore the depths of scientific creativity and ingenuity. Alone, these results represent
the bleeding edge of both SSVEP-based BCI speller research and BCI spellers more broadly
as these performance metrics are unrivalled in terms of both ITR and stimulus matrix density.

2.6.3 Neural Network-based Bio-Signal Classification

In many disciplines utilizing volatile time-series data such as weather formation prediction, fi-
nancial forecasting, and autonomous vehicle tracking, the introduction of neural networks has
proven highly profitable (see, [183] for review). The progenitor of these modern methodolo-
gies, Multi-Layer Perceptrons (MLPs), operate according to functional and architectural fea-
tures identified originally in the mammalian visual system. Clusters of nodes, a computational
equivalent of neurones, are positioned in operational layers mirroring the striated cortical ar-
rangement found in the occipital lobe [52]. Note that nodes are essentially representations of
a specific region in the input data. This could relate to an isolated subsample of pixels in an
image or the expression of a specific bandwidth of frequency space for a given length of time-
series data. The cascade of inputs and processed signals transverses the network via a series
of simulated connections between subsequent model layers and corresponding nodes. The ac-
tivation of these computational neurones is controlled via a weight function. The responsivity
of these weight functions is modified via iterative training procedures adhering to an error
minimization protocol. Before the training stage network performance is low as weight val-
ues are typically standardized at zero or randomised from a subsample of appropriately scaled
values. A loss function calculates the difference between the expected node output and the
current node output and updates the relevant weights in the corresponding direction.

MLPs dramatically enhanced the performance of neural networks via the inclusion of a so-
called hidden layer, positioned between the input and output layers, providing connections
between both. This enables the model to produce a feature map of numerous relevant data
components. The simultaneous activations of node clusters tuned for multiple task-critical
data representations allow these networks to model highly complex, non-linear relationships
[184]. As seen in previous studies, MLPs are not the most effective means of classifying
BCI-based bio-signals [185, 186]. This is owing primarily to insufficient network complexity
in terms of both node count and operational layer depth. Further, the initial aim to develop
biologically inspired computational models to research brain function has now become dis-
entangled with the alternative aim of boosting classification performance for clinical BCI ap-
plications. In other words, the goal of researching the operational behaviour of human brain
regions has become independent from the task of developing the highest-performing networks
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as alternative methods that forgo these constraints, for example, deep neural networks, have
shown considerably higher performance in terms of classification accuracy, information trans-
fer rate and bio-signal adaptability.

The advent of GPU-based network training [187] in concert with a renewed focus on raw task-
based performance greatly influenced the development of so-called Deep Neural Networks
(DNN) for computer vision tasks [188]. This broad area of research has been implemented for
numerous highly varied applications including satellite imagery processing [189, 190], med-
ical imaging classification [191–193] and autonomous vehicle control [194]. These models
diverge from MLPs principally in terms of layer count, node density, and operational per-
formance, as opposed to, biological validity in architecture design considerations. As noted
above, these dramatic increases in computational resource use are afforded via the transition
from CPU to GPU hardware. Further, these increased processing demands have been intelli-
gently offset by changing the quality of node weights and connectivity relationships. These
modifications include node weight initialization schemes and sparse connectivity between
layers [195–199]. The advances in network efficiency have enabled researchers to develop
networks with more hidden layers and in turn, allow models to develop ever more complex
internal representations in the topmost layers of the network [200].

The convolutional neural network (CNN) is positioned as arguably one of the most popu-
lar sub-variants of the deep neural networks currently employed. These models introduce an
additional transformation layer during the data output stage within the layer-by-layer, node-
by-node connectivity pathway. Note, that in the simplest terms, the convolutional operation, in
this context, is a means of reducing or downsampling input data to allow for the amplification
and extraction of prevalent data features. The operation is composed of three fundamental
components, the input data, filter (or kernel) and output feature map. The convolutional kernel
is a data matrix containing values (weights) that represent a randomised data feature. Note,
that the kernel must be smaller than the input data, to accommodate for this padding, for ex-
ample, zero padding, can be applied. The kernel weights and correspondingly sized input data
segments undergo an element-wise multiplication. A sliding window traverses the input data,
convolving these values with the filter weights to populate an adjacent feature map (output).
The quality of the data representations embedded in the kernel weights is updated via an opti-
mization function, for example, stochastic gradient descent (SGD), to enhance the expression
of task-relevant data features and ultimately, network performance.
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This model design variant stands as the first to outperform trained human experts in tasks
concerning visual discrimination [201, 202]. Relevantly, these models have been successfully
deployed in multiple bio-signal classifier applications including seizure detection [203, 204],
Motor Imagery (MI) classification [61, 205, 206] and robotic limb tracking and instruction
[207–209]. These studies demonstrate the adaptability of CNNs for numerous input modalities
in the BCI field. Critically, such models have also been effectively implemented for SSVEP
classification in assistive speller contexts (see for review, [210, 211]). The developmental
trajectory of SSVEP-based CNN classification spans from the implementation of simplistic
1 layer networks, for example, the 1DSCU [212] and ShallowConvNet [61], to more elabo-
rate multi-layer arrangements as seen in PodNet [213], DeepConvNet [61], EEGNet [59] and
EEGNetSSVEP [60].

2.6.4 Cutting-Edge Classification Methods for SSVEPs: Convolutional
Neural Networks

The highest-performing networks all feature extensive use of online data repositories for train-
ing and offline evaluation as well as simulated real-world performance. These vast banks of
high-quality data collected from large subject pools are crucial for tuning the high volume
of trainable parameters in the associated networks. Most all datasets utilize a variant of the
joint, phase frequency method outlined above and feature either numpad, keyboard [49, 52]
or keyboard + arrangements [47], increasing the number of targets deployed from, 12, 40 and
160 respectively.

The most significant enhancements in ITR performance reported to date focus either on exper-
imental improvements utilizing current networks, the application of rigorous subject-specific
data pre-processing stages or the novel implementation of FBCCA analytical principles in
CNN-based solutions [214]. As seen in [50], the performance of the Compact CNN (EEGNet)
was boosted in simulated offline trials by 28.2% in terms of cross-subject average performance
(147.6 bpm) for a 12-target SSVEP-numpad speller dataset. This was achieved via the imple-
mentation of a dynamic windowing protocol and involved using the output of corresponding
CNN classifiers to gauge data viability. For instances demonstrating sub-threshold predic-
tion credibility, additional data acquisition was cued reflexively to ensure high classification
accuracies. Notably, this system outperformed both the fixed window EEGNet (115.1 bpm)
model performance and crucially, an FBCCA (85.2 bpm) implementation also operating with
the same dynamic windowing method.
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Further, impressive ITR metrics are demonstrated in [54] for the TRCA-DNN (235.21 bpm),
a four-layer CNN model, evaluated using two online repositories featuring 35 targets and
a combined 105 subjects. The TRCA method, as outlined above [53], generates a bank of
subject-specific spatial filters for the extraction of task-relevant data features. These pre-
processed signals are then fed into the given CNN model. Notably, the implementation of
this pre-processing stage enhanced base DNN performance (167.75 bpm) and demonstrated
arguably the highest single-subject real-world online classification performance metric using
CNN-based methods for SSVEP decoding to date (318.41 bpm). The highest cross-subject
ITR performance in this domain is demonstrated by the CNN model outlined in [57]. Here,
only minimal pre-processing of the EEG input data is performed involving the removal of
power line noise (50 Hz notch filter), a high-pass filter at 8 Hz and a low-pass filter at 90
Hz. The method of filter bank generation is integrated at the data preparation stage following
pre-processing. The original 2D Samples × Channels input are concatenated across a third
axis alongside additional sub-band filtered arrays. This arrangement allows for the expression
of the fundamental frequency components generated from the target stimuli in addition to the
higher frequency harmonic reflections. As the highest target stimulus frequency of 15 Hz is
a factor of the upper limit of the initial pre-processing low-pass filter of 90 Hz harmonics
up to at least the 6th order are available for extraction. These 3D filter bank data matrices
are fed into a deep 4-layer CNN and produced cross-subject average ITRs of 196.6 bpm and
254.23 bpm for the 70 [49] and 35 subject [52] 40 target keyboard speller datasets respectively.

There still exist numerous potential advances to enhance the performance of the networks
defined above. Recent implementations of transfer learning have proven fruitful in boosting
classification accuracy and ITRs. Along these same lines, [215] initially trained PodNet, a
4-layer deep CNN, using the aforementioned 70-subject benchmark dataset [176] in a pure
cross-subject format as a means of initializing system weights. At this point, a modest AoC
and ITR of 73.6% and 93.1 bpm were attained for an isolated 10-subject test set. Follow-
ing this, subject-specific re-training of exclusively the lowest PodNet convolutional layer was
conducted using 50% of each individual subject’s data from the 35-subject benchmark dataset
[52]. The evaluations using the remaining 25% of single-subject trials demonstrated a cross-
subject average AoC and ITR of 95.00 % and 143.13 bpm.

Further, the implementation of so-called Inception modules in SSVEP-based CNN model ar-
chitectures demonstrates significant potential. Originally developed for traditional computer
vision tasks, these operational blocks consist of bottlenecked parallel convolutional filter banks
of differing orientations that are later concatenated together alongside a non-bottlenecked
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higher-order filter block. This effectively allows for the concurrent extraction of EEG sig-
nal data representations with differing temporal dynamics. These analytical properties can
be conceived of as a translation of the stratification of EEG signals into the spatially distinct
frequency sub-bands employed in FBCCA, to the temporal domain.

With the availability of the aforementioned online repositories, alongside tools for model
benchmarking, such as the Mother of all BCI Benchmarks (MOABB), the pathways to vali-
date models in terms of raw performance for different datasets have been firmly established
[216, 217]. Despite this, these methods rarely attempt to probe the effects of bespoke dataset
pre-processing at the single-subject level for all networks evaluated, as typically the quality of
performance is related primarily to AoC, ITR and principally model adaptability, for a range
of signals, across multiple subjects. An investigation involving the manipulation of industry-
standardized pre-processing parameters relating to core data preparation principles has not
been extended beyond the restriction of data acquisition time or arrangement of electrode en-
sembles. Herein, the author proposes to optimize subject-specific network frequency filter
operations (low and high-pass cutoff values) for cross-subject aggregated datasets in a range
of publicly available CNN network architectures.

As seen in the recent studies noted above, the ever-increasing implementation of FBCCA prin-
ciples in CNN model solutions has necessarily increased the relative width of bandpass filters
to accommodate for the extraction of higher-order target SSVEP frequency harmonic compo-
nents. It is crucial to understand the influence of network depth, filter count, complexity and
architecture design on this process to inform the development of future models and determine
the appropriate tuning techniques for these systems at the single-subject level. Further, the
aggregation of cross-subject data for the training of BCI classifiers is a relatively novel phe-
nomenon. Traditionally, methods focused on bespoke baselining and classifier training at the
single-subject level due to the perceived overwhelming influence of individual differences and
non-stationarity that characterize EEG time-series data. In all notable studies listed above, the
aggregation of subject data is fundamental to the results garnered as the flexibility and richness
of internal representations developed in aggregate data-trained models are significantly higher
as compared to those using exclusively single-subject data. Note, that these methods are only
successful in either instance for applications using vast quantities of data. In other words, a
highly diverse subject pool is necessary, but not sufficient in the context of successful CNN
model training. In response to this conflict in the literature, the optimization methods herein
attempt to present and evaluate a subject-specific method for the pre-processing of aggregated
datasets.
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To summarise, the aim of this research centres around the development of a methodical means
of evaluating different CNN architectures for SSVEP-based bio-signal classification. Further,
these very same tools can also be applied for the evaluation of optimal hyper-parameters for a
given set of data at the cross-subject or single-subject level. In other words, the experiments
conducted herein outline a means of creating, optimizing, and evaluating neural network archi-
tectures to increase the scope of model applicability and enhance performance to develop more
robust and higher accuracy classifiers for end-point patient users. There exist several meth-
ods researchers can deploy in the preparation of EEG signals for classification, these include
temporal data segmentation via experimental event triggers, time-correction via interpolation,
signal referencing via subtraction of either a specific non-relevant cranially positioned elec-
trode or an average of all channels being sampled and active electrode selection in real-time
to mitigate noise influence in EEG signals. Historically, these methods and associated pa-
rameters have become standardized, despite this in some instances the determination of these
values is rather arbitrary.

This includes the selection of low-pass and high-pass EEG filter cutoffs in the EEG pre-
processing stages. Some exploratory investigations into the low-pass cutoff values and as-
sociated stimulus frequency harmonics have been undertaken [218–220], yet to the author’s
knowledge there remains no significant work conducted on the optimization of both filter val-
ues concerning CNN performance. It is rationalized that setting a high-pass filter bound as
close as possible to the target waveform frequencies being captured will result in the lowest
amount of redundant hyper-low frequency information from diluting the target signal in EEG
data. The same level of theoretical certainty is not present concerning the low-pass filter cut-
off in relation to neural network training outcomes. It could be argued that this parameter
should be similarly restricted to the upper limit of the target waveform frequency. Despite
this, many researchers have successfully utilized SSVEP target waveform harmonic features
to boost classification [47, 56, 180] suggesting a higher low-pass cutoff could benefit models
depending on network complexity and depth.

Further, there are presently no attempts to characterize the relationship between high and
low-pass frequency filter cutoff values. These investigations aim to provide clarity on this
crucial pre-processing stage and inform the calibration procedures of subsequent CNN model
designs in future research. Moreover, the author asserts that owing to the non-stationary na-
ture of the EEG signal the ‘perfect’ upper and lower bounds for bandpass filters do not exist,
especially when considering the variety of influences on each neural signal across many sub-
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jects for many different EEG components. It is predicted that an optimal value for both upper
and lower bandpass bounds via automated parameter search is achievable at the single-subject
level. To explore these hypotheses the author undertook the task of defining a methodology
for the simultaneous automated optimization of signal processing and neural network hyper-
parameters to maximize single-subject classification performance when trained on aggregated,
cross-subject datasets.

Here, specific relationships between end-point classification accuracy, optimization study
duration and the relative number of network training parameters are outlined for a series of
commonly utilized models in the domain of SSVEP classification. As will be evidenced in
the corresponding results sections, these investigations are highly computationally expensive.
Note, that the findings defined herein are intended for use by future researchers in designing
optimal search space boundaries by using these results as a guide. To clarify, it is not the
author’s intention to assert that these methods are viable in any online context, rather they
should be utilized in the development of neural network training and development for the
enhancement of performance metrics.





Chapter 3

Experiment 1: P300-Based BCI-Speller
Stimulus Evaluation

3.1 Chapter Outline

This chapter will cover three iterations of the visual-P300 Emoji-Speller experimental design
explored throughout the PhD research conducted herein. Each iteration of the paradigm at-
tempts to address the shortfalls of the previous version. It must be noted that the distinct
lack of subject data for the final version of the experiment (see subsection 5.3) is owing to
the restrictions placed on students and staff alike in the wake of the COVID-19 pandemic
(see subsection 1.1). The author intends that this chapter will serve as evidence of critical
evaluation skills and the research techniques gained throughout the training process. Note,
that all the background literature, rationale and justifications for the following experimental
series are contained within the Introduction and Literature Review chapter (see subsections
1.4 & 2.6).Further, all subsequent emoji-based P300-speller experiments (see Chapters 3, 4,
& 5) feature two approaches to data organisation, pre-processing and analysis. The original
implementation is referred to as Pipeline 1, the follow-up version is referred to as Pipeline 2.
The adaptations introduced by the Pipeline 2 approach were performed using a subset of 3
subjects from each experimental variant to address the issues concerning Pipeline 1, for more
information please refer to subsections 3.3.5 and 3.4.3.
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3.2 Aims

In the first of three experimental formats, subjects were presented with an array of 7 Emoji,
ranging in valence from disagreeable to agreeable. Crucially, all systems comprising the stim-
uli presentation, data collection, data pre-processing and analysis were initially run offline
and all on the same machine. This was undertaken to develop a one-stop emoji-speller ex-
periment with plug-and-play functionality for clinical, research, instruction and outreach pur-
poses. This is a crucial first step, as it is necessary to establish that emoji-style stimuli reliably
produce P300 waveforms for BCI-speller applications before the development of a fully on-
line emoji-integrated-BCI-speller. The first experiment defined herein involved probing for
optimal stimuli features in terms of augmentation method by comparing the classification per-
formance of a simple LDA classifier for a white-overlay square format (referred to as the Flash
method) and colour inversion method (referred to as the Inversion method) for target stimulus
augmentation.

Note here, that the inversion method involves the re-colouration of all black-coloured ele-
ments in a given emoji stimulus to a white colouration. In most instances this involves the
change of the emoji perimeter silhouette and outer edges of the emoji facial features, such as
the mouth and eyes, inverting from black to white. Additional information can be found in
subsection 3.3.3: Stimulus Presentation and the related stimulus screenshots displayed in Fig-
ure 3.2. The experiment is adapted in the second iteration via the introduction of a staggered
emoji array format (3, 5 & 7 Emoji arrangements). These investigations were undertaken to
determine the influence of array density and associated adjacency error issues on subject-level
performance. In the final stage of this project, a real-time speller was developed utilizing the
7 Emoji stimulus variant featuring online subject data pre-processing and classifier prediction
feedback.
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3.3 Method

Here are outlined the methods employed in the investigations relating to Experiment 1. Broadly,
this features the use of a 7 Emoji stimulus array design for BCI speller applications and the as-
sociated evaluations of the Flash and Inversion augmentation methods described (see, Figure
3.1).

3.3.1 Participants

A total of 10 neuro-typical subjects were recruited from the Durham Psychology Department
student population and did not receive payment for participation (5 males, mean age of 23
years, with an age range of 20-27 years). All subjects were screened before experimentation
to ensure they presented with normal or corrected to normal vision, had no history of clinical
mental illness or epilepsy and were not currently experiencing a skin-based ailment of the
scalp. Ethical approval and oversight were granted by the Durham University Psychology
Department’s Ethics Sub Committee.

3.3.2 Equipment

All EEG time-series data were acquired using the Cognionics Quick-20 headset (Cognionics,
San Diego, USA) via wireless Bluetooth connection. All data streams were controlled via
LabStreamingLayer and sampled at 500 Hz. Graphical rendering of the stimuli was handled
via a dedicated NVIDIA GTX 750ti GPU (2GB VRAM). Note, that before testing, the headset
and corresponding electrodes were sanitized with anti-bacterial gel.

3.3.3 Stimulus Presentation

All stimulus presentation software was designed and implemented using the Psychopy Python
library [221] and presented using a 68.5cm Samsung LED S27A350H (refresh rate 60 Hz) at
a fixed distance from the subject (0.8m). The target emoji stimuli utilized in all studies con-
ducted herein were collected from the open-source OpenMoji repository [222]. The colour of
each emoji stimulus was altered from the original yellow colouring to enhance distinguisha-
bility [154]. This was used to address the common P300 experimental obstacle known as
adjacency error.

This involves the augmentation of stimuli neighbouring the target stimulus triggering a P300
response and can cause a temporal or spatial bleed-over effect (see subsection 2.5.1). This can
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delay the refractory period of the P300 waveform and significantly depress signal peak ampli-
tudes. The emoji stimuli are simplistic circular visual targets (diameter: 18mm) evenly spaced
across the array at 91mm intervals (see, Figure 3.1). Each of the 7 emoji is positioned centrally
across the horizontal axis of the computer monitor. The target emojis represent different levels
of emotional valence from disagreeable to agreeable (left to right).

Figure 3.1: The above image is a screenshot of the experimental visual array as seen by the subjects
at the start of each experimental trial. The emoji are arranged from left to right in a valance gradient
moving from disagreeable to agreeable. The white cue square is positioned under the target emoji
throughout the entirety of the experimental trial. From left to right each emoji descriptor and tag
used include the ’Persevering Face’ (1F623), ’Pensive Face’ (1F614), Worried Face’ (1F61F), ’Neutral
Face’ (1F610), ’Smiling Face’ (263A), ’Grinning Face’ (1F600) and ’Smiling Face with Heart Eyes’
(1F60D).

During the testing session, EEG time-series were collected using either a ‘flash’ or ‘inver-
sion’ augmentation method (see, Figure 3.2). The flash method involves overlaying a white
square onto each respective stimulus according to a time-locked randomisation procedure. The
inversion method functions by swapping all black-coloured elements in each respective emoji
target to white-coloured elements. All other features of the stimulus design were kept consis-
tent throughout testing, including the duration of stimulus augmentations (fixed at 125ms).
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Figure 3.2: The above image illustrates the differences in the augmentation methods employed. The
Flash method is displayed in the top row, depicting a white overlay square as the P300-inducing visual
emoji augmentation (40mm diameter). The Inversion method is depicted in the second row, illustrating
how every black element in each non-augmented emoji is inverted to white.

Each emoji in the array was augmented according to a non-consecutive randomisation pro-
gram, ensuring that neighbouring targets were not augmented in succession to avoid adjacency
error and the double flash problem (see subsection 2.5.1). This principle was enforced within
sequences, as well as between sequences such that the selection of the following sequence’s
1st augmentation was not the same or a spatial neighbour of the last augmented emoji. The
target stimuli were cued to subjects via the presentation of a white cueing square (positioned
below the emoji). Each trial was comprised of 5 sequences, with one sequence completing
after all emojis in the array were augmented once (see, Figure 3.3).
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Figure 3.3: Here is presented a figure illustrating one sequence of a flash augmentation trial. The top
row depicts the initial stimulus array presented to subjects before the onset of the trial. The subsequent
rows demonstrate a pattern of stimulus augmentation adhering to the randomized non-consecutive for-
mat. As can be seen, at no point in the stimulus schedule is the proceeding emoji selected for augmen-
tation adjacent to the previously augmented emoji. The pattern of stimulus augmentation in this flash
variant example is the same utilized for the presentation of all inverse augmentation method trials.

The inter-sequence intervals were maintained at 375ms, with inter-trial intervals fixed at
1000ms, after which the white square target cue is re-positioned, and the successive trial is ini-
tiated. The noted parameters were implemented to ensure that any refractory effects induced
by a P300 elicited for the previous time-locked augmentation event would not carry over to
the subsequent augmentation or trial event. These intervals were introduced to the detriment
of final information transfer rate (ITR) values, and for the benefit of the resulting data quality,
reducing the prevalence of temporal bleed-over artefacts.

The inter-stimulus interval (ISI), also commonly referred to as the flash rate, describes the
time in milliseconds between the augmentation of successive targets, in this instance emo-
jis. A flash rate of 125ms was chosen based on previous research that aimed to determine
the optimal inter-stimulus interval between visual-P300 targets using an analogous 8 x 9 item
alphanumeric speller matrix [223]. Here the authors revealed that for a 10-flash run (total
number of augmentations for the target per sequence), as the inter-stimulus interval decreased
from 250ms to 31.25ms, the group and single-subject Pz average plots showed a dramatic drop
in relative P300 peak amplitudes.
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For the assessments in this thesis, the array is far more simplistic, consisting of a horizontal
spectrum of just 7 targets. Initially, this suggested to the author that using the maximal inter-
stimulus interval tested (250ms) was unnecessary. Further, additional benefits for a lower
inter-stimulus interval include a shorter experimental period. This was predicted to have a
positive influence on data quality by reducing the incidence of subject fatigue in the latter half
of the data collection period. Moreover, a lower ISI also presents obvious benefits in terms
of a higher theoretically achievable information transfer rate. Given these factors, an ISI of
125ms was implemented.

In sum, each trial comprised all 7 Emoji targets consecutively augmented for a duration of
125ms, followed by an inter-sequence interval of 375ms. Upon the completion of all 5 se-
quences, a 1000ms inter-trial interval is enforced. In total each trial consists of (5 × ((7 ×
125ms) + 375 ms)) + 1000ms, totalling 7250ms. Each subject partook in a total of 4 experi-
mental blocks, with one block consisting of 49 trials. Each stimulus augmentation style was
tested twice (2 Inversion blocks and 2 Flash blocks) with a 5-minute break between succes-
sive blocks. During these breaks, impedance monitoring and subject comfort were assessed to
ensure the acquisition of high-quality data and reduce the incidence of subject fatigue.

Note, that the selection of just 5 augmentations per trial deviates dramatically from the typ-
ically utilized 10 augmentation standard, as was implemented in [223]. This decision was
primarily made to increase the theoretical upper ITR limit by lowering the total time per trial.
Further, a posthoc re-analysis aggregating signals across trials was implemented to simulate a
boost in the number of augmentations per sequence into the signal averages, this analysis vari-
ant is termed the Collapsed method. The preparations and results of these analyses, as well as
the merits of all stimulus parameter settings utilized are discussed in subsections 3.3.5.3 Data
Pre-Processing: Pipeline 2 and 3.7.5 Conclusion: Pipeline 2.
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3.3.4 Data Acquisition

A Quick-20 Dry EEG Headset (Cognionics) was used for data acquisition at a rate of 500
samples/ per second (500 Hz). Electrodes: Fz, Cz, Pz, P4, P3, O1, O2, A1 and A2 were
sampled from the headset concurrently during stimulus presentation (see, Figure 3.4). All
EEG time-series data were handled via the LabStreamingLayer (LSL) Python package variant
[224]. To improve the signal-to-noise ratio of electrical signals on the surface of the scalp,
participant preparation includes gentle and careful rubbing of the scalp underneath each sensor
to push aside non-conductive dead skin cells and hair. This procedure is painless but can feel
slightly uncomfortable as experimenters rub the blunt, metal-tipped dry sensors against the
scalp to ensure optimal seating to the skull.

Figure 3.4: Here is presented the electrode arrangement for the Cognionics Quick-20 dry-EEG headset.
The sensors are positioned according to the standardized 10-20 EEG data acquisition system. All scalp
locations highlighted in green comprise the signal locations used to populate the EEG data array. The
reference location, seen in blue (A2) and ground location, seen in red (A1), were utilized to reduce
redundant noise in the associated data samples. Note, that the O1 and O2 locations were utilized in
place of the traditional Oz location given the reduced density of the electrode array in this headset.
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Before the onset of the experiment, researchers attempted to minimize impedance (Ω)
values via headset reseating and electrode agitation (as per standardized hardware setup pro-
cedures). In typical EEG-based research, impedance values are maintained around 1-10kΩ
[75, 76] to maximise the probability of acquiring high-quality time-series data. It must be
noted that this was a significant challenge, with headset setup times often exceeding the dura-
tion of time subjects spent partaking in the experiment. The full experimental period, including
subject preparation (5-10 minutes), testing (30 minutes) and breaks (5 minutes each) required
approximately 45 minutes to 1 hour.It is important to state that the EEG capture for all ex-
periments detailed herein did not follow the traditional continuous data collection method in
which samples are stored prior to, during and following the experimental period to be later
epoched via distinct marker triggers. Instead, the incoming samples were held in a buffer that
was periodically sampled during the ongoing trial periods. Here the data was pulled from
this stream at the start of each sequence and terminated following the triggering of an internal
function monitoring the difference in start and current time. This was originally intended to
streamline the process of aggregating and analyzing data in real-time however this produced
the unintended consequence of failing to gather samples prior to the onset of the trial for cru-
cial baselining purposes. A baselining method was implemented in the Pipeline 2 approach
utilizing the first 50ms of samples as a partial solution to these issues, for further information
please refer to subsection 3.3.5.3 Data Pre-Processing: Pipeline 2.

3.3.5 Data Organisation: Pipeline 1

Once the data collection period was completed (all 10 subjects), the individual time series and
corresponding labels were collapsed into multiple databanks. These included large aggregate
databanks consisting of all trials collected across subjects for each of the stimulus augmenta-
tion variants tested. Individual databanks were also generated to allow for single-subject data
quality and artefact rejection as well as subject-specific analyses. A significant imbalance in
the number of P300 events vs. Non-P300 (1:6) events was present in the data, as per standard
oddball-based P300-speller experimental designs. The author anticipated that this could intro-
duce the possibility of overfitting into the analysis and addressed this by creating a stratified
subsample of Non-P300 events totalling the same number of P300 events. These subsampled
data groupings are termed ’class-balanced’, as opposed to the ’non-class-balanced’ group-
ings. Further information on the exact arrangement of these data is provided in the Results
subsection 3.5.2
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As is noted in the title of this subsection, all details herein relate to Pipeline 1. This de-
scribes the author’s initial data organisation, pre-processing and analyses of these experimental
data as well as the corresponding results derived from these methods. As will be evidenced
in the following chapters, several key alterations to each stage could have been implemented
to improve the procedures detailed in this initial attempt. To address these issues a secondary
pipeline, Pipeline 2 was developed and the data was reanalysed following the steps outlined
in subsections 3.3.5.3 and 3.4.3. All areas of the thesis relating to either Pipeline 1 or Pipeline
2 will be signposted to ensure clarity.

Given substantial time constraints related to this project the re-analysis defined in Pipeline
2 is performed exclusively with the 3 most promising subjects from Experiment 1. These
comprise Subjects 3, 5 and 8. The same approach was taken with the following two chapters
relating to Experiments 2 and 3. The selection of subjects differs across these studies and
detail is provided throughout to guide the reader at all stages. In sum, Pipeline 2 is charac-
terized as a targetted re-analysis of the most viable data available based on the findings of
Pipeline 1 and is designed to address the shortfalls in the aforementioned methodology for all
experimental variants of the emoji-based P300-speller described herein.

3.3.5.1 Data Pre-Processing: Pipeline 1

At the sequence level, the data are parsed into 7 Emoji chunks indexing 375ms of EEG time
series from the initiation of each time-locked emoji augmentation. All chunks are first pre-
processed using the pipeline as described below (see, Figure 3.5).

Figure 3.5: Here is presented a graphical illustration of the EEG time-series pre-processing pipeline
implemented for the experimental series. Any changes to this base pre-processing format throughout
this chapter are strictly additive. Any enhancements to this method are discussed explicitly concerning
each respective experiment. That is to say, all data analyzed in the following experiments underwent
these pre-processing stages and potentially some additional minor steps.
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Initially, the data chunks are zeroed. This involves calculating the mean μV of a given EEG
electrode sampled and then subtracting this value from all data points in the single-electrode
time-series array. This effectively centres the data at zero, enabling effective visual appraisal
of the signal for inspection and presentation. Further, this prevents differences in signal scaling
from disrupting the accurate P300 and Non-P300 signal representations. These zeroed data
signals are then referenced using the A2 electrode which is positioned over the right ear. Mi-
crovoltage signals collected at the A2 electrode are known to be representative of non-salient
(Non-P300 relevant) electrical signals generated across the entire head.

The referencing involves the subtraction of corresponding A2 channel samples from all re-
spective electrode sites sampled. This process is intended to remove redundant information
from the electrode time series thereby enhancing the signal-to-noise ratio. Note, that the
ground and reference compound signal used to remove the common mode signal is handled
via the Cognioincs active grounding system [225]. This involves assigning a dedicated ground
electrode, in this instance A1, and subtracting this value from the corresponding reference
electrode, A2, to produce the compound reference signal.

The powerline noise inherent in all EEG data acquisition was removed via a 50 Hz notch
filter. All filters described herein were designed and implemented using the Scipy Python li-
brary [226]. The same package was utilized to design and implement two Butterworth filters
for data pre-processing. A high-pass filter with a 1 Hz cut-off was used to remove all frequen-
cies below this boundary and a low-pass filter set with a 15 Hz cut-off was used to exclude all
frequencies above this level.

3.3.5.2 Channel-Amplitude Rejection: Pipeline 1

Following these signal processing steps, each channel at the sequence level was evaluated in
terms of amplitude (μV) range. Initially, the maximum and minimum μV values for each elec-
trode were computed. These were then passed through a Boolean threshold function. In the
event, that a channel presented with any values outside the following bounds: +/−35μV the
channel was identified as abnormal and was subsequently removed from all sequence data ma-
trices. In the event, the channel rejection protocol led to the retention of 2 or fewer channels
the entire trial and associated sequences were removed from the analysis.

Previous research has indicated that the standard P300 positive upward deflection ranges
around 20μV [120]. This information, alongside the understanding that there are significant in-
dividual differences in the propagation of these waveforms, informed the decision to set these
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μV bounding thresholds at +/−35μV. This level seemed to ensure that all instances of P300
waveform deflection would be captured, with the majority of the far larger movement artefact
components being removed. Undoubtedly, some additional confounding signals would bypass
these protocols and the researchers intended to parse these out using the aforementioned pre-
processing pipeline.

Typically, EEG data rejection involves the thresholding of samples at the trial level. Here
the removal of a trial due to the presence of any relevant electrodes leads to the removal of the
entire trial. Given the relatively low number of trials here and the tight amplitude threshold
(+/- 35 µV), the author instead performed the channel rejection at the sequence level. This
dramatically increased the total number of samples retained, while removing noisy channels.
The incidence of channel retention was highest for electrodes in which the P300 is maximally
expressed (see, Figure 3.6). This was a conscious effort on the part of the experimenters dur-
ing the EEG setup, whereby impedance levels at these sensor locations were prioritized over
distal cranial positions.

As can be seen in Figure 3.6, the Pz sensor demonstrates a considerably lower incidence
of channel retention. Admittedly, this could be due to the poor positioning of the EEG kit.
Despite this, even after undergoing extensive training and troubleshooting, it was found that
the medium-sized Cognionics headset was poorly designed to ensure consistent seating of the
Pz sensor against the scalp due to its short length and lack of inward inflexion towards the
skull. This issue was present in the vast majority of subjects and primarily the kit was most
successful in conforming to the heads of young women, as opposed to large male skulls. Had
these steps to perform channel rejection not been taken an inadequate amount of data would
have been available for the training and evaluation of the models described herein.

Following these rejection protocols, all signals were averaged across trial sequences to am-
plify P300 waveform features. The pre-processed data is stored in an aggregate array until all
5 sequences of an experimental trial have been acquired, organised, assessed for artefacts and
cleaned. At this point, 5 waveforms (across the 5 trial sequences) for each respective emoji
are averaged to generate 7 individual emoji data chunks. Each chunk is then labelled in terms
of spatial position and target status (i.e. cued or non-cued targets).



3.3 Method 57

Figure 3.6: The above graph describes the incidence of EEG channel retention following the amplitude-
based channel rejection method for all samples collected during the Experiment 1 data acquisition stage.
These data are aggregated across all subjects for both the ’Flash’ and ’Inversion’ augmentation methods
and form the Combined dataset (see subsection 3.5.2). The total possible number of events retained
per channel amounts to 9800 (5 Sequences × 49 Trials × 4 Blocks × 10 Subjects = 9800). If all
channels were included for every sequence this would amount to 9800 events × 7 channels = 68,600
channel retention events. The total number of times a channel was included in the analysis dataset is
represented on the y-axis. The channels sampled from the headset are listed on the x-axis.As is clear
from the plot there is a dramatically reduced number of Pz channel retention instances as compared
to other sensor locations. The author believes that the Pz sensor mounting arm for the Cognionics
Quick-20 dry headset (size: Medium), was poorly designed to seat with the appropriate tension against
the skull for the majority of the subjects tested. This greatly increased the number of noise artefacts,
manifesting in abnormally high impedances and amplitudes for this sensor location that ultimately led
to a high degree of channel rejections. For further information please see subsection 3.3.5.2 Channel-
Amplitude Rejection.

3.3.5.3 Data Pre-Processing: Pipeline 2

As noted above, a secondary data preparation methodology, Pipeline 2, was implemented for
these same data to address the shortcomings of Pipeline 1. To avoid excessive repetition of
information, only the differences in these two methods are discussed here, for instances where
the methods are shared please refer back to the previous Pipeline 1 subsection. As seen in
Table 3.1, the differences between the methods are fairly extensive.Firstly, data zeroing is not
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applied in this series of pre-processing steps. The application of a high-pass finite-impulse
response filter to remove ultra-low frequencies from the EEG signal effectively reduces the
signal offset from zero caused by large drifting components in this frequency range. Addi-
tionally, the author has implemented a dedicated baselining method. As stated in subsection
3.3.4 Data Acquisition, samples were only collected from the initiation of the trial. On re-
flection, the author thought it necessary to utilize data points from the first 50ms of each trial
for baselining to remove DC drift, normalize the data around a common reference point and
improve the overall signal-to-noise ratio.

This involves computing the average of the first 50ms in each data sequence for every EEG
channel separately. These average values are then subtracted from all samples in each respec-
tive EEG channel. In tandem, these two steps effectively remove the majority of large drift
components and therefore make the application of zeroing redundant.This should not influence
the quality of the resulting P300 averages given that the most important waveform components
for oddball paradigm-derived Event-Related Potentials are the characteristic negative drop in
micro-voltage around 200ms and a positive deflection around 300ms.
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Method Pipeline 1 Pipeline 2

Zeroing X

Grounding X X

Notch Filtering: 50Hz (Powerline) X X

Notch Filtering: SSVEP Removal X

Filtering Method: IIR zero-phase X

Filtering Method: FIR zero-phase X

High-Pass Filter: 0.1Hz X

High-Pass Filter: 1Hz X

Low-Pass Filter: 15Hz X X

Baselining: 1st 50ms Avg. X

Amplitude-based Channel Rejection X X

Impedance-based Channel Rejection X

Cross-Channel Averaging X X

Num Sequences per Trial 5 5 & 10

Downsampling X

Oversampling X

Pooled-Subject Classifier Training X

10-fold Cross-Validation X

Localizer Pre-Training X

Table 3.1: Here is a table displaying all the pre-processing techniques implemented for the Pipeline
1 and 2 methods. This is to be used for comparative purposes to aid in the understanding of how
these two approaches differ. Principally, this secondary methodology (Pipeline 1) was undertaken
to address the shortfalls of Pipeline 1, especially with regards to the baselining methodology, new
high-pass filter cutoff value, implementation of 10-fold cross-validation (see subsection 3.4.3.1 Cross-
Validation), oversampling via SMOTE data interpolation (see subsection 3.4.3.3 Oversampling via
SMOTE), and cross-trial collapsing to artificially boost the number of augmentations per trial.

Further, I have transitioned from implementing an Infinite Impulse Response (IIR) filter
to a Finite Impulse Response (FIR) filter, utilizing a zero-phase filtering method [227]. This
FIR filtering technique is less susceptible to inducing unwanted reflection artefacts and other
edge effects. Additionally, the high-pass filter implemented to remove ultra-low frequency
drift was dropped from increased from 0.1 to 1Hz to more effectively capture all waveform
components related to the P300 bio-signal.Moreover, the continuous and regular presentation
of visual stimulus augmentations at intervals of 125ms (see subsection 3.3.3: Stimulus Pre-
sentation, Figure 3.3) will likely lead to the elicitation of a corresponding SSVEP waveform.
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This should be around 8Hz, given 1second /8peaks = 125ms. I have addressed this via the
application of an additional notch filter centred in this area of the frequency space. Note, that
the stimulus variants detailed in Experiments 2 and 3 (see subsections 4.2 & 5.4.3) feature
modifications to the augmentation onset intervals, here the SSVEP-targetted notch filters are
adjusted to accommodate for this please see the appropriate subsections for further informa-
tion (4.3.7 & 5.4.10). Further, these signals were removed in order to prevent the occurrence of
SSVEPs in both the Target and Non-Target class samples from presenting with strong similar
oscillatory characteristics. In the event that both these classes feature a high incidence of 8 Hz
waveforms it is likely that the corresponding classifiers will group these signals together. In
order to maximise the separability of these signals, the notch filter was applied to all samples.

As is noted in the final paragraph of subsection 3.3.3: Stimulus Presentation for the Pipeline
1 method, 5 sequences were collected per trial, aggregated and transformed into trial-level
averages. The erroneous decision to limit the number of sequences to 5 per trial was made in
pursuit of maximising the information transfer rate of the system, to the detriment of the target
and non-target averages, class separability and in turn, the classification accuracies. To clarify
again, the use of this number of sequences per trial is not in line with standard P300-speller
design principles. Typically 10 or 15 augmentations are used initially with stimulus parame-
ters such as the inter-trial intervals and number of augmentations per stimuli being modified
following sustained maximal performance by the user[135].

Here, to address the relatively low number of augmentation events per emoji for each trial
(5) I have collapsed the signals of each neighbouring trial. This involves first computing the
average of all target and non-target events corresponding to the respective emoji stimuli aug-
mentations within a single trial. This is then repeated for the next trial. Following this, the two
trial-level averages for the target samples are averaged together. This process is then repeated
for the remaining non-target trials. The pairing of non-target segments, corresponding to the
non-cued emoji across the two trials was implemented based on the spatial positioning of the
emoji onscreen. This method of aggregating and averaging was performed in an attempt to
more closely mirror the current methods implemented in alternative widely used P300-speller
applications [228].

Further, this should increase the relative quality of the individual trial averages, boosting the
embedded P300 features and reducing noise artefacts. Both the Inversion and Flash methods
were tested over 2 blocks, comprising 49 trials each. Hence, for each subject, following this
collapsing procedure, just 49 trials remained for training and evaluation purposes. The rela-
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tive influence of this procedure is compared against a Non-Collapsed variant for each set of
experimental data evaluated. Note, all instances of the simulated increase in augmentations
per emoji are referred to as following the ’Collapsed Approach’, the original implementa-
tion using the standard 5 sequences per emoji average is referred to as the ’Non-Collapsed’
approach.

3.4 Analysis: Pipeline 1

Here is provided all information relating to the analyses of data collected during Experiment
1 following the original Pipeline 1 approach. These data were all analysed using the Linear
Discriminant Analysis (LDA) classification method. This involves building a discriminant
function from data features that are capable of parsing the two target classes (P300 vs. Non-
P300 waveforms) with the highest degree of separability [229]. Typically, the most optimal
outcomes are achieved for classes with high covariance and feature vectors with normal dis-
tributions. The volatile characteristics of EEG time series and associated target waveforms
(non-stationarity) in combination with cross-channel noise often lead to these analysis prereq-
uisites being unfulfilled and a given LDA classifier can easily overfit [230]. To accommodate
for these issues spatial filters can be applied to address the balance in variance within the un-
derlying class groupings identified. The implementation of these methods alongside artefact
removal protocols can in some instances enhance class separability and ultimately improve
classification accuracies.

This can be accomplished by standardized bandpass filtering or via the use of dimensionality
reduction methods such as Principal Components Analysis (PCA) and Independent Compo-
nents Analysis (ICA). These techniques involve the decomposition of numerous variables into
distinct data groupings that characterize the original data in a condensed format to increase the
efficacy of subsequent feature selection or extraction tasks. The PCA method assumes zero
correlation between underlying data components in the spatial or temporal domains. This
differs from ICA which operates under the principle that any given subset of components
demonstrates maximal statistical independence in just one domain, for example, time or space
exclusively [231].

The outcome of ICA is to decompose for example an input signal into a subset of independent
source signals where these sub-signals are maximally separated [232]. Note, that the improper
application of these methods can reduce the prevalence of target waveform expression in the
respective input signals and potentially lead to model overfitting [233]. In all subsequent ex-
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perimental implementations defined herein, no dimensionality reduction method was applied
in the final pre-processing pipeline as the inclusion of these steps either had negligible or detri-
mental effects on the final performance metrics produced.

The LDA method is currently positioned as the gold standard in P300 analysis (see subsection
2.5.1) and for these reasons, this method was re-implemented here using the Python Scikit-
learn library [227]. The data evaluated herein could be broadly categorised along two key
parameters, augmentation style (Flash vs. Inversion vs. Combined) and subject inclusion
(Pooled / Single-Subejct). A grid search method was implemented to determine the optimal
LDA configuration of solver type and shrinkage factor to maximise the average performance
accuracy. Specifically, this process was introduced to tune both the solver type and the shrink-
age factor. Of all solver types evaluated, the Least Squares (lsqr) method was found to be
optimal in all test instances.

This involves the computation of a line of best fit in which the error, the distance of each
sample point from the separating line, is maximally reduced. In the wider context of the LDA
method, the categorization of a given emoji-level data chunk as either a P300 or Non-P300
waveform is dependent on its relative positioning above or below this line (for further in-
formation see, [234]). In this context, shrinkage is a regularization method used to enhance
the covariance matrix estimations on which the given LDA solver operates to parse the tar-
get classes. This is especially useful for instances in which there is a low number of data
samples and can assist in boosting classification accuracies as well as model generalizability.
The application of the shrinkage factor is scaled between 0, no shrinkage, and 1.0, maximal
shrinkage.

3.4.1 Downsampling Class Balancing Considerations: Pipeline 1

Due to numerous factors that are discussed at length in the corresponding conclusions and
reflections subsections (see, 3.7.1 & 3.8.3), the aforementioned non-class balanced data par-
titions produced highly overfit LDA models. The initial results reported herein relate to the
analyses of these non-class balanced data and are restricted solely to the Flash augmentation
method. This is owing to the highly similar performance of all models for all augmentation
variants and both the cross and single-subject levels relating to this data configuration. To see
more information, figures and discussion relating to the Inversion and Combined non-class
balanced datasets see, Appendix, Figures A.1-11.

In response to the aforementioned findings, the author redirected this study towards inves-
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tigating the impact of class balancing on LDA classifier performance. To these ends, each
dataset was reprocessed to ensure the number of P300 and Non-P300 waveforms were equal.
The class-balanced Non-P300 events were selected according to a ranking method. One non-
target emoji was chosen based on an aggregate value assigned to each of the stimuli. For
each emoji, a value was computed to define its distance from the target emoji in both time
and space. For instance, the P300 target emoji may have been on the extreme left of the array
(spatial position 0) (see, Figure 3.1 ). Following this example, if the Non-P300 target emoji
was positioned at the extreme right of the array it would be assigned a spatial distance value
of 6, as it is six emoji from the location of the target emoji.

Further, the temporal distance values were computed according to the presentation order of the
augmentations. For instance, the example trial sequence may involve the P300 target emoji
being augmented first in the sequence. The Non-P300 target emoji, spatially positioned at the
extreme right, may have been augmented 2nd. This means it would be assigned a temporal po-
sition value of 1, as it is just a single time unit’s distance from the P300 target emoji. The tem-
poral position value for each non-target emoji changes over the course of each trial, as every
trial consists of 5 sequences, each operating according to unique non-consecutive randomised
augmentation instructions. Following this, each non-target emoji possesses 5 temporal posi-
tioning values which are then averaged. The spatial positioning values and averaged temporal
positioning values are then summed to create the aggregate value. The emoji demonstrating
the highest compound positioning value is selected to populate the Non-P300 data matrix.

This was done to maximise the temporal and spatial distance between the P300 and Non-P300
datasets to reduce the incidence of adjacency error or double-flash artefacts (as mentioned
above) from introducing undesirable elements into the class-balanced dataset. These dataset
partitioning methods also influence the presentation of data throughout the chapter. It must
be noted that regarding the non-class-balanced data results all Non-P300 events are used to
compute the signal averages shown (see, Figure 3.2). The class-balanced data averages utilize
Non-P300 data events that correspond exclusively to one non-cued emoji stimuli (see, Figure
3.3).

3.4.2 Random Performance Thresholds: Pipeline 1

For the experiment in question, all original datasets possess a P300:Non-P300 ratio of 1:6,
as the total array of emojis presented is 7, with one stimulus randomly selected as the target
before testing. Despite this, the offline analysis defined herein does not adhere to a 14.3% ran-
dom performance threshold, as per 100 ÷ 7 targets. This is owing to the organisation of the
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data and the classifier method implemented. Each trial leads to the collection of 6 non-target
emoji averages and one corresponding cued emoji average signal containing the target P300
waveforms. All these samples are utilized in the training and assessment of the classifiers
discussed herein. As the method selected for prediction is an LDA model, parsing P300 and
Non-P300 trials, the performance is always evaluated in terms of a 50% random performance
threshold, as effectively the 7-target array has been reduced to a binary classification task.
Along these very same lines, it is for these reasons that the random performance threshold
does not vary following the implementation of the class-balancing protocols.

Note, that this applies to all variants of the offline analyses discussed throughout this thesis
and across all emoji array density variants, including the staggered 3, 5 and 7 Emoji stimulus
assessments conducted in Experiment 2: Variable Array Density Assessments (see subsection
4.3.5). The only instance in which the random performance thresholds correspond directly to
the number of targets on screen relates to the real-time assessments performed in Experiment
3: Real-Time Feedback Implementation (see subsection 5.5.3). This is because only one of
the 7-emoji average signals is selected as a target emoji to inform the visual feedback function.
In other words, the offline analyses can be viewed as operating at the sample level, P300 vs.
Non-P300, in contrast to the LOCRT classifier and associated functions operate at the trial
level. These differences are restated in all relevant subsections to aid results interpretation.

3.4.3 Analysis: Pipeline 2

Here are positioned all the details relating to the analysis for Pipeline 2 in relation to Ex-
periment 1. Note, in order to avoid excessive repetition I will briefly outline the differences
between the methodology implemented here as compared to Pipeline 1, for further details
please refer back to subsection 3.4. For the Pipeline 2 analysis, the same LDA classifier was
implemented, however, given the uniformity observed in the selection of the least squares
method solver type following the grid search protocol for all instances in the Pipeline 1 anal-
ysis, this process was bypassed. Further, the absence of any meaningful relationship between
the shrinkage factor values and corresponding model performance metrics led the authors to
refrain from reporting these values in any of the Pipeline 2 results. In sum, the LDA classifier,
using a least squares solver method was implemented in all instances noted here, for additional
information on the adaptations made regarding the cross-validation, oversampling method and
argumentation against a sequence-labelling approach please see below.
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3.4.3.1 Cross-Validation

To more effectively evaluate the performance of all models assessed via the Pipeline 2 method
a 10-fold cross-validation procedure was implemented via the scit-kit learn KFold library
[227]. This involved first defining a train and test data split of 9:1, here 10% of all sam-
ples within any given fold were positioned in an isolated subset exclusively for evaluation
purposes. The k-folding procedure implemented here initially involves a stratified shuffling
of all samples and corresponding labels, into 10 class-balanced subsets. The cross-validation
protocol involves isolating one subset for evaluation purposes and training on the remaining 9.
This iterates across all 10 subsets and accumulates performance metrics such as classification
accuracy in the process. At the end of the evaluation cycle, a mean classification accuracy is
produced, along with a corresponding standard deviation to assist in assessing the stability of
this metric across the 10 subdivisions tested. Here, as both of the 49 trial Flash or Inversion
method blocks were collapsed during the analysis, a total of 98 target emoji samples and 588
non-target emoji samples were collected per subject per augmentation method. Here each test
set k-fold comprised 10/98 target samples and 59/588 non-target samples, with the remaining
88 target samples and 529 non-target samples making up the remaining 9 training folds.

3.4.3.2 Statistical Tests of Significance

This section describes all statistical tests of significance used in the Pipeline 2 analysis. Specif-
ically, the Shapiro-Wilk test, one-sample t-test, and Permutation Tests were all implemented
using the Python SciPy stats library [226]. These methods are implemented for all BCI emoji-
speller variants detailed throughout Chapters 2, 3 and 4 relating to the Pipeline 2 approach (for
further information see subsection 3.3.5.3)

Single-Subject Assessment: One-Samples T-Test All results concerning single-subject
classification accuracies in the Pipeline 2 analysis are evaluated using a one-tailed One Sam-
ple t-test [235] based on the mean accuracy calculated from 10-fold cross-validation and the
associated standard deviation. Three mean accuracy metrics are assessed: Overall accuracy,
Target accuracy, and Non-Target accuracy. Overall accuracy reflects the performance of the
single-subject trained LDA model across all test set samples. Additionally, Target (P300)
and Non-Target (Non-P300) accuracies are separately evaluated to identify potential model-
specific class bias. The accuracies from each fold, which contribute to the mean values, are
first tested for normality using the Shapiro-Wilk test (p > 0.05) [236]. The mean accuracy
is then compared against a 50% random performance threshold, appropriate for this binary
target vs. non-target classification task. The one-tailed t-test is used to determine whether the
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mean accuracy significantly exceeds this threshold. A p-value significance of 0.05 is applied.
All assessments described here were implemented using the Python Scipy stats t_dist library.

Between Subject Assessments: Permutation Test Here, a comparison of the mean ac-
curacy metrics (Overall, Target, Non-Target) across subjects against the random performance
level of 50% is conducted using the Permutation Test. The permutation test is a non-parametric
statistical method used to assess the significance of observed differences between groups by
evaluating how these differences would distribute under the null hypothesis [237]. In this con-
text, the groups consist of the accuracy metrics (such as Overall, Target, and Non-Target) and
an adjacent array representing the 50% chance threshold. Permutation refers to the process
of systematically rearranging the accuracy values and their associated thresholds to generate a
distribution of the test statistic under the null hypothesis, thereby determining the probability
of observing the actual difference by chance [237]. Given that the data consist of mean ac-
curacies from only three subjects (3, 5, and 8), this approach is particularly suitable because
it does not rely on assumptions of normality or homogeneity of variances, which are often
violated with small sample sizes. The primary assumptions of the permutation test are that the
observations within each group are exchangeable under the null hypothesis and that the test
statistic used is calculated appropriately. These assumptions are met as the mean accuracies
are computed from independent subjects, and the permutation test inherently accounts for the
exchangeability of the data under the null hypothesis. Although the permutation test is robust
and does not require normality, the test’s statistical power is limited by the small sample size.
To address this limitation, a larger number of permutations (10,000) was employed to enhance
the precision and reliability of the p-value estimation. The significance level for the test is set
at 0.05.

Non-Collapsed vs. Collapsed Assessments: Permutation Test To analyze the paired dif-
ferences between mean accuracy values for the Non-Collapsed (5 sequences per averaged
sample) and Collapsed (10 sequences per averaged sample) data partitions, the Permutation
Test is also employed here. Unlike the Permutation Test described above, involving the com-
parison of mean accuracy metrics against a 50% chance threshold across all subjects, this
paired permutation test focuses on the differences between conditions for the same subjects.
Initially, the observed differences in mean accuracy between the Non-Collapsed and Collapsed
conditions are calculated for each subject. The same permutation process is employed by re-
arranging the paired condition labels for each subject and recalculating each respective test
statistic to produce a distribution of test statistic values. A comparison of the observed test
statistic to this distribution produces a p-value showing the likelihood of observing such dif-
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ferences by chance [237]. Notably, this approach allows for the comparison of conditions
without relying on assumptions of normality or homogeneity of variances. Again, given the
small sample size, the statistical power of the test is inherently limited. This is mitigated by
performing a large number of permutations (10,000). The significance level for this test is set
at 0.05.

Flash vs. Inversion Augmentation Method: Permutation Test In a similar vein, the per-
formance comparison between the Flash and Inversion augmentation methods employs the
same paired permutation test methodology. This comparison examines the overall mean ac-
curacies for the same data partition (Non-Collapsed or Collapsed) across subjects. For each
subject, paired accuracy values from the Flash and Inversion stimulus methods are compared,
mirroring the approach used in the Non-Collapsed vs. Collapsed analysis. Specifically, the
permutation test is applied to the mean accuracy values obtained from 10-fold cross-validation
for both augmentation methods (see subsection 3.4.3.1). By applying this statistical approach,
the goal is to determine whether there is any significant difference in classification perfor-
mance between the two augmentation techniques. The repeated permutation process evalu-
ates whether the observed differences in mean accuracy could have arisen by chance, with
the p-value providing insight into the statistical significance of any observed differences. This
methodology ensures a reliable comparison between Flash and Inversion methods without the
need for strict distributional assumptions, while still maintaining robust analysis even with
limited subject data.

3.4.3.3 Oversampling via SMOTE

As noted above in Pipeline 1, I implemented a downsampling method to address the significant
class imbalance (1:6) between the target (cued) emoji samples and the non-target (non-cued)
emoji samples. This method effectively mitigates the issues surrounding classifier overfitting,
despite this the concurrent drop in the number of samples available to the classifier for training
also introduces significant issues as the amount of data used to define the separation of these
classes has been dramatically reduced. To try and address the class imbalance without the
aforementioned drop in the total number of training samples the author has implemented an
over-sampling method. This involves artificially boosting the representation of the minority
class [238], in this instance the Target P300 data samples.

The most basic implementation of this technique involves copying existing samples and the
corresponding labels and aggregating them into the training set. This highly simplistic ap-
plication is extremely susceptible to classifier overfitting towards the minority class, as the
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variance within the oversampled class is artificially lower than the majority class, it reduces
the complexity of defining these samples within the given search space [238]. To address this
data-driven methods such as the Synthetic Minority Over-sampling Technique [239] (SMOTE)
have been widely adopted. This method generates novel minority class data by interpolating
samples within the minority class and in some instances, reducing the prevalence of the ma-
jority class.

In this thesis, the technique was implemented via the widely adopted ImLearn Python library
[240]. Here the default parameters were utilized in all instances. This involved upsampling the
number of target samples such that the quantity of the minority Target class reached parity with
the Non-Target samples. Here, the default ImLearn SMOTE settings concerning interpolation
were utilized. This involves determining the 5 k-nearest neighbours of the target sample and
interpolating this original signal with the neighbouring samples. The degree of linear interpo-
lation between the target sample and each of the 5 nearest neighbours is executed according
to a uniform random distribution between 0 and 1. Here, a value of 0 indicates that essentially
all of the original target signal is retained and 1 denotes that following the interpolation, the
signal would effectively be identical to the nearest neighbour. This method of oversampling
introduces diversity into the newly generated samples while also ensuring that the synthetic
data contain features represented within the target class.

Note, that these methods were applied exclusively after the segregation of the data into train
and test cross-validation k-folds. At no point was any synthetic data positioned inside the test
set for any of the cross-validation assessments. Here the 88 target emoji samples assigned
for training were oversampled to produce 441 synthetic samples, to reach a total of 529 sam-
ples, equally the quantity of data in the non-target class training subset. Following this data
augmentation, 83.3% of all samples relating to the target class for any given k-fold were com-
prised of synthetic data. It could be argued that the author could have implemented majority
class undersampling to reduce this high intra-clas ratio of Real:Synthetic data. It is important
to state that the functionality of the ImLearn SMOTE library does not extend to the implemen-
tation of majority class undersampling.

Further given the significant time constraints placed on this project, the exploration of this ad-
ditional methodology without a clear parameter threshold positioned this investigation beyond
its scope. Moreover, the use of the previously outlined cross-validation method, in tandem
with the exclusive testing of models on novel, non-synthetic data should provide some reas-
surance during the evaluation of the models discussed herein. Note, that in the collapsed anal-
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ysis variants involving the averaging of data across neighbouring trials to simulate a relative
increase in the number of augmentation sequences per trial from 5 to 10, the ratios between
these data divisions all remain consistent.

3.4.3.4 Sequence-Labelling

Given the substantial considerations made in this thesis to address issues relating to class bal-
ance, the author believes that it is important to assert their reasoning for not implementing a
sequence re-labelling method. This technique forgoes the individual labelling of time-locked
sequence segments as belonging to target or non-target emoji stimulus augmentations. Here
a binary target vs. non-target problem is transformed into a 7-class problem where the onset
of the target emoji stimulus augmentation would be used directly to label the data. In other
words, for a given sequence where the cued target emoji is augmented 1st, this would be as-
signed a label of 1, if augmented 7th, this would be given a label of 7.

The label would apply to the entire non-segmented sequence during which all stimuli in the
array are augmented once. In the original method, a time window of averaged data around
375ms in duration is passed to the classifier to determine the presence of a time-locked nega-
tive component at 200ms and a positive deflection around 300ms. In this alternative sequence-
labelled method, the entire sequence period would be passed comprising well over 1 second
of data. Here the complexity of the classification problem increases dramatically. In the orig-
inal iteration, following sequence averaging the classifier is trained to determine the absence
or presence of P300-like features, in contrast to the sequence-relabelled method the classifier
must distinguish P300-like features at 7 different temporal locations. In other words, the num-
ber of trials per class is dramatically lower than the binary classification method while also
being a far more complex classification problem.
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Onset 1 Onset 2 Onset 3 Onset 4 Onset 5 Onset 6 Onset 7 Total

Raw Counts 63 73 54 68 75 83 74 490

Multiple Rounded 60 70 50 65 75 80 70 470

5 Sequence Avg. 12 14 10 13 15 16 14 94

Collapsed 6 7 5 6 7 8 7 46

Table 3.2: Here are shown the augmentation onest counts relating to Subject 3 for both Flash
augmentation variant blocks, consisting of 49 trials each. The Onset monikers denote the
temporal position of each respective sequence target emoji augmentation. As seen in the Raw
Counts column for Onset 1, 63 inter-trial sequences had a presentation scheme that featured
the target emoji being augmented first out of all 7 emojis onscreen. In other words, as soon as
the trial began the target cued emoji, which could be positioned in any of the 7 emoji onscreen
spatial positions, was augmented first. As discussed in subsection 3.3.3 Stimulus Presentation,
there was a 125ms interval between the onset of the stimulus augmentations, this is the amount
of time separating each temporal onset label detailed here. The Multiple Rounded row denotes
the closest multiple of the number of sequences involved in the cross-trial averaging and the
raw count when rounded down. Here there are 63 raw count samples, the intention here is to
demonstrate the process for a 5-sequence average, here 60 is the closest factor as it is only
possible to round down. This is because all sample averages must have the same number of
sequences. Finally, the ’Collapsed’ row relates to the number of samples retained following
the averaging between neighbouring samples, this was done to simulate increasing the number
of augmentations per sequence to improve the average plots and increase target vs. non-target
separability.

Further, instead of 7 separate samples being returned per sequence, just 1 sample is re-
turned using this method. It might be assumed that given 1 label is provided per sequence, as
opposed to 1 target and 6 non-target labels, and that 7 emoji are augmented over a multiple
of 7, 49 trials, the data would be perfectly class balanced. Here 49 trials with 5 sequences
each would theoretically return 245 samples, with 35 samples for each of the 7 classes and
70 samples each over the 2 blocks per augmentation variant. However, as noted in subsection
3.3.3 Stimulus Presentation, the stimuli augmentation protocol followed a non-consecutive
randomisation procedure. This ensured that the augmentation of a given emoji was never
followed by the augmentation of itself or its direct spatial neighbour. These were the only
constraints placed on the presentation scheme, no accommodations were made to enforce the
even distribution of temporal onset times for the target emoji augmentations.

This in tandem with the fact that the number of sequences per trial (5) is smaller than the
number of emoji onscreen means that there is a high probability there will be an uneven dis-
tribution of class samples across the 7 temporal onset labels. As seen above in Table 3.2, this
is well evidenced by the Flash augmentation trials collected from Subject 3. The respective
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counts demonstrate substantial variability in samples per class. Note, that to effectively av-
erage across these samples it would be necessary to find the closest factor of the number of
sequences per average and round this down, for instance, Subject 3 Onset 1 has 63 instances.
Here, as seen in Table 3.2 if using 5 sequences per average we would need to round this down
to 60. Following this, the remaining sequences are averaged to produce 12 cross-sequence
averaged samples.

Finally, as stated above, the author intended to assess the relative contribution of artificially
increasing the number of augmentation sequences per sample. Here, this would involve col-
lapsing neighbouring sequences together to simulate the collection of 10 augmentation events
per emoji. As is seen in the final row (see Table 3.2) the total number of trials in the dataset is
just 47 samples. This is without even applying the train-test split, meaning around just 42 sam-
ples for training and 4 samples for validation per subject. Notably, following this approach,
a lower number of total trials are available here than in the highly restrictive downsampling
method implemented in the Pipeline 1 approach (see subsection 3.5.2), and the complexity of
the problem has been dramatically increased (binary to 7-class problem).

3.4.3.5 Onset-Labelling

In contrast to the sequence-labelling method described above, if the data were to be cut into
segments and labelled with the temporal onsets as a function of distance from the onset of the
target augmentation event, a large imbalance in classes would necessarily emerge in addition
to significant averaging complications. For example, assume the cued emoji is augmented
first, here the first 375ms time chunk would be labelled as 1, indicating that this data chunk
occurred immediately after the onset of the Flash or Inversion stimulus augmentation (see,
Table 3.3, first row). All subsequent time windows would be assigned the labels 1, 2, 3, 4,
5, 6 and 7. Then assume a trial for which the cued emoji is augmented last, the labels would
hence be -7, -6, -5, -4, -3, -2 and -1, as all previous augmentations occurred before the onset of
the target augmentation. Feasibly, these could converted to absolute values if all assumptions
regarding the expected waveform behaviour before, but most importantly, following the onset
of the the cued time chunk are ignored. A table is provided (see, Table 3.4) to illustrate that
the labelling of sequence data segments following this method would lead to an accumulation
of labels for the data windows neighbouring (here labelled as 2) the onset of the target aug-
mentation event (here labelled as 1).

Further, given the refractory effects associated with the P300 waveform, it is likely that dur-
ing the aggregation of samples positioned the same distance from the onset, but that occur
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either before or after the target augmentation e.g. 2 vs. -2, substantial variance would be
present within these groups (see Table 3.3, Onset 2). To avoid this, the explicit labelling of
time segments as occurring before or after the target augmentation onset would necessarily
lead to a total of 13 different labels for this 7-Emoji array. Additionally, it would not be
possible to compute label averages as the presentation scheme used did not adhere to perfect
randomization. As noted above, the scheme was developed to avoid spatial double flashing
and adjacency errors, therefore in many instances there would be a huge imbalance in the
number of time-segments needed to construct the corresponding cross-sequence averages.

Onset 1 Onset 2 Onset 3 Onset 4 Onset 5 Onset 6 Onset 7

1 2 3 4 5 6 7

2 1 2 3 4 5 6

3 2 1 2 3 4 5

4 3 2 1 2 3 4

5 4 3 2 1 2 3

6 5 4 3 2 1 2

7 6 5 4 3 2 1

Table 3.3: Here are shown the counts relating to a hypothetical temporal onset-labelling
scheme for the 7-Emoji experimental variant. Here in the top row are the Onset fields rep-
resenting each of the 7 time-locked onsets of the 7 on-screen emoji through the experimental
sequence, each spaced 125ms apart. The values in the main portion of the table denote the
relative temporal distance of the given onset time to the actual target cued stimulus augmen-
tation event. Here, 1 indicates that the time window corresponds directly to the onset of the
target stimulus, and a value of 2 indicates that the data window directly neighbours the onset
of the target stimulus augmentation, either immediately before or after the event. Along these
lines, a 7 is only achieved if the target stimulus is augmented at the very start of a sequence
or the very end. Here all possible permutations of the relative temporal position of the target
augmentation onset are presented, note that these do not represent actual subject data and are
only provided to explain the class imbalance inherent to this method.

Onset 1 Onset 2 Onset 3 Onset 4 Onset 5 Onset 6 Onset 7 Total

Counts 7 12 10 8 6 4 2 49

Table 3.4: Here are shown the counts of the labels accumulated via the hypothetical onset-
labelling example positioned above. The counts refer to the number of times the given onset
label appears in Table 3.3.

The author hopes that through these explanations it is clear the sequence and onset-labelling
approaches to data labelling are not viable given the inherent class-imbalance and complica-
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tions relating to sequence averaging. Further, the original intent of these implementations,
class-balancing, is not achievable without additional synthetic data generation and this would
add additional complexity to an already highly involved data preparation process. Moreover,
both techniques involve training a classifier for either a 7 or potentially 13 class problem, as
opposed to the original binary, Target (oddball) vs. Non-Target task. In sum, the decision has
been made not to pursue these investigations as it is extremely likely that the resultant clas-
sifiers will not have sufficient data to effectively train relative to the complexity of the class
separation task at hand.

3.5 Results: Pipeline 1

Here are presented all results relating to Experiment 1. This comprises an investigation into
the efficacy of the Flash and Inversion augmentation methods (see, Figure 3.2) for eliciting
the propagation of visual P300 waveforms in a 7-target emoji-based BCI speller format.

3.5.1 Post-Processing Data Info: Pipeline 1

If all subject trials are included (see subsection 3.5.2) the dataset would constitute 13720
events, comprising a total of 1960 P300 events and 11760 Non-P300 events. A train-test
data partition was performed to reserve 10% of the total number of events for the evaluation
of each respective data partition. Similarly, if all trials for one subject are retained, the test
dataset constitutes 196 P300 test events and 1176 Non-P300 test events. Again, within each
data partition, the samples are further broken down into pooled-subject (aggregated data across
all subjects) and single-subject sets to probe for the effects of data aggregation on LDA model
performance. All data used in the evaluation stage of the pooled-subject subset is composed
of 10% of the samples from each subject tested, hence all associated classifiers are termed
pooled-subjects classifiers.

3.5.2 Data Partitions: Pipeline 1

The following subsection is intended to outline the reasoning behind the use of multiple data
subsets. Firstly, the principle aim of this experiment was to explore if there were significant
differences in classification performance between the two augmentation methods: Flash and
Inversion (see subsection 3.3.3). Additionally, the author intended to observe any significant
changes in classification performance if the data collected across the two augmentation meth-
ods were combined.
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This is not typically performed with P300 data, as there are numerous individual differences
in the propagation of the waveform. These differences can even pose obstacles to data aggre-
gation for the same subject during the same session, as the P300 is an attentional top-down
component, meaning small changes in fatigue or concentration can have dramatic influences
on waveform expression. In contrast, previous studies have explored this process of pooled-
subject data aggregation and observed significant improvements in classifier performance [58].

Dataset Class

Balancing

Inversion Data Flash Data Total Num

Events

Num Test

Events

Test Events

Post-Rejection

Flash No

Balance

FALSE FALSE TRUE 6860 686 685

Inversion No

Balance

FALSE TRUE FALSE 6860 686 679

Combined No

Balance

FALSE TRUE TRUE 13720 1372 1364

Flash Balance TRUE FALSE TRUE 1960 196 198

Inversion

Balance

TRUE TRUE FALSE 1960 196 198

Combined

Balance

TRUE TRUE TRUE 3920 392 392

Table 3.5: This is a table key for denoting the data partitions used to investigate the classification
across and within subjects for the individual Flash and Inversion augmentation methods in addition to
the Combined dataset that is comprised of signals across both methods. The first column provides a
moniker for each data partition. The second column refers to the presence (TRUE) or absence (FALSE)
of class balancing (see subsection 3.4.1). The following Inversion and Flash columns are presented to
indicate the augmentation method used to drive the signals comprising the data partition in question.
The Num Events column details the total number of events held in the data partitions listed. Note that
the Inversion No Balance and Combined No Balance datasets are not discussed in the main body of
the thesis. This is because the associated results are highly similar to those collected for the Flash No
Balance dataset. To avoid excessive repetition, these results are positioned in the Appendix A.1 & A.2.

It must be noted that in some instances (e.g., Flash Balanced and Inversion Balanced),
datasets (see, Table 3.5) present with a higher number of test events post-rejection than the
previously outlined maximum number of test events. This is shown in the first row for the
Flash Balanced dataset which highlights the maximum number of test events possible if 10%

of all trials are subsampled for evaluation purposes, at 196. In the immediate right-hand col-
umn, the actual number of test events included post-channel rejection is 198. This is because
the data partitioning was performed at the single-subject level. For each subject, a total of
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980 trials were collected for the P300 and selected Non-P300 event samples constituting the
class-balanced sample. In sum, this comprises 1960 data events. After this data aggregation
step, partitions between training and test samples are implemented. This involved isolating
10% of the total dataset for evaluation purposes. As 10% of 196 is a non-integer value (19.6)
the functions utilized to perform this operation default to rounding this pre-determined value
up to 20.

As will be seen in subsequent sections (Table 3.7), some subjects did not return 20 events
for the 10% test set data partition. This is due to certain subjects providing data with a higher
incidence of channel rejection. As described above, if a single trial presented with 5 or more
channels demonstrating μV amplitude volatility outside the defined thresholds (see subsection
3.3.5.2) the entire trial was not included in the final dataset. This led to some subjects present-
ing with a total number of test events below the 196 test event maximum. In these instances, if
the subjects returned less than 195 events (e.g., 194 events) then the class-balancing protocol
would retrieve 10% of this trial data and round down the non-integer (e.g. 19.4) to 19. This
should clarify the presence of additional samples in the post-channel rejection column. Note,
that these slight imbalances in the exact proportions of class events per data partition do not
influence the random-performance thresholds discussed.

3.5.3 Flash Method Results: No Class Balancing: Pipeline 1

The results reported in this subsection refer to analyses undertaken on the Flash No Balance
data partition (refer to Table 3.5). All data organisation, pre-processing and analysis was
conducted using the Pipeline 1 approach (see subsection 3.3.5). These data contain all subject
time-series gathered during the concurrent visual presentation of the Flash method of stimulus
augmentation. The ratio of P300 events:Non-P300 events is 1:6. These analyses represent
an ecologically valid means of assessing the functionality and robustness of the experimental
design. Note, that all analyses were undertaken offline. It must be highlighted that these are
the only non-class balanced results reported in the main body of the text. As noted in the above
table (Table 3.5), this was done to avoid the excessive repetition of highly similar results and
associated interpretations. All analyses relating to the Inversion No Balance and Combined
No Balanced datasets can be found in Appendix: A.1 and A.2.

3.5.3.1 Pooled-Subject

As can be seen in Table 3.6, the LDA classifier trained using the pooled-subject data achieved
greater than random performance (>50%). To clarify, these LDA models were trained using
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samples pooled across all subjects tested and were evaluated using isolated test data (10%)
from all subjects. Mean accuracy is high (83.60%), with a clear imbalance in performance
metrics for P300 events (MA=0%) as compared to Non-P300 events (MA = 100%). When
applying the grid search technique, the optimal combination of solver and shrinkage value was
shown to be the lsqr method at 0.01, respectively.

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Pooled
Subjects

83.6 0 100 lsqr 0.01 685

Table 3.6: A table of classification performance and optimization results for the Flash No Balance
dataset (refer to, Table 3.5 for data partition info). Here, this classifier was trained on data pooled from
all 10 subjects. The training was comprised of the first 90% of all samples from each subject, with the
remaining 10% of test data being the final samples collected for each respective subject. The Mean
Accuracy column refers to the overall classification performance of the trained LDA models across the
respective test dataset. The P300 Accuracy column denotes the classification performance exclusively
for P300 event predictions (otherwise known as ‘hits’). The Non-P300 Accuracy column details the
LDA classifier performance only for the Non-P300 events comprised in the test dataset. The Solver
column states the solver method selected via the grid search optimization method (see subsection 3.4).
The term lsqr refers to the Least Squares (lsqr) solver method. The Shrinkage column denotes the
shrinkage factor determined via the grid search method to demonstrate the highest classification per-
formance attained. Finally, the Num Test Events column refers to the total number of events comprising
the test dataset for each data partition listed.
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Figure 3.7: Here is displayed a confusion matrix illustrating the normalized classification performance
of trained LDA models for the Flash Method No Balance pooled-subject data partition (see, Table 3.5).
The normalization of classification performance percentages involves rescaling (normalizing) these
values between 0 and 1. The key to the right of the matrix is presented to aid in the interpretation of
classification performances, with darker shadings indicating a high incidence of prediction selection
and lighter shadings indicating a lower incidence of selection. Optimal classification performance
would be represented by dark squares across both the top-left and bottom-right squares (diagonal),
with light-grey shadings for the opposing squares. This would represent high incidences of correctly
identifying P300 events as P300 events (hits) and likewise for Non-P300 events. Further, such a plot
would indicate that there is a very low incidence of confusing P300 for Non-P300 targets or vice-versa.
Note, that all values in the confusion matrix sum to 2.

In the above figure (see, Figure 3.7) the confusion matrix indicates a selective bias towards
the prediction of Non-P300 events in every instance evaluated. All test events were assessed
by the LDA classifier as being Non-P300 events, leading to a hit score of 1 for the Non-P300
class. The hit score for P300 events was found to be zero, with significant confusion present
in the classification of these target waveforms.
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Figure 3.8: This is a stem plot of all the μV ranges (pooled-subject) of each event in the Flash No
Balance data partition (see, Table 3.5). All samples are listed across the x-axis and the y-axis notes
the maximum (upper plot) and minimum (lower plot) μV values for all pre-processed samples. These
plots are used for data-quality assessments to eliminate the possibility that the variances in performance
across subjects (S) can be attributed to significant variances in μV amplitudes. Any large variances in
these values could indicate the presence of movement artefacts, improper seating of the sensors to the
skull or poor subject scalp conductivity. The total number of samples collected, 6860, is the product
of 7 emoji × 49 trials × 2 blocks × 10 subjects. As seen in both subplots, the relative positioning
of the individual subject data inside the aggregate data array is denoted via the corresponding bounds
indicated via red dotted lines and associated subject moniker. Note, that the trials comprising each data
subset are organized chronologically according to the randomised presentation schedule.

Inspection of Figure 3.8 reveals a relatively uniform distribution of high and low EEG
amplitude (μV) maximum and minimum values for each respective emoji sample. The vast
majority of events are positioned inside a band comprising +/−15 μV, with a significant
minority of events falling beyond these bounds. It is clear that some subject data expresses
significantly higher EEG μV amplitude values with a clear correlation in the expression of
extreme values across both negative and positive subsets. The large peaking and negative
deflections present at the centre of the amplitudes plot are derived exclusively from trials
relating to Subject 5. These results will be discussed further in the subsequent within-subject
analyses subsection.
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Figure 3.9: Here is shown a Cz grand average plot for all trial P300 (solid line) and Non-P300 (dashed
line) events respectively collected during the Flash No Balance data partition (refer to, Table 3.5 for
data partition info). Each augmentation event generated a data stream marker used to window the data
into 375ms chunks. Given the onset and offset times of the augmentations through each trial sequence,
some data is shared across data chunks for different emoji targets. These waveforms are computed by
averaging across all P300 (relating to cued target emoji instances) or Non-P300 events (non-cued target
emoji instances) and isolated exclusively to the central Cz channel. The averages generated across
these classes amplify underlying EEG waveform patterns embedded in the signals. Further, all plots
were baselined by computing the average of the first 50ms of the samples collected. Note, that these
baselining measures were implemented exclusively for presentation purposes and were not applied
during the Pipeline 1 approach to data pre-processing as stated in subsection 3.3.5.3, see Table 3.1.
[241].
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As shown in Figure 3.9, the P300 signal exhibits more variance than the Non-P300 average
signal. There is a strong negative component at 50ms, leading to a mild positive deflection at
300-350ms. Notably, a strong initial peak and oscillatory component is visible. Further, the
end-point peaking component of the Non-P300 waveform is ultimately higher. This suggests
that subject’s attentiveness to the target cue was insufficient for clear visual differentiation be-
tween the waveforms. Additionally, an oscillation with a periodicity of around 125ms (8Hz) is
observable for the P300 averaged signal, which is likely an SSVEP resulting from the 125ms
stimulus augmentation interval used in this experimental variant (see subsection 3.3.3 Stimu-
lus Presentation).

3.5.3.2 Within-Subject

This section features the results of LDA models trained and evaluated exclusively using single-
subject data (refer to, Table 3.7). There is minimal variance in classification performance
across the subject-level models (86.56 +/-2.23\%). The classification performance reflects
many of the same properties as the Pooled-Subject performance. The P300 accuracy metrics
are all fixed at 0\%, with a selection bias towards Non-P300 class accuracy at around 100\%.
All single-subject LDA classifier-optimized grid searches demonstrated a preference for the
lsqr solver method. Further, the average shrinkage value (0.15) varied quite substantially (+/-
0.12), ranging from 0.01-0.25 units.
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Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Subject 1 86.96 0 100 lsqr 0.1 69

Subject 2 86.96 0 100 lsqr 0.24 69

Subject 3 86.96 0 100 lsqr 0.24 69

Subject 4 86.96 0 100 lsqr 0.25 69

Subject 5 88.06 0 100 lsqr 0.02 67

Subject 6 85.51 0 98.33 lsqr 0.01 69

Subject 7 85.51 0 98.33 lsqr 0.09 69

Subject 8 88.06 0 100 lsqr 0.15 67

Subject 9 85.29 0 100 lsqr 0.18 68

Subject 10 85.51 0 100 lsqr 0.22 69

Single
Subject

Avg.

86.58 0 99.67 n/a 0.15 68.5

Single
Subject

Var.

1.39 0 0.84 n/a 0.12 1

Table 3.7: A table of classification performance metrics and optimization results for the Flash No
Balance dataset (refer to, Table 3.1 for data partition info) for which all model acuracy metrics were
computed using single-subject data during training and evaluation. The left-hand column denotes each
subject assessed, along side the Single-Subject Avg. This is a mean of all single-subject performance
metrics and does not indicate the presence of any pooled data evaluations. Similarly, the Single-Subject
Var. row denotes the variance in these given single-subject metrics. For further information regarding
the peformance metric and parameter fields please refer back to Table 3.6.
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Figure 3.10: Displayed here is a confusion matrix generated via the LDA classifier results for Subject
6 relating to the Flash No Balance data partition (refer to, Table 3.5). This illustrates the incidence of
Non-P300 and P300 selections via the trained model. All values above zero positioned in the top-right
to bottom-left diagonal orientation indicate misclassification, otherwise referred to as confusion. In the
orthogonal direction, values greater than 0 indicate the incidence of accurate classification.

Two subjects (Subjects 6 & 7) demonstrated sub-100% Non-P300 event classification ac-
curacies (98.33%). As seen above in Figure 3.10, the confusion matrix of Subject 6 illustrates
that one Non-P300 event was erroneously evaluated as a P300 event. The variance in total
samples retained post-pre-processing is highly uniform (average=68.5 events, +/−1). As
seen in Figure 3.11, for the subject with the lowest incidence of events retained (Subject 5),
the EEG waveform μV amplitude ranges are mostly reflective of the pooled-subject dataset
(see, Figure 3.8). Any significant and prolonged movements during the experimental period
by the test subject would reveal substantially higher variances than those seen here. This data
is presented here to illustrate that these results can not be ascribed to errors in data collection
or noise artefacts. For additional information on the interpretation of this figure see, Figure
3.8.
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Figure 3.11: This shows the distribution of the maximum positive and negative values of all respective
samples collected from Subject 5 (refer to, Table 3.7) retained post-processing. For further info on
interpretation see, Figure 3.8.

3.5.4 Flash Method Results: Class-Balanced: Pipeline 1

This subsection discusses results regarding the Flash Balanced dataset (refer to, Table 3.5)
computed via the Pipleine 1 approach (see subsection 3.3.5.1). These data are a class-balanced
(downsampled) subset of the subject EEG time-series data collected using the Flash method
of stimulus augmentation. The ratio of P300 events: Non-P300 events is 1:1. These analyses
were undertaken in an attempt to mitigate the confounding influence of overfitting observed
in the results described above (see, corresponding conclusion subsection 3.7.1, for further in-
formation).

The same protocol is used for the selection of comparator emojis in the average plots is used
for the class balancing method as above. This involves selecting a comparator emoji with the
maximal spatial and temporal separability from the cued target emoji to enhance the separa-
bility of respective features and reduce the presence of bleed-over effects in the evaluation of
these data.
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3.5.4.1 Pooled-Subject

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Pooled
Subject

43.26 38.98 48.45 lsqr 0.6 198

Table 3.8: A table of classification performance metrics and optimization results from the pooled-
subject Flash Balanced dataset (refer to Table 3.5 for data partition info). For further info on table-field
headings refer to, Tables 3.6 & 3.7.

As can be seen in Table 3.8, the LDA classifier trained using the pooled-subject data achieved
lower than random performance (<50%). Mean accuracy (MA) is low (43.26%) with a clear
balance in performance metrics for Non-P300 events (MA=48.45%) as compared to P300
events (MA=38.98%). When applying the grid search technique the optimal combination of
solver and shrinkage values was found to be the Least Squares (lsqr) method at 0.6, respec-
tively.
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Figure 3.12: Displayed here is a confusion matrix generated via the LDA classifier results for the
Pooled-Subject Flash Balanced data partition (refer to, Table 3.5). For more info on interpretation see,
Figure 3.7.

In the confusion matrix above (see, Figure 3.12), the prediction preferences of the LDA
model trained using the pooled-subject data are displayed. The classification of both P300
and Non-P300 targets is below the random performance threshold. Additionally, the figure
illustrates that there exists a slight selection bias for the Non-P300 class resulting in the mis-
classification of many P300 events as belonging to this class.



86 Experiment 1: P300-Based BCI-Speller Stimulus Evaluation

Figure 3.13: Here is shown a Cz grand average plot for all trial P300 (solid line) and Non-P300 (dashed
line) events respectively collected during the computed for the cross-trial P300 (solid line) and Non-
P300 (dashed line) events respectively. These waveforms were generated using the Flash Balanced data
partition (refer to, Table 3.5). Note: the signals used to create this Non-P300 average all correspond to
all non-cued emoji segments collected.

The cross-sample average signals (see, Figure 3.13) do not represent typical P300 and
Non-P300 waveforms. The P300 average (solid line) displays a relatively large negative com-
ponent at around 100ms and 200ms. Despite this, the tail end of the waveform does not contain
the necessary feature of a large 300ms positive deflection. The Non-P300 average waveform
presents with a relatively high range of amplitude values, alongside a mild positive deflection
around 300ms.

3.5.4.2 Within-Subject

The within-subject performance averages peaked above the random performance threshold
(56% +/−16.45%) (see, Table 3.9). Classification performance for P300 events (50.13%) is
non-significantly different to the random performance threshold of 50%. Crucially, it must be
noted that Subjects 3, 6 and 9 all performed well above the random classification threshold,
with Subject 3 achieving a mean accuracy of 75%. The solver method tuned for each sub-
ject individually returned the lsqr method as the most optimal in all instances. In contrast,
the shrinkage values differ significantly across subjects, diverging from the trend of sub 0.2
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shrinkage values observed in the Flash No Balance data partition results (see Table 3.6). The
variance in shrinkage is considerable across subjects (average=0.63, +/−0.5), spanning the
entire 0-1 value scale.

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Subject 1 55 44.44 63.64 lsqr 0.96 20

Subject 2 50 33.33 63.64 lsqr 0.99 20

Subject 3 75 77.78 72.73 lsqr 0.6 20

Subject 4 65 44.44 81.82 lsqr 0.01 20

Subject 5 57.89 42.86 66.67 lsqr 0.99 19

Subject 6 65 66.67 63.64 lsqr 0.65 20

Subject 7 45 44.44 45.45 lsqr 0.08 20

Subject 8 42.11 42.86 41.67 lsqr 0.99 19

Subject 9 60 60 60 lsqr 0 20

Subject 10 45 44.44 45.45 lsqr 0.98 20

Single
Subject

Avg.

56 50.13 60.47 n/a 0.63 19.8

Single
Subject

Var.

16.45 22.23 20.08 n/a 0.50 0.5

Table 3.9: A table of classification performance metrics and optimization results for single-subject
trained and evaluated LDA models using the Flash Balanced dataset (refer to Table 3.5 for data partition
info). For further info on table-field headings refer to, Tables 3.6 & 3.7.
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As can be seen in Table 3.9, the variance in total samples retained post-pre-processing is
highly uniform (average=19.8 events, +/−0.5). This is further reinforced by the plot posi-
tioned above (see, Figure 3.14), as a significant majority of samples present are well below a
+/−20 μV boundary, despite the +/−35 μV amplitude threshold employed. Some increased
volatility in samples can be observed for Subjects 3 and 8, these will both be discussed further
in the corresponding conclusion section (see subsection 3.7.1).

Figure 3.14: This shows the distribution of the maximum positive and negative values for every re-
spective sample across all subjects for the Flash Balanced dataset (refer to, Table 3.5) retained post-
processing. For further information on interpretation see, Figure 3.8. The total number of samples
attainable for this data partition is 2 (emoji) × 49 (trials) × 10 (subjects) × 2 (blocks) = 1960.

The consistency of class predictions is presented below for two subjects at either end of the
performance scale in Subject 3 (high-performing) and Subject 8 (low-performing). As seen
in Figure 3.15, Subject 3 demonstrates minimal confusion across all prediction states and no
clear bias towards either class.
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Figure 3.15: Displayed here is a confusion matrix generated via the LDA classifier results for Subject
3 in the Flash Balanced data partition (refer to, Table 3.5). For more information on interpretation see,
Figure 3.7.

Figure 3.16, illustrates that for Subject 8 the LDA discriminant function failed to develop
an accurate representation of either class, resulting in numerous misclassifications and sub-
random threshold performance <50%).
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Figure 3.16: Displayed here is a confusion matrix generated via the LDA classifier results for Subject
8 in the Flash Balanced data partition (refer to, Table 3.5).

As shown below, there is no evidence of significant μV amplitude range differences be-
tween the two subjects (Subjects 3 & 8). Both demonstrate positive and negative maximal
deflections between +/−15 μV and provide a representative example of the recordings col-
lected across all subjects sampled.
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Figure 3.17: This shows the distribution of the maximum positive and negative values for every respec-
tive sample for Subject 3 in the Flash Balanced dataset (refer to, Table 3.9) retained post-processing.
For further information on interpretation see, Figure 3.8. The total number of samples attainable for
this within-subject data partition is 2 (emoji) × 49 (trials) × 1 (subject) × 2 (blocks) = 196.

Figure 3.18: This shows the distribution of the maximum positive and negative values for every respec-
tive sample for Subject 8 in the Flash Balanced dataset (refer to, Table 3.5) retained post-processing.
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3.5.5 Inversion Method Results: Class-Balanced: Pipeline 1

This subsection concerns all results generated for the Inversion Balanced dataset (refer to,
Table 3.5). These data were collected utilizing the Inversion method of stimulus augmentation
(see, Figure 3.2, lower panel). This involves reversing all emoji stimulus elements from a
black to a white colouration to elicit the propagation of a visual P300 waveform. All samples
are class-balanced (downsampled) to enforce a strict 1:1 ratio of P300 and Non-P300 events.

3.5.5.1 Pooled-Subject

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Pooled
Subject

48.83 52 46.02 lsqr 0 198

Table 3.10: The table contains classification performance metrics and optimization results from the
LDA models trained using the pooled-subject Inversion Balanced data partition (refer to, Table 3.5).

As can be seen in the table above (Table, 3.10) the results of the pooled-subject analyses re-
vealed a sub-random (<50%) classification accuracy. The grid search optimisation determined
the optimal solver method as lsqr with a shrinkage value of 0.



3.5 Results: Pipeline 1 93

Figure 3.19: Presented is a confusion matrix generated via the LDA classifier results for the Pooled-
Subject Inversion Balanced data partition (refer to, Table 3.5).

The above confusion matrix (see, Figure 3.19) illustrates the predictions generated via
the LDA model trained using the Inversion Balanced pooled-subject data. This figure shows
that the LDA classifiers demonstrated significant difficulty in accurately identifying P300 and
Non-P300 events as belonging to the corresponding classes.
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Figure 3.20: The plot herein displays the Cz grand averaged signals from all subjects for the Inversion
Balanced data partition. The solid line shows an averaged signal for all P300 events and the dashed
line shows an averaged signal for the Non-P300 events.

The figure above (see Figure 3.20) displays the grand-averaged Cz waveforms for both
P300 (solid line) and Non-P300 (dashed line) events in the Inversion Balanced data partition.
The P300 waveform is characterized by a strong oscillatory component with a periodicity of
approximately 125ms (8Hz), likely due to the 125ms stimulus augmentation interval. This
suggests that adjacent emoji, in addition to the cued target, were at least partially attended
to during the task. The P300 signal exhibits a significant positive deflection crest at 300-
350ms, which is typical of a P300 waveform. The Non-P300 waveform, while displaying
some P300-like features such as a negative component around 100ms and a smaller positive
peak at 300-350ms, has a much lower amplitude in terms of μV. However, due to its relatively
stable baseline with less drift, the Non-P300 signal has a larger area under the curve. This is
likely owing to the author’s decision to perform non-continuous data collection, preventing the
use of a more standard baselining method for example, using the previous 500ms, as opposed
to the first 50ms.
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3.5.5.2 Within-Subject

The classification results table for the Inversion Balanced data partition reveals only a single
subject (Subject 3) achieved above random performance for both the P300 (66.67%) and Non-
P300 (63.34%) event classification accuracies (see, Table 3.11). The single-subject average of
50.50%, +/−12.5% is broadly representative of the poor overall performance of the subjects
sampled. The grid search optimisation revealed an exclusive preference for the lsqr solver
method and an average shrinkage value of 0.42 +/−0.49.

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Subject 1 40 30 50 lsqr 0.97 20

Subject 2 40 60 20 lsqr 0.06 20

Subject 3 65 66.67 63.34 lsqr 0.11 20

Subject 4 50 55.56 45.45 lsqr 0.07 20

Subject 5 60 50 70 lsqr 0.81 20

Subject 6 45 44.44 45.45 lsqr 0 20

Subject 7 55 33.33 72.73 lsqr 0.62 20

Subject 8 50 66.67 41.67 lsqr 0.11 18

Subject 9 55 50 60 lsqr 0.93 20

Subject 10 45 50 40 lsqr 0.49 20

Single
Subject

Avg.

50.5 50.67 50.86 n/a 0.42 19.8

Single
Subject

Var.

12.5 18.34 26.37 n/a 0.49 1

Table 3.11: The table contains classification performance metrics and optimization results for single-
subject LDA models from the Inversion Balanced data partition (refer to, Table 3.5).
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Figure 3.21: The figure illustrates the distribution of the maximum positive and negative values for
every respective event across all subjects for the Inversion Balanced dataset (refer to, Table 3.5) retained
post-processing. For further info on interpretation see, Figure 3.8

The μV amplitude plots (refer to, Figure 3.21) demonstrate a relatively normal distribu-
tion of maximum and minimum amplitude values for every respective event in the Inversion
Balanced data partition. The variance in samples retained post-processing can be found in the
classification Table 3.11, showing the only subject to have samples removed is identified as
Subject 8.
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Figure 3.22: Here is presented a figure displaying a confusion matrix generated via the LDA classifier
results for Subjet 3 in the Inversion Balanced data partition (refer to, Table 3.5).

As seen in the figure above (see, Figure 3.22), the LDA classifier did not effectively dis-
criminate the classes based on the characteristics of the data relating to each class. These data
features only allowed for a highly marginal increase in classification accuracy above random
performance (>50%).
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Figure 3.23: The figure illustrates the distribution of the maximum positive and negative values of
every respective sample for Subject 3 in the Inversion Balanced dataset (refer to, Table 3.5) retained
post-processing. For further info on interpretation see, Figure 3.8.

The μV amplitude range plot for Subject 3 demonstrates a high level of uniformity for both
the positive and negative maximum deflections found across events, with all samples present-
ing well below +/−20μV (see, Figure 3.23). As seen in Table 3.11, all samples collected
from Subject 3 were included in the analyses, with none of these data being removed via the
channel-rejection protocols.

3.5.6 Combined Method Results: Class-Balanced: Pipeline 1

The following analysis relates to the data partition Combined Balanced (refer to, Table 3.5).
This is an aggregate dataset, combining the data for all 10 subjects across both augmenta-
tion methods implemented (Flash and Inversion) utilizing the same data pre-processing and
analysis methods outlined in Pipeline 1 (see subsection 3.3.5.1). The total number of samples
attainable post-processing for this dataset amounts to 2 (emoji) × 49 (trials) × 4 (blocks) ×
10 (subjects) = 3920. An average of 39.2 events were retained per subject (+/−1.5).
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3.5.6.1 Pooled-Subject

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Pooled
Subject

51.64 51.69 51.58 lsqr 0.77 392

Table 3.12: A table of classification performance metrics and optimization results from the pooled-
subject Combined Balanced data partition (refer to, Table 3.5).

As can be seen in Table 3.12, the mean accuracy (51.64%) is just above purely random perfor-
mance (50%). Both the P300 (51.69%) and Non-P300 (51.58%) event classification accuracies
are marginally above random performance. The results in this instance do not have much sig-
nificance, given the only slight (around 1.5%) increase above the random performance thresh-
old level. The grid search optimisation revealed the lsqr method at a shrinkage rate of 0.77 as
the most effective combination of training parameters.

Figure 3.24: Here is presented a confusion matrix generated from the results of the LDA analyses
conducted using pooled-subject data for the Combined Balanced data partition (refer to, Table 3.5).
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The figure above (see, Figure 3.24) illustrates the LDA classifier predictions in finer de-
tail. The diagram reveals that the model did not learn to accurately distinguish between P300
and Non-P300 waveforms, with an arguably near-random performance pattern, owing to the
relatively even distribution of predictions across both classes tested.

Figure 3.25: This is a Cz grand average plot for the P300 (solid line) and Non-P300 (dashed line)
signals across the Combined Balanced data partition for all 10 subjects sampled in this experimental
variant (refer to, Table 3.5).

In the above figure (see Figure 3.25), the P300 average signal (solid line) exhibits signifi-
cant negative drift, complicating direct comparisons with the Non-P300 signal. An oscillation
with a periodicity of approximately 125ms is also observed, likely reflecting an 8Hz SSVEP
induced by the 125ms stimulus augmentation interval. Although the P300 signal shows much
greater variance, the higher relative amplitude of the Non-P300 waveform results in a larger
area under the curve. Given these observations, it is unlikely that the P300 peaking component
is effectively utilized by the LDA models for separating these data into distinct classes.

3.5.6.2 Within-Subject

As can be seen from the classification table (Table 3.13), the single-subject average mean
accuracy (44.59%) broadly represents the single-subject performance across the whole dataset.
No subjects from the evaluated data partition achieved a mean accuracy significantly greater
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than random performance, with only one marginal subject (Subject 9) approaching the random
performance threshold. The grid search optimization undertaken to determine the best training
parameters for the LDA classifier led to the exclusive selection of the lsqr solver method
and demonstrated significant variance in the selection of the shrinkage metric (average=0.51
+/−0.49).

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Subject 1 30.77 31.25 30.43 lsqr 0.00 39

Subject 2 41.03 43.75 39.13 lsqr 0.01 39

Subject 3 52.20 63.64 38.89 lsqr 0.99 40

Subject 4 52.50 45.45 61.11 lsqr 0.38 40

Subject 5 38.46 46.67 33.33 lsqr 0.93 39

Subject 6 50.00 45.45 55.56 lsqr 0.62 40

Subject 7 35.00 27.27 44.44 lsqr 0.15 40

Subject 8 45.95 52.38 37.50 lsqr 0.00 37

Subject 9 56.41 56.25 56.25 lsqr 0.99 39

Subject 10 43.59 31.25 52.17 lsqr 0.98 39

Single
Subject

Avg.

44.59 44.34 44.88 n/a 0.51 39.2

Single
Subject

Var.

12.82 18.19 15.34 n/a 0.50 1.5

Table 3.13: A table of classification performance metrics and optimization results from the Combined
Balanced data partition (refer to, Table 3.5).
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Figure 3.26: Here is shown a confusion matrix generated from the results of the LDA analyses con-
ducted using data from Subject 5 for the Combined Balanced data partition (refer to, Table 3.5).

When inspecting the figure above (see, Figure 3.26), significant confusion can be observed
between the prediction of Non-300 and P300 events (and vice versa). Some biasing of predic-
tions is evident in the heightened incidence of misclassifying Non-P300 events as P300 events
(lower left quadrant). Further, a significantly reduced tendency to correctly predict Non-P300
events as such is also observed (lower right quadrant).

3.6 Results: Pipeline 2

Here are presented all results relating to Experiment 1 utilizing the Pipeline 2 data organi-
sation, pre-processing and analysis stages, for further details please refer back to subsections
3.3.5.3 and 3.4.3. This comprises an investigation into the efficacy of the Flash and Inversion
augmentation methods for the proposed 7-emoji BCI communication platform. Note, as seen
in Tables 3.6, 3.8, 3.10 and 3.12 relating to the Pipeline 1 approach, the performance of all
models trained using data aggregated across subjects either failed to produce classification
accuracies above the 50% random threshold or demonstrated significant overfitting. Further,
at the single-subject level, only a handful of subjects demonstrated classification performance
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above 50%. The author has selected the 3 highest-performing subjects from the Pipeline 1
assessments, Subjects 3, 5 and 8 to validate the Pipeline 2 approach. This was done due to
project completion time constraints in addition to a desire to avoid presenting similar low-
quality results. Here, all models are trained using data from a single subject, feature data
augmentation via the SMOTE over-sampling technique and report the subject-level perfor-
mance for the Flash and Inversion method, as well as the Collapsed and Non-Collapsed trial
methods.

3.6.1 Data Partitions: Pipeline 2

In the table positioned below (Table 3.14), all data quantities are reported following trial rejec-
tion, cross-validation-based test set isolation and training set data augmentation via SMOTE.
Here, only the tables relating to the Flash augmentation method are shown, as highly similar
distributions of quantities were defined for the Inversion augmentation method (see Tables
A.3 & A.4). As noted in subsection 3.4.3.1 Cross-Validation, over the course of both 49
trials blocks for either augmentation method a total of 98 trials were collected for the P300
targets and 588 trials collected for the Non-Target instances. Here, the total number of sam-
ples retained following amplitude-based channel rejection is listed, for more information on
the details of this method see subsection 3.3.5.2 and Table 3.1. As is expected several trials
were excluded due to exceptionally high micro-voltages to retain data quality. Further, the
train-test split of 9:1 is executed before data augmentation to ensure no synthetic samples are
erroneously positioned within the test set.

Additionally, the proportion of real vs. synthetic data within the over-sampled minority P300
class is presented. Further, a secondary table illustrating the same distribution of dataset quan-
tities is shown for the so-called Collapsed dataset variant. As noted in subsection 3.3.5.3 (Data
Pre-Processing: Pipeline 2), this involved artificially simulating the presence of 10 sequences
per trial, as opposed to the original 5 sequences. This was done by collapsing the samples of
P300 and corresponding Non-P300 data segments from two neighbouring trials and averaging
across these data. The process was undertaken to gauge the relative performance enhancement
of the predicted increase in signal-to-noise ratio. As can be seen from both tables mentioned,
there are no significant differences between subjects in the number of trials retained post-
channel rejection for either data preparation variant (Non-Collapsed vs. Collapsed).
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Flash Non-Collapsed

Total Post-Rejection Test Train

Subjects P300
Non-

P300
P300

Non-

P300

P300

(Real)

P300

(Syn-

thetic)

Non-

P300

Subject

3
95 587 10 59 85 443 528

Subject

5
97 585 10 59 87 439 526

Subject

8
94 581 9 58 85 437 522

Table 3.14: Here is presented a table detailing the distribution of sample quantities for the datasets
associated with the Flash Non-Collapsed Pipeline 2 approach. All samples here are composed of sig-
nals collected over all 5 sequences of each trial, for more information see subsection 3.3.5.3. The
’Total Post-Rejection’ column denotes the number of samples retained for each of the 3 respective
subjects following the amplitude-based channel rejection (+/-35µV), for further information see sub-
section, 3.3.5.2. The ’Test’ column defines the number amount of samples assigned per subject for the
evaluation of all associated LDA classifier models. Here 10% of the total post-rejection samples for the
P300 and Non-P300 samples were isolated for these purposes. This assignment was repeated 10 times
according to a 10-fold cross-validation procedure for model performance metric assessment, for more
information see subsection 3.4.3.1. The final ’Train’ column contains information on the number of
Real, non-augmented, P300 samples. Further, the number of Non-P300 samples is noted here on the far
right sub-column. Positioned in the central sub-column is the number of Synthetic samples generated
via linear interpolation between samples in the Real P300 subset utilizing the SMOTE method (see
subsection 3.4.3.3 Oversampling via SMOTE). As can be seen, the sum of the Real and Synthetic P300
samples equals the number of Non-P300 train samples. This was done to ensure a 1:1 ratio of P300 and
Non-P300 samples in an attempt to mitigate the confounding influence of overfitting. To avoid exces-
sive repetition of similar results, the equivalent data distribution table for the Non-Collapsed Inversion
augmentation method data is positioned in Appendix Table A3.
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Flash Collapsed

Total Post-Rejection Test Train

Subjects P300
Non-

P300
P300

Non-

P300

P300

(Real)

P300

(Syn-

thetic)

Non-

P300

Subject

3
45 292 5 29 40 223 263

Subject

5
46 291 5 29 41 221 262

Subject

8
44 289 4 28 40 222 261

Table 3.15: Here is presented a table detailing the distribution of sample quantities for the datasets
associated with the Flash Collapsed Pipeline 2 approach. All samples here are composed of signals
from 10 sequences, this was generated by averaging corresponding Target and Non-Target samples
for 2 neighbouring trials containing 5 sequences each. For further information on field headings and
interpretation please refer to the table above (Table 3.14). Note, that the ratios between Target and
Non-Target samples for all datasets listed, including the proportion of Real vs. Synthetic P300 in-
stances mirror those in the Non-Collapsed data preparation variant (see table above). To avoid exces-
sive repetition, the data distribution table related to the Inversion augmentation method is positioned in
Appendix Table A.4.

3.6.2 Flash Method Results: Non-Collapsed: Pipeline 2

The results reported in this subsection refer to analyses undertaken on the: Flash Non-Collapsed
data partition (refer to, Table 3.14). These samples were collected during the implementation
of the Flash augmentation method involving the overlay of a white augmentation square for a
given on screen emoji stimulus (for more information see, Figure 3.2). All data organisation,
pre-processing and analysis were undertaken using the Pipeline 2 approach (see subsections
3.3.5.3 and 3.4.3.1). As stated above, all samples herein were computed via the averaging of
all 5 sequences per trial.
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Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

3 0.74* 0.05 0.81* 0.06 0.70* 0.06

5 0.73* 0.03 0.79* 0.04 0.68* 0.07

8 0.80* 0.03 0.88* 0.02 0.72* 0.06

Table 3.16: Here is presented a table showing the performance metrics associated with Subjects 3, 5
& 8 for the Flash Non-Collapsed data partition (see, Table 3.5). All results were computed following
the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology. Here
all individual samples are composed of averages computed across all 5 augmentation sequences within
each respective trial (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). The ’Overall’ column
details the mean classification accuracy (’Acc Mean’) and associated standard deviation (’Std Dev’) of
the single-subject trained LDA model for all samples within the corresponding classifier test set (see
Table 3.5 for further information). This mean accuracy value was generated by computing the aver-
age of all classification accuracies reported for each of the 10-folds of the cross-validation procedure
implemented (see subsection 3.4.3.1). The ’Target’ and ’Non-Target’ columns report the within-class
accuracies for the respective cued Target P300 samples and non-cued Non-Target Non-P300 samples.
Note, that as the Target samples were augmented via the SMOTE data interpolation method to balance
the ratio between the classes, here around 83% of all Target class samples were composed of syntheti-
cally generated instances. The final row, ’Avg.’, reports a mean of all data points within the respective
column. To be clear, this does not represent LDA model results computed on pooled-subject aggre-
gated data. Here, in all one-sample t-tests computed the threshold for significance was set at p < 0.05
(denoted via *). This was done given the relatively small sample sizes and associated test set quantities.

In these analysis, the Shapiro-Wilk Test was used to evaluate the normality of accuracy
metrics computed at the single-subject level for each 10-fold cross-validation. The test results
consistently showed p-values greater than 0.05, indicating that the accuracy metrics for each
subject approximately followed a normal distribution (see, Table 3.16). Each individual mean
accuracy metric was then compared against a fixed random performance threshold of 50%
using a one-tailed, one-sample t-test. This test was oriented to measure whether the mean
accuracy significantly exceeds this base value. The degrees of freedom for the t-test were
computed as the number of folds in the cross-validation minus one (i.e. k− 1). All metrics
reported corresponding p-values less than 0.05, indicating that these mean accuracy values are
significantly higher than the 50% chance level.

Note, that for the Overall classification results all subjects demonstrated mean classification
accuracies above the 70% functional performance threshold. Despite this, both Subjects 3
and 5 are highly marginal given the corresponding standard deviation metrics. These indica-
tion that for a portion of the cross-validation folds the classification accuracy dipped below
the 70% functional performance cutoff. These considerations do not apply Subject 8, with a
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mean accuracy of 80% and associated standard deviation 0.03, the results can be considered
representative of surpassing both the 50% random chance and 70% functional performance
thresholds. It is crucial to note that this relatively high classification accuracy is primarily the
result of an exceptionally high Target sample accuracy mean of 88%. Notably, all subjects
demonstrate a bias in classification towards the Target samples, as opposed to the Non-Target
samples of around 6% across subjects. The efforts undertaken to address the imbalance in
samples across these classes via the SMOTE interpolation method could have introduced some
bias towards the target class.

Here, comparisons were made between the pooled-subject accuracy mean variants (Overall,
Target and Non-Target) and the chance 50% performance level via the permutation method
(see subsection 3.4.3.2). Only the Target accuracy variant produced values significantly below
the 0.05 p-value threshold (p=0.045). Note, that these comparisons are highly limited given
the small number of subjects in the assessment. Despite this, there is a clear difference in
the average of the Target means (0.83) and the Non-Target means (0.70). The results could
indicate the presence of classifier bias towards the Target class, particularly given the high
prevalence of synthetic samples in the training dataset.
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Figure 3.27: This is an average plot constructed exclusively from the Cz electrode for all P300, Av-
eraged Target Emoji (solid line) and Non-P300 Averaged Non-Target Emoji (dashed line) samples
collected across Subjects 3, 5 & 8 for the Flash Non-Collapse data partition (see, Table 3.5). As
can be seen, the time dimension is positioned on the x-axis (0-375ms) and the micro-voltage range
is oriented to the y-axis. Here, all samples were processed using the Pipeline 2 data pre-processing
methodology (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Initially, this involves applying
the pre-processing stages to all samples for a given trial trial. This features A2 electrode referencing,
the application of a standard 50Hz powerline notch filter, the implementation of a pair of 0.1 high-pass
and 15Hz low-pass finite-impulse responses filters as well as the application of an 8Hz notch filter
to remove potential SSVEP artefacts induced via the 125ms stimulus onset interval. At this stage,
the sequence then undergoes amplitude-based-channel rejection to remove any poor-quality samples.
Given this average plot is constructed exclusively from Cz electrode samples, the identification of sam-
ples outside the +/-35µV range leads to the entire sequence being excluded. Further, each sequence is
parsed into 7 segments (375ms windows) via corresponding markers indicating the onset times of the
7 emoji-augmentation events, in this case, Flash events. Following, the segments were baselined using
the average of samples collected over the first 50ms of the given data chunk and then labelled accord-
ing to the respective spatial emoji location. This is repeated for all 5 sequences in the respective trial
and segments corresponding to the individual time-locked emoji augmentations are averaged together.
These same steps are repeated for all trials in a given subject and then extended to all 3 subjects in this
analysis. Finally, every Target P300 and Non-Target P300 averaged sample are aggregated into sepa-
rate arrays and a grand pooled-subject mean signal is computed to generate the plot seen here. A total
of 282 P300 samples and 1747 Non-P300 samples were utilized respectively. At no point, were any
synthetic P300 samples included in the construction of these average signals. Note, that the primary
difference between the Non-Collapsed and Collapsed data variants relates to the number of sequences
assigned to each sample average. As the plot here features all samples it represents a linear combination
of all signals within the given augmentation variant meaning the corresponding average plot generated
using the Collapsed data is identical to the figure shown here.
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As seen in Figure 3.27, the Cz electrode grand average signals generated using all Target
and Non-Target samples for all 3 Subjects assessed demonstrate signal quality commensurate
with the classification results observed. The Target P300 grand average presents with both
characteristic waveform features induced via a visual oddball paradigm, namely, a moderate
negative deflection around 200ms and a strong positive component around 300ms. Further,
the redundant waveforms and noise components associated with the Non-P300 samples have
been effectively diminished via deleterious averaging. As stated in the corresponding caption
(see, Figure 3.27), the grand average plot positioned here is effectively identical to the plot
generated using the Flash Collapsed data partition as the samples used to construct both Target
and Non-Target signal averages are shared. This is due to the fact that the Collapsed signals
feature an artificially increased number of sequences per sample (10 sequences), as compared
to the Non-Collapsed data partition (5 sequences). In sum, when averaging across all samples
within these respective data partitions the same average plots are produced. It is for this reason
only one grand average plot is presented for each stimulus augmentation variant.

3.6.3 Flash Method Results: Collapsed: Pipeline 2

The results reported in this subsection refer to analyses undertaken on the: Flash Collapsed
data partition (refer to, Table 3.5). All data organisation, pre-processing and analysis were
undertaken using the Pipeline 2 approach (see subsections 3.3.5.3 and 3.4.3.1). Note, that all
samples herein were computed via the averaging of 10 sequences across two neighbouring
trials to artificially increase the number of sequences per trial and gauge the relative influence
of the method on the resulting classifier performance metrics.

Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

3 0.75* 0.07 0.84* 0.07 0.66* 0.10

5 0.72* 0.05 0.80* 0.05 0.65* 0.10

8 0.76* 0.07 0.87* 0.07 0.66* 0.08

Table 3.17: Here is presented a table showing the performance metrics associated with Subjects 3, 5
& 8 for the Flash Collapsed data partition (see, Table 3.14). All results were computed following the
stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology. Here all
individual samples are composed of averages computed across 10 augmentation sequences consisting
of samples spanning two neighbouring trials (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2).
For additional information on table field headings and interpretation please refer to Table 3.16.

As detailed for the Non-Collapsed Flash data partition above (see, Table 3.1), here all
subjects relating to all respective accuracy variants produced mean, cross-validated accura-
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cies significantly above the chance level of 50% (p<0.05). Again, the same trend emerged
with corresponding LDA classifiers trained at the single subject level reporting a bias in the
classification accuracy for Target samples. The permutation tests performed within the mean
Target classification accuracy grouping were highly significantly different (p=0.016) as com-
pared to chance (50%). In contrast, the Overall (p=0.053) and Non-Target (0.064) were both
extremely marginal. The inclusion of additional subjects would likely lead to the reporting of
significant results for both these groupings. Despite this, the low number of subjects for these
assessments precludes the author from making broad generalizations regarding pooled-subject
performance and system generalizability.

Finally, each set of accuracy metrics across both the Non-Collapsed (see, Table 3.16) and
Collapsed (see, Table 3.17) data partitions were pair-matched to corresponding subjects and
assessed via a permutation test (see subsection 3.4.3.2) to determine the relative influence of
the cross-trial sequence aggregation method (see subsection 3.4.3). Here the subject pair clas-
sification accuracies for the Overall and Target groupings were highly non-significant, this is
attributed to the small, 1.3% and -0.1%, differences between the means across the respective
groupings. For the Non-Target paired assessments, the result was relatively marginal (p=0.09),
with the performance across the subjects dropping around 5% for the Collapsed (65.3%) vs.
Non-Collapsed (70%) data partitions. It is asserted that the relative increase in data quality
per sample introduced via the artificial sequence increase was offset by the huge reduction in
the number of samples available to the respective classifiers.

3.6.4 Inversion Method Results: Non-Collapsed: Pipeline 2

The results reported in this subsection refer to analyses undertaken on the: Inversion Non-
Collapsed data partition (refer to, Table 3.5). These data were collected using stimuli fol-
lowing the Inversion augmentation method involving the inversion of all black emoji coloured
elements to white (for more information see, Figure 3.2). All data organisation, pre-processing
and analysis were undertaken using the Pipeline 2 approach (see subsections 3.3.5.3 and
3.4.3.1). As stated above, all samples herein were computed via the averaging of all 5 se-
quences per trial.
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Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

3 0.78* 0.04 0.86* 0.04 0.71* 0.08

5 0.79* 0.03 0.85* 0.05 0.73* 0.04

8 0.79* 0.03 0.85* 0.06 0.73* 0.04

Table 3.18: Here is presented a table showing the performance metrics associated with Subjects 3, 5 &
8 for the Inversion Non-Collapsed data partition (see, Table 3.14). All results were computed following
the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology. Here
all individual samples are composed of averages computed across all 5 augmentation sequences within
each respective trial (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). For additional informa-
tion on table field headings and interpretation please refer to Table 3.16.

As seen in the table above (see, Table 3.18), all single-subject classifiers were shown to be
significantly higher than chance (50%), based on the results of the individual 10-fold cross-
validation procedures. When computing the percentage variation via the standard deviation
and mean accuracy for each subject none dropped under the 70% functional usage thresh-
old based on the Overall classification performance metrics. The same trend demonstrated
for the Flash augmentation Pipeline 2 results is reported (see, Tables 3.16 & 3.17), here all
single-subject trained LDA models assessed showed a bias towards the Target samples. When
comparing the means across each accuracy grouping against chance via the permutation test,
only the Target means reported a significant p-value (0.0481), with the Overall accuracies
returning a highly marginal p-value (0.051).
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Figure 3.28: This is an average plot constructed exclusively from the Cz electrode for all P300, Av-
eraged Target Emoji (solid line) and Non-P300 Averaged Non-Target Emoji (dashed line) samples
collected across Subjects 3, 5 & 8 for the Inversion Non-Collapse data partition (see, Table 3.5). As
can be seen, the time dimension is positioned on the x-axis and the micro-voltage range is oriented to
the y-axis. Here, all samples were processed using the Pipeline 2 data pre-processing methodology (see
subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). For additional information regarding the interpre-
tation of this plot please refer to Figure 3.27.

Here are shown the Cz grand average plots for samples collected during the Inversion
method trials (see, Figure 3.28). The N200 component is delayed around 50ms and the crest of
the P300 component peak is narrow, however crucially these key features have been extracted
from the averaged target emoji P300 data segments to enable the effective separation of the
samples as evidenced in the results table above (see, Table 3.18). Again, the averaged Non-
Target emoji presents with a relatively flat profile with a small oscillatory component around
12Hz seen throughout and is observable given the low-pass cutoff threshold of 15Hz.

3.6.5 Inversion Method Results: Collapsed: Pipeline 2

The results reported in this subsection refer to analyses undertaken on the: Inversion Collapsed
data partition (refer to, Table 3.5). All data organisation, pre-processing and analysis were
undertaken using the Pipeline 2 approach (see subsections 3.3.5.3 and 3.4.3.1). Note, that all
samples herein were computed via the averaging of 10 sequences across two neighbouring
trials to artificially increase the number of sequences per trial and gauge the relative influence
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of the method on the resulting classifier performance metrics.

Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

3 0.76* 0.06 0.87* 0.06 0.66* 0.07

5 0.76* 0.05 0.84* 0.07 0.67* 0.05

8 0.73* 0.06 0.81* 0.11 0.65* 0.07

Table 3.19: Here is presented a table showing the performance metrics associated with Subjects 3, 5 &
8 for the Inversion Collapsed data partition (see, Table 3.14). All results were computed following the
stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology. Here all
individual samples are composed of averages computed across 10 augmentation sequences consisting
of samples spanning two neighbouring trials (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2).
For additional information on table field headings and interpretation please refer to Table 3.16.

The table positioned above reveals that all single-subject trained LDA models produced
Overall classification accuracies significantly above the chance 50% level (see, Table 3.19).
As was demonstrated for the Non-Collapsed Inversion data partition (see, Table 3.18), the
Target samples were accurately classified to a higher degree than the Non-Target samples,
with an 11% difference recorded for Subject 3. Despite this, all subjects performed well
within the range (mean=75%), however in all instances given the relatively high standard
deviations all dropped below the 70% functional performance threshold for a portion of the
10-fold cross-validation instances. The mean accuracies across subjects for the Target samples
produced the only significant group-level result against the chance (50%), as computed via the
permutation test. Further, the paired permutation test assessment comparing subject means
collected between the Non-Collapsed and Collapsed results for each of the accuracy metrics
listed did not produce any significant results. Despite a general trend of reduced performance
for the Collapsed results relating to the Non-Target means, these findings suggest there is
no significant difference in the data preparation methods in terms of end-point classification
performance.

3.6.6 Flash vs. Inversion: Pipeline 2

In line with the methodology used to compare performance metrics between Non-Collapsed
and Collapsed data partitions (refer to subsections 3.6.3 & 3.6.5), we now evaluate the differ-
ences between the Flash and Inversion augmentation methods. This analysis employs a similar
permutation test to compare the overall accuracy means between subject pairs, focusing on the
same data preparation method—whether Non-Collapsed or Collapsed. Specifically, the Flash
method uses a white stimulus square overlay to elicit the visual-P300 response, whereas the
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Inversion method involves flipping the black-coloured elements of a given emoji stimulus to
white. By performing this permutation test, the author aims to discern if the observed differ-
ences in accuracy are statistically significant, thus providing insights into the relative efficacy
of these augmentation techniques in enhancing BCI performance. This approach attempts to
account for the inherent variability in subject responses and the specific impact of each aug-
mentation method on accuracy, offering a robust comparison that aligns with the analytical
framework established in previous sections.

Figure 3.29: The plot displays a paired bar chart of the mean Overall accuracies and standard deviations
for the Flash and Inversion methods using the Non-Collapsed data preparation technique in which each
sample consisted of an average computed over 5 augmentation sequences (see subsection 3.3.5.3 for
further information). The Flash augmentation method uses a white square overlay, while the Inversion
method inverts black-coloured emoji elements to white (see subsection .3.3). These mean values are
computed from a 10-fold cross-validation for each of the three subjects (3, 5 & 8) along with the pooled-
subject average (Avg.) (see subsection 3.4.3.1). The figure also includes standard deviation bars to
show variability in the results of the cross-validation. Each bar is also annotated with its corresponding
mean accuracy value. A horizontal dashed line at 70% is included to help assess the performance of
each method against this functional performance benchmark.

As can be seen in the plot positioned above (see, Figure 3.29), the difference between the
Flash and Inversion augmentation methods for the Non-Collapsed data partition is marginal
to non-existent for most subjects assessed with considerable overlapping of the standard de-
viations of mean Overall accuracies evident throughout. The visual similarity noted here is
confirmed by the associated permutation significance test which reports a p-value of 0.4. This
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is likely owing to the small difference in observed means (2.7%) between the Flash (76%) and
Inversion (78.7%) average Overall classification accuracies. Notably, the accuracies relating to
the single-subject LDA models for the Inversion methods never fell below the functional usage
threshold of 70%. Further, the spread of related standard deviation bars appears marginally
smaller for these instances.

Figure 3.30: The plot displays a paired bar chart of the mean Overall accuracies and standard deviations
for the Flash and Inversion methods using the Collapsed data preparation technique which each sample
consisted of an average computed over 10 augmentation sequences (see subsection 3.3.5.3 for further
information). The Flash augmentation method uses a white square overlay, while the Inversion method
inverts black-coloured emoji elements to white (see subsection 3.3.3). These mean values are computed
from a 10-fold cross-validation for each of the three subjects (3, 5 & 8) along with the pooled-subject
average (Avg.) (see subsection 3.4.3.1). The figure also includes standard deviation bars to show
variability in the results of the cross-validation. Each bar is also annotated with its corresponding mean
accuracy value. A horizontal dashed line at 70% is included to help assess the performance of each
method against this functional performance benchmark.

In the plot above (Figure 3.30), the paired-subject overall mean classification results for
the Collapsed data partition, comparing the Flash method and the Inversion method, are pre-
sented. All instances, except for the Inversion method for Subject 5, fall below the 70%
functional performance threshold. This is supported by the permutation test, which reports a
p-value of 0.71. No significant difference is observed across subjects for either method, with
overall mean accuracies of 74% for the Flash method and 75% for the Inversion method.
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Both Non-Collapsed and Collapsed methods performed significantly above the 50% chance
threshold at the single-subject level (see Tables 3.16-3.19). However, the small sample sizes,
considerable overlap between paired subject results and inconsistencies present in group-level
statistics, make it challenging to determine the relative performance of the two methods.

3.7 Conclusion: Pipeline 1

All findings and conclusions discussed herein relate to the Experiment 1 variant using the
Pipeline 1 data organisation, pre-processing and analysis approach (see subsections 3.3.5.1 &
3.4). The corresponding tables and figures can be found in the text positioned above. Again,
all analyses were conducted offline and correspond to a 7-emoji emotional communication
BCI experimental paradigm outlined in the subsection Stimulus Presentation, 3.3.3.

3.7.1 Flash Method: No Class-Balancing Interpretation: Pipeline 1

These interpretations relate to the analysis of the Flash No Balance dataset (refer to, Table
3.5). This involved the implementation of the Flash augmentation method (see, Figure 3.2,
upper panel) to generate the visual P300 waveform via a white square stimulus overlay. As
noted in the dataset moniker, no class balancing was performed in the data preparation of these
samples.

3.7.1.1 Pooled-Subject

As shown in Table 3.6, the pooled-subject dataset achieved above random performance (83.6%).
This value is the result of a combination of the 100% classification accuracy for Non-P300
events in tandem with the 0% mean accuracy for the P300 events. These results suggest the
classifier overfit during training. This can occur when there is a significant class imbalance in
a training dataset. As the class balance for this training set data partition is 1:6, it is likely the
LDA model overfit to the Non-P300 class. Along these very same lines, the confusion matrix
(as seen in Figure 3.7) further demonstrates a significant bias in prediction selection for the
Non-P300 event class.

As seen in Figure 3.8, there is a relatively uniform distribution of μV amplitude ranges across
the data partition events spanning +/−25μV. The typical μV range difference present in a
P300 waveform is characterised by around a 20μV deflection from the N100 negative com-
ponent to the P300 positive component [120]. When considering this, it could be argued that
the upper and lower μV amplitude bounds used in the channel rejection protocol of +/−35
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μV are too large. Additionally, the presence of abnormally large deflections (as in Subject 5,
see, Figure 3.8) raises the possibility that the inclusion of these events degraded the capacity
of LDA classifiers to separate P300 signal features from redundant data or EEG noise. Impor-
tantly, this line of reasoning is not reflective of the pattern of results that remained. Such an
explanation would present relatively low mean accuracies across both classes and not a biasing
of prediction towards one class. Moreover, any attempts to enforce a stricter channel rejection
protocol would ultimately have reduced the sample size of the total dataset so drastically as to
prevent any meaningful performance from the LDA classifiers in question.

The distinct absence of typical P300 and Non-P300 waveform features in the pooled-subject
average plots indicates there were significant issues in the experimental protocol (see, Figure
3.9). These could be related to subject attentiveness and instruction, augmentation durations
and inter-stimulus interval parameters. The author must note that the most pressing issue re-
lating to the data in this experimental variant (Experiment 1) involves data buffering. In a
significant minority of trial sequences, the EEG buffer stream terminated the data capture link
before the pre-coded experiment duration by around 150ms. This prevented the use of 500ms
data windows for each respective augmentation event. To ensure a consistent size of data win-
dows, necessary for averaging and analysis, the author had to reduce the size of this window
down to 375ms.

This is not ideal as there exist numerous individual differences in the expression of the P300
waveform, with some components appearing in the time series after the 375 ms marker. This
means the data acquisition potentially missed many crucial P300 peaking events, especially
in the later stages of the experimental blocks. In these circumstances, subject P300 propaga-
tion is weaker and less responsive to augmentation stimuli. The absence of typical waveform
features prevents the author from drawing firm conclusions relating to the performance of the
LDA models evaluated for P300 classification.

3.7.1.2 Within-Subjects

As seen in Table 3.7, variance across subjects in terms of mean accuracy (86.58% +/−1.39%),
P300 accuracy (0%, +/−0%) and Non-P300 accuracy are minimal (99.67% +/−0.84%).
These results suggest a similar pattern of overfitting as previously discussed above, with the
LDA models demonstrating prediction bias for the more numerous Non-P300 events. For Sub-
jects 6 and 7, the degree of overfitting may have been slightly lower, as shown by these sub-
jects presenting sub-100% accuracy for the Non-P300 class. The Least Squares (lsqr) solver
method was computed as the most effective for every instance. Note, that the uniformity in the
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selection of the solver method (lsqr) is due to the parameter requirements of alternative solver
methods. Other techniques such as the Eigen method require at least 2 variables to account for
a significant amount of variance. As this threshold was not reached this restricted the selection
to the lsqr solver method exclusively.

The vast majority of subjects presented with a relatively uniform distribution of μV ampli-
tude ranges, typically between +/−20μV (see, Figure 3.8). Subject 5 is an outlier in this
instance, displaying by far the highest number of >20μV amplitudes in terms of either posi-
tive or negative deflections (see, Figure 3.11). The presence of these higher ranges in Subject
5 did not seem to offer any negative or positive outcomes in terms of classification perfor-
mance. This may be due to the same classifier overfitting issues as described earlier. In other
words, the potentially confounding presence of classifier overfit prevents authors from making
firm conclusions regarding the presence of values exceeding the +/−20μV range in Subject 5
events.

In contrast, the total number of trials removed from Subject 5 is only 2 fewer than the maxi-
mum number of retainable test samples (67 vs. 69). The suggestion that the channel rejection
was too stringent, does not hold up as this would assume that the inclusion of two more events
could have dramatically influenced the performance of the LDA classifier. The possibility re-
mains that the corresponding LDA model performance for these data would have been higher
if the incidence of model overfitting had not negatively influenced the classifier training stage.
The only way to validate the computational viability of these data is to artificially balance the
ratio of P300 and Non-P300 waveforms.

3.7.1.3 Summary

It appears that the significant imbalance in the ratio of P300:Non-P300 events (1:6) severely
impacted the LDA classifier during training and manifested in substantial overfitting. The
highly reduced prevalence of incorrect predictions in the opposite direction, for example, the
misclassification of a Non-P300 waveform as a P300 waveform suggests the overfitting pro-
cess has been thoroughly completed and this significantly limits the extent of any interpretation
based on these results at both the pooled-subject and within-subject levels. As noted in sub-
section 3.4.1, these effects were repeated for both the Inversion and Combined augmentation
data variants. To avoid the repetition of overfit model discussion these results are positioned in
Appendix A.1 and A.2. The following section aims to probe the influence of class balancing
on model classification performance by enforcing a strict 1:1 ratio of P300:Non-P300 events.
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3.7.2 Flash Method: Class-Balanced Interpretation: Pipeline 1

The following interpretations relate to the Flash Balanced data partition (see, Table 3.5). These
data were gathered using the Flash augmentation method for P300 waveform elicitation (see,
Figure 3.2, upper panel). All data here were class-balanced in an attempt to observe the
performance of the LDA models for these data in the absence of overfitting effects. The
data comprise all P300 samples collected as well as a subset of Non-P300 target waveforms.
These were chosen according to a ranking method based on the spatial and temporal distances
between target and non-target emoji stimuli. For further information see subsection 3.4.1.

3.7.2.1 Pooled-Subject

As shown in Table 3.8, the pooled-subject dataset achieved sub-random performance (43.8%

vs. 50%). Notably, the class balancing protocols reduced the incidence of overfitting, with
a slight bias in classification performance for the Non-P300 events. The low P300 classifi-
cation performance could be due to the significantly reduced number of training examples
available to the LDA classifier following the implementation of the class-balancing protocol.
The confusion matrix (see, Figure 3.12) shows that the majority of predictions computed were
incorrect, with the highest incidence of confusion relating to instances of misclassifying P300
events as Non-P300 events. This suggests that the LDA classifier was not able to identify
the data features required to discriminate between the classes. Further, the visual appraisal of
the pooled-subject amplitude range plot (see, Figure 3.14) reveals a highly uniform array of
samples, as only a handful of events lie outside the +/−15μV range. This reduces the validity
of any artefact-based reasoning for the low classification performances achieved.

The low LDA classifier performance is revealed in the pooled-subject data average plots (see,
Figure 3.13). These demonstrate that the pooled-subject averages for the P300 class do not
contain the fundamental features of the P300 waveform, namely a minor negative deflection
at 200ms and a large positive deflection at 300ms. If it is assumed there exist no confound-
ing outliers in the generation of these plots it is reasonable to assert that the events tagged as
belonging to the P300 class do not possess enough P300 data features to be bourne out from
the averaging process. In contrast, it is more likely that the absence of strong P300 wave-
form features is related to the individual differences in P300 propagation across subjects. The
differences in P300 deflection onset and amplitude could have introduced a flattening effect
across the entire signal profile, ultimately leading to the presence of some atypical features
being amplified.
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3.7.2.2 Within-Subject

The within-subject performance averages peaked above the random performance threshold
(56% +/−16.45%) (see, Table 3.9). Classification performance for the P300 target class
(50.13%) is however non-significantly different to the random performance threshold of 50%.
The grid-optimized solver method tuned for each subject individually was universally selected
as the lsqr technique. In contrast, the shrinkage values differ significantly across subjects, di-
verging from the trend observed in the Flash No Balance data partition results (see, Table 3.7).
Specifically, the variance across subjects (average=0.63, +/−0.5) spans the entire 0-1 shrink-
age value scale.

Crucially, it must be noted that Subjects 3, 6 and 9 all performed well above the random
classification threshold, with Subject 3 achieving a respectable mean accuracy of 75%. Fur-
ther, in all of these instances, there is considerably more balance in classification performance
across P300 and Non-P300 target classes. The confusion matrix for Subject 3 (see, Figure
3.15) demonstrates this same pattern, suggesting that the corresponding LDA function is both
accurate and robust, with no overfitting present. The sub-random performance demonstrated
for Subject 8 (see, Table 3.8) alongside the high degree of misclassification observed in the re-
spective confusion matrix (see, Figure 3.16) suggests the discriminant function was incapable
of generating cohesive and accurate representations for the P300 and Non-P300 classes.

The author asserts that these results indicate a potential difference in Subject 8 task attentive-
ness. Further to this point, the corresponding amplitude range plot (see, Figure 3.18) negates
any suggestions that the variance in subject performance can be attributed to significant dif-
ferences in data quality. This is due to the plot broadly resembling the same distribution of
maximum and minimum sample μV amplitudes as Subject 3 (see, Figure 3.17). Despite Sub-
ject 8 returning the lowest number of samples post-channel rejection (190), the class-balancing
selection protocol removed all of the most volatile incidences. After removing these samples
LDA classifier performance remained sub-optimal, even if the presence of overfitting had been
largely mitigated.

3.7.2.3 Summary

In sum, the application of class balancing dramatically influenced the performance of all mod-
els at both the single and pooled-subject levels (see, Tables 3.7 & 3.9). Specifically, these
methods removed the incidence of LDA model overfitting in nearly all evaluation instances.
Note, that these data preparation techniques did not contribute to a universal increase in clas-
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sification performance as numerous instances of random and sub-random classification accu-
racies are reported herein.

Note that the measures taken to balance the dataset have substantially reduced the ecological
validity of these assessments. Ultimately, the data quality, experimental design and analysis
configuration were not adequate to probe the original 7 Emoji-array design. The investiga-
tions herein were necessary principally to troubleshoot many of the obstacles faced during
dry-EEG ERP acquisition. Ultimately, these analyses proved highly useful in the develop-
ment of the systems outlined in the later stages of this series of experiments. In the subsequent
experimental investigations (Experiments 2 & 3), methods to address the overfitting issues are
explored.

3.7.3 Inversion Method: Class-Balanced Interpretation: Pipeline 1

The following interpretations relate to the Inversion Balanced data partition analyses (see, Ta-
ble 3.5). All target P300 samples herein were generated via the use of the Inversion augmenta-
tion methods (see, Figure 3.2, lower panel). This involved the inversion of all elements in the
emoji stimuli utilized augmenting from a black colouration to a white colouration. Note, as in
the above subsection, all data were class-balanced according to a compound ranking method
(see subsection 3.4.1).

3.7.3.1 Pooled-Subject

The sub-random mean accuracy performance (48.83%) of pooled-subject data for the Inver-
sion Balanced data partition (see, 3.5) suggests that the inclusion of data across multiple sub-
jects did not improve classification performance. This is likely related to the individual dif-
ferences across the sample of subjects in the expression of P300 waveform features. The con-
fusion matrix relating to the pooled-subject data (see, Figure 3.19) shows minimal evidence
of overfitting. As stated in previous interpretation sections, is unlikely these low classification
accuracies are related to movement artefacts. This is evidenced by the relatively normal dis-
tribution of pooled-subject amplitude range values seen in Figure 3.21.

Relating to the average plots generated from the Inversion Balanced data partition (see, Fig-
ure 3.20), both signals demonstrate some of the attributes typically associated with P300 and
Non-P300 waveforms. Specifically, the increased positive deflection around 300ms for the
P300 samples and the overall reduced volatility profile of the Non-P300. Despite this, the
absence of an effective baselining method makes the comparison of these signal nonviable.
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This process can be problematic when conducting iterative experimental data acquisition in
which the inter-stimulus interval period is shorter than the typical refractory period of the P300
waveform.

3.7.3.2 Within-Subject

When inspecting the classification table for the Inversion Balanced data partition (see, Table
3.11) it is evident that only 1 subject (Subject 3) performed at an above-random classification
performance (>50%) for both the P300 and Non-P300 samples. Further, these results sug-
gest the Inversion method of augmentation is inferior to the Flash augmentation method (see,
Table 3.9). It could be argued that the Flash method stimuli are more visually salient due to
the increased ‘area of augmentation’. This is owing to the white Flash method overlay square
occupying 5-10% more of the presentation monitor as compared to the Inversion method of
augmentation that only occupies the areas of each respective emoji stimuli containing black
colourations (see, Figure 3.2).

Crucially, it is unlikely that the lower incidence of above-average classification performance
for the Inversion method is due to a fatigue-based order effect as a strict counterbalanced
method was applied when determining the presentation scheme of the two experimental aug-
mentation variants. After inspecting these grand average signals (see Figure 3.20) is not pos-
sible to assert that the LDA classifier is distinguishing the samples based on the presence or
absence of typical P300 waveform components. In contrast, the analysis has been guided by
some non-specified and redundant data features that are present in this subsample of events.
Crucially, this highlights the need for multiple analytical tools during the study of EEG-based
ERP data.

3.7.3.3 Summary

On the whole, the given the high degree of overfitting and poor quality of the associated
Cz grand average plots the author can not determine the relative quality of these stimuli for
generating P300 waveforms. Crucially, the performance of related LDA models for the class-
balanced data partitions was significantly lower as compared to the Flash-based augmentation
results (see, Table 3.7). This could be due to the increased saliency of the overlay square
implemented in the Flash augmentation method which engages a greater share of the presen-
tation monitor. It is important to note that performance was not universally higher across the
entire dataset for the Flash augmentation method, with some subjects performing better in the
Inversion method data partition. The purpose of these experiments is not to determine indi-
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vidual, tailored, methods of P300 elicitation, the aim is to develop an emoji-based emotion-
communication BCI that has a high degree of usability across a large proportion of potential
end-point users.

3.7.4 Combined Results: Class-Balanced: Pipeline 1

The following interpretations relate to the Combined Balanced data partition analyses (see,
Table 3.5 and subsection 3.5.6). These data are comprised of samples collected across both the
Flash and Inversion experimental augmentation variants (see, Figure 3.2). Note that these data
were also processed via the compound ranking method to artificially enforce a class-balanced
ratio of P300 and Non-P300 samples via downsampling.

3.7.4.1 Pooled-Subject

When inspecting the classification table (Table 3.12) for the Combined Balanced data parti-
tion, it can be observed that the combination of both class-balanced datasets did appear to
remove the confounding effects of model overfitting observed for the non-class balanced vari-
ant (see Table A.2). Despite this, the increased size of the aggregated Combined dataset did
not produce classification accuracies significantly above the random performance threshold
(50%). The subjects undertook either the Flash or Inversion method of the experiment with
short interleaved breaks, meaning some trials were conducted after a lengthy and attentionally
taxing cognitive task. This would ultimately expose the LDA classifier to many more event
instances in which the P300 waveform is significantly depressed due to fatigue order effects.
A combination of these factors could have reduced the quality of the overall data that the LDA
classifier was exposed to, ultimately reducing the capacity of the analyses to distinguish be-
tween the P300 and Non-P300 classes.

As seen in Figure 3.24 the model does not appear to have been trained effectively. The con-
fusion matrix indicates there is both an absence of overfitting and learning, as seen by the
near-random performance of the model. This suggests that class balance is not the only factor
influencing the performance of the LDA classifier. As seen in the corresponding grand aver-
age plots (see, Figure 3.25) there exists a high degree of similarity between the P300 (solid
line) and Non-P300 (dashed line) signals in terms of range and 300ms peaking event profile.
This suggests that despite the efforts to implement a subsampling method to maximise the
spatial and temporal difference between the target classes a significant degree of confounding
bleed-over effects are present in the class-balanced Non-P300 dataset.



124 Experiment 1: P300-Based BCI-Speller Stimulus Evaluation

3.7.4.2 Within-Subject

The classification performance observed at the single-subject level (see, Table 3.12) for these
data is arguably of lower quality than either of the alternative class-balanced data partitions
discussed herein (see, Tables 3.7 & 3.10). There appear to be numerous instances in which
the single-subject means and class-wise accuracies drop significantly below the threshold for
purely random performance. This phenomenon is present for Subjects: 1, 2, 5 and 7. It is
reasonable to assume that the increased prevalence of these events for the aggregated class-
balanced data partition is owing to the combination of P300 and Non-P300 events across both
visual augmentation variants of the experiment employed. This raises the possibility that the
nature of P300 and Non-P300 events across the two variants differ substantively in the expres-
sion of typical features expected from the classes sampled.

The increased prevalence of this phenomenon for the aggregate data and its impact on the
coherency of results across subjects tested demonstrate that the process of aggregation in this
instance may not have been analytically sound.Ultimately, these results illustrate the substan-
tial complexity of training ERP classifiers across multiple datasets. As can be seen in Figure
3.26, the confusion matrix for Subject 5 reveals some distinct patterns of misclassification.
The P300 event class is predicted with a high degree of inaccuracy. In contrast, the Non-P300
events are misclassified as P300 events to a significantly higher degree. The imbalance in
these plots suggests an absence of effective training for the LDA classifier utilized.

3.7.4.3 Summary

Overall, these findings indicate that the aggregation of data across the experimental variants
did not lead to an increase in classification accuracies at either the pooled-subject or single-
subject level. These explorations were undertaken principally to assess the impact of increas-
ing the number of training samples for the LDA models evaluated following the reduction in
available target events as per the class-balancing protocol. The results suggest that the reduc-
tion of within-class homogeneity for the P300 samples introduced following the aggregation
of these datasets impeded the effective training of models even at the single-subject level.
The potentially less salient Inversion stimulus variant could present P300 waveforms with a
reduced positive deflection or a higher incidence of atypical features. This could lead to con-
fusion during classifier training, as increased variance in the P300 target events would hinder
the ability of the corresponding LDA models to effectively distinguish these samples from
Non-P300 targets.
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3.7.5 Conclusion: Pipeline 2

Here, all conclusions relating to the Flash and Inversion augmentation method samples pro-
cessed using the Pipeline 2 approach are discussed. Please refer back to the relevant sub-
sections for additional information regarding the Flash method white overlay square and In-
version black colouration inversion presentation method (see, Figure 3.3), the Pipeline 2 pre-
processing method (see subsection 3.3.5.3), the associated Pipeline 2 cross-validation proce-
dure (see subsection 3.4.3.1) and the associated tests of significance.

3.7.5.1 Flash Method Results: Pipeline 2

The results shown for samples collected with the Flash augmentation method via the Pipeline
2 re-analysis approach (see subsections 3.6.2 & 3.6.3) show a dramatic improvement in per-
formance from the results collected for the Pipeline 1 approach used in the processing of Flash
Non-Balanced (see Table 3.7) and Flash Balanced (see, Table 3.9) data partitions relating to
both Subjects 5 and 8. As can be seen for Subject 3, despite the numerous adaptations imple-
mented to improve the data organisation and pre-processing the performance of this subject
in the Flash Non-Balanced instance (see, Table 3.7) has decreased slightly when comparing
Overall mean accuracy, dropping from 75% to 74%. Note, however, that the Flash Non-
Balanced result reported here was not evaluated using a 10-fold cross-validation procedure
and therefore it remains tenuous to assert that this is a true representation of the actual classi-
fication accuracy for these subject samples.

For the remaining subjects, when comparing the Pipeline 2 oversampled results against the
Pipeline 1 Flash Non-Balanced downsampled data partition assessments increased in mean
(Overall) accuracy by 16% and 38% for Subjects 5 and 8 respectively. As can be seen from
the corresponding grand average figures, the Flash Pipeline 2 method (see, Figure 3.27) is
far more representative of a standard P300 waveform (see, Figure 3.1), as compared to the
Pipeline 1 Flash Non-Balanced (Figure 3.9) and Flash Balanced (see, Figure 3.13). This is a
clear visual indication that the pre-processing adjustments made in the Pipeline 2 approach al-
lowed for the P300 waveform features to emerge from the background noise more effectively.
Primarily, this is attributed to the lower high-pass filter cutoff of 0.1Hz (Pipeline 1= 1Hz), the
SSVEP-notch filter at 8Hz, the transition to finite-impulse response filter designs and the more
effective baselining methods.

As is discussed in subsection 3.6.2, the efficacy of aggregating emoji-specific time-locked
data chunks across 2 trials in order to simulate an increase in the number of augmentation se-
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quences from the original 5 (Non-Collapsed) to 10 (Collapsed) was assessed (see subsection
3.3.5.3). No significant difference (p>0.05) is reported from the paired permutation test con-
ducted to compare the mean accuracy metrics between subjects for the Non-Collapsed (see,
Tables 3.16 & 3.18) and Collapsed (see, Table 3.17 & 3.19) data preparation methods. Note,
given the small sample size any broad conclusions regarding the significance of group-level
effects are highly limited, however, is it evident from the range of values acquired across the
Overall, Target and Non-Target accuracies that no substantive difference is observable be-
tween these stimulus methods.

Here, the author asserts that the simulated increase in the number of sequences per target
should have dramatically improved the signal-to-noise ratio of associated samples, however,
this adaptation was limited by the dramatic reduction in the number of samples remaining. As
neighbouring trial data was aggregated and averaged into a single test or training sample this
effectively halved the total number of samples available to the associated LDA model for the
discrimination of Target and Non-Target classes.

Here, both the Non-Collapsed and Collapsed Flash method results demonstrate a similar pat-
tern of performance characterized by a preference for all associated single-subject level LDA
models for the Target class. This could be owing to the relatively higher degree of uniformity
in the Target samples given that the corresponding data are parsed from the time-locked on-
set of the cued emoji augmentation event. In contrast, the Non-Target class should feasibly
contain far less distinct and predictable waveform patterns, making the classification of these
samples more complex. It is crucial however to note that following the SMOTE over-sampling
methodology (see subsection 3.4.3.3) used to synthetically increase the number of Target sam-
ples up to the same number of Non-Target samples for each respective subject LDA classifier
(see, Tables 3.14 & 3.15). Note, that there remains the possibility that these results are illus-
trative of overfitting.

Given the high degree of Target: Non-Target class imbalance (1:6), following all associated
pre-processing and data preparation stages each subject-specific training dataset was com-
posed of roughly 525 Target-P300 samples in the Non-Collapsed variant and 260 Target-P300
samples in the Collapsed variant. Each of these Target sample sets was composed of around
83.33% synthetically generated samples. It is possible that oversampling to this degree led
to a dramatic imbalance in the relative amount of variance within the Target class, making
these samples easier to parse from the Non-Target samples for the LDA model discriminative
function. Despite this, all results were evaluated using a 10-fold cross-validation procedure.
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At no point were any synthetic samples included in any of the respective test sets. By con-
tinually testing on real data while never exposing the LDA models to synthetic test samples,
cross-validation serves as a safeguard against overfitting, making the model’s results more
trustworthy despite the heavy reliance on synthetic augmentation during training.

3.7.5.2 Inversion Method Results: Pipeline 2

The following subsection comprises all conclusions relating to the Inversion method samples
processed using the Pipeline 2 approach. A substantial improvement (see, Tables 3.18 & 3.19)
in all subjects assessed (3, 5 & 8) via the Pipeline 2 method is shown as compared to the
corresponding Inversion Non-Class Balanced (see, Table A.1) and Balanced (see, Table 3.10)
results. Specifically, the substantial incidence of overfitting observed for the Non-Balanced
and the chance level results demonstrated for the Balanced Inversion data partition have both
been addressed. In comparing the downsampled (Balanced) Pipeline 1 (see, Table 3.13) and
oversampled Pipeline 2 Non-Collapsed (see, Table 3.18) results, subject overall classification
accuracies increased by roughly 30% to a pooled-subject average of 78.6%. Further, when
accommodating for the associated standard deviations, all subjects performed above the func-
tional performance threshold of 70% over the course of the 10-fold cross-validation procedure.

In a similar vein to results reported above for the Flash augmentation method, the associ-
ated Cz grand average (see, Figure 3.28) presents with a far more typical profile for the Target
and Non-Target waveforms expected when conducting a visual oddball paradigm as compared
to the Inversion method results collected using the Pipeline 1 approach (see, Figures A.3 &
3.20). Notably, all single-subject level accuracy metric results comparing the spread of values
collected during the respective cross-validated assessments produced accuracies significantly
above chance (see, Tables 3.16 & 3.17). As stated above (see subsection 3.7.5.1), this is
likely owing to the improvements in data pre-processing methods employed via the Pipeline 2
method (see subsection 3.3.5.3).

The paired-subject permutation tests conducted to discern the relative difference in mean clas-
sification accuracies (Overall, Target and Non-Target) across subjects for the Non-Collapsed
(see, Table 3.16) and Collapsed (see, Table 3.17) demonstrated no signifcant differences. This
is despite a mean drop in accuracy for the Non-Target class in the Collapsed data preparation
variant of 6.3%. It is possible that the inclusion of additional subjects could have improved the
resampling procedure associated with the permutation test or may have allowed the author to
perform more robust parametric assessments to validate this downward trend more accurately.
Again, the results demonstrate that the respective LDA models trained using single-subject
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data showed a bias towards the classification of the Target class. The author acknowledges
this could be owing to the large inclusion of synthetic samples in the Target class training
subset. Note, that this addressed via a rigourous 10-fold cross-validation procedure in which
all sub-models associated were never exposed to synthetic test samples to maximally nullify
the possibility of overfitting.

3.7.5.3 Flash vs. Inversion Results: Pipeline 2

As discussed in subsection 3.4.3.2: Statistical Test of Significance, a series of paired per-
mutation tests were performed to investigate the relative difference between the Flash and
Inversion augmentation methods in terms of the mean classification accuracy metrics. None
of these assessments revealed any significant difference between the conditions. Note, that this
extends to both the Non-Collapsed (see, Figure 3.29) and Collapsed (see, Figure 3.30) results.
From the associated figures it is clear that the Overall mean accuracies demonstrate signifi-
cant overlap as evidenced by the subject-specific metric standard deviations. Here, the only
implementation that produced mean classification results for all subjects well over the 70%
functional threshold was the Inversion Non-Collapsed data partition. This trend of marginally
higher mean classification performance is also evidenced in the Collapsed results to a lesser
degree. As previously discussed, broad conclusions on the group-level results conducted via
the paired permutation tests are highly limited given the small sample size tested.

3.7.5.4 Summary

A general improvement in the associated subject-level classification accuracies is reported
here, with all subjects demonstrating Overall mean classification accuracies above chance
level (see, Tables 3.16, 3.17, 3.18 & 3.19) as tested via one-tailed, One Sample t-test. These
improvements in performance have been achieved without a dramatic increase in the inci-
dence of overfitting. Notably, no significant difference in the Non-Collapsed vs. Collapsed
data preparation method is evident from the results. Additionally, no significant difference is
reported between the Overall mean classification accuracies observed for the Flash and Inver-
sion augmentation methods. Crucially, some caution must be taken in the interpretation of
these group-level results given the small sample sizes, the use of synthetic training samples
for the Traget-P300 class and the associated non-parametric permutation test methods used in
the tests of significance.
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3.8 Reflections

This section outlines the key areas of import relating to Experiment 1. Any specific points
raised related to the Pipeline 1 and 2 approaches are clearly denoted within the subsection
titles. This covers interpretations regarding the key findings, a description of the experimental
obstacles encountered, and a discussion surrounding the series of modifications the author
implemented in the subsequent investigations (Experiment 2).

3.8.1 Data Capture Issues

As discussed in an earlier subsection (see 3.7.1), there were inconsistencies in the total se-
quence length of data capture across a substantial minority of samples. At times, the data
capture duration was terminated up to 125ms before the intended termination point. This is
owing to a data buffering issue that involved the failure of a pre-coded trigger for the buffer not
to close after a default duration. Initially, researchers intended to parse the sequence-level data
into 500ms event-locked chunks. For the data captures that experienced the aforementioned
error this was not possible as the final event would only contain around 375ms data. This
prevented the researchers from implementing consistent pre-processing, specifically relating
to signal averaging. To ensure parity in pre-processing implementation across all samples the
researchers decided to change the intended event-locked data chunk durations from 500 to
375ms.

This coding error and the resulting change to the data capture duration could have signif-
icantly influenced the classification performance of the LDA models utilized. Firstly, the
reduction in data volume per event deprived the models of a more robust training dataset. Ad-
ditionally, P300 waveform profiles exhibit large amounts of variance within subjects even for
neighbouring experimental trials. It has been shown that P300 waveform features can change
dramatically depending on age [242], time of day [243], fatigue [244] and many other factors.
Often, these individual differences are expressed via delayed P300 waveform peaking, past the
traditional 300ms timestamp. It could be argued that the early cut-off of the data capture to
350ms could have led to the large positive deflection characteristics being excluded from the
analysis. Extending this cut-off to 500ms may have allowed for the averaging to capture more
of the positive deflection expected from an oddball-based experimental design. Overall, this
does not negate the absence of early less-stereotypical components such as the strong negative
deflection at around 200ms (N200). Further, these considerations suggest that the principal
issue of overfitting may not be the sole contributing factor diminishing the performance of the
LDA classifiers described herein.
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Crucially, it must be noted that the use of dry-EEG to perform the data capture of visual-
P300s has been well-established in the past, despite some minor relative decreases in fidelity
[245]. It is highly unlikely the specific hardware utilized is at fault as there exist numerous
publications that demonstrate successfully collecting and averaging ERP waveforms, includ-
ing the P300 [246]. A primary factor in the presence of these waveform features is subject
attention not being solely fixated on the cued emoji location (spatial/temporal bleed-over ef-
fects) and movement artefacts not accommodated for by the amplitude-wise channel-rejection
protocol. These possibilities are probed further in the following experimental adaptions.

3.8.2 Discussion on Performance for Pooled-Subject Data: Pipeline 1

The results of nearly all pooled-subject dataset aggregations reveal that this method was not
conducive to the production of high-performing LDA models. The method, initially, imple-
mented in this experiment was performed to try and replicate the findings in contemporaneous
CNN-based BCI signal analyses [56, 58]. Despite these poor results, the issues relating to
class balancing and data acquisition, alongside features of the LDA classifiers utilized could
have placed significant bottlenecks on the viability of these techniques. Further, even in the
most valid instances of data aggregation, cross-augmentation single-subject data combination,
the influence on classification accuracies was marginal at best (see subject 9, Table 3.12) and
detrimental on the whole, as seen when comparing the single-subject averages in Table 3.12
against the same metrics in Tables 3.8 and 3.11.

In contrast to the line of argumentation here stated, the only instance of pooled-subject data
aggregation that increased both P300 and Non-P300 classification accuracies above the ran-
dom performance threshold was found in the class-balanced aggregated data subset (see, Table
3.12). It could be asserted that the combination of class balancing and increased data volume
contributed to these increases in classification performance. On reflection, the marginality of
these results (P300 Accuracy=51.69% & Non-P300 Accuracy=51.58%) prevents solid con-
clusions from being drawn from the data at hand. In sum, these pooled-subject and cross-
augmentation explorations will continue throughout the experimental series discussed herein.

Crucially, the combination of these data would be more accurately characterised as a the blend-
ing of one relatively higher and lower quality dataset, as opposed to the aggregation of two
datasets containing completely different signals. On the whole, the combination of these data
in principle is sound. Despite this, the relatively low quality of both datasets is likely the key
factor in accounting for the poor performance observed in these analyses. Additionally, the
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blending of data sources across multiple testing sessions would necessarily lead to the inclu-
sion of data with higher relative subject attentiveness with data acquired from subjects experi-
encing fatigue. Further, the aggregation of data across subjects is also highly contentious for
this specific style of analysis given the fact these methods are traditionally employed nearly
exclusively with ultra-high volume datasets in conjunction with various highly-robust neural
network methods.

3.8.3 Class-Balancing Considerations Across Data Partitions: Pipeline 1

The difference in the application of the class balancing protocols is clear in all datasets (Flash,
Inversion and Combined). As previously discussed the classification performances for the
class-balanced datasets display a substantial reduction in overfitting towards the Non-P300
class. Additional differences in shrinkage values across the subsets are also evident, with the
class-balanced datasets demonstrating far higher single-subject variance (for reference see,
Tables A.1 & 3.11 bottom-most rows). It is important to note that these differences can not be
attributed exclusively to a drop in the number of samples held within the class balanced and
non-class balanced subsets, as the same trends are observed across the Flash and Inversion
subsets, as in the far larger Combined dataset. Alongside these considerations, the author as-
serts that the drop in data volume, owing to the class balancing protocol, did hamper the ability
of LDA functions to separate the classes effectively. Following this argument, the Combined
dataset should have produced higher levels of classification accuracy when exposed to the
class balancing protocol as it contains far more samples. Despite this, the combining of data
across augmentation types, as discussed above, introduced many issues for the LDA classifiers
in the training stage and did not convert into better performance.

It must be noted that there is present substantial variance in classification performance across
subjects. It appears that no one subject performed well across all class-balanced data parti-
tions tested. Subjects 1, 2 and 7 scored very low overall. These individuals appear in the
bottom four subjects for at least 2 of the class-balanced data variants assessed (Flash, Inver-
sion or Combined datasets). It must be stated that these subjects did not produce significantly
more rejected trials, as per the channel-rejection protocol. Interestingly, Subjects 2 and 7 are
mentioned frequently in the preceding analysis as presenting with some of the higher max
and min μV amplitude ranges noted in the interpretation of the signals (as per the amplitude
plots). This could well explain some of the issues surrounding the low performance. Further,
it must be stated that even though Subject 3 performed well in both augmentation variants this
subject performed poorly in the Combined data partition assessments. This suggests, that even
the aggregation of relatively higher-quality subject data across experimental variants can be
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problematic.

3.8.4 Flash vs. Inversion Stimulus Augmentation Methods: Pipeline 1

The significant levels of overfitting present in nearly all instances of non-class-balanced anal-
yses for the Pipeline 1 approach significantly hampered efforts to establish the unique per-
formance characteristics of the two augmentation methods assessed. It is only when imple-
menting the class-balanced controls that these differences are borne out. The introduction
of these aforementioned methods for the Inversion augmentation format resulted in only one
subject increasing both P300 and Non-P300 class accuracies above the respective random per-
formance threshold (Subject 3, see, Tables A.1 & 3.11). In contrast, the same changes in
data organisation and classifier training programme led to 3 times as many subjects breach-
ing the same threshold for the Flash augmentation method (Subjects 3, 6 & 9, see, Tables
3.7 & 3.11). Crucially, the relative increases in classification accuracy for Subject 3 are
shown to be significantly higher for the Flash method (P300 Accuracy=77.78% & Non-P300
Accuracy=72.73%), as compared to the Inversion method (P300 Accuracy=66.67% & Non-
P300 Accuracy=63.34%).

After evaluating the cross-channel average signal amplitude range plots at both the pooled-
subject and single-subject levels (refer to Figures 2.8 and A.2), it is evident that the observed
variance in performance is not attributable to significant differences in data acquisition. The
amplitude signal plots are generally represented within a range of ±25 μV, with occasional
spikes exceeding ±30 μV in both datasets. Notably, these outlier events are even less frequent
in the class-balanced datasets (see Figures 2.15 and 2.24). Consequently, the author deter-
mined that the impact of these outliers is minimal and unlikely to significantly confound the
results. Further analysis of the samples retained after amplitude-based channel rejection (refer
to Tables 3.7 and A.1, rightmost column) shows that 685 samples were retained for the Flash
augmentation method, while 679 samples were retained for the Inversion method dataset. This
represents a difference in retained data volume of less than 1%. Given these considerations, it
is highly improbable that the variance in classification performance between the two augmen-
tation methods stems from differences in data acquisition protocols.

Despite the challenges in interpreting the results, the author reasoned that the Flash over-
lay method might have introduced spatial bleed-over effects, potentially leading to adjacency
errors due to the larger on-screen augmentation area (see subsection 3.8.6.1). In contrast, the
Inversion augmentation method appeared to minimize the number of variables influencing the
experimental data and results. This consideration was the primary factor in the decision to
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adopt the Inversion method for all subsequent experimental implementations.

3.8.5 Flash vs. Inversion Stimulus Augmentation Methods: Pipeline 2

The primary objective of Experiment 1 was to evaluate the effectiveness of emoji stimuli
within a visual oddball paradigm for potential applications in Brain-Computer Interface (BCI)
systems. Due to various challenges associated with Pipeline 1’s data organization, preprocess-
ing, and analysis stages, the author was unable to validate claims effectively (see subsections
3.3.5.3 and 3.4.3). To address these limitations, Pipeline 2 was introduced, incorporating a
new baselining method, 10-fold cross-validation, exclusive single-subject Linear Discrimi-
nant Analysis (LDA) model training and evaluation, SMOTE oversampling to correct class
imbalance, and a lower (0.1 Hz) Finite Impulse Response (FIR) filter. These improvements
aimed to enhance the differentiation between the various stimulus presentation methods.

The application of Pipeline 2 yielded results indicating that the emoji stimuli effectively
induced the P300 waveform across all subjects, as evidenced by the Cz average plots (see
Figures 3.27 and 3.28). Both Flash and Inversion augmentation methods were successful in
generating P300 waveforms for these stimuli. The notable improvement in plot quality was
attributed to the new baselining method, which removed DC drift components, and the adjust-
ment of the high-pass filter cutoff to 0.1 Hz, which allowed P300-related signals to emerge
more clearly post-averaging. However, some drift components remained visible, and the am-
plitude of the signals was still relatively low (±1 µV). These issues are likely connected to the
non-continuous data collection method and the short inter-stimulus interval of 125 ms.

The non-continuous data collection method involved capturing data selectively during specific
trials rather than continuously throughout the session. This approach eliminated the need for
traditional markers but introduced several methodological challenges. Filtering stages were
applied to individual segments rather than the entire session, increasing edge effects as the
filter’s impulse response could not fully develop at segment boundaries. Additionally, this
method likely compromised the integrity of low-frequency content due to reduced frequency
resolution. Although FIR filters generally avoid phase distortions, applying them to brief seg-
ments may still introduce phase inaccuracies.

Given the small data segments, traditional artifact rejection libraries, such as the Python MNE
ICA method [247], were impractical, as they rely on continuous session data. Consequently,
the author implemented a channel-based amplitude rejection method with a narrow ±35 micro-
volt window, diverging from the conventional ±150 microvolt range. This stringent criterion
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likely led to the exclusion of many relevant P300 signals, potentially impacting the amplitude
ranges observed in the Cz grand averages and affecting the accuracy of the results. Further-
more, the brief inter-augmentation interval of 125 ms between stimulus Flashes or Inversions
likely resulted in significant temporal bleedover, which not only decreased P300 peak ampli-
tudes but also prolonged the relative latency of the P300 signals [223]. This overlap may have
obscured the precise timing and localization of the P300 peak, diminishing the clarity of the
neural responses.

A thorough statistical analysis was conducted to assess the effectiveness of Flash and In-
version augmentation methods in improving classification accuracy. Despite the detailed
analysis, no significant differences were found between the methods, whether the data was
treated as separate (Non-Collapsed) or combined (Collapsed). The Inversion method, applied
to Non-Collapsed data, consistently surpassed the 70% accuracy threshold for every subject,
though this improvement was less pronounced with Collapsed data. These findings suggest
some variability in performance, but the small sample size and reliance on synthetic data for
the Target-P300 class necessitate caution in drawing broad conclusions. Importantly, the in-
creased classification accuracy did not lead to dramatic overfitting as observed in the Pipeline
1 analysis (see subsections 3.5.1-3.5.6). Further, despite using a 10-fold cross-validation pro-
cedure, the author can not discount the potential confounding influence of the SMOTE linear
interpolated samples used in class balancing given the high prevalence of these waveforms in
the training set.

Regarding the secondary aim of discerning differences between Flash and Inversion augmen-
tation methods, paired-subject permutation tests and comparative plots (see Figures 2.35 and
2.36) revealed no significant differences in overall mean classification accuracy. Despite Sub-
ject 8 achieving the highest overall mean accuracy with the Flash Non-Collapsed data partition
(see Figure 2.35), there was no significant difference between the methods in terms of end-
point classification accuracy. This suggests the author’s original decision to implement the
Inversion method for all subsequent experimental stimulus variants on balance is the optimal
decision, given the previously noted concerns relating to spatial bleedover for the larger Flash
augmentation on-screen area.
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3.8.6 Experimental Modifications

3.8.6.1 Discussion Relating to Augmentation Sizes

The differences in augmentation area across each technique are significant, with the Flash
overlay square occupying 40mm2 (see, Figure 3.2) and the Inversion method, on average, oc-
cupying 18mm2. The reduced size of the inversion method augmentation stimuli could have
led to a significant drop in visual salience. A reduction in visual saliency reduces the like-
lihood of maintaining high subject concentration and reduces the reliability of inducing the
propagation of robust P300 waveforms [130, 248]. In other words, the Flash method may
have led to a P300 waveform profile with a stronger peaking characteristic, owing to its higher
visual salience. When inspecting the respective average wave plots (see, Figures 2.9, 2.16, A.3
& 2.25) the previous assertions do not support the results. The average plots resulting from
the pooled-subject analysis for the Inversion method data present P300 average signals with
more traditional waveform characteristics, in conjunction with lower volatility Non-P300 av-
erage signals. As mentioned above, the aggregation of pooled-subject data in these quantities
is not typically implemented for these analyses owing to the significant individual differences
present in P300 waveform expression.

When inspecting both the Flash and Inversion class-balanced instances (see, Figures 3.13 &
3.20), there are clear differences in the prevalence of P300 and Non-P300 characteristics be-
tween the Cz grand average signals. The signals suggest a large degree of bleed-over between
the P300 and Non-P300 datasets as both plots share many of the same temporally offset wave-
form features. In other words, there appears to be a coherency between the data present in
the P300 and Non-P300 subsets. This may indicate some instances of adjacency error, double
flashing oversights in the stimulus programming augmentation order, or poor attentional focus
from the subject. Given the similarity in signal quality, the data features utilized by the Linear
Discriminant functions to separate and predict the respective classes remain unclear.

These differences in coherency between the P300 and Non-P300 waveform profiles could be
related to the differences in the relative size of the augmented visual array across the emoji in
the Inversion method. This is due to some emoji being quite simplistic requiring only minimal
illustrative ornamentation, for example, the ’Neutral Face’ central emoji stimulus. This is con-
trasted against more ornate emoji such as the far-right emoji ’Smiling Face with Heart Eyes’
(see, Figure 3.1). This target features significantly more regions of black to illustrate the ad-
ditional emotional content expressed within the emoji. This variance in total area augmented
is not shared in the Flash method stimuli, as all receive a uniform 40mm2 white overlay square.
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The reduced coherency could be beneficial to classification performance, as the differentia-
tion between Non-P300 and P300 waveforms is the key factor in this analysis pipeline. In
the same way, having different colours assigned across emoji, the different spatial patterns
of the emoji inversion augmentation could enhance emoji separability. However, it must be
noted that the enhanced discriminability of the colour-differentiated emoji only works if the
colour is vivid/vibrant enough to be consciously distinguished. Along these very same lines,
the volume of inverted emoji colouring must first be big enough to induce a P300 waveform,
once above this threshold the use of spatial patterns to enhance separability could be exploited
to boost P300 peak amplitudes. To summarize, these results suggest, at least for some partic-
ipants, that a reduced visual saliency for the Inversion method contributed to the absence of
any subjects producing higher than random classification performance. The directionality of
this visual salience and the relative influence on classification performance will be probed in
the following experimental series.

3.8.6.2 Stimuli Colouration Justification

It must be noted that the author did not consider the coherency of emoji valence in the stimu-
lus colour modification phase. In other words, no attempts were made to match emoji target
colours based on perceived or real emotional connotations to the colours utilized. For ex-
ample, the perception in Western culture to associate the colour red with negative emotional
states did not inform the assignment of the colour red to any particular target emoji, rather the
colour modification was done purely to enhance the ability of subjects to attend each respec-
tive target, relative to adjacent targets.

That is not to say the colouration modifications were performed entirely according to mathe-
matical exactitude. The legibility of the emoji is important, irrespective of implicit position-
ing on a valence scale. Colours using darker hues would prove far more difficult to discern
and may potentially confuse users. This can be observed within the stimuli set developed as
seen in, Figure 3.1. For instance, when comparing the clarity of the most agreeable (yellow,
’Smiling Face with Heart Eyes’, furthest right) and the second to most disagreeable (purple,
’Pensive Face’, second from left) it is clear that the yellow base colour emoji is far easier
to read than its darker-hued counterpart. Along these lines, brighter colours were used were
possible to enhance emoji legibility.

The considerations outlined here do not preclude the future experimentation of other colour
sets for those with colour blindness or even user preference-based modifications. Again, this
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experimental paradigm was designed to serve as a universal baseline. On reflection, it may
have been interesting to test if assigning colour based on perceived emotional connotation
to the emoji targets can influence subject performance. Crucially, any increase in perfor-
mance would likely be regionally specific, reducing the scope of any resulting EEG-based
P300-speller. Further, the selection of emoji and assignment of these stimuli across the 1-
dimensional emotional valence scale employed did not follow a strict methodology. Again,
the process of constructing the emoji array was done to approximate a condensed scale of
emotional reactions commonly utilized in daily life and not to systematically represent all the
colours of human emotion available for expression in typical-healthy individuals.

3.8.6.3 Impedance-Based Channel Rejection

The use of amplitude-based channel rejection protocols is well established in the literature as
an effective heuristical analogue for confounding acquisition events such as movement arte-
facts [249]. The author concluded that channels showing signal ranges exceeding +/−35μV
would negatively impact waveform averages and were removed to ensure data quality stan-
dards. After inspecting the numerous signal average plots the protocols implemented per-
formed adequately given the restrictions imposed by the non-continuous sampling method, as
no plots express outlier waveform features characterised by excessively high amplitude val-
ues. Despite this, the effectiveness of such an approach may not hold up well in real-world lab
situations. Crucially, as noted above, such an approach may penalise those subjects with very
strong P300 waveform deflections and thus reduce the overall dataset quality. In response to
these considerations, an alternative method utilizing channel-wise impedance data for sample
rejection is discussed in the following experimental variant (see subsection 4.3.5.4). It must
be noted that impedance values are a more direct means of assessing movement artefacts and
the quality of sensor seating against the skull.

3.8.6.4 Inter-Stimulus Interval Increase

The brief inter-augmentation interval of 125 ms between stimulus Flashes or Inversions likely
caused significant temporal bleedover, where the effects of successive stimuli overlapped and
interfered with the EEG signals. This overlap is expected to reduce the amplitude of the P300
peak and extend the relative latency of the P300 signals, thereby diminishing the clarity and
accuracy of the neural responses. To mitigate these issues, the inter-augmentation interval was
increased to 150 ms. However, this adjustment appears to be suboptimal, as evidenced by the
findings of [223], where intervals of up to 250 ms between flashes were implemented. The
increase implemented here of just 25ms was done in an attempt to keep the maximum achiev-
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able information transfer rate low. Here, the author likely outweighed the relative importance
of prospective ALS patient user opinions regarding operational speed [3, 4], as compared to
the need for a system capable of functional performance, 70% classification accuracy, across
a range of individuals [250]. Given this precedent, it would have been more effective to in-
crease the intervals further to align more closely with those used in [223]. The implications
and rationale for these decisions are detailed in the following chapter.

3.8.6.5 Subject Training Improvements

Throughout these conclusions, the author has questioned the attentiveness of subjects multiple
times. The experimental design implemented herein features a low-skilled, highly repetitive
task, for a relatively long duration. This style of experimentation can be hampered by a rapid
decrease in data quality due to subject fatigue and disinterest. In all subsequent experimental
designs, the researchers dramatically increased the amount of time spent pre-training and pre-
testing subjects in concert with longer inter-block breaks to minimise these effects. Further,
the introduction of a pre-testing localization task was implemented to assess subject P300-
peaking profiles before data collection and to inform the application of a longer inter-block
break.



Chapter 4

Experiment 2: Variable Array Density
Assessments

4.1 Aims

The aim of Experiment 2 is to probe the influence of array density on classification perfor-
mance. The subjects were presented with 3 stimulus variants differing in the number of emoji
targets in the visual array. These involve 3 so-called ‘levels’ of array density each featuring
3, 5 and 7 Emoji targets respectively. The valance gradient of the emoji stimuli arrangement
is kept consistent, with the emoji targets organized from disagreeable-to-neutral-to-agreeable
in emotional content (left-to-right). Crucially, the analyses of Experiment 1 led to many new
adaptations in experimental design and were implemented to address the shortfalls of the initial
experimental implementation. Specifically, these relate to rectifying data buffering methods to
ensure consistent 500ms sampling post-augmentation event, the application of an impedance-
based channel rejection protocol and an increase in emoji-stimulus size. Further, as applied in
Chapter 3, both the Pipeline 1 (3.3.5.1, 3.4) and Pipeline 2 (3.3.5.3 & 3.4.3) approaches to the
data organisation, pre-processing and analysis are applied here, for further information see the
noted subsections.

4.2 Stimulus Reduction Rationale

There are many counteracting influences in the design of oddball-style P300-based BCI speller
experiments. As the number of visual targets increases, the likelihood of whether the next tar-
get augmented is the actual target being attended to decreases. This is discussed at length in
the Literature Review subsection 2.5.1 with reference to [137, 138] and Figure 2.1 [125], relat-
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ing directly to the inverse relationship between stimulus probability and P300 peak amplitude.
As noted in [251], this should benefit systems implementing visual arrays with a high number
of targets, as a greater number of targets decreases the chance of neighbouring targets being
augmented successively, given the increase in potential spatial locations to be randomly se-
lected in the presentation scheme. Along these very same lines, the incidence of temporal
bleed-over effects should also theoretically decrease and ultimately improve the quality of the
resulting EEG data captured.

Despite this, the handful of studies directly comparing speller systems utilizing different num-
bers of targets for P300-BCI applications often report that lower-density (fewer targets) ar-
rays produce higher classification accuracies. This is demonstrated in [252], here the authors
compared the performance between a reduced 3 x 3 character matrix and a complete 6 x 6
alphanumeric speller. The researchers also created additional stimulus variants by introducing
two different inter-stimulus intervals for both layouts of 175ms and 350ms. The systems were
tested during 5 sessions in 5 healthy subjects over the course of 3 weeks. The results revealed
mean accuracies of 61.25% and 69.38% in the 3 x 3 matrices for the 175ms and 375ms variants
respectively. These greatly outperformed the 6 x 6 175ms and 375ms variants, achieving just
53.75% and 48.13% respectively. Crucially, the 3 x 3 175ms (7.7bpm) inter-stimulus interval
variant also outperformed the 6 x 6 175ms (5.83bpm) variant in terms of information transfer
rate.

In line with these findings, [19] tested a variety of region-based (alphabetical and frequency
groupings) and 6 x 6 matrix spellers (single character and row/column) across a range of per-
formance metrics. Both region-based systems involved variants of presenting alphanumeric
targets in 7 clusters on screen. The selection of one letter cluster is followed by the remapping
of the cluster contents into the 7 onscreen locations and a second operation is required to select
the target character. Here the authors demonstrate that the region-based methods (90.6% and
86.1%) outperformed the matrix-style layouts (72.2% and 85.0%) in terms of both accuracy
and user acceptability when tested in 6 typical healthy subjects. Similar results are also re-
ported in [20] comparing a 6 x 6 matrix speller with a region-based presentation method using
a 6-cluster design for a larger 12-subject sample size. Here the authors report a significantly
higher accuracy for the region-based (93.47%) speller, in contrast to a single-character 6 x
6 speller method (89.32%) for online trials. Further, the authors note that the P300s gener-
ated in the region-based method demonstrated higher amplitudes and lower latencies. This
is attributed to the greater degree of separation between targets and the resulting reduction in
spatial interference of said targets.
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Notably, these findings suggest that an increase in the number of targets onscreen, if not
compensated for by a relative decrease in the size of targets and a contingent increase in the
distance between targets, can reduce the usability of visual-P300 speller systems. This is well
illustrated in [141], here the authors compared a 6 x 6 alphanumeric P300 speller matrix of dif-
fering sizes between small, medium and large for symbol sizes (0.42cm, 0.79cm and 1.17cm),
symbol separation (0.55cm, 1.04cm and 1.53cm) and overall matrix area (5.27cm, 9.98cm
and 14.69cm). Both healthy and ALS patient subjects reported significant results in terms of
the highest user satisfaction, and lowest loadings on the NASA-TLX [253] user preference
scale items for effort, physical demand and temporal demand regarding the the medium-sized
array. Interestingly, the most statistically significant result here was the separation between
the medium and smallest-sized array in terms of user satisfaction, with subjects reporting dis-
comfort with the latter layout. This suggests that there are limits to compensating for a higher
array density by shrinking the symbol sizes to achieve greater target separation.

Along these very same lines, increasing the number of targets in a given visual array also
inevitably increases the duration of the trial period and in turn, reduces the information-
transfer rate of the system [142]. Researchers can compensate for the increased duration
time per trial by reducing either the total time spent augmenting the target or the duration of
the inter-stimulus intervals [128]. These modifications can also have negative side effects,
as a reduction in the duration of augmentation time could potentially lead to issues in terms
of P300 peaking amplitudes and decreased latencies [128]. Moreover, reducing the distance
in time between the onset of augmentations could lead to an amplification of the previously
mentioned temporal or spatial bleed-over effects, resulting in P300 waveform peaks shifting
across yet more windowed data event chunks. These kinds of interactions highlight the numer-
ous methodological design issues researchers can come across when attempting to develop a
novel visual P300 speller experiment.

In sum, based on the findings of Experiment 1 and the literature noted above it was reasoned
that simplifying the experiment would decrease the number of variables that are potentially
contributing to the low-performance metrics observed. Further, this reduction could poten-
tially improve the accuracy metrics of the prospective subjects via a predicted increase in P300
peak amplitudes and a drop in P300 latencies as per the findings of [252]. Moreover, the ex-
periment herein utilizes 3 stimuli array variants, designed specifically to explore the influence
of spatial bleed-over effects on classification performance by reducing the number of targets
on-screen, in addition to increasing the distance between targets on-screen. As mentioned in a
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previous subsection (see subsections 3.8.4 & 3.8.5), the Inversion augmentation method was
utilized for this experiment as the quality of visual modification employed introduces a far
lower risk of adjacency error owing to the smaller augmentation area.
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4.3 Method

Here are outlined the methods employed in the investigations relating to Experiment 2. Broadly,
this features the implementation of a staggered design to probe the influence of visual array
density on visual P300 propagation using 3, 5 and 7 Emoji array designs (see, Figures 4.2-
4.4). Further, the efficacy of a 1-emoji localizer task is evaluated in terms of subject training,
pre-screening data quality improvement and as a tuning pre-stage for the LDA model used in
the main experimental task.

4.3.1 Participants

A total of 5 neuro-typical subjects were recruited from the Durham University student pop-
ulation consisting of 3 males and 2 females (mean age of 28.8 years and age range of 24-35
years). The subjects were screened before the onset of the experiment to ensure all presented
with normal or corrected to normal vision, had no history of clinical mental illness or epilepsy
and were not currently experiencing a skin-based ailment of the scalp. No subject received
payment to participate in the experiment. Ethical approval and oversight were granted by the
Durham University Psychology Department Ethics Sub Committee.

4.3.2 Equipment

The acquisition of all EEG data collected for this study was acquired using the Cognionics
Quick-20 headset (Cognionics, San Diego, USA). The μV amplitude and impedance (Ω) data
streams (both 500 Hz) were handled via the LabStreamingLayer package. On-screen stimuli
were rendered exclusively by a dedicated NVIDIA GTX 750ti GPU (2GB VRAM). Note, that
before the onset of all trials the EEG headset sensors and rest points were thoroughly cleaned
using anti-bacterial gel.
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4.3.3 Stimulus Presentation

The stimuli were designed and controlled via the PsychoPy [221] Python library and displayed
using a Samsung LED S27A35OH computer monitor (60 Hz refresh rate, 68.5cm diameter).
These were displayed at a fixed 0.8m distance from each subject (seated). A total of 7 Emoji
stimuli were used from the OpenMoji database [222]. All emoji stimuli utilized in these and
proceeding experimental variants utilize the larger 27mm diameter sizing, this increase in
scaling was easily achievable due to the use of SVG format image files.

4.3.4 Localizer Task

The localizer task employed in Experiment 2 is a simple 20-event pre-screening protocol (see,
Figure 4.1). The purpose of this stage is to provide subjects with an additional phase of stimu-
lus training, further, it enables the EEG headset electrodes to sit optimally against the scalp to
ensure minimal signal impedance and lastly, it provides the experimenter with a pre-screening
tool to assess P300 waveform quality before the onset of the main experiment. This task in-
volved the presentation of a single emoji stimulus, onscreen for one second. Following this,
the stimulus is either augmented or left in its original presentation format (duration 0.05 secs).
As noted above, the Inversion stimulus augmentation method was utilized (see, Figure 4.1
central graphic). Briefly, this involved the inversion of all black colouration in each respective
target emoji to white colouration. The onset of all augmentation events adheres to a ran-
domised and partially stratified presentation schedule. This was employed to avoid excessive
groupings of either class (augmentation vs. no augmentation events) throughout the course
of the experimental period. After the augmentation or non-augmentation event, an inter-trial
interval of 300ms is observed to allow for any post-propagation refractory processes to be
concluded and prevent temporal bleed-over effects influencing subsequent trials (see, Figure
4.1 lower panel).
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Figure 4.1: The upper plot of the figure displays the single default onscreen emoji (27mm diameter)
utilized in the localizer task (1000ms). The central plot shows the visual augmentation phase of the
emoji utilized to generate the P300 neural response (50ms). The final, lower plot shows the refractory
pause period displaying the same standard, non-augmented emoji stimulus (300ms). Note, that the
plots here illustrate a series of screenshots for the P300 trial augmentation variant. In all Non-P300
augmentation instances, no visual change to the default emoji stimuli is applied. Further, the order in
which the P300 and Non-P300 trials occur is randomised by a structured control procedure to avoid
large clusters of the same events occurring. This prevented repeatedly augmenting the stimulus at
regular intervals and avoided the presentation of stimuli with long periods of inactivity. Please refer to
the accompanying text in, subsection 4.3.4 Localizer Task, for additional information.
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As stated above, this process is repeated for a total of 20 trials and occurs over a period of
27 seconds, as per (1000ms + 50ms + 300ms) × 20. The concurrent acquisition of EEG data
was carried out simultaneously during the experimental sessions. This produced 20 trials of
500ms data windows from electrode locations: Fz, Cz, Pz, P4, P3, O1, O2, A1 and A2 using
a 500 Hz sampling rate. All data gathered via this method were pre-processed using the same
notch filter, bandpass, referencing and channel-rejection protocols employed in Experiment 1
(see subsection 3.3.5.2). Crucially, cross-trial signal averaging into grouped sequences was
not performed, as per the main experiment.

In half of the trials (10 trials) the visual augmentation of the target stimulus is applied; the
other half (10) involves no augmentation. These events are randomly arranged throughout the
trial period. More traditional oddball methods require the distinction of a so-called ‘deviant
trial’ which differs from the consistent baseline stimulus. The distinction is amplified by the
reduced frequency of the deviant trial presentation. The author designed a 1:1 ratio for this lo-
calizer task to reduce any possible influences of overfit from class balancing issues as recorded
in detail throughout Experiment 1.

It is crucial to clarify that the task described here does not simply involve the repeated aug-
mentation of the singular emoji stimuli in discrete 1350ms blocks. If this were the case the
task would more accurately be re-classified as an ultra-low frequency (0.741Hz) SSVEP task.
The augmentation scheme is initialised with 10 P300 and 10 Non-P300 event codes. These
are then shuffled randomly and the list is then checked with a conditional rule to assess if
any clusters of the same event codes are neighbouring one another in groups of a length ex-
ceeding 4. If this is the case, the list is re-randomised and checked again until the conditional
returns false. This combination of randomisation and cluster checking prevents the augmen-
tation order from following a repetitive on-off procedure, as well as ensuring a relatively even
distribution of P300 and Non-P300 events.

Following the completion of the localizer task, the data were grouped into classes and av-
eraged across trials to create average signal plots. The experimenter utilized these plots to
probe the viability of the subject before the onset of the main experimental variants and also
further train the subjects before the acquisition of the main experimental data. The decision
was made later in the analysis development process to try and utilize these localizer signals for
the pre-training of the LDA classifiers as an initialization stage, this will be discussed further
in subsequent subsections. This was hypothesized to potentially diminish some of the overfit-
ting effects observed in the previous experimental implementation (Experiment 1).
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Note, that this methodology deviates substantially from the traditional oddball paradigm, par-
ticularly concerning the ratio of P300 and Non-P300 events. Despite this, the Non-P300 event
code involves no change to the default stimulus array (see, Figure 4.1, upper plot). Therefore,
in any given experimental run the P300 augmentation event can never account for more than
500ms (50ms x 10 P300 event codes) out of the entire 27-second experimental period. Further,
owing to the variance in the presentation sequence introduced by the randomisation protocol
the author asserts that the augmentation of the stimulus via colour inversion constitutes a rare,
unpredictable, yet expected change in the qualities of the attended stimulus. In sum, at best
this method can be termed a variant in the oddball paradigm.

As discussed in the previous literature review (see subsection 2.5.1), the amplitude and la-
tency of the P300 peak are inversely related to the probability of stimulus augmentation (see
Figure 2.1). Given the 50% likelihood of stimulus augmentation per trial, the proposed local-
izer task is expected to produce lower-quality P300 waveforms. However, it is important to
note that the perceived likelihood of augmentation may be lower, as the non-augmented state
is displayed for a significantly longer duration during the experiment. This is because the non-
augmented state here functions as the standard stimulus and remains unchanged on screen for
the vast majority of the experimental duration. These compromises in P300 waveform quality
were made to eliminate potential spatial and temporal bleed-over artefacts associated with the
presentation of multiple stimuli in P300 oddball contexts. For further information see subsec-
tion 2.5.1 P300.

Given the pervasive issues related to class-balancing noted throughout the thesis thus far re-
lating to the Pipeline 1 approach (see subsection 3.3.5.1), the author reasoned that the use of a
binary system would avoid many of the associated complications. Arguably, the intention of
the author to enforce class balance in the localizer task dataset impeded the effective design
of the assessment. The utility of this technique in generating P300 waveforms, the efficacy of
this system as a localizer pre-screening task and the adaptations necessary to modify this pro-
cedure into a valid P300 task are discussed further in subsections 4.6.7.4 Summary & 4.6.8.3
Localizer Data Pre-Training Considerations. Note, that all adaptations involving the Localizer
task data are all undertaken using the Pipeline 1 approach and at no point feature in any of the
associated Pipeline 2 evaluations.
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4.3.5 Main Experiment

All three variants of the experiment and the pre-experimental localizer task defined herein
subsample stimuli from the original 7 Emoji reference group (see, Figure 4.2). Further, all
main experimental variants included the neutral (’Neutral Face’), most agreeable (’Smiling
Face with Heart Eyes’) and most disagreeable (’Persevering Face’) emoji. This was done to
ensure that the range of emotional valence was kept constant despite a loss in resolution of the
emotional expressivity in the less dense 3 Emoji (see, Figure 4.4) and 5 Emoji (see, Figure
4.3) variants.

Figure 4.2: The image above is a screenshot of the 7 Emoji experimental variant. Emoji stimuli,
diameter 27mm, are arranged in an approximated continuum of emotional valence from disagreeable
to neutral to agreeable (left-to-right) in evenly spaced intervals of 85mm. The white square positioned
below the rightmost emoji stimulus is a cue to indicate the target a subject must attend during the course
of the following trial.
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Figure 4.3: This figure displays a screenshot of the 5 Emoji experimental variant, with the emoji stimuli
positioned at evenly spaced intervals of 110mm.

Figure 4.4: The above figure shows a screenshot of the 3 Emoji experimental variant, with the emoji
stimuli positioned at evenly spaced intervals of 230mm.

The same colour modification protocol in Experiment 1 was extended in the design of this
task (see subsection 3.3.3). In summary, the visual distinguishability of proximal neighbouring
emoji was enhanced via the inclusion of a base colour. As can be seen in Figures 4.2, 4.3 and
4.4 each of the experimental variants uses the same colour modification protocol to maintain
the distinguishability of target emojis relative to immediate neighbours.
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4.3.5.1 Presentation Specifications

At the start of each trial, subjects are presented with a white cueing square (1000ms), po-
sitioned underneath the target emoji (see, Figure 4.2). Each stimulus is then augmented (
duration=0.05s) and an inter-stimulus interval of 100ms is observed before the execution of
subsequent augmentation events. Once all emoji have been augmented according to the ran-
domisation protocol an inter-sequence interval of 500ms is undertaken. This process describes
one sequence and is repeated 5 times in total to complete a full trial run. Once all 5 sequences
have been completed, an inter-trial interval of 1 second is introduced. Each experimental
variant consists of 30 trials, with each experimental variant: 3 Emoji, 5 Emoji and 7 Emoji
requiring 3.3, 4.1 and 4.8 minutes to complete respectively. One trial for the 7 Emoji variant
is computed as per: 1s + ( ( (0.05s + 0.1s) × 7) + 0.5s)× 5) + 1s.Note, that given the du-
ration between the onset of each augmentation event is equal is 0.05s and the duration of the
inter-stimulus interval is 0.1s, it is likely that an SSVEP corresponding to 1/0.15s = 6.67Hz
will emerge from any subsequent average signal plots. For further information and details of
the efforts to address this in the pre-processing pipeline via notch filtering refer to Table 3.1
and subsection 3.3.5.3 Data Pre-Processing Pipeline 2. Subjects performed the 3 experimental
variants according to a counter-balanced protocol, ensuring that any fatigue effects would be
distributed evenly across subjects for each respective experimental type.

4.3.5.2 Randomisation Protocol Differences

The smaller number of visual targets per array dramatically decreased the total amount of non-
consecutive randomised augmentation schedules available. This inevitably introduced some
instances in the 5 Emoji variant that featured the augmentation of direct target neighbours.
Further, for the 3 Emoji experimental variant, this condition of non-consecutive augmenta-
tions was not achievable as 2/3 of the targets neighbour 1/3 of all targets onscreen. For this
experimental variant, a simplified process of pure randomisation was adopted. It must be noted
that the phenomenon of double flashing (repeated augmentation of the same stimuli) was still
consistently avoided.

4.3.5.3 Parameter and Data Window Modifications

In response to the quality of signals observed in Experiment 1, the specific inter-trial delays
were modified. These were increased for the inter-stimulus interval (0.125 to 0.15 secs) and
inter-sequence intervals (0.375 to 0.5 seconds) to address issues of temporal bleed-over across
separate emoji events. The inter-trial intervals specifically were increased to widen the data
window per event to ensure individuals presenting with delayed P300 peaking could have their
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signals captured and analysed.

The inter-stimulus intervals were increased to enable subjects to follow the augmentation
‘counting’ strategy outlined in previous studies to increase subject attention during the task,
as well as to boost P300 peak amplitudes and reduce P300 latencies. It must be noted that any
increase in interval delay periods was introduced to the detriment of final ITR values. These
were employed to compensate for P300 refractory and temporal bleed-over effects. In addition
to probing the effects of array density, this experiment aimed to try and establish definitive pa-
rameters for the collection of high-quality P300 data, as opposed to developing a high-speed
emotion-based P300-communication paradigm.

4.3.5.4 Data Pre-Processing: Pipeline 1

All data-organisation and pre-processing methods noted herein relate to the Pipeline 1 method,
for further information please refer back to section 2.3.5.1, Data Pre-Processing: Pipeline 1.
Each trial of the experiment consisted of 5 data sequences. These included 1 P300 event
and either 2, 4 or 6 corresponding Non-P300 events for the 3 Emoji, 5 Emoji and 7 Emoji
variants respectively. Every data event was parsed into 500ms time-series data chunks. A
similar pre-processing pipeline described in Experiment 1 was employed for these data. All
pre-processing steps described herein were conducted using the Python NumPy [254], Scipy
[226] and Scikit-Learn [227] libraries. Firstly, this involved data baselining to zero and ref-
erencing all electrodes sampled to the A2 electrode. The second stage consisted of applying
filters, namely a 50 Hz notch filter for powerline removal and a bandpass filter (1-15 Hz).

Subsequently, each electrode was passed through an impedance-based channel rejection pro-
tocol. Initially, the variance for each electrode sampled was computed (excluding the A2
reference electrode). Following this, a median variance value was calculated encompassing
all electrodes sampled. The individual electrode variances were then compared to this median
(cross-channel) variance value. If the electrode in question expressed a variance in ohms (Ω)
value three orders of magnitude greater than that of the median then the channel was deemed
as containing a high incidence of confounding data features and was removed from the anal-
yses. In the event that a single channel was retained, the trial would be deemed unviable and
discounted from the analyses.

The results of these analyses largely mirror those collected in Experiment 1, with a low inci-
dence of retention for Pz and crucially a high incidence of retention for the Cz electrode.As
noted in the previous chapter (see, subsection 3.3.5.2 Channel-Amplitude Rejection) and the



152 Experiment 2: Variable Array Density Assessments

caption for Figure 3.6, the poor cap design of the Pz sensor mounting arm led to poor seating
of the sensor to the skull and increased the prevalence of abnormally high sample amplitudes
and associated impedance values for this location. These limitations ultimately prevented the
vast majority of these Pz sensor samples from being included in the final analysis for most of
the subjects tested.

Finally, the remaining channels were averaged to amplify embedded waveform features and
improve the signal-to-noise ratios. Importantly, multiple electrode sites were included in the
evaluation of the P300 waveform as the positioning of the headset differed across subjects.
Experimenters adhered stringently to the methodical positioning of the kit, specifically over
the Cz location. In some instances, this was not possible due to variations in head size and
shape. It was reasoned that averaging signals across the central and parietal regions would
provide a more coherent mapping pattern of the P300 waveform propagation across the scalp.

4.3.5.5 Data Pre-Processing: Pipeline 2

In a similar vein to that taken in Experiment 1, all data relating to Experiment 2 were re-
organized and pre-processed using the alternative Pipeline 2 method (see subsection 3.3.5.3
Data Pre-Processing: Pipeline 2). This involved the application of numerous additional stages
and adaptations, including a revised baselining method, a lower high-pass filter cutoff of
0.1Hz, and the implementation of a SMOTE-based oversampling method to artificially boost
the number of Target training data samples. For additional information on the differences
between the two pre-processing approaches, please refer to Table 3.1. Furthermore, as the
stimulus presentation scheme for Experiment 2 involved an increase in the stimulus augmen-
tation onset interval from 0.125 to 0.15s (see subsection 4.3.5.1 Presentation Specifications),
a modified SSVEP-targeted notch filter at 6.67Hz was introduced to accommodate any signals
induced by the updated stimulus presentation scheme. Note that the Pipeline 2 approach is
applied exclusively to the main experimental data.

Note, that at no point was any Localizer task data used in relation to the Pipeline 2 approach.
This comprises data orgnaisation, pre-processing and analysis. The integration of the Local-
izer samples was implemented as a strategy exclusivey in Pipeline 1 for addressing issues
related to class balancing and the low quantities of samples for both the Target-P300 and Non-
Target Non-P300 datasets. Here, the Pipeline 2 approach addresses these same issues via the
implementation of the SMOTE linear interpolation-based oversampling method.
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4.3.6 Analysis: Pipeline 1

All data herein were evaluated using the LDA and parameter grid search methods outlined
in Experiment 1 (see subsection 3.4). The classifiers at all levels (pooled-subject and single-
subject) and for all variants (Localizer, 3 Emoji, 5 Emoji and 7 Emoji) were trained using
90% of the respective dataset and evaluated using the remaining 10%. For the pooled-subject
assessments, the test data was comprised of a blend of all 5 subjects sampled. Crucially, all
data in the test set was novel to the classifier. Note, that despite differences in the number
of targets on screen for the three stimulus variant described herein all analyses performed is
offline and conducted at the sample-level leading to a random performance threshold of 50%

for all models evaluated. For further information see subsection 3.4.2.

4.3.6.1 Localizer Data and Initialization

Principally the localizer task was employed to familiarise the subjects with the main experi-
ment, allow experimenters to monitor changes in impedances between the tasks and provide
a visual plot to assess the quality of P300 propagation before the onset of each experiment.
Note, that the aforementioned preprocessing and LDA analyses pipeline were also applied to
these data. The training and test datasets were comprised of 18 and 2 events respectively (9:1
train-test data partition). It was unlikely that such low data volumes would allow for highly
accurate classification of waveforms, these tests were purely exploratory as researchers aimed
to investigate whether any significant correlations could be discovered between performance
at the localizer and main experiment levels.

Further, an alternative analysis within the Pipeline 1 approach involved utilizing these signals
with a method more closely approximating those undertaken in real-time speller conditions.
This involved using the data gathered during the localizer task in a pre-training stage before
exposing the classifier to training data from the main experiment. It was hypothesized that this
could help build out the software mechanics required for real-time speller paradigms as well
as provide the classifiers with more subject-specific data.

4.3.6.2 Class-Balancing Considerations

The class balancing protocol adopted in Experiment 1 was not reimplemented here. It was
previously concluded that the process of class balancing in the previous experiment led to the
only significant results attained at the single-subject level. This was done primarily to remove
the confounding influence of overfitting observed through the non-class-balanced results. De-
spite this, a far smaller number of trial events were collected per variant for Experiment 2. The
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application of class balancing in this instance would have dramatically reduced the volume of
events to evaluate the experiment. As mentioned in the section above, class balancing was ad-
dressed using an alternative classifier training initialization step that utilized pre-experimental
localizer data. This is far more in line with current methods for P300-based EEG-speller ap-
plications.

Moreover, the process of class balancing dramatically reduces the ecological real-world fea-
sibility of any resulting system tested within these limits. Ultimately, the aforementioned
methods do not position this experimental series firmly for the planned real-time predictions
explored in Experiment 3. In summary, each trial undertaken produced either 3, 5, or 7 aver-
aged signals corresponding to one emoji in any given array. One in each group of averaged
signals was labelled as the P300 event, with the rest labelled as Non-P300 events. All such
events were fed into the classifier individually. At no point was any method of prediction
ranking employed. In other words, it was assumed that only one signal would be classified
as a P300 waveform, and no contingency was put in place to accommodate for the possibility
that more than one emoji would be predicted as the target class. This is because the classifier,
solver combination of LDA and Least Squares Method does not output a metric which can be
ranked in terms of probability or similarity to a reference example.

4.3.7 Analysis: Pipeline 2

Here, in precisely the same manner employed for Experiment 1 (see subsection 3.4.3 Analy-
sis: Pipeline 2), the main experimental data for three promising subjects (Subjects 1, 3 & 5)
were re-analyzed using the Pipeline 2 approach. This involved exclusively training and as-
sessing all related LDA models via a 10-fold cross-validation procedure using data only from
individual subjects (see subsection 3.4.3.1). To address the class imbalance between Target
and Non-Target classes for the 3-Emoji (1:2), 5-Emoji (1:4), and 7-Emoji (1:6) experimental
variants discussed in this chapter, the same SMOTE oversampling technique was implemented
(see subsection 3.4.3.3).

This involved initially partitioning the non-augmented subject trial data into a training set
and a test set using a 9:1 split shuffled and stratified to ensure an even representation of Target
and Non-Target samples throughout both sets. Following this, the Target-P300 samples within
the training set underwent a linear interpolation process to generate enough new samples to
match the relative amount of Non-Target samples in the training set. This process was repeated
for all 10 folds in the cross-validation procedure, and at no point were any synthetic samples
included in the test set. These analyses, conducted at the single-subject level, produced a
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series of mean classification accuracy metrics (Overall, Target, and Non-Target) which were
compared for significance against chance-level performance via one-tailed one-sample t-tests
(see subsection 3.4.3.2).

The same Non-Collapsed and Collapsed data partitions are also applied to these data. This
involves aggregating neighbouring trial samples to artificially simulate an increase in the num-
ber of sequences per trial from the default 5 (see subsection 3.3.5.1) to 10. This manipulation
pertains to the Collapsed data partition and is performed before dividing the trial samples into
the respective training and test splits for all 10 cross-validation folds. The relative efficacy
of this method for enhancing the mean classification accuracies of the associated LDA mod-
els is investigated through a non-parametric permutation test on paired-subject matched mean
classification accuracies. Additionally, a similar non-parametric permutation test is performed
on paired-subject performance metrics across each of the 3 experimental variants. The mean
classification accuracies are tested in iterative couplets, i.e., 3 vs. 5, 5 vs. 7, and 3 vs. 7. This
approach is used to gauge the relative performance characteristics of the subjects across the
different experimental variants.
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4.4 Results: Pipeline 1

Here all results relate to data organised, pre-processed and analyzed using the Pipeline 1 ap-
proach, see subsection 3.3.5.1 and 4.3.5.4 for further information. A total of 2250 events were
sampled over the course of all three experimental variants tested. Each emoji in all variants
discussed produced a total of 150 events. Along these very same lines, the number of P300
target events captured per subject was fixed at 150 events, with the remaining data comprised
exclusively of Non-P300 events. The same train-test (9:1) data partition employed in Exper-
iment 1 was reimplemented here. Crucially, all data used for evaluation purposes was never
included in the training data for each respective analysis variant. All trials sampled were in-
cluded for analyses following the impedance-based channel rejection protocol. This is due to
significant improvements in subject instruction and impedance monitoring as provided by the
aforementioned localization tasks.

Experimental Variants 3 Emoji 5 Emoji 7 Emoji

Total Numer of Events 450 750 1050

Total Number of Test Events 45 75 105

Events per Subject 90 150 210

Test Events per Subject 9 15 21

Events per Subject per Emoji 30 30 30

Test Events per Subject per Emoji 3 3 3

Table 4.1: A table showing the differences in experimental variants in terms of the number
of events. The Total Number of Events describes all data chunks sampled for each respective
experimental variant across all subjects. For the 3 Emoji variant, this would be computed as
30 Events per emo ji x 3Emo ji Onscreen x 5 Sub jects = 450 Events. The Total number of Test Events
constitutes 10 % of the Total Number of Events for evaluation purposes. Additionally, information is
provided on the number of Events per Subject, this denotes all emoji data chunks captured per subject
and the Test Events per Subject constitutes 10% of the former, isolated as a test data subset for each
individual that partook in the experiment. Further, the Events per Subject per Emoji and the Test Events
per Subject per Emoji are also presented to clarify that irrespective of the experiment design the number
of events per emoji is fixed. The only difference between the 3 experimental variants is the amount of
emojis included. Again, any given emoji in any of the variants was augmented the same number of
times and produced the same number of test events, it is only the number of emojis in each variant that
differentiates the conditions.

4.4.1 Post-Processing Data Info: Pipeline 1

Each respective experimental variant features differing amounts of data due to the specific
number of targets onscreen (either 3, 5, or 7 Emoji). The systems for reducing impedance
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values across the entire scalp were improved with further consultations from the manufac-
turers. These included methods on seating sensors more effectively to the scalp in addition
to instructing the subjects to count out the number of times each respective target emoji was
augmented as a means of focusing subject concentration. Following the recommendations,
all events sampled consisted of at least 2 electrodes following the channel-rejection protocols
outlined above (see subsection 4.3.5.4).

4.4.2 Main: No Localizer Pre-Training: Pipeline 1

This subsection covers all the results generated via the LDA-based classification of data at the
pooled-subject and single-subject level for the staggered array density variants outlined. These
data are populated exclusively from the main experimental trials and do not utilize any of the
events captured during the localizer task. Unless explicitly stated, the analysis subsections
follow a standardized structure, this involves initially discussing the results generated using
the pooled-subject aggregated data in terms of classifier performance metrics, class-wise ac-
curacies and finally an appraisal of the grand average signal plots. This same format is then
replicated for the results produced using single-subject data.

4.4.2.1 3 Emoji Variant: Pipeline 1

These results relate to the evaluations undertaken for the 3 Emoji stimulus variant described
in Experiment 2 (see subsection 4.3.5). The investigations here involve the use of a reduced
3-target speller array (see, Figure 4.4) to probe the influence of array density on the resulting
P300 waveform characteristics and associated LDA classifiers at the cross and single-subject
levels. As noted above no localizer data was included in these evaluations.

Pooled-Subject

These results correspond to the aggregated, pooled-subject data partitions for the 3 Emoji
experimental variant (see Table 4.2). A total of 405 and 45 training and test events were used
in the evaluation of these data, respectively (see, Table 4.1).
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Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subjects 73.33 46.67 86.67 lsqr 0.69

Table 4.2: This classification table displays the metrics relevant to the pooled-subject data for 3 Emoji
variant computed without the inclusion of a localizer pre-training stage. The Pooled Subjects label
refers to a data partition consisting of data aggregated across all subjects. Here the training data com-
prises the first 90% of all subject trials, with the final 10% of ecah subject dataset contributing an
aggregated test set. In regards to the metrics reported, the ‘Mean Acc (%)’ column contains the over-
all accuracy obtained in the analysis of each respective data partition recorded across both classes.
The ‘P300 Acc (%)’ and ‘Non-P300 Acc (%)’ columns record the classification performance for each
respective data partition at the class level. Both the ‘Solver’ and ‘Shrinkage’ metrics relate to the grid-
search optimized parameters computed to maximise classification performance. Note, that regions in
which ‘-’ is present are labelled as such to indicate that these values could or should not be computed.
This could be due to the redundancy of said calculations, or due to the type of data required for specific
computational operations.

At the pooled-subject level, the grid search method computed the optimal solver as the
lsqr method and shrinkage factor at 0.69. The data evaluated demonstrated a mean accuracy
(73.33%), substantially above the 50% random performance threshold. Further, this pattern
was also shown at the class level for Non-P300 classification accuracy (86.67%). It must be
noted that there is present a substantial bias and sub-random performance for the classification
of P300 events (46.67%).
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Figure 4.5: Here is displayed a normalized confusion matrix showing the classification performance
of a trained LDA model for both P300 and Non-P300 classes relating to the pooled-subject 3 Emoji
dataset (refer to, Table 4.1). Note, that these evaluations were computed using an aggregate dataset
comprising all subjects sampled.

As can be seen in the above figure (see, Figure 4.5), the classification of Non-P300 events
in the test set was performed at a relatively high level (86.67%) and the model demonstrated
minimal confusion in the prediction of this class. P300 events were not classified with the
same level of accuracy, with over half of all P300 events being misclassified as Non-P300
events.
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Figure 4.6: This figure presents a Cz grand average plot showing cross-trial P300 (solid line) and Non-
P300 (dashed line) event signals for the 3 Emoji data partition (refer to Table 4.1). The x-axis represents
time in milliseconds for each 500ms event data chunk, while the y-axis shows amplitude in μV of the
EEG signal. The averages across these classes highlight underlying EEG waveform patterns embedded
in the signals. It is important to note that the Cz channel was exclusively used for constructing these
plots. Additionally, all signalswere baselined by averaging the first 50ms of collected samples. This
baselining was done solely for presentation purposes and was not applied during the Pipeline 1 data
pre-processing as outlined in subsection 3.3.5.3 (see Table 3.1).

The plot above (see Figure 4.6) reveals a marked difference in the averaged waveforms
for the P300 (solid line) and Non-P300 (dashed line ) classes. The P300 waveform displays
greater variance in μV amplitude, characterized by a pronounced negative deflection around
200-300ms followed by a strong positive deflection at 350-400ms. In contrast, the Non-P300
waveform exhibits a narrower range of μV values, featuring a mild negative component around
100ms and minor positive deflections at 200ms and 350ms. Consistent with findings from Ex-
periment 1 (see Figures 3.9, 3.13, & 3.20), the P300 samples show significant negative drift
across the waveform, complicating comparisons with the Non-P300 signal averages. Addi-
tionally, the observed pattern, where the cued Target signal presents a lower P300 peak than
the Non-Target signal, suggests that these waveform components were not effectively used in
class separation, likely contributing to the observed poor results.
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Within-Subject These results were generated using single-subject data for the 3 Emoji
experimental variant. A total of 9 test events were used in the evaluation of these data. As can
be seen from the above classification table (see, Table 4.3). All subjects excluding Subjects 1
and 5 demonstrate chance level results. The only subject that presented with a sub-RPT P300
class accuracy was Subject 2. The highest-performing subject sampled (Subject 5) reported
a mean classification performance of 88.89% (P300 Acc= 66.67%, Non-P300 Acc=100%).
During the grid search method, the lsqr solver method was shown to be the most optimal in
maximizing classification performance.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 77.78 66.67 83.33 lsqr 0.52

Subject 2 55.56 33.33 66.67 lsqr 0.15

Subject 3 66.67 66.67 66.67 lsqr 0.06

Subject 4 55.56 66.67 50.00 lsqr 0.93

Subject 5 88.89 66.67 100.00 lsqr 0.85

Sub Avg 68.89 60.00 73.33 n/a 0.50

Sub Var 16.67 16.67 25.00 n/a 0.44

Table 4.3: This classification table holds all metrics relevant to the 3 Emoji dataset computed without
the inclusion of a localizer pre-training stage. The individual subject monikers denote the performance
relating to a single subject. The ‘Sub Var’ moniker denotes the range of single-subject metrics used
to compute the ‘Sub Avg’ results. Note, that these do not represent the results of LDA models trained
on aggregated data, these are the averages of the single-subject analyses performed here. For further
information on the metric and parameter field headings please refer to Table 4.2.
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Figure 4.7: Here is displayed a normalized confusion matrix reporting the classification performance
of a trained LDA model for both P300 and Non-P300 classes relating to Subject 5 in the 3 Emoji No
Localizer dataset (refer to, Table 4.1).

The confusion matrix shown above (see, Figure 4.7) illustrates maximal levels of accuracy
in the classification of Non-P300 events for Subject 5. Concerning P300 event classification,
accuracies were substantially lower (66.67%). Note, that despite some evidence that the LDA
classifier demonstrated a Non-P300 preferential bias, P300 accuracies were maintained sig-
nificantly above the random performance threshold.

4.4.2.2 5 Emoji Variant: Pipeline 1

The investigations reported herein involve the use of a reduced 5-target speller array (see,
Figure 4.3) to probe the influence of array density on the resulting P300 waveform character-
istics and associated LDA classifiers at the cross and single-subject levels. As stated earlier,
no localizer data was included in these evaluations, also, all pre-processing and analysis were
conducted using the Pipeline 1 approach, see subsection 3.3.5.1.

Pooled-Subject The results described here correspond to the evaluations undertaken for the
5 Emoji variant described in Experiment 2 (see subsection 4.3.5). The investigations here
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involve the use of a reduced 5-target speller array (see, Figure 4.3) to probe the influence of
array density on the resulting P300 waveform characteristics and associated LDA classifiers
at the cross and single-subject levels. As stated earlier, no localizer data was included in
these evaluations. These results correspond to the aggregated, pooled-subject data partitions
for the 5 Emoji experimental variant. Further they were pre-processed and analyzed using the
Pipeline 1 method (see subsection 3.3.5.1.. A total of 75 test events were used in the evaluation
of these data.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subjects 78.67 0.00 98.33 lsqr 0.12

Table 4.4: This classification table displays all metrics relevant to the 5 Emoji dataset computed
using the pooled-subject data without the inclusion of localizer data (refer to, Table 4.1). For further
information on field headings refer to, Tables 4.2 & 4.3.

The pooled-subject classification performance (as seen in, Table 4.4) for the 5 Emoji
dataset is shown to achieve a mean accuracy of 78.67%, significantly above the random per-
formance threshold of 50%. The performance at the class level reveals substantial signs of
overfitting, with P300 class accuracies of 0% and Non-P300 accuracies of 98.33%.
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Figure 4.8: Here is displayed a normalized confusion matrix reporting the classification performance
of a trained LDA model for both P300 and Non-P300 classes relating to the pooled-subject 5 Emoji No
Localizer dataset (refer to, Table 4.1).

In the above confusion matrix (see, Figure 4.8) it can be observed that the Non-P300 event
class was selected nearly exclusively by the trained LDA model. Substantial misclassification
of the P300 waveform is evident, demonstrating no accurate predictions for this class. The
only P300 predictions made were done erroneously, with some Non-P300 waveforms being
misclassified as belonging to the P300 target class.
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Figure 4.9: This figure displays a Cz grand average plot for pooled-subject data relating to the 5 Emoji
No Localizer data partition (refer to, Table 4.1). The solid line shows an average signal for the P300
events and the dashed line is an average for the Non-P300 events. For further information on interpret-
ing this figure please refer to Figure 4.6.

In reference to Figure 4.9, the average P300 signal (solid line) deviates markedly from the
expected P300 waveform, primarily due to a pronounced negative drift observed throughout
the 500 ms period. Conversely, the Non-P300 signal (dashed line) displays features more
aligned with a typical oddball visual ERP, including a micro-voltage dip around 100 ms and a
peak between 350-400 ms. The absence of appropriate baselining has impaired the accurate
comparison between these two signal classes. Additionally, the appearance of a 6-8Hz signal
within this plot is likely owing to the periodicity of the stimulus onset interval of 150ms
(6.67Hz). For further information on how this is addressed in the Pipeline 2 method please
refer to subsection 3.3.5.3 and 4.3.7.

Within-Subject These results were generated using single-subject data for the 5 Emoji ex-
perimental variant. A total of 15 test events were used in the evaluation of these data. As
seen in Table 4.5, mean classification performance at the signal-subject level is well below
the random-performance thresholds for all subjects sampled. The highest performing sub-
jects (Subjects 1 & 3) demonstrate impressive classification accuracy for the Non-P300 class
(91.67%) alongside sub-random performance at the P300 class level (<50%). Further, the
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signs of overfit persist to a greater extent when examining the results from the remaining sub-
jects sampled. Evidence of complete LDA model overfit is shown for Subjects 4 and 5, with
0% accuracies recorded for the P300 class. Note, that in all instances, the grid search opti-
mization method assisted in identifying the lsqr solver method as the only viable technique for
evaluation purposes.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 80.00 33.33 91.67 lsqr 0.18

Subject 2 73.33 33.33 83.33 lsqr 0.17

Subject 3 80.00 33.33 91.67 lsqr 0.30

Subject 4 60.00 0.00 75.00 lsqr 0.19

Subject 5 66.67 0.00 83.33 lsqr 0.06

Sub Avg 72.00 20.00 85.00 n/a 0.18

Sub Var 10.00 16.67 8.34 n/a 0.12

Table 4.5: This classification table displays all metrics relevant to the 5 Emoji dataset computed using
single-subject data without the inclusion of localizer data (refer to, Table 4.1). For further information
on field headings refer to, Tables 4.2 & 4.3.
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Figure 4.10: Here is displayed a normalized confusion matrix reporting the classification performance
of a trained LDA model for both P300 and Non-P300 classes relating to Subject 1 in the 5 Emoji No
Localizer dataset (refer to, Table 4.1).

In the above confusion matrix (see, Figure 4.10) it can be observed that significant confu-
sion is demonstrated by the LDA model to accurately distinguish between the target P300 and
Non-P300 classes. The direction of misclassification is primarily in relation to the Non-P300
samples being incorrectly predicted as P300 events, with very few instances being observed
in the opposite direction.

4.4.2.3 7 Emoji Variant: Pipeline 1

The results detailed here relate to the evaluations undertaken for the 7 Emoji variant described
in Experiment 2 computed via the Pipeline 1 method (see subsections 4.3.5.4 & 4.3.6). This
involved the use of a 7-target speller array (see, Figure 4.2) to probe the influence of array
density on the resulting P300 waveform characteristics and associated LDA classifiers at the
cross and single-subject levels. As previously established, no localizer data was included in
these evaluations
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Pooled-Subject These results correspond to the aggregated, pooled-subject data partitions
for the 7 Emoji No Localizer experimental variant (see, Table 4.6). A total of 105 test events
were used in the evaluation of these data.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subjects 85.71 0.00 100.00 lsqr 0.09

Table 4.6: This classification table shows all relevant metrics for the 7 Emoji dataset computed via
the Pipeline 1 method using the pooled-subjects data without the inclusion of localizer data (refer to,
Tables 4.1 for data partition info). For further details on field headings refer to, Tables 4.3 & 4.3.

At the pooled-subject level, the LDA classifier trained using aggregate data from all 5 sub-
jects sampled demonstrates significant signs of overfitting. The selective bias of the Non-P300
was complete, achieving 100% accuracy and a 0% classification accuracy for corresponding
P300 event samples.

Figure 4.11: Displayed here is a normalized confusion matrix detailing the classification performance
of a trained LDA model for both P300 and Non-P300 classes relating to the pooled-subject 7 Emoji No
Localizer dataset (refer to, Table 4.6).

In the above confusion matrix (see, Figure 4.11) further evidence of significant overfitting
can be observed. The models demonstrate a comprehensive selective bias towards the Non-
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P300 class. At no point in the data evaluation was a single event classified as belonging to the
P300 class, this includes ‘misses’ involving the erroneous classification of a Non-P300 event
as a P300 event.

Figure 4.12: This figure presents a Cz grand average plot for pooled-subject data from the 7 Emoji No
Localizer data partition (see Table 4.1). The solid line represents the average signal for P300 events,
while the dashed line illustrates the average for Non-P300 events. For additional details, please refer to
Figure 4.6.

As illustrated in the above plot (see Figure 4.12), the P300 waveform exhibits some of
the characteristic features expected from an oddball visual ERP in this experimental design.
Notably, both the N200 and P300 components appear significantly delayed, emerging around
250ms and 450ms, respectively. However, the signal also shows considerable positive drift,
likely due to the lack of a robust baselining procedure.

Within-Subject These results were generated using single-subject data for the 7 Emoji No
Localizer experimental variant. A total of 21 test events were used in the evaluation of these
data. In all subjects evaluated the phenomenon of overfitting is present and broadly reflects the
same pattern of classification behaviour identified from the previous pooled-subject analyses
(see, Tables 4.2-4.6). In other words, every subject tested produced a P300 classification
accuracy of 0%. As can be seen, there is some variance in the degree of accurate Non-P300
event classification, ranging from 100% in Subject 5 and 88.89% in Subject 4. It appears
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that despite significant efforts to optimize model parameters via grid search techniques little
variation in performance is observed, even with the substantial differences in shrinkage values.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 80.95 0.00 94.44 lsqr 0.20

Subject 2 80.95 0.00 94.44 lsqr 0.14

Subject 3 80.95 0.00 94.44 lsqr 0.18

Subject 4 76.19 0.00 88.89 lsqr 0.14

Subject 5 85.71 0.00 100.00 lsqr 0.32

Sub Avg 80.95 0.00 94.44 n/a 0.20

Sub Var 4.76 0.00 5.56 n/a 0.09

Table 4.7: This classification table shows all relevant metrics for the 7 Emoji dataset computed via the
Pipeline 1 method using the single-subjects data without the inclusion of localizer data (refer to, Tables
4.1 for data partition info). For further details on field headings refer to, Tables 4.3 & 4.3..

Figure 4.13: Displayed here is a normalized confusion matrix showing the classification performance
of a trained LDA model for both P300 and Non-P300 classes relating to Subject 4 in the 7 Emoji No
Localizer dataset (refer to, Table 4.1).

The confusion matrix positioned above (see, Figure 4.13) provides further insight into the
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prediction behaviour of the trained LDA model evaluated for Subject 4 in the 7 Emoji No
Localizer dataset. The plot indicates substantial selective bias via the LDA model for the
Non-P300 class. There are no instances in which a P300 event was classified accurately. The
only instance of P300 prediction was the misclassification of a Non-P300 event.

4.4.3 Main + Localizer Pre-Training Experiment: Pipeline 1

It must be noted that the LDA models discussed herein are initially trained using the cor-
responding (20 trial), class-balanced localizer dataset, used principally for visual signal ap-
praisal before the onset of the main experiment (see subsection 4.3.4). The class-wise signal
average plots discussed in the previous section will not be included in the analyses as these
are fundamentally the same as those generated in the prior results sections. Note, that the
training procedure, Pipeline 1, of the previous section is replicated. This involves partitioning
the main experiment data into a 9:1 train and test dataset split for training and evaluation via a
grid-search optimized LDA model.

As previously discussed (see subsection 4.3.4), the high probability of augmentation for the
single emoji on screen (50%) raises concerns about whether the localizer task can reliably
produce a distinguishable P300 waveform. To examine this, a Cz grand average plot was
generated across all subjects, comparing the Target and Non-Target data segments collected
during the localizer task. This task, consisting of 20 trials, was conducted before the onset of
the three emoji design variants. Each subject contributed 60 trials, yielding 300 Target (P300)
and Non-Target (Non-P300) samples per subject for the averaging process. The integration
of these signals into a pre-training stage was done purely for exploratory purposes given the
low number of samples available to the LDA models and the high degree of class imbalance
between Target oddball and Non-Target standard trials in the main experimental data.
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Figure 4.14: This figure presents a Cz grand average plot showing cross-trial P300 (solid line) and Non-
P300 (dashed line) event signals for the Localizer data used (refer to Table 4.1). Note, that this includes
samples collected prior to the onset of all stimulus variants covering the 3, 5 and 7-Emoji presenation
methods.The x-axis represents time in milliseconds for each 500ms event data chunk, while the y-axis
shows amplitude in μV of the EEG signal. The averages across these classes highlight underlying EEG
waveform patterns embedded in the signals. It is important to note that the Cz channel was exclusively
used for constructing these plots. Additionally, all signalswere baselined by averaging the first 50ms
of collected samples. This baselining was done solely for presentation purposes and was not applied
during the Pipeline 1 data pre-processing as outlined in subsection 3.3.5.3 (see Table 3.1).

As illustrated in the plot below (see Figure 4.14), there is minimal variance between the
Target and Non-Target Cz grand-average signals. This lack of distinction suggests that using
these data as pre-training samples for the corresponding LDA classifiers may not be justified.
The author’s hypothesis that the perceived probability of the localizer task might be lower
than the actual probability of emoji augmentation is not supported by these results. Moreover,
the pervasive and unexplained presence of a strong 5-6 Hz frequency in both samples further
diminishes the discriminability between the two classes.

4.4.3.1 3 Emoji Variant: Pipeline 1

The results described here correspond to the evaluations undertaken for the 3 Emoji variant de-
scribed in Experiment 2 (see subsection 4.3.5). The stimulus comprises a 3-target emoji array
ranging in valance from left to right (see, Figure 4.4). All respective LDA models utilized the



4.4 Results: Pipeline 1 173

associated localizer pre-screening task data as a pre-training dataset to tune the corresponding
classifiers. Note, all data organisation, pre-processing and analysis were conducted using the
Pipeline 1 approach (see subsection 3.3.5.1 & Table 4.1).

Pooled-Subject These results correspond to the aggregated, pooled-subject data partition
for the 3 Emoji Main + Localizer Pre-Training experimental variant.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subjects 51.11 53.33 50.00 lsqr 0.00

Table 4.8: Here is shown a classification table reporting relevant evaluation metrics for the localizer-
data-initialized LDA model copmuted using the pooled-subject data for the 3 Emoji dataset (refer to,
Table 4.1 for data partition info). For further details on field headings refer to Tables 4.2 & 4.3.

In the classification table (see, Table 4.8) the pooled-subject data was evaluated to report a
mean accuracy of 51.11%, orienting the performance marginally above the random threshold
of 50%. This is largely mirrored in the results of the class-wise analyses.

Figure 4.15: Here is shown a normalized confusion matrix showing the classification performance of a
trained LDA model for both P300 and Non-P300 classes relating to the aggregated pooled-subject data
for the 3 Emoji With Localizer dataset (see subsection 4.3.6.1).
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As can be seen in the confusion matrix positioned above, substantial confusion is demon-
strated for all aspects of the LDA model prediction behaviour. A near-perfect distribution of
predictions is present for all combinations of classification and misclassification, with only a
slight proclivity present for the accurate prediction of P300 events.

Within-Subject These results were generated using single-subject data for the 3 Emoji with
Localizer experimental variant (see, Table 4.9). Broadly, at the single-subject level, the aver-
age mean accuracy falls marginally below the 50% random performance threshold (44.44%).
The overall performance at the single-subject level is generally far lower than that achieved
using the standard method of implementation outlined in the previous section (see, Table
4.3). Overfitting was observed in one subject (Subject 3) with marginal and poor performance
throughout the remaining subjects (Subjects 2, 3 & 5).

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 66.67 100.00 50.00 lsqr 0.94

Subject 2 22.22 33.33 16.67 lsqr 0.63

Subject 3 22.22 66.67 0.00 lsqr 0.00

Subject 4 88.89 100.00 83.33 lsqr 0.00

Subject 5 22.22 33.33 16.67 lsqr 0.01

Sub Avg 44.44 66.67 33.33 n/a 0.32

Sub Var 33.34 33.34 41.67 n/a 0.47

Table 4.9: Here is shown a classification table reporting all relevant evaluation metrics across subjects
for the localizer-data-initialized LDA models trained on single-subject data from the 3 Emoji dataset
(refer to, Table 4.1 for data partition info). For further details on field headings refer to, Table 4.2 &
4.3.

Of note, for the first time in the analyses thus far, the average single-subject classification
performance for the P300 event class (66.67%) exceeds that observed in the Non-P300 event
class (33.33%). Moreover, the classification performance of the P300 class is also above the
random performance threshold. The highest-performing subject reported herein (Subject 4)
achieved a mean accuracy of 88.89%. Crucially, 100% classification accuracy was reported
for the P300 event class and a corresponding classification accuracy of 83.33% for Non-P300
event classes. Note, that the lsqr solver was identified as the optimal solver method for LDA
model evaluations in all subject instances. It must be noted that given these results are not
cross-validated (see subsection 3.3.5.1) and given the poor quality of associated P300 signals
in the localization task (see Figure 4.14) this result is likely anomalous and not evidence of
merit for the adoption of the localizer data pre-training approach.
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Figure 4.16: The figure displays a normalized confusion matrix showing the classification performance
of a localizer-initialized and trained LDA model for both P300 and Non-P300 classes relating to Subject
4 in the 3 Emoji with Localizer dataset (see subsection 4.3.6.1).

The confusion matrix above (see, Figure 4.16) details the class-level prediction behaviour
of the LDA model. Minimal misclassifications are reported and the pattern of incorrect predic-
tions exclusively involved the erroneous selection of Non-P300 events as P300 events, noting
a distinct change from previously discussed analyses.

4.4.3.2 5 Emoji Variant: Pipeline 1

The results detailed herein relate to the evaluations undertaken for the 5 Emoji with Localizer
variant described in Experiment 2 (see subsection 4.3.5.4). The stimulus consists of a 5-target
emoji array ranging in valance from left to right (see, Figure 4.3). For each respective LDA
model, the associated localizer pre-screening task data was utilized as a pre-training dataset to
tune the corresponding classifiers.

Pooled-Subject These results correspond to the aggregated, pooled-subject data partition
for the 5 Emoji Main with Localizer experimental variant. The classification table in ques-
tion (see, Table 4.10), shows a substantial improvement in performance at the pooled-subject
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level as compared with the largely overfit results reported for the standard method previously
implemented (see, Table 4.5). In greater detail, the mean accuracy reported (42.67%) is sig-
nificantly lower than in the standard implementation (78.67%). The difference in quality is
exemplified by the dramatic increase in performance at the P300-class level increasing from
0% in the standard method to 60% for the current localizer-initialization method. Despite this,
no meaningful difference in the classification performance of the system has been made given
the sub-random mean accuracy noted. This is likely due to the relative absence of key P300
waveform components from the localizer samples, as illustrated in Figure 4.14.

Mean Acc (% P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subjects 42.67 60.00 38.33 lsqr 0.68

Table 4.10: Above is displayed a classification table denoting all associated evaluation metrics for the
localizer-data-initialized LDA model conducted using the pooled-subjects samples from the 5 Emoji
with Localizer dataset (see subsection 4.3.4). Note, all data organisation, pre-processing and analysis
were conducted using the Pipeline 1 approach, see subsection 3.3.5.1. For more information concerning
field headings refer to, Table 4.1.

Figure 4.17: The figure displays a normalized confusion matrix showing the classification performance
of a localizer-initialized and trained LDA model for both P300 and Non-P300 classes relating to aggre-
gated pooled-subject 5 Emoji with Localizer dataset.
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The above confusion matrix demonstrates that the majority of misclassifications recorded
via the trained LDA model involve erroneously selecting Non-P300 events as P300 events. It
must be noted that a substantial proportion of misclassifications also operate in the opposite
direction, with many P300 samples being incorrectly identified as belonging to the Non-P300
class. In other words, the confusion present in the LDA classifier is bi-directional, with a
marginal selective bias for the P300 event class. This differs dramatically from the confusion
matrix computed for the standard analyses method as seen in Figure 4.8.

Within-Subject These results were generated using single-subject data for the 5 Emoji with
Localizer experimental variant (see, Table 4.11). One subject (Subject 2) displays a negligible
difference in performance, with signs of overfitting to the Non-P300 class (see, Table 4.5)
reversing for the P300 class (see, Table 4.11) in both Subjects 1 and 2. Generally, across
the other subjects sampled overfitting is still highly prevalent and is also accompanied by a
substantial reduction in classification accuracy for the previously biased class. This is seen
in Subjects 3, 4 and 5, where the previous application of the standard analysis method led to
Non-P300 accuracies of >75% (see, Table 4.5) and dropped to below 66.67% (see, Table 4.11)
for the localizer data-initialized method.

Mean Acc (% P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 13.33 66.67 0.00 lsqr 0.95

Subject 2 46.67 100.00 33.33 lsqr 0.56

Subject 3 53.33 0.00 66.67 lsqr 0.00

Subject 4 40.00 0.00 50.00 lsqr 0.86

Subject 5 40.00 0.00 50.00 lsqr 0.01

Sub Avg 38.67 33.33 40.00 n/a 0.48

Sub Var 20.00 50.00 33.34 n/a 0.48

Table 4.11: Above is displayed a classification table denoting all associated evaluation metrics for the
localizer-data-initialized LDA model conducted using the single-subject samples from the 5 Emoji with
Localizer dataset (see subsection 4.3.4). Note, all data organisation, pre-processing and analysis were
conducted using the Pipeline 1 apporach, see subsection 3.3.5.1. For more information concerning field
headings refer to, Table 4.1.
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Figure 4.18: The figure herein shows a normalized confusion matrix displaying the classification per-
formance of a localizer-initialized and trained LDA model for both P300 and Non-P300 classes relating
to Subject 3 in the 5 Emoji with Localizer dataset.

As seen above (see, Figure 4.18), the confusion matrix provides a greater level of clarity
in the prediction behaviours of the localizer-initialized LDA model for Subject 3. Non-P300
event accuracies are shown to exceed the random-performance threshold (>50%). Conversely,
the P300 event class is not accurately selected for any instance evaluated in the test set. The
primary direction of confusion expressed by the LDA model is characterized by a substantial
bias for predicting P300 class events as Non-P300 events. Of note, some misclassifications
of Non-P300 waveforms as P300 waveforms are also present. In sum, the poor classification
results are likely owing to the low quality of associated P300 signals within the Localizer task
data given the associated high oddball stimulus probability.

4.4.3.3 7 Emoji Variant: Pipeline 1

The results detailed herein relate to the evaluations undertaken for the 7 Emoji variant de-
scribed in Experiment 2 (see subsection 4.3.5). The stimulus consists of a 7-target emoji array
ranging in valance from left to right (see, Figure 4.2). For each respective LDA model, the
associated localizer pre-screening task data was utilized as a pre-training dataset to tune the
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corresponding classifiers.

Pooled-Subject The findings herein relate exclusively to the data acquired via the 7 Emoji
Main with Localizer experimental variant. All LDA models discussed were initialized using
the corresponding pre-experimental localizer data. As seen in the results table below (see,
Table 4.12), pooled-subject performance marginally improved with the implementation of the
LDA localizer-initialization method as compared to the standard method. The evaluation of
Non-P300 waveforms saw a significant reduction in classification accuracy dropping from
100.00% (see, Table 4.6) to 52.22%, settling just above the random-performance threshold
(50%). Conversely, P300 event classification accuracy increased from 0.00% (see, Table 4.6)
to 73.33% (see, Table 4.12).

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subjects 55.24 73.33 52.22 lsqr 0.01

Table 4.12: Here is displayed a classification table denoting all associated evaluation metrics for the
localizer-data-initialized LDA models for the pooled-subject samples in the 7 Emoji with Localizer
dataset (refer to, Table 4.1 for data partition info). For more information on field headings refer to,
Tables 4.2 & 4.3.

The confusion matrix below (see, Figure 4.19), demonstrates improvements in classifica-
tion performance for the 7 Emoji dataset at the pooled-subject level. When comparing the
evaluations conducted here to those observed for the standard analysis method (see, Figure
4.13) a significant reduction in the prevalence of overfitting is seen. The principal direction
of confusion expressed by the LDA model is the erroneous selection of Non-P300 waveforms
as P300 waveforms, with a substantially reduced incidence of misclassification in the oppos-
ing direction. Given the poor quality of the associated localizer task Target and Non-Target
Cz grand averages, it is difficult to assert that these accuracies are the result of any mean-
ingful separation of the data based on waveform features associated with the visual oddball
paradigm.
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Figure 4.19: The figure herein shows a normalized confusion matrix displaying the classification per-
formance of a localizer-initialized and trained LDA model for both P300 and Non-P300 classes relating
to the aggregated pooled-subject 7 Emoji with Localizer dataset.

Within-Subject These results were generated using single-subject data for the 7 Emoji with
Localizer experimental variant. At the single-subject level, only one subject (Subject 1) eval-
uated using the localizer-initialization method showed any signs of performance enhancement
(see, Table 4.13). This is characterized by a reduction in the prevalence of selective bias to-
wards the Non-P300 class, a significant increase in P300 class accuracy and the incidence of
above random-performance for both class types sampled. Note, that unlike the results com-
puted via the Pipeline 2 method (see subsection 3.3.5.3), these accuracies were not generated
via a 10-fold cross-validation procedure, therefore the significance of this marginal result is
highly questionable. For the other subjects sampled, the differences in performance metrics
ranged from poor to chance level. Generally, this pattern involved a reduction in class prefer-
ence by the LDA models.
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Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 57.14 66.67 55.56 lsqr 0.01

Subject 2 38.10 66.67 33.33 lsqr 0.78

Subject 3 66.67 33.33 72.22 lsqr 0.00

Subject 4 85.71 0.00 100.00 lsqr 0.91

Subject 5 33.33 33.33 33.33 lsqr 0.00

Sub Avg 56.19 40.00 58.89 n/a 0.34

Sub Var 26.19 33.34 33.34 n/a 0.46

Table 4.13: Here is displayed a classification table denoting all associated evaluation metrics for the
localizer-data-initialized LDA models for the 7 Emoji with Localizre dataset computed (refer to, Table
3.1 for data partition info). For more information on field headings refer to, Table 3.2.

Figure 4.20: The figure displays a normalized confusion matrix showing the classification performance
of a localizer-initialized and trained LDA model for both P300 and Non-P300 classes relating to Subject
1 in the 7 Emoji with Localizer dataset (refer to, Table 3.1).

In the confusion matrix positioned above (see, Figure 4.20), the prediction behaviour for
the LDA model trained on data from Subject 1 is displayed. The confusion presented by the
model is largely shared across both classes, with the Non-P300 events being misclassified as
P300 events to a slightly greater degree. Overall, the prevalence of a selective bias is marginal
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and the evaluation demonstrates that the LDA classifier did learn to distinguish some features
of the class types tested. The extent of the learning achieved to accurately distinguish between
the class types is shown to be far from complete and would not serve as a robust means of
prediction.

4.5 Results: Pipeline 2

Here, are presented all results from Experiment 2 generated using the Pipeline 2 approach
(for further information, see subsection 3.3.5.3). Broadly, these results describe an assess-
ment of the staggered (3, 5, & 7) emoji variants. All results for the single-subject analysis
are computed using parametric one-sample t-tests to gauge the performance of the associated
models against the 50% chance threshold (see subsection 3.4.3.2). Following this, the relative
difference in performance across the Non-Collapsed and Collapsed data partitions is evaluated
using a non-parametric permutation test (see subsection 3.4.3.2). Finally, differences in mean
overall classification accuracy across the three experimental variants are assessed using a sim-
ilar paired-subject permutation test. For these data, class balancing was addressed through the
application of a SMOTE oversampling method (see subsection 3.4.3.3).

4.5.1 Data Partitions

In this subsection, the data partitions associated with the analysis for corresponding stimulus
variants (3, 5, & 7-Emoji) as discussed. Positioned below are a series of 3 tables relating
to each of the stimuli assessed in the staggered emoji-array investigation (see, Tables 4.14,
4.15 & 4.16). These are presented to assist in the understanding of how each respective LDA
model was trained and tested throughout the 10-fold cross-validation procedure. The quanti-
ties of Target-P300 and Non-Target Non-P300 samples for the subject are shown at each stage
of the data preparation process. This information is critical, given the variance in the propor-
tion of synthetic to real data for the Target-P300 samples included in the test set. As can be
seen in the Train column listing the quantities of real and synthetic samples across all three
tables the ratio of real to synthetic samples mirrors the same ratio of original Target and Non-
Target samples. Here, around 66%, 80% and 85%, of all Target training samples are synthetic
for the 3, 5 and 7-Emoji variants respectively.

To avoid excessive repetition of highly similar information, the corresponding Collapsed data
distribution tables are positioned in the Appendix (see Tables A.5-A.7). The ratios between
all samples in each respective grouping are highly comparable to those observed here. This
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is because they are constructed from the same set of data, however the data preparation, as
noted above, involves the aggregation of neighbouring trial sequences. Due to this process,
the Collapsed data partitions feature roughly half as many samples per data partition grouping
as presented here for each experimental variant analyzed. In real terms, the number of trials
per subject for each emoji on-screen dropped from around 30 to around 15, hence this dra-
matically decreased the number of samples available for training and testing. In all Collapsed
instances, as the number of P300 events stays the same irrespective of the emoji stimulus
roughly 11-14 samples are retained following the channel-rejection procedure, 10% of this
sample is reserved for testing and as the value must be rounded down it means all Collapsed
models are evaluated in each k-fold with a single P300 test sample. For this reason, significant
caution must be taken when interpreting the related results.

3-Emoji Non-Collapsed

Total Post-Rejection Test Train

Subjects P300
Non-

P300
P300

Non-

P300

P300

(Real)

P300

(Syn-

thetic)

Non-

P300

Subject

1
29 58 3 6 26 26 52

Subject

3
27 55 3 6 24 25 49

Subject

5
27 56 3 6 24 26 50

Table 4.14: Here is presented a table detailing the distribution of sample quantities for the subject-
specific datasets associated with the 3-Emoji (see Figure 4.4), Non-Collapsed Pipeline 2 approach (see
subsection 3.3.5.3). All samples here are composed of signals collected over all 5 sequences of each
trial (see subsection 4.3.7). For further information on field headings and interpretation please refer to
Table 3.14. Note, that the ratios between Target and Non-Target samples for all datasets listed, including
the proportion of Real vs. Synthetic P300 instances mirror those in the Collapsed data preparation
variant. To avoid excessive repetition, the data distribution table related to the 3-Emoji Collapsed
augmentation method is positioned in the Appendix Table A.5.
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5-Emoji Non-Collapsed

Total Post-Rejection Test Train

Subjects P300
Non-

P300
P300

Non-

P300

P300

(Real)

P300

(Syn-

thetic)

Non-

P300

Subject

1
28 116 3 12 25 79 104

Subject

3
26 113 3 11 23 78 101

Subject

5
26 114 3 11 23 79 102

Table 4.15: Here is presented a table detailing the distribution of sample quantities for the subject-
specific datasets associated with the 5-Emoji (see Figure 4.3), Non-Collapsed Pipeline 2 approach (see
subsection 3.3.5.3). All samples here are composed of signals collected over all 5 sequences of each
trial (see subsection 4.3.7). For further information on field headings and interpretation please refer
to the table Table 3.14. Note, that the ratios between Target and Non-Target samples for all datasets
listed, including the proportion of Real vs. Synthetic P300 instances mirror those in the Collapsed data
preparation variant. To avoid excessive repetition, the data distribution table related to the 5-Emoji
Collapsed augmentation method is positioned in the Appendix Table A.6.
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7-Emoji Non-Collapsed

Total Post-Rejection Test Train

Subjects P300
Non-

P300
P300

Non-

P300

P300

(Real)

P300

(Syn-

thetic)

Non-

P300

Subject

1
28 172 2 17 26 128 154

Subject

3
29 174 3 17 26 130 156

Subject

5
29 169 3 17 26 126 152

Table 4.16: Here is presented a table detailing the distribution of sample quantities for the subject-
specific datasets associated with the 7-Emoji (see Figure 4.2), Non-Collapsed Pipeline 2 approach (see
subsection 3.3.5.3). All samples here are composed of signals collected over all 5 sequences of each
trial (see subsection 4.3.7). For further information on field headings and interpretation please refer to
Table 3.14. Note, that the ratios between Target and Non-Target samples for all datasets listed, including
the proportion of Real vs. Synthetic P300 instances mirror those in the Collapsed data preparation
variant. To avoid excessive repetition, the data distribution table related to the 7-Emoji Collapsed
augmentation method is positioned in the Appendix Table A.7.

4.5.2 3-Emoji Variant: Non-Collapsed: Pipeline 2

The results in this subsection relate to the Non-Collapsed 3-Emoji experimental variant pro-
cessed using the Pipeline 2 approach. As stated above, the Non-Collapsed samples were con-
structed using all 5 sequences within each experimental trial. This involved the presentation of
3 emojis on screen in an offline BCI communication speller investigation, using the Inversion
augmentation method to produce time-locked P300 waveforms for a cued target emoji stimu-
lus. Here the single-subject Overall, Target and Non-Target mean classification accuracies are
discussed in terms of significance with reference to a one-sample t-test (threshold, p<0.05).
Further, the group-level results are discussed in relation to a paired-subjects permutation test
(see subsection 3.4.3.2).
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Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.71* 0.11 0.84* 0.17 0.57 0.19

3 0.69* 0.15 0.85* 0.16 0.55 0.22

5 0.72* 0.12 0.81* 0.18 0.64 0.23

Table 4.17: Here is presented a table showing the performance metrics associated with Subjects 1, 3 &
5 for the Inversion Non-Collapsed data partition (see, Table 4.14). All results were computed following
the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology. Here
all individual samples are composed of averages computed across all 5 augmentation sequences within
each respective trial (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Note, that all cell values
denoted with a * indicate a significantly higher mean classification accuracy than the 50% chance level
for the binary (Target vs. Non-Target) classification task. For additional information on table field
headings and interpretation please refer to Table 3.16.

As seen from the table above (see, Table 4.17), all single subject-level Overall and Target
mean classification accuracies were significantly above the 50% chance level (p<0.05) despite
high standard deviations for the associated metrics. Further, the single-subject Non-Target
mean classification accuracies computed for the results of the 10-fold cross-validation proce-
dure all reported non-significant results following similar one-sample t-tests. Notably, here,
the standard deviation is marked higher than the Overall and Target results suggesting that for
a substantial majority of the cross-validation k-folds the subject-level accuracies dipped below
the random performance threshold of 50%. Further, the group-level assessments involving the
comparison of all subject mean classification accuracies for each accuracy metric variant com-
puted via permutation test revealed a similar pattern. Here, only the accuracies relating to the
Target samples were found to be significantly different to the chance (p=0.049). This result is
highly marginal given the given associated mean classification accuracy standard deviations.
Based on these results it can not be concluded that the implementation of the 3-Emoji variant
in this configuration would serve as a capable BCI emoji-communication platform.
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Figure 4.21: This is an average plot constructed exclusively from the Cz electrode for all P300, Aver-
aged Target Emoji (solid line) and Non-P300 Averaged Non-Target Emoji (dashed line) samples col-
lected across Subjects 1, 3 & 5 for the 3-Emoji Non-Collapse data partition (see, Table 4.14). As can be
seen, the time dimension is positioned on the x-axis (0-500ms) and the micro-voltage range is oriented
to the y-axis. Here, all samples were processed using the Pipeline 2 data pre-processing methodology
(see subsections 3.3.5.3 & 3.3.5.5). Every Target P300 and Non-Target P300 averaged sample was
aggregated into separate arrays and a grand pooled-subject mean signal was computed to generate the
plot seen here. A total of 83 P300 samples and 169 Non-P300 samples were utilized respectively. At no
point, were any synthetic P300 samples included in the construction of these average signals. Note, that
the primary difference between the Non-Collapsed and Collapsed data variants relates to the number of
sequences assigned to each sample average. As the plot here features all samples it represents a linear
combination of all signals within the given augmentation variant meaning the corresponding average
plot generated using the Collapsed data is effectively identical to the figure shown here.

The grand average plot positioned above (Figure 4.21) demonstrates a strong negative
component at 250ms and a large positive deflection around 400ms. Both components are
significantly delayed as compared to the plots seen in Experiment 1 (see, Figures 3.29 &
3.30) using the same Pipeline 2 data organisation pre-processing methodology. Notably, the
Non-Target grand average also presents a large positive deflection, here at around 300ms.
This could suggest that for this experimental variant, subjects failed more frequently in their
attempts to maintain fixation on the cued emoji stimulus, this is surprising given the signifi-
cantly greater distance between the targets on screen for this iteration (see, Figures 3.1, 4.2,
4.3 & 4.4).
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4.5.3 3-Emoji Variant: Collapsed: Pipeline 2

The results reported here correspond to the Collapsed 3-Emoji data partition (see, Table in
Appendix A.5) processed using the Pipeline 2 approach. For these analyses, all samples were
constructed from 10 sequences collapsed across two experimental trials. For more informa-
tion refer to subsections 3.3.5.3 and 4.3.5.5. As is shown in the table below (see, Table 4.18),
all subjects returned Overall and Target mean classification accuracies above the chance 50%
level as computed via one sample t-test. Notably, only Subject 3 returned mean accuracy sig-
nificantly above chance for the Non-Target instances. Further, Subject 5 is the sole subject
to reach the functional performance threshold for the Overall mean accuracy. This is driven
primarily by a nearly maximal mean classification accuracy for the Target samples.

The 38% difference between the corresponding Target and Non-Target metrics could indicate
bias from the classifier for the former. Here, the standard deviation reported for the Non-
Target samples is extremely high (0.28), suggesting that for several of the 10 cross-validation
k-fold associated LDA model accuracies dropped below the 50% threshold. Further, Subject
1 reported a mean classification accuracy of just 35% for the Non-Target instances, this rel-
ative drop in accuracy here and high relative accuracy for the Target samples is arguably a
stronger indication of overfitting. In this instance, well over half of all cross-validation k-folds
produced sub-50% classification accuracies. The author notes that there is a clear trend of
potential overfitting exhibited by the LDA models for the Collapsed data preparation variant,
as compared to the Non-Collapsed variant likely driven by the substantially lower number of
samples available to associated models for training.

Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.62* 0.15 0.88* 0.16 0.35 0.25

3 0.63* 0.05 0.60* 0.02 0.67* 0.01

5 0.82* 0.12 0.98* 0.05 0.61 0.28

Table 4.18: Here is presented a table showing the performance metrics associated with Subjects 1, 3
& 5 for the 3-Emoji Collapsed data partition (see Table in Appendix A.5). All results were computed
following the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis method-
ology. Here all individual samples are composed of averages computed across 2 trials consisting of
10 sequences each (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Note, that all cell values
denoted with a * indicate a significantly higher mean classification accuracy than the 50% chance level
for the binary (Target vs. Non-Target) classification task. For additional information on table field
headings and interpretation please refer to Table 3.16.
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The group-level stats comparing the mean classification accuracies reported across sub-
jects against a 50% random performance threshold revealed that Non-Target mean accuracies
were highly non-significantly different(p=0.5), with the Overall mean accuracy providing a
marginal result (0.051), likely owing to the single high accuracy observed for Subject 5. Fur-
ther, the Target samples mean accuracies breached the significance threshold (p=0.044). Note,
that the permutation tests performed here do not feature the consideration of the associated
standard deviations. Hence, the results observed here for these highly volatile classification
accuracies must be interpreted with caution. Finally, the paired-subject performance across
the Non-Collapsed and Collapsed data preparation variants via permutation test here reported
no significant difference for the Overall, Target or Non-Target samples mean classification
results. Regarding the Non-Target samples, this is likely owing to the small observed mean
difference (4.33%) between the Non-Collapsed (58.67%) and Collapsed (54.33%) pooled-
subject averages.

4.5.4 5-Emoji Variant: Non-Collapsed: Pipeline 2

The results in this subsection relate to the Non-Collapsed 5-Emoji (see, Figure 4.3) experi-
mental variant processed using the Pipeline 2 approach (see subsections 3.3.5.3 & 3.4.3). As
stated above, the Non-Collapsed samples were constructed using all 5 sequences within each
experimental trial (see subsection 3.3.5.1). As seen below, (see, Table 4.19), the one-samples
t-test conducted on the classification accuracies for all 10 cross-validation folds against the
50% random performance threshold for each subject accuracy metric (Overall, Target & Non-
Target) were found to be significantly higher than chance. Notably, both Subjects 1 and 5
report Overall mean classification accuracies above the 70% functional use threshold. Fur-
ther, the group-level results computed across subjects via permutation test reveal both the
Overall and Target samples accuracy means were significantly above chance levels.
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Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.80* 0.10 0.94* 0.05 0.65* 0.19

3 0.74* 0.07 0.88* 0.06 0.60* 0.12

5 0.80* 0.08 0.90* 0.09 0.70* 0.14

Table 4.19: Here is presented a table showing the performance metrics associated with Subjects 1, 3 &
5 for the 5-Emoji Non-Collapsed data partition (see, Table 4.15). All results were computed following
the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology. Here
all individual samples are composed of averages computed across all 5 augmentation sequences within
each respective trial (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Note, that all cell values
denoted with a * indicate a significantly higher mean classification accuracy than the 50% chance level
for the binary (Target vs. Non-Target) classification task. For additional information on table field
headings and interpretation please refer to Table 3.16.

In the figure below (see, Figure 4.22), the quality of the Cz grand average means for the
Target-P300 trials shows three distinct peaking events with separation of around 160-170ms,
suggesting the presence of a 5.75-6.25Hz signal artefact. This is likely related to the inter-
stimulus interval of 150ms (see subsection 3.3.5.1) leading to the propagation of a related
SSVEP waveform. This is despite the explicit application of a 6.67Hz SSVEP-targetted notch
filter (see subsection 3.3.5.5) applied to all collected samples. Here, the quality factor was
set relatively high to avoid attenuating signals in the frequency range near the expected ERP
waveforms, however, these plots suggest either reducing the quality factor or applying mul-
tiple notch filters around a mean of 6.67Hz would be a more effective pre-processing approach.

The plot suggests that this configuration of experimental stimuli potentially increased the diffi-
culty for these subjects to attend exclusively to the cued emoji stimulus. Here, both the Target
and Non-Target grand averages present with a fairly strong drifting component likely owing to
the suboptimal baselining procedure implemented. Here, owing to the erroneous decision to
select a non-continuous data acquisition style, the only samples available for baselining were
the initial 50ms of the time-locked data segments. Further, given the relatively small number
of samples collected per class as compared to Experiment 1 (30 vs. 98), the resulting aver-
ages demonstrate a lower signal-to-noise ratio. The presence of the strong SSVEP component
here complicates the author’s ability to effectively characterize the Event-Related Potentials
embedded in the Target-P300 waveform. It is clear that the signal possesses more variance
as compared to the Non-Target, Non-P300 signals and the absence of this oscillation in the
Non-Target signals suggests that the LDA model classifiers may have learned to separate the
class based on the absence or presence of a hybrid SSVEP-P300 signal.
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Figure 4.22: This is an average plot constructed exclusively from the Cz electrode for all P300, Aver-
aged Target Emoji (solid line) and Non-P300 Averaged Non-Target Emoji (dashed line) samples col-
lected across Subjects 1, 3 & 5 for the 5-Emoji Non-Collapse data partition (see, Table 4.15). As can be
seen, the time dimension is positioned on the x-axis (0-500ms) and the micro-voltage range is oriented
to the y-axis. Here, all samples were processed using the Pipeline 2 data pre-processing methodology
(see subsections 3.3.5.3 & 4.3.5.5). Finally, every Target P300 and Non-Target P300 averaged sample
are aggregated into separate arrays and a grand pooled-subject mean signal is computed to generate the
plot seen here. A total of 80 P300 samples and 343 Non-P300 samples were utilized respectively. At no
point, were any synthetic P300 samples included in the construction of these average signals. Note, that
the primary difference between the Non-Collapsed and Collapsed data variants relates to the number of
sequences assigned to each sample average. As the plot here features all samples it represents a linear
combination of all signals within the given augmentation variant meaning the corresponding average
plot generated using the Collapsed data is effectively identical to the figure shown here.

4.5.5 5-Emoji Variant: Collapsed: Pipeline 2

The results in this subsection relate to the Collapsed 5-Emoji (see, Figure 4.3) experimental
variant processed using the Pipeline 2 approach (see subsections 3.4.3 & 4.3.5.5. For the Col-
lapsed data preparation method all samples were constructed by collapsing neighbouring trials
together and averaging over 10 sequences (see subsection 3.3.5.3). As shown below (see, Ta-
ble 4.20), the mean classification accuracy metrics computed for this data partition were all
shown to be greater than the 50% chance level via a one-sample t-test. Notably, the pooled-
subject performance shown here for the Oveall and Target samples is the highest recorded for
any of the three experimental variants discussed in this chapter. This is primarily driven by
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the near-maximal classification accuracies seen for the Target samples. Further, the standard
deviations of the associated values are extremely low, suggesting near-maximal performance
for all 10 cross-validation k-folds.

This is contrasted against the high standard deviations for the Non-Target class. The group-
level stats computed across mean classification accuracy metrics against the chance 50% report
that both the Overall and Target samples showed a significant difference, with the marginal
result for the Non-Target class (p=0.053). Finally, the Non-Collapsed and Collapsed data par-
titions were investigated using the paired-subject data across the two data preparation methods
via the permutation test. Despite increases following the Collapse data aggregation procedure
of 6.3%, 8.3% and 5.3% for the Overall, Target and Non-Target accuracy means none of the
paired-subject assessments report significant differences, with the Target samples producing a
p-value of 0.096. Here it is likely with the addition of more subjects these metrics would have
breached the 0.05 significance threshold given the strong trend observed.

Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.88* 0.10 1.00* 0.00 0.76* 0.15

3 0.82* 0.11 0.99* 0.03 0.68* 0.22

5 0.83* 0.09 0.99* 0.03 0.67* 0.21

Table 4.20: Here is presented a table showing the performance metrics associated with Subjects 1, 3
& 5 for the 5-Emoji Collapsed data partition (see Table in Appendix A.6). All results were computed
following the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis method-
ology. Here all individual samples are composed of averages computed across 2 trials consisting of
10 sequences each (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Note, that all cell values
denoted with a * indicate a significantly higher mean classification accuracy than the 50% chance level
for the binary (Target vs. Non-Target) classification task. For additional information on table field
headings and interpretation please refer to Table 3.16.

4.5.6 7-Emoji Variant: Non-Collapsed: Pipeline 2

The results in this subsection relate to the Non-Collapsed 7-Emoji (see, Figure 4.2) experimen-
tal variant processed using the Pipeline 2 approach (see subsections 3.4.3 & 4.3.5.5). As stated
above, the Non-Collapsed samples were constructed using all 5 sequences within each exper-
imental trial (see subsection 4.3.5.1). As seen below, all subjects reported mean classification
accuracies significantly above chance. Notably, all metric variants display lower associated
standard deviations as compared to the previous assessments conducted. Further, the same
trend is observed characterised by a bias towards the Target-P300 class. Additionally, Subject
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1 reveals substantially lower mean classification accuracies for this emoji stimulus variant, as
compared to Subjects 3 and 5. Notably, this drop is attributed to lower relative classification
accuracy for both the Target and Non-Target samples. The group-level stats reported that the
mean accuracies across subjects follow the same trend with the Target samples computed as
significantly different and the Overall and Non-Target accracse reporting non-significant dif-
ferences to the chance 50% level. As stated previously, the validity of these permutation tests
is limited by the small sample size and relative statistical power of this non-parametric test.

Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.74* 0.07 0.85* 0.10 0.64* 0.10

3 0.85* 0.05 0.94* 0.06 0.75* 0.07

5 0.82* 0.05 0.92* 0.07 0.71* 0.11

Table 4.21: Here is presented a table showing the performance metrics associated with Subjects 1, 3 &
5 for the 7-Emoji Non-Collapsed data partition (see, Table 4.16). All results were computed following
the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology. Here
all individual samples are composed of averages computed across all 5 augmentation sequences within
each respective trial (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Note, that all cell values
denoted with a * indicate a significantly higher mean classification accuracy than the 50% chance level
for the binary (Target vs. Non-Target) classification task. For additional information on table field
headings and interpretation please refer to Table 3.16.

The figure below shows the Cz grand average computed using all pooled-subject Target
(oddball) and Non-Target samples. Here the Target waveform presents with a negative de-
flection around 200ms and two distinct positive components around 300 and 450ms. Notably,
there is also present a large initial positive deflection around 150ms. There remains the pos-
sibility that the peaking observed at 150, 300 and 450ms is indicative of a 6.67Hz SSVEP
signal. Further, for the Non-Target waveform an oscillation is observed with a periodicity of
around 75ms, this is likely a harmonic of the same SSVEP waveform. Further, both signals
demonstrate significant drift over the course of the time window indicating that again, the
compromised baselining procedure was not sufficient to orient the signal around a zero mean.
Despite this, the target samples do present with a larger area under the curve and could serve
as a reliable means of separation via the corresponding LDA models, however, it is difficult to
assert the data groupings are solely based on ERP features.
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Figure 4.23: This is an average plot constructed exclusively from the Cz electrode for all P300, Aver-
aged Target Emoji (solid line) and Non-P300 Averaged Non-Target Emoji (dashed line) samples col-
lected across Subjects 1, 3 & 5 for the 7-Emoji Non-Collapse data partition (see, Table 4.16). As can be
seen, the time dimension is positioned on the x-axis (0-500ms) and the micro-voltage range is oriented
to the y-axis. Here, all samples were processed using the Pipeline 2 data pre-processing methodology
(see subsections 3.3.5.3 & 4.3.5.5). Finally, every Target P300 and Non-Target P300 averaged sample
are aggregated into separate arrays and a grand pooled-subject mean signal is computed to generate the
plot seen here. A total of 86 P300 samples and 515 Non-P300 samples were utilized respectively. At no
point, were any synthetic P300 samples included in the construction of these average signals. Note, that
the primary difference between the Non-Collapsed and Collapsed data variants relates to the number of
sequences assigned to each sample average. As the plot here features all samples it represents a linear
combination of all signals within the given augmentation variant meaning the corresponding average
plot generated using the Collapsed data is effectively identical to the figure shown here.

4.5.7 7-Emoji Variant: Collapsed: Pipeline 2

The results in this subsection relate to the Collapsed 7-Emoji (see, Figure 4.2) experimental
variant processed using the Pipeline 2 approach (see subsections 3.4.3 & 4.3.5.5). For the
190 Experiment 2: Variable Array Density Assessments Collapsed data preparation method
all samples were constructed by collapsing neighbouring trials together and averaging over
10 sequences (see subsection 4.3.5.1). The table below shows the mean classification accura-
cies for the 3 Subjects assessed. Here, all associated one-sample t-tests revealed the metrics
were significantly higher than the 50% chance threshold. These results demonstrate a strong
indication of overfitting towards the Target class. As seen in Subject 1, the mean accuracy
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for Non-Target samples is 64% with a large standard deviation(0.19) suggesting that several
of the cross-validation k-folds reported random performance-level accuracy metrics. This in
tandem with the near maximal accuracy classification of the Target class suggests that up to
35-40% of all sample misclassifications involved the incorrect identification of Non-Target as
Target samples. The group-level stats report that both the Overall and Target mean accuracy
was significantly higher than chance, with the Non-Target mean accuracies reported as non-
significantly different to chance. In the evaluation comparing the paired-subject performance
between the Non-Collapsed and Collapsed data preparation methods, no significant difference
was reported for the Overall or Non-Target mean accuracies, with a p-value of 0.097 reported
for the Target Non-Collapsed (Avg.=90.33%) and Collapsed (Avg.=97.00%).

Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.82* 0.09 0.99* 0.04 0.64* 0.19

3 0.86* 0.07 0.96* 0.06 0.76* 0.12

5 0.81* 0.07 0.96* 0.09 0.67* 0.13

Table 4.22: Here is presented a table showing the performance metrics associated with Subjects 1, 3
& 5 for the 5-Emoji Collapsed data partition (see Table in Appendix A.6). All results were computed
following the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis method-
ology. Here all individual samples are composed of averages computed across 2 trials consisting of
10 sequences each (see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Note, that all cell values
denoted with a * indicate a significantly higher mean classification accuracy than the 50% chance level
for the binary (Target vs. Non-Target) classification task. For additional information on table field
headings and interpretation please refer to Table 3.16.

4.5.8 3 vs. 5 vs. 7 Emoji: Pipeline 2

Here is presented a cross-experimental comparison of the 3 emoji-stimulus variants in terms
of Overall Accuracy assessed over the two data preparation methods applied, Non-Collapsed
and Collapsed. The plot below (see, Figure 4.24) shows that performance for the 3-Emoji vari-
ant in Non-Collapsed instances was consistently the lowest-performing stimulus presentation
method, dropping well below the functional performance threshold of 70% for all 3 Subjects
evaluated. To probe the relative difference in performance between the conditions more thor-
oughly a series of paired-subjects permutation tests were conducted. Here, the paired-subject
results for the 5-Emoji (Avg.=78.00%) and 7-Emoji (Avg.=80.33%) variants revealed no sig-
nificant differences (p=0.59). Both comparisons made between the 5 and 7-Emoji against
the 3-Emoji variants returned relatively marginal results, p=0.099 and p=0.096 respectively.
None of the stimulus presentation methods produced results significantly above the random
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performance threshold.

Figure 4.24: The plot displays a paired bar chart of the mean Overall accuracies and standard deviations
for the 3 (white bars), 5 (light grey bars) and 7-Emoji (dark grey bars) stimulus presentation methods
using the Non-Collapsed data preparation technique in which each sample consisted of an average
computed over 5 augmentation sequences (see subsection 3.3.5.3 for further information). These mean
values are computed from a 10-fold cross-validation for each of the three subjects (1, 3 & 5) along
with the pooled-subject average (Avg.) (see subsection 3.4.3.1). The figure also includes standard
deviation bars to show variability in the results of the cross-validation. Each bar is also annotated with
its corresponding mean accuracy value. A horizontal dashed line at 70% is included to help assess the
performance of each method against this functional performance benchmark.

The figure positioned below reveals similar patterns of results for the Collapsed data prepa-
ration variant. Here, it is clear that the Overall accuracies observed for Subjects 1 and 3
dropped dramatically as compared to the Non-Collapsed variant for the 3-Emoji stimulus pre-
sentation method. Notably, Subject 5 demonstrates highly stable and overlapping performance
accuracies for all 3 stimulus variants. On the whole, for the 5 and 7-Emoji variants, all sub-
jects demonstrated substantial increases in Overall mean classification accuracy, with a jump
of 12% for Subject 3 relating to the 5-Emoji variant. The paired-subject permutation test was
implemented here to observe the differences between stimulus variants as was discussed pre-
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viously. As noted earlier, no significant difference is observed between the 5 (Avg.=84.33%)
and 7-Emoji (Avg=83.00%) variants. Further, despite the pooled-subject average mean of the
3-Emoji variant of 69.00%, neither the 5 or 7-Emoji paired subject results revealed a signif-
icant difference. This is despite the absence of standard deviation overlap present in both
Subjects 1 and 3. The author asserts that this is likely owing to the small sample size.

Figure 4.25: The plot displays a paired bar chart of the mean Overall accuracies and standard deviations
for the 3 (white bars), 5 (light grey bars) and 7-Emoji (dark grey bars) stimulus presentation methods
using the Collapsed data preparation technique in which each sample consisted of an average computed
over 10 augmentation sequences (see subsection 3.3.5.3 for further information). These mean values are
computed from a 10-fold cross-validation for each of the three subjects (1, 3 & 5) along with the pooled-
subject average (Avg.) (see subsection 3.4.3.1). The figure also includes standard deviation bars to
show variability in the results of the cross-validation. Each bar is also annotated with its corresponding
mean accuracy value. A horizontal dashed line at 70% is included to help assess the performance of
each method against this functional performance benchmark.



198 Experiment 2: Variable Array Density Assessments

4.6 Conclusion: Pipeline 1

All interpretations and conclusions discussed herein relate to Experiment 2 computed via the
Pipeline 1 approach (see subsections 3.3.5.1, 3.4, 4.3.5.4 & 4.3.6). All corresponding tables
and figures can be found in the text positioned above. Again, all analyses were conducted
offline and correspond to the three staggered experimental variants featuring 3, 5 and 7 Emoji
targets. All experimental paradigm details are outlined in the corresponding section, 3.3.5.

4.6.1 3 Emoji Variant: No Localizer Pre-Training: Pipeline 1

Here are presented the conclusions relating to the 3 Emoji stimulus variant computed utilizing
LDA models with no localizer data pre-training stage at either the single or pooled-subject
levels.

4.6.1.1 Pooled-Subject

At the pooled-subject level (see, Table 4.2), mean accuracy (73.33%) is well above the random-
performance threshold of 50%. Despite this, the imbalance in prediction selection for the Non-
P300 class is still evident in the results, with nearly twice the within-class accuracy (86.67%)
as compared to the P300 events (46.67%). The confusion matrix (see, Figure 4.5), demon-
strates the lack of directionality for the P300 class with a near 1:1 ratio of hits (47%) and
misses (53%). This suggests that the LDA models could broadly identify Non-P300 type
waveforms despite the poor separation of the P300 class. As seen in the corresponding aver-
age plot (see, Figure 4.6) the expected drop in μV and subsequent peaking events are delayed
by 50-100ms, further the Target signal (solid line) peak is lower than the Non-Target samples
(dashed line) between 300-400ms. As mentioned in the above Method subsection, 4.3, the
order of the task variants was counter-balanced. This could have led to more fatigue-related
delaying of the P300 propagation influencing the position of the ERP crest post-cross trial
averaging.

4.6.1.2 Within-Subject

The single-subject classification accuracies contain only one subject that produced a sub-RPT
P300 classification accuracy (Subject 2, AoC = 33%). These results demonstrate the same
directional prediction preference for the Non-P300 class observed for both the class-balanced
and non-class-balanced datasets in Experiment 1 (for reference see, Tables 3.7 & 3.9). Despite
this, the degree of overfit observed is markedly reduced across the majority of subjects evalu-
ated and classification accuracies extend significantly past the random performance threshold
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in most instances. Further, the mean accuracy noted for Subject 5 of 88.89% is the highest
class performance recorded.

4.6.1.3 Summary

Overall, these findings highlight the evident relationship between overfit incidence and visual
array density. That is to say that the efficacy of class-balancing to mitigate overfitting reduces
as the ratio of targets and non-targets approaches parity. The results presented here validate the
original prediction, that a lower-density visual array would increase classification accuracies.
This could be attributed to the reduction in computational complexity or a reduction in the
degree of spatial bleed-over owing to the greater stimulus separability on screen. Despite
the enhancement of performance metrics, the P300 class accuracies at the cross and single-
subject levels never exceeded the 70% accuracy across both target classes needed for effective
communication via a BCI speller as established in [250, 255]. Further, all assessments noted
here were performed using the Pipeline 1 approach and do not feature cross-validation.

4.6.2 5 Emoji Variant: No Localizer Pre-Training: Pipeline 1

Here are listed the conclusions relating to the 5 Emoji stimulus variant computed utilizing
LDA models with no localizer data pre-training stage at either the single or pooled-subject
levels.

4.6.2.1 Pooled-Subject

The performance at the pooled-subject level for the 5 Emoji variant shows a marked departure
from the accuracies achieved in the 3 Emoji variant (see, Tables 4.2 & 4.4, respectively). As
shown, the P300 class accuracy is significantly lower at 0% and the Non-P300 class bias is near
complete (98.33%). The confusion matrix (see, Figure 4.8), reveals that all P300 events were
misclassified as Non-P300 events, repeating the pattern of overfitting observed for the non-
class balanced analyses variants in Experiment 1. Interestingly, the pooled-subject average
plots are also significantly different (see, Figure 4.9), displaying few of the characteristics
typical to P300 (solid line) and Non-P300 waveforms (dashed line). Further, the magnitude
of these signals is dramatically lower. The quality of these signals reduces the validity of any
claims suggesting all the variance in classification performance can be wholly accounted for
by the increase in array density. Equally, signal quality may be impeding the corresponding
LDA models from effectively separating the classes and in turn reducing accuracy values.
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4.6.2.2 Within-Subject

At the single-subject level, all subjects provided mean classification accuracies above the ran-
dom performance threshold of 50%. Despite this, some returned P300 classification accuracies
of 0% (Subjects 4 & 5). As seen when comparing the 3 and 5 Emoji variant classification ta-
bles (see, Tables 4.3 & 4.5), the increase in the number of non-target samples to the training
array has re-introduced the issue of overfitting into the analyses. The highest-performing sub-
ject (see, Table 4.5) shows sub-random classification performance for the P300 class (33%)
and as seen in the confusion matrix (see, Figure 4.10), the LDA model does not demonstrate
any effective separation of the two classes based on the quality of the waveform features.

4.6.2.3 Summary

In sum, the increase in overfitting incidence between the 3 and 5 Emoji stimulus variants is
clear at both the cross and single-subject levels. Further, the pattern of classification perfor-
mance is not replicated here, with previously high-performing subjects now demonstrating at
or below the random performance threshold (see subject 5, Tables 4.3 & 4.5). The author has
determined these effects are owing either to the increase in the number of targets and resulting
class imbalance in subsequent LDA model training datasets or a significant drop in data qual-
ity as evidenced by the grand average signal plots (see, Figure 4.9). It is possible that subjects
may not be attending to the task as instructed and the expected P300 waveform propagation
is not manifest in the plots. The author attempts to address this potential reduction in subject
vigilance in the following experimental series (see subsection 5.4.9).

4.6.3 7 Emoji Variant: No Localizer Pre-Training: Pipeline 1

Here are presented the conclusions relating to the 7 Emoji stimulus variant computed utilizing
LDA models with no localizer data pre-training stage at either the single or pooled-subject
levels.

4.6.3.1 Pooled-Subject

As seen in comparisons between the 5 Emoji (see, Table 4.4) and 7 Emoji stimulus variants
(see, Table 4.6), the degree of selective bias at the pooled-subject level for the Non-P300 class
has increased in line with the addition of more targets to the visual array. It is possible the
larger size of the dataset and the corresponding relative increase of Non-P300 training sam-
ples further exacerbated these overfitting effects. Additionally, the absence of regularization
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measures to accommodate for this phenomenon such as the class-balancing protocols imple-
mented in Experiment 1 (see subsection 3.4.1) ensures these confounding effects diminish the
resulting classification performance.

4.6.3.2 Within-Subject

In all instances, an accuracy of 0% for the P300 class was reported at the single-subject level
(see, Table 4.7). The variances in mean accuracy, Non-P300 accuracy and shrinkage values
are all the lowest recorded in this experimental implementation thus far (Experiment 2). These
results suggest all LDA models trained at the single-subject level underwent a similar process
of overfitting to the more numerous Non-P300 class.

4.6.3.3 Summary

Overall, it is clear from the results (see, Tables 4.6 & 4.7) that these data depart from the
previous experimental implementations in that the 3 Emoji variant displayed numerous high
classification accuracies in conjunction with higher-quality average plots (see, Tables 4.2 &
4.3). In contrast, the 5 Emoji variant (see, Table 4.5) displayed a significantly lower quality
of both classification accuracies and average plots. Concerning the 7 Emoji data, the classifi-
cation accuracies are the lowest so far reported for this experimental implementation and also
present with some higher quality signal averages (see, Figure 4.12). This demonstrates that to
produce good classification results researchers must balance the processes of accommodating
class event ratios at the analysis level and also ensure high-quality data collection during the
acquisition phase. This can only be overcome with a regularization or priming stage for the
LDA models trained in these more complex computational contexts.

4.6.4 3 Emoji Variant: With Localizer Pre-Training: Pipeline 1

Here are reported conclusions relating to the 3 Emoji stimulus variant computed utilizing LDA
models initially tuned using a localizer data pre-training stage at both the single or pooled-
subject levels.

4.6.4.1 Pooled-Subject

Concerning the pre-trained LDA model for the pooled-subject dataset evaluations, P300 class
accuracies increased marginally from 46.67% to 53.33% (see, Tables 4.2 & 4.8). Despite this,
a dramatic reduction in classification performance is noted for the Non-P300 class, dropping
over 35%. For these data, the implementation of a localizer pre-training stage potentially
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stunted the capability of the models to learn effective means of separating the waveforms
tested. The parity in prediction selection across classes seen in the respective confusion ma-
trix (see, Figure 4.15), shows that the reduction in overfit did not implicitly lead to a propor-
tional increase in classification accuracies. This could be related to a distinct difference in data
quality between the localizer 3 Emoji variant samples and 3 Emoji main experiment samples.
Alternatively, the aggregation of samples across subjects and experimental formats (localizer
and main experiment) could have further enhanced the prevalence of waveform features at-
tributable to subject individual differences, effectively increasing the within-class diversity of
samples and ultimately heightening the task complexity for LDA classifier models. Further,
the high oddball probability of the localizer task likely resulted in weak P300 components
(see Figure 4.14) and therefore these data were not suitable for the LDA models to learn data
driven grouping for these classes.

4.6.4.2 Within-Subject

Broadly, at the single-subject level, the implementation of the LDA model localizer data pre-
training reduced classification performance. Of note, Subjects 2 and 5 must be highlighted,
as these evaluations demonstrate large decreases in classification performance for both the
P300 and Non-P300 classes. The presence of low accuracies across both classes is unique to
the analyses thus far and suggests for some subjects, the aggregation of data acquired over
distinct experimental sessions (localizer and main experiment) is not viable. In contrast, Sub-
ject 4 returned the highest performance in cross-class accuracies for all subjects in any of the
localizer pre-trained variants assessed.

4.6.4.3 Summary

On the whole, the implementation of the LDA localizer data pre-training stage resulted in a
negligible increase in performance for the pooled-subject dataset. The reduction in overfit-
ting previously observed was replaced by a convergence towards random classification perfor-
mance. Further, the results observed at the single-subject level are arguably less favourable
across the group with a notable exception for Subject 4. Note that this pattern of classifica-
tion behaviour is expected given that the implementation of these regularization methods was
targeted primarily towards the 5 and 7 Emoji variants to address the issue of overfitting that is
dramatically less prevalent in these 3 Emoji variant data.
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4.6.5 5 Emoji Variant: With Localizer Pre-Training: Pipeline 1

Here are noted conclusions relating to the 3 Emoji stimulus variant computed utilizing LDA
models initially tuned using a localizer data pre-training stage at both the single or pooled-
subject levels.

4.6.5.1 Pooled-Subject

The classification performance at the pooled-subject level after implementing the localizer
data pre-training did demonstrate some improvements for the 5 Emoji variant dataset evalu-
ations (see, Table 4.10). These are characterized by a significant decrease in the incidence
of overfitting as compared to previous non-pre-trained results (see, Table 4.4). Further, for
the P300 class specifically, the classification accuracies (60%) have been boosted beyond the
RPT (50%). Despite, these improvements, a dramatic decrease in Non-P300 accuracies pre-
vents the author from concluding the increased volume of training samples in concert with the
pre-training stage produced a viable emoji-speller.

4.6.5.2 Within-Subject

As shown in the corresponding results table (see, Table 4.11) performance at the single-subject
level after the implementation of the pre-training stage is substantially lower than in the non-
pre-trained analyses variant (see, Table 4.5). The prevalence of overfitting is relatively similar,
with large decreases in accuracy observed across both classes. The pattern of reduced classifi-
cation performance is present in nearly all subjects, even in the instances that are characterized
by an inversion of the selective bias towards the P300 class type. Based on these results, the lo-
calizer data pre-training stage cannot be said to have improved the classification performance
for these subjects.

4.6.5.3 Summary

In sum, when looking at the 5 Emoji dataset, the performance for both the standardized and
localizer-initialized methods was markedly lower than the 3 and 7 Emoji datasets. The lower
performance cannot be attributed to fatigue effects, as the order of experimental variants was
conducted across subjects using a pseudo-randomised protocol that evenly distributed the or-
dering of said variants across the subjects. It could be argued that the 3 Emoji variant is shorter
and highly simplistic potentially meaning the task did not drain subject concentration over the
experimental phase. In contrast, the 7 Emoji variant is more attentionally demanding meaning
subjects could have been more engaged during the task. The 5 Emoji variant could be posi-



204 Experiment 2: Variable Array Density Assessments

tioned in between these two opposing attentional states, ultimately reducing the engagement
with the task and the resulting data quality.

4.6.6 7 Emoji Variant: With Localizer Pre-Training: Pipeline 1

Here are presented conclusions relating to the 7 Emoji stimulus variant computed utilizing
LDA models initially tuned using a localizer data pre-training stage at both the single and
pooled-subject levels.

4.6.6.1 Pooled-Subject

The performance of the pre-trained LDA models for the 7 Emoji variant (see, Table 4.12)
outperformed similar classifiers for the corresponding non-pre-trained model (see, Table 4.6),
the non-class balanced Experiment 1 Inversion pooled-subject model (see, Table A.1) and
the class-balanced Experiment 1 Inversion pooled-subject model (see, Table 3.10). It could
be argued that the difference in classification performance between the P300 (73.33%) and
Non-P300 (52.22%) represents an instance of selective bias.

4.6.6.2 Within-Subject

The improvements in terms of overfitting reduction and P300 classification accuracy increases
observed at the pooled-subject level are not replicated across all single-subject evaluations.
The classification metrics of subjects 2, 3, 4 and 5 all demonstrate either model overfitting or
highly atypical performance behaviour. As seen in the previous 3 Emoji variant analyses (see,
Table 4.9) for Subject 4, large performance increases can be found for individual subjects
following the localizer data pre-training stage, this is replicated here for Subject 1 to a far
lesser extent.

4.6.6.3 Summary

Overall, any increases in performance following the model pre-training stage are restricted
nearly exclusively to the pooled-subject dataset. The primary difference between these datasets
is the overall size and diversity of waveform profiles present. It may be that the higher vol-
ume of samples in tandem with a greater array of P300 waveform profile expressions aided
in the development of more robust class representations by the pooled-subject LDA model.
Further, this aggregated localizer data was composed of significantly more samples, as com-
pared to the single-subject datasets. This ensured that these pooled-subject LDA models were
initially exposed to many more class-balanced examples than at the single-subject level due to
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the localizer task being inherently class-balanced as it comprises 20 trials evenly split across
augmented and non-augmented instances. When looking at the P300 class performance for
the pooled-subject data the classification accuracy improves as the number of stimuli increases
onscreen, 3 Emoji P300 accuracy = 53.33% (see, Table 4.8), 5 Emoji P300 accuracy = 60.00%

(see, Table 4.10) and 7 Emoji P300 accuracy = 73.33% (see, Table 4.12). At each stage, as
the size of the localizer-initialization dataset increases so does the classification performance
at the pooled-subject level. These findings could suggest increasing the number of samples
in the pre-training stage could improve performance in the main experiment. In contrast, the
weak P300 components seen in Figure 4.14, the high associated oddball probability of the lo-
calizer task and the absence of cross-validation procedures for the results, as per the Pipeline
1 approach, prevent the formation of any broad conclusions regarding these findings.

4.6.7 Conclusion: Pipeline 2

Here, all conclusions relating to the 3-Emoji stimulus method samples processed using the
Pipeline 2 approach are discussed. Please refer back to the relevant subsections for addi-
tional information regarding the specific presentation methods (see, Figure 4.4), the Pipeline
2 pre-processing method (see subsections 3.3.5.3 & 4.3.5.5), the associated Pipeline 2 cross-
validation procedure (see subsections 3.4.3.1 & 4.3.7) and the associated tests of significance.

4.6.7.1 3-Emoji Results: Pipeline 2

As can be seen in Tables 4.17 and 4.18, the 3-Emoji variant produced the lowest mean classi-
fication accuracies of any of the stimulus presentation variants described in this chapter. This
is surprising given the previous research outlined in [19, 20, 252]. Collectively, these stud-
ies suggest that a reduction in the number of targets on screen and greater spacing between
targets typically lead to an increase in relative classification performance. In some instances,
these increases boosted the information transfer rate of a 9 target array above that reported
for a comparative 36 target array. Notably, for the experiments defined herein, the number of
targets on screen were far smaller, ranging from just 3 to 7 emoji per design variant. Here it
is possible that the relative increase in probability of augmentation per emoji for the 3-Emoji
(33.33%), as compared to the 5 (20%) and 7 (14.3%) contributed to a decrease in P300 signal
quality. This suggestion is however not likely after observing the differences between the vari-
ants for the Cz grand average plots (see, Figures 4.21, 4.22, 4.23). Here the 3-Emoji variants
present with arguably the most prevalent waveform features characteristics of a visual odd-
ball paradigm, with a strong negative component at 200ms and a large positive component at
300ms.
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The primary difference between the 3-Emoji, as compared to the 5 and 7-Emoji variants,
as seen in Tables 4.14, 4.15 and 4.16 relates to the quantity of Non-Target samples available
to the respective LDA classifiers, as well as the ratio of synthetic to real data in the training
samples, as afforded by the SMOTE over-sampling approach. Here roughly, 60% of all train
samples were synthetic as compared to around 80% and 85% for the other respective methods.
Based on this it could be asserted that the relative degree of variance within the oversampled
Target-P300 training data for this method is higher, given the relatively lower incidence of
linearly interpolated synthetic samples. Further, the average mean classification accuracy for
the 3-Emoji method (59%) relating to the Non-Collapsed Non-Target samples is also lower
than the 5 (65%) and 7-Emoji variants (70%). This value decreased following the Collapse
data preparation method from 59% to just 54%, primarily driven by the results collected from
Subject 1. Here a pattern emerges where the relative number of Non-Target samples available
to the classifier also appears to influence the performance of the LDA models.

Notably, when comparing the results to the original Pipeline 1 implementation (see, Table
4.3), both Subject 1 and 5 dropped in relative overall classification accuracy, by 6.78% and
8.89% respectively when compared with the results of the Non-Collapased data partition (see
Table 4.9). Further, when comparing the relative performance of these models against the
metrics collected for the Localizer integrated variant of the Pipeline 1 method (see subsection
4.4.3.1) the Pipeline 2 approach discussed here resulted in a dramatic relative increase in per-
formance for Subjects 1 (4.33%), 3 (46.78%) and 5 (49.75%). Crucially, it must be stated that
these Pipeline 1 results are standalone stats and did not go through the same 10-fold cross-
validation procedure.

Despite this, the data pre-processing methods outlined in the Pipeline 2 approach can not
be said to have improved the classification performance in comparison to the results collected
via the Pipeline 1 method. Concerning the Collapsed data partition (see, Table 4.18), Sub-
ject 5 demonstrated a substantial increase in Overall mean classification as compared to the
Non-Collapsed condition. It is difficult to draw conclusions from a single anomalous result,
however, it does appear, at least for some data, that the process of aggregating neighbouring
trial samples to simulate the collection of 10 sequences per trial, as opposed to 5, can boost
classification accuracies irrespective of the contingent drop in the number of training and test
samples.
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4.6.7.2 5-Emoji Results: Pipeline 2

The 5-Emoji subject-level results across both the Non-Collapsed and Collapsed data prepara-
tion methods all provided mean classification accuracies significantly above the 50% chance
level (see, Tables 4.19 & 4.20). This is a dramatic improvement compared to the results
collected via the Pipeline 1 approach for standard (see, Table 4.5) and Localizer-integrated
method (see, Table 4.11). All included subjects demonstrated substantial (50%+) differences
in Target vs. Non-Target sample class accuracies. Further, the group-level results revealed no
significant differences between the Non-Collapsed and Collapsed data partitions via a paired-
subject permutation assessment for any accuracy metrics. This is despite a substantial increase
in the Overall (6.3%), Non-Target (5.3%) and Target (8.3%) metrics, with the latter leading
to near maximal pooled-subject predictions for all three subjects (Avg.=99.33%). The author
notes that this must be interpreted with caution, as seen in the corresponding data partition ta-
ble (see Appendix Table A.6), the number of P300 target test samples available to the classifier
for each of the 10 cross-validation folds is just 1. This is due to the aggregation of sequences
across neighbouring trials in an effort to boost the data signal-to-noise ratio.

Notably, these samples presented with the highest incidence of stimulus augmentation-induced
SSVEP artefacts for both the Target and Non-Target samples (see, Figure 4.22). Again,
here the efforts undertaken to effectively pre-process the data via targeted notch filtering and
baselining were not sufficient to nullify the presence of potentially confounding EEG artefacts.
Given the higher relative quality of the plot generated for the 3-Emoji variant (see, Figure 4.21)
data quantity is likely not a contributing factor here. Further, the significant drifting compo-
nents suggest that the erroneous decision to perform a non-continuous data acquisition method
has prevented the author from effectively removing DC drift components from the signal.

Despite the clear issues in data quality, the 5-Emoji variant produced some of the highest
Target-P300 mean classification accuracies for this experimental series. The Target-P300 data
windows may contain a strong SSVEP component with a higher relative coherence in phase,
this signal is also likely to present in the Non-Target samples, however, given these are av-
eraged across different time points for different emoji the phasic coherence is likely lower,
leading to broad attenuation of the signal. In sum, the corresponding LDA model discrim-
inative functions may have utilized the relative incidence of the unwanted 6.67Hz SSVEP
induced via the 150ms stimulus onset interval in addition to the P300 waveform component
when positioning the classes in the search space. Unfortunately, it is difficult from these plots
come to any precise conclusions.
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4.6.7.3 7-Emoji Results: Pipeline 2

The results relating to the 7-Emoji variant for the Non-Collapsed and Collapsed data prepa-
ration all returned mean classification accuracies above the chance level of 50%. As can be
seen in Figures 4.24 and 4.25, the 7-Emoji variant demonstrates the highest overall accuracies
for both Subjects 3 and 5 compared to both the 3-Emoji and 5-Emoji stimulus presentation
variants. This could be due to the relative lower probability of augmentation per emoji on-
screen as noted above (see subsection 4.6.7.1). Following the application of the Collapse data
partition method all subjects Overall mean classification accuracies increased well above the
70% functional usage threshold (see, Tables 4.21 & 4.22). Here, the group-level stats did not
reveal any significant differences for the paired subject results concerning any of the accuracy
metrics assessed. Worryingly, these results demonstrate a strong indication of overfitting to-
wards the Target class.

As seen in Subject 1, the mean accuracy for Non-Target samples is 64% with a large stan-
dard deviation (0.19) suggesting that several of the cross-validation k-folds reported random
performance-level accuracy metrics. This in tandem with the near maximal mean classifica-
tion accuracy of the Target class suggests that up to 35-40% of all sample misclassifications
involved the incorrect identification of Non-Target as Target samples. Note, that the relative
increase in the detection of Target samples did not lead to a drop in Non-Target mean classifi-
cation accuracies.

Notably, the 7-Emoji variant is reported as the highest-performing experimental iteration de-
tailed in this chapter, however, it is also the variant with the highest proportion of synthetic
Target-P300 samples. As seen in Table 4.16, around 85% of all training samples were gener-
ated via the SMOTE oversampling method. This suggests that it is likely the associated P300
training dataset was populated with extremely similar signals despite efforts made to enforce
the randomisation of interpolation power over 5 different nearest neighbours (see subsection
3.3.5.3). The high degree of homogeneity for this minority class could have afforded it a sig-
nificant advantage during the training of the respective LDA models. The large imbalances in
class predictions can ultimately reduce the usability of any BCI communication system due
to the higher relative incidence of False positives, requiring users to correct these mistakes,
adding additional time per communication received also decreasing user confidence in the
system.
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4.6.7.4 Summary: Pipeline 2

The intention of these investigations was to probe the relative influence of the the number
of emoji on screen. This was done to discern whether a decrease in potential P300 peaking
components could be offset by a reduction in the incidence of spatial bleedover effects. Along
these very same lines, the distance between the number of stimuli increased as the number
of stimuli decreased. Following the Pipeline 1 approach, the author was effectively unable
to answer these questions owing to the confounding influence of model overfit. The author
asserts that the low number of sequencs per trial lead to an extremely weak signal to noise to
ratio. A far higher number of sequences, around 10 or 15 is necessary to effectively boost the
trial-level P300 averages for accurate discrimination against Non-P300 data segements.

For the Pipeline 1 approach, data quality evaluation involved a series of fundamental assess-
ments. Notably, no errors occurred during data loading, all metadata remained intact, and there
were no instances of long stretches with NaNs or zeros, missing channels, or inconsistent sam-
pling rates. This suggests that data packets were acquired regularly from the headset to the
receiver. Visual inspection revealed no discontinuities, aside from issues related to the Pz sen-
sor (see, Figure 3.6). As mentioned earlier, the author only had access to the medium-sized
Cognionics Quick-20 system, leading to challenges in positioning the headset using cranial
landmarks like the inion and nasion due to variations in head size among subjects.

Consequently, the analysis could not rely solely on the Cz electrode, as this would intro-
duce substantial spatial positioning variance. Instead, a broader sampling approach was taken,
using electrodes Fz, Cz, Pz, P3, P4, O1, O2, A1, and A2 (see, Figure 3.4). However, the
Pz electrode frequently exhibited significant spiking events due to improper seating in sev-
eral subjects. This was particularly problematic, as the Pz region is critical for capturing
P300 waveforms. The removal of this channel in most cases due to amplitude-based rejection
resulted in the loss of vital data for analysis (see subsection 3.3.5.2). To enhance the preva-
lence of P300 waveform features, the Pipeline 2 approach implemented corrections to the
pre-processing methodology, specifically improving baselining and filtering techniques (see
subsection 3.3.5.3).

The Localizer task was implemented with three primary objectives: to evaluate subject-
specific P300 waveforms before the main experiment, to acclimate subjects to similar stimuli,
and to utilize the data as pre-training samples for the associated LDA models, serving as a
form of regularization before training with the main experimental data. However, each of
these objectives was undermined by inherent flaws in the Localizer task design. First, the
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decision to use a single target set to augment in 50% of the trials was not methodologically
sound, given the inverse relationship between P300 quality and oddball probability. While this
was intended to enforce an innate 1:1 class balance and reduce the impact of spatial bleed over
artefacts, the 50% probability is too high to effectively generate a robust P300 signal, thereby
failing to serve as a reliable pre-screening tool. Second, the rationale of using the Localizer
to train subjects on similar data is flawed; a more effective approach would be to use a shorter
version of the main experiment, allowing subjects to train on the exact task they would ulti-
mately be assessed on.

Consequently, the premise of using the Localizer task data as class-balanced pre-training sam-
ples is fundamentally flawed, as the resulting P300 waveforms are not distinct enough from
the Non-P300 data (see Figure 4.14). This is evidenced by the reduction in classification per-
formance observed in Tables 4.9, 4.11, and 4.13, compared to the original implementation (see
Tables 4.3, 4.5, and 4.7). The author acknowledges these methodological issues and admits
that the Localizer task was erroneously implemented based on the mistaken assumption that
the subjective probability of P300 events would be sufficient to induce a strong P300 wave-
form.

Overall, the Pipeline 2 system has addressed the principle issues of extreme overfit and low
classification accuracies demonstrated in the same subject samples using Pipeline 1 for the
standard and Localizer-integrated approaches (see, Tables 4.5, 4.7, 4.11 & 4.13). In the com-
parisons of all 3 stimulus variants for the Pipeline 2 approach, the series of paired-subject
permutation assessments revealed no significant differences between the conditions (see sub-
section 4.5.8). This is likely owing to the significant degree of overlap in the Overall classifica-
tion accuracies computed via respective 10-fold cross-validation results across the 3 subjects
tested (see, Figures 4.24 & 4.25). The high degree of variance within subjects for each exper-
imental variant ultimately suggests that an increase in the number of trials is key to boosting
the relative signal-to-noise ratios of respective training and test datasets.

Further, as shown in the figures noted above a marginal increase in Overall classification accu-
racy is reported for the Collapsed data partition. This was undertaken principally to simulate
the collection of 10 as opposed to the original 5 sequences per trial. Despite this, as noted
both in the respective stimulus conclusion subsections, none of these effects were significant.
It is possible that increasing the number of sequences per trial to 15 would have ultimately
improved the resulting data quality, however, the limited samples available in these offline
analyses prevented the author from assessing these in a similar simulated manner. Further,
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the results relating to the Collapsed data preparation method must be interpreted cautiously
given the extremely small number of test samples used in the evaluation of each model. Incor-
porating all these findings the author can only tentatively point towards a trend of increased
performance as a function of reduced augmentaion probability per emoji. This is however
qualified by acknowledging that the improvements observed also follow a similar orthogo-
nal pattern where increased accuracy is related to a corresponding increase in the number of
synthetically generated samples in the corresponding training datasets.

4.6.8 Reflections

Here, the author discusses the key findings of Experiment 2 relating to the Pipeline 1 and
Pipeline 2 data organisation, pre-processing and analysis approaches. Further, a series of
considerations regarding experimental issues and several paradigm improvements to address
these obstacles are discussed.

4.6.8.1 Stimulus and Data Collection Adaptations

It is important to evaluate the influence of adaptations made to stimulus presentation and data
acquisition hyper-parameters on resulting data quality. The introduction of increased inter-
augmentation intervals and larger data windows appears to have had some influence on the
quality of data collected. When inspecting the pooled-subject average plots for the 3 and 7
Emoji datasets, (see, Figures 4.6 and 4.12), large positive deflections are observed between
300 and 500ms after the onset of the time-locked augmentation events. The extension of the
data window to capture delayed P300 peaking events potentially contributed to the increased
separability of P300 and Non-P300 target classes for the respective variant analyses. It must be
noted, in the 5 Emoji pooled-subject plot (see, Figure 4.9), a relative increase in μV amplitude
for this target time window is not present. Interestingly, this aforementioned variant shows the
lowest cross-variant performance for both pooled-subject and single-subject datasets in the
non-pre-trained and pre-trained LDA model analyses sets (see, Tables, 4.4, 4.5, 4.10 & 4.11).

Concerning the changes to stimulus hyper-parameters, namely the increase in emoji diam-
eter target size (18mm to 27mm diameter), these adaptations had little effect on the quality
of signals collected. The prevalence of atypical oscillatory trends, poor baselining and specif-
ically the volatile components positioned in the Non-P300 plots suggests that the measures
taken to reduce the incidence of spatial and temporal bleed-over effects were not adequately
minimised. Note, that many of the same non-characteristic waveform features are present
in single-subject average signal plots not displayed herein. Ultimately, the presence of these
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atypical waveform features is ever-present in EEG data collection owing to the non-stationary
properties of the signals. The only feasible means of diminishing the presence in signal aver-
ages is to collect more samples to balance the noise across multiple trials. It is possible that
the amount of sequences collected per trial was not sufficient to achieve to stated experimental
goals.

4.6.8.2 Classification Performance and Array Density: Pipeline 1

As predicted at the onset of this experimental series, from the results of the Pipeline 1 ap-
proach a decrease in array density from 7 to 3 Emojis appears to have improved single-subject
classification accuracies. The highest performing subset that achieved greater than random
performance subject averages for both the P300 (60.00%) and Non-P300 (73.33%) classes
was shown to be the non-pre-trained 3 Emoji variant (see, Table 4.3). Notably, as these results
were collected via the Pipeline 1 approach, none of the findings are cross-validated and there-
fore caution must be taken in their interpretation.

The difference in performance across the variants assessed could be attributed to a reduc-
tion in task difficulty and the increase in balance between P300 and Non-P300 sample ratios.
This is seen clearly by the positive relationship between overfitting incidence and array density
across Tables 4.3, 4.5 and 4.7. Further, the task length differed significantly over the stimulus
variants, meaning fatigue owing to experimental duration could have introduced more low-
quality signals into the training and evaluation datasets. Despite this, the only viable means
of assessing overall dataset quality are the pooled-subject average plots. These reveal the 7
Emoji data (see, Figure 4.12) present with significantly more P300 (solid line) and Non-P300
(dashed line) characteristic features than those shown in the respective 5 Emoji plots (see, Fig-
ure 4.9). It is clear that had a relationship between data quality and task length been present the
increased quality of signals for the 7 Emoji variant would not be present. Further, as is noted
at length in subsection 4.6.7.4, a complete reversal in this trend is observed for the Pipeline 2
approach results.

4.6.8.3 Localizer Data Pre-Training Considerations: Pipeline 1

The implementation of the localizer data pre-training stage was introduced primarily to ad-
dress this issue of overfitting. As mentioned above, the increase in array density necessarily
increases the degree of overfitting due to the ever-increasing imbalance in P300 and Non-P300
samples. In Experiment 1, the effect of overfitting was addressed using a class-balancing pro-
tocol. This process was implemented primarily as a means of studying the stimuli capacity
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for P300 generation and LDA data separation without the confounding influences of overfit-
ting on the resulting classification metrics. The author acknowledges the severe limitations
of any interpretations based on these class-balanced results due to the marked decrease in
ecological validity that must be employed. Additionally, these processes significantly dimin-
ish the volume of data used in LDA model training and the amount of Non-P300 samples
used is restricted by the number of P300 events available. For these reasons, the author at-
tempted to mitigate the overfitting due to class imbalances by pre-training the models with
the data gathered during the localizer task conducted before each experimental variant. The
implementation of these data in a pre-training stage was ultimately misguided given the high
oddball stimulus probability of the associated Localizer task emoji augmentations., this was
discussed earlier in greater detail (see subsection 4.6.7.4 Summary: Pipeline 2).

4.6.8.4 Increased Incidence of Model Overfitting in 3 and 5 Emoji Variants after Lo-
calizer Data Pre-Training: Pipeline 1

The influence of the localizer pre-training stage as compared to the initial assessments across
all variants is highly varied, as mentioned in the corresponding conclusion subsections above
(4.5.4 & 4.5.5). Crucially, it must be noted that on the whole, the incidence of overfitting
increased for emoji variants 3 and 5 (see, Tables 4.8, 4.9, 4.10 & 4.11). The only marked
decrease in this phenomenon is observed for the 7 Emoji variant (see, Tables 4.12 & 4.13).
This could be due to the ratio of localizer trials to main experiment trials. The pre-training for
all models at the single-subject level was conducted using 20 non-averaged and class-balanced
localizer trials. For the 3, 5 and 7 Emoj variants the ratio of pre-training localizer trials to main
experimental data samples was 1:4.5, 1:7.5 and 1:10.5 respectively. Note, that these ratios also
apply to the pooled-subject datasets. The higher proportion of non-averaged localizer trials in
the training scheme for the variants with lower visual density could have led to the resulting
models being primed with data representations for P300 and Non-P300 waveforms that did
not accurately cohere to the subsequent signals used for training from the main experimental
dataset. Further the large difference in the oddball probability between the localizer task and
the main experiment could have primed the LDA models for class-wise data representations
that diverged from samples in the main experimental data in terms of P300 peak amplitudes
and latencies.

Moreover, the reduction in overfitting incidence does not implicitly increase classification
accuracies, as shown in many of the corresponding 7 Emoji variant LDA models trained that
fail to effectively separate the classes evaluated (see, Table 4.13). Interestingly, the largest
single-subject increase in classification performance after pre-training was observed for Sub-
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ject 4 in the 3 Emoji variant. This subject showed a mean accuracy increase from 66.67% to
88.89% attributed principally to a significant increase in P300 classification performance. Ul-
timately, these analyses do not suggest the localizer data pre-training had a significant positive
influence in boosting LDA model classification performance and in many instances, specifi-
cally concerning the 3 and 5 Emoji variants, the pre-training stage proved detrimental to the
accurate prediction of P300 and Non-P300 target classes.

Note, that all other methods of pre-processing performed on the main experimental data were
repeated for the localizer dataset excluding the intra-trial signal averaging in accordance with
the original Pipeline 1 approach (see subsections 3.3.5.1 & 4.3.5.4). This was not conducted
as the number of samples available for the pre-training stage was too low (20 trials). Had the
same signal-averaging procedure comprising 5 separate data chunks been reimplemented here
the author would have had just 4 trials for the class-balanced pre-training stage. This volume
of trials would have a negligible effect on the resulting classifiers. It is likely the localizer
data possessed substantially higher ranges and additional noisy non-stationary components as
compared to the main data. It is reasonable to assume that this is the primary reason for the
poor performance of models treated with the pre-training process.

In the subsequent localization task, the total number of trials was increased and the cor-
responding data was organised into class-based blocks of 5 waveforms according to their
chronological order. This way a pseudo-sequenced localization task with just 1 emoji could be
conducted. Arguably, an offline version of the main experiment as the localization task would
have proven more effective. Importantly, the use of localizer task data was an apriori decision
implemented by the author after the conclusion of the data collection period. The absence
of signal averaging, the relatively small amount of pre-training trials used and primarily the
extremely high oddball stimulus probability of the Localizer task contributed to the failure
of these methods in this experimental iteration. These issues are addressed by adaptations
implemented in Experiment 3 via the Pipeline 2 approach (see subsection 5.4.10).

4.6.8.5 Pipeline 2 Results Reflections

The results from the Pipeline 2 approach involving alternative pre-processing methods, SMOTE
oversampling to address class balancing and a 10-fold cross-validation procedure to determine
LDA model performance revealed a nearly opposite trend to those reported for the Pipeline 1
approach. Most notably, the initial trend observed for higher performance with lower density
arrays (3 vs. 7-Emoji) was reversed here (see, Tables 4.2, 4.3, 4.6 & 4.7) for both the Non-
Collapsed and Collapsed data partitions (see Tables 4.17, 4.18, 4.21 & 4.22). Importantly,
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these are only trends, as none of the group-level stats comparing the different emoji stimulus
variants revealed any significant differences. The author asserts that had more subjects been
included in the analysis, this would likely have been demonstrated given the strong direction-
ality of the results.

Despite this, even if such a result was reported the relative influence of synthetic data samples
would not have been illuminated. It is likely that given that the 7-Emoji variant featured the
highest proportion of synthetic data, the degree of inter-class cohesion for the Target-P300
samples would have made the separation of these samples easier to discern from the Non-
Target data. It is important to state, that the evaluation of all LDA models was undertaken
using an isolated subset of samples during the cross-validation procedure to mitigate the po-
tential of overfitting. Based on this, it is difficult to conclude that the increase in classification
accuracies observed for the higher-density stimulus arrays is wholly related to the higher de-
gree of oversampled data in the respective training sets.

In contrast, it is possible that the lower relative probability of augmentation for the higher
density arrays, 5-Emoji=20% and 7-Emoji=14.3%, could have contributed to the production
of consistently higher quality P300 waveforms. These assertions however are not borne out
from the corresponding Cz grand averages (see, Figures 4.21, 4.22 & 4.23). Here, the 3-Emoji
variant samples present with arguably the most representative Target-P300 average signal of
any of the stimulus variants tested. It is difficult to effectively evaluate the quality of the 5 and
7-Emoji variants due to the substantial presence of confounding SSVEP noise components
induced via the presentation scheme augmentation intervals.

In future assessments, it is recommended that a series of notch filters are performed around a
mean of the predicted SSVEP artefact frequency to more effectively nullify this component.
Further, significant drifting artefacts are present indicating that the compromised baselining
method involving the averaging of the 1st 50ms of each segment did not effectively centre the
samples around a common reference point near zero. This dramatically decreased the abil-
ity of the author to evaluate the quality of the oddball-associated N200 and P300 components.
Additionally, it must be stated that as the number of targets on screen increases and the spacing
between targets decreases the incidence of adjacent error and subject distraction could have
contributed to the relative drop in grand average signal quality, as compared to the 3-Emoji
dataset.

Finally, the impact of the Collapsing procedure on the corresponding mean classification accu-
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racies was inconclusive. The group-level comparisons revealed no significant differences due
to the small 3-subject sample size, however, a clear trend for increased Target classification
accuracies was revealed. These occurred without a corresponding increase in Non-Target sam-
ple accuracies. Effectively, the associated LDA model results demonstrated a higher degree of
volatility within the Overall target accuracies following the implementation of the cross-trial
sequence averaging to simulate more sequences per trial.

This is likely owing to the extremely small number of Target-P300 samples in the evalu-
ation set (see Appendix Tables A.5-A.7). Had the Collapsed data preparation method not
diminished the overall sample size for training and testing to such a degree the author asserts
that this process would likely have proven effective in boosting classification accuracies by
increasing the relative sample sign-to-noise ratios.

In sum, given the numerous qualifications for the interpretation of these data stated above
it is difficult for the authors to definitively assert that a higher number of emoji on-screen
ultimately leads to an increase in the quality of respective Target-P300 forms. Despite this,
via the application of the Pipeline 2 approach, classification accuracies have been consistently
boosted to levels significantly above chance for all subjects tested. Further incidences of
confounding and extreme Non-Target class bias have been nullified and a strong, data-driven
trend has been demonstrated to indicate that a higher number of targets is preferrable for this
emoji-based BCI communication system. Ultimately, any future replication of these experi-
ments must involve the implementation of a continuous sampling method, the collection of 10
sequences per trial and an increased number of trials per subject tested.

4.6.8.6 Summary

Overall, the implementation described using the Pipeline 1 approach initially led the author
to believe that the results indicated agreement with previous literature suggesting a decrease
in stimulus targets and an increase in stimulus separation. This was principally based on the
performance of the 3-Emoji classifier with no localizer data pre-training (see Table 4.3). How-
ever, closer inspection of the Cz grand average plots revealed that the 7-Emoji data presented
with the best P300 waveform features (see Figures 4.6 & 4.12). In the subsequent re-analysis
undertaken via the Pipeline 2 method, the opposing trend emerged, whereby the highest den-
sity, 7-Emoji array, produced the best classification results (see Tables 4.14-4.16).

Notably, these data were handled with greater care in terms of pre-processing and also fea-
tured the application of a 10-fold cross-validation procedure (see subsection 3.3.5.3). Given
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these alternate, more concrete findings the authors assert that these results indicate agreement
with the basic principle of the oddball paradigm, whereby a higher number of targets follow-
ing a randomised presentation scheme improves P300 signal generation due to a decrease in
oddball stimulus probability. Along these very same lines, as noted in subsection 4.6.7.4, the
intentions of implementing the localizer task as a training tool, pre-screening method and LDA
model tuning to address class imbalance issues were ultimately flawed. This is owing to the
high oddball probability of the task and the associated weak P300 signals (see Figure 4.14).





Chapter 5

Experiment 3: Real-Time Feedback
Implementation

5.1 Aims

Experiment 3 aims to address the issues identified throughout the previous experiments con-
ducted relating to overfitting, subject attentiveness and data quality. These areas are tackled
by introducing an expanded localizer task for subject-specific model pre-training, real-time
model prediction subject feedback and an active intra-experimental impedance monitoring
method. Ultimately, it is intended that these adaptations increase model classification accu-
racies above functional percentage limits (70%) across all subjects assessed. As noted in the
previous chapter the motivation to implement the localizer task as a means of pre-training
LDA models questionnable given the high associated stimulus oddball probability. The merits
and flaws of all decision undertaken in this chapter are discussed at length in the associated
conclusions and reflections (see subsections 4.6 & 4.68)

5.2 7 Emoji Variant Selection Rationale

As discussed in subsection 4.6.8.2 the 3 Emoji variant produced the highest levels of classifi-
cation accuracy in both the non-pre-trained and pre-trained LDA model implementations for
the Pipeline 1 implementation. Note, that it is possible to utilize low-resolution (low number
of targets) systems in specific clinical applications where patient end-point users present with
increased sensitivity to intense stimuli and high susceptibility to fatigue. Further, the informa-
tion transfer rate limitations placed on alphanumeric speller systems are somewhat mitigated
during the use of pictorial-emoji style spellers, as the selection of a single target icon could
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save the user significant time communicating the same intentions using traditional text char-
acters.

Despite these considerations, after observing the dramatic changes in performance in the 7
Emoji variant following the localizer data pre-training scheme and the higher P300 signal
quality (see Figures 4.6 & 4.12), the author decided to move forward with this stimulus de-
sign. Primarily this is owing to the increased functional capabilities of the higher-density
system. Further, the use of a 7-emoji array design ensures more data is collected per trial and
reduces the limitations placed on LDA models trained with low-volume datasets. Moreover,
it is predicted that the inclusion of real-time feedback on LDA model predictions relayed to
users on-screen during the task would heighten engagement and minimize the incidence of
subject fatigue. As stated above, on reflection is is clear to the author that the use of a localizer
task with a high oddball stimulus probability as LDA model pre-training stage is suboptimal
owing to the weak P300 signals produced (see Figure 4.4). These considerations where only
reached following the later implementation of the Pipeline 2 approach. Along these very same
lines, all Pipeline 2 results noted herein utilize data exclusively from the main experiment.

5.3 COVID-19 Pandemic Comments

As referenced in the introduction of the thesis, this stage of the data collection process was
significantly hampered by the COVID-19 pandemic restrictions observed across all university
sites. The limitations imposed on in-person experimentation led to a necessary reduction in the
projected sample size of 10 down to the 3 subjects presented herein. For further information
on the impacts of the thesis from this point in time through to the following experimental
series refer back to subsection 1.1.

5.4 Method

Here are outlined the methods employed in the investigations relating to Experiment 3. Broadly,
this features the implementation of a 7-target emoji speller experiment featuring real-time clas-
sification and user prediction feedback (see, Figure 4.2). This also comprises an extended
localizer pre-screening and data acquisition phase alongside the deployment of an online
impedance monitoring system.
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5.4.1 Participants

A total of 3 neuro-typical subjects were recruited from the Durham University student pop-
ulation consisting of 1 male and 2 females (mean age of 27.7 years and age range of 23-33
years). All subjects sampled were pre-screened to ensure all presented with normal or cor-
rected to normal vision, had no history of clinical mental illness or epilepsy and were not
currently experiencing a skin-based ailment of the scalp. No subject received payment to
participate in the experiment. Ethical approval and oversight were granted by the Durham
University Psychology Department Ethics Sub Committee.

5.4.2 Equipment

All EEG data acquired was collected using the Cognioincs Quick-20 headset (Cognionics,
San Diego, USA). The concurrent sampling of amplitude (μV) and impedance (Ω) values were
controlled using the LabStreamingLayer Python library (pylsl) [224]. The visual experimental
stimuli were rendered using a dedicated NVIDIA GTX 750ti GPU (2GB VRAM). Before
and after testing all EEG sensors and the headset housing was thoroughly cleaned with anti-
bacterial gel. The stimulus array was presented to participants while seated at a desk (0.8m
from central head position) via a Samsung LED computer monitor (Model: S27A35OH, 60
Hz refresh rate, 68.5cm diameter).

5.4.3 Stimulus Presentation

The stimuli used in the experiments detailed herein were developed and operated via the Psy-
choPy Python library [221]. All emoji stimulus targets were populated by the OpenMoji
dataset, an open-source emoji repository developed from the outset for free use [222]. A total
of 7 emoji were utilized from this repository alongside 7 visually modified versions of the very
same emoji, forming the augmentation versions of said stimuli. A further 2 pictographic icons
were also utilized from this repo, a thumbs up (emoji tag: 1F44D) and thumbs down (emoji
tag: 1F44E). These were utilized to display visual feedback of the real-time LDA model clas-
sification performance to the subjects. Note, that both were colourized, thumbs up (green) and
thumbs down (red), to enhance the readiness of information relayed to the subjects.

5.4.4 Localizer Task

The localizer task employed largely replicated the methodology implemented in Experiment
2 (see subsection 4.3.4). The task was substantially expanded to include more trials as per
the recommendations cited in the previous summary subsection 4.6.8.6. All subjects were
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instructed to attend and fixate on a single emoji presented centrally on the aforementioned
presentation monitor (see, Figure 5.1). Initially, a 1-second delay period was employed, fol-
lowing this, the on-screen target emoji was either augmented (augmentation duration 0.05
seconds) via the inversion of all black emoji colouration to white, or no change in the appear-
ance of the target emoji was initiated. The randomization protocol controlling the order of
augmentations was computed before the onset of each localizer session according to a strat-
ified procedure. This prevented large clusters of augmentations and non-augmentation trials
throughout the experimental period. Following this stage of the experiment, an inter-trial in-
terval of 1 second was observed to reduce the confounding influence of temporal bleed-over
effects.

Figure 5.1: Here is displayed a dual figure showing the appearance of targets on-screen during the
localizer task. The upper image displays the non-augmented localizer emoji state and the lower image
shows the augmented localizer emoji state. This second image demonstrates the Inversion method of
augmentation and involves modifying all black colourations of the emoji stimulus to white for 0.05ms.
Note, that all stimulus sizing parameters remain consistent with the localizer task outlined in Experi-
ment 2.
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A total of 150 events, 75 Non-P300 (non-augmented) and 75 P300 events (augmented)
were collected. One trial amounts to ((1s + 1s) × 75)+((1s + 0.05s + 1s) ×75) = 303.75
seconds, leading to an experimental duration of 5.06 minutes. Here the 1-second units relate
to the initial trial rest period and post-trial delay stage. Further, the 0.05 second unit relates to
the stimulus augmentation duration that occurs in all P300 trials. These data were treated with
the same preprocessing pipeline, Pipeline 1, outlined in earlier experiments (see subsections
3.3.5.1 & 5.4.8). The event data from this variant were chronologically organized into groups
of 5, all comprising either augmented (P300) or non-augmented (Non-P300) trials and aver-
aged together, as per the standard oddball paradigm procedure. This resulted in a total of 30
trials from the original 150 events sampled.

These modifications were employed to enhance the similarity in characteristics between sig-
nals collected in the localizer and the main experiment. In the previous experiment, no signal
averaging was done on the localizer data at the trial level as it was initially only intended
for screening and visualisation purposes. In this instance, parity in the treatment of the lo-
calizer and main datasets was employed as the evaluation of the latter is, in some stages of
the proceeding analysis, dependent on the former. The difference between averaged and non-
averaged data is clear, with increased non-stationary components such as time-series drift, the
heightened presence of movement artefacts and generally greater variance in the signal overall.

Further, these changes were made to address scaling discrepancies between the localizer and
main experiment training data, as it was thought that having a large difference in scale between
the localizer initialization training data and main experiment training data could mitigate ef-
fective LDA model training. Crucially, subjects were not presented with visual feedback at
this point in the experimental procedure as presently no data had been collected to train a clas-
sifier capable of performing said predictions. Note, that subjects were familiarized with the
feedback mechanism via multiple offline demonstrations of the main experiment.

As previously noted in subsection 4.3.4, originally the author believed that the subjective
perception of stimulus augmentation probability would be lower than the actual 50% aug-
mentation probability. This was due to the erroneous assumption that given the default non-
augmented emoji stimulus was onscreen for the vast majority of the localizer task period and
that the augmentation order was randomized and spread out over the trial period to avoid
large clusters of non-augmentation and augmentation events, the perceived likelihood of stim-
ulus change would be perceptually lower than the given 1:1 ratio. As will be noted in the
corresponding results, conclusions and results sections this assumption was not borne out by
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the analysis despite some indications of improved classification performance for this analysis
variant (see all subsections relating to the LOCRT analysis variant).

This is principally owing to the inverse relationship between stimulus probability and P300
peaking and latency quality (for reference see Figure 2.1). The method of utilizing these
Localizer data as LDA model training samples to ultimately predict the respective class of
samples in the online main experiment was performed exclusively using the Pipeline 1 data
organisation, pre-processing and analysis approach. All subsequent revisions to this method
undertaken in the Pipeline 2 method involved the offline analysis comprising training and
test samples collected using the main 7-Emoji experimental data described in the following
subsection.

5.4.5 Main Experiment

In this final iteration of the main experiment, 7 emoji stimuli are presented across the horizon-
tal centre of the presentation monitor (see, Figure 5.2 upper image). After a 1-second delay
period, a white cueing square is presented indicating the target emoji the subject is to fixate
on and attend to throughout the trial period (see, Figure 5.2 middle image). Following this,
each of the 7 Emoji was augmented according to a non-consecutive randomisation protocol
(augmentation duration = 0.05ms). This involves a modification of each emoji on-screen ac-
cording to a specific time-locked program design to reduce the incidence of spatial bleed-over
effects by preventing the consecutive augmentation of neighbouring stimulus targets. Once
all emojis have been augmented a 500ms inter-sequence interval is observed. The process, as
outlined, is repeated for a total of 5 sequences per trial.

Immediately following the conclusion of the final trial sequence, a 1-second inter-trial interval
is employed. Finally, the real-time classification of the captured trial data is performed and
a feedback icon is presented to the subject in the top-right corner of the presentation monitor
(see, Figure 5.2 lower image). In the event the LDA classifier correctly identifies the target
emoji a green thumbs-up is presented, conversely, a red thumbs-down icon is presented in the
event any other target aside from the cued emoji is incorrectly identified as the target emoji
(total computation time approx. 50ms). The stimulus protocol defined here closely mirrors
the method used in the 7 Emoji variant employed in Experiment 2 (see subsection 4.3.5.1).
The only differences between the methods in terms of timing relate to the inclusion of the
computation duration and the user feedback stage (500ms).This leads to a per trial duration
of, 9.8 seconds as per: 1s + ( ( ( 0.05s + 0.1s) × 7) + 0.5s ) × 5 ) + 1s + 0.05s.
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As can be seen in the respective grand average plots (see Figures 5.7, 5.10 & 5.14), a corre-
sponding 6.67Hz SSVEP is observed in the data owing to the 150ms stimulus onset interval.
As is discussed in the Pipeline 2 subsection (3.3.5.3), the author made efforts to remove this
signal via a targetted notch filter. To clarify this was undertaken exclusively in the Pipeline 2
method following a re-evaluation of the pre-processing methods implemented for Pipeline 1.
The author intended to ensure a maximal separability of the Target-P300 and Non-P300 target
signals. The application of this filter was intended to remove a potential point of similarity
between the classes and thus improve the accuracy of respective LDA classification models.

Further, the author implmented the same increase in stimulus onset interval, 125ms to 150ms,
as was applied in Experiment 2. This was done to reduce the incidence of temporal overlap
between the corresponding emoji-stimulus augmentation onsets. As per [223], it was reasoned
the longer interval should improve the associated P300 peak amplitudes and reduce the latency.
In the simplest terms, this minor adjustment was made in an attempt to improve the quality
of the resulting EEG data. For additional information on the relationship between stimulus
presentation parameters and P300 data quality in BCI context please refer back to subsection
3.3.3.

Initially, a 1-second rest period is implemented. Further, working out from the innermost
brackets, 0.05 seconds denotes the augmentation duration and 0.1 seconds relates to the inter-
stimulus interval, this is repeated for all 7 Emoji targets. Following this, an inter-sequence
interval of 0.5 seconds is enforced and repeated for all 5 sequences making up a single trial.
Finally, a 1-second inter-stimulus interval is observed, with 0.05 seconds allowed for real-time
computation. A total of 30 trials were collected per subject leading to a summed experimental
duration of 4.9 minutes, of which each trial is comprised of 5 underlying stimulus sequences
and hence feature 5 signals for averaging per trial or 150 repetitions per emoji per subject. As
has been discussed at length, this number of sequences was selected originally to maximise
the potential information transfer rate of the final system. This oversight likely hampered
the resulting signal-to-noise ratio of associated samples. To simulate the acquisition of 10
sequences the Pipeline 2 approach features the Collpased assessments, here samples across
adjacent trials are aggregated to simulate the collection of more sequences per trial.
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Figure 5.2: Here are presented three screenshots encompassing the primary stages of the real-time
main experiment. The upper image shows the initial cue phase. This involves positioning a white
cueing square directly below the target emoji subjects to fixate upon throughout the trial period. The
second image in the sequence depicts the inversion method augmentation of the target emoji. This form
of visual modification is applied to each emoji in the array according to a non-consecutive randomised
procedure. The final (lower) image shows the real-time visual feedback presented (green ’Thumbs
Up’) to subjects after the subject-specific LDA model correctly identifies the target emoji. Note, that
in the event of a misclassification, a corresponding red thumbs icon is presented. All of the stimulus
parameter sizing is replicated from the 7 Emoji stimulus variant outlined in Experiment 2.
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5.4.6 Data Acquisition

The same methods of data collection employed in Experiment 1 were reimplemented here
(see subsection 3.3.4). Briefly, these comprise the use of the Cognionics Quick-20 Dry-EEG
headset, sampling at 500 Hz across 9 channels (Fz, Cz, Pz, P4, P3, O1 O2, A1 and A2). As
discussed above, a localizer task was performed before the main experiment. All subjects
were provided with a 2-minute break before the onset of the main experiment to maximise
attentiveness. This was not extended further unless explicitly requested by the subject, as
due to the non-stationary nature of the EEG signal profile the degree of coherence in the
reference signals gathered via the localizer task when compared against those sampled in the
main experiment decreased as a function of time. Note, that two sets of data are stored in real-
time during the data acquisition phase. Initially, the raw data is saved and stored for offline,
pooled-subject assessments. A second set of data is pre-processed on-the-fly, stored and then
processed via a real-time analyses pipeline.

5.4.7 Data Organisation

In the post-experimental period, all data (comprising 3 subjects) was processed into numerous
distinct groups. These comprise an aggregated dataset including all signals sampled across
all subjects (referred to as the Pooled-Subject data) and 3 separate subject-level subsets, built
exclusively from individual data (referred to as the Single-Subject data in tandem with an iden-
tifying numeric for example, Subject 3). Additional class-balanced datasets were developed
(see subsection 5.4.11.3) for the main experimental data. These protocols were not employed
at the Localizer data level as the number of P300 and Non-P300 data samples already has a
perfect 1:1 ratio.

5.4.8 Data Pre-Processing: Pipeline 1

All data including both the Main experiment and Localizer data were initially organised and
pre-processed according to the stages laid in Pipeline 1 (see subsection 3.3.5.3). This same
process was also implemented in the main experiment, at the single-subject level in real-time.
Note, that all processing and analysis for the main experiment regarding aggregated datasets
were performed offline.

5.4.9 Reactive Impedance Monitoring

During both the localizer and main experiment variants, each channel sampled was assessed
after every trial to determine the variance in ohms across the given trial period. Initially, the
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variance across all channels was calculated, following this the variance at each channel was
then evaluated. If a given channel was found to have a variance three times greater than the
median cross-channel variance the entire experiment was paused and the trial was repeated
once the variance across all channels dropped below this threshold. To the subjects, a pause is
indicated by the trial restarting and simply holding the screen at the initiation phase, with all
non-augmented emoji onscreen and the standard white cueing square absent from the display.
Arguably this could have been further reinforced with an additional onscreen cueing symbol
(possibly a ‘pause’ symbol in the top left corner).

The experimenters overcome this limitation by explaining the mechanics of the system in de-
tail to subjects before the onset of the main experiment, alongside demonstrations and a period
for subjects to voice any questions regarding the procedure. Crucially, the same augmentation
sequence is not repeated once the trial restarts, this was anticipated in advance by comput-
ing 4 times as many non-consecutive randomisation sequences as were necessary to complete
the trial if completed flawlessly. This was employed to prevent the loss of data that occurs
at the impedance-based channel rejection stage of the pre-processing pipeline. In effect, any
data passing through this system should not require extensive additional post-processing for
impedance spiking events as this would be completed on the fly.

Active impedance monitoring was also in place to reinforce the necessity to maintain a static
head position throughout the trial. Any excessive movement that introduces impedance spik-
ing would lead to the trial pausing and indicate to the subject that they must be seated with a
neutral posture. Essentially, the protocol was implemented to ensure data interpretation could
be simplified by reducing the possible confounding influence of movement artefacts. As the
Cognionics headset is not fixed to the head with a chin strap as per alternative soft-cap-based
EEG acquisition devices, this active monitoring also ensured that the experiment was con-
ducted with all electrodes positioned over the correct cranial location.

Note that, during the real-time experimental monitoring of impedance values, the 3× vari-
ance threshold was implemented, as stated above. The offline data pre-processing herein used
a higher sensitivity 2× median variance threshold. Initially, a 2× threshold was employed
during pilot testing and proved too sensitive. This led to subject confusion and enhanced the
number of movement artefacts due to subjects communicating with the experimenters during
the live main experiment. As discussed below, for the offline analyses undertaken, some trials
were still excluded from the analysis in the post-processing using these higher sensitivity pa-
rameters. Further, owing to the previous assessments conducted the Pz electrode was excluded
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from both the reactive impedance monitoring and experimental data collection. This is due to
significant issues in electrode positioning and successful seating of the electrode against the
scalp in nearly all subjects tested throughout the experimental series.

5.4.10 Data Pre-Processing: Pipeline 2

Following the initial data pre-processing method outlined in Pipeline 1, all Main experiment
data a secondary approach following the stages defined in Pipeline 2 was implemented. These
are a separate set of results exclusively computed to address the shortfalls of Pipeline 1. For
further information on the differences in these approaches please see subsection 3.3.5.3 and
the associated comparison table (see, Table 3.1). Here, given that the Pipeline 2 method was
developed following the conclusion of Experiment 3, all analyses here are strictly offline. No-
tably, at no point are any Localizer samples or LDA models using pre-trained Localizer sam-
ples used in the computation of any Pipeline 2 results. The Localizer-integrated pre-training
approach was employed originally as a means of addressing the issue of class imbalance for
this 7-emoji real-time experimental variant. Here, Pipeline 2 utilizes a SMOTE-based over-
sampling method to address this issue.

5.4.11 Analysis Variants

The process of analysing this data involved the training of numerous LDA classifiers for each
respective pooled-subject and single-subject dataset. These variants are organized into 4 main
sections, with a series of results computed in real-time using an LDA classifier trained exclu-
sively with the localizer data (LOCRT). A second set of results for the hybrid LDA classifiers
(HYALL) pre-trained on both localizer data and a subset of the data from the main experi-
ment in non-class-balanced and class-balanced formats. Note that, originally an additional
data analysis variant was tested exclusively using non-class balanced data from the main ex-
periment. These results are not discussed here as the results effectively mirror the same overfit
performance metrics as observed for non-class balanced and non-localizer tuned data seen in
Experiment 1 and 2 respectively, (see Appendix A.5). All of the 3 aforementioned analysis
variants involved data organisation, pre-processing and analysis methods outlined in Pipeline 1
approach (see subsection 3.3.5.1). A final set of results is computed for the main experimental
results exclusively using the Pipeline 2 approach, see below for further details.
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5.4.11.1 LOCRT: Pipeline 1

Initially, the data from the localizer task is aggregated, pre-processed and averaged across 5
consecutive trial sequences. This was done in order to mirror the number of sequences utilized
in the main experiment and ensure that the localizer data average signals were constructed with
the same number of samples. As has been noted at length in the previous chapters, the author’s
decision to utilize 5 augmentation sequences is likely flawed given previous findings suggest-
ing a minimum of 10 or 15 sequences are required for effective averaging. These data are
then collated and used to train an LDA classifier specific to the subject in question. Following
this, the main experiment initiates and data across the first 5 trial sequences are aggregated,
pre-processed and averaged into unique emoji-specific signals. Each of the 7 emoji signals is
then evaluated by the localizer pre-trained LDA classifier.

The results of this classification are then presented onscreen to the subject as a form of ac-
tive visual feedback. This is repeated for the remaining 29 trials, against all subsequent emoji
average signals. This means the classifier is evaluated using 210 test events (30 P300 & 180
Non-P300). Note, that this is the only analysis variant that can be classified as online or real-
time, as all other methods required offline processes such as pooled-subject data aggregation
and within-in-task (main experiment) data training. Note, that it was not possible to perform
pooled-subject analysis in real-time as an even amount of subject data could not be guaranteed
for each subject.

The use of the Localizer task as a pre-training method for the associated LDA models in the
real-time lab setting was done principally to address the issue of overfitting and to avoid the
potential confounding effects of spatial and temporal bleedover artefacts present in the main
experiment data. At the time these considerations overly influenced the author and curical
P300 oddball design features were poorly attended. Note, that the stimulus oddball proba-
bility of the Localizer task is 50%, contrasting against the 14.3% oddball probability in the
7-Emoji main experiment.

This suggests there could be a substantial mismatch in the quality of the associated P300s
given the inverse relationship between oddball probability and P300 quality in terms of peak
amplitudes and latencies. Along these very same lines, LDA models trained using Localizer
data could therefore be poorly tuned for the identification of main experiment data. The merits
and consequences of all decisions taken here are evaluated in the corresponding subsections
5.5.3, 5.6.1, and 5.7.
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5.4.11.2 HYALL: No Class-Balancing: Pipeline 1

To probe the effects of a blended pre-training protocol the author also performed a final se-
ries of analyses including data from both the localizer and main experiment. This involves
pre-processing both the localizer and main experimental data, followed by a separate data
randomisation procedure applied to each subset individually. The two datasets are then ag-
gregated, with the class-balanced localizer data positioned first. The default randomisation
settings for the LDA model training protocol are deactivated to ensure the classifier is initially
exposed to the localizer data, followed by the (non-class-balanced) main experimental training
data. Once the LDA model is trained, the classifiers are then evaluated using a subset of the
main experimental data (10% of the total main experimental data).

Note, that evaluations conducted for this analysis variant were undertaken using the Pipeline
1 approach. Hence, the training data was always comprised of the first 90% of all trials
for any given single-subject or pooled-subject dataset. Along these very same lines, the re-
maining 10% of samples were utilized in the test data evaluations. The only application of a
cross-validation procedure for the data collected in Experiment 3 relates to the Oversampled:
Pipeline 2 analysis variant, see below for further details. This was undertaken to probe if the
staged training protocol with a larger total training set could assist in enhancing classification
performance. It was hypothesized that regularizing the LDA models with localizer data before
training on the imbalanced main experiment training data could mitigate the overfitting effects
previously discussed.

5.4.11.3 HYALL: Class-Balanced: Pipeline 1

A secondary HYALL analysis variant was assessed that involved class-balancing the main
experimental data before aggregating the localizer and main experimental training datasets.
This was performed using the same downsampling methodology implemented in Experiments
1 and 2 (see subsection 4.3.6.2). This involved isolating the Target samples from a similar
number of Non-Target samples based on the relative temporal and spatial distance from the
cued stimulus onset events.These additional assessments were performed to observe whether
class-balancing across the entire training set would be more effective at increasing resultant
LDA model performance, as opposed to only increasing the size of the training pool via the in-
troduction of main experiment data as undertaken in the HYALL: No Class-Balancing variant.
Note, that similarly to the models discussed in Experiments 1 and 2, both HYALL assessments
were conducted offline.
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5.4.11.4 Oversampled: Pipeline 2

In a similar approach to Experiments 1 & 2 (refer to subsections 3.4.3 & 4.3.7), the main
experimental dataset for the three subjects assessed (Subjects 1, 2, and 3) in Experiment 3
was re-analyzed using Pipeline 2. This analysis involved training and validating all related
LDA models through 10-fold cross-validation, applied independently to each subject’s data
(see subsection 3.4.3.1). To manage the imbalance between Target and Non-Target samples,
the SMOTE oversampling technique was applied (see subsection 3.4.3.3). The data was or-
ganised into training and testing subsets using a stratified 9:1 ratio of Target and Non-Target
samples to maintain a balanced distribution of classes across f-folds. For the training data,
Target-P300 samples were generated using linear interpolation to match the number of Non-
Target samples. This process was repeated for all 10 cross-validation folds.

Crucially, the no synthetic data was introduced into the test set. Mean accuracy scores (Over-
all, Target, and Non-Target) were calculated and compared against chance levels using one-
tailed one-sample t-tests (see subsection 3.4.3.2). For the analysis, both Non-Collapsed and
Collapsed data configurations were used. In the Collapsed setup, adjacent trial samples were
merged to increase the number of sequences per trial from 5 (as outlined in subsection 3.3.5.3)
to 10. This combination was done before the data was split into training and testing sets for
cross-validation. The effectiveness of this collapsing method in improving classification accu-
racy was evaluated through non-parametric permutation tests on paired-subject data. Notably,
all LDA models trained via the Pipeline 2 approach for either the Non-Collapsed or Collapsed
data preparation methods were done with data exclusively from individual subjects.

5.5 Results: Pipeline 1

Across all subjects, for the localizer and main experiment, a total of 3600 samples were col-
lected and later averaged down to 720 events total. The primary aim of this experiment, as
mentioned above, is to probe the viability of a class-balanced localization task as a pre-training
dataset for an LDA classifier implementing real-time P300 classification with onscreen visual
feedback. Effectively, this aims to ‘close the loop’ by performing all operations live and re-
laying the results of the online analysis to subjects before the onset of the next trial. It is
predicted that this combination of experimental adaptations will enhance the performance of
the proposed emoji-based BCI system by improving subject vigilance and increasing the ro-
bustness of the LDA classifier.
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5.5.1 Data Partitions: Pipeline 1

This final experiment uses just two datasets using samples from the localizer task and the main
experiment (see, Table 5.1). As discussed above, the localizer task is significantly less exten-
sive in duration, meaning there exists a large difference in the number of samples collected
compared with the main experiment. This mirrors real-world applications which require rel-
atively speedy initialization protocols to bring end-point users online as fast as possible. The
majority of the differentiation in analyses comes by way of processing and combination, see
below for more information.

Experimental Variants Localizer Main Experiment

Total Number of Events 90 630

Total Number of Test Events 9 63

Events per Subject 30 210

Test Events per Subject 3 21

Table 5.1: A table showing the differences between the localizer and main experiment in Experiment
3 in terms of the Total Number of Events (all data chunks sampled for each respective emoji across
all subjects), Total number of Test Events (the 10% test data subset for evaluation purposes), Events
per Subject (all emoji data chunks captured per subject) and Test Events per Subject (the 10% test data
subset for each individual that partook in the experiment).
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5.5.2 Analysis Partitions

As only one experimental variant (7 Emoji variant) and one Localizer task (1 Emoji variant)
are utilized, the differences seen in datasets from the previous experiments are not present.
The primary difference in this series of analyses is derived from the combination or isolation
of respective data subsets. See the table below for further information (Table 5.2).

Analysis

Variants

LOCRT HYALL:

No

CLS-BAL

HYALL:

CLS-BAL

Oversampled

Non-

Collapsed

Oversampled

Collapsed

Total
Number
of LOC

Train Events

81 81 81 0 0

Total
Number
of LOC

TestEvents

9 9 9 0 0

Total
Number

of Main Exp

Train Events

0 567 54 189 88

Total
Number

of Main Exp

Test Events

630 63 6 21 10

Table 5.2: A table showing the differences between the five analysis iterations; LOCRT (Localizer
Training + Real-Time Feedback), HYALL: No CLS-BAL (Hybrid Localizer + Main Data LDA train-
ing), HYALL: CLS-BAL (Hybrid Training Scheme with Class-Balanced Main Experiment Data) and
the Oversampled Non-Collapsed and Collapsed variants. Note that the Oversampled methods utilized
single-subject data exclusively and involved the implementation of 10-old cross-validation. Further,
at no point used any Localizer task data and they were pre-processed and analyzed using the Pipeline
2 approach (see, 3.3.5.3). All other variants were processed via the Pipeline 1 method, for further
information see subsections 3.3.5.1 and 5.5.2. The ‘Total Number of LOC Training Events’ refers to
the number of samples used from the localization task to train corresponding LDA classifiers for the
specific pooled-or-single-subject analyses in question. Similarly, the ‘Total Number of LOC Testing
Events’ refers to the number of localizer samples used in evaluating a given LDA classifier. In the
subsequent ‘Main Exp’ data volume and utilization metrics, the same principles apply concerning data
gathered during the main experiment.
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5.5.3 LOCRT: Pipeline 1

All results in this subsection relate to the LOCRT analysis variant (see, 5.4.11.1). This in-
volved exclusively training single-subject LDA models using data from the respective local-
izer task to evaluate samples collected during the main experiment. This is the only real-time
analysis discussed in this subsection, as all other variants involve post-experimental data re-
organisation and training schemes. The result of these analyses was presented to all subjects
during the main-experimental task using the visual feedback indicator, positioned in the upper
right-hand portion of the stimulus monitor (see, Figure 5.2). Note, that the appropriate random
performance thresholds here are 14.2% (see subsection 3.4.2) and ITR values are provided for
these analyses exclusively owing to the real-time classification of the emoji samples collected.
Further, the pooled-subject analysis of these data was not possible as data aggregation across
all subjects assessed could not be completed uniformly until all individuals were tested.

5.5.3.1 Within-Subject

As seen in Table 5.3, greater than random performance was observed for all classification sub-
categories in each subject, excluding the within-class P300 accuracy (33.33%) for Subject 2.
The highest-performing subject (Subject 1) in any 7 Emoji variant experiments conducted thus
far (Subject 1) was revealed, achieving a mean classification accuracy of 80.95%. All subject
LDA models were grid optimized for the solver method, demonstrating the highest perfor-
mance with the lsqr method and a substantial variance in the degree of shrinkage employed
(0.01-0.75). The subject average metrics also show the lowest variance in classification per-
formance for any of the 7 Emoji variants assessed. Note, that a higher variance for the P300
waveform is still present. Note that none of these assessments were cross-validated due to
the implementation of Pipeline 1 methodology. Consequently, interpretations should be made
with caution, as the findings may not generalize beyond the scope of this analysis.
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Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage ITR (bpm)

Subject 1 80.95 66.67 83.33 lsqr 0.01 9.39

Subject 2 55.00 33.33 58.82 lsqr 0.02 3.79

Subject 3 66.67 100.00 61.11 lsqr 0.75 5.99

Sub Avg 67.54 66.67 67.75 n/a 0.26 6.17

Sub Var 12.98 33.34 12.26 n/a 0.37 n/a

Table 5.3: The classification table contains the metrics relevant to the single-subject datasets tested for
the LOCRT analysis variant. As stated above, the accuracy metrics listed here are the product of online
classification. During the trial, EEG data was captured, pre-processed, and classified in real time. The
predictions based on these analyses were then relayed back to the subject at the end of each trial via
the presentation of a feedback indicator denoting the completion of either an accurate (green ‘Thumbs
Up’) or inaccurate (red ‘Thumbs Down’) classification result. For more information see Figure 5.2,
in subsection, 4.4.5: Main Experiment. Note, that these analyses do not include pooled-subject eval-
uations as all respective LDA models were generated using data exclusively from the localizer tasks
employed to a specific subject. The ‘Mean Acc (%)’ column details the cross-class accuracy of all sam-
ples evaluated. This metric is broken down to the within-class level in the respective ‘P300 Acc (%)’
and ‘Non-P300 Acc (%)’ columns denoting LDA classifier accuracies for the separate target classes
tested. The ‘Solver’ and ‘Shrinkage’ values relate to the LDA training grid-optimization scheme em-
ployed to determine the most effective solver method and shrinkage rate respectively. Finally, the ITR
column provides the information transfer rate values of each LDA model trained in bit per minute com-
puted according to the Wolpaw method [109] (see subsection 2.4). Note, that the ‘Sub Avg’ and ‘Sub
Var’ are generated by calculating the mean value of each accuracy metric evaluated and the variance
present within these values respectively.

A confusion matrix relating to the analysis conducted for Subject 1 is positioned below
(see, Figure 5.3). This reveals high classification performance for the Non-P300 target class,
alongside near-functional performance for the P300 waveform classifier. Importantly, the high
classification accuracy in one class is not to the detriment of the other target class. The cou-
pling of subject-specific localizer-based training data and a class-balanced data structure did
appear to improve the classification performance of the evaluated LDA model. This suggests
that the reduced noise present in the localizer data may be more suitable for the training of
such classifiers, as the interference of temporal and spatial artefacts, present in the main exper-
imental data are not confusing the direction of data separation computed by the LDA model.
Despite this, the small sample size, the absence of statistical significance testing and the poor
quality of the associated Localizer Cz grand-average plot restrict broad conclusions regarding
P300-speller performance from being made based on these findings.
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Figure 5.3: Here is displayed a normalized confusion matrix reporting the classification performance
of the trained LDA model for both P300 and Non-P300 classes relating to Subject 1 in the LOCRT
analyses block (refer to, Tables 5.2 & 5.3).

The figure positioned below (see, Figure 5.4) illustrates the below random-threshold per-
formance for Subject 2 for the target P300 class. As seen in the upper right quadrant, the in-
stances of confusion demonstrated by the classifier for the P300 class outweigh the instances
of accurate classification. This may be due to the relatively small number of localizer trials
captured, or potentially poor compliance with task instructions by the subject. Note, that at
no point was any eye-tracking performed to monitor the subject gaze position during the task.
These additional controls would help eliminate the potentially confounding effects of low-
quality data inclusion alongside the online impedance assessments discussed in the method
section (see subsection 5.4.9).
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Figure 5.4: Here is displayed a normalized confusion matrix reporting the classification performance
of the trained LDA model for both P300 and Non-P300 classes relating to Subject 2 in the LOCRT
analyses block (refer to, Tables 5.2 & 5.3).

As illustrated in Figure 5.5, the Cz grand averages for the P300-Target trials reveal that
the waveforms for single Localizer emoji stimuli diverge marginally from those collected dur-
ing the Non-Target trials. This plot differs significantly from the Localizer average signals
obtained in Experiment 2 (see Figure 4.14). Notably, a mild N200 component is observed,
along with a distinct peaking event around 320 ms. This observation might suggest that the
increased number of trials in the Localizer task variant of Experiment 3 allowed the predicted
subjective probability of less than 50% to become more apparent. However, this is unlikely,
given that the differences in amplitude are around 0.5 µV and individual samples are likely
to exhibit considerable overlap. To clarify once again, the oddball probability of 0.50 for the
augmentation (colour inversion) of the emoji stimulus is substantially higher than that em-
ployed in typical P300 experimental settings and it is predicted that implementing a variant
with a lower probability would have resulted in substantially improved LOCRT classification
results.
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Figure 5.5: This figure presents a Cz grand average plot showing cross-trial P300 (solid line) and Non-
P300 (dashed line) event signals for the Localizer data used (refer to subsection 5.4.11.1). The x-axis
represents time in milliseconds for each 500ms event data chunk, while the y-axis shows amplitude in
μV of the EEG signal. The averages across these classes highlight underlying EEG waveform patterns
embedded in the signals. It is important to note that the Cz channel was exclusively used for con-
structing these plots. Additionally, all signalswere baselined by averaging the first 50ms of collected
samples. This baselining was done solely for presentation purposes and was not applied during the
Pipeline 1 data pre-processing as outlined in subsection 3.3.5.3 (see Table 3.1).

5.5.4 HYALL: No Class-Balancing: Pipeline 1

The results discussed in this subsection refer to the blended training data method outlined in
the HYALL NO-BAL analysis variant (see, 5.4.11.2). At no point were the main experimental
data subjected to any class balancing operations and retained the original 6:1 Non-P300:P300
sample ratio. Both cross and single-subject analyses are conducted herein to probe the influ-
ence of cross-trial and pooled-subject data aggregation in the development of classification
method performance.
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5.5.4.1 Pooled-Subject

All results reported in this subsection concern analyses conducted at the pooled-subject level
and implemented using the Pipeline 1 approach (see subsection 3.3.5.1). The classification
performance of the trained LDA model in the pooled-subject dataset for the P300 target class
reports an accuracy of 0% (see, Table 5.4). Further, the Non-P300 target class was correctly
identified in 96.55% of all instances. The grid optimization method revealed the combination
of the lsqr solver method and shrinkage at 0.1 to be the nominal LDA training parameters for
maximal classification performance. These findings indicate that overfitting is still a prevalent
issue, irrespective of the initial LDA model training stage featuring class-balanced localizer
data.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subject 78.87 0.00 96.55 lsqr 0.10

Table 5.4: The classification table herein presents the results generated from the HYALL: No Class-
Balancing analysis variant for the pooled-subjects samples involving an LDA-model localizer pre-
training and non-class balanced main experimental data training stage. For further information on field
headings and interpretation refer to Tables 4.2 & 4.3.

Further, as seen in the confusion matrix below (see, Figure 5.6) the LDA model misclassi-
fied just 3.4% of all Non-P300 trials as belonging to the P300 class. In all samples evaluated,
none of the P300 trial averages was correctly identified as belonging to this target class. Pre-
viously, the author asserted that greater data volumes in non-class-balanced pooled-subject
datasets could reduce the incidence of overfitting. The increased data volumes in concert with
a wide array of P300 and Non-P300 expression variants collected across multiple subjects
could also have provided resultant classifiers with increased resilience to the characteristically
noisy EEG data.
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Figure 5.6: Here is presented a confusion matrix illustrating the classification pattern generated by the
pooled-subject LDA model trained via the HYALL: No Class-Balancing analysis variant (see subsec-
tion 5.4.11.2).

In the grand average plot positioned below (see, Figure 5.7), the P300 average signal
does not demonstrate the traditional visually generated-event-related waveform characteris-
tics. This is primarily due to the absence of both a negative component around 100ms and
a positive crest between 300-400ms. The Non-P300 average signal plot features both typical
waveform characteristics, with the distinct absence of a final reduction in amplitude post-crest.
Note, that it is possible subjects did not adhere strictly to experimenter instructions, varying
gaze locations across the screen during trials. Due to the absence of concurrent eye-tracking,
the evaluations of these possibilities lie beyond the scope of this analysis. Crucially, it must
be noted that this does not indicate data mislabelling, as there are numerous instances of the
opposing trend observed throughout the analysis for the same dataset.
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Figure 5.7: Here are presented the average-signal plots for the pooled-subject dataset relating to the
HYALL: No Class-Balancing analysis variant. The plot contains the P300 (solid line) event average
and the Non-P300 (dashed line) event average signal.

5.5.4.2 Within-Subject

This subsection focuses on the discussion of single-subject results for the HYALL: No Class-
Balancing analysis variant (see subsection 5.4.11.2). All LDA models herein follow the
same training methodology outlined earlier using data exclusively from individual subjects.
The results of the single-subject analyses largely mirror the trends discussed at the pooled-
subject level. As seen in Table 5.5, near-to-maximal classification accuracy is achieved for
the Non-P300 target class for each subject evaluated. A sole subject (Subject 3) demonstrated
marginally less susceptibility to the overfitting behaviour observed for the remaining subjects,
with a P300 target class accuracy of 20%. All subject data revealed selection preferences for
the lsqr grid search optimization solver method. It must be noted that additional variation for
Subject 3 can also be seen in the dramatically higher shrinkage factor (0.86), as compared to
Subjects 1 and 2.
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Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 79.17 0.00 100.00 lsqr 0.29

Subject 2 82.61 0.00 100.00 lsqr 0.11

Subject 3 79.17 20.00 94.74 lsqr 0.33

Sub Avg 80.32 6.67 98.25 n/a 0.24

Sub Var 1.72 10.00 2.63 n/a 0.11

Table 5.5: The classification table herein presents the results generated from the HYALL: No Class-
Balancing analysis variant, involving an LDA-model localizer pre-training and non-class balanced main
experimental data training stage.

Figure 5.8: Confusion matrix illustrating the classification pattern generated by the LDA-model trained
via the HYALL: No Class-Balancing analysis variant for Subject 2 (see subsection 5.4.11.2).

Above is presented a confusion matrix (see, Figure 5.8), illustrating the classification per-
formance pattern of the LDA model trained via the HYALL: No Class-Balancing analysis
variant. The model demonstrated a complete selective bias towards the Non-P300 target class
for Subject 2. All instances of P300 prediction were confused and misclassified as Non-P300
events.
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5.5.5 HYALL: Class-Balanced: Pipeline 1

All results reported in the following section relate to the HYALL: Class-Balanced analysis
variant (see subsection 5.4.11.3). This involved training all respective LDA classifiers accord-
ing to a scheduled training programme. Initially, models were trained using data captured from
the localizer task and later trained using the data collected during the main experimental pe-
riod. Note that, data randomisation was undertaken within these specific subsets to prevent the
confounding influence of order effects. Crucially, the data utilized from the main experiment
was processed via a class-balancing protocol to ensure the 1:1 ratio of P300 and Non-P300
event samples (see subsection 3.4.1).

5.5.5.1 Pooled-Subject

The evaluation of aggregated pooled-subject data was conducted in the same manner as in
previous subsections. This involved collating samples across all subjects tested, with the first
90% of samples collected comprising the training data and the final 10% assigned to the test
dataset.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled Subject 51.85 46.15 57.14 lsqr 0.46

Table 5.6: The classification table herein presents the results collected during the HYALL: Class-
Balanced analysis variant for the pooled-subjects data samples involving an LDA-model localizer pre-
training phase and a class-balanced main experimental data training stage.

The results presented in Table 5.6 demonstrate that the LDA model trained using the
pooled-subject HYALL: Class-Balanced analysis variant achieved a mean classification ac-
curacy of 51.85%. A similar result is reported for the Non-P300 target class (57.14%) with a
sub-random accuracy shown for the P300 target class (46.15%). As seen in previous iterations
of the analysis, the lsqr solver is selected by the hyper-parameter grid optimization method,
with a shrinkage of 0.46. The consistent application of class balancing for the localizer and
main experiment data undertaken for this analysis variant did not translate into higher classifi-
cation performance. As the ratio between classes in the training data has been controlled for it
suggests that the poor AoC observed are owing to individual differences in the expression of
the P300 waveform across subjects. Alternatively, the differences in P300 expression across
the two different tasks from which the data are aggregated could preclude the cohesive group-
ing of classes in feature space, reducing the capacity of the models to effectively separate the
data.
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Figure 5.9: Here is presented a confusion matrix showing the classification performance generated by
the pooled-subject LDA model trained via the HYALL: Class-Balanced analysis variant (see subsection
5.4.11.3).

As seen in the above confusion matrix plot (see, Figure 5.9), the respective LDA model
demonstrates low classification performance for both the P300 and Non-P300 target classes
evaluated. It could be argued that a slight selective bias in the target classification pattern can
be observed for the Non-P300 target class. Despite this, the marginal differences in perfor-
mance metrics exclude the ability to assert these claims with certainty.
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Figure 5.10: Here are presented the Cz grand average-signal plots for the pooled-subject dataset re-
lating to the HYALL: Class-Balanced analysis variant. The solid line the P300 event average and the
dashed line illustrates the Non-P300 event average signal. Note, that there is substantial similarity
between these plots for the P300 waveform as these averages were computed in both instances using
the same P300 event samples. The only difference here is the Non-Target samples used following the
downsampling procedure used to enforce class-balancing (see Table 5.2 & subsection 5.4.11.3).

In the grand average positioned above (see, Figure 5.10), it appears the intended process
of deleterious averaging to amplify inherent waveform features has reduced the prevalence of
any strong and consistent differences in amplitude over time for the P300 waveform (solid
line). In contrast, the Non-P300 waveform plot is a more typical example of the P300 wave-
form expected in precisely the opposing data type. The plot suggests that numerous samples
containing P300 waveform features were subsampled from the main experiment data into the
class-balanced Non-P300 group. This occurred despite efforts to select data from non-target
emojis with the highest degree of spatial and temporal separation from the cued target emoji
stimulus. To avoid this in the future, it may be preferable to generate multiple datasets sub-
sampled from the Non-P300 events and perform a series of training and evaluation sessions,
this is explored in the Pipeline 2 approach via k-fold cross-validation.
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5.5.5.2 Within-Subject

The subsection herein relates to the single-subject results for the HYALL: Class-Balanced
analysis variant. The classification table (see, Table 5.7) shows significant variance in LDA
model performance across all subjects. Subject 1 demonstrates a selective preference for
the P300 target class, the opposite trend is present for Subject 2 and Subject 3 illustrates a
general lack of bias in concert with low classification accuracies for both classes tested. The
highest mean accuracy attained is shared across Subjects 1 and 2 (66.67%), due to the mirrored
classification performance for target classes. Additional similarities are observed in the rate
of shrinkage (0.01 and 0.00) respectively. Subject 3 presents with a significantly higher grid-
optimized shrinkage rate and all subjects share the selection of the lsqr as the solver method.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Subject 1 66.67 80.00 50.00 lsqr 0.01

Subject 2 66.67 50.00 80.00 lsqr 0.00

Subject 3 44.44 40.00 50.00 lsqr 0.86

Sub Avg 59.26 56.67 60.00 n/a 0.29

Sub Var 11.12 20.00 15.00 n/a 0.43

Table 5.7: The classification table herein presents the results collected during the HYALL: Class-
Balanced analysis variant for the single-subject samples involving an LDA-model localizer pre-training
phase and a class-balanced main experimental data training stage.
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Figure 5.11: Here is presented a confusion matrix showing the classification performance gathered
during the within-subject analysis of Subject 1 for the LDA model trained via the HYALL: Class-
Balanced analysis variant (see subsection 5.4.11.3).

The confusion matrix positioned above (see, Figure 5.11) provides further insight into the
classification performance of Subject 1 for the HYALL: Class-Balanced analysis variant. The
upper two quadrants reveal the LDA model did demonstrate a high incidence of correctly
classifying P300 waveforms. This trend is not replicated for the Non-P300 target class.
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Figure 5.12: Here is shown a confusion matrix presenting the classification performance gathered
during the within-subject analysis of Subject 2 for the LDA model trained via the HYALL: Class-
Balanced analysis variant (see subsection 5.4.11.3).

The above figure (see, Figure 5.12) shows the inverse pattern of classification to the previ-
ous plot (see, Figure 5.11), with a high incidence of classification accuracy for the Non-P300
event samples and poor performance for the P300 events evaluated. Overall, these results sug-
gest that the implementation of strict class-balancing protocols at the single-subject level can
not remove all instances of class-wise selection bias.

5.5.6 Oversampled: Non-Collapsed: Pipeline 2

This subsection presents results for the Non-Collapsed Oversampled analysis variant imple-
mented using Pipeline 2. As previously mentioned, Non-Collapsed samples were created us-
ing all 5 sequences per trial. Again, the class imbalance inherent to the data set was addressed
here via the implementation of the SMOTE oversampling method involving cross-sample lin-
ear interpolation to generate synthetic data. The results focus on single-subject mean classi-
fication accuracies for Overall, Target, and Non-Target categories, assessed for significance
using a one-sample t-test (threshold, p<0.05). Additionally, group-level results are examined
through a paired-subjects permutation test (see subsections 3.4.3.2 and 5.4.11.4).
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Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.83* 0.06 0.94* 0.10 0.74* (p=0.0002) 0.13

2 0.72* 0.05 0.82* 0.07 0.62* (p=0.0115) 0.12

3 0.82* 0.13 0.96* 0.07 0.69* (p=0.018) 0.21

Table 5.8: Here is presented a table showing the performance metrics associated with Subjects 1, 2 &
3 for the Oversampled Non-Collapsed data partition (see, Table 5.2). All results were computed fol-
lowing the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology
(see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Here all individual samples are composed
of averages computed across all 5 augmentation sequences within each respective trial (see subsection
5.4.11.4). Note, that all cell values denoted with a * indicate a significantly higher mean classification
accuracy than the 50% chance level for the binary (Target vs. Non-Target) classification task. For ad-
ditional information on table field headings and interpretation please refer to Table 3.16.

As seen in the table above (see, Table 5.8), all single subject-level tests comparing the
accuracy metrics (Overall, Target & Non-Target) collected during respective 10-fold cross-
validation assessments revealed significant differences to the chance 50% level. Notably, Sub-
ject 2 provided a marginal result (p=0.015) owing to the low accuracy metric and relatively
high associated standard deviation. Further, the group-level results comparing accuracy met-
rics across subjects against the chance level showed a significant difference from the threshold
of 50%, with the Non-Target values providing another highly marginal result (p=0.048). Note,
again that these permutation assessments have diminished statistical power given the small
sample size (3 subjects).
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Figure 5.13: This is an average plot constructed exclusively from the Cz electrode for all P300, Av-
eraged Target Emoji (solid line) and Non-P300 Averaged Non-Target Emoji (dashed line) samples
collected across Subjects 1, 2 & 3 for the Non-Collapsed Oversampled data partition (see, Table 5.2).
As can be seen, the time dimension is positioned on the x-axis (0-500ms) and the micro-voltage range
is oriented to the y-axis. All samples were processed using the Pipeline 2 data pre-processing methods
(see subsections 3.3.5.3 & 5.4.8). Target P300 and Non-Target P300 samples were averaged and aggre-
gated into separate arrays to compute the grand pooled-subject mean signal shown in the plot. A total
of 84 P300 and 547 Non-P300 samples were used, with no synthetic P300 samples included in these
averages. The key difference between the Non-Collapsed and Collapsed data variants is the number
of sequences per sample average. Since the plot here includes all samples, it represents a linear com-
bination of all signals in the augmentation variant, making the Collapsed data average plot effectively
identical to the one shown.

In the plot shown here, the Cz grand averages of the Target-P300 and Non-P300 reveal
a similar pattern as noted in all previous Pipeline 2 EEG signal plots. Here, a mild negative
component around 200ms is followed by a pair of large deflections around 300ms. The au-
thors assert that these could relate to the aforementioned P300a and P300b waveform features.
Notably, the Non-Target average displays the same lower degree of signal variance. Further, a
signal with a periodicity of around 130ms is also observable, here this could be due to the inef-
fective application of a 6.67Hz filter to remove associated stimulus-induced SSVEPs. Overall,
the quality of these signals is not impressive, however, these data should be adequate for the
discrimination of the classes via the LDA, as evidenced in Table 5.8.
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5.5.7 Oversampled: Collapsed: Pipeline 2

This subsection presents the results of the Collapsed Oversampled analysis variant, imple-
mented using Pipeline 2. As previously described, Collapsed samples were created by averag-
ing 10 sequences from consecutive experimental trials. In addition to one-sample t-tests and
group-level results, the overall mean accuracies of the Non-Collapsed and Collapsed data are
compared directly using a paired-subjects permutation test. As shown below (see, Table 5.9),
all overall and Target mean classification accuracies were significantly above the 50% ran-
dom performance threshold. However, after applying the Collapsed data preparation method,
both Subject 1 (p=0.101) and Subject 3 (p=0.297) did not achieve accuracies significantly
above random performance for the Non-Target samples. This outcome is attributed to a rel-
ative decrease in mean accuracy and an increase in associated standard deviations following
the Collapsed data preparation method. At the group level, the only metric not significantly
different from chance was the Non-Target accuracy metrics. This suggests that an increase in
Target classification accuracies may have led to a relative decrease in Non-Target accuracies.

Overall Target Non-Target

Subjects Acc Mean Std Dev Acc Mean Std Dev Acc Mean Std Dev

1 0.77* 0.08 0.93* 0.10 0.61 0.16

2 0.83* 0.09 0.99* 0.03 0.66* 0.22

3 0.78* 0.11 1.00* 0.00 0.57 0.20

Table 5.9: Here is presented a table showing the performance metrics associated with Subjects 1, 2
& 3 for the Oversampled Collapsed data partition (see, Table 5.2). All results were computed follow-
ing the stages laid out in the Pipeline 2 data organisation, pre-processing and analysis methodology
(see subsection 3.3.5.3 Data Pre-Processing: Pipeline 2). Here all individual samples are composed
of averages computed across 10 augmentation sequences from adjacent subject trials (see subsection
5.4.11.4). Note, that all cell values denoted with a * indicate a significantly higher mean classification
accuracy than the 50% chance level for the binary (Target vs. Non-Target) classification task. For
additional information on table field headings and interpretation please refer to Table 3.16.

Here, the differences in subject-matched Overall mean classification accuracies for the
Non-Collapsed and Collaped data preparation methods are presented. The figure further re-
inforces the notion that, given the low number of samples remaining following the Collapsed
method, the outcomes for individual subjects are fairly volatile, leading to an increase in rel-
ative standard deviations and most instances trends. Despite this, evidence of the contrary is
present in the plot, with Subject 2 showing a dramatic increase in overall accuracy. This was
manifested by a jump of 17% for the Target samples and a corresponding 4% increase for
the Non-Target samples. This suggests, at least for some subjects, that the relative drop in
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the number of trials available is not a hindrance to the respective classifier training. Notably,
board conclusions can not be made given the small 3-subject dataset.

Figure 5.14: The plot presents a paired bar chart illustrating the mean Overall accuracies and standard
deviations for the Non-Collapsed (white bars) and Collapsed (grey bars) data preparation methods
across each subject, using the main experimental data. The Non-Collapsed bars represent datasets
where each sample is an average of 5 augmentation sequences (see subsection 3.3.5.3 for details),
while the Collapsed bars correspond to samples derived from 10 sequences by aggregating adjacent
trials. These mean values are obtained from a 10-fold cross-validation for each of the three subjects
(1, 3, & 5), as well as the pooled-subject average (Avg.) (see subsection 3.4.3.1). The plot also
features standard deviation bars to indicate variability and annotations with the mean accuracy values.
A horizontal dashed line at 70% serves as a performance benchmark for evaluating each method.

5.6 Conclusion

All findings and conclusions discussed herein relate to Experiment 3. The corresponding ta-
bles and figures can be found in the text positioned above. Again, these investigations featured
real-time classification, user prediction feedback and an active impedance monitoring system
for a 7-emoji target array. Notably, the use of either the Pipeline 1 or 2 approaches in the data
organisation and preparation methods for each respective analysis variant is indicated in the
respective subsection titles.
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5.6.1 LOCRT: Pipeline 1

The analysis variant discussed here (LOCRT) was performed exclusively at the single-subject
level and represents the only instance of a true real-time, closed-loop BCI speller system
detailed in this thesis. The data used in the respective LDA model training sets was taken
solely from the EEG time series acquired during the localizer pre-screening task. These very
same models were then implemented in the online classification of samples collected during
the main experimental period.

5.6.1.1 Within-Subject

The presence of classification accuracies above random performance (14.2%) for all sub-
categories, except the Subject 2 P300 Acc (%) (see, Table 5.3), is a substantial improvement
when compared to the results of previous iterations discussed in earlier sections using the
Pipeline 1 method. Crucially, the LOCRT analysis variant presents one of the highest per-
forming single-subjects (Subject 1) in terms of ITR (9.39 bpm) and mean classification accu-
racy of 80.95% for the Pipeline 1 approach. This could be due to the decreased prevalence of
spatial and temporal bleed-over effects, such as double flashing and adjacency error afforded
by the 1-emoji target array of the localizer task training data. Despite this improvement in
results, the variance in performance for P300 and Non-P300 target classification accuracies
within subjects remains large.

Further, the P300 and Non-P300 grand average plot (see, Figure 5.5) generated across subjects
demonstrate some atypical waveform characteristics as well as weak P300 peaking component
and slightly delayed latency of around 350ms. This is likely owing to the high oddball stimu-
lus probability of the Localizer task. (0.5). This reduces the ability of the author to confidently
assert that the classification of these samples was performed successfully based on the sepa-
ration of P300 and Non-P300 waveform features. Note, that these plots were generated using
Localizer task data.

5.6.1.2 Variant Summary

The author initially designed the Localizer task with multiple objectives: to train subjects, pre-
screen the quality of P300 signals, and, in Experiment 3, provide pre-training data for LDA
classifiers in online decoding. Additionally, the Localizer task employed a class-balanced pre-
sentation scheme and a single onscreen emoji to address the Target: Non-Target sample ratio
issue and to mitigate potential spatial and temporal bleedover effects that could compromise
the LDA model training. However, these objectives were significantly compromised due to
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fundamental flaws in the task’s design. Although the intention to minimize bleedover effects
was sound, it could have been more effectively achieved by employing a 1-Emoji array with a
lower oddball probability. The decision to use a high oddball probability of 50%, as depicted
in the Cz grand average plot (Figure 5.5), substantially reduced the task’s effectiveness in gen-
erating robust P300 signals.

Moreover, the discrepancy in oddball probability between the Localizer task and the main
experiment led to the pre-training of LDA models on samples that likely exhibited different
waveform characteristics. This inconsistency is evident when comparing Figure 5.5 with Fig-
ure 5.7, where the features of the waveforms differ significantly. Although the results from
the Localizer task represent some of the best performance metrics recorded using the Pipeline
1 approach, it is important to note that this method did not include a 10-fold cross-validation
procedure, as later adopted in the Pipeline 2 approach. Consequently, the validity of these
results is inherently questionable. In hindsight, the author recognizes that a more effective
strategy would have been to implement a shorter version of the main experimental task, in-
creasing the number of sequences per trial in both instances. This approach would likely have
improved averaging and enhanced the signal-to-noise ratio, leading to more reliable and valid
results.

5.6.2 HYALL: No Class-Balancing: Pipeline 1

The analysis variant detailed herein (HYALL: No Class-Balancing), involved training the re-
spective LDA models at the single and pooled-subject levels using all the data collected during
both the localizer task and the main experiment. Note, that this produced significant class-
imbalance in the corresponding main experiment training dataset. Again, all LDA models
were first tuned with the localizer dataset and subsequently trained with samples from the
main experiment. To clarify, owing to the use of main experiment data in the LDA training
set, all analyses discussed here are categorized as offline.

5.6.2.1 Pooled-Subject

In consideration of the results collected for the pooled-subject HYALL: No Clas-Balancing
analysis variant (see, Table 5.4) accuracies exceeding the random performance threshold for
the P300 class are not observed. This suggests that the previous assertions surrounding the
potential benefits of pooled-subject aggregation to increase training data volume and resultant
model robustness do not apply in this context. Note, that these conclusions are given valid-
ity specifically by the pooled-subject HYALL: No Class-Balancing data evaluation, as this
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analysis variant, contains the largest training dataset used in the LDA-model training for this
experimental implementation (see, Table 5.2). Furthermore, the same pattern of atypical P300
and Non-P300 waveform features in the corresponding pooled-subject grand average plot (see,
Figure 5.7) adds further weight to the suggestion that the aggregation of pooled-subject data
for this analysis variant is unviable. Overall, the results suggest that the application of a pre-
training stage utilizing class-balanced localizer data is not sufficient to prevent model overfit-
ting during subsequent training with non-class-balanced data from the main experiment. This
is likely owing to the large difference in oddball probability between the localizer and main
experimental data. This likely introduce heterogeneity into the Target samples and reduced
the effectiveness of the associated LDA models to accurately predict these data classes.

5.6.2.2 Within-Subject

It is clear that the HYALL: No Class-Balancing analysis variant performed similarly at both
cross and single-subject levels (see, Table 5.5). The only deviation from this pattern of overfit-
ting was found in Subject 3. The imbalanced ratio of P300 and Non-P300 events in the main
experiment data precluded LDA-model class separation in nearly all single-subject instances.
Both of the noted confusion matrices (see, Figures 5.6 & 5.8), to marginally varying degrees,
broadly illustrate the same pattern of selective bias for the more numerous Non-P300 event
class. Parity in the incidence of misclassification events across classes is a typical sign of
effective classifier learning. The absence of this phenomenon here amplifies the likelihood of
model overfitting.

5.6.2.3 Variant Summary

Overall, it is clear that the efforts undertaken to enhance LDA model robustness via the use
of high-volume aggregated cross-experiment datasets were not successful. This is likely ow-
ing to the differences between data quality in the localizer task and the main experiment, in
addition to the absence of class balancing in the main experiment data. As both single and
pooled-subject data demonstrate poor performance it suggests that the issues of individual
differences between subjects do not account for all the variance in determining classification
accuracy. Had this been the case, the single-subject results would not demonstrate the same
sub-random classification performance.

The possibility remains that two separate depressant effects are influencing each dataset in-
dividually. For example, individual differences may be reducing pooled-subject performance
and low sample size could be driving the low classification accuracies at the single-subject
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level. Despite these considerations, it is unlikely both sets of results would be expressed with
such high levels of similarity in the absence of a shared confounding variable, principally the
absence of a class balancing or fully regularized (weight) LDA training stage. Further, as seen
in both plots (see Figures 5.5 and 5.7) neither the localizer or main experiment data contain
the expected P300 waveform features. For the localizer task this is likely owing primarily
to the high oddball stimulus probability of the augmentation events. Regarding the HYALL:
No Class-Balancing plot, this is likely related to the suboptimal implementation of data or-
ganisation and pre-processing methods employed via the Pipeline 1 method (see subsection
3.3.5.1).

5.6.3 HYALL: Class-Balanced: Pipeline 1

The analysis variant detailed herein (HYALL: Class-Balanced), involved training the respec-
tive LDA models at the single and pooled-subject levels using data collected during the local-
izer task and an artificially class-balanced subsample of the main experiment data (see, Table
5.2). Again, all LDA models were first tuned with the localizer dataset and subsequently
trained with the subsampled main experiment data. Note, that owing to the use of main exper-
iment data, all analyses discussed here are categorized as offline.

5.6.3.1 Pooled-Subject

As shown in Table 5.6, the overfitting issues prevalent in many of the results sections presented
herein do appear to have been mitigated after enforcing class balancing in the training dataset.
Despite this, these contingencies were not adequate to advance the progress of the model past
the random performance threshold (50%). When comparing these results to those gathered
in the LOCRT analysis variant (see, Table 5.3), it could be suggested that the data collected
during the main experiment is of inherently lower quality. Originally it was asserted that the
integration of main experimental data into the training sample subset should improve model
resilience to noise artefacts. On reflection, the inclusion of the localizer task data likely intro-
duced significant variance within the Target P300 class samples and reduced the homogeneity
of the associated grouping. This likely dropped the classification performance by complicating
the task of data grouping by the associated LDA model.

5.6.3.2 Within-Subject

As seen in Table 5.7, there is a substantial reduction of overfit prevalence for all subjects
tested as compared to the HYALL: No Class-Balancing variant (see, Table 5.5). Despite this,
the presence of selective bias was not removed entirely, as shown by the 30% difference in
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performance observed for Subjects 1 and 2 when comparing the P300 and Non-P300 classi-
fication accuracies. These results suggest that class-balancing is necessary, not sufficient, for
classifier performance enhancement. Increased high-quality data volumes are likely needed
to adequately train the LDA models to accurately identify these complex data features. As
these models were trained using single-subject, class-balanced data the LDA model used can
be evaluated in the absence of issues relating to individual differences and dataset class ratios.
None of the models tested produced classification accuracies above the random performance
threshold for both the Non-P300 and P300 classes. This suggests that the comingling of data
across the localizer and main experiment prevented effective learning in the associated LDA
models.

5.6.3.3 Variant Summary

In conclusion, the application of class balancing for both the cross and single-subject datasets
for the aggregated localizer and main experiment data is not sufficient to produce LDA mod-
els with high classification accuracies. This is likely related to the mixing of samples across
experimental variants. As noted above, the utilization of the localizer task data is likely flawed
due to the difference in P300 waveform expression as a function of the higher relative odd-
ball probability, as compared to the main task. This likely impacted the classification results
negatively. Any reimplementation of a similar 1-Emoji localizer task must feature the same
stimulus oddball presentation probability as the main task to ensure the generation of similar
P300 amplitudes and latency, while also reducing the confounding noise components that are
introduced via neighbouring targets.

5.6.4 Oversampled: Pipeline 2

The Non-Collapsed Oversampled analysis, involving the use of the SMOTE oversampling
method to increase the relative number of minority class Target samples via linear interpo-
lation (see subsection 5.4.11.4), produced the highest overall mean accuracies in all three
subjects assessed for the data captured in Experiment 3. Notably, the Overall, Target and
Non-Target offline accuracies were all reported as significantly higher than the 50% random
performance threshold (p<0.05) as computed via one-sample t-tests. Here, as compared to the
LOCRT method (see, Table 5.3), Subject 1 appears to have increased in mean classification
performance by around just 2%. Further, a relative drop in performance is observed for Sub-
ject 1 for the Collapsed (cross-trial sequence averaging) data partition (see subsection 3.3.5.3).
However, it must be stated that these initial assessments, LOCRT (5.5.3), HYALL: No Class-
Balancing (5.5.4) and HYALL Class-Balanced (5.5.5), were undertaken via the Pipeline 1
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Approach and were not performed according to a 10-fold cross-validation procedure (see sub-
section 3.3.5.3).

The influence of the Collapsed data preparation method appears broadly negative when com-
pared to the Non-Collapsed method (see Figure 5.14). Specifically, two out of three subjects
showed a significant drop in overall mean classification accuracy, along with a substantial in-
crease in the associated standard deviations for the Non-Target class. Group-level statistics
revealed a significant decline in classification performance, which was restricted exclusively
to the Non-Target samples. At the single-subject level, mean Non-Target classification accura-
cies for Subjects 1 (61%) and 3 (57%) were not significantly different from chance. Moreover,
the evidence of bias toward the Target-P300 class is substantially higher here compared to the
Non-Collapsed data preparation (see Tables 5.8 & 5.9). This bias is reflected in the observed
large increase in Target classification accuracies (14.7%) and a relative decrease in Non-Target
classification accuracies (7.03%). In real-time classification contexts, this imbalance would
likely lead to an increase in false positives, where Non-Target data segments are misclassified
as belonging to the Target class, resulting in necessary corrections or miscommunication of
key emoji-states. In summary, for this configuration of the 7-Emoji speller, the data do not
support the assertion that the Collapsed data preparation method had a positive influence.

5.7 Reflections

This section outlines the main areas of import relating to Experiment 3. This includes key
findings of the investigations from the Pipeline 1 and 2 evaluations, areas for improvement
and future research, as well as some considerations on the P300 experiment series described
across Chapters 3, 4 and 5.

5.7.1 Considerations on Pooled-Subject Data Aggregation

At numerous points throughout these analyses, concerns have been raised regarding the ag-
gregation of data across subjects. It is likely that the LDA models utilized are not suitable
for these kinds of pooled-subject training and classification. These conclusions are more ade-
quately drawn from the results garnered in Experiments 1 and 2 (see subsections 3.5 & 4.4).
This is primarily related to the sample size of Experiment 3. At just 3 subjects, the purported
benefits of pooled-subject data aggregation related to increased data volumes and a greater di-
versity of P300 waveform profiles to enhance classifier robustness could not be satisfactorily
meted out.
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The author suggests that the most effective strategy for acquiring high-quality data would
likely involve significantly increasing the number of sequences per trial to around 10 or 15,
aligning with standard practices. This approach is expected to enhance the quality of the re-
sulting averaged signals, potentially facilitating the use of more advanced analytical methods.
Additionally, conducting extensive initial training sessions would have been preferable to the
relatively brief and compromised Localizer task employed in subject training throughout this
thesis. Furthermore, the adoption of a performance-gated screening procedure, where specific
confidence thresholds must be met before a trial is deemed complete, would further refine data
quality.

Expanding the sample size to include over 20 subjects would also allow for a more thorough
investigation of key parameters such as augmentation onset intervals, optimal array density,
and the sizing and spacing of stimuli. These measures would likely mitigate the confounding
effects of subject fatigue and improve the performance of LDA models trained at the single-
subject level. Moreover, they could enable the use of state-of-the-art convolutional neural
networks, which have demonstrated the ability to leverage pooled-subject data aggregation
benefits [58, 256]. It was the author’s intention to collect data from this many subjects, how-
ever, due to the constraints imposed by COVID-19 pandemic restrictions on in-person testing,
these data collection goals were not fully realized, as referenced in the Positioning Statement
(see subsection 1.1).

5.7.2 Localizer Task Considerations: Pipeline 1

When evaluating the classification performance of the seven Emoji variants that included a
localizer pre-training stage across Experiments 2 (see Table 4.13) and 3 (see Table 5.3) via the
Pipeline 1 method, it appears that expanding this initialization task enhanced both mean and
within-class (P300 and Non-P300) accuracies. However, these improvements are primarily
limited to within-subject assessments, as the real-time nature of the LOCRT analysis variant
constrains broader applicability. Specifically, the improvements observed at the average sub-
ject level include a greater than 11.4% increase in mean classification accuracy, a more than
26.67% rise in P300 accuracy, and an over 8.86% enhancement in Non-P300 accuracy.

While these gains may be partly attributed to the introduction of reactive impedance mon-
itoring, it is unlikely that this factor had a significant impact beyond aiding subject-specific
instructions during tasks, as protocols for excluding trials with large impedance variances were
already established by Experiment 2. Furthermore, the presence of atypical features in both
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P300 and Non-P300 signals across most grand average plots suggests that real-time feedback
did not significantly improve the quality of data collected during the main experimental phase
(see Figures 5.5, 5.7, 5.10, and 5.13). Further, closer inspection of the Localizer task grand
average plot indicates that the high oddball probability of 50% depressed key P300 waveform
features. These stimulus parameters likely reduced the potential difference between Target and
Non-Target data dramatically increasing the difficult of class separation via the LDA models.

It can be argued that replicating the main experiment as the localization task could have ad-
dressed many of the challenges encountered in this experimental series. This approach would
likely increase the similarity between target (P300) and non-target (Non-P300) data across
the localizer and main experiments, as the class-balanced pre-training dataset would then en-
compass instances of double-flash, adjacency errors, and other temporal/spatial noise effects
inherent in these oddball paradigm designs.

Additionally, maintaining consistent oddball probabilities across both datasets would ensure
greater alignment in P300 peak amplitudes and latencies. However, the increased noise and
complexity in these reference signals, particularly in Non-P300 samples, could potentially in-
troduce confusion into the LDA classifier, thereby impairing model performance. This issue
could be mitigated by increasing the number of sequences per trial and the number of trials per
experimental session. Such methods would be most effective when applied to the development
of a large benchmark dataset for pre-training convolutional neural network models focused on
pooled-subject data, rather than relying on single-subject LDA classifiers.

5.7.3 P300 Waveform Quality: Pipeline 1

Upon examination of the Cz grand average plots presented for Experiment 3, it is evident that
the Pipeline 1 approach employed does not ensure robust and consistent pre-processing of
P300 waveform samples. The LOCRT method yielded notably weak P300 signals and exhib-
ited a Non-Target average signal with a similar amplitude (see Figure 5.5). The HYALL: No
Class-Balancing Cz grand averages, computed from all samples across subjects, display an un-
expected inversion of results, with a pronounced P300 waveform observed in the Non-Target
signal (see Figure 5.7). Similarly, the HYALL: Class-Balanced Cz grand average reveals a
comparable pattern, characterized by minimal variance in the Target samples’ average and an
atypical drifting and peaking component in the Non-Target samples (see Figure 5.10). The
ineffective application of an adequate high-pass cutoff value (1 Hz) likely resulted in the re-
moval of significant P300 components during pre-processing.



262 Experiment 3: Real-Time Feedback Implementation

Additionally, the use of an infinite impulse response filter on these short data segments in-
troduced considerable drifting and edge effects. The suboptimal quality of these plots under-
mines the validity of any potentially promising results, as the Cz averages suggest that the
classifiers may not have effectively distinguished samples based on P300 waveform charac-
teristics. These findings are consistent across both the online Localizer results (see Table 5.3)
and the evaluations of samples exclusively from the main experimental data. Consequently,
the author is unable to provide a definitive conclusion regarding the primary objective of this
experimental variant, specifically in determining the impact of visual feedback on real-time or
offline classification performance metrics.

5.7.4 Pipeline 2: Relative Influence

The most appropriate means of comparison for the Pipeline 2 computed Experiment 3 results
are arguably the findings of the Pipeline 2 method for the 7-Emoji variant from Experiment
2 (see Tables 4.6 & 4.7) and the Pipeline 2 implementation for Experiment 1 (see Tables
3.10 & 3.11). In these contexts, the LDA models for both Non-Collapsed and Collapsed data
partitions across the subjects consistently produced a similar distribution of overall mean clas-
sification accuracies, ranging from 75-85%. Ultimately, given the low number of trials per
subject the relative performance of the Pipeline 2 Collapsed data preparation method could
not be effectively assessed, as the number of trials is so low. This reduced the number of sam-
ples available for training, diminishing the quality of the classifiers and reducing the samples
for testing, limiting the scope of any findings that emerge from the associated analysis.

Notably, no significant difference was observed between the Non-Collapsed and Collapsed
data preparation methods based on paired-subject permutation tests (see subsection 5.5.7).
This finding contrasts sharply with the differences highlighted in the results and grand aver-
age plots for the Pipeline 1 and 2 approaches outlined in the previous three chapters. The
principal factor contributing to the overall improvement in data quality is likely the transition
to a finite-impulse response filter design, which avoids the severe reflections induced by ap-
plying infinite-impulse response filters to short data segments. Additionally, implementing a
lower high-pass cutoff threshold likely increased the inclusion of signal frequencies associ-
ated with the P300 waveform. Furthermore, the application of a reasonable baselining method
helped centre the data around a common reference, enhancing data consistency.

Despite these improvements in data quality and arguable contingent increases in overall mean
accuracy, the substantial presence of Target-P300 classification bias is concerning. The bias
observed towards the Target-P300 class consisting primarily of synthetic samples dramatically
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reduces the veracity of any strong conclusion made on these data as the lower relative variance
within this class could have offered a unique advantage, as compared to the Non-Target class,
which would struggle to translate to a real-time classification context. It is not possible to rule
out the possibility that the relative increase in performance is driven primarily by the large pro-
portion of synthetic samples in the respective LDA model training datasets. This could have
been addressed by exploring a combination of downsampling and upsampling techniques for
the majority (Non-Target) and minority (Target) classes, or the implementation of weighted
regularization methods to accommodate for the aforementioned class imbalance.

Irrespective of this previous point, the scope of such additional investigations is necessarily
narrow given the small sample size. Owing to project time constraints it was not possible to
continue these assessments, however, the author asserts that the Pipleline 2 results demonstrate
a strong trend and indicate that further improvements to the experimental paradigm could lead
to the production of a high-performing emoji-based BCI system. These improvements include
implementing a more comprehensively balanced randomization scheme could have enabled
more effective data labelling methods such as those discussed in subsections 3.4.3.4 & 3.4.3.5.
Further, any future adaptations must feature both more trips and more sequences per trial, po-
tentially extending to 50 and 15 respectively. This would allow researchers to train and test the
respective models more robustly and enable the implementation of more powerful and reliable
statistical assessments to evaluate the methods and draw stronger conclusions.

5.7.5 Cross-Experimental Grand Summary

This series of experiments details the efforts of the author to develop a simple emoji-based
BCI speller system for potential applications in the development of a functional communica-
tion system, as well as provide a platform for the collection of high-quality P300 benchmark
datasets using Dry-EEG methods. The numerous adaptations implemented comprising the
mitigation of model overfitting via class-balancing, staggered stimulus parameter modifica-
tions, real-time feedback relaying, and reactive impedance monitoring to enhance data quality
and subject performance did result in a trend towards results improvement over the course of
the experiments conducted. Despite these efforts, significant issues remain in terms of data
quality and quantity, low ITR metrics and sub-functional classification performances.

Ultimately, the aforementioned obstacles precluded the consistent generation of P300 wave-
forms employed in this series of experiments. The consistency in the generation, classification
and deployment of any such system must be of the highest level to instil confidence in both
users and technicians. Without the implicit level of trust in the communication system de-
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ployed motivation levels will undoubtedly be lower than needed to maintain the attentional
vigilance necessary for adequate P300 generation. Importantly, at no point can it be stated
with certainty that an effective means of inducing and analysing P300 waveforms for emoji-
based communication was achieved throughout this research.

Some of the issues present in the Pipeline 1 approach have been remedied, namely the ap-
plication of a more appropriate baselining measure, the implementation of statistical signifi-
cance testing, the use of 10-fold cross-validation and improved high-pass filter design. The
author notes that any future implementation of these methods must feature a higher number
of augmentation events per sequence. Notably, classification accuracies for the Collapsed
data preparation variant did not differ significantly from the Non-Collapsed method. It is the
author’s belief that this is because of the dramatic drop in the number of available samples
induced via the aggregating of adjacent trials. Further, reimplementation of the final iteration
of this experimental series must be conducted using a shorter version of the main, 7-Emoji,
experiment and not the original 50% oddball probability localizer task.

Finally, a more appropriate and sophisticated method of addressing the class imbalance issues
and overfitting present throughout Pipeline 1 results in the form of the SMOTE oversampling
method. However, the noted potential influence of overfit due to synthetic samples introduced
via the SMOTE method and the fact that these re-assessments were done with a small sam-
ple size, 3 subjects each across all Chapters (3, 4 & 5), again limits the generalization of
these results. This is compounded by fixed issues that could not be remedied in a posthoc
re-analysis. Namely, the issues surrounding the non-continuous sampling method, the use
of a high oddball stimulus probability in the Localizer assessments and the lack of subjects
imposed by the COVID-19 pandemic. Despite this, the author asserts that the platform does
advance the current research in the field of emoji-based BCI communication systems. Previ-
ous work concerning the use of emoji as P300-based oddball stimuli is extremely sparse and
the work undertaken herein relating to the numerous modifications in stimulus size, augmen-
tation durations and visual array density serve as guidelines for future work.

Previous research surrounding the development of simplistic icon-emoji integrated commu-
nication systems is highly limited [44, 257]. Further, the design of these systems is primarily
aimed at affording the user a means of communication with care staff regarding environmental
preferences, for example, ‘turn off/on the radio’ as depicted by a radio cartoon image [257], or
personal states such as expressing that the patient is hungry, as depicted via an apple icon [44].
The paradigm herein outlines the first BCI speller system explicitly focused on emotional ex-
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pression via emoji to date. Notably, the orientation of the speller layout, arranging emoji from
agreeable to disagreeable in a Likert-inspired format is novel. As seen in the Conclusion chap-
ter (see subsection 7.2.1), the author presents an adaptation of the experimental design. It is
asserted that the increased range of emotional expression beyond the pleasure-centric valance
scale will maximise patient life quality by clarifying the user’s emotional state and adding a
much-needed degree of humanization and personalization to the associated communications.

The most advanced system developed to date, seen in [258], for P300-based BCI speller com-
munication using emoji stimuli, features a parallel system of input grids. The individual grids
are populated with differing arrays of BCI device commands such as a standard keyboard and
system navigation controls to interact with a range of PC applications. The study here details
that subjects were capable of navigating a simplistic computer interface to open the WhatsApp
messaging application and then select and type an emoji from the in-app keyboard, all using
the system control grid. This article details an impressive hybrid methodology based on P300
waveforms for the target selection and limited muscular control for the grid selection. The
platform is principally aimed at individuals with severe multiple sclerosis (MS). The avail-
ability of these systems is key to maintaining high patient life quality for MS patient users.
Despite this, such methods are not viable for the near-complete locked-in target population of
the BCI speller platform detailed herein given the previously stated mobility limitations (see
subsections 1.3 & 1.4).

Relating to the emoji speller outlined in this thesis, the platform provides a system for in-
dividuals with the most severe forms of paralysis, as well as potentially providing a baseline
experiment for the collection of P300 data. The author asserts that with the addition of more
subject data collected via an adapted iteration of Experiment 3 would likely prove a viable
means of P300-based BCI communication. Validation of these systems would allow for the
widespread utilization of these methods in the development of high-volume P300 data repos-
itories. The collection of additional data would increase the scope for analysis applications
that require large sample sizes to function such as convolutional neural networks which have
demonstrated promising results in P300 classification tasks [259, 260].

5.7.6 Future Research

Here the author outlines important areas of future research relating to the P300-based BCI
speller field focused primarily on enhancing data quality and lab-based ecological validity
considerations.
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5.7.6.1 Pre-Screening and Online-Monitoring Development

The quality of EEG signals is controlled by numerous means, principally based on hard-
ware resolution and scalp seating, subject instruction and engagement, as well as signal pre-
processing. The phenomenon of so-called BCI illiteracy is a contentious issue in the sur-
rounding literature. Certainly, there exist unique characteristics to individual subjects that
could explicitly diminish the quality of signal harnessed, these include poor skin conductance
and a previous history of mental illness. Even for subjects that do not present with the afore-
mentioned characteristics, the EEG data acquired from these individuals could be low-quality
owing to situational factors, for example, time of testing and levels of fatigue. The meth-
ods currently employed in the literature must be greatly expanded, especially concerning the
development of larger P300 waveform benchmark datasets for the evaluation of novel pre-
processing pipelines and classification methods.

Pre-screening assessments before the onset of any experiment to monitor impedance values,
attention levels and signal propagation are valuable means for assessing the viability of resul-
tant data collected for inclusion into a given dataset. It could be argued that the expansion of
these methods, specifically relating to subject attention, was implemented in real-time during
the experimental phase, as per the reactive impedance monitoring conducted in Experiment 3
(see subsection 5.4.9). Eye-tracking metrics concerning fixation position relative to the known
position of targets on screen could provide an indirect measure of subject engagement. It is
likely that dwell time and the distance between fixation positions for a given trial period could
provide real-time metrics of subject task engagement during live trials. Further, whole-brain
sampling during a baselining assessment before the onset of the main experiment could reveal
subject-specific alpha-theta ratio metrics, alongside additional neural signatures, that could be
compared to data captured online to inform experimenters of data quality in real-time.

This would ensure that subject performance during the localizer or baselining assessments
could maintain parity with data captured in the main experimental phase. Further, these met-
rics could also provide experimenters with data to inform decisions regarding the implementa-
tion of break periods to ensure subjects provide quality signals. Additionally, this information
and guidance could assist in the rapid training of test subjects and enhance performance during
the main experimental trials.

Implementing these precautions and reporting these implicit measures of the subject atten-
tional state alongside open-source P300 benchmark repositories could also assist any subse-
quent dataset users in the development of tools specifically aimed at classifying these wave-
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forms under less-than-optimal conditions, as is the ultimate aim of these systems. In other
words, datasets could be parsed in terms of attentional state metrics and classification meth-
ods compared in terms of efficacy for these lower-quality signals. Along these very same
lines, the provision of these auxiliary data could assist in the transition of pre-processing and
classification methods evaluated using typical healthy subjects to target clinical populations.

5.7.6.2 Exploration of Real-Time Active Emoji Selection

Currently, any conclusions regarding the clinical functionality of the speller system defined
herein are restricted by the cueing feature of respective task designs. Any attempts to con-
tinue this specific line of research would benefit by exploring the implementation of an active
subject selection method. This would involve the subjects using the system as intended by
fixating on emoji targets in response to specific questions posed throughout the experimental
period. Crucially, this would likely enhance both subject attention and motivation during the
experimental phase.

The implementation of additional experimental measures would be necessary, for example,
providing the ability to amend returned characters in the event of misclassification. There
would be some obstacles related to order effects, as the strict non-consecutive randomised
cueing protocol would no longer be in effect and could introduce ordering issues, for exam-
ple, the subject could select the same emoji repeatedly. This would likely increase the amount
of supervision by researchers and the degree of subject training before the task. Researchers
could instead try to operate the task in a more ecological context, by first presenting a simple
question to the subjects, for example, ‘How does tiredness make you feel?’, the answers to
these responses would be obvious and the generic expected negative response to the question
could be predicted and in turn inform the arrangement of subsequent questions following a
relatively analogous randomised non-consecutive protocol as previously implemented. This
solves the issue of the subject having no agency in the task, while also priming responses with
a specific directionality to avoid unwanted order effects. Further, the task could simply con-
tinue indefinitely until the subject provides a balanced number of responses evenly selecting
each target on the screen.

Finally, the integration of emoji or other iconographic targets into a pre-existing alpha-numeric
array would dramatically enhance the functionality of any BCI-based speller system. The pre-
cision of text-based communications embellished with pictorial icons would enhance the speed
of speller systems in addition to the richness of the messages generated.





Chapter 6

Subject-Specific Signal Pre-Processing
Network Optimization

6.1 Chapter Outline

This thesis chapter aims to outline the efficacy of automated optimization procedures in signal
pre-processing hyper-parameters for enhancing convolutional neural network performance in
the classification of SSVEP bio-signals. Recent advances in this field have primarily been
explored via the development of novel architectures for the specialized classification of these
time-series data. There are now a myriad of different convolutional neural networks currently
available to researchers, with well over 30+ design configurations detailed to date [214, 261].
This often involves increasing network depth or the application of previously unviable, compu-
tationally expensive regularization measures such as drop-out [199] and batch normalization
[262] layers which ultimately increase the number of system parameters [214]. It must be
noted that additional advances include the development of novel operational units or network
modules, for example, the blending of data across the temporal and spatial dimensions via
the so-called Depth-Wise operation [60] or the use of Inception-style modules for advanced
intra-network layer connections [263]. The author recognises the value of these techniques in
specializing networks for the classification of modality-specific inputs.

Substantial efforts have been made to integrate numerous model design improvements that
enhance classifier performance in computer vision tasks. This includes adaptive learning rates
(Adam [264], AdamW [265]), weight initialization schemes (Xavier [266], Kaiming [267]),
transfer learning and network ensembles. This systematic approach to identifying the optimal
network parameters has greatly improved cutting-edge models in the field of CNN-based bio-
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signal classification. Along these very same lines, the author believes that extending the same
diligence to the pre-processing of input data could also improve the performance of current
networks available for study in addition to allowing for a greater level of clarity in comparing
the performance across said models.

The key defining characteristic of EEG data is the presence of non-stationarity and a high
degree of individual differences. For BCI systems that utilize single-subject calibration pro-
cedures the non-stationarity of the EEG signal often leads to a drop in performance over time
as the baseline samples collected before the experimental period begin to differ in their qual-
ity of expression, resulting in lower classification accuracy [268]. Understandably, given the
complexity of accounting for intra-subject variability, the task of optimizing a classifier to ac-
commodate inter-subject variance in cross-subject decoding applications is compounded.

Despite this, the current EEG classification literature spanning BCI, affective decoding and
epilepsy detection has seen the widespread adoption of cross-subject classification methods
[269]. This is primarily driven by the aim to develop plug-in-and-play, hyper-generalizable
methods that do not require extensive subject-specific calibration. Further, it has been asserted
that the training of high-accuracy networks using cross-subject, aggregated datasets is possible
as long as adequately large volumes of data are utilized in combination with the appropriate
data balancing and test-set isolation protocols [269]. Moreover, it is argued that the use of
cross-subject datasets can even afford the resultant models a greater degree of robustness,
given the exposure to a larger incidence of variance in the training samples [270].

It must be noted that, despite the aforementioned advantages in cross-subject training schemes,
it does not preclude the possibility that all preparations of these aggregate datasets for a spe-
cific subject should result in comparative levels of performance. The tuning of global sig-
nal pre-processing parameters employed across all subject data such as zeroing, channel av-
eraging, smoothing and filtering could all greatly influence end-point performance for the
end-point user. Further, given the high degree of individual differences in the expression of
brain-based bio-signals, it may be profitable to prepare cross-subject training data for specific
individuals, combining the strengths of both aggregated dataset volume training and bespoke
model development. As shown in [53, 54, 57], this combined approach has resulted in the
highest performing SSVEP-based BCI speller classification results thus far. For further infor-
mation see subsection, 2.6.4.
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In the following sections, the author will compare the performance of four CNN models
on raw (notch filtered, 50 Hz), fixed-parameter (9-30 Hz bandpass filtered) and pre-processing
parameter optimized data using three algorithmic search methods for high-pass filter (0-9 Hz)
and low-pass filter (15-85 Hz) cutoff values. This final optimized parameter search will in-
volve the comparison of the Optuna Python package [271] hyper-parameter tuning methods:
Median, Percentile and Successive Halving pruners (SHP) [272]. The following investiga-
tions will reveal the most time-effective means for performing optimization tuning to boost
classification accuracies. Further, these processes will enable a more thorough evaluation of
the networks tested (EEGNet [59], EEGNetSSVEP [60], DeepConvNet [61] & ShallowCon-
vNet [61]) as currently the selection of fixed filtering parameter thresholds is either arbitrary
(industrial standards), theoretical or vague, given the absence of data on these topics in the
current literature.

Note, that all the models assessed herein are relatively well-established and have arguably
seen some of the most widespread reimplementation of any contemporary convolutional neu-
ral networks in BCI contexts. Despite this, at the time of writing these models were not
made publically available alongside corresponding sets of pre-trained weights. Given these
circumstances, all models were trained from the ground up using the open-source SSVEP data
repository acquired from [180]. For more information on the origins, design and performance
of these networks please refer to subsection 6.6.4, Convolutional Neural Network Summaries.

The application of hard-coded pre-processing parameters may be possible due to the highly
flexible nature of CNN models. It could be argued these capabilities can overcome any small
adjustments in parameters. The author would argue that any significant performance improve-
ment is crucial to effectively compare models. For example, larger networks could potentially
be optimized for higher low-pass filter cut-offs and be capable of harnessing additional latent
information within the high frequency ranges such as second and third order harmonics as is
considered in the design of Filter-Bank Canonical Correlation Analysis methods. Further, the
restriction of low and high pass filters to the edges of the target frequency space might be more
optimal for shallow networks, by removing higher complexity signals embedded in the low
and high-frequency space, effectively focusing the training data.

The ultimate aim of these experiments is to determine the effects of signal pre-processing pa-
rameter optimization schemes on subject-level performance for a given SSVEP dataset [180].
Secondly, the author aims to gauge the differences in optimal parameter selections across
shallow and deep convolutional neural network configurations. Finally, the author will pro-
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vide guidance and improvements on how the method can be performed correctly and sugges-
tions for multiple improvements in this methodology that lie outside the scope of the current
research.

6.2 Bandpass Filtering Background

The optimal detectable range of SSVEP waveforms is located between the 8 to 15 Hz fre-
quency range [161] (see subsection 2.6.1). The aim of bandpass filtering is to maximise the
power of these signals relative to data acquisition artefacts and other associated noise com-
ponents to facilitate higher performance in the respective waveform classifiers. A high-pass
filter is employed primarily to reduce the incidence of eye-movement artefacts and sub-target
frequency harmonic reflections in the ultra-low frequency range (0 to 4 Hz) [273]. In com-
parison, the low-pass filter is designed to remove non-essential so-called high-frequency noise
[274]. Currently, researchers have deployed SSVEP bandpass signal pre-processing frequency
filters between several boundaries ranging from 0.1 and 80 Hz.

Typically, FBCCA methods configured to harness high-frequency harmonic components uti-
lize larger low-pass filter cutoffs, between 70 and 90 Hz, to ensure the availability of these
signals to the corresponding classifier method [47, 56, 179, 180]. In contrast, CNN-based
methods have traditionally utilized a narrower frequency band with low-pass cutoffs mainly
positioned between 30 and 40 Hz [59, 60, 213, 275–277]. This is related to the reduced ef-
ficacy of these methods for the extraction of task-relevant harmonic components above these
frequency thresholds. Despite these apparent restrictions, the frequency filter bandwidth em-
ployed has slowly increased over time due to improvements in the quality of EEG data ac-
quisition, data pre-processing and the relative power of the models implemented in terms of
architecture, trainable parameters and network layer count [50, 57].

Note, that the upper low-pass value threshold is dependent on the relationship between the
stimulus frequency and the data acquisition sampling rate. For the sampled data to accurately
reflect the signals propagated from the source the sampling rate must be double the frequency
of the highest frequency stimulus flicker rate. This limit is termed the Nyquist frequency. In
the simplest terms, an SSVEP signal oscillating at 50 Hz would require at minimum a sam-
pling rate of 100 Hz to ensure the effective representation of the source signal in the captured
data. Any decrease in the sampling rate would introduce aliasing noise, this describes the
failure to accurately reconstruct a signal due to missing data.
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Recent advancements in EEG hardware mean that sampling rates of up to 1000 Hz are achiev-
able in clinical-research-grade devices. In turn, the upper limit of this low-pass filter can be
increased dramatically. The well-established practice of signal downsampling to reduce the
expression of redundant waveform features such as drift and movement artefacts precludes
researchers from taking full advantage of these increased sampling rates. Despite this, the
opportunity to capture latent information within these higher frequency ranges is possible yet
remains relatively unexplored in the context of convolutional neural networks.

Several studies demonstrate the potential of higher low-pass filter thresholds to improve clas-
sification performance via the inclusion of additional target SSVEP frequency harmonics
[52, 54, 180, 256]. As seen in the table below, a dramatic increase in available harmonics
(60+) is achievable with the raising of the low-pass cutoff threshold from 30-80 Hz. No-
tably, there exists a crucial trade-off in terms of signal-to-noise ratio following the increase
in cutoff value. Any increase in the low-pass filter threshold ultimately reduces the propor-
tional expression of the target waveforms in the input data. This places additional demands on
the classification systems employed to parse the redundant data and extract useful harmonic
information.
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Target Hz H 1 H 2 H 3 H 4 H 5 H 6 H 7 H 8

9.25 18.5 27.75 37 46.25 55.5 64.75 74 83.25

9.75 19.5 29.25 39 48.75 58.5 68.25 78 87.75

10.25 20.5 30.75 41 51.25 61.5 71.75 82 92.25

10.75 21.5 32.25 43 53.75 64.5 75.25 86 96.75

11.25 22.5 33.75 45 56.25 67.5 78.75 90 101.25

11.75 23.5 35.25 47 58.75 70.5 82.25 94 105.75

12.25 24.5 36.75 49 61.25 73.5 85.75 98 110.25

12.75 25.5 38.25 51 63.75 76.5 89.25 102 114.75

13.25 26.5 39.75 53 66.25 79.5 92.75 106 119.25

13.75 27.5 41.25 55 68.75 82.5 96.25 110 123.75

14.25 28.5 42.75 57 71.25 85.5 99.75 114 128.25

14.75 29.5 44.25 59 73.75 88.5 103.25 118 132.75

Table 6.1: Here is shown a table of harmonics for the selection of target SSVEP frequencies (far-left
column) used in [180] to the 8th order. Each respective column, denoted H X (X representing the or-
der), is a multiple of the target frequency (Target Hz). The table cells displayed in plain (unbolded or
italicized) type represent all the harmonics captured from an EEG signal sampled at 256 Hz and band-
pass filtered between 9 and 30 Hz, as per the pre-processing methods implemented by the developers of
the EEGNetSSVEP network [60]. The bold cells indicate the harmonics available for inclusion follow-
ing an increase in the low-pass filter threshold from 30 to 85 Hz. Note, that access to these additional
harmonic frequency components has been shown to dramatically increase classification performance
for the FBCCA method. The italic cells show the harmonics that remain excluded despite the increase
in the low-pass filter threshold, as these frequencies are below the 85 Hz low-pass filter cutoff. Finally,
the crossed-through cells highlight the filtering limits imposed via the Nyquist frequency as these are
greater than half of the data sampling rate (256 Hz) and in turn can not be accurately represented owing
to the downsampling operation implemented.

6.3 Model Optimization vs. Architecture Development

As mentioned above, the current emphasis in the literature is primarily related to the devel-
opment of novel statistical methods, particularly neural network architecture design as seen
for the 1DSCU [212], EEGNet [59], EEGNetSSVEP [60], ShallowConvNet and DeepCon-
vNet [61], IENET [263, 278], FBCNN [279] and TRCA-Net [54]. The author suggests that
more attention is required to evaluate the performance of current networks by comparing the
many variants under so-called ideal conditions. In other words, it is suggested that significant
improvements in the current model architectures could be enhanced via bespoke data signal
pre-processing at the single-subject level. This involves developing cross-subject aggregated
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datasets tailored for the training of networks for the individual end-point user. To determine
the ideal parameters for these data preparation stages a systematic optimization method is pre-
sented herein.

Optuna is a Python software wrapper used for hyper-parameter tuning typically in neural net-
works and similarly aligned classification methods [271]. Typically, the wrapper is positioned
in a top-down orientation with a specific statistical protocol (see, Figure 6.2). For example,
the validation loss of a neural network could be iteratively input into a corresponding pruner
algorithm to log the performance of the model for a classification task. Once the model is
trained a second run is performed using a new instance of the model (reset filter weights). Be-
fore the onset of the new run, a specific parameter of the network training scheme is altered.
This could be any one of the innumerable metrics used in the configuration of the network,
popular optimization training parameters include: learning rate, batch size and loss function.

Alternatively, the network architectural parameters could be optimized, such as drop out, mo-
mentum, stride and even filter size. Note, that these can require more complex reactive adjust-
ments if embedded in an automated optimization approach due to changes in the dimensions of
the data through the model. During this process, the pruner algorithm is programmed to com-
pare the current model performance epoch-for-epoch with the previous model performance.
In the instance that the given change in optimized parameter leads to a relative reduction in
performance, the trial would be terminated, and a new metric value selected. In contrast, a
relative increase in performance as displayed by a larger drop in validation loss over the same
number of epochs would lead to the continuation of the optimization run. Through this pro-
cess, the classification performance of the network is maximized.

The application of these automated parameter search methods requires significant compu-
tational and time resources [280]. Despite this, the methodology is far more effective than the
common instance of researchers copying the parameters utilized in previous articles for data
involving similar tasks or data modalities [281]. The utilization of prior knowledge from previ-
ous research for effective boundary pre-setting is of course crucial in saving time, as the imple-
mentation of the the widest possible search ranges would incur significant penalties in resource
usage [282]. The author here suggests that the optimized search of signal pre-processing filter
cutoffs within and marginally beyond the bounds previously explored in the associated liter-
ature would prove beneficial in clarifying several open-ended questions. Namely, this would
assist in verifying whether the commonly implemented ranges are valid, further, it would aid
in identifying if there exist significant range preferences between networks of differing com-
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plexity and also establish the degree of individual differences in these optimized filter ranges.
Moreover, outlining a standardized method for the use of a tuning wrapper blended into a
network training and evaluation procedure could save researchers countless hours of valuable
research time by automating the process.

It must be noted that the relationship between network parameters is sometimes adversar-
ial. In other words, the assignment of one value can undo the efficacy or intent of another. For
example, the merits of a low batch size have been discussed at length in the literature [283] in
addition to the benefits of a low learning rate [284], as both can contribute to the development
of models with a greater degree of generalizability and higher task performance. Despite this,
setting the batch size too low can mitigate the benefits of a low learning rate by increasing
the tendency of trained model weights to become stunted inside local as opposed to global
minima. In other words, the interaction of these parameters can prevent models from attaining
the lowest achievable loss values and in turn fail to attain the highest possible classification
accuracies.

It is these intricacies of hyper-parameter value selection that slow down the already often
arduous process of neural network architecture development. The ability to accurately assess
the best parameters for a given task from the outset is highly dependent on the skills present
in the researchers involved. The capacity to perform this feat adequately drops dramatically
during the implementation of novel techniques in tandem with a lesser-studied data modality.
It is ultimately in the interests of researchers to speed up and systemize the network develop-
ment process as well as provide tools to new users of these models to enhance the adoption of
neural networks across disciplines.

The author argues herein that the optimization of network training should be extended to
all facets of the project that account for end-point classification performance, including data
preparation. There exist several pre-processing stages available to researchers for SSVEP-
based EEG preparation, the focus of these analyses is the selection of bandpass filter frequency
cutoff values. Crucially, by applying these principles to CNN training schemes it will allow
researchers to effectively evaluate the current state-of-the-art models with enhanced clarity.

Currently, there are cloud-based solutions for the evaluation of network architectures to com-
pare model efficacy for a range of different bio-signal classes, for example, the Mother of all
Benchmarks Python-based software platform [216] (see subsection 2.6.1). These are critical
tools for the research community to assess the viability of any given model for a specific classi-
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fication task. Despite this, little consideration has been given to the task-specific optimization
of these models before deployment. This could be due to a project pre-requisite for models
to have a wide range of applicability to any number of bio-signals utilized out-of-the-box.
In other words, the aim of these tools could be to evaluate the plug-in-and-play functionality
of the respective model, without laborious optimization procedures. It is asserted by the au-
thor that the optimization of networks for these same goals is still necessary, as it is feasible
that a specific confluence of hyper-parameter values and conditions is necessary to optimize
model performance for these forms of implementation. In other words, models likely still
require optimization for broad out-of-the-box functionality contexts, and the absence of such
assessments before conclusions on the efficacy of a given model could leave viable network
architectures erroneously labelled as sub-optimal. Essentially, the hyper-parameter tuning of
models for several bio-signal classification contexts is necessary to improve the validity of any
claims regarding the efficacy of the evaluated networks.

6.4 Current State-of-the-Art Classification Techniques

In BCI research SSVEP-based EEG classification methods are designed to identify specific
frequencies by isolating target waveforms from background noise. The current benchmark,
Filter-Bank Canonical Correlation Analysis (FBCCA) and its variations employ bandpass fil-
tered data matrices to correlate with reference signals, ultimately determining the most likely
target class. Notably, these methods achieved information transfer rates over 100 bpm [285],
and recent advancements have pushed these rates beyond 300 bpm [55] (see subsection 2.6.1).
Recent studies indicate that convolutional neural networks (CNNs) have significant potential
to surpass FBCCA methods, especially when deep architectures are used and trained on large
datasets, often leveraging transfer learning [215]. Unlike FBCCA methods, which sometimes
integrate reference signals with subject data [180, 181], CNNs develop internal representations
of target classes through iterative training on aggregated data. This research focuses on evalu-
ating different CNN architectures for SSVEP classification and optimizing hyper-parameters
for both cross-subject and single-subject scenarios, aiming to enhance classifier performance
and robustness.

In EEG signal processing, common methods include temporal segmentation, time correction,
signal referencing, and active electrode selection. While these techniques are standardized, the
choice of filter cutoffs can still be somewhat arbitrary. Although some studies have explored
low-pass filter values and stimulus frequency harmonics [218–220], there has been limited
research on how these filters impact CNN performance. It is hypothesized that setting high-
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pass filters close to target frequencies helps reduce unwanted low-frequency noise, though the
optimal low-pass cutoff remains less clear. A higher low-pass cutoff may benefit models de-
pending on their complexity and depth [47, 56, 180].

The relationship between high and low-pass filter cutoffs has not been extensively explored,
suggesting the need for further investigation. This study aims to clarify the impact of prepro-
cessing on CNN performance and guide future model calibration. Given the variable nature
of EEG signals, finding the ’perfect’ filter settings is challenging, but automated parameter
optimization could identify effective values for individual subjects. This research presents a
methodology for simultaneously optimizing signal processing and neural network parameters
to improve classification performance at the single-subject level.

6.5 Experimental Investigation

Throughout the research defined herein, the author investigated the performance of 4 well-
established convolutional neural networks, EEGNet [59], EEGNetSSVEP [60], ShallowCon-
vNet [61] and DeepConvNet [61] for the classification of a globally recognized SSVEP reposi-
tory in 3 contexts: raw/minimal signal pre-processing, standard literature-derived pre-processing
and automated signal processing using optimized hyper-parameters at the single-subject level.
Further, 3 different optimization pruning algorithms are assessed for optimization speed and
quality. The following subsections outline the data repository utilized, a brief description of
the models employed and a summary of the pruners applied for network optimization.

6.6 Methods

Here is presented the methodology for implementing the signal pre-processing hyper-parameter
optimization of the 4 convolutional neural network architectures selected. This includes a de-
scription of the SSVEP online data repository utilized, a breakdown of the classification mod-
els and a discussion surrounding the software features of the optimization system deployed.

6.6.1 Online Data Repository

The data used herein are derived from a well-established online SSVEP repository [180]. This
consists of data collected from 10 subjects (1 female, 9 males, mean age: 28 years) for 12
SSVEP target waveforms ranging between 9.25-14.75 Hz in 0.5 Hz increments (see, Table
6.2). Note, groups of distally positioned target waveforms are modified in terms of phase to
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minimise target correlations. These data were collected via visual presentation of flickering
SSVEP stimuli on-screen in a virtual numpad using the Joint-Phase-Frequency Modulation
(JPFM) method (see, Figure 2.2). The JPFM enhances the number of flicker rates by adjusting
the phase angles of target flicker profiles and rapidly switching between different signal fre-
quencies, such as 10 Hz and 15 Hz. This approach minimizes signal correlation and produces
a 12.5 Hz SSVEP oscillation through an averaging effect. Subjects, cued by a randomized red
square overlay, completed 180 trials each, resulting in 1,800 total trials across 10 participants.
EEG data were recorded at 2048 Hz using the BioSemi ActiveTwo system across 8 channels
(O1, Oz, O2, PO7, PO3, POz, PO4 and PO8) and were downsampled to 256 Hz from 2048Hz.

Target Class Frequency (Hz) Phase (π)

1 9.25 0

2 11.25 0

3 13.25 0

4 9.75 0.5

5 11.75 0.5

6 13.75 0.5

7 10.25 1.0

8 12.25 1.0

9 14.25 1.0

10 10.75 1.5

11 12.75 1.5

12 14.75 1.5

Table 6.2: The table displays the corresponding frequency and phase angle for each of the 12 target
classes. The frequency value here denotes the rate at which targets flicker from all white to an inverted
black per second. The phase angle values denote the point in the frequency cycle a given signal is
initiated at. A phase 0 indicates that the signal is initiated at the start trough of the frequency cycle (0°).
Further, the phase metrics of 0.5, 1 and 1.5 represent phase angles of 90°, 180° and 270° respectively.

Crucially, it must be noted that the training scheme used to develop the results reported
here differs significantly from those detailed for the networks herein. The maximum number
of training samples required to generate the subject-specific Combination CCA reference sig-
nals was just 12. Further, all signals were bandpass filtered between 6-80 Hz. This differs
markedly from the fixed parameters used for the Fixed Parameter assessments detailed herein
(see subsection 6.7.2).
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6.6.2 Software and Equipment

All the results generated herein were initialized with the environment requirements outlined in
the Lawhern Army Research Labs GitHub repository [286]. Specifically, this featured the use
of Miniconda Python 3.8 alongside CUDA Toolkit 12.1. The Keras (version: 2.10.0) [287]
Python module was used to deploy all models noted in this analysis. Optuna (version: 3.1.0)
[271] was implemented to perform the pre-processing hyper-parameter optimization search
methods and SciPy (version: 1.10.1) [226] was utilized for all signal filtering applications.
Note, that all the networks defined herein were trained and evaluated using a NVIDIA 1080ti
GPU, 11GB VRAM.

6.6.3 Optimization Datasets

Here is presented an outline of all datasets utilized in the optimization studies discussed. This
includes a description of the raw and fixed parameter data alongside a breakdown of the pre-
processing stages implemented.

6.6.3.1 Raw Data

To provide a baseline for the comparative evaluation of the fixed and optimized pre-processing
parameter datasets the author developed a so-called ‘raw’ iteration of the data. These assess-
ments were conducted to establish the robustness of CNN models specialized for the classifi-
cation of inherently noisy EEG data. Previous research has demonstrated the capacity of CNN
architectures to develop highly complex data representations. Along these very same lines,
some model variants may not require significant pre-processing of input data. The author
thought it prudent to assess this possibility from the offset.

Despite the indications of the moniker here assigned (‘Raw Data’), the corresponding sam-
ples did undergo some fundamental pre-processing treatments. As in all subsequent datasets,
a redundant section (0.15ms) was removed from the start of the trial. Following this, each
4-second trial was split into 1-second data chunks. This was done primarily to increase subse-
quent information transfer rates (ITR) and in turn, the total number of trials for model training
and testing [61]. Further, the data as provided via the repo was already pre-treated with a 50
Hz notch filter to remove powerline noise (see, Figure 6.1, upper left quadrant). To clarify, all
subsequent datasets underwent this set of pre-processing stages.
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Owing to the data segmentation here noted, the total number of samples increased to 7200.
Further, 720 samples are assigned to each subject, constituting 60 samples for each of the 12
target frequencies. This reflects the volume of samples utilized in all datasets throughout
these analyses. Additionally, all analyses are evaluated according to a leave-one-out cross-
validation method. All models are trained for one subject exclusively and all samples relating
to this subject are isolated into a test set after all pre-processing stages. The remaining data are
then randomised into 3 distinct k-fold sets for the purpose of metric averaging and evaluation
(see subsection 6.6.6.2).
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Figure 6.1: Here is presented a series of dual plots consisting of an input EEG signal (1-second) and
corresponding discrete FFT spectrogram. The signal is derived from Subject 3 as a representative
sample to illustrate the differences between a raw (top-left), 9 Hz high-pass filtered (top-right) and
finally 9 Hz high-pass + 30 Hz low-pass filtered (bottom-left) EEG signal. The dual plot in the top left
is an example of the data loaded immediately from the online repository. As seen in the lower of the
two plots, the absence of any 50 Hz powerline noise spiking component reveals the data has already
been notch-filtered. Further, the presence of some small peaks towards the upper end of the frequency
spectrum and numerous high-magnitude peaks around 0-1 Hz suggest no other filtering steps have
been implemented. Further, the influence of the filtering stages in terms of baselining and frequency
representations is clear. The top-right upper plot demonstrates substantially reduced drifting and a
mean of 0μV, as compared to the top-left upper plot. The reduction of sub-9 Hz components is also
confirmed in the lower spectrogram plot. The lower-left dual plot displays a far cleaner EEG signal
ready for classification, possessing frequencies restricted to the 9-30 Hz sub-band.
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In the case of the so-called Raw Data variant, each data chunk was baselined to zero via
mean subtraction. This was done as, in the absence of filtering, the data present significant
differences in EEG μV amplitude ranges (see, Figure 6.1, top-left). This alone could preclude
any effective training for the network models as the CNN filters can prove highly sensitive to
input data scaling. Note, that these steps were not undertaken for either the fixed or optimizer-
selected hyper-parameter datasets. This was avoided as the step is essentially redundant given
the application of the high-pass and low-pass filters (see, Figure 6.1, top-right quadrant) cor-
rects for these differences in μV amplitude.

6.6.3.2 Fixed-Parameter Data

As an additional point of comparison, a fixed parameter data variant was generated by pre-
processing the samples using the same parameters implemented in the training of the EEGNet
SSVEP network [60]. This was done as it is assumed these authors optimized both the net-
work architecture and the pre-processing parameters specifically for the classification of the
SSVEP bio-signal. Further, the architecture referenced is the highest performing in terms of
classification accuracy and ITR of all networks implemented in this study and crucially, for the
same SSVEP dataset repository [180]. It is intended that the use of these parameters as a fixed
baseline assessment will allow for the comparison of the models tested under deployment con-
ditions that maximise respective performance metrics. For this fixed parameter variant all data
chunks were pre-processed bidirectionally between 9 (high-pass cut-off) and 30 Hz (low-pass
cut-off) using a zero-phase forward 3rd-order Butterworth filter (see, Figure 6.2). These filters
were employed via the SciPy filtfilt function [226]. Note, as stated above the data were not
zeroed to baseline via mean subtraction.

6.6.3.3 Optimized-Parameter Data

The so-called Optimized Parameter data refers to samples pre-processed on the fly during the
optimized frequency filter cut-off value search. These data undergo the same pre-processing
stages as noted above (see subsection 6.6.3.2), differing only in the cut-off values utilized for
the low-pass and high-pass filtering stages. Further information on the integration of this pro-
cess with the wider parameter search optimization method is presented below (see subsection
6.6.5).
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6.6.4 Convolutional Neural Network Summaries

In the following analyses, four convolutional neural network variants are trained and evaluated
utilizing the three data variants outlined above. These four networks were selected due to ease
of implementation, diversity of network sizes (number of trainable parameters and network
layers) and degree of SSVEP-based architecture specialization. In the discussions below a
brief description of each architecture composition and the respective development contexts
are presented.

To clarify, given the lack of availability for model pre-trained weights at the time of writ-
ing all networks detailed herein were trained from the ground up using the open-source data
repository provided by [180]. All models were trained using cross-subject data via a 3-fold
cross-validation method (see subsection 6.6.6.2: k-Folding). Here the training data was ex-
clusively comprised of samples from 9 out of all 10 subjects and then evaluated using the
remaining subject. The duration of the training period varied substantially depending on the
network and the optimization pruner algorithm implemented (see, Table 6.12). This is pri-
marily attributed to an interaction between the number of trainable network parameters and
the features of the optimization protocol methodology, for further information see subsection
6.8.4.3: Optimizer Study Durations.

Note, that as all pruner-network combinations were trained on datasets only differing in terms
of the exclusion of one subject at a time there were no substantial intra-combination differ-
ences in the duration of the optimization studies between them. Here the subject-specific
model training durations can reliably be computed as a fraction of the total given study du-
ration. As shown in Table 6.12, for the EEGNet model using the Median Pruner this can be
computed as 37.94hours/10Sub jects = 3.8hours.

6.6.4.1 ShallowConvNet

The ShallowConvNet variant is derived from research undertaken to determine the appropriate
conditions for replicating so-called end-to-end CNN training methods, originally developed
for computer vision tasks, in EEG-time series data. The original study aimed to demonstrate
that minimal data pre-processing for deep convolutional neural networks is sufficient to exceed
the classification performance of, at the time, a state-of-the-art filter-bank common spatial pat-
tern (FBCSP) analysis method for motor-imagery-based bio-signals [61]. Traditionally, CSP
is typically applied in the binary classification of synchronized and desynchronized states in
motor-imagery-based data [288, 289].
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Moreover, extensions to the method that enable the classification of more target signals (>2)
have been developed including the Pair-Wise, One-Versus-Rest and Divide-and-Conquer meth-
ods [290]. Specifically, the FBCSP method initially involves band-pass filtering the data into
numerous bins. Typically, these are limited to 4 Hz increments between 4-40 Hz. Following
this, the separate bins are processed via the common spatial pattern algorithm to calculate data
features unique to the filter frequency bounds used. A discriminative feature selection method
is then implemented to identify components with the greatest variance, and finally, these re-
sults are input into a classifier.

The ShallowConvNet was developed as a baseline for the CNN model assessments and the
design of the network was intended to replicate many of the processes found in the FBCSP
technique. The first layer consists of a convolutional layer implemented as a temporal filter (13
× 1 kernel), followed by a spatial convolution (40 × 44), an average pooling operation and a
logarithmic activation function. A final dense layer paired with a SoftMax operation generates
the output network prediction (see, Appendix: Figure A.13). Note, that some adaptations to
model kernel sizes are employed to ensure the functional operation of the network, namely the
initial and second convolutional kernel dimensions are modified from 1 × 25 to 1 × 17 and 44
× 40 to 40 × 30. These were introduced via the authors of [59] and as stated in the relevant
GitHub repository and associated open-source documentation [286], these modifications were
not directly verified by the original research team. Despite this, owing to minor adjustments
in kernel size, as opposed to significant architectural changes, these modifications are deemed
by the authors of [286] and this thesis as minimal. In sum, the implementation and resultant
performance metrics are broadly representative of the original network iteration.

The model was initially evaluated utilizing two exclusively motor-imagery-based datasets,
BCI IV dataset 2a [291] and 2b [292] alongside an in-house high-gamma dataset (HGD) (0-
125 Hz & 4-125 Hz bandpass filtered data). Each dataset consisted of 2, 4 and 6 motor
imagery states respectively including, resting, or lifting right/left arms or feet. Further, the
models were evaluated on an open-source blended dataset, Mixed Imagery Dataset (MID),
that also included mental rotation and word generation. A brief outline of these datasets is
necessary to clarify the development context of the ShallowConvNet and DeepConvNet (see,
the following subsection 6.6.4.2). Crucially, these models do not represent SSVEP-specialized
networks.
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In typical applications, CSP analysis involves whole-brain electrode arrangements (18+
locations) to identify robust differences in time-series data over proximal and distal spatial lo-
cations. Despite this, both the ShallowConvNet and FBCSP are designed for the classification
of oscillatory brain-based bio-signals. Further, as stated concerning the MID, these models
were also evaluated in non-motor-imagery bio-signal contexts, providing credence to the as-
sertion that the techniques are not domain-specific, even for non-oscillatory neural patterns.
Finally, despite being inspired by FBCSP methods, the CNN models herein are not explicitly
or purely performing FBCSP-based operations and as shown in the subsequent results sec-
tions, the models perform well outside of the originally intended context.

Interestingly, the data pre-processing undertaken across all available samples was, in nearly
all instances, highly minimal. The time-series data was either input in full-bandwidth for-
mat, with no frequency-based filtering or only with a high-pass filter at 4 Hz to remove eye-
movement artefacts. Relating to the HGD, the absence of low-pass filtering was undertaken
primarily as a means of increasing the possibility of extracting high-frequency movement
execution-related components. Similar principles were applied in the advancement of the
FBCCA method (see subsection 6.6.1), this involved applying a far higher low-pass filter
bound (80 Hz) to extract target SSVEP frequency harmonics and boost classification perfor-
mance. Based on these design considerations the author asserts that the ShallowConvNet [61]
and DeepConvNet [61] are likely to outperform the more specialized EEGNetSSVEP [60]
model in the raw data variant evaluations.

6.6.4.2 DeepConvNet

As noted above, the CNN models developed in the reference article [61] significantly outper-
formed comparative FBCSP methods in the classification of oscillatory, multi-class, motor-
imagery-based data. In the case of the DeepConvNet architecture, this was achieved via the
implementation of leading contemporary CNN training and design features including, batch
normalization [262] and novel optimizers (Adam [264] and Adagrad [293]) as well as op-
erational architecture advances including drop-out [199] and exponential linear units (eLU)
[294]. Crucially, as the available pool of training data for motor imagery tasks at the time
prevented the utilization of the most powerful computer-vision-based networks, the authors
designed numerous models of differing complexity and assessed these classifiers using alter-
native training schemes.

The DeepConvNet features four operational blocks arranged in a series of convolutions and
max pooling layers (see, Appendix: Figure A.14). The first layer convolutional kernel is 1
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dimensional or ‘channel-wise’ in design (10 × 1). As noted in the ShallowConvNet, this
functions as a temporal filter and reduces the dimensionality of the input EEG data. Before
max pooling, the input is convolved by a secondary unit (kernel 25 × 25) and subsequently
fed to the ELU activation function. Following this, traditional 2-D kernels and max pooling
layers are employed. These increase in size as per standard deep convolutional neural network
architectural conventions (25 × 50, 50 × 100, and 100 × 200, respectively). Finally, the same
dense layer is implemented in combination with 12 SoftMax units corresponding to each tar-
get SSVEP frequency class in the data repository. Note, as discussed above, the kernel sizes
for each convolution have been modified to accommodate the new input data format. Despite
this, the design of the network broadly mirrors the original.

Crucially, the authors state that the architecture of the network was purposefully developed
using standardized DCNN architecture design principles. This was done to allow for the
seamless integration of novel, cutting-edge advances in DCNN operations and to maximise
the scope of network application across numerous bio-signal classification tasks. Since the
publication of this article, these adaptations could include weight initialization methods for
example the Xavier [266] or Kaiming [267] methods and the application of AdamW [265]
optimizers.

6.6.4.3 EEGNet

The EEGNet architecture was initially developed to provide a highly flexible EEG-based bio-
signal classification method across P300, sensory-motor rhythms, error-related negativity, and
movement-related cortical potentials [59]. The approach was benchmarked against a compa-
rable DCNN model as a baseline and equalled or surpassed the DCNN in both standard and
restricted training data conditions. The EEGNet model is composed of two operational blocks,
Firstly data are convolved across the temporal axis using a 1D kernel (1 × 32), to generate
numerous band-pass filtered EEG signal feature maps. Following this a ‘depth-wise’ convo-
lution is applied overall all channels (8 × 1) for a single timestamp to fit a spatial filter for the
EEG data input. This block essentially mimics the computational stages of many filter bank
approaches that have previously proven successful in the classification of BCI bio-signals.
Further, by combining these convolutional operations the developers reduced the number of
the model training parameters, effectively increasing the scope of network deployment op-
tions. Following this is a separable convolutional block, that applies a 1D (1 × 16) filter over
the temporal axis to generate a summary for each feature map. These representations are later
combined in an optimized arrangement to determine to most effective relationships within and
between the feature maps present.
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Note, that all convolutional units were followed by a batch normalization operation. Further,
after both depth-wise and separable convolutional blocks, the inputs are processed via an expo-
nential linear unit (activation function), average pooling and drop-out operations (0.5). For fur-
ther information on the architecture specifications see, Appendix, Figure A.15. Crucially, this
network demonstrated significant potential in the classification of oscillatory brain-based bio-
signals and notably outperformed the current state-of-the-art FBCSP method outlined above.
Further, comparisons against similar convolutional neural networks, namely, the ShallowCon-
vNet and DeepConvNet [61], revealed fewer differences in performance. Despite this, sig-
nificant advantages over the ShallowConvNet [61] model was observed for non-oscillatory
bio-signal classification and a dramatically reduced computational load as compared to the
DeepConvNet deployment [61].

6.6.4.4 EEGNetSSVEP

As stated above, the EEGNet architectural format demonstrated world-class performance
across a range of oscillatory and non-oscillatory brain-based bio-signals. The same authors
later extended the findings of this research by developing EEGNetSSVEP or CompactCNN
[60]. This model was developed specifically to demonstrate the potential of neural networks
for SSVEP-based classification. The network contains the same architectural layout discussed
above (see, Appendix: Figure A.16). This comprises two convolutional blocks, the first is
composed of a temporal and later depth-wise unit, followed by the separable convolutional
block. The primary modifications implemented relate to the size of the initial 1D convolu-
tional filter (increased from 1 × 32 to 1 × 256) and the number of filters applied at each
stage also increased significantly (8 to 96). These adaptations effectively enhance the compu-
tational power of the network. Note, that the term ‘power’ concerning neural networks can be
relatively nebulous and opaque, in this context, it relates to a large number of corresponding
trainable network parameters. Alternatively, the same term could be applied to a network with
a substantial number of layers. In sum, power denotes overall network complexity and hence
representational capacity as a decision-making function.

The larger number of connections and parameters increases the resource cost of the model
as a trade-off for enabling the extraction of more complex and diverse EEG components from
the input data. As mentioned above, the FBCSP and FBCCA methods informed the design of
the models herein. Specifically, the Combined FBCAA methods described earlier (see sub-
section 6.6.1) dramatically increased classification accuracy due to the use of subject-specific
CCA reference signal templates and the expansion of the filter bank analysis to 2nd and 3rd
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EEG target frequency harmonics. The authors applied a 9-30 Hz 3rd order Butterworth band-
pass filter pre-processing stage to all samples assessed. Using this restricted bandpass range
impeded the ability of the CompactCNN to extract latent high-frequency components, for ex-
ample, 3rd-order harmonic information. In the article corresponding to the GitHub SSVEP
repo used in this study [180] the authors implemented a much wider bandpass filtering range,
between 6-80 Hz. Replicating this wider filter range in combination with the greater num-
ber of filters could enhance network performance beyond that observed in the original article.
Here the author attempts to verify and extend this method to the models defined herein. In
other words, the authors will explore the implementation of greater bandpass filter thresholds
in the signal pre-processing stage on network performance, by allowing for the extraction of
2nd and 3rd harmonic components embedded in the EEG data (see, Table 6.1).

Further, the author aims to evaluate the possibility of diminishing returns concerning ever-
increasing threshold values. To explore this systematically a method of optimized signal-pre-
processing parameter search has been developed using the Optuna library [271]. It is predicted
that the increase in low-pass filter cut-offs could enhance performance in higher complexity
networks, with greater computational power. The increased cut-off values could likely ham-
per the smaller networks as potentially useful, yet noisy data containing harmonic information
could ultimately compromise model training.

6.6.5 Optuna Optimization Process

Numerous methods have been employed to optimize neural networks in the past. These are
typically borne from new theoretical considerations and evaluated within respective computa-
tional bounds. Often, these guidelines are shifted towards a brute force trial and error method-
ology until a requisite amount of research eventually determines rough, base values for the
parameter in question. For example, the length of a convolutional filter for the classification
of EEG time-series data is constrained by the limitations of the Nyquist frequency and the op-
timal sizes of these filters in architectures for these applications vary for the many bio-signals
available for classification. This can manifest in real-world applications with larger filter sizes
for slower EEG components and vice versa for higher-frequency signals.

The process of neural network parameter optimization can be extended to nearly every as-
pect of the model. This can include different metric ranges for drop-rate rates and learning
rates, it can cover alternative operational methods for average or max pooling as well as opti-
mizer methods covering Adam [264], AdamW [265], stochastic gradient descent (SGD) [295]
and Adagrad [293]. Further, the optimizations can extend into the architectural features of the
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model varying the number of filters employed, the number of layers used and the connectivity
between respective layers. The research deviates from these methods by optimizing the data
input into the network, by searching the parameter space for optimal signal pre-processing
thresholds, specifically low-pass and high-pass filter cut-offs.

Many optimization tools are available to researchers ranging from open-source Python-based
Scipy methods [226] to paid services as provided by Neptune [296]. The Python library Op-
tuna [271] was utilized to run all optimization processes described herein. Essentially, a wrap-
per is positioned overtop the typical CNN deployment code to control the iterative evaluation
of pre-processing parameters in terms of network performance metrics (see, Figure 6.2). Note,
that a single optimized parameter search is termed a study and each run within this process
is known as a trial. Each study in the analyses is unique to one specific subject for a certain
model, consisting of 100 trials each. Firstly, the search parameters are selected, in this case,
the high-pass and low-pass cut-off values. Following this, the value range is specified, here a
0-9 Hz and 15-85 Hz range are selected for the respective parameters. This high-pass param-
eter search range was chosen as it encompasses all signals available in the EEG time series up
to the lowest frequency target waveform used, 9.25 Hz. The author asserts it is likely that the
optimization process will select a cut-off value as close to this frequency as possible.

Further, the low-pass filter range implemented is significantly larger extending from 15-85
Hz. The original data repository article [180] employed an 80 Hz low-pass filter to allow for
the capture of higher-order harmonic information, as noted above (see subsection 6.6.1). The
author extended the range to explore the effects of retaining additional more high-frequency
information on network classification performance. Note, that the selection of alternative cut-
off values was capped in 0.25 Hz increments. This reduced the number of potential parameter
values available to the Optuna pruner and was employed to expedite the algorithmic parame-
ter selection through the search space. Further, the use of non-integer frequency filter values
can produce unexpected complications in deployment. As the system is intended to run for
prolonged periods uninterrupted the reduction of such unforeseeable issues was nullified via
this decision.

It is crucial to note that the optimization process is composed of two key elements, the sampler
and the pruner algorithm. Here the sampler refers to the method by which the value is selected
from the search space, this is typically based on the processing of previous monitoring metrics
such as loss or accuracy values. The pruner algorithm actively compares the performance of
the monitor values to the metrics collected during each training epoch to determine the prof-
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itability of continuing or halting training. In all instances, the models in this thesis used the
same sampler method. This is based on the default parameter setting in the Optuna library
[271], namely the Tree-structured Parzen Estimator (TPE) technique [297]. This is character-
ized by the application of probabilistic modelling to perform highly efficient parameter space
searching.

The technique involves ranking the parameters, in our case the low-pass and high-pass fil-
ter cutoff values, using a network performance measure, in this study the loss value computed
for each network against the evaluation dataset was used. The ranking procedure is handled
by the implementation of two Gaussian Mixture Models (GMM). This type of model is com-
puted to represent an array of parameter metrics as the sum of a series of Gaussian distributions
[297]. Through this method, one model is computed to represent the values associated with
good performance metrics, i.e. low-loss values, and another is computed to represent values
associated with all other performance metrics computed thus far, i.e. higher-loss values.

Effectively, each model generates likelihood values corresponding to the entire search space
for every combination of parameters relative to the associated parameter performance met-
ric dimension. The ratio between each parameter value in the search for these two models
is used to compute the next set of values. Here the TPE method aims to select parameter
values by maximizing the ratio between the likelihood values from GMM computed on the
high-performing parameters against the likelihood values computed from all other parameters
tested. As seen in Figures 6.6, 6.7, 6.8 and 6.9, the initial parameter selections are highly
volatile, this is because the GMMs have yet to acquire an adequate sample size of parameter-
performance metric pairings. Over the course of the optimization session, the sampler typi-
cally converges towards a specific region of the high-pass or low-pass filter cutoff search space.

To clarify, following the selection of the new frequency cutoff values via the respective op-
timization sampler-pruner algorithm combination all subject samples are pre-processed using
these filter parameters. This was done to exclusively probe the effect of EEG data filtering
cut-off values on a range of neural network performance metrics. Any additional changes to
the network parameters during the optimization stage would have dramatically increased the
optimization search space and would have prevented any strong conclusions on the influence
of the frequency cutoff optimization on end-point classification accuracies. During each op-
timization study, the weights for the model currently being optimized were reinitialized and
the network was trained from the ground up using these newly pre-processed data. Note,
that all other network parameters including the learning rate, drop-out rate, batch size, num-
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ber of kernels and stride were kept constant. Understandably, these parameters only differ
between the model configurations (e.g. EEGNet vs. EENetSSVEP), as opposed to the same
network variant within the same optimization study (EEGNet Optimization Run 1 vs. EEGNet
Optimization Run 2). For more information please refer to Figure 6.2 and subsection 6.6.6:
Pruners.

As noted above in subsection 6.6.3.1: Raw Data and 5.6.3.3: Convolutional Neural Network
Summaries, all models defined herein were trained on aggregated, cross-subject data using a
leave-one-out 3-fold cross-validation procedure (see subsection 6.6.6.3: k-Folding). This con-
tinues the current trend established in cutting-edge CNN-based SSVEP classification methods
[269, 270] that operate under the assumption that given the adequate data volume, the vari-
ance within a cross-subject dataset could present advantages over a single-subject dataset by
introducing a greater array of example waveform expressions. The increased variance in the
quality of waveform expression could lead to more robust models and crucially these systems
have significant design benefits including substantially higher generalizability across subjects
as well as the ability to classify signals without the need for a subject-specific calibration pe-
riod [270].

Along these very same lines, in all instances, the training data herein is composed exclusively
of samples collected from 9 of the 10 subjects comprising the open-source SSVEP repository
[180]. The remaining subject data is used only for evaluation purposes. To clarify, the model
is trained using data from 9 of the 10 subjects and the performance of the model, for the given
configuration of frequency filter parameters, is monitored during the optimization process by
intermittent testing of the model on the single remaining subject. For further information on
how this intra-study test performance is handled by each of the three pruners assessed please
refer to the subsection below, 6.6.6: Pruners.

Note, that each model-pruner combination required several hours to process for each of the op-
timization studies performed.Further, the networks differ considerably in terms of total com-
putation time across the entire 10-subject dataset. As can be seen in Table 6.12, the EEG-
NetSSVEP required 66.41 hours of processing time (6.7 hours per subject) when optimized
with the Median pruner algorithm, as compared to the EEGNet (3.8 hours per subject), Deep-
ConvetNet (3.6 hours per subject) and ShallowConvNet (4.6 hours per subject). It is asserted
that this is due in part to the fact that the EEGNetSSVEP model possesses the highest number
of trainable parameters. For further information on these differences see subsection, 6.7.4.3:
Computational Resources and for more interpretation of these findings see subsection, 6.8.4.3:
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Optimizer Study Durations.

The purpose of undertaking these highly computationally expensive investigations is to de-
termine optimal ranges for the implementation of filter frequency cutoffs across the individual
subjects and the model-pruner combinations assessed.The high computational cost incurred
in this study is done to assist researchers in performing convolutional neural network opti-
mizations in future studies. Here I aim to illuminate the interaction between filter frequencies,
model configuration and pruner selection in terms of computational duration and end-point
performance. I intend for these results to serve as a guide to the selection of these parameters
based on thorough, systematic testing to help save countless hours of crucial research time and
resources.
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Figure 6.2: Here is presented a figure illustrating the automated workflow of the optimisation code. The
caption is positioned on the following page to accommodate the size of the figure. In the example de-
tailed, the data for Subject 1 is loaded and pre-processed via the fixed parameter stages. Following this,
the high-pass and low-pass frequency filters are applied using cutoff values selected from the associated
frequency ranges, 0-9 Hz and 15-85 Hz, respectively via the Tree-structured Parzen Estimation (TPE)
method. During the first few runs, the values are highly varied as the associated Gaussian Mixture
Models (GMM) have not yet been provided enough samples to guide the selection process effectively.
At this point, the pre-processed data is then used to train the corresponding CNN model. In this in-
stance, the EEGNet architecture is selected. Over the course of this process, the model is trained for a
maximum of 500 epochs. During this training phase either the pruner or early stopping function could
establish, via comparison to previous runs or rate of validation loss decrease, that the current study does
not possess the optimal configuration of parameters to maximise network performance. This is based
on the iterative assessment of the loss computed on the evaluation data at the end of each epoch. As
can be seen in Appendix A.6: Optimizer Loss Profiles, Figure A.20, in most instances of the networks
assessed herein, once a given model reaches above 40 epochs the loss metric becomes highly stabilised
(see subsection, 6.6.6.2: k-Folding). This suggests that the models have successfully learned to extract
and classify samples based on features inherent to the SSVEP data. For optimization runs in which
this threshold was breached, the model was allowed to continue training to 500 epochs and went on to
be re-tested via the 3-fold cross-validation method (see, subsection 6.6.6.2: k-Folding). This involves
re-initializing a new iteration of the target network and training it using a randomized version of the
training dataset. This is repeated twice to generate enough performance values for metric averaging and
model validation. The heuristic of 40 was implemented as a means of balancing the need to thoroughly
explore as many viable network-filter-cutoff parameter configurations as possible, without wasting time
optimizing models with a low likelihood of producing good performance values. For instances where
the model is pruned early, i.e. before the 40-epoch mark, the training is stopped, and a new series
of high and low-pass filter cutoffs are selected. As noted above, the process of selecting new high-
pass and low-pass cutoff value pairs is performed over 100 optimization studies via the Tree-structured
Parzen Estimator (TPE) (for further information, see subsection 6.6.5: Optimization Process). Once
the optimization study is complete, all results and associated plots are generated to determine the best
trial consisting of the optimal high-pass and low-pass metric pair. Note, that the dotted lines displayed
here represent the relative subsequent set of analyses for each subject in the dataset.

6.6.6 Pruners

The pruning method defines the algorithm used to select novel parameter values at the trial
level over the course of each study. A suite of three pruners was utilized from the Optuna
library [271], namely the Median, Percentile and Successive Halving Pruner. These were se-
lected as a representative group of commonly employed algorithms to gauge differences in
speed (time taken to complete one study) and quality (final performance of optimized net-
works). A brief outline of each method is presented below, for further information see, the
related Optuna documentation [271]. Note, that all pruners effectively perform the same two
basic tasks, namely parameter value selection for a specific metric directionality and the exe-
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cution of an early stopping mechanism for resource-saving purposes (see, Figure 6.2).

In this instance, the parameter values selected are for the high-pass and low-pass cut-off val-
ues and the monitored performance metric is validation accuracy. The preferred direction is to
increase this value. In many instances, the performance metric input to the pruner is validation
loss. This is principally used for unbalanced datasets to ensure biased network performance
for a specific data class does not impede effective network training. As the data utilized in
this study is perfectly balanced the author was not obliged to follow this convention and the
preliminary results gained in project troubleshooting revealed the end-point performance in-
crease was greater for the original monitor and directionality configuration.

During the deployment of the Median pruner, trial rejection is controlled by repeatedly calcu-
lating and comparing the median metric value of intermediate epochs against those gathered
during previous optimization trials. Firstly, the network is trained and optimized without
pruning to initialize the optimization algorithm and provide a baseline of performance at each
respective trial epoch. During the training period of the following network, the newly gener-
ated metric values are compared to those of previous runs. In this instance, if the median of
metric values for the current number of epochs on the new run is lower than the median value
obtained by previous runs for the same number of epochs, the trial is pruned. If the network
is capable of consistently matching or exceeding the median metric values of previous runs,
then the trial will be completed for all epochs programmed for training.

In contrast, for the Percentile pruner, trial rejection is determined by comparing the current
performance metric specified to all other trials collated thus far. Like all pruners, a baseline
must first be established. Following this, in subsequent trials, current network performance is
compared against previous trials in terms of performance metrics for corresponding epochs. If
the current trial epoch produces a performance metric that positions the parameter configura-
tion in the e.g., bottom 25% of all previous trials, then the trial is pruned. During the pruning
of network parameters, this pruner selects values that enhance the rate of convergence (e.g.,
low drop-out and high learning rates) and can lead to a large percentage of trials being pruned.

Finally, the Successive Halving pruner was evaluated. This method is primarily suited to
the rapid calculation of hyper-parameter configurations distributed over a network of opti-
mization protocols running in parallel. The process is a hierarchical search program in which
all net configurations are first tested with a minimum of resources (low number of epochs),
those networks achieving above-average performance are promoted to a second run in which
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these networks are retested using twice as many resources (number of epochs). This iterative
training and evaluation process is repeated until a single network configuration is decided. The
parameter search algorithm is controlled by a multi-armed bandit-style function which aims to
maximize performance metrics by directing parameter configurations towards optimality via
recall to previous trial performances.

6.6.6.1 Early Stopping vs. Pruning

During the training phase of each network, the monitor metric (validation accuracy) is relayed
back to the pruner to assess the trial performance against currently logged study-level metrics.
In addition to this, an Early Stopping feature monitoring validation loss was implemented
to prevent the excessive over-training of the networks, specifically during the early stages of
the study. It was crucial to employ both of these methods simultaneously to reduce the to-
tal amount of computational time used per study. Further, despite the EEGNetSSVEP article
[60] listing the number of epochs trained for at 500, the author herein found that the EEG-
NetSSVEP converged in most instances before the 100-epoch mark. The only architecture
that seemed to substantively benefit from the full 500 epoch training scheme was EEGNet as
will be discussed in the subsequent results and methods sections (see subsection 6.7.3.1).

It is well established that the continued training of models beyond the point of convergence
can lead to over-training and an increased risk of overfitting the training data. These obstacles
are averted in the current study due to a combination of the pruning method, early stopping
(both based upon validation loss monitoring) and the use of so-called best-weights saving.
This involves only overwriting the current network weights save state for the batches that pro-
duce the maximal classification performance, as opposed to simply saving each weight state
after every epoch.

6.6.6.2 k-Folding

Following the completion of all 100 trials in a given study, all networks that accrued at least 40
epochs are separated from the other runs for further evaluation (see, Figure 6.2). This was se-
lected as typically at this number of epochs all networks, irrespective of model type, are likely
at or approaching convergence (see, Appendix: Figure A.20). The remaining models then un-
dergo further evaluation via a k-fold method. Each training dataset is re-processed using the
same corresponding high-pass and low-pass values and the respective samples are randomised
alongside the corresponding class labels. A newly initialized network (zeroed weights) is then
trained using this randomised data for the same number of epochs previously achieved by the
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original model. This was repeated twice to produce three sets of performance metrics per
retained model and allowed researchers a means of calculating standard error values for each
network assessed. This process was not integrated directly into the code encased in the Optuna
wrapper as the iterative logging of multiple monitor values (validation accuracy) within the
same trial is not presently a compatible feature of the Optuna optimization library [271].

6.6.6.3 Acknowledgements on the Re-Implementation of CNN Models

The Lawhern GitHub repository was a crucial resource in the implementation of the analyses
described herein [286]. Despite this, some network training parameters had to be estimated
given a lack of detail in the repo and original corresponding articles. This is related to the
specific learning rate and optimizer implemented. This is reflected in the fact that the exact
performance metrics recorded by the original authors using the same models, dataset, and fixed
pre-processing stages, could not be replicated here. The performance is marginally lower for
nearly all methods tested at the single-subject and cross-subject levels. Due to the absence of
these details, standardized values were implemented across all models assessed, the learning
rate was set at 0.0001 and the optimizer utilized was the Adam method [264].

6.7 Results

Here are presented the results concerning all studies conducted using the raw, fixed-parameter
and optimized datasets. For further information regarding the configuration of these datasets
please refer back to subsection 6.6.3. Following these evaluations, a discussion relating to
the comparison of the three different optimization pruner methods tested is undertaken. This
covers the differences in endpoint classification accuracy, optimized frequency filter cutoffs
and computational resource usage.

6.7.1 Raw Data: Assessments

The analysis of network performance on the Raw dataset (see subsection 6.5.6.3.1) was under-
taken to provide baseline performance statistics and explore the computational limitations of
the models tested for the inherently noisy EEG input data. The samples taken from all 10 sub-
jects consist of 6-second data chunks relating to a specific SSVEP target frequency. As noted
earlier, the data are spliced into 1-second packets and then normalized to a zero mean. This
involves calculating the mean μV amplitude of each EEG channel signal and then subtracting
this metric from all values in the respective waveform.
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The intention of applying this normalization stage is to ensure all input signals are in a similar
μV amplitude range. Previous literature has demonstrated the sensitivity of CNNs to dramatic
differences in training data scaling and the absence of care in this instance can significantly re-
duce the rate of convergence and end-point performance metrics of the model evaluated. Note,
the researchers also performed the same iterative subject-level training scheme for purely raw
data signals and non-significantly different results were attained. Further, as stated previously
(see, Figure 6.1) all data were pre-filtered at 50 Hz as per standard powerline noise removal. In
light of these circumstances, the effects of forgoing any notch filtering before network training
could not be evaluated.

All models herein were trained for 500 epochs with the same learning rate (0.001), batch
size (64), optimizer (Adam) and loss function (Categorical Cross-Entropy). Note, given the
number of target classes (12) the random performance threshold is 8.33%. Again, test set data
comprised all samples for one individual subject and at no point was this data present in the
training set. This was done to develop subject-specific models in a simulated real-world, of-
fline analysis context.

As seen in the table below (see, Table 6.3), no subject-model combination achieved a clas-
sification performance significantly above the random performance threshold (8.33%). There
are some instances of 9% AoC at the subject level, as shown by Subject 10 for the DeepCon-
vNet architecture. Further inspection of these results reveals that this is principally owing to
the model overfitting (see, Figure 6.3) for two target classes, in this instance class 2 (11.25
Hz signal, Phase: 0π) and class 9 (14.25 Hz signal, Phase: 1.0π). The instances of 8% AoC
that are present in most subject-model combinations are slightly more diffuse (less overfit)
and present with a lower hit rate for the biased class selections. Additionally, the standard
error values computed for the averaged k-fold stats relating to each subject AoC metric are
not reported here. This is owing to the fact the differences between maximum and minimum
values for all stats recorded were <= 1% .
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Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Mean

EEGNet 0.09 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08

EEGNetSSVEP 0.08 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08

DeepConvNet 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.09 0.08

ShallowConvNet 0.09 0.08 0.09 0.09 0.08 0.08 0.08 0.09 0.08 0.09 0.09

Table 6.3: Here is presented a table containing the classification accuracies of the four CNN models
assessed for each of the 10 test subjects (Sub) in the Nakanishi SSVEP data repository [180]. The
AoC is presented from 0-1.0, with 0 indicating 0% classification accuracy and 1 indicating 100%
classification accuracy. The mean column positioned to the far right of the table shows the cross-
subject average score relating to each model tested. Note, that the standard deviations are not displayed
as all subject-model combinations possessed near identical values (0.004 +/− 0.001).

Figure 6.3: Here is presented a confusion matrix detailing the performance of the DeepConvNet model
for the classification of Subject 10 data. The columns and rows listed refer to each of the 12 SSVEP
signal classes utilized in the Nakanishi data repo article [180]. For further information on the phase
angle content of the respective signals used refer to Table 6.2 positioned in the Methods section (6.6.1).
To accommodate visual interpretation a higher incidence of classification accuracy for a given target
class is indicated by the use of a darker corresponding matrix cell. As noted in the legend (positioned
on the right), 100% classification accuracy is denoted via the use of black as the cell background and
conversely, a white background is used to indicate 0% accuracy.
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The different levels of network complexity and number of parameters seemingly offered
no advantage to the classification of the signals in the absence of any frequency-based pre-
filtering. These results suggest some filtering of these data is necessary before the training
of the networks assessed herein. As can be seen in the original data repository article [180],
the EEGNet [59] and EEGNetSSVEP [60] articles and the subsequent analyses noted herein
indicate Subjects 4, 6 and 8 as the highest-performing individuals for this task (see, Table 2.1).
The metrics observed for these raw analyses demonstrate no significant differences between
these subjects or any of the other subjects assessed. These findings indicate that, despite some
evidence for the adaptability of CNN models to noisy EEG bio-signals, a comparable pattern
of performance was not replicated here. This is likely due to the complexity of the task, given
the high number of targets and the narrow range that the target frequencies occupy (9-15 Hz).

6.7.2 Fixed-Parameter Data: Assessments

This subsection relates to the performance of the networks assessed using the fixed parameter
dataset (see subsection 6.6.3.2). This involved applying the same high-pass (9 Hz) and low-
pass (30 Hz) filtering methods implemented by the developers of the EEGNetSSVEP model
[60] for the same online repository dataset [180]. As stated previously, the fixed parameter
classification performance metrics serve as a baseline for comparison to gauge the efficacy of
the automated hyper-parameter optimization techniques defined herein. The networks evalu-
ated did not outperform the Combined CCA methods reported in the original article [180] that
introduced the data repository utilized here (see, Table 2.1). Further, the models performed
marginally below the levels presented by the developers of the EEGNetSSVEP architecture
[60]. Despite this, the reported statistics are only marginally lower and crucially the same
trend of classification performance is observed at the model and subject levels.

Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10 Mean

EEGNet 0.34 0.18 0.48 0.68 0.63 0.72 0.60 0.82 0.61 0.68 0.57

EEGNetSSVEP 0.56 0.24 0.69 0.91 0.84 0.91 0.81 0.97 0.84 0.80 0.76

DeepConvNet 0.40 0.21 0.52 0.75 0.79 0.77 0.68 0.87 0.78 0.72 0.65

ShallowConvNet 0.25 0.16 0.30 0.36 0.34 0.46 0.35 0.55 0.41 0.45 0.36

Table 6.4: Here is presented a table consisting of all subject-level classification accuracies (Sub) for
each of the 4 respective CNNs assessed. The corresponding AoC values are denoted between 0 and 1,
with 1 representing a 100% hit rate. For further information regarding the interpretation of these results
see, Table 6.3.



302 Subject-Specific Signal Pre-Processing Network Optimization

As seen in Table 6.4, the EEGNetSSVEP model variant produced the highest classification
accuracy both at the single-subject (Subject 8) and cross-subject (Mean) levels. The Shallow-
ConvNet produced the lowest mean accuracy of classification and the lowest individual AoC
reported herein (Subject 2). Additionally, the DeepConvNet model outperformed the standard
EEGNet model for all subjects evaluated. This network arguably presents with a higher level
of architectural complexity as compared to the EEGNet and EEGNetSSVEP, due to the greater
number of convolutional layers (see, Appendix: Figures A.14, A.15 & A.16). Despite this, the
dramatically higher volume of convolutional filters alongside the inclusion of Separable and
Depth-Wise convolutional operation blocks affords the EEGNetSSVEP model significantly
greater computational power.

Figure 6.4: The plot above shows a bar chart depicting the accuracy of classification values for all sub-
jects (Sub) and models assessed using the Fixed Parameter dataset (see subsection 6.6.3.2). To clarify
this plot is generated using the same metrics that populate Table 6.4, any comparison between these
results and the baseline raw assessments can be done by inspecting these tables. Each subject block
reports the respective model performance alongside error bars computed via the standard deviation of
all accuracy metrics generated from the 3 k-fold randomized evaluations. Further, a series of means
computed from all the individual subject performance values is positioned to the right of the subject
data.

When inspecting Figure 6.4, a general pattern of subject-related performance is present
across all individuals assessed. Specifically, Subject 8 is the highest-performing individual
for all models tested, likewise, Subject 2 is the lowest-performing subject for all networks
evaluated. Further, the variance in subject performance within the 3 randomised k-folds is
generally below 2% , as only a marginal number of instances can be seen that report variance >
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4% . The coherence in model performance metrics across the subjects evaluated suggests that
there exist specific data characteristics conducive to the CNN analysis method. This is realized
as a high relative correlation between performance metrics gathered across subjects for all
models. The results suggest that the rapid troubleshooting of novel network architectural
features can be effectively tested using models with a low number of parameters. Moreover,
the minimal amount of variance between networks within the k-fold reports suggests that the
models are relatively consistent during deployment. This is key to the stable operation of any
communication-based BCI.

6.7.3 Median Pruner Optimization: Assessments

The following section contains all analyses relating to networks optimized using the Median
Pruner method (see subsection 6.6.6). A summary of the results can be seen in Figure 6.5. The
same pattern of mean classification performance found for the fixed parameter assessments is
replicated here. The EEGNetSSVEP performs at the highest level and the ShallowConvNet
demonstrates the lowest classification accuracies.

Figure 6.5: The plot above shows a bar chart depicting the accuracy of classification values for all sub-
jects (Sub) and models assessed using the Median pruner optimization method (see subsection 6.6.3.3).
The metrics are presented in terms of classification accuracy between 0-1.0, this involves 0 representing
0% AoC and 1 representing 100% AoC. Each subject block reports the respective model performance
alongside standard deviation error bars. Further, a series of means computed from all the individual
subject performance values is positioned to the right of the subject data.
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6.7.3.1 EEGNet

The performance metrics for the EEGNet model post-filter cutoff optimization differ markedly
from the original fixed parameter study. Paired t-tests revealed a significant (p >0.005) drop
in classification accuracies, as calculated from the mean subject-specific accuracies and are
reflected in the decrease of mean cross-subject AoCs from 57% to 52.6% (see, Tables 6.5 &
6.5). Only one subject (Subject 2) presented with a marginal increase in AoC (0.8%) and many
subjects noted large decreases as in the case of Subject 3 (−8.6%) and Subject 5 (−11.5%).
This optimization required on average 227 minutes per subject and a total of 37.9 hours to
complete.

AoC Min K Max K Standard Deviation High-Pass Cutoff Low-Pass Cutoff Epochs

Sub 1 0.29 0.26 0.34 0.045 9 15.5 145

Sub 2 0.19 0.17 0.21 0.021 9 15.5 75

Sub 3 0.39 0.37 0.43 0.035 7.75 17.25 128

Sub 4 0.66 0.63 0.68 0.029 9 15 208

Sub 5 0.52 0.40 0.68 0.145 1.5 41.75 241

Sub 6 0.72 0.69 0.73 0.021 8.75 15 212

Sub 7 0.55 0.53 0.58 0.028 9 15.25 139

Sub 8 0.81 0.79 0.85 0.038 8.25 15 239

Sub 9 0.55 0.52 0.61 0.052 8.5 21.75 271

Sub 10 0.59 0.55 0.63 0.040 8.75 17.25 166

Mean 0.53 0.49 0.58 0.045 7.95 18.93 182.4

Table 6.5: Here is presented a table of results for the EEGNet model in the Median Pruner optimization
study. The metrics reported related to all 10 subjects (Sub) assessed in addition to a mean computed
from all respective individuals. These metrics correspond to the highest-performing model variant
generated from the optimization study. The AoC header refers to the average classification accuracy
achieved over the 3 k-fold randomisation runs, with Max K and Min K referring to the highest and
lowest AoC values achieved in all 3 runs performed. The standard deviation computed from the 3
accuracy scores is also presented to provide insight into model performance variance. Further, the
optimized high and low pass filters of the best-performing model are listed alongside the number of
epochs the network was trained for before pruning. Note, that the number of epochs trained for was
dependent on both the Early Stopping checkpoint function and the respective pruner algorithm selected.
In >90% of all trials assessed the pruner algorithm was responsible for trial terminations. The early
stopping protocol merely served as a time-efficiency backup.
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As shown in Table 6.5, the high-pass cutoff values have coalesced around the lower limit
of the SSVEP target frequencies assessed. A clear trend towards the 9 Hz boundary can
be observed for Subject 8 in Figure 6.6 (left plot). A similar weaker pattern of algorithm
parameter search progression in the orthogonal direction, towards the 15 Hz limit of the low-
pass filter bound, can also be seen in Figure 6.6 (right-plot). Ultimately, the series of parameter
search selections for the low-pass cutoff value demonstrate an increased incidence of bi-modal
parameter search shifting. This is characterized by the rapid study-by-study fluctuations in
cutoff values.

Figure 6.6: The figure presents all high-pass (left plot) and low-pass (right plot) Median Pruner algo-
rithmic parameter search selections for Subject 8 in the respective EEGNet model optimization study
(100 trials). The frequency (Hz) of the respective filter cutoff value is positioned on the y-axis along-
side each study run (trials) plotted on the x-axis.

As seen in Figure 6.6 (right plot), the final 25 runs feature selections ranging between
20 and 78 Hz. This indicates that the optimization algorithm has yet to adequately converge
and likely requires additional runs to find the optimal frequency range. Note, that this pattern
is replicated independent of subject AoCs (see, Appendix: Figure A.17), with some outliers
present in the data showing a reduced directional trend (see, Appendix: Figure A.18). Further,
the number of epochs each subject-specific network was trained for demonstrates substantial
variability, ranging from 75 (Subject 2) to 271 epochs (Subject 9).
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6.7.3.2 EEGNetSSVEP

In relation to the EEGNetSSVEP model, the increase in cross-subject mean accuracy post-
optimization, as compared to the fixed parameter results, is marginal (+ 1.69%) and is shown
to be non-significant (p = 0.075). In most cases, the percentage increase in classification
performance stood at around 1% . More substantial performance increases were noted for a
handful of individuals, namely Subjects 2 (+ 7.4%), 3 (+ 4.8%) and 9 (+ 2.4%) (see, Table
6.6). Crucially, these performance increases were not exclusively restricted to low or high-
performing subjects.

AoC Min K Max K Standard Deviation High-Pass Cutoff Low-Pass Cutoff Epochs

Sub 1 0.54 0.53 0.57 0.023 7.75 52.5 52

Sub 2 0.31 0.30 0.33 0.012 5.75 16.75 69

Sub 3 0.74 0.72 0.76 0.023 8.5 75 93

Sub 4 0.910 0.90 0.93 0.014 5 45.5 79

Sub 5 0.85 0.83 0.87 0.017 8.75 58.25 53

Sub 6 0.92 0.91 0.93 0.009 8 58 107

Sub 7 0.82 0.81 0.82 0.005 8.25 16.75 59

Sub 8 0.97 0.97 0.98 0.003 8.75 69.75 66

Sub 9 0.86 0.86 0.87 0.005 5 70.5 151

Sub 10 0.81 0.80 0.82 0.010 6.25 80 42

Mean 0.77 0.76 0.79 0.012 7.2 54.3 77.1

Table 6.6: Here is presented a table of results for the EEGNetSSVEP model in the Median Pruner
optimization study across all subjects (Sub) tested. The metrics reported herein relate to the highest-
performing model variant generated from the optimization study. For further information on column
headings and table interpretation refer to, Table 6.5.

A similar trend in high-pass filter selection directionality is present (see, Figure 6.7 left
plot), with a lower average optimized mean of 7.2 Hz as compared to the EEGNet optimiza-
tion study (see, Figure 6.7, left plot). This is due to the presence of some lower optimized
metrics at around 5 Hz from Subjects 2, 4 and 9. The higher number of convolutional filters
may have enabled the EEGNetSSVEP model to more effectively parse redundant or noisy
waveform features from the target frequencies. This could have lowered the need for a strict
high-pass cutoff value at the very lower limit of the stimuli frequencies utilized. Despite this,
the author still asserts that the soundest method for any future optimization projects in this
field would be to focus solely on the optimization of the low-pass filter cutoff and other rele-
vant parameters. Fixing the high-pass value at 9 Hz would avoid wasting time due to exploring
unviable high-pass rates and focus the research purely on the inclusion of additional harmonic
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information.

As shown in Figure 6.7 (right plot), the relatively strong directional trend towards the 15 Hz
low-pass cutoff limit observed in the EEGNet results has been replaced with an upward trend
at the other end of the low-pass cutoff bound (85 Hz) for the EEGNetSSVEP architecture. It
could be argued that the noise present in the signals above the target SSVEP range of 15 Hz is
easily parsed by the convolutional filters and the selection of these larger values is the function
of randomness. Conversely, the networks may be utilizing the SSVEP harmonic information
afforded by the higher low pass filter cutoff values. The fixed parameter low-pass cutoff at
30 Hz only allowed for the inclusion of 1st-order harmonic information and some 2nd-order
waveforms in the lower frequency range (see, Table 6.1). The increase to an 85 Hz threshold
allows for the holistic inclusion of harmonics up to the 4th order, with some target frequencies
extending to the 7th order.

Figure 6.7: The figure presents all high-pass (left plot) and low-pass (right plot) Median Pruner algo-
rithmic parameter search selections for Subject 9 in the respective EEGNetSSVEP model optimization
study (100 trials). For further information refer to, Figure 6.6. Note this subject was selected for
presentation purposes, similar results were found for nearly all subjects with optimized low-pass filter
cutoffs >30 Hz.
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The presence of this trend in multiple subjects suggests that some advantage is offered
by this wider bandpass filter, otherwise, the pattern of parameter selection would be entirely
random and no directional trend over the course of the study would be observed (see, Figure
6.7). Note, that this pattern is not present in all subjects assessed, as seen for Subjects 7 and 2
(see, Appendix: Figures A.19 & A.18). These both demonstrate a similar pattern of parameter
selection towards 15 Hz, as observed in the EEGNet optimization study. This suggests that
even for higher-powered CNNs the individual differences in EEG profiles influence optimal
pre-processing filter cutoff parameters.

Additionally, the average time taken per subject to complete the 100-trial optimization study
was 398 minutes and required a total of 66.41 hours to complete. Despite the larger num-
ber of trainable network parameters, the average number of epochs required for training is
substantially lower (77.1) than that reported for the EEGNet optimization study (182.4).

6.7.3.3 DeepConvNet

As seen in Table 6.7, at the cross-subject level, mean classification accuracies for the Deep-
ConvNet model increased by 2.3% as compared to the original fixed parameter results (see,
Table 6.4). Crucially, the enhancement in performance was significant (p < 0.05). Note, that
the cross-subject mean AoC of 67.2% nearly breaches the 70% usage threshold for BCI func-
tionality. This is achieved using a model with significantly fewer trainable parameters and
optimized in nearly half the time as the EEGNetSSVEP network, with the entire optimization
study requiring 36.42 hours to complete, operating at an average of 218 minutes per subject.

This boost in performance is observed uniformly across 8 subjects excluding Subject 3 which
demonstrated a marginal increase (+ 0.9%) and Subject 5 which showed a substantial de-
crease in accuracy (− 4%). The effect is most pronounced in Subjects 2 (+ 3.5%), 7 (+ 3.4%)
and 9 (+ 4.7%). Crucially, these subjects demonstrate significant variance in AoC perfor-
mance, suggesting that the enhancement effects of the optimization process are not dependent
on subject data quality.
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AoC Min K Max K Standard Deviation High-Pass Cutoff Low-Pass Cutoff Epochs

Sub 1 0.42 0.40 0.45 0.029 9 29.75 76

Sub 2 0.25 0.23 0.24 0.009 7.25 23.25 41

Sub 3 0.53 0.52 0.55 0.016 7.75 21.25 157

Sub 4 0.81 0.80 0.82 0.010 6.75 15 166

Sub 5 0.75 0.74 0.78 0.023 8.5 37.5 107

Sub 6 0.79 0.78 0.80 0.007 8.5 24 118

Sub 7 0.71 0.71 0.72 0.007 9 17.5 116

Sub 8 0.89 0.88 0.91 0.016 8.75 19.25 87

Sub 9 0.83 0.82 0.83 0.009 8.25 36 113

Sub 10 0.75 0.73 0.77 0.019 6.5 33 117

Mean 0.67 0.66 0.69 0.014 8.025 25.65 109.8

Table 6.7: Here is presented a table of results for the DeepConvNet model in the Median Pruner
optimization study for all subjects (Sub) tested. The metrics reported herein relate to the highest-
performing model variant generated from the optimization study. For further information on column
headings and table interpretation refer to, Table 6.5.

Both the low-pass and high-pass optimization parameter search patterns reveal that the
models successfully converged around unique and narrow frequency ranges. As seen in Fig-
ure 6.8 (left plot), a similar parameter value selection pattern emerges for the high-pass cutoff
near the 9 Hz boundary. Further, the low-pass selections (right plot) demonstrate a weaker
overall trend towards the 15-25 Hz filter range. Interestingly, one subject (Subject 1) reported
near-identical parameter selections (high-pass = 9 Hz, low-pass = 29.75 Hz) to the origi-
nal fixed parameter cutoff values. Notably, the increase in performance reported (+ 1.8%) is
highly marginal.

Despite this, the number of epochs used to train each model differs greatly as the Median
Pruner optimized network was terminated at just 76 epochs, compared to the 500 epochs used
in the training of the original fixed parameter network. These findings suggest aggressive
early stopping mechanisms have significant potential to enhance optimization efficiencies in
this analysis context.
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Figure 6.8: The figure presents all high-pass (left plot) and low-pass (right plot) Median Pruner algo-
rithmic parameter search selections for Subject 6 in the respective DeepConvNet model optimization
study (100 trials). For further information refer to, Figure 6.6.

6.7.3.4 ShallowConvNet

The mean cross-subject performance increase post-optimization for the ShallowConvNet model
is the largest of all networks reported herein at 6.73% (see, Table 6.8). This is a significant
improvement in classification accuracy as compared to the original fixed parameter results (p
< 0.005). The largest subject-level enhancements in AoC are seen in Subjects 4 (+ 15.7%)
and 6 (+ 12.7%) respectively, with Subject 8 reaching an AoC of 61%. Despite this, the
results here clearly demonstrate that this model in its current configuration is underpowered
for these applications. This is further evidenced by the dramatic difference in classification
performance for a comparatively lightweight alternative, the Combined CCA method reported
in [180] (see, Table 2.1).
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AoC Min K Max K Standard Deviation High-Pass Cutoff Low-Pass Cutoff Epochs

Sub 1 0.24 0.23 0.29 0.033 8.25 15.25 88

Sub 2 0.18 0.17 0.19 0.010 7.5 15 49

Sub 3 0.33 0.29 0.40 0.057 9 17.5 80

Sub 4 0.52 0.47 0.59 0.066 8.5 15 112

Sub 5 0.41 0.37 0.45 0.040 9 16 75

Sub 6 0.58 0.56 0.63 0.038 9 15 147

Sub 7 0.47 0.45 0.50 0.029 9 15 162

Sub 8 0.61 0.57 0.68 0.057 8.75 15 100

Sub 9 0.45 0.42 0.50 0.043 9 15.25 129

Sub 10 0.52 0.50 0.57 0.038 8.5 15 146

Mean 0.43 0.40 0.48 0.041 8.65 15.4 108.8

Table 6.8: Here is presented a table of results for the ShallowConvNet model in the Median Pruner
optimization study for all 10 subjects (Sub) tested. The metrics reported herein relate to the highest-
performing model variant generated from the optimization study. For further information on column
headings and table interpretation refer to, Table 6.5.

The relationship between the number of trainable parameters and optimized frequency fil-
ter cutoff values is repeated here again. As shown in the minimal cross-subject variance for
optimized high-pass (Mean = 8.65 Hz) and low-pass (Mean = 15.4 Hz) cutoffs, the Shallow-
ConvNet was consistently optimized to narrow frequency ranges at the very limit of the target
SSVEPs presented to the subjects. This suggests relatively low-power models benefit from a
more heavily processed input EEG signal as the reduced number of convolutional filters pre-
vents the effective parsing of additional harmonic information from redundant waveforms in
the frequency space above 15 Hz.
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Figure 6.9: The figure presents all high-pass (left plot) and low-pass (right plot) Median Pruner algo-
rithmic parameter search selections for Subject 3 in the respective ShallowConvNet model optimization
study (100 trials). For further information refer to, Figure 6.6.

The time required for the optimization study totalled 46.35 hours, at an average of 278
minutes per subject. The higher optimization duration for the ShallowConvNet is notable
when compared to the DeepConvNet and EEGNet. It would be reasonable to assume that a
higher number of trainable parameters in the aforementioned models would necessitate more
optimization, especially given the similar average epochs per subject. This could be accounted
for by the unique log and square activation functions present in the ShallowConvNet.

On the contrary, it is the author’s opinion that the ShallowConvNet has a slower and more
consistent rate of loss reduction over the training period (see, Appendix: Figure A.19). As the
optimization procedure required at least 40 epochs for the k-fold operation to be engaged, this
slower more consistent rate ensured the ShallowConvNet had a greater chance of not being
at the convergence point or in a local minimum once the 40-epoch point was breached (see,
Figure 6.2). Essentially, this ensured that ShallowConvNet study trials across subjects were
trained for more epochs on average. Given these findings, future efforts to optimize neural
networks for bio-signal classification can not safely assume that the relative complexity of
a model correlates with the total optimization study duration. Ultimately, considerations for
efficiency saving must be applied uniformly irrespective of model size or depth.
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6.7.4 Pruner Assessments

Following the initial optimization studies performed using the Median pruner parameter search
algorithm additional studies were run utilizing the Percentile and Successive Halving pruners
(for further information see subsection 6.6.6).

6.7.4.1 Classification Accuracy

As seen in Table 6.9, there exists minimal variance in the best trial AoCs reported for each
network assessed. The differences computed across all individual subject AoCs for each re-
spective pruner algorithm were shown to be highly non-significant (p >0.05). A detailed
breakdown of all subject-specific classification accuracies for the Percentile and Successive
Halving pruners is presented in Appendix A.7.

EEGNet EEGNetSSVEP DeepConvNet ShallowConvNet Mean
Non-Optimized 0.57 0.76 0.65 0.36 0.59

Median 0.53 0.77 0.67 0.43 0.60

Percentile 0.51 0.78 0.65 0.42 0.59

Successive Halving 0.51 0.77 0.66 0.41 0.59

Table 6.9: Here is presented a table of cross-subject mean classification accuracies for each respective
model assessed (upper row) showing the non-optimized baseline study results (see Table 6.4) and all
optimization pruner algorithms tested (left column). A compound metric (mean) is positioned to the
right of these values to clarify pruner performance across all networks evaluated.

6.7.4.2 Optimized Filter Frequency Cutoffs

The table positioned below (see, Table 6.10) shows each optimal high-pass filter value com-
puted following every respective subject, pruner and model study combination evaluated.
Nearly all networks tested, irrespective of depth or number of trainable parameters, demon-
strated a directional preference for frequency values close to the lower boundary of the target
SSVEPs assessed (9.25 Hz). Despite this, the relative strength of this pattern does differ across
the networks evaluated. It is clear from Table 6.10 that as network complexity increases, this
upper boundary directional trend weakens. This can be seen by ranking the models in terms of
relative power alongside the within-subject, cross-pruner optimized filter means, respectively
EEGNetSSVEP (6.93 Hz), DeepConvNet (7.90 Hz), EEGNet (7.48 Hz) and ShallowConvNet
(8.63 Hz) (see, bold values).
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Note, that the variance across cutoff values within each model tested is minimal. The only
comparison approaching significance is the difference between the Percentile (8.23 Hz) and
SHP (6.28 Hz) high-pass cutoff values for the EEGNet model variant (see, bold values). All
other differences in mean optimized filter values between pruners for the same models (see,
BS Mean column) vary less than 1 Hz.

Of the numerous network, pruner and subject combinations assessed all presented with mean
high-pass values exceeding 6.5 Hz. This validates the suggestion raised in [61] that the re-
moval of these frequencies, previously shown to represent eye-movement artefacts, dramati-
cally improves resultant data signal-to-noise ratios. Along these very same lines, the removal
of redundant and potentially confounding signals in the training and validation datasets en-
ables network learning to focus on the extraction of task-relevant neural patterns, as opposed
to filtering unnecessary noise. Based on these observations the author recommends the hard-
coded application of a threshold near the lower bound of the target SSVEP frequencies utilized
(9.25 Hz) in the stimulus, irrespective of the pruner algorithm.
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Similarly, the table positioned below (see, Table 6.11) shows the optimized low-pass cutoff
values for all subject, model and pruner combined assessments. In almost all instances a
large range of values can be observed between the subjects evaluated, with some of the larger
differences driven primarily by outliers, as seen in the Percentile and SHP pruner mean high-
pass values for ShallowConvNet (see, bold values). The increased variance between subjects
for the same network is expected for the low-pass values, as it follows that the individual
differences in the expression of SSVEPs would create unique neural signatures containing
alternative levels of harmonic expression. As shown for the DeepConvNet SHP pruner (see,
bold values), a substantial range is present between optimized values for Subjects 7 (15.25
Hz) and 5 (80.50 Hz).
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In the majority of instances, the variance across the same subject for different pruner meth-
ods is substantially lower than the variance in optimized values across subjects. As shown, the
EEGNet WS Mean difference is computed by averaging the range in optimized frequencies
across all pruners tested. As shown for Subject 1, the value is reported as +/− 3.75 Hz
(see, bold value). All these within-subject differences are then averaged again to produce a
mean within-subject difference of 8.89 Hz (see, bold value). This is substantially lower than
the between-subject differences computed across all individuals tested via the Median (13.38
Hz), Percentile (23.13 Hz) and SHP (32.63 Hz) pruners. Again, this pattern is also repeated in
the EEGNetSSVEP model. The mean difference within subjects across the 3 pruners tested is
just +/−11.99 Hz (see, bold value), as compared to the mean difference calculated across all
subjects computed at 31.63 Hz, 33.13 Hz and 32.75 Hz respectively for the Median, Percentile
and Successive Halving Pruners (see, bold values).

This suggests that all pruning methods are coalescing around a similar range of filter cutoff
values for each subject-model combination. Further, the same pattern of network complex-
ity and optimized filter frequency range is observed for these data. Specifically, as relative
network power increases the mean optimized low-pass filter values also increase, as seen for
EEGNetSSVEP (55.83 Hz), DeepConvNet (32.73 Hz), EEGNet (23.31 Hz) and ShallowCon-
vNet (19.92 Hz). This indicates that individual differences in subject data and the level of
network complexity account for the majority of the variance seen in these low-pass filter opti-
mization results, as opposed to the different pruner algorithms utilized.

6.7.4.3 Computational Resources

The table below (see, Table 6.12) reveals the amount of time (hours) required for the comple-
tion of all subject-specific optimization studies for each respective model and pruner assessed.
The Median pruner is shown to require 30-70% more computational processing time as com-
pared to the Percentile and SHP pruners. This culminates in around 50 + hours more to
complete the same series of tasks. Despite this, as seen in Table 6.9, these differences in
computational time do not translate into higher classification performance metrics.
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Median (hours) Percentile (hours) Successive Halving (hours)

EEGNet 37.94 30.09 28.37

EEGNetSSVEP 66.41 47.87 51.29

DeepConvNet 36.42 28.05 25.88

ShallowConvNet 46.35 30.29 26.56

Total 187.12 136.29 132.10

Table 6.12: Here is presented a table containing the total amount of computational processing time
required for each respective model using all three algorithmic pruners assessed, the Median, Percentile
and Successive Halving (for more information see subsection 6.6.6). All durations are presented in
hours and the sum of all individual model pruner assessments is positioned on the bottom row.

The Median Pruner functions by retaining any trial providing the current loss metric is
lower than the median of all other trials conducted for the given number of epochs. In other
words, any network configuration must only perform better than half the trials reported for
training to continue. This is a substantially less rigorous criterion than the Percentile pruner,
as the rejection threshold was set at 25% , meaning to be retained, the current trial was re-
quired to perform at or above the top 25% results currently collected. These findings indicate
that the less aggressive configuration of the Median pruner led to many more epochs per trial.

Notably, the SHP pruner method records the lowest total optimization duration (132.10 hours),
requiring two fewer days of processing time than the Median pruner. Despite these impressive
results, as seen in both Tables 6.10 and 6.11, the method arguably produced the most outliers
in optimized filter cutoff values. Further, this method reported relatively higher computation
resource demands for the highest-performing network tested, the EEGNetSSVEP model, as
compared to the Percentile method. On balance, the author asserts that the Percentile pruner is
arguably the most capable parameter selection method due to the combination of lower com-
putational processing duration, consistent between-subject parameter variance and the high-
est, albeit non-significant, mean cross-subject classification accuracy produced in any of the
studies performed at 78% (see, Table 6.9). Further exploration is needed as all pruners were
implemented using the default Optuna library [271] settings.

Given the extensive computational resources required to optimize neural networks, repli-
cating the exact methodology employed in this study would be impractical for future work.
The primary aim of this study was to establish a systematic approach for optimizing signal
pre-processing parameters in SSVEP-based BCI speller applications. Based on the findings
presented, future researchers can circumvent similar computational challenges by leverag-
ing the insights provided here. Specifically, the results indicate that optimizing filter values
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within the frequency range of 0 to 9 Hz, or the lowest frequency present in the stimulus ar-
ray, yields limited benefits. Additionally, extending the low-pass filter cutoff beyond 30 Hz
is advisable only when employing a more robust neural network with additional layers and
trainable parameters. It is estimated that these insights alone could reduce the search time
for optimization by over 50%, by constraining the optimization space to align with stimulus
parameters and network capabilities. Furthermore, it is plausible that an initial deployment of
a non-optimized SSVEP system could be employed by new users. Subsequent data collection
could then facilitate the application of the optimization process to enhance the classification
performance of the model.

6.8 Conclusion

Here are presented the observational interpretations relating to all previously outlined research.
These will be discussed chronologically and a final summary of the work will be presented
alongside suggestions for improvements and future research.

6.8.1 Raw Data

In the raw data training and evaluations, no subject or model showed any significant increase
in the random performance threshold of 8.33% (see, Table 6.3). This pattern was replicated
independently of the relative network complexity or prior subject-specific classification ac-
curacies observed in the original FBCCA [180], subsequent EEGNet [59] or EEGNetSSVEP
analyses [60]. In summary, for the models tested here, it is clear that the application of some
frequency-based signal filtering is necessary to generate effective classification methods for
the SSVEP waveforms assessed.

Further, subsequent analysis reveals that the high-pass filter level is typically pegged at or
around 9 Hz for all models evaluated (see, Table 6.10). In most instances, models demon-
strating optimized low-pass filter cutoff values above 30 Hz in this research relate to the EEG-
NetSSVEP model. Given these findings, it is possible that models with a greater number of
convolutional filters only require high-pass frequency filtering to remove eye movement and
associated noise artefacts (<= 9 Hz). The author asserts that future research would likely
reveal that the increased computational power of these networks could allow for the useful ex-
traction of harmonic information in higher frequency ranges and the application of low-pass
filters set at or below 15 Hz could hinder this process.
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6.8.2 Fixed-Parameter Data

Notably, the networks defined herein did not reach the same level of performance described in
the original study [180].Here the authors implemented a Combined-CCA method to achieve a
mean accuracy of 92.78% and a mean ITR of 91.68bpm. This involved integrating reference
sinusoids with user-specific data for all target stimulation frequencies utilized, for further in-
formation see subsection 2.6.2 Cutting-Edge Classification Methods for SSVEPs: Filter-Bank
Canonical Correlation Analysis and Table 2.1. These results, alongside other FBCCA meth-
ods, might suggest there is little need for the development of alternative SSVEP classifiers,
however, given the dramatic advances in neural networks for similar signal-processing tasks it
is feasible that given the requisite academic scrutiny, more robust and higher accuracy decoder
systems could be achievable. Ultimately, improved classification methods translate into better
system performance and a more satisfactory user outcome for potential future patient popula-
tions. For more information regarding these topics please refer to subsections 2.6.1, 2.6.2 and
2.6.4.

Along these very same lines, in the original paper introducing the EEGNetSSVEP [60], this
model was compared against a variant of the Combined-CCA where no user-specific data was
utilized and tested using the same data repository as in [180], the same open-source 12-target
SSVEP repository used in this optimization study. This involved integrating reference sinu-
soids with cross-subject averaged data for the target frequencies tested, allowing researchers
to bypass the need for a calibration stage. Ultimately, the alternate implementation of the
Combined-CCA method performed substantially lower than the original, dropping as much
as 60% in classification accuracy for some subjects. The EEGNetSSVEP model performed
much better in this non-calibration data context achieving a mean of around 80% across all
subjects.

Crucially, the EEGNet and EEGNetSSVEP models tested herein did not replicate the clas-
sification performance metrics attained in the original EEGNet [59] or EEGNetSSVEP [60]
articles. This is likely owing to the absence of specific details relating to the training scheme
and data preparation methods. Despite these results, there is a high degree of similarity be-
tween the reported stats and crucially the same pattern of relative subject-specific AoCs is
present. This is evidenced by the analyses recording the same highest (Subject 8) and lowest-
performing (Subject 2) subjects. The author notes that many subjects demonstrate perfor-
mance values below the functional operation threshold of 70%. Despite this, the consistency
in the operation of the models under fixed parameter signal pre-processing conditions sug-
gests the networks can function within narrow performance metric windows. These analytical
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features are crucial as they suggest further improvements in network design could lead to the
development of a BCI speller methodology with high levels of repeatability.

Further, as expected, the mean model-level performance displays a strong positive relationship
between network complexity and classification accuracies, with the EEGNetSSVEP model
reporting the highest cross-subject mean AoC (76%) and the ShallowConvNet returning the
lowest mean AoC (36%). Interestingly, the EEGNetSSVEP model significantly outperformed
the DeepConvNet architecture (Mean AoC = 65%) despite this network possessing a greater
number of model layers (see, Appendix: Figure A.14). This is likely owing to the significantly
higher number of convolutional filters in addition to the initial Separable and Depth-wise con-
volutional operations featured in the EEGNetSSVEP model.

6.8.3 Optimized-Parameter Data

Here all results are reported concerning the optimization methods implemented using the Me-
dian pruner.

6.8.3.1 Median Pruner | EEGNet

As stated earlier, the EEGNet optimizations failed to improve the classification accuracy of
any individual subject assessed (see, Table 6.5) and reported a significantly lower cross-subject
mean AoC than those initially reported for the fixed parameter results (see, Table 6.4). Firstly,
this suggests that the fixed parameters utilized for the study were potentially optimized by the
original authors for this very model. Note, that this is presumed from the metrics reported
here and these claims are not explicitly attested to in the reference article [60]. These findings
suggest that a low learning rate and a higher number of training epochs are required for the
maximization of some convolutional neural network configurations, specifically those with a
lower relative number of convolutional filters, as in the EEGNet model.

The absence of a strong trend towards lower or higher cutoff values, as observed for the other
models (see, Figures 6.7, 6.8 & 6.9, right plot), suggests the optimization method did not con-
verge towards an optimized frequency range for the low-pass cutoff value (see, Figure 6.6,
right plot). Given that, nearly all models expressed a preference for a high-pass cut-off value
around 9 Hz, future optimizations could solely focus on the parameter search of the low-pass
filter threshold. This would ensure that significantly fewer trials are wasted as in the numer-
ous instances of extremely low high-pass filter selections. The freeing up of computational
resources exclusively to the search of low-pass filter values could decrease the likelihood of



6.8 Conclusion 323

the study terminating before convergence around an optimal value range.

6.8.3.2 Median Pruner | EEGNetSSVEP

Concerning the EEGNetSSVEP model performance following the optimization process, some
increase in AoCs reported is observed at the cross-subject level (see, Table 6.6) as com-
pared to the fixed parameter results (see, Table 6.4). Despite this, the differences remain
non-significant. This could be due to the models requiring slightly more epochs of training
than the early stopping and pruner afforded.

The largest boots to performance are found at the single subject level, with Subject 2 re-
porting an increase of 7.4% . Interestingly, the few improvements noted were not restricted
solely to low or high-performing subjects. This suggests there is scope for these methods to
boost classification performance and in turn BCI speller functionality across a wide range of
end-point users. Moreover, this suggests that the bespoke tailoring of pre-processing stages
is viable for users presenting with classification accuracies furthest from functional usage. It
must be noted that the optimization methods detailed did not lead to said functional usage
thresholds. The author recognises that these results merely indicate that optimization of fil-
ter cutoffs in addition to the parameter search of for example optimal electrode arrangements
could enable some users previously classified as BCI illiterate to communicate using speller
devices powered via CNN classification methods.

The EEGNetSSVEP model provided lower optimized high-pass filter cutoff values as com-
pared to any of the alternative networks assessed. The increased relative power of this model
likely enabled the network to more effectively parse redundant information in this frequency
range. Note, that the author maintains the removal of frequencies below the lowest stimulus
target frequency is the most valid approach for future investigations. Further, the mean cross-
subject optimized low-pass filter cutoff value of 54.3 Hz is unique to the EEGNetSSVEP
model variant. This is likely due to the higher relative power of the model, as the network is
comprised of substantially more convolutional filters and associated trainable parameters than
the EEGNet, DeepConvNet or ShallowConvNet. The author asserts this increased network
power resulted in the utilization of higher-order harmonic frequency components.

It must be noted that the EEGNetSSVEP model reported a significantly higher total opti-
mization study duration than the other networks assessed here. At nearly double the amount
of time required, as compared to the EEGNet, the process of optimizing this style of deep,
high convolutional filter volume networks, presents significant challenges in terms of compu-



324 Subject-Specific Signal Pre-Processing Network Optimization

tational resources and time. The previous suggestion to increase the number of filters further
is likely, not viable utilizing the hardware deployed herein. Instead, it is recommended for
similar future investigations to utilize GPU hardware possessing over 14GB of VRAM at the
highest attainable clock speed and at a minimum, 32GB of RAM.

6.8.3.3 Median Pruner | DeepConvNet

As seen in Table 6.7, at the cross-subject level, mean classification accuracies for the Deep-
ConvNet model increased by 2.3% as compared to the original fixed parameter results (see,
Table 6.4). Crucially, the enhancement in performance was significant (p < 0.05). Note, that
the cross-subject mean AoC of 67.2% nearly breaches the 70% usage threshold for BCI func-
tionality. This is achieved using a model with significantly fewer trainable parameters and
optimized in nearly half the time as the EEGNetSSVEP network, with the entire optimization
study requiring 36.42 hours to complete, operating at an average of 218 minutes per subject.
This boost in performance is observed uniformly across 8 subjects excluding Subject 3 which
demonstrated a marginal increase (+ 0.9%) and Subject 5 which showed a substantial decrease
in accuracy (− 4%). The effect is most pronounced in Subjects 2 (+ 3.5%), 7 (+ 3.4%) and
9 (+ 4.7%). Crucially, these subjects demonstrate significant variance in AoC performance,
suggesting that the enhancement effects of the optimization process are not dependent on sub-
ject data quality.

Both the low-pass and high-pass optimization parameter search patterns reveal that the mod-
els successfully converged around unique and narrow frequency ranges. As seen in Figure 6.8
(left plot), a similar parameter value selection pattern emerges for the high-pass cutoff near the
9 Hz boundary. Further, the low-pass selections (right plot) demonstrate a weaker overall trend
towards the 15-25 Hz filter range. Interestingly, one subject (Subject 1) reported near-identical
parameter selections (high-pass = 9 Hz, low-pass = 29.75 Hz) to the original values. Notably,
the increase in performance reported (+ 1.8%) is highly marginal. Despite this, the number of
epochs used to train each model differs greatly as the Median Pruner optimized network was
terminated at just 76 epochs, compared to the 500 epochs used in the training of the original
fixed parameter network. These findings suggest aggressive early stopping mechanisms have
significant potential to enhance optimization efficiencies in this analysis context.
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6.8.3.4 Median Pruner | ShallowConvNet

The increase in mean, cross-subject performance (+ 6.73%) for the ShallowConvNet model
following the optimization process is highly significant (p < 0.005) (see, Tables, 6.4 & 6.8).
This boost in classification accuracies still led to mean network performance (43%) well be-
low functional usage (70%) [250]. There do exist potential applications for these models in
SSVEP-based bio-signal classification in lower complexity tasks. This could manifest as an
adapted version of the Emoji-Based BCI speller introduced in the first half of this thesis. The
system could be deployed using relatively low-cost hardware and as shown in these results,
performance could be boosted via the subject-specific optimization of cross-subject data. The
network could initially be trained using available data repositories [49, 52, 180] via a transfer
learning protocol and finally tuned on subject-specific data as per [215].

Notably, the same positive correlation between network complexity and bandpass filter width
is replicated again in these model results. The author asserts that the reduced number of CNN
layers in the ShallowConvNet led to a smaller low-pass cutoff value (15.4 Hz, see, Table 6.8),
as compared to the deeper DeepConvNet (25.65 Hz, see, Table 6.7). This pattern is also re-
flected in comparisons between the EEGNetSSVEP, which demonstrates a mean optimized
low-pass cutoff of 54.3 Hz, as opposed to the EEGNet reporting a lower 18.93 Hz optimized
filter metric. The aforementioned networks possess the same architectural framework, only
differing in terms of kernel sizes and the number of convolutional filters per layer. These find-
ings suggest network depth and convolutional filter volume both increase the tendency for the
optimization process to favour higher low-pass filter cutoff values.

6.8.4 Pruner Assessments

Here are present all conclusions and interpretations relating to the analyses conducted to com-
pare the three pruner methods assessed in terms of end-point AoC, parameter search behaviour
and optimizer computation durations.

6.8.4.1 Classification Accuracy

As shown in Table 6.9, a high degree of consistency in classification accuracies across the
different pruners was reported. This suggests that for the pruner configurations as tested, there
is no advantage in terms of end-point performance offered by any of the individual search
algorithms. Despite this, the highest mean (compound) accuracy across all networks was
shown to be the Median pruner.
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6.8.4.2 Optimized Filter-Cutoffs

For all pruners and networks assessed a strong trend towards the 9 Hz upper high-pass fre-
quency bound is shown. Crucially, the degree of adherence to this pattern is closely related
to network power. In other words, as network complexity decreases, optimized high-pass fil-
ter cutoff values increase. This suggests a preference for more heavily pre-processed data in
models with fewer trainable parameters. Irrespective, the author asserts that the removal of all
data at or immediately below the lowest target SSVEP frequency propagated is arguably the
most sound means of data preparation.

The same relatively consistent pattern of optimized frequency ranges is not replicated for
the optimized low-pass filter cutoff values. A significant degree of variance between subjects
trained via the same pruner algorithm is notable in nearly all instances. This contrasts against
the substantially lower within-subject mean differences observed across the different pruners
for the same subject. Further, the results corroborate the previous assertions that as network
power increases, so does the optimized low-pass filter cutoff value. This is seen when com-
paring the EEGNetSSVEP model optimized mean low-pass cutoff value of 55.83 Hz against
the ShallowConvNet model optimized value of just 19.92 Hz (see, Table 6.11). This sug-
gests that higher-complexity networks are utilizing target SSVEP harmonic information in the
upper-frequency range (> 15 Hz) to perform the classification task. In comparison, the lower
complexity models demonstrate a preference for more heavily pre-processed data. This is
likely owing to a decrease in capacity for parsing these latent embedded waveform compo-
nents from background noise.

In sum, these findings indicate that there are present individual differences in the expression
of the target SSVEP waveforms that can be exploited to boost classification performance via
the development of bespoke signal pre-processing stages, namely unique low-pass frequency
filters. Extending these findings into, for example, tailored electrode arrangements could lead
to further enhancements in classification performance and ultimately BCI speller functionality
for end-point users.

6.8.4.3 Optimizer Study Durations

The analyses reported significant differences in the duration of optimization studies across the
three pruners assessed (Table, 6.12). These differences in duration show no clear relation-
ship with end-point classification accuracies (see, Tabel 5.10). The Median Pruner required
over 50 additional hours of processing time as compared to the other methods tested. As this
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offered no additional improvements in AoCs the authors can not recommend implementing
this pruner without significant adaptations to the configuration. Further, as seen in Table 6.11,
the Successive Halving Pruner consistently produced the highest mean between-subject dif-
ferences of all pruners assessed. This is principally owing to the relatively higher incidence of
outliers. In consideration of all these factors, the author recommends utilizing the Percentile
pruner as the baseline method for future optimization studies.

The three different pruners all required significantly different run times per optimization study.
This is principally related to the aggressiveness of the pruning protocol. Further, the higher the
pruner tendency for early stopping, the fewer results are generated. This increases the likeli-
hood of producing networks that have not fully converged before pausing training. It could be
argued that early stopping is preferable to over-training as this can introduce overfitting. De-
spite this, the author believes that integrating a Patient-Pruner wrapper (hard-coded minimum
number of epochs per trial), removing the independent early stopping feature, or modifying the
Percentile and Successive Halving Pruner parameters (for example minimum early stopping
rate or number of minimum trials) could also help alleviate these issues. Clearly, a balance
between under and over-training produces the most desirable conditions for effective network
optimization.

6.8.5 Summary

The performance comparisons between fixed and optimized parameters for the EEGNet show
a significant decrease in classification performance following the implementation of the op-
timization method outlined here. Further, marginal and marginally significant improvements
(trend towards increased AoCs) were observed for both the EEGNetSSVEP and the Deep-
ConvNet as well as a significant increase in performance for the ShallowConvNet seen at the
single and cross-subject level. The EEGNetSSVEP demonstrated the greatest deviance in low-
pass and high-pass parameter selections of all models assessed, suggesting the higher network
complexity benefitted from the increased availability of SSVEP harmonic information embed-
ded in the frequency space above the 15 Hz target stimulus rate. Despite this, the network did
not produce significantly higher or lower AoCs as compared with the fixed parameter model
variant. The model is likely underpowered to truly capitalize on the increase in harmonic
information via the larger low-pass cutoff value. The inclusion of more convolutional filters
or the introduction of an Inception module, as seen in recent work would likely remedy this
[263, 278], albeit at a considerable additional network resource cost.
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The most promising results suggest that the models assessed herein do not need to be
trained to 500 epochs to achieve similar results to fixed parameter assessments. Further, low-
power networks can be boosted via subject-specific filter optimization to observe significant
increases at the cross-subject level. Moreover, the implementation of parameter optimization
can lead to significant increases for relatively more complex networks at the single-subject
level. Crucially, these increases are not restricted exclusively to high or low-performing in-
dividuals. In some instances, these classification models will eventually have to be deployed
in non-ideal lab conditions with clinical end-point patient users. Attenuated versions of these
methods to rapidly optimize the selection of bandpass filter ranges could boost classification
performance above functional thresholds. In cases of low viability, a tighter range between
low-pass and high-pass filters could be deployed. It could be argued that in these situations it
would simply be preferable to implement alternative methods will a higher degree of robust-
ness to noisy EEG characteristics, for example, the FBCCA method.

Note, that none of the results collected at the subject or model level showed any significant in-
crease in performance compared to the original Combined FBCCA implemented for SSVEP
classification in the corresponding online SSVEP repo article [180] (see, Table 2.1). This
pattern of FBCCA-based method supremacy over contemporary CNN techniques in terms of
accuracy and information transfer rates is replicated in the surrounding cutting-edge litera-
ture. The highest-performing analysis for this SSVEP repository (Mean AoC = 90.2%) listed
to date remains the Task Related Component Analysis outlined in [55] (bpm = 352.3). This is
a highly modified version of the FBCCA method used in [56, 180] which features substantial
pre-trial tuning of subject-specifc EEG spatial filters before classification. Additionally, the
system integrates a Bayesian dynamic stopping method to compute the optimal length of data
required for effective target prediction while maximally reducing data capture windows to
boost ITRs. The greatest advances in CNN-based methods such as those outlined in this thesis
are typically related to integrating these elements into the stimulus design, data pre-processing
and classification techniques.

As seen in [50], the implementation of a dynamic stopping protocol for the EEGNet archi-
tecture dramatically increased accuracies (+ 28.2%) and ITR values (147.6 bpm) from base-
line. Further, arguably the second-highest-performing CNN-based SSVEP network, TRCA-
Net [54] (bpm = 235.21 bpm), integrates the TRCA method as a data pre-processing stage.
Additionally, the most effective CNN-based classifier to date, outlined in [57] (bpm = 318.41),
explicitly organises subject data according to filter-bank-based methods. This is done by ag-
gregating the original data alongside banks of the same pre-filtered samples for numerous filter
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bounds to amplify the presence of SSVEP harmonic information in the frequency space above
the target stimuli utilized.

It must be stated that all of these studies deploy highly similar 3-4 layer CNN model de-
signs. The most significant advances in CNN-based classifier performance are principally
related to data handling and preparation, as opposed to neural network architecture modi-
fications. Crucially, the optimization methods detailed in this thesis demonstrate some key
findings concerning the relationships between low-pass filter cutoffs, network complexity, in-
dividual differences in subject data and SSVEP harmonic information utilization. Despite this,
the most important contribution of the research conducted herein relates to the formalization of
a method for the automated evaluation and optimisation of data pre-processing stages across
numerous models of differing complexity levels. Along these very same lines, this method
could be extended to assist researchers in refining currently employed techniques. This could
manifest as an exploration into the optimal number of pre-filtered data aggregations, as men-
tioned above, for a range of different network configurations. Alternatively, the method could
be implemented in the validation of completely novel data pre-processing stages, such as the
tuning of cross-subject aggregated data for individual differences in SSVEP phase profiles.

6.8.6 Future Work

It could be argued that the sub-FBCCA (see, Tables 6.2, 6.6 & 6.7) classification performance
demonstrated by the DeepConvNet and EEGNetSSVEP could be owing to the ratio of network
size vs. training data volume. The dramatic increase in computational power required to train
these models in comparison to the alternative architectures evaluated (EEGNet & Shallow-
ConvNet) likely demands a commensurate increase in training samples. As seen in the article
introducing the ShallowConvNet [61], the authors employed the practice of data cropping as
inspired by the original computer vision research that the CNN analysis technique emerged
from and significantly enhanced model performance. This involves parsing samples of the ex-
tracted data segments into windowed overlapping chunks. The author did not implement this
here as the differences in target class signal phases would significantly increase the complexity
of the windowing operation. The degree of overlap would have to be calibrated to ensure each
windowed data chunk presented with the same phase angle degree. Any errors concerning this
process would lead to the comingling of signals containing the same frequency and different
phase angles in the same class bin.

Ultimately, the labelling of two signal variants with highly uncorrelated signal properties as
one class would effectively undo all the efforts taken to increase the discriminability between
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all target classes assessed. Note, the author does not infer from these considerations that the
process is unviable, only that considerable care must taken for these data preparation tech-
niques and such explorations lay outside the scope of this research. Crucially, this complexity
was avoided in these assessments via the use of strict 1-second neighbouring data segregations
from the original 6-second trial samples. By subsampling the original trial data at 1-second
intervals, the same phase angle is retained across the classes.

An alternative method to the issue of low training samples is the use of data augmentation
methods, specifically generative-adversarial networks (GAN) to produce robust imitations of
human-derived SSVEPs [298]. This involves training a GAN using a subset of data, either
cross-subject or subject-specific, on high-quality class samples, validating them using a base-
line network and aggregating the generated samples for integration into the model training
scheme. Crucially, the same considerations concerning the phase angle mentioned above must
be taken for successful implementation.

Note, if the phase angle complication cannot be fully overcome, the cropped or generated
samples could simply be utilized as a first stage in a transfer learning approach, followed by
network exposure to genuine samples. Traditionally, the methods for BCI speller classifica-
tion are restricted to developing either a highly bespoke method trained exclusively using a
single subject’s data or a highly generic plug-and-play method. In contrast, the notion of ex-
posing a classifier to numerous different EEG profiles from a range of subjects to boost model
robustness has been well-established in the surrounding BCI literature for SSVEP waveform
classification. Recently, in the context of SSVEP-based BCI spellers, this has been extended
to pre-training networks and performing batched transfer learning across multiple different
SSVEP datasets [215]. This functions by initializing the weights extensively via exposure
to non-end-point target SSVEP waveforms and later tuning these flexible representations to
the finalized state immediately before deployment. A systematized chain of pre-training and
transfer learning with cropped and augmented SSVEP datasets, for an Inception-style SSVEP-
based deep convolutional neural networks, optimized for both signal pre-processing and model
hyper-parameters could prove the most effective means of classifying these bio-signals to date.

Overall, the results herein reinforce the general notion that higher complexity or relative power
in network design correlates with increased classification accuracies. The limitations imposed
by the data modality (downsampled time series) and current hardware reduce the viability of
simply increasing network depth (number of layers) or the number of convolutional filters to
improve classifier functionality. In contrast, further advances in brain-based bio-signal net-
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work performance have been achieved by integrating advancements originally defined in the
computer vision literature. This relates to the integration of so-called Inception modules in
model architectures. Recent networks utilizing these design features have reported impressive
results for similar online SSVEP datasets. Crucially, these networks have managed to retain
waveform representations while scaling via the inclusion of parallel convolutional blocks that
share connections across layers [263]. Further, the increased implementation of effective data
preparation techniques established in the FBCCA and TRCA-based SSVEP classification lit-
erature would undoubtedly prove highly fruitful in boosting BCI speller performance.





Chapter 7

Conclusion

7.1 Project Trajectory

The initial aims of the thesis centred on the development of an emoji-based P300 BCI speller
system. These investigations were intended to assess the efficacy of emoji-based stimuli for
the propagation of viable ERP waveforms, as has previously been explored for more tradi-
tional speller array targets, namely letters, numbers, and characters. The rationale behind
these assessments was principally couched on the premise that some individuals presenting
with the most severe forms of paralysis (Incomplete Locked-In Syndrome) could experience
rapid fatigue effects during the use of more commonly utilized 6 × 6 alphanumeric arrays. In
response to these concerns, the reduced density 7 emoji stimulus task variant was introduced
to provide a simplified communication format that maximised emotional expressivity. Owing
to previous research utilizing icons and device command instructions [44] as stimulus targets,
as well as literature demonstrating the P300 peak boosting effects of human face images as
augmentation overlay stimuli [153] it was predicted that these emoji targets would perform
well in this role. The validation of these speller experiments as robust communication plat-
forms would enable the collection of a large, high-quality data repository necessary for the
training of a bespoke CNN-based classifier pipeline. The use of these prediction methods has
been adopted widely in the processing of SSVEP-based speller data (see, subsection 2.6.3)
and the author aimed to extend the research of the comparatively less developed CNN-based
classification of P300 signals.

Further, the author notes that the availability of online bio-signal repositories has dramatically
improved the capacity of researchers to collaborate globally on the development of novel bio-
signal classification analysis methods. Along these very same lines, the author intended to host
all data collected to aid in this process and crucially, upload the corresponding stimulus code.
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The issue of analysis replication arguably presents with fewer obstacles owing to the use of
Git repository cloning, as opposed to data replication which often requires the implementation
of the same hardware for stimulus presentation via computer monitor and respective graphical
processing unit in addition to the same data acquisition hardware. These systems are far less
flexible; however, efforts must be made to standardize the methods of replication for this key
aspect of BCI research.

Continuing this project pathway, the verification of emoji as a viable ERP stimulus would
validate the development of an integrated alpha-numeral-emoji array. As noted in the intro-
duction, emojis are typically utilized specifically for text embellishment and serve to enhance
communication clarity and specificity. The positioning of these targets within an integrated
array was predicted to enable users to maximally harness the expressive capacity of text-based
communications. The final iteration of the experimental series was intended to assess the
performance of an integrated emoji speller with real-time classification via CNN and post-
prediction user feedback.

As is clear from the thesis composition and initial introduction Positioning Statement (see
subsection 1.1), the trajectory of this project was altered dramatically owing to the fallout of
the COVID-19 pandemic. The P300 emoji-speller project pathway was interrupted and a new
area of research was explored that was conducive to the offline restrictions imposed. These
comprise the investigations into the methods for optimizing subject-specific pre-processing
parameters to boost end-point model classification accuracies across networks of different
complexity levels. Note that the experimental aims previously outlined in the P300 speller
domain still constitute a fruitful line of research and recent studies aligning with these goals
provide evidence to support these assertions [299–301]. This cutting-edge literature and fu-
ture research considerations for both fields will be discussed following an evaluation of the
contributions relating to each respective project defined herein.

7.2 P300 Experimental Series Contributions

The progression of experiments detailed throughout Chapters 3, 4 and 5 demonstrate the sub-
stantial efforts employed by the author to explore the initial aims of the thesis. Specifically,
these investigations aimed to probe the efficacy of emojis as stimulus targets in an emotion-
communication BCI speller context. Following Experiment 1, the author identified the need
to modify data buffering protocols, explore impedance-based channel rejection methods, ad-
dress subject training concerns and identify the need to investigate stimulus array density and
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salience effects. The completion of Experiment 2 led to the author developing: an active
impedance monitoring system, a localizer data pre-screening and LDA tuning system and a
real-time classification and user target prediction feedback method. Overall, these modifi-
cations aimed to address issues relating to data quality, LDA model overfitting and subject
vigilance, training and fatigue considerations.

The final iteration of the emoji-speller system outlined in 5.4.5 combines all of the adapta-
tions explored in the previous chapters. As shown in the results section relating to the LOCRT
experimental variant, 5.5.3 suggested that the method was viable for a single subject (Sub-
ject 1) of the 3 assessed and marginal for another individual tested (Subject 3). This LOCRT
variant involved the training of LDA models using localizer data before the 7 emoji main ex-
periment and is positioned as the only true real-time classification method explored herein.
As noted above and in the corresponding subsection 5.6.1, the low sample size precludes the
authors from asserting that these methods are fully validated as reliable and robust in terms of
P300 waveform elicitation for the respective emoji-speller context.

Despite these promising findings, the re-analysis of these data via the Pipeline 2 method re-
vealed substantial flaws in the data organisation, pre-processing and analysis associated with
Experiments 1, 2 and 3. These were addressed via the implementation of cross-validation
procedures, the SMOTE oversampling method and improved baselining and high-pass filter-
ing methods. The offline results produced following these steps produced significantly higher
mean classification accuracies across all subjects tested and near-maximal classification of the
P300 target samples.

The corresponding code features EEG stream handling functions, data organisation and pre-
processing stages, LDA classifier options, the stimulus presentation programmes for the lo-
calizer and main experiment as well as tools for the active monitoring of impedance quality
during live data acquisition. In addition, ancillary software for data quality assessment via
grand average plotting, spectrogram analysis and subject fatigue estimation via Alpha-Theta
ratio computations are also included. The author predicts that the reimplementation and adap-
tation of these methods could assist future researchers by providing a standardized method for
capturing, processing and classifying P300-based emoji speller data. In line with these inten-
tions, all aforementioned code will be made available via the corresponding GitHub reposi-
tory: https://github.com/JoshPod93/EEG_Emoji.
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Note, that some efforts to automate experimental features across different systems have
been made. This relates to the active detection of presentation monitor dimensions and relative
adjustments to the emoji stimulus sizings. Additionally, the respective data-handling functions
possess some flexibility in target channel parsing and reference assignment. For the best
results, adherence to the system and package requirements is recommended. Further, it must
be understood that some bespoke adaptations to the code across platforms are unavoidable.

7.2.1 Future Research

Numerous enhancements are available to improve the final version of the P300 speller defined
herein. Firstly, an increase in the number of sequences presented per trial in both the local-
izer and main experiment would likely enhance the discriminability of P300 and Non-P300
targets by improving the quality of cross-trial average signals. These adaptations were not
implemented here due to concerns surrounding an increase in end-point ITR values. This op-
erational performance aspect of the speller was not directly aligned with the key initial goal of
the thesis, namely, the assessment of emojis as a viable stimulus for P300 elicitation. The ex-
periment should have been focused primarily on attaining these initial goals before attending
to the optimization of BCI functionality metrics.

Despite the predictions that an increase in sequences per trial would have likely improved
classifier accuracies, the limited, one-dimensional valance scale here employed would un-
avoidably restrict the emotional expressivity of the endpoint user. The pleasure-centric Likert
scale was adopted principally as a means of providing operators with a clear and simple in-
terface to communicate emotional state information with emojis arranged from agreeable to
disagreeable. This experimental user interface was influenced by the affective slider method
outlined in [159], however only represents half of the original affective rating instrument, as a
secondary scale was also deployed to allow for the reporting of arousal state from low to high.
The authors argued that this combination of scale values provided a broad and efficient means
of capturing emotional judgements from users.

Along these very same lines, it could be argued that the BCI emoji speller defined herein
could be enhanced by adopting a hybrid design in which a pleasure scale trial is followed by
an arousal scale trial. This later trial would present a different series of emoji onscreen varying
in levels of low to high intensity, as per the arrangement of the current array. Note that, the
increase in clarity of emotional state information would also lead to a contingent increase in
time spent per communication delivered and, an increase in computational complexity given
the need for twice as many classification predictions as compared to the current version.
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An alternative method of presentation is suggested by the author that boosts emotional com-
munication specificity, increases the number of affective state targets, and crucially reduces
the number of sequences per trial required to differentiate all targets. This involves the adop-
tion of a stimulus array composed of emojis and icons embedded in a 3 × 3 numpad-style
matrix augmented according to a randomised row/column flash protocol (see, Figure 6.1). For
this design, only 6 augmentation sequences (3 rows and 3 columns) are needed to generate
a unique pairing of P300 propagation instances to identify the target emoji/icon intended for
selection. This change in stimulus array design boosts the number of emoji/icons on the screen
(7 to 9) while reducing the number of augmentations required per trial (7 to 6). Further, the
use of dedicated ‘yes’ (thumbs up) and ‘no’ (thumbs down) icons provides greater flexibility
for communications in real-time and provides the speller system additional functionality be-
yond emotional expression. Moreover, the adoption of these methods would both increase the
information transfer rate upper limits while also widening the scope of emotional expressivity
from a bi-directional agreeable-disagreeable valence scale to 7 of the 8 key facial expression
categories (excluding contempt).
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Figure 7.1: Here is presented a novel emoji-matrix speller format for the communication of emotional
state information and basic yes/no responses in a traditional row/column paradigm design. The top right
quadrant shows a screenshot of the initial stimulus phase displaying a red cueing square over the target
’Sad’ emoji in the upper left. The top right and bottom left quadrants show the flash-based stimulus
method for the row, and column sequence augmentations respectively. The lower right quadrant shows
the default screen presented after each augmentation event.

The application of these foundational affective indicators increases the ease of tuning the
stimuli with user-specific data. Recent studies have developed methods for the modification
of facial expressions in profile images via the use of generative adversarial networks (GANs)
such as the StarGAN [302] and GANimation models [303]. These architectures could be
utilized to generate the facial expression variants from a single neutral image input of the lab
participants or real-world users to harness the known P300 peaking boost associated with self-
face integrated speller arrays [153]. This would expand the original intention of this project,
which originally involved validating the efficacy of emoji stimuli in P300 speller contexts, to
a paradigm operating as a true emotional expressivity tool.
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As noted earlier, emoji are primarily used in tandem with text for embellishment and clar-
ification purposes and the use of these stimuli in an emotion expression paradigm is purely
as a standardized and universally recognisable substitute for actual facial expressions. This
adapted method suggested here likely fulfils the aims of an emotional expression assistive
device more adequately and would likely lead to a significant increase in performance as com-
pared to the stimulus designs noted herein.

If this communication technology were implemented in patient populations, the desire to
communicate a specific emotional state using an emoji, such as anger, would more than likely
indicate that the individual is actively experiencing that emotion. In other words, the act of se-
lecting an emoji associated with anger presupposes that during the selection process, the user
is experiencing the related negative emotional state. There are reasonable concerns regard-
ing the interaction between negative emotional states, such as fear, anger, or disgust, and the
effective propagation of the P300 waveform. Previous research has demonstrated that emo-
tionally evocative stimuli can enhance associated P300 signals [304–306]. This effect can be
understood as an exogenous cue response to external stimuli.

During the operation of a P300-based BCI system the unintended occurrence of a negative
emotion in response to such an exogenous cue could induce an unwanted P300 waveform.
Here, the unexpected or surprising event acts as the low-probability oddball event and would
undoubtedly confound the trial currently being processed. Group discussions with ALS pa-
tients and caregivers have revealed that distraction during the task easily leads to unintended
selections, further complicating the accuracy and reliability of the P300-based BCI system
[17]. This is particularly concerning when negative emotions like fear, anger, or disgust are
involved, as they could unintentionally trigger a P300 response, interfering with the system’s
ability to correctly interpret the user’s intended communication. As a result, the presence of
these emotional states could significantly impact the system’s performance, making it chal-
lenging to distinguish between intentional and unintentional responses, ultimately reducing
the effectiveness of the BCI technology in real-world applications.

Moreover, research has shown that negative emotional states often lead to a restriction of
attentional mechanisms and cognitive processes. It is therefore reasonable to assume that
these effects would result in a relative drop in P300 amplitude and an increase in waveform
latency, reducing the accuracy of classifiers designed to interpret P300 signals associated with
negative emotions. Research conducted regarding working memory has indicated that expo-
sure to positive or negative emotions can affect P300 responses differently depending on the
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individual’s working memory capacity. For instance, [307] found that individuals with lower
working memory capacity exhibited reduced P300 amplitudes following exposure to negative
emotions, while those with higher working memory capacity showed better P300 responses
under the same conditions. Given the high incidence of reduced attentional capacity for BCI
system target patient populations [308] these findings may indicate that negative emotional
states could interact negatively with the classification process by reducing P300 waveform
components. Similarly, stress has been shown to affect P300 responses in varied ways, as
demonstrated by [309], who observed reduced P300 amplitudes in individuals highly sensitive
to stress during a virtual reality simulation of heights, while less stress-sensitive individuals
exhibited increased P300 responses.

Arguably the most direct investigation of these concerns was conducted by [310]. Here, audio
cues were used to induce emotional states during online P300-speller operation. The effects
of emotional stimulation on the online operation were shown to be highly inconsistent and
impose no significant impact on the accuracy or efficiency of the standard 6 x 6 BCI speller
system employed. These findings suggest that while emotion can influence P300 generation in
certain contexts, this influence may not substantially affect P300-based BCI operations. How-
ever, given that emotional states are represented cortically alongside the corresponding P300
waveform, this type of system could potentially be used to gather longitudinal data on each
emotional state. Over time, the cortical representation of emotional states could be leveraged
to predict the emoji intended for selection in a BCI, in conjunction with the P300-predicted
emoji, functioning similarly to a predictive text system that maps cortical activity.

7.3 Network Optimization Contributions

The experimental investigations discussed herein contribute to the current literature princi-
pally by corroborating the predicted theoretical limits and potential of CNN analysis methods,
adding clarity to the process of subject-specific signal processing parameter optimization and
outlining potential fruitful avenues for future research. Firstly, the CNNs assessed in this
study demonstrate that network complexity did not account for any variance in the classifi-
cation performance when training on near raw data (see, Table 6.3). These results suggest
that fundamental signal processing stages, namely low-pass and high-pass filtering are still
relevant for the effective classification of SSVEPs via CNNs. Further, the fixed parameter as-
sessments (see, Table 6.4) show that network complexity in terms of convolutional filter count,
as opposed to network depth, arguably leads to more effective model classification results as
seen by the higher performance metrics attained by the EEGNetSSVEP as compared to the
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DeepConvNet.

The results of the optimization studies performed across subjects for all models evaluated
demonstrate a clear positive effect for increased network complexity and larger optimized low-
pass cutoff values that align well with the current literature (see, Tables 6.5, 6.6, 6.7 & 6.8).
Arguably, the larger networks are not simply more resistant to noise in the high-frequency
range, it appears that the adoption of higher low-pass frequency cutoffs also enables these
networks to extract more task-relevant harmonic features to boost classification performance.
Crucially, the findings indicate that the use of subject-specific optimization for signal prepro-
cessing parameters can enhance classifier performance, independent of subject data quality,
especially for lower power network configurations. Note that this research can serve as a start-
ing point for the investigation of alternative parameter optimization studies.

Moreover, the comparison of pruner methods (see subsection 6.8.4) outlines useful base set-
tings for the rapid deployment of these tools such as the optimal pruner algorithm, namely the
Percentile variant, and provides a guide for expected optimization durations for the respective
data and models evaluated herein. Additionally, methods for increasing the efficiency of these
optimization studies while enabling metric validation are outlined via the implementation of
the epoch-threshold k-fold network assessments (see subsection 6.6.6.2).

Note that all associated scripts, functions and additional software developed for these op-
timization studies will be hosted on GitHub at: https://github.com/JoshPod93/EEG_Optim.
This includes code relating to: data handling and downloads, data preparation, pre-processing
and organisation, model loading, optimization wrapper positioning information, results stor-
age, classification performance metric assessments and plotting tools.

7.3.1 Future Research

As discussed in Chapter 6 Subsection, 6.8.5, the enhanced network complexity and continued
reimplementation of Filter-Bank Canonical Correlation Analysis methods in a CNN context
have significantly boosted classifier performance for SSVEP detection. These methods uti-
lize ultra-wide bandpass filters up to 90 Hz to ensure the extraction of all relevant harmonic
SSVEP data. Along these lines, the highest-performing DCNN method for SSVEP classifica-
tion, [57], avoids applying the strict band limits on the input data, opting for a filter width of
8-90 Hz. These findings corroborate those observed herein and suggest that networks express-
ing increased depth and complexity do not require the same degree of input pre-processing.
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Note that, the results reported herein do not suggest that the use of purely unprocessed data is
the ultimate end goal of these investigations. As seen in Table 6.3, the removal of powerline
noise and signal frequencies below the minimum target flicker rate is necessary for effective
training. Any extension of these signal pre-processing optimization assessments outlined in
this thesis would likely be more successfully reimplemented for alternative parameters, this
includes electrode arrangement selections, ground and reference sensor assignments and train-
ing data phase realignment. As shown in [311], each subject was presented with 10, 12 and 15
Hz SSVEP stimuli at a 0° phase angle. The actual phase of oscillatory components collected
in subjects presented with standard deviations ranging between 15-18° for each respective tar-
get stimulus. These results suggest that the offset between presentation stimuli control signals
and the exogenous SSVEP waveforms can vary dramatically between subjects.

This could explain the reduced capacity of lower-complexity networks for the accurate classifi-
cation of SSVEP bio-signals described in Chapter 6. A higher number of convolutional filters
could enable the networks to adjust for these variances in the training data. A hard-coded
solution to enhance data applicability could involve adjusting the phase angle of all training
subject data to the unique phase offsets expressed in the target subject. This would increase the
coherency between the training and validation data and likely enhance end-point accuracies.
These stages are likely being performed by the convolutional filters in the higher-complexity
networks. Additional investigations into the phasic waveform representations embedded in
convolutional filters, as explored in [60] for stimulus frequency profiles, could help clarify
these claims.

Additionally, the author asserts that the application of these signal-preprocessing optimiza-
tion methods would likely benefit from the expansion of available online SSVEP repo datasets
utilized as seen in [49, 52, 56, 180], the inclusion of alternative CNN models [54, 57] and
the exploration of additional optimization methods, namely, the Hyperband and Threshold
pruners [271]. The integration of these data and methods into the optimization tools defined
herein would greatly enhance the ability of researchers to compare the performance of net-
works in a truly like-for-like format.
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Appendix A

Appendix

A.1 Experiment 1: Inversion Method Results: No Class-Balancing: Pipeline 1

A.1.1 Pooled-Subject: No Class-Balancing: Pipeline 1

The results reported in this subsection refer to analyses undertaken for the Inversion No Bal-
ance data partition (see, Table A.1). The data in question contain all subject EEG time-series
collected during the simultaneous visual presentation of the Inversion method of stimulus
augmentation (see subsection 3.3.3). The ratio of P300 and Non-P300 events is 1:6, with
one target emoji stimulus selected at the start of each trial according to a non-consecutive
randomisation protocol.
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Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Cross
Subject

83.38 0 100 lsqr 0.01 679

Subject 1 85.29 0 100 lsqr 0.21 68

Subject 2 85.29 0 100 lsqr 0.01 68

Subject 3 86.96 0 100 lsqr 0.04 69

Subject 4 86.96 0 100 lsqr 0.24 69

Subject 5 83.82 0 98.28 lsqr 0.10 68

Subject 6 86.96 0 100 lsqr 0.11 69

Subject 7 86.96 0 100 lsqr 0.26 69

Subject 8 84.13 0 100 lsqr 0.31 63

Subject 9 85.29 0 100 lsqr 0.08 68

Subject 10 85.29 0 100 lsqr 0.05 68

Single
Subject

Avg.

85.70 0 99.83 n/a 0.14 67.9

Single
Subject

Var.

1.57 0 0.86 n/a 0.15 3

Table A.1: A table of classification performance metrics and optimization results from the Inversion
No Balance dataset (refer to Table 3.5 for data partition info). For further information on field-headings
refer to Table 3.6.

As can be seen in Table A.1 the LDA classifier trained using the pooled-subject data
achieved greater than random performance. Mean accuracy is high (83.38%) with a clear im-
balance in performance metrics for P300 events (MA= 0%) as compared to Non-P300 events
(MA=100%). When applying the grid search technique it was found the optimal combination
of solver and shrinkage value to be the Least Squares (lsqr) method at 0.01, respectively.
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Figure A.1: Displayed here is a confusion matrix generated via the LDA classifier across all subjects
for the Inversion No Balance data partition (refer to Table A.1). For more information on interpreting
this figure see, Figure 3.10.

In the above figure (Figure A.1) the confusion matrix indicates a selective bias towards
the prediction of Non-P300 events, leading to a hit score of 1 for this class (see, bottom right
quadrant). The hit score for P300 events was found to be zero, with significant confusion
present in the classification of these target waveforms.
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Figure A.2: This shows the distribution of the maximum positive and negative values for every re-
spective event across all subjects for the Inversion No Balance dataset (refer to Table A.1) retained
post-processing. For further info on interpretation see, Figure 3.14.

The above figure (Figure A.2) indicates the vast majority of subject events included for
analysis, in both positive and negative deflections, remained well within +/−20mV. Some
select subjects (Subjects 2 & 8) demonstrated significantly higher positive deflections, along
with Subjects 7 and 8 demonstrating substantially larger negative deflections, as compared
to the average range of events sampled. The relevance of these deflections will be discussed
further in the following analysis sections.
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Figure A.3: Here is shown a Cz grand average plot for all trial P300 (solid line) and Non-P300 (dashed
line) events respectively collected during the Inversion No Balance data partition (refer to, Table 3.1 for
data partition info). Each augmentation event generated a data stream marker used to window the data
into 350ms chunks. Given the onset and offset times of the augmentations through each trial sequence,
some data is shared across data chunks for different emoji targets. These waveforms are computed by
averaging across all P300 (relating to cued target emoji instances) or Non-P300 events (non-cued target
emoji instances) and isolated exclusively to the central Cz channel. The averages generated across
these classes amplify underlying EEG waveform patterns embedded in the signals. Further, all plots
were baselined by computing the average of the first 50ms of the samples collected. Note, that these
baselining measures were implemented exclusively for presentation purposes and were not applied
during the Pipeline 1 approach to data pre-processing as stated in subsection 3.3.5.3, see table 3.1.

As seen in Figure A.3, the averaged pooled-subject waveforms for the Inversion No Bal-
ance data partitions are relatively representative of the typical waveform profiles expected for
P300 and Non-P300 signal averages. The upper P300 average plot presents a significant neg-
ative component at 50ms, with a large positive deflection around 300-350ms. Further, the
Non-P300 waveform average signal (lower plot) does present the correct visual properties, in
that the range of values is significantly reduced in comparison to the upper plot. This suggests
redundant noise and non-stationary components have converged towards zero over the course
of iterative averaging.
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A.1.2 Within-Subject: No Class-Balancing: Pipeline 1

As seen in Table A.1 the average within-subject accuracy is 85.70% +/−1.57%, this is signif-
icantly above the non-class balanced random performance threshold. The P300 performance
levelled out at zero (0%), with Non-P300 accuracy at 99.83% +/−0.86%. The solver selected
in all instances is the lsqr method, with an average shrinkage metric of 0.14 +/−0.15. Subject
8 returned the least amount of samples post-channel rejection (63 vs. the average of 67.9).

Figure A.4: Displayed here is a confusion matrix generated via the LDA classifier for subject 5 in the
Inversion No Balance data partition (refer to Table A.1). For more information on interpretation see,
Figure 3.10.

As seen above in Figure A.4, the results at the single-subject level broadly conform with
the performance observed at the pooled-subject level. The classification data displayed here
represents the only subject with a corresponding LDA classifier that did not produce exclu-
sively Non-P300 predictions. As seen above, one instance is recorded that involved a Non-
P300 event being misclassified as a P300 event.
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Figure A.5: This shows the distribution of the maximum positive and negative values for every re-
spective event for Subject 8 in the Inversion No Balance dataset (refer to Table A.1) retained post-
processing. For further information on interpretation see, Figure 3.14.

In Figure A.5 (above), a distribution of maximum and minimum amplitude values is pre-
sented for Subject 8. This subject was previously highlighted in the above pooled-subject
section as presenting some of the highest ranges in µV amplitudes. The larger range values
are present in the early stages of the experiment and tail off towards the later portion of the
experimental session. Less than 5% of all samples included presented with amplitude values
exceeding +/−25 µV.

A.2 Experiment 1: Combined Method Results: No Class-Balancing: Pipeline 1

After compiling and interpreting the results for the Flash and Inversion augmentation methods
data individually it was evident that one of the reasons the analyses may have struggled to
accurately distinguish between P300 and Non-P300 events might be related to the volume of
examples available to the LDA analyses models employed. To examine the possibility that
increasing the volume of samples available to the LDA discriminant function could enhance
classification performance the Flash and Inversion method datasets were aggregated into the
Combined No Balance dataset (refer to Table 2.1). The basis of each experimental method is
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identical, aside from the method of stimulus augmentation. This, in the mind of the author,
justifies the combination of these datasets. Again, the data and results discussed in this section
are collated from all subjects across both experimental augmentation methods (Flash and In-
version) and possess a P300 to Non-P300 event ratio of 1:6. Note, that amplitude range plots
will not be discussed in the aggregate subsections as these data have already been presented
piecemeal throughout the text.

Mean
Accuracy

(%)

P300
Accuracy

(%)

Non-P300
Accuracy

(%)

Solver Shrinkage Num Test
Events

Cross
Subject

84.36 0 100 lsqr 0.01 1364

Subject 1 84.67 0 100 lsqr 0.56 137

Subject 2 84.67 0 100 lsqr 0.03 137

Subject 3 85.51 0 100 lsqr 0.01 138

Subject 4 85.51 0 100 lsqr 0.03 138

Subject 5 85.93 0 100 lsqr 0.08 135

Subject 6 85.51 0 100 lsqr 0.10 138

Subject 7 85.51 0 100 lsqr 0.23 138

Subject 8 86.92 0 100 lsqr 0.05 130

Subject 9 86.03 0 100 lsqr 0.08 136

Subject 10 84.67 0 100 lsqr 0.05 137

Single
Subject

Avg.

85.49 0 100 n/a 0.12 136.4

Single
Subject

Var.

1.13 0 0 n/a 0.28 4

Table A.2: A table of classification performance metrics and optimization results from the Combined
No Balance dataset (refer to Table 2.1). For further information on field-headings refer to Table 2.2
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A.2.1 Pooled-Subject: No Class-Balancing: Pipeline 1

As can be seen in Table A.2, the pooled-subject mean accuracy for the Combined No Balance
dataset is reported at 84.36%. The P300 Accuracy is reported as 0%, with the LDA classifier
demonstrating a clear bias for the Non-P300 class events showing a 100% classification accu-
racy. The grid search optimisation returned a selection for the lsqr solver with an optimised
shrinkage rate of 0.01.

Figure A.6: Confusion matrix displaying the normalized classification performance of trained LDA
models of each respective class for the pooled-subject Combined No Balance data partition.

The above confusion matrix figure (Figure A.7) demonstrates the exclusive attribution of
all test events to the Non-P300 event class. At no point is the P300 class selected, even in an
instance of classifier confusion.
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Figure A.7: Here is presented a plot of µV amplitude ranges for all test events in the Combined No Bal-
ance data partition (including both P300 and Non-P300 events). The upper plot contains the maximum
µV amplitude recorded in each respective event and the low plot displays the minimum µV amplitude
sampled in each respective event. The total number of events attainable post-processing amounts to 7
(emoji) × 49 (trials) × 4 (blocks) × 10 (subjects) = 13720 samples.

As can be seen in Figure A.8, the µV amplitude upper plot reveals 3 subjects displaying
maximum µV amplitude values outside the typical range of the dataset as a whole, Subjects:
2, 6 and 8. Concerning the lower minimum µV value plots, Subjects 7 and 8 demonstrate the
presence of lower minimum amplitudes. It must be noted that the higher overall variance in the
lower minimum µV amplitude plot reduces the ability to visually appraise potential outliers.
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Figure A.8: Here is shown a Cz grand average plot for all trial P300 (solid line) and Non-P300 (dashed
line) events respectively collected for the Both No Balance data partition (refer to, Table 3.1 for data
partition info). Each augmentation event generated a data stream marker used to window the data into
350ms chunks. Given the onset and offset times of the augmentations through each trial sequence,
some data is shared across data chunks for different emoji targets. These waveforms are computed by
averaging across all P300 (relating to cued target emoji instances) or Non-P300 events (non-cued target
emoji instances) and isolated exclusively to the central Cz channel. The averages generated across
these classes amplify underlying EEG waveform patterns embedded in the signals. Further, all plots
were baselined by computing the average of the first 50ms of the samples collected. Note, that these
baselining measures were implemented exclusively for presentation purposes and were not applied
during the Pipeline 1 approach to data pre-processing as stated in subsection 3.3.5.3, see table 3.1.

The figure presented above (Figure A.9) shows the averaged signals taken across both
stimulus augmentation methods (Flash and Inversion) for the P300 and Non-P300 classes.
The P300 average plot (upper) does not appear to be adequately baselined to zero. Despite
this, the presence of a strong negative component at 50-100ms and a robust positive compo-
nent between 300-350ms does suggest the presence of P300-related components in the signals
averaged. The Non-P300 average plot (lower) shows a similar trend in amplitude changes
over time, at a reduced scale. It must be noted that these signals present with a significantly
lower range of µV amplitude ranges (-0.1 to 0.1mV), owing to the dramatically higher num-
ber of samples used and the increased incidence of orthogonal waveforms trending the signal
towards the baseline.
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A.2.2 Within-Subject: No Class-Balancing: Pipeline 1

As can be seen from Table A.2, the within-subject results are highly uniform, with an aver-
age mean classification accuracy of 85.49% +/−1.13%. All subjects evaluated demonstrate
a P300 event classification accuracy of 0% and a corresponding 100% accuracy for Non-P300
events. The incidence of event rejection is highest for Subject 8, with 130 (of 196) total events
retained post-channel rejection. See previous sections for further discussion. The exclusive
selection of the lsqr solver method for the LDA evaluation remains consistent for these re-
sults, with a slightly lower variance in overall shrinkage values selected across subjects (0.12
+/−0.28).

Figure A.9: Here is presented the confusion matrix generated from the results of the LDA analyses
conducted using Subject 10 for the Combined No Balance data partition (refer to Table A.2).

The figure positioned above (Figure A10) displays the confusion matrix for Subject 10
and breaks down the prediction preferences demonstrated by the LDA analyses trained using
the data in question. This figure illustrates the complete overfitting of the model towards a
selection bias for the Non-P300 event data, as all predictions made identified each test event
as belonging to the Non-P300 class.
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A.3 Experiment 1: Inversion Method Data Partitions: Pipeline 2

Inversion Collapsed
Total Post-Rejection Test Train

Subjects P300 Non-
P300

P300 Non-
P300

P300
(Real)

P300
(Syn-
thetic)

Non-
P300

Subject
3

93 581 9 58 84 438 522

Subject
5

95 586 9 59 86 441 527

Subject
8

92 584 9 58 83 442 525

Table A.3: Here is presented a table detailing the distribution of sample quantities for the datasets
associated with the Inversion Collapsed Pipeline 2 approach. All samples here are composed of signals
collected over all 5 sequences of each trial, for more information see subsection 3.3.5.3. For further
information on field headings and interpretation please refer to the table above (Table 3.14). Note, that
the ratios between Target and Non-Target samples for all datasets listed, including the proportion of
Real vs Synthetic P300 instances mirror those in the Non-Collapsed data preparation variant (see table
above).
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Inversion Non-Collapsed
Total Post-Rejection Test Train

Subjects P300 Non-
P300

P300 Non-
P300

P300
(Real)

P300
(Syn-
thetic)

Non-
P300

Subject
3

45 289 4 59 41 189 230

Subject
5

46 292 4 59 42 191 233

Subject
8

45 291 4 59 41 191 232

Table A.4: Here is presented a table detailing the distribution of sample quantities for the datasets
associated with the Inversion Collapsed Pipeline 2 approach. All samples here are composed of signals
from 10 sequences, this was generated by averaging corresponding Target and Non-Target samples
for 2 neighbouring trials containing 5 sequences each. For further information on field headings and
interpretation please refer to the table above (Table 3.14). Note, that the ratios between Target and
Non-Target samples for all datasets listed, including the proportion of Real vs Synthetic P300 instances
mirror those in the Non-Collapsed data preparation variant (see table above).



A.4 Experiment 2: Collapsed Data Partitions: Pipeline 2 389

A.4 Experiment 2: Collapsed Data Partitions: Pipeline 2

3-Emoji Non-Collapsed
Total Post-Rejection Test Train

Subjects P300 Non-
P300

P300 Non-
P300

P300
(Real)

P300
(Syn-
thetic)

Non-
P300

Subject
1

13 28 1 3 12 13 25

Subject
3

11 26 1 3 10 14 24

Subject
5

13 27 1 3 12 12 24

Table A.5: Here is presented a table detailing the distribution of sample quantities for the subject-
specific datasets associated with the 3-Emoji (see Figure 4.4), Collapsed Pipeline 2 approach (see
subsection 3.3.5.3). All samples here are composed of signals from 10 sequences, this was gener-
ated by averaging corresponding Target and Non-Target samples for 2 neighbouring trials containing
5 sequences each. (see subsection 4.3.7). For further information on field headings and interpretation
please refer to Table 3.14.

5-Emoji Non-Collapsed
Total Post-Rejection Test Train

Subjects P300 Non-
P300

P300 Non-
P300

P300
(Real)

P300
(Syn-
thetic)

Non-
P300

Subject
1

11 57 1 6 10 41 51

Subject
3

12 55 1 6 11 39 50

Subject
5

12 56 1 6 11 39 50

Table A.6: Here is presented a table detailing the distribution of sample quantities for the subject-
specific datasets associated with the 5-Emoji (see Figure 4.5), Collapsed Pipeline 2 approach (see
subsection 3.3.5.3). All samples here are composed of signals from 10 sequences, this was gener-
ated by averaging corresponding Target and Non-Target samples for 2 neighbouring trials containing
5 sequences each. (see subsection 4.3.7). For further information on field headings and interpretation
please refer to Table 3.14.
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3-Emoji Non-Collapsed
Total Post-Rejection Test Train

Subjects P300 Non-
P300

P300 Non-
P300

P300
(Real)

P300
(Syn-
thetic)

Non-
P300

Subject
1

13 85 1 8 12 65 76

Subject
3

13 86 1 9 12 65 77

Subject
5

13 83 1 8 12 63 75

Table A.7: Here is presented a table detailing the distribution of sample quantities for the subject-
specific datasets associated with the 7-Emoji (see Figure 4.42, Collapsed Pipeline 2 approach (see
subsection 3.3.5.3). All samples here are composed of signals from 10 sequences, this was gener-
ated by averaging corresponding Target and Non-Target samples for 2 neighbouring trials containing
5 sequences each. (see subsection 4.3.7). For further information on field headings and interpretation
please refer to Table 3.14.

A.5 Experiment 3: MAINOFF: Pipeline 1

The results herein were computed exclusively using the data gathered during the main ex-
periment. The datasets discussed at both the pooled-subject and single-subject levels were
partitioned 9:1 in terms of training and test divisions. At no point was any test data included
in the training phase of the LDA classifiers discussed herein. All data comprising the test set
consisted of the last 10% of samples gathered for each respective participant. This was done
to enhance the ecological validity of the analyses conducted as these methods mirror the con-
ditions observed in a real-world clinical setting. Concerning the pooled-subject dataset, the
test dataset was constructed from the final samples acquired across all subjects sampled. This
method was employed to ensure an even representation of all subjects across both training and
test datasets to avoid any subject-specific biasing. Once partitioned into the respective training
and test datasets, all events were randomised to prevent confounding of classifier training via
chronological artefacts/order effects. Again, this same process was repeated for the pooled-
subject data.
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A.5.1 Pooled-Subject

The results described herein relate to the aggregated dataset including samples from all sub-
jects tested (refer to, Tables 4.1 & 4.2 for further details). It must be noted that all pooled-
subject data analysis and pre-processing were performed offline.

Mean Acc (%) P300 Acc (%) Non-P300 Acc (%) Solver Shrinkage

Pooled-Sub 80.65 0.00 94.34 lsqr 0.36

Subject 1 85.71 0.00 100.00 lsqr 0.08

Subject 2 80.00 0.00 94.12 lsqr 0.09

Subject 3 76.19 0.00 88.89 lsqr 0.31

Sub Avg 80.63 0.00 94.34 n/a 0.16

Sub Var 4.76 0.00 5.56 n/a 0.12

Table A.8: The classification table contains the metrics relevant to the pooled-subject dataset com-
puted without the inclusion of a localizer pre-training stage (MAINOFF).

The classification performance of trained LDA models for this aggregated pooled-subject
dataset (see, TableA.3) demonstrates significant biasing towards the Non-P300 (94.34% accu-
racy), to the detriment of the P300 class (0.00% accuracy). The grid optimization method for
computing the ideal solver method led to the selection of the lsqr solver, with a shrinkage of
0.36.
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Figure A.10: Here is displayed a normalized confusion matrix reporting the classification performance
of the trained LDA model for both P300 and Non-P300 classes relating to the pooled-subject MAIN-
OFF analyses block (refer to, Table A.3). Note, that these evaluations were computed using an aggre-
gate dataset comprising all subjects sampled. For further information on the interpretation of this plot
refer to, Figure 3.10.

The pattern of performance across classes is illustrated in Figure A.12. This confusion
matrix demonstrates that all P300 instances were misclassified as Non-P300 events. The only
event preventing complete overfitting was a single Non-P300 event being misclassified as
belonging to the P300 class.
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Figure A.11: Here is displayed a Cz grand average plot containing the pooled-trial P300 (upper plot)
and non-P300 (lower plot) events for the pooled-subject MAINOFF analysis block (refer to, Table A.8).
The x-axis denotes time in milliseconds for the 500ms event data chunk. On the y-axis is amplitude,
and displays changes in micro-voltage of the EEG signal. The averages generated across these classes
amplify underlying EEG waveform patterns embedded in the signals.

The average plot positioned above (see, Figure A.13) does not provide us with a recog-
nisable example of either the P300 (upper plot) or Non-P300 (lower plot) standard signal.
The P300 average signal presents with a large initial crest at 100ms, followed by a drop in
µV amplitude and a final positive deflection back to the 0mV baseline. These are not typical
waveform characteristics for the expression of a P300 bio-signal. In the lower plot, the signal
volatility is comparatively reduced against the upper plot. There are also present some signs
of drifting from around 100ms to the end of the 500ms data chunk.

A.5.2 Within-Subject

The single-subject performance for all 3 individuals sampled largely replicates the results ob-
served for the pooled-subject subset. In all instances, significant signs of overfitting are found
towards the Non-P300 class, with a universal 0.00% accuracy for the P300 target waveform.
The only variance in performance between subjects is the degree of overfitting, with Subject 3
demonstrating the highest incidence of Non-P300 target misclassification at 88.89% accuracy.
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Figure A.12: Here is displayed a normalized confusion matrix reporting the classification performance
of the trained LDA model for both P300 and Non-P300 classes relating to Subject 3 in the MAINOFF
analyses block (refer to, Table A.8). For further information on the interpretation of this plot refer to,
Figure 3.10.

The pattern of Non-P300 misclassification for Subject 3 is presented in the above confu-
sion matrix (see, Figure A.14). The incidence of this phenomenon extends to just over 10%
of all Non-P300 events comprising the test dataset. Additionally, all instances of P300 target
prediction resulted in misclassifications as Non-P300 waveforms.
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A.6 Optimized Network Architectures

A.6.1 ShallowConvNet

Figure A.13: Here is presented a visualization of the ShallowConvNet [61] architecture utilized
throughout the evaluations conducted herein. The input data works through a series of stages primarily
composed of 2 convolutional phases along the temporal and spatial dimensions respectively. The visu-
alization app Netron was used to generate this, and all similarly referenced architecture visualizations
([312]).
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A.6.2 DeepConvNet

Figure A.14: Here is presented an architecture visualization of the DeepConvNet [61] generated via
the Netron app ([312]).
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A.6.3 EEGNet

Figure A.15: Here is presented a visualization of the EEGNet [59] architecture generated via the Netron
app ([312]).
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A.6.4 EEGNetSSVEP

Figure A.16: Here is presented an architecture visualization of the EEGNetSSVEP [60] network gen-
erated via the Netron app ([312]).
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A.7 Median Pruner Subject-Level Parameter Selection Plots

A.7.1 Subject 2

Figure A.17: Here is presented a figure displaying the Median Pruner high and low-pass parameter
selections over the course of the EEGNet optimization study (100 trials) for Subject 2.
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A.7.2 Subject 5

Figure A.18: Here is presented a figure displaying the Median Pruner high and low-pass parameter
selections over the course of the EEGNet optimization study (100 trials) for Subject 5.
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A.7.3 Subject 7

Figure A.19: Here is presented a figure displaying the Median Pruner high and low-pass parameter
selections over the course of the EEGNet optimization study (100 trials) for Subject 7.
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A.8 Optimizer Loss Profiles

A.8.1 Subject 8

Figure A.20: Here is presented a figure displaying a representative subsample of the loss in network
optimization trials for Subject 8 across the 4 models evaluated. These metrics are taken from the
highest-performing networks in each respective model optimisation study. The loss values are posi-
tioned on the y-axis against the number of epochs on the x-axis. The black line presents the training
data loss, and the grey shows the validation loss. As can be seen in the bottom right plot, the variance
in the validation data loss values is the highest across all networks assessed. These patterns are highly
uniform across subjects and models, with some variation in presentation for extremely low or high
relative high-pass and low-pass filter cutoff parameter selections.
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A.9 Pruner-Wise Optimized Classification Results

A.9.1 Percentile Pruner: EEGNet

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.28 0.25 0.34 9 23 171

Sub 2 0.16 0.17 0.20 7.5 15.25 75

Sub 3 0.42 0.38 0.48 9 16.25 177

Sub 4 0.64 0.61 0.68 8.75 15 185

Sub 5 0.53 0.44 0.62 6.25 61.25 154

Sub 6 0.66 0.60 0.74 8 35.75 235

Sub 7 0.53 0.49 0.57 8.75 20.75 180

Sub 8 0.81 0.76 0.86 7.5 16.25 241

Sub 9 0.53 0.50 0.58 8.5 20 147

Sub 10 0.58 0.53 0.63 9 16 112

Mean 0.51 0.48 0.57 8.23 23.95 n/a

Table A.9: Here is shown a table of classification accuracies for subjects (Sub) relating to
the optimization studies conducted utilizing the Percentile pruner algorithm for the EEGNet
model. For further information on table interpretation see Table 5.6.

A.9.2 Percentile Pruner: EEGNetSSVEP

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.55 0.53 0.56 8.5 73.25 52

Sub 2 0.31 0.230 0.34 4.75 17 47

Sub 3 0.72 0.70 0.74 8.5 50 62

Sub 4 0.92 0.91 0.93 3.25 43.25 109

Sub 5 0.87 0.86 0.86 8.75 83.25 35

Sub 6 0.92 0.91 0.93 5 54.5 88

Sub 7 0.84 0.83 0.85 9 50.75 78

Sub 8 0.97 0.96 0.98 8.75 68.25 78

Sub 9 0.86 0.85 0.87 8.5 62 141

Sub 10 0.82 0.81 0.82 6 67.75 47

Mean 0.78 0.77 0.79 7.1 57 n/a

Table A.10: Here is shown a table of classification accuracies for subjects (Sub) relating
to the optimization studies conducted utilizing the Percentile pruner algorithm for the EEG-
NetSSVEP model. For further information on table interpretation see Table 5.6.



404 Appendix

A.9.3 Percentile Pruner: DeepConvNet

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.42 0.40 0.45 8.25 78 96

Sub 2 0.26 0.25 0.26 5.5 17.25 57

Sub 3 0.52 0.50 0.55 8.25 46.75 115

Sub 4 0.79 0.79 0.80 9 16.5 91

Sub 5 0.75 0.74 0.77 8.75 32.75 85

Sub 6 0.80 0.80 0.80 8.5 21.25 138

Sub 7 0.69 0.69 0.70 9 40 161

Sub 8 0.89 0.88 0.91 8.5 20 95

Sub 9 0.82 0.80 0.85 8.25 40 88

Sub 10 0.73 0.72 0.75 6.5 74.25 98

Mean 0.67 0.65 0.69 8.05 38.68 n/a

Table A.11: Here is shown a table of classification accuracies for subjects (Sub) relating to the
optimization studies conducted utilizing the Percentile pruner algorithm for the DeepConvNet
model. For further information on table interpretation see Table 5.6.

A.9.4 Percentile Pruner: ShallowConvNet

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.25 0.23 0.30 7.75 15.25 129

Sub 2 0.16 0.15 0.17 8.5 72 40

Sub 3 0.32 0.28 0.41 8 15.75 111

Sub 4 0.51 0.47 0.58 9 15 116

Sub 5 0.40 0.35 0.44 8.25 19.25 103

Sub 6 0.58 0.56 0.62 8.75 15 114

Sub 7 0.46 0.42 0.50 9 15 107

Sub 8 0.62 0.59 0.68 8.75 15 165

Sub 9 0.43 0.38 0.51 9 18.5 99

Sub 10 0.510 0.49 0.55 9 16 108

Mean 0.42 0.39 0.48 8.6 21.68 n/a

Table A.12: Here is shown a table of classification accuracies for subjects (Sub) relating to the
optimization studies conducted utilizing the Percentile pruner algorithm for the ShallowCon-
vNet model. For further information on table interpretation see Table 5.6.
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A.9.5 Successive Halving Pruner: EEGNet

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.29 0.27 0.32 8.75 20.5 180

Sub 2 0.19 0.17 0.21 8.75 15 107

Sub 3 0.41 0.35 0.50 3.5 16 196

Sub 4 0.57 0.51 0.69 5.75 80.25 342

Sub 5 0.51 0.42 0.65 1.75 22.25 171

Sub 6 0.70 0.66 0.75 8.75 15 124

Sub 7 0.55 0.53 0.59 8.5 15 137

Sub 8 0.75 0.71 0.82 6.75 22.25 193

Sub 9 0.55 0.49 0.65 1.25 48.75 355

Sub 10 0.60 0.57 0.65 9 15.5 160

Mean 0.51 0.47 0.58 6.28 27.05 n/a

Table A.13: Here is shown a table of classification accuracies for subjects (Sub) relating to
the optimization studies conducted utilizing the Successive Halving pruner algorithm for the
EEGNet model. For further information on table interpretation see Table 5.6.

A.9.6 Successive Halving Pruner: EEGNetSSVEP

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.55 0.55 0.55 7.75 74 16

Sub 2 0.30 0.29 0.32 3.5 18 39

Sub 3 0.74 0.72 0.46 7.74 83.5 76

Sub 4 0.91 0.90 0.94 5.25 64.75 110

Sub 5 0.83 0.81 0.85 7.5 70.5 42

Sub 6 0.92 0.91 0.93 6 54.5 85

Sub 7 0.83 0.82 0.84 5.25 63.25 73

Sub 8 0.97 0.97 0.97 8.5 47.5 105

Sub 9 0.86 0.54 0.88 7.5 53.25 114

Sub 10 0.82 0.81 0.82 5.75 32.5 42

Mean 0.77 0.73 0.76 6.47 56.18 n/a

Table A.14: Here is shown a table of classification accuracies for subjects (Sub) relating to
the optimization studies conducted utilizing the Successive Halving pruner algorithm for the
EEGNetSSVEP model. For further information on table interpretation see Table 5.6.
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A.9.7 Successive Halving Pruner: DeepConvNet

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.40 0.38 0.44 9 29.5 59

Sub 2 0.25 0.24 0.25 7.5 16.75 47

Sub 3 0.52 0.51 0.55 8.5 20 112

Sub 4 0.78 0.78 0.78 8.25 19 81

Sub 5 0.73 0.70 0.76 3.5 80.5 161

Sub 6 0.76 0.73 0.79 7.75 17.25 47

Sub 7 0.70 0.69 0.71 8.25 15.25 86

Sub 8 0.89 0.88 0.90 8.5 64.75 96

Sub 9 0.84 0.83 0.84 7.75 46.25 149

Sub 10 0.72 0.69 0.78 7.25 29.5 61

Mean 0.66 0.64 0.68 7.63 33.88 n/a

Table A.15: Here is shown a table of classification accuracies for subjects (Sub) relating to
the optimization studies conducted utilizing the Successive Halving pruner algorithm for the
DeepConvNet model. For further information on table interpretation see Table 5.6.

A.9.8 Successive Halving Pruner: ShallowConvNet

AoC Min K Max K High-Pass Low-Pass Epochs

Sub 1 0.24 0.21 0.29 8.75 16.75 70

Sub 2 0.15 0.15 0.16 8.5 75.5 43

Sub 3 0.29 0.24 0.37 7.5 16.5 99

Sub 4 0.48 0.45 0.54 9 16 79

Sub 5 0.39 0.37 0.42 8.5 21.75 77

Sub 6 0.57 0.54 0.61 8.75 15.25 97

Sub 7 0.46 0.44 0.48 8.5 15.5 121

Sub 8 0.58 0.55 0.65 9 17 84

Sub 9 0.42 0.38 0.48 9 17.5 88

Sub 10 0.50 0.48 0.53 9 15 46

Mean 0.41 0.38 0.45 8.65 22.68 n/a

Table A.16: Here is shown a table of classification accuracies for subjects (Sub) relating to
the optimization studies conducted utilizing the Successive Halving pruner algorithm for the
ShallowConvNet model. For further information on table interpretation see Table 5.6.



A.10 Subject-Wise Pruner Computation Durations 407

A.10 Subject-Wise Pruner Computation Durations

A.10.1 Median Pruner

Model Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10

EEGNet 217.00 176.16 200.83 290.17 200.13 260.96 232.17 254.60 238.87 205.23

SSVEP 293.90 294.30 433.17 368.43 390.97 324.57 351.43 612.73 677.00 238.10

DCN 215.10 155.17 216.43 297.03 222.67 194.87 272.37 209.73 220.73 181.30

SCN 218.50 206.63 272.83 263.87 220.63 299.83 320.17 327.07 286.20 365.13

Range (mins) 78.80 139.13 232.34 104.56 190.84 129.70 119.26 403.00 456.27 183.83

Table A.17: Here is presented a table containing the duration of computational time required
for the completion of all respective model optimization studies across each subject (Sub) as-
sessed using the Median Pruner algorithm. All duration times are shown in minutes.

A.10.2 Percentile Pruner

Model Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10

EEGNet 165.87 172.13 181.07 237.87 163.33 190.40 175.27 181.23 165.97 172.03

SSVEP 262.93 236.33 289.87 344.20 243.27 288.90 278.40 322.10 359.27 246.80

DCN 156.93 157.50 163.43 187.10 169.87 172.37 193.60 159.77 159.67 162.67

SCN 151.37 214.90 150.90 251.37 163.97 194.67 170.73 191.03 161.74 166.70

Range (mins) 111.56 78.83 138.97 157.10 79.94 116.53 107.67 162.33 199.60 84.13

Table A.18: Here is presented a table containing the duration of computational time required
for the completion of all respective model optimization studies across each subject (Sub) as-
sessed using the Percentile Pruner algorithm. All duration times are shown in minutes.



408 Appendix

A.10.3 Successive Halving Pruner

Model Sub 1 Sub 2 Sub 3 Sub 4 Sub 5 Sub 6 Sub 7 Sub 8 Sub 9 Sub 10

EEGNet 149.73 156.30 170.73 161.90 155.87 165.70 195.73 162.93 204.43 179.00

SSVEP 205.46 643.70 283.70 348.03 217.20 233.07 238.53 374.50 328.27 204.70

DCN 145.80 144.13 156.77 153.57 164.20 144.07 173.87 150.57 169.13 150.80

SCN 146.23 141.23 144.37 198.03 149.57 166.20 152.77 165.33 165.00 164.90

Range (mins) 59.66 502.47 139.33 194.46 67.63 89.00 85.76 223.93 163.27 53.90

Table A.19: Here is presented a table containing the duration of computational time required
for the completion of all respective model optimization studies across each subject (Sub) as-
sessed using the Successive Halving Pruner algorithm. All duration times are shown in min-
utes.


	Contents
	List of Tables
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Positioning Statement
	1.2 Motivation
	1.2.1 Patient-Centered Treatment and Issues of Consent
	1.2.2 Quality of Life

	1.3 Target Population and Aetiology
	1.4 Emoji-based P300 Speller Rationale
	1.5 Systematic Optimization of SSVEP-based CNN Classification Rationale
	1.6 PhD Outline and Objectives

	2 Literature Review
	2.1 Chapter Outline
	2.2 EEG Signals and Hardware Overview
	2.2.1 Wet vs. Dry EEG

	2.3 EEG vs. Alternative Brain-based Bio-Signal Acquisition Methods
	2.4 Brain-Computer Interface Definition and Terminolgy
	2.4.1 BCI Sub-Classes

	2.5 BCI Configuration and Control Signals
	2.5.1 P300

	2.6 Emoji-based Speller Designs
	2.6.1 Steady-State Visually Evoked Potentials
	2.6.2 Cutting-Edge Classification Methods for SSVEPs: Filter-Bank Canonical Correlation Analysis
	2.6.3 Neural Network-based Bio-Signal Classification
	2.6.4 Cutting-Edge Classification Methods for SSVEPs: Convolutional Neural Networks


	3 Experiment 1: P300-Based BCI-Speller Stimulus Evaluation
	3.1 Chapter Outline
	3.2 Aims
	3.3 Method
	3.3.1 Participants
	3.3.2 Equipment
	3.3.3 Stimulus Presentation
	3.3.4 Data Acquisition
	3.3.5 Data Organisation: Pipeline 1
	3.3.5.1 Data Pre-Processing: Pipeline 1
	3.3.5.2 Channel-Amplitude Rejection: Pipeline 1
	3.3.5.3 Data Pre-Processing: Pipeline 2


	3.4 Analysis: Pipeline 1
	3.4.1 Downsampling Class Balancing Considerations: Pipeline 1
	3.4.2 Random Performance Thresholds: Pipeline 1
	3.4.3 Analysis: Pipeline 2
	3.4.3.1 Cross-Validation
	3.4.3.2 Statistical Tests of Significance
	3.4.3.3 Oversampling via SMOTE
	3.4.3.4 Sequence-Labelling
	3.4.3.5 Onset-Labelling


	3.5 Results: Pipeline 1
	3.5.1 Post-Processing Data Info: Pipeline 1
	3.5.2 Data Partitions: Pipeline 1
	3.5.3 Flash Method Results: No Class Balancing: Pipeline 1
	3.5.3.1 Pooled-Subject
	3.5.3.2 Within-Subject

	3.5.4 Flash Method Results: Class-Balanced: Pipeline 1
	3.5.4.1 Pooled-Subject
	3.5.4.2 Within-Subject

	3.5.5 Inversion Method Results: Class-Balanced: Pipeline 1
	3.5.5.1 Pooled-Subject
	3.5.5.2 Within-Subject

	3.5.6 Combined Method Results: Class-Balanced: Pipeline 1
	3.5.6.1 Pooled-Subject
	3.5.6.2 Within-Subject


	3.6 Results: Pipeline 2
	3.6.1 Data Partitions: Pipeline 2
	3.6.2 Flash Method Results: Non-Collapsed: Pipeline 2
	3.6.3 Flash Method Results: Collapsed: Pipeline 2
	3.6.4 Inversion Method Results: Non-Collapsed: Pipeline 2
	3.6.5 Inversion Method Results: Collapsed: Pipeline 2
	3.6.6 Flash vs. Inversion: Pipeline 2

	3.7 Conclusion: Pipeline 1
	3.7.1 Flash Method: No Class-Balancing Interpretation: Pipeline 1
	3.7.1.1 Pooled-Subject
	3.7.1.2 Within-Subjects
	3.7.1.3 Summary

	3.7.2 Flash Method: Class-Balanced Interpretation: Pipeline 1
	3.7.2.1 Pooled-Subject
	3.7.2.2 Within-Subject
	3.7.2.3 Summary

	3.7.3 Inversion Method: Class-Balanced Interpretation: Pipeline 1
	3.7.3.1 Pooled-Subject
	3.7.3.2 Within-Subject
	3.7.3.3 Summary

	3.7.4 Combined Results: Class-Balanced: Pipeline 1
	3.7.4.1 Pooled-Subject
	3.7.4.2 Within-Subject
	3.7.4.3 Summary

	3.7.5 Conclusion: Pipeline 2
	3.7.5.1 Flash Method Results: Pipeline 2
	3.7.5.2 Inversion Method Results: Pipeline 2
	3.7.5.3 Flash vs. Inversion Results: Pipeline 2
	3.7.5.4 Summary


	3.8 Reflections
	3.8.1 Data Capture Issues
	3.8.2 Discussion on Performance for Pooled-Subject Data: Pipeline 1
	3.8.3 Class-Balancing Considerations Across Data Partitions: Pipeline 1
	3.8.4 Flash vs. Inversion Stimulus Augmentation Methods: Pipeline 1
	3.8.5 Flash vs. Inversion Stimulus Augmentation Methods: Pipeline 2
	3.8.6 Experimental Modifications
	3.8.6.1 Discussion Relating to Augmentation Sizes
	3.8.6.2 Stimuli Colouration Justification
	3.8.6.3 Impedance-Based Channel Rejection
	3.8.6.4 Inter-Stimulus Interval Increase
	3.8.6.5 Subject Training Improvements



	4 Experiment 2: Variable Array Density Assessments
	4.1 Aims
	4.2 Stimulus Reduction Rationale
	4.3 Method
	4.3.1 Participants
	4.3.2 Equipment
	4.3.3 Stimulus Presentation
	4.3.4 Localizer Task
	4.3.5 Main Experiment
	4.3.5.1 Presentation Specifications
	4.3.5.2 Randomisation Protocol Differences
	4.3.5.3 Parameter and Data Window Modifications
	4.3.5.4 Data Pre-Processing: Pipeline 1
	4.3.5.5 Data Pre-Processing: Pipeline 2

	4.3.6 Analysis: Pipeline 1
	4.3.6.1 Localizer Data and Initialization
	4.3.6.2 Class-Balancing Considerations

	4.3.7 Analysis: Pipeline 2

	4.4 Results: Pipeline 1
	4.4.1 Post-Processing Data Info: Pipeline 1
	4.4.2 Main: No Localizer Pre-Training: Pipeline 1
	4.4.2.1 3 Emoji Variant: Pipeline 1
	4.4.2.2 5 Emoji Variant: Pipeline 1
	4.4.2.3 7 Emoji Variant: Pipeline 1

	4.4.3 Main + Localizer Pre-Training Experiment: Pipeline 1
	4.4.3.1 3 Emoji Variant: Pipeline 1
	4.4.3.2 5 Emoji Variant: Pipeline 1
	4.4.3.3 7 Emoji Variant: Pipeline 1


	4.5 Results: Pipeline 2
	4.5.1 Data Partitions
	4.5.2 3-Emoji Variant: Non-Collapsed: Pipeline 2
	4.5.3 3-Emoji Variant: Collapsed: Pipeline 2
	4.5.4 5-Emoji Variant: Non-Collapsed: Pipeline 2
	4.5.5 5-Emoji Variant: Collapsed: Pipeline 2
	4.5.6 7-Emoji Variant: Non-Collapsed: Pipeline 2
	4.5.7 7-Emoji Variant: Collapsed: Pipeline 2
	4.5.8 3 vs. 5 vs. 7 Emoji: Pipeline 2

	4.6 Conclusion: Pipeline 1
	4.6.1 3 Emoji Variant: No Localizer Pre-Training: Pipeline 1
	4.6.1.1 Pooled-Subject
	4.6.1.2 Within-Subject
	4.6.1.3 Summary

	4.6.2 5 Emoji Variant: No Localizer Pre-Training: Pipeline 1
	4.6.2.1 Pooled-Subject
	4.6.2.2 Within-Subject
	4.6.2.3 Summary

	4.6.3 7 Emoji Variant: No Localizer Pre-Training: Pipeline 1
	4.6.3.1 Pooled-Subject
	4.6.3.2 Within-Subject
	4.6.3.3 Summary

	4.6.4 3 Emoji Variant: With Localizer Pre-Training: Pipeline 1
	4.6.4.1 Pooled-Subject
	4.6.4.2 Within-Subject
	4.6.4.3 Summary

	4.6.5 5 Emoji Variant: With Localizer Pre-Training: Pipeline 1
	4.6.5.1 Pooled-Subject
	4.6.5.2 Within-Subject
	4.6.5.3 Summary

	4.6.6 7 Emoji Variant: With Localizer Pre-Training: Pipeline 1
	4.6.6.1 Pooled-Subject
	4.6.6.2 Within-Subject
	4.6.6.3 Summary

	4.6.7 Conclusion: Pipeline 2
	4.6.7.1 3-Emoji Results: Pipeline 2
	4.6.7.2 5-Emoji Results: Pipeline 2
	4.6.7.3 7-Emoji Results: Pipeline 2
	4.6.7.4 Summary: Pipeline 2

	4.6.8 Reflections
	4.6.8.1 Stimulus and Data Collection Adaptations
	4.6.8.2 Classification Performance and Array Density: Pipeline 1
	4.6.8.3 Localizer Data Pre-Training Considerations: Pipeline 1
	4.6.8.4 Increased Incidence of Model Overfitting in 3 and 5 Emoji Variants after Localizer Data Pre-Training: Pipeline 1
	4.6.8.5 Pipeline 2 Results Reflections
	4.6.8.6 Summary



	5 Experiment 3: Real-Time Feedback Implementation
	5.1 Aims
	5.2 7 Emoji Variant Selection Rationale
	5.3 COVID-19 Pandemic Comments
	5.4 Method
	5.4.1 Participants
	5.4.2 Equipment
	5.4.3 Stimulus Presentation
	5.4.4 Localizer Task
	5.4.5 Main Experiment
	5.4.6 Data Acquisition
	5.4.7 Data Organisation
	5.4.8 Data Pre-Processing: Pipeline 1
	5.4.9 Reactive Impedance Monitoring
	5.4.10 Data Pre-Processing: Pipeline 2
	5.4.11 Analysis Variants
	5.4.11.1 LOCRT: Pipeline 1
	5.4.11.2 HYALL: No Class-Balancing: Pipeline 1
	5.4.11.3 HYALL: Class-Balanced: Pipeline 1
	5.4.11.4 Oversampled: Pipeline 2


	5.5 Results: Pipeline 1
	5.5.1 Data Partitions: Pipeline 1
	5.5.2 Analysis Partitions
	5.5.3 LOCRT: Pipeline 1
	5.5.3.1 Within-Subject

	5.5.4 HYALL: No Class-Balancing: Pipeline 1
	5.5.4.1 Pooled-Subject
	5.5.4.2 Within-Subject

	5.5.5 HYALL: Class-Balanced: Pipeline 1
	5.5.5.1 Pooled-Subject
	5.5.5.2 Within-Subject

	5.5.6 Oversampled: Non-Collapsed: Pipeline 2
	5.5.7 Oversampled: Collapsed: Pipeline 2

	5.6 Conclusion
	5.6.1 LOCRT: Pipeline 1
	5.6.1.1 Within-Subject
	5.6.1.2 Variant Summary

	5.6.2 HYALL: No Class-Balancing: Pipeline 1
	5.6.2.1 Pooled-Subject
	5.6.2.2 Within-Subject
	5.6.2.3 Variant Summary

	5.6.3 HYALL: Class-Balanced: Pipeline 1
	5.6.3.1 Pooled-Subject
	5.6.3.2 Within-Subject
	5.6.3.3 Variant Summary

	5.6.4 Oversampled: Pipeline 2

	5.7 Reflections
	5.7.1 Considerations on Pooled-Subject Data Aggregation
	5.7.2 Localizer Task Considerations: Pipeline 1
	5.7.3 P300 Waveform Quality: Pipeline 1
	5.7.4 Pipeline 2: Relative Influence
	5.7.5 Cross-Experimental Grand Summary
	5.7.6 Future Research
	5.7.6.1 Pre-Screening and Online-Monitoring Development
	5.7.6.2 Exploration of Real-Time Active Emoji Selection



	6 Subject-Specific Signal Pre-Processing Network Optimization
	6.1 Chapter Outline
	6.2 Bandpass Filtering Background
	6.3 Model Optimization vs. Architecture Development
	6.4 Current State-of-the-Art Classification Techniques
	6.5 Experimental Investigation
	6.6 Methods
	6.6.1 Online Data Repository
	6.6.2 Software and Equipment
	6.6.3 Optimization Datasets
	6.6.3.1 Raw Data
	6.6.3.2 Fixed-Parameter Data
	6.6.3.3 Optimized-Parameter Data

	6.6.4 Convolutional Neural Network Summaries
	6.6.4.1 ShallowConvNet
	6.6.4.2 DeepConvNet
	6.6.4.3 EEGNet
	6.6.4.4 EEGNetSSVEP

	6.6.5 Optuna Optimization Process
	6.6.6 Pruners
	6.6.6.1 Early Stopping vs. Pruning
	6.6.6.2 k-Folding
	6.6.6.3 Acknowledgements on the Re-Implementation of CNN Models


	6.7 Results
	6.7.1 Raw Data: Assessments
	6.7.2 Fixed-Parameter Data: Assessments
	6.7.3 Median Pruner Optimization: Assessments
	6.7.3.1 EEGNet
	6.7.3.2 EEGNetSSVEP
	6.7.3.3 DeepConvNet
	6.7.3.4 ShallowConvNet

	6.7.4 Pruner Assessments
	6.7.4.1 Classification Accuracy
	6.7.4.2 Optimized Filter Frequency Cutoffs
	6.7.4.3 Computational Resources


	6.8 Conclusion
	6.8.1 Raw Data
	6.8.2 Fixed-Parameter Data
	6.8.3 Optimized-Parameter Data
	6.8.3.1 Median Pruner | EEGNet
	6.8.3.2 Median Pruner | EEGNetSSVEP
	6.8.3.3 Median Pruner | DeepConvNet
	6.8.3.4 Median Pruner | ShallowConvNet

	6.8.4 Pruner Assessments
	6.8.4.1 Classification Accuracy
	6.8.4.2 Optimized Filter-Cutoffs
	6.8.4.3 Optimizer Study Durations

	6.8.5 Summary
	6.8.6 Future Work


	7 Conclusion
	7.1 Project Trajectory
	7.2 P300 Experimental Series Contributions
	7.2.1 Future Research

	7.3 Network Optimization Contributions
	7.3.1 Future Research


	References
	A Appendix
	A.1 Experiment 1: Inversion Method Results: No Class-Balancing: Pipeline 1
	A.1.1 Pooled-Subject: No Class-Balancing: Pipeline 1
	A.1.2 Within-Subject: No Class-Balancing: Pipeline 1

	A.2 Experiment 1: Combined Method Results: No Class-Balancing: Pipeline 1
	A.2.1 Pooled-Subject: No Class-Balancing: Pipeline 1
	A.2.2 Within-Subject: No Class-Balancing: Pipeline 1

	A.3 Experiment 1: Inversion Method Data Partitions: Pipeline 2
	A.4 Experiment 2: Collapsed Data Partitions: Pipeline 2
	A.5 Experiment 3: MAINOFF: Pipeline 1
	A.5.1 Pooled-Subject
	A.5.2 Within-Subject

	A.6 Optimized Network Architectures
	A.6.1 ShallowConvNet
	A.6.2 DeepConvNet
	A.6.3 EEGNet
	A.6.4 EEGNetSSVEP

	A.7 Median Pruner Subject-Level Parameter Selection Plots
	A.7.1 Subject 2
	A.7.2 Subject 5
	A.7.3 Subject 7

	A.8 Optimizer Loss Profiles
	A.8.1 Subject 8

	A.9 Pruner-Wise Optimized Classification Results
	A.9.1 Percentile Pruner: EEGNet
	A.9.2 Percentile Pruner: EEGNetSSVEP
	A.9.3 Percentile Pruner: DeepConvNet
	A.9.4 Percentile Pruner: ShallowConvNet
	A.9.5 Successive Halving Pruner: EEGNet
	A.9.6 Successive Halving Pruner: EEGNetSSVEP
	A.9.7 Successive Halving Pruner: DeepConvNet
	A.9.8 Successive Halving Pruner: ShallowConvNet

	A.10 Subject-Wise Pruner Computation Durations
	A.10.1 Median Pruner
	A.10.2 Percentile Pruner
	A.10.3 Successive Halving Pruner



