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Abstract

Duality is often most clearly manifest in supersymmetric theories, where the

rigid mathematical structure affords good control over the behaviour of the

system. In many real-world applications, and particularly in particle physics

at the TeV scale, supersymmetry can only be present as a broken symmetry.

In this thesis we explore various situations in which duality can continue be

important when supersymmetry is broken spontaneously, or even explicitly.

We first focus on the AdS/CFT correspondence, and consider the effect

of instantons in a non-supersymmetric gauge theory obtained via a marginal

deformation of N = 4 super Yang-Mills. This gauge theory is expected to

be dual to type IIB string theory on a background that is the product

of five-dimensional anti-de Sitter spacetime and a deformed five-sphere. By

performing an instanton calculation in the deformed gauge theory we extract

a prediction for the dilaton-axion field τ in dual string theory. In the limit

of small deformations where the supergravity regime is valid, our instanton

result reproduces the expression for τ of the supergravity solution originally

found by Frolov, thus supporting the validity of the correspondence.

We then go on to look at how supersymmetry breaking in a metastable

vacuum allows one to build simple and concrete models of gauge mediation.

In the prototypical model of Intriligator, Seiberg and Shih (ISS), Seiberg

duality plays an important rôle in ensuring the longevity of the metastable

vacuum. In a move to construct more realistic models we deform the ISS

model by adding a baryon term to the superpotential. This simple defor-

mation causes spontaneous breaking of the approximate R-symmetry of the

metastable vacuum. We then gauge an SU(5)f flavour group and identify

it with the parent gauge symmetry of the supersymmetric Standard Model.
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This implements direct mediation of supersymmetry breaking without the

need for an additional messenger sector. A reasonable choice of parameters

leads to gaugino masses of the right order.

To further explore the phenomenology of metastable susy breaking we

distinguish different types of models by the manner in which R-symmetry

is broken in the metastable vacuum. In general, there are two possible

ways to break R-symmetry: explicitly or spontaneously. We find that the

MSSM phenomenology can be greatly affected how this breaking occurs

in the Hidden Sector. Explicit R-symmetry breaking models lead to fairly

standard gauge mediation patterns, but we argue that in the context of ISS-

type models this only makes sense if Bµ = 0 at the mediation scale. This

leads to high values of tanβ as a generic prediction. If on the other hand

R-symmetry is broken spontaneously, then R-violating soft terms tend to be

suppressed with respect to the R-symmetry preserving ones, and one is led

to a scenario with large scalar masses. These models interpolate between

standard gauge mediation and split SUSY models. We provide benchmark

points for the two scenarios, which serve to demonstrate that the specific

dynamics of the Hidden Sector — the underlying nature of supersymmetry

and R-symmetry breaking — can considerably affect the mass spectrum of

the MSSM.
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Chapter 1.

Introduction

“The eternal mystery of the world

is in its comprehensibility.”

— Albert Einstein

1.1. Non-technical Overview

With the immanent start-up of the Large Hadron Collider, this is an exciting time to be

a theoretical particle physicist. Whilst working to develop elegant models with robust

predictions, we can be happy in the knowledge that our ideas will soon be tested against

experimental data. Frequently when building such models, one runs into problems of

strong coupling, where the standard mathematical approach used to make predictions

— perturbation theory — stops working. The core of my PhD research has been to shed

light on such problems with the help of duality; the fascinating idea that one can calculate

interesting physical quantities by altering how one mathematically frames the problem.

This change of perspective can also require us to re-examine what we perceive as the

fundamental degrees of freedom of a system. Should we think in terms of interacting

quarks and electrons, bits of strings vibrating in higher dimensions, or something else?

Providing answers to these questions, in turn, modifies our understanding of the world

around us.

2
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Broadly speaking, research into duality falls into two distinct areas. Firstly, the

existence of any such correspondence between different theories must be established.

This involves building up a bank of non-trivial cross-checks (when direct proof is too

difficult), and also exploring the domain of validity of the duality to see how far the

phenomenon persists. Our work described in Chapter 3 is a good example of this:

by carefully modifying the well-understood correspondence between a particular string

theory and a particular gauge theory,1 a new class of dual solutions was proposed in

the papers [4] and [5]; we find that a multi-instanton calculation in the gauge theory

correctly reproduces the behaviour of the proposed gravity solution, thus affirming the

correspondence in this new regime.

Secondly, one can construct models that make use of duality to calculate quantities

that are beyond the scope of standard quantum field theory. Duality is often most

clearly manifest in supersymmetric theories, where the rigid mathematical structure

ensures that the high energy behaviour is well under control. However, to connect with

particle physics experiment, the rigid structure of supersymmetry must be broken. In

Chapter 4 we see why this has to happen, and explore how the breaking may be achieved,

thus connecting supersymmetric theories — which we understand — to the real world

— which we would like to understand!

One intriguing phenomenon that features in recent studies of supersymmetry break-

ing [6], and that seems to be evident in a wide class of models (cf. Section 4.2.2), is

that our Universe is only metastable. In this case the low energy breaking of super-

symmetry is only temporary: quantum effects can potentially restore supersymmetry

and thus fundamentally change the nature of matter. Discovery of such an instability

would profoundly change our understanding of the Universe; for a non-technical review

of these ideas see reference [7]. The supersymmetry breaking model we construct in

Chapter 5 makes vital use of Seiberg duality — a correspondence between two different

gauge theories. This duality makes it possible to calculate the low energy behaviour of

the model whilst ensuring that the Universe is sufficiently stable.

When discussing possible models of supersymmetry breaking, it is important to cal-

culate how their consequences impact on experimental data — both the array of existing

results, and the eagerly anticipated output of the Large Hadron Collider. As the required

1String theory is a quantum theory of gravity. Gauge theories are used to describe all the forces of
Nature except gravity. A special duality can sometimes be found between the two of them, and is
known as the AdS/CFT correspondence.
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breaking of supersymmetry can potentially show up in our detectors in a variety of dif-

ferent ways,2 it is going to take a lot of work to establish which scenarios are preferred

by the data (and in fact whether supersymmetry is relevant to low scale physics at

all). In Chapter 6 we investigate the phenomenology of different classes of metastable

supersymmetry breaking models, and discuss interesting features that distinguish them

amongst the pantheon of other models. Such studies will be vital in exploring the con-

nection between theory and experiment when data from the LHC begins to reshape the

landscape of particle physics models.

1.2. Outline of Thesis

After this short overview, we begin in earnest in Chapter 2 by presenting the four main

areas of theoretical physics that our subsequent work will be drawn from. These are:

Renormalisation, Supersymmetry, String Theory and the AdS/CFT Correspondence.

The main purpose of reviewing this material is really twofold. We will establish the

language and notation that will be of use to us later on, and we will also be able to focus

attention on aspects of the theory that later become central to our purpose. All the

physics described in this chapter can be found in the original research papers, and also

in a variety of books and review articles as indicated in the references. The discussion

of instantons in the AdS/CFT correspondence (Section 2.4.3) is well established in the

literature, but perhaps less well known to the average graduate student.

In Chapter 3 we further explore the duality, described in Section 2.4, between gravity

and gauge theories. Following our published work [1] we consider instanton effects in a

non-supersymmetric gauge theory that is constructed by making a marginal deformation

of N = 4 super Yang-Mills. Under the AdS/CFT correspondence, this conformal gauge

theory is expected to be dual to Type IIB string theory with background geometry

that is a product of five-dimensional Anti-de Sitter space and a deformed five-sphere.

From an instanton calculation in the deformed gauge theory, in Section 3.3 we extract

a prediction for the dilaton-axion field τ in its dual string theory. In the limit of small

deformations where the supergravity regime is valid, our instanton result reproduces the

expression for τ in the supergravity solution found by Frolov [5]. This provides further

support in favour the conjectured correspondence.

2This is the truism that you don’t quite know what you’re looking for until you find it.
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We then turn our attention in Chapter 4 to the subject of supersymmetry breaking.

Section 4.1 explains some of the mathematical and physical contraints that one must be

aware of when constructing realistic susy breaking models. This is followed by a dis-

cussion of metastablility: recent interest in this idea was sparked by reference [6], where

a simple model was presented in which susy is dynamically broken in a metastable

vacuum. This has become known as the ISS model; we will see how it works in Sec-

tion 4.2.1. It was further argued in reference [6] that metastable susy breaking vacua are

quite commonplace, and so should allow one to build simple, physically viable models of

particle physics. Indeed, subsequent work [3, 8] has shown that, given some rather gen-

eral assumptions that we outline in Section 4.2.2, metastablility is actually unavoidable;

R-symmetry plays a key rôle in establishing this conclusion. To add further credence

to the metastable susy breaking paradigm, there also turn out to be compelling cos-

mological reasons for why we should find ourselves trapped in a metastable vacuum

[9–11].

Picking up the gauntlet laid down by ISS [6], in Chapter 5 we investigate the feasabil-

ity of building an simple model in which susy is broken in a metastable vacuum with

the effects communicated directly to the MSSM (i.e. without invoking an additional set

of messenger fields). Such models have the benefit of being both compact and predictive.

We argue in Section 5.1 that an important aspect of any such construction is the manner

in which R-symmetry is broken. The model we introduce in Section 5.2 is constructed

by deforming the ISS model with the addition of a baryon-type operator. This initially

leads to a runaway potential, which we show is stabilised by Coleman-Weinberg cor-

rections at one loop. As a result, we end up with a metastable susy breaking vacuum

in which R-symmetry is broken spontaneously. We can then go ahead and gauge an

SU(3)× SU(2)×U(1) subgroup of the ISS flavour symmetry to directly communicate

susy breaking to the MSSM. In Section 5.3.1 we make a first pass at understanding

the phenomenology of this model, with a more comprehensive survey postponed until

Chapter 6. One preliminary observation is that gaugino masses are suppressed rela-

tive to expectations based on standard gauge mediation models. We also discuss the

R-axion that arises as the Goldstone boson of spontaneously broken R-symmetry, and

show that non-perturbative effects give it sufficient mass to evade potentially dangerous

astrophysical bounds.

Chapter 6 is largely drawn from our work [3] and is organised as follows. After

setting the scene in Section 6.1, we go on to study a particular scenario for metastable
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gauge mediation that was formulated by Murayama & Nomura and Aharony & Seiberg

in references [12, 13]. This class of models has a dedicated messenger sector in which the

R-symmetry of the ISS sector is broken explicitly. In this case the effective R-symmetry

breaking is weak is because the messengers are coupled to the Hidden Sector fields only

via 1/MPl-suppressed operators, cf. equation (6.1). In the limit where MPl→∞, both

R-symmetry and the supersymmetry of the MSSM are exact, since the ISS Hidden Sector

decouples from the messengers. As a result, in these models the effective R-symmetry

breaking and the effective susy breaking scales in the Visible Sector are essentially the

same. The generated gaugino and scalar soft mass terms are of the same order, so the

resulting phenomenology of these models [12, 13] is largely of the usual form [14].

In Section 6.3 we study gauge mediation with spontaneous R-symmetry breaking.

Specifically, we concentrate on the direct gauge mediation model of Chapter 5 where the

entire Hidden-plus-Messenger sector consists of only the baryon-deformed ISS theory

with Nf = 7 flavours and Nc = 5 colours. The resulting gaugino and sfermion soft masses

are discussed in Section 6.3.2. In Section 6.3.3 we analyse the phenomenology of this class

of models, which turns out to be quite different from the usual gauge mediation scenarios

[14]. A significant reason for this difference is the fact that R-symmetry is broken

spontaneously by one-loop corrections, and as such the scale of R-breaking is naturally

smaller than the scale of susy breaking, leading to the gaugino masses being smaller

than the scalar masses. This is different from the usual gauge-mediation assumption

that the R-symmetry breaking is larger than the susy breaking. Thus one generally

expects a Hidden sector with spontaneous R-symmetry violation to interpolate between

standard gauge mediation and split susy models [15–17].

Throughout Chapter 6 we will be treating the µMSSM parameter of the MSSM as

a free parameter. As it is susy preserving it does not have to be determined by the

ISS Hidden Sector, and we will, for this discussion, have little to say about it: we will

not address the question of why it should be of order the weak scale, the so-called µ

problem (cf. Section 4.1.1). However the corresponding susy breaking parameter Bµ

cannot consistently be taken to be a free parameter. It is determined by the models at

the messenger scale, and in both cases it is approximately zero, as will be explained in

detail. In Section 6.4 we display a couple of benchmark points to illustrate the general

phenomenological features expected in metastable susy breaking models, and critically

apraise the various assumptions we made in deriving these results.
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We conclude in Section 6.5 by summarising what has been learnt about the phe-

nomenology of metastable gauge mediation, and by indicating some interesting direc-

tions for future research. These include ambitious ideas for dealing with Landau poles,

and suggestions for what we might try if the LHC doesn’t work!

Appendix A is a digest of the different notation used throughout this work, including

the metric and spinor conventions that make supersymmetric calculations so entertain-

ing. We use Appendix B to clarify a subtle point relating to the precise R-symmetry

that is used in the construction of our baryon-deformed model of Chapter 5.



Chapter 2.

Fundamentals

“Everything is vague to a degree you do not realise

till you have tried to make it precise.”

— Bertrand Russell

This chapter is an exposition the key ideas that will be combined and explored in the

remainder of the thesis. The existing literature on these subjects is sufficient to fill a

small library, so here we only aim to set the scene and establish notation, leaving any

form of comprehensive review to the indicated works.

2.1. Renormalisation

Quantum field theory is truly a triumph of 20th century physics. It is a conceptual

framework that allows us to predict a wide variety of observable phenomena with un-

precedented accuracy. Unsurprisingly, the calculations required to make such predictions

are not without their complications. For example, it is quite common to arrive at answers

that are formally infinite. The prescription for dealing with these divergences is called

renormalisation, and although when one first meets it, it feels a bit like “brushing

things under a rug”, careful study of the origin of the divergences leads to an improved

understanding of the physical situation and to the very definition of a quantum field

theory.

8
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Every quantum field theory textbook ever written contains a discussion of renormal-

isation. My favourites are Peskin & Schroeder [18] and Zee [19]. A more mathematical

perspective is given in Banks’ recent book [20], or Gross’ lectures in [21]. There is also

a set of lecture notes available from Tim Hollowood’s website [22] that tie everything

together nicely.

2.1.1. The Renormalisation Group

The important idea here is that the physics of a system is strongly dependent on the

energy scale µ at which one is probing the system. This allows us to model the system

in terms of macroscopic variables which capture the behaviour at this energy scale

without requiring precise knowledge of the physics at higher energies. Of course, the

macroscopic description of a system will depend on this microscopic physics, but one

does not require the full resolving power of very high energy degrees of freedom to be

able to describe long distance physics with good accuracy. This is the reason physics

works! For instance, we would be in real trouble if we had to take into account the

behaviour of all the quarks and electrons involved when calculating the trajectory of a

tennis ball.1

Sometimes the macroscopic description of physics can be given in terms of variables

that are different to those of the microscopic theory. The low energy theory is then said

to provide an effective field theory description of the underlying physics. There is

no need for the effective variables to even make sense at much higher energies, indeed the

breakdown of an effective description at high energy is precisely what signals the need

to introduce new physics. Despite their limited domain of validity, effective theories are

incredibly useful: they can make calculations more tractable by boiling everything down

to the most important physical effects.

Taking this notion one step further, we are lead to the idea of duality. This is

where two different mathematical models describe the same physical system at all energy

scales. This fascinating phenomenon can be very useful because each mathematical

‘picture’ generally reveals different aspects of the physics. Quantities that are hard

to calculate in one framework may be much easier to understand from the alternative

point of view. We’ll see examples of this at many points in the coming chapters. The

1By which we mean non-relativistic tennis — nothing fancy.
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distinction between effective field theories and dualities is often blurred in practice, as

will be evident in our discussion of Seiberg duality in Section 2.2.2.

We should now take a more careful look at the issue of scale dependence. Consider

a scalar field theory defined by the Lagrangian2

L0 =
1

2
∂µφ†

0 ∂µφ0 +
∑

i

g0, iOi(φ0, ∂µ) . (2.1)

The operators Oi are built from products of the scalar field φ0 and possibly derivatives

thereof. For the time being, we will assume that all the operators have a scaling dimen-

sion that is equal to the number of ambient spacetime dimensions, so each comes with

its own dimensionless coupling g0, i. The resulting physics is encoded in the correlation

functions

〈
φ0(x1) · · ·φ0(xn)

〉
=
〈
0
∣∣T φ0(x1) · · ·φ0(xn)

∣∣0
〉

(2.2a)

≡ G(0)
n (xi, {g0}) , (2.2b)

which can be used to calculate scattering amplitudes, for example. Now suppose we’re

looking for an effective theory with field φ and Lagrangian Lµ that describes the same

physics as L0, but at a characteristic scale µ. For the time-being we will make the

reasonable assumption that the Lagrangian Lµ is structurally the same as L0, i.e. it

contains the same operators, but perhaps with different renormalised values for the

coupling coefficients

Lµ =
1

2
Z ∂µφ† ∂µφ +

∑

i

gi Z
di/2Oi(φ, ∂µ) . (2.3)

Note that here we have also allowed for the possibility of wavefunction renormal-

isation by including the factors of Z. The integers di tell us how many powers of the

field there are in Oi.

To understand what is meant by ‘physics at the characteristic scale µ’ one has to

specify renormalisation conditions. These are a set of equations that connect the

parameters {g} in the effective Lagrangian Lµ to physical quantities, such as correlation

functions, measured at the scale µ. The statement that both theories L0 and Lµ describe

2For simplicity we will assume a Lagrangian description of physics exists, although the discussion will
actually be in terms of correlation functions, which is more generally applicable.
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the same physics, is the same as saying they lead to the same correlation functions:

G(0)
n (xi, {g0}) ≡ Zn/2Gn(xi, {g}, µ) . (2.4)

Here we have used the (hopefully obvious) notation that G
(0)
n follows from L0. Now

observe that the left hand side of equation (2.4) does not depend on the renormalisation

scale µ, i.e.

µ
d

dµ
G(0)
n (xi, {g0}) = 0 . (2.5)

It therefore follows that any explicit µ dependence in Gn(xi, {g}, µ) must be accounted

for by a concomitant change in the couplings {g} and Z. Equation (2.5) then leads to

the Callan-Symanzik Equations

(
µ
∂

∂µ
+ βi(g)

∂

∂gi
+
n

2
γ(g)

)
Gn(xi, {g}, µ) = 0 . (2.6a)

where we define the beta functions

βi(g) = µ
d

dµ
gi , (2.6b)

and anomalous dimension of the field

γ(g) = µ
d

dµ
log (Z) . (2.6c)

Equations (2.6b) and (2.6c) are known as the Renormalisation Group Equations.

They describe how the renormalised parameters change, or run, as one varies the renor-

malisation scale µ. It is hard to overstate the importance of these equations. They are

widely applied across much of modern physics (and mathematics), and will be recurring

in many guises throughout this thesis.

Dealing with Divergences

Renormalisation is vital for controlling the plethora of divergences that arise when cal-

culating physical quantities in quantum field theory. For example, quantum corrections

to scattering amplitudes, which are often calculated as a (perturbative) expansion in

the coupling constants, usually contain integrals over loop momenta that are formally

divergent. To make sense of the mathematics, one must first regularise these inte-
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grals — make them finite in some way. This can be done, for example, by working in a

higher number of dimensions, or more simple-mindedly by truncating the range of inte-

gration for loop momenta. Given the arbitrary nature of this regularisation procedure,

it would be a disaster if physical quantities were found to depend on the regularisation

parameter. This is where renormalisation comes to the rescue: one can carefully adjust

the renormalised couplings {g} and Z such that when the regulator is removed, the

renormalisation conditions are preserved, and all correlators of physical fields remain

finite.

There is an important caveat here, pertaining to the ‘reasonable’ assumption we

made above: that the effective Lagrangian Lµ contains the same operators as the bare

Lagrangian L0. This is only valid for a certain class of models, which are termed renor-

malisable. By definition, these are theories in which only a finite number of terms in

the Lagrangian need to be adjusted to remove UV divergences. Otherwise, a theory is

deemed non-renormalisable — in this case, cancellation of UV divergences requires

one to introduce an infinite number of new operators to the renormalised action (one

is eventually forced to introduce every operator consistent with the symmetries at some

order in perturbation theory). The proliferation of operators required to fix the diver-

gences in non-renormalisable models indicates that there is a real problem defining the

limit in which the (artificial) UV regulator is removed. For this reason it only makes

sense to think of such models as effective theories, valid up to a certain energy scale.

However, this is not the end of the story; if one can show that the effective theory

emerges as the low energy behaviour of a theory that does have a well defined UV

limit, then all is well. The microscopic model is known as a UV completion of the

effective theory. Nothing we have said here precludes the existence of two different UV

completions for a single macroscopic model. This reflects our earlier comment about why

effective theories are so effective for studying physics: they provide a useful calculational

tool without requiring us to know the precise details of ultra-high energy physics.

2.1.2. The Relevance of Fixed Points

It is often useful to think about the renormalisation group (RG) equations (2.6) by how

they act on the space of Lagrangians of a theory. Different directions in this space

correspond to the different operators that may appear in the Lagrangian, with the

couplings providing local coordinates on the space. When continuously changing the

renormalisation scale from µ to another, µ′, with µ′ < µ, the RG equations define a
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flow, which describes how the couplings must change in order to keep the underlying

physics invariant. Following the flow from one scale to another induces a transformation

on the couplings, with the set of all such transformations forming what is known as the

renormalisation group.

Special significance is attached to fixed points of the RG flow. By definition the

physics associated to such points is scale invariant, and clearly the beta functions

defined in equation (2.6b), which describe how the couplings vary with the renormali-

sation scale, must also vanish. It is common lore that Lorentz invariant quantum field

theories that are scale invariant have their spacetime symmetries enhanced from the

Poincaré group to the conformal group. There are a few known exceptions to this

rule, but they are rather pathological, so it is common to be lax and take scale invariant

and conformal as synonymous. One of the reasons conformal fixed points are interesting

is because the enhanced symmetry provides extra constraints on physics that makes the

whole system mathematically more tractable. This is particularly evident in two dimen-

sions, where the conformal group is infinite dimensional, but as we will see in Chapter 3,

conformality also provides a useful tool for analysing field theories in higher numbers of

dimensions.

Working at a conformal fixed point allows us to make the above definition of the

field’s anomalous dimension particularly transparent. One way of thinking about the

canonical ‘engineering’ dimensions of a quantity is to ask how it transforms under a

rescaling of units xµ → s−1xµ. For example, a scalar field φ(x) in D dimensions will pick

up a factor of sdφ where dφ = D
2
− 1. Translating this in terms of correlation functions

gives us

(
s
∂

∂s
+ µ

∂

∂µ

)
Gn(s−1xi, {g}, µ) = n dφGn(s−1xi, {g}, µ) . (2.7)

Subtracting the Callan-Symanzik equation (2.6a) evaluated at a fixed point with cou-

plings gi = g∗i leads to

(
s
∂

∂s
− n

[
dφ +

1

2
γ(g∗)

])
Gn(s−1xi, {g}, µ) = 0 . (2.8)

Notice that the contribution 1
2
γ(g∗) from wavefunction renormalisation enters this equa-

tion in the same way as the canonical dimension of the field, thus accounting for the

name: the combination dφ + 1
2
γ(g∗) is known as the anomalous scaling dimension of the

field.
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Once the physics of a fixed point is understood, one can investigate the effects of

perturbing it by adding all sorts of new operators into the Lagrangian. Consider adding

operators of canonical dimension ki to the renormalised Lagrangian (2.3) in 4 dimensions:

L̂ = Lµ +
∑

i

ĝi µ
4−ki Oi(φ, ∂µ) . (2.9)

Here we have included explicit factors of the renormalisation scale to soak up the en-

gineering dimensions of the operators and thus render the couplings ĝi dimensionless.

Proceeding as above, one can go on to derive RG equations

(
µ
∂

∂µ
+ βi(g)

∂

∂gi
+
n

2
γ(g) +

∑

i

[
γi(g)− 4 + ki

]
ĝi

∂

∂ĝi

)
Gn(xi, {g}, {ĝ}, µ) = 0 .

(2.10)

In this equation, the explicit µ dependence of the perturbation in equation (2.9) is offset

by a rescaling of ĝi, and we have also introduced the anomalous dimension of the operator

Oi in much the same way as it is defined for the scalar field itself:

γi(g) = µ
d

dµ
log (ĝi) . (2.11)

Observe that it is also possible to think of the coefficient of ∂
∂ĝi

as another beta function

that indicates how the dimensionless coupling ĝi runs:

βi(g) =
[
γi(g)− 4 + ki

]
ĝi . (2.12)

Now consider the flow of couplings ĝi in the vicinity of a fixed point g∗i . This can be

understood by integrating the beta function (2.12) to give

ĝi(µ) =

(
µ

µ0

)γi(g∗)−4+ki

ĝi(µ0) . (2.13)

It is now possible to discern three different types of behaviour for the perturbation.

If the exponent γi(g
∗) − 4 + ki is positive, then the coupling ĝi(µ) shrinks as µ flows

to lower values, and we say the corresponding operator Oi is infra-red irrelevant

— for sufficiently small values of µ, the coefficient of the operator is vanishingly small

and so it will have a negligible effect on the low energy physics described by this fixed

point. Conversely, if the exponent in equation (2.13) is negative, then the operator
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corresponding to ĝi will come to dominate infra-red physics. The RG flow will be driven

away from this particular fixed point, and so the operator is clearly infra-red relevant.3

The intermediate situation, where the exponent in equation (2.13) vanishes, defines

a marginal operator. In this case, further analysis is required to establish the infra-red

behaviour of the deformation. For example, if corrections to the beta function (2.12)

that are of higher order in ĝi come with a positive coefficient, we say the operator

is marginally irrelevant. In some situations, such as we’ll meet in Section 2.2.2

and Chapter 3, the beta functions can be shown to vanish to all orders, and so the

deformation is exactly marginal, with the associated couplings parameterising a

manifold of conformal fixed points.

To make contact with the perhaps more familiar terminology of perturbative renor-

malisation, consider the case where L̂ in (2.9) is an expansion about a free field theory.

We can then drop the anomalous dimension contribution to equation (2.13), and con-

clude that irrelevant perturbations arise from operators with mass dimension greater

than 4. Such operators are usually referred to as non-renormalisable interactions. Sim-

ilarly, if all operators have mass dimension less than or equal to 4, then the perturbed

Lagrangian is renormalisable in the traditional sense: UV divergences can be dealt with

by adjusting a finite number of parameters at each order in perturbation theory.

Shedding Degrees of Freedom

Another useful point of view on the renormalisation group, developed by Wilson [23],

is found by thinking more directly in terms of the path integral definition of correlation

functions:

〈
φ(x1) · · ·φ(xn)

〉
Λ
∼
∫
DφΛ φ(x1) · · ·φ(xn) e−SΛ . (2.14)

We suppose that the theory has already been regularised with the introduction of a

momentum scale Λ, and that the effective action SΛ contains all possible operators

consistent with the symmetries of the theory:

SΛ =

∫
dDx

{
1

2
Z ∂µφ† ∂µφ +

∑

i

Z di/2 gi Λ
D−ki Oi(φ, ∂µ)

}
. (2.15)

3Obviously, an IR relevant operator is UV irrelevant. For consicion, from now on we will describe
operators (and their associated couplings) as simply relevant or irrelevant, with the implicit under-
standing that this relates to infra-red physics.
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Here we have again used the cutoff scale to counter-balance the canonical dimension of

each operator, thus rendering the couplings gi dimensionless. Also, the operator Oi has

canonical dimension ki and contains di powers of the field.

In this context, doing a renormalisation group transformation from the scale Λ to

Λ′ is equivalent to partially performing the path integral. By integrating over the high

frequency field modes with support in the range [Λ′,Λ], one is left with a theory described

by the (Wilsonian) effective action

SΛ′ =

∫
dDx

{
1

2
Z ′ ∂µφ† ∂µφ +

∑

i

Z ′ di/2 g′i Λ
′D−ki Oi(φ, ∂µ)

}
, (2.16)

which is of the same form as equation (2.15) but with couplings adjusted as per the RG

flow (2.6). Deriving an effective action in this way is known as integrating out the

high energy degrees of freedom.

2.2. Supersymmetry

Everyone has their own reasons for liking supersymmetry.4 It can be motivated as the

unique way of extending the Poincaré group to give a consistent (1 + 3)-dimensional

quantum field theory that still allows for non-trivial scattering. This result is an ex-

tension of the Coleman-Mandula No-Go theorem [24], given by Haag,  Lopuszański and

Sohnius to include spinorial generators [25]. Mathematically, the extra structure im-

posed by supersymmetry is also very useful for simplifying the behaviour of field theory.

This leads to some powerful and far-reaching results, as we shall see shortly.

Another reason for liking supersymmetry (susy) is that it provides a nice mechanism

for stabilising the electro-weak scale. In the Standard Model, most fields obtain a mass

when electro-weak symmetry is broken by a fundamental scalar field — the Higgs field

— which acquires a vacuum expectation value at energies below about 246 GeV. In this

process, part of the Higgs field gets eaten by the gauge fields that correspond to broken

symmetry generators, resulting in the massive W ± and Z bosons, and the remaining

fluctuation of the Higgs field ends up with a mass of order 100 GeV. For the record, direct

searches at the Large Electron-Positron collider (LEP) at CERN suggest the Standard

Model Higgs mass is greater than 114.4 GeV to a 95% confidence level [26]. There is

4Or not, as the case may be.
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(a) Fermion Loop ∼ − y2Λ2φ†φ (b) Scalar Loop ∼ λΛ2φ†φ

Figure 2.1.: Feynman diagrams that contribute to the Higgs mass. Both these corrections
are quadratically dependent on the UV cut-off Λ. Supersymmetry aligns the
couplings y2 = λ so the most severe divergences cancel.

known to be a slight tension between this result and the Standard Model prediction,

perhaps indicative of supersymmetry. . .

The instability problem occurs when one computes quantum corrections to the Higgs

mass. The integral of interest, given schematically by diagram (a) in Figure 2.1 is found

to be quadratically dependent on the cut-off. Simply put, this tells us that the Higgs

mass would naturally like to be as big as the next highest mass scale, which for the

sake of argument we will take to be the Planck scale, MPl∼ 1019 GeV. We then see that

when renormalising, the bare mass parameter has to be very finely tuned to allow for

the following delicate cancellation:

−(100 GeV)2 = m2
bare + (1019 GeV)2 (2.17)

This situation, which to some is little more than an aesthetic deficiency, is known as the

Hierarchy Problem. It is certainly a little odd, and may indicate a way beyond the

Standard Model.

Supersymmetry addresses the Hierarchy Problem by necessarily introducing extra

matter fields, and arranging a conspiracy of couplings such that the leading divergences

in the diagrams of Figure 2.1 cancel. The Higgs mass is then only logarithmically

divergent, which is altogether more satisfactory. This good behaviour at high energies is

typical of supersymmetric models, and lends further support to the belief that susy will

be an important component in a unified theory of physics. We shall see further niceties

of susy when we supersymmetrise the Standard Model in Section 2.2.3.

Of the many good texts on supersymmetry, a great all-round reference with a suitably

phenomenological bent is Martin’s Primer [27]. For a more mathematical approach

that covers the material of Section 2.2.2 particularly well, one could consult Terning’s
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book [28] or Argyres’ lecture notes [29]. Of course, Weinberg (Volume III) [30] also

makes good reading.

2.2.1. The Language of Supersymmetry

What is Supersymmetry?

The essential idea of supersymmetry is that there exists a symmetry, with generator Q

say, which relates bosonic states |B〉 to fermionic states |F 〉:

Q |B〉 = |F 〉 , Q |F 〉 = |B〉 .

From here we immediately see the generators themselves must be fermionic in nature, i.e.

they must transform as spinors under the Poincaré group. In more detail, supersymmetry

extends the Poincaré group with its usual set of generators Pµ (translations) and Mµν

(Lorentz boosts/rotations) by including spinorial generators Qα, Qβ̇ with the following

(anti-)commutation relations:

{
Qα, Qβ̇

}
= 2 σµ

αβ̇
Pµ (2.18a)

{
Qα, Qβ

}
= 0

{
Qα̇, Qβ̇

}
= 0

[
Qβ , Pµ

]
= 0

[
Qα̇, Pµ

]
= 0

[
Mµν , Qα

]
= (σµν) β

α Qβ

[
Mµν , Q

α̇
]

= (σµν)α̇β̇ Q
β̇

(2.18b)

Here the indices α, α̇ can each take the values 1 or 2, with the undotted/dotted cases

corresponding to the left- and right-handed Weyl spinor representation of the Lorentz

group SO(1, 3) ∼= SU(2)L× SU(2)R respectively. Explicit expressions for the matrices

σµ
αβ̇

and (σµν) β
α that intertwine the spinor and Lorentz vector indices can be found in

Appendix A along with a more detailed discussion of the spinor notation used throughout

this work.

As all single particle states must necessarily fall into representations — known as

supermultiplets — of the above susy algebra (2.18), we can derive many important

properties of supersymmetric field theory by studying these commutation relations. For
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example, because

[
Qβ , Pµ

]
= 0 implies

[
Qβ , P

µPµ
]

= 0 ,

we see that all the particles in a supermultiplet must have the same mass.

Of all the commutation relations (2.18), the most interesting is probably equa-

tion (2.18a). For instance it can be used to show there are an equal number of bosonic

and fermionic degrees of freedom in each supermultiplet: Consider the operator (−1)F

which reads +1 on bosonic states and −1 on fermionic states. It must anticommute

with the supercharges Qα . By using this fact, and the cyclicity of the trace, we see the

following quantity vanishes:

Tr
[
(−1)F

{
Qα, Qβ̇

} ]
= Tr

[
(−1)F QαQβ̇ + (−1)F Qβ̇Qα

]
(2.19)

= Tr
[
Qβ̇(−1)F Qα −Qβ̇(−1)F Qα

]

= 0 ,

where the trace runs over all the states of a supermultiplet. On the other hand, by

combining equation (2.19) with the relation (2.18a) one finds

0 = 2 σµ
αβ̇

Tr
[
(−1)F Pµ

]
.

For a supermultiplet with arbitrary momentum, we must therefore have Tr
[
(−1)F

]
= 0,

from which it is easy to see there are equal numbers of bosonic and fermionic degrees of

freedom:

0 = Tr
[
(−1)F

]
≡
∑

B

〈B|(−1)F |B〉 +
∑

F

〈F |(−1)F |F 〉

=
∑

B

〈B|B〉 −
∑

F

〈F |F 〉

=⇒ nb = nf . (2.20)

Another relation, which will be essential in Section 2.2.3 and beyond, can be found

by contracting equation (2.18a) with g0µ σ
µ β̇α. The result is a simple expression for the
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Hamiltonian in terms of the supercharges

H ≡ P0 =
1

4

(
Q1Q1 +Q1Q1 +Q2Q2 +Q2Q2

)
. (2.21)

The right hand side of this is a sum of positive definite operators, so when computing

the vacuum energy, we crucially find it must be non-negative

E = 〈 0 |H| 0 〉 > 0 .

Moreover, the vacuum energy will be non-zero if and only if one of the supercharges

fails to annihilate the vacuum state, i.e. when the vacuum spontaneously breaks super-

symmetry

E > 0 ⇐⇒ Qα| 0 〉 6= 0 .

This is so important it is worth saying the other way round: a theory has exact super-

symmetry if and only if the vacuum energy vanishes.

Extending the Poincaré group of (1 + 3)-dimensional spacetime by one pair of super-

charges Qα, Qβ̇ defines what is called an N = 1 supersymmetric theory. Although it is

this kind of model that is of most direct relevance to particle physics, we will meet other

theories with higher amounts of supersymmetry at the end of this section.

Super-Everything

Having extended the symmetry group of spacetime by fermionic generators, it turns

out [35] that a convenient notation for keeping track of the representation theory of the

resulting graded Lie algebra is to formally enlarge spacetime to a superspace by intro-

ducing Grassmannian coodinates θα, θα̇. Various properties of these coordinates can be

found in Appendix A. The different fields of a supermultiplet can then be represented as

one superfield living on this superspace (xµ, θα, θα̇). Under a supersymmetry trans-

formation, the superfield Φ transforms as δΦ = (ǫαQα + ǫα̇Q
α̇)Φ with the operators Q

and Q represented as differential operators on superspace:

Qα =
∂

∂θα
− i σµαα̇θ

α̇ ∂

∂xµ
, Qα̇ = − ∂

∂θα̇
+ i θασµαα̇

∂

∂xµ
. (2.22)
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Although the most general superfield has too many components to be of much use, it

provides a reducible representation of the susy algebra and so can be cut down to a more

manageble size by imposing various constraints. To do this, and also to be able to write

down supersymmetric actions in this notation, it is also useful to have superderivatives:

Dα =
∂

∂θα
+ i σµαα̇θ

α̇ ∂

∂xµ
, Dα̇ = − ∂

∂θ
α̇ − i θασ

µ
αα̇

∂

∂xµ
. (2.23)

As these anticommute with the differential operators (killing vectors) in equation (2.22)

they allow us to impose susy invariant conditions on the most general of superfields in

order to define various irreducible supermultiplets.

An important one is the Chiral Superfield Φ, defined to satisfy Dα̇Φ = 0. We can

solve this constraint nicely by introducing the coordinate yµ = xµ + i θσµθ that satisfies

Dα̇y
µ = 0. The chiral superfield is then Φ (yµ, θα). Expanding in the Grassmannian

coordinates

Φ(xµ, θα, θα̇) = φ(yµ) +
√

2 θ ψ(yµ) + θ2F (yµ) (2.24)

reveals the field content of the chiral multiplet to be a complex scalar field φ, a left-

handed Weyl spinor ψα, and an auxiliary complex scalar field F , which we will come to

shortly.

Under an infinitesimal susy transformation with parameters ǫα and ǫα̇, the compo-

nents of a chiral superfield transform as:

δφ =
√

2 ǫ ψ (2.25a)

δψ =
√

2 ǫ F + i
√

2σµǫ ∂µφ (2.25b)

δF = − i
√

2 ∂µψ σ
µ ǫ (2.25c)

Another representation of the susy algebra that will be of interest to us is the

Vector Supermultiplet. This is defined as a superfield V satisfying V † = V , and

can be used to write down gauge transformations in a supersymmetry-invariant way. The

generators of the gauge group are made evident in the usual way by writing V = V aT a.

A generalised gauge transformation can be defined, whereby V transforms as

V −→ e−iΛ
†

V eiΛ . (2.26)
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The parameter here, Λ, is actually a chiral superfield; the transformation can be thought

of as a gauge transformation with complex parameter. We can reduce this to the usual

(real) gauge freedom by choosing Wess-Zumino gauge, in which the vector superfield

can be expanded to give5

V a = θσµθ Aaµ + iθ2θλ
a − iθ

2
θλa +

1

2
θ
2
θ2Da . (2.27)

The field content is then seen to be a vector field Aaµ, its superpartner λaα, which is a

Majorana spinor known as the gaugino, and an auxiliary real scalar field Da. The field

strength Fµν for this gauge field is contained in the following superfield

Wα = − 1

4
DD e−VDα e

V (2.28a)

= − iλα − (σµνθ)α Fµν + · · · , (2.28b)

which is chiral and gauge covariant (invariant for Abelian gauge groups).

Supersymmetry invariant Lagrangian densities can now be written down by taking

products and susy derivatives of the above superfields, and integrating them over the

Grassmannian coordinates of superspace. It can be shown that the resulting Lagrangian

only changes by a total derivative under a supersymmetry transformation. The most gen-

eral gauge invariant and susy invariant Lagrangian has quite a restricted form: kinetic

terms for chiral superfields, and also derivative interactions, follow from a real-valued

function – the Kähler potential, K( · , · ):

L ⊃
∫
d2θd2θ K

(
Φ†, e gT

aV a

Φ
)
. (2.29)

If, as is often the case, we want to restrict attention to renormalisable interactions, it is

sufficient to consider the canonical Kähler potential:

L ⊃
∫
d2θd2θ Φ†e gV Φ . (2.30)

Kinetic terms for gauge superfields come from

L ⊃ 1

16πi

∫
d2θ τ W aαW a

α + Complex Conjugate , (2.31)

5The choice of Wess-Zumino gauge is not susy invariant. After performing a susy transformation, a
further generalised gauge transformation is usually required to return to WZ gauge.
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where the gauge coupling g and theta angle θ have been packaged up into the com-

plexified gauge coupling

τ ≡ 4πi

g2
+

θ

2π
. (2.32)

There is another gauge invariant term one can add for Abelian gauge fields

L ⊃
∫
d2θd2θ ξV = ξD , (2.33)

with constant coefficient ξ. This is known as a Fayet-Iliopoulos term.

Last, but not least, non-derivative interactions follow from a function of chiral su-

perfields called the Superpotential, W ( · ):

L ⊃
∫
d2θW (Φ) + Complex Conjugate . (2.34)

The fact that the superpotential is forced by the susy algebra to be a holomorphic

function is highly significant and leads to many of the interesting effects, which we will

study in Section 2.2.2.

The auxiliary fields Fi and Da deserve more attention.6 They are special in that they

have no kinetic terms, only appearing in the Lagrangian as

V (φi) = F †
i Fi +

∂W

∂φi
Fi +

1

2
DaDa − g φ†

iT
aφiD

a , (2.35)

so they can be eliminated via their equations of motion to give the Scalar Potential

V (φi) =

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

+
1

2
g2
(
φ†
iT

aφi

)(
φ†
kT

aφk

)
. (2.36)

The first terms in this equation are known as F -terms, and the second are known as

D-terms, for hopefully obvious reasons.

6Here we consider a set of chiral superfields indexed by i, and one non-Abelian vector superfield with
coupling g and gauge group generators indexed by a.
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Recognising Broken Supersymmetry

The scalar potential plays a central rôle in understanding when global susy is broken.

To see this, first recall the discussion around equation (2.21) in which we showed (from

the susy algebra) that a vacuum is supersymmetric precisely when the vacuum energy

vanishes:

E = 〈 0 |H| 0 〉 > 0 with E = 0 ⇐⇒ Qα| 0 〉 = 0 . (2.37)

The crucial observation now is that the scalar potential is a positive definite function of

the auxiliary fields

V (φi) = F †
i Fi +

1

2
DaDa > 0 , (2.38)

which means it only vanishes when both the F - and D-terms vanish:

V (φi) = 0 ⇐⇒ Fi = 0 & Da = 0 . (2.39)

This allows us to rephrase the condition (2.37) for a vacuum to be supersymmetric in

terms of the vanishing of the F - and D-terms:

Qα| 0 〉 = 0 ⇐⇒ Fi = 0 & Da = 0 . (2.40)

Thus susy preserving vacua can be seen to correspond to minima of the scalar potential

with vanishing vacuum energy, as illustrated in Figure 2.2. Note that the vacuum energy

serves as an order parameter for the breaking of global supersymmetry.

R-symmetry

Most internal symmetry transformations, such as colour or flavour rotations, com-

mute with the action of supersymmetry. The exception to this is what is called an

R-symmetry. The generators of an R-symmetry satisfy the following relations

[Q,R ] = Q , [Q,R ] = −Q . (2.41)

In more technical language, an R-symmetry is an automorphism of the susy algebra,

meaning that it reflects some arbitrariness in our choice of supercharges. Not all super-



Fundamentals 25

V (ϕ)

ϕ

(a) A susy preserving vacuum.

V (ϕ)

ϕ

(b) Susy breaking vacuua.

Figure 2.2.: A sketch of how supersymmetry breaking vacua can be recognised from the
scalar potential.

symmetric theories have an R-symmetry, though in some cases it is possible to define a

continuous family of such symmetries. R-symmetry can also be manifest as an anoma-

lous and/or spontaneously broken symmetry, as we will see in later chapters, and can

provide valuable guidance when building susy breaking models.

To understand why R-symmetry is so useful, consider equation (2.41). It is easy to

see that the different components of a superfield (which are shuffled amongst themselves

under a susy transformation) must carry different R-charge. For example, for the scalar

and fermionic components of a chiral superfield (2.24):

R[φ] = s , ψ = Q (φ) =⇒ R[ψ] = s− 1 .

We can therefore consistently assign non-zero R-charge to the Grassmannian coordinates:

R[θ] = 1 , R[dθ] = −1 .

As all terms in the Lagrangian must of course be R-charge neutral, we find the super-

potential must carry an R-charge of two:

R

[∫
d2θW (Φ)

]
= 0 =⇒ R[W ] = 2 . (2.42)

This has important consequences for susy breaking, which we will come back to in

Chapter 4.
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Extended Supersymmetry and Beyond

Up until now we’ve been discussing so-called N = 1 global supersymmetry, generated

by one pair of supercharges Qα, Qβ̇. It is reasonable to wonder what happens if more

supercharges are introduced; if we suppose they carry an index K running from 1 to N ,

then QK
α , QKβ̇ form a susy algebra that is a slight extension of (2.18), with the most

important relations being

{
QM
α , QNβ̇

}
= 2 δMN σµ

αβ̇
Pµ , (2.43a)

{
QM
α , Q

N
β

}
= 2
√

2 εαβZ
MN ,

{
QMα̇, QNβ̇

}
= 2
√

2 εα̇β̇Z
∗
MN . (2.43b)

The new components ZMN , which are anti-symmetric in their indices, are bosonic

symmetry generators known as central charges, meaning that they commute with

all elements of the Poincaré/susy algebra, including amongst themselves. They take

different values on different representations of the algebra, and allow one to define spe-

cial ‘short’ multiplets — smaller than the usual ‘long’ representations — whose mass

is related to (rather than just bounded by) the central charges. States in a shortened

multiplet turn out to be annihilated by some fraction of the supercharges, and have

particularly nice behaviour under quantum corrections. We won’t need to know much

about these representations of extended susy algebras, but we just mention that they

play an important rôle in the AdS/CFT correspondence of Section 2.4.

With more supersymmetry comes a more constrained theory. For example, when

N = 2, the superpotential and the most relevant terms of the Kähler potential can both

be derived from one function, the prepotential F . This rigid structure allowed Seiberg

and Witten to give complete expressions for the low energy behaviour of such theories:

exact results for the coupling and BPS spectrum, and a metric on the quantum moduli

space [36–38].

Life’s not all a bed of roses though. The extra supersymmetry may simplify field

theory, but it proves to be too stringent a constraint for real-world physics. The main

problem is that fields in extended susy models always come in pairs such that for every

left-handed field there is a right-handed field with the opposite quantum numbers. This

leaves little room for constructing the Standard Model, which is a chiral theory, i.e. one

in which such a matching is not possible.
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Even more remarkable things happen if we proceed to N = 4. If we require that

there be no fields with spin greater than 1, then there is so little room for manoeuvre

that a (1 + 3)-dimensional field theory with N = 4 supersymmetry is essentially unique.

The only supermultiplet one can construct necessarily contains spin 1 fields, so the

only freedom left is to choose what gauge group these bosons transform under. The

R-symmetry group turns out to be SU(4), with the supercharges QK
α transforming in

the fundamental representation 4. The supermultiplet consists of six real scalar fields φi

transforming in the 6 of the R-symmetry group, four Majorana fermions λαK in the 4 of

SU(4), and a vector field Aµ. As all fields in a multiplet carry the same representation

under internal (non-R-) symmetries, and the multiplet contains a gauge field, all these

fields transform in the adjoint of the gauge group.

By combining the 6 real scalars into 3 complex scalars, as explained in Appendix A,

this field content can be conveniently written in N = 1 superspace language as three

chiral superfields Φi and a vector superfield V . The superpotential is then fixed to be

W = igTr [Φ1Φ2Φ3 − Φ1Φ3Φ2] . (2.44)

One crucial aspect of N = 4 super Yang-Mills, as this theory is known, is that it

is exactly conformal, in the sense of Section 2.1. The beta function for the theory is

zero at both the classical and quantum level. If you don’t think the shear existence of

an interacting, exactly conformal field theory in four dimensions is interesting enough,

in Section 2.4 we will see at least one more good reason why N = 4 super Yang-Mills

(sYM) is interesting.

Increasing the amount supersymmetry still further takes us to N = 8. The small-

est supermultiplet we construct now contains fields of spin two — we have entered the

strange world of 4-dimensional Supergravity. As this is a quantum field theory of grav-

ity, the conventional wisdom says it is non-renormalisable. Indeed, it can currently only

be understood as an effective field theory. For example, it can be viewed as the di-

mensional reduction to 4 dimesions of the 10-dimensional Type II superstring theory

— see Section 2.3. However, the remarkable properties of this theory are still a hot

topic of research, particularly the question of whether the theory is in fact UV finite

(perturbatively).
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2.2.2. The Magic of Supersymmetry

Holomorphy and Exact Results

Many remarkable properties of supersymmetric theories follow from the observation that

the superpotential must be a holomorphic function of chiral superfields. One famous

example is the perturbative non-renormalisation of the superpotential. To illustrate this

we follow the example from reference [39] and consider a simple Wess-Zumino model

describing the behaviour of a single chiral superfield Φ. The theory is defined at high

energies by the superpotential:

Wtree =
1

2
mΦ2 +

1

3
gΦ3 . (2.45)

Thinking of the couplings m and g as the lowest components of spurion superfields,

this superpotential has two U(1) symmetries, with the charge assignments indicated

in Table 2.1. When the spurions acquire VEVs, these symmetries are spontaneously

broken, but they can still be used to constrain the structure of the Wilsonian effective

action, which must be a holomorphic function of Φ, m and g, with the charge assignment

indicated in the bottom line of Table 2.1. Thus, the most general effective action must

take the form:

Weff =
1

2
mΦ2 f

(
gΦ

m

)
, (2.46)

for some function f(z) =
∑∞

−∞ fnz
n. Now consider taking a few judicious limits:

1. When g → 0 for fixed m, the theory is free, so there can be no negative powers of

z in f(z).

2. Requiring a smooth massless limit m→ 0 shows quadratic and higher powers of z

must also be absent.

3. To match with the microscopic superpotential at weak coupling, we must therefore

have f(z) = 1 + 2
3
z.

Putting all of this together we see

Weff = Wtree . (2.47)
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U(1) U(1)R

Φ 1 1

m −2 0

g −3 −1

Weff 0 2

Table 2.1.: Spurious symmetries of a simple Wess-Zumino model.

In other words, the superpotential is not renormalised at all, even by non-perturbative

effects. In more general theories, the symmetries used to constrain the superpotential

can be anomalous, in which case the above argument holds to all orders in perturba-

tion theory, but there is some scope for the superpotential to receive non-perturbative

corrections, as we will see shortly.

Similar reasoning also shows that Fayet-Iliopoulos terms don’t change under renor-

malisation and that the complexified gauge coupling (or more generally, gauge kinetic

function) only receives perturbative contributions at one loop order. Disappointingly,

the Kähler potential enjoys no such protection from quantum corrections.

As we will soon be interested in theories with spontaneously broken supersymmetry,

it is worth mentioning one important corollary of the non-renormalisation theorems. In

the absence of any Fayet-Iliopoulos terms (so there is no D-term susy breaking), if the

tree-level F -term equations can be solved to find a supersymmetric vacuum state, then

this susy preserving vacuum will persist to all orders in perturbation theory [40].

Instantons

Instantons began life as self-dual solutions to the Euclidean Yang-Mills equations with

finite action:

Sinst =
1

2 g2

∫
d4xTrFmnF

mn (2.48a)

=
1

4 g2

∫
d4xTr

[(
Fmn − ∗Fmn

)2
+ 2 ∗FmnFmn

]
(2.48b)

=
8π2

g2
. (2.48c)
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In Minkowski space they can be thought of as tunnelling events between different vacuum

configurations of a gauge theory, and provide the leading semi-classical correction to

path integrals, and hence correlation functions of a theory. For an introduction to

instantons, their applications, and their relation to other non-perturbative effects see

references [41–43]. A comprehensive review of the multi-instanton calculus with and

without supersymmetry, is found in reference [44].

Another very attractive feature of supersymmetric theories is that computing the

effects of one or more instanton is often a manageable exercise. Why do the instanton

calculations work so well? The general idea is to calculate the contribution to path

integrals from instanton configurations. As can be seen from (2.48b), they are local

minima of the action, so we can expand around these configurations to quadratic order

and try to perform the resulting Gaussian integration. For massive fluctuations this

causes no problems, and one gets the usual bosonic ( 1

det
1/2 ∆b

) and fermionic (det ∆f )

determinants. Massless fluctuations (zero modes of the field equations) cause more of a

problem; they correspond to changes in the field configuration that don’t alter the action.

Such directions can be parameterised by collective coordinates in the instanton

solution. The zero mode integrations are dealt with by first converting them to integrals

over the collective coordinates (both bosonic X and fermionic ξ) of the background.

This change of variables results in Jacobian factors in the instanton measure, which

heuristically then takes the form

dµinst = dX dξ Jb Jf
(det ∆f )nf

(det ∆b)nb
e−Sinst , (2.49)

where nb and nf are the number of bosonic and fermionic degrees of freedom. We are

now in a position to see why the susy instanton calculations work well: the balance of

bosonic and fermionic degrees of freedom in each supermultiplet (see Section 2.2.1) leads

to a cancellation of determinants in the instanton measure. Despite this simplification,

there are still many subtleties, such as the calculation of the Jacobian factors which we

will have to address when we actually perform an instanton calculation in Chapter 3.

Another thing we can learn from equation (2.49) is that instantons are only able

to contribute to certain correlation functions. The point is that unless the correlator

itself contains the right number of fermionic zero modes, the dξ integrals will cause the

contribution to vanish.
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SU(Nc) SU(Nf) SU(Nf ) U(1)A U(1)B U(1)R

Q � � 1 1 1 1− Nc

Nf

Q̃ � 1 � 1 −1 1− Nc

Nf

Table 2.2.: The local and global symmetries of massless SQCD with Nc colours and Nf

flavours.

SQCD

The archetype of a supersymmetric gauge theory, and one we will return to many times

in this thesis, is Supersymmetric Quantum Chromodynamics (SQCD). Due to

the magic of supersymmetry, there is a lot one can say about this theory. It has been

well studied in the literature, with the must-read review being the lectures of Intriligator

and Seiberg [45]. We will now document some of the key results that will be of use to

us in future chapters.

SQCD is defined to be an SU(Nc) gauge theory with N = 1 supersymmetry, coupled

to Nf pairs of chiral superfields
(
Q, Q̃

)
that transform in the the (anti-)fundamental

representation of the gauge group
(
�,�

)
, just like the usual quarks of QCD. In the case

where there is no superpotential, so in particular the quarks are massless, there are also

various global symmetries whose charges are found in Table 2.2. The U(1)R charges

have been chosen such that the symmetry is anomaly free.

It is interesting to ask what the moduli space of vacuum solutions is for SQDC. The

answer, unsurprisingly, depends on the values of Nc and Nf , and involves an interplay

between many of the ideas we have already discussed. A useful place to start is to

find the Wilsonian effective superpotential that describes low energy physics. As we

have seen above, this should be determinable from holomorphy, the symmetries of the

microscopic theory, and by requiring smooth behaviour in various limits. Unfortunately

there’s a twist: the U(1)A symmetry is anomalous, i.e. it is a classical symmetry that

is violated in the quantum theory. Recall that for such a symmetry, the anomaly is

manifest as the non-conservation of the associated Noether current,

∂m j
m
A =

∑

r

T (r)

8 π2
Tr ∗FmnFmn , (2.50)



Fundamentals 32

where T (r) is (one half of) the Dynkin index of the representation r, and the sum runs

over all fermions charged under the symmetry. By comparing with the instanton action,

equation (2.48), it is clear that in the presence of an instanton, U(1)A charge conservation

is violated by
∑

2 T (r) = 2Nf . Another thing to note is that in an instanton background,

Euclidean correlation functions will be weighted by the factor

e−Sinst = exp

(
− 1

2 g2

∫
d4xTrFmnF

mn + i
θ

16 π2

∫
d4xTr ∗FmnFmn

)
(2.51a)

= exp

(
− 8π2

g2(µ)
+ iθ

)
(2.51b)

=

(
Λ

µ

)3Nc−Nf

(2.51c)

where the last line follows from integrating the one loop beta function β(g) = −g3 b0
16π2 with

b0 = 3Nc − Nf .
7 This then suggests a cunning way to deal with the U(1)A anomaly: if

we think of the instanton factor Λb0 as a spurious superfield, we can assign it a charge

of 2Nf under U(1)A to account for the anomalous shift.

One can then argue by holomorphy, symmetry and smoothness that for Nf < Nc,

the only possible effective superpotential must take the form:

Weff = CNc, Nf


 Λ3Nc−Nf

det
(
Q · Q̃

)




1
Nc−Nf

. (2.52)

This is the Affleck-Dine-Seiberg (ADS) superpotential [46]. The coefficients CNc, Nf

can be interrelated by turning on quark VEVs to Higgs the theory, or by turning on

masses and integrating out the corresponding quarks. The overall normalisation can

then be fixed by an instanton calculation with Nc = 2, Nf = 1 [47], leading to the

globally consistent formula CNc, Nf
= Nc −Nf .

From the ADS superpotential one can derive a variety of interesting things. For

example, the classical moduli space of SQCD with 0 < Nf < Nc, which is parameterised

by the scalar VEV of the gauge invariant quantity Q · Q̃, acquires a potential due to

equation (2.52). The profile of this scalar potential runs away to infinity, so there is in

fact no quantum vacuum for massless SQCD with fewer flavours than colours.

7We will often refer to Λ as the dimensional transmutation scale, whereas strictly this is just the
modulus of Λ, with the phase being θ/b0.
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Another interesting phenomenon is observed when there are no quark superfields at

all (pure supersymmetric Yang-Mills theory). In this case one cannot construct a non-

anomalous R-symmetry, so U(1)R charge conservation is violated by
∑

2 T (r) = 2Nc.

As the theta angle in equation (2.51b) is only defined modulo 2π, the charge violation

will have no observable consequences if 2Nc is a multiple of 2π. In other words, the

anomaly breaks U(1)R down to the discrete subgroup Z2Nc . Furthermore, as we have

just argued, non-perturbative dynamics generate an effective superpotential

Weff = Nc Λ3 . (2.53)

As gauginos form the lowest component of the field strength superfield (2.28), and the

field strength squared is sourced in the effective action by the running gauge coupling τ

(cf. equation (2.31)), it follows that there is a gaugino condensate

〈
λaλa

〉
= 16π i

∂

∂τ
Weff (2.54a)

= −32π2 Λ3 , (2.54b)

which spontaneously breaks the discrete R-symmetry (under which gauginos rotate)

down to Z2. In fact, the different phases of this condensate lead to Nc physically distinct

supersymmetric vacua.

For Nf ≥ Nc, the set of gauge invariants that can potentially parameterise the

classical moduli space expands to

mesons M j
i = Q̃a

iQ
j
a ,

baryons Bi...k = εa...cQi
a · · ·Qk

c ,

anti-baryons B̃i...k = εa...c Q̃
a
i · · · Q̃c

k ,

where 1 ≤ a, c ≤ Nc are gauge indices, and 1 ≤ i, j ≤ Nf are flavour indices. In general

there are more mesons and baryons than there are quarks, so this over-complete set of

parameters will be constrained by a set of algebraic relations.

In the case where Nf = Nc the superpotential (2.52) doesn’t make sense, so one might

expect the classical moduli space, parameterised by M j
i , B and B̃ (where εi...kB = Bi...k),

to remain in the quantum theory. This is almost what happens. Classically, the moduli

satify the constraint detM − BB̃ = 0, but this gets modified by quantum effects to

detM − BB̃ = Λ2Nc .
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When Nf = Nc + 1 the classical parameters M j
i , Bi and B̃i (where εij...kBi = Bj...k)

are constrained by

BiM
i
j = 0 , M i

jB̃
j = 0 , BiB̃

j − (M−1)ij detM = 0 . (2.55)

Quantum mechanically, an effective superpotential is generated, which is restricted by

holomorphy and symmetries to be

Weff =
1

Λ2Nc−1

[
BiM

i
jB̃

j − detM
]
. (2.56)

The equations of motion for the mesons and baryons enforce the classical constraints,

so we see that the classical moduli space is not modified by quantum corrections.

There is a subtle but important difference between the classical and quantum de-

scriptions of the moduli space, regarding the interpretation of the singularity at M =

B = B̃ = 0. Classically, at this point none of the gauge symmetry is Higgsed, so one

can attribute the singularity to the fact we have not accounted for massless gluons in

our effective theory of mesons and baryons. Quantum mechanically, however, the theory

confines at a scale Λ below which there should only be mesons and baryons. It is these

composite degrees of freedom that become massless at the origin of the quantum moduli

space.

How confident can we be that all the relevant degrees of freedom have been accounted

for in our low energy effective field theory description? Fortunately there is a stringent

test, proposed by ’t Hooft [48], that addresses this concern: anomalies in the global

symmetries must match in both the microscopic and macroscopic pictures. For the

Nf = Nc + 1 effective potential (2.56) the anomalies do indeed match, thus supporting

the effective description we outlined. For Nf ≥ Nc+ 2, the ’t Hooft anomalies generated

by high energy SQDC8 are not the same as those of a näıve effective description in terms

of mesons and baryons; there must be more to the low energy description. . .

Seiberg Duality

When SQCD has more than Nc + 1 quark flavours and is still asymptotically free (so

Nf < 3Nc) Seiberg found that the low energy physics could be described by a similar

theory, with gauge group SU(Nf −Nc), Nf quark fields ϕ, ϕ̃ and a set of gauge singlets

8This is asymptotically free, and so has a well defined UV limit, provided Nf < 3Nc.
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Φ. The global symmetries are the same as in the original theory (henceforth known as

the electric theory), with charges assigned to the magnetic picture fields as indicated

in Table 2.3. The magnetic theory also has a tree-level superpotential

Wtree = h Tr ϕi Φ
i
j ϕ̃

j , (2.57)

which is crucial for reproducing the moduli space of the electric theory. The dictionary

between electric and magnetic fields is most easily expressed in terms of gauge invariant

quantities. The matching of global symmetries then essentially dictates that electric

baryons map to magnetic baryons

Bi...k = C εi...k m...p bm...p (2.58)

where C =

√
−(−µ)Nc−Nf Λ

3Nc−Nf
e and bm...p = εa...c ϕam · · ·ϕc p, with a similar expres-

sion for the anti-baryons, and that electric mesons
(
M i

j = Q̃a
jQ

i
a

)
map to the magnetic

singlet

M i
j = µΦi

j . (2.59)

A new scale, µ, appears in the above matching relations. Although for fixed Nc and Nf

one might expect to be able to dispense with it by redefining the strong coupling scale

Λe of the electric theory, its presence is required to make this whole picture of SQCD

consistent under deformations that alter Nc and Nf , as shown in reference [45]. This

requirement also ties together the strong coupling scales of the electric and magnetic

theories via9

Λ
3Nc−Nf
e Λ

3(Nf−Nf )−Nf
m = (−1)Nf−Nc µNf . (2.60)

The behaviour of the magnetic theory is dictated by its beta function, which is

proportional to 3(Nf −Nc)−Nf . The fact this changes sign at Nf = 3
2
Nc has repercus-

sions for the low energy dynamics of SQCD, and also on how we view the duality. For

Nc + 1 < Nf <
3
2
Nc, a regime known as the free magnetic window, the magnetic

gauge coupling is infrared free, the operator (2.57) is irrelevant, and so as the name

suggests, the theory is entirely non-interacting at low energy. From the perspective of

the magnetic theory, there appears to be a Landau pole problem, with the coupling

9The sign here is fixed by demanding that the dual of the dual theory is the original theory.



Fundamentals 36

SU(Nf −Nc) SU(Nf ) SU(Nf) U(1)B U(1)R

ϕ � � 1 Nc

Nf−Nc

Nc

Nf

ϕ̃ � 1 � − Nc

Nf−Nc

Nc

Nf

Φ 1 � � 0 2
(

1− Nc

Nf

)

Table 2.3.: The local and global symmetries of SQCD+Φ, the magnetic Seiberg dual of
SQCD.

blowing up at high energy. With our understanding of duality, this problem evapo-

rates — the electric dual theory provides a well-behaved UV completion, as discussed

in Section 2.1.1.

When 3
2
Nc < Nf < 3Nc, both electric and magnetic theories are asymptotically free

and consequently strongly coupled in the IR. Duality tells us that they share the same

long distance physics. The interesting feature is that this physics is controlled by an

interacting conformal fixed point; many quantities of interest, such as the anomalous

dimensions of chiral operators, can be calculated using the superconformal algebra. This

range of Nf is accordingly known as the conformal window.

As the electric and magnetic theories are only indistinguishable at sufficiently low

energies one might ask why this is known as a duality, and not just an effective field theory

description of SQCD. One reason is because Seiberg duality has many similarities to

Olive-Montonen duality [49, 50]. This is a generalisation of the electromagnetic duality10

of Maxwell’s equations, which relates strongly coupled N = 4 sYM to essentially the

same theory at weak coupling, and is an exact quantum equivalence at all scales. In

the N = 4 case, fundamental objects that are electrically charged are exchanged for

composite objects that carry magnetic charge (and vice-versa) much like the relation

(2.59) of Seiberg duality. From equation (2.60) one can also see that if one picture is

strongly coupled, the Seiberg dual will be weakly coupled. Another reason for the use

of the term duality is that in some situations the transformation really is exact at all

scales [51, 52].

All of the interesting phenomena we have outlined in this section, from the quantum

deformed moduli space to Seiberg duality, can be employed to model physical systems.

They are particularly useful when investigating the breaking of supersymmetry, as we

will see in Chapter 4.

10This connection accounts for much of the terminology used in Seiberg duality.
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2.2.3. The Physics of Supersymmetry

By now the reader is hopefully convinced that susy field theories provide a rich and

highly calculable framework. We now turn to the task of using these tools to build

models that address various short-comings of the Standard Model. The place to start

is. . .

The Minimal Supersymmetric Standard Model

To construct the Minimal Supersymmetric Standard Model (MSSM), just take the Stan-

dard Model and promote each matter field to a left-handed chiral superfield:

Li ∼
(
1, 2,

1

2

)
ei ∼

(
1, 2,−1

2

)

Qi ∼
(
3, 2,

1

6

)
ui ∼

(
3, 1,−2

3

)
di ∼

(
3, 1,

1

3

) (2.61)

There is also a vector superfield for each gauge group factor SU(3)× SU(2)×U(1). The

numbers in (2.61) indicate the charge of each superfield with respect to these groups.

As non-derivative interactions have to come from the superpotential, which is neces-

sarily holomorphic, we are forced to introduce two Higgs doublets

Hu ∼
(
1, 2,

1

2

)
Hd ∼

(
1, 2,−1

2

)
(2.62)

so that both the u and d quarks can have Yukawa couplings

W = uYuQHu − d YdQHd − e Ye LHd + µHuHd . (2.63)

Notice that although we have more than twice the field content, we have only introduced

one extra parameter over and above those of the Standard Model, µ, which couples the

Higgs superfields together and has dimensions of mass.

The following terms appear to be allowed by all the symmetries too:

WRPV = αkmjQk Lm dj + βkmjLk Lm ej + γmLmHu + δkmjdkdmuj . (2.64)

These can lead to too-fast proton decay and so need to be suppressed/forbidden in

some way. A widely used resolution to this problem is to impose R-parity, a Z2
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(discrete) subgroup of theR-symmetry group. This is a combination of matter parity and

the fermion number operator introduced in Section 2.2.1 which essentially distinguishes

between the usual Standard Model fields and their newly-introduced superpartners:

RP = (−1)3(B−L)+F ⇒ RP [Standard Model] = +1

RP [Non-Standard Model] = −1
(2.65)

One can check that requiring R-parity forbids the operators in (2.64) whilst still allowing

the desired Yukawas. For the rest of this thesis we will work in the R-parity preserving

scenario.

A More Serious Problem

Although we have been able to dispense with some unwanted couplings, there is a more

immediate problem. Recall from Section 2.2.1, a simple corollary of the susy algebra is

that particles in the same supermultiplet will have the same mass. This then raises the

question: if a supersymmetric model is supposed to be used to describe our Universe,

why have we not seen a single superpartner? We have yet to see a scalar electron, for

instance, or a Fermionic photon. In fact, none of the currently known particles can

be partnered with another with the same quantum numbers but opposite statistics. If

supersymmetry were realised exactly in nature, such particles would be unavoidable and

we must surely have found them by now. The only possibility that allows us to keep

susy as a useful organising principle for the high energy degrees of freedom, is for it

to be manifest as a symmetry which is broken at low energies. We will learn how to

approach this in Chapter 4. With our new-found understanding we can then carefully

construct realistic models, a task that will occupy us for Chapters 5 and 6.

2.3. String Theory

Constructing a quantum theory of Gravity is a tricky business. Classical gravity is

very well described by Einstein’s General Theory of Relativity, but attempts to quantise

it as one might a classical field theory seem destined to failure. The problem is seen

when one tries to remove ultraviolet divergences, which are associated to the locality

of interactions, by the usual renormalisation procedures. Newton’s constant G, the

coupling that controls the strength of gravitational interactions, has mass dimension −2
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and so in attempting to remove the divergences we are forced to introduce an infinite

number of counter-terms. Hence the theory is deemed non-renormalisable — not a

desirable feature for a putative theory of everything.

String theory ameliorates this problem by replacing the worldline of pointlike particles

with the worldsheet of a one-dimensionally extended object — a string — with

characteristic length ℓs. At low energies the worldsheets still look like worldlines, but

as string interactions cannot be localised below the scale ℓs this provides a natural

regularisation of the UV divergences.11 Upon quantisation, one can easily find a massless

spin two resonance in the spectrum of the closed string, which is identified as the graviton

to provide a theory of quantum gravity.

So fluctuations in the worldsheet of a string can change the shape of spacetime;

how can we picture this? A useful perspective one can adopt is to imagine the map

that embeds the two-dimensional worldsheet, parameterised by τ and σ, into spacetime.

Then from this point of view the coordinates of spacetime become fields living on the

worldsheet: XM(τ, σ). In fact, string theory is a conformal theory on the worldsheet.

There are many other famous consequences of quantising a theory of strings. Consis-

tency at the quantum level requires the theory to live in a certain number of spacetime

dimensions — from the above perspective this is the requirement that the conformal

anomaly vanishes. There are no free dimensionless parameters in the theory; quantities

such as the string coupling strength are determined dynamically. Above the lowest exci-

tations of the string (which on the superstring are massless) there sits an infinite tower

of higher harmonics that gives a sequence of fields with increasing mass, spaced in units

of ℓ−1
s . If strings really do provide the Theory of Everything, the weakness of gravity

in the real world leads us to expect that ℓs∼ 10−13 cm and so even the first harmonic

above ordinary matter would reside up near the Planck scale.

For a cross-section of vast literature on string theory, one could do a lot worse than

consult references [53–57].

11Other dimensionful parameters are often used instead of ℓs:

Regge Slope α′ = ℓ2s , String Tension T =
1

2πℓ 2s
.
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2.3.1. The Anatomy of a Superstring

To be able to describe spacetime fermions, it turns out that string theory must turn to

our old friend supersymmetry, although this is often initially imposed as a symmetry

of the worldsheet rather than of spacetime. The story of how fermions and susy on

the worldsheet can then conspire to deliver fermions (and susy) in spacetime is quite

convoluted, and is found in any of the above references. For our purposes it will be

sufficient to be aware of a few of the key facts about superstring theories, including their

spectrum, which we now recount.

First off, a perturbative superstring theory can be constructed in essentially five

different ways (to fully appreciate the careful choice of words here, see the discussion

of Section 2.3.3). Each of these theories requires (1 + 9) spacetime dimensions to be

be fully consistent, and all five also have some degree of spacetime supersymmetry. All

theories contain closed strings, whose quantisation yields the spacetime metric GMN ,

and also the scalar dilaton field φ whose vacuum expectation value sets the strength of

closed string interactions

gs =
〈
eφ
〉
.

There are four consistent theories that only describe the propagation of closed, oriented

strings. Their main distinguishing features are displayed in Table 2.4. The amount

of 10d (local) supersymmetry they preserve is counted by the supercharge index N .

Along with the dilaton and metric, each has various bosonic matter fields that are the

components of differential forms on spacetime (and hence totally antisymmetric on their

spacetime indices M, N . . .). These are akin to gauge fields (which can themselves be

thought of as 1-forms), and so have corresponding field strengths given by F = dRC

where dR is a generalisation of the exterior derivative. There are also various fermionic

fields, as dictated by the supersymmetry.

The only other option, known as Type I, describes unoriented12 open and closed

strings. It is also chiral (indicating that work is required to show the theory is anomaly

free), and carries N = 1 supersymmetry on its spacetime. In the massless bosonic

spectrum one will find the usual dilaton, graviton and Kalb-Ramond BMN fields, and

also a gauge field AaM in the adjoint representation of SO(32). The gauge degrees of

12This means it is not possible to define a consistent orientation on the worldsheet.
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Type N Chiral? Bosonic Massless Spectrum

IIA 2 No
φ, GMN , BMN

CM , CMNP

IIB 2 Yes
φ, GMN , BMN

C0, CMN , CMNPQ

Heterotic E8×E8 1 Yes
φ, GMN , BMN

AaM in Adjoint of E8×E8

Heterotic SO(32) 1 Yes
φ, GMN , BMN

AaM in Adjoint of SO(32)

Table 2.4.: Assorted properties of the closed superstring theories.

freedom, known as Chan-Paton factors, are associated to the ends of open strings, which

leads us nicely into a short discussion of. . .

2.3.2. D-branes

The realisation that string theory isn’t just all about strings revolutionised the field. At

the end of the 1990’s, objects known as p -branes were found within the theory. They

are solitonic states which, when thought of as objects in their own right, provide a new

point of view on the degrees of freedom in string theory. Their non-perturbative nature

extended the above understanding of (perturbative) strings to such a point that people

realised each incarnation of the superstring was actually just a different corner of a

larger, all-encompassing theory. We will pick up this story again in Section 2.3.3, but

first we need some familiarity with branes.

In general, a p -brane is object with p space-like dimensions (and so it traces out a

(p+ 1)-dimensional worldvolume). We have already met one such beast: the funda-

mental string is a 1 -brane. Another particularly useful class are D-branes. In Type I

or II superstring theory, Dp -branes can be thought of as (p+ 1)-dimensional spacetime

hypersurfaces on which fundamental open strings can end [58]. They get their name

from the fact the string endpoints obey Dirichlet boundary conditions (fixed ends) in

the directions transverse to the brane worldvolume. On the brane itself the endpoints

of the string are free to more around (Neumann boundary conditions); as open string

endpoints carry Chan-Paton factors, they will define a U(1) gauge theory on the world-

volume of the brane. Also, the location of the brane in 9− p transverse coordinates can

be interpreted as 9− p real scalar fields on the worldvolume.
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If we consider a stack of N coincident Dp -branes, orientable open strings of vanishing

length can attach to any one of the N branes, and so we find the gauge symmetry is

enhanced to U(N). Unoriented open strings, which arise in the presence of an orientifold,

can similarly lead to orthogonal SO(N) or symplectic USp(N) groups. Thus branes gives

us a nice geometric way of constructing gauge theories out of strings. This approach

has all manner of uses in string phenomenology, and will be of great importance in

Section 2.4.

When the two ends of an open string attached to a D-brane come together, a closed

string is formed. This is now no longer bound to the brane and so can also move in

directions transverse to the brane. The fact that D-branes can emit closed strings tells

us they gravitate, i.e. they have mass. The mass per unit volume of the brane is known

as the tension, and for a D-brane is given by13

Tp =

√
π

gsκ10
(4π2α′)

3−p
2 . (2.66)

Notice the dependence on gs goes as 1
gs

. This is why you would never see branes in a

small gs perturbation expansion. An important fact about D-branes is that as well as

mass, they also carry RR-charge. This means that in the low energy effective action,

they couple to the n-form fields CM...N of Table 2.4, either electrically via

µp

∫

Vp+1

dσa . . . dσbCM...N ∂aX
M . . . ∂bX

N (2.67)

or magnetically via

µp

∫

Vp+1

dσa . . . dσb C̃M...N ∂aX
M . . . ∂bX

N (2.68)

where C̃M...N are related to CM...N by 10d Hodge duality of their field strengths:

dC̃ = ∗dC .

The map XM(σa) describes the embedding into spacetime of the brane worldvolume,

parameterised by σa with a = 0, 1, . . . , p. In both cases µp is the RR-charge. We see

that in Type IIA there exists stable Dp -branes for p = 0, 2, 4, 6, 8, whereas in Type IIB,

p = −1, 1, 3, 5, 7.

13κ10 is the 10d gravitational coupling and α′ = ℓ2s.
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What is remarkable is that the RR-charge of a Dp -brane is directly related to its

tension: µ2
p = g2sT

2
p . This singles D-branes out as BPS states, much like the short

multiplets we encountered in extended susy models, and similarly leads to them having

nice (essentially invariant) properties under renormalisation. Another useful fact about

D-branes that follows from their being BPS states: they break only half of the ambient

supersymmetry. All this gives us reason to trust our formulae for the brane charge

and mass, despite their having been calculated in a specific (supergravity) limit. In the

full theory, gs and α′ corrections are expected for the states, but these formulae (which

essentially follow from the 10d susy algebra) shouldn’t change.

For future reference it will be useful to know a thing or two about the worldvolume

theory of a stack of D-branes. At low energies, for the case of one brane this is described

by the Dirac-Born-Infeld action [59]

SDBI = −Tp
∫

Vp+1

d p+1σ e−φ
√

det
(
P[G +B]ab + 2πα′Fab

)
, (2.69)

where P indicates the pull-back of the spacetime metric and 2-form to the worldvolume of

the brane, and Fab is the field strength of the gauge field on the brane. The expression

(2.69) is exact in α′ for slowly varying fields, meaning that it will receive corrections

O(α′2F 4). The action also has additional Wess-Zumino terms

SWZ = µp

∫

Vp+1

P
[
∑

n

C(n)eB

]
e2πα

′F . (2.70)

Note the integration only picks out (from the formal sum and exponentials) those com-

binations of n-form whose total degree is p + 1. The effective action in the case of a

stack of multiple branes is similar, but unfortunately complicated by various subtleties,

which can be read about in [60].

One interesting consequence of equation (2.70) can be seen when considering an

instanton (field configuration with Tr
∫
F ∧ F = 8π2

g2
) on a Dp -brane. This necessarily

has a Wess-Zumino term

µp Tr

∫

Vp+1

C(p−3) 2π2α′2 F ∧ F ,



Fundamentals 44

which by using µp = (4π2α′)−2µp−4 can be rearranged to give

µp−4 Tr

∫

Vp−3

C(p−3) . (2.71)

This can be recognised (via (2.67)) as how a D(p− 4) -brane electrically sources the

(p−1)-form C(p−3). The upshot is that an instanton on a Dp -brane is, for all intents and

purposes, a D(p− 4) -brane living inside the Dp -brane. Taking the specific case p = 3,

we find D(−1) -branes (otherwise known as D-instantons) living inside a D3 -brane are

none other than (super) Yang-Mills instantons in the D3 -brane’s worldvolume gauge

theory.

This correspondence has deep implications. For starters one can provide a clear

geometrical interpretation of the ADHM construction of self-dual solutions to the Yang-

Mills equations [61]. The whole construction can be viewed from the perspective of the

worldvolume of the lower dimensional brane, in which case the Higgs branch14 of the

moduli space of vacua is found to be identical to the ADHM instanton moduli space

(for a detailed account, see reference [44]). In the case of one D-instanton, as it can be

placed anywhere inside the D3 -brane, we would expect the 1-instanton moduli space to

be the full worldvolume of the D3 -brane. In this way the instanton is seen to be a probe

of the background geometry, an idea that will be important to us in Section 2.4.3.

2.3.3. Dualities

The 10d supergravity theory obeyed by the massless modes of Type IIB strings at

low energy has a special feature: it is invariant under SL(2,R) transformations that

simultaneously act on the two-forms, and a combination τ of the dilaton and axion

(zero-form)


BMN

CMN


 −→


a b

c d




BMN

CMN


 , τ −→ aτ + b

cτ + d
, τ ≡ C0

2π
+ ie−φ . (2.72)

Here, ad−bc = 1 with a, b, c, d ∈ R. In the full theory, the two-form fluxes are quantised

(obeying a generalisation of the Dirac quantisation condition) and so only an SL(2,Z)

subgroup of this survives. This is known as an S-duality, and is still highly significant:

14On the Higgs branch, hypermultiplets charged under the gauge group acquire VEVs, thus Higgsing
(and in general, completely breaking) the gauge symmetry.
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considering the action of the group element ( 0 −1
1 0 ) on the dilaton, this is recognised as

a duality that maps a strongly coupled theory gs =
〈
eφ
〉
≫ 1 to a weakly coupled one

gs =
〈
eφ
〉
≪ 1.

Weak-strong dualities like this are notoriously difficult to prove because one tends

to only have good control over one side of the duality. This is where BPS states such

as the D-branes, discussed above, can lend vital understanding. These states have well

established properties and are expected to survive the transition from weak to strong

coupling. One can therefore look for them on either side of the duality. In the case of

Type IIB S-duality, the correspondence is

Weak Coupling
S←→ Strong Coupling

Fundamental String ←→ D1 -brane

D1 -brane ←→ Fundamental String

D5 -brane ←→ NS5 -brane

NS5 -brane ←→ D5 -brane

D3 -brane ←→ D3 -brane

For the record, an NS5 -brane is a solitonic object with tension ∼ 1
g2s

, which couples

magnetically to the Kalb-Ramond two-form BMN . The S-duality of Type IIB strings

places tight restrictions on the form of stringy corrections to correlation functions, as

they too must respect the duality. We return to this in Section 2.4.3 and Chapter 3.

Similar reasoning to the above has uncovered many other dualities between the dif-

ferent superstring theories. For example, Type I turns out to be S-dual to the Heterotic

SO(32) theory. There are also dualities that act in other ways. One that we will come

across in Chapter 3 is T -duality, which essentially relates a theory with one direction

compactified on a circle of radius R to a different theory compactified on a circle of

radius 1/R. Under such a transformation:

Type IIA
T←→ Type IIB

Heterotic SO(32)
T←→ Heterotic E8×E8

Another famous result: it had been known for a long time that N = 1 supergravity

in 11 dimensions, when compactified on a circle gives the low energy spectrum of Type

IIA supergravity. Through brane-based reasoning, Witten conjectured that the strong
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Type IIA

Type IIB

Type I

Heterotic SO(32)

Heterotic E8×E8

11d SUGRA

Figure 2.3.: A non-artist’s impression of the M-Theory moduli space.

coupling limit of Type IIA strings is actually an 11-dimensional theory of membranes,

known as M-Theory. This same theory can be compactified on a line interval to give

the 10d Heterotic E8×E8 theory.

In this way a picture is building up in which all the apparently different superstring

theories are just different limits of a greater, all-encompassing model, also now known

as M-Theory. Evidence for all the dualities conjectured above is still accruing, and

new mathematical techniques that let us explore the M-Theory landscape (illustrated

in Figure 2.3) are still being developed. It will be interesting to see how this picture

evolves, and whether we can one day gain new physical insight from this remarkable and

(from a mathematical point of view) rather unique-looking model.

The ostensible uniqueness of the superstring framework is spoilt by one of its greatest

virtues: the prediction of extra spacial dimensions. As every experiment to date has

been consistent with there being three space dimensions, string phenomenologists have

to compactify the extra dimensions down to very small scales to account for their non-

detection. There are many different ways of compactifying,15 parameterised by moduli,

each choice of which gives slightly different 4d physics, so our Theory of Everything now

appears to be a Theory of Anything. The correct way to approach this landscape of

possibilities varies depending on who you talk to. Some people think we should search for

dynamical mechanisms capable of selecting one out of the multitude of vacua, whereas

others prefer to invoke semi-anthropic arguments to justify the observed laws of physics.

15Recent estimates suggest there may be as many as 10500 distinct ways.
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Despite this apparently vast freedom, nobody has yet produced a model in which all the

moduli are fixed, and that has only the Standard Model spectrum at low energies.

2.4. AdS/CFT Correspondence

2.4.1. Large N Gauge Theories

The idea that stringy behaviour is of importance in understanding the physics of hadrons

pre-dated both the development of Quantum Chromodynamics (QCD) — our current

understanding of the hadronic world — and the realisation that oscillating strings can

be used to build a consistent theory of quantum gravity. When plotting the spin versus

mass-squared of various mesons, the results were found to lie on lines of constant slope

α′ (known as Regge trajectories). Such behaviour can be explained by modelling the

meson as a quark-antiquark pair bound together by a string with constant tension 1/α′.

Unfortunately, such Dual Resonance Models were found to be phenomenologically

unviable.

In time, experiment established that hadrons should be thought of as a collection

of quarks, bound together by a strongly interacting non-Abelian gauge theory. At high

energies the strength of this interaction drops off (asymptotic freedom), so the quarks’

behaviour is well modelled by a perturbation series in the gauge coupling, expanded

around the free theory. At low energies though, the story is very different: the interaction

strength grows, and the quarks become confined into meson and baryon bound-states.

The large size of the coupling means perturbation theory is no longer valid, so under-

standing how this confinement takes place becomes a very difficult question.$$$ Unfor-

tunately for us this hadronisation process is crucial for linking theoretical predictions

(which are largely based on perturbative techniques) to the results of experiment.

In an effort to better understand the mysterious strong coupling behaviour of non-

Abelian gauge theories, ’t Hooft considered a limit of QCD where the number of colours,

instead of being three, was a large integer N [63]. He found that in order to keep the

strong coupling scale ΛQCD finite and non-zero, he had to take the limit N →∞ whilst

keeping the combination λ ≡ g2YMN fixed — this is now known as the ’t Hooft limit.

$$$In fact, it’s a Million Dollar question [62].
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The gYM perturbation expansion of any process can trivially be rearranged into a

double expansion in terms of N and λ, but ’t Hooft made a further observation: the

order of N in which a given Feynman diagram contributes to a process is completely

determined by its topology. More precisely, a two dimensional surface can be assigned to

each diagram (essentially, the simplest surface on which the diagram can be drawn with

no self-intersections). The number of factors of N that comes with each diagram is found

to be the Euler characteristic χ of the associated surface, which for a orientable closed

surface is given in terms of the genus g (number of holes) and number of boundaries b

by χ = 2−2g− b. Now, with all diagrams weighted by factors of N2−2g−b we see that as

N →∞ the theory simplifies, because all processes are dominated by diagrams with the

topology of a sphere (genus 0 and no boundaries). Note also that in this limit, although

gYM → ∞, one is still left with a perturbation expansion in λ. This therefore becomes

the effective coupling (known as the ’t Hooft coupling).

The 1/N expansion in gauge theory is highly reminiscent of the genus expansion of

string theory — that only one topology of string diagram contributes at each order in

a gs perturbation expansion. This is yet another indication that string-like behaviour

may be of relevance to the physics of hadrons. Taking this idea any further, for instance

to find a string theory which describes the strong coupling behaviour of QCD, is a

monumentally tricky task. However, progress was made after the discovery of D-branes

brought a new perspective on gauge theory.

2.4.2. Establishing a Correspondence

In the remarkable paper [64], Maldacena proposed a correspondence between the max-

imally supersymmetric (1 + 3)-dimensional conformal field theory (N = 4 super Yang-

Mills) and Type IIB superstring theory on the background AdS5× S5. It was the first

concrete realisation of a duality between large N gauge theory and strings, opened up a

plethora of new avenues for research, and has lead to a far deeper understanding of the

dynamics of both gauge theories and gravity. By way of introduction we can recommend

the review articles [65, 66].

The correspondence can be revealed by considering a stringy brane construction from

two different points of view. We begin with Type IIB superstrings in (1 + 9)-dimensional

flat space and place a stack of N coincident D3 -branes at the origin. At low energy, in

the bulk far from the branes we would expect to find the usual spectrum of Type IIB in

flat space, but on their worldvolume we know from Section 2.3.2 that the branes support
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a U(N) gauge theory. Also, as the branes break half of the ambient 32 supersymmetries,

we know precisely what this (1 + 3)-dimensional gauge theory with 16 supercharges is

— it’s the N = 4 super Yang-Mills theory we met in Section 2.2.1. Schematically the

action for this open string view of the brane construction splits into three parts

Sopen = Sbulk + SN=4 + Sint (2.73)

describing the bulk excitations, the gauge theory on the branes, and the interaction

between the two, respectively. These last two terms are described more correctly by the

Dirac-Born-Infeld action [59]. To leading order in α′ this reduces to the N = 4 action,

so to turn off the bulk-brane interaction, one should take the limit α′ → 0.

Alternatively, as the branes are massive objects they must to some extent warp the

geometry in which they sit. Taking this backreaction into account one can replace

the branes with the geometry they create to find a space with metric

ds2 =
1√
H(r)

(
−dt2 +

3∑

i=1

dxidxi

)
+
√
H(r)

(
dr2 + r2dΩ2

5

)
, (2.74)

where

H(r) = 1 +

(
R

r

)4

with R4 = 4πgsNα
′2 . (2.75)

This metric, along with a constant dilaton, and five-form flux N over the five-sphere

(Ω5), is a solution of the classical supergravity equations of motion that is valid provided

gs < 1 and that the curvature (of characteristic scale R) is much larger than the string

scale
√
α′, i.e. 4πgsN ≫ 1.

Note that far from the branes, r ≫ R, so H(r) ≈ 1 and the metric (2.74) returns to

that of 10d flat space. Near the branes, H(r) ≈
(
R
r

)4
and we find the metric

ds2 =
r2

R2

(
−dt2 +

3∑

i=1

dxidxi

)
+ R2dr

2

r2
+ R2dΩ2

5 (2.76)

which is the geometry of AdS5× S5 with each factor having radius R. Again, we can

write the action of this closed string point of view in a suggestive form:

Sclosed = Sbulk + SAdS5 ×S5 + Sint . (2.77)
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The idea that arises from comparing (2.73) and (2.77) is to define a decoupling limit

in which the interaction terms vanish and each action neatly splits into two parts. Given

that the bulk excitations are the same in both pictures, we are lead to conclude that

(1 + 3)-dimensional N = 4 super Yang-Mills is dual to Type IIB superstrings on the

background AdS5× S5. We now look at this proposition more carefully.

The Decoupling Limit

We need to consider the limit α′ → 0 so the low energy dynamics of the brane are

modelled by N = 4 sYM, but at the same time we should keep fixed the energy E∞

of excitations in the bulk, as measured by an observer at infinity. Moreover, we would

also like to retain the tower of stringy excitations, which has a spacing between states of√
α′Er, where Er is the energy measured by an observer at radial position r. From the

metric (2.74) we can read off the redshift factor that relates this to to the asymptotic

energy: E∞ = Er [H(r)]−1/4. Putting this all together

E∞︸︷︷︸
Fixed

= Er

[
1 +

(
R

r

)4
]−1/4

≈ r

α′
Er
√
α′

4
√

4πgsN︸ ︷︷ ︸
Fixed

. (2.78)

So if all other parameters are to remain fixed, the required decoupling limit is

α′ → 0 with
r

α′ fixed . (2.79)

One can introduce coordinates that are better suited to taking this limit by defining

U = r/α′. Then metric (2.74) in the decoupling limit becomes

ds2 = α′
[

U2

√
4πgsN

(
−dt2 +

3∑

i=1

dxidxi

)
+
√

4πgsN
dU2

U2
+
√

4πgsN dΩ2
5

]
, (2.80)

which is the metric on AdS5× S5 with both factors having radius R = (4πgsNα
′2)1/4 as

advertised.

To connect with the description of N = 4 sYM, we need to know how to associate pa-

rameters in the string theory with those of the gauge theory. The following combination
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of dilaton and axion fields often occurs in string theory

τ =
i

gs
+
C0

2π
where gs = eφ . (2.81)

Similarly, a combination of the gauge coupling gYM and vacuum angle θ which arises

naturally in many contexts is

τ0 =
4πi

g2YM
+

θ

2π
. (2.82)

From expanding the DBI action in search of the coefficient of TrFµνF
µν , one finds

4π gs = g2YM , or more generally τ = τ0 . (2.83)

We explore the significance of this relation in Section 2.4.3, and in Chapter 3 we’ll also

see how it may be modified under deformations the correspondence.

Our stack of N D3 -branes supports a U(N) gauge theory, but each brane is also

charged under the 4-form CMNPQ, which has a 5-form field strength F5. Therefore the

rank of the gauge group must be proportional to the flux of this 5-form through a surface

surrounding the branes:

N =

∫

S5

F5 .

Validity. . . Verification. . . Proof?

As a pleasing sanity-check, one can observe the same symmetry groups on either side

of the duality. The maximal bosonic symmetry is the group SO(2, 4)× SO(6) which on

the gravity side is just the isometry group of AdS5× S5. In the gauge theory, SO(2, 4)

is the conformal group of (1 + 3)-dimensional spacetime whereas SO(6), which is locally

isomorphic to SU(4), arises as the R-symmetry group discussed in Section 2.2.1.

The above supergravity perspective is good so long as gs < 1 and gsN ≫ 1, which

implies N ≫ 1. Also, the effective coupling of the gauge theory λ = g2YMN ≫ 1, so we

see that AdS/CFT duality realises ’t Hooft’s dream to understand the strong coupling

behaviour of a large N gauge theory in terms of strings. The duality is conjectured to

hold at large N but with finite gsN . This allows for the possibility of a gauge theory

perturbation expansion in λ, but now there is a problem on the string side; string theory
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on a curved background, especially one with non-zero RR fluxes, is poorly understood,

even in the classical limit (gs < 1).

Despite the lack of perturbative control, the strongest form of the AdS/CFT duality

asserts that for any value of the couplings there should be a complete quantum equiva-

lence between N = 4 sYM and Type IIB strings on AdS5× S5. Given the fact that —

at best — we can only have control over one side of the correspondence, proving this

statement is currently an impossible task, but the circumstantial evidence in its favour

is mounting, as we shall see below. Turning things around, by accepting the existence

of such a correspondence one inherits an arsenal of new tools for exploring gauge theory

and gravity in regimes beyond the scope of standard techniques.

Another great success of the AdS/CFT correspondence is that it provides a concrete

realisation of the Holographic Principle. This is the very general (and consequently

somewhat vague) notion that in any theory of quantum gravity in a volume V , the

number of degrees of freedom of the system should scale as the size of the boundary of

V (rather than with V itself, as in a standard quantum field theory). The principle can

be motivated by considering the Bekenstein-Hawking entropy of a black hole, which is

proportional to the area of the event horizon. In the context of AdS/CFT, the concept

of holography arises when trying to make the correspondence more precise.

The hint of where to start comes from considering the string coupling gs . The

magnitude of this is controlled by the VEV of the dilaton field, which in turn is dictated

by its boundary conditions. The boundary of AdS5× S5 is perhaps most clearly seen by

substituting y =
√
4πgsN
U

into the metric (2.80) and setting R = 1 for convenience:

ds2 =
1

y2
(
−dt2 + d~x2 + dy2

)
+ dΩ2

5 . (2.84)

The boundary lies at y = 0 and is clearly conformally equivalent to (1 + 3)-dimensional

Minkowski space. So as the boundary conditions of the dilaton, and its dual, the gauge

coupling, are both determined by their values on a 4d flat space, it is natural to think

of the gauge theory as ‘living on the boundary’ of AdS5× S5 — the gauge theory on

the boundary holographically encodes the behaviour of gravity on the contained volume.

Recalling that the gauge coupling effectively acts as a source for the operator TrFµνF
µν

allows this holographic correspondence to be generalised [67, 68]. For a general operator

O(~x) in the gauge theory, its source term φ0(~x) acts as the boundary condition for a

corresponding field φ(~x, y) in the string theory. This is usually stated as a relationship



Fundamentals 53

between the string partition function and the CFT’s generating functional:

〈
e
∫
d4x φ0(~x)O(~x)

〉
CFT

= Zstring

[
φ(~x, y)

∣∣∣
y=0

= φ0(~x)

]
. (2.85)

Taking the more prosaic supergravity limit gs < 1 and gsN ≫ 1, we know the string

partition function is dominated by the supergravity action (assuming there’s only one

saddle point for simplicity), and so we find the CFT’s connected generating functional

for large N and at strong ’t Hooft coupling is given by

WCFT[φ0] ≡ − log
〈
e
∫
d4xφ0(~x)O(~x)

〉
CFT

= infimum
φ|y=0=φ0

SSUGRA[φ] . (2.86)

A more sophisticated test of the correspondence can be made by recalling from Sec-

tion 2.2.1 that in N = 4 sYM, certain operators transform in short representations of

the superalgebra, which implies they are immune to quantum corrections. We would

therefore expect to find states with the appropriate quantum numbers in the spectrum

of supergravity on AdS5× S5. Such operators have been completely classified [69], and

the corresponding supergravity states can be precisely identified [70], thus affirming the

conjectured duality.

2.4.3. The Story of Instanton Matching

In Section 2.3.3 we touched upon a curious property of Type IIB string theory: it is

self-dual under an S-duality which acts on the dilaton-axion parameter τ as

τ −→ aτ + b

cτ + d
, where


a b

c d


 ∈ SL(2,Z) . (2.87)

If there is to be an exact duality between Type IIB strings on AdS5× S5 and N = 4 sYM

under which τ is identified with τ0, then the gauge theory had better also be invariant

under an SL(2,Z) action with τ0 transforming analogously to (2.87). Indeed it does;

there is generalisation of the electromagnetic duality of Maxwell’s equations to

the spectrum of spontaneously broken gauge theories [49] in which elementary field exci-

tations are interchanged with BPS dyons16 when the complexified coupling τ0 undergoes

an SL(2,Z) transformation. The duality can be further extended to the realms of N = 4

16Dyons are similar to monopoles, but carry both electric and magnetic charge.
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sYM where quantum corrections are more safely under control thanks to the high degree

of supersymmetry [50].

The AdS/CFT correspondence has clearly dodged another bullet, but as S-duality

is expected to be exact beyond the supergravity approximation, it is reasonable to hope

that it may be used as a more incisive probe of the correspondence, particularly if

formulae like equation (2.85) are to be believed. We will now review some of the fruits

of this observation, which are comprehensively chronicled in [71].

S-duality can be used to construct the leading order stringy corrections to the Type

IIB supergravity action on a flat background [72]. They correspond to accounting for

the effect of D-instantons (aka D(−1) -branes) and include terms (in string frame) of

the form

(α′)−1

∫
d10x

√
−G10 e

−φ/2 f4(τ, τ)R4 , (2.88)

and

(α′)−1

∫
d10x

√
−G10 e

−φ/2 f16(τ, τ) Λ16 + c.c. , (2.89)

where R is a specific contraction of 10d Riemann tensors, given in [72], and Λ is the 10d

dilatino. The functions fn(τ, τ ) are modular forms, which transform under SL(2,Z)

in precisely the right way to leave the action S-duality invariant.

In [73] Banks and Green observed that the same effective action also provides the

leading corrections to the background AdS5× S5, so via the gauge-string correspondence

this gravity result can be used to make predictions for the behaviour of the gauge theory.

From the discussion of Section 2.3.2 we would expect the D-instanton corrections to

correspond to a multi-instanton effect in the gauge theory. This possibility is made

more evident by performing a weak coupling expansion of the above modular forms to

extract terms like

e−φ/2fn(τ, τ) ∋
∞∑

k=1

const×
(
k

g2s

)n−7/2

× e2πikτ ×
∑

d|k

1

d2
, (2.90)
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where the sum on d runs over positive integral divisors of k. With the AdS/CFT

correspondence making the association τ = τ0 (cf. equation (2.83)) this very much looks

like a gauge theory instanton expansion.17

The actual test of the correspondence comes from comparing correlation functions

(with the relevant instanton corrections) on both the gravity and gauge theory side.

As mentionned in Section 2.2.2, instantons can only modify those correlation functions

that are able to saturate the fermionic zero modes of the new terms. In this case, as

the D-instanton breaks half of the 16 susy and 16 superconformal generators of the

background, there are 16 exact fermionic zero modes. An interesting class of correlators

to consider are therefore

〈
Λ1(~x1) . . .Λ16(~x16)

〉
, (2.91)

with each dilatino absorbing one zero mode. Note that here the dilatinos originate on

the boundary of AdS5× S5. Further correlation functions that can be considered are

found in [74, 75].

The superstring prediction for the correlation function (2.91) can be found by prop-

agating the dilatinos into the bulk to meet at an effective vertex at y0 (derived from

equation (2.89)). One then integrates this point y0 ≡ ( ~X, ρ, Ω̂i) over all of AdS5× S5

and performs the Grassmann integrals of the fermi zero modes. The result is

〈
Λ1(~x1) . . .Λ16(~x16)

〉
∼ (α′)−1e−φ/2f16(τ, τ ) t16

∫
d5Ω̂5

∫
d4Xdρ

ρ5

16∏

i=1

KF
7/2( ~X, ρ; ~xi, 0) ,

(2.92)

where the dilatino bulk-to-boundary propagator is

KF
7/2(

~X, ρ; ~x, 0) = K4( ~X, ρ; ~x, 0)
(
ρ1/2γ5 − ρ−1/2(x−X)nγ

n
)
, (2.93a)

with

K4( ~X, ρ; ~x, 0) =
ρ4

(ρ2 + (x−X)2)4
. (2.93b)

The 16-index antisymmetric tensor t16 comes from performing the Grassmann integra-

tion, and encodes the dilatino’s fermi statistics. It also ensures that eight copies each of

17For fixed k, each of these terms receives g2s corrections. Also, the contribution from anti-instantons
is suppressed by a factor g4n−16

s — cf. equation (1.12) of [71].
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the terms ρ1/2γ5 and ρ−1/2γn are picked out of the product of propagators. To facilitate

comparison with the related object in gauge theory, observe from (2.90) the form of the

correction to leading order in α′ and gs:

〈
Λ1(~x1) . . .Λ16(~x16)

〉
∼ (α′)−1g

− 25
2

s . (2.94)

Under the AdS/CFT correspondence, the dilatino sources a particular superconfor-

mal Noether current in the gauge theory, which is

ΛA
α =

1

g2YM
σmnα

β trN Fmnλ
A
β . (2.95)

Here we recognise the N = 4 sYM field strength Fmn and gaugino λAβ . The index A =

1, . . . , 4 counts the supersymmetries, and to be consistent with the instanton literature,

from now until the end of Chapter 3, spacetime indices are denoted by lower-case roman

letters m,n = 0, . . . , 3 . Details of the σmn matrices can be found in Appendix A.

The one instanton correction to correlation function (2.91) was first computed in

reference [74] for the case of a single SU(2) Yang-Mills instanton. This was extended to

general N in reference [76] which allowed for the large N limit to be taken. Let’s look

at this a bit more closely.

We begin with the 1-instanton partition function appropriate for the calculation of

gauge invariant correlation functions [71]

∫
dµ1

phys e
−S1

inst =
g8YMe

2πiτ0

231π13(N − 1)!(N − 2)!

∫
d4X dρ d5Ω̂5 ρ

4N−7 IN

4∏

A=1

d2ξA d2ηA ,

(2.96)

where we have separated out an an integral over the collective coordinate r, which takes

the form:

IN =

∫ ∞

0

dr r4N−3 e−2ρ2r2 . (2.97)

In equation (2.96), X and ρ are the bosonic collective coordinates corresponding to

instanton position and scale size respectively. The variables χa ≡ {r, Ω̂5} are a 6-vector

of bosonic collective coordinates expressed in 6d polar coordinates, about which we will

have more to say in Section 3.3.1. The fermionic zero modes are ξ and η, and correspond

to the supersymmetric and superconformal symmetries broken by the instanton.
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Due to a quirk of the one instanton sector, the integral (2.97) can be done exactly,18

but as this trick doesn’t generalise to the multi-instanton case it is more enlightening to

solve in the large N limit with a saddle-point approximation:

IN = N2N−1

∫ ∞

0

dr r−3e2N(log r2−ρ2r2) = N2N−1

(
ρ2−4Ne−2N

√
π

4N
+ O

(
N−3/2

))
.

(2.98)

The saddle-point lies at r = ρ−1. Collecting powers of ρ we find the bosonic part of the

partition function is

∫
d4Xdρ

ρ5

∫
d5Ω5 , (2.99)

which is precisely the measure on AdS5× S5. We appear to be on the right track: the

moduli space of the Yang-Mills instanton has the same geometry as the supergravity

background probed by the D-instanton. It is also encouraging to see that only in the

large N limit (where the saddle point equation applies) is the size of the five-sphere r

related to the radial coordinate ρ of AdS5, as required by the AdS/CFT correspondence.

The other ingredient we require for computing the correlation function is an expres-

sion for the gaugino λAβ of equation (2.95) in a superinstanton background. This takes

the form (cf. equations (4.3a) and (A.5) of reference [77])

λAβ(x) = −
(
ξAγ − ηAγ̇ σγ̇γm · (xm − xm0 )

)
σklγ

β Fkl(x− x0) + . . . (2.100)

where the ellipsis denotes terms containing fermi zero modes that are lifted by the

instanton action, and so don’t contribute to the correlation function of interest. We can

now construct the Noether current (2.95), which can be expressed in the following form:

ΛA
α = − 1

g2YM

(
ξAγ − ηAγ̇ σγ̇γs · (xs − xs0)

)
σmnα

β σklγβ trN

[
Fmn Fkl(x− x0)

]
(2.101a)

= − 1

3 g2YM

(
ξAγ − ηAγ̇ σγ̇γs · (xs − xs0)

)
σmnα

β σklγβ Pmn, kl trN

[
F 2
pq(x− x0)

]
(2.101b)

= − 1

g2YM
εαγ

(
ξAγ − ηAγ̇ σγ̇γs · (xs − xs0)

)
trN

[
F 2
pq(x− x0)

]
(2.101c)

The second line follows from the identity trN Fmn Fkl = 1
3
PSD
mn,kl trN(Fpq)

2, where PSD
mn,kl

projects onto self-dual Lorentz structure. Fortunately we don’t need to know the precise

18 IN = 1

2
(2ρ2)1−2N

∫∞

0
dxx2N−2 e−x = 1

2
(2ρ2)1−2N (2N − 2)!
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structure of this projector because, as reviewed in Appendix A, the sigma matrices are

already self-dual, and so the whole thing reduces to equation (2.101c). One can then

insert the standard charge-1 instanton field strength,19

F a
mn = −4 η amn

ρ2

(ρ2 + (x− x0)2)2
,

with η amn being the ’t Hooft matrices listed in Appendix A, to find

ΛA
α = − 96

g2YM

(
ξAα − σsαα̇ ηα̇ A · (x− x0)s)

) ρ4

(ρ2 + (x− x0)2)4
(2.102a)

= − 96

g2YM

(
ξAα − σsαα̇ ηα̇ A · (x− x0)s)

)
K4(~x0, ρ; ~x, 0) . (2.102b)

In the second line we have identified the factor K4 which we saw before in the dilatino

bulk-to-boundary propagator (2.93).

We are finally in a position to combine our results for the partition function and

operators to compute the correlation function:

〈
Λ1(~x1) . . .Λ16(~x16)

〉
= CN

∫
d4Xdρ

ρ5

∫ 4∏

A=1

d2ξA d2ηA (2.103)

×
(
ξ1α1
− η1γ̇σγ̇mα1

· (x1 −X)m
)
K4( ~X, ρ; ~x1, 0)

...

×
(
ξ4α16
− η4γ̇σγ̇mα16

· (x16 −X)m
)
K4( ~X, ρ; ~x16, 0) ,

in which the prefactor is

CN = g−24
YM

(2N − 2)!

(N − 1)!(N − 2)!
2−2N+49 316 π−10 . (2.104)

We can take the N →∞ limit using Stirling’s approximation n! ≈
√

2πn
(
n
e

)n
to find

CN −→ g−24
YM

√
N 247 316 π−21/2 . (2.105)

19We are considering the SU(N) instanton as an SU(2) instanton embedded in a diagonal 2× 2 subgroup
of SU(N). Other embeddings have higher topological charge.
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Using the AdS/CFT dictionary (2.75) and (2.83) to translate equation (2.94) into gauge

language,

〈
Λ1(~x1) . . .Λ16(~x16)

〉
∼ (α′)−1g−

25/2
s (2.106)

∼
√
NgYM

(
g2YM
4π

)−25/2

=
√
Ng−24

YM , (2.107)

we see the Yang-Mills instanton calculation reproduces the gravity result in the large N

limit.

It is important to note that the domains of validity of the above two results do

not overlap. To have perturbative control over the large N gauge theory, the ’t Hooft

coupling must be small, and so gYM < 1, whereas for the supergravity calculation to be

trusted, we must be in a regime where the curvature radii of the background geometry

are significantly greater than the string scale, i.e. R2 ≫ α′, and also gs < 1. The

AdS/CFT correspondence then implies gYM ≫ 1 for the SUGRA calculation to be

valid. It is therefore remarkable that we see such close agreement for this correlation

function in each framework. Indeed, a similar matching can be obeserved for a wide

variety corrrelators to which instantons contribute, including Kaluza-Klein excitations

which truly probe the geometry of the five-sphere.20 This has lead to the conjectured

existence of a non-renormalisation theorem for these non-perturbative phenomena. We

will explore this idea more in Chapter 3 once we have accumulated a bit more evidence.

By making careful study of a supersymmetric version of the ADHM construction

[61], the above Yang-Mills result was extended to a full multi-instanton background in

reference [78] with complete details of the calculation reported in reference [71]. This

long calculation contains yet more suprises. The first observation is that our manipula-

tion of equation (2.102) used the fact that the squared field strength of a one instanton

solution essentially takes the form of a SUGRA bulk-to-boundary propagator (2.93).

This isn’t true at the multi-instanton level, except perhaps in the dilute gas approx-

imation, which is only valid in those regions of the k-instanton moduli space that can

be understood as being built from k widely separated single instanton solutions. Even

in this special case something strange seems to be going on, because one would expect

the moduli space to resemble k copies of AdS5× S5 (one for each instanton) rather than

the single copy required by the AdS/CFT correspondence.

20Note: the correlator considered in equation (2.91) has no dependence on the coordinates of S5.
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This issue was shown to have a fascinating resolution in references [71, 78]. Careful

consideration of the small fluctuations about a multi-instanton background reveals that

in the large N limit, a potential is generated on moduli space that attracts all the

instantons to a point, whilst leaving them in mutually commuting SU(2) subgroups of

the full SU(N) gauge group. This substantially reduces the k-instanton moduli space,

and causes the effective measure to factorise into one copy of the measure on AdS5× S5

(as per the conjectured duality), times the partition function Ẑk of a 10-dimensional

N = 1 supersymmetric SU(k) gauge theory, dimensionally reduced to zero dimensions.

The resulting configuration is interpreted on the string side as a bound state of D-

instantons.

One can in fact go further, and solve the SU(k) matrix model [79] to extract the full

k-dependence,

Ẑk = 217k2/2−k/2−8 π9k2/2−9/2 k−1/2
∑

d|k

1

d2
, (2.108)

where the sum runs over the positive integral divisors d of k. This then provides all

relevant correlation functions with the correct k dependence to precisely match the weak

(string) coupling expansion (2.90) of the modular forms residing in the string action. The

factors of k actually arise from various places. For example, in computing the sixteen

dilatino correlator (2.91) the currents21 themselves contribute k16 and equation (2.108)

gives a further k−1/2. In factoring the AdS5× S5 factor out of the measure, we incur a

Jacobian ∼ k± 1/2 for each of the collective coordinates (+ ↔ bosonic; − ↔ fermionic)

which provides an extra k−3. The overall factor is thus k16−1/2−3 = k25/2, as expected.

We will examine the multi-instanton calculation further in Chapter 3 when we set about

testing deformations of the correspondence.

21The dilatino current on the k instanton saddle-point background is k times the 1-instanton current:

ΛA
α

∣∣
k-inst

= k ·ΛA
α

∣∣
1-inst

.



Chapter 3.

Instanton Test of Deformed AdS/CFT

Correspondence
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3.1. Deforming the Correspondence

Having well established the existence of a gauge theory–string theory duality in one

specific case, it is then interesting to see how far the phenomenon persists when this

theory is carefully modified. Many possible avenues have been explored, for example

one can try taking the decoupling limit of Section 2.4.2 on different background geome-

tries (orbifold, conifold, . . . ) or with other kinds of brane, rather than just a stack of

D3 -branes. One can add fundamental quarks into the mix, and can even investigate

putting the field theory at finite temperature.

Another option is to introduce new operators that break some of the symmetries,

and then reassess the behaviour of both the gauge and string theories to see if the

correspondence still holds. In this chapter we will be concerned with adding exactly

marginal operators, which break various symmetries, including supersymmetry, but that

leave the theory with conformal invariance at the quantum level. The importance of this

class of operators, and their connection with renormalisation group flow was outlined in

Section 2.1.

61
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3.1.1. Marginal Deformations

Much has been learnt recently about gauge theory–string theory duality by investigat-

ing how the AdS/CFT correspondence [64] is realised when the N = 4 supersymmetric

gauge theory is deformed by exactly marginal operators [4, 5, 51, 80–92]. Since the gauge

theory stays conformal it is expected to be dual (in the appropriate limit) to a super-

gravity solution with Anti-de Sitter geometry. There are two points that make these

marginal deformations particularly interesting. First, is that these deformations give

a continuous family of theories parameterised by the deformation parameters βi. The

AdS/CFT duality provides a mapping between a gauge theory and a string theory for

each value of βi. By studying the β-dependence in gauge theory and in the dual su-

pergravity (or string theory) one thus acquires a more detailed understanding of the

AdS/CFT correspondence. The second feature of marginal β-deformations is that they

break (partially or completely) the supersymmetry of the original N = 4 theory.

Lunin and Maldacena [4] have constructed a supergravity dual of the β-deformed

N = 4 super Yang-Mills theory (β-SYM) which preserves N = 1 supersymmetry. One

notable feature of this background is that the dilaton picks up a non-trivial dependence

on the coordinates of the deformed 5-sphere. This leads to a bit of a puzzle in relation to

the matching of instantons discussed in Section 2.4.3. On the face of it, one would expect

the Yang-Mills instantons to contribute factors of e2πikτ0 where τ0 is the complexified

gauge coupling, whereas the analogous D-instanton calculation should result in factors of

e2πikτ with τ = τ̂+δτ being the deformed axio-dilaton. Recall that from the undeformed

correspondence we expect τ̂ ≡ τ0 (cf. equation (2.83)). To shed light on this issue, in

reference [90] the supergravity solution of [4], and the resulting string theory effective

action, was tested against an instanton calculation on the gauge theory side, in an

analysis similar to Section 2.4.3. It was found that the correct expression for the dilaton-

axion supergravity field τ was indeed reproduced by instanton effects in gauge theory,

and that the higher-derivative terms in the string theory effective action included the

appropriate modular forms fn(τ, τ̄ ) of this τ as one would expect from the SL(2,Z)

duality of IIB string theory.

One way of realising the solution generating method of [4] is by operating with a

combined T-duality-shift-T-duality (TsT) transformation on the supergravity AdS5× S5

geometry. This approach enabled Frolov [5] to extend the method and to find a three-

parameter family of non-supersymmetric supergravity solutions. This background has
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to be AdS/CFT dual to a non-supersymmetric conformal gauge theory obtained by a

certain three-parameter deformation of the N = 4 sYM.

In this chapter we apply the instanton approach of references [71, 90] to investigate

this non-supersymmetric gauge theory and to test the supergravity solution of refer-

ence [5]. We start in Section 3.2 by writing down the supergravity solution of [5], which

is parameterised by three real deformations γi, and then specifying the corresponding

γi-deformed gauge theory. In Section 3.3 we then carry out an instanton calculation in

this γi-deformed gauge theory with a view to reconstructing the dilaton-axion super-

gravity field τ from gauge theory. Taking the appropriate double-scaling limit, γi ≪ 1,

our result

τ = τ0 + 2Nπi
(
γ23 µ

2
1µ

2
2 + γ21 µ

2
2µ

2
3 + γ22 µ

2
3µ

2
1

)
(3.1)

reproduces the τ -field of Frolov’s supergravity dual. Here τ0 is the usual complexified

coupling constant in gauge theory (cf. equation (2.82)), γi are the three deformation

parameters, and µi are coordinates on the deformed S5 sphere in supergravity that

emerge in the gauge theory as important collective coordinates of the non-perturbative

sector in the large N limit. We generalise our set-up in Section 3.5 to include complex-

valued deformations βi = γi + iσi, and discuss the interpretation of all our results in

Section 3.6. We will round this chapter off by indicating some of the interesting fields

of research that are related to this work.

3.2. Three-parameter Deformation of AdS5 × S5

We begin by reviewing the theories on each side of the gauge/string duality we wish

to study. The solution generating tool on the supergravity side is the combination of

T-dualities and coordinate shifts known as a TsT transformation. These allow one

to start with the known duality between IIB supergravity on a flat background and

N = 4 sYM, and generate new supergravity backgrounds [4, 5]. The deformation on

the gauge theory side will be incorporated by introducing an appropriate star-product

between fundamental fields. For the most part we will concern ourselves with real

valued deformations of the theory. The issues that arise for complex deformations will

be discussed in Section 3.5.
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3.2.1. Supergravity Dual

In order to perform supergravity TsT transformations one must first identify suitable

tori in the initial geometry. In the case of [4] this torus was chosen to be the one dual to

the U(1)×U(1) global symmetry of β-SYM. If we parameterise this torus with angular

variables (ϕ1, ϕ2), then a TsT transformation with parameter γ̂ is the following:

T — T-dualise in the ϕ1 direction

s — Perform the shift ϕ2 → ϕ2 + γ̂ϕ1

T — T-dualise again along ϕ1

The resulting supergravity solution was shown in [4] to be dual to β-SYM for small, real

β under the association γ̂ = R2β where R is the radius of S5.

The S5 factor of AdS5× S5 can be parameterised with the coordinates µ1, µ2, µ3 with

0 ≤ µi ≤ 1 subject to µ2
1 + µ2

2 + µ2
3 = 1 and the angular coordinates φ1, φ2, φ3. There

are clearly three independent choices of torus corresponding to the pairs (φ1, φ2), (φ2, φ3)

and (φ3, φ1). The three parameter deformation constructed in reference [5] follows by

performing a separate TsT transformation on each of these, with shift parameters γ̂3, γ̂1

and γ̂2 respectively. The resulting Type IIB supergravity background of Frolov, written

in string frame with α′ = 1, takes the form:

ds2str = R2


ds2AdS +

∑

i

(
dµ2

i +Gµ2
i dφ

2
i

)
+Gµ2

1 µ
2
2 µ

2
3

(
∑

i

γ̂i dφi

)2

 , (3.2)

G−1 = 1 + γ̂23 µ
2
1 µ

2
2 + γ̂21 µ

2
2 µ

2
3 + γ̂22 µ

2
3 µ

2
1 , e2φ = e2φ0 G ,

BNS = R2G
(
γ̂3 µ

2
1 µ

2
2 dφ1 ∧ dφ2 + γ̂1 µ

2
2 µ

2
3 dφ2 ∧ dφ3 + γ̂2 µ

2
3 µ

2
1 dφ3 ∧ dφ1

)
.

We present here only the fields that will be relevant for our purposes. The full com-

plement, including the RR forms C2 and C4 and self-dual five-form fields is given in

reference [5]. To make contact with the dual gauge theory we have the usual AdS/CFT

relation R4 = 4πeφ0N ≡ λ. The real deformation parameters γ̂i appearing in (3.2) are

related to the γi deformations on the gauge theory side via a simple rescaling, γ̂i = R2γi.

We note that the dilaton field φ in (3.2) is not simply a constant, but depends on the

coordinates of the deformed sphere S̃5. The axion field C = C0 is a constant for real-

valued deformations γi, but will also acquire a non-trivial parameter dependence when

we consider complex deformations in Section 3.5.
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A few further comments: For the supergravity regime to be valid, we need both

R ≫ 1 and Rγi = γ̂i /R ≪ 1. This last inequality ensures that the sizes of the tori

on which we TsT transform are not smaller than the string scale. Also, when all three

deformation parameters are equal, γ̂1 = γ̂2 = γ̂3 ≡ γ̂, this solution reverts to that of

Lunin and Maldacena [4], and the dual gauge theory is β-SYM.

3.2.2. Gauge Theory Formulation

Frolov’s supergravity solution (3.2) with three real deformations γi contains an AdS5

factor. It is thus expected to be dual to a conformal gauge theory obtained by exactly

marginal but non-supersymmetric deformations of the N = 4 sYM. More precisely, the

gauge theory should be conformal in the large number of colours limit (which we always

assume in this chapter) where the supergravity approximation to string theory can be

trusted.

We will be considering non-supersymmetric deformations of the N = 4 gauge theory,

parameterised by three phases, eiπγ1 , eiπγ2 and eiπγ3 , with the parameters γi taken to

be real for the time being. It is convenient to account for these phase-deformations by

introducing a star-product — this helps ensure conformal invariance of the theory in

the large N limit, as we will see shortly. Our first task will be to take the component

Lagrangian of N = 4 supersymmetric Yang-Mills and modify all products of fields into

star-products. For any pair of fields f and g, the star-product that gives rise to our

deformation is [87]:

f ∗ g ≡ e−iπ Q
f
i Q

g
j ǫijkγk fg . (3.3)

Here Qf
i and Qg

i are the charges of the fields f and g under the i = 1, 2, 3 Cartan

generators of the SU(4)R R-symmetry belonging to the original N = 4 sYM. The value

of these charges for all component fields is the same as in reference [84] and is given in

Table 3.1.

These values are easy to derive from the fact that the integral of the superpotential

of N = 4 sYM

∫
d2θWN=4 =

∫
d2θ i g Tr(Φ1Φ2Φ3 − Φ1Φ3Φ2) , (3.4)
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Φ1 Φ2 Φ3 Aµ λ1 λ2 λ3 λ4

Q1 1 0 0 0 +1
2
−1

2
−1

2
+1

2

Q2 0 1 0 0 −1
2

+1
2
−1

2
+1

2

Q3 0 0 1 0 −1
2
−1

2
+1

2
+1

2

Table 3.1.: Charges Qi of the component fields in the theory under the Cartan subgroup of
the SU(4)R.

is invariant under the action of each of these Cartan generators on the superfields Φi:

Φ1 → eiφ1 Φ1 , Φ2 → eiφ2 Φ2 , Φ3 → eiφ3 Φ3 . (3.5)

This implies that the Grassmann N = 1 superspace coordinate θα is charged under these

transformations with Qθ = (1
2
, 1
2
, 1
2
). The charges of the scalar fields Φi are precisely the

same as of their parent superfields Φi in (3.5) and the charges of the fermions λA in

Table 3.1 can mostly be read off from equation (3.5) keeping in mind

Φi(x, θ) = Φi(x) + θ ·λi(x) + · · · .

The fourth fermion λ4 is the N = 1 superpartner of Aµ. It’s charge assignment follows

from the invariance of the gauge kinetic term,
∫
d2θWW , where

Wα = − i λ4α − (σµνθ)α Fµν + · · ·

is the usual field-strength chiral superfield. We can also see from here that the gauge

field Aµ is neutral.

The Lagrangian of the deformed theory follows from the component Lagrangian of

N = 4 sYM and the definition of the star-product (3.3). We have1

L =
1

g2
Tr

(
1

4
F µνFµν + (DµΦ̄i)(DµΦi) −

1

2
[Φi,Φj ]Cij

[Φ̄i, Φ̄j ]Cij
+

1

4
[Φi, Φ̄

i][Φj , Φ̄
j ]

+ λAσ
µDµλ̄

A − i [λ4, λi]B4i
Φ̄i + i [λ̄4, λ̄i]B4i

Φi (3.6)

+
i

2
ǫijk[λi, λj]Bij

Φk +
i

2
ǫijk[λ̄

i, λ̄j ]Bij
Φ̄k

)
.

1For convenience, all fields have been rescaled Φ→ 1

g
Φ to pull out an overall factor of 1

g2 .
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This Lagrangian contains only ordinary products between the fields; all modifications

due to the star-product (3.3) are assembled in (3.6) into the deformed commutators of

scalars Φi, Φ̄i and fermions λA, λ̄
A. These deformed commutators are

[Φi,Φj]Cij
:= eiCij ΦiΦj − e−iCij ΦjΦi , i, j = 1, 2, 3 , (3.7a)

[λA, λB]BAB
:= eiBAB λAλB − e−iBAB λBλA , A, B = 1, . . . , 4 . (3.7b)

Deformed commutators for Φ̄ and λ̄ fields are defined in the same way as in (3.7), and

we note in particular that the commutator [Φi, Φ̄
i] in (3.6) is undeformed. The matrices

C and B are the same as in reference [84], and read

C = π




0 −γ3 γ2

γ3 0 −γ1
−γ2 γ1 0


 , (3.8a)

B = π




0 −1
2
(γ1 + γ2)

1
2
(γ3 + γ1)

1
2
(γ2 − γ3)

1
2
(γ1 + γ2) 0 −1

2
(γ2 + γ3)

1
2
(γ3 − γ1)

−1
2
(γ3 + γ1)

1
2
(γ2 + γ3) 0 1

2
(γ1 − γ2)

−1
2
(γ2 − γ3) −1

2
(γ3 − γ1) −1

2
(γ1 − γ2) 0




. (3.8b)

We see that the whole effect of the 3-parameter deformation is encoded in these matrices,

which introduce the appropriate phases into the 4-scalar and Yukawa interactions of the

deformed theory (3.6). It is important to note that the induced phases of the fermions

(determined by the matrix B) are different from those of the scalars (in C). Also, the

ranks of B and C are different because the matrix B introduces phases to the Yukawa

interactions involving all fermions, including the gaugino λ4. The Lagrangian (3.6)

correctly incorporates the four-scalar interactions written down in [5, 87]. In addition to

these, equations (3.6) and (3.8) give the precise form of the interactions with fermions,

which we will require for the instanton calculations performed later in this chapter.

For the special case of all γi being equal, the matrices B and C essentially coincide,

giving the same phase factors to scalars and fermions. In this case, the gauge theory is

N = 1 supersymmetric and is dual to the supergravity solution of Lunin and Maldacena

[4]. In the general case of unequal deformations γi, the fermion and scalar phases differ

and the gauge theory is non-supersymmetric.
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Finally, we need to make sure that the γ-deformed gauge theory defined by equa-

tions (3.6) and (3.8) is exactly marginal in the large N limit. In general, this would be a

non-trivial task since the theory is not supersymmetric and one cannot use the approach

of Leigh and Strassler [51] to establish the required conformal invariance. Instead, the

marginality of the theory follows from the use of the star-product. It is known [93] that

the Moyal star-product, often used in the formulation of noncommutative field theory,

does not affect large N perturbation theory. More precisely, the planar diagrams of the

theories with and without the star-products can differ only by an overall phase-factor

that depends on the external lines. This argument essentially uses only the associativity

property of the star-product, and it also applies to our choice (3.3), see section 3.2 of

reference [94] for more details. This implies that all planar perturbative contributions to

the beta functions and anomalous dimensions of our deformed theory are proportional

to those in the conformal N = 4 theory, and hence vanish. Thus, the γ-deformed theory

(3.6), (3.8) is conformal in large N perturbation theory.

The γ-deformed theory is an interesting field theory on its own right. It is a non-

supersymmetric theory which fully inherits the remarkable perturbative structure of

large N superconformal N = 4 sYM. In reference [95] it was argued that the Maximally-

Helicity-Violating (MHV) n-point amplitudes of N = 4 sYM have an iterative structure,

such that the kinematic dependence of all higher-loop MHV amplitudes can be deter-

mined from the known one-loop results. It then follows [94] that the same must be true

for the planar MHV amplitudes of the deformed theory. This is yet-another consequence

of the fact that the deformations were introduced via a star-product of the type (3.3).

It is remarkable that such an intricate, iterative structure can exist for the multi-loop

amplitudes of a non-supersymmetric theory.

3.3. Instanton Effects

The effect of instantons in β-deformed N = 4 gauge theory was investigated in detail by

Georgiou and Khoze in reference [90]. We will now précis their discussion, generalising

where necessary to make it applicable to our non-supersymmetric γ-deformed theory.

The first point to note is that the deformation only enters through interaction terms,

so the field content of the non-supersymmetric theory will be the same as for N = 4

sYM. This leads to the same cancellation of determinant factors in the instanton measure

that we noted in Section 2.2.2 simplifies supersymmetric calculations, and also suggests
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that we use a notation that makes the connection to the undeformed N = 4 sYM case

transparent.

Our eventual aim is to calculate the contribution to correlation functions coming from

perturbing around a multi-instanton background. Unfortunately, even in the maximally

supersymmetric case, constructing an instanton solution is a formidable task. Solving

the coupled Euler-Lagrange equations that follow from the N = 4 Lagrangian, although

possible in principle, is too difficult to be practical. Not having an explicit expression

for the saddle point unsurprisingly poses a real obstacle to computing its effect on

correlators. Fortunately, if we’re only interested in the corrections that arise at leading

semi-classical order, it suffices to solve the Euler-Lagrange equations order-by-order in

the gauge coupling [71]. In this case, the approximate instanton configuration in our

deformed theory is defined (to leading order in g) to satisfy the following equations for

the gauge field,

Fmn = ∗Fmn , (3.9)

fermions,

/̄Dα̇αλAα = 0 , (3.10)

and scalars,

D2 ΦAB =
√

2 i ( eiBABλAλB − e−iBABλBλA ) . (3.11)

Here /̄Dα̇α = Dµσ̄α̇αµ and D2 = DµDµ where Dµ is the covariant derivative in the instan-

ton background Aµ. The matrix B is given in (3.8).

There are 8kN fermionic zero modes that correspond to solutions of (3.10) in the

approximate k-instanton background. Only those which are protected by some form of

symmetry are expected to survive to all orders and solve the full saddle point equations.

The failure of the other fermi zero modes to be exact is felt as additional contributions

to the instanton action, which lift them. In N = 4 sYM 16 of these fermion zero

modes are exact. These solutions correspond to 2N = 8 supersymmetric and 2N = 8

superconformal fermion zero modes of the original N = 4 gauge theory. In our deformed

theory, supersymmetry is lost and all of the fermion zero modes are lifted in the instanton

action as will be seen shortly.
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The scalar field equation (3.11) follows from the Yukawa interactions of the La-

grangian (3.6); the four-scalar interactions do not enter the instanton construction to

leading order in g. The scalar fields are written in a basis ΦAB = −ΦBA that is related

to the usual basis Φi used in (3.6) as follows:

Φ1 =
1√
2

(φ1 + iφ2) = 2 Φ̄32 = 2 Φ41

Φ2 =
1√
2

(φ3 + iφ4) = 2 Φ̄13 = 2 Φ42 (3.12)

Φ3 =
1√
2

(φ5 + iφ6) = 2 Φ̄21 = 2 Φ43

This representation is discussed further in Appendix A. The instanton configuration

defined as the solution of equations (3.9)-(3.11), is used to construct a semi-classical

instanton integration measure, to which we now turn.

3.3.1. The γ-deformed Instanton Measure

To calculate correlation functions in an instanton background, we need a measure that

determines how each configuration is weighted in the path integral. This is usually pro-

vided as an integral over the collective coordinates of the instanton solution. The general

multi-instanton measure was constructed in reference [71] for N = 4 sYM and gener-

alised in [90] to account for the supersymmetry preserving β-deformations. The result of

reference [90] can now be straightforwardly adapted to the case of non-supersymmetric

γi deformations. We will concentrate here on the simplest case of the single-instanton

measure; the multi-instanton measure can be similarly built up by modifying the con-

struction of [71, 90].

The 1-instanton measure of the γi-deformed theory, valid for the calculation of cor-

relation functions of gauge invariant operators, reads:2

∫
dµ e−S1−inst =

2−31π−4N−5g4N

(N − 1)!(N − 2)!

∫
d4x0 dρ d

6χ
4∏

A=1

d2ξA d2η̄A d(N−2)νA d(N−2)ν̄A

ρ4N−7 exp

[
− 8π2

g2
+ iθ − 2ρ2χaχa +

4πi

g
χABΛAB

]
. (3.13)

2For the derivation of this result, see Section 4 of reference [90].
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The integral above is over the bosonic and fermionic (Grassmann) collective coordinates

of the instanton. The fermionic ones comprise 4(N − 2) parameters νAi (where i =

1, . . . N − 2) that can be thought of as the N = 4 superpartners of the parameters

that specify the embedding of the instanton’s SU(2) in the full SU(N) gauge group, 8

supersymmetric coordinates ξAα and 8 superconformal modes η̄Aα̇ (where α = 1, 2 and

α̇ = 1, 2). The bosonic collective coordinates include the instanton position xµ0 , the

scale-size ρ and the 6 additional variables χa that are coupled to fermion modes in the

instanton action in the exponent in (3.13).

The variables χa or χAB deserve further comment. They transform in the vector

representation of the SO(6) ∼= SU(4) R-symmetry and are subject to the reality con-

dition χAB = 1
2
ǫABCDχCD, as explained in Appendix A. They are introduced in the

derivation of equation (3.13) in order to bilinearise the fermionic quadrilinear term

∼ ǫABCDΛABΛCD that appears in the instanton action. It is a curious and interesting

fact that although the χAB variables initially only appear to be required as a math-

ematical crutch, they serve a very important rôle in the mechanism of the AdS/CFT

correspondence; in the large N limit they metamorphose into collective coordinates that

are dual to the non-AdS5 part of the geometry (in the case of N = 4 sYM, this is just

S5).

Finally we come to the term ΛAB in the instanton action (the exponent of equa-

tion (3.13)). This is a fermionic bilinear defined as

ΛAB =
1

2
√

2

N−2∑

i=1

(
eiBAB ν̄Ai ν

B
i − e−iB

AB

ν̄Bi ν
A
i

)

+ i 8
√

2 sin(BAB)
(
ρ2η̄A · η̄B + ξA · ξB

)
.

(3.14)

The 4× 4 antisymmetric matrix BAB was defined in (3.8). The fact that the instanton

action in (3.13) depends on all of the fermionic collective coordinates (through ΛAB)

implies that they are all lifted. This is to be expected in the non-supersymmetric theory.

When dealing with a path integral measure such as equation (3.13) one must always

bear in mind the kind of correlation functions it can be used to compute. For example, we

have already seen how the fermionic zero mode structure dictates which observables are

sensitive to the instanton background. For the purposes of this chapter — understanding

the matching of exponents discussed in Section 3.1.1 — we will only need to look at the

sixteen dilatino current correlator (2.91) that featured in Section 2.4.3. This enables us

to exploit a few simplifications in the measure.
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Recall that in the original N = 4 theory we chose to look at the correlator (2.91)

because it saturated all 16 exact fermi zero modes of the instanton. In the non-

supersymmetric case at hand, every one of these zero modes is lifted in the effective

action by the second line of equation (3.14), but this is of little consequence. The fact

that the Grassmann integration of η̄ and ξ modes is always saturated by the operator

insertion means we can legitimately neglect the second term in equation (3.14) (it can

never contribute). This relies crucially on the absence of ν and ν̄ modes in the sixteen

dilatino operator. Other current correlators,3 such as those corresponding to higher

Kaluza-Klein excitations on the (deformed) five-sphere, have explicit dependence on the

ν and ν̄. In this situation, saturating all fermionic integrals would, for some terms,

require pulling down appropriate factors of η̄ and ξ from the effective action, thus re-

quiring us to keep the full expression (3.14) and leading to a more involved calculation.

In summary, by restricting our attention to the sixteen dilatino current correlator, we

can always drop the second term on the right hand side of equation (3.14), which is

what we will do from now on.

3.4. Large N Saddle-point Integration

Following the approach of [90] we proceed by integrating out fermionic collective co-

ordinates νAi and ν̄Ai from the instanton partition function (3.13). For each value of

i = 1, . . . , N − 2 this integration gives a factor of

(
4π

g

1√
2

)4

det4
(
eiBAB χAB

)
. (3.15)

The determinant above can be calculated directly. It will be useful to express the result

in terms of the three complex variables Xi that are defined in terms of χAB in a way

analogous to equations (3.12):

X1 = χ1 + iχ2 = 2
√

2χ32 = 2
√

2χ41

X2 = χ3 + iχ4 = 2
√

2χ13 = 2
√

2χ42 (3.16)

X3 = χ5 + iχ6 = 2
√

2χ21 = 2
√

2χ43

3For more detail on the zero mode structure of current correlators, we refer the reader to reference [75].
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In terms of these degrees of freedom, the determinant takes the form

det4
(
eiBAB χAB

)
=

∣∣∣∣∣∣∣∣∣∣∣∣

0 X†
3 e

− iπ
2
(γ1+γ2) −X†

2 e
iπ
2
(γ3+γ1) X1 e

iπ
2
(γ2−γ3)

−X†
3 e

iπ
2
(γ1+γ2) 0 X†

1 e
− iπ

2
(γ2+γ3) X2 e

iπ
2
(γ3−γ1)

X†
2 e

− iπ
2
(γ3+γ1) −X†

1 e
iπ
2
(γ2+γ3) 0 X3 e

iπ
2
(γ1−γ2)

−X1 e
− iπ

2
(γ2−γ3) −X2 e

− iπ
2
(γ3−γ1) −X3 e

− iπ
2
(γ1−γ2) 0

∣∣∣∣∣∣∣∣∣∣∣∣

.

(3.17)

Multiplying everything out, this evaluates to

det4
(
eiBAB χAB

)
=

1

64
(|X1|2 + |X2|2 + |X3|2)2 −

1

16
sin2(πγ3) |X1|2|X2|2

− 1

16
sin2(πγ1) |X2|2|X3|2 −

1

16
sin2(πγ2) |X3|2|X1|2 . (3.18)

We note that the expression above depends only on the three absolute values of Xi and

is independent of the three angles. We can further change variables as follows:

|Xi| = r µi ,

3∑

i=1

µ2
i = 1 , (3.19)

and write

(
4π

g

1√
2

)4

det4
(
eiBAB χAB

)
=

(
π

g

)4

r4
(

1− 4 sin2(πγ3)µ
2
1µ

2
2 (3.20)

− 4 sin2(πγ1)µ
2
2µ

2
3 − 4 sin2(πγ2)µ

2
3µ

2
1

)
.

In summary after integrating out all of the ν and ν̄ fermionic collective coordinates

we find the following generic instanton factor in the measure:

Finst := e
− 8π2

g2
+iθ (

1 − 4 sin2(πγ3)µ
2
1µ

2
2 − 4 sin2(πγ1)µ

2
2µ

2
3 − 4 sin2(πγ2)µ

2
3µ

2
1

)N−2

≡ e2πiτ0 (1 − Q(µi, γi))
N−2 . (3.21)

This factor is integrated over the AdS5× S5 space spanned by xµ0 , ρ and the five angles

of χa

∫
d4x0

dρ

ρ5
d5χ̂ = (2π)3

∫
d4x0

dρ

ρ5
dµ1 dµ2 dµ3 δ(µ

2
1 + µ2

2 + µ2
3 − 1) , (3.22)
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exactly as in [71, 90]. As we are interested in the limit N → ∞ we can rewrite equa-

tion (3.21) as a total exponent and evaluate the integrals over µi via a saddle-point

approximation,

∫

µi

e2πiτ0 (1 − Q(µi))
N−2 =

∫

µi

exp
(

2πiτ0 + (N − 2) log
(
1 − Q(µi)

))

≈ exp
(
2πiτ0 − N Q(µi| saddle)

)
. (3.23)

This method selects the dominant value of the function Q(µi) to be Q(µi| saddle)∼ 1
N

and

has therefore allowed us to expand the log to leading power in Q in the last line.

What we have calculated so far is a large N expression for the characteristic instanton

factor

Finst = exp
(
2πiτ0 − N Q(µi| saddle, γi)

)
. (3.24)

This factor arises in instanton calculations of generic correlation functions in gauge

theory. As we explored in Section 2.4.3, when applied to the calculation of Yang-Mills

correlators involving operators that are dual to supergravity fields, the instanton result

in gauge theory must match with the corresponding D-instanton contribution in string

theory. This means that the characteristic factor (3.24) due to the Yang-Mills instanton

must correspond to exp
(
2πiτ

)
, where τ is the dilaton-axion field in dual string theory.4

By matching exponents we read off the instanton prediction for the dilaton-axion field:

τ = τ0 −
N

2πi

(
4 sin2(πγ3)µ

2
1µ

2
2 + 4 sin2(πγ1)µ

2
2µ

2
3 + 4 sin2(πγ2)µ

2
3µ

2
1

)
. (3.25)

This semi-classical field theory result is valid for any value of the parameters γi and, as

such, can be interpreted [91] as a (weak-coupling) prediction for the τ field in the exact

string theory background.

The supergravity regime is reached in the limit of γi ≪ 1 which gives:

τ → τ0 + 2Nπi
(
γ23 µ

2
1µ

2
2 + γ21 µ

2
2µ

2
3 + γ22 µ

2
3µ

2
1

)
. (3.26)

4More detail about instanton and D-instanton contributions to the string effective action can be found
in [71, 73, 74, 90].
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This precisely matches with Frolov’s three parameter supergravity solution (3.2) for the

dilaton-axion field:

τ = ie−φ + C (3.27a)

= ie−φ0
(

1 + γ̂23 µ
2
1µ

2
2 + γ̂21 µ

2
2µ

2
3 + γ̂22 µ

2
3µ

2
1

)1/2
+ C0 (3.27b)

= τ0 +
ie−φ0

2

(
γ̂23 µ

2
1µ

2
2 + γ̂21 µ

2
2µ

2
3 + γ̂22 µ

2
3µ

2
1

)
, (3.27c)

where the deformation parameters are γ̂2i = N g2 γ2i and one identifies the coordinates on

the deformed supergravity S̃5 sphere with the χ-collective coordinates of the instanton.

One might be concerned that in the instanton measure we integrate over the angular

components of the χa variables, which form a proper S5, whereas in the supergravity

picture this integral should correspond to the volume of the deformed five-sphere S̃5.

This incongruence can be reconciled be considering the order in which limits are taken.

As we use an instanton multiplet that is only defined to leading order in g, we are forced

to work in the small g regime, but γi can be arbitrary. This allows us to make classical

string predictions such as equation (3.25). Only then does the supergravity limit γi ≪ 1

need to be taken. The volume of the deformed S̃5 is found in the supergravity solution

(3.2) to be

∫
ω̃5 =

∫
d5Ω̂G , (3.28)

where the integral on the right-hand side is over the angles of an S5, and

G =
(

1 + N g2
(
γ23 µ

2
1 µ

2
2 + γ21 µ

2
2 µ

2
3 + γ22 µ

2
3 µ

2
1

) )−1

= 1 − N g2
(
γ23 µ

2
1 µ

2
2 + γ21 µ

2
2 µ

2
3 + γ22 µ

2
3 µ

2
1

)
+ . . . (3.29)

≈ 1 for g ≪ 1 .

We see from the last line that terms containing the deformation can (and should) be

neglected in the small g limit in which we work. So the instanton measure can not be

expected to be sensitive to the deformation at leading order in g. Nevertheless, as we

saw in equation (3.27), the deformation is still evident in the exponent.

It is clear in the above that an analogous calculation for the case of one anti -instanton

would yield the same type of gauge/supergravity matching for the conjugate parameter

τ̄ .
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One can also extend this calculation to include the multi-instanton sectors, as in

[71, 90]. In the large N limit the partition function in the k-instanton sector is:

∫
dµkinst e

−Sk
inst =

√
Ng2

233π27/2

k

g2

−7/2∑

d| k

1

d2

∫
d4x dρ

ρ5
d5Ω̂

∏

A=1,2,3,4

d2ξAd2η̄Ae2πikτ , (3.30)

where the value of τ here is given by the same γ-deformed complex coupling shown in

equation (3.25). The way this measure facilitates the matching of gauge theory corre-

lators with terms in the dual supergravity effective action, including the intriguing sum

over integral divisors of the instanton number, was described at the end of Section 2.4.3.

3.5. Complex β Deformations

In this section we consider the more general case of marginal deformations with complex

values of the deformation parameters βi ∈ C

β1 = γ1 + i σ1 , β2 = γ2 + i σ2 , β3 = γ3 + i σ3 . (3.31)

The supergravity solution corresponding to this case was obtained in reference [5] by

performing three consecutive STsTS−1 transformations (where S is an S-duality) acting

on the three natural tori of S5. This family of solutions is expected to be dual to a

deformed Yang-Mills theory with three complex deformation parameters.

We will first explain how to extend the instanton calculation on the gauge theory

side from real to complex βi-deformations. We will again carry out this calculation for

arbitrary (not necessarily small) values of the deformation parameter βi ∈ C. The main

result of this section is the instanton prediction for the dilaton-axion field τ . We will

show that in the limit of small |βi| it will match precisely with the τ field of Frolov’s

supergravity dual [5]. As before, the small-βi limit is required to ensure the validity of

the supergravity approximation to full string theory.

We now need to specify the deformed gauge theory. The absence of supersymmetry

and the complex-valuedness of the deformation parameters βi make this more difficult

than then previous (real-valued) case. It is not entirely clear how to uniquely define this

theory and, more importantly, whether one can guarantee its marginality in the large

N limit. The absence of supersymmetry prevents one from using the Leigh-Strassler

approach [51] in terms of conformal constraints, while the complex-valuedness of the
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deformation parameters makes it difficult to use the star-product formulation.5 For-

tunately, the instanton calculation that we are about to present does not require full

knowledge of the gauge-theory Lagrangian, only its gauge and Yukawa interactions spec-

ified below.

The instanton configuration at leading order in a weak gauge coupling expansion

is defined as in equations (3.10)-(3.11) with the scalar field equation (3.11) taking the

form:

D2ΦAB =
h

g

√
2 i ( eiπBAB λAλB − e−iπBAB λBλA ) for A, B 6= 4 , (3.32a)

D2ΦAB =
√

2 i ( eiπBAB λAλB − e−iπBAB λBλA ) for A or B = 4 . (3.32b)

Here BAB is a complex-valued matrix obtained from the one in (3.8) by the substitution

γi → βi. The factor of h/g on the right hand side of (3.32a) accounts for the change of

the coupling constant from g to h in the Yukawa couplings, where h is an new complex

parameter. This coupling was also secretly present in the real-deformation case, but a

constraint that follows from the exact marginality of the theory sets g = h to leading

order. A similar constraint could, in principle, be imposed here, but this will turn out

to be unnecessary. For our calculation we will not need to use an explicit resolution of

this constraint.

We note that the resulting instanton configuration depends holomorphically on h: at

leading order in g the dependence on h∗ can come only through the equation conjugate

to (3.32), which involves anti-fermion zero modes λ̄ on the right hand side. These are

vanishing in the instanton background. It is then also clear that the anti-instanton

configuration, will depend on h∗ and not on h.

Just as we did in Section 3.3 we integrate out the fermionic collective coordinates

νAi and ν̄Ai . For each value of i = 1, . . . , N − 2 this integration gives a factor of the

determinant (3.15) times an appropriate rescaling by h/g. We find

(
1

g

)4

det4
(
eiπBAB χAB

)
−→

(
1

g

)4 (
h

g

)2

det4
(
eiπBAB χAB

)
. (3.33)

5For related discussion on this point, see reference [96].
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After evaluating this determinant, the result for the characteristic instanton factor in

the large N limit is:

Finst = exp

[
2πiτ0 + 2N log

(
h

g

)
+ N log

(
1 − Q(µi, βi)

)]
, (3.34)

where Q(µi, βi) is the same function as before, but with the complex βi parameters in

place of real γi,

Q(µi, βi) = 4
(
sin2(πβ3)µ

2
1µ

2
2 + sin2(πβ1)µ

2
2µ

2
3 + sin2(πβ2)µ

2
3µ

2
1

)
. (3.35)

By taking the small deformation limit, |βi|2 ≪ 1, appropriate for comparison with

the supergravity solution, we find

Finst = exp
[
2πiτr− 4π2N

(
(γ21 − σ2

1 + 2iγ1σ1)µ
2
2µ

2
3 (3.36)

+ (γ22 − σ2
2 + 2iγ2σ2)µ

2
1µ

2
3 + (γ23 − σ2

3 + 2iγ3σ3)µ
2
2µ

2
1

)]
.

The constant τr appearing in this expression is defined as

τr := τ0 −
iN

π
log

h

g
(3.37)

and can be interpreted as a ‘renormalised’ Yang-Mills coupling. The importance of

this shift was first identified for the case of complex parameters β1 = β2 = β3 = β in

reference [82], where the authors argued τr acts as the modular parameter of an SL(2,Z)

transformation that permutes the vacuum solutions, with various combinations of the

parameters behaving as modular forms:

τr −→
aτr + b

cτr + d
, where


a b

c d


 ∈ SL(2,Z) ,

β −→ β

cτr + d
, (h/g)2 sin(πβ) −→ (h/g)2 sin(πβ)

cτr + d
.

This can be thought of as a vestige of the electromagnetic duality of N = 4 sYM. From

this perspective the appearance of τr in equation (3.36) is not all that surprising, because

as was explained in Section 2.4.3, the SL(2,Z)-action lies at the root of our instanton

test of the gauge–string duality.
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The dilaton and axion field components of Frolov’s supergravity dual with three

complex deformations are given by:

eφ = eφ0 G1/2H , C = C0 + e−φ0 H−1Q , (3.38)

where expressions for the functions G, H and Q can be found in Appendix B of [5]. By

utilising these expressions and (3.38) one can easily calculate the axion-dilaton field for

the case of complex deformations. The result thus obtained reads

e2πiτ = e2πi (ie
−φ+C)

= exp
[
− 2πe−φ0

[
1 + 1

2
(γ̂21 − σ̂2

1)µ2
2µ

2
3 + 1

2
(γ̂22 − σ̂2

2)µ2
1µ

2
3 + 1

2
(γ̂23 − σ̂2

3)µ2
2µ

2
1

]

+ 2πi
(
C0 + e−φ0(γ̂1σ̂1µ

2
2µ

2
3 + γ̂2σ̂2µ

2
1µ

2
3 + γ̂3σ̂3µ

2
2µ

2
1)
)]

(3.39)

By making the identification

γ̂i = gr
√
Nγi , σ̂i = −gr

√
Nσi , τr = ie−φ0 + C0 , (3.40)

one can immediately see this supergravity result is in perfect agreement with our field

theory prediction (3.36).

3.6. Discussion

The main result of this chapter is the fact that instanton contributions in gauge theory

confirm the non-supersymmetric supergravity solution of reference [5]. Both expres-

sions, in gauge theory and in supergravity, are continuous functions of the three com-

plex deformation parameters. What is interesting about this matching is not merely

the fact that there is a non-trivial agreement between gauge theory and supergravity,

but also that the Yang-Mills instanton calculation which is intrinsically valid only at

weak coupling, g2N ≪ 1, with N→∞, appears to give the correct result in the strong

coupling limit, g2N ≫ 1, relevant for comparison with the supergravity. This agree-

ment between the strong and the weak coupling limits is completely analogous to the

previously known instanton tests of the AdS/CFT correspondence that we discussed in

Section 2.4.3 in the N = 4 sYM context and that was more recently observed to persist

under supersymmetry-preserving β-deformations in reference [90]. In all known cases,

leading order contributions of Yang-Mills instantons calculated at g2N ≪ 1, match with
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the contribution of D-instantons in supergravity in the opposite limit g2N ≫ 1. The

agreement only holds for the instanton part of the answer; it is known that perturbative

contributions in gauge theory and in string theory do not match [74]. This suggests that

there should exist a non-renormalisation theorem that applies to the instanton effects

and explains the agreement. For a more detailed discussion on this point, we refer the

reader to references [44, 71, 90] and [97].

In this chapter we saw that the matching in the instanton sector persists for non-

supersymmetric deformations of N = 4 sYM. This implies that the non-renormalisation

theorem is not dictated by supersymmetry. There is a slightly subtle point here: the γ

deformed theory still posesses supersymmetric field content, which ensures the leading

order cancellation of determinants discussed in Section 2.2.2. Supersymmetry is broken

due to the form of the interaction between these fields. We therefore expect that the

origin of this agreement lies in identification of Yang-Mills instantons with D-instantons,

as they each arise as ‘extended’ objects or defects in their respective theories.

3.7. Future Directions

At the level of mathematical rigour, the AdS/CFT correspondence is still a conjecture,

but over the last ten years its predictions have repeatedly stood firm against intense

levels of scrutiny. The framework has been extended in many different directions, and

every time the results are shown to be astonishingly self-consistant. So with the veracity

of the correspondence established to such a high degree, some researchers are now looking

at its practical applications. As a tool in the theorist’s arsenal, it has the potential to

let us attack all sorts of strongly coupled field theory problems by describing them in

terms of a weakly coupled holographic gravity dual. These techniques have already been

applied to calculate various properties of strongly coupled Quark-Gluon Plasmas [98].

Despite the fact these calculations are performed in the gravity dual of N = 4 sYM, not

QCD (the dual of which is not known), the qualitative agreement (of certain observables)

with experimental data is apparently very good. The experiments in question involve

colliding heavy ions such as Gold or Lead nuclei, and are currently taking place at RHIC

(Brookhaven National Laboratory) and hopefully soon also at the LHC (CERN).

Another particularly pertinent application of the AdS/CFT correspondence is in the

study of gravity duals of non-relativistic systems, initiated in reference [99]. The non-

relativistic analog of the conformal group is known as the Schrödinger group. Field
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theories with this symmetry are used to describe the critical point behaviour of various

condensed matter systems. In recent work by various authors [100–102] it was shown that

gravity duals of QFTs with Schrödinger symmetry can be obtained from known pairs

with N = 1 superconformal symmetry by performing a TsT transformation, similar to

the method described in Section 3.2 for generating the γ-deformed field theory. The

main difference is, for the γ-deformation, both the T-duality and shift are performed

along spacelike directions on the S5, and so leave the conformal structure (associated

with AdS5) well alone, whereas in [101] the shift is carefully taken in a null direction (i.e.

along the lightcone) to generate theories with Schrödinger symmetry. A nice introduction

to this emerging field — applying the gauge–gravity correspondence to problems in fluid

dynamics — is given in reference [103].



Chapter 4.

Supersymmetry Breaking

“Life is really simple, but we insist

on making it complicated.”

— Confucius

Supersymmetry certainly helps to tame quantum field theory, but unfortunately it

makes things too simple. As we saw in Section 2.2.3, if the Universe were exactly su-

persymmetric, for every type of particle there would exist a corresponding superpartner

with the same quantum numbers but opposite statistics. As there is no such pairing

amongst any of the known particles, we are going to have to work harder to keep any of

the benefits of susy.

At high energies, supersymmetry is very good at ensuring the ubiquitous divergences

of quantum field theory are not too severe, and in fact all phenomenologically viable

incarnations of string theory are currently reliant on susy too. At low energies, as we

have seen susy must be broken in some way, but we must be careful: does the breaking

of supersymmetry re-introduce a hierarchy of the sort we initially set out to avoid? This

doesn’t necessarily have to be the case, provided the breaking spontaneously occurs

due to some dynamical mechanism. For example, non-perturbative effects can generate

a natural hierarchy of scales [104]. The situation is akin to QCD; nobody gets too

worried that the dimensional transmutation scale ΛQCD is much less than the Planck

scale because the relationship is approximately logarithmic:

(
ΛQCD

µ

)b
= exp

(−8π2

g2(µ)

)
=⇒ ΛQCD = MPl exp

( −8π2

b g2(MPl)

)
.
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Similarly, if susy could be dynamically broken by the effects of gaugino condensation

for example (cf. Section 2.2.2), then worrisome quadratic divergences would — at worst

— be exchanged for an altogether more palatable logarithmic fine-tuning.

4.1. Why It’s Hard

Compared to the relative order found in exactly supersymmetric theories, susy breaking

as an enterprise is beset with complications. Broadly speaking, it is possible to identify

two main themes:

Too much freedom — there is certainly more than one way to break supersymmetry,

and depending on how this is achieved, a wide variety of physics can result. From a

phenomenological point of view, the vast parameter space arising in even the most

minimal of models makes distinguishing the different susy breaking mechanisms

very challenging. There is, of course, also the perennial problem of there being very

little experimental input for such high energy physics. With any luck, at least this

will aspect will soon be changing.

SUSY is resilient — in short, susy doesn’t like being broken. One can work hard

to engineer a model with broken supersymmetry, but modifying or extending the

model often leads to a restoration of supersymmetry. This phenomenon has its roots

in the rigid mathematics of supersymmetry; there are various general theorems

one can explore to understand why it happens, and to also find useful ways of

proceeding.

We will now investigate these two issues in more detail.

4.1.1. Physical Perspective

The Soft Option

For want of a more fundamental understanding of susy breaking, and to allow for some

dialogue between susy model builders and experiment, it is useful to “parameterise our

ignorance” and classify all the possible terms that could arise in a low energy effective

Lagrangian that softly breaks supersymmetry. Within the framework of the MSSM,

detailed in Section 2.2.3, the following soft terms break susy whilst preserving the
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desired cancellation of quadratic divergences:

Lsoft = − 1

2

(
M3 G̃G̃ + M2 W̃W̃ + M1 B̃B̃

)
+ h.c. (4.1a)

−
(
ũAu Q̃Hu − d̃Ad Q̃Hd − ẽAe L̃Hd

)
+ h.c. (4.1b)

− Q̃∗m 2
Q Q̃ − L̃∗m 2

L L̃ − ũ
∗
m 2

u ũ − d̃
∗
m 2

d
d̃ − ẽ

∗
m 2

e ẽ (4.1c)

− m 2
Hu
H ∗
uHu − m 2

Hd
H ∗
dHd (4.1d)

− (BµHuHd + h.c.) (4.1e)

The first line of (4.1) represents mass terms for gauginos.1 The subsequent lines all

involve just the scalar components of the matter/Higgs chiral superfields: (4.1b) are the

trilinear A terms, (4.1c) are squark and slepton masses, (4.1d) give the Higgs fields

mass, and (4.1e) is the so-called Bµ term, which mixes the up- and down-type Higgses.

The MSSM only has one parameter (µ) more than the Standard Model, but when

we also take into consideration the soft couplings Mi, Ai, m
2
i , m

2
Hi

and Bµ, this extra

freedom jumps to a horrifying 105 variables. This is the source of many complications

associated to susy breaking; a wide variety of different physics can, in principle, result

depending on the breaking scenario. Although there is a lot of leeway in the precise

values of soft breaking parameters, general phenomenological considerations indicate

they should have a characteristic energy scale of the order of 1 TeV. This is the case,

for example, if supersymmetry is to provide a satisfactory resolution to the hierarchy

problem discussed in Section 2.2.

Mediation Mechanisms

Clearly, measuring over one hundred independent parameters is not viable, so to proceed

we have to make assumptions about how supersymmetry is broken and how the effects

are communicated to the MSSM fields. This interrelates many of the soft parameters

and hence cuts down the parameter space to something more manageable. One can then

attempt to identify general patterns in the masses and couplings, and place bounds on

the soft parameter values allowed by each mechanism.

1We adhere to the convention that a tilde (˜ ) indicates the superpartner of a Standard Model field.
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Messengers MSSM�
�
��SUSY

Figure 4.1.: Illustration of disjoint susy breaking (blue) and MSSM (red) sectors interacting
via messenger fields.

The first thing one might think to do is engineer tree-level spontaneous breaking,

much like the electroweak sector of the Standard Model. For this form of direct me-

diation, the susy breaking fields are directly coupled to MSSM fields. Unfortunately,

this idea falls at the first hurdle for the following reason. Even when susy is broken,

for the quadratic UV divergences to cancel, one can show that each supermultiplet still

obeys Sum Rules. For the down-type (s)quarks this forces the equality

m 2
d̃

+m 2
s̃

+m 2
b̃

= 2 ·
(
m 2
d +m 2

s +m 2
b

)

We know the right-hand side is ≈ 2 · (5 GeV)2, which implies all squarks must be lighter

than 7 GeV. The existence of such particles was ruled out long ago whilst searching for

the top quark.

A more flexible possibility, which has very much become the norm for studies of susy

signatures in particle physics, is to separate out the supersymmetry breaking sector from

the MSSM sector, and couple the two with messenger fields, as illustrated in Figure 4.1.

This has the advantage of decoupling the actual mechanism of susy breaking from

constraints of the real world; the phenomenology, i.e. the pattern of soft terms, depends

primarily on the nature of the messengers.

One of the most studied messenger mechanisms is gravity mediation. This is

perhaps the most natural way of communicating susy breaking from a Hidden Sector

to the supersymmetric Standard Model, in the sense that all objects that have energy

are expected to interact gravitationally, so some degree of gravity mediation is unavoid-

able. The weakness of the gravitational force (couplings are suppressed by factors of

the Planck scale MPl∼ 1.2× 10
19GeV) means the susy breaking scale has to be relatively
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high ∼ 1011 GeV to account for TeV size soft masses. The fact that gravity couples

everything to everything else, indiscriminately, causes difficulties for gravity mediated

models; they generally suffer from an excess of flavour-changing neutral current type

processes, which are tightly constrained by experimental data. Under additional as-

sumptions about the structure of gravitational interactions at high energy, a model of

gravity mediation can be derived in which all the soft terms depend on just four pa-

rameters. This is the minimal supergravity inspired susy breaking scenario (mSUGRA)

that is often used as the basis for phenomenological studies of supersymmetric particle

physics. By altering the assumptions made in connecting the Standard Model with a

theory of gravity, one arrives at different mechanisms such as anomaly mediation and

gravitino mediation. Each of these can lead to distinctive signatures in the spectrum

of particles found at low energy.

Given the success of gauge theories in modelling particle physics, and also the un-

certainties inherent in our current understanding of quantum theories of gravity, in this

thesis we will mostly be interested in constructing susy breaking models in which the

effects of gravity play a sub-dominant rôle; the Messenger Sector (and the Hidden Sector

itself) will be described entirely in terms of supersymmetric gauge field theory, with the

fields that communicate supersymmetry breaking to the Visible Sector carrying charge

under the Standard Model gauge groups. This gauge mediation paradigm for super-

symmetry breaking (GMSB) was introduced in the early days of susy model building

in references [105–110] and was subsequently revived in [111–113] (see [14] for a com-

prehensive review of GMSB patterns and phenomenology). One immediate consequence

of mediating susy breaking in this way is that there is no serious problem with flavour

changing processes. This is because the effects of susy breaking enter through the stan-

dard gauge interactions and so are flavour blind, introducing no additional flavour

structure (at tree level) beyond the usual Yukawa matrices.

We can make a rough estimate of the susy breaking scale required for gauge mediated

scenarios to deliver TeV scale soft masses. Taking susy to be broken in a Hidden Sector

at a scale
√
F , the soft masses induced by loops of messenger superfields with mass

Mmess are typically

msoft ∼
αs
4π

F

Mmess

. (4.2)

If
√
F and Mmess are of the same order of magnitude, requiring msoft∼ 1 TeV then allows

supersymmetry to be broken at a scales as low as
√
F ∼ 105 GeV. In contradistinction to
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gravity mediated scenarios, gauge mediation is thus known as a low-scale mediation

scenario, and is largely independent of the intricacies of gravity. An obvious exception

to this rule is the gravitino (superpartner of the graviton), which is expected to acquire a

mass m3/2∼ F
MPl

when susy is spontaneously broken. For low-scale scenarios, the grav-

itino is very often the lightest supersymmetric particle, and as such plays an important

rôle in both particle phenomenology and cosmology.

Renormalisation Group Running

For a given model of susy breaking, the effective soft terms (4.1) are usually derived by

integrating out the messengers fields. This gives the soft terms at the mass scale of the

messengers QMess. Typically the messenger mass scale is quite a few orders of magnitude

higher than the electroweak scale, so for comparison with experiment the derived soft

terms then need be RG evolved (cf. Section 2.1) down to lower scales. The appropriate

RG equations are usefully collected in the appendix of reference [114].

One attractive feature of the MSSM soft terms is they can provide a dynamical expla-

nation of electroweak symmetry breaking. Recall how in the Standard Model one must

simply posit a ‘mexican hat’ profile for the Higgs potential. In the MSSM, even if at a

high scale both the Higgs soft masses are positive, under renormalisation group evolution

it can happen that the m2
Hu

term is forced to a negative value at lower energies. Thus

the Higgs potential develops a minimum away from the origin which gives Hu a non-

zero vacuum expectation value and hence precipitates the breaking of SU(2)L×U(1)Y to

U(1)γ. This phenomenon is known as radiative electroweak symmetry break-

ing (REWSB), and is such a desirable feature that its successful implementation is often

used as a constraint on susy breaking models (at the expense of some freedom in other

parameters) as we shall now explain.

From equations (2.63) and (4.1) one finds the electrically neutral components of the

Higgs fields feel a potential

V (H0
u, H

0
d) =

(
|µ|2 +m2

Hu

) ∣∣H0
u

∣∣2 +
(
|µ|2 +m2

Hd

) ∣∣H0
d

∣∣2 (4.3)

−
(
BµH

0
uH

0
d + h.c.

)
+

1

8
(g2 + g′2)

(∣∣H0
u

∣∣2 −
∣∣H0

d

∣∣2
)2

,
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where g and g′ correspond to the SU(2)L and U(1)Y couplings respectively. At the

minimum of this potential, the Higgs fields obtain VEVs

〈
H0
u

〉
=

vu√
2

〈
H0
d

〉
=

vd√
2
, (4.4)

which lead to masses for the W and Z bosons

M2
W =

1

4
g2v2 M2

Z =
1

4
(g2 + g′2)v2 with v2 = v2u + v2d . (4.5)

Reproducing the observed values of these masses requires v ≈ 246 GeV. If we parame-

terise the ratio of Higgs VEVs by

tanβ =
vu
vd

, (4.6)

it is easy to show the minimisation conditions for potential (4.3) become

|µ|2 + m2
Hu

= Bµ cot β +
M2

Z

2
cos 2β (4.7a)

|µ|2 + m2
Hd

= Bµ tan β − M2
Z

2
cos 2β . (4.7b)

To ensure REWSB takes place, it is common practice in phenomenological studies of

susy breaking to take the known value of MZ and an arbitrary value of tan β (4 .

tan β < 60) at the electroweak scale, and use equations (4.7) to determine suitable

values of µ and Bµ. It may seem odd to marginalise these two parameters, at least one

of which (Bµ) should be derivable from any respectable susy breaking mechanism, but

treating them this way is often expedient owing to unresolved issues involving µ and Bµ,

which we will come to shortly.

The first real test of the viability of a susy breaking scenario comes from obtaining

its spectrum of MSSM particle masses at collider energy scales. To do this one first

RG evolves the known Standard Model Yukawa couplings from the electroweak scale up

to a high energy scale, which for sake of argument2 we take to be the messenger mass

scale QMess. Note, the scale evolution in this step involves making an arbitrary choice

for the initial values of the soft parameters. The values of soft parameters (except µ

and Bµ) derived from the susy breaking model can then be imposed (they comprise the

high-scale boundary conditions of the system). All couplings are then evolved down to

2As an alternative, one might consider using the scale of gauge coupling unification.
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a low scale QSUSY at which point the electroweak symmetry breaking conditions (4.7)

are imposed to determine the µ and Bµ values required by REWSB.3

As the RG equations that allow one to compare parameters at the high and low

scales themselves depend on the sparticle mass thresholds and soft parameters, the

above procedure must be iterated to wash out the guess we had to make for their initial

values. With any luck the routine will converge to a stable set of values and the spectrum

of susy particle (pole) masses can then be calculated. Fortunately there are a variety

of freely available programs that implement the algorithm just described to multi-loop

accuracy, for example SoftSusy [116], SuSpect [117] and Spheno [118]. In Chapter 6

we will use a modified version of SoftSusy to compare the predicted spectra of various

models of gauge mediated susy breaking.

µ Problem

One curious issue with the softly broken MSSM can be seen from equations (4.7a)

and (4.7b). Rearranging these gives

|µ|2 = −M
2
Z

2
− tan2 β m2

Hu
−m2

Hd

tan2 β − 1
, (4.8a)

Bµ =
sin 2β

2

(
m2
Hu

+ m2
Hd

+ 2|µ|2
)
. (4.8b)

This requires there to be a link between the supersymmetric parameter µ and the susy

breaking terms mHi
. Furthermore, if there is to be no careful tuning the parameters then

we would expect µ to be of order the electroweak scale |µ| ∼ O (MZ). Depending on

the mediation mechanism, it can be quite a challenge to arrange for such a relationship

to arise naturally — this is the µ Problem. One way to approach it is to introduce a

discrete symmetry, or a Peccei-Quinn symmetry4 that forbids the superpotential term

µHuHd at tree level. Radiative breaking of this symmetry can then generate a µ term

via loop effects in the same manner as the soft terms. This often works well for gravity

mediated models [119], but is more of a headache for gauge mediation [120]. In this

case, µ and Bµ typically both get generated at the same loop order, so µ2 has an extra

3The scale QSUSY is often taken to be
√
mt̃1

mt̃2
, the geometric mean of the stop masses, which lies

slightly above the electroweak scale. This is found to minimize the scale dependence of the result,
as discussed in reference [115] and Section 6.3.3.

4Under a U(1) PQ symmetry, Higgs fields are rotated in the opposite direction to other fields.
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suppression factor relative to Bµ, i.e.

Bµ ∼ 16π2µ2 ≫ µ2 .

To satisfy equation (4.8b) we must then have Bµ ∼
∣∣m2

Hu

∣∣,
∣∣m2

Hd

∣∣, and so from equa-

tion (4.8a) it follows that |µ| ≫ MZ . Such a hierarchy can be achieved by fine tuning

the model parameters; providing a more convincing explanation of this difference of

scales is the content of the Bµ Problem.

No clear solution to the µ/Bµ problems has yet emerged. One possibility is to extend

the MSSM by a singlet chiral superfield N and take the superpotential

WNMSSM = WYukawa + λN HuHd +
1

3
κN3 . (4.9)

The µ/Bµ terms can then be dynamically generated if N acquires a non-zero VEV.

This Next-to-Minimal Supersymmetric Standard Model (NMSSM) still has various phe-

nomenological issues, and doesn’t shed any extra light on the nature of supersymmetry

breaking, so we shall not consider it or similar extensions in the remainder of this thesis.

Instead we adopt a more prosaic attitude towards the µ problem: we will be content

to find some value of µ which allows for REWSB in our models. Such an approach is

permissible because µ is a susy preserving parameter, and so is at least logically dis-

tinct from the susy breaking sector we seek to understand. In this way we can at least

accommodate the µ problem, albeit without specifying or understanding its resolution.

4.1.2. Mathematical Perspective

It is somewhat ironic that the very same mathematical framework that underpins the

power and beauty of supersymmetric field theories also contrives to undermine the con-

struction of supersymmetric models that are physically realistic. The following sections

unearth some far-reaching consequences of the susy algebra that teach us what can and

can’t be achieved in such models.
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The Witten Index

Knowing whether a given model admits supersymmetric vacua is sometimes relatively

easy. A useful place to start is to consider the trace of the operator (−1)F , introduced

in Section 2.2.1, which distinguishes between bosonic |B〉 and fermionic states |F 〉

W = Tr (−1)F =
∑

B

〈B|B〉 −
∑

F

〈F |F 〉 .

This is known as the Witten Index [121]. To understand why it is useful, recall

from equation (2.21) that the Hamiltonian H of any theory with global (not local)

supersymmetry is a positive definite function of the supercharges. In particular

H|B〉 = 0 ⇐⇒ Q|B〉 = 0 ,

and similarly for fermionic zero energy states, whereas for H|B〉 6= 0 we are guaranteed

a state |F 〉 = Q|B〉 with the same energy but opposite statistics. We see that in the

Witten index, states with non-zero energy cancel pairwise, so it actually counts the

difference in number of zero energy bosonic and fermionic states. The important point

is that if the Witten index is non-vanishing, there must exist zero energy states, so a

supersymmetric vacuum must exist. The converse doesn’t necessarily hold though: if

the index vanishes, susy may or may not be broken — more work is required to decide

either way.

The power of the Witten index comes from its topological nature: the argument

works irrespective of the value of the couplings, so if one can compute the index in some

weak coupling regime, the conclusion can generally be extrapolated to other values of the

coupling that are less under control. Naturally, there are some caveats which complicate

the matter — operators must be properly defined, one must worry about the distinction

between finite/infinite volume, and one must be aware of the asymptotic values of the

potential changing, which can allow new zero-energy states in from infinity — but the

punchline is that susy vacua are relatively easy to find.

There is a simple application of this theorem that frustrates attempts at model

building. It can be shown that the Witten index for a simple Yang-Mills gauge theory is

not zero (for the common case of an SU(Nc) gauge group there are Nc distinct vacua).

As a corollary, for any gauge theory in which all matter fields can be given a mass —

“vector-like” theories — the matter can be integrated out, so at low energies one is left
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with a pure Yang-Mills theory. Thus all vector-like theories (modulo a few caveats) have

a non-vanishing Witten index, and so admit supersymmetric vacua. Having apparently

ruled out a large class of models undoubtably complicates our effort to find susy breaking

models, but as we will see in Section 4.2 there is more one can do with vector-like theories:

they shouldn’t be discarded so soon.

The Nelson-Seiberg Theorem

This provides a connection between R-symmetry and susy breaking that, again, ap-

parently scuppers attempts to construct simple physical models. The theorem was first

published in reference [122] and states that

Dynamical supersymmetry breaking in a generic, calculable model

requires a spontaneously broken R-symmetry.

A generic model is one in which any operator that is allowed by the symmetries

necessarily appears in the Lagrangian. In calculable models the low energy behaviour,

particularly that arising from non-perturbative effects, is understood/under control. For

completeness we now sketch a proof of the theorem.

To find a susy vacuum we should look for stationary points of the low energy effec-

tive action. In the type of models considered, this boils down to solving the following

simultaneous equations that are derived from the effective superpotential:

∂

∂φi
Weff(φj) = 0 , i, j = 1 . . . n . ♠

It is sometimes possible to use symmetries of the model to further constrain this system

of equations. Consider the following cases:

No symmetries: With no extra restrictions, ♠ represents n equations in n unknowns.

In general, such a system is soluble, i.e. it is possible to find a supersymmetric

vacuum. Note that here, as well as the genericity assumption, we have to make

use of the holomorphy of the superpotential (Section 2.2.2). This guarantees ♠ are

simply a bunch of polynomials, and hence soluble.
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Global U(1) non-R-symmetry: Under the symmetry, Weff carries no charge so must

be a holomorphic function of the n− 1 variables:

Xa =
φa〈

φn
〉qa/qn , a = 1, . . . , n− 1 (if

〈
φn
〉
6= 0)

where qa is the R-charge of φa. One vacuum equation is trivially satisfied so there

ends up being n− 1 equations in n− 1 unknowns. Again, this is soluble in general.

Global U(1) R-symmetry: We highlighted in Section 2.2.1 that one special feature of

R-symmetry is that the superpotential carries R-charge 2. It must therefore be

possible to write Weff in terms of a new holomorphic function:

Weff = φ2/qn
n f(Xa) .

In this notation the vacuum equations become

∂af(Xb) = 0 and f(Xb) = 0 (provided
〈
φn
〉
6= 0) .

This time we have n equations in n − 1 unknowns, which is generically insolu-

ble. In this case one cannot find a supersymmetric vacuum, and so susy must be

spontaneously broken.

Generic and calculable models of dynamical susy breaking are highly desirable; in

theory they are attractive models with no fine-tuning or hierarchy issues, which provide

concrete predictions for low energy physics. Unfortunately, the Nelson-Seiberg theorem

tells us that the Lagrangian of any such a theory must also posess an R-symmetry. This

in turn forbids the gaugino5 Majorana mass operator

mλ

(
λλ+ λλ

)

Massless gauginos are problematic because they have already been experimentally ruled

out. Spontaneously breaking the R-symmetry that protects gaugino mass may sound

like a good idea, but the resulting Goldstone boson, the R-axion, is also relatively

constrained by (non-)observation. This is clearly a dangerous game; we will see what

more can be learnt from these ideas in Section 4.2.2.

5The fact that gauginos have R-charge equal to one can be seen from how they enter the vector
supermultiplet: V = i(θθ)(θλ) − i(θθ)(θλ) + . . .
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4.2. Story of Metastability

The issue of supersymmetry breaking has recently been reinvigorated by Intriligator,

Seiberg and Shih [6] (ISS). They made the observation that metastable susy breaking

vacua can arise naturally and dynamically in the low-energy limit of supersymmetric

SU(N) gauge theories. This has important implications for our understanding of how

susy is broken in nature. Following the work of ISS, there has been exploration of

both the cosmological consequences [9–11, 123, 124], and the possibilities for gauge or

direct mediation of the susy breaking to the Visible Sector [6, 8, 12, 13, 125–143]. On the

cosmological side, an attractive feature of these models is that the metastable vacua are

naturally long lived due to the flatness of the potential. Moreover, at high temperatures

the susy breaking vacua are dynamically favoured over the susy preserving ones, for

reasons to be explained in Section 4.2.3, so the early Universe would naturally have been

driven into them.

On the phenomenological side, attention has focussed on a striking aspect of metasta-

bility, namely that the models do not have an exact U(1)R symmetry, and indeed that

the U(1)R symmetry is anomalous under the same gauge group that dynamically re-

stores supersymmetry in the supersymmetric global minima. In principle this allows

one to evade the Nelson-Seiberg theorem of Section 4.1.2, that susy breaking requires

R-symmetry in a generic model (i.e. one that includes all couplings compatible with

the symmetries) [122]. R-symmetry is unwelcome because it implies that gauginos are

massless, so the fact that it can be broken by metastability is an encouraging sign. The

remainder of this thesis is aimed at exploring how shifting ones point of view to the

metastable paradigm plays out in practice.

One hope that was expressed in reference [6] is that allowing the vacuum to be

metastable might permit the construction of simpler, more robust models of susy break-

ing. This expectation was illustrated with an example that has become known as the

ISS model of metastable susy breaking. We will now review its salient features before

turning to some more general arguments in favour of metastability in Section 4.2.2.

4.2.1. The ISS Model

To demonstrate the ubiquity of metastable susy breaking models, Intriligator, Seiberg

and Shih [6] invite us to consider perhaps the simplest supersymmetric gauge theory
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with massive matter: the SQCD theory introduced in Section 2.2.2. In more detail, this

is an N = 1 super Yang-Mills theory with the gauge group SU(Nc) coupled to Nf pairs

of (anti-)fundamental quark supermultiplets Q, Q̃. The Kähler potential is taken to be

canonical, and the superpotential is

Wtree = mij Qi · Q̃j . (4.10)

Metastable vacua |vac〉+ can be shown to occur in this model when Nf is in the ‘free

magnetic’ range:

Nc + 1 ≤ Nf ≤
3

2
Nc .

These vacua are apparent in the Seiberg dual formulation of the theory, which has the

advantage of being weakly coupled in the vicinity of |vac〉+. The magnetic Seiberg dual

of the ISS theory is given [144, 145] by the SU(N)mg gauge theory, with N = Nf − Nc,

coupled to Nf magnetic quark/anti-quark pairs ϕ, ϕ̃. The tree-level superpotential of

the magnetic theory is of the form

Wcl = Φij ϕi · ϕ̃j − µ2
ijΦji , (4.11)

where i, j = 1, . . . , Nf are flavour indices. Φij is the gauge-singlet ‘meson’ superfield,

which is related to the original electric quarks via Φij ∝ Λ−1Qi · Q̃j and Λ is the dynami-

cal scale of the ISS theory [6]. The matrix µ2
ij (which can be diagonalised without loss of

generality) arises from the masses of electric quarks, µ2
ii = −ΛmQi

. All of its eigenvalues

µi are taken to be much smaller than the UV cutoff of the magnetic theory, µi ≪ Λ.

This magnetic theory is free and calculable in the IR and becomes strongly coupled in

the UV where one should instead use the electric Seiberg dual, i.e. the original SU(Nc)

SQCD, which is asymptotically free.

The usual holomorphicity arguments imply that the superpotential (4.11) receives no

corrections in perturbation theory. However, there is a non-perturbative contribution to

the full superpotential of the theory, W = Wcl + Wdyn, which is generated dynamically

[6] and is given by

Wdyn = N

(
detNf

Φ

ΛNf−3N

) 1
N

. (4.12)
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The authors of [6] have studied the vacuum structure of the theory and established the

existence of the metastable vacuum |vac〉+ with non-vanishing vacuum energy V+ as well

as the susy preserving stable vacua |vac〉0.

The supersymmetry breaking vacuum |vac〉+ originates from the so-called rank con-

dition, which implies that there are no solutions to the F-flatness equation

FΦij
= (ϕi · ϕ̃j − µ2

ij) = 0 (4.13)

for the classical superpotential Wcl (equation (4.13) can only be satisfied for a rank-N

submatrix of the Nf ×Nf matrix FΦ). The susy preserving vacuua appear by allowing

the meson Φ to develop a VEV that is stabilised by the non-perturbative superpotential

(4.12) and that is interpreted in the ISS model as a non-perturbative or dynamical

restoration of supersymmetry [6]. The lowest lying susy breaking vacuum |vac〉+ is

characterised by

〈
ϕ
〉

=
〈
ϕ̃T
〉

=


 diag(µ1, . . . , µN)

0Nf−N


 ,

〈
Φ
〉

= 0 , V+ =

Nf∑

i=N+1

|µ4
i | . (4.14)

Here µi are the ordered eigenvalues µ matrix, such that |µ1| ≥ |µ2| ≥ . . . ≥ |µNf
|. In this

way, the vacuum energy V+ above receives contributions from (Nf −N) of the smallest

µ’s while the VEV
〈
ϕ
〉

is determined by the largest µ’s.

The susy-preserving vacuum |vac〉0 can also be found in terms of the magnetic

variables. It is described by

〈
ϕ
〉

=
〈
ϕ̃T
〉

= 0 ,
〈
Φ
〉

=

(
Λ

µ

)Nf−3N

Nf−N

µ1Nf
, V0 = 0 , (4.15)

where for simplicity we have specialised to the degenerate case, µij = µδij. There are

precisely Nf −N = Nc of such vacua differing by the phase e2πi/(Nf−N), as there must be

to match the Witten index of the electric ISS theory (cf. Section 4.1.2). For µ/Λ ≪ 1

the metastable vacuum is exponentially long-lived and the lifetime of |vac〉+ can easily

be made much longer than the age of the Universe, as we will see shortly.

The issue of R-symmetry is quite subtle in ISS SQCD, but given its importance

in building realistic models, it pays to understand it a little better. The tree-level

superpotential in the magnetic picture (4.11) admits an R-symmetry under which Φ has

R-charge 2 (ϕ and ϕ̃ can have any charges, as long as they are opposite). This symmetry
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is anomalous with respect to the magnetic gauge group, a fact which is reflected in

the symmetry being explicitly broken by the non-perturbative contribution (4.12) to

the effective superpotential. From the perspective of the electric theory, the magnetic

R-symmetry is broken explicitly by the mass terms of electric quarks mQ. Thinking

of the electric theory as more fundamental (because it has a well-defined high energy

limit), we see the magnetic R-symmetry emerges as an accidental symmetry of

the low energy theory around the metastable vacuum (where the effects of (4.12) are

negligible). A more detailed discussion of this point, pertinent to our model building

exploits in Chapter 5, can be found in Appendix B.

Estimating the Lifetime of the False Vacuum

The essential premise of ISS-type models is that our Universe is only metastable. This

means the low energy breaking of supersymmetry is only a temporary phenomenon, and

that quantum effects can — at any point in time — restore supersymmetry and thus

fundamentally change the nature of matter. To make these models physically viable

one must ensure the predicted timescale for such a cataclysmic event to occur is longer

than the current age of the Universe. This proves to be quite a weak constraint on ISS

models, as we now review from reference [6].

The rate of decay (per unit volume) for starting in the metastable vacuum |vac〉+ and

ending up in a susy preserving vacuum |vac〉0 is predominantly set by the Euclidean

bounce action

Γ4

V4
∼ e−Sbounce , (4.16)

where Sbounce is the difference between the Euclidean action describing nucleation of

an O(4)-symmetric bubble of susy vacuum in the metastable vacuum, and the action

associated with remaining in the metastable vacuum. The dominant tunnelling configu-

ration corresponds to the path in field space with the smallest potential barrier between

|vac〉+ and |vac〉0. To get a rough idea of the shape of this barrier, consider the scalar

potential near |vac〉+ (where the dynamical superpotential (4.12) can be neglected)

Vtree =
∣∣ϕi · ϕ̃j − µ2

1Nf

∣∣2 + |Φ ϕ̃|2 + |ϕΦ|2 . (4.17)

Clearly, if we start out in the metastable vacuum in which the quark fields (ϕ, ϕ̃) are

adjusted to minimise the first term of (4.17), then turning on both mesons (Φ) and
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Vmax

V+

V (ζ)

0 ζmax ζ0

ζ

Figure 4.2.: Sketch of the scalar potential of an ISS model along a path that minimises the
barrier height Vmax at ζmax. The metastable vacuum |vac〉+ is situated at the
origin, with the susy preserving vacuum |vac〉0 at ζ0 ≫ ζmax.

quark fields at the same time leads to an increase in the potential energy (and so also to

the Euclidean action). Therefore, parameterising the path of minimal action by ζ , we

see it will prefer to run from |vac〉+ at ζ = 0 with potential energy density V+ ≈ µ4 up

to a local maximum near
〈
ϕ
〉
∼
〈
ϕ̃
〉
∼
〈
Φ
〉
≈ 0 (at which point the energy Vmax is still

only of order µ4). The meson direction can then switch on in the long run down to the

supersymmetric vacuum |vac〉0 at ζ0 ≫ ζmax. We show a rough sketch of this tunneling

profile in Figure 4.2. Modelling the barrier as a triangular potential, we can borrow

the bounce action as calculated in reference [146] to give

Sbounce ∼
(∆Φ0)

4

V+
∼
(

Λ

µ

)4 .

(
Nf−3N

Nf−N

)

, (4.18)

where ∆Φ0 ≈
〈
Φ
〉

is the distance traversed in field space. Note that although the poten-

tial barrier is not very high, it is really the ratio of height-to-width of the potential that

determines the size of the bounce action. As the susy preserving vacuum is generated

non-perturbatively (in the magnetic picture in which we work) it is naturally distant in

field space from the metastable vacuum; this essentially ensures the longevity of |vac〉+,

which can be expressed as Sbounce & 400 (see for example reference [147]). Indeed, for

the minimal incarnation of an ISS model with non-trivial gauge dynamics at low energy6

6We will employ this particular scenario later when building realistic models.
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(corresponding to Nc = 5, Nf = 7), the separation of scales ǫ = µ/Λ is only required to

be ǫ . 5× 10
−4 to accommodate the observation that Armageddon has not yet arrived.

4.2.2. The Unavoidablity of Metastability

If susy is discovered at the LHC and is of the gauge mediation type, then metastability

of the vacuum is likely to be unavoidable. This conclusion, drawn in [8] and discussed

in [3], is largely based on two pieces of evidence: gauginos are massive, and so too are

R-axions. To substantiate the claim, we will briefly explain the logic in full generality

and independently of the models of ISS. To see that metastability follows from these

two pieces of evidence, the first important observation comes in the form of the Nelson-

Seiberg theorem [122], discussed in Section 4.1.2, that an exact R-symmetry is necessary

and sufficient to break susy in a generic, calculable theory (of the Hidden Sector).

At the same time, Majorana mass terms for gauginos have non-vanishing R-charge.

Thus we have a phenomenological problem that could be called the gaugino mass

problem: gaugino masses require both supersymmetry and R-symmetry breaking, but

reference [122] tells us that these two requirements are mutually exclusive. How can we

get around this?

One approach [8] is to assume that the Lagrangian is of the form

L = LR + εLR−breaking, (4.19)

where LR preserves R-symmetry, the second term, LR−breaking, is higher order in fields

and breaks R-symmetry, and ε is parametrically small (we discuss why this should

be shortly). Because R-symmetry is broken explicitly by the second term, the Nelson-

Seiberg theorem requires that a global supersymmetry-preserving minimum must appear

at order 1/ε away from the susy breaking one, which now becomes metastable. Note

that this statement is completely general. Any attempt to mediate susy breaking to

gauginos even from models that initially have no susy-preserving vacuum results in the

appearance of a global susy minimum. Also the gaugino masses depend, as one would

expect, on both the scale of susy breaking and the scale of R-symmetry breaking,

whereas the scalar masses depend only on the former. (This point was used previously

in [17] in support of split susy [15, 16]). The gaugino masses are directly related to ε

and hence to the stability of the metastable vacuum.
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The second possibility is to break the tree-level R-symmetry spontaneously. Spon-

taneous (rather than explicit) breaking of R-symmetry does not introduce new global

susy preserving minima. As such it does not destabilise the susy breaking vacuum and

does not require any fine-tuning of coefficients in the Lagrangian. At the same time,

gauginos do acquire masses. This scenario, however, leads to a massless Goldstone mode

of the spontaneously broken U(1)R symmetry, so there is an R-axion problem. In or-

der to avoid astrophysical (and experimental) bounds, the R-axion should also acquire

a mass. This means that R-symmetry must also be explicitly broken and by the earlier

arguments this again means that the vacuum is metastable. However in this case [2] the

gaugino mass is divorced from the size of explicit R-breaking ε which now determines

the R-axion mass instead. This exhausts the logical possibilities and shows that, for a

theory with a generic superpotential where the Nelson-Seiberg theorem applies, massive

gauginos and massive R-axions imply metastability.

At this point the question arises as to how one might generate a Lagrangian of the

form (4.19). Unless there is a compelling reason for the smallness of ε, the Lagrangian

LR is by definition non-generic, and LR−breaking may allow many couplings which are

compatible with the symmetries that one has to set to be small in order to avoid too

rapid decay of the metastable vacuum. One requires an almost non-generic model,

broken by small operators, which in general seems unlikely. However, realistic and

natural gauge mediation models of this type were constructed in [12, 13]. The main idea

of these models is to break R-symmetry by operators which are suppressed by powers

of MPl. We will consider these models and their phenomenology in Section 6.2.

In Chapter 5 we will suggest an alternative approach where ε is not induced by exter-

nal 1/MPl corrections and where R-symmetry is broken spontaneously. In the original

ISS model [6], the Nelson-Seiberg theorem manifests itself in a simple way: the the-

ory has an exact R-symmetry at tree-level. However the R-symmetry is anomalous and

terms of the type εLR−breaking are generated dynamically [6] without having to appeal to

Planck suppressed operators. Here ε is a naturally small parameter since it is generated

non-perturbatively via instanton-like configurations, which are naturally suppressed by

the usual instanton factor e−8π2/g2 ≪ 1. Hence, the non-genericity in these models is

fully calculable and under control. When, in addition to these non-perturbative effects,

the R-symmetry is also broken spontaneously by perturbative contributions, gauginos

receive sufficiently large masses mgaugino > 100 GeV as required by their non-observation

by current experiments. At the same time the R-axion receives a mass from the anoma-

lously induced R-breaking terms. (Note that a possible additional contribution to the
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R-axion mass may arise when the theory is embedded in supergravity [148]. However

such noncalculable effects are suppressed.)

The spontaneous breaking of R-symmetry by radiative perturbative corrections is

easy to achieve [128, 136]. For example, this happens [2] when the basic ISS model

is deformed by adding a baryon-like term to the superpotential. This is the simplest

deformation of the ISS model which preserves R-symmetry at tree-level. At one-loop

level this deformation causes the R-symmetry to break spontaneously, while the R-axion

gets a sufficiently large mass maxion > 100 MeV to avoid astrophysical constraints from

the non-perturbative anomalousR-symmetry breaking [2]. No new global minima appear

other than those of the original ISS model, so the susy breaking scale can be sufficiently

low to be addressed at the LHC. We will derive the phenomenological consequences of

these models in Section 6.3.

4.2.3. Thermal History of the Universe

Many of the arguments in favour of supersymmetry and its realisation as a broken

symmetry depend on the idea of naturalness: large hierarchies in dimensional pa-

rameters are explained dynamically, models should be generic, etc. As we have just

seen, such reasoning leads to a relatively general prediction that the susy breaking

vacuum is metastable. However, one may now raise the legitimate concern that pre-

supposing we reside in a metastable vacuum is, in itself, unnatural. Why should we find

ourselves in this vacuum in the first place, rather than the more symmetric minimum

energy configuration? It is a very appealing aspect of ISS-type metastable models that,

instead of having to invoke anthropic arguments, cosmology provides us with a nice

dynamical answer to this question: metastable ISS vacua appear to be favoured by the

evolution of the early universe [9–11, 123, 124].

The reasoning goes as follows [9]. A long time ago, the Universe was smaller and

hotter.7 When sufficiently small and hot, finite temperature effects lead to a modification

of the effective potential [149]

VT (Ψ) = VT=0(Ψ) +
T 4

2π2

∑

i

±ni
∫ ∞

0

dq q2 ln

(
1∓ exp(−

√
q2 +m2

i (Ψ)/T 2)

)
(4.20)

7The temperature in deep space is currently about 2.7K, equivalent to an energy of 2.3× 10−4 eV.
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Figure 4.3.: Mass dependence of the thermal contribution of a superfield to the effective
potential.

The first term on the right-hand side is the standard zero-temperature potential that

follows from superpotential contributions (4.11) and (4.12). The second term is the

one-loop correction due to temperature, which depends on the number of real degrees

of freedom ni and their corresponding masses mi. As indicated, these are induced by

the background field VEVs, collectively denoted Ψ. The upper signs in (4.20) are to

be taken for bosonic fluctuations, and the lower for fermionic. To get a better feel

for this equation, we plot the thermal contribution to the potential due to one chiral

superfield of mass m in Figure 4.3. This makes it clear that (in the approximately

supersymmetric case) the dominant thermal effects arise from light fields. To establish

the early Universe behaviour of our zero-temperature vacua we therefore need to discuss

which region of field space has the most light states. The big difference lies in the quark

(ϕ, ϕ̃) sector: around the metastable vacuum |vac〉+ the quarks are relatively light, with

masses of order µ at most, whereas in the supersymmetric vacuum |vac〉0 one can see

from equation (4.17) that the large VEV for Φ makes the quarks relatively heavy. The

gauge degrees of freedom were also taken into account in reference [123], but they prove

to give a sub-leading correction that does not qualitatively change our discussion.

The upshot is that as temperature increases, the extra light states near the origin

adjust the potential so that the previously metastable vacuum has lower vacuum energy

than the erstwhile supersymmetric one. Moreover, for sufficiently high temperatures,

|vac〉0 is washed out completely. This effect is most clearly illustrated by Figure 4.4,
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Figure 4.4.: The result of including finite temperature effects in the ISS effective potential
(4.20). At high temperatures, shown as the bottom curve (red), only the vacuum
|vac〉+ is evident. As the temperature decreases (intermediate curves) |vac〉0 also
emerges, with the standard metastable profile (top, black curve) recovered at
T = 0. For T 6= 0 a constant shift of the potential ∼T 4 has been suppressed.
This graph is reproduced from reference [9] with the authors’ consent.

which plots the thermal effective potential8 for different values of the temperature. Above

a critical temperature Tcrit, tunnelling into |vac〉+ can occur. Even if the Universe is

sitting in |vac〉0 at the end of inflation (where T ∼ 0), as long as reheating takes the

temperature above Tcrit, the Universe is rapidly driven towards |vac〉+. As the Universe

again cools towards the present day, and the potential relaxes back to the metastable

profile of Figure 4.2, we find ourselves naturally trapped in the metastable vacuum.

8There is also a constant shift in the potential proportional to T 4, coming from states that remain
light for all ζ, which we suppress as it will not feature in the following.



Chapter 5.

A Simple Model of Direct Mediation

“Make everything as simple as possible,

but not simpler.”

— Albert Einstein

5.1. Introduction

Just how simple a model of particle physics can one construct with metastable susy

breaking vacua? The key to answering this question lies, once again, in how R-symmetry

is broken. As we emphasised in Section 4.2.2, the relation between susy breaking and

R-symmetry is a continuous one, in the sense that the lifetime of a metastable vacuum

decreases in proportion to the size of any explicit R-symmetry breaking terms that one

adds to the theory. This allows one to play the “approximate R-symmetry” game: add

to the superpotential of the effective theory explicit R-symmetry breaking terms of your

choosing, whilst trying to keep the metastable minimum as stable as possible.

Clearly there is some tension in this procedure. For example the gauge mediation

scenario explored in references [12, 133] invokes a messenger sector (denoted by f). The

field f has to have an explicit R-breaking mass-term to give gauginos a mass, and

consequently a new susy restoring direction opens up along which f gets a VEV. One

is then performing a rather delicate balancing act: in order to avoid disastrously fast

decay of the metastable vacuum, large susy breaking scales must be invoked so that the

R-breaking mass can be sufficiently small.

104
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It should also be noted that here the R-symmetry breaking responsible for the glob-

ally supersymmetric minima of ISS models plays no direct role in the generation of

gaugino masses, and consequently this is expected to be a generic problem for gauge

mediation of metastable susy breaking. This is also a problem for the models that

were constructed to implement direct mediation [130], and again, in those cases certain

operators had to be forbidden by hand, making the superpotential non-generic.

To avoid these problems, the next option for generating non-zero gaugino masses

would be to use the explicit R-breaking of the ISS model itself, associated with the

metastability and the existence of a global supersymmetric groundstate. This is in fact

a more difficult proposition than one might suppose for the following reason. At the

metastable minimum there is an unbroken approximate R-symmetry (which is of course

why it is metastable in the first place). The R-symmetry is explicitly (more precisely

anomalously) broken only by the non-perturbative term,

Wnp ∝ (det Nf
Φ)

1
N ∼Φ

Nf
N , (5.1)

where Φ is the meson field, SU(N)mg is the gauge group of the magnetic theory, and

N = Nf − Nc with SU(Nc) being the gauge group of the electric theory [6]. One

might hope that this would induce (for example) R-symmetry breaking mass-terms that

contribute to gaugino masses in perturbation theory. However such mass-terms will

be typically of order ∂2W
∂Φ2 ∼Φ

2Nc−Nf
N . Thus since ISS models are valid in the interval

Nc + 1 ≤ Nf <
3
2
Nc, they are exactly zero in the metastable minimum where

〈
Φ
〉

= 0.

We are led to an alternative — the focus of this chapter — which is to spontaneously

break the approximate R-symmetry of the ISS model to generate gaugino masses. The

explicit breaking of the model then ensures that any R-axions get a mass and are made

safe. The natural avenue to explore is to gauge (part of) the SU(Nf) flavour symmetry

of the ISS model, identifying it with the Standard Model gauge groups. This would

allow the quarks and mesons in the theory to mediate susy breaking directly to the

Standard Model, thereby avoiding the need for any messenger sectors, which as we have

seen are liable to destabilise the metastable vacuum. Once spontaneous R-breaking has

been achieved, there is in principle nothing to prevent it being mediated via these fields

to the rest of the model, allowing the generation of gaugino masses.1 (Note that the

1Indeed the very same point was made in reference [128] which was presented in the language of
retrofitting [127]. There however, successful mediation required a messenger sector which, in general,
may lead to new and unstable directions.
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Figure 5.1.: Illustration of directly mediated supersymmetry breaking, indicating the overlap
between susy breaking (blue) and MSSM (red) sectors.

non-perturbative explicit R-breaking can also now contribute to gaugino masses since Φ

will get a VEV.)

5.1.1. A Return to Direct Mediation

The purported simplicity of metastable susy breaking models now compels us to re-

consider the possibility of direct gauge mediation, whereby matter fields of the susy

breaking sector carry charges under the gauge groups of the Standard Model and there

is no need for a separate messenger sector. In ordinary gauge mediation, the details of

susy breaking are generally ‘hidden’ from the Matter Sector, with the most important

phenomenological features arising from the messenger particle content. To clarify the

distinction, it may be helpful to contrast the representation of direct mediation models

found in Figure 5.1 with the picture of standard mediation via messenger fields given in

Figure 4.1. The elegance of direct gauge mediation models lies in their compactness and

predictivity. Previously, direct mediation of metastable susy breaking was considered

in this context in references [129] and [130].

In this chapter we demonstrate that perfectly viable direct mediation of susy break-

ing can indeed be implemented within a metastable framework. We show this by making

the simplest deformation to the ISS model that one can imagine, namely the addition

of a baryon term to the superpotential. This “baryon-deformed” QCD model has a

runaway direction to a non-supersymmetric metastable minimum of the ISS type, along

a particular direction of field space that is lifted by the Coleman-Weinberg potential
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and therefore stabilised. Along this direction the meson modes Φij acquire a VEV, and

the approximate R-symmetry is spontaneously broken. Importantly the diagonal (U(1)-

trace) component of the pseudo-Goldstone modes (i.e. those modes of Φij whose flavour

indices correspond to a SM gauge group) acquires a VEV at this point as well; the latter

gives R-breaking masses to the magnetic quarks that are charged under the SM gauge

groups. This enables them to act as messenger fields giving the gauginos masses at

one-loop. We stress that all of this happens automatically upon adding a baryon. There

is no need for any messenger sector outside the ISS model, and therefore no additional

instability is induced. Moreover, we will show that the resulting gaugino masses can be

naturally of the right order.

5.2. The Baryon Deformed ISS Model

Let us begin by introducing our model, which is based on the ISS susy breaking model

with SU(Nc) gauge symmetry and Nf flavours of quark/anti-quark pairs in the electric

theory. As we saw in Section 4.2.1, the low energy dynamics can be understood in terms

of a magnetic dual theory that has SU(N)mg gauge symmetry, where N = Nf − Nc,

Nf flavours of fundamental quark/anti-quark pairs, ϕi, ϕ̃, and a ‘meson’ field Φ that is

a singlet under the gauge group. This theory is IR free if Nc + 1 ≤ Nf <
3
2
Nc. The

minimal values consistent with this equation and leading to a non-trivial magnetic gauge

group are Nf = 7 and Nc = 5 giving SU(2)mg in the magnetic dual theory. Now consider

the following superpotential:

W = Φij ϕi · ϕ̃j − µ2
ijΦji + mεabεrsϕ

a
rϕ

b
s , (5.2)

where i, j = 1, . . . , 7 are flavour indices, r, s = 1, 2 run over the first two flavours only,

and a, b are SU(2)mg indices (we set the coupling h = 1 for simplicity). This is the

superpotential of ISS with the exception of the last term which is a baryon of SU(2)mg.

Note that the 1, 2 flavour indices and the 3, . . . , 7 indices have a different status. Con-

sequently, the flavour symmetry is broken explicitly to SU(2)f × SU(5)f . The SU(5)f
factor will be later be gauged and identified with the parent SU(5) of the Standard

Model.2

The baryon deformation is the leading order deformation of the ISS model that is

allowed by R-symmetry (as well as the gauge and flavor symmetries discussed above).

2Note that the breaking of SU(5) is assumed to take place or be included explicitly in the SM sector.
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Terms quadratic in the mesons that could arise from lower dimensional irrelevant oper-

ators in the electric theory are forbidden by R-symmetry.

Using the SU(2)f × SU(5)f symmetry, the matrix µ2
ij can be brought to a diagonal

form

µ2
ij =


 µ2

12 0

0 µ̂2
15


 . (5.3)

We will assume that µ2 > µ̂2. The parameters µ2, µ̂2 and m have an interpretation

in terms of the electric theory: µ2∼ΛmQ and µ̂2∼Λm̂Q come from the electric quark

masses mQ, m̂Q, where Λ is the Landau pole of the theory.3 The baryon operator can

be identified with a corresponding operator in the electric theory. Indeed the mapping

from baryons BE in the electric theory to baryons bM of the magnetic theory (neglecting

factors of order one) is

bM Λ−N ←→ BE Λ−Nc . (5.4)

Thus one expects

m∼M
(

Λ

M

)2Nc−Nf

=
Λ3

M2
. (5.5)

Here M represents the scale of new physics in the electric theory at which the irrelevant

operator BE is generated. We will think of it as being MP or MGUT although as we shall

see a large range of values can be accommodated.

It is encouraging that this rather minimal choice of parameters allows us to identify

an SU(5)f flavour symmetry with the Standard Model gauge groups.4 Thus the mag-

netic quarks ϕ, ϕ̃ decompose into 4 singlets (which we will call φ, φ̃) plus 2 fundamentals

of SU(5)f (which we call ρ, ρ̃), while the magnetic mesons Φij decompose into 4 fun-

damentals of SU(5)f (Z and Z̃), an adjoint+trace singlet of SU(5)f (X), plus 4 more

singlets (Y ). The complete breakdown of charges can be found in Table 5.1.

As we discussed in Section 4.2.1, it is known that the R-symmetry of ISS SQCD

manifests itself only as an approximate symmetry of the magnetic formulation, which is

3We take the strong coupling scales in equation (2.60) equal Λe = Λm ≡ Λ for simplicity.
4It is also an amusing coincidence that the electric theory has the same gauge groups for colour and
flavour, SU(5)f ×SU(5)c.
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SU(2) SU(2)f SU(5)f U(1)R

Φij ≡
(
Y Z

Z̃ X

)
1

(
Adj + 1 �

� 1

) (
1 �

� Adj + 1

)
2

ϕ ≡
(

φ

ρ

)
�

(
�

1

) (
1

�

)
1

ϕ̃ ≡
(

φ̃

ρ̃

)
�

(
�

1

) (
1

�

)
−1

Table 5.1.: We list matter fields and their decomposition under the gauge SU(2), the flavour
SU(2)f × SU(5)f symmetry, and their charges under theR-symmetry of the model
in (5.2).

broken explicitly in the electric theory by the mass terms of electric quarks mQ. It is also

broken anomalously, but this is already accounted for by the dynamical superpotential

(4.12). In Appendix B we point out that the R-symmetry is broken in the electric

theory in a controlled way by the small parameter, mQ/Λ = µ2/Λ2 ≪ 1. As such the

R-symmetry is preserved to that order in the superpotential.

Thanks to the baryon deformation, this model has R-charges that are not 0 or 2. As

discussed in reference [136] this condition is necessary for Wess-Zumino models to spon-

taneously break R-symmetry. Therefore, our model allows for spontaneous R-symmetry

breaking; we will see in the following that this does indeed happen. We also stress that

our baryon deformation is the leading order deformation of the ISS model that is allowed

by the R-symmetry of the full theory imposed at the Lagrangian level. As explained in

Appendix B, this is a self-consistent approach since R-symmetry breaking in the electric

theory is controlled by a small parameter. Terms quadratic in the meson Φ that could

arise from lower dimensional irrelevant operators in the electric theory are forbidden by

R-symmetry. Thus, our deformation is described by a generic superpotential and (5.2)

gives its leading-order terms.
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5.2.1. Locating the Metastable Vacuum

Let us consider the potential at tree-level. The F -term contribution to the potential at

tree-level is

VF =
∑

ar

∣∣∣Yrs φ̃as + Zrı̂ ρ̃
a
ı̂ + 2mεabεrsφ

b
s

∣∣∣
2

(5.6)

+
∑

aı̂

∣∣∣Z̃ı̂r φ̃ar +Xı̂̂ ρ̃
a
̂

∣∣∣
2

+
∑

as

∣∣∣φar Yrs + ρ aı̂ Z̃ı̂s

∣∣∣
2

+
∑

a̂

∣∣∣φarZr̂ + ρ aı̂Xı̂̂

∣∣∣
2

+
∑

rs

∣∣∣φr · φ̃s − µ2δrs

∣∣∣
2

+
∑

rı̂

∣∣∣φr · ρ̃ ı̂
∣∣∣
2

+
∑

rı̂

∣∣∣ρ ı̂ · φ̃s
∣∣∣
2

+
∑

ı̂̂

∣∣∣ρ ı̂ · ρ̃ ̂ − µ̂2δı̂̂

∣∣∣
2

,

where a, b are SU(2)mg indices. The flavor indices r, s and ı̂, ̂ correspond to the SU(2)f
and SU(5)f , respectively. It is straightforward to see that the rank condition works as

in ISS; that is the minimum for a given value of X , Y , Z and Z̃ is along ρ = ρ̃ = 0 and

〈
φ
〉

=
µ2

ξ
12 , (5.7a)

〈
φ̃
〉

= ξ 12 , (5.7b)

where ξ parameterises a runaway direction that will eventually be stabilised by the

Coleman-Weinberg contribution to the potential. This then gives

Z = Z̃ = 0 , (5.8)

but the pseudo-Goldstone modes X = χ15 are undetermined. (Note that all the D-

terms are zero along this direction and the SU(2)mg is Higgsed but SU(5)f is unbroken.)

In addition Y becomes diagonal and real (assuming m is real). Defining
〈
Yrs
〉

= η 12,

the full potential is

V = 2

∣∣∣∣η ξ + 2m
µ2

ξ

∣∣∣∣
2

+ 2

∣∣∣∣η
µ2

ξ

∣∣∣∣
2

+ 5µ̂4 . (5.9)

Using R-symmetry we can choose ξ to be real.5 Minimizing in η we find

η = −2m

(
ξ2

µ2
+
µ2

ξ2

)−1

. (5.10)

5The phase of ξ corresponds to the R-axion which will be dealt with later.
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Substituting η(ξ) into equation (5.9) we see that ξ → ∞ is a runaway direction along

which

V (ξ) = 8m2µ2

(
ξ6

µ6
+
ξ2

µ2

)−1

+ 5µ̂4 . (5.11)

It is worth emphasising that even in the limit ξ → ∞, the scalar potential V is non-

zero, so we have a runaway to broken susy (a ‘pseudo-runaway’ in the language of

reference [138]). Proceeding to one loop, the Coleman-Weinberg contribution to the

potential is therefore expected to lift and stabilise this direction at the same time as

lifting the pseudo-Goldstone modes χ.

Let’s see how this works. Firstly, recall that the Coleman-Weinberg effective potential

[150] sums up all one-loop quantum corrections into the following form:

V
(1)
eff =

1

64π2
STr M4 log

M2

Λ2
UV

(5.12)

≡ 1

64π2

(
Tr m4

0 log
m2

0

Λ2
UV

− 2 Tr m4
1/2 log

m2
1/2

Λ2
UV

+ 3 Tr m4
1 log

m2
1

Λ2
UV

)
,

where ΛUV is the UV cutoff,6 and the mass matrices are given by [151]:

m2
0 =


W

abWbc +DαaDα
c +Dαa

cD
α W abcWb +DαaDαc

WabcW
b +Dα

aD
α
c WabW

bc +Dα
aD

αc +Dαc
aD

α


 (5.13)

m2
1/2 =


W

abWbc + 2DαaDα
c −

√
2W abDβ

b

−
√

2DαbWbc 2DαcDβ
c


 m2

1 = Dα
aD

βa +DαaDβ
a.

(5.14)

As usual, Wc ≡ ∂W/∂Φc denotes a derivative of the superpotential with respect to

the scalar component of the superfield Φc, and Dα are the appropriate D-terms, Dα =

gzaT
αa
b z

b. Of course, D-terms can be switched off by setting the gauge coupling g to

zero, which we will do until further notice. All the above mass matrices will generally

depend on field expectation values. The effective potential Veff = VF + V
(1)
eff is the sum

of the F-term (tree-level) and the Coleman-Weinberg contributions. To find the vacua

6As usual we can “eliminate” ΛUV by trading it for a renormalisation scale at which the couplings are
defined.
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of the theory we now have to minimize Veff . The true, stable vacuum will be the global

minimum, with other minima being only meta-stable.

It is interesting to note that as the 1-loop corrections are of a supertrace form, they

vanish around supersymmetric vacua. If the runaway was to a supersymmetric vacuum

at infinity, the Coleman-Weinberg corrections wouldn’t lift it. In our case, we have a

runaway to a non-supersymmetric vacuum at infinity, so it is reasonable to expect that

these loop corrections will modify the asymptotic behaviour.

5.2.2. Catching the Runaway Field

Now let’s see how the classical runaway direction is lifted by quantum effects. We

parameterise the pseudo-Goldstone and runaway field vacuum expectation values by

〈
φ̃
〉

= ξ 12

〈
φ
〉

= κ12 , (5.15a)
〈
Y
〉

= η 12

〈
X
〉

= χ15 . (5.15b)

These are the most general VEVs consistent with the tree level minimization. It can be

checked that at one loop order all other field VEVs are zero in the lowest perturbative

vacuum. By computing the masses of all fluctuations about this valley we can go about

constructing the one-loop effective potential from equation (5.12). We have done this

numerically using Mathematica as well as Vscape, a program specifically written to

explore the properties of metastable vacua [152].

Table 5.2 shows the result of minimizing the VEVs in the one-loop effective potential

for some sample values of the parameters. As expected, the VEVs in equations (5.15a)

and (5.15b) are seen to approximately, i.e. up to small Coleman-Weinberg corrections,

satisfy the analytic tree-level relations (5.7), (5.10)

κ =
µ2

ξ
η = −2m

(
ξ2

µ2
+
µ2

ξ2

)−1

. (5.16)

We have checked that this is indeed the case for a wide range of input parameters. Hence,

in what follows, we impose the conditions above and only consider the two independent

VEVs ξ and χ. After studying the phenomenology of this model in the next chapter,

we will return to question the imposition of these tree-level constraints in an effort to

refine the model in Section 6.4.1.
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Figure 5.2.: This plot demonstrates the stabilisation of the runaway ξ direction. The red
curve (bottom) is the tree-level runaway potential. The purple is the Coleman-
Weinberg contribution (we have added a constant shift of 5 to it). The blue line
(top) depicts the full stabilised potential. (We use µ = 4µ̂, m = 2µ̂.)

Model ξ/µ̂ κ/µ̂ η/µ̂ χ/µ̂

Vscape Unconstrained 22.55451 0.709338 −0.125660 −1.00041

Vscape Constrained 22.55581 0.709352† −0.125671† −1.00132

Mathematica 22.5559 0.70935† −0.12567† −1.0014

Gauged SU(2)mg, g = 0.4 22.4385 0.71306† −0.12699† −1.0115

Table 5.2.: Stabilised VEVs for different minimization models: µ = 4µ̂, m = 2µ̂. The values†

are obtained from the tree-level constraint equations (5.7) and (5.10).

A plot of the potential in the ξ direction, Figure 5.2, shows the Coleman-Weinberg

terms do indeed stabilise the ξ →∞ runaway at finite, non-zero values of the fields. A

contour plot in the ξ − χ plane, Figure 5.3, reveals that the pseudomodulus χ is also

stabilised at a non-zero value O(µ̂).

Thus, for a natural choice of parameters, all the VEVs ξ, κ, η and χ obtain stable,

finite O(µ̂) values. Notice that Φ, ϕ and ϕ̃ all carry R-charge, so the R-symmetry of

the model is spontaneously broken in this minimum.

Until now we have neglected the D-terms from SU(2)mg but, as we can see from

Table 5.2, including them does not significantly alter the VEV-structure of the vacuum.
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Figure 5.3.: This contour plot of the effective potential Veff shows that the pseudo-modulus
χ is also stabilised at a non-vanishing VEV. (We use µ = 4µ̂, m = 2µ̂.)

What about the stability of this vacuum? When the gauge fields are turned on, this

model has non-zero Witten index, so the global minimum will be supersymmetric. As

in the ISS model, this minimum is induced by the non-perturbative contribution to the

superpotential

Wnp = 2Λ3

[
det

(
Φ

Λ

)] 1
2

. (5.17)

Adapting the supersymmetric vacuum solution from the ISS model to our case with

µ > µ̂ we find

ϕ = 0 , ϕ̃ = 0 , η = µ̂2µ− 6
5 Λ

1
5 , χ = µ

4
5 Λ

1
5 . (5.18)

Note that the supersymmetric minimum lies at ϕ = ϕ̃ = 0 and is completely unaffected

by the baryon deformation.
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5.3. Preliminary Phenomenology

5.3.1. Communicating Breaking to the MSSM

So far we have established that supersymmetry is broken dynamically and R-symmetry

can be broken spontaneously in the metastable vacuum of the ISS sector. We now need

to transmit both these effects to the Standard Model. The most concise way to do this

is to gauge the SU(5)f flavour group and identify it with the parent gauge group the

Standard Model. Since both supersymmetry and R-symmetry are broken,7 gauginos do

acquire a mass.

To discuss the general characteristics of our model it is useful to be au fait with the

standard behaviour of gauge mediated models. It is usually assumed that the effects

of Hidden Sector susy breaking can, to a first approximation, be accounted for by a

spurion chiral superfield X that acquires a VEV
〈
X
〉

= M + θ2 FX . This is taken

to have a tree level superpotential coupling W = f f̃ X to the messenger superfields

f and f̃ that carry charge under the Standard Model gauge groups (they transform

in representations such that their product f f̃ is invariant). The spurion VEV induces

masses for the fermionic (ψf ) and scalar (φf) components of the messengers:

mψf
= M , m2

φf
= M2 ± F . (5.19)

Note that to avoid a tachyonic scalar in the messenger sector we must have F/M2 ≤ 1.

Integrating out the messengers then induces soft gaugino (λA) and sfermion (scalar)

masses in the MSSM, which very roughly take the form

mλA ∼
g2A

16π2

F

M
, (5.20a)

m2
sc ∼

∑

A

(
g2A

16π2

)2
FF †

MM † . (5.20b)

More precise one-loop formulae for the MSSM soft terms can of course be obtained,

either via a slick renormalisation group argument [153] (valid for F
M2 ≪ 1) or by directly

calculating the Feyman diagrams indicated in figures 5.4 and 6.3. It is interesting to

observe that the full calculation of references [154, 155], even in the most extreme regime

7In contrast to the ISS model, which only has small anomalous R-symmetry breaking, our model has
in addition a rather large spontaneous R-symmetry breaking by the vacuum expectation value

〈
χ
〉
.
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(where F = M2) differs from the predictions of the simpler RG calculation by less than

an order of magnitude.

In our model, gaugino masses are generated at one loop order, but there are various

subtleties involved in ascertaining their correct size. To establish a ballpark figure,

one might begin with an estimate along the lines of (5.20a), with the rôle of the spurion

being played by the X components of the ISS meson. Assuming that the dominant effect

comes from magnetic quarks, ρ and ρ̃, propagating in the loop, as shown in Figure 5.4

and working to the leading order in susy breaking, i.e. to order Fχ, gaugino mass goes

as

mnäıve
λA
∼ g2A

16π2

〈
Fχ
〉

〈
χ
〉 ∼ g2A

16π2

µ̂2

〈
χ
〉 ∼ g2A

16π2
µ̂ . (5.21)

For the last part of (5.21) we have assumed that all VEVs and mass parameters are

of the same order O(µ̂), so as not to introduce any large hierarchies by hand. One

obvious regard in which this estimate is deficient can be seen by considering the scalar

potential (5.6): we have not accounted for the mixing ρ ↔ Z and ρ̃ ↔ Z̃ between all

fields that can propagate in the loop.

A more detailed calculation of the gaugino (and sfermion) masses will be given in

Chapter 6 where, due to the non-diagonal form of the messenger mass matrices (6.25),

(6.27), it will be most expedient to evaluate the appropriate expressions numerically.

Borrowing the calculational method of Section 6.3.2, for the purposes of this chapter we

will focus on generating the largest possible values for gaugino masses relative to the

susy breaking scale µ̂.8 We find that this occurs when µ ≃ µ̂ (the reason for this will

be elucidated in Section 6.3.2). For example, for µ = 1.1 µ̂ and m = 0.3 µ̂ we have

mλA ≃
g2A

16π2
0.0089 µ̂ , (5.22)

where A = 1, 2, 3 labels the three gauge groups of the Standard Model. Requiring that

all the gaugino masses are

mλA ∼ (0.1− 1) TeV , (5.23)

8We will keep the susy breaking scale µ̂ fixed and measure all other dimensionful parameters in units
of µ̂. Then for µ̂ = 1 there are only two independent input parameters, µ and m: the VEVs ξ, κ, η
and χ that enter the messenger mass matrices are generated by minimizing the effective potential,
as in Section 5.2.2.
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we conclude that

µ̂ ∼ (104 − 105) TeV (5.24)

at this point in the parameter space of our model.

To gain a qualitative understanding of the suppression (relative to our näıve estimate

(5.21)) of gaugino masses found in equation (5.22), recall that to generate a soft gaugino

mass both supersymmetry and R-symmetry must be broken. In our model, the order

parameter for susy breaking is µ̂, whereas the degree of R-symmetry breaking is set by

the scale m, and for the above parameter point in particular, m < µ̂. This suggests that

the comparative smallness of gaugino masses can, in part, be attributed to the degree

R-symmetry breaking. To test this hypothesis, one should calculate the sfermion soft

masses: since scalars are not protected by R-symmetry, the generation of their masses

is less constrained. Indeed, as long as supersymmetry is broken, we can have scalar

masses even when R-symmetry is unbroken. Hence, we expect the appropriate two-loop

diagrams (shown in Figure 6.3 and discussed, for example, in references [155, 156]) to give

something closely approximating a näıve estimate for scalar masses derived along the

lines of equation (5.20b). These heuristic expectations will be born out by the detailed

calculations of Chapter 6, making it clear that R-symmetry breaking (together with the

structure of the messenger mass matrices) plays a crucial role in suppressing gaugino

masses.

It is interesting to contrast the behaviour of our model with the usual expectations

of gauge mediation, typified in equation (5.20). In that case, clearly the scalar masses

should be roughly similar to the gaugino masses mλA ∼ msc. Relating this to the argu-

ment of the previous paragraph, note that the scale of susy breaking is set by the F -term

of the spurion
√
FX , whereas R-symmetry need only be broken when the spurion’s scalar

component M gets a VEV. The crucial point then is that to avoid tachyonic scalars,

the standard scenario comes with the requirement F ≤ M2. In words, this is telling us

that the scale of R-symmetry breaking is always greater than the susy breaking scale,

and so both the gaugino and sfermion soft masses are essentially controlled by the same

scale (
√
FX).

In our model therefore the scalars are always heavier than the gauginos. The phe-

nomenology for this particular type of model is expected to be of the “heavy-scalar”

type as reviewed in reference [157]. In the region µ̂ ≃ µ∼m their masses are only about

two orders of magnitude larger than the gaugino masses, and a focus-point type of phe-
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λA λA

〈χ〉

ρρ̃

〈Fχ〉

Figure 5.4.: One-loop contribution to the gaugino masses. The blob on the scalar line in-
dicates an appropriate number of insertions of

〈
Fχ
〉
to make the diagram non-

vanishing.

nomenology [158] may be possible. Increasing µ and decreasing m takes us continuously

to the split susy scenario [15, 16]. A more detailed phenomenological investigation will

be carried out in Chapter 6.

Non-perturbative effects due to Wnp are suppressed by the scale Λ of the Landau

pole of the ISS sector, which we have not yet constrained. Choosing Λ ≫ µ̂ so that

the magnetic theory is weakly coupled and the metastable vacuum is long lived, the

non-perturbative corrections to our discussion are small.

5.3.2. R-axions

Our model has a spontaneously broken R-symmetry that is explicitly broken only by

the non-perturbative contribution Wnp to the superpotential. In such a situation we

generally expect a pseudo-Goldstone boson — the R-axion aR. For more on this phe-

nomenon, see the discussion in references [122, 148] and [159]. If such a particle is light

it can have dangerous phenomenological consequences [160–162]. Since the R-symmetry

is an axial symmetry, triangle diagrams typically couple the R-axion to gauge fields via

a term (see, for example, reference [160])

α

2πfR
aR F

µνF̃µν , (5.25)

where F µν is a gauge field and fR is the scale of spontaneous R-symmetry breaking. Par-

ticularly dangerous are the couplings of this type to gluons and photons. Moreover, there

can exist couplings of the R-axion to matter fields. For small masses maR . 100 MeV

astrophysical considerations [161, 162] constrain the scale of spontaneous R-symmetry
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breaking to be

fR & few× 107 GeV for maR . 100 MeV. (5.26)

Let us now estimate the mass of the R-axion in our model to check whether it is

harmless. The R-axion is the phase of the fields that spontaneously break R-symmetry,

η = |η| exp

(
2i
aR
fR

)
, χ = |χ| exp

(
2i
aR
fR

)
, (5.27)

where the 2 arises from the R-charge 2 of the Φ-field. The dominant contribution to

spontaneous R-symmetry breaking comes from
〈
η
〉
. This sets the scale

fR ∼
〈
η
〉
. (5.28)

The R-axion mass arises9 from explicit R-symmetry breaking due to the non-perturbative

superpotential term Wnp. More precisely, taking into account the contribution of Wnp

to the FX -terms,

VF ∋ |FX |2 ∼
∣∣∣∣∣
〈
η
〉〈
χ
〉 3

2 exp

(
5i
aR〈
η
〉
)

Λ− 1

2 − µ̂2

∣∣∣∣∣

2

(5.29)

=

[
〈
η
〉2〈

χ
〉3

Λ−1 + µ̂4 − 2µ̂2
〈
η
〉〈
χ
〉 3

2 Λ− 1
2 cos

(
5
aR〈
η
〉
)]

,

the R-axion mass arises from the last term on the right hand side. For simplicity, we

have chosen µ̂ and all the VEVs to be real. Expanding to second order in aR we find

the R-axion mass to be

m2
aR
∼ µ̂2

〈
η
〉−1〈

χ
〉 3

2 Λ− 1
2 . (5.30)

For our values this turns out to be sufficiently heavy to easily avoid the astrophysical

constraints for any Λ < MPl.

9Another contribution to the R-axion mass may come from supergravity. A constant term in the
superpotential that cancels the cosmological constant also breaks R-symmetry explicitly [148].
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5.4. Summary

The take-home message of this chapter is that direct mediation (i.e. mediation in which

there is no separate messenger sector) is relatively simple to implement in ISS-like

models. It can be achieved by inducing spontaneous breakdown of the approximate

R-symmetry associated with the metastable minimum. This in turn allows us to gener-

ate gaugino masses alongside other soft susy breaking terms.

We presented a baryon-deformed ISS model in which spontaneous R-symmetry break-

ing occurs automatically due to the Coleman-Weinberg potential. Once the R-symmetry

is broken, the magnetic quarks of the ISS sector are able to play the role of messengers

by identifing an SU(5)f subset of the flavour symmetry with parent SU(5) of the Stan-

dard Model gauge groups. The reward for constructing things in this way is a compact,

calculable model with interesting low-energy physics. We will investigate the associated

phenomenology in more detail in Chapter 6.

Landau Poles

We would like to end this chapter by commenting on a particular feature of our model,

and indeed all direct mediation models based on embedding the Standard Model gauge

groups into a flavor subgroup of the ISS sector. As already mentioned in references [6]

and [130] this embedding adds a significant number of matter multiplets charged under

the SM gauge groups. Above the mass thresholds of these fields this leads to all Standard

Model gauge groups being not asymptotically free, and therefore to Landau poles in the

SM sector. Since the additional fields are in SU(5) multiplets, the beta functions of the

SM gauge couplings are modified universally. For example, in our model there is a shift

bA = b
(MSSM)
A − 9 , (5.31)

where the additional contributions are 2 from ϕ and ϕ̃, and 7 from Φ. The SM gauge

couplings at a scale Q > µ in our model are therefore related to the traditional MSSM

ones as

α−1
A = (α−1

A )(MSSM) − 9

2π
log(Q/µ) , (5.32)

where the fields ϕ, ϕ̃ and Φ contribute to the running above the scale µ. The Landau

pole Q ≡ Λ(MSSM) we will take to be situated where gA∼ 4π which corresponds roughly
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to

Λ(MSSM)

µ
∼ 107 . (5.33)

Values of µ & 106 TeV would appear to be required in order to reach the conventional

GUT scale in the MSSM sector before the Landau pole. However, it was recently pointed

out in reference [163] that this estimate misses an important feature of Seiberg duality.

Above the duality scale ΛISS, the magnetic quarks are composite degrees of freedom,

and so no longer contribute to the running of the Standard Model gauge couplings. This

reduction of the effective number of messengers modifies equation (5.32) to

α−1
A = (α−1

A )(MSSM) − 9

2π
log(ΛISS/µ) − 5

2π
log(Q/ΛISS) , (5.34)

which weakens the restriction on allowed values of µ, and makes it far easier for us

to live with Landau poles. Even though preserving the longevity of the metastable

vacuum requires ΛISS > 104 µ, a rough estimate indicates the Standard Model can still

be perturbative up to the GUT scale for µ & 104 TeV. This can easily be accommodated

within our direct mediation model (cf. equation (5.24)). To describe this phenomenon

the authors of [163] coined the phrase deflected unification.

We would now like to suggest that the change of sign in the slopes of the Standard

Model gauge couplings and the very existence of Landau poles is an interesting feature

rather than an distasteful problem. The presence of Landau poles in all sectors of

theory indicates that we should interpret not only the ISS sector as a magnetic dual of

an asymptotically free theory, but also apply the same reasoning to the Standard Model

itself. In other words, at energy scales above µ̂ the Standard Model sector and the ISS

sector are not decoupled from each other and, in general, should be treated as part of the

same theory. We already know that the UV completion of the ISS sector is its electric

Seiberg dual and we propose the whole theory has such a UV completion. This seems

to be a rather symmetric construction. One consequence of this interpretation is, of

course, that gauge unification is lost, or at least buried in the unknown details of the

dual theory. We will expand on the possibilities of this scenario in Section 6.5.2.



Chapter 6.

Patterns of Gauge Mediation

“To understand is to perceive patterns.”

— Isaiah Berlin

In Chapter 5 we saw that direct mediation of susy breaking (i.e. mediation in which

there is no separate messenger sector) is relatively simple to implement in ISS-like mod-

els. One can induce spontaneous breakdown of the approximate R-symmetry associated

to the metastable minimum, which in turn allows the generation of gaugino masses along-

side other soft susy breaking terms. With such a model to hand there are numerous

interesting avenues available to explore.

One important venture, upon which we embark in this chapter, is to calculate how

the consequences of such direct mediation models impact on experimental data — both

the array of existing results, and the eagerly anticipated output of the Large Hadron

Collider. We will solve the renormalisation group evolution of various metastable susy

breaking models (coupled to the MSSM) to derive their sparticle mass spectrum at

modern collider energies. By identifying distinguishing features of each spectrum we

can compare the behaviour of metastable models to the phenomenology of other susy

breaking mechanisms. In this way we should be in a position to say something about

the nature of supersymmetry breaking in the Universe when data from the LHC begins

to reshape the landscape of particle physics models.

122
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6.1. The Phenomenology of Metastable Gauge

Mediation

In the current paradigm of susy breaking, as presented in Section 4.1.1, supersymmetry

is dynamically broken in a Hidden Sector of the full theory and the effects of this are

mediated to the Visible Sector (MSSM) by so-called messenger fields. In the usual

formulation, one essentially ignores the Hidden Sector theory and subsumes its details

into a few parameters; the scale MSUSY at which susy is broken in the Hidden Sector, the

nature of mediation (gravity, gauge, extra dimensions, etc.) and the types of messenger

fields. Thus it is tempting to assume that the details of the Hidden Sector are largely

irrelevant to Visible Sector phenomenology, and that the entire pattern of the susy

breaking soft terms in the MSSM is generated and determined by the messengers. The

recent breakthrough made by Intriligator, Seiberg and Shih [6] in realising the dynamical

susy breaking (DSB) via metastable vacua, provides a very minimal and simple class of

candidates for the Hidden Sector, and makes it natural to reexamine this assumption.

In particular one might ask: is it possible to distinguish different types of Hidden Sector

physics for a given type of mediation and messenger?

We shall address this question in the context of models with low scale susy break-

ing, i.e. gauge mediation (GMSB). In this case, the usual insensitivity of Visible Sector

physics to the behaviour of the Hidden Sector gives us pause for thought. We saw in Sec-

tion 4.2.2 that metastability was all-but-unavoidable in low scale susy breaking scenar-

ios. It is therefore reasonable to wonder whether this generic prediction of a metastable

vacuum is reflected in the Visible Sector physics we observe. As the very definition of

a Hidden Sector may suggest, any such correlation within the standard framework will

be quite subtle. However, as we will see, the new model building possibilities afforded

by embracing metastable vacua can deliver more distinctive phenomenology.

The main advantage of gauge mediation from a phenomenological point of view is

the automatic disposal of the flavour problem that plagues gravity mediation. In GMSB

the messenger fields interact only with the gauge field supermultiplets in the MSSM

and the gauge interactions do not generate unwanted flavour changing soft terms in the

MSSM. The sfermion soft masses are universal in flavour space and the only source of

flavour violation is through the Yukawa matrices, which is already incorporated correctly

into the Standard Model. Furthermore, the susy scale in GMSB is relatively low,

MSUSY ≪
√
mWMPl, and one can determine the field theory in its entirety without
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appealing to the uncalculable details of an underlying supergravity theory, as one must

in gravity mediation. Indeed, the recent realisation [6] that the dynamical breaking

of supersymmetry can be achieved easily in ordinary SQCD-like gauge theories implies

that now one can formulate complete and calculable models of gauge mediated susy

breaking including the Hidden (and Visible) sectors. The goal of this chapter is to

study and classify these models, and to show how the generic patterns of susy breaking

generated in the MSSM depend on the details of the Hidden Sector.

To anticipate our findings, Visible Sector phenomenology depends essentially on how

R-symmetry is broken in the Hidden Sector. Explicit R-symmetry breaking models such

as can be found in references [12, 13] lead to fairly standard gauge mediation, but we

argue that in the context of ISS-type models this only makes sense if Bµ = 0 at the

mediation scale, which leads to high tan β. If, on the other hand, R-symmetry is broken

spontaneously, as in the model of Chapter 5, then R-symmetry violating operators in the

MSSM sector (e.g. gaugino masses) tend to be suppressed with respect to R-symmetry

preserving ones (e.g. scalar masses), and one is led to a scenario with large scalar masses

(and of course more fine-tuning). In the limit of small R-symmetry breaking we recover

so-called split susy models [15–17]. We will also produce benchmark points (mass

spectra) for both scenarios in Section 6.4.

Other recent investigations of metastable susy breaking applied to model building

include references [129, 130, 135, 138, 142, 164–166].

6.2. Gauge Mediation with Explicit R-breaking

Let us start by considering the gauge mediation models of references [12, 13]. These

are working models of metastable susy breaking with a messenger sector that explicitly

breaks the R-symmetry of the ISS sector. The general philosophy is to appeal to de-

tails of the messengers’ couplings to the ISS electric theory to explain why the explicit

R-symmetry breaking is so weak in the effective theory. The net result is that one only

breaks the R-symmetry by operators suppressed by powers of MPl. Various different

constructions of such models are surveyed in reference [133].

Although the phenomenology is expected to broadly follow that of the gauge me-

diation paradigm [14], there is a difference. We will argue that, in the present con-

text the Higgs bilinear Bµ parameter of the MSSM (the susy breaking counterpart of
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µMSSMHuHd) naturally vanishes at the mediation scale.1 This is because R-symmetry

breaking operators are (by assertion) suppressed by powers of MPl and this restricts the

possibilities for generating the Bµ parameter: it is either many orders of magnitude too

large or forbidden by symmetries to be zero.

We begin by recapping reference [12] and considering this issue in detail, before

presenting the susy breaking phenomenology. An example benchmark point exhibiting

typical sparticle masses follows in Section 6.4. The model augments the original ISS

model with a pair of messengers “quarks” charged under the SM gauge group denoted f

and f̃ of mass Mf . For simplicity we shall assume that they transform as a fundamental

and antifundamental respectively of the parent SU(5) of the SM. It was proposed that

these couple maximally to the electric theory via a piece of the form

WR =
λ

MPl

(Q̃Q)(f̃ f) + Mf f̃ f , (6.1)

where MPl is the scale of new physics at which the operator is generated, hereafter as-

sumed to be the Planck scale. For simplicity, in this discussion we shall consider both µ2

and λ to be flavour independent couplings. The essential observation of reference [12] is

that, in the magnetic theory, this appears as an extremely weak violation of R-symmetry

due to the large energy scale at which the operator is generated

WR = λ′ Φf̃ f + Mf f̃f ≡ Smess f̃ f , (6.2)

where we introduced spurion superfield Smess as in the standard gauge mediation set-up

(cf. Section 4.1.1). By assumption the high energy scale MPl is much larger than Λ so

that

λ′ =
λΛ

MPl
≪ 1 . (6.3)

Since the R-symmetry is not respected by WR the Nelson-Seiberg theorem [122] nec-

essarily leads to the appearance of a new susy-preserving vacuum, but as long as λ′

is small enough, the transition rate from |vac〉+ to this new vacuum is suppressed and

the original ISS picture is unchanged. Indeed the meson Φ field can remain trapped

in |vac〉+ near the origin, with the effective messenger F -term and scalar VEVs of the

1From now on we denote the susy preserving biliner term of the MSSM by µMSSM, reserving µ and µ̂
for parameters of ISS model.
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spurion superfield given by

〈
Fmess

〉
≡ λ′

〈
FΦ

〉
= λ′µ2 , (6.4a)

〈
Smess

〉
≡ λ′

〈
Φ
〉

+ Mf ≈ Mf . (6.4b)

As in usual gauge mediation, a gaugino mass is induced at one loop, and is of order

mλ ∼
g2

16π2

〈
Fmess

〉
〈
Smess

〉 ∼ g2

16π2

λ′µ2

Mf
, (6.5)

whereas a scalar mass-squared of the same order is induced at two loops

m2
q̃ ∼ m2

λ . (6.6)

As we discussed at the end of Section 5.3.1, this last equation is a consequence of the

fact that R-symmetry breaking, which controls gaugino masses, is linked to (i.e. not

much smaller than) the susy breaking scale of the Visible Sector.

There is a new global minimum where the rank condition (4.13) is satisfied and the

µ2-ISS term is cancelled in the ISS potential

〈
f̃f
〉

=
µ2

λ′
,

〈
Φ
〉

=
Mf

λ′
, (6.7)

however for small enough λ′ these minima can be much further from the origin than Λ,

beyond which all that one can say is there will be a global minimum of order
〈
Φ
〉
∼Λ.

Such far-flung minima do not change the ISS picture of metastability, and this is why

the weakness of λ′ is welcome. The resulting bound is Mf & λ′µ [12]. Coupled with the

gaugino mass being of order mW , we find only very weak bounds:

µ & 16π2mW . (6.8)

There are a number of additional constraints, two of the most important being that the

messengers f , f̃ are non-tachyonic, which gives

M2
f > λ′µ2 ,
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and that gravity mediation effects are subdominant to the gauge mediation contribution,

leading to

Mf

MPl
. 10−4λ′ .

Further constraints come from the possibility of additional operators such as

δWmag =
1

2

Φ2

MPl
,

which are now allowed in the superpotential, however all of these can be easily satisfied

for high values of Λ.

6.2.1. Forbidden Operators and Bµ = 0

If one considers the MSSM sector as well, then there are further Planck-suppressed

R-symmetry breaking operators that somehow had to be forbidden in references [12, 13].

Normally in gauge mediation one is justified in neglecting gravitationally induced opera-

tors altogether, however as we have seen, in these models the leading Planck-suppressed

operator plays a pivotal rôle. Hence it is important to determine what effect other

Planck-suppressed operators may have. The most important conclusion of this discus-

sion will be that phenomenological consistency requires Bµ ≈ 0 at the mediation scale.

Before considering the operators in question, it is worth recalling the problem with

Bµ in usual gauge mediation, in which supersymmetry breaking is described by a Hidden

sector spurion superfield Smess. As we discussed in Section 4.1.1, the problem arises when

one tries to generate the µMSSMHuHd term of the MSSM (see, also, reference [167] for a

recent review). Consider generating µMSSM directly in the superpotential. There are two

possibilities, either the parameter µMSSM depends on
〈
Smess

〉
in which case a Bµ-term is

generated, or it does not, in which case Bµ = 0. Let us suppose that it does, and that

the superpotential contains W ⊃ µMSSM (Smess)HuHd. The Bµ term is given by

Bµ

µMSSM

=
µMSSM

′

µMSSM

Fmess ∼
Fmess

Smess

, (6.9)

where µMSSM
′ = dµMSSM

dSmess
and the final relation follows from a dimensional analysis. This

should be compared with the susy breaking contribution to the gaugino masses, which
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appears at one loop

mλ ∼
g2

16π2

Fmess

Smess
,

so that

Bµ

µMSSM
∼ (16π2)

g2
mλ . (6.10)

Hence one finds that Bµ is two orders of magnitude too large. More generally because

the µMSSM and Bµ terms are both forbidden by a Peccei-Quinn symmetry, they tend to

be generated at the same order, whereas Bµ should have an additional loop suppression

(in order to be comparable to the scalar mass-squareds). One can then assume that

µMSSM is independent of Smess in which case Bµ = 0, or try to find a more sophisticated

dynamical reason that the Bµ term receives loop suppression factors.

Now let us turn to the models of references [12, 13]. Here the situation is rather more

pronounced for the very same reason that the R-symmetry breaking is under control,

namely that the spurion is related to a meson of the electric theory. The µMSSM term

will be a function of

QQ̃

MPl

=
ΛΦ

MPl

, (6.11)

and will be dominated by the leading terms in the 1
MPl

expansion. The leading operators

involving HuHd we can consider are

W ⊃ µ0HuHd +
λ2
MPl

HuHd f̃ f +
λ3
MPl

HuHdQQ̃ , (6.12a)

K ⊃ λ4
(QQ̃)†HuHd

M2
Pl

+ h.c. . (6.12b)

where λ2,3,4∼ 1. For generality we will allow a µ0 term, which is consistent with

R-symmetry in the renormalizable theory; this represents supersymmetric contributions

to the µMSSM-term that do not involve the ISS sector. (It would of course be inconsis-

tent to allow further susy breaking in the non-ISS sector.) The remaining R-violating

operators we will take to be Planck suppressed as prescribed in references [12, 13].
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Unfortunately it is clear that the Kähler potential term cannot be responsible for the

µMSSM-term (as it could in references [119, 168]). Its contribution is of order

µMSSM ∼
Λ

M2
Pl

µ2 , (6.13)

but we require µ2 ≪ MPlmW for gauge-mediation to be dominant, which would imply

µMSSM ≪ Λ
MPl

mW .

Similar considerations apply to operators in the Kähler potential with factors of

D2[Φ†Φ] as in reference [169]. The Dα appearing here is the superderivative introduced

in Section 2.2.1. D2 acting on anything is automatically antichiral, so terms of the form∫
d4θ HuHdD

2[Φ†Φ] can only generate a µMSSM term, and not Bµ at leading order.

Turning instead to the leading superpotential terms, and assuming the messengers

remain VEVless, one has

µMSSM = µ0 + λ3
Λ

MPl

〈
Φ
〉
∼ µ0 + λ3 16π2 Λ3

M2
Pl

, (6.14a)

Bµ = λ3
Λ

MPl
µ2 , (6.14b)

m2
Higgs ∼

g4

(16π2)2
Λ2

M2
PlM

2
f

µ4 , (6.14c)

mλ ∼
g2

16π2

Λ

MPl

µ2

Mf
, (6.14d)

where we used the fact that the Φ field is only expected to get a small VEV due to the

presence of R-symmetry breaking operators. This was estimated in reference [12] to be

〈
Φ
〉
∼ 16π2 Λ2

MPl

.

Combining the estimates in (6.14) one has

Bµ ∼
16π2

g2
λ3mλMf .

Typically, the messenger mass Mf has to be orders of magnitude above mW , so

the situation is considerably worse than in usual gauge mediation unless a symmetry

forbids the λ3 coupling. A global R-symmetry would not be respected by gravitationally

suppressed operators, however it is possible that particular operators can be suppressed.
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If, for example, µMSSM is charged under an additional gauge symmetry then one might

expect

λ2 ∼ λ3 ∼
µMSSM

MPl
,

in which case the effect of these operators is utterly negligible and we effectively have

µMSSM ≈ µ0 , (6.15a)

Bµ ≈ 0 . (6.15b)

Note the importance of the interpretation of the effective ISS theory as a magnetic

dual in this discussion. For example one could also have considered the effective operator

WR/MSSM =
λ4
MPl

HuHd Tr (ϕ̃ ·ϕ) . (6.16)

This would have given µMSSM∼ µ2

MPl
similar to the Giudice-Masiero mechanism [119],

above. However, because the magnetic quarks ϕ and ϕ̃ are composite objects, the

coupling λ4 will be suppressed by many powers of Λ/MPl, so this contribution to µMSSM

would always be negligible.

In conclusion, by surveying the options available within the framework of refer-

ences [12, 13] we see that the only phenomenologically viable possibility is to have Bµ = 0

at the messenger mass scale.

6.3. Gauge Mediation with Spontaneous R-symmetry

Breaking

In search of new, simple implementations of supersymmetry breaking, Chapter 5 saw

us reconsider direct gauge mediation in the light of metastable model building. The

essential difference between the direct gauge mediation of susy breaking and models with

explicit messengers, such as references [12, 13] and Section 6.2 above, is that the ‘direct

messengers’ form an integral part of the Hidden ISS sector. As such, their interactions

with the susy breaking VEVs are not suppressed by inverse powers of MPl. This means

that the R-symmetry of the susy breaking sector (required by the existence of the

susy breaking vacuum) cannot be an accidental symmetry that is only violated in the
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full theory by 1/MPl corrections, as in [12, 13]. On the other hand, any large explicit

violations of R-symmetry in the full theory will necessarily destabilise the susy breaking

metastable vacuum.

Thus, it was proposed in Section 5.1 that the R-symmetry must be spontaneously bro-

ken by radiative corrections arising from the Coleman-Weinberg potential. In this case

the Nelson-Seiberg theorem does not force upon us a nearby supersymmetric vacuum

and at the same time non-zero gaugino masses can be generated since the R-symmetry

is broken.

We will show below that in this approach the direct gauge mediation scenarios give

phenomenology quite distinct from the usual gauge mediation scenarios [14].

6.3.1. The Baryon-deformed ISS Model

We will study a particular instance of the susy breaking model developed in Section 5.2.

In particular, we take an ISS model with Nc = 5 colours and Nf = 7 flavours, which

has a magnetic dual description as an SU(2) theory, also with Nf = 7 flavours. These

are the minimal allowed values of Nc and Nf that still lead to a non-trivial magnetic

gauge group — in this case SU(2)mg. As we saw above, interesting things happen when

we deform this theory by the addition of a baryonic operator.

For the reader’s convenience, and to fix notation, we now outline some salient features

of the model. As it is our goal to find the low energy spectrum, we will almost exclusively

be working in the magnetic picture. In terms of these variables the superpotential of

the theory is given by

W = Φij ϕi · ϕ̃j − µ2
ijΦji + mεabεrsϕ

a
rϕ

b
s , (6.17)

where i, j = 1, . . . , 7 are flavour indices, r, s = 1, 2 run over the first two flavours

only, and a, b are SU(2)mg indices. As the baryon deformation (controlled by param-

eter m) singles out the 1, 2 flavour indices to be treated differently from the 3, . . . , 7

indices, the flavour symmetry is explicitly broken concomitantly to SU(2)f × SU(5)f .

The SU(5)f factor is gauged separately and will now be identified with the parent

SU(5) of the Standard Model.The decomposition of matter fields under the magnetic

SU(2)mg× SU(5)f × SU(2)f is given in Table 6.1, along with the associated U(1)R charges.
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SU(2)mg SU(2)f SU(5)f U(1)R

Φij ≡
(
Y Z

Z̃ X

)
1

(
Adj + 1 �

� 1

) (
1 �

� Adj + 1

)
2

ϕ ≡
(

φ

ρ

)
�

(
�

1

) (
1

�

)
1

ϕ̃ ≡
(

φ̃

ρ̃

)
�

(
�

1

) (
1

�

)
−1

Table 6.1.: We list matter fields of the model (6.17), their decomposition under the gauge
SU(2) and flavour SU(2)f ×SU(5)f symmetries, and their charges under the
R-symmetry.

Using the SU(2)f × SU(5)f symmetry, the matrix µ2
ij can be brought to a diagonal

form

µ2
ij =


 µ2

12 0

0 µ̂2
15


 . (6.18)

We will assume that µ2 > µ̂2. The parameters µ2, µ̂2 and m have an interpretation

in terms of the electric theory: µ2∼ΛmQ and µ̂2∼Λm̂Q come from the electric quark

masses mQ, m̂Q, where Λ is the Landau pole of the theory. The baryon operator can

be identified with a corresponding operator in the electric theory. Indeed the mapping

from baryons BE in the electric theory to baryons bM of the magnetic theory (neglecting

factors of order one) is

bM Λ−N ←→ BE Λ−Nc . (6.19)

Thus one expects

m∼M
(

Λ

M

)2Nc−Nf

=
Λ3

M2
. (6.20)

Here M represents the scale of new physics in the electric theory at which the irrelevant

operator BE is generated. We will think of it as being MP or MGUT although as we shall

see a large range of values can be accommodated.
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As explained in Section 5.2.1, this theory has a classical runaway direction
〈
ϕ̃
〉
→∞

(with
〈
ϕ̃
〉〈
ϕ
〉

fixed) to a non-supersymmetric vacuum. The quantum dynamics, namely

the one-loop Coleman-Weinberg potential [150], stabilises the runaway at a point which

breaks both supersymmetry and R-symmetry, thus creating a meta-stable vacuum state.

We parameterise the pseudo-Goldstone and runaway VEVs by

〈
ϕ̃
〉

= ξ 12

〈
φ
〉

= κ12 (6.21a)
〈
Y
〉

= η 12

〈
X
〉

= χ15. (6.21b)

These are the most general VEVs consistent with the tree level minimization. It can be

checked that at one loop order all other field VEVs are zero in the lowest perturbative

vacuum. By computing the masses of all fluctuations about this valley we can go about

constructing the one-loop effective potential. We have done this numerically using the

Vscape program of reference [152]. Table 6.2 shows the VEVs stabilised by the one loop

effective potential at a selection of points relevant to this chapter.

µ m ξ κ η χ

10 0.3 41.0523 2.43592 −0.035477 −1.761261

1.1 0.3 2.1370 0.566214 −0.148546 −0.083296

1.01 0.3 1.8995 0.537043 −0.155796 −0.073474

1.003 0.3 1.8809 0.534848 −0.157752 −0.072738

Table 6.2.: Stabilised VEVs from Vscape [152] for various parameter points. All values are
given in units of µ̂.

To summarise, we have identified a susy breaking vacuum of the deformed ISS

model, which also breaks R-symmetry spontaneously via radiative corrections. This is a

long-lived metastable vacuum. The only susy-preserving vacua of this model are those

generated by the non-perturbative suprepotential

Wnp = 2Λ3

[
det

(
Φ

Λ

)] 1
2

. (6.22)

Adapting the supersymmetric vacuum solution from the ISS model to our case with

µ > µ̂ we find

ϕ = 0 , ϕ̃ = 0 , η = µ̂2µ− 6
5 Λ

1
5 , χ = µ

4
5 Λ

1
5 . (6.23)
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Note that the supersymmetric minimum lies at ϕ = ϕ̃ = 0 and is completely unaffected

by the baryon deformation. As we are not breaking R-symmetry explicitly, no other

supersymmetric vacua are generated. As a result, the decay rate of our metastable

vacuum is exponentially small, just as in the original ISS model.

6.3.2. Direct Gauge Mediation and Generation of Soft Masses

As mentioned above, the SU(5)f symmetry of the superpotential (6.17) is gauged and

identified with the parent SU(5) of the MSSM sector. This induces direct gauge me-

diation of susy breaking from the metastable vacuum of the Hidden ISS sector to the

MSSM. The Hidden sector matter fields ρ, ρ̃, Z, Z̃ and X are all charged under the

SU(5) and serve as direct messengers. We will now see how these fields induce all the

soft susy breaking terms of the MSSM sector, including gaugino and sfermion masses.

Gaugino Masses

Gaugino masses are generated at one loop order (cf. Figure 6.1). The fields propagating

in the loop are fermion and scalar components of the direct mediation ‘messengers’ ρ,

ρ̃ and Z, Z̃. The adjoint part of X is also charged under the Standard Model gauge

groups and therefore, in principle, can also mediate susy breaking. However, at tree-

level X does not couple to the supersymmetry breaking F -term, and its fermionic and

bosonic components have identical (zero) mass. This degeneracy is only lifted at the

one-loop level by the Coleman-Weinberg potential. For the time-being we therefore

neglect the contribution from X which we expect to be subdominant. Since gaugino

masses are forbidden by R-symmetry, one crucial ingredient in their generation is the

presence of a non-vanishing R-symmetry breaking VEV — in our case
〈
χ
〉
, generated

by the non-vanishing baryon deformation m.

In contrast to the gaugino masses mλ, sfermion masses mf̃ are not protected by

R-symmetry. Hence, as long as supersymmetry remains broken, we can have non-

vanishing sfermion masses even in the absence of an R-symmetry breaking VEV. In

our model this means that the sfermion masses are non-vanishing even in the case of

vanishing baryon deformation. This shows that in a general (gauge) mediation scenario

sfermion and gaugino masses are generated by quite different mechanisms. Accordingly,

the simple relation mλ ∼ mf̃ does not necessarily hold in general gauge mediation sce-

narios. Indeed, our model is an explicit example where it fails.
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〈
Fχ
〉

〈
χ
〉

Figure 6.1.: One-loop contribution to the gaugino masses. The dashed (solid) line is a bosonic
(fermionic) messenger. The blob on the scalar line indicates an insertion of

〈
Fχ
〉

into the propagator of the scalar messengers and the cross denotes an insertion of
the R-symmetry breaking VEV into the propagator of the fermionic messengers.

Let us now turn to the practical evaluation of the gaugino masses. For fermion

components of the messengers

ψ =
(
ρia , Zir

)
ferm

, ψ̃ =
(
ρ̃ ia , Z̃ir

)
ferm

, (6.24)

the mass matrix is given by

mf = 15 ⊗ 12 ⊗


 χ ξ

µ2

ξ
0


 . (6.25)

We can also assemble the relevant scalars into

(
ρia, Zir, ρ̃

∗
ia, Z̃

∗
ir

)
sc
, (6.26)

and for the corresponding scalar mass-squared matrix we have

m2
sc = 15 ⊗ 12 ⊗




|ξ|2 + |χ|2 χ∗κ −µ̂2 η κ

χ κ∗ |κ|2 ξ η + 2mκ 0

−µ̂2 (ξη)∗ + 2mκ∗ |κ|2 + |χ|2 χ ξ∗

η∗κ∗ 0 χ∗ξ |ξ|2




. (6.27)

Gaugino masses arise from the one-loop diagram in Figure 6.1. To evaluate the

diagram it is convenient to diagonalise the non-diagonal mass matrices (6.25) and (6.27)
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using unitary matrices

m̂2
sc = Q†m2

scQ , (6.28a)

m̂f = U †mf V . (6.28b)

The fields in the new basis are given by

Ŝ = S ·Q , (6.29a)

ψ̂+ = ψ ·U , (6.29b)

ψ̂− = ψ̃ ·V ∗. (6.29c)

In order to calculate the gaugino mass, we need the gauge interaction terms given by

L ⊃ i
√

2 gAλA

(
ψ1T

AS∗
1 + ψ2T

AS∗
2 + ψ̃1T

∗AS3 + ψ̃2T
∗AS4

)
+ h.c. (6.30a)

= i
√

2 gAλA

[
ψ̂+iŜ

∗
k

(
U †
i1Q1k + U †

i2Q2k

)
+ ψ̂−iŜk

(
Q†
k3V1i +Q†

k4V2i

)]
+ h.c. ,

(6.30b)

where we have expressed everything in terms of mass eigenstates in the second line.

Using the gauge interactions equation (6.30b), the diagram in Figure 6.1 contributes

to gaugino masses as follows2

mλA = 2 g2A Tr
(
TATB

)∑

ik

(
U †
i1Q1k + U †

i2Q2k

)(
Q†
k3V1i +Q†

k4V2i

)
I(m̂f,i, m̂sc,k) (6.31)

where the 1-loop integral I evaluates to

I(a, b) =
−a(η + 1)

16π2
+

1

16π2

a

(a2 − b2)

[
a2 log

(
a2

Λ2

)
− b2 log

(
b2

Λ2

)]
, (6.32)

with

η =
2

4−D + log(4π) − γE . (6.33)

2More precisely, in evaluating (6.31), we use the diagram in Figure 6.1 without explicit insertions of
〈Fχ〉 and

〈
χ
〉
in the messenger propagators. In the loop we use mass-eigenstate propagators and

insert the diagonalisation matrices at the vertices. Appropriate dependence on
〈
Fχ

〉
and

〈
χ
〉
is

automatically introduced by the diagonalisation matrices.
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m1/2

µ̂

m/µ̂
0 0.5 1 1.5 2

10-3

10-2

10-1

Figure 6.2.: Gaugino mass scale m1/2 as a function of the baryon deformation m, for various
values of µ: red (µ = 1.003 µ̂), green (µ = 1.01 µ̂), blue (µ = 1.1 µ̂) and black
(µ = 1.5 µ̂). The mass scale m1/2 is defined in equation (6.43a).

The integral I(a, b) is UV-divergent, but the divergences cancel in the sum over eigen-

states as they should.

Keeping the susy breaking scale µ̂ fixed we can now study the dependence of the

gaugino mass on the two remaining parameters µ and m. The VEVs ξ, κ, η and χ are

generated from minimizing the effective potential, as above. The results are shown in

Figure 6.2. The first thing to note is that the gaugino masses do indeed vanish as ex-

pected when the deformation that controls spontaneous R-breaking disappears (m→ 0).

Another interesting observation is the marked suppression of the masses relative to the

rough estimate (5.21) we made in Section 5.3.1, which has m1/2∼ µ̂. Indeed, the way

gaugino mass levels off into a plateau for values of m somewhat below the susy breaking

scale µ̂ indicates that there must be further effects inhibiting the generation of mass,

over and above the degree of R-symmetry breaking we discussed in Section 5.3.1.

To get a better handle on this behaviour, it pays to be a bit more careful in deriving

an analytic expression for gaugino mass from Figure 6.1. In a limit where the F -terms

are somewhat less than µ2, it can be shown that the gaugino masses vanish to leading

order in Fχ, so one must go to order F 3
χ to find a non-vanishing contribution. This effect,

which is largely due to the structure of the fermion mass matrix (6.25), was first pointed

out in reference [170], and has recently been observed as a general feature of directly
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mediated metastable susy breaking models [171]. As explained in the appendix of [171],

the leading order gaugino mass should be

mλA ∼
g2A
8π2

5 tr
(
TATB

)
Tr
(
F ·m−1

f

)
+ O

(
F3
)
, (6.34)

where

Fab = W abcWc =


Fχ Fφ̃

Fφ 0


 and m−1

f =


0 1

κ

1
ξ

−χ
κξ


 . (6.35)

The last equation is found by inverting equation (6.25). On expanding out the trace over

fields, one finds the zero element of m−1
f prevents Fχ from contributing to the leading

order result, which consequently reads

mλA ∼
g2A
8π2

5 tr
(
TATB

) [Fφ
κ

+
Fφ̃
ξ

]
+ O

(
F3
)
. (6.36)

Furthermore, minimising the tree-level scalar potential (5.6) with respect to Y ∗ imposes

the constraint

∂V

∂Y ∗ = 2
(
ξ Fφ + κFφ̃

)
= 0 , (6.37)

which forces the term in square brackets in equation (6.36) to vanish, so

mλA ∼ 0 + O
(
F3
)
. (6.38)

as claimed.

This result gives some insight into why, in Section 5.3.1, we had to take µ̂∼µ when

looking for a realistic parameter point that also had a reasonably small splitting between

gaugino and sfermion masses. Our discussion of R-symmetry breaking suggests we

should only need to take µ̂ < m ≪ µ to return to the standard GMSB picture, but

the above argument shows gaugino masses vanish to leading order in this corner of

parameter space. To evade this troublesome conclusion, we therefore took µ̂∼µ when

computing the gaugino mass estimate in equation (5.22). We will further reflect upon the

suppression of gaugino masses when looking to refine our calculations in Section 6.4.1.

For a recent discussion of the leading order prohibition of gaugino mass in directly

mediated O’Raifearteagh models of susy breaking see reference [172]. There it is shown
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that the suppression will always be present for generic models with a stable tree-level

pseudo-moduli space. The baryon deformation in our model induces runaway behaviour

at tree-level, thus circumventing this conclusion and slightly aleviating the mass suppres-

sion, but nevertheless it is clear that the sheer directness of the mediation mechanism

imposes structural constraints on the model that inhibit the generation of gaugino mass

[171].

Sfermion Masses

Having determined the gaugino masses in equation (6.31) and Figure 6.2, we now turn to

the generation of masses for the sfermions of the supersymmetric Standard Model. Here

we will closely follow the calculation in reference [155] adapting it for our more general set

of messenger particles. As already mentioned at the beginning of this section, sfermion

masses are generated by a different mechanism to that of the gaugino masses. Indeed,

they are generated by the two-loop diagrams shown in Figure 6.3. In reference [155] the

contribution of these diagrams to the sfermion masses was determined to be

m2
f̃

=
∑

mess.

∑

a

g4a Ca Sa(mess.)
[

sum of graphs in Figure 6.3
]
, (6.39)

where we sum over all gauge groups under which the sfermion is charged, ga is the corre-

sponding gauge coupling, Ca = (N2
a − 1)/(2Na) is the quadratic Casimir and Sa(mess.)

is (one half of) the Dynkin index of the messenger fields (normalised to 1/2 for funda-

mentals).

In the following we will only describe the new features specific to the messenger fields

of our direct mediation model. The explicit expressions for the loop integrals and the

algebraic prefactors resulting from γ-matrix algebra etc. can be found in the appendix of

[155]. To simplify the calculation we also neglect the masses of the MSSM fields relative

to the messenger masses.

As in the calculation of gaugino masses we use propagators in a diagonal form and

insert the diagonalisation matrices directly at the vertices. For the diagrams 6.3a to

6.3f we have closed loops of purely bosonic or purely fermionic mass eigenstates of our

messenger fields. It is straightforward to check that in this case the unitary matrices

from the diagonalisation drop out. We then simply have to sum over all mass eigenstates

the results for these diagrams computed in reference [155].
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6.3.: Two-loop diagrams contributing to the sfermion masses. The long dashed (solid)
line is a bosonic (fermionic) messenger. Standard Model sfermions are depicted
by short dashed lines.

The next diagram 6.3g is slightly more involved. This diagram arises from the D-

term interactions. D-terms distinguish between chiral and antichiral fields, in our case

ρ, Z and ρ̃ ∗, Z̃ ∗ respectively. We have defined our scalar field S in (6.26) such that

all component fields have equal charges. Accordingly, the ordinary gauge vertex is

proportional to a unit matrix in the component space (cf. equation (6.30a)). This vertex

is then ‘dressed’ with our diagonalisation matrices when we switch to the Ŝ basis, (6.30b).

This is different for diagram 6.3g. Here we have an additional minus-sign between chiral

and antichiral fields. In field space this corresponds to a vertex that is proportional to

a matrix VD = diag(1, 1,−1,−1). We therefore obtain

Figure 6.3g =
∑

i,m

(
QTVDQ

)
i,m

J
(
m̂sc,m, m̂sc,i

) (
QTVDQ

)
m,i

, (6.40)

where J is the appropriate two-loop integral for Figure 6.3g, which can be found in

reference [155]. As a function it is evaluated on the eigenvalues of matrices (6.28).

Finally, in 6.3h we have a mixed boson/fermion loop. The subdiagram containing

the messengers is similar to the diagram for the gaugino mass. The only difference is

the direction of the arrows on the gaugino lines. Indeed, the one-loop sub-diagram cor-

responds to a contribution to the kinetic term rather than a mass term for the gauginos.

(Of course, the mass term will also contribute, but will be suppressed by the smallness
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m0

µ̂

m/µ̂
0 0.5 1 1.5 2

1

2

Figure 6.4.: Sfermion mass scale m0 as a function of the baryon deformation m, for various
values of µ: red (µ = 1.003 µ̂), green (µ = 1.01 µ̂), blue (µ = 1.1 µ̂) and black
(µ = 1.5 µ̂). The mass scale m0 is defined in equation (6.43b).

of the quark masses.) Using equation (6.30b) we find

Figure 6.3h =
∑

ik

(∣∣∣U †
i1Q1k + U †

i2Q2k

∣∣∣
2

+
∣∣∣Q†

k3V1i +Q†
k4V2i

∣∣∣
2
)
L
(
m̂f,i, m̂

2
sc,k

)
, (6.41)

where L is again the appropriate loop integral from [155].

Summing over all diagrams we find the sfermion masses depicted in Figure 6.4. Com-

paring to the gaugino masses in Figure 6.2 we find the sfermion masses to be significantly

larger. Indeed, the scalar masses roughly follow the näıve estimate

m2
f̃ ,näıve

∼ g4

(16π2)2
µ̂2 . (6.42)

This demonstrates again the fundamental difference between the generation of gaugino

masses and the generation of sfermion masses.

The main results of this section, equations (6.31) and (6.39), give the gaugino and

scalar masses generated at the messenger mass scale µ. It is useful to factor out the

particle-type-dependent overall constants and define the universal fermion and scalar
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mass contributions m1/2 and m0 via

mλA(µ) :=
g2A

16π2
m1/2 (6.43a)

m2
f̃

(µ) :=
∑

A

g4A
(16π2)2

CASA m
2
0 (6.43b)

We can then re-express equations (6.31) and (6.39) in terms of m1/2 and m0 which we

calculate numerically using the VEVs generated by Vscape. As an example, in Table 6.3

we show the values for m1/2 and m2
0 obtained for the same parameters as in Table 6.2.

A more thorough treatment of gaugino and scalar masses in the context of direct

mediation models has recently been given in reference [171]. We will highlight some of

the progress made in this paper when discussing possible ways to improve the above

calculations in Section 6.4.1.

µ m m1/2 m2
0

10 0.3 1.03984× 10
−7 0.026787

1.1 0.3 0.017843 4.89783

1.01 0.3 0.044771 5.12698

1.003 0.3 0.052320 4.74031

Table 6.3.: Gaugino and sfermion mass coefficients for various parameter points. All values
are in units of µ̂.

6.3.3. Renormalisation Group Running, Mass Spectrum and

Electroweak Symmetry Breaking

In the previous section we calculated the soft susy breaking masses for gauginos and

sfermions at the messenger scale µ. The Higgs masses m2
H1

and m2
H2

are calculated in

the same way as the sfermion masses above3

m2
H1

(µ) = m2
H2

(µ) =

[
3

4

g42
(16π2)2

+
3

20

g41
(16π2)2

]
m2

0 (6.44)

The other soft susy breaking terms in the MSSM, such as the A-terms and the Bµ-term

are generated at two-loop level. Indeed the diagrams giving rise to the Bµ-term require

3We use the GUT normalisation convention for the g1 gauge couplings.
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an insertion of the Peccei-Quinn violating parameter µMSSM and a susy breaking gaugino

“mass loop”. Thus its magnitude at the messenger scale µ is of order [173]

Bµ ∼
g2

16π2
mλ µMSSM ∼

g4

(16π2)2
m1/2 µMSSM , (6.45)

and is loop suppressed with respect to gaugino masses. For the accuracy required here,

it will be sufficient to take Bµ = 0 at the messenger scale.

Having successfully communicated the effects of broken supersymmetry to the Visible

Sector, we now turn to the phenomenology in full. The next step is to use renormalisa-

tion group running to determine the soft susy breaking parameters at the Weak Scale.

Using these, one can then solve the electroweak symmetry breaking conditions (4.7),

and derive the mass spectrum of the MSSM. Throughout the following we will be using

the conventions of references [116, 174] with the obvious replacement µ → µMSSM . The

pattern of susy breaking here is expected to be different from the standard gauge me-

diation form for two reasons. Firstly our model naturally predicts significantly larger

values of m0 relative to m1/2 . Secondly, for reasons explained above, we take Bµ = 0

at the messenger scale. The phenomenology of the Bµ = 0 case has been discussed in

references [173, 175–177]. The main prediction is that high tan β is required to achieve

successful electroweak symmetry breaking.

In order to see why, consider the tree level minimization conditions (4.8), which can

be rearranged in terms of Hu and Hd to give

|µMSSM|2 = −M
2
Z

2
− tan2 β m2

Hu
−m2

Hd

tan2 β − 1
, (6.46a)

Bµ =
sin 2β

2

(
m2
Hu

+ m2
Hd

+ 2|µMSSM|2
)
. (6.46b)

Since Bµ is only generated radiatively, the right hand side of the second equation has to

be suppressed by small sin(2β) with β approaching π/2 . One additional feature of the

Bµ-parameter that complicates the analysis somewhat, is that as noted in reference [173]

there is an accidental cancellation of renormalization group contributions to its running

close to the weak scale. Of course, this model becomes more fine-tuned as m0 ≫ m1/2

since we are decoupling the superpartners in that limit. It is worth understanding

what has to be fine-tuned. Since tanβ ≫ 1 when m0 ≫ m1/2, the first equation tells

us that we must have |µMSSM|2 ≈ −m2
Hu

. In order to have a hope of satisfying the

second equation there then has to be a cancellation of the terms inside the bracket,
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m2
Hu

+ m2
Hd

+ 2|µMSSM|2 ≈ 0 and therefore m2
Hd
≈ m2

Hu
near the minimization scale.

This is consistent with large tan β, where the top and bottom Yukawa couplings become

approximately degenerate.4

To calculate the spectrum of these models we have modified the Softsusy2.0 pro-

gram of reference [116]. In its unmodified form this program finds Yukawa couplings

consistent with soft susy breaking terms (specified at the messenger scale QMess = µ)

and electroweak symmetry breaking conditions (imposed at a scale QSUSY to be discussed

later). It is usual to take the ratio of Higgs VEVs vu
vd
≡ tanβ at QSUSY as an input pa-

rameter instead of the soft susy breaking term Bµ at QMess. This term, and the susy

preserving µMSSM are subsequently determined through the EWSB conditions (6.46a)

and (6.46b).

As the models we are considering have Bµ = 0 at QMess to two loops, tanβ is

not a free parameter, and must (as noted above) be adjusted in Softsusy2.0, so that

this boundary condition is met. In detail the iteration procedure works as follows:

initially, a high value of tanβ is chosen and all the gauge and Yukawa couplings are

evolved to QMess. The soft parameters are then set, as per the susy breaking model,

including the condition Bµ = 0. The whole system is then evolved down to QSUSY,

where tanβ is adjusted to bring the program closer to a solution of the EWSB condition

in equation (6.46b) (including the 1-loop corrections to the soft masses m2
Hd

and m2
Hu

and the self-energy contributions to the DR mass-squared of the axial Higgs m2
A). We

then run back up to QMess where we reimpose the soft breaking boundary conditions,

and the whole process is repeated until the value of tanβ converges.

The scale QSUSY at which the tree-level minimisation conditions (6.46a) and (6.46b)

are imposed is chosen so as to minimise the radiative corrections to the results. It is usu-

ally taken to be QSUSY ≡ x
√
mt̃1

mt̃2
where x (QEWSB in the language of reference [116])

is a number of order unity. As we see from Table 6.4, the lightest Higgs mass (in the

model with spontaneously broken R-symmetry) depends less on scale for lower values of

QSUSY, and so in this model we will therefore be using

QSUSY = 0.8×
√
mt̃1

mt̃2
. (6.47)

Note that only the Higgs masses are sensitive to this choice and the other parameters

are largely unaffected.

4Using the conventional definition [178, 179], the fine-tuning is then of order µMSSM/mZ .
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QSUSY × 0.75 × 0.80 × 0.85 × 0.90 × 0.95 × 0.99 × 1.00 × 1.01

h0 124.5 124.5 124.2 124.1 123.8 101.5 93.3 78.6

Table 6.4.: Checking the scale dependence of the lightest Higgs mass (in GeV).

What the construction we are discussing predicts in most of its parameter space

(i.e. generic µ > µ̂) is clearly split-susy like because of the suppression of R-symmetry

violating operators (i.e. m1/2 ≪ m0 in Table 6.3). It provides a first-principles model

that can implement split-susy [15–17]. For other realisations of split-susy scenarios

see, for example, [180]. Our purpose here however is to examine how close the models

with radiative R-symmetry breaking can get to the usual gauge mediation scenarios [14].

For this reason we want to reduce the m0 to m1/2 ratio as far as possible and to take µ

approaching µ̂, i.e. the last two rows in Table 6.2.

6.4. Benchmarks

With supersymmetry and R-symmetry broken, and the renormalisation group running

of soft parameters accounted for, we are now in a position to present complete low energy

MSSM spectra of the metastable susy breaking models discussed in this chapter. All

masses given have been extracted from SoftSusy2.0 in a format compatible with the

Susy les Houches Accord [181] — essentially DR masses at the scale QSUSY (6.47). The

exact numbers quoted are subject to various ambiguities discussed in Section 6.4.1, and

are really only intended to illustrate general patterns in the spectra.

This exercise plainly demonstrates one strength of the metastable gauge mediation

paradigm: from well-motivated assumptions and relatively few input parameters, the

whole spectrum of observable low energy physics can be systematically calculated. A

more in-depth phenomenological study of the parameter space of these models would

clearly be desirable, with subsequent Monte Carlo simulations employed to search for

potential ways to distinguish this particular mechanism of susy breaking at future

particle colliders.

In Table 6.5 (page 147) we present a benchmark point (Benchmark Point A) with

the full spectrum of the direct mediation model with spontaneous R-symmetry breaking

found in Section 6.3. This point, with µ = 1.003 µ̂ and m = 0.3 µ̂, corresponds to a
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phenomenologically viable region of parameter space near the boundary. The important

features to note: it has heavy scalars, light charginos and neutralinos, and exhibits

radiative electroweak symmetry breaking. This point is still quite distinct from the

usual gauge mediation scenarios, and as we saw in Section 6.2, from predictions of gauge

mediation models with explicit R-symmetry breaking [12, 13]. To make this comparison

more transparent, in Table 6.5 we also present another benchmark point (Benchmark

Point B) typifying the spectrum of a model with explicit R-breaking [12, 13] such we

discussed in Section 6.2. As expected, it conforms to the standard gauge mediation

form, with the requirement that Bµ = 0 at the mediation scale leading to large tanβ.

6.4.1. Refinements

In this chapter we have seen that the details of the dynamics of a metastable Hidden

Sector — the nature of R-symmetry and susy breaking — leave a clear imprint on

the phenomenology of the MSSM. Although both the scenarios investigated here can

be seen to arise in particular corners of the phenomenological parametrisation of gauge

mediated models known as General Gauge Mediation [182], it is clearly of interest to

have an understanding of the physical mechanisms that give rise to this structure. The

different ways in which R-symmetry may be manifest in the susy breaking sector appear

to make sufficient difference to the spectrum of masses as to allow us the hope of one

day distinguishing them by experiment. It would be interesting to broaden the scope

of our study to include other models with either spontaneous or explicit R-symmetry

breaking, and to see if the general pattern outlined here persists.

The first steps in this direction were taken in reference [171], where the authors

investigated generalisations of our minimal deformation of the ISS model from Chapter 5.

The models they considered still break R-symmetry spontaneously, and communicate

susy breaking directly to the MSSM by the appropriate gauging of a flavour symmetry.

Just as we saw in Section 6.3.2, all the direct mediation models were found to suffer

from suppressed gaugino masses at leading order. A number of useful observations were

made in [171] relevant to the calculation of these masses.

Firstly, as we explained around equation (6.36), in the limit µ̂≪ µ the leading order

disappearance of gaugino mass can be attributed to the imposition of a tree-level relation

between various VEVs and F -terms. This tree-level relation is not strictly respected by

the Coleman-Weinberg corrections that are used to determine the parameters that feed
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Model A Model B

QMess 8.32×10
5 1×10

7

tanβ 58.7 38.9

sgnµMSSM + +

µMSSM(QSUSY) 2891 939

ẽL, µ̃L 4165 747.9

ẽR, µ̃R 2133 399.8

τ̃L 1818 319.4

τ̃R 4093 737.5

ũ1, c̃1 11757 1963

ũ2, c̃2 11205 1867

t̃1 10345 1593

t̃2 11061 1825

d̃1, s̃1 11784 1973

d̃2, s̃2 11144 1851

b̃1 10298 1754

b̃2 11060 1822

χ0
1 60.8 270.3

χ0
2 125.0 524.8

χ0
3 2906 949.0

χ0
4 2929 950.3

χ±
1 100.7 526.5

χ±
2 2894 945.6

h0 124.8 137.6

A0, H0 184.5 975.1

H ± 207.4 978.6

g̃ 414.2 1500

ν̃1,2 4175 740.2

ν̃3 4095 724.4

Table 6.5.: Sparticle spectra for susy breaking models with spontaneously broken (Model A)
and explicitly broken (Model B) R-symmetry. All masses are in GeV.
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into the gaugino mass matrix. So even though we checked in Table 5.2 that the imposi-

tion of this tree-level constraint has a small effect on the stabilised VEVs, implementing

it as part of the Coleman-Weinberg minimisation is not entirely legitimate. Due to the

accidental suppression — which is partly enforced by the constraint — this small effect

can provide an appreciable contribution to the gaugino masses.

Secondly, reference [171] takes into account the effect that adjoint matter has in

mediating susy breaking. We chose to neglect the contribution of these messenger

fields to our leading order calculation of soft terms because the adjoint bosonic and

fermionic masses are only split by a one-loop effect. Technically their effect should only

be included in a higher-order calculation, but due to the accidental smallness of leading

order gaugino masses, this sub-dominant contribution can also be important.

In summary, because the gaugino masses we calculated in Section 6.3.2 turned out to

be uncharacteristically small, there are various approximations we made along the way

that are less well justified than they may at first appear. Taking the above refinements

into account lifts the universal gaugino mass (6.43a) by about two orders of magnitude.

This alleviates the fine tuning of µ̂∼µ that we found was necessary to minimise the

split aspects of the phenomenology of our direct mediation model.

Another important phenomenological point raised in reference [183] and also dis-

cussed in [171] again relates to the adjoint superfields X of the susy breaking sector.

They are pseudo-Goldstone modes that acquire masses proportional to the susy break-

ing scale by the Coleman-Weinberg mechanism. A näıve estimate might put their masses

about a loop factor below the susy breaking scale, but in fact some of the fermionic

components of X can have masses of the same order as the (suppressed) gauginos. As

X is charged under the Standard Model, these exotic light states with masses around

the TeV scale would therefore be expected to show up alongside the usual MSSM spec-

trum at the LHC in the coming years. Although its precise nature is relatively model

dependent, the presence of new TeV scale matter invading observable physics from the

susy breaking sector is a fairly generic expectation of direct gauge mediated models;

one shouldn’t be surprised to catch a glimpse of the susy breaking sector if it fits so

closely together with the Standard Model.

In light of the above comments, we feel it necessary to reiterate that the sample

MSSM spectrum for our direct mediation model, Benchmark Point A in Table 6.5, will

be noticeably altered by a more careful calculation of the soft terms. The renormalisation

group running must also be modified to account for the effect of light matter from the
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adjoint field X . Despite the approximations made, the general features of this benchmark

point, such as the splitting between gaugino and sfermion masses and the large value of

tan β, are expected to still be evident in a more comprehensive calculation of the low

energy spectrum; we hope to return to this point in future work.

6.5. Conclusions

6.5.1. Summary

As we argued in Chapter 4, in generic models of low scale supersymmetry breaking

(where gravity effects can be neglected) metastability is inevitable.

In this chapter we compared susy breaking patterns generated in two distinct and

complementary scenarios of gauge mediated supersymmetry breaking. Both scenarios

employ an explicit formulation of the Hidden Sector in terms of an ISS-like gauge the-

ory with a long-lived metastable vacuum. This, in both cases, provides a simple and

calculable model to implement metastable DSB.

One important difference between the two approaches lies in the mechanism of

R-symmetry breaking. The first approach, outlined in Section 6.2, is based on the

gauge mediation models of references [12, 13] with a messenger sector that explicitly

breaks the R-symmetry of the ISS sector by operators suppressed by powers of MPl.

We argue that these models lead to phenomenology broadly similar to standard gauge

mediation, but with an additional constraint that Bµ = 0 at the mediation scale.

The second strategy, described in Section 6.3, employs spontaneous R-symmetry

breaking induced by radiative corrections. It is based on the direct gauge mediation

model introduced in Chapter 5. We find that R-symmetry violating soft terms (such

as gaugino masses) tend to be suppressed with respect to R-symmetry preserving ones,

leading to a scenario with large scalar masses. These models effectively interpolate

between split susy models and standard gauge mediation, although subsequent work

[171, 172] has shown that the directness of mediation leads to an irreducible degree of

gaugino-sfermion mass splitting.

Determining the complete spectrum of superpartner masses at benchmark points (see

Table 6.5) we find that apart from high values of tanβ (arising from the condition that

Bµ ≈ 0 at the messenger scale in both models) the phenomenology of these models is
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quite different. For the model with explicit R-symmetry breaking (Benchmark Point

B) we find that it closely follows the usual gauge mediation scenario where gauginos

and sfermions have roughly equal masses. In contrast, the direct mediation model with

spontaneous R-symmetry breaking typically has sfermions that are considerably heavier

than the gauginos — resembling a scenario of split susy. Benchmark Point A represents

such a model at a region in parameter space where the ‘split aspects’ of supersymmetry

are minimal. At the same time it is quite distinct from the usual gauge mediation

scenarios, having relatively heavy scalars and light charginos and neutralinos.

6.5.2. Landau Poles

The ISS approach to supersymmetry breaking has important implications for how the

theory behaves at high energies. In gauge mediated scenarios, and certainly for those

with low scale direct gauge mediation (i.e. in which the global flavour symmetries of

the ISS model are identified with the gauge symmetries of the MSSM), there are many

new degrees of freedom, corresponding to the magnetic quarks and mesons of the ISS

sector. As we saw at the end of Chapter 5, this induces a Landau pole within the Visible

Sector that leads, unless one is careful, to the theory becoming non-perturbative and

incalculable at energies below the Planck (or GUT) scale — a long standing problem

with direct gauge mediation. Rather than discard such theories as sick, in Section 5.4 we

speculated that a more interesting resolution may found by mimicking the ISS sector:

when the couplings become strong, perform a Seiberg duality.

What would be the expectation for an electric dual of the MSSM? The precise details

depend of course on the exact form of the Seiberg duality, but generically, as a result of

dualising all or part of the MSSM at its Landau pole, one would expect to find larger

Visible Sector gauge groups, or equivalently more flavours for the ISS sector. The latter

would then hit another Landau pole, probably in even shorter order than it did the first

one, and so on. At each Landau pole the rank of a gauge group increases, and so the cycle

repeats. Eventually perturbativity is lost when the ’t Hooft coupling becomes greater

than unity. The phenomenon we are describing is known as a duality cascade.

One can think of the cascade as a renormalisation group flow where different ener-

gies are best described by different gauge theories. These theories are related by Seiberg

duality: as one description becomes strongly coupled one can perform a duality trans-

formation to new variables in terms of which the theory is better behaved. Following

the renormalisation group flow towards the UV, after many dualities the rank of each
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dualising gauge group will be very large, so it is reasonable to expect that the UV end

of a duality cascade may have a holographic supergravity/string theory interpretation

along the lines of the AdS/CFT correspondence described in Section 2.4.

The idea of a cascade was first proposed in the remarkable work of Klebanov and

Strassler [52, 184], where they gave a complete description of the cascading mechanism of

a particular theory from both the gauge and string theory points of view (the geometry

in this case is a warped, deformed conifold). Since then, much work has been done in

generalising the cascading phenomenon, and also in developing tools that facilitate the

construction of physically interesting cascading models. The possibility that the MSSM

may lie at the bottom of a cascade was suggested in the early papers [184, 185]. Recent

proposals for how this idea may be realised have been presented in references [186–188].

In many respects, having the MSSM lie at the bottom of a cascade is an attractive

possibility because, although gauge unification is evidently lost,5 one gains an expla-

nation for why the gauge groups of the MSSM have low ranks despite there being a

virtually limitless number of high-rank candidates available. In the UV, the theory

has a large number of D-branes and can be well described by a gravitational dual in

which the branes have “melted” into the geometry. Towards the IR the theory sheds

D-branes down the cascade upon successive applications of Seiberg dualities, and ends

up in a regime with low-rank gauge groups, described by the world-volume theory of a

few fractional branes trapped on a singularity at the “tip” of the geometry.

As our understanding of the duality cascade is heavily reliant on the magic of N = 1

supersymmetry, it is clear that susy breaking must occur somewhere below the low-

est energy Seiberg duality scale, Λ1. There has already been considerable interest in

incorporating metastable supersymmetry breaking at the bottom of a duality cascade

[164, 189–194]. Indeed, with Seiberg duality featuring so strongly in both the cascade

and the ISS model, uniting the two seems rather natural. Attention has largely focused

on quiver gauge theories — these have the correct field content and interactions to be

realised as the low energy dynamics of a stack of D-branes. One interesting element of

this framework is that the strong coupling phenomena responsible for dynamical susy

breaking in the gauge theory, correspond to the effects of stringy instantons6 from

the dual gravity point of view. For example, reference [193] found simple representatives

5A possible way to dualise the MSSM whilst maintaining gauge coupling unification was explored in
reference [163].

6We saw in Section 2.3.2 that an instanton in the low energy gauge theory of a stack of Dp -branes
branes can be interpreted as a D(p− 4) -brane sitting inside the worldvolume of the stack. A stringy
instanton is, roughly speaking, what you get when the D(p− 4) -brane wraps a cycle in the geometry
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of Polonyi, O’Raifeartaigh and Fayet models of susy breaking on singularities derived

from the conifold, that are induced by exponentially small D-instanton effects. This

is nice because it provides a geometric understanding of the scales involved in susy

breaking,7 and the resulting Hidden Sector can naturally be quite compact.

The next challenge is to construct realistic models that cascade to the MSSM (or

some variant thereof) in which dynamical supersymmetry breaking is directly mediated

naturally at the bottom of the cascade. Such models would be very economical, and

offer an interesting new perspective on the interface between string theory and particle

physics. One potential construction has been suggested in reference [183], whereby susy

breaking is mediated by via a mechanism with explicit R-symmetry breaking (such as

we discussed in Section 6.2) although the non-genericity of this model obfuscates the

cascading procedure. It would be interesting to find a realisation of our metastable susy

breaking model with spontaneously broken R-symmetry at the bottom of a duality

cascade. One expectation is that because baryons are essentially invariant under the

action of Seiberg duality, the baryon deformation (5.2) should be visible all the way up

the cascade, with a clear interpretation in the geometry of the gravitational dual that

describes UV physics. This is a work in progress.

Even with an infinite number of Seiberg dualities, the aforementioned Landau pole

problem isn’t necessarily absent from the field theory perspective. One often finds the

scales at which one must dualise reach an accumulation point below MPl — a duality

wall [185]. This is where the holographic description becomes vitally important: It

is hoped [188] that a gauge theory with such poor UV behaviour may be repaired by

switching at the appropriate energy scale to a description of the system in terms of

strings moving in a singular background. The challenge here, of course, is identifying

the singular geometry relevant to a given gauge theory.

that is not contained in the worldvolume of the higher dimensional stack. See reference [195] for a
recent reveiw.

7Small mass scales in supersymmetry breaking models may be explained dynamically, purely in field
theoretic terms, by retrofitting along the lines of reference [127].
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6.5.3. Future Directions

Up until now we have largely focused on what can be learnt about supersymmetry from

smashing particles together in a controlled environment, such as the LHC. In this case,

to probe the susy breaking sector more deeply one just has to build bigger and bigger

machines that collide particles at increasingly high energies. In a world with infinite

resources, this would eventually allow us to catalogue the properties of all matter, but

in reality we are limited by the constraints of space, time and money. The development

of the LHC alone has taken over 15 years and has necessarily been funded by a large

collaboration of nations. It is therefore wise to devise alternative strategies for probing

this unknown physics.

Axion-like Particles

One interesting approach is to look for low mass, weakly interacting Hidden Sector

particles in low energy experiments. The general set-up of such studies usually involves

shining laser light through a strong magnetic field. Although the energies attained are

insufficient to directly produce the majority of Hidden Sector particles, the extreme

sensitivity and terrific statistics achievable in photon experiments opens the door to a

wide selection of effects from the Hidden Sector; these experiments are already putting

competitive bounds on the properties of axion-like particles (ALPs). The modest scale

of low energy experiments, and rapid development of the relevant technology, means

that significant advances are expected to be made in ALP detection over the coming

years. With this in mind, it is a good idea to have a comprehensive understanding of

the theoretical possibilities if we are to be in a position to assimilate and exploit the

new data when it comes in.

As we discussed in Section 4.2.2, models of low scale supersymmetry breaking (essen-

tially, where gravity effects are subdominant), must necessarily possess an R-symmetry.

Such a symmetry is phenomenologically unacceptable, and any attempt to remove it,

either by explicit or spontaneous symmetry breaking, results in the vacuum becoming

metastable. As we have seen in this chapter, the generic prediction of metastability aris-

ing in a wide class of susy breaking models has interesting consequences for what might

be observed at the LHC. It would therefore be interesting to extend the scope of this

phenomenological investigation to take account of data from low energy experiments.
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For example, if R-symmetry is spontaneously broken, as in as in our model from

Chapter 5, then Goldstone’s theorem tells us the susy breaking sector must contain

a light particle, known as an R-axion. As its name suggests, the R-axion has similar

properties to the standard axion of QCD, and so the allowed values of its mass and decay

constant are constrained by data from the on-going search for axion-like particles. We

made cursory use of this information in Section 5.3.2 when we showed that the R-ax-

ion mass predicted by one specific model was compatible with the latest astrophysical

bounds, but we believe much more can be learnt about the physics of susy breaking by

studying low energy signatures.

It is important to establish the existence and nature of the R-axion, because the

mechanism that determines its couplings and mass scale lies at the very heart of the

susy breaking sector. A good avenue for future investigations would be to study the

emergence of R-axions in metastable susy breaking models, and more specifically to

examine the model dependence of their properties, along the lines of reference [148].

This would be useful for two reasons: In the case of the discovery of an axion-like

particle, one would be able to test the hypothesis that it is an R-axion, i.e. such research

should provide a way to distinguish R-axions from other axion-like particles. Also, by

combining the properties of R-axions with knowledge of other aspects of susy breaking

(such as the sparticle masses that may shortly be obtained from the LHC) it ought to

be possible to refine the current methods used to search for R-axions.

Low scale susy breaking models have the benefit of being predictive, essentially

because they are based on field theory models of the Hidden Sector, and so assume

very little about the nature of quantum gravity (the details of which should only be

relevant at very high energies). In these scenarios one will often find pseudo-Nambu-

Goldstone bosons that are associated with the existence of spontaneously broken approx-

imate symmetries, just as the R-axion follows from spontaneous R-symmetry breaking.

The mass and coupling of these pNG bosons is tied to the scale at which the corre-

sponding symmetry is broken, so as a further extension of the above study one could

also explore how the (non-)detection of light pNG bosons can guide model building. In

this way, searching for light particles in low energy experiments can enable us to un-

cover the structure of Hidden Sector physics, providing a wealth of information about

the symmetries and energy scales involved.
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Cosmology

A complementary approach that can potentially shed light on the nature of susy break-

ing is to consider cosmological information. In principle this allows us to look back

to times when Hidden Sector fields were last in thermal equilibrium with the Stan-

dard Model; in practice, requiring that Hidden Sector physics fits well with our current

understanding of the evolution of the Universe can be used to place bounds on the be-

haviour of these models. The soundness of this approach has already been tried and

tested: as we described in Section 4.2.3 the thermal history of the Universe was exam-

ined in [9–11, 123, 124] to explain how we could have ended up trapped in a metastable

vacuum. Here, the temperature after reheating can be used to constrain the scale of

supersymmetry breaking.

A more sophisticated test of metastable ideas could come from incorporating infla-

tionary dynamics into the Hidden Sector. One would then calculate how the signature

of these models is imprinted as subtle correlations in the cosmic microwave background,

and, through comparison with precision cosmology, extract bounds on the susy break-

ing sector. Work is already being undertaken in this area: in reference [196] the authors

augment our model of susy breaking from Chapter 5 by including an inflationary sector.

They then consider how gravitational effects in the combined Hidden Sector interrelate

the scales in susy breaking with inflationary observables.

One intriguing aspect of the setup of [196] is how, during reheating, the inflaton

decays into Standard Model particles through fields in the supersymmetry breaking

sector. Thus, one expects that details of how broken susy is mediated to the MSSM

should be encoded in inflationary observables. In short, we expect such scenarios to

be highly predictive, with potentially very interesting consequences, making them a

worthwhile focus for future studies.



Appendix A.

Notation

Spacetime Metric

In this thesis we work with the ‘mostly minus’ metric convention for Minkowski space-

time, in which the metric is gµν = diag(+1,−1,−1,−1). Unless otherwise stated, indices

from the latter part of the Greek alphabet (µ, ν, . . .) assume the values 0, 1, 2 and 3.

Spinor Conventions

We will work with two-component spinors, for the most part adhering to the conventions

for supersymmetric field theory laid out in Wess and Bagger [31]. One slight quibble

is that [31] uses the opposite metric convention to us. This mismatch is accounted for

in [32]. For a very careful treatment of two-component spinors that discusses how the

notation depends on metric conventions (and that also includes all the spinor identities

you could ever wish for) we defer to reference [33].

When classifying representations of the Lorentz group SO(1, 3), it is generally easier

to consider its universal cover, the group SL(2,C) (this way we avoid having to deal

with projective representations). The fundamental representation in this case is a two-

component left-handed Weyl spinor ψα that transforms as

ψα → ψ′
α = M β

α ψβ , M ∈ SL(2,C) . (A.1)

Similarly, right-handed Weyl spinors χα̇ are defined to transform as:

χ α̇ → χ ′ α̇ =
[ (
M−1

)† ]α̇
β̇
χβ̇ , M ∈ SL(2,C) . (A.2)
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Here the indices α, α̇ can each take the values 1 or 2, with the undotted/dotted cases

indicating that each spinor transforms under a different subgroup of the real section

SU(2)L× SU(2)R of SL(2,C): left-handed Weyl spinors carry charge (1/2, 0) whereas the

right-handed ones have charge (0, 1/2).

The raising and lowering of these indices is achieved with the SL(2,C)-invariant

antisymmetric matrices

εαβ = εα̇β̇ =


 0 1

−1 0


 , εαβ = εα̇β̇ =


0 −1

1 0


 , (A.3)

which always introduce a dummy variable on their right-most index:

ψα = εαβψ
β , ψα = εαβψβ , χα̇ = εα̇β̇χβ̇ , χα̇ = εα̇β̇χ

β̇ . (A.4)

This allows us to define invariant products of left- and right-handed spinors:

(
ψφ
)

= ψαφα ,
(
χη
)

= χα̇η
α̇ . (A.5)

Note, the direction of contraction (ց) or (ր) is important here. The epsilon tensors

satisfy

εαβ ε
γδ = − δγα δδβ + δδα δ

γ
β , (A.6)

which upon contracting with a bunch of left-handed spinors ψ1
α ψ2

β ψ3 γ ψ4 δ leads to

cyclic relations between the spinor products (A.5)

(ψ1ψ2) (ψ3ψ4) = − (ψ1ψ3) (ψ4ψ2) − (ψ1ψ4) (ψ2ψ4) , (A.7)

with similar results for right-handed spinors. These are know as Fierz identities, and

often come in handy when manipulating spinor expressions.

To clarify a point that often confuses: the bar in this notation means Hermitian

conjugation (ψα)† ≡ ψα̇, as can be seen, for example, if we calculate the transformation
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properties of the right-handed spinor

ψ
′ α̇

= εα̇β̇ ψ
′
β̇ = εα̇β̇

(
ψ′
β

)†
= εα̇β̇

(
M γ

β ψγ
)†

(A.8a)

= εα̇β̇ ψγ̇
(
M †)γ̇

β̇
= εα̇β̇M ∗ γ̇

β̇
ψγ̇ (A.8b)

=
(
M−1

)∗ α̇

β̇
εβ̇γ̇ ψγ̇ =

[ (
M−1

)† ]α̇
β̇
ψ
β̇
. (A.8c)

The last line here follows from considering the fact that det (M) = 1 for M ∈ SL(2,C),

which in our notation takes the guise

−1

2
εαβ ε

γδMγ
αMδ

β = 1 ⇒ εγδMγ
αMδ

β = εαβ

⇒ εγδMδ
β = εαβ

(
M−1

) γ

α
.

The epsilon tensors (A.3) also crop up in the similarity transformation that shows right-

handed spinors transform in a representation that is equivalent to the dual representation

of the left-handed case:

[ (
M−1

)† ]α̇
β̇

= εα̇γ̇
[
M∗

γ̇
δ̇
]
εδ̇β̇ .

In Section 2.2.1 we extend Minkowski space by Grassmannian coordinates θα, θα̇

with α , α̇ = 1, 2, to form superspace (xµ, θα, θα̇). This provides the basis of a mani-

festly supersymmetric notation that is widely used throughout this thesis and beyond.

It is useful to establish conventions that will allow us to do calculus on superspace.

Differentiating the Grassmann variables works as follows:

∂α ≡
∂

∂θα
∂α̇ ≡ ∂

∂θα̇
(A.9a)

=⇒ ∂α θ
β = δβα ∂α̇ θβ̇ = δα̇

β̇

∂α ≡ − εαβ∂β ∂α̇ ≡ − εα̇β̇ ∂β̇ . (A.9b)

Due to the signs in the last line here, one must be careful when raising/lowering derivative

indices with the epsilon tensor. Grassmann integration is largely defined in the usual

way, but it is useful to define the measures

d2θ = − 1

4
εαβ dθα dθβ , d2θ = − 1

4
εα̇β̇ dθα̇ dθβ̇ , d2θ = d2θ d2θ , (A.10)
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to simplify integration over the invariant products in equation (A.5)

∫
d2θ

(
θθ
)

= 1 ,

∫
d2θ

(
θθ
)

= 1 . (A.11)

To make contact with the usual vector notation we introduce

σµαα̇ =
{
12× 2, τ

1, τ 2, τ 3
}
αα̇

, (A.12)

where the last three matrices on the right hand side are the usual Pauli matrices. It is

useful to similarly define

σµ α̇α =
{
12× 2,−τ 1,−τ 2,−τ 3

}α̇α
, (A.13)

which obey the relation σµ α̇α = εαβ εα̇β̇ σµ
ββ̇
. These matrices can then be used to define

a bispinor

Bαα̇ = σµαα̇B
ν gµν (A.14)

in terms of a standard Lorentz vector Bν . This relationship can also be inverted with

aid of the identity Tr
[
σµσν

]
= 2 gµν.

We can now define yet more matrices, which turn out to be rather useful:

(σµν)α
β =

i

4

(
σµαα̇ σ

ν α̇β − σναα̇ σ
µ α̇β
)

(A.15a)

(σµν)α̇β̇ =
i

4

(
σµ α̇α σν

αβ̇
− σν α̇α σµ

αβ̇

)
. (A.15b)

The matrices σµν and σµν are the generators of Lorentz transformations acting on left-

and right-handed Weyl spinors respectively:

ψα → ψ′
α = (e−

i
2
ωµνσµν ) β

α ψβ , χ α̇ → χ ′ α̇ = (e−
i
2
ωµνσµν

)α̇
β̇
χβ̇ .

They also have special properties under hodge duality:

σµν =
1

2i
εµνρτσρτ selfdual

σµν = − 1

2i
εµνρτ σρτ anti-selfdual .

(A.16)
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In Section 2.4.3 and Chapter 3 we perform instanton calculations which require us

to work with a Euclidean spacetime metric gµν = diag(+1,+1,+1,+1). We will make

this difference clear by using Roman letters from the middle of the alphabet (m,n, . . .)

to index Euclidean spacetime with the values 1, 2, 3 and 4. This change also alters some

of the above definitions. Particularly, we now have

σmαα̇ =
{
iτ 1, iτ 2, iτ 3,12× 2

}
αα̇

, σmα̇α =
{
−iτ 1,−iτ 2,−iτ 3,12× 2

}α̇α
, (A.17)

and

σmn =
1

4
(σmσn − σnσm) , σmn =

1

4
(σmσn − σnσm) , (A.18)

with the (anti-)selfduality identities becoming:

σmn =
1

2
εmnrtσrt selfdual (A.19)

σmn = −1

2
εmnrt σrt anti-selfdual . (A.20)

The sigma matrices (both σm and σmn) satisfy a plethora of identities that are

invaluable when manipulating spinors. We list a few of the most useful ones here;

see references [31] or [33] for more a comprehensive list of such identities (and their

derivation).

Tr
[
σmσn

]
= Tr

[
σmσn

]
= 2 gmn (A.21)

[
σmσn + σnσm

]
α

β
= 2 gmnδβα (A.22)

σmnα
β σmnγ

δ = δβα δ
δ
γ − 2 δδα δ

β
γ (A.23)

σmαα̇ σ
β̇β
m = 2 δβα δ

α̇
β̇

(A.24)

The last equation here can be usefully combined with equation (A.6) to provide further

Fierz identities that aid the manipulation of spinor quantities containing σ matrices.

’t Hooft Matrices

The following matrices, which intertwine (Euclidean) spacetime indices (m,n, . . .) and

SU(2) gauge group (a, b, . . .) indices were introduced by ’t Hooft [34] to facilitate the
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study of instantons.

η amn ≡ εamn + δamδn4 − δanδ4m , (A.25)

η amn ≡ εamn − δamδn4 + δanδ4m . (A.26)

They are also (anti-)selfdual,

η amn =
1

2
εmnrtη

a
rt , η amn = −1

2
εmnrt η

a
rt , (A.27)

and can be related to the above sigma matrices:

σmn =
i

2
η amnτ

a , σmn =
i

2
η amnτ

a , (A.28)

with τa being the usual Pauli matrices. One final relation that is useful when computing

the instanton action is:

η amn η
a
pq = δmpδnq − δmqδnp + εmnpq ⇒ η amn η

a
mn = 12 . (A.29)

Scalar Conventions

It is often convenient to package the six real scalars fields φa of N = 4 sYM into three

complex-valued fields:

Φ1 =
1√
2

(φ1 + iφ2)

Φ2 =
1√
2

(φ3 + iφ4) (A.30)

Φ3 =
1√
2

(φ5 + iφ6)

This allows us to use the N = 1 superspace formalism to decompose the unique super-

multiplet of N = 4 sYM into N = 1 multiplets. We end up with one vector superfield

V and three chiral superfields Φ1,2,3 (here we use the same character to denote both

the chiral superfield and its scalar component). This appears to break the R-symmetry

SU(4)→ SU(3) because to employ this language we have singled out a particular N = 1

sub-algebra, but this is just an artefact of the notation.

R-symmetry acts on the six real scalars φi of N = 4 sYM as an SO(6) rotation —

the scalars transform in the vector (6) representation. In Chapter 3, when we carry out
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multi-instanton calculations in the formalism of references [44] and [71], we will find it

more convenient to switch to a different basis for the scalar fields — one that makes

use of the local isomorphism SO(6) ∼= SU(4). We take an antisymmetric tensor field

ΦAB(x) with A,B = 1, . . . , 4, that transforms in the adjoint of the SU(4) R-symmetry

group. To ensure this is fully equivalent to the vector (6) representation of SO(6), we

must also impose a specific reality condition:

1

2
ǫABCD ΦCD = Φ̄AB . (A.31)

In terms of the six real scalars φa this new representation can be written as [71]

ΦAB =
1√
8

Σ̄a
ABφ

a , Φ̄AB = − 1√
8

Σa
ABφ

a , a = 1, . . . , 6 , (A.32)

where the coefficients Σa
AB and Σ̄a

AB are expressed in terms of the ’t Hooft η-symbols:

Σa
AB =

(
η 1
AB, iη̄

1
AB, η

2
AB, iη̄

2
AB, η

3
AB, iη̄

3
AB

)
, (A.33)

Σ̄a
AB =

(
− η 1

AB, iη̄
1
AB,−η 2

AB, iη̄
2
AB,−η 3

AB, iη̄
3
AB

)
. (A.34)

The Σa
AB matrices provide an isomorphism between the Lie algebras of SO(6) and SU(4)

in much the same way the σµαα̇ matrices specify the local isomorphism SO(1, 3) ∼=
SU(2)× SU(2) in equation (A.14).

For completeness we show the explicit relationship between scalars in each basis,

including the complex scalars of equation (A.30):

Φ1 =
1√
2

(φ1 + iφ2) = 2 Φ̄32 = 2 Φ41 ,

Φ2 =
1√
2

(φ3 + iφ4) = 2 Φ̄13 = 2 Φ42 , (A.35)

Φ3 =
1√
2

(φ5 + iφ6) = 2 Φ̄21 = 2 Φ43 .



Appendix B.

The R-symmetry of the

baryon-deformed ISS model

It is known that the R-symmetry of ISS SQCD manifests itself only as an approximate

symmetry of the magnetic formulation that is broken explicitly in the electric theory

by the mass terms of electric quarks mQ. Here we want to quantify this statement and

show that the R-symmetry breaking in the microscopic theory is controlled by a small

parameter, mQ/Λ = µ2/Λ2 ≪ 1. As such, the intrinsic R-breaking effects and defor-

mations can be neglected. This justifies the approach we follow in Chapter 5 where the

R-symmetry of the magnetic theory is used to constrain the allowed deformations. Con-

sequently, the R-symmetry-preserving baryon deformation in equation (5.2) constitutes

a generic superpotential.

We first consider the massless undeformed SQCD theory. As we saw in Chapter 2

the global symmetry is SU(Nf)L× SU(Nf)R×U(1)B ×U(1)A×U(1)R. Table B.1 lists

the charges of matter fields of the electric and the magnetic formulations. Following the

well-established conventions of reference [45] the U(1)R symmetry is taken to be anomaly-

free, and the axial symmetry U(1)A is anomalous. The U(1)R symmetry featuring in

Chapter 5 will be constructed below as an anomalous linear combination of the U(1)R,

U(1)A and U(1)B.

The scale Λ is charged only under the U(1)A, which identifies it as the anomalous

U(1). In the usual fashion, the U(1)A-charge of Λ in Table B.1 is determined from the
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non-perturbative superpotential, cf. equation (4.12),

Wdyn = (Nf −Nc)

(
detNf

Q̃Q

Λ3Nc−Nf

) 1

Nf−Nc

(B.1)

Table B.1 also shows that the superpotential W is only charged under the U(1)R, making

it clear that this is an R-symmetry (such that
∫
d2θW is neutral).

Finally, the charges of magnetic quarks ϕ, ϕ̃ are derived from the matching between

electric and magnetic baryons, BE/Λ
Nc = bM/Λ

Nf−Nc , B̃E/Λ
Nc = b̃M/Λ

Nf−Nc which

implies (schematically)

(ϕ
Λ

)Nf−Nc

=

(
Q

Λ

)Nc

,

(
ϕ̃

Λ

)Nf−Nc

=

(
Q̃

Λ

)Nc

. (B.2)

The charges of Φ are read off from its definition, Φ = QQ̃
Λ

. As a consistency test

on these charges, one can easily verify that the magnetic superpotential W = ϕΦϕ̃

is automatically neutral under U(1)A, U(1)B and has the required charge 2 under the

R-symmetry.

We now introduce mass terms mQ Q̃Q in the superpotential of the electric theory.

We want to continue describing the symmetry structure in terms of the parameters of

the IR magnetic theory. For this purpose we write the quark masses as mQ = µ2

Λ
. This

mass-deformation breaks the flavour group SU(Nf )L× SU(Nf)R to the diagonal SU(Nf)

(if, for example, all quark masses were the same). It also breaks U(1)A×U(1)R, to a

SU(Nf )L SU(Nf )R U(1)B U(1)A U(1)R

Q � 1 1 1
Nf−Nc

Nf

Q̃ 1 � −1 1
Nf−Nc

Nf

Λ 1 1 0 2Nf

3Nc−Nf
0

W 1 1 0 0 2

ϕ � 1 Nc
Nf−Nc

2Nf−3Nc

3Nc−Nf

Nc
Nf

ϕ̃ 1 � − Nc
Nf−Nc

2Nf−3Nc

3Nc−Nf

Nc
Nf

Φ = QQ̃
Λ

� � 0 2 − 2Nf

3Nc−Nf
2
Nf−Nc

Nf

Table B.1.: Charges of electric and magnetic picture fields under the global symmetries of
massless SQCD.
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U(1)B U(1)A U(1)R

Q 1 1 2
7

Q̃ −1 1 2
7

Λ 0 7
4 0

W 0 0 2

ϕ 5
2 −1

8
5
7

ϕ̃ −5
2 −1

8
5
7

Φ 0 1
4

4
7

Table B.2.: Charges under U(1)B ×U(1)A×U(1)R for Nc = 5 and Nf = 7

linear combination U(1) subgroup. If in addition, we introduce the baryon deformation,

as in Section 5.2, it breaks the third U(1)B factor. In total, the combined effect of the two

deformations breaks U(1)B ×U(1)A×U(1)R to a single U(1)R. This is the R-symmetry

used in Chapter 5 and it is anomalous since Λ is charged under it.1

To explicitly construct this surviving U(1)R for the model of Section 5.2, we set

Nc = 5 and Nf = 7 and list the three U(1) charges in Table B.2. It is now clear that the

U(1)R symmetry of Section 5.2 is the linear combination of the three U(1)’s with charge

R = R +
40

7
A +

2

5
B . (B.3)

This is the unique unbroken linear combination surviving both the mass- and baryon-

deformation, δW = −µ2Φ + mϕ2, of the magnetic theory with the charges listed in

Table B.3. In the magnetic Seiberg-dual formulation, the U(1)R symmetry is mani-

fest. It is the symmetry of the perturbative superpotential (5.2) which is only broken

anomalously.

In the electric picture, the U(1)R symmetry is broken by the mass terms mQ Q̃Q

on account of the explicit Λ-dependence of the masses mQ = µ2

Λ
. It is also broken

by the baryon deformation (again in the electric theory language) 1
M2

Pl
Q5 because the

magnetic baryon deformation parameter m in equation (6.20) explicitly depends on

Λ. Thus the apparent U(1)R symmetry of the IR theory is only approximate, and is

lifted in the UV theory. However, the R-symmetry is broken in a controlled way, by

a parameter of the order of mQ/Λ. To verify this, note that in the limit mQ→ 0, the

1Note that the two deformations are associated with orthogonal U(1)’s and are therefore independent.
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U(1)R

ϕ 1

ϕ̃ −1

Φ 2

Λ 10

µ 0

W 2

Q 6 + 2
5

Q̃ 6− 2
5

mQ = µ2

Λ
−10

Table B.3.: Charges under U(1)R for Nc = 5 and Nf = 7

electric quark masses disappear while the baryon deformation 1
M2

Pl
Q5 is invariant under

the R-symmetry U(1)R′ generated by:

R′ = R +
5

7
A − 3

5
B . (B.4)

This linear combination is different from the one in equation (B.3), but in the massless

limit we are considering it is a perfectly valid, classically conserved R-symmetry that

protects the baryon deformation in the electric theory and forbids e.g. anti-baryon defor-

mations of the form 1
M2

Pl
Q̃5. Thus in the massless limit there is always an R-symmetry

that protects baryon deformations either in the electric or in the magnetic formulation.

When quark masses are non-vanishing, this R-symmetry is broken by mQ/Λ. Indeed,

if one formally sends Λ→∞ holding µ and m fixed, the dynamical non-perturbative

superpotential disappears and the exact U(1)R is recovered.

In general, anomalous global symmetries do not match in the magnetic and the

electric descriptions. The U(1)R of Chapter 5 is an approximate symmetry so in prin-

ciple one should allow generic U(1)R-violating deformations. For example, one can

add an antibaryon b̃ deformation to the superpotential (5.2). However, these defor-

mations are suppressed relative to the U(1)R-preserving ones by the small parameter,

mQ/Λ = µ2/Λ2 ≪ 1, and therefore can be neglected.
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