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Abstract

Hybrid quantum systems aim to leverage the strengths of different plat-

forms to advance quantum science. This thesis presents the development

of a hybrid system of ultracold molecules and Rydberg atoms. We assem-

ble individually trapped 87Rb133Cs molecules and interface them with
87Rb Rydberg atoms. This platform is a foundation for applications that

seek to exploit the rich internal structure of molecules and the strong

interactions of Rydberg atoms.

We introduce a new method for assembling weakly bound molecules in

which optical tweezers are used to associate pairs of atoms. We compare

this method to the well established technique of magnetoassociation and

find that their efficiencies are comparable. We transfer arrays of up to

eight weakly bound molecules to their rovibrational and hyperfine ground

state. The overall efficiency of the formation and transfer process is

48(2)%.

We develop a toolbox of techniques for the control and readout of these

molecules. We demonstrate global microwave control of multiple rota-

tional states and use auxiliary tweezers to implement site-resolved ad-

dressing and state control. We show how the internal state of molecules

can be mapped onto the position of atoms and use this capability to

readout multiple rotational states in a single experimental run. Further,

using a scheme for the mid-sequence detection of molecule-formation

errors, we perform rearrangement of assembled molecules to prepare

small defect-free arrays.

We study long range interactions between Rb atoms and RbCs molecules.

To engineer these interactions, we prepare the atoms in highly excited

Rydberg states and use species-specific tweezers to precisely control

the separation between particles. We demonstrate blockade of Rydberg

excitation due to these interactions for sub-micrometre atom-molecule sep-

arations. The development of this hybrid platform opens up prospects for

transferring quantum information between individually trapped molecules

using Rydberg atoms.
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1 Introduction

Understanding the behaviour of matter at the smallest scales is critical for future

advances is science and technology. This behaviour is governed by the laws of quantum

mechanics. Quantum mechanics is complex. Particles can exist in superpositions,

where the same particle occupies multiple states at once. Furthermore, particles can

be entangled, such that they cannot be considered as separate systems and cannot

be described independently. This means that, for a system of N particles with two

possible states each, the number of parameters needed to describe the system at a

given moment increases exponentially as 2N . Similarly, the number of operations

needed to simulate the evolution of the system with time rises exponentially. This

makes modelling the dynamics of such a system with more than a few tens of particles

on a classical computer impractical.

Quantum simulation offers a solution that makes the study of complex quantum

systems tractable [1–5]. It is motivated by a simple idea: rather than trying to

work out what nature will do, why not just observe it? This is, of course, easier

said than done. However, it is possible, with a system of individually controllable

quantum particles that interact with each other, to construct a quantum simulator

that mimics the behaviour of the system to be studied. The Hamiltonian of the

simulator is engineered such that is can be directly mapped onto the studied system

[6].

Quantum computing is a different technique. Rather than trying to simulate

the dynamics of a complex quantum system, it exploits the exponential amount

of information contained within a system of quantum bits (qubits) to drastically

speed up certain calculations [5, 7, 8]. Popular examples are the prime factoring of

large integers [9] or the searching of an unsorted database [10]. The requirement for

experimental implementation is similar to that for quantum simulation: namely a

system of individually controllable quantum particles that can interact with each

other.

The matter for the experimental physicist then becomes: what system should be

used to construct this network of quantum particles? The system must easily scale

1
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and be made up of particles that support long coherence times and a universal set

of quantum gates (for quantum computing) or the ability to create a Hamiltonian

that is mappable to the problem Hamiltonian (for quantum simulation). The system

must be able to be initialised in a given state, and its states must be able to be

readout with high fidelity [11]. These criteria can be, at least somewhat, realised in

a wide range of experimental settings. Quantum simulation and computation have

been demonstrated using a variety of physical systems [5, 12], including trapped

ions [13–16], superconducting qubits [17–19], photons [20–25], and quantum dots

[26–32]. In recent years, there has been a surge in experiments that seek to implement

quantum computation and simulation using dipolar systems [33–35]. Such systems

include particles that possess magnetic dipoles, such as magnetic atoms [36–39], or

electric dipoles, such polar molecules [40–47] or neutral atoms excited to Rydberg

states [48–53].

Ultracold polar molecules offer a versatile platform for quantum science [41,

45–47], with applications spanning from quantum simulation [33, 34, 40, 42–44]

and quantum information processing [54–60] to ultracold chemistry [61–63] and

precision measurement [64–68]. Molecules have rich internal structures with ladders

of rotational states that have long radiative lifetimes. Dipole-dipole interactions

can be engineered by preparing molecules in a superposition of rotational states.

These properties make rotational states ideal to encode quantum information [69,

70] or pseudo-spins in a quantum simulator [71–73]. Moreover, the abundance of

these states unlocks possibilities such as synthetic dimensions in the rotational

degree of freedom [74], realisation of qudits (higher-dimensional quantum systems

as opposed to traditional two-level qubits) [60] or the implementation of quantum

error-correcting codes in the molecule’s internal states [59].

Rydberg atoms exhibit even stronger interactions that can be exploited to engineer

quantum entanglement and multi-qubit gates [48, 53, 75–79]. Typically approaches

exploit the Rydberg blockade mechanism, where strong van der Waals interactions

between neighbouring Rydberg atoms prevent simultaneous excitation of multiple

nearby atoms. This architecture is inherently scalable, with the number of qubits in

state-of-the-art experiments typically limited by the laser power available to trap

atoms. For quantum computing purposes, groups of individually trapped atoms have

been combined to form logical qubits to provide error redundancy [8, 80–82], and

experiments with tens of such logical qubits have been demonstrated [83].

Hybrid quantum systems, where multiple architectures are combined into a single

system, allow the disadvantages of each to be mitigated [84–92]. For example, the

short lifetimes of Rydberg states (∼ 100 µs) [50] makes them non-ideal for simulating

itinerant models where particles are not pinned to specific sites [39, 93]. However,
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their interactions are very strong and can be much greater than the megahertz scale

for micrometre separations [50]. In contrast, ultracold molecules have radiative

lifetimes of many seconds which means that they can support long lived quantum

coherence [94–98] but offer only kilohertz-scale interactions at micrometre separations

[47]. A hybrid system composed of polar molecules and Rydberg atoms offers a way

to combine the advantages of both platforms [99–102]. In such a system, the fast high-

fidelity interactions and readout possible with Rydberg atoms [79, 103] are utilised

alongside the long coherence times and lifetimes of polar molecules. One can envisage,

for example, a quantum simulator where itinerant molecules move around an optical

lattice, and interactions between molecules are effectively switched on and off at

selected lattice sites by exciting atoms to Rydberg states. Alternatively, quantum

information could be encoded in molecular states and multi-qubit gates could be

implemented by mediating interactions between molecules with Rydberg atoms.

Furthermore, this hybrid system offers new capabilities, such as non-destructive

readout of molecular states [104–106], cooling of molecules using Rydberg atoms [107,

108], and photoassociation of giant polyatomic Rydberg molecules [109–112]. This

thesis documents the creation of such a hybrid system.

1.1 Ultracold polar molecules

Ultracold polar molecules are attractive candidates for quantum science due to

their rich internal structure, controllable long range interactions, and long coherence

times. However, their rich structure makes them harder to laser cool to ultracold

temperatures than alkali atoms, which have been successfully laser cooled for nearly

a half-century [113]. To bring an atom or molecule from room temperature to

ultracold temperatures typically requires > 104 photon-scattering events [114]. For

alkali atoms, this requirement is not onerous. They typically have closed cycles, on

which many photons can be scattered before an atom decays to a different state

than its initial one. Even when such an atom decays out of this closed cycle, a single

additional laser is typically sufficient to return it. The same is not true for molecules,

which have a much more complex internal structure. As well as electronic structure,

there are rotational and vibrational degrees of freedom. Generally, there are no

selection rules on vibrational transitions, which means that cooling cycles typically

only scatter a few photons before molecules are lost. Furthermore, the molecules

are typically lost to many other states, so an often impractical number of additional

lasers are needed to return them to the cooling cycle.

Methods for the production of ultracold molecules generally fall into one of two
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approaches. The direct approach involves searching for candidate molecules that have

near-closed transitions. These occur for molecules that posses an electronic transition

where the excited electron does not participate in the molecular bond. The ground

and excited electronic potentials for such a transition are similar so a vibrational

wavefunction in one potential only has a significant overlap with the state in the

other potential with the same vibrational quantum number [114]. These molecules

can be cooled with techniques that mirror those used to cool atoms. Examples of

molecules that have been directly cooled include diatomic molecules, such as SrF

[115–122], YO [123, 124], CaF [69, 70, 125–136], and YbF [137], and polyatomic

molecules, such as SrOH [138], CaOH [139], YbOH [140] and CaOCH3 [141], among

others [114, 142, 143].

In contrast, the indirect approach involves first laser-cooling atoms, then assem-

bling ultracold molecules from these atoms. Molecules are typically formed in weakly

bound states [144, 145] then optically transferred to their rovibrational ground state

[146]. Most hetero-alkali dimers have been formed with this approach, including

KRb [146, 147], RbCs [148–150], NaK [151–154], NaRb [155], NaLi [156], and NaCs

[157, 158].1 Experiments that indirectly cool molecules already have the capability

to cool and trap atoms, as these are prerequisites for molecule formation. Therefore,

they are ideally suited to developing a hybrid system of molecules and atoms. In

this work, we form ground state 87Rb133Cs (hereafter RbCs) molecules, and interface

them with 87Rb (hereafter Rb) atoms that are excited to Rydberg states.

1.2 Rydberg atoms

A Rydberg atom is an atom in an excited state where one (or more) of its electrons

has been promoted to a high energy level [161]. The excited electrons occupy orbits

that are much further from the nucleus compared to their ground-state configurations,

which can lead to several properties of the atom, such as the electric dipole moment

and sensitivity to external fields, being greatly exaggerated [50]. The large dipole

moments of Rydberg atoms means that they strongly interact with each other

at long range, with the dominant interaction mechanism being van der Waals at

large separations and dipole-dipole at smaller distances [48]. These interactions are

switchable by selectively exciting certain atoms to Rydberg states, which makes

them ideal candidates for implementing quantum gates and generating controllable

entanglement [48, 53, 75–79].

1Homo-alkali dimers, such as Rb2 [159] and Na2 [160], have also been formed. However, the
symmetry of these molecules means that they are not polar, so we do not discuss them further here.
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For quantum computing and simulation, alkali atoms are often excited to Rydberg

states due to their relatively simple atomic structure and the ease with which they

can be manipulated using lasers. Alkali atoms essentially have a single electron,

which can be promoted a Rydberg level. Rydberg-mediated gates and entanglement

have been demonstrated with, for example, Rb [77–79] and Cs [103]. However,

these architectures have some drawbacks, such as the inability to form attractive

optical potentials for the interacting particles [162] or correlated errors in the control

of storage and interaction qubits [163–169]. In this work we develop a hybrid

quantum system of polar molecules and Rb Rydberg atoms that could overcome

these disadvantages. We note that alternative approaches to address these problems

are under development, such as the engineering of a dual-alkali architectures [170–

173], where a second species is used as auxiliary qubits that are unaffected by the

control of the first species, or the use of alkaline earth atoms, such as Sr [174–177] and

Yb [178, 179], which offer the ability form attractive optical potentials for Rydberg

atoms.

1.3 Single particle trapping and control

For quantum computing and simulation, the capability to confine and manipulate

single particles is crucial. Within atomic, molecular, and optical (AMO) physics

experiments, the primary tool for achieving this level of control is the optical tweezer

[35]. Optical tweezers are laser beams focused to micrometre scales. This is small

enough that collisional blockade can be engineered, where pair loss is induced to

enable the trapping of single particles at the foci of the tweezers [180–182]. Arrays

of tweezers are dynamically reconfigurable, allowing flexible connectivity [183] and

the preparation of states with low configurational entropy through rearrangement of

particles [184–187].

Optical tweezers not only provide the means to trap single particles but also

enable the selective manipulation of their internal states. Through the exploitation of

the ac Stark shifts induced by optical tweezers, individual particles can be controlled.

For instance, adjusting the depth of the tweezer containing a specific qubit can bring

it, and only it, into resonance with a driving field, such as microwave radiation

[188–195]. This approach remains applicable even when particles are primarily

trapped with alternative methods, such as in an optical lattice [190, 196].

In tweezer platforms, long range interactions between trapped particles have been

utilised to simulate complex quantum systems [51, 197, 198]. The architecture’s

inherent scalability [83, 199] provides a promising avenue for constructing arrays
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with an even greater number of particles, and arrays of over 104 tweezers have been

demonstrated [200].

1.4 Outline of this thesis

This thesis details the development of a hybrid quantum system of RbCs molecules

and Rb Rydberg atoms. We begin with individually trapped Rb and Cs atoms in

optical tweezers, and convert these to molecules and Rydberg atoms. We explore

how these particles can be controlled and study the interactions between them. The

remainder of the thesis is structured as follows:

Chapter 2 describes the experimental apparatus utilised in this work and outlines

recent upgrades.

Chapter 3 details the formation of weakly bound RbCs molecules from atom

pairs. We discuss two distinct methods for molecule creation, both involving

traversing an avoided crossing between atomic and molecular states, either

through varying magnetic fields or adjusting the separation of two optical

tweezers.

Chapter 4 details the optical transfer of the weakly bound molecules to their

rovibrational and hyperfine ground state. We explore how optical tweezers can

be used to enhance the quantum control of individual molecules. We implement

global and local control of the molecular states, a multi-state readout scheme,

and molecule rearrangement to prepare defect-free arrays.

Chapter 5 explores Rydberg atoms. We characterise the Rydberg excitation in our

experiment. We detail measurements of the Stark shifts of Rydberg atoms and

study interactions between Rydberg atoms.

Chapter 6 details measurements of the charge-dipole interaction between polar

molecules and Rydberg atoms. We discuss the theory of this interaction, show

how the optical tweezers can prepare the two particles with sub-micrometre

separations, and present measurements of Rydberg blockade caused by this

interaction.

Chapter 7 explores resonant dipole-dipole interactions between polar molecules

and Rydberg atoms. We describe how to choose molecular and atomic states

and tune their transitions in order to engineer these interactions. Following

this, we present initial measurements of Rydberg blockade caused by this

interaction.
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Chapter 8 summarises the results of this thesis and provides an outlook towards

future work. This includes the trapping of molecules in magic tweezers, the

implementation of an optical lattice to realise smaller particle separations,

scaling to larger arrays of traps, and mediating the detection and interactions

of molecules with Rydberg atoms.

1.5 Contributions of the author

Over the course of my PhD, I have been fortunate to work with many talented

researchers within Team Tweezer, without whom the research presented here would

not have been possible. During my time in the team, I have worked closely with

PhD students Vincent Brooks, Stefan Spence, and Tom Hepworth and postdoctoral

research associate Alex Guttridge. We have had the assistance of master’s students

Mitch Walker, Albert Tao, Ce Li, Imogen Forbes, Archie Baldock, and Fritz von

Gierke and summer students Kevin Roice, Claus Yang, and Erkan Nurdun. I

am grateful for the contributions of those who were significantly involved in the

development of the experiment prior to my arrival, including (in alphabetical order)

Alex Alampounti, Phil Gregory, Lewis McArd, Ana Rakonjac, Rahul Sawant, Wendy

Tomboza, and Jie Zhang. The project has been supervised by Simon Cornish

throughout. Stuart Adams co-supervised the experiments involving Rydberg atoms.

When I arrived, Vincent, Stefan, Alex, and the previous team members had

successfully trapped and imaged individual Rb and Cs atoms. Vincent and Ana

designed the initial optical setup for the tweezers. This was later modified by Stefan

and Alex when the 2D AOD was installed and by Vincent and me when the SLM

was installed. The SLM was characterised prior to installation by Mitch and me.

Fritz is leading the development of the magic tweezers that we hope to install in the

experiment soon. Alex and I set up and characterised the bias and jump magnetic

field coils. Stefan led the implementation of the Raman sideband cooling protocol

for atomic cooling, and Vincent led the Feshbach spectroscopy of Cs atom pairs and

the development of the atomic rearrangement protocol. Vincent, Stefan, Alex, and I

characterised the beam waists of the optical tweezers, with assistance from Imogen.

Stefan developed PyDex, the main experimental control application. Kevin

improved the PyDex user experience and I modified PyDex so that it can efficiently

analyse images of arrays of tweezers. I wrote the Python applications that interface

with PyDex to control the AWGs, SLM, and MWGs and Lewis wrote the Python

application that controls the DDSs. The SLM application is based on code developed

by Mitch, and the AWG application is based on code developed by Alex A., Vincent,
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and Stefan. Tom modified the AWG code to allow for more flexible rearrangement.

I designed and implemented the STIRAP and Rydberg laser systems. Alex and

Lewis helped me with the vacuum setup of the ULE cavity. Albert assisted me with

the setup and characterisation of the STIRAP lasers and Ce assisted me with the

Rb vapour cell spectroscopy.

Alex and I characterised the association methods used to form weakly bound

molecules, with assistance from Stefan for the initial measurements. Alex and I

performed optical spectroscopy of the molecules and developed the sequence used to

transfer them to the ground state. I led the experiments with ground state molecules,

with assistance from Alex, Tom, and Erkan.

Alex and I characterised the Rydberg excitation of Rb and measured the charge-

dipole interactions between atoms and molecules. Archie simulated the dynamics

of this system. I developed the code to find pairs of states to engineer resonant

dipole-dipole interactions between atoms and molecules, initially with assistance

from Claus, and performed the measurements of these interactions.

I am grateful to the theory collaborators that I have had the pleasure of working

with. The theoretical calculations of the weakly bound molecular states and mergoas-

sociation were performed by Robbie Bird, Ruth Le Sueur, and Jeremy Hutson of the

Cold Molecules Theory Research Group at Durham University. The charge-dipole

theoretical calculations were performed by Rosario González-Férez (Universidad de

Granada) and Hossein Sadeghpour (ITAMP). The resonant dipole-dipole theoret-

ical calculations for the pair of states that I identified were performed by Pablo

Fernández-Mayo Yelo and Rosario González-Férez, both of Universidad de Granada.

1.6 List of publications

Significant parts of this thesis are presented in:

[201] D. K. Ruttley*, A. Guttridge*, S. Spence, R. C. Bird, C. R. Le Sueur, J. M.

Hutson, and S. L. Cornish, Formation of ultracold molecules by merging optical

tweezers, Phys. Rev. Lett. 130, 223401 (2023).

[202] A. Guttridge*, D. K. Ruttley*, A. C. Baldock, R. González-Férez, H. R.

Sadeghpour, C. S. Adams, and S. L. Cornish, Observation of Rydberg blockade due

to the charge-dipole interaction between an atom and a polar molecule, Phys. Rev.

Lett. 131, 013401 (2023).

https://doi.org/10.1103/PhysRevLett.130.223401
https://doi.org/10.1103/PhysRevLett.131.013401
https://doi.org/10.1103/PhysRevLett.131.013401
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[203] D. K. Ruttley, A. Guttridge, T. R. Hepworth, and S. L. Cornish, Enhanced

quantum control of individual ultracold molecules using optical tweezer arrays, PRX

Quantum 5, 020333 (2024).

The author also contributed to:

[204] R. V. Brooks*, A. Guttridge*, M. D. Frye, D. K. Ruttley, S. Spence, J. M.

Hutson, and S. L. Cornish, Feshbach spectroscopy of Cs atom pairs in optical tweezers,

New J. Phys. 24, 113051 (2022).

[205] S. Spence, R. V. Brooks, D. K. Ruttley, A. Guttridge, and S. L. Cornish,

Preparation of 87Rb and 133Cs in the motional ground state of a single optical tweezer,

New J. Phys. 24, 103022 (2022).

* denotes equal contribution.

https://doi.org/10.1103/PRXQuantum.5.020333
https://doi.org/10.1103/PRXQuantum.5.020333
https://doi.org/10.1088/1367-2630/ac99f6
https://doi.org/10.1088/1367-2630/ac95b9


2 Experimental apparatus

The experimental apparatus used for the science presented in this thesis have been

described in detail in the theses of Brooks [206] and Spence [207]. We direct the reader

to these works for detailed explanations of the design choices and characterisation

measurements. Here, we briefly summarise the apparatus and provide an overview

of recent upgrades relevant to this work.

2.1 Vacuum system

For the study of atoms and molecules at ultracold temperatures, it is necessary

to prepare them in an ultrahigh vacuum environment. This prevents significant

collisions with room-temperature particles, which would usually impart enough

kinetic energy to eject particles that are optically trapped. For this reason, our

experiments take place in a custom vacuum chamber that maintains a pressure of

< 1× 10−10mbar. Although the majority of the chamber is metal, for good optical

access we perform experiments in a glass science cell1 mounted at the front of the

chamber. The science cell is anti-reflection (AR) coated to avoided standing waves

being formed. Alkali-metal dispensers2 release Rb and Cs into the vacuum chamber

and we operate these continuously so that that background pressure is high enough

to be able to easily load atomic magneto-optical traps (MOT), but sufficiently low

that the vacuum-limited lifetime for individually trapped atoms is ≳ 30 s. A render

of the vacuum chamber is shown in Fig. 2.1(a), where we define the coordinate

system used in this work.

We highlight the in-vacuum electrodes in our apparatus which extend to the

science cell. These electrodes were designed to orient molecules in the laboratory

frame by generating large dc electric fields. The four electrodes are positioned in

a 9.6mm × 5.6mm rectangular array centred around the optical tweezers: this

aspect ratio (
√
3 : 1) increases the uniformity of applied fields by eliminating the

field curvature along the x-axis [208]. However, we find that the electrodes are a

1ColdQuanta CQDU0010
2Rb: SAES 5G0010, Cs: SAES 5G0050

10
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Figure 2.1: Experimental apparatus used in this work. (a) Render of the vacuum system.
We highlight the in-vacuum electrodes which are used for microwave control of RbCs molecules.
(b) A simplified setup showing the vacuum cell, objective lens, and key elements of the optical
setup. Arrays of 1066 nm tweezers are created with an SLM, arrays of 938 nm tweezers are
created with a 1D AOD, and arrays of 817 nm tweezers are created with a 2D AOD. Trapped
atoms are detected by imaging atomic fluorescence onto an EMCCD.

good antenna for the ∼GHz frequency radiation that is resonant with rotational

transitions in RbCs. Therefore, we use the electrodes to produce linearly polarised

microwave radiation of high purity to drive coherent transfer between molecular

states.

Six sets of magnetic field coils surround the vacuum chamber. Four of these sets

produce magnetic fields oriented along the x-axis. These are the:

Quadrupole coils Coils in the anti-Helmholtz configuration, which produce a

uniform magnetic field gradient at the centre of the vacuum chamber. This is

used during the loading of atomic MOTs for which the field gradient is set to

8.47G/cm.

Shim coils These coils generate a small field to provide a quantisation axis for

atomic cooling and state preparation. Typically we operate them so that the

generated field in the centre of the vacuum chamber is 4.78G.

Bias coils These coils provide a large field which is used for experiments with RbCs

molecules. Typically we operate with these coils so they produce a field of

approximately 177G so that, when combined with the shim field, the total

field at the molecules is B = 181.699(1)G. The magnetic field noise at typical

operating fields is ∼ 30mG.

Jump coils These coils provide a field of up to ∼ 40G. The inductance of these

coils is small to allow the magnetic field to be changed quickly. These coils are
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used to associate atom pairs into molecules by sweeping the magnetic field.

The other two pairs of coils are shim coils that are oriented to give fields along the

y- and z-axes. We typically operate these coils to produce fields < 1G to null stray

fields in these directions. This sets the resultant field (and the quantisation axis)

along the x-axis, as indicated in Fig. 2.1(a). All coils are made of copper and the

quadrupole, bias, and jump coils are hollow to allow for water cooling. The coils are

mounted in G-10, a fibreglass laminate, which is strong, electrically neutral, and has

low thermal expansion.

We calibrate the magnetic fields by driving hyperfine transitions in Rb and Cs.

The transitions are driven with microwave radiation produced by two antennae (one

for each species) [209, 210]. The antennae are stub-tuned so that their resonant

frequencies are approximately 6.8GHz and 9.2GHz for the Rb and Cs antenna

respectively, and the bandwidth of each antenna is approximately 200MHz. They

are mounted outside the vacuum chamber approximately 12mm along the x-axis from

the centre of the science cell and are driven with a microwave source3 which we amplify

with a high-power amplifier4. For example, with the shim and bias coils switched

on, we measure the frequency of the hyperfine transition |5s1/2, f = 1,mf = +1⟩ →
|5s1/2, f = 2,mf = +2⟩ in Rb to be 7223.152(1)MHz. With the Breit-Rabi formula

[211], we extract the magnetic field B = 181.699(1)G.

2.2 Optical tweezers

We trap atoms and molecules in tightly-focused optical dipole traps called optical

tweezers [35]. The potential depth for a particle in an optical tweezer is [180]

U =
1

2ε0c
αλI , (2.1)

where I is the intensity of the trapping light and αλ is the particle’s polarisability,

which is a function of the trapping wavelength λ.5,6 Typically, the particles are

cold enough that they reside close to the centre of the trap. Here, we assume that

3Either Anritsu MG3692C or Windfreak Technologies SynthHD (v2)
4MiniCircuits ZVE-3W-183+
5The sign convention in Eq. (2.1) is such that U > 0 for a trapped particle.
6Strictly speaking, the polarisability is a complex tensor αλ that describes how particles respond

to different polarisations of light [212]. Generally, this response is anisotropic because different

polarisations couple different internal states. It is common to write αλ = αλ + c1α
(1)
λ + c2α

(2)
λ

where αλ, α
(1)
λ , and α

(2)
λ are the scalar, vector, and tensor polarisabilities respectively and c1 and

c2 are scalars [213]. c1 ∝ Vk ·B, where k is the tweezer wavevector, B is the magnetic field, and
V is the fourth Stokes parameter that quantifies the circular polarisation of the light. We can

largely ignore α
(1)
λ in our system (because k and B are approximately orthogonal and our tweezers

are formed from linearly polarised light), but, as will be discussed shortly, a small vector light
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the optical tweezers are well described as Gaussian beams. At the centre of the

tweezer, the intensity I = 2P/πwxwy. Here P is the total power in the beam and

wi is the trap waist along axis i (the distance at which the intensity falls to 1/e2 of

the maximum). We have allowed for the fact that the beam may be elliptical at the

focal point with different waists along the two radial directions. For our experiment,

the radial directions are along the x- and y-axes as the optical tweezers propagate

through the objective lens along the z-axis (see Fig. 2.1(a)).

Optical tweezers have trap waists on the micrometre scale which is small enough

that collisional blockade can be engineered for trapped particles [181, 182]. Here,

near-resonant light is applied which causes light-assisted collisions and pairwise

loss. The result is parity projection, whereby if the number of particles initially

loaded is even, all particles will pair up and be lost. However, if the number of

particles initially loaded is odd, one particle will remain after all pairs have been

lost. Therefore, a single atom or molecule can be prepared in a tweezer. As the

same event (the loading of an additional particle) causes the parity to change, the

mean occupation of a tweezer after parity projection is approximately half when the

loading is saturated.

An atom close to the centre of a tweezer experiences a harmonic restoring force.

Its motion along each axis is well described by the eigenstates of a quantum harmonic

oscillator. The energy of a motional quantum is hνi, where νi is the trap frequency

along axis i.7 For the radial directions (the x- and y-axes), the trap frequencies are

νi =
1

2π

√
4U0

mw2
i

, (2.2)

where U0 is the potential depth at the centre of the tweezer and m is the mass of

the particle. Along the direction of tweezer light propagation (the axial direction,

i.e. the z-axis), the trap frequency is

νz =
1

2π

√
2U0

mz2R
, (2.3)

shift can be formed near the tweezer foci. Further, we can ignore α
(2)
λ because, for ground-state

alkali atoms, it affects U by less than one part per million [214]. For molecules, the anisotropic
polarisability is more significant (see Eq. (4.2)) but αλ is still dominant. The imaginary part of αλ

quantifies dissipative effects of the light; for this work we ignore these and refer to the real part as
the polarisability.

7In this thesis we favour linear frequencies ν, measured in hertz (Hz), over angular frequencies
ω, measured in radians per second (rad/s). We follow the approach of Mohr and Philips [215], and
explicitly define one hertz as equal to one cycle per second. The numerical value of the angular
frequency (in rad/s) is equal to the numerical value of the linear frequency (in Hz) multiplied by
2π. For equations involving ν, we assume that the numerical value of ν measured in Hz is used;
strictly speaking, this should be written as ν/cycle [215, 216]. We note that, for example, the Rabi
frequency Ω of a transition driven at one cycle per second is sometimes written as Ω/2π = 1Hz or
Ω = 2π × 1Hz; in the notation adopted for this work we write Ω = 1Hz.
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Table 2.1: Calculated polarisabilities for the different species in our experiment at the
wavelengths of our optical tweezers. All polarisabilities are for absolute ground states. We do
not give the polarisability for RbCs at 938 nm because this is within a dense group of molecular
transitions [217].

Species α817 (4πε0a
3
0) α938 (4πε0a

3
0) α1066 (4πε0a

3
0) α1066/α817

RbCs [217] 4.0× 102 − 1.8× 103 ≈ 4.5
Rb [218] 4307 1039 687 ≈ 1/6.3
Cs [218] −3477 2890 1163 ≈ −1/3.0

where zR is the Rayleigh range.

A key aspect of our experimental setup is the use of distinct wavelengths of

optical tweezers which enables species-specific trapping and independent control of

the atoms and molecules. We primarily use two wavelengths of light to form optical

tweezers. For particles in their ground state, tweezers at wavelength 1065.512 nm

are attractive to all species in our experiment, whereas tweezers at 816.848 nm

are strongly attractive for Rb, weakly attractive for RbCs, and repulsive for Cs.

For convenience, we refer to these wavelengths as 1066 nm and 817 nm respectively.

Additionally, a third set of tweezers at 938 nm is exclusively used to move Cs atoms

in the initial stages of experiments.8 Table 2.1 lists the polarisabilities at our tweezer

wavelengths for the species we study. The listed polarisabilities are for atoms or

molecules in the electronic ground state.

We source the tweezer light from lasers on a separate optical bench (the “laser

table”) to the bench that holds the vacuum apparatus (the “experiment table”). On

the laser table, each beam is passed through an acousto-optic modulator (AOM)

which allows the intensity of the tweezers to be stabilised with a homebuilt feedback

circuit. The light is then fibre coupled and sent to the experiment table. The

817 nm and 938 nm light is sourced from bare diodes9. The beams are passed

through laser line filters10 prior to the AOMs. We obtain ∼ 100mW of light at each

wavelength. The 1066 nm light is sourced from a distributed Bragg reflector laser11

that is amplified with a fibre amplifier12 prior to the AOM. With this, we can obtain

8This is primarily for historical reasons. When the experimental apparatus was being developed,
the 938 nm tweezers were initially used to trap Cs because αCs

938 > αCs
1066. However, 938 nm is

close to the Cs D1 transition, so the 938 nm tweezers cause significant Raman scattering of Cs.
Furthermore, 938 nm is within a dense group of transitions in RbCs [217]. For these reasons, we
do not trap Cs atoms in the 938 nm tweezers for a signficant amount of time. Nevertheless, we
opted to keep the 938 nm tweezers in the experiment because the AOD in their beam path allows
them to be dynamically moved. We exclusively use these tweezers during the initial stages of the
experiment when we rearrange atoms (see Sec. 2.3.1).

9817 nm: Thorlabs L820P200, 938 nm: Thorlabs M9-940-0200
10817 nm: Semrock Maxline LL01-830-12.5, 938 nm: Semrock Maxline LL01-976-12.5
11Thorlabs DBR1064PN
12Azurlight Systems ALS-IR-50-A-CP-SF
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Figure 2.2: Polarisations of tweezers near their foci. (a) Ray optics diagram of a tweezer
polarised along the x-axis. Near the focus (z = 0) significant polarisation components are
generated along the other axes. (b) Calculated electric fields E at the focal plane (the xy -plane)
along the (i) x- (ii) y - and (iii) z-axes. To plot all components on the same scale, we multiply
Ey (Ez) by 70 (6i).

up to 50W of power at 1066 nm, but we typically operate with ∼ 1W.

The tweezers are overlapped with a series of dichroic mirrors and aligned through

a high numerical aperture (NA) objective lens13 (NA = 0.55) that is underneath the

science cell. This is shown in Fig. 2.1(b). An additional dichroic mirror separates

the light with which we image the atoms (see Sec. 2.3.1). The lens is designed

to minimise the chromatic focal length shift between the different tweezer wave-

lengths and it produces traps that are near-diffraction limited.14 We verify this

by measuring νx, νy, and νz for tweezers of known optical power [220] from which

we extract values of wx, wy, and zR respectively. The beam waists {wx,wy} are

{0.925(1), 0.825(1)} µm for the 817 nm tweezers, {1.285(5), 1.156(2)} µm for the

938 nm tweezers, and {1.16(1), 1.05(1)} µm for the 1066 nm tweezers. The Rayleigh

ranges are z817R = 3.29(1) µm, z938R = 5.17(2) µm, and z1066R = 4.17(7) µm respectively;

these differ slightly from the ideal cases due to aberrations.

Each tweezer is linearly polarised along x-axis prior to the objective lens. However,

near the tweezer foci, the tight focusing creates significant components of polarisation

along the other axes. This leads to vector light shifts equivalent to a small fictitious

magnetic field [205, 221–223]. We typically use the shim coils to apply a magnetic

field of 4.78G to minimise the impact of this fictitious field. For completeness, here

we estimate the scale of the various polarisation components at the focal plane.

Fig. 2.2(a) shows the system in the ray-optics framework. After refraction through

the lens, the polarisation of each ray (orange arrows) remains transverse to its

direction, and so has a component along the z-axis. We estimate the polarisation

components along each axis by following the approach of Richards & Wolf [219, 224].

13SpecialOptics custom design
14The Abbe diffraction limit states that the smallest detail resolvable by an objective lens has

size ∆x = λ/(2NA) [219]. Therefore, we expect the tweezer waists to be approximately 0.8 µm if
they were diffraction limited. As we image atoms with light of similar wavelengths using the same
objective lens (see Sec. 2.3.1), we expect that the resolution of the imaging system of similar scale.
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We assume that the objective lens is illuminated with a cylindrically symmetric

Gaussian beam of wavelength 1066 nm and beam waist wx = wy = 15mm and take

the beam waist to be at the front surface of the lens. We take the focal length of

the objective lens to be 35.34mm [206] and ignore refraction from the walls of the

science cell. Figures 2.2(b)(i)-(iii) show the calculated electric field components Ex,
Ey, and Ez along the x-, y-, and z-axes respectively. The values are relative to the

maximum value of Ex; to make all components visible, we scale Ey and Ez by factors

of 70 and 6i respectively.15

Optical elements in the beam paths of the tweezers allow their positions to be

controlled. We control the positions of traps that we wish to move around during

an experimental sequence with acousto-optic deflectors (AOD) [186, 187]. The

817 nm tweezers are controlled with a two-dimensional AOD (2D AOD)16 and the

938 nm tweezers are controlled with a one-dimensional AOD (1D AOD)17, as shown

in Fig. 2.1(b). The AODs slightly deflect the paths of the tweezer light prior to

the objective lens, which changes the position of the traps at the focal plane. The

deflection angle is proportional to the frequency with which the AODs are driven:

changing this frequency moves the trap. The AODs are aligned so that an 817 nm

trap can be moved in the xy-plane and a 938 nm trap can be moved along the x-axis.

The AODs are driven with arbitrary waveform generators (AWG)18, the output of

which are amplified with radiofrequency (RF) amplifiers19. If multiple RF tones are

applied, regular arrays of traps are formed.

Whilst AODs provide a simple and convenient way to form arrays of optical

tweezers, they do have some drawbacks. A 1D AOD can only deflect light along

a single axis, and 2D AODs can form only rectangular arrays because each axis

operates independently. Furthermore, as AODs are diffractive optical elements, each

tweezer along a given axis is at a slightly different frequency because the frequency

of the RF tone used to create it is added or subtracted to the frequency of the input

light (depending on the diffraction order used). This can introduce dephasing or

differential light shifts between sites, which is particularly undesirable if a specific

wavelength of tweezer is required for applications such as the magic trapping of

molecules to obtain increased coherence times [98]. Furthermore, if two tweezers get

close enough to form a beat, trapped particles can be significantly heated if the beat

frequency is of the same order of magnitude as the trap frequencies [220].

15The polarisation component along the z-axis has a phase of π/2 relative to the components
along the x- and y-axes. For this reason, the scale factor used when plotting Ez is imaginary.

16AA Opto-Electronic DTSXY-400-810
17IntraAction ATD-1803DA2.850
18938 nm: Spectrum Inst. M4i.6622-x8, 817 nm: Spectrum Inst. M4i.6631-x8
19938 nm: AA Opto-Electronic AMPA-B-34-20.425, 817 nm: AA O-E AMPB-B-34-10.500
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Spatial light modulators (SLM) allow arrays of tweezers to be generated without

suffering from these drawbacks. SLMs are liquid-crystal screens composed of a

rectangular grid of pixels, each of which can be set to a different voltage. Applying

a voltage to a pixel causes its crystals to rotate to a certain angle, modifying its

refractive index. When light reflects off of (or is transmitted through) the SLM screen,

it will acquire a phase that depends on the pixels’ refractive indices. This allows an

arbitrary phase (modulo 2π) to be encoded onto an input wavefront. By changing

the pattern (the “hologram”) on the SLM screen, different optical elements, such as a

Fresnel lens or a diffraction grating, can be simulated by applying the phase shift that

the real optical element would cause. This allows for the position of the tweezer focus

to be moved in three dimensions. Furthermore, as the effect of the objective lens is to

Fourier transform the input light, arbitrary array patterns in the focal plane can be

realised by encoding phases onto an SLM that are calculated with Gerchberg-Saxton

algorithms [225–228]. However, SLMs have their own drawback: the liquid-crystal

nature of their displays means that their refresh rate is typically slow (∼ 10 to 100Hz)

so it is impractical to use them to form tweezers that dynamically move particles.

We follow the approach of multiple experimental groups [229, 230] and use a

hybrid solution involving AODs and an SLM20. As shown in Fig. 2.1(b), the SLM is

in the 1066 nm beam path and controls the position of an array of 1066 nm tweezers,

which is not changed during an experimental run. We use the AODs in the 817 nm

and 938 nm beam paths to dynamically move tweezers that contain particles. By

overlapping these arrays with the 1066 nm array, we can pick up particles from sites

in the 1066 nm array and drop them off at other sites.

2.3 Lasers that drive atomic transitions

In this section, we introduce the lasers that we use to drive transitions in Rb and Cs.

2.3.1 Initial cooling and imaging

To cool Rb and Cs, we use two lasers for each species. Both lasers are slightly

red detuned of hyperfine transitions on the D2 lines. For Rb (Cs), the “cooling”

laser drives the closed transition |5s1/2, f = 2⟩ → |5p3/2, f
′ = 3⟩ (|6s1/2, f = 4⟩ →

|6p3/2, f
′ = 5⟩) and the “repump” laser returns any atoms lost from this cycle (due

to off-resonant scattering) by driving the transition |5s1/2, f = 1⟩ → |5p3/2, f
′ = 2⟩

(|6s1/2, f = 3⟩ → |6p3/2, f
′ = 4⟩). Here, the states are labelled |nℓj, f⟩, where n is

the principal quantum number, ℓ is the orbital angular momentum of the alkali

20Boulder Nonlinear Systems, PDM512-1064-DVI
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Figure 2.3: Overview of the beams in the science cell. The beams that are parallel to the
y - or z-axes are linearly polarised. The other beams (RB1, pushout, 1013 nm B, and optical
pumping) are circularly polarised to drive σ+ transitions. For simplicity, the MOT beams are
not shown and the tweezers and RB4 are offset from the centre of the cell. The 420 nm, pump,
Stokes, and 1013 nm A beams are offset for clarity; in reality they are overlapped.

electron, j is its total angular momentum, and f is the quantum number of angular

momentum resulting from the coupling of j with the nuclear spin i.21 The projection

of f along the quantisation axis is denoted mf and will become relevant shortly.

The frequency of these lasers are stabilised on the laser table by referencing them to

atomic vapour cells. They are combined and coupled through optical fibres to the

experiment table. The light is divided between three near-orthogonal beams that

are circularly polarised and shone through the science cell, which are retroreflected

to provide cooling in all six directions.

To load atoms into tweezers, we switch on the quadrupole coils and the cooling

and repump light. This forms atomic MOTs in the science cell. During this time, the

tweezer arrays are switched on so that their depth is sufficient to trap some atoms:

we trap Rb (Cs) in an array of 817 nm tweezers (1066 nm tweezers). The favourable

polarisability ratios α1066/α817 (see Table 2.1) mean that we do not trap a species

in the other’s array. The quadrupole coils are then switched off. The cooling and

repump light further cools the atoms and induces light-assisted collisions to prepare

single atoms. We load the species sequentially so that the shim coils can be used to

best overlap each MOT with the corresponding tweezer array. We typically saturate

tweezer loading when loading the MOTs for ∼ 100ms.

Atoms are imaged using the cooling and repump light. The atoms are excited on

the D2 line and spontaneously decay. The resultant fluorescence has no preferred

direction and some of it is oriented toward the objective lens underneath the science

21We use spectroscopic notation where ℓ = 0, 1, 2, 3, . . . is denoted s, p, d, f, . . ..
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Figure 2.4: Defect-free arrays of eight Cs atoms and eight Rb atoms. The Cs atoms
(red, top row) are trapped in an array of 1066 nm tweezers formed by the SLM. The Rb atoms
(blue, bottom row) are trapped in an array of 817 nm tweezers formed by the 2D AOD. The
height and width of each pixel is approximately 500 nm and the experimental coordinate system
is labelled.

cell. This light is imaged onto an electron-multiplying charge-coupled device (EM-

CCD)22. High counts on the EMCCD correspond to the presence of an atom, and

we distinguish between occupied and unoccupied sites with a fidelity ≫ 99% whilst

causing negligible loss of atoms.

We use data obtained from an initial image to form defect-free atomic arrays

by correcting for sites where no atoms were loaded [186, 187]. First, we load the

traps and measure their occupancy. Then, the 817 nm and 938 nm tweezers are used

to shuttle Rb and Cs atoms respectively in order to form small one-dimensional

defect-free arrays. The tweezer positions are swept by chirping the RF frequencies

applied to the respective AODs. The Rb atoms are prepared in a final 817 nm array

formed by the 2D AOD. Therefore, for the rearrangement of Rb atoms, we simply

extinguishing unoccupied traps and shuttle occupied ones to one side of the array.

The Cs atoms are moved around the array of 1066 nm traps sequentially with a

single 938 nm tweezer.23 The movement orders are calculated so that no atoms

collide as they are moved. A second image verifies the occupancy of the arrays after

rearrangement. The probability of loading an atom on a given site is well described

by the cumulative binomial distribution [206]. We begin with nine 1066 nm traps

and 14 817 nm traps so, on average, we load approximately five Cs atoms and seven

Rb atoms. However, we can post-select to consider only experiments where an exact

number of atoms were loaded, at the cost of increasing the time it takes to acquire

experimental statistics. Fig. 2.4 shows an image obtained after this rearrangement

procedure has prepared defect-free arrays of eight Rb atoms and eight Cs atoms.

The extension of this procedure to prepare defect-free arrays of molecules is discussed

in Sec. 4.8.

For experiments presented in Sec. 4.8, we image Rb atoms at high mag-

22Andor iXon 897 Ultra
23This is because we do not have sufficient power at 938 nm to move all Cs atoms simultaneously.
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netic field (181.699(1)G). The atoms are imaged on the closed transition

|5s1/2, f = 2,mf = +2⟩ → |5p3/2, f
′ = 3,m′

f = +3⟩ with resonant circularly po-

larised light. The use of the closed transition prevents atoms decaying to states that

are dark to the imaging light due to the large Zeeman shifts. This imaging light is

sourced from a dedicated laser24 which is frequency stabilised relative to the main

cooling laser with a beat note lock [210] to be resonant with the imaging transition

at the high magnetic field. This light is delivered to the science cell along the path

labelled optical pumping in Fig. 2.3.

2.3.2 State preparation

To form RbCs molecules from Rb and Cs atoms, it is necessary to prepare them in

the correct internal (i.e. hyperfine) and external (i.e. motional) states. The reasons

for this are explored further in Ch. 3. To prepare Rb (Cs) atoms in the requisite

hyperfine state |↓⟩ ≡ |5s1/2, f = 1,mf = +1⟩ (|6s1/2, f = 3,mf = +3⟩) and the three-

dimensional motional ground state, we implement a Raman sideband cooling protocol,

as detailed by Spence [207]. We briefly summarise this protocol here. It uses the

hyperfine states |↓⟩ and |↑⟩ ≡ |5s1/2, f = 2,mf = +2⟩ (|6s1/2, f = 4,mf = +4⟩) in

the ground manifold and states in the excited manifold 5p3/2 (6p3/2) that we access

when driving the D2 transition. The first component of the cooling protocol is an

optical pumping beam. This beam is circularly polarised with high purity and drives

σ+ transitions on the D2 line. Over many absorption and emission events, this causes

population to accumulate in the state |↑⟩. The second component is a two-photon

Raman transition that, via a virtual state detuned from excited manifold, performs

the coherent transfer |↑⟩ → |↓⟩ whilst removing one or more quanta of motion from

the atom. We then optically pump back to |↑⟩ whilst maintaining the motional state.

Over many cycles, this prepares atoms in the three-dimensional motional ground

state in the hyperfine state |↑⟩. A final Raman transfer |↑⟩ → |↓⟩ prepares the atoms

in the desired state.

To couple to the three separable directions of atomic motion, we use three

“Raman” beams. These beams, along with the optical pumping beam, are shown

in Fig. 2.3. To be consistent with Spence [207], the beams are labelled RB1, RB2,

and RB4. The amplitude and frequency of the beams are controlled with AOMs

and electro-optic modulators (EOM) on the laser table. RB1 and RB2 are used for

the Raman transitions that couple to the two radial directions of the tweezers and

RB1 and RB4 are used for the Raman transitions that couple to the axial direction.

Previously, an additional beam (RB3) was used that propagated in the opposite

24Toptica DL pro
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direction to RB2. This would be necessary if the tweezers were circular (wx = wy)

due to the degeneracy of the two radial axes. However, we find that the elliptical

nature of the tweezers means that the combination of RB1 and RB2 can couple

to both radial axes. The sequence of pulses used for Raman sideband cooling is

therefore the same as described by Spence [207], with the exception that RB3 pulses

are replaced with RB2 pulses. Furthermore, we now Raman sideband cool Rb in an

array of 817 nm tweezers and Cs in an array of 1066 nm tweezers. The trap frequencies

during Raman sideband cooling are {νRb
x , νRb

y , νRb
z } = {117(1), 148(1), 22.5(5)} kHz

for Rb and {νCs
x , νCs

y , νCs
z } = {98(1), 148(1), 18.7(5)} kHz for Cs. The frequencies of

the pulses are adjusted from those in Ref. [207] accordingly and we typically play

the pulse sequence twice to saturate cooling.

2.3.3 State-sensitive detection

A fraction of the atomic cooling light is coupled into an additional fibre to be used

for state-sensitive detection. This light forms the “pushout” beam shown in Fig. 2.3.

We use this to measure the probability that, for example, a Rb atom is in the state

|5s1/2, f = 1⟩ at the end of an experimental routine. The pushout beam is resonant

with the transition |5s1/2, f = 2⟩ → |5p3/2, f
′ = 3⟩. This light causes rapid heating

and loss of atoms in the state |5s1/2, f = 2⟩ whilst not affecting atoms in the state

|5s1/2, f = 1⟩. Therefore, the state |5s1/2, f = 1⟩ is mapped onto atomic survival and

the state |5s1/2, f = 2⟩ is mapped to atomic loss. The protocol for Cs is similar,

mapping the state |6s1/2, f = 3⟩ to atomic survival and ejecting atoms in the state

|6s1/2, f = 4⟩.

2.3.4 Rydberg excitation

In Ch. 5, we discuss the excitation of Rb atoms to highly excited Rydberg states.

Here, we introduce the lasers that we use to perform this excitation. We transfer

atoms from the ground manifold 5s1/2 to Rydberg states with a two-photon excitation

scheme. A laser at wavelength 420 nm drives transitions to the manifold 6p3/2 and a

laser at 1013 nm drives transitions from that manifold to the Rydberg states. The

Rydberg beams are incident on the atoms as shown in Fig. 2.3. The lasers are housed

on a separate optical bench (the “STIRAP table”) to the main experiment and light

is transferred to the experiment table with optical fibres.

The science cell is not AR coated for the 420 nm light and we therefore propagate

this beam through an uncoated viewport along the long axis of the vacuum chamber

(the y-axis). The setup we use to deliver the beam along this path is shown in
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Figure 2.5: Optics to combine the beams that propagate along the long axis of the
vacuum chamber. The beams are overlapped on a series of dichroic mirrors. Starting furthest
from the vacuum chamber, the 1013 nm beam path A passes through and the Stokes light is
reflected from a PBS. RB2 (which propagates through the chamber from the other side) is
separated from these beams with a custom dichroic mirror from LaserOptik. The RB2 light is
sent to a photodiode for power monitoring. A Thorlabs DMLP1180 dichroic mirror is used
to overlap the pump beam. A Thorlabs DMLP680 dichroic mirror then overlaps the 420 nm
light. Finally, there is a flipper mirror that is used to redirect the beams when profiling them.
Each beam has its own set of focusing lenses (the focal lengths are labelled) which allow us to
achieve the beam waists given in the text.

Fig. 2.5. The light passes through a focusing telescope, and it is overlapped with the

counter-propagating RB2 beam and the lasers that address molecular transitions

(see Sec. 2.4) with a series of dichroic mirrors. The beam is at a slight vertical angle

(approximately 2°) to avoid a standing wave being formed at the focus of the optical

tweezers. It is linearly polarised and a half-wave plate (HWP) allows its polarisation

to be rotated in order to drive either π transitions when the polarisation is parallel to

the magnetic field or σ± transitions when the two are perpendicular. At the atoms,

we achieve a 1/e2 waist of 52(6) µm. This waist is measured by diverting the beam

with a flipper mirror before it reaches the vacuum chamber and profiling it with a

camera.

The science cell is AR coated for the 1013 nm light. Therefore, we can pass this

beam through the science cell. We deliver the 1013 nm light to the atoms via one of

two beam paths. The reasons for using these two beam paths are discussed further

in Sec. 5.2. The first beam path, 1013 nm A, co-propagates with the 420 nm light

as shown in Figs 2.3 and 2.5. This light is transmitted through a polarising beam

splitter (PBS) so that its polarisation is parallel with the magnetic field and it drives
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π transitions. The second beam path, 1013 nm B, propagates approximately parallel

with the magnetic field and passes through the science cell, as shown in Fig. 2.3.

This beam is circularly polarised to primarily drive σ+ transitions. With beam path

A we achieve a waist of 105(2)µm and with beam path B we achieve a waist of

35(2)µm.

2.4 Lasers that drive molecular transitions

The formation of molecules is discussed in detail in Chs 3 and 4. For now, we state

that when a molecule is formed, it is formed and transferred to the weakly bound

state |F ⟩. Ultimately, we aim to prepare molecules in the rovibrational ground state

|G⟩. We perform the molecular transfer |F ⟩ → |G⟩ via the intermediate state |E⟩
with two-photon stimulated Raman adiabatic passage (STIRAP) (see Sec. 4.2). For

this, we use light resonant with the “pump” transition |F ⟩ → |E⟩ and the “Stokes”

transition |E⟩ → |G⟩. We refer to these two beams as the STIRAP light and here

we discuss the laser system that prepares and delivers this light to the experiment.

The STIRAP lasers are housed on the STIRAP table alongside the Rydberg

lasers and are delivered to the experiment table via optical fibres. The wavelength

of the pump light is 1557 nm and the wavelength of the Stokes light is 977 nm. The

science cell is not AR coated for the pump wavelength and we therefore propagate

the beams through an uncoated viewport along the y-axis, as shown in Figs 2.3 and

2.5. We co-propagate the beams to minimise molecular heating (see Sec. 4.2). Each

beam passes through an expansion telescope and they are overlapped on dichroic

mirrors with the other beams that propagate along this axis. Both beams are linearly

polarised. The polarisation of the pump light is parallel to the magnetic field so that

it drives π transitions. The polarisation of the Stokes light is perpendicular to the

magnetic field so that it drives σ± transitions. As with the 420 nm light, the pump

light is at a slight vertical angle to avoid a standing wave being formed at the focus

of the optical tweezers. We achieve a beam waist of 80(2)µm for the pump light and

a beam waist of 70(2) µm for the Stokes light.

2.5 Frequency stabilisation of the STIRAP and

Rydberg lasers

The STIRAP and Rydberg lasers require an artificial frequency reference to which

we can frequency stabilise (“lock”) them. For the STIRAP lasers, this is necessary

because we do not have the convenience of a molecular vapour cell from which to
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Table 2.2: Quantities relevant to the frequency stabilisation of the STIRAP and
Rydberg lasers, as detailed in the text.

Laser ULE cavity PDH lock
F νFSR (MHz) νPDH (MHz)

STIRAP
Stokes (λ = 977 nm) 2.00(8)× 104 1498.8123(9) 20.21
pump (λ = 1557 nm) 1.70(2)× 104 1498.796(3) 15.51

Rydberg
λ = 420 nm > 8× 102 ∼ 1500 25.00
λ = 1013 nm 2.8(1)× 104 1498.8117(6) 11.31

derive an error signal. For the Rydberg lasers, this is necessary as we excite atoms

to Rydberg states via a virtual level detuned from the intermediate manifold. In this

section, we discuss the setup on the STIRAP table with which we lock these lasers.

We lock the STIRAP and Rydberg lasers to a single ultra-low expansion (ULE)

cavity25 using a Pound-Drever-Hall (PDH) scheme [231]. The cavity is temperature

stabilised at its zero expansion temperature to avoid significant drifts in its length. It

generally reflects incident light, apart from light resonant with one of the longitudinal

cavity modes that occur at multiples of the free spectral range νFSR = c/2L for cavity

length L. An error signal can be derived from the change in reflectance around these

modes, allowing the cavity to be used as an arbitrary frequency reference to which

the lasers can be locked. To derive this error signal, each beam is phase modulated

prior to the cavity at frequency νPDH ∼ 10MHz. The reflected light is incident on

a photodiode and the interference between the carrier and sidebands gives rise to

an error signal at νPDH that can be demodualated and be used for laser feedback.

The performance of the cavity is quantified by the finesse F = νFSR/∆ν. Here ∆ν is

the linewidth of the cavity modes and a cavity constructed with higher reflectivity

mirrors will have higher finesse. The finesse and free spectral range of our cavity at

the different wavelengths used are tabulated in Table 2.2.26 Additionally, we give

the values of νPDH used when all four lasers are locked simultaneously to the cavity.

Although the ULE cavity provides an arbitrary frequency reference, on its own

it does not provide a tuneable frequency reference. Cavities for which the resonant

frequencies can be tuned after manufacturing (for example, by tuning the cavity

length with a piezo stack [232] or tuning the refractive index of the cavity [233])

exist, but this tuneablity comes with the drawback that the length of the cavity

can significantly drift over time. Additionally, with this approach, it is not possible

to modify only a single laser’s locking frequency. Instead, we use the approach of

25Stable Laser Systems custom specification
26The coating of the mirrors that make up the ULE cavity is complex in order to give a high

finesse for all four specified wavelengths. Light at these different wavelengths reflects from different
parts of the coating. This means that the cavity length L and the free spectral range νPDH are
wavelength dependent.
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Thorpe et al. [234] where each beam passes through a high-bandwidth fibre EOM

prior to the cavity. The bandwidths of the fibre EOMs are greater than the free

spectral range of the cavity. By adding a set of frequency sidebands to the light at

an offset frequency νoffset, and stabilising one of these sidebands to the cavity mode,

the laser can be stabilised to an arbitrary frequency. The frequency at which a laser

is locked can then be tuned by changing νoffset.

The optical setup used to stabilise the STIRAP light and deliver it to the

experiment is shown in Fig. 2.6(a). The setup is based on the design of Gregory et

al. [235] which is used in the bulk-gas RbCs experiment at Durham. The light is

sourced from diode lasers27; the 1013 nm light is amplified with a tapered amplifier28.

From each beam path, we pickoff a small amount of light to monitor the frequency

on a wavemeter29. A sample of each beam is then delivered to the cavity setup

(Fig. 2.6(a), shaded region) with an optical fibre. For the STIRAP beams and the

1013 nm light, the relevant fibre EOM30 serves as this optical fibre. We use these to

phase modulate the light at both νPDH (to extract the PDH error signals) and νoffset

(to tune the lasers to an arbitrary frequency). Two independent function generators31

produce the driving tones for these sidebands before they are combined with a power

splitter32 and sent to the modulator. The demodulation of the PDH error signal

and laser feedback is performed by fast laser-locking modules33. We were not able

to source an affordable near-ultraviolet (UV) fibre EOM. Therefore, for the 420 nm

light, we use a free-space EOM34 prior to a patchcord and modulate the light only at

νPDH.
35 A telescope after each fibre matches the Gaussian beam curvature of each

beam with the curvature of the cavity mirrors [236, 237]. Each beam is transmitted

through a PBS and a quarter-wave plate (QWP) and the beams are overlapped

with a series of dichroic mirrors36. The beams reflect from the cavity, pass through

the QWPs for a second time, and reflect from the PBSs onto photodiodes37 from

which the error signals are extracted. An affordable dichroic mirror with a cutoff

wavelength between the Stokes light (at 977 nm) and the 1013 nm light was not

27Toptica DL pro
28Toptica TA pro
29Bristol Instruments 671A-NIR
30Pump: Thorlabs LN65S-FC, Stokes: EOSpace PM-0S5-10-PFA-PFA-980, 1013 nm: EOSpace

PM-0S5-10-PFA-PFA-1013
31PDH modulation: Rigol DG822, offset modulation: Windfreak Technologies Synth HD
32Minicircuits ZAPD-2-252-S+
33Toptica FALC pro
34Photonics Technologies EOM-02-25-U
35The resonant frequency of the EOM used for the 420 nm light is 25MHz and its bandwidth is

only a few megahertz; this precludes arbitrary tuning of the 420 nm frequency.
36As labelled in Fig. 2.6(a), D1 is Thorlabs DMLP650 and D2 is Thorlabs DMLP1180.
37STIRAP and 1013 nm: Thorlabs PDA05CF2, 420 nm: Thorlabs PDA8A2
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Figure 2.6: PDH locking setup used to stabilise the STIRAP and Rydberg lasers. (a)
Simplified diagram of the optical setup on the STIRAP table as described in the text. The
shaded region shows the region relevant for the PDH lock. (b) The error signal (panel (i)) and
cavity transmission (panel (ii)) for the Stokes laser as a function of laser frequency. The shaded
grey data show the deviation over 20ms when the laser is locked at ∆Stokes = νoffset Here,
νPDH = 24.1MHz and νoffset = 313MHz. (c) Ratio between the amplitudes of the sidebands
and the carrier as a function of the driving amplitude for a homebuilt 420 nm EOM modulated at
8.37MHz. The inset shows the cavity reflectivity R at the red star. (d) Measurement of νFSR for
the STIRAP and 1013 nm lasers. When νoffset = νFSR there is an increase in light transmitted
through the cavity. The pump data were obtained with a continuous frequency sweep of νoffset;
the Stokes and 1013 nm data were obtained by measuring the cavity transmission at distinct
values of νoffset. The dark lines show fits to Lorentzians from which we extract νFSR and F of
the cavity at each wavelength.
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available. Therefore, these beams are overlapped on a 50 : 50 non-polarising beam

splitter prior to their PBS. The difference in νPDH between the two (see Table 2.2)

allows their error signals to be extracted independently. We ensure that there are

a sufficient number of degrees of freedom so that each beam can be independently

aligned to the cavity; this is important to preclude excited transverse modes.

Figure 2.6(b)(i) shows a typical error signal that we derive from the cavity

setup. For this example, we show the error signal as the frequency of the Stokes

laser is scanned. The detuning ∆Stokes is relative to a cavity mode. Here, νoffset =

313MHz and νPDH = 24.1MHz. Fig. 2.6(b)(ii) shows the cavity transmission when

∆Stokes ≈ νoffset. In both plots, the data shown in grey shows how the error signal

and transmission vary over 20ms when the laser is locked at ∆Stokes = νoffset.

The amount of modulation performed by an EOM is characterised by the mod-

ulation depth β. The electric field of light after it has passed through a phase-

modulating EOM being driven at frequency νm with modulation depth βm is of

the form
√
P exp {i [2πν0t+ βm sin (2πνmt)]}, where P is the power in the beam,

and ν0 is the frequency of the input light [234]. For the STIRAP and 1013 nm

lasers, we modulate the light at νPDH with modulation depth βPDH and at νoffset with

modulation depth βoffset. It can be shown that, at a detuning ∆ = νoffset from the

cavity mode, the derivative of the error signal with respect to laser frequency is [234]

dϵ

dν

∣∣∣∣
∆=νoffset

∝ J2
1 (βoffset)J0(βPDH)J1(βPDH) . (2.4)

Here, Jn is the nth-order Bessel function of the first kind. For the 420 nm light, we

modulate the light at only νPDH with modulation depth βPDH. At the cavity mode

(∆ = 0), we have [234]

dϵ

dν

∣∣∣∣
∆=0

∝ J0(βPDH)J1(βPDH) . (2.5)

To obtain the narrowest linewidths possible, we maximise dϵ/dν so that the locking

hardware is as sensitive to fluctuations in the laser frequency as possible. In both

cases this occurs when βPDH ≈ 1.082 and, when relevant, βoffset ≈ 1.841.

We characterise the modulation depths of the EOMs in order to maximise

dϵ/dν. We vary the amplitude with which we drive an EOM and, for each driving

amplitude, find the ratio between the amplitudes of the sidebands and carrier.

In Fig. 2.6(c) we show data obtained by performing this characterisation with a

homebuilt 420 nm EOM driven at 8.37MHz. The solid line shows a fit to the expected

ratio |J1(β)/J0(β)|2, where we have assumed that β is proportional to the driving

amplitude. The inset shows the carrier and sidebands when the modulation depth is

near optimum (β ≈ 1.082).
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The values of F given in Table 2.2 are obtained by measuring νFSR and ∆ν for

each laser. We measure these by locking each laser to a carrier and varying νoffset

around νFSR. When νoffset = νFSR, both the carrier and the sidebands are transmitted

through the cavity because they coincide with neighbouring longitudinal modes. This

measurement for the STIRAP and 1013 nm lasers is shown in Fig. 2.6(d). We fit a

Lorentzian to each feature to extract νFSR and ∆ν; the ratio of these is the finesse F .

We cannot perform this measurement with the 420 nm laser because its EOM is in

free space and has a small bandwidth. Instead, we estimate these quantities based

on the cavity linewidth and position of the PDH sidebands on the error signal.

The majority of the light from each laser is sent to the experiment. We amplify

the STIRAP light with fibre amplifiers38 so that each beam contains approximately

50mW. Each beam passes through an AOM39 (see Fig. 2.6(a)) that we use to control

the frequency and amplitude of pulses. The 420 nm beam is double passed through

its AOM to so that we can access a larger frequency range (as this laser cannot be

locked to an arbitrary frequency). For the other beams, we single pass the AOMs

to maximise the available power. The AOMs are driven with by homebuilt direct

digital synthesisers (DDS)40 that can shape pulses with up to 4 ns resolution. Each

beam passes through a low vibration shutter41 and is coupled to the experiment

table via optical fibres. Additionally, a small amount of 420 nm light is picked off

and transmitted through a heated Rb vapour cell that we typically operate at about

60 ◦C. This is used for vapour-cell spectroscopy on the transition |5s1/2⟩ → |6p3/2⟩
(see Sec. 5.3).

2.6 Experimental control

AMO experiments typically require precise control of dozens of pieces of equipment

with microsecond timing resolution. Our experiment is no different. The main

application that controls our apparatus is PyDex42, a custom Python application

that is used for experimental control and data analysis. PyDex runs on the main

control computer, which interfaces with other computers on our laboratory network.

To acquire statistics from an optical tweezer experiment, it is necessary to repeat an

experimental sequence many (typically ∼ 100) times because each experimental run

gives only a few bits of data (whether or not a given tweezer is occupied at the end

38Both STIRAP fibre amplifiers are supplied by Precilasers
39Pump: ISOMET M1205-P80-L-0.6, Stokes and 1013 nm: ISOMET 1205C-843, 420 nm:

ISOMET M1250-T250L-0.45
40Based on Anologue Devices AD9910
41Stanford Research Systems SR475
42https://github.com/ssquantum/PyDex

https://github.com/ssquantum/PyDex
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(a)

(b)

(c)

(d)

Figure 2.7: PyDex interface used for experimental control and near real-time analysis.
(a) Main control window. (b) Multirun Editor control window that we use to queue experiments.
(c) The SIMON window that we use to view near real-time experimental images and set the
ROIs used when assigning atom occupancy. (d) Example of the STEFAN modules that we
use for simple mid-experiment analysis. The left window shows EMCCD counts obtained for
different ROIs over multiple runs of the experiment, the right window shows results from a
simple analysis of these counts based on user-defined criteria.

of an experimental sequence). PyDex handles this repeated operation and performs

real-time processing of the acquired data.

The majority of equipment in our laboratory is controlled by a few voltage inputs.

Therefore, an experimental sequence is mainly a table of timesteps and a list of

each voltages to set at each timestep. PyDex automatically constructs experimental

sequences from a predefined list of parameters. These sequences are then passed

to a custom LabView application called DExTer [238]. DExTer interfaces with an

FPGA card43 to output analogue and digital voltages when required and runs on its

own dedicated computer. Equipment which requires more complex control (such as

the AWGs, the SLM, and programmable microwave generators (MWG)) are each

controlled via with custom Python applications44 that interface with commercial

application programming interfaces on dedicated computers.

Figure 2.7 shows a typical mid-experiment view of PyDex. The main control

window is shown in Fig. 2.7(a). An experiment is run by queuing a list of parameters

to vary in the Multirun Editor window, which is shown in Fig. 2.7(b). During an

43National Instruments PCI-7833R
44AWGs: https://github.com/danielruttley/awg,

SLM: https://github.com/danielruttley/slm,
MWGs: https://github.com/danielruttley/mwcontrol

https://github.com/danielruttley/awg
https://github.com/danielruttley/slm
https://github.com/danielruttley/mwcontrol
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the running of an experimental sequence, PyDex receives images from the EMCCD.

Imaged are analysed in near real-time after being placed into a first-in, first-out

(FIFO) queue. When processor load allows, an image is removed from the queue

by the Multi Atom Image Analyser (MAIA) module. This module assigns a binary

occupancy to each tweezer by comparing the EMCCD counts in a pre-defined region

of interest (ROI) to a threshold. If the counts are above the threshold, the trap is

deemed to be occupied. Furthermore, each image is passed to the Simple Image

Monitor (SIMON) module, shown in Fig. 2.7(c), to be displayed to the user. The

images and occupancies are written to disk to allow for future retrieval and analysis.

For simple analysis during an experiment, we use the Simple Thus Efficient Analyser

(STEFAN) modules, examples of which are shown in Fig. 2.7(d). These allow the

user to set a list of criteria to monitor in real-time. For example, we can check that

molecules are still being formed as an experiment is being run. If, say, a laser in the

laboratory mode hops, we can quickly detect and correct this without waiting until

an entire experiment is complete.

The exception to this data flow is for images from the EMCCD that we use for

rearrangement of atoms or molecules. This is because these images are required to be

processed as quickly as possible in order to provide feedback to the experiment. When

images used for rearrangement are received, as well as being added to the FIFO queue,

they are immediately passed to the Atom Loading Enhancement for Experiment

(ALEX) module and the processing of the FIFO queue is suspended. ALEX determines

the occupancy of the tweezers as quickly as possible, then immediately passes this

information to the AWG control scripts that move their respective tweezers in order

to rearrange the particles. This processing takes ∼ 10ms and after this processing

of the FIFO queue resumes.

2.7 Summary

We have introduced the experimental apparatus that is used in the following chapters.

The optics and lasers used for trapping and control of individual atoms have been

discussed. We have highlighted recent changes in the experimental apparatus,

including the installation of beams used for molecular state transfer and the Rydberg

excitation of Rb atoms. Furthermore, we have described recent changes to the

experimental control and analysis software that have been implemented for the

efficient control and readout of small arrays of optical tweezers.



3 Weakly bound molecules

The majority of the results in this chapter have been published in Ref. [201]. Some

of the results have been published in Refs [202, 203].

We form RbCs molecules from ultracold Rb and Cs atoms that are individually

trapped in species-specific optical tweezers. The first step of molecule production is

the association of Rb+Cs atom pairs into weakly bound molecules.

In this chapter, we present methods that we use to form these weakly bound

molecules. We begin by briefly introducing the molecular bound states that we access.

Following this, we discuss two methods for converting atom pairs into molecules

in this manifold. We detail spectroscopy of these weakly bound molecular states

and show how the atom to molecule conversion processes can be experimentally

controlled.

3.1 Feshbach molecule structure

The electronic energy levels of RbCs molecules are shown in Fig. 3.1(a). We follow the

approach of Brown & Carrington [239] and label each potential with the moleculear

term symbol 2S+1Λ±. Here, Λ is the electronic orbital angular momentum, S is the

electronic spin angular momentum, and the ± superscript refers to the symmetry

under inversion in a plane containing the internuclear axis.1 The index prior to

the term symbol orders the potentials by increasing energy, similar to the principal

quantum number for atomic states. For singlet states (S = 0), we count up from

lowest energy with X,A,B,C, . . .. For triplet states (S = 1), we enumerate the

potentials with a, b, c, d, . . .. In this notation, the electronic ground state has the

label X1Σ+.

Ultimately, we aim to prepare molecules in the rovibrational ground state |G⟩ of
the manifold X1Σ+. Molecules in this manifold have significant molecule-frame dipole

moments and long radiative lifetimes that make them ideal for quantum information

1We use spectroscopic notation where Λ = 0, 1, 2, 3, . . . is denoted Σ,Π,∆,Φ, . . ..

31
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Figure 3.1: Energies of RbCs molecules. (a) Electronic potential curves for RbCs molecules.
The orange arrow shows the pump transition |F ⟩ → |E ⟩. (b) Bound-state spectrum of weakly
bound RbCs molecules in the Feshbach manifold surrounding the state |F ⟩ (red point). Energies
are given relative to the dissociation threshold and come from coupled-channel calculations
using the RbCs interaction potential of Takekoshi et al. [148].

and simulation applications. However, we are not able to directly associate atom

pairs into molecules in the state |G⟩ due to the vanishing wavefunction overlap

between it and an atom pair state. Therefore, we adopt a two step approach that

has been widely used to assemble heteronuclear polar molecules in their rovibrational

ground state [146, 149, 151, 155, 156, 240]. We first convert atom pairs to weakly

bound molecules in the state |F ⟩ which has mostly a3Σ+ character. This state

is chosen because it has strong coupling to an excited state |E⟩ of the coupled

A1Σ+ + b3Π manifold that also has strong coupling to the state |G⟩.2 This enables

the transfer |F ⟩ → |G⟩ with two-photon techniques (see Ch. 4). For the remainder

of this chapter, we will explore how atom pairs can be converted into molecules in

the state |F ⟩.
The energies of bound states surrounding the state |F ⟩ as a function of magnetic

field are shown in Fig. 3.1(b). The energies are relative to the dissociation threshold.

This group of states is typically termed the Feshbach manifold, and the states within

it are the Feshbach states. The states relevant to the discussion here have binding

energies ∼ 0.1 to 10MHz× h. The bound-state spectrum is calculated with coupled-

channel methods using the RbCs interaction potential of Takekoshi et al. [148].3 We

highlight the state |F ⟩ at a magnetic field equal to 181.699G (red point) and the

2We give quantum numbers for the state |E⟩ in Sec. 4.1.
3The binding energies of states in the Feshbach manifold were calculated by C. Ruth Le Sueur

and Jeremy M. Hutson. The details are beyond the scope of this thesis and can be found in
Ref. [148].
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least-bound state |S⟩ which has a binding energy equal to 110(2) kHz×h for most of

the field range shown here. States in the Feshbach manifold are typically labelled as

|n (fRb, fCs)L (mRb,mCs)⟩, where n is the vibrational quantum number relative to the

supporting threshold and L is the rotational quantum number around the centre of

mass.4 In this notation, |S⟩ ≡ |−1(1, 3)S(+1,+3)⟩ and |F ⟩ ≡ |−6(2, 4)D(+2,+4)⟩.

3.2 Association pathways

We assemble molecules in the state |S⟩ by exploiting coupling between this state

and the unbound atom pair state |5s1/2, f = 1,mf = +1⟩
Rb

|6s1/2, f = 3,mf = +3⟩
Cs

(hereafter |1,+1⟩Rb|3,+3⟩Cs). First, we consider the general case where the energies of

these two states depend on a parameter that can be externally controlled. When the

energies of the states would otherwise cross, the coupling between them can give rise

to an avoided crossing. A cartoon of such a crossing is shown in Fig. 3.2. By slowly

varying the control parameter, we are able to adiabatically follow the eigenstates

of the system.5 Explicitly, in the situation shown in Fig. 3.2, we would start with

the control parameter high and prepare atom pairs in the state |1,+1⟩Rb|3,+3⟩Cs.

We would then slowly decrease the control parameter, as indicated by the arrow.

Provided that the rate of change of the control parameter is sufficiently slow, we

would adiabatically convert an atom pair in the state |1,+1⟩Rb|3,+3⟩Cs to a molecule

in the state |S⟩. In contrast, if the rate of change of the control parameter was too

fast, we would follow the blue dashed diabat and maintain an atom pair in the state

|1,+1⟩Rb|3,+3⟩Cs.

In this section, we detail two different mechanisms for generating and traversing

such an avoided crossing. First, we discuss an avoided crossing where the control

parameter is an external magnetic field, which has been widely used in bulk-gas

experiments to form molecules [144, 145]. Second, we describe a novel avoided

crossing where the control parameter is separation of two optical tweezers that each

trap either a single Rb or Cs atom.

3.2.1 Magnetoassociation

Magnetoassociation is a technique that exploits the differential magnetic moment

between an atom pair state and molecular state to assemble molecules. The dif-

ferential magnetic moment means that the energy separation between the states

4We use spectroscopic notation where L = 0, 1, 2, 3, . . . is denoted S, P,D, F, . . ..
5We will give a more concrete definition of “slowly” when discussing the specific methods used

for association.



CHAPTER 3. WEAKLY BOUND MOLECULES 34

|S⟩

|1,+1⟩Rb |3,+3⟩Cs
RbCs Rb
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Figure 3.2: Forming molecules by adiabatically traversing an avoided crossing. We
engineer avoided crossings between the atom pair state |1,+1⟩Rb|3,+3⟩Cs and the least-bound
molecular state |S⟩ in our experiment. We adiabatically traverse these avoided crossing by
changing a control parameter to convert atom pairs into molecules. By reversing the process,
we convert molecules in the state |S⟩ back to atom pairs.

can be tuned with a magnetic field. The field at which the atomic and molecular

state would have the same energy corresponds to a Feshbach resonance. At this

field, there is an avoided crossing caused by coupling between the two states. During

magnetoassociation, this avoided crossing is adiabatically traversed to convert atom

pairs into molecules that occupy a single quantum state [144, 145].

Bulk-gas experiments that assemble RbCs molecules have used magnetoasso-

ciation to convert atom pairs into molecules in the state |S⟩ [148, 241]. In these

experiments, atoms are cooled to obtain a high phase-space density and prepared

in the atom pair state |1,+1⟩Rb|3,+3⟩Cs. The magnetic field is then swept across a

Feshbach resonance arising from the state |−6(2, 4)D(+2,+3)⟩ at 197.08(2)G (see

Fig. 3.1(b), blue dashed line) and atom pairs follow the associated avoided crossing

to be converted into molecules in the state |S⟩. We follow the same procedure to

form individually trapped molecules in the state |S⟩.
In Fig. 3.3(a)(i) we show energies of atomic and molecular states around a

Feshbach resonance in our system. The energies are given as a function of −1/a,

where a is the s-wave scattering length [242, 243]. We calculate these energies

by following the approach of Spence [207]. We assume that the atom pairs are

individually trapped in cylindrically symmetric tweezers and, for now, take them to

be in the ground state of centre-of-mass motion. We assume that the centre-of-mass
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and relative motions are separable.6 The trap frequency for relative motion of the

atom pair along axis i is

νi =

√
mCsν2Rb,i +mRbν2Cs,i

mRb +mCs

, (3.1)

where atom j has mass mj and trap frequency νj,i along axis i. As the tweezers are

cylindrically symmetric, along the radial axes the trap frequencies of relative motion

are equal and we denote them as νr = νx = νy. We consider the case where the ratio

between νr and the axial trap frequency for relative motion νz is νr/νz = 6.7 The

state energies are obtained by solving a Fermi pseudopotential interaction [244–246],

where we make the simplification that the background scattering length abg = 0.8

In the limit a → 0 (i.e. −1/a → ±∞), the eigenstates are those of a non-

interacting atom pair in a three-dimensional harmonic potential. Relative to the

ground state of relative motion, the energies of these states are h(nx
relνr+n

y
relνr+n

z
relνz),

where ni
rel is the number of relative motional quanta along axis i. For the energy

range shown in Fig. 3.3(a)(i), the states have nx
rel = ny

rel = 0. The coloured dashed

lines show the energies these states. For finite −1/a, the effect of pseudopotential

is to couple states with even nz
rel to states where nz

rel differs by ±2. We plot −1/a

in units of 1/βz
rel, where β

z
rel = (1/2π)

√
h/µνz is the confinement length for relative

motion in the axial direction of the tweezer and µ = mRbmCs/(mRb +mCs) is the

reduced mass of the atom pair.

The three-dimensional ground state of relative motion (and only this state) is

coupled to a molecular bound state. The three-dimensional ground state of relative

motion is that with nx
rel = ny

rel = nz
rel = 0, and is shown as the dotted blue line in

Fig. 3.3(a)(i). An atom pair prepared in this state can be converted into a molecule

by adiabatically sweeping −1/a to follow the red arrow shown in in Fig. 3.3(a)(i).

We control −1/a by using a magnetic field. Fig. 3.3(b)(i) shows the behaviour of

a in the relevant magnetic field range. The effect of a single Feshbach resonance on

the scattering length is given by [247]

a = abg

(
1− ∆

B −B0

)
, (3.2)

6This is true if the trap frequencies for each species are equal. We magnetoassociate atom
pairs trapped in 1066 nm tweezers. At this wavelength, the trap frequencies of Cs atoms are
approximately a factor of 1.05 larger than those of Rb atoms, so this is a reasonable approximation
to make.

7Ideally, for an optical tweezer with waist w0 and wavelength λ, νr/νz = 2πw0/λ. The
mean waist of the 1066 nm tweezers is approximately 1.15 µm, which gives νr/νz ≈ 7. However,
measurements of the trap frequencies give νr/νz ≈ 6, which we use here. We believe this is lower
than the ideal case due to aberrations in the focusing of the tweezers.

8A treatment for abg ̸= 0 can be found in Ref. [207].
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Figure 3.3: Association pathways for forming weakly bound molecules. (a) Energy
levels used for the assembly of weakly bound molecules. Energies are given relative to the
ground state of relative motion (blue dotted lines). Atom pairs in the ground state of relative
motion can be associated into molecules by following the red arrows. (i) Energy levels used
during magnetoassociation. We assume the atom pair is in a cylindrically symmetric tweezer
where νr/νz = 6. (ii) Energy levels used during mergoassociation. We assume the tweezers
are spherically symmetric. The red dashed line shows the harmonic trapping experienced by a
molecule in the absence of tunnelling. The inset shows a zoom to the avoided crossing used
during mergoassociation. (b) Properties relevant to magnetoassociation. (i) Dependence of
the scattering length a on magnetic field for a Rb+Cs atom pair. (ii) Energies of molecular
states in the Feshbach manifold. The bold line shows the path followed as the magnetic field is
adiabatically swept from high to low. (c) Properties relevant to mergoassociation. (i) Cartoon
of the interaction energy as a function of interatomic distance when ∆y = ∆y×. (ii) The
effective matrix element Ω between the lowest-energy atom-pair and molecular states as a
function of βrel.
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where ∆ is the width of the Feshbach resonance, B0 is the pole of the resonance,

and abg is the background scattering length far from the resonance. For the Rb+Cs

system, abg = 645(60) a0 ≈ 34.1(3) nm [148]. There are two poles in Fig. 3.3(b)(i),

resulting from the Feshbach resonance at 197.08(2)G and an additional resonance

arising from the state |F ⟩ at approximately 182G.

We magnetoassociate atom pairs into molecules by ramping the magnetic field

from ∼ 205G to 181.699G. During this process, we follow the path in the Feshbach

manifold shown by the bold line in Fig. 3.3(b)(ii). First, we cross the Feshbach

resonance at 197.08(2)G which has width ∆ = 90(10)mG. The field ramp sweeps

−1/a from high to low, crossing −1/a = 0 at the pole of the resonance. This converts

atom pairs into molecules in the least-bound state |S⟩. The field ramp then continues

over the second Feshbach resonance. We traverse the resultant avoided crossing so

that the molecules are transferred into the state |F ⟩.
We now relax the assumption that the atom pairs are in the ground state of

centre-of-mass motion. As the centre-of-mass and relative motions are separable,

the centre-of-mass motion causes repeats of the energy levels shown in Fig. 3.3(a)(i),

with the energy levels shifted by energy h(nx
comν̃r + ny

comν̃r + nz
comν̃z). Here,

ν̃i =

√
mRbν2Rb,i +mCsν2Cs,i

mRb +mCs

(3.3)

is the trap frequency for centre-of-mass motion and ni
com is the number of centre-of-

mass motional quanta, both along axis i. Crucially, this means that an atom pair in

the ground state of relative motion can be associated into a molecule, regardless of

the centre-of-mass motion. The molecule will then inherit the motional state of the

centre-of-mass.

A molecule will be formed in the motional ground state if the atom pair was in

the ground state of relative motion (so that the molecule could be formed) and in the

ground state of centre-of-mass motion (that the molecule inherits). The probability

that an atom pair is in the ground state of relative motion along axis i is [248]

P (ni
rel = 0) =

P (nRb,i = 0)P (nCs,i = 0)

1− mRb

mRb+mCs

n̄Rb,i

n̄Rb,i+1
− mCs

mRb+mCs

n̄Cs,i

n̄Cs,i+1

, (3.4)

where n̄j,i is the average number of motional quanta (along axis i) of atom j and

P (nj,i = 0) = 1− n̄j,i/(n̄j,i +1) is the probability of that atom being in the motional

ground state along axis i. The form of P (nj,i = 0) assumes that the population

of motional levels follows a thermal distribution. The probability of the atom pair

being in the three-dimensional ground state of relative motion is

P (n3D
rel = 0) = P (nx

rel = 0)P (ny
rel = 0)P (nz

rel = 0) . (3.5)
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The probability that a formed molecule occupies the ground state of motion along

axis i is [248]

P (ni
mol = 0) = 1− mRb

mRb +mCs

n̄Rb,i

n̄Rb,i + 1
− mCs

mRb +mCs

n̄Cs,i

n̄Cs,i + 1
, (3.6)

and probability of that molecule being in the three-dimensional ground state is

P (n3D
mol = 0) = P (nx

mol = 0)P (ny
mol = 0)P (nz

mol = 0) . (3.7)

The avoided crossings traversed when sweeping the magnetic fields can be well

described using a Landau-Zener model. The probability of adiabatically traversing

the avoided crossing used for association is [145, 248]

Pmagneto = 1− exp

(
−2πhn2

2µ

∣∣∣∣ abg∆dB/dt

∣∣∣∣) . (3.8)

The two parameters that can be controlled experimentally are n2, the density of an

atom pair trapped in a single tweezer, and dB/dt, the rate at which the magnetic

field is swept across the resonance. The form of Eq. (3.8) means that we are more

likely to form a molecule by magnetoassociation when the pair density n2 is large or

the magnetic field ramp speed dB/dt is small.

3.2.2 Mergoassociation

We have so far neglected coupling of motional states caused by the tightly confining

tweezers in our experiment. We are able to safely do this as long as the confinement

of the traps is weak enough such that it can be safely ignored. However, confinement-

related effects can become significant when the confinement length βrel for relative

motion approaches the value of the background scattering length abg. Effects like

elastic [249, 250] and inelastic [251, 252] confinement-induced resonances (CIR) have

been observed experimentally in a number of different systems and dimensionalities

[253–257]. These confinement-related effects offer new ways to form molecules. Using

pairs of fermions in strongly confined in one-dimension, inelastic CIRs have been

used to form molecules coherently in an optical trap [258]. In addition, molecules

have been formed coherently utilising spin-motion coupling in a strongly focused

optical tweezer with large polarisation gradients [259].

In contrast, there has been little experimental investigation of the interactions

of two particles in separate optical potentials with tuneable separation [260, 261],

despite the existence of theoretical work in this area [262, 263]. Stock et al. [262]

predicted the existence of avoided crossings between molecular and confined-atom

states at critical values of the separation of two optical potentials: so called trap-

induced shape resonances. These avoided crossing offers an unexplored path to the
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formation of molecules by merging together two optical potentials; a process we refer

to as mergoassociation.9

Figure 3.3(a)(ii) shows the energies of two atoms in separate but overlapping

tweezers as a function of the separation between the tweezers. Each tweezer is

assumed to trap only its own atom and the energies are calculated with coupled-

channel methods that take the tweezers to be spherically symmetric: the trap

frequency for relative motion in all three axes is ν.10 Nevertheless, we denote the

separation between the atoms as ∆y to be consistent with the orientation of the

experiments that will be discussed in later in this chapter. This calculation is for

the Rb+Cs system with βrel ≡ (1/2π)
√
h/µν = 40nm. We assume that there

is negligible coupling between relative and centre-of-mass motion and show only

energy levels for which the atom pair is in the ground state of centre-of-mass motion.

At large separation, the energies of the separately confined atom pairs are almost

independent of ∆y and, relative to the ground state of relative motion, are given by

hνnrel for nrel ≡ nx
rel + ny

rel + nz
rel. However, there can also be a molecular state that

is weakly bound at ∆y = 0. For RbCs, this bound state is the state |S⟩. The energy

of this state increases quadratically with ∆y due to the harmonic tweezer potentials

and there is an avoided crossing with the atomic ground state of relative motion at

a critical separation ∆y×.

The strength of the avoided crossing at ∆y× depends on the height and width of

the barrier between the atomic and molecular wells, as shown in Fig. 3.3(c)(i). The

avoided crossing is strongest when the bound state is close to threshold, corresponding

to a large positive value of abg, and when βrel is comparable to abg. The effective

matrix element coupling the two states is Ω: this leads to a minimum energy

separation at the avoided crossing equal to 2Ω. The value of ∆y× is approximately

βrel
√

3 + β2
rel/a

2
bg, so the crossing occurs at larger interatomic separations for weaker

confinement. This leads to a reduction in tunneling through the barrier and in the

strength of the avoided crossing: Fig. 3.3(c)(ii) shows the dependence of Ω on βrel for

the system considered here. We note that the effects of this avoided crossing were not

observed in previous demonstrations of molecule formation in lattices [73, 264, 265]

and tweezers [248, 259], probably because abg ≪ βrel for the systems investigated.

Conceptually, the conversion of atom pairs into molecules during mergoassociation

is very similar that which occurs during magnetoassociation. The difference is that

9A not insignificant amount of effort was spent trying to find a suitable Latin root word for
this association technique that does not contain a soft g. However, we couldn’t think of one and
the hardness of the g when pronouncing mergoassociation is left to the discretion of the reader.

10These coupled-channel calculations were performed by Robert C. Bird, C. Ruth Le Sueur,
and Jeremy M. Hutson. The details of these calculations are beyond the scope of this thesis; more
details can be found in Ref. [201].
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the control parameter for mergoassociation is the distance between the two tweezers

rather than a magnetic field. As with magnetoassociation, we associate only atom

pairs in the ground state of relative motion and are insensitive to the centre-of-mass

motion. The molecule inherits the center-of-mass motion of the atom pair, and the

probability of a formed molecule occupying the three-dimensional motional ground

state is given by Eq. (3.7).

Like magnetoassociation, mergoassociation is described well by a Landau-Zener

model, where the probability of traversing the avoided crossing adiabatically is

Pmergo = 1− exp

(
− 4π2Ω2

h |(dmol − dat)(d∆y/dt)×|

)
. (3.9)

Here, dmol and dat are the gradients of the molecular and atom pair states with

respect to ∆y at ∆y× in the absence of coupling. To a good approximation, dat = 0

and dmol = 4π2µν2∆y× = (h2∆y×)
/
(4π2µ(β×

rel)
4
). The speed at which the avoided

crossing is traversed is (d∆y/dt)× and β×
rel is the confinement length of relative

motion at this moment. Experimentally we can directly control (d∆y/dt)× (by

changing the speed at which we move the tweezers together) or β×
rel (by changing

the intensities of the tweezers). The form of Eq. (3.9) means that we are more

likely to form a molecule by mergoassociation when (d∆y/dt)× is small or the trap

confinement is strong (i.e. β×
rel is small, resulting in small dmol and large Ω).

3.3 Optical spectroscopy

In order to characterise magnetoassociation and mergoassociation, we need a method

to detect when a molecule has been formed. Fig. 3.4(a) shows the experimental

sequence used to associate, probe, and dissociate molecules. A single Rb atom

and a single Cs atom are prepared in species-specific tweezers with a separation

of 3.7 µm along the y-axis. Fluorescence imaging of the atoms is performed to

determine the trap occupancy; when analysing data we post-select to only consider

experimental runs in which both a Rb and Cs were initially loaded. Following this,

the atoms are prepared predominantly in the motional ground state and transferred

to the hyperfine state |1,+1⟩Rb|3,+3⟩Cs. The traps are merged together at magnetic

field Bmerge. The field is then ramped down to Bspec. Atom pairs can either be

mergoassociated during the merging step if the tweezer confinement is sufficiently

strong or magnetoassociated if the magnetic field ramp crosses a Feshbach resonance

and is sufficiently slow. We then apply a spectroscopy pulse of pump light. This

light is linearly polarised and drives π transitions from the Feshbach manifold to

the excited state |E⟩ (see Fig. 3.1(a), orange arrow) from which the molecule can
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Figure 3.4: Molecule loss caused by driving the pump transition. When the laser frequency
is resonant with the transition, molecules are lost from the Feshbach manifold and atom pairs
are not recovered after the reversing the association stages of the experimental routine. (a)
Sequence for molecule formation and detection. (b) Lineshape of the pump transition for
molecules in the state |F ⟩ at magnetic field 181.699(1) G. (c) Lifetime measurement of
molecules in the state |F ⟩ with the resonant pump light at the same intensity as in (b) (red
filled points) and without the pump light (grey empty points).

subsequently decay to a number of different states. This pump light is sourced from

the 1557 nm laser that is stabilised the ULE cavity as described in Sec. 2.4. The

frequency of this light is 192572.11(4)GHz, as measured by a wavemeter11 with

a quoted accuracy of ±0.2 parts per million. Then, the field ramps are reversed

and the traps are unmerged. Fluorescence imaging of the atoms is performed to

determine the trap occupancy. When the pump light is resonant with a molecular

transition, loss to other molecular states results in no atoms being reimaged [149,

150, 240, 266].

Figure 3.4(b) shows an example of molecule loss caused by driving the the pump

transition. For this measurement, we merge the tweezers at Bmerge = 205G. We

set the tweezer confinement to be weak; this means that the mergoassociation

probability Pmergo during the merging step is negligible (see Eq. (3.9)) and the

11Bristol Instruments 671A-NIR
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merging step prepares a co-trapped atom pair. We then ramp the magnetic field

down to Bspec = 181.699(1)G. We use a sufficiently slow magnetic field ramp to

saturate the magnetoassociation probability Pmagneto (see Eq. (3.8)). During this

field ramp, we follow the state path that is highlighted in Fig. 3.3(b)(ii) to prepare

molecules in the state |F ⟩. When the light is resonant with the pump transition, the

loss of molecules to other states (which causes no atoms to be reimaged at the end

of the routine) increases. The detuning ∆pump of the pump light is relative to the

cavity mode to which we stabilise it. During the spectroscopy pulse, the molecules

are trapped in a 1066 nm tweezer of intensity 12.7(2) kW/cm2 and the intensity

of the pump light is 1.7(2)W/cm2. We choose a pulse length such that we avoid

saturating the transition: here a pulse time of 150 µs is used.
The data in Fig. 3.4(b) are obtained by repeating the experimental sequence

many times in order to measure the average probability of atom-pair loss. In each

repeat of the experiment, we attempt to load a single atom pair. We post-select

the data to consider only repeats in which this initial loading was successful. The

data points show the average probability of losing the atom pair; this probability

is calculated from approximately 60 experimental repeats for each value of ∆pump.

The vertical bars show the 1σ binomial confidence intervals, calculated using the

Jeffreys prior [267–269]. We use this method to calculate the confidence intervals

for all experimental probabilities shown in this work and the size of the error bars

reflect the number of experimental repeats used for each datapoint.

Figure 3.4(c) shows the timescale on which the pump light causes loss of molecules

from the state |F ⟩ at 181.699(1)G. The tweezer intensity is the same as for the

measurement in Fig. 3.4(b). The red filled points show data obtained when resonant

pump light is applied at 1.7(2)W/cm2. The 1/e lifetime is 80(20)µs. In the absence

of pump light, the lifetime of the molecules in the tweezers are limited by scattering

of the tweezer light. The grey empty points show data obtained when no pump light

is applied: here the extracted 1/e time is 45(7) ms. We expect the tweezer-limited

lifetimes of all Feshbach states to be of similar magnitude, with the important

exception of the state |S⟩, for which we observe no significant loss on the timescale of

the experiment. This is consistent with measurements of the same state for isolated

molecules in deep optical lattices [270].

We measure binding energies of molecules in the Feshbach manifold by tracking

the resonance frequency of the pump transition as a function of Bspec. Fig. 3.5

shows these measured binding energies. For this measurement, we form molecules

by mergoassociation by increasing the tweezer confinement to saturate Pmergo (see

Eq. (3.9)). This allows us to access the state |S⟩ at an arbitrary magnetic field

Bmerge. Molecules formed when merging the traps at Bmerge = 205G follow the path
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Figure 3.5: Bound-state spectrum of weakly bound RbCs molecules. The main figure
shows the energy (relative to threshold) of RbCs molecules measured with optical spectroscopy.
Colours and their corresponding labels indicate different molecular states; points in grey indicate
measurements in the region of avoided crossings between states. The data points are obtained
by fitting the pump lineshape, an example of which is shown in Fig. 3.4(b), at different magnetic
fields. The error bars show the 1σ confidence intervals from these fits and are typically smaller
than the data points. Solid black lines are the calculated state energies. The inset shows the
same data with energies expressed as the laser detuning ∆pump above the cavity mode to which
we stabilise the pump laser.

indicated by green arrow when the field is ramped to Bspec. Entry into the state

|S⟩ by mergoassociation above the Feshbach resonance at 197.08(2)G allows us to

approach this resonance from the molecular side and subsequently to occupy states

not accessible in magnetoassociation experiments from this starting field [240, 241].

By mergoassociating with Bmerge below this resonance, but above the resonance at

∼ 182G, we instead follow the path indicated by blue arrow as the field is ramped.

In Fig. 3.5 we group the points by the accessed molecular states. Different molec-

ular states are shown as different colours and points in grey indicate measurements

in the region of avoided crossings between states. The solid black lines are the

calculated state energies and are the same as shown in Fig 3.1(b). We identify

the molecular states that have been populated by comparing the measured and

theoretical binding energies. The inset shows ∆pump at which the pump light is

resonant with a transition to |E⟩. Different states have different coupling strengths

to |E⟩ and we experimentally set the pump power for each state so that the transition
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is not saturated. More energy is required to drive the pump transition for states that

are more bound. The points in the inset are mapped onto the main plot, where we

show the state energies relative to that of the atomic pair state |1,+1⟩Rb|3,+3⟩Cs, by

fitting the orange points from the state |S⟩ to the corresponding theoretical energies.

The only free parameter in this fit is the magnetic moment of the excited state |E⟩,
which we extract as −0.452(2)µB.

3.4 Controlling association probabilities

In this section, we investigate how the probabilities of forming molecules from

magnetoassociation or mergoassociation can be experimentally controlled. We

characterise the two association methods and show that their maximum efficiencies

are comparable.

3.4.1 Magnetoassociation

First, we investigate the experimental parameters relevant to the formation of

molecules with magnetoassociation. The probability Pmagneto of traversing the

relevant avoided crossing adiabatically, and therefore forming molecules, is given by

Eq. (3.8). Experimentally, we can control the density n2 of the trapped atom pair

and the rate dB/dt at which the magnetic field is ramped to traverse the avoided

crossing between atomic and molecular states.

In Fig. 3.6 we show the effect of varying dB/dt during the magnetoassociation

sweep across the Feshbach resonance at 197.08(2)G. For this measurement, we

start with arrays loaded with up to four Rb and four Cs atoms, each in their own

tweezer. The initial experimental geometry is shown in Fig. 3.6(a)(i). The array

for each species is oriented along the x-axis and the approximate spacing between

adjacent traps is 4 µm. The arrays are separated from each other by 3.7 µm along

the y-axis. After imaging the atoms to determine the initial trap occupancies, we

prepare the atoms predominantly in the motional ground state and the hyperfine

state |1,+1⟩Rb|3,+3⟩Cs. The 817 nm tweezers (which contain Rb atoms) are swept

along the y-axis to the position of their corresponding 1066 nm tweezers (which

contain Cs atoms) and are ramped off. During this merging step, the tweezer

confinement is weak (to avoid a significant number of molecules being formed via

mergoassociation) and the magnetic field is Bmerge = 205G. This prepares up to

four individually trapped atom pairs, as shown in Fig. 3.6(a)(ii). After the merging

is complete, we ramp the magnetic field over the Feshbach resonance at 197.08(2)G.

In the event that magnetoassociation is successful, forms molecules in the state |S⟩.
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Figure 3.6: Controlling the probability of magnetoassociation. (a) Sequence for molecule
formation and detection. We use an array of up to four atom pairs. (b) Probability of losing
atom pairs as a function of the magnetic field ramp speed dB/dt over the avoided crossing
at 197.08(2) G. Molecule loss is induced by subsequently sweeping the magnetic field to
181.699(1) G and applying pump light.

We then continue the magnetic field ramp to 181.699(1)G which transfers molecules

to the state |F ⟩. For the second part of the field ramp, we always use a ramp speed

that is sufficiently slow for the transfer |S⟩ → |F ⟩ to be adiabatic. Fig. 3.6(a)(iii)

shows the system at this point: the 1066 nm tweezers will be occupied by either a

Rb+Cs atom pair or, if molecule formation was successful, a molecule in the state

|F ⟩. We wait for 10ms to allow the field to stabilise and then apply the pump

light at intensity 290(30)W/cm2 for 1ms. This intensity is approximately 170 times

that used for the measurements in Fig. 3.4, so the light-induced loss of molecules is

extremely saturated. Therefore, we expect that all formed molecules to be lost (see

Fig. 3.6(a)(iv)). Following this, we reverse the magnetic field ramps with a ramp

speed slow enough that any remaining molecules would be adiabatically converted

back to atom pairs and separate and reimage the atom pairs.

Figure 3.6(b) shows the probability of atom pair loss using this routine. We

vary the magnetic field ramp speed dB/dt during the magnetoassociation sweep

across the Feshbach resonance at 197.08(2)G. At high dB/dt, the avoided crossing

between the atomic and molecular states is traversed diabatically and molecules are

not formed. The pump light then has no effect and atom pairs are recovered at the

end of the sequence in 97(1)% of experimental runs. Here the background loss of

3(1)% is from atom pairs that occupy an excited hyperfine state. The infidelity in

the initial preparation of each species in the correct hyperfine state is approximately

1% prior to merging. However, significant Raman scattering of Rb caused by the

817 nm tweezer during the merging process means that atom pairs in the correct
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hyperfine state are prepared in 93(2)% of runs. The remaining 7(2)% of atom pairs

are prepared in excited hyperfine states and can be lost due to inelastic collisions

following merging [271]. For this measurement, the length of the experimental

sequence before unmerging is not sufficient to saturate this collisional loss. This

results in 3(1)% of atom pairs being loss. When a slower magnetic field ramp is used,

we adiabatically transfer first to the state |S⟩ then to the state |F ⟩ and molecules

are lost once the pump light is applied.

The solid line in Fig. 3.6(b) shows the result of fitting a Landau-Zener model to

the data. The probability of traversing the avoided crossing adiabatically is given by

Pmagneto (see Eq. (3.8)). We scale Pmagneto to match the experimental contrast in the

atom-pair loss and add a small offset to account for the experimental background.

Accordingly, the free parameters in our model are the atom-pair density n2 and

the probability of atom-pair loss in the limits of large and small dB/dt. From this

model we extract n2 = 1.7(1) × 1013 cm−3. When dB/dt is large enough to make

the adiabatic conversion probability negligible, the probability of atom-pair loss is

equal to the background loss value of 3(1)%. As dB/dt is decreased, corresponding

to a more adiabatic ramp, the observed atom-pair loss is the sum of the background

loss and the loss of formed molecules. In the small dB/dt limit, Pmagneto saturates

and we fit the atom-pair loss to be 56(1)%, corresponding to a molecule formation

efficiency of 53(1)%.

The efficiency of molecule formation is primarily limited by the efficiency with

which we can prepare atom pairs in the ground state of relative motion prior to

magnetoassociation. We measure the ground-state occupation of the traps with

sideband thermometry [272]. Heating caused during the merging of the traps is

measured by performing thermometry either before or after the traps are merged and

unmerged. We estimate the motional energy at the point of association by assuming

uniform heating during the merging and unmerging routines and using the mean

energy of these two measurements. At the point of association, we estimate that

the mean number of motional quanta along each confining axis is
{
n̄Rb
x , n̄Rb

y , n̄Rb
z

}
=

{0.35(3), 0.08(6), 0.27(6)} for Rb and
{
n̄Cs
x , n̄Cs

y , n̄Cs
z

}
= {0.10(6), 0.20(14), 0.29(10)}

for Cs. Using Eq. (3.5), we estimate that the probability of the atom pair occupying

the three-dimensional ground state of relative motion is 56(4)%. Magnetoassociation

requires atom pairs in the ground hyperfine state and the ground state of relative

motion. The probabilities for preparing atom pairs in these states are 93(2)% and

56(4)%, respectively. Therefore, for sufficiently slow magnetic field ramps, we expect

to convert an atom pair to a molecule in 52(4)% of experimental runs, which is in

excellent agreement with the fitted conversion efficiency. Using Eq. (3.7), we predict

that 58(6)% of formed molecules will be in the three-dimensional motional ground
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state.

The value of the atom-pair density that we extract from the fit is approximately

that which we independently estimate from the parameters of the traps used for this

routine. The atom-pair density is [273]

n2 =

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
nRb(x, y, z)nCs(x, y, z) dx dy dz , (3.10)

where nj is the probability density of atom j. For simplicity, we consider all atoms

to be in the motional ground state. Then, [274]

nj(x, y, z) =
∏

i=x,y,z

∣∣∣∣∣
(
4πmiνj,i

h

)1/4

exp

(
−2π2miνj,i

h
i2
)∣∣∣∣∣

2

. (3.11)

For this measurement, the trap frequencies after the atom pairs have been prepared

in the 1066 nm tweezers are {νRb,x, νRb,y, νRb,z} = {8.5(1), 9.3(1), 1.67(3)} kHz for

Rb and {νCs,x, νCs,y, νCs,z} ≈ 1.05× {νRb,x, νRb,y, νRb,z} for Cs. From this, we obtain

n2 ∼ 2.5× 1013/cm3 which is within a factor of two of the fitted value.

For the rest of this work, we use sufficiently small dB/dt to saturate Pmagneto

such that we expect that over 99% of atom pairs in the correct states are transferred

adiabatically to the molecular state |F ⟩ when performing magnetoassociation field

ramps.

3.4.2 Mergoassociation

We now investigate how the probability of mergoassociation can be controlled. The

probability Pmergo of traversing the relevant avoided crossing adiabatically, and

therefore forming molecules, is given by Eq. (3.9). Experimentally, we can directly

control the speed (d∆y/dt)× at which the avoided crossing is traversed (by changing

the speed at which we move the tweezers together) and the confinement length for

relative motion β×
rel as the avoided crossing is traversed (by changing the intensities

of the tweezers).

As the formation of ultracold molecules by mergoassociation has not previously

been studied, we choose to use an experimental sequence that will allow us to compare

the relative efficiencies of mergoassociation and magnetoassociation. We expect the

maximum efficiency of both association methods to be set by the efficiency of the

atom-pair state preparation. The initial experimental geometry is like that shown

in Fig 3.6(a)(i), but here we only use a single trap for each species. The atoms are

loaded into species-specific tweezers spaced by 3.7 µm along the y-axis, imaged, then

prepared in the hyperfine and motional ground states. We sweep the Rb trap to

overlap with the Cs trap in 2.7ms, and then ramp off the intensity of the Rb trap in
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10ms. During this merging procedure the magnetic field is Bmerge = 205G. If the trap

confinement is strong enough, atom pairs will be mergoassociated into a molecule

during the merging procedure. Following this, the magnetic field is jumped down to

199G and then ramped down to 196.8G in 3ms; this final step magnetoassociates

any remaining atom pairs in the ground state of relative motion. The magnetic field

is then ramped to Bspec = 181G in 3ms where it is held for 4ms during which a 2ms

pulse of pump light is applied. The association routine is then reversed to dissociate

any remaining molecules, the traps are separated, and the atoms reimaged.

For the purposes of this investigation, we utilise the difference in the binding

energies of molecules formed by mergoassociation or magnetoassociation to tell them

apart. With this routine, molecules formed by mergoassociation will enter the state

|S⟩ at Bmerge = 205 G, then follow the path indicated by green arrow in Fig. 3.5 as

the field is ramped to Bspec (black dotted line). The molecule will occupy the state

|G̃⟩ ≡ |−1(1, 3)G(+1,+3)⟩ at Bspec, of which the binding energy is approximately

18MHz×h. In contrast, if an atom pair in the ground state of relative motion is not

converted into a molecule via mergoassociation, it will be converted into a molecule

via magnetoassociation when the field is swept across the Feshbach resonance at

197.08(2)G. This molecule will follow the path indicated by the blue arrow in

Fig. 3.5 and will occupy the state |D⟩ ≡ |−2(1, 3)D(0,+3)⟩ at Bspec. The binding

energy of |D⟩ is approximately 3MHz× h. Therefore, the frequency of the pump

light at which we observe light-induced loss distinguishes between molecules formed

by these two methods. These two states were chosen for the comparison between

mergoassociation and magnetoassociation because they posses similar transition

strengths to |E⟩. The panels in Fig. 3.7(a)(i)-(iii) show pump spectra for strong,

intermediate, and weak confinement during merging. For these measurements, we

set the pump power to avoid saturating the transitions. For strong confinement, we

observe high occupation of the state |G̃⟩ as the majority of atom pairs in the ground

state of relative motion are mergoassociated. As the confinement is reduced, fewer

atom pairs are mergoassociated, resulting in high occupation of the state |D⟩.
Figure 3.7(b) shows the probability of molecule loss caused by the pump light

as a function of β×
rel during merging of the traps. We use the pump intensity

290(30)W/cm2 to heavily saturate the light-induced loss of molecules. Green filled

points show loss when the pump frequency is set to be resonant with the transition

|G̃⟩ → |E⟩ which causes loss of molecules formed by mergoassociation. Blue empty

points show the light-induced loss of molecules formed by magnetoassociation by

driving the transition |D⟩ → |E⟩. We emphasise that Pmagneto is saturated for all

points shown, but less atom pairs are converted into molecules via magnetoassociation

when Pmergo is large, as they have already been mergoassociated. We clearly observe
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Figure 3.7: Controlling the probability of mergoassociation. (a) Spectroscopic identifica-
tion of molecules formed by mergoassociation (green filled points) and magnetoassociation
(blue empty points) for confinement lengths β×rel of (i) 37.7(8) nm, (ii) 47(1) nm, and (iii)
77(2) nm. Light-induced loss is measured as a function of the detuning ∆thresh from the
transition between the atomic threshold and |E ⟩ at 181G. (b) The probability of light-induced
loss of molecules formed by mergoassociation (green filled points) and magnetoassociation
(blue empty points) as a function of β×rel. Each data point is measured with approximately 450
experimental repeats. The theory curves show the calculated Landau-Zener probabilities scaled
to match the light-induced loss. The shaded regions indicate the experimental uncertainty in
the merging speed.

a change in the probability of mergoassociation from high to low as the confinement

is reduced (i.e. β×
rel is increased). The similarity in the peak probabilities of the

mergoassociation and magnetoassociation data points indicates that the efficiency

of the two techniques is similar. The dashed lines in Fig. 3.7(b) correspond to the

values of β×
rel used for the spectroscopy presented in Fig. 3.7(a).

The control parameter used in mergaossociation is the separation between the two

atoms. Therefore, to model the system studied in Fig. 3.7(b), we must consider the

merging procedure in detail. The merging procedure has two distinct stages. First,

the 817 nm tweezer (which contains Rb) is swept along the y-axis to the position

of the 1066 nm tweezer (which contains Cs). For this sweep, we use a hybrid-jerk

trajectory y(t) which is defined as [275]

y(t)− y0 =


ymj(t, 2∆ỹ, 2∆t) for 0 ≤ t ≤ ∆t ,

15
4

∆ỹ
2∆t

for ∆t ≤ t ≤ Ts −∆t ,

ymj(t− Ts + 2∆t, 2∆ỹ, 2∆t) + αTs
15
4

∆ỹ
2∆t

for Ts −∆t ≤ t ≤ Ts ,

(3.12)
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where the minimum-jerk trajectory [275]

ymj(t, d,T ) = d

[
10

(
t

T

)3

− 15

(
t

T

)4

+ 6

(
t

T

)5
]
. (3.13)

The hybrid-jerk trajectory has minimum jerk at the start and end, and a linear

trajectory in the middle. The hybridicity α is the fraction of the trajectory that is

linear motion (i.e. α = 1 is a linear sweep, and α = 0 is a minimum-jerk trajectory).

y0 is the starting position of the tweezer, y0 +∆y is end position, and Ts is the time

taken to perform the sweep. ∆ỹ = ∆y/ [2 + (15/4)α/(1− α)] and ∆t = Ts(1− α)/2

are the distance covered and time elapsed, respectively, during each minimum-jerk

portion. We use the hybrid-jerk trajectory to strike a balance between heating caused

by a sharp change in the acceleration of the atom (favouring the minimum-jerk

trajectory) and technical heating caused by resonances in the AOD with which we

control the tweezer position (favouring a linear trajectory of constant velocity) [205,

207, 275]. Second, after the Rb tweezer has reached the end point of the sweep, we

ramp its intensity to zero with the profile

I(t) = I0
k(1−t/Tr) − 1

k − 1
. (3.14)

Here k is the index of the ramp, Tr is the ramp duration, and I0 is the intensity

of the tweezer used during the sweep. We choose to use k = 20: this creates an

intensity profile that is qualitatively similar to an exponential ramp with 1/e time

∼ Tr/3.5, but switches the trap completely off in finite time Tr.

We set the merging parameters experimentally to minimise heating of the atoms

[205, 207]. For the trap sweep, we use ∆y = 3.7 µm, Ts = 2.7ms and α = 0.95. We

aim to end with the 817 nm perfectly overlapped with the 1066 nm tweezer. During

the trap sweep, the ratio between the intensities of the 1066 nm and 817 nm tweezers

is I1066/I817 = 5.2(1). For the intensity ramp, we use Tr = 10ms. Fig. 3.8(a) shows

the position y817 of the 817 nm tweezer and Fig. 3.8(b) shows I817/I1066 during the

merging procedure.

Each data point in Fig 3.7(b) is assigned a value of β×
rel by performing numerical

simulations of the tweezer merging procedure. The combined potential experienced

by the atoms during this merging routine is simulated. Taking into account the effect

of both tweezers on each atom is particularly important as the tweezers become

overlapped. We calculate the trajectory of the atoms and, by fitting quadratic

functions to the potential minima, the trap frequencies along the y-axis experienced

by Rb and Cs. Here, we denote these trap frequencies as νRb and νCs respectively.
12

12Our model only considers the atomic separation and confinement along the merging axis.
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Figure 3.8: Trajectory of the 817 nm tweezer during the trap merging procedure. First,
the 817 nm is swept to overlap with the 1066 nm tweezer at the origin in Ts = 2.7ms. Then the
trap ramps off in Tr = 10ms. We show (a) the position y817 of the 817 nm tweezer and (b)
the ratio I817/I1066 between the intensities of the 817 nm and 1066 nm tweezers. The dashed
orange line during the ramping step shows, for comparison, an exponential ramp with time
constant Tr/3.5.

From these, we obtain the trap frequency for relative motion ν (see Eq. (3.1)) and

βrel as functions of time. For these simulations, we take the tweezers to be perfectly

overlapped at the end of the sweep by placing the 1066 nm tweezer at the origin

and setting the start point of the 817 nm tweezer at y0 = −3.7 µm. We assume

that the tweezers remain overlapped in the x- and z-axes at all times during the

merge. This means that the mergoassociation avoided crossing is traversed during

the sweep part of the merging procedure. The separation between the atoms is

∆y = |yRb − yCs|, where yj is the position of atom j. We take the avoided crossing to

occur when ∆y = βrel
√

3 + β2
rel/a

2
bg; this occurs at time t× with atomic separation

∆y× and confinement length β×
rel.

13 The results of this simulation for trap depths

corresponding to β×
rel = 37.7 nm are shown in Fig. 3.9. We note that as the tweezers

become overlapped (see Fig. 3.9(a), inset), the Cs atom is strongly repelled by the

817 nm tweezer so the atomic separation ∆y is larger than the separation between

the tweezers ∆yt. The separation between the tweezer centres at the avoided crossing

In our experimental realisation, the merging axis is the y-axis. To avoid a string of sub- and
superscripts, for the rest of this section, we drop subscripts y for these trap frequencies that were
included in earlier sections.

13This is a semi-classical simulation: we assume that the atoms follow classical trajectories and
then calculate their separations and trap frequencies to use for Eq. (3.9). This is valid because
we are in the regime |dβrel/d∆y| ≪ 1 (i.e. the potential energies of the particles vary slowly), so
a fully quantum simulation is not required. This is analogous to the validity condition for the
Wentzel-Kramers-Brillouin semi-classical approximation [276].
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Figure 3.9: Numerical simulations of the trap merging routine. We show results for
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Rb atom, yRb, and the Cs atom, yCs and their difference. (b) The atomic trap frequencies and
the frequency for relative motion. (c) The harmonic length for relative motion, βrel.

is denoted as ∆y×t .

The critical separation at which we traverse the avoided crossing is typically

around ∆y× ∼ 100 nm. This is near the end of the merging routine, where small

deviations in the trajectory significantly affect the speed (d∆y/dt)× at which the

avoided crossing is traversed. These deviations are caused by small fluctuations

δ in the position of the 817 nm tweezer relative to the 1066 nm tweezer between

experimental shots. δ is much less than the waists of the tweezers, so we always

form either a co-trapped atom pair or a molecule in the 1066 nm tweezer at the end

of the merging procedure. However, the dynamics of how the atoms come together

depend significantly on the value of δ. We simulate these by offsetting the 817 nm

tweezer by δ throughout the merging routine. After the sweep stage of the merging

procedure, 817 nm tweezer is at y = δ so that the separation between the centre of

the tweezers is δ. We find that three distinct regimes can exist depending on the

value of δ. These regimes are illustrated in Fig. 3.10(a) and are:

Regime (i) |δ| ≤ δc. Here δc is a critical final separation and for |δ| ≤ δc the

tweezers are sufficiently overlapped for the avoided crossing to be traversed
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Figure 3.10: Effect of tweezer misalignments on the mergoassociation crossing speed.
(a) Diagram of the merging procedure. The vertical dashed lines denote the critical positions
of the 817 nm tweezer ±δc at which the avoided crossing is traversed. We illustrate the three
regimes as described in the text. The numbers indicate the number of times the avoided
crossing is traversed. Blue and green points indicate traversal during the sweep stage, red
points indicate traversal during the ramp stage. (b) Effect of δ on the speed (d∆y/dt)× at
which the avoided crossing is traversed. The vertical dashed lines show ±δc . The colours are
as in (a). The purple shaded region shows the distribution of merging speeds from which we
sample to obtain the mean. (c) The mean speed ⟨(d∆y/dt)×⟩ at which the avoided crossing
is traversed as a function of the standard deviation of tweezer misalignments σδ. We obtain
this distribution by sampling from the purple distribution in (b). The shaded region shows the
range of ⟨(d∆y/dt)×⟩ used in Fig. 3.7.

during the sweep part of the merging procedure. For our merging parameters,

we find that δc ≈ 14 nm. This crossing is shown in Fig. 3.10 in blue.

Regime (ii) δ > δc. The tweezers do not come sufficiently close for the avoided

crossing to be traversed during the sweep stage, and it is traversed instead

as the 817 nm tweezer is ramped off. This crossing is shown in Fig. 3.10 in

red. The average crossing speed (d∆y/dt)× is much slower than that in regime

(i) because the atomic separation typically changes by ∼ 100 nm in a few

milliseconds.



CHAPTER 3. WEAKLY BOUND MOLECULES 54

Regime (iii) δ < −δc. Here the avoided crossing is traversed three times. The

first crossing is as in regime (i). Then, as the 817 nm tweezer ‘overshoots’

the 1066 nm tweezer, the crossing is traversed in the opposite direction. This

crossing is shown in Fig. 3.10 in green. A final crossing is made as in regime

(ii) when the 817 nm tweezer ramps off. (d∆y/dt)× is similar for the first

and second crossing, so here we assume that they are either both diabatic

(so the atom pair remains as an atom pair) or adiabatic (so the atom pair is

mergoassociated into a molecule, which is then dissociated) such that only the

speed of the third crossing is critical.

The speeds (d∆y/dt)× during these traversals of the avoided crossing are shown in

Fig. 3.10(b). The purple shaded region shows the distribution of (d∆y/dt)× at the

critical crossing (i.e. the only crossing for regimes (i) and (ii), and the final crossing

for regime (iii)).

We account for variations in δ by performing Monte Carlo simulations where

δ is sampled from a Gaussian distribution with mean equal to zero and standard

deviation σδ. For each iteration of a simulation, we take a value of δ and find the

corresponding speed (d∆y/dt)× from the purple shaded distribution in Fig. 3.10(b).

Fig. 3.10(c) shows the mean speed ⟨(d∆y/dt)×⟩ as a function of σδ, which we obtain

by repeating the simulation many times with different values of δc.

We independently measure the relative tweezer drift with two methods. First, we

fit images of the atomic fluorescence obtained during the experimental runs. We fit the

atomic centres and use these to estimate the fluctuations in tweezer position. Second,

we use a routine which ejects Cs atoms trapped in the 1066 nm tweezer by overlapping

a 817 nm tweezer with this trap. The 817 nm tweezers are antitrapping for the Cs

atoms (see Table 2.1) so they eject the atoms. By measuring the position of maximum

loss over time, we can track the tweezer overlap with a precision of ∼ 10 nm [271].

From these measurements, we observe that the drift is correlated with the change in

humidity of the lab (roughly 10 nm per percentage point). The humidity changes

significantly during a single air-conditioning cycle which typically lasts 20mins. The

standard deviation in the tweezer drifts is approximately σδ = 50+50
−40 nm. This

results in the range of speeds ⟨(d∆y/dt)×⟩ = 0.9+2.7
−0.4 µm/ms, as highlighted by the

shaded region in Fig. 3.10(c). We note that this analysis predicts a most likely

speed similar to a much simpler analysis assuming a constant speed throughout the

merging process 3.7 µm/2.7ms ≈ 1.4 µm/ms.

The green solid line in Fig. 3.7(b) shows the expected probability Pmergo of forming

a molecule via mergoassociation for our experimental parameters (calculated with

Eq. (3.9)), scaled to the contrast of the experimental data. The shaded region shows
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the uncertainty in Pmergo arising from the uncertainty in ⟨(d∆y/dt)×⟩. The blue

solid line shows the expected probability 1− Pmergo of a molecule not being formed

by mergoassociation. A molecule is then formed by magnetoassociation over the

Feshbach resonance at 197.08(2)G. Again, the contrast has been scaled to that of the

experimental data and the shaded region shows the uncertainty resulting from the

uncertainty in the crossing speed. The experimental results are in good agreement

with our theoretical model, with the observed crossover point in β×
rel within 10%

of the theoretical prediction. This agreement was surprisingly good in view of the

approximations made in the theoretical model as described here, particularly the

assumption that the tweezers are spherically symmetric. In reality, our tweezers

have an aspect ratio of 2:5 between the confinement lengths along the radial and

axial directions. Recent theoretical work by Bird et al. [277] extends the model

described here to non-spherical traps. This work shows that the agreement here is

a coincidence: this aspect ratio happens to give similar results to spherical traps.

Of course, this means that using the extended model with the correct aspect ratio

would give similar results that agree well the experimental data presented here.

3.5 Microwave spectroscopy

An exciting prospect for mergoassociation its potential to be used for associating

atoms in systems that do not possess Feshbach resonances suitable for magnetoassoci-

ation [278]. To this end, we use mergoassociation to form molecules at low magnetic

fields, far from any Feshbach resonances, and without any magnetic field ramps.

Mergoassociation is still possible in this regime, because it relies only on the presence

of a bound state near threshold, which for RbCs exists over a large range of magnetic

field.

We perform microwave spectroscopy to verify molecule formation at these low

fields. The experimental sequence is similar to the one described earlier, but the

magnetic field is held constant at the field applied during the cooling of the atoms,

B = 4.78G, for the entirety of the molecule formation and detection portion of the

sequence. A microwave pulse of frequency ∼ 6.84GHz is applied for 89 µs in place of

the pulse of pump light. This pulse length approximates a π pulse for a Rb atom on

the hyperfine transition |1,+1⟩ → |2,+2⟩ and for a RbCs molecule on the transition

|S⟩ → |S ′⟩, where the state |S ′⟩ ≡ |−1(2, 3)S(+2,+3)⟩. Following the unmerging of

the traps, state-sensitive detection is performed by using the pushout light to eject

any Rb atoms in the state |f = 2⟩ and any Cs atoms in the state |f = 4⟩ prior to
imaging (see Sec. 2.3.3).
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Figure 3.11: Microwave spectroscopy of RbCs molecules produced by mergoassociation
at B = 4.78G. (a) The probability of detecting both a Rb and Cs atom at the end of the
sequence as a function of the microwave detuning from the transition |1,+1⟩ → |2,+2⟩ in
atomic Rb for strong (filled green points) and weak (empty blue squares) confinement during
merging: β×rel = 39.4(9) nm and 55(1) nm respectively. When a molecule is formed, we observe
the molecular transition |S⟩ → |S ′⟩ at detuning 35(2) kHz. A pulse time of 89 µs is used. The
inset shows the energy-level structure of the relevant states with atomic (molecular) states
indicated with solid (dashed) lines. (b) Measurement of the Rabi frequencies of the transitions.
Red filled points (orange empty points) show the survival probability of Rb (Cs) atoms. (i) Rb
atoms are prepared in |2,+2⟩ before the microwave pulse. (ii) Rb+Cs atom pairs are prepared
in |1,+1⟩Rb|3,+3⟩Cs and mergoassociated into the molecular state |S⟩. The microwave pulse
is applied at detuning 35 kHz relative to the Rb transition. The measured Rabi frequencies are
5.81(4) kHz and 5.62(3) kHz respectively. The black dashed lines show the 89 µs pulse duration
used in (a) which is approximately a π pulse for both transitions.

The results of the microwave spectroscopy are shown in Fig. 3.11(a). The blue

empty points show the results for weak confinement during merging, where the

probability of mergoassociation is low and we expect to prepare an atom pair. We

observe only a single feature in the probability of observing both a Rb and Cs atom at

the end of the sequence; this is the feature corresponding to the hyperfine transition

|1,+1⟩ → |2,+2⟩ in atomic Rb. In contrast, when the tweezers are merged with

stronger confinement, as shown by the green filled points, we mergoassociate the

atom pair to form a molecule. Consequently, we observe an additional feature in the

survival probability of the atom pair, detuned by 35(2) kHz; this corresponds to the

molecular transition |S⟩ → |S ′⟩ illustrated in the inset. Both features are fitted with

Lorentzians as shown by solid (dashed) lines for the atomic (molecular) transition.

Using the RbCs interaction potential of Takekoshi et al. [148], the binding energy of

the state |S ′⟩ at 4.78G is calculated to be 80 kHz× h.14 This value is smaller than

14The binding energies discussed here were calculated by Jeremy M. Hutson.
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that of the state |S⟩ (122 kHz× h) and the calculated difference in binding energy

(42 kHz× h) is in reasonably good agreement with the experimental measurement.

For this measurement, the atom pair is prepared in the required hyperfine states in

78(1)% of experimental runs leading to the offset of P11 from unity in Fig. 3.11(a).

We verify that the Rabi frequencies of the two transitions are similar by changing

the pulse duration with which we resonantly drive the transitions. Fig. 3.11(b)(i)

shows data from a routine in which only a Rb atom is loaded and prepared in the

hyperfine state |2,+2⟩. We then drive the transition |2,+2⟩ → |1,+1⟩. Fig. 3.11(b)(ii)
shows the survival probabilities of Rb atoms (red filled points) and Cs atoms (orange

empty points) under experimental conditions where we expect molecule formation

by mergoassociation. Here we drive the transition |S⟩ → |S ′⟩; the frequency of the

microwave photon is detuned by 35(2) kHz relative to the Rb transition |2,+2⟩ →
|1,+1⟩. We observe a correlated reduction in the Cs and Rb survival probabilities.

In this experiment we do not drive a transition between Cs hyperfine states; by

repeating the experiment without the resonant pushout pulse we verify that the

change in survival probability for the atoms primarily reflects atomic loss rather

than change of the hyperfine states. We do not observe loss of Cs atoms when

the microwave frequency is tuned onto resonance with the atomic transition. This

suggests either significant decay of the state |S ′⟩ for our experimental conditions or

failure to break apart the spin-flipped molecule when unmerging the optical tweezers.

We note that the binding energy of |S ′⟩ is smaller than that of |S⟩, so that the latter

explanation is less likely. We measure very similar Rabi frequencies for the two

transitions: 5.81(4) kHz for the atomic transition and 5.62(3) kHz for the molecular

transition. This means that the pulse time of 89 µs (dashed black line) used for the

measurement Fig. 3.11(a) approximates a π pulse for both atomic and molecular

transitions. Therefore, the molecule formation efficiency may then be inferred from

the relative depths of the features in Fig. 3.11(a). These indicate that 46(8)% of

these atom pairs are converted into molecules.15

3.6 Summary

We have detailed two methods by which we can associate individually trapped

Rb+Cs atom pairs into RbCs molecules. We have performed spectroscopy of the

15The efficiencies of hyperfine state preparation and molecule formation are lower than in
Sec. 3.4.1 because these data were collected first. Subsequently, we optimised the experimental
routine to maximise the molecule formation efficiency. We improved the atomic hyperfine-state
preparation with careful optimisation of the pulse times use for the final Raman transfer (see
Sec. 2.3.2). Additionally, we slightly tuned the parameters used during the merging routine (i.e.
relative trap positions and powers and merging speed) to further reduce atomic heating.
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weakly bound molecular states that we can access with either magnetoassociation,

where an avoided crossing is traversed by sweeping the magnetic field across a

Feshbach resonance, or mergoassociation, where we use two tightly confining optical

tweezers to create a strong avoided crossing that we traverse as the tweezers are

brought together. We have discussed how the probability of adiabatically traversing

the relevant avoided crossings can be tuned. Further, we have demonstrated that

the efficiency of molecule formation by mergoassociation is comparable to that of

magnetoassociation in this system. Finally, we have showed that mergoassociation

can be performed in regimes far from Feshbach resonances, and expect that this

method could be used in future to form new molecular species.



4 Ground-state molecules

Some of the results in this chapter have been published in Refs [202, 203].

For quantum science applications, particles need to be long lived and able to interact

with other particles at long range. To meet these requirements, we transfer weakly

bound molecules in the Feshbach manifold to states in the electronic ground manifold.

These ground-state molecules have significant molecule-frame dipole moments and

long radiative lifetimes that make them ideal for quantum information and simulation

applications.

In this chapter, we detail how we transfer molecules to the rovibrational and

hyperfine ground state and characterise the efficiency of this transfer. We then

develop a toolbox of techniques for the control and readout of these molecules.

Finally, we prepare defect-free arrays of molecules by rearranging them to correct

for sites where molecule formation failed.

4.1 Optical spectroscopy

The electronic structure of RbCs molecules is shown in Fig. 4.1(a). In the previous

chapter, we discussed the association of atom pairs into weakly bound molecules

in the state |F ⟩ which has mostly a3Σ+ character. Ultimately, we aim to prepare

molecules in the rovibrational and hyperfine ground state |G⟩ of the X1Σ+ electronic

manifold.

The structure of the electronic manifold X1Σ+ is rich and extends over a wide

range of energy scales [239]. Within the manifold, first there are vibrational energy

levels (see Fig. 4.1(b)) which are labelled with the quantum number v which counts

up from the vibrational ground state v = 0. These energy levels come from the

approximately harmonic restoring force between the molecular nuclei and are therefore

approximately evenly spaced. The energy spacing between the vibrational levels

with v = 0 and v = 1 for RbCs is ≈ 1.5THz× h [279], and for this work we always

59
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Figure 4.1: The rich internal structure of RbCs molecules. (a) Electronic energy structure.
The ground state |G ⟩ is in the manifold X1Σ+. (b) Vibrational energy levels near the bottom
of the manifold X1Σ+. (c) Rotational energy levels within the ground vibrational manifold.
(d) Hyperfine energy levels within the ground rotational manifold. The point shows the energy
of the state |G ⟩ at the molecule-formation field (181.699(1) G). For (a) energies are relative to
the dissociation threshold, for other panels energies are relative to the state |G ⟩ in free-space.

remain in the ground vibrational level with v = 0.

In ground vibrational level, the molecules can be described by the rigid-rotor

Hamiltonian. This Hamiltonian gives rise to rotational energy levels (see Fig. 4.1(c)).

These are labelled by the rotational angular momentum N , which enumerates the

levels from the rotational ground state with N = 0. The energies of the rotational

levels are hBνN(N + 1) such that the splitting between neighbouring rotational

manifolds is in the microwave domain (for RbCs, Bν ≈ 490MHz) [280]. Each

rotational level is (2N + 1)-fold degenerate, where the degeneracy is caused by the

projection MN of the rotational angular momentum along the quantisation axis.

However, this picture ignores coupling between the rotational angular momentum

and the nuclear spins of the constituent atoms (iRb = 3/2 and iCs = 7/2). This

coupling causes each state |N ,MN⟩ to split into (2iRb + 1)(2iCs + 1) = 32 hyperfine

states. This hyperfine structure is illustrated in Fig. 4.1(d) for the ground rotational

state. The highlighted state |G⟩ is the rovibrational and hyperfine ground state for

magnetic fields B ≳ 100G. At typical magnetic fields in our experiment (∼ 200G),

the molecular eigenstates are generally superpositions of states of different mRb
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and mCs, where mRb (mCs) is the projection of the Rb (Cs) nuclear spin along the

quantisation axis. The only good quantum numbers that can be used to describe

the eigenstates are N and MF ≡MN +mRb +mCs. The exceptions to this are the

stretched states with maximum |MF |; for these states |mRb| = 3/2, |mCs| = 7/2 and

MN is a good quantum number. The state |G⟩ is stretched, therefore can be written

|G⟩ ≡ |N = 0,MN = 0,mRb = +3/2,mCs = +7/2⟩ or |G⟩ ≡ |N = 0,MF = +5⟩. Its
value of MF = +5 is unique in the ground rotational manifold.

We transfer molecules from the state |F ⟩ to the state |G⟩ via the intermediate

state |E⟩ ≡ |v′ = 29,N ′ = 1⟩ of the coupled manifold A1Σ+ + b3Π. The state |E⟩ is
chosen because it has strong optical coupling to both the state |F ⟩ and the state

|G⟩. Therefore, the transfer |F ⟩ → |G⟩ can be performed with two-photon methods.

The two lasers that we use to perform this transfer are the pump laser that drives

the transition |F ⟩ → |E⟩ (see Ch. 3) and the Stokes laser that drives the transition

|E⟩ → |G⟩. These two lasers are locked to the same ULE cavity (see Sec. 2.5) and

the transitions that they drive are shown in Fig 4.2(a).

We perform two-photon spectroscopy to identify the Stokes transition. The

experimental sequence is similar to that used for the measurement shown in Fig. 3.6,

with the exception that the results shown here are for a single molecule. We form

the molecule by magnetoassociation and transfer it to the state |F ⟩ at 181.699(1)G.

We then apply the pump light. As with the measurements in Ch. 3, this light excites

molecules to the state |E⟩, from which the subsequently decay. This precludes

atom-pair recovery at the end of the experimental sequence. Unlike the measurement

shown in Fig. 3.6, here we apply only a small amount of the pump light (an intensity

of 0.8(1)W/cm2) so that the transition is not saturated and we use a pulse duration

of 750 µs. Fig 4.2(b)(i) shows the effect of changing the detuning of the pump light.

The detuning is relative to the fitted centre.

Fig 4.2(b)(ii) shows the effect of applying the Stokes light for the time when

the pump light is applied. The relative pulse timings are shown in the inset. The

intensity of the Stokes light is 210(10)W/cm2, so it significantly perturbs the states

of the system that we probe with the low-intensity pump light.1 When the Stokes

light is resonant with the transition |E⟩ → |G⟩, it causes a significant light shift to

the state |E⟩, which prevents the pump light exciting molecules to |E⟩. Consequently,
this means that more atom pairs are recovered at the end of the experimental routine.

When resonant with the transition |E⟩ → |G⟩, the frequency of the Stokes laser is

1This spectroscopy method is called Autler-Townes spectroscopy and is ideal for three-level
systems where the intermediate state is short-lived. The theory of Autler-Townes spectroscopy is
explored thoroughly in Sec. 5.4 in the context of Rydberg atoms.
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Figure 4.2: Spectroscopy of the Stokes transition. (a) RbCs electronic structure with
the pump and Stokes transitions highlighted. (b)(i) One-photon spectroscopy of the pump
transition. Molecules are prepared in |F ⟩. The pump light excites molecules to |E ⟩ which
precludes atom-pair recovery. (ii) Two-photon spectroscopy of the Stokes transition. The
Stokes beam is switched on before the pump light is applied. When the Stokes light is on
resonance, the pump transition is significantly light shifted. This precludes molecules being
excited out of |F ⟩, suppressing atom pair loss.

306830.42(6)THz, as measured by a wavemeter2 with a quoted accuracy of ±0.2

parts per million.

4.2 Transfer to the ground state

We transfer molecules from the state |F ⟩ to the state |G⟩ using stimulated Raman

adiabatic passage (STIRAP) [281, 282]. Transfer with STIRAP uses the adiabatic

evolution of an eigenstate of the three level system that contains the states |F ⟩, |E⟩,
and |G⟩. When the pump and Stokes lasers are resonant, one of the eigenstates of

this system is [281]

|ψ⟩ ≡ cos(θ) |F ⟩+ sin(θ) |G⟩ , (4.1)

where we have defined the mixing angle θ ≡ arctan(Ωpump/ΩStokes) for the Rabi

frequencies Ωpump and ΩStokes with which we drive the pump and Stokes transitions

2Bristol Instruments 671A-NIR
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Figure 4.3: STIRAP to the rovibrational ground state. (a) Evolution of (i) the intensity
of the STIRAP beams, (ii) the Rabi frequency of the transitions they drive, and (iii) the
population of |F ⟩ and |G ⟩ during a round-trip STIRAP transfer. The time to complete the
transfer |F ⟩ → |G ⟩ is 70 µs (black dashed line). (b) Atom-pair survival probability for a round
trip |F ⟩ → |G ⟩ → |F ⟩ as a function of the one-photon detuning ∆1p of either the pump (from
the transition |F ⟩ → |E ⟩) or the Stokes (from the transition |E ⟩ → |G ⟩) lasers when the other
laser is on resonance. The lower panel is a zoom to small values of ∆1p

respectively. Crucially, |ψ⟩ has no overlap with the state |E⟩; this means that we can

adiabatically transfer molecules from the state |F ⟩ to the state |G⟩ whilst avoiding
decoherence from the short lifetime of the state |E⟩.

To evolve the state |ψ⟩ from |F ⟩ to |G⟩, we use a pulse sequence which begins

with only the Stokes beam on and evolves to having only the pump beam on [281].

At the start of this sequence, θ = 0 and |ψ⟩ = |F ⟩. We adiabatically evolve θ by

ramping on the pump beam and ramping off the Stokes beam. Once the pump beam

is completely off, θ = π/2 rad and |ψ⟩ = |G⟩. During the transfer, we modulate the

intensity of the beams with profiles proportional to cos4(πt/2τ) for time t ≤ τ .3

The intensity profiles during a round-trip transfer |F ⟩ → |G⟩ → |F ⟩ are shown in

Fig. 4.3(a)(i). The maximum intensity of the pump beam is 440(20)W/cm2 and

the maximum intensity of the Stokes beam is 350(20)W/cm2. The pulse shapes are

3The pulse shapes used for STIRAP are not critical; we only require that θ varies adiabatically.
We choose to use a cos4 profile so that the Rabi frequencies vary smoothly with cos2 profiles. More
complex pulse shapes can maximise the adiabaticity with which θ varies [283].
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controlled with the AOMs in the laser locking setup (see Sec. 2.5). We experimentally

set the duration of the pulses to maximise the STIRAP efficiency, and the time to

complete a one-way transfer |F ⟩ → |G⟩ is τ = 70 µs (black dashed line).

Figure 4.3(a)(ii) shows the evolution of the pump and Stokes Rabi frequencies

during a round-trip transfer. The maximum pump Rabi frequency is 493(5) kHz and

the maximum Stokes Rabi frequency is 876(4) kHz. The measurement of these Rabi

frequencies is discussed in Sec. 4.3. Fig. 4.3(a)(iii) shows the expected population of

the state |F ⟩ (red) and the state |G⟩ (blue) during the transfer. Here, the efficiency

of each one-way transfer has been set to 96.4(1)%, the measurement of which is

presented in Sec. 4.4.

In Fig. 4.3(b) we show the probability of recovering an atom pair after a round

trip |F ⟩ → |G⟩ → |F ⟩ as a function of the one-photon detuning ∆1p of either the

pump or Stokes lasers, with the other laser held on one-photon resonance. The

experimental sequence is the same as used for Fig. 4.2, but we apply the STIRAP

pulses rather than the square pulses used for spectroscopy. The pulse sequence is as

shown in Fig. 4.3(a)(i) but we set the duration between the forward transfer |F ⟩ →
|G⟩ and the reverse transfer |G⟩ → |F ⟩ to a few microseconds. When both lasers are

resonant, molecules successfully undergo the round-trip transfer |F ⟩ → |G⟩ → |F ⟩.
This means that they reoccupy the state |F ⟩ and can be successfully disassociated

into atoms which are reimaged at the end of the experiment. When the Stokes

laser is not resonant (purple points), the pump laser causes loss to other molecular

states via the state |E⟩. Therefore, molecules are not successfully dissociated into

atom pairs, so the probability of atom-pair loss increases. When the pump laser is

not resonant (orange points), at small detunings (|∆1p| ∼ 200 kHz) the two-photon

detuning from the transition |F ⟩ → |G⟩ is sufficiently large to prevent efficient

STIRAP. However, the pump laser is still close enough to resonance that it causes

significant loss to other molecular states via the state |E⟩. As the laser is tuned

further to |∆1p| ≳ 5MHz, the rate with which molecules are off-resonantly excited

to |E⟩ decreases and molecules never transfer out of |F ⟩ during the pulse sequence.

This causes the chance of the atom-pair survival to return to the background value,

as seen in the upper panel at large values of |∆1p|.
We briefly consider the effect of the trapping light on the molecules. The energy

shift of molecular states is in the presence of optical light is known as the ac Stark

effect. The ac Stark shift for a state |i⟩ is

∆Eac = − 1

2ε0c
αi(θ)I , (4.2)

where I is the tweezer intensity and αi(θ) is the polarisability of the state.4 For
4Eq. (4.2) is essentially the same as Eq. (2.1), but here the sign convention is such that ∆Eac
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Figure 4.4: ac Stark shifts of the STIRAP transitions. We measure the frequency of the
STIRAP transitions as a function of the intensity I1066 of the 1066 nm tweezers that trap the
molecules. The pump and two-photon transition shifts can be directly measured, the Stokes
shift is calculated from the sum of the two. We extract differential polarisabilities ∆αpump =
−3089(6)× 4πε0a

3
0, ∆αStokes = −3220(20)× 4πε0a

3
0, and ∆α2p = −130(20)× 4πε0a

3
0.

molecules described by the rigid-rotor Hamiltonian, the polarisability depends on the

angle θ between the polarisation of the trapping light and the internuclear axis and is

given by αi(θ) = α(0)+ 1
2
α(2)[3 cos2 (θ)−1] [284]. In practise, this means that different

rotational states |N ,MN⟩ in the manifold X1Σ+ experience different polarisabilities.

α(0) is the isotropic polarisability and its contribution to the total polarisability is the

same for all rotational states. It therefore has no effect on frequencies of rotational

transitions, but still provides a contribution to a trapping potential. α(2) is the

anisotropic polarisability and it causes differences in the polarisabilities of rotational

states and can mix them. This will become relevant later when rotational transitions

are introduced.

We measure the differential polarisabilities of the pump and Stokes transitions.

The ac Stark shift for a transition |i⟩ → |j⟩ is given by the Eq. (4.2), but with αi

replaced by the differential polarisability ∆α = αj − αi. In Fig. 4.4, we show the ac

Stark shifts for the STIRAP transitions when the molecules are trapped in 1066 nm

tweezers of intensity I1066. We measure these by repeating the measurements shown in

Fig. 4.3(b) at different tweezer intensities. We can directly measure either the shift of

the one-photon pump transition (orange) or of the two-photon transition |G⟩ → |F ⟩
(black). The shift of the one-photon Stokes transition (purple) is the sum of these two.

We fit the data with linear functions passing through the origin to obtain differential

polarisabilities for the pump and Stokes transitions as ∆αpump = −3089(6)× 4πε0a
3
0

is negative for a trapped particle.
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and ∆αStokes = −3220(20)×4πε0a
3
0 respectively. The differential polarisability of the

two-photon transition is ∆α2p = −130(20)× 4πε0a
3
0. We expect the polarisability

of |F ⟩ to be approximately the sum of the polarisabilities of a Rb+Cs atom pair

(αF ≈ αRb + αCs = 1.8(1)× 103 × 4πε0a
3
0) and find the ratio of the polarisabilities

for the states |G⟩ and |F ⟩ to be αG/αF = (αF +∆α2p)/αF = 1.07(1) at our tweezer

wavelength. This means that these tweezers are approximately magic for the STIRAP

transition. Our value of αG/αF is within error of the value of αG/αF = 1.09(2) at

1064 nm reported by Blackmore [285].

It is important to understand how a molecule may be heated during STIRAP

because fidelities of molecular gates are often limited by thermal motion [69, 70,

96]. The majority of molecules that are formed in our experiment (58(6)%, see

Sec. 3.4.1) occupy the three-dimensonal motional ground state and maintaining this

high ground-state fraction is desirable. We follow the approach of Cairncross et

al. [157] and consider the chance that a molecule, starting in the state |F ⟩ in the

three-dimensional motional ground state, is successfully transferred to the state |G⟩
whilst remaining in the three-dimensional motional ground state. In our experiment,

the STIRAP beams co-propagate along the radial axis of tightest tweezer confinement

(the y-axis, see Sec. 2.4). During STIRAP, we hold the molecules in 1066 nm tweezers

of intensity of I1066 = 3.07(1) kW/cm2 so that the trap frequency along this axis for

a molecule in |G⟩ is νy = 6.9(2) kHz. The first effect that can cause heating is the

momentum kick p = h
(
λ−1
pump − λ−1

Stokes

)
from the absorption of a pump photon and

the emission of a Stokes photon during STIRAP. By equating the two-photon recoil

energy hνrecoil ≡ p2/2m, where m is the mass of the molecule, and the energy of a

motional excitation hνy, we find the in mean motional level after the momentum

kick is ñ = 0.019(1). In the worse case, this corresponds to a 98.1(1)% probability of

remaining in the motional ground state.

Secondly, the mismatch between the trap frequencies of the states |F ⟩ and |G⟩
can cause heating as the wavefunction of |F ⟩ is projected onto the wavefunction of

|G⟩. The ratio between the trap frequencies is f ≡
√
αG/αF = 1.034(5), and the

probability that a molecule remains in the three-dimensional motional ground state

during the transfer |F ⟩ → |G⟩ is [157]

P0→0 =
8f 3/2

(f + 1)3
exp

(
− fη2

2f + 2

)
, (4.3)

where the Lamb-Dicke parameter η ≡
√
νrecoil/νy = 0.138(2). We find that P0→0 =

99.47(2)%. This is so close to unity precisely because the trapping wavelength is

nearly magic for the STIRAP transition. In the worst case there is no cancellation

between these two motional effects, and the chance for a molecule to remain in the
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three-dimensional motional ground state after the STIRAP transfer is 97.58(7)%.

We expect that 58(6)% of molecules in |F ⟩ are in the three-dimensional motional

ground state (see Sec. 3.4.1) and therefore expect that 56(6)% of molecules in the

rovibrational ground state |G⟩ are in the three-dimensional motional ground state.

4.3 Molecule detection scheme

Generally, we wish to present and analyse data that are post-selected on initial

experimental conditions. This allows us to ignore fluctuations in the experiment that

are not relevant to the parameter being studied. For most experiments discussed

so far, we have post-selected to consider only experimental runs where the correct

number of atoms were initially loaded. For example, the data points presented in

Fig. 4.2 show the probability that both a Rb and Cs atom are lost during a routine

given that both are present at the start. Due to the stochastic nature of loading

atoms into optical tweezers, in some experimental runs, we will fail to load both a Rb

and Cs atom. We learn nothing useful from this particular shot of the experiment,

and therefore discard it when processing data.

However, the lack of closed optical cycling transitions in RbCs precludes scattering

enough photons from a single molecule in order to detect it with fluorescence imaging.

This means that we cannot directly image a molecule in order to determine that it was

successfully formed. The features in Fig. 4.2 saturate to approximately the efficiency

of molecule formation (53(1)%, see Sec. 3.4.1) because in the other experimental

runs, atoms are loaded but molecules are not formed. In Fig. 4.3 we illustrate a

solution, where we fit the orange data and normalise them such that the contrast

of the orange fit is unity. However, this solution is non-ideal, because it is unclear

whether small fluctuations in the normalised probabilities are due to fluctuations

in the probability of molecule formation (which we typically do not care about) or

fluctuations in the probability of molecule survival given that a molecule was formed

(which is typically what we are trying to measure). Furthermore, we obtain points

where the normalised survival probability is above unity or below zero.

To overcome this, we map the success or failure of molecule formation onto atoms

in specific tweezers and then use standard atomic fluorescence imaging of Rb and Cs.

This allows us to detect sites of the array where molecule formation failed, similar to

erasure conversion in neutral-atom arrays [286]. Fig. 4.5 shows a diagram of this

detection scheme. The stages in the detection scheme are:

I. We prepare defect-free arrays of up to eight Rb and eight Cs atoms. We take a

fluorescence image to measure the occupancy of the arrays. Atoms are then



CHAPTER 4. GROUND-STATE MOLECULES 68

Failed loading
(no Cs)

Failed loading
(no Rb)

Failed molecule
formation

Failed molecule
formation

Failed molecule
formation

Used for 
analysis?

Molecule 
recovered

Molecule 
lost

Molecule 
recovered

1

2

3

4

5

6

7

8

Time1066 nm 817 nm RbCsRbCs
y

x

Loading
Form

molecules
Extract Rb,

Eject Cs Science
Dissociate
molecules

Separate
atom pairs

Im
a
g
e

Im
a
g
e

I II III IV V VI

Figure 4.5: Stages of a typical experiment. I Initially Rb and Cs atoms are loaded and
rearranged to prepare defect-free 1D arrays in species-specific tweezers. II The Rb tweezers
are merged to overlap with the Cs tweezers. The atom pairs are magnetoassociated and the
resultant molecules are transferred to the ground state using STIRAP. III Atom pairs remaining
due to failed molecule formation are separated. The Cs is ejected and the Rb is stored in
a separate row of tweezers. Detection of the Rb atom indicates failure to form a molecule
in a particular site. IV An experiment is performed on the molecules. V The molecules are
dissociated. VI The resulting atom pairs are separated into their original traps for imaging.
The right hand column shows whether each site is used when determining Pr .

prepared in the requisite states for molecule formation.

II. We merge the arrays and attempt to form molecules. Formation errors result

in atom pairs remaining in the 1066 nm tweezers after the molecules have been

transferred to state |G⟩.

III. We detect molecule-formation errors by extracting the remaining Rb atoms

and storing them in a separate row of 817 nm tweezers (the “detection array”).

In addition, we apply resonant light to remove any remaining Cs atoms.

IV. We perform the science relevant to the chosen experiment. This will often

cause some molecule loss, which is what we want to measure.

V. We reverse the STIRAP sequence to transfer molecules back to state |F ⟩ before
immediately reversing the association field ramps to convert the molecules

back to atom pairs.

VI. Resulting atom pairs are separated by extracting the Rb atoms and returning

them to their original traps. We take a fluorescence image of Rb and Cs to

determine the occupancy of the three tweezer arrays: the original arrays con-
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Figure 4.6: Rabi frequencies of the pump and Stokes transitions. (a) The pump light
drives the transition |F ⟩ → |E ⟩. (b) The Stokes light drives the transition |G ⟩ → |E ⟩. Molecules
in state |E ⟩ cannot be recovered. For both experiments, we begin by transferring the molecule
to |G ⟩ to be able to post-select on successful molecule formation. The Rabi oscillations decay
as population leaks to other molecular states. The insets show the relative intensities of the
pump (orange) and Stokes (purple) beams during the experiment. We extract Rabi frequencies
Ωpump = 493(5) kHz and ΩStokes = 876(4) kHz.

taining atoms recovered from the molecules and the detection array containing

Rb atoms in sites where molecule formation failed.

From the final fluorescence image we determine the recovery probability Pr of the

molecules as follows. First, using the initial fluorescence image, we ignore all sites in

the array in which the requisite number of atoms were not loaded (Fig. 4.5, sites

3 and 6). Second, the presence of a Rb atom in the detection array indicates that

molecule formation failed in the corresponding 1066 nm trap and we ignore that site

when analysing statistics (Fig. 4.5, sites 4, 5, and 8). Conversely, if the detection trap

is empty, we assume that a molecule was formed in that site and therefore consider

the occupancy of the corresponding initial Rb and Cs traps (Fig. 4.5, sites 1, 2, and

7). A molecule is then deemed to be ‘recovered’ if both atoms that formed it are

successfully imaged in their original traps at the end of a routine. Thus Pr is defined

as the probability that we recover both a Rb and a Cs atom in their initial traps,

ignoring sites in which the presence of a Rb atom in the detection array indicates

that molecule formation failed. For the example shown in Fig. 4.5, we would measure

Pr = 2/3.

Figure 4.6 shows examples of measurements using this detection scheme. We

measure the Rabi frequencies of the pump transition |F ⟩ → |E⟩ (Fig. 4.6(a)) and
the Stokes transition |G⟩ → |E⟩ (Fig. 4.6(b)). The pulses of STIRAP light for
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Figure 4.7: Repeated STIRAP transfers with a one-way efficiency of 96.4(1)%. An odd
number of one-way transfers (blue empty points) leave the molecule in |G ⟩ from atom pairs are
not recovered. An even number of one-way transfers (red filled points) leave the molecule in
|F ⟩ from which we recover atom pairs. The inset shows the same data on a logarithmic scale.

each experiment are shown in the insets. For the measurement of the pump Rabi

frequency, we transfer the molecule to |G⟩, perform molecule detection, transfer the

molecule back to |F ⟩, and pulse on the pump light for a varying duration. The

transfer to |G⟩ is necessary for the detection scheme to be effective as we require

the lifetime of the molecular state to be significantly longer than the time it takes

to remove the atom pair (∼ 10ms), which is true for the state |G⟩ but not the

state |F ⟩ (see Sec. 4.4). The sequence for measuring the Stokes Rabi frequency is

similar, but we pulse the Stokes light before the reverse STIRAP. We drive the

transitions with square pulses that have intensity equal to the maximum intensity

used during STIRAP. The data are fitted with damped cosine functions (solid lines)

that decay towards zero, modelling the fact that molecules are lost when the state |E⟩
decays. The shaded regions show the errors on the fits. The pump Rabi frequency is

Ωpump = 493(5) kHz and the Stokes Rabi frequency is ΩStokes = 876(4) kHz.

4.4 Formation and detection efficiencies

The efficiency with which we prepare molecules in the state |G⟩ (and subsequently

recover them) is primarily limited by the STIRAP efficiency and the loss of molecules

in the state |F ⟩. In this section, we quantify these losses using the detection scheme

described in Sec. 4.3.

We measure the STIRAP efficiency by repeating NSTIRAP one-way transfers

before reversing the association field ramps and measuring the molecule recovery
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Figure 4.8: Lifetime of RbCs molecules in optical tweezers with wavelengths of 1066 nm
and 817 nm. (a) Normalised recovery probabilities as a function of the hold time in the
tweezers for molecules (i) in state |F ⟩ and 1066 nm, (ii) the ground state |G ⟩ and 817 nm
and (iii) the ground state |G ⟩ and 1066 nm. In each panel results are shown for two different
intensities with the values indicated by the corresponding symbols in (b). The axes have been
rescaled to make the contrast of the fits equal to unity. The blue squares in (iii) show the loss
of molecules in state |G ⟩ at our typical operating intensity. (b) Scaling of the molecule loss
rates with tweezer intensity I . The solid lines show linear fits to the measured loss rates.

probability. The results are shown in Fig. 4.7. Ideally, an even number of one-way

transfers (red filled points) leave molecules in the state |F ⟩, from which atom pairs

can be recovered. An odd number of one-way transfers (blue empty points) transfer

molecules to the state |G⟩, from which expect to recover no atom pairs. Indeed, for

points where NSTIRAP is odd, we never recover a molecule. We fit the points where

NSTIRAP is even with an exponential decay from which we extract a one-way transfer

efficiency of 96.4(1)%, assuming the efficiencies of the forward and reverse transfers

to be the same. This efficiency is marginally better than the efficiencies reported for

RbCs in bulk gases [150, 240] and comparable to the highest reported efficiencies for

ground-state transfer of diatomic molecules [73, 287].

Figure 4.8 shows lifetime measurements of the states |F ⟩ and |G⟩ for different
tweezer intensities. We find that molecules in the weakly bound state |F ⟩ exhibit a
much larger loss rate than ground-state molecules. We have previously observed a

photoassociation resonance from the state |F ⟩ at 1063.91(7) nm with an estimated

transition dipole moment (TDM) of 0.064(2)× ea0 [207]. We believe that the tweezer

light is driving a transition from the manifold a3Σ+ to the manifold c3Σ+ [288]. We

can reduce the loss rate from photon scattering by operating far from this resonance;

it is for this reason that we operate the molecule tweezers at a wavelength of



CHAPTER 4. GROUND-STATE MOLECULES 72

Table 4.1: Efficiencies of each stage of molecule formation. The values are measured
experimentally unless stated otherwise.

Experimental stage Efficiency

Preparation of atom-pair hyperfine state 0.93(2)
Occupancy of ground state of relative motion

(following the merging of the traps) 0.56(5)
Magnetoassociation efficiency (calculated) > 0.99
Atom pair → |F ⟩ conversion 0.53(1)

|F ⟩ survival pre-STIRAP 0.95(1)
STIRAP transfer |F ⟩ → |G⟩ 0.964(1)
|F ⟩ → |G⟩ conversion (calculated) 0.91(1)

Atom pair → |G⟩ conversion (calculated) 0.48(2)

1065.512 nm. At this wavelength, we determine the loss rate of molecules in state |F ⟩
to be 0.99(4) s−1/(kW/cm2) from the fit to the red points in Fig. 4.8(b). To mitigate

this loss, we operate at low tweezer intensities and minimise the time between the

molecule entering state |F ⟩ and being transferred to state |G⟩. Unfortunately, the
narrow (∼ 100 kHz) linewidths of the STIRAP transitions necessitate a 10ms hold

following the magnetoassociation ramps to achieve sufficient magnetic field stability

(∼ 50mG) for efficient transfer. During this time the molecules in state |F ⟩ are

held in tweezers with an intensity of 6 kW/cm2 such that 5(1)% are lost. We note

that the molecular state |S⟩ shown in Fig. 3.1(b), which is populated in the initial

magnetoassociation ramp, has a much longer lifetime, consistent with that of the

atom pair (> 10 s). However, STIRAP from this state is inefficient due to the weak

coupling to state |E⟩.
The loss rate of molecules in the ground state |G⟩ is much lower than that of

molecules in state |F ⟩. From the fits in Fig. 4.8(b), we determine loss rates for the

state |G⟩ of 0.171(8) s−1/(kW/cm2) in tweezers with a wavelength of 816.848 nm

and 0.047(4) s−1/(kW/cm2) for a wavelength of 1065.512 nm. The linear relation

observed between loss rate and intensity suggests that the lifetime is limited by

photon scattering of the tweezer light, most likely Raman scattering. A single

Raman-scattering event would appear as loss since we only detect molecules in the

specific rotational and hyperfine state addressed by the STIRAP lasers. In light of

this, we typically operate the tweezers at a low intensity where the lifetime of the

state |G⟩ is 2.7(4) s, corresponding to the blue squares in Fig. 4.8(a)(iii), and loss

is negligible for the duration of most experiments. This lifetime is still limited by

scattering of the trapping light; the vacuum lifetime of atoms in the experiment is

> 30 s [206].

The efficiencies of each step of the molecule formation protocol are summarised
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in Table 4.1. We successfully convert atom pairs to molecules in the state |F ⟩ with
an efficiency of 53(1)%, limited by the initial state preparation of the atom pairs (see

Sec. 3.4.1). Subsequently, 91(1)% of the molecules in the state |F ⟩ are successfully

transferred to the ground state |G⟩. The overall efficiency for the conversion of an

atom pair to a rovibrational ground-state molecule is therefore 48(2)%.

The maximum probability of molecule recovery that we measure is Pr = 75(1)%.

This corresponds to the value after a single round-trip STIRAP in Fig. 4.7. If our

scheme for detecting molecule formation was perfect, we would expect to measure

88(1)%, limited by the lifetime of the state |F ⟩ and the infidelity of a round-trip

STIRAP. However, our detection scheme overestimates molecule formation due to loss

of atom pairs prior to magnetoassociation. The overall probability that a detection

trap is empty is 60(3)%; a combination of successful molecule formation (53(1)%)

and loss of atoms prepared in the wrong hyperfine state (7(2)%, see Sec. 3.4.1). With

our detection scheme, these two events are indistinguishable and we assume that

a molecule has been formed in both cases. In reality, a molecule is only formed in

88(3)% of cases where the detection trap is empty. Accounting for this, we would

expect to measure Pr = 77(3)%, in agreement with our observations.

4.5 Global control of rotational states

The hyperfine structure of RbCs is shown in Fig. 4.9(a) for the lowest four rotational

manifolds. Here, the energies of the states are shown as a function of the intensity

I1066 of the 1066 nm tweezer and the magnetic field is 181.699G. When performing

STIRAP we form molecules in the rovibrational and hyperfine ground state |G⟩
(lowest red line). The transitions that we drive between rotational levels are shown

by vertical lines.

Transitions between rotational levels are driven using microwave fields to which

strong coupling is facilitated by the molecule-frame electric dipole moment (for RbCs,

d = 1.225D) [149]. Allowed electric dipole transitions are those with |∆N | = 1

and |∆MN | ≤ 1. The strength of the transition is determined by the TDM µi,j =

⟨ψi|µ |ψj⟩, where the components (µz
i,j,µ

+
i,j,µ

−
i,j) of µi,j describe the strength of π,

σ+, and σ− transitions respectively. The nuclear spin is not addressed when driving

rotational transitions such that we can only couple to hyperfine states with nuclear

spins unchanged from those of |G⟩; namely mRb = +3/2 and mCs = +7/2. For the

work presented here, we drive transitions to either stretched states or hyperfine states

with mixed character for which the component with mRb = +3/2 and mCs = +7/2

has the largest amplitude. This criterion selects the transitions with the highest
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Figure 4.9: Excitation of RbCs molecules to higher rotational states. (a) Hyperfine
energy structure of the first four rotational manifolds of RbCs as a function of 1066 nm tweezer
intensity I1066 at a magnetic field of 181.699G. Energies are given relative to the energy of
|G ⟩ in free space. The red lines show the spin-stretched hyperfine states of each manifold,
where the molecule is initially prepared in the ground state (lowest red line). σ+, π, and σ−

transitions from each spin-stretched state are shown in red, blue, and green respectively. The
yellow lines show other hyperfine states that we do not access. The color of the lines represents
the TDM of a given transition: more intense lines have higher TDMs. (b) Spectroscopy of
the N = 1, 2, 3 rotational manifolds for (i),(ii),(iii) respectively in a 3.07 kW/cm2 tweezer.
Changing the electrode configuration (insets) allows us to drive either π or σ± transitions. (c)
Rabi oscillation on the π transition |0, 0⟩ → |1, 0⟩ for a single trapped molecule.

TDMs. For simplicity, we continue to label the states |N ,MN⟩, but give the full state
compositions in Table 4.2. Additionally, in Table 4.2, we give each state a label using

the scheme of Blackmore et al. [289] where states are labelled |N ,MF ⟩k. Here k is an

index enumerating states in order of increasing energy such that k = 0 is the lowest

energy state for given values of N and MF . The state compositions are calculated for

a molecule in a 1065.512 nm tweezer of intensity I1066 = 3.07 kW/cm2 at a magnetic

field of 181.699G using the molecular constants and polarisabilities that will be

introduced shortly. The components of the N = 1 states that we to couple with

microwave radiation from the state |G⟩ have mRb = +3/2 and mCs = +7/2 and are

highlighted in bold.

We use the in-vacuum electrodes mounted inside the science cell (see Sec. 2.1) as

a microwave antenna to drive coherent transfer between molecular rotational states.
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Table 4.2: Rotational and hyperfine states of RbCs used in this work. We give the |N,MN⟩
label used in the text, the corresponding |N,MF ⟩k label, and the state compositions in a
1065.512 nm tweezer of intensity I1066 = 3.07 kW/cm2 at a magnetic field of 181.699G. The
state components with mRb = +3/2 and mCs = +7/2 are shown in bold.

|N ,MN⟩ |N ,MF ⟩k |N ,MN ,mRb,mCs⟩
|0, 0⟩ ≡|G⟩ |0,+5⟩0 |0, 0,+3/2,+7/2⟩
|1,−1⟩ |1,+4⟩1 −0.827 |1,−1,+3/2,+7/2⟩

−0.438 |1, 0,+1/2,+7/2⟩
+0.293 |1,+1,−1/2,+7/2⟩
−0.196 |1, 0,+3/2,+5/2⟩
−0.019 |1,+1,+3/2,+3/2⟩
+0.011 |1,+1,+1/2,+5/2⟩

|1, 0⟩ |1,+5⟩0 −0.971 |1, 0,+3/2,+7/2⟩
+0.236 |1,+1,+1/2,+7/2⟩
−0.039 |1,+1,+3/2,+5/2⟩

|1,+1⟩ |1,+6⟩0 |1,+1,+3/2,+7/2⟩
|2,+2⟩ |2,+7⟩0 |2,+2,+3/2,+7/2⟩
|3,+3⟩ |3,+8⟩0 |3,+3,+3/2,+7/2⟩
|4,+4⟩ |4,+9⟩0 |4,+4,+3/2,+7/2⟩

An additional external dipole Wi-Fi antenna is mounted approximately 10 cm from

the vacuum chamber. Using this external antenna we can also drive transitions,

albeit with much reduced polarisation control due to the presence of magnetic field

coils around the cell.

We demonstrate rotational state control by driving coherent microwave transitions

from the ground state |G⟩ to higher rotational states. Excitation to higher rotational

states is detected by the failure to recover atom pairs from the (excited) molecules

at the end of the experimental sequence due to the state specificity of the reverse

STIRAP. We selectively drive either σ± or π transitions by connecting the electrodes

in different configurations to change the orientation of the electric field of the

microwave radiation. When the electric field is parallel to the applied magnetic field

we drive π transitions; when the two fields are orthogonal we drive σ± transitions.

Figure 4.9(b)(i) shows spectroscopy from state |G⟩ to the N = 1 manifold, with

the polarity of the connections to the electrodes shown inset. Here, the magnetic

field is 181.699(1)G and the intensity of the 1066 nm tweezer is I1066 = 3.07 kW/cm2.

We measure the frequencies of the π, σ−, and σ+ transitions to be 980.140(2)MHz,

980.3391(9)MHz and 980.4374(5)MHz, respectively. The widths of the measured

features are transform limited.

The vertical lines in Fig. 4.9(b) show the expected transition frequencies. We

calculate these and the state energies shown in Fig. 4.9(a) by solving the molecular

Hamiltonian, including the interactions with external optical and magnetic fields.
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Figure 4.10: Measurements of the anisotropic polarisability of RbCs. Colours of the
states are as in Fig 4.9(a). We measure the frequencies of the σ+ (red squares), π (blue
circles), and σ− (green triangles) transitions from the state |G ⟩ for different tweezer intensities
at a magnetic field of 181.699(1)G. (a) Data for molecules in 1066 nm tweezers of varying
intensity I1066. (b) Data for molecules in 1066 nm tweezers of intensity 3.07 kW/cm2 that are
addressed with additional 817 nm tweezers of varying intensity I817. The inset shows a zoom to
small values of I817. Lines show the calculated state energies obtained by solving the molecular
Hamiltonian. For both fits, we assume that the polarisation of the tweezer light is parallel to
the quantisation axis set by the magnetic field.

We perform this calculation using the Python package diatomic-py [290]. We

use the molecular constants determined in previous bulk-gas experiments [97, 280,

289]. The value of the isotropic polarisability α(0) is scaled from that measured

by Blackmore et al. [291] to account for the difference in trapping wavelengths

[217]; here we use α
(0)
1066 = 2000 × 4πε0a

3
0. For this calculation, we need to know

the anisotropic polarisability α
(2)
1066, which we measure by performing spectroscopy

on the π transition at different tweezer intensities I1066, as shown in Fig. 4.10(a).

We perform a least-squares fit on this data to extract α
(2)
1066 = 1980(60) × 4πε0a

3
0,

which we use for the calculations shown in Fig. 4.9. For comparison, Blackmore et al.

measured the anisotropic polarisability at 1064 nm to be α
(2)
1064 = 1997(6)× 4πε0a

3
0

[291]. Using our value of α
(2)
1066, the measured transition frequencies in Fig. 4.9(b)

are within 10 kHz of the calculated values; we expect that the discrepancy between

the two is primarily caused by our simplifying assumption that the polarisation of

the tweezer is exactly aligned to the quantisation axis of the magnetic field.

We observe coherent oscillations between states by changing the duration of

the applied microwave pulses. For example, in Fig. 4.9(c) we show the effect of

changing the pulse length with the microwave frequency set to that of the π transition

|0, 0⟩ → |1, 0⟩ for a single trapped molecule. With a small RF power of -16 dBm
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incident to the electrodes, we obtain a Rabi frequency of 37.96(2) kHz and observe

no significant damping in the contrast after approximately 40 Rabi oscillations. The

microwave field produced by the electrode array is highly linearly polarised. For

example, with the field set to drive π transitions, we are not able to resonantly drive

the σ− transition, even when the Rabi frequency on the π transition is increased

to 133.7(1) kHz. Setting a conservative upper bound on Rabi frequency with which

we drive the σ− transition of 1 kHz, we extract the linear polarisation purity of the

microwave radiation emitted by the electrode array to be in excess of 104 : 1. This

enables high-fidelity control of the rotational states.

We probe higher rotational manifolds in the molecule using successive microwave

transitions [289]. Here, we restrict ourselves to σ+ transitions so that we always

occupy a stretched hyperfine state in each rotational manifold. For example, in

Fig. 4.9(a)(ii) we present spectroscopy of the transition |1,+1⟩ → |2,+2⟩. This is
measured by first performing a π pulse on the transition |0, 0⟩ → |1,+1⟩ to prepare

the molecule in |1,+1⟩ prior to the spectroscopy pulse. After the spectroscopy pulse,

a third microwave pulse returns any molecules remaining in |1,+1⟩ back to |0, 0⟩ from
which atom pairs can be recovered. Molecules that were excited to |2,+2⟩ during the

spectroscopy pulse are not returned back to |0, 0⟩, resulting in atom pairs not being

recovered. This is easily extended to higher manifolds; we generally prepare molecules

in the stretched hyperfine state |N ,N⟩ with a series of N coherent π pulses before

probing the transition |N ,N⟩ → |N + 1,N + 1⟩ and returning molecules in |N ,N⟩
to |0, 0⟩. For example, in Fig. 4.9(a)(iii), we perform similar spectroscopy of the

transition |2,+2⟩ → |3,+3⟩ with this procedure. As before, the measured frequencies

for these transitions are within 10 kHz of the predicted frequencies indicated by

the vertical lines. Extension to more rotational states will allow the realisation of

a large number of synthetic lattice sites with fully controllable synthetic inter-site

tunnellings for engineering synthetic band structures [74].

4.6 Multi-state readout

Proposed quantum simulators composed of molecules often utilise the rotational

states to encode pseudo-spins [42, 292]. The ability to detect multiple rotational

states of a molecule in a single iteration of an experiment is therefore highly desirable,

particularly given the finite efficiency of molecule formation. For example, without

the ability to readout multiple molecular states, it is impossible to distinguish

between a molecule which is lost and a molecule in a spin state which is not detected.

Here, we describe a technique that can be used to detect the rotational state of a
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Figure 4.11: Readout of multiple rotational states whilst driving the transition |0, 0⟩ →
|1,+1⟩. (a) Flowchart of the detection procedure as described in the text. (b) Coherent
transfer between |0, 0⟩ and |1,+1⟩. The population in state |0, 0⟩ (|1,+1⟩) is shown as blue
filled (green empty) points. (i) Spectroscopy of the transition. The Rabi frequency is set to
11.92(6) kHz and a spectroscopy pulse of duration 39.6 µs (slightly less than a π pulse) is used.
The readout π pulse is at 980.4415MHz. The fitted centre is 980.4412(2)MHz. The insets
show the Cs (red) and Rb (green and blue) traps with example fluorescence images obtained
from a molecule in states |0, 0⟩ (left) and |1,+1⟩ (right). (ii) Rabi oscillations on the transition.
Here, the Rabi frequency is 33.69(3) kHz and the fitted contrast is consistent with unity.

molecule on a given site whilst avoiding errors caused by molecule loss.

We present an experimental scheme that maps the rotational state of the molecule

onto atoms in spatially distinct tweezers, similar to the proposal of Covey et al. [293].

In our scheme, we detect the internal state of the molecule by mapping it onto the

position of a Rb atom in the final fluorescence image. A flowchart of the detection

scheme is shown in Fig. 4.11(a). We exploit the state specificity of the reverse

STIRAP transfer: only molecules in the state |G⟩ are converted into atom pairs

during the reverse STIRAP pulses and dissociation magnetic field sweeps. Molecules

in excited rotational states are unaffected by these stages of the experimental routine.

After atom pairs are recovered from molecules that were in the state |G⟩, they are

separated and the Rb atoms are stored in a row of 817 nm tweezers. We then return

to the usual operating magnetic field to transfer molecules in excited rotational states

back to state |G⟩ with a series of microwave pulses and repeat the dissociation steps.

However, this time when separating the resultant atom pairs, we place the Rb atoms

in a different row of 817 nm tweezers. After all the molecules have been dissociated
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into atom pairs, the magnetic field is reduced to 4.78G and a final fluorescence

image is taken. With this image, we can detect the rotational state of the molecule

prior to the readout procedure by observing which tweezer the Rb atoms populate.

Using mid-sequence detection of Rb atoms would allow this procedure to be repeated

multiple times. This would enable many internal molecular states to be readout in a

single experimental run, ideal for implementations of qudits [60] or quantum error

correction using the internal states of the molecule [59].

This detection scheme allows us to mitigate the effects of noise in our experimental

data. Such noise can result from fluctuations in the molecule formation efficiency or

molecule loss which reduces the recovery probability Pr. We are also able to eliminate

leakage errors that occur when molecules leave a chosen set of energy levels. The

lowest rotational levels of RbCs have lifetimes exceeding 1000 s limited by blackbody

radiation [294]. Consequently, leakage errors due to off-resonant excitation during

microwave transfers, for example, are much more likely than bit-flip errors for RbCs

qubits. Using this detection scheme, we specify the energy level subspace that we

wish to readout with the choice of microwave pulses prior to converting the molecules

back to atom pairs.

In Fig. 4.11(b) we present example measurements performed with this detection

scheme. Fig. 4.11(b)(i) shows spectroscopy on the σ+ transition between the states

|0, 0⟩ (blue filled circles) and |1,+1⟩ (green empty circles). Here, we set the microwave

power so that the Rabi frequency with which we drive the transition is 11.92(6) kHz.

This avoids significant off-resonant excitation on the σ− transition which is detuned

by −96(1) kHz, as shown in Fig. 4.9(b)(i). We use a square pulse of duration 39.6µs,
which is slightly less than that of a π pulse. After this pulse, molecules that remain in

|0, 0⟩ are converted back to atom pairs from which Rb atoms are moved to the “N = 0

detection” traps (insets, blue square). Molecules in |1,+1⟩ are then transferred back

to |0, 0⟩ with a π pulse at 980.4415MHz. We convert these molecules back to atom

pairs and deposit the Rb atoms into the “N = 1 detection” traps (insets, green

square). Cs atoms always remain in the 1066 nm traps in which the molecules are

formed (insets, red square). We post-select data to consider only experimental runs

in which both a Cs atom and a Rb atom (in either of the two detection traps) are

successfully recovered from an initial atom pair. The relative occupation of Rb atoms

in the detection traps is used to infer the state of the molecule before the detection

procedure. This detection scheme allows us to resolve features that would otherwise

be difficult to discern above the experimental noise, such as the sidelobes in the

sinc-squared function with which we fit the data.

Figure 4.11(b)(ii) shows a Rabi oscillation when the microwaves are set to be

resonant with the σ+ transition. Here, the Rabi frequency with which we drive the
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transition is 33.69(3) kHz: this is still low enough to avoid significantly driving the σ−

transition. The sequence is the same for the measurement shown in Fig. 4.11(b)(i),

but the readout pulse duration is reduced so that it remains a π pulse at the higher

Rabi frequency. The fitted contrast of the Rabi oscillations is consistent with unity

and we do not observe dephasing over the range of pulse durations shown here.

The error bars in Fig. 4.11(b) represent the statistical uncertainties obtained from

100 repetitions of the experiment using an array of four molecules. The statistical

uncertainty dominates over the systematic errors in the multi-state readout scheme.

The primary source of systematic error is the preferential loss of molecules in a

particular rotational state. This cannot cause a molecule to be detected in the

wrong rotational state, but can skew the ratio of the relative populations in the

two states. To assess the impact of loss on the relative populations, we analyse

the raw molecule recovery probabilities for the data presented in Fig. 4.11(b)(ii).

The peak recovery probability of molecules in the state |0, 0⟩ is 23.8(5)%, whereas

the peak recovery probability of molecules in the state |1,+1⟩ is 21.7(5)%. This

corresponds to a relative recapture probability r = 91(3)% for molecules in state

|1,+1⟩ relative to molecules in the state |0, 0⟩. The detection error is maximised to

a value of [1/(1+ r)− 1/2] when the true occupation of the two states is equal. Here,

this corresponds to a maximum error of 2.3(8)%. As the true occupation of one of

the states approaches unity, this resultant error decreases and eventually vanishes.

There are two main contributions to the preferential loss of molecules in the state

|1,+1⟩ that lead to the lower observed recovery probability. The first is loss due

to scattering of the tweezer light during the time it takes to perform the readout

of molecules in the state |0, 0⟩. The duration of this stage is dominated by the

∼ 10ms required for the magnetic field to settle after separating the atom pairs that

result from the dissociation of molecules in the state |0, 0⟩. This leads to loss of

approximately 1% of the molecules in the state |1,+1⟩. Additionally, if the field has

not completely settled, the efficiency of the second STIRAP transfer can be slightly

reduced. The second source of loss is off-resonant excitation from |1,+1⟩ to states

with N ′ = 2 in the excited electronic manifold A1Σ+ + b3Π [295] when the Stokes

light is applied during the readout of molecules in the state |0, 0⟩.
Errors that would lead to the incorrect assignment of the molecular state are

vanishingly rare. The selection rules governing the transitions used in STIRAP mean

that the return transfer of molecules from the state |1,+1⟩ is forbidden by parity

[149], so these molecules cannot result in an atom in the N = 0 detection traps. For

a molecule in the state |0, 0⟩ to be detected as a molecule in the state |1,+1⟩ would
require it to remain in the state |0, 0⟩ during the first dissociation stage and then

be unaffected by the microwave π pulse used for readout of molecules in the state
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|1,+1⟩. This is extremely unlikely.

4.7 Local control of rotational states

Controlling the rotational states of individual molecules within an array is essential for

a range of applications. For example, preparing reactants in distinct rotational states

facilitates studies of state-controlled quantum chemistry [296]. Additionally, certain

quantum computation architectures using ultracold molecules require the selective

excitation of molecules to perform single qubit gates [54] or to execute entangling

gates between chosen pairs of molecules using microwave fields [58]. The targeted

transfer of subsets of molecules into non-interacting states allows them to be shelved

for mid-circuit readout, enabling measurement-based quantum computation [297,

298] or the study of measurement-induced phase transitions [299].

We demonstrate site-resolved control of the rotational state using an additional

array of 817 nm tweezers to address selected molecules. The additional tweezers cause

a differential light shift between molecular states, altering the microwave transition

frequency on the addressed sites. First, we characterise the differential light shift by

measuring the frequency of the transitions from the state |G⟩ to the states |1,−1⟩,
|1, 0⟩, and |1,+1⟩ at different intensities of the addressing tweezers. This measurement

is shown in Fig. 4.10(b) with the σ−, π, and σ+ transitions shown as green triangles,

blue circles, and red squares respectively. For this measurement, molecules are

trapped in the 1066 nm array with trap intensities I1066 = 3.07 kW/cm2. We overlap

the addressing array with this array and vary the intensity I817 of the addressing

array. We fit the transition frequencies, taking into account the polarisabilities for

both tweezers, to obtain α
(2)
817 = −2814(12)× 4πε0a

3
0.

An example of selectively addressing certain molecules is shown in Fig. 4.12(a).

For this measurement, every other trap in an eight-trap array is addressed with an

817 nm tweezer, as indicated by the green rectangles in Fig. 4.12(b). The addressing

tweezers are ramped up to an intensity of 2.18 kW/cm2 after the molecules have been

prepared in the state |G⟩. We then perform microwave spectroscopy on the array.

Following this, the addressing light is removed such that all molecules are resonant

with the microwave π pulse required for the multi-state readout (see Sec. 4.6) and the

reverse STIRAP. The results in Fig. 4.12(a) show that the additional 817 nm tweezer

light causes the frequency of the |0, 0⟩ → |1,+1⟩ transition to shift by −80(2) kHz in

the addressed molecules (green filled circles) relative to the unaddressed molecules

(purple empty circles). We note the increase in the size of the error bars for

unaddressed molecules at a detuning of around −100 kHz. This results from these
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Figure 4.12: Local control of rotational states in an array of molecules. (a) Selected
molecules are addressed with an additional 817 nm tweezer that light shifts the transition
of these molecules (green filled points) relative to the unaddressed molecules (purple empty
points). (b) Image of atoms that form the molecular array showing which sites are addressed
(green highlight). (c) With an applied light shift of approximately -200 kHz× h applied to the
addressed molecules, we drive a Rabi oscillation in only unaddressed molecules. (d) Preparation
and manipulation of alternating spin chains of molecules. An initial π pulse transfers only
unaddressed molecules to |↑⟩. The addressing is then removed to coherently rotate the spins
of all molecules in the array.

molecules being excited on the σ− transition such that the number of molecules

remaining in the {|0, 0⟩ , |1,+1⟩} subspace from which we sample is greatly reduced.

When the induced light shift is much larger than the Rabi frequency of our chosen

transition, we are able to drive transitions in only the unaddressed molecules. We

demonstrate this in Fig. 4.12(c) where we increase the intensity of the addressing

tweezers such that the shift in the frequency of the transition due to the addressing

light is approximately −200 kHz. We then apply microwave radiation that is resonant

for the unaddressed molecules to drive a Rabi oscillation in only these molecules.

After a π pulse, we observe no transfer of the addressed molecules out of the state

|G⟩ and place a 1σ upper bound of 1.0% on the probability of driving an undesired

excitation. We choose to target unaddressed molecules as fluctuations in the relative

alignment of the trapping and addressing tweezers cause variations in the induced

light shift and broaden the transitions of the addressed molecules.
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We dynamically switch the addressing on and off during the experimental sequence

to change between driving molecular transitions locally and globally. As an example,

Fig. 4.12(d) shows the result of an experiment where we form an alternating spin

chain of molecules with |↓⟩ ≡ |0, 0⟩ and |↑⟩ ≡ |1, 1⟩ and then drive Rabi oscillations

in the whole array. The molecule formation stages initialise the array in the state |↓⟩.
As before, half of the molecules in the array are then addressed with 817 nm light. A

π pulse on the |↓⟩ → |↑⟩ transition is then driven in only the unaddressed molecules

to prepare an alternating spin chain. We then remove the addressing light such that

a second microwave pulse drives the rotational transition for all molecules in the

array. This pulse rotates all the spins in the chain such that two adjacent molecules

are always out of phase with each other. The dephasing evident in Fig. 4.12(d) is

primarily caused by different trap depths across the array of eight molecules. This

leads to a variation in the differential light shifts along the spin chain, such that the

microwave field is not exactly resonant with all the molecules. In future work, we

plan to address this problem by using an array of tweezers at a magic wavelength,

where α(2) is zero, such that the differential light shift between the states |↓⟩ and |↑⟩
is eliminated [98].

4.8 Deterministic array preparation

We now demonstrate the preparation of defect-free arrays of molecules. The primary

source of configurational entropy in our array is the finite conversion efficiency of

atom pairs to molecules which leads to some tweezers not containing molecules. We

remove this entropy by detecting the traps where molecule formation failed using

the procedure described in Sec. 4.3. Unlike the experiments presented thus far, in

this experiment we perform the detection mid-sequence and use the information to

rearrange molecules to occupy sites where formation failed.

Mid-sequence detection of molecule formation errors requires imaging Rb atoms

at the magnetic field of 181.699(1)G used for STIRAP. At the normal imaging

field of 4.78G, the state |G⟩ is no longer the lowest in energy and the hyperfine

levels are more closely spaced. Imaging at high magnetic field therefore avoids

potential loss of molecules to other states due to sweeping the magnetic field through

numerous level crossings. Rb atoms in the detection array are imaged on the closed

transition (5s1/2, f = 2,mf = +2) → (5p3/2, f
′ = 3,m′

f = +3) (hereafter (2,+2) and

(3′, +3′), respectively).5 This approach has previously been used for non-destructive

hyperfine-state readout of individually trapped Rb atoms [300, 301]. As the Rb

5For this section, we label the state of Rb atoms as (f ,mf ) and (f ′,m′
f ) (in round brackets) to

avoid confusion with molecular states labelled |N ,MN ⟩ (in kets).
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atoms are initially in the state (1, +1) ≡ (5s1/2, f = 1,mf = +1) required for molecule

formation, they are transferred to the state (2,+2) with microwave adiabatic rapid

passage (ARP) before imaging. This ARP transfer is implemented using the loop

antenna mounted outside the vacuum chamber (see Sec. 2.1). With this antenna

we produce microwave radiation that couples the states (1,+1) and (2,+2) with a

Rabi frequency of 7.6(3) kHz. We use a magnetic field sweep of 72mG in 2.5ms to

adiabatically transfer the atoms into (2,+2). For this Rabi frequency, the efficiency

of the transfer is limited to 90% due to magnetic field noise. In future experiments

we plan to increase the coupling strength to improve the transfer.

We then image the Rb atoms on the closed transition (2,+2) → (3′, +3′) with

resonant circularly polarised light (see Sec. 2.3.1). The peak intensity of this light

is 10Isat. The primary limitation to the achievable imaging fidelity is the loss of

Rb atoms before the number of scattered photons that are detected is sufficient to

differentiate occupied traps from the background. This loss is caused by the recoil

momentum imparted by imaging photons heating atoms out of the traps. To combat

this, we image the atoms in deep tweezers of peak depth U0 = 2.5(1)mK× kB. We

modulate the imaging and trapping light in antiphase; this avoids light shifts caused

by the deep traps which would otherwise cause broadening of the signal histograms

and loss from dipole-force fluctuations [302]. The duty cycle of the trapping (imaging)

light is approximately 80% (10%) and we estimate that approximately 104 photons

are scattered before the atoms are lost.

To enhance the preparation efficiency in (2,+2) beyond the 90% achievable

with ARP alone, and consequently improve the Rb detection fidelity, we implement

additional optical pumping methods. We apply the optical pumping light (see

Sec. 2.3.1) which is resonant with the (1,+1) → (2′, +2′) transition at 4.78G, but

off-resonant at the magnetic field at which we form molecules (181.699(1)G). Further,

we apply microwaves resonant with the (1,+1) → (2,+2) transition during imaging

to continuously pump atoms from the dark state (1,+1) to the bright state (2,+2).

We find these steps pump > 99% of the atoms into the bright state for imaging.

Figure 4.13(a) shows a histogram of camera counts from a single Rb trap obtained

using the high-field imaging procedure. Trap occupancy is determined by comparing

whether the observed counts are above or below a predefined threshold. The lines in

Fig. 4.13(a) show the error in the occupancy assignment as this threshold is changed;

the blue dashed line is the false-positive error εp and the red dashed line is the

false-negative error εn. The black solid line is the average error probability ε, from

which we extract a value of 3% when the threshold is optimised.

In Fig. 4.13(b) we verify the performance of the detection scheme by varying the

ratio of tweezer intensities I817/I1066 during the Rb extraction step. When I817 is too
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Figure 4.13: Rearrangement of assembled molecules. (a) Histogram of camera counts
obtained using high-field imaging of Rb atoms. Red (blue) data are counts obtained when an
atom is (is not) present. The blue and red dashed lines are the probabilities of false-positive
(εp) and false-negative (εn) errors, respectively, as the occupancy threshold is changed. The
black solid line is the average error ε. (b) The probability of detecting Rb in the detection
trap as a function of the intensity ratio between the 817 nm and 1066 nm tweezers, I817/I1066,
during the Rb extraction. The vertical dashed line indicates the value used in a typical sequence.
The inset shows the probability P817 of extracting Rb (green) and RbCs (red) with the 817 nm
tweezer for higher values of I817/I1066. (c) The probability of molecule recovery P∗

r for each
site n of the array. Blue (red) points show data with (without) molecule rearrangement for an
initial array of six atom pairs. No post-selection on successful molecule formation is performed;
the black dashed line shows the measured recovery probability (0.68(2)) for a molecule that is
formed and left in a single trap. The blue shaded region shows the prediction of a Monte Carlo
simulation of the rearrangement. (d) The probability of successfully recovering defect-free
arrays of size s, starting from site zero, with (blue) and without (red) rearrangement.
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low, no Rb atoms are moved into the detection tweezers and a non-zero probability of

detection corresponds to a false positive. Conversely, when I817 is high, all remaining

Rb atoms are transferred to the detection tweezer and a probability below unity

corresponds to a false negative. From the fit to Fig. 4.13(b) we find the combined

procedure of Rb extraction and imaging gives a false-positive rate of 0.7(1)% and a

false-negative rate of 3.6(1)%. The latter is dominated by a ∼ 2% probability for

loss of the Rb atom prior to imaging. This value is consistent with the trap lifetime

of Rb atoms in the experiment (∼ 30 s) and the duration of a typical experimental

routine after Rb has been loaded (∼ 500ms). The vertical dashed line in Fig. 4.13(b)

shows the intensity ratio of 1.48(6) used for mid-sequence detection. This value is

chosen to saturate the Rb detection fidelity whilst leaving molecules in their original

traps, as shown in the inset.

We use the real-time information obtained from the high-field image to identify

traps in which molecule formation was successful and rearrange the molecules to

one side of the array. Molecule occupancy is assigned by inverting the measured

Rb occupancy in the corresponding traps of the detection array. Molecules are then

transferred from the 1066 nm array to an overlapping 817 nm array and unoccupied

molecule traps are extinguished. Occupied molecule traps are then shuttled to one

end of the array before the molecules are transferred back into the 1066 nm array.

We show the molecule recovery probabilities P ∗
r obtained using this rearrangement

scheme in Fig. 4.13(c). Here, we do not post-select statistics based on successful

molecule formation, unlike in the experiments presented in earlier sections. For

these measurements, exactly six atom pairs are prepared in the 1066 nm array which

we attempt to associate into molecules and transfer to state |G⟩. For points with
rearrangement enabled (blue), molecules are shuttled to the end of the array; for

points with rearrangement disabled (red), the molecules are left in their original

traps. We then reverse the association routine and image resultant atom pairs to

determine P ∗
r .

With rearrangement disabled, the molecule recovery across the array is approxi-

mately uniform with an average of 34(1)%. This is consistent with the 36(2)% that

we expect from combining the typical molecule formation efficiency of 53(1)% with

the molecule recapture probability Pr = 68(2)% obtained with this experimental

routine when post-selecting on successful molecule formation. The molecule recapture

probability is reduced from the value reported in Sec. 4.4 due to increased time spent

in the tweezers during imaging and the additional time required for calculating the

rearrangement sequence. Variations in P ∗
r (the probability that a molecule is formed

and recovered) across the array primarily stem from variations in the probability

of molecule formation. Molecules are formed only from atom pairs in the ground
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state of relative motion. Site-to-site differences in the intensities of the tweezers

affect the cooling of the atoms to the motional ground state. Furthermore, angular

misalignments across the array cause heating during the merging process. These

effects cause variations in the probability of molecule formation, and therefore P ∗
r ,

across the array.

When rearrangement is enabled, the average molecule recovery in the array

remains 34(1)% but the distribution is no longer uniform, being weighted significantly

towards the low-index sites in the array as intended. The observed recovery in the

array agrees well with the prediction of a Monte Carlo simulation of the rearrangement,

indicated by the blue shaded region in Fig. 4.13(c). In this simulation, we populate

the initial array of molecules by generating a random number, xn, between 0 and

1 for each site in the array. If xn is lower than the measured molecule formation

efficiency for that site, then the site is deemed to be occupied. Once the initial

occupancy of the array is determined, all molecules are shuttled to fill the traps with

the lowest site indices. We assume that no molecules are lost during this process.

This is repeated for 500 initializations of the array, and the average occupancy of

each site is determined. The site occupancies are then scaled by the measured value

of Pr. The shaded region shows the 1σ bounds on the simulation results, obtained

by repeating it 500 times using different values of the molecule formation efficiency

and Pr, both sampled from Gaussian distributions centered about their measured

values with standard deviations equal to their experimental uncertainties.

Figure 4.13(d) shows the probability of successfully observing a defect-free array

of size s. With rearrangement enabled, this probability scales as (Pr)
s due to the

loss of molecules prior to the final fluorescence image.

4.9 Summary

In this chapter, we have detailed how we transfer weakly bound molecules, which

are individually trapped in optical tweezers, to their rovibrational ground state.

We have quantified the efficiency of each step in this process: overall we convert

48(2)% of atom pairs into ground-state molecules. We have established a suite

of experimental techniques for the quantum control of these molecules. We have

described an adaptable technique for detecting molecule formation errors. Further,

we have demonstrated global and local control of multiple rotational states of the

molecules and have combined this with a technique for the detection of multiple

rotational states in a single experimental run. Finally, using mid-sequence detection

of formation errors, we have demonstrated rearrangement of assembled molecules.



5 Rydberg atoms

Some of the results in this chapter have been published in the Supplemental Material

of Ref. [202].

In this chapter, we detail how we excite Rb atoms in the ground state to Rydberg

states with high principal quantum number. Rydberg atoms are highly tuneable

and possess large dipole moments that allow them to interact strongly with each

other and other dipolar systems at long range. This makes them ideal candidates to

mediate the transfer of quantum information between polar molecules.

We start with a brief introduction to Rydberg physics. We then detail the

characterisation of Rydberg excitation in our experiment. We explore how specific

atoms can be excited to Rydberg states and study interactions between Rydberg

atoms. These techniques provide the foundation to study interactions between Rb

Rydberg atoms and RbCs molecules.

5.1 Introduction to Rydberg atoms

A Rydberg atom is an atom in an excited state where one (or more) of its electrons

has been promoted to an energy level with a high principal quantum number n≫ 1

[161, 303]. Here, we consider alkali atoms that have a single electron that can be

excited to a Rydberg level. In free space, the binding energy EB of the excited

electron is given by [161]

EB = − R
(n− δℓ)2

. (5.1)

Here, n is the principal quantum number of the Rydberg state, R is the Rydberg

constant,1 and δℓ is the quantum defect of the state that strongly depends on ℓ.2

1Strictly speaking, R = R∞M/(M +me) is the mass-corrected Rydberg constant that accounts
for the mass M of the nucleus. Here, R∞ = e4me/(8ε

2
0h

2) ≈ 13.6 eV ≈ 3290THz× h [304]. For
heavy alkalis, like Rb and Cs, R ≈ R∞.

2The screened Coulomb potential experienced by the excited electron in an alkali Rydberg
atom does not follow a 1/r dependence with distance r from the ionic core [161]. This causes the
dependence of δℓ on ℓ and, to higher orders, n and j. Values of quantum defects in alkali atoms

88
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This structure is similar to the energy levels of a hydrogen atom, where the principal

quantum number has been replaced by an effective principal quantum number

n∗ ≡ n− δ.

Rydberg atoms display highly exaggerated properties that depend strongly on n

[50]. The average radius of a Rydberg atom scales with n2, and can reach ∼ 100 nm

for typically-used Rydberg levels (those with 50 ≲ n ≲ 100). The large distance

between the negatively charged electron and positively charged core means that

the Rydberg atoms can exhibit very large electric dipole moments and are highly

sensitive to external fields. Rydberg atoms can interact with other Rydberg atoms

and polar molecules at long range, and typical interaction energies can be on the

megahertz (or larger) scale for particle separations on the micrometre scale [50, 101,

102]. Two Rydberg atoms that are resonant with each other can interact via a

dipole-dipole interaction,3 which scales with the interatomic distance Raa as R−3
aa .

The strength of this dipole-dipole interaction scales as n4. The dominant interaction

between two non-resonant Rydberg atoms is van der Waals, scaling with distance

as R−6
aa and with principal quantum number as n11. Additionally, the relatively

small wavefunction overlap between Rydberg states and atomic ground states means

that they are long lived, with typical radiative lifetimes of ∼ 100 µs that scale as

n3. These properties make Rydberg atoms attractive candidates for constructing

quantum simulators and computers.

5.2 Excitation scheme

We transfer Rb atoms from the ground manifold 5s1/2 to the Rydberg states with a

two-photon excitation scheme. A diagram of this scheme is shown in Fig 5.1(a). The

scheme uses a laser at wavelength 420 nm that drives the transition |5s1/2⟩ → |6p3/2⟩
and a 1013 nm laser that drives the transitions from the manifold 6p3/2 to a variety

of Rydberg states.4 These two lasers are locked to the same ULE cavity as the

STIRAP lasers, and their frequency stabilisation is discussed in Sec. 2.5.

We choose to use a two-photon excitation scheme as opposed to a one-photon

excitation scheme for two reasons. Firstly, using two-photons allows us to access

a wider range of Rydberg states, as we can either excite to s (ℓ = 0) or d (ℓ = 2)

have been measured experimentally [305–315] and programs like ARC [304] and pairinteraction

[316] tabulate these values.
3By “resonant” we mean that there exists two dipole-coupled pair states have equal energy.

This can occur for two atoms of the same or different species. The extension of this principle to a
system of a Rydberg atom and a polar molecule is discussed in Ch. 7.

4To access various Rydberg states, we tune the wavelength of the second laser between 1012 nm
and 1015 nm. For convenience, we always refer to this laser as the 1013 nm laser.
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|g⟩ = |5s1/2⟩
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|r⟩ = |ns⟩, |nd⟩ 

|i⟩ = |6p3/2⟩

|g⟩ = |5s1/2⟩

Figure 5.1: Energy levels used during Rydberg excitation of Rb atoms. (a) Bare atomic
energy levels. (b) Effective two-level system after the adiabatic elimination of the intermediate
level.

states versus the p (ℓ = 1) states that we would be able to access with one photon.

This wider choice of states is advantageous when engineering resonant interactions

between atoms and molecules (see Ch. 7). Second, if we were to use a one-photon

excitation scheme, the wavelength of that laser would be in the UV region. For

example, to access the Rydberg state |83p⟩, we would need a photon of wavelength

297 nm. This wavelength range is much more difficult to work with than the visible

and near-infrared (IR) lasers that we use. Additionally, the TDMs between ground

and Rydberg states are small and scale as n−3/2 [50], which means that a lot of

optical power (∼ W) is needed to drive transitions at reasonable (∼ MHz) Rabi

frequencies, which is hard to source at UV wavelengths.

We consider the Hamiltonian of the system shown in Fig. 5.1(a). There are

three states in this system: the ground state |g⟩, the intermediate state |i⟩, and the

Rydberg state |r⟩. The Rabi frequency with which we drive the first stage (|g⟩ → |i⟩)
is Ω420 and the Rabi frequency of the second stage (|i⟩ → |r⟩) is Ω1013. We allow the

lasers to be off-resonant with the bare atomic transitions. The one-photon detuning

of the 420 nm laser is ∆1p and the two-photon detuning (i.e. the difference between

the combined energy of the two lasers and the energy of the transition |g⟩ → |r⟩) is
∆2p. The Hamiltonian describing this system is

Ĥ =
hΩ420

2
(|g⟩ ⟨i|+|i⟩ ⟨g|)+hΩ1013

2
(|i⟩ ⟨r|+|r⟩ ⟨i|)−h∆1p |i⟩ ⟨i|−h∆2p |r⟩ ⟨r| . (5.2)

Typical one-photon Rabi frequencies obtained with resonable laser powers are on the

order of 10MHz. The dominant source of decoherence in this system is spontaneous

emission from the intermediate state |i⟩, which, for typical systems, has a radiative

decay rate Γi ∼ MHz. The typical radiative decay rate of the Rydberg state |r⟩ is
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on the order of kHz, so Rydberg decay occurs on timescales much slower than the

excitation and can be ignored.

We operate in the regime where ∆1p ≫ {Ω420, Ω1013, Γi}. In this regime we can

adiabatically eliminate the state |i⟩ [317] and create an effective two-level system

where the state |g⟩ is coupled with the state |r⟩. This system is shown in Fig. 5.1(b)

and is described by the Hamiltonian [317]

Ĥ =
hΩ

2
(|g⟩ ⟨r|+ |r⟩ ⟨g|)− h∆ |r⟩ ⟨r| . (5.3)

Here, the two-photon Rabi frequency is

Ω =
Ω420Ω1013

2∆1p

, (5.4)

and the effective detuning is

∆ = ∆2p + δ , (5.5)

where

δ =
Ω2

420 − Ω2
1013

4∆1p

(5.6)

is the differential ac Stark shift caused by the excitation lasers. Working in this

regime does not completely remove decoherence caused by the off-resonant coupling

to and subsequent decay of the state |i⟩, but the effective decay rate Γ′
i is significantly

reduced to [318]

Γ′
i =

Ω2
420 + Ω2

1013

4∆2
1p

Γi . (5.7)

The excitation scheme that we use, where we excited via a virtual state close

to the manifold 6p3/2, is commonly called the inverted Rb excitation scheme. This

is opposed to exciting via a virtual state close to the the manifold 5p3/2 (or the

manifold 5p1/2) which requires a 780 nm (795 nm) photon for the first stage and a

480 nm (475 nm) photon for the second stage. The inverted excitation scheme offers

several advantages over schemes using the manifold 5p3/2. Firstly, the radiative

lifetimes of the states in the manifold 6p3/2 are approximately five times longer than

those in the manifold 5p3/2 so the spontaneous decay rate is significantly reduced

(Γ6p3/2 ≈ 1.3MHz [319] and Γ5p3/2 ≈ 6.0MHz [211]). Furthermore, the laser that

drives the second stage transition |i⟩ → |r⟩ is at 1013 nm rather than 480 nm. Due

to the small overlap in the wavefunctions of the intermediate and Rydberg states,

it is advantageous to have as much laser power as possible for the second stage,

and high-power laser technology is more developed (and cheaper) at this larger

wavelength.

From the manifold 6p3/2 (where ℓ = 1), the selection rule |∆ℓ| = 1 means we can

access either s (ℓ = 0) or d (ℓ = 2) Rydberg states. There is no selection rule on the



CHAPTER 5. RYDBERG ATOMS 92

principal quantum number n and we can tune the frequency of the 1013 nm laser

to access Rydberg manifolds of different n. In Fig. 5.2(a), we show the excitation

pathways that we use to access the two Rydberg manifolds that we use for the

majority of this work, namely 52s1/2 and 83d5/2. These manifolds are chosen because

they have favourable properties for interactions between Rb Rydberg atoms and

RbCs molecules; these properties are covered in detail in Chs 6 and 7.

For the magnetic fields used in this work (≲ 200G), the ground manifold 5s1/2

is in the Zeeman regime where f and mf are good quantum numbers [211]. We

typically excite Rb atoms to Rydberg states from the states |f ,mf⟩ = |1,+1⟩ or
|2,+2⟩ in this manifold. In contrast, the hyperfine coupling for Rydberg states is

weak enough that it can be ignored and the good quantum numbers are mj and mi.
5

We do not resolve the hyperfine splitting and typically label the Rydberg states as

|nℓj,mj,mi⟩.
Most of the experiments in which we excite to the manifold 52s1/2 were performed

first. For these experiments, we excite from the ground state |5s1/2, f = 1,mf = +1⟩
using the excitation scheme shown in Fig. 5.2(a)(i). Both lasers are linearly polarised

with their electric field parallel to the applied magnetic field so that they drive

π transitions. They are propagated along the long-axis of the vacuum chamber

(the y-axis). This is shown in Fig. 2.3, with the 1013 nm light travelling down the

beam path labelled A. The 420 nm laser couples the ground state to the states

|f ′,m′
f⟩ = |1′, +1′⟩ and |2′, +1′⟩ in the manifold 6p3/2. The 1013 nm laser couples to

states in the Rydberg manifold with mj +mi = +1. We usually excite to the state

|s⟩ ≡ |52s1/2,mj = −1/2,mi = +3/2⟩.
In order to excite atoms to the manifold 83d5/2, we changed the 1013 nm beam

so that it propagates along beam path B shown in Fig. 2.3. This was done for two

reasons. First, the Rabi frequency with which we can couple to Rydberg states from

the ground state scales as n−3/2 [50]. Therefore, if all else were equal, changing from

n = 52 to n = 83 would reduce the Rabi frequency by approximately a factor of two.

Beam path A propagates along the long axis of the vacuum chamber, which means

that its final lens is over half a metre away from the atoms. This limits the beam

waist (105(2)µm) that we can achieve. We realise a smaller waist by propagating

the light down beam path B, where we can place the final lens much closer to the

cell (a distance of ∼ 20 cm) and achieve a beam waist of 35(2)µm. This mitigates

the reduction in Rabi frequency caused by exciting to states with higher n. Second,

5Colloquially, this is because the Rydberg electron is sufficiently far from the nucleus that the
coupling between electronic and nuclear spins is very weak. Tauschinsky et al. [321] measured the
hyperfine splitting in 87Rb between the states |f = 1⟩ and |f = 2⟩ in the Rydberg manifold ns1/2
to be 37.1(2)GHz× (n− δ)−3 at zero magnetic field. Therefore, we expect the zero-field hyperfine
splitting for the Rydberg manifolds that we access to be ∼ 100 kHz× h.
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Figure 5.2: Pathways for Rb Rydberg excitation. (a) Energy levels used for most of
experiments presented in this work. Atoms in the manifold 5s1/2 are excited to the Rydberg
manifold via a virtual level blue-detuned from the manifold 6p3/2. (i) The pathway coupling the
ground state |f ,mf ⟩ = |1,+1⟩ to the manifold 52s1/2 with two photons that drive π transitions.
(ii) The pathway coupling the state |2,+2⟩ to the manifold 83d5/2 with two photons that drive
σ+ transitions. (b) Upper panels: Frequencies of transitions to the manifold 6p3/2 calculated
with the magnetic dipole and electric quadrupole constants of Glaser et al. [320]. We show the
detuning ∆420 of the transitions from the states |1,+1⟩ (panels (i)) and |2,+2⟩ (panel (ii))
as a function of magnetic field. The detuning is relative to the nearest cavity mode to which
we can stabilise the 420 nm laser. Colours and lower panels: the overlaps |⟨f ′,m′

f |ψ⟩|
2 for the

labelled states |f ′,m′
f ⟩ in the manifold 6p3/2 used during Rydberg excitation with the states

{|ψ⟩} that evolve from the high-field states |m′
j ,m

′
i ⟩ = |−1/2,+3/2⟩ (green), |+1/2,+1/2⟩

(blue), |+3/2,−1/2⟩ (orange), and |+3/2,+3/2⟩ (red).
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the manifold 83d5/2 was chosen due to resonant properties that Rydberg atoms in

this state have with RbCs molecules. These are discussed in detail in Ch. 7, but for

now we state that it is advantageous for the atom to be in a stretched state with

maximal |mj+mi| (i.e. mj = ±j and mi = ±i or equivalently, in the low-field regime,

|mf | = f = j + i). To access a stretched state in the manifold 83d5/2, we must excite

from a stretched state in the manifold 5s1/2 on two σ± transitions. Propagating the

1013 nm beam along beam path B (parallel to the magnetic field) allows us to achieve

a higher Rabi frequency on σ+ transitions by setting the polarisation of the beam to

be circular. We note that it would also be desirable to do this for the 420 nm beam,

but the AR coating of the science cell prevents this. Instead, we rotate the linear

polarisation of the 420 nm light by 90◦ using the HWP shown in Fig. 2.5 so that it

can drive σ± transitions.

The excitation scheme used to access the manifold 83d5/2 is shown in Fig. 5.2(a)(ii).

We excite from the state |5s1/2, f = 2,mf = +2⟩ with 420 nm light that drives σ+

transitions to a virtual state detuned from the state |f ′,m′
f⟩ = |3′, +3′⟩ in the

manifold 6p3/2. The 1013 nm light then couples this virtual state to the Rydberg

state |d⟩ ≡ |83d5/2,mj = +5/2,mi = +3/2⟩.
For the intermediate manifold 6p3/2, the crossover point between the Zeeman

(weak-field) and Paschen-Back (strong-field) regimes is approximately ∼ 50G. We

usually excite to Rydberg states at the low field used to when cooling atoms (4.78G)

or the high field used when forming molecules (∼ 200G), so it is important to

understand how the states in the manifold 6p3/2 change with magnetic field. The

good quantum number that is conserved between the two regimes is m′
f = m′

j +m′
i.

The upper panels in Fig. 5.2(b) show the frequency of transitions to the manifold

6p3/2 from the states |5s1/2, f = 1,mf = +1⟩ (panels (i)) and |5s1/2, f = 2,mf = +2⟩
(panel (ii)). The detuning ∆420 is relative to the nearest cavity mode to which we

can stabilise the 420 nm light (see Sec. 2.5). The zero point in panel (ii) is five

cavity modes (a frequency difference of −5νFSR ≈ −7.5GHz) lower than in panels

(i) due to the hyperfine splitting of the ground manifold. The colours and lower

panels show the overlaps
∣∣⟨f ′,m′

f |ψ⟩
∣∣2 between the low-field states |f ′,m′

f⟩ that

we couple to with the 420 nm light and the eigenstates {|ψ⟩} that evolve from the

high-field states |m′
j,m

′
i⟩ = |−1/2,+3/2⟩ (green), |+1/2,+1/2⟩ (blue), |+3/2,−1/2⟩

(orange), and |+3/2,+3/2⟩ (red). Table 5.1 lists the composition of the low-field

states |f ′,m′
f⟩ in the high-field |m′

j,m
′
i⟩ basis. These compositions are important

because the Rydberg excitation projects the ground states (described by the basis

|f ,mf⟩) to Rydberg states (described by the basis |mj,mi⟩) via the manifold 6p3/2,

as discussed in Sec. 5.4.



CHAPTER 5. RYDBERG ATOMS 95

Table 5.1: Composition of relevant |f ′,m′
f ⟩ states in the 6p3/2 manifold in the |m′

j ,m
′
i ⟩

basis.

|f ′,m′
f⟩ |m′

j,m
′
i⟩

|1′, +1′⟩ −
√
3/10 |+3/2,−1/2⟩+

√
2/5 |+1/2,+1/2⟩ −

√
3/10 |−1/2,+3/2⟩

|2′, +1′⟩ +
√

1/2 |+3/2,−1/2⟩ −
√

1/2 |−1/2,+3/2⟩
|3′, +3′⟩ |+3/2,+3/2⟩

5.3 First stage spectroscopy

Figure 5.3(a) shows a Doppler-broadened absorption spectrum obtained with the

420 nm light through a natural-abundance Rb vapour cell. The light is tuned to

be resonant with the transitions |5s1/2⟩ → |6p3/2⟩. A small amount (< 1mW) of

the light is sent down the spectroscopy path; the remainder is split between the

frequency stabilisation setup (∼ 1mW) and the path leading to the main experiment

(∼ 40mW). No magnetic field is applied to the vapour cell and it is heated to

approximately 60 °C. We see four features corresponding to transitions from the two

different values of f in the ground manifold of each isotope (f = 1, 2 for 87Rb and

f = 2, 3 for 85Rb). The hyperfine states in the manifold 6p3/2 are not sufficiently

separated to be resolved. The dashed lines show the expected detunings relative to

the transitions from |5s1/2, f = 3⟩ in 85Rb which we assume to be at the minimum

of the deepest feature in the spectrum [320].

The frequency axis in Fig. 5.3(a) is calibrated using the PDH error signal obtained

from the laser-locking setup (see Sec. 2.5). This error signal is shown in Fig. 5.3(b).

The separation between the sharp peaks is set by the free spectral range of the ULE

cavity, which we measure to be approximately 1.5GHz at 420 nm. The detuning ∆420

is given relative to the cavity mode closest to the transitions from |5s1/2, f = 1⟩ in
87Rb. At this cavity mode, the wavelength of the light is 420.295(1) nm as measured

with a HighFinesse WS5 wavemeter. This is the same zero-point as in Fig. 5.2(b)(i).

The zero-point in Fig. 5.2(b)(ii) is the cavity mode at ∆420 ≈ −7.5GHz which is the

closest mode to the transitions from |5s1/2, f = 2⟩ in 87Rb.

The 420 nm light is delivered to the experiment after being passed through an

AOM, as shown in Fig. 2.6. The AOM gives control over the frequency and intensity

of the pulses of light the delivered to the experiment. We use an AOM with a high

resonant frequency (250MHz) and bandwidth (100MHz) to maximise the range

of frequencies that the light at the experiment can have, because, unlike the other

lasers stabilised to the ULE cavity, the 420 nm laser cannot be locked to an arbitrary

frequency due to the lack of a fibre EOM in the locking setup.

We perform finer spectroscopy using the 420 nm light to optically pump atoms in
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Figure 5.3: Absorption spectrum for 420 nm light resonant with the transitions |5s1/2⟩ →
|6p3/2⟩. (a) The transmission through a natural abundance Rb vapour cell. Doppler-broadened
absorption features are visible for 87Rb (outer features) and 85Rb (inner features). Labels for
each transition show the Rb isotope and the quantum number f for the states in the manifold
5s1/2. The dashed vertical lines show the transition spacings as measured by Glaser et al. [320]:
the frequency of the transitions from f = 3 in 85Rb has been set to the minimum of the
spectrum. (b) The PDH error signal obtained with the locking setup described in Sec. 2.4. We
can stabilise the frequency of the light to one of the cavity modes, seen here as the sharp peaks.
Detunings are referenced to the cavity mode nearest to the transitions from f = 1 in 87Rb.

the main experiment. From the measurement presented in Fig. 5.3, we know that

the transitions from |5s1/2, f = 1⟩ in 87Rb are detuned by approximately −300MHz

from a cavity mode to which we can stabilise the 420 nm laser. Therefore, for this

spectroscopy, we single-pass the light through the AOM and operate it in the −1

diffraction order which removes energy from the light. We load Rb atoms in an array

of 817 nm tweezers and optically pump them into the state |f ,mf⟩ = |2,+2⟩ in the

ground manifold at magnetic field B = 4.78G. We transfer the atoms to the state

|1,+1⟩ with ARP and hold them in tweezers of peak depth U0 = 3.5MHz × h. A

small amount of 420 nm light at intensity 130(10) µW/cm2 is then applied. This light

can drive transitions to the states |f ′,m′
f⟩ = |1′, +1′⟩ and |2′, +1′⟩ in the manifold

6p3/2. Atoms will spontaneously decay from these states and eventually return to

the states |f = 1⟩ or |f = 2⟩ in the ground manifold. Atoms in the state |f = 1⟩ can
be excited again. However, the 420 nm light is approximately 7GHz detuned of the
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Figure 5.4: Optical pumping with the 420 nm light on the transitions |5s1/2, f = 1⟩ →
|6p3/2⟩. Atoms are prepared in the hyperfine state |f ,mf ⟩ = |1,+1⟩ (panel (a)) or evenly
across the states |1,mf ⟩ (panel (b)) in the manifold 5s1/2. The 420 nm light drives π transitions
to the manifold 6p3/2 from which atoms can subsequently decay to the states |f = 1⟩ or |f = 2⟩
in the ground manifold. Atoms that have been pumped into the state |f = 2⟩ are ejected at
the end of the experimental routine. The detuning of the 420 nm light is relative to the same
cavity mode as in Fig. 5.3.

transition |5s1/2, f = 2⟩ → |6p3/2⟩, so atoms in the state |f = 2⟩ are not re-excited.

Therefore, population is optically pumped into the state |f = 2⟩. Finally, we pushout
atoms in the state |f = 2⟩ (see Sec. 2.3.3) and reimage the remaining atoms.

Figure 5.4(a) shows the probability that Rb atoms are retained as a function of the

frequency of the 420 nm light. The detuning ∆420 is given relative to the same cavity

mode as in Fig. 5.3. We apply the excitation light for 5ms which avoids saturating the

features and observe two peaks corresponding to the transitions |1,+1⟩ → |1′, +1′⟩
(green) and |1,+1⟩ → |2′, +1′⟩ (blue). The solid lines show Gaussian fits to the

peaks. Fig. 5.4(b) shows the spectrum obtained when routine is modified to replace

the ARP transfer |2,+2⟩ → |1,+1⟩ with a pulse of cooling light that depumps the

atoms to distribute them approximately uniformly across the states |1,mf⟩. For

this measurement, the 420 nm intensity is reduced to approximately half that used

in Fig. 5.4(a) to avoid saturation. The data is fitted with triple Gaussians for the

transitions to the states |1′,m′
f⟩ and |2′,m′

f⟩, where the splitting between the three

Gaussians is set to the expected splitting (7/6)µBB/h ≈ 7.81MHz [211]. We extract
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Figure 5.5: Energy states relevant in measurements of Autler-Townes splitting. (a)
The pulses of excitation light used in the experimental sequence. (b) The bare atomic energy
levels. (c) Energy levels in the dressed state picture. (i) Energy levels when the coupling
between states |i ,P⟩ and |r ,P − 1⟩ is ignored. (ii) Energy levels when the coupling between
these states is included for ∆̃1013 = 0.

the splitting between the states |1′, 0′⟩ and |2′, 0′⟩ to be 51(2)MHz× h, in agreement

with the expected value of 51MHz × h [320]. Similarly, the splitting between the

states |0′, 0′⟩ and |2′, 0′⟩ is 77(2)MHz× h, in comparison with the expected value of

75MHz× h [320].

5.4 Second stage spectroscopy

We perform Autler-Townes spectroscopy to characterise the coupling between the

intermediate and Rydberg states. The experimental sequence is similar to that used

for the measurement shown in Fig. 5.4, with the modification that before switching

on the 420 nm light, we turn on the 1013 nm light. The 1013 nm light remains

on throughout the 420 nm pulse. A diagram of these pulse timings is shown in

Fig. 5.5(a).

As with the 420 nm light, the 1013 nm light is delivered to the experiment after

passing through an AOM that we use to control its intensity and frequency (see

Fig. 2.6). Due to the fibre EOM prior to the ULE cavity, we are able to lock the

1013 nm laser to an arbitrary frequency. This is especially important because the

420 nm light cannot be locked to an arbitrary frequency: the 1013 nm fibre EOM

allows us to set the combined energy of the two photons so that the effective detuning

∆ is zero.

We briefly consider the theory of this Autler-Townes experiment. The bare atomic
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energy levels are shown in Fig. 5.5(b). We assume that the 420 nm laser is on single-

photon resonance. For this experiment, we operate in the regime Ω420 ≪ Ω1013; in

this regime the 420 nm light does not significantly affect the eigenstates of the system

whilst the 1013 nm light dresses the energy levels. Here, we follow the approach of

Pokorny [322]. The relevant eigenstates of the dressed state picture, in the absence of

coupling, are shown in Fig. 5.5(c)(i). These are {|g,P ⟩ , |i,P ⟩ , |r,P − 1⟩}, where P is

the number of photons in the dressing (1013 nm) field. The energy difference between

states |r,P − 1⟩ and |i,P ⟩ is equal to −h∆̃1013, where ∆̃1013 is the single-photon

detuning of the 1013 nm laser from the bare transition |i⟩ → |r⟩.6 When including

the 1013 nm coupling, the Hamiltonian in the basis {|g,P ⟩ , |i,P ⟩ , |r,P − 1⟩} is

Ĥ =
h

2

2Eg/h 0 0

0 0 Ω1013

0 Ω1013 −2∆̃1013

 , (5.8)

where we have taken state |i,P ⟩ to be at zero energy and Eg is the energy of state |g⟩.
The eigenvectors of this system are |g,P ⟩ and |ψ±⟩. |ψ±⟩ are linear combinations of

|i,P ⟩ and |r,P − 1⟩ with eigenvalues

E± = (h/2)

(
−∆̃1013 ±

√
Ω2

1013 + ∆̃2
1013

)
. (5.9)

When the 1013 nm light is on resonance (∆̃1013 = 0), the difference in energy

between these two eigenstates is hΩ1013. The energy levels in this case are shown in

Fig. 5.5(c)(ii).7

We use the 420 nm laser to weakly probe the dressed system shown in Fig. 5.5(c)(ii).

As the coupling of the 420 nm laser is weak (Ω420 ≪ Ω1013), it does not significantly

affect the eigenstates of the system. In this regime, if the 420 nm light is tuned to

the bare transition |g⟩ → |i⟩, it is not resonant with a dressed transition. However, if

the frequency of the 420 nm laser is changed by ±Ω1013/2, it can drive the transition

|g⟩ → |ψ±⟩ as both states |ψ±⟩ have some |i⟩ character. This allows us to measure

Ω1013 by measuring energy difference between these transitions.

We show examples of such measurements in Fig. 5.6. Here, we use the 420 nm

light to couple the state |g⟩ = |1,+1⟩ in the manifold 5s1/2 to a state |i⟩ ∈
{|2′, +1′⟩ , |1′, +1′⟩} in the manifold 6p3/2. The 1013 nm light couples the state

6We denote the single-photon detuning of the 1013 nm laser from the bare transition |i⟩ → |r⟩
as ∆̃1013. This is to avoid confusion with ∆1013 that will soon be introduced, which is the detuning
of the 1013 nm light above the cavity mode to which we lock the laser. When the 420 nm light is
resonant with the bare transition |g⟩ → |i⟩ (i.e. ∆1p = 0), ∆̃1013 = ∆2p.

7We note that far from resonance (|∆1013| ≫ Ω1013), we can expand the square root in E± to
see that each state experiences a shift ±(hΩ2

1013)/(4∆1013). This is the ac Stark shift that was
introduced in Eq. (5.6).
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1013 nm light is resonant, optical pumping by the 420 nm light out of the state |f ,mf ⟩ = |1,+1⟩
is prevented. The 420 nm light is resonant with the transition to the state |f ′,m′

f ⟩ = |2′, +1′⟩
(panel (i)) and the state |1′, +1′⟩ (panel (ii)) in the manifold 6p3/2 (b) Scaling of Ω1013 with
I1013. The colours are consistent with (a) and lines show a fit to the expected square root
scaling. (c) Measurements of Ω1013 by setting the 1013 nm light to resonant and scanning the
420 nm detuning. The labels in panel (b) show I1013 for each measurement.

|i⟩ to states in the manifold 52s1/2. For this measurement, both coupling lasers drive

π transitions and the magnetic field B = 4.78G.

Figure 5.6(a) shows the effect of tuning the frequency of the 1013 nm laser when

the 420 nm laser is resonant with the bare transitions |1,+1⟩ → |2′, +1′⟩ (panel

(i)) and |1,+1⟩ → |1′, +1′⟩ (panel (ii)). The frequency of the 1013 nm laser is

295.364(1)THz as measured with a HighFinesse WS5 wavemeter and we reference

the detuning ∆1013 to the frequency of the cavity mode to which we lock the laser.

The relative pulse timings are shown in Fig. 5.5(a). When the 1013 nm light is

resonant with a transition |i⟩ → |r⟩, the dressing of the intermediate states precludes

the 420 nm light optically pumping the atoms out of |1,+1⟩. This means that more

atoms remain in |f = 1⟩ and are recaptured at the end of the sequence. For each

peak, we set the intensity 1013 nm light to give a clear feature whilst avoiding

saturation.

When the 420 nm light is resonant with the bare transition |1,+1⟩ → |1′, +1′⟩
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(panel (ii)), we see two clear features corresponding to the coupling from |1′, +1′⟩ to
the Rydberg states |s⟩ ≡ |52s1/2,mj = −1/2,mi = +3/2⟩ (green filled points) and

|s′⟩ ≡ |52s1/2,mj = +1/2,mi = +1/2⟩ (orange empty points). The splitting between

the two peaks is 14.5(1)MHz which is slightly larger than the expected splitting of

2gjmjµBB/h ≈ 13.4MHz.8

In contrast, when the 420 nm light is resonant with the bare transition |1,+1⟩ →
|2′, +1′⟩, we observe only coupling to the Rydberg state |s⟩ (blue filled points). The

state |2′, +1′⟩ has no component for which m′
j = +1/2 (see Table 5.1), and the π

transitions that we drive with the 1013 nm laser do not change mj. Consequently,

we are unable to access a Rydberg state with mj = +1/2, like the state |s′⟩, via this

intermediate state. This results in the two-photon Rabi frequency with which we

can drive transitions to |s′⟩ being lower than that for transitions to |s⟩, because we

only couple via one intermediate state.

In Fig. 5.6(b) we show the effect of changing the intensity I1013 of the 1013 nm

light. The Rabi frequency shows the expected scaling Ω1013 = k
√
I1013 and we extract

k ∼ 9MHz/(kW/cm2)1/2 for the three observed transitions. This measurement is

performed by scanning the frequency of the 420 nm light when the 1013 nm light is

resonant. We measure the frequency splitting of the dressed states which is equal

to Ω1013. Fig. 5.6(c) shows an example this for three different value of I1013 for the

transition |1′, +1′⟩ → |s′⟩. The intensities for each panel are as labelled in Fig. 5.6(b).

The measured value of k is of the same order of magnitude as those expected from

calculations using the Python package ARC [304]. We calculate the scaling constant for

the transitions |6p3/2,mj = ±1/2⟩ → |52s1/2,mj = ±1/2⟩ as 10.5MHz/(kW/cm2)1/2.

Using the state compositions listed in Table 5.1, we map these to the relevant low-field

states and expect to measure k in the range 5.7MHz/(kW/cm2) to 8.5MHz/(kW/cm2).

5.5 Rydberg excitation

We coherently excite to the Rydberg manifold by simultaneously applying both

excitation lasers to the atoms. We drive transitions from a state |g⟩ in the manifold

5s1/2 to a Rydberg state |r⟩ via a virtual level detuned by ∆1p from the intermediate

manifold. The state |g⟩ is either the state |5s1/2, f = 1,mf = +1⟩ (hereafter |1,+1⟩)
or the state |5s1/2, f = 2,mf = +2⟩ (hereafter |2,+2⟩). We operate in the regime

described in Sec. 5.2 where ∆1p ≫ {Ω420, Ω1013} and ∆ = 0. The two-photon Rabi

frequency Ω is given by Eq. (5.4).

8We take the Landè factor to be gj = 1 + (j(j + 1) + s(s+ 1)− ℓ(ℓ+ 1)) / (2j(j + 1)). For
states in the 52s1/2 manifold, gj = 2.
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A sensible choice of ∆1p is critical for maximising coherence during the Rydberg

excitation. A large value of ∆1p minimises scattering from states in the intermediate

manifold but reduces Ω. We choose to use ∆1p ∼ 1GHz which we set by the

frequency at which we operate the 420 nm laser. To give reasonable value of ∆1p

for both the transition |1,+1⟩ → |s⟩ and the transition |2,+2⟩ → |d⟩, we double-

pass the 420 nm light through its AOM, as shown in Fig. 2.6. We operate the

AOM in the +1 diffraction order around its centre frequency of 250MHz, which

increases the frequency of the light by ≈ 500MHz (Fig. 5.2(b), dashed horizontal

lines). ∆1p is given by the difference between the frequency of the light and the

frequency of the transition to the intermediate manifold. For the transition |1,+1⟩
→ |s⟩ we couple via the state |6p3/2,m

′
j = −1/2,m′

i = +3/2⟩ (Fig. 5.2(b), green

state) and ∆1p ≈ 800MHz. For the transition |2,+2⟩ → |d⟩ we couple via the state

|6p3/2,m
′
j = +3/2,m′

i = +3/2⟩ (Fig. 5.2(b), red state). For this transition, if the

420 nm light were locked to the cavity mode at ∆420 = 0 in Fig. 5.2(b), we would

have ∆1p ≈ 0. Therefore, we therefore lock to the neighbouring cavity mode (at

higher frequency) such that ∆1p ≈ 1.6GHz.9

Figure 5.7 shows coherent excitation on the transition |2,+2⟩ → |d⟩. To perform

this excitation, we switch on the 1013 nm light and wait for 1ms. This allows the

1013 nm intensity experienced by the atoms to stabilise. No excitation is performed

in this time as the atoms are still in the ground state which does not couple to

the 1013 nm light. We then switch off the tweezer traps for approximately 10 µs
so that the atoms are in free space. During this time, we apply a square pulse of

420 nm light. The duration of the 420 nm pulse sets the time for which we drive the

two-photon transition between the ground and Rydberg states, so we refer to this as

the two-photon pulse duration. After this pulse, the traps are switched back on and

the 1013 nm light turned off. During the excitation, the intensity of the 420 nm light

is approximately 100W/cm2 and the intensity of the 1013 nm light is approximately

30 kW/cm2.

In Fig. 5.7(a) we show the effect of varying the effective detuning ∆ (by varying

∆420) using a two-photon pulse with a duration less than that of a π pulse on the

two-photon transition. The programmed pulse duration is 600 ns, but we expect that

due to the finite rise time of the 420 nm AOM the actual pulse time is approximately

500 ns. When the excitation lasers are resonant with the two-photon transition (i.e.

∆ is zero), atoms are transferred to the state |d⟩. The data are fitted with a Gaussian

of which the full width at half maximum is 1.9(2)MHz; this width is transform

limited.

9This is the cavity mode at ∆420 ≈ −6GHz in Fig. 5.3.
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Figure 5.7: Rydberg excitation on the transition |2,+2⟩ → |d⟩ (a) Spectroscopy of the
transition performed with a pulse duration (∼ 600 ns) less than that of a π pulse. (b) Coherent
Rabi oscillations on the transition when ∆ is zero. For both measurements, the one-photon
detuning ∆1p ≈ 1600MHz and the magnetic field is 181.699(1) G.

Figure 5.7(b) shows the effect of changing the duration of the two-photon pulse

when on two-photon resonance. The data are fitted with the function

P1 = A exp [(2πσt)2/2] cos (2π⟨Ω⟩t+ ϕ) + c . (5.10)

Here, we account for the fact that the two-photon Rabi frequency experienced by the

atoms may change in each shot of the experiment, which leads to the damping of the

Rabi oscillations seen at long pulse durations. We assume that the two-photon Rabi

frequency Ω is sampled from a Gaussian distribution with mean ⟨Ω⟩ and standard

deviation σ. We fit ⟨Ω⟩ = 669(2) kHz and σ = 26(1) kHz. A and c scale the amplitude

and offset of the oscillations respectively and ϕ accounts for the phase offset caused

by the finite rise time of the AOM.

For these measurements we map Rydberg excitation onto atom loss using the

optical tweezers. The polarisability of alkali Rydberg atoms is well-approximated by

that of a free electron [162, 323]

αr(λ) = − e2

me

(
λ

2πc

)2

, (5.11)

where λ is the wavelength of the trapping light. We usually trap Rb in 817 nm

tweezers for which αr = −3.2 × 102 × 4πε0a
3
0. However, we note that, for any

wavelength, αr is negative and the tweezers are repulsive to Rydberg atoms. This

means that when we switch on the tweezers after the 420 nm pulse, if the atom is in

a Rydberg state, it is rapidly ejected and lost.

Figure 5.8 shows a measurement of the trap-limited lifetime of Rydberg atoms

in the state |s⟩. For this measurement, we first excite to the Rydberg state with a
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Figure 5.8: Lifetime of the Rydberg state |s⟩ in 817 nm tweezers. A π pulse excites
the atom to the Rydberg state. After a variable hold time a second π pulse returns the atom
to the ground state. The lifetime of the Rydberg atom in the tweezer is 8.5(1.1) µs. The
atom is excited to the Rydberg state when trapped in an 817 nm optical tweezer of intensity
35 kW/cm2. For comparison, we show the expected behaviour if the Rydberg atom was not

ejected and survived for the zero-temperature lifetime of τ
(0)
s (blue dashed line) or τ

(0)
d (purple

dotted line).

two-photon π pulse whilst the atoms are trapped in tweezers of intensity 35 kW/cm2.

After a waiting for a variable time, during which the Rydberg atoms can be ejected

from the tweezer, we perform a second π pulse to bring surviving atoms back to the

ground manifold. For this measurement, we extract the lifetime τ of the Rydberg

atoms to be 8.5(1.1)µs. For comparison, we calculate the radiative lifetimes of

the states |s⟩ and |d⟩ with the Python package ARC [304]. At zero temperature,

the lifetimes are calculated to be τ
(0)
s = 150 µs and τ

(0)
d = 590 µs and the blue

and purple dashed lines in Fig. 5.8 show the expected decay if these lifetimes were

dominant, scaled to the contrast of the experimental data. The Rydberg detection

fidelity F = exp(−τ/τ (0)) is limited by atoms that decay from Rydberg states

before they can be ejected. For example, for this trap intensity, we expect that

Fs = 94.5(7)% and Fd = 98.6(2)%. Although the effect of blackbody radiation from

the room-temperature environment (≈ 300K) is to couple our chosen states to other

Rydberg states [161], approximately halving their lifetimes to τ
(300)
s = 70 µs and

τ
(300)
d = 240 µs, this does not affect the detection fidelity as these other Rydberg

states also will be ejected from the tweezers.

In order to maximise the Rydberg excitation fidelity for a given value of ∆1p, we

maximise the relative ratio between the two-photon Rabi frequency Ω (Eq. (5.4))

and the intermediate-state effective decay rate (Eq. (5.7)) which is

Ω

Γ′
6p3/2

= 2
Ω420Ω1013

Ω2
420 + Ω2

1013

∆1p

Γ6p3/2

. (5.12)
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Figure 5.9: Matching the single-photon Rabi frequencies Ω420 and Ω1013. We measure
at what 420 nm detuning ∆420 the effective detuning is zero for the transition |1,+1⟩ → |s⟩ as
a function of the 420 nm intensity I420. The detuning is relative to the same cavity mode as in
Fig. 5.3. For blue data points, I1013 = 2.0(2) kW/cm2. The dashed line shows the transition
position when the intensities of the excitation beams are reduced to I420 = 5.3(3)W/cm2 and
I1013 = 400(40)W/cm2, the shaded region shows the error.

This ratio is maximised when Ω420 = Ω1013. We use the differential ac Stark shift of

the excitation lasers (Eq. (5.6)) to equalise the light shifts. When Ω420 = Ω1013, the

differential ac Stark shift δ becomes zero and Eq. (5.5) simplifies to ∆ = ∆2p.

Figure 5.9 shows an example of the measurement we perform to equalise the

excitation Rabi frequencies. We set the intensity I1013 of the 1013 nm excitation light

to I1013 = 2.0(2) kW/cm2, and vary the intensity I420 of the 420 nm light. For each

value of I420, we perform spectroscopy of the transition |1,+1⟩ → |s⟩ by changing

the 420 nm AOM frequency and measuring a loss feature such as that shown in

Fig. 5.7(a). We plot the detuning ∆420 of the 420 nm laser at which we realise

two-photon resonance for each value of I420 (blue points). At resonance, the effective

detuning ∆ = ∆2p+δ = 0 so that ∆2p = −δ = −(Ω2
420−Ω2

1013)/(4∆1p). Therefore, the

value of ∆420 required to stay resonant depends linearly on −Ω2
420 ∝ −I420 and we fit a

linear function with a negative gradient to the data (blue line). We then significantly

reduce the intensity of the two beams significantly to I420 = 5.3(3)W/cm2 and

I1013 = 400(40)W/cm2 such that δ ≈ 0 and ∆ ≈ ∆2p. We perform spectroscopy

with these powers and measure the transition position which is shown as the dashed

line (the grey region shows the error). The intersection of the two lines shows

the 420 nm intensity required (I420 = 23(2)W/cm2) to set Ω420 = Ω1013 when

I1013 = 2.0(2) kW/cm2 and we maintain the ratio I1013/I420 = 87 when scaling the

powers to change Ω for this transition.



CHAPTER 5. RYDBERG ATOMS 106

5.6 dc Stark shifts of Rydberg atoms

The dc polarisability of Rydberg atoms scales with n7, which makes them highly

sensitive to externally applied electric fields [50]. Whilst this property makes Rydberg

atoms ideal for the construction of sensors for dc and ac electric fields [324–330], this

heightened sensitivity can often cause issues in experiments seeking to coherently

excite and control Rydberg atoms. Electric fields fluctuating during an experiment

can shift the Rydberg transitions, leading to changes in ∆ and decoherence of Rabi

oscillations. Two distinct methods can be used to overcome this problem: either the

cancellation of the stray fields with an externally applied field [331] or the engineering

of the Rydberg atoms such that their transitions are less sensitive to the external

fields [332, 333]. This second approach relies on careful mixing of multiple Rydberg

states with microwave radiation; we choose here to use the first approach due to its

simplicity.

The energy shift of a Rydberg atom in an external electric field is [334]

∆Edc = −1

2
αdcE2 , (5.13)

where E is the electric field strength and αdc is the dc polarisability.10 It is the

quadratic nature of this energy shift that motivates the cancellation of stray fields:

∂(∆Edc)/∂E = −αdcE such that the magnitude of energy shift caused by a given

electric field fluctuation is proportional to the background field.

Accumulation of alkali-metal vapour on the chamber walls is a major cause of

stray electric fields in ultra-high vacuum experiments using alkalis. To overcome

this, experiments often use a light-induced atomic desorption (LIAD) technique

where a pulse of UV light is applied between experimental runs [198, 337, 338].

This non-resonant light causes atoms that have been adsorbed onto the surface of

the vacuum chamber to be released, much like the photoelectric effect. Prior to

measuring the stray electric field in our experiment, we applied light at 375 nm to

the glass cell to remove alkali buildup from the approximately four years of prior

experimental operation. We do not currently apply this light between experimental

runs and in future will remeasure the stray field to determine the timescale over

which the alkali buildup becomes significant.

We measure the stray electric field by measuring the dc Stark shift of the Rydberg

state |σ⟩ ≡ |85s1/2,mj = +1/2,mi = +1/2⟩. We choose to use this state because its

high value of n provides enhanced sensitivity to E (as αdc ∝ n7), but we remain

10Here we ignore the tensor polarisability and use only the scalar polarisability. For s states, the
tensor polarisability is much smaller than the scalar polarisability and results from the (negligible)
hyperfine structure. For states with ℓ ≥ 1, the tensor polarisability is more significant and leads to
splittings in the Stark map. For more details, see Refs [334–336].
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Figure 5.10: dc Stark shifts of the state |σ⟩. We apply an electric field parallel (panel
(a)) or perpendicular (panel (b)) to the magnetic field B = 4.78G by applying a voltage
to the in-vacuum electrodes. To null the stray electric fields, we need to apply a voltage of
V x
0 = 29(5)mV and V z

0 = −19(4)mV respectively (dashed vertical lines). The insets show
the electrode configurations used to create these electric fields.

in the simpler Stark map of the s states. We drive the transition |1,+1⟩ → |σ⟩ by
driving a σ− transition with the 420 nm light and a σ+ transition with the 1013 nm

light, with the 1013 nm light propagating along beam path B shown in Fig. 2.3.

We use the in-vacuum electrodes mounted inside the science cell (see Sec. 2.1)

to control the electric field at the atoms. For this measurement, the electrodes

are connected to a 20-bit digital-to-analogue converter (DAC)11 which can output

voltages up to ±15V. We connect the electrodes in two different configurations,

either to create an electric field parallel to the magnetic field or perpendicular to it.12

Figure 5.10 shows the dc Stark shift of the state |σ⟩ when a voltage is applied

to the electrodes to generate an electric field. This is measured by performing a

spectroscopy scan like that shown in Fig. 5.7(a) and tracking the resonance feature

a function of the applied voltage. Panel (a) shows the data when E ∥ B (i.e. the

electric field is along the x-axis) and panel (b) shows the data when E ⊥ B (i.e. the

electric field is along the z-axis). The insets show cartoons of the field and tweezer

orientations. We are unable to control the field along the direction of the electrodes

(the y-axis) with this four-electrode array.

The data in Fig. 5.10 are fitted with Eq. (5.13). For this fit, we use αdc/h =

2040(40)MHz/(V/cm)2, which we extract from a Stark map calculated for the state

|σ⟩ with the Python package pairinteraction [316]. We assume that the dc Stark

11Analogue Devices AD5791 mounted onto Analogue Devices EVAL-AD5791SDZ evaluation
board

12These are, respectively, the configurations used when driving π or σ± rotational transitions in
RbCs with microwave radiation emitted from the electrodes, as described in Ch. 4.
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shift of the state |1,+1⟩ is negligible. ∆E is relative to the maximum value of

this fit. We fit a conversion factor κ = |E|/|V | for each of the two orientations to

convert from applied voltage to electric field and obtain κx = 0.75(4) (V/cm)/V and

κz = 0.75(3) (V/cm)/V for the x- and z-axes respectively. The agreement of these

two factors is somewhat surprising considering that the electrode array has the aspect

ratio
√
3 : 1.13 The voltages required to cancel the stray fields in each direction are

V x
0 = 29(5)mV and V z

0 = −19(4)mV (Fig. 5.10, dashed vertical lines) corresponding

to stray fields of Ex
0 = −22(5)mV/cm and Ez

0 = 14(4)mV/cm. We have no reason

to expect that the stray field along the y-axis is significantly different, and therefore

expect that the magnitude of the total stray field |E0| = 32(6)mV/cm.14 This

corresponds to a dc Stark shift of ∆Edc = −1.0(3)MHz× h for the state |σ⟩ relative
to the energy at zero electric field.

For the remainder of this work, we do not cancel the stray electric field as we

prioritise using the electrodes as microwave antennae to drive molecular transitions

with high fidelity. However, hardware to allow us to do both at the same time

is currently under development. We will use an eight-electrode array mounted

outside the experimental chamber to cancel the stray field along all three axes while

maintaining the ability to use the in-vacuum electrodes as microwave antennae.

5.7 ac Stark shifts of Rydberg atoms

To selectively excite certain Rydberg atoms in our tweezer array, we exploit the ac

Stark shifts of the two-photon transitions to Rydberg states. This technique is very

similar to the molecular addressing discussed in Sec. 4.7, but we perform atomic

trapping and addressing with the same set of tweezers. Rather than switching off all

tweezers when attempting to excite to the Rydberg state, we keep certain tweezers

on. The energy shift caused by the ac Stark effect for a given state is given by

Eq. (4.2). To calculate the ac Stark shift of the Rydberg transition, we replace α in

Eq. (4.2) with the transition’s differential polarisability ∆α. Then, if ∆Eac is larger

than the linewidth of transition, we can selectively excite either the atoms in free

space or the atoms in the tweezers by tuning the frequency of the excitation lasers.

13A possible cause for this agreement is the fact that the DAC has a buffered output (used
for the E ∥ B measurement) and an unbuffered output (used for the E ⊥ B measurement), which
potentially causes different voltages across the electrodes for the two different configurations.
Another possibility is that there is a difference in the capacitance of the two configurations; a
finite-element simulation of the electrodes and vacuum chamber could be used to calculate this.
For our purposes however, it is sufficient to measure this calibration and apply whatever voltage is
needed to cancel the stray field.

14Here we have assumed that the stray electric field in the third direction is approximately
1
2 (|E

∥
0 |+ |E⊥

0 |) = 18(3)mV/cm.
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Figure 5.11: Local control of Rydberg excitation. (a) ac Stark shift ∆Eac of the transition
|1,+1⟩ → |s⟩ as a function of the 817 nm tweezer intensity I817. Transition frequencies are
given relative to the frequency in free space. The dashed line shows the expected shift. (b)
Selective Rydberg excitation by trapping atoms in tweezers of different depths. By trapping
some atoms in deeper tweezers, we can selectively excite only those atoms. The tweezer
intensities used are shown in panel (a) as points of the same colours.

Alternatively, if we wish to keep all ground-state atoms trapped (such as during the

experiments discussed in Ch. 6), we simply make the traps of the atoms we wish

to excite a different depth to the rest of the array and tune excitation lasers to be

resonant with the target atoms.

Figure 5.11(a) shows a measurement of this light shift for the two-photon transition

|1,+1⟩ → |s⟩. The transition energies are shown relative to the energy of the

transition in free space. For a Rb atom in an 817 nm tweezer, the differential

polarisability of the transition is ∆α = αr − αg = −4.7 × 103 × 4πε0a
3
0, where

αr = −3.2× 102 × 4πε0a
3
0 is the polarisability of the Rydberg state (Eq. (5.11)) and

αg = 4307× 4πε0a
3
0 is the polarisability of the ground state [218]. The dashed line

shows the expected transition shift with this value of ∆α. The empty red and filled

blue data points were measured during the same experimental run with two classes

of atoms in different tweezer depths; Fig. 5.11(b) shows the excitation spectrum from

which we extract these points. The black points were obtained with all tweezers in

the array at the same depth.

5.8 Rydberg-Rydberg interactions

Rydberg atoms can interact with other Rydberg atoms either by van der Waals

interactions, which scale with the interatomic distance as R−6
aa , or via resonant

dipole-dipole interactions, which scale with the interatomic distance as R−3
aa . In this
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section, we use the high sensitivity of the van der Waals interaction to precisely

measure the distance Raa between two Rydberg atoms. This is a precursor to the

measurements of interactions between Rydberg atoms and polar molecules that are

discussed in Chs 6 and 7.

Figure 5.12(a) shows the energies of two atoms as a function of interatomic

distance Raa. We consider the system where each atom can either be in the ground

state |g⟩ = |1,+1⟩ or the Rydberg state |s⟩. To denote pairs states of two atoms we

use the notation |ab⟩ ≡ |a⟩ |b⟩. In this system, there are four possible pair states:

|gg⟩, where both atoms are in the ground state; |gs⟩ and |sg⟩, where one of the

atoms is in the Rydberg state and the other is in the ground state; and |ss⟩, where
both atoms are in the Rydberg state. The pair states |gs⟩ and |sg⟩ are degenerate.

When the atoms are sufficiently separated (i.e. as Raa → ∞), the energy levels are

separated by multiples of the energy difference Es between the states |g⟩ and |s⟩.
Relative to the energy of |ss⟩, the states |gs⟩ and |sg⟩ have energy −Es and the

state |gg⟩ has energy −2Es.

The pair state |ss⟩ exhibits long-range interactions resulting from the non-resonant

exchange of virtual photons between the atoms [50]. This means that as the atoms

are brought together, there is an energy shift which, at long range, is well described

as

∆E = − C6

R6
aa

, (5.14)

where C6 is the van der Waals interaction coefficient.15 We calculate the potential

of |ss⟩ with pairinteraction [316] and fit it with Eq. (5.14) to obtain C6/h ≈
−24.7GHz/µm6 for this pair state. The van der Waals interaction coefficient scales

incredibly strongly with principal quantum number: C6 ∝ n11 [50]. For example, for

the pair state |dd⟩, C6/h ≈ 7THz/µm6.16

The interaction shift ∆E is often used to engineer Rydberg blockade. This

phenomenon occurs when ∆E is large enough to preclude excitation to a pair state

such as |ss⟩. Consider tuning the combined energy of the excitation lasers to be

equal to the energy of the blue arrow shown in Fig. 5.12(a) with Raa ≈ 4 µm. The

lasers can drive transitions from |gg⟩ to either |gs⟩ or |sg⟩. However, assuming the

linewidth ∆ν of the Rydberg transition satisfies ∆ν ≪ ∆E/h, the laser does not

have the correct energy to drive the transitions |gs⟩ → |ss⟩ and |sg⟩ → |ss⟩ due to

15The interactions discussed here are non-resonant because there is not a second pair state that
has approximately the energy as |ss⟩ when Raa → ∞. If there were, resonant virtual photons
could be exchanged between the states [50]. The interaction energy is then best described as
∆E = −C3/R

3
aa, where C3 is the resonant dipole–dipole interaction coefficient. We return to

resonant interactions in Ch. 7, when we engineer them between Rydberg atoms and polar molecules.
16The energy shifts of pair states with ℓ ≥ 1 are anisotropic and programs such as ARC [304] or

pairinteraction [316] should be used to calculate the full interaction potentials.
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Figure 5.12: van der Waals interactions between Rydberg atoms. (a) Pair potentials for
two atoms in states |g⟩ and |s⟩. The van der Waals interactions of the pair state |ss⟩ causes
∼ MHz× h energy shifts for ∼ µm separations. (b) Interaction shift of the Rydberg transition
of one atom caused by the presence of another Rydberg atom. The blue empty points are
data from runs where the other atom is not successfully excited (i.e. remains in the state |g⟩);
the orange filled points are data from runs where the other atom is excited to state |s⟩ prior
to the Rydberg pulse shown here. The detuing is relative to the frequency of the transition
|gg⟩ → |gs⟩.

the van der Waals energy shift of the state |ss⟩. This principle is fundamental to

realising two-qubit interactions in quantum computing or simulation platforms based

on Rydberg atoms [48, 76, 198, 339, 340].

It is typical to define a blockade radius rb at which ∆E = h∆ν/2.17 Beyond rb,

excitation to the pair state is not precluded by ∆E. In our experiment, typically

∆ν ≈ 2MHz (see Fig. 5.7(a)), which for the state |s⟩ gives rsb ≈ 5 µm and for the

state |d⟩ gives rdb ≈ 14 µm. For experiments presented up until now, we have always

ensured Raa ≫ rb so that interactions between Rydberg atoms could be ignored

whilst using multiple atoms trapped in the arrays of tweezers to increase the rate

of data acquisition. We now relax that condition and begin to study interactions

involving Rydberg atoms.

We use the strong dependence of the van der Waals interaction on Raa to precisely

measure the distance between two atoms. We begin by preparing two atoms in

separate 817 nm tweezers in the state |g⟩. The two tweezers are sourced from the

17We define the transition linewidth ∆ν as the full width at half maximum (FWHM). Definitions
of rb depend on how ∆ν is defined; in any case the blockade radius is not a hard cutoff and
experiments typically work with Raa ≪ rb (to strongly blockade excitation to pair states such
as |ss⟩) or Raa ≫ rb (to be able to ignore interactions between Rydberg atoms). Using this
definition, naively, rb = (2C6/h∆ν)

1/6. However, Eq. (5.14) begins to break down for short
distances and we instead calculate the blockade radius using the pair state potential calculated
with pairinteraction [316].
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same laser and are generated using the 2D AOD (see Sec. 2.2), which means there is

no possibility for the misalignment of their foci along the direction of tweezer-light

propagation (the z-axis). The position of the tweezers in the xy-plane is set by

deflecting the light at the 2D AOD. We have previously calibrated the relationship

between the frequency of the RF tones applied to the 2D AOD and the tweezer

position in the xy-plane by fitting images of atomic fluorescence such as that shown

in Fig. 2.4 [206]. We use this calibration to set the tweezers to be separated along

the x-axis by 4.48(3) µm. The tweezers are set to different depths; this allows us to

selectively drive either the transition |gg⟩ → |sg⟩ or the transition |gg⟩ → |gs⟩ as
they are no longer degenerate (we set the transition to the state |gs⟩ to be 9.3(2)MHz

detuned from the transition to the state |sg⟩). We attempt to excite the first atom

to |s⟩ using a two-photon π pulse on the transition |gg⟩ → |sg⟩.
We show in Fig. 5.12(b) the probability that the second Rb atom is recovered.

The main loss mechanism is the ejection of atoms that are successfully excited to

the state |s⟩. Two features appear conditional on the successful excitation of the

first Rb atom to |s⟩, which we measure as that atom being lost from its tweezer. If

the first atom is not excited to |s⟩, we are able to drive the transition |gg⟩ → |gs⟩
(blue empty points). If the excitation of the first atom is successful, we are able

to drive the transition |sg⟩ → |ss⟩ (orange filled points). This feature is broader

than the first because fluctuations in the tweezer separation cause Raa to vary

between experimental shots. The difference in energy between these transitions

measures ∆E of the pair state |ss⟩. We measure ∆E/h = 3.07(14)MHz. Using

the pairinteraction [316], we calculate the pair state potential and convert the

measured interaction shift to the interatomic distance Raa = 4.48(4) µm. This value

is in excellent agreement with the expected separation based on our calibration of

the 2D AOD.

We use a similar approach to measure the separation in the direction of tweezer-

light propagation (the z-axis) between the 817 nm and 1066 nm tweezer arrays. The

axial separation is controlled by imprinting a phase pattern corresponding to a

Fresnel lens onto the SLM in the 1066 nm path: this moves the axial position of the

foci of the 1066 nm tweezers [207]. We repeat the above experiment but this time

prepare one atom in an 817 nm tweezer and the other a 1066 nm tweezer. We are

unable to observe the interaction-shifted peak for tweezer separations smaller than

≲ 3 µm because ∆E becomes larger than the bandwidths of the AOMs used for the

Rydberg pulses. Therefore, we radially displace the tweezers by 3.49(5) µm such that

the atomic separation is never smaller than this value.

Figure 5.13 shows the measured interaction shift as a function of the 1066 nm

tweezer axial displacement. The relative change in axial position is estimated based
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Figure 5.13: Interaction shift of two Rydberg atoms as a function of the axial displace-
ment between the tweezers. Before excitation, one atom is trapped in an 817 nm tweezer
and the other is trapped in a 1066 nm tweezer. The tweezers are offset radially by 3.49(5) µm.
When the tweezers are overlapped axially, the interaction shift is maximised. The solid line
is the expected interaction shift as the axial displacement is varied; the shaded region results
from the error on the radial displacement.

on the focal length of the lens applied using the SLM. When the traps are aligned

axially, Raa is minimised and ∆E is maximised. We use the pairinteraction

[316] to calculate the predicted interaction shift as a function of axial displacement

given our radial displacement, and fit the measured data with this function. The

only free parameter in this fit is the 1066 nm position at which the displacement

between the traps along the z-axis is zero; the displacements in Fig. 5.13 are plotted

relative to this fitted centre. This fitting procedure returns a value for the overlap

position with a 1σ uncertainty of 0.1µm. Being able to overlap the tweezers with

this level of precision is important for the study of interactions between Rydberg

atoms and molecules, which generally require smaller distances between particles for

their interactions to be significant (see Chs 6 and 7). We have verified the accuracy

of this alignment procedure using RbCs molecule formation. Molecule formation

is sensitive to the relative overlap of the tweezers as the formation probability is

dependent on the probability that the atom pairs occupy the ground state of relative

motion (see Sec. 3.2.1). Misalignment of the optical tweezers causes heating during

the merging process and hence a reduction in the molecule formation probability.

5.9 Summary

We have shown how we excite individually trapped Rb atoms to the Rydberg states

|s⟩ ≡ |52s1/2,mj = −1/2,mi = +3/2⟩ and |d⟩ ≡ |83d5/2,mj = +5/2,mi = +3/2⟩
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using a two-photon excitation scheme with lasers at 420 nm and 1013 nm. We

have performed spectroscopy of the relevant states and characterised the Rydberg

excitation. We detect Rydberg excitation by using optical tweezers to map the

excitation onto atom loss. We have measured the dc and ac Stark shifts of the

Rydberg atoms and can selectively excite certain atoms by addressing them with

optical tweezers of different depths. We have measured the interaction of two adjacent

Rydberg atoms and have the necessary tools in place to study their interactions with

molecules.



6 Charge-dipole interactions between

molecules and Rydberg atoms

The majority of the results in this chapter have been published in Ref. [202].

To engineer a hybrid quantum system of polar molecules and Rydberg atoms, it is

important to understand the inter-species interactions. Polar molecules and Rydberg

atoms can support electric dipole moments, meaning they are able to interact via

the van der Waals and dipole-dipole interactions discussed in the previous chapter.

However, their rich structure can give rise to additional interactions. In this chapter,

we probe the charge-dipole interaction that can be realised when a molecule is placed

approximately within the orbit of the Rydberg electron. We introduce this interaction

and elucidate how it can be used to engineer atomic Rydberg blockade. We use

species-specific optical tweezers to hold the particles at the requisite sub-micrometre

separations and demonstrate the blockade of atomic Rydberg excitation caused

by the charge-dipole interaction. This allows for the presence of a molecule to be

mapped onto the atomic state.

6.1 Charge-dipole interactions

Polar molecules interact strongly with dc electric fields [41]. The interaction Hamil-

tonian is Ĥdc = −d · E, where d is the permanent electric dipole moment of the

molecule in the molecular frame. For RbCs, the magnitude of d is d = 1.225D [149].

Often, experiments use this interaction to mix different rotational levels of a molecule

by applying an external dc electric field [47]. This polarises the molecule, and can

be used to engineer tuneable electric dipole moments in the laboratory frame with

applications such as simulating quantum magnetism [40, 44, 341].

Here, we consider the case where the electric field is not externally applied, but

is that inherent to a Rydberg atom. This field results from contributions from the

115
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positively charged Rydberg core and the negatively charged Rydberg electron. The

electric field at position R is

Er(R, r) =
e

4πε0

R

|R|3︸ ︷︷ ︸
core

+
−e
4πε0

R− r

|R− r|3︸ ︷︷ ︸
electron

, (6.1)

where the first term results from the Rydberg core and the second term is from

the Rydberg electron. Here we define the coordinate system such that the Rydberg

core is at the origin and the Rydberg electron is at position r. The Hamiltonian

describing the rotational energy of a polar molecule and charge-dipole interaction

between it and the Rydberg atom can be written [109, 111, 342]

Ĥ = hBνN̂
2 − d · Er(Ram, r) . (6.2)

Here, Ram is the position of the molecule and N̂ is the molecular angular momentum

operator. This Hamiltonian neglects the molecular hyperfine structure and is valid in

the Born-Oppenheimer and rigid-rotor approximations. It represents the dominant

interaction for separations Ram between the molecule and the Rydberg core on

the scale of the radius of the Rydberg atom.1 The first term is the rigid-rotor

Hamiltonian that gives rise to the basis states |N ,MN⟩ with energies hBνN(N + 1)

(see Sec. 4.1). The second term is from the interaction between the molecular dipole

and the electric field of the Rydberg atom. The form of Er(R, r) means that the

interaction strength scales as R−2
am.

This Hamiltonian can give rise to two distinct regimes, depending on the size

of d. For molecules where d is larger than the Fermi-Teller critical dipole moment

dc ≈ 1.639D [344], the interaction is strong enough to rip the Rydberg electron

from its core and bind it to the molecule. This leaves behind the Rydberg core,

which is now a free ion. However, for molecules where d < dc, the interaction

is not strong enough for this to occur. In this case, the molecule and Rydberg

atom continue to coexist and support a long-range charge-dipole interaction. This

interaction gives rise to a rich energy level landscape where, for sub-micrometre

separations, energy shifts are predicted to be strong enough to blockade atomic

Rydberg excitation when a molecule is present [99, 100]. Furthermore, for Rydberg

states with ℓ > 3, energy shifts are predicted to be large enough to support bound

states of the molecule and Rydberg atom pair [109–111]. These bound states are

known as giant polyatomic Rydberg molecules (GPRyM) [109, 110] or triatomic

1At shorter range when the molecule is deeply inside the orbit of the Rydberg electron, scattering
of the electron from the molecule must be considered. This is usually approximated with a Fermi
pseudopotential [343]. The details are beyond the scope of this thesis but can be found in the
Supplemental Material of Ref. [202].
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Table 6.1: Quantum defects for Rb and Cs for ℓ ≤ 3. The given values are for j = ℓ+ 1/2
but depend only weakly on j .

Rb Cs
ℓ δ(ℓ) δ(ℓ+ 1)− δ(ℓ) δ δ(ℓ+ 1)− δ(ℓ)
s 3.13 [309] -0.48 4.05 [308] -0.46
p 2.64 [309] -1.29 3.56 [306] -1.08
d 1.35 [309] -1.33 2.47 [308] -2.43
f 0.02 [310] -0.02 0.03 [304] -0.03

ultralong-range Ryderg molecules [111, 112]; here we refer to them as GPRyMs. For

RbCs, d < dc and we are able to study this second regime.

To study the charge-dipole interaction, we choose to use states for which we

might experimentally resolve GPRyMs. At first glance this seems problematic:

GPRyMs are predicted to occur only for hydrogenic Rydberg states (those with

with ℓ > 3) and, with our two-photon excitation scheme (see Sec. 5.2), we can only

access Rydberg states with ℓ = 0 or 2. One way to circumvent this problem would

be to perform further transfers between Rydberg states with microwave radiation.

However, hydrogenic Rydberg states have quantum defects that are vanishingly

small and thus exist in dense manifolds of states which can make populating a

specific state challenging.2 Instead, we use a scheme proposed by González-Férez

et al. [112], who showed that it is possible to couple to into GPRyM states with

two Rydberg excitation lasers starting from an s-state. They propose exploiting

near-resonant coupling between pair states of the Rydberg atom and molecule with

different principal and rotational quantum numbers in order to excite to GPRyM

states. This removes the need to excite a Rydberg atom to a specific hydrogenic

state.

To engineer such a near-resonant coupling, we select a Rydberg state ns or nd

which has a energy difference from a hydrogenic manifold that is slightly larger than

the energy of a molecular rotational state. For example, for a state ns of Rb, we

require the energy difference ∆ERb(ns) from a hydrogenic manifold to satisfy

∆ERb(ns) ≡ |ERb(ns)− ERb(n
′, ℓ > 3)| ⪆ ERbCs(N) , (6.3)

where ERb is the energy of the Rydberg atom and ERbCs is the energy of the molecule

(relative to the rovibrational ground state). Table 6.1 shows the quantum defects

δ(ℓ) for Rb and Cs. The binding energy of a Rydberg atom is given by Eq. (5.1)

and states with similar effective principal quantum numbers n∗ ≡ n − δ(ℓ) have

similar energies. For hydrogenic states, δ(ℓ > 3) ≈ 0. For Rb, δ(s) ≈ 3 and δ(d) ≈ 1,

2The negligible quantum defects of Rydberg states with ℓ > 3 means that they are described
well by the Hamiltonian of a hydrogen atom and is precisely why they are termed hydrogenic.
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Figure 6.1: Transition energies for Rydberg atoms to neighbouring hydrogenic manifolds.
(a) Transition energies for Rb Rydberg atoms. The blue (green) line shows the energies for the
transition |ns⟩ → |n − 3, ℓ > 3⟩ (|nd⟩ → |n − 1, ℓ > 3⟩). These are the transitions from the
states that we can access with our Rydberg excitation lasers. The blue star shows the state
|s⟩ that we use to study charge-dipole interactions between Rydberg atoms and molecules.
Purple lines show molecular energies relative to the rovibrational ground state. (b) Transition
energies for Cs Rydberg atoms. The blue (green) line shows the energies for the transition
|ns⟩ → |n − 4, ℓ > 3⟩ (|nd⟩ → |n − 2, ℓ > 3⟩). The purples lines are as in (a).

meaning that the neighbouring hydrogenic manifold n′(ℓ > 3) for the state ns is

that with n′ = n − 3 and for the state nd is that with n′ = n − 1. Likewise, for

Cs, δ(s) ≈ 4 and δ(d) ≈ 2, so the neighbouring hydrogenic manifolds are those with

n′ = n− 4 and n′ = n− 2 respectively.

Figure 6.1 shows calculations of ∆ERb (panel (a)) and ∆ECs (panel (b)) between

states ns (blue) and nd (green) and their neighbouring hydrogenic manifolds n′(ℓ > 3)

as a function of n. The horizontal lines show the energies of excited rotational states

in RbCs. We take the atoms and molecules to be in free space and at zero magnetic

and electric fields. This means that, on this scale, the fine and hyperfine splittings

are negligible. To be able to experimentally resolve GPRyMs, we choose to work

with states where ∆E is just larger than the energy of a molecular state. The blue

star in Fig. 6.1(a) highlights the Rb Rydberg state that we choose to work with

here, namely the state |s⟩ ≡ |52s1/2,mj = −1/2,mi = +3/2⟩, for which ∆ERb is just

slightly greater than the energy of molecular states with N = 3.

Figure 6.2 shows potential energy curves resulting from the charge-dipole inter-

action close to the pair state |n = 49, ℓ > 3⟩Rb |N = 0⟩RbCs. Local minima in the

potentials can support bound states and result from the oscillatory nature of the

Rydberg electron wavefunction. Notably, the states evolving from this hydrogenic
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Figure 6.2: Potential energy curves for the Rb+RbCs system close to the
|n = 49, ℓ > 3⟩Rb |N = 0⟩RbCs manifold. (a) The energies of pair states as a function of
the distance Ram between Rydberg core and molecule. Energies are given relative to the
energy of the hydrogenic manifold when Ram → ∞. (b) Purple lines: potential energy curves
evolving from the pair states |52s⟩Rb |N = 2⟩RbCs (panel (i)), |52s⟩Rb |N = 1⟩RbCs (panel (ii)),
and |52s⟩Rb |N = 0⟩RbCs (panel (iii)). Energies are given relative to the energy of the pair state
when Ram → ∞. Green lines: vibrational wavefunctions of GPRyMs supported by these pair
potentials. The wavefunctions have been shifted to the corresponding vibrational energies.

manifold encounter curves where the Rydberg atom in the state |s⟩, to which they

are coupled by the charge–dipole interaction [112]. This results in these potential

curves acquiring s-wave character, which facilitates the creation of GPRyMs with

two-photon Rydberg excitation schemes. The green curves in Fig. 6.2 show the

vibrational wavefunctions of such GPRyMs supported by pair states that could be

accessed experimentally.3

For the remainder of this chapter, we focus on measuring the interaction shift

caused by this charge-dipole interaction. We use this interaction shift to engineer

atomic Rydberg blockade when a molecule is present. We utilise the pair state

|sG⟩ ≡ |s⟩Rb |G⟩RbCs, where |G⟩ ≡ |N = 0⟩ is the rovibrational and hyperfine ground

state of RbCs. The potential energy of this pair state is shown in Fig. 6.2(b)(iii). We

3These potential energy curves and wavefunctions were calculated by Rosario González-Férez
and H. R. Sadeghpour. These calculations use methods that are beyond the scope of this thesis
but are detailed in Refs. [109, 111, 202].
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note that this pair state supports a single GPRyM (Fig. 6.2(b)(iii), green), which we

will aim to observe experimentally in the future.

6.2 RbCs-Rb collisions

For the pair state |sG⟩, the range of the charge-dipole interaction is set by the radius

of the Rydberg state. The outermost maximum of the electron probability density

for the state |s⟩ occurs at 220 nm. In this section, we discuss how we use our optical

tweezer platform to achieve this sub-micrometre interparticle distance.

We begin the experiments discussed here by preparing a Rb atom in an 817 nm

tweezer and a RbCs molecule in a 1066 nm tweezer. The RbCs molecule is formed

in its rovibrational ground state |G⟩ by magnetoassociation and STIRAP (see

Chs 3 and 4). The Rb atom is prepared in the hyperfine ground state |g⟩ ≡
|5s1/2, f = 1,mf = +1⟩. As a side effect of the molecule formation process, both the

Rb atom and the RbCs molecule are primarily prepared in the motional ground

state.

To observe blockade, the charge-dipole interaction between the Rydberg atom

and the molecule must be greater than the power-broadened transition linewidth.

For our system, this is set by the Rabi frequency of 500(3) kHz with which we drive

the transition |g⟩ → |s⟩ and blockade therefore requires interactions shifts ≳ 1MHz.

The pair potential plotted in Fig. 6.2(b)(iii) predicts the atom-molecule distance

must be below a blockade radius ∼ 300 nm to observe this effect, a distance smaller

than the beam radii of the individual tweezers (∼ 1 µm). One approach to obtaining

inter-particle distances smaller than the beam radii of optical tweezers is to load

both particles into the same optical tweezer. However, we cannot do this here as the

expected lifetime due to collisional loss is < 1ms [345].

Instead, we utilise species-specific tweezers to realise sub-micrometre separations

between particles whilst mitigating collisional loss. The molecule and atom are

initially prepared in their respective tweezers of intensities I1066 = 53.8(7) kW/cm2

and I817 = 43.9(7) kW/cm2. The separation of the tweezers is Rt = 4 µm along the

x-axis. However, analogous to when tweezers containing Rb and Cs are merged

together during the molecule formation process (see Sec. 3.4.2), the separation of

the particles can differ significantly from Rt when the tweezers are close.

Figure 6.3 shows simulations of the behaviour of particles when two traps are

merged together along the x-axis. For this simulation, we use the calculated po-

larisabilities that are tabulated in Table 2.1. In Fig. 6.3(a) we show the potential

energy of the particles during the merging. The potentials for different Rt are
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Figure 6.3: Simulations of the merging of traps containing RbCs and Rb. (a) The
trapping potentials during the merging process. The solid (dashed) lines show the potential
from both tweezers (a single tweezer). The straight lines show the trajectories of the tweezer
centres and the potentials are offset for clarity. (i) Results for two molecules being merged
together. Both molecules are in a 1066 nm tweezer. (ii) Results for a molecule and an atom
being merged together which are trapped in a 1066 nm and 817 nm tweezer respectively. (b)
Dependence of the inter-particles distances for the scenarios depicted in (a) as a function of
the separation between the centre of the two tweezers Rt. The inset in (b)(ii) shows a zoom to
small values of Rt.

offset for clarity. The dashed lines show the potentials resulting from the individual

tweezers as the tweezer centres are swept along the bold trajectories. The solid

potentials show the combined effect of both tweezers. Fig. 6.3(a)(i) shows the case

if we were to start with two molecules both trapped in 1066 nm tweezers that are

merged together. When the tweezer separation is less than Rt ≈ 1.2 µm, the two

tweezers no longer satisfy the Rayleigh criterion and a wide single well is formed. At

this point, the two molecules come together and the inter-molecule distance Rmm

drops to zero. Fig. 6.3(b)(i) shows the dependence of Rmm on Rt: at separations

much larger than the beam waists (Rt ≫ w1066), Rmm ≈ Rt (dashed black line). As

the Rayleigh criterion is approached, Rmm sharply drops to zero. This sharp drop



CHAPTER 6. CHARGE-DIPOLE INTERACTIONS 122

makes it impractical to realise a stable value of Rmm ⪅ w1066 using two independent

tweezers due to fluctuations in the relative tweezer positions, which have a standard

deviation of approximately σ (Rt) = 50+50
−40 nm (see Sec. 3.4.2).4 In contrast, for two

particles of different species (here RbCs and Rb), the results are strikingly different.

Fig. 6.3(a)(ii) shows the trap potentials during this scenario. The red lines show

the potential experienced by RbCs: the solid (dashed) line shows the potential

resulting from both tweezers (only the 1066 nm tweezer). The solid (dashed) blue

line shows the potential experienced by Rb from both tweezers (only the 817 nm

tweezer). The ratio of the polarisabilities at the tweezer wavelengths (see Table 2.1)

is αRbCs
1066 /α

RbCs
817 ≈ 4.5 for RbCs [217] such that the molecule is confined much more

strongly by the 1066 nm tweezer than the 817 nm tweezer. Conversely, for Rb this

ratio is αRb
1066/α

Rb
817 ≈ 1/6.3 [218] and it is confined predominantly in the 817 nm

tweezer. This means that as the tweezers are brought together, each particle is only

slightly affected by the other’s tweezer. Therefore, the inter-particle separation Ram

follows the separation between the centre of the tweezers (Ram ≈ Rt) during most

of the merging trajectory. Fig. 6.3(b)(i) shows the dependence of Ram on Rt: for

small distances ∼ 100 nm, Ram < Rt albeit only slightly such that Ram can still be

controlled with reasonable precision.

We investigate loss due to collisions between a Rb atom in the state |g⟩ and a

RbCs molecule in the state |G⟩ to verify that we can hold an atom-molecule pair

sufficiently close to observe the charge-dipole interaction. Fig. 6.4(a) shows the

tweezer sweeps used for this measurement. The atom and molecule tweezers begin

separated by 4 µm along the x-axis (panel (i)). We sweep the atom tweezer along

the y-axis to a programmed tweezer separation (panel (ii)). The atom tweezer is

then swept along the x-axis such that it overlaps with the molecule tweezer in this

direction so that the tweezers are separated by Rt along the y-axis (panel (iii)). We

hold the atom at this position for 9.5ms before the sweeps are reversed and the

particle survival probabilities are measured (panel (iv)).

The survival probabilities of the atom and molecule for different tweezer separa-

tions are shown in Fig. 6.4(b). Molecule survival probabilities are obtained using

runs in which weakly bound molecules were successfully formed (see Sec. 4.3). The

upper panel shows the one-body survival probabilities from runs where either the Rb

4This is a potential problem for the study of molecule-molecule interactions in optical tweezers,
for which Rmm ∼ 500 nm must be achieved to realise interactions on the scale of 1 kHz× h [47]. In
future works, we plan to mitigate fluctuations in Rmm by transferring molecules to an optical lattice
at a magic wavelength λ [98] for which molecules can be stably trapped at distance Rmm = λ/2 (see
Sec. 8.2.2). For quantum information and simulation applications, it is more practical to extend
the effective range of molecule-molecule interactions by mediating them with resonant Rydberg
atoms (see Ch. 7).
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Figure 6.4: Collisions between ground-state RbCs molecules and Rb atoms held in
separate species-specific optical tweezers. (a) Tweezer positions during the measurement.
(i) The atom and molecule begin with a separation of 4 µm along the x-axis. The atom
(molecule) is stored in an 817 nm (1066 nm) tweezer, shown as a green circle (orange square).
(ii) The 817 nm tweezer is swept along the y -axis so its separation from the 1066 nm tweezer
in this direction is Rt. (iii) The 817 nm tweezer is swept along the x-axis to overlap with the
1066 nm tweezer where it is held for 9.5ms. (iv) The 817 nm tweezer is returned to its original
position where the particle survival is measured. (b) Particle survival probabilities as a function
of the tweezer separation Rt. Upper panel: experimental runs where either a single Rb atom
(blue squares) or a single RbCs molecule (red circles) is present. Lower panel: runs where both
the atom and the molecule are present. The dashed lines (and shaded regions) correspond to
the mean values (and errors) from the one-body cases. (c) The potential energy of the atom
(blue) and molecule (red) resulting from their own tweezer (dashed lines) and both tweezers
(solid lines) for Rt = 2000 nm (upper panel) and Rt = 420 nm (lower panel), relative to the
potential minima.

atom or the RbCs molecule is present. The atomic survival probability is 97.2(4)%

and the molecule survival probability is 48(2)%.5 By compensating for the return

STIRAP efficiency, we predict that a molecule in |G⟩ is present in 53(3)% of runs

in which a weakly bound molecule is created. The lower panel in Fig. 6.4(b) shows

the two-body survival probabilities for runs in which both an atom and a weakly

bound molecule are initially prepared. When the tweezers are brought together,

the wavefunctions of the particles begin to overlap and collisions cause loss of both

the molecule and atom. We observe a reduction in the atom survival probability

by 58(6)%, commensurate with the probability a molecule in state |G⟩ is present.
5These experiments were performed before the molecule formation stages were fully optimised.

For this data, the one-way STIRAP fidelity FSTIRAP = 91(1)%. Furthermore, magnetoassociation
was performed in a deeper 1066 nm tweezer than for most of the experiments presented in Chapter 4,
such that loss of molecules in the state |F ⟩ prior to STIRAP was significant. These two factors are
the primary limit to the molecule survival probability as presented here.
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From a Gaussian fit, we find that the loss falls to 1/e2 of its maximum value at

Rt = 250(20) nm, which meas that we are able to hold the particles sufficiently close

to resolve the charge-dipole interaction.

6.3 Rydberg blockade

We now demonstrate the blockade of excitation of a Rb atom to |s⟩ when a RbCs

molecule is sufficiently close. As with blockade by an additional Rydberg atom (see

Sec. 5.8), this effect occurs due to the energy shift of a pair state being larger than

the linewidth of the Rydberg transition. Here we study the pair state |sG⟩, the
energy of which is shown in Fig. 6.2(b)(iii). This linewidth of the transition is set

by the Rabi frequency with which we excite to |s⟩ (500(3) kHz). Blockade therefore

requires interactions shifts ≳ 1MHz, corresponding to Ram ≲ 300 nm.

To demonstrate blockade, we repeat the routine used to measure collisional loss,

but use a shorter hold time of 3 ms when the tweezers are close together. We drive the

atomic Rydberg transition |g⟩ → |s⟩ during this hold time while the trapping light is

still present. Atoms excited to state |s⟩ are anti-trapped and ejected from the tweezers,

mapping Rydberg excitation onto atom loss (see Sec. 5.5). The separation between

the centre of the tweezers for this measurement is Rt = 420(40) nm; this separation

is sufficient to suppress collisional loss (Fig. 6.4(b), purple dotted line). As will be

discussed shortly, this equates to an atom-molecule separation of Ram = 310(40) nm

(Fig. 6.4(c), lower panel).

Figure 6.5 shows the blockade of the Rydberg transition of the Rb atom when a

RbCs molecule in the state |G⟩ is present. Fig. 6.5(a) shows the survival probability

of the Rb atom as the Rydberg pulse duration is varied. For experimental runs

where the molecule tweezer is empty (green circles), we observe Rabi oscillations

between states |g⟩ and |s⟩ with a fitted frequency of Ω = 500(3) kHz. The observed

damping is primarily caused by laser phase noise. In contrast, for runs where a

molecule in the state |G⟩ is present (purple squares), we observe a suppression of

the excitation to the state |s⟩. Here, the molecule is sufficiently close to the atom

that the energy shift of the pair state |sG⟩ due to the charge-dipole interaction is

significant and excitation during the Rydberg pulse is blockaded. The frequency of

the residual Rabi oscillations is almost identical to that for the unblockaded case.

This is due to the sharp onset of the interaction shown in Fig. 6.2(b)(iii) combined

with shot-to-shot variations in the relative alignment of the tweezers. For runs with

the largest separations, the energy shift is smaller than the Rabi frequency of the

Rydberg transition leading to a signal at the unshifted Rabi frequency.
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Figure 6.5: Rydberg blockade due to the charge-dipole interaction between an atom
and polar molecule. (a) Survival probability of the Rb atom as a function of the Rydberg
pulse duration for Ram = 310(40) nm. Atoms excited to |s⟩ are ejected from the trap and lost.
Events are post-selected on the detection of a molecule in |G ⟩ (purple squares) or unsuccessful
formation of a molecule (green circles). The solid lines show the results of simulations using the
Lindblad master equation using our estimated atom-molecule separation. (b) Rb atom survival
probability as a function of the effective detuning ∆ using a 1 µs pulse for Ram = 700(40) nm
(panel (i)) and Ram = 310(40) nm (panel (ii)). The detuning is defined relative to the transition
centre in the absence of a molecule. Symbols are as in (a) and solid lines show the results of
simulations using the estimated atom-molecule separations.

Figure 6.5(b) shows the effect of changing the atom-molecule separation Ram on

the Rydberg blockade. For this experiment, we fix the pulse duration to approximate a

π pulse and scan the effective detuning ∆ of the light driving the Rydberg transition.

For Ram = 700(40) nm, shown in Fig. 6.5(b)(i), the charge-dipole interaction is

negligible. Here, the dominant interaction is van der Waals, leading to a shift of

∼ 0.1 kHz [346]. Consequently, the presence of a molecule does not affect the

Rydberg excitation. However, for Ram = 310(40) nm, shown in Fig. 6.5(b)(ii), the

presence of a molecule leads to an observed shift of the Rydberg transition to lower

energy, as expected. The transition is significantly broadened due to the sensitivity

of the charge-dipole interaction to the atom-molecule separation. The broadening

causes a concomitant reduction in the signal amplitude.

The dynamics of the atom-molecule system are extremely sensitive to small
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Figure 6.6: Results of the atom-molecule separation simulation for the experiment
shown in Fig. 6.5(a). The probability distributions of the tweezer displacements (blue) and
atom-molecule displacements (purple) are shown along the three experimental axes (panels
(a)-(c)) and the inter-particle axis (panel (d)). The best estimate for each parameter is taken
to be equal to the mean of the distribution (indicated by the dashed lines) and the associated
systematic uncertainty is read from the 1σ bounds (shown as the darker shaded regions).

changes in the separation Ram between atom and molecule. Therefore, a good

estimate of Ram is critical for the simulations to accurately reproduce the observed

dynamics. The relative alignment of the tweezers can drift on the order of∼ 100 nm on

the timescale of days as laboratory conditions such as the humidity and temperature

fluctuate. We correct for this by, immediately after obtaining the data shown in

Fig. 6.5, repeating collision measurements like that shown in Fig. 6.4(b) to measure

the radial separations between the centre of the tweezers. For the experimental runs

where the atom and molecule were close (Fig. 6.5(a) and (b)(i)), we measure the

tweezer separations in the x- and y-axes as {∆xt, ∆yt} = {380(40), 150(40)}nm
respectively. For experimental runs where the atom and molecule were further apart

(Fig. 6.5(b)(ii)), we measure {∆xt, ∆yt} = {40(100), 760(30)} nm. The separation in

the axial direction is much more stable and we estimate that ∆zt = 0(100) nm for

all experimental runs.6 For these separations, the numbers in parentheses represent

the systematic uncertainties resulting from the fit of the collision measurements and

the distance calibrations of the 2D AOD used to control the position of the 817 nm

tweezer (see Sec. 5.5)

To estimate the corresponding atom-molecule displacements {∆xam, ∆yam, ∆zam}
and their systematic uncertainties we use a Monte Carlo method. For each iteration

6The tweezers were aligned axially with the measurement shown in Fig. 5.13 approximately a
week prior to the measurements presented here.



CHAPTER 6. CHARGE-DIPOLE INTERACTIONS 127

of the Monte Carlo method, the tweezer displacements along each axis are sampled

from normal distributions with the means equal to our best estimates and standard

deviations equal to the associated systematic uncertainties on these values. The three-

dimensional potential landscape is calculated for both the atom and molecule, and

each are placed at their potential minima. The tweezer and atom-molecule separations

are then calculated. With 104 iterations, we find that when the molecule and atom are

held close, {∆xam, ∆yam, ∆zam} = {280(40), 110(30), 0(80)}nm, Rt = 420(40) nm,

and Ram = 310(40) nm. The best estimate for each parameter is taken to be equal

to the mean of its distribution and the associated systematic uncertainty is read

from the 1σ bounds; the distributions from this simulation are shown in Fig. 6.6.

For experimental runs where the atom and molecule were further apart, we find

that {∆xam, ∆yam, ∆zam} = {40(90), 690(40), 0(110)} nm, Rt = 770(30) nm, and

Ram = 700(40) nm.

In these simulations, we use the calculated polarisabilities for each species that

are listed in Table 2.1. Accurately calculating the polarisability of the RbCs molecule

is more challenging compared to calculating the polarisabilities of alkali-metal atoms

like Rb and Cs because of the more complex energy level structure of the molecule.

For example, Blackmore et al. [291] measured the isotropic polarisability of the RbCs

vibrational ground state to be 2.02(4)×103×4πε0a
3
0 at a wavelength of 1064.513 nm.

This measured value is ∼ 10% higher than the calculated value of 1.8× 103 × 4πε0a
3
0

[217]. In our calculations we have incorporated this uncertainty in the molecule

polarisability. For example, for the experiment presented in Fig. 6.5(a), we find that

when the RbCs polarisabilities at both wavelengths are scaled by 10% there is no

significant change to Ram. When the ratio between the two polarisabilities is scaled

by 10% the change to Ram is on the order of ∼ 2%, which is much less than the

uncertainty resulting from the systematic uncertainties on the tweezer displacements.

The solid lines in Fig. 6.5 show results of simulations of the dynamics of the

system.7 The system is simulated by solving the Lindblad master equation

ρ̇ = −i[H, ρ] + L[ρ] , (6.4)

where L is the Lindblad superoperator, ρ is the density matrix, and H ≡ Ha +Hm +

V (Ram) is the model Hamiltonian describing the atom-molecule system. Ha and

Hm are the uncoupled, single particle Hamiltonians corresponding to the atom and

molecule respectively and V (Ram) is the interaction potential between the atom and

the molecule. The atom is approximated as a two-level system with Rabi frequency

Ω and detuning ∆ from the transition |g⟩ → |s⟩. The interaction shift for the pair

7These simulations were performed by Archie C. Baldock.
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Figure 6.7: Energy shift of the pair state |sG ⟩ as a function of the separation Ram

between the Rb Rydberg atom and RbCs molecule. The blue line shows the result obtained
by averaging the interaction using a Gaussian window with standard deviation of 53 nm: this
energy is used for the simulation of the system dynamics. The shaded blue region shows the
range of potentials obtained when averaging with a standard deviation between 50.3(4) nm
and 65.2(6) nm. The purple line shows the energy shift for no averaging. The shaded vertical
region highlights the range of Ram relevant to the blockade measurements presented here.

state |gG⟩ is negligible for the values of Ram in our experiments, so the only non-zero

interaction term in the simulation is the energy shift of the pair state |sG⟩. We

neglect spontaneous emission from the state |s⟩ as this occurs on timescales longer

than the dynamics studied here (the blackbody-limited lifetime for the state |s⟩ is
τ
(300)
s = 70 µs, see Sec. 5.5).

To reproduce the observed dynamics in the absence of a molecule, we find it

important to include dephasing from the Rydberg lasers. We achieve this using

Lindblad operators −1
2
γρgs and −1

2
γρsg which incorporate the decay of the coherences

between the ground and Rydberg states. Using the measured Rabi frequency, we

empirically find a value for γ = 0.1MHz that matches the observed dynamics in the

absence of a molecule. This corresponds to phase noise resulting from the stabilisation

of the excitation lasers to the ULE cavity and in future could be suppressed using

established techniques [347–349].

When solving the dynamics for the atom-molecule system, we take into account

the finite wavefunction spread of the atom and molecule. As the atom and molecule

are predominantly prepared in the motional ground state of their respective tweezers,

we average the interaction between |s⟩ and |G⟩ over the ground state wavefunction

of relative motion. For this, we calculate the confinement length for relative motion

βrel ≡ (1/2π)
√
h/µν, where µ = mRbmRbCs/(mRb +mRbCs) is the reduced mass of

the atom-molecule pair and ν is the trap frequency for relative motion (see Eq. (3.1)).
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For the tweezer intensities used here, the trap frequencies resulting from just a

species’ own tweezer are {νRb,x, νRb,y, νRb,z} = {78(2), 70(1), 15.6(4)} kHz for Rb and

{νRbCs,x, νRbCs,y, νRbCs,z} = {26.8(4), 23.9(3), 5.3(1)} kHz for RbCs. The traps are

primarily separated along the two radial directions, and considering just these two

directions (i.e. νj =
√
νj,xνj,y for species j), we obtain βrel = 50.3(4) nm. In contrast,

if we consider all three directions (i.e. νj = 3
√
νj,xνj,yνj,z for species j), we find that

βrel = 65.2(6) nm. We expect that the true value of βrel is between these two cases.

The blue region in Fig. 6.7 shows the effect of averaging the energy shift of the pair

state |sG⟩ with a Gaussian window where the standard deviation is between these

two values of βrel. The purple line shows the unaveraged potential and the solid blue

line shows the energy shift obtained with β = 53nm that is used in the simulations

of the dynamics.

When simulating the system, we take into account shot-to-shot fluctuations in

the alignment of the tweezers. We have independently measured the relative drift

of the tweezers have a standard deviation of approximately 50 nm in the radial

directions (along the x- and y- axes, see Sec. 3.4.2). We are unable to perform these

measurements in the axial direction (along the z-axis) with the same precision due

to much larger confinement lengths in this direction and take the estimate of the

radial drift for this axis as well. Our estimate for the standard deviations in tweezer

separations is therefore {σx,σy,σz} = {50, 50, 50} nm. We incorporate this drift

into the simulations of the dynamics by repeating the simulation for 200 iterations.

For each iteration of the simulation, we randomly sample {∆xam, ∆yam, ∆zam} from

a normal distribution. We construct the distribution using our best estimate of

the atom-molecule separation as the mean and our estimate of the shot-to-shot

fluctuations in the tweezer separations as the standard deviation of the distribution.

We calculate Ram and solve Eq. (6.4); the results of these iterations are then averaged

for each time or detuning.

To map the results of the simulations of the dynamics onto the results of the

experiments, we include state preparation and measurement errors. Following the

approach of de Léséleuc et al. [350], we include terms η, ϵ, and ϵ′ with each term

measured experimentally. The term η accounts for preparation errors and corresponds

to the probability the atom was not prepared in the state |g⟩. We find that for this

experimental sequence, η = 0.13 which is predominantly limited by Raman scattering

from the optical tweezers in which the atom is held during the molecule formation

stages. The term ϵ accounts for loss of atoms in the state |g⟩ which were not excited

to the state |s⟩. We measure ϵ = 0.02, limited by collisions with background gas

particles in the vacuum chamber. Finally, ϵ′ = 0.06 accounts for the probability

that an atom in the state |s⟩ decays before it is lost from the optical tweezer (see
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Sec. 5.5). We convert the probability P̃g that the atom populates the state |g⟩
(obtained from the simulations) into the experimentally measured atom-survival

probability Pg using [350]

Pg = η(1− ε) + (1− η)(1− ε)
[
P̃g + ε′P̃s

]
, (6.5)

where P̃s is the population of state |s⟩ that we also obtain from solving Eq. (6.4).

We find that the results of our simulations (Fig. 6.5, solid lines) are in good

agreement with the experimental data. Our simulations reproduce the fact that

there are residual Rabi oscillations in the presence of a molecule, corresponding to

runs in which the atom-molecule separation was larger than the blockade radius.

Furthermore, the simulations predict that when varying ∆ in the blockaded case,

there is a broadening of the transition due to fluctuations in Ram which causes a

reduction in the signal amplitude. The exception to this agreement is the appearance

of a shoulder in the simulation results shown in Fig. 6.5(b)(ii) which is highly sensitive

to fluctuations in Ram: we find that small changes of Ram on the scale of ∼ 10 nm

can cause large changes is the simulated behaviour.

6.4 Summary

We have demonstrated blockade of the excitation of Rb to the Rydberg state |s⟩
due to the charge-dipole interaction with a RbCs molecule in the rovibrational

ground state. To realise this regime, we hold the atom and molecule at a distance

of Ram = 310(40) nm with species-specific tweezers such that significant collisional

loss is avoided. This represents the first observation of a charge-dipole induced shift

in an ultracold setting and opens up many new research directions. In particular,

we have highlighted the potential to photoassociate GPRyMs using this platform,

which the calculations presented here predict exist for separations Ram ∼ 220 nm.



7 Resonant dipole-dipole interactions

between molecules and Rydberg

atoms

In this chapter, we explore how resonant dipole-dipole interactions can be engineered

between Rydberg atoms and molecules. These interactions are promising for quantum

information and simulation applications because they extend to longer range than

the charge-dipole interactions discussed in Ch. 6. We begin with a discussion of

the theory of these interactions and explore how they could mediate interactions

and quantum gates between molecules. We detail how to choose molecular and

atomic transitions that are resonant. We perform microwave spectroscopy of these

transitions and present preliminary observations of atomic Rydberg blockade caused

by resonant dipole-dipole interactions with a nearby molecule.

7.1 Dipole-dipole interactions

To realise longer-range interactions between molecules and Rydberg atoms, we

engineer resonant dipole-dipole interactions between pairs of atoms and molecules.

Analogous to dipole-dipole interactions between two Rydberg atoms [50], these

interactions give rise to an energy shift

∆E = − C3

R3
am

, (7.1)

where Ram is the atom-molecule separation and C3 is the resonant dipole–dipole

interaction coefficient.

Following the approach of Wang et al. [101] and Zhang & Tarbutt [102], we

consider a hybrid system composed of molecules and Rydberg atoms. The components

of this system are shown in Fig 7.1(a). The molecules and (ground-state) atoms are

trapped in species-specific optical tweezers that can be dynamically moved. The

relevant atomic states are the ground state |g⟩ and two Rydberg states, here labelled

131
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Figure 7.1: A hybrid quantum system of molecules and Rydberg atoms. (a) The
physical system considered here. A Rb Rydberg atom is equidistant between two trapped RbCs
molecules. The atom-molecule separation is Ram. (b) Energy levels required for resonant
interactions between molecules and Rydberg atoms. Resonant energy exchange can occur
when there is an atomic transition |r⟩ → |r ′⟩ with equal and opposite energy to a molecular
transition |M⟩ → |M ′⟩.

|r⟩ and |r′⟩, for which there is an allowed one-photon transition |r⟩ → |r′⟩. The

relevant states in the molecule are two rotational states, here labelled |M⟩ and |M ′⟩,
that also have an allowed one-photon transition |M⟩ → |M ′⟩.

To engineer resonant dipole-dipole interactions, the molecular and Rydberg

transitions must be resonant with each other (i.e. their energies must be equal and

opposite). This is achieved, for example, if the pair states |rM⟩ ≡ |r⟩Rb |M⟩RbCs and

|r′M ′⟩ ≡ |r′⟩Rb |M ′⟩RbCs are degenerate as Ram → ∞. In the following discussion,

we take this to be the case and denote the energy of the transition |M⟩ → |M ′⟩ as
EM and of the transition |r⟩ → |r′⟩ as Er (Er has opposite sign to EM). The energy

levels of the system are shown in Fig 7.1(b). The resonance condition can be written

as requiring that EM + Er = 0. We take the energy of the single-particle states

|M⟩ and |r⟩ to be zero and assume that the effective detuning ∆ when driving the

Rydberg excitation |g⟩ → |r⟩ is zero.
The Hamiltonian describing the hybrid system is [102]

Ĥ =
∑
a

Ĥa
a +

∑
m

ĤM
m +

∑
a

Ĥal
a +

1

2

∑
i

∑
j

ĤDD
ij . (7.2)

Here,

Ĥa
a = Er |r′⟩ ⟨r′|+ Eg |g⟩ ⟨g| (7.3)

is the single-particle Hamiltonian for Rydberg atom a and

ĤM
m = EM |M ′⟩ ⟨M ′| (7.4)
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is the single-particle Hamiltonian for molecule m. Eg is the energy of the state |g⟩.
The atom-light interaction for atom a is

Ĥal
a =

1

2
hΩ (|g⟩ ⟨r|+ |r⟩ ⟨g|) , (7.5)

the effect of which is to couple the ground state |g⟩ to the Rydberg state |r⟩ with
Rabi frequency Ω. For these three terms, the sums in Eq. (7.2) run over all atoms

and molecules in the system.

We assume that the only interactions between particles in the system are resonant

dipole-dipole interactions. The Hamiltonian representing this interaction between

particles i and j is [71, 101]

ĤDD
ij =

1

2
V DD
ij

(
σ̂+
i σ̂

−
j + σ̂+

i σ̂
−
j

)
, (7.6)

where σ̂+
i is the Pauli raising operator for particle i. If particle i is a molecule, this

operator transfers molecules in the state |M⟩ to the state |M ′⟩, and if particle i is a

Rydberg atom, it transfers atoms in the state |r′⟩ to the state |r⟩. The corresponding
lowering operator σ̂−

i has the opposite effect. The sum involving HDD
ij in Eq. (7.2)

runs over all pairs of particles and the coefficient of 1/2 compensates for the double

counting of these pairs. The effect of this Hamiltonian is to transfer an excitation

with energy |EM| = |Er| between the particles. The atomic ground state |g⟩ is far
off resonant and, therefore, does not participate in this interaction.

The strength of the dipole-dipole interaction between two particles i and j is

given by

V DD
ij =

didj
4πε0R3

. (7.7)

Here, R is the distance between the particles and di is the TDM between the relevant

states in particle i (the states |M⟩ and |M ′⟩ for molecules and the states |r⟩ and |r′⟩
for atoms). For typical polar molecules d ∼ 1D [47] and for typical Rydberg states in

alkali atoms d ∼ 10 kD [101, 304]. This means that we can ignore molecule-molecule

interactions and, by enforcing the restriction that we excite only a single atom to a

Rydberg state, consider just interactions between molecules and Rydberg atoms.

These resonant dipole-dipole interactions mean that Rydberg atoms can be

used to mediate quantum gates between molecules. Such a gate is approximately

dr/dM ∼ 104 times faster than a raw molecule-molecule gate, where dr (dM) is the

TDM of the Rydberg atom (molecules). For example, Wang et al. [101] showed

that, for a system where a single atom is halfway between a pair of molecules (see
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Fig 7.1(a)), it is possible to realise the entangling gate [101]
−1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 (7.8)

in the basis {|MgM⟩ , |MgM ′⟩ , |M ′gM⟩ , |M ′gM ′⟩} by performing a 2π pulse with

the Rydberg excitation light. Here the states of the system are written as e.g.

|M ′gM⟩, by which we mean that the first molecule is in the state |M ′⟩, the atom is

in the state |g⟩, and the second molecule is in the state |M⟩. This gate performs

the exchange |MgM ′⟩ ↔ |M ′gM⟩, such that, if the states |M⟩ and |M ′⟩ are used

to encode quantum information, this information is transferred between molecules.

This particular gate requires the Rabi frequency for Rydberg excitation to be [101]

Ω =

√
2

4k2 − 1

V DD
Mr

h
(7.9)

for positive integer k. For k = 1, this corresponds to Ω =
√

2/3V DD
Mr /h such that

the strong molecule-Rydberg interactions set the timescale of the dynamics, which

can be on the order of ∼ 1MHz for Ram ∼ 1 µm.

7.2 Choice of states

To realise resonant interactions, we require a pair of transitions that satisfy the

resonance condition EM + Er = 0. For typical transitions between Rydberg states in

alkali atoms, Er is in the microwave regime. This makes a rotational transition in

the molecule the natural choice to realise resonant exchange.

We prepare RbCs molecules in the rovibrational and hyperfine ground state |G⟩
at magnetic field B0 = 181.699(1)G (see Ch. 4). For this chapter, we drive σ+

transitions from this state so that we remain in spin-stretched states, which have

well defined projections of rotational angular momentum and nuclear spin [280], and

label these states |N ,MN⟩. Allowed rotational transitions are those with |∆N | = 1.

|G⟩ ≡ |0, 0⟩ and a σ+ transition is one where ∆MN = ∆N .

Choosing to remain in the spin-stretched states offers several advantages. Firstly,

the nuclear spins of the constituent atoms act as spectators and can be ignored.

Secondly, the composition of the state remains constant as a function of magnetic

field, which eliminates potential complications when tuning the transition energies to

satisfy the resonance condition. Furthermore, molecules in these states have maximal

dipole moments which maximises interaction strengths.
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Figure 7.2: Atomic Rydberg transitions near resonant with molecular transitions. The
points show the energies Er of stretched Rydberg transitions accessible when using a two-photon
excitation scheme. The extent of each point shows the tuneability of that transition with a
magnetic field in the range 150G ≤ B ≤ 250G. The horizontal lines show −EM for the labelled
molecular transitions. The resonance condition is satisfied when an atomic transition crosses a
molecular transition. The green star highlights the atomic transition |d⟩ → |p⟩ that we use to
engineer resonant interactions.

We consider Rydberg states of Rb and Cs that could be used to satisfy the

resonance condition. When choosing pairs of Rydberg states, the transition between

them must be electric-dipole allowed. Explicitly, this means that the transition

satisfies |∆ℓ| = 1, |∆j| ≤ 1, and |∆mj| ≤ 1.1 There is no selection rule on the change

in principal quantum number ∆n; this allows a large range of transition energies

to be realised. As with the molecule, to avoid the state composition changing with

magnetic field, we choose to stay in stretched states with maximal |mj +mi| (i.e.
mj = ±j = ±(ℓ+s), where s = 1/2 is the electron spin, and mi = ±i). The selection
rules for the Rydberg transitions then simplify to ∆ℓ = ∆j = ∆mj = ±1. The

Rydberg excitation scheme used in our experiment places a further limitations on

the initial Rydberg state |r⟩: we excite Rb atoms from the manifold 5s1/2 to Rydberg

states with two photons such that we can excite to Rydberg states ns or nd (those

with ℓ = 0 or 2). For Cs, we consider the case where a similar two-photon excitation

scheme is used to excite atoms from the manifold 6s1/2 to Rydberg states ns or nd.

In Fig. 7.2, we plot the energy Er of allowed transitions |r⟩ → |r′⟩ for Rb (left

panel) and Cs (right panel). The energies are shown as a function of n and are

calculated with ARC [304]. The vertical extent of each transition shows the range

1Additionally, mj = 0 → 0 is not allowed if ∆j = 0.
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of Er achievable by tuning the magnetic field in the range 150G ≤ B ≤ 250G.2

In our system, the quantisation axis is set by the magnetic field and during the

exchange of resonant photons the quantity MN +mj is conserved. Therefore, for an

allowed resonant exchange, ∆mj in the Rydberg atom must be equal and opposite to

∆MN in the molecule (i.e. ∆mj = −∆MN ). Conservation of energy further restricts

this condition. For example, molecular transitions with ∆MN = ∆N = +1 have

EM > 0. To satisfy both the resonance condition EM + Er = 0 and the condition

∆mj = −∆MN , for Er < 0 we only consider transitions with ∆ℓ = ∆j = ∆mj = −1

(d → p transitions (green)). Similarly, for Er > 0 we consider only transitions with

∆ℓ = ∆j = ∆mj = +1 (either s → p (blue) or d → f (orange) transitions). The

dashed horizontal lines on the figure show −EM for stretched molecular transitions up

to |5,+5⟩ ↔ |6,+6⟩: when a Rydberg transition crosses the one of these molecular

transitions, the transition pair satisfies the resonance condition EM + Er = 0.

To understand the shape of the curves in Fig. 7.2, we consider the energy

structure of a Rydberg atom. The binding energy EB of a Rydberg electron in

free space is given by Eq. (5.1). The energy of the Rydberg transition |r⟩ → |r′⟩
is Er = EB

r′ − EB
r . By expanding this equation in powers of δ/n, we expect that

|Er| ∝ n−3 for {∆n, δ, δ′} ≪ n. When fitting the Rb d → p branch marked by the

green star in Fig. 7.2, we find that this exponent is −2.63(1) for the range of n

shown.

The energy of the Rydberg transitions gets smaller as the difference between the

quantum defects tends to an integer. As an example, we consider the case where two

Rydberg states with an allowed transition between them are degenerate such that

Er = 0. This occurs when EB
r′ = EB

r =⇒ (n′ − δ′)2 = (n− δ)2. Here n (n′) is the

principal quantum number and δ (δ′) is the quantum defect of the state |r⟩ (|r′⟩).
Therefore, Er = 0 when ∆n = ∆δ ≡ δ′ − δ.3 As n and n′ are positive integers, ∆n is

an integer. However, there is no selection rule for ∆n. This means that whenever ∆δ

is an integer, there will be an allowed transition with Er = 0. As ∆δ becomes further

from an integer, |Er| becomes larger. This is seen in the data presented in Fig. 7.2:

for a given value of n, the transition with the smallest |Er| is a Cs d → p transition.

It is for this transition that ∆δ is closest to an integer (see the δ(ℓ+ 1)− δ(ℓ) values

in Table 6.1) and the value of ∆n = +1 for this transition is the nearest integer to

2For simplicity, here we ignore the diamagnetic shifts of the Rydberg states. Including the
diamagnetic term typically corrects the calculated values of Er for these stretched transitions on
the order of ∼ 100MHz × h. Therefore, it is important to include the diamagnetic term once a
transition candidate has been chosen.

3Mathematically, we can also have Er = 0 when 2n+∆n = δ′ + δ. However, this results in
the effective principal quantum number n∗ ≡ n − δ of one of the states being negative which is
unphysical.
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∆δ = δ(p)− δ(d) = 1.08.

For a given molecular transition |M⟩ → |M ′⟩, there can exist multiple Rydberg

transitions |r⟩ → |r′⟩ for which the resonance condition EM + Er = 0 is satisfied.

These are shown in Fig. 7.2 where multiple Rydberg transitions cross some molecular

transitions. To choose the best Rydberg transition for a given molecular transition,

we use a cost function C = n4/dr. For each molecular transition, we select the

atomic transition with the lowest value of C. This cost function is somewhat

arbitrary, but we choose to strongly favour small values of n to maximise the Rabi

frequency with which we can drive the transition |g⟩ → |r⟩ (which scales as n−3, see

Sec. 5.2) and minimise the impact of dc Stark shifts caused by stray electric fields

in the science cell (which scale as n7, see Sec. 5.6). For similar n, the cost function

prefers transitions with large values of dr to maximise V DD
Mr . We exclude transitions

for which the resonance condition cannot be satisfied in the magnetic field range

150G ≤ B ≤ 250G: this means that we do not significantly have to change the

magnetic field from the molecule-formation field. We denote the magnetic field at

which the resonance condition is satisfied as Bres.
4 Stretched Rydberg transitions

with minimal C for the states |M⟩ up to |5,+5⟩ in RbCs are shown in Table 7.1 for Rb

and Cs atoms. This table also includes the zero-temperature and blackbody-limited

lifetimes τ (0) and τ (300) at 300K for each Rydberg state |r⟩.

We choose to use the RbCs transition |3,+3⟩ → |4,+4⟩ and the stretched

transition between the 83d and 84p manifolds of Rb. Explicitly, this transition

is between the state |d⟩ ≡ |83d5/2,mj = +5/2,mi = +3/2⟩ and the state |p⟩ ≡
|84p3/2,mj = +3/2,mi = +3/2⟩. This choice strikes a reasonable balance between

the experimental challenges of exciting an atom to a Rydberg state with relatively

high n and the necessity to transfer the molecule from the state |G⟩ to the state |3,+3⟩
with successive microwave pulses. We note that the RbCs transition |2,+2⟩ → |3,+3⟩
and the stretched transition between the 64d and 65p manifolds of Cs have a lower

value of C and require less microwave pulses for molecular state preparation. However,

we do not currently have the lasers required for Rydberg excitation of Cs. In future,

we will also to study resonant interactions between RbCs and Cs with this choice of

states.

4Again, here we calculate Bres by considering only the linear Zeeman shift of the Rydberg
states. This means that the true value of Bres can shift on the order of ∼ 10G for these stretched
transitions when including the diamagnetic contribution to the Zeeman shift. This is will be
included shortly when a transition pair has been chosen.
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Table 7.1: Transition pairs suitable for resonant dipole-dipole interactions between RbCs
molecules and Rb or Cs Rydberg atoms. For each molecular transition |N,MN⟩ → |N ′,M ′

N⟩
we give the Rydberg transition nℓ→ n′ℓ′ which has minimal C . Only stretched Rydberg states
with mj = j = ℓ+ s, where s = 1/2, are considered. Tabulated quantities are as described in
the text.

RbCs molecule Rb Rydberg atom

Transition

|N ,MN⟩ → |N ′,M ′
N⟩

EM/h

(MHz)

Transition

nℓ→ n′ℓ′
Bres

(G)

dr

(kD)

C/106

(1/kD)

τ (0)

(ms)

τ (300)

(ms)

|0, 0⟩ → |1,+1⟩ 980 138d → 139p 154.7 40.7 8.9 2.8 0.75

|1,+1⟩ → |0, 0⟩ -980 143d → 142f 156.7 44.4 9.4 3.1 0.82

|1,+1⟩ → |2,+2⟩ 1961 106d → 107p 184.6 23.9 5.3 1.2 0.41

|2,+2⟩ → |1,+1⟩ -1961 109d → 108f 163.6 25.7 5.5 1.3 0.44

|2,+2⟩ → |3,+3⟩ 2941 91d → 92p 165.2 17.5 3.9 0.78 0.29

|3,+3⟩ → |2,+2⟩ -2941 94d → 93f 162.1 19.1 4.1 0.86 0.31

|3,+3⟩ → |4,+4⟩ 3921 83d → 84p 237.5 14.5 3.3 0.59 0.23

|4,+4⟩ → |3,+3⟩ -3921 85d → 84f 168.5 15.6 3.4 0.63 0.25

|4,+4⟩ → |5,+5⟩ 4902 125d → 125p 230.3 0.4 640 2.0 0.60

|5,+5⟩ → |4,+4⟩ -4902 79d → 78f 211.8 13.4 2.9 0.51 0.21

|5,+5⟩ → |6,+6⟩ 5882 72d → 73p 240.6 10.9 2.5 0.38 0.17

RbCs molecule Cs Rydberg atom

Transition

|N ,MN⟩ → |N ′,M ′
N⟩

EM/h

(MHz)

Transition

nℓ→ n′ℓ′
Bres

(G)

dr

(kD)

C/106

(1/kD)

τ (0)

(ms)

τ (300)

(ms)

|0, 0⟩ → |1,+1⟩ 980 96d → 97p 167.1 20.9 4.1 0.54 0.26

|1,+1⟩ → |0, 0⟩ -980 — — — — — —

|1,+1⟩ → |2,+2⟩ 1961 73d → 74p 156.2 11.9 2.4 0.23 0.13

|2,+2⟩ → |1,+1⟩ -1961 120d → 118f 154.3 27.9 7.4 1.1 0.45

|2,+2⟩ → |3,+3⟩ 2941 64d → 65p 225.7 9.0 1.9 0.15 0.091

|3,+3⟩ → |2,+2⟩ -2941 104d → 102f 169.3 20.9 5.6 0.69 0.32

|3,+3⟩ → |4,+4⟩ 3921 58d → 59p 248.9 7.4 1.5 0.11 0.070

|4,+4⟩ → |3,+3⟩ -3921 94d → 92f 166.6 17.0 4.6 0.50 0.24

|4,+4⟩ → |5,+5⟩ 4902 119d → 119p 210.1 4.4 45 1.0 0.44

|5,+5⟩ → |4,+4⟩ -4902 87d → 85f 158.7 14.5 4.0 0.40 0.20

|5,+5⟩ → |6,+6⟩ 5882 112d → 112p 234.5 3.9 40 0.86 0.38
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7.3 Microwave spectroscopy

Having chosen to use the Rydberg transition |d⟩ → |p⟩ and the molecular transition

|3,+3⟩ → |4,+4⟩, we now consider how to tune the transitions to satisfy the resonance

condition EM + Er = 0. For the molecular transition, EM ≈ 3921MHz× h.

Figure 7.3 shows the energies of Rydberg states close to the manifold 83d5/2

as a function of magnetic field. The lines show state energies calculated with

pairinteraction [316]. We show states with ℓ ≤ 6 and do not include the hyperfine

structure. The energies are relative to the state |d⟩ at zero magnetic field and we

assume that there is zero electric field. The Hamiltonian describing the interaction

of the atom with the magnetic field B is [316]

ĤB = −µ̂ ·B︸ ︷︷ ︸
linear

+
1

8me

|d̂×B|2︸ ︷︷ ︸
diamagnetic

, (7.10)

where µ̂ = −µB(gℓℓ̂+ gsŝ) is the magnetic dipole operator and d̂ = er̂ is the electric

dipole operator. Here, ℓ̂ (ŝ) is the orbital (spin) angular momentum operator and gℓ

(gs) is the associated Landé factor. r̂ is the operator corresponding to the position of

the Rydberg electron relative to the atomic nucleus. The first term in Eq. (7.10) gives

rise to the linear Zeeman shift and the second term is the diamagnetic interaction.

For ground-state atoms, the diamagnetic term is negligible for fields less than a few

tesla and is usually ignored. However, the radius of Rydberg atoms ⟨r̂⟩ ∝ n2 [50],

meaning that the diamagnetic term scales as n4. For Rydberg states with n ≈ 83,

the diamagnetic shift becomes significant for fields B ≳ 10G.

The diamagnetic shift is quadratic, meaning that it always shifts states to higher

energy. Furthermore, it mixes states with the same mj. In Fig. 7.3, we highlight

certain states that are eigenstates in the region where the linear shift dominates;

these states are labelled |j,mj⟩ and evolve from the manifolds labelled as nℓ. As

the magnetic field is increased, the eigenstates become mixed states where the

components have different j but the same mj. As an example, we consider the

state |83d5/2,mj = +1/2⟩ which is an eigenstate at low fields. The intensity of the

orange colour of a state |ψ⟩ in Fig. 7.3 shows the overlap
∣∣⟨ψ|83d5/2, +1/2⟩

∣∣2. As the
magnetic field increases, the diamagnetic term couples states of different mj. This

causes the probability amplitude of the state |83d5/2, +1/2⟩ to be distributed across

the eigenstates that evolve from the low-field states |83d3/2, +1/2⟩ and |83d5/2, +1/2⟩.
This can be seen in Fig. 7.3, where there are two states that are coloured orange at

high field. This effect happens for all states in this field range, with the exception of

stretched states. Stretched states have a unique value of mj for a given n and ℓ and
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Figure 7.3: Effect of a magnetic field on Rydberg states with ℓ ≤ 6 around the state
|d⟩. Lines show the calculated state energies. The intensities of the highlighted states show
their overlaps with the low-field states that are labelled |j ,mj⟩. Data points show measured
energies which are referenced to the purple empty point.

therefore do not mix with other states. Their state composition is uniform for all

fields in this range and it is this that makes them ideal to work with.

The data points in Fig. 7.3 show measured energies of Rydberg states that we

can access with our two-photon excitation scheme. The error bars are smaller than

the size of the points; typical errors are on the order of ∼ 100 kHz × h and are

obtained from fitted features such as that shown in Fig. 5.7(a). We measure the

energy difference between the states by recording the frequencies of the Rydberg

EOMs and AOMs (see Sec. 2.5) at which we are on resonance with the transition

|g⟩ → |r⟩. When comparing points at different magnetic fields, we account for linear

Zeeman shift of the ground manifold 5s1/2 [211]. We do not necessarily eliminate the

differential light shifts caused by the excitation lasers (see Eq. (5.6)) as these are also

on the order of ∼ 100 kHz× h, which is much smaller than the energy scale shown

here. We expect that the accuracy of these measurements are limited by these two

errors and unaccounted dc Stark shifts from stray electric fields that are probably

on the order of ∼ 1MHz × h (see Sec. 5.6). We plot the data points in Fig. 7.3

by referencing all points to the empty purple point, which is set to lie exactly on

the calculated purple line. We measure energy differences rather than the absolute
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Figure 7.4: Dressed energy landscape when coupling states |d⟩ and |p⟩ with microwaves.
The Rb survival probability is shown as a function of the 420 nm laser detuning ∆420 and the
microwave frequency. More intense purple represents lower probability of survival. Light grey
indicates a lack of data. The points are linearly interpolated along the vertical axis of the plot.
The dashed lines are a guide to the eye. The inset shows the relevant experimental timings
(not to scale).

energies because our highest precision wavemeter5 has a quoted accuracy of ±0.2

parts per million, which corresponds to ∼ 200MHz× h on the two-photon Rydberg

transitions.

To engineer resonant interactions, we use the Rydberg states |d⟩ (Fig 7.3, purple

line) and |p⟩ (Fig 7.3, black line). We are unable to measure the energy of states

in the manifold 84p using the method with which we obtain the points in Fig. 7.3

because we cannot couple to p-states with our two-photon excitation scheme. Instead,

we perform spectroscopy of this manifold by driving one-photon transitions to it

from the states |d⟩ and |σ′⟩ ≡ |84s1/2,mj = +1/2,mi = +1/2⟩. We excite to the

state |σ′⟩ with the same excitation scheme that was used to access the state |σ⟩ in
Sec. 5.6. The photons that couple the states |d⟩ and |σ′⟩ with the state |p⟩ are in

the microwave regime and we denote the Rabi frequency with which we drive these

transitions as ΩMW. We produce this microwave radiation with the Rb antenna

described in Sec. 2.1. The resonant frequency of this antenna is approximately

6.8GHz. However, due to the large TDMs of the Rydberg transitions, we find that

we can drive them with Rabi frequencies on the order of ∼ 1MHz×h with microwave

powers < −20 dBm, even though they are up to a few gigahertz detuned from the

antenna’s resonant frequency.

First, we perform spectroscopy using Autler-Townes splitting of the Rydberg

5Bristol Instruments 671A-NIR
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transitions |g⟩ → |d⟩ and |g⟩ → |σ′⟩ which occurs when resonant microwaves are

applied. The physical picture for this is as described in Sec 5.4, but the dressing field

is the microwave field and the weak probe is the two-photon excitation pulse. When

the microwaves are resonant, the Rydberg excitation transition splits into two, with

the frequency difference between the transitions equal to ΩMW. This spectroscopy

method is ideal because we require only that the Rabi frequency of the two-photon

Rydberg excitation Ω ≪ ΩMW. We are not sensitive to the exact value of ΩMW,

which is difficult to predict due to the power and polarisation of the microwaves that

make it through the metal vacuum chamber to the atoms being hard to calculate.6

The relevant experimental timings are as shown in the inset of Fig. 7.4. Atoms are

prepared in the relevant ground state |g⟩ (|5s1/2, f = 2,mf = +2⟩ for excitation to

|d⟩ or |5s1/2, f = 1,mf = +1⟩ for excitation to |σ′⟩) at 181.699(1)G. We switch on

the 1013 nm light, then the microwave radiation. Finally, we pulse the 420 nm light

for a duration that would drive approximately a π pulse on a transition |g⟩ → |r⟩ in
the absence of microwave dressing.

Figure 7.4 shows the dressed state landscape when exciting to the Rydberg state

|d⟩. When exciting to the Rydberg state, the atom is lost most of the time (see

Sec 5.5). The vertical axis shows the effect of varying the effective detuning ∆ of

the Rydberg excitation pulse. We vary ∆ by changing the detuning of the 420 nm

light ∆420, which we reference to the same cavity mode as in Fig. 5.2(b)(ii). The

horizontal axis shows the effect of varying the microwave frequency. In the absence of

microwaves, the bare transition |g⟩ → |d⟩ is at ∆420 ≈ 1994MHz. When microwaves

are applied, the states are dressed. The energies E± of the dressed states relative to

the state |d⟩ are given by Eq. (5.9) with the detuning and Rabi frequency now those

of the microwaves relative to the transition |d⟩ → |p⟩. When the microwaves are

resonant, the dressed states are split by hΩMW. The dashed lines are a guide to the

eye, and show calculated values of E± if the resonant microwave frequency equals

3899MHz and ΩMW = 13MHz. We note that the state |p⟩ is lower in energy that

the state |d⟩; this means that a higher microwave frequency gives a lower detuning.

We use this method to perform spectroscopy of transitions from the states |d⟩ and
|σ′⟩. For each state, we set the effective detuning of the Rydberg excitation lasers to

be zero and apply microwaves during the excitation pulse. When the microwaves

are resonant, the states are dressed and shifted from the bare state by ±hΩMW/2,

which precludes Rydberg excitation. Correspondingly, the survival probability of

the atoms increases. We show the results of this spectroscopy in Fig. 7.5. Fig. 7.5(a)

shows the relevant energy landscape at 181.699G. The energies are relative to that

6For reference, microwave radiation of frequency ∼ 3GHz has a wavelength ∼ 10 cm. This is of
the same scale as the metallic vacuum chamber, which causes many unpredictable reflections.
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of the state |d⟩ at this field and the transitions that we drive are the vertical arrows.

Fig. 7.5(b) shows measurements of transitions from the state |d⟩. The magnetic

field is B0 = 181.699(1)G. The purple feature shows the transition |d⟩ → |p⟩ and
the grey feature shows the transition |d⟩ → |82f7/2,mj = +7/2⟩. For each peak we

set the microwave power (i.e. set ΩMW) to give a clear feature that is not saturated.

Fig. 7.5(c) shows measurements of the transitions |σ′⟩ → |84pj,mj⟩. The lower panel
shows zoomed regions of the upper panel and are labelled j,mj.

The dashed vertical lines in Fig. 7.5(b)-(c) show the calculated frequencies of the

transitions from Fig. 7.3 at 181.699G. For this calculation, we assume that there is

zero electric field. For the transitions |σ′⟩ → |84pj,mj⟩, we measure the transition

at lower frequencies than calculated. In contrast, the measured frequency for the

transition |d⟩ → |p⟩ is higher than calculated. The difference between the measured

and calculated frequencies are within ±15–20MHz. We also observe a shift and

broadening of the transition |d⟩ → |82f7/2, 7/2⟩. We expect that these discrepancies

are due to a stray electric field in the science cell, leading to a dc Stark shift of

the transitions.7 The dotted lines in Fig. 7.5(b)-(c) show the calculated frequencies

of the transitions when an electric field of strength 50mV/cm is perpendicular to

the magnetic field. These calculated frequencies are much closer to the observed

transition frequencies. As the states with ℓ > 0 are anisotropic, the angle between the

electric and magnetic fields affects the dc Stark shifts, but they are always this order

of magnitude for this field strength. We do not plot the dc Stark shifted transition

|d⟩ → |82f7/2, 7/2⟩ because this is highly anisotropic and depends significantly on

the angle between the fields. We note that this stray field is approximately double

that reported in Sec. 5.6. These measurements were performed approximately three

months after those presented in Fig. 5.10 and no LIAD was performed during

this time. Therefore, we expect that the surface charge buildup could have been

significant, changing the stray electric field. In future we plan to remeasure and null

this stray field.

To observe resonant dipole-dipole interactions, we tune the energy of the transi-

tions with the magnetic field in order to satisfy the resonance condition EM+Er = 0.

Using diatomic-py [290], we calculate the magnetic moments of the molecular states

|3,+3⟩ and |4,+4⟩ at 181.699 G to be 5.335µN and 5.329µN respectively.8 Therefore,

7The transition |d⟩ → |p⟩ being higher in frequency than expected and the transitions |σ′⟩ →
|84pj ,mj⟩ being lower than expected could also be explained if the manifold 84p is lower in energy
than expected. However, a shift on this scale not caused by stray fields would require a modification
in the quantum defect of approximately one part in 103, well above the experimental uncertainty
of approximately one part in 106 reported by Li et al. [309] and this is therefore highly unlikely to
be the cause.

8As the states |3,+3⟩ and |4,+4⟩ are stretched, their magnetic moment is constant with
magnetic field.
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Figure 7.6: Tuning Rydberg atom and molecule into resonance with a magnetic field.
(a) Microwave spectroscopies for (i) the RbCs transition |3,+3⟩ → |4,+4⟩ and (ii) the Rb
Rydberg transition |d⟩ → |p⟩ at 181.699(1) G. For both measurements, the molecule and atom
are prepared in the initial state and an approximate π pulse is applied (here we use pulse
durations 34 µs and 50 ns respectively). (b) Tuning of the transition frequencies with magnetic
field. The colours are the same as in (a). For both panels, the dashed purple (blue) line shows
the expected frequency of the atomic (molecular) transition when there is zero electric field.
The dotted purple line shows the calculated frequency of the atomic transition when there is
an electric field of 50mV/cm perpendicular to the magnetic field.

the differential magnetic moment of the transition |3,+3⟩ → |4,+4⟩ is approximately

6 × 10−3µN = 5Hz/G × h. For our purposes, we neglect the Zeeman shift of this

transition and consider EM to be constant.

In contrast, Er is highly tuneable with magnetic field. Although we operate in a

field regime where the diamagnetic shift of the Rydberg states is significant, at a

given field we are still able to calculate a linear magnetic moment for each state. This

linear approximation is valid for small changes in magnetic field ∆B ≪ B. Using

pairinteraction [316], we calculate that, at 181.699G, the magnetic moments of

the states |d⟩ and |p⟩ are 6.7µB and 5.4µB respectively. Therefore, the differential

magnetic moment of the transition |d⟩ → |p⟩ is approximately 1.3µB ≈ 1.8MHz/G×h.
In Fig. 7.6 we show the tuning of Er with magnetic field. Fig. 7.6(a) shows an

example of microwave spectroscopy on the RbCs transition |3,+3⟩ → |4,+4⟩ to

measure EM (panel (i)) or on the Rb transition |d⟩ → |p⟩ to measure Er (panel (ii))

at B0. For both of these measurements, we prepare the particle in the initial state

and apply approximately a π pulse to drive the relevant transition. Explicitly, for

the measurement of EM, we prepare molecules in the state |G⟩ and perform the

transfer |G⟩ → |1,+1⟩ → |2,+2⟩ → |3,+3⟩ with a series of π pulses (see Sec. 4.5).

The spectroscopy pulse (of duration 34 µs) is applied before transferring molecules in
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the state |3,+3⟩ back to the state |G⟩, from which atom pairs are recovered. When

the spectroscopy pulse is resonant with the transition |3,+3⟩ → |4,+4⟩, molecules

are removed from the state |3,+3⟩ and therefore atom pairs are not recovered at

the end of the experimental sequence. The measurement of Er is similar. We first

prepare atoms in the state |g⟩ and drive the two-photon transition |g⟩ → |d⟩. We

apply the spectroscopy pulse (of duration 50 ns) and then return atoms in the state

|d⟩ back to the state |g⟩. When the spectroscopy pulse is resonant with the transition

|d⟩ → |p⟩, atoms are transferred to the state |p⟩. These atoms are not returned to

the ground state with the final pulse and therefore are ejected from the tweezer.

For this measurement, the molecules are trapped in 1066 nm tweezers of intensity

I1066 = 3.07 kW/cm2. This is the same intensity used for most of the molecular

spectroscopy presented in Ch. 4. The atomic spectroscopy with Rb in 817 nm tweezers

of intensity I817 = 3.09(5) kW/cm2. We expect that this intensity causes an ac Stark

shift of 46(1) kHz×h for the Rydberg states. However, we expect that the differential

shift of the transition |d⟩ → |p⟩ is much less than this because the polarisability αr

(see Eq. (5.11)) is approximately the same for all Rydberg states. Nevertheless, for

this measurement we turn the tweezers off for the Rydberg excitation. After the

second Rydberg π pulse, the trap quickly turns back on to eject atoms that are still

in a Rydberg state.

The vertical lines in Fig. 7.6(a) show the calculated transition frequencies. As

in Fig. 7.5, for the atomic transition we show two calculations. The dashed line

shows the predicted transition frequency when there is zero electric field and the

dotted line shows the predicted transition frequency when there is an electric field of

50mV/cm perpendicular to the magnetic field.

Figure 7.6(b) shows how the frequencies of these transitions change with magnetic

field. The frequency of the molecular (atomic) transition is shown in blue (purple).

On this scale, the frequency of the molecular transition is effectively constant. We

measure the frequency of the atomic transition as a function of magnetic field by

repeating the measurement shown in Fig. 7.6(a)(ii); these frequencies are shown as the

purple data points. The dashed and dotted lines are as in Fig. 7.6(a). The resonance

field Bres is that where two lines cross and the resonance condition EM + Er = 0

is satisfied.9 At zero electric field we expect that Bres = 204.2G. In our system we

expect that Bres = 192.5G: we obtain this value by linearly interpolating the purple

data points and seeing where this crosses the blue dashed line.

9We have implicitly defined the frequency of transition i as νi ≡ |Ei|/h throughout this work.
This means that even though Er < 0 for the transition |d⟩ → |p⟩, the transition frequency is still
positive. We do this because when applying microwave radiation (for which we can set the frequency
ν) we can drive transitions with energy ±hν.
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7.4 Rydberg blockade

Figure 7.7(a) shows a calculation of the energy shift ∆E caused the resonant dipole-

dipole interaction of a Rb Rydberg atom and a RbCs molecule.10 The interaction

shift is shown as a function of the atom-molecule separation Ram. For this calculation,

the hyperfine structure of the atom and molecule have been ignored. In the limit

Ram → ∞, the eigenstates of the system are uncoupled pair states |r⟩Rb |N ,MN⟩RbCs.

At finite Ram, the dipole-dipole interaction mixes pair states of the same mj +MN .

For example, the interaction couples the states |d⟩Rb |3,+3⟩RbCs and |p⟩Rb |4,+4⟩RbCs.

For this discussion, we label each eigenstate by the quantum numbers of the state

that it adiabatically evolves into as Ram → ∞.

The blue curves show eigenstates evolving from the RbCs rotational manifold

with N = 3. Similarly, the green curves show eigenstates evolving from the rotational

manifold with N = 4. Each manifold has 2N + 1 states because the quantum

number MN runs from −N to +N . States of the same mj + MN are coupled

by the dipole-dipole interaction. Explicitly, this means that each blue eigenstate

(evolving from a state |d⟩Rb |3,MN⟩RbCs) has a corresponding green eigenstate (which

evolves from the state |p⟩Rb |4,M ′
N =MN + 1⟩RbCs). Each pair of eigenstates is

approximately symmetric around ∆E = 0. There are two eigenstates for which ∆E

is negligible. These evolve from the states |p⟩Rb |4,−3⟩RbCs and |p⟩Rb |4,−4⟩RbCs and

show no significant dipole-dipole energy shift because their corresponding states

(|d⟩Rb |3,−4⟩RbCs and |d⟩Rb |3,−5⟩RbCs respectively) to which they could couple does

not exist (as |MN | ≯ N).

The size of the energy shift ∆E is proportional to the TDMs of the atomic and

molecular transitions (see Eq. (7.7)). The molecular transition with the largest TDM

is the stretched molecular transition |3,+3⟩ → |4,+4⟩. Therefore, ∆E is largest for

the eigenstates evolving from |d⟩Rb |3,+3⟩RbCs and |p⟩Rb |4,+4⟩RbCs. These two states

are shown in bold in Fig. 7.7(a). The splitting between these states is ∼ 10MHz× h

for Ram ∼ 0.8 µm. This energy scale sets how stringently we must satisfy the

resonance condition in order to observe resonant dipole-dipole interactions. To

observe resonant behaviour, we need |EM + Er| ≲ 10MHz× h. This corresponds to

needing the magnetic field to be tuned to within ∼ 5G of Bres, which is approximately

192.5G in our system.

We probe the resonant dipole-dipole interactions using an experimental sequence

similar to that used in Sec. 6.3 to study charge-dipole interactions. We begin with

two Rb atoms and one Cs atom, each individually trapped in tweezers at wavelength

10These potential energy curves were calculated by Pablo Fernández-Mayo Yelo and Rosario
González-Férez.
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Figure 7.7: Rydberg blockade due to resonant dipole-dipole interactions between an
atom and a polar molecule. (a) Calculated interaction shift ∆E between a Rb Rydberg
atom and a RbCs molecule. The curves in blue (green) show ∆E for states evolving from
the states |d⟩Rb |3,MN⟩RbCs (|p⟩Rb |4,M ′

N⟩RbCs). (b) Effect of changing the atom-molecule
separation Ram. Panels (i), (ii), and (iii) show data obtained for Ram of 0.4(2) µm, 0.8(2) µm,
and 3.5(2) µm respectively. The filled circles show data obtained at 193G and the empty
squares show data obtained at 182G. Blue and red points are from experimental runs where a
molecule is successfully formed and later recovered. Blue (red) points are taken with microwave
pulses that ideally transfer the molecules to the state |3,+3⟩ (|2,+2⟩) before the Rydberg
excitation. Black points are from runs where no molecule was present. The solid lines are fits
to Gaussians and the shaded regions show the errors extracted from the fits. (c) Blockaded
excitation at Ram = 0.8(2) µm and magnetic field 191G. The data points are coloured the
same as in (b).

817 nm and 1066 nm respectively. We merge one of the Rb tweezers into the Cs

tweezer and attempt to form a molecule in the state |G⟩ with magnetoassociation

and STIRAP. If the molecule formation is successful, this prepares a RbCs molecule

and a Rb atom that are trapped in their own tweezers separated by 4 µm along

the x-axis, as shown in Fig. 6.4(a)(i). If molecule formation is unsuccessful, the

molecule detection scheme (see Sec. 4.3) removes the atom pair from the molecule

tweezer, leaving only the additional Rb atom in its 817 nm tweezer . We perform

successive microwave transfers to prepare the molecule in a chosen rotational state

before moving the atom tweezer to realise a programmed atom-molecule separation

Ram. We attempt to excite the atom to the Rydberg state |d⟩ before moving the
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atom tweezer back to its initial position, disassociating the molecule, and measuring

the particle survival probabilities.

For this experiment, we excite to the Rydberg state |d⟩ from the hyperfine ground

state |5s1/2, f = 1,mf = +1⟩.11 This is in contrast to the experiments presented until

now, where we excite to the state |d⟩ from the state |5s1/2, f = 2,mf = +2⟩ using the

excitation scheme shown in Fig. 5.2(a)(ii). This is because, in order to form molecules,

the Rb atoms are prepared in the state |5s1/2, f = 1,mf = +1⟩ after Raman sideband

cooling (see Sec. 2.3.2). For typical tweezer depths, the differential ac Stark shift of the

hyperfine transition |5s1/2, f = 1,mf = +1⟩ → |5s1/2, f = 2,mf = +2⟩ is ∼ 1 kHz×h
so we cannot prepare the two Rb atoms in different hyperfine states. A solution to this

would be to perform the spin flip |5s1/2, f = 1,mf = +1⟩ → |5s1/2, f = 2,mf = +2⟩
at high magnetic field after the molecule has been formed. This is precisely what we

do when detecting molecule formation errors mid-sequence (see Sec. 4.8), where we

perform this spin flip with ARP by using microwaves to couple the two hyperfine

states. However, we find that connecting the requisite microwave amplifier to

our Rb antenna causes the Rydberg transitions to significantly shift and rapidly

dephase, probably due to spontaneous emission from the amplifier. Therefore, we

cannot use ARP to perform the spin flip in this routine, so we excite from the state

|5s1/2, f = 1,mf = +1⟩.
In Fig. 7.7(b) we show the effect of changing the effective detuning ∆ of the

Rydberg excitation lasers for different separations Ram between the atom and

molecule. We show data for Ram = 0.4(2) µm (panel (i)), Ram = 0.8(2) µm (panel

(ii)), and Ram = 3.5(2) µm (panel (iii)). Circular filled data points are measured with

B = 193G and square empty points are measured with B = 182G. Blue and red

data points show data obtained from experimental runs in which molecule formation

and recovery was successful. The blue points show data from a routine in which a

series of microwave π pulses are applied to perform the molecular state transfers |G⟩
→ |1,+1⟩ → |2,+2⟩ → |3,+3⟩ prior to the Rydberg excitation. The red points show

data from a routine in which the last of these pulses is removed so that molecules are

ideally prepared in the state |2,+2⟩. We apply the Rydberg pulse before transferring

the molecules back to |G⟩ from which they are disassociated and atom pairs are

recovered. The data points show the chance of the additional Rb atom (that we

attempt to excite to the Rydberg state) surviving at the end of the routine. Atoms

that are excited to |d⟩ are typically lost whilst atoms are not excited typically survive.

11The Rydberg state that we can access by driving two σ+ transitions from the state
|5s1/2, f = 1,mf = +1⟩ is actually a different hyperfine state to the state |d⟩ discussed so far
because it has mi = +1/2 rather than mi = +3/2. However, we do not experimentally resolve the
hyperfine coupling for the state |d⟩ and the calculations presented in Fig. 7.7 ignore it entirely.
Therefore, for simplicity, we continue to use the state label |d⟩ for this Rydberg state.



CHAPTER 7. RESONANT DIPOLE-DIPOLE INTERACTIONS 150

The black points show data from experimental runs in which molecule formation was

unsuccessful. The solid lines show Gaussian fits to the data and the shaded regions

show the error on these fits. The detunings are relative to the fitted centres from

the data obtained when molecule formation was unsuccessful.

We observe three distinct behaviours for the different values of Ram. For short

distances, the interaction is dominated by the charge-dipole interaction that was

discussed in Ch. 6. This occurs when Ram ≲ ⟨r̂⟩, where ⟨r̂⟩ is the radius of the orbit

of the Rydberg electron. For the state |d⟩, ⟨r̂⟩ ∼ 0.5 µm. Therefore, for the data

shown in Fig. 7.7(b)(i), where Ram = 0.4(2) µm, the molecule is within the Rydberg

electron orbital. This means that the charge-dipole interaction is sufficiently strong

to blockade Rydberg excitation, even when the molecule and atom are not resonant

with each other. For this reason, we observe suppressed Rydberg excitation whenever

a molecule is present, whether this be in the resonant case (blue filled circles) or the

non-resonant cases (blue empty squares and red points).

In the other extreme, Ram can be sufficiently large that, even when interactions

are resonant, the interaction shift is too small to sufficiently blockade the Rydberg

excitation. This happens when Ram ≫ rb, where, as in Sec. 5.8, the blockade radius

rb is the distance at which the interaction shift ∆E = h∆ν/2 for transition linewidth

∆ν. Here, ∆ν ≈ 1MHz, and the interaction potential shown in Fig 7.7(a) predicts

that the blockade radius rb ≈ 1.9 µm for these interactions. Therefore, for the data

shown in Fig 7.7(b)(iii), where Ram = 3.5(2) µm, we expect no significant Rydberg

blockade, even in the resonant case. This is precisely we observe: all data sets,

including the resonant case where the molecule is prepared in the state |3,+3⟩ at
193G (blue points), are similar to the case in which no molecule is present.

For intermediate values of Ram, we observe a difference between the resonant and

non-resonant cases. This is shown in Fig. 7.7(b)(ii) where Ram = 0.8(2) µm. When

a molecule is prepared in the state |2,+2⟩ (red points), the dominant interactions

are van der Waals and interaction shift is negligible. However, when the molecule is

prepared in the state |3,+3⟩ (blue points), the resonant dipole-dipole interactions

dominate and the energy shift ∆E is approximately 5MHz×h (see Fig 7.7(a)). This

is sufficient to blockade Rydberg excitation.

In Fig 7.7(c) we show the effect of changing the pulse time when the excitation

lasers are resonant with the Rydberg transition in the case where there is no molecule.

In runs where molecules are formed, the atom-molecule separation Ram = 0.8(2) µm
and the molecules are ideally transferred to the state |3,+3⟩ with microwave pulses

prior to the Rydberg excitation pulse. The magnetic field is B = 191G. When the

molecule is present, we observe partial Rydberg blockade: the contrast in the Rabi

oscillations is approximately 0.2, compared to approximately 0.6 for the experimental
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runs in which molecules were not formed. This is consistent with the amplitudes

of the corresponding features in Fig. 7.7(b)(ii). We fit both sets of data points

with Eq. (5.10) and extract a mean Rabi frequency ⟨Ω⟩ = 160(20) kHz. This is

significantly reduced from the Rabi frequency shown in Fig. 5.7(b) because here we

excite from a non-stretched hyperfine state. This reduction in Rabi frequency limits

the excitation fidelity.

The most likely reason for observing only partial blockade is imperfect state

transfer of the molecule to the state |3,+3⟩. This means that in some of the

experimental runs in which we think there is a molecule in the state |3,+3⟩, there
is not. This manifests as partial blockade with the same Rabi frequency as the

unblockaded case. This is in contrast to regime that we would observe if the molecular

state preparation was perfect, but the interaction shift was not sufficiently large to

completely blockade the Rydberg excitation (i.e. ∆E ≈ h∆ν/2). We would then

expect to drive the Rydberg transition with slightly off-resonant light with a detuning

∆. This would also result in Rabi oscillations with the contrast reduced by a factor

Ω̃/Ω, where the effective Rabi frequency Ω̃ =
√
Ω2 +∆2. However, in this regime, we

would expect the Rabi frequency of the partially blockaded interactions to be scaled

by the observed contrast (i.e. Ω̃ ≈ (0.6/0.2)Ω), which is not what we observe. We

do not expect fluctuations in the relative alignment of the tweezers to be significant

here because the distances are much larger than the tweezer fluctuations, unlike the

experiment presented in Sec. 6.3.

We are currently upgrading the experiment to allow us to excite Rydberg atoms

from the hyperfine state |5s1/2, f = 2,mf = +2⟩ in this experimental sequence. To

remove the need to use ARP for the hyperfine spin flip (which requires the problematic

microwave amplifier), we plan to perform the spin flip using the Raman beams (see

Sec. 2.3.2). These beams drive this spin flip during the atomic cooling sequence

that takes place at low magnetic field (4.78G). We cannot currently use these lasers

to perform the spin flip at high magnetic fields (∼ 200G) because the magnetic

field noise (≈ 30mG) means that there is significant dephasing with the current

Rabi frequencies that we achieve with the Raman lasers (≈ 20 kHz). We plan to

significantly the increasing the power of the Raman lasers so that they can be used

for this spin flip at high fields whilst not suffering from this dephasing.

7.5 Summary

We have presented preliminary measurements of the blockade of atomic Rydberg

excitation due to the resonant dipole-dipole interaction between a Rydberg atom
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and a polar molecule. We have shown how pairs of atomic and molecular states

can be chosen in order to engineer these interactions. We performed microwave

spectroscopy of the transitions between these states and showed how they can be

tuned into resonance with an applied magnetic field. These resonant interactions will

be crucial to the implement molecule-molecule gates mediated by Rydberg atoms,

which we aim to study in the near future.



8 Conclusion

Some of the results in this chapter have been published in Ref. [203].

In this thesis, we have described the development of a hybrid quantum system of

ultracold polar molecules and Rydberg atoms. This system has great promise for

quantum science applications. In this chapter, we briefly summarise our results and

provide an outlook to future work.

8.1 Summary

We have demonstrated the efficient assembly, manipulation, and readout of individu-

ally trapped RbCs molecules in optical tweezers. We have introduced mergoasso-

ciation, a new method for molecule formation that is applicable for systems with

large interspecies interactions where particles are tightly confined. In our system,

the efficiency of molecule formation by mergoassociation is comparable to that of

magnetoassociation, and mergoassociation can be used to access bound states that

would otherwise be inaccessible at our starting magnetic fields. Mergoassociation

will be effective even in systems that do not possess Feshbach resonances suitable for

magnetoassociation [278].

We use STIRAP to transfer weakly bound molecules to the ground state and

have developed a toolbox for their control. The overall efficiency for the conversion

of an atom pair to a ground-state molecule is 48(2)% and the majority of formed

molecules are in the motional ground state. We have implemented global and local

microwave control of the rotational states of molecules in small arrays, using optical

tweezers to address specific molecules. We map the rotational state of molecules

onto atomic position in a novel multi-state readout scheme. Furthermore, we have

implemented a scheme for molecule rearrangement where we detect and eliminate

molecule-formation errors to prepare defect-free arrays.

We have coherently excited individually trapped Rb atoms to Rydberg states.

153
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Similarly to the molecular addressing, we exploit ac Stark shifts caused by the

optical tweezers to selectively excite only certain atoms. We use the Rydberg atoms

as sensitive probes for the electric and magnetic fields in our experiment. Using

Rydberg-Rydberg interactions, we have precisely measured the distance between

optical tweezers.

We have demonstrated blockade of the transition to the Rb Rydberg state |52s⟩
due to the charge-dipole interaction with a RbCs molecule in the rovibrational

ground state. To realise this blockade, we use species-specific tweezers to set the

atom-molecule separation to 310(40) nm. The observed excitation dynamics are

in good agreement with simulations using calculated interaction potentials. This

represents the first observation of a charge-dipole induced shift in an ultracold setting.

Finally, we have engineered resonant dipole-dipole interactions between a polar

molecule and a Rb atom in the Rydberg state |83d⟩. We have detailed how to choose

pairs of resonant transitions. We have presented spectroscopy of these transitions and

shown how they can be tuned to resonance with a magnetic field. We have observed

the partial blockade of Rydberg excitation due to these resonant interactions when

the atom-molecule separation is set to 0.8(2) µm. These interactions will allow us to

implement molecule-molecule quantum gates that are mediated by Rydberg atoms

in the near future [101, 102].

8.2 Outlook

The work presented in this thesis provides a foundation for exciting experiments with

individually trapped molecules and atoms. Here, we outline ongoing and upcoming

research directions for the experiment.

8.2.1 Magic tweezers

The primary limitation to coherence times when we drive molecular transitions is

their differential light shifts. Typically, molecules are trapped in tweezers where the

differential light shift is approximately 100 kHz×h. The molecules are predominantly

formed in the motional ground state, so most of the fluctuations in the potential

experienced by them is from shot-to-shot fluctuations in the tweezer intensity. From

independent characterisations of the tweezers, we expect these fluctuations are on

the order of a percent. This leads to the transition frequency fluctuating on the scale

of kilohertz and, for Rabi frequencies of 10 to 100 kHz, leads to a Rabi coherence

time on the order of tens of milliseconds. If these differential light shifts were to be

eliminated, the coherence times would be significantly longer. This can be achieved
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by trapping the molecules in magic-wavelength traps. Furthermore, an array of

molecules trapped in magic-wavelength tweezers would have identical transition

frequencies, eliminating the dephasing discussed in Sec. 4.7.

A magic-wavelength trap for molecules has recently been demonstrated by Gregory

et al. [98] in the RbCs bulk-gas experiment at Durham. The trapping wavelength

(λ = 1145 nm) is chosen such that the anisotropic polarisability of the molecule is

zero. This eliminates differential light shifts between molecular states. Gregory et al.

achieved a Ramsey coherence time of 0.78(4) s, and extended this to > 1.4 s using

a single spin-echo pulse. These coherence times are limited by the large linewidth

of their magic-trapping laser. We are currently implementing and characterising

magic-wavelength tweezers in our experiment. Our trapping laser is locked to a ULE

cavity like that to which we lock the STIRAP and Rydberg lasers (see Sec. 2.5) to

achieve a much smaller linewidth. Therefore, we expect to achieve coherence times

exceeding that demonstrated by Gregory et al..

8.2.2 Optical lattice

We plan to study dipole-dipole interactions between individually trapped molecules.

For this interaction to be experimentally resolvable (i.e. on the kilohertz scale),

an inter-molecule separation of approximately 500 nm is required [47]. Currently,

molecules in our experiment are trapped in tweezers at wavelength 1066 nm with

micrometre-scale beam waists, as shown in Fig. 8.1(a). If we move two of these

tweezers to separations of approximately 1 µm, they no longer satisfy the Rayleigh

criterion and a wide single well is formed. The molecule-molecule separation quickly

drops to zero (see Sec. 6.2), which makes it impractical to achieve stable sub-

micrometre separations. This would cause dipole-dipole interactions to rapidly

dephase or molecules to be lost from collisions when their separation drops to zero.

We plan to implement an optical lattice to pin the molecules at sub-micrometre

separations. We will form a one-dimensional lattice from the same 1145 nm light

used to form the magic-wavelength tweezers. This lattice will be in the xy-plane

(perpendicular to the direction of tweezer light propagation), as shown in Fig. 8.1(b).

Potential minima will be formed at separations of λ/2, and we will operate in the

regime where the lattice depth is larger than that of the tweezers. The tweezers will

confine the molecules in all directions, and the lattice will pin the molecule-molecule

separation at approximately 570 nm. This separation, combined with the magic

trapping of the molecules, will provide the ideal environment to study dipole-dipole

interactions between pairs of individually trapped molecules.



CHAPTER 8. CONCLUSION 156

(a) (b)
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1145 nm
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Figure 8.1: Planned trapping scheme for the study of dipole-dipole interactions between
individually trapped molecules. (a) Currently, molecules are trapped in 1066 nm tweezers
with beam waists of approximately a micrometre. This makes it impractical to achieve fixed
sub-micrometre separations between molecules. (b) We plan to trap molecules in magic-
wavelength tweezers at λ = 1145 nm. To pin the inter-molecular separation, we will implement
a magic-wavelength optical lattice that will provide potential minima separated by λ/2.

8.2.3 Larger arrays and Rydberg-mediated detection

We plan to scale the number of optical tweezers in our arrays in order to trap a

greater number of molecules and atoms. The amount of molecules that we can form

and the performance of our molecule rearrangement protocol (see Sec. 4.8) is limited

by laser power. Currently, we use approximately 1W of 1066 nm light and 100mW of

817 nm light, with which we are able to assemble and rearrange an array of molecules

starting from six atom pairs. However, our 1066 nm laser is capable of outputting

50W and laser sources with output powers of 2W at 817 nm are readily available.

Therefore, a 20-fold increase in the array size is realisable in the short term and we

note that higher power laser sources exceeding 100W [351, 352] are available for

further scaling in the long term.

In Fig. 8.2(a) we show the results of a Monte Carlo simulation of the performance

of the rearrangement scheme discussed in Sec. 4.8 with 120 atom pairs initially

trapped, corresponding to the anticipated 20-fold increase in laser power. The

simulation is the same as that discussed in Sec. 4.8, but with a larger array of

traps. The blue symbols show the predicted performance for molecule recovery

probability Pr = 68%; the value we measured in the rearrangement routine using

six atom pairs. The green symbols show the performance that would be achieved

if the molecule recovery probability were improved to Pr = 88%. This latter value

requires the infidelity in the hyperfine-state preparation to be reduced to 2% and

the STIRAP efficiency increased to 99%. Both improvements are feasible in the near

term by changing the wavelength of the Rb tweezer to be further detuned (to reduce

Raman scattering) and by suppressing phase noise on the STIRAP lasers using
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Figure 8.2: Prospects for scaling the molecule rearrangement protocol to larger array
sizes. The performance is simulated using a Monte Carlo method starting with an array of
120 atom pairs. The main plots show the probability of an atom pair being recovered from a
molecule in site index n when not post-selecting on molecule formation. The insets show the
probability of recovering a defect-free array of a given size. (a) Rearrangement performance
for different molecule recapture probabilities Pr . (b) Rearrangement performance using direct
detection of ground-state molecules with probability Pd , rather than the detection of the failure
to form molecules.

feed-forward techniques [348, 349]. In both cases, the effect of non-unity Pr is to

cause false-positive errors when a weakly bound molecule is formed but subsequently

lost, decreasing the average number of molecules in the array. The inset in Fig. 8.2(a)

shows the probability of preparing a defect-free array, which reduces with array size

s proportional to (Pr)
s, as we observed experimentally with the smaller array.

As an aside, we note that increasing the laser power available for tweezer genera-

tion will allow an increase in the number of rotational states that can be readout

using the scheme detailed in Sec. 4.6. There is no fundamental limit to the number of

states that can be readout with our detection scheme; we need only to have enough

laser power to generate the required number of detection arrays.

Developing the capability to non-destructively detect molecules in the ground

state would greatly enhance the prospect of large defect-free arrays of RbCs molecules.

Currently, as the assembled molecules cannot be directly imaged, detection is limited

to measuring only when a molecule has been formed. Consequently, we cannot

correct for the subsequent loss of molecules. This leads to a significant drop in

the probability of preparing a defect-free array when scaling to larger systems. To

overcome this limitation, we propose to exploit the long-range interactions between

molecules and Rydberg atoms discussed in Chs 6 and 7 to detect molecules in
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ground-state directly. We will use the blockade of the atomic Rydberg excitation

when a molecule is present to infer the presence of molecules from the failure to

excite atoms to a Rydberg state [100–102, 353].

In Fig. 8.2(b) we show the expected recovery of atom pairs from molecules in a

sorted array using the proposed Rydberg atom scheme. Here we use Pr = 68%, the

effect of which is now to reduce the average trap occupancy before rearrangement

as detection can be performed after all the lossy molecule formation stages. The

simulation is similar to that for Fig. 8.2(b) (see Sec. 4.8), but a trap is now occupied

prior to rearrangement if xn < PfPr/FSTIRAP, where Pf = 53% is the assumed

molecule formation probability and FSTIRAP = 96.4% is the STIRAP fidelity. We

show the results of simulations using different values of the molecule detection

probability Pd. We expect Pd to be dominated by false-positive errors due to

imperfect transfer to the atomic Rydberg state when no molecule is present. We

incorporate this into the simulation by assigning each site with a second random

number yn between 0 and 1, such that if yn > Pd on an unoccupied site, we simulate a

false-positive error in the detection by using this trap during the rearrangement even

though it is unoccupied. As before, we repeat this simulation for 500 initialisations

of the array and determine the average occupancy of each site in the array. The

limiting factor to atom pair recovery is now the reverse STIRAP transfer FSTIRAP

with which we scale the recovery probability of all the traps in the array. Non-unity

detection fidelities Pd do not cause molecule loss but instead result in unoccupied

molecule traps being inserted into the final array. This reduces the average occupancy

of “filled” traps while increasing the length of the array that is “filled”. The total

number of molecules in the array is the same for all Pd shown here. These simulations

suggest that a Rydberg excitation fidelity of > 84%, less than we currently achieve

(see Sec. 5.5), will enable the preparation of defect-free arrays of tens of assembled

molecules.

The upgrades to our experiment described above will allow the formation of

defect-free arrays of molecules comparable in size to those demonstrated with directly-

cooled molecules. For comparison, stochastic loading probabilities of ∼ 35% are

typical for an array of CaF molecules in optical tweezers [69]. The rearrangement

of such molecules has been demonstrated to obtain defect-free arrays of up to 16

molecules with a probability > 0.6 for a reported single-particle rearrangement

fidelity of 97.4(1)% and a state-preparation fidelity of 82.4(11)% [70]. In this work,

the probability to convert an atom pair into a ground state molecule is 48(2)% and

the direct detection of ground-state molecules will allow for a rearrangement fidelity

limited by the STIRAP fidelity (currently 96.4(1)%). All molecules formed in this

experiment occupy a single internal state. Furthermore, for assembled molecules
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such as RbCs, the molecule inherits the motional state of the center of mass of the

atom pair from which it is assembled. As only atom pairs in the ground state of

relative motion are converted into molecules, the formed molecules usually occupy

the three-dimensional motional ground state. We estimate that this is true for

56(6)% of the molecules formed in our experiment (see Sec. 4.2). This efficiency is

comparable to the 54(18)% occupancy of the three-dimensional motional ground

state achieved after Raman sideband cooling of CaF molecules in optical tweezers

[135, 136].

8.2.4 Rydberg-mediated quantum gates

In additional to using the Rydberg atoms to detect molecules, we will use them

to mediate high-fidelity entangling gates between molecules [101, 102]. We will

prototype a hybrid network where quantum information can be transferred between

individually trapped molecules using Rydberg atoms. The molecules will act as

long-lived quantum memories that encode information in their rotational states,

allowing for tests of high-dimension quantum computing [47, 59, 60] and quantum

simulation [44, 47, 74]. This will build on the partial blockade caused by resonant

interactions that we have shown in this work. We are currently limited by the

fidelities with which we can prepare atoms and molecules in the requisite states, and

have begun work to increase these.

8.2.5 Molecule-Rydberg interactions and giant molecules

Our hybrid platform provides the ideal environment to study interactions between

Rydberg atoms and molecules in an ultracold setting. Previously, these interactions

have largely been studied in scattering experiments [161] where the energy-level

spacings between high n Rydberg states are much smaller than the translational

collision energies [354]. These experiments were typically described by models

that consider the scattering of the molecule from the Rydberg electron and core

independently [355], and state-resolved imaging proved a challenge [354]. To overcome

this, resonant energy transfer has been exploited to perform Rydberg atom-enabled

spectroscopy of molecules [106]. This is a versatile tool for exploring the structures

of molecules and has been used in room-temperature [104] or cold [105] settings.

We now have the ideal test bed to test this technique in ultracold regime where the

particles can be placed in delicate quantum states before interacting.

As probe of these interactions, we will aim to photoassociate GPRyMs [109–

112]. Spectroscopy of these giant molecules will enable sensitive probing of the
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energy landscapes caused by charge-dipole interactions between the molecule and

the Rydberg atom. Both the Rydberg core and electron affect these energy levels,

allowing interactions between molecules and the entire Rydberg atom to be probed at

ultra-low energies. The ability to synthesise GPRyMs will open up further study into

their properties such as their polarisabilities and lifetimes, which will be enhanced if

it proves possible to trap them.

8.2.6 Studies of interspecies energy transfer

Looking further ahead, our platform could be used to simulate the behaviour of a

wide range of quantum systems that demonstrate interspecies energy exchange. For

example, in a biological setting, Förster resonance energy transfer occurs between

light-sensitive molecules through nonradiative dipole–dipole coupling [356]. Our

hybrid system is ideal for studying quantum effects, such as decoherence, that occur

during such energy transfer [357]. Alternatively, one could simulate photosynthesis

where absorbed energy is transferred to the photosynthetic reaction centre with near-

unity efficiency. A debate is ongoing as to whether quantum coherence is responsible

for this high efficiency [358, 359]. Our hybrid platform is ideal for simulating such

interspecies energy transfer in a fully quantum setting which may shed some light

on this process.

8.3 Concluding remarks

In this thesis, we have detailed the formation of a hybrid quantum system of ultracold

molecules and Rydberg atoms. This platform promises to be a powerful and versatile

tool for exploring for new quantum science. There are many exciting research avenues

to embark down, and the future of Team Tweezer is bright.



Glossaries

Acronyms

1D AOD one-dimensional AOD 2.1, 2.2

2D AOD two-dimensional AOD 1.5, 2.1–2.3, 5.8, 6.3

AMO atomic, molecular, and optical 1.3, 2.6

AOD acousto-optic deflector 2.2, 2.3, 3.4

AOM acousto-optic modulator 2.2, 2.3, 2.5, 4.2, 5.3–5.5, 5.8, 7.3

AR anti-reflection 2.1, 2.3, 2.4, 5.2

ARP adiabatic rapid passage 4.8, 5.3, 7.4

AWG arbitrary waveform generator 1.5, 2.2, 2.6

CIR confinement-induced resonance 3.2

DAC digital-to-analogue converter 5.6

DDS direct digital synthesiser 1.5, 2.5

EMCCD electron-multiplying charge-coupled device 2.1, 2.3, 2.6

EOM electro-optic modulator 2.3, 2.5, 5.3, 5.4, 7.3

FIFO first-in, first-out 2.6

GPRyM giant polyatomic Rydberg molecule 6.1, 6.4, 8.2

HWP half-wave plate 2.3, 5.2

IR infrared 5.2

161
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LIAD light-induced atomic desorption 5.6, 7.3

MOT magneto-optical trap 2.1, 2.3

MWG microwave generator 1.5, 2.6

NA numerical aperture 2.2

PBS polarising beam splitter 2.3, 2.5

PDH Pound-Drever-Hall 2.5, 5.3

QWP quarter-wave plate 2.5

RF radiofrequency 2.2, 2.3, 4.5, 5.8

ROI region of interest 2.6

SLM spatial light modulator 1.5, 2.1–2.3, 2.6, 5.8

STIRAP stimulated Raman adiabatic passage 1.5, 2.3–2.5, 4.2–4.8, 5.2, 6.2, 7.4,

8.1, 8.2

TDM transition dipole moment 4.4, 4.5, 5.2, 7.1, 7.3, 7.4

ULE ultra-low expansion 1.5, 2.5, 4.1, 5.2–5.4, 6.3, 8.2

UV ultraviolet 2.5, 5.2, 5.6

Fundamental physical constants

Symbols are generally defined in the relevant places in the text, with the exception

of fundamental physical constants. The fundamental physical constants that are

used in the text are listed here alongside the 2022 CODATA recommended values

[360].

Quantity Symbol Value

Bohr magneton µB 9.274 010 065 7(29) × 10−24 J/T

µB/h 1.399 624 491 71(44)MHz/G

Bohr radius a0 5.291 772 105 44(82) × 10−11m

Boltzmann constant kB 1.380 649 × 10−23 J/K
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Quantity Symbol Value

kB/h 20.836 619 12 . . . MHz/mK

Electron mass me 9.109 383 713 9(28) × 10−31 kg

Elementary charge e 1.602 176 634 × 10−19C

Nuclear magneton µN 5.050 783 739 3(16) × 10−27 J/T

µN/h 762.259 321 88(24)Hz/G

Planck constant h 6.626 070 15 × 10−34 J/Hz

4.135 667 696 . . .× 10−15 eV/Hz

Speed of light in vacuum c 2.997 924 58 × 108m/s

Unified atomic mass unit u 1.660 539 068 92(52) × 10−27 kg

Vacuum electric permittivity ε0 8.854 187 818 8(14) × 10−12 F/m
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[264] J. P. Covey, S. A. Moses, M. Gärttner, A. Safavi-Naini, M. T. Miecnikowski,

Z. Fu, J. Schachenmayer, P. S. Julienne, A. M. Rey, D. S. Jin, and J. Ye,

Doublon dynamics and polar molecule production in an optical lattice, Nat.

Commun. 7, 11279 (2016).

https://doi.org/10.1103/physrevlett.94.210401
https://doi.org/10.1126/science.1175850
https://doi.org/10.1103/PhysRevLett.104.153202
https://doi.org/10.1103/PhysRevLett.104.153202
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.108.075303
https://doi.org/10.1103/PhysRevLett.131.213002
https://doi.org/10.1103/PhysRevLett.110.203202
https://doi.org/10.1126/science.aba7468
https://doi.org/10.1126/science.1250057
https://doi.org/10.1038/nature16073
https://doi.org/10.1103/PhysRevLett.91.183201
https://doi.org/10.1103/PhysRevLett.91.183201
https://doi.org/10.1103/PhysRevA.80.022710
https://doi.org/10.1038/ncomms11279
https://doi.org/10.1038/ncomms11279


BIBLIOGRAPHY 186

[265] L. Reichsöllner, A. Schindewolf, T. Takekoshi, R. Grimm, and H.-C. Nägerl,
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