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Abstract: In this thesis, we present automated, process-independent methods

for the calculation of QED real radiative corrections. We review the construction

of a parton shower based on Catani-Seymour dipole subtraction, and thus detail

the implementation of a QED parton shower. We validate the predictions made by

the shower against the YFS soft-photon resummation, and discuss the algorithmic

choices made. We then present results for the production of a Higgs boson at the LHC

and its decay to leptons, showing that the interleaved QCD+QED parton shower

predicts distributions in excellent agreement with the YFS approach. We then

study the MC@NLO method for matching a next-to-leading order calculation with a

parton shower. Showing that the method preserves its accuracy for the case of QED

corrections and of mixed QCD and QED corrections, we present the QCD+QED

MC@NLO method. Validating the method against both the YFS resummation and

the QED parton shower, we find very good agreement. Finally, we present an

extension to the YFS soft-photon resummation, in which we use a one-step parton

shower to resum the logarithms associated with charged particle pair production.

Throughout this thesis we also discuss the impact of dressed lepton definitions on

observables. The methods presented in this thesis are made available in a public



Monte Carlo event generator and analysis framework.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is a triumph of modern physics, being

our most precisely tested theory of nature. Over a huge range of energy and distance

scales, we are able to describe the interactions of particles at collider experiments

with incredible precision. By utilising a number of mathematical and computa-

tional methods, ever more precise predictions can be made. At the time of writing,

no discovery of physics beyond the SM has definitively been made, although it is

known that it must exist (there is evidence for the existence of dark matter, dark

energy and massive neutrinos). More concretely, the recent measurements of the

muon anomalous magnetic moment (g − 2)µ [2, 3] are in conflict with the SM pre-

diction [4]. The uncertainty on the prediction is dominated by the hadronic vacuum

polarisation, which can be determined using various experiments, such as low-energy

e+e− collisions or muon-electron scattering. To confirm the disagreement, and an

unquestionable signal of new physics coupling to the SM, or to resolve the tension,

we require higher precision predictions of these experiments. For this reason, it is

imperative that we continue to improve our understanding of the SM itself.

Modern particle colliders such as the Large Hadron Collider (LHC) and electron-

positron ‘b factories’ are entering a precision era where the experimental error on

many measurements is smaller than the theoretical error on the SM prediction. In

addition to this success of current experiments, there are multiple proposals for a
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future lepton-lepton collider, which would provide the most precise measurements

yet of the SM, and any physics beyond the SM. While the success of the engin-

eering involved is to be celebrated, this fact presents a challenge to the theory and

phenomenology community. The last 20 years have seen a plethora of new meth-

ods for increasing theoretical precision, in many cases in a largely automated and

process-independent way.

Many of these automated methods for producing precise theoretical predictions fall

under the category of Monte Carlo (MC) statistical methods. They are implemented

in MC event generators, codes which simulate the physics involved in particle colli-

sions and produce descriptions of the final-state particles, called events. These events

can be treated as similar enough to real collider final states and can be used to model

the detector response to certain physics scenarios in experiments. Events can also be

analysed to produce cross sections and kinematical distributions, to be compared to

data. Due to the public nature of these codes and their vast applicability, MC event

generators are a cornerstone of modern particle physics. As a result, their physics

models are constantly under development to address the aforementioned challenge

to theoretical precision.

In this thesis we concern ourselves with improving the precision of MC event gener-

ator predictions by implementing new methods to describe electromagnetic radiative

corrections in an automated, process-independent manner. We describe each method

and present results to validate the description, before presenting new phenomen-

ological results. In chapter 2 we introduce the quantum electrodynamics (QED)

dipole parton shower, in chapter 3 we describe the process of matching the shower

to a next-to-leading order (NLO) calculation, and in chapter 4 we introduce the

Yennie-Frautschi-Suura (YFS) soft-photon resummation and describe its extension

to charged particle pair production. Finally, in chapter 5, we conclude and reflect

on the impact of all three methods, and give an outlook on future developments in

this area.
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1.1 The Standard Model and perturbation

theory

The SM of particle physics is an SU(3)C× SU(2)L× U(1)Y gauge theory. Quantum

chromodynamics (QCD) is a Yang-Mills theory which describes quarks, gluons (the

gauge bosons of the strong force) and the hadrons they make up. It exhibits con-

finement [5] and asymptotic freedom [6, 7]. The former means that objects with a

colour charge, notably quarks and gluons, cannot be observed in isolation because

the energy required to separate them exceeds the energy required for pair production

and the formation of colourless hadrons. The latter allows strong interactions to

be calculated using perturbation theory when the energy scale of the interaction

is sufficiently high. The strong coupling constant αs = g2
s/4π has a pole at the

confinement scale, ΛQCD = 210± 14 MeV in the modified minimal-subtraction (MS)

scheme with 5 light quark flavours [8]. At energies higher than a few GeV, αs < 1 and

therefore perturbation theory can be employed. Below this scale non-perturbative

methods, such as lattice QCD, must be used. In practice, however, since lattice QCD

is still a developing technology, the solution is usually to use other non-perturbative

models with free parameters extracted from data. For initial-state hadrons we make

phenomenologically-motivated Ansätze for parton distribution functions (PDFs) and

fit these to data. Similarly, to understand the production of final-state hadrons

we must model hadronisation. There are various physically-motivated methods to

model hadronisation, including the Lund string model [9] and the cluster model [10].

Of the whole SM, only quarks, antiquarks and gluons carry colour charge and hence

feel the strong force. However, as the strongest interaction in nature, a huge amount

of effort has gone into developing methods to allow us to model QCD ever more

precisely.

At high energies, the remaining SU(2)L× U(1)Y group describes the electroweak

(EW) theory. This symmetry is spontaneously broken in nature, leaving an unbroken

U(1)QED electromagnetic (EM) symmetry and massive weak gauge bosons, as well
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as a massive Higgs boson. The low-energy EM force is described by QED. The

gauge boson of QED is the photon, which has no electromagnetic charge (contrary

to gluons which carry colour charge). All charged particles feel the EM force: quarks,

the charged leptons e, µ and τ , and the charged gauge bosons W±. The EM force

decreases with distance and hence increases with the energy of the interaction, unlike

the strong force. The electroweak coupling constant α = e2/4π, also known as the

fine structure constant, is of order 10−2 and has a slow running, so the theory remains

perturbative over the whole range of energies available in experiments. The weak

sector contains the massive Z and W gauge bosons and the Higgs boson. Due to

the high energies required to produce these bosons on-shell, when discussing their

production and decay we will usually refer to the unified electroweak interaction

instead of the low-energy weak and EM interactions.

In this thesis we will be primarily concerned with the QED sector of the SM, as well as

its interplay with QCD. We will propose, motivate and present results for methods to

bridge the gap between perturbative calculations and experimental observations. As

far as possible, these methods will be process-independent, automated and publicly

available.

1.1.1 Perturbation theory, renormalisation and cancellation

of infrared singularities

The primary technique of quantum field theory calculations is perturbation theory, in

which any interactions are assumed to be a small correction to the free theory and so

a series expansion in the coupling constant can be performed. The first interacting

term of this series is referred to as leading order (LO). We define a Feynman

diagram without loops as a tree-level diagram. While for many quantities the the

LO contribution is tree-level, the two terms are not synonymous. The corresponding

matrix element (ME) is often referred to as the Born ME to distinguish it from

higher-order corrections. NLO calculations generally include diagrams which involve
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loops. The momentum flowing through the loop particles is not determined by

momentum conservation so must be integrated over all possible values. Some of

these loop integrals are divergent due to the requirement to integrate the magnitude

of the loop momentum up to infinity. However, by regularising the integrals, it

can be seen that the divergences can be absorbed into redefinitions of Lagrangian

parameters and all integrals become ultraviolet (UV) finite.

In general, calculations of terms in the perturbative series up to a given order in

powers of the relevant coupling (α or αs or a mix of the two) are called ‘fixed-order’.

When ordering a perturbative expansion in a mixture of α and αs, a rule of thumb

for the relative magnitudes of the terms is α ≈ α2
s. Care must be taken not to

double-count contributions, since an EW correction to a QCD-induced process and

a QCD correction to an EW-induced process may be identical.

After renormalisation, higher-order calculations still lead to divergences. The emis-

sion of a soft or collinear photon or gluon, or a collinear massless fermion, is associated

with a so-called infrared (IR) singularity in the cross section due to the phase space

integration. Separately, the NLO correction involving exchange of a virtual (internal)

photon or gluon to a tree-level process leads to an IR singularity in the integration

over the loop momentum. The solution to both these problems lies in abandoning the

attempt to calculate them separately. At NLO in the cross section, we must consider

both the interference of the Born ME with the one-loop ME and the real-emission

ME squared. With the use of regularisation, it can be seen that the two singularities

cancel exactly. This is the Kinoshita-Lee-Nauenberg (KLN) theorem [11,12].

This cancellation of IR singularities occurs not only for the total cross section, but

for a range of observables. We will define such observables, where IR divergences

exactly cancel, as infrared-safe (IR-safe). More precisely, an IR-safe observable O

satisfies the two conditions

On+1(. . . , pi, . . . )
pi→0−−−→ On(. . . ) soft-safe,

On+1(. . . , pi, pj, . . . )
pi→Cpj−−−−→ On(. . . , (pi + pj), . . . ) collinear-safe,

(1.1.1)
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where ‘soft’ means low-energy, such that the soft limit is the limit of zero energy;

if two particles are exactly collinear they have parallel momenta pi = Cpj and the

collinear limit is that of zero separation angle. Examples of IR-safe observables

include transverse momenta and energies of jets or suitably dressed leptons, and

geometrical observables such as thrust, but do not include observables such as the

total number of photons in the final state.

In this section we have discussed perturbation theory as a tool to obtain fixed-order

predictions for IR-safe observables. However, fixed-order calculations are not always

sufficient to get a good description of the physical process. There can exist very

significant contributions even from large powers of the coupling when these are

multiplied by logarithms of very large or very small quantities, such as a ratio of

energies or masses. Calculations which are not fixed-order use resummation of leading

logarithms to obtain a better approximation of the quantity under consideration.

This can be extended to next-to-leading logarithms, and so on in the same way as

fixed-order calculations. Where the size of logarithms in the perturbative series is

controlled and small, a resummed calculation will not achieve significantly higher

precision than a fixed-order one.

1.1.2 The YFS soft-photon resummation

The work of Yennie, Frautschi and Suura [13] describes the removal of the IR

singularities of QED to all orders by reordering the perturbative expansion of a

scattering or decay ME. This is achieved by separating the IR divergences from

the finite remainders, to all orders. The IR divergent terms form a series which

can be exponentiated, amounting to a resummation of soft-photon logarithms in

the enhanced real and virtual regions. This leaves a perturbative expansion in IR-

finite, hard photons (both real emissions and virtual exchanges). The YFS approach

considers all charged particles of the theory to be massive, and as a consequence

only singularities associated with soft-photon emission are present.
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In the YFS description, photons are emitted coherently from the charged multipole

through the eikonal radiator function. This is in contrast to parton shower descrip-

tions of photon radiation, which usually consider emission from one specific emitter

particle or from a charge dipole. The photons produced by a YFS implementation

are also not ordered in any specific kinematical variable, but do have an IR cutoff on

their energy - all radiation below this energy is resummed with the virtual corrections.

The YFS resummation has the advantage that, when the perturbative expansion

is reordered, what remains after all soft-photon singularities are resummed is the

complete perturbative expansion. This means that IR-subtracted real-correct MEs

can be calculated and combined with the resummation to yield fixed-order-matched

results.

The YFS resummation is widely used in MC event generators to describe photon

radiation. An implementation of the algorithm was first included in the event

generator KKMC [14, 15], and later in HERWIG [16], SHERPA [17, 18], BHLUMI [19],

BHWIDE [20], WINHAC/ZINHAC [21], and KORALW/YFSWW [22]. The inclusion of

the algorithm in general-purpose event generators allows it to be used in conjunction

with QCD parton showers, hadronisation and other non-perturbative effects. How-

ever, the YFS resummation is not the only approach to modelling QED radiative

corrections. One can also use a collinear resummation approach and supplement

this with soft effects. A prominent example of a successful tool for QED final-state

radiation which uses a bespoke algorithm for exponentiation of multiple soft-photon

emissions is PHOTOS [23–26]. The PHOTOS algorithm is similar to that of YFS, but

was developed independently.

1.2 Monte Carlo event generators

The modern workhorses of particle physics are event generators. These programs

translate ME calculations into ‘events’, collections of particles with defined momenta,

which can be treated almost identically to those seen in experimental detectors.
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An event generator usually consists of multiple modules which simulate different

effects: parton showers, decays, hadronisation, PDFs, beam structure, and sometimes

multiple interactions and the underlying event. Event generators carry out cross

section calculations using MC integration techniques. There are many excellent

reviews of MC event generators in the literature, for example refs. [27–29].

1.2.1 Factorisation of the cross section

Many of the techniques carried out by event generators rely on the factorisation

of the cross section into parts characterised by different energy scales. At high

scales, we have the partonic cross section, which can be calculated using perturbation

theory. But the long-distance objects which we measure are dependent on low-energy

physics. Thus, we must describe how the initial state that enters the hard scattering

is produced and how the observed final state emerges from the hard scattering. We

assume that the relevant processes involved at these two energy scales factorise. The

factorisation Ansatz is [30,31]

σAB→X =
∑
a∈A

∑
b∈B

∫
dxa

∫
dxb fAa (xa, µ2

F )fBb (xb, µ2
F )
∫

dΦab→X
dσ̂ab(Φab→X , µ

2
F )

dΦab→X
(1.2.1)

where A,B are the incoming beam particles (hadrons or leptons), a, b are their

constituent flavours (quarks, gluons, leptons and/or photons), xa is the momentum

fraction carried by constituent a, and fAa is the Parton Distribution Function of

constituent a in particle A. Additionally, µ2
F is the factorisation scale, with units

of energy squared. σ̂ab→X is the partonic cross section for the production of a final

state X, calculated using perturbation theory.

Note that the cross section in eq. (1.2.1) is the inclusive cross section: it specifies

the cross section for the production of X in any kinematical configuration and

accompanied by any number of additional particles. However, the way that MC

event generators work is to generate an event according to eq. (1.2.1) containing
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Figure 1.1: A pictorial representation of a tt̄H event at a hadron col-
lider, as represented in the event generator SHERPA [32].
The beams are resolved into partons (blue) which radi-
ate before entering either the hard interaction (red blob)
or secondary softer interactions (purple). The heavy fi-
nal state, the Higgs and top quarks, decay (smaller
red blobs) and further QCD radiation is produced by
the parton shower (red). Hadronisation is shown in
light green and the produced hadrons then decay (dark
green). QED radiation is shown in yellow and can occur
at all scales.

exactly X as the final state, and then augment this event with additional particles.

By using Markov processes to produce these additional particles, probability is

conserved, as well as four-momentum, respecting the inclusivity requirement. This

is shown schematically in fig. 1.1. For this thesis the relevant Markov process,

applicable at hadron and lepton colliders, is the parton shower, which we introduce

in section 1.2.2.
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1.2.2 The parton shower

The property that a real-emission ME factorises into the Born ME multiplied by

a universal splitting function in the collinear limit leads to the derivation of evolu-

tion equations for the PDFs, since these must obey the strict collinear limit. The

dependence of the PDFs on the factorisation scale is given by the Dokshitser-Gribov-

Lipatov-Altarelli-Parisi (DGLAP) equation [33–36],

dfAa (x, µ2
F )

dlog (µ2
F )

=
∑
b∈A

∫ 1

x

dz
z

α

2π P̂b→a(z)fAb (x/z, µ2
F ), (1.2.2)

where the P̂b→a(z) are the regularised Altarelli-Parisi splitting functions. These

describe the collinear splitting of particle b into particle a in QCD or QED [36].

This leads to an interpretation of the factorisation Ansatz as separating unresolved

parton branchings (absorbed into the definition of the PDFs) and resolved parton

branchings, which are generated by a parton shower using variants of the Altarelli-

Parisi splitting functions. The crossover point between the two is related to the

factorisation scale.

Repeatedly generating parton branchings according to eq. (1.2.2) produces new

final-state particles in a Markov process which we call initial-state radiation. The

final-state radiation will be generated in an analogous manner, without considering

the PDFs and instead considering physical cutoff scales for the evolution, such as

ΛQCD for QCD radiation or photon resolution scales for QED radiation.

1.2.3 Next-to-leading order calculations and matching

NLO calculations of cross sections generally involve interference terms between loop

diagrams (virtual corrections) and the Born ME, and emissions of undetectable

particles off external legs (real corrections). IR divergences appear in both cases,

when the propagator of a virtual particle goes on-shell or when a real emission

becomes infinitely soft or collinear to another particle. In the soft or collinear limit,

the particle becomes undetectable. There is no divergence associated with the soft
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limit of a fermion, but photons and gluons have this divergence and the collinear

limit of any massless emission is associated with a divergence. As described above,

to ensure the cancellation of these IR singularities by the KLN theorem, we must

consider only IR-safe observables. When the integrals are regularised, for example

by moving to d = 4−2ε dimensions, the cancellation of singularities is apparent, and

the ε → 0 limit can be safely taken. Nevertheless, the need to carry out integrals

in d dimensions to facilitate the cancellation prevents numerical integration of NLO

quantities.

In order to carry out NLO calculations as described in sec. 1.1 in an event generator,

we must ensure that the real and virtual contributions are separately finite. There are

two main families of methods to achieve this: phase-space slicing, and subtraction.

In this thesis we will exclusively consider subtraction methods. To define an NLO

subtraction, we add or remove particles from the Born configuration using a dipole

splitting picture. The notation is detailed in sec. 1.3 below; briefly, a tilde is used

to denote quantities pre-splitting (in this case, relating to the Born configuration)

while unmodified quantities relate to the real-emission configuration. We introduce

a notation for mapping from the real-emission phase space Φn+1 to the Born phase

space Φn [37],

bij,k({a}) =


{f} ∪ {fı̃} \ {fi, fj}

{~p} → {~̃p},
(1.2.3)

where {a} = {a1, a2, . . . an} denotes the particle configuration, {f} is the set of

flavours and {~p} is the set of four-momenta. This mapping removes the emitter

particle ı̃ and adds its splitting products i and j. The inverse is a mapping from

the Born phase space to the real-emission phase space,

rı̃,k̃(fj,Φ
ij,k
R|B, {ã}) =


{f̃} ∪ {fi, fj} \ {fı̃}

{~̃p} → {~p},
(1.2.4)

where Φij,k
R|B is the factorised one-particle phase space for an emission ı̃(k̃)→ ij(k),

and fj is the emitted particle flavour. Of course, only those splittings which are
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allowed by the theory are considered. In the soft limit, pj → 0, both these mappings

must leave all non-soft particles unchanged. Similarly, in the collinear limit, only

the emitter particle may be changed.

These mappings allow us to write down the factorisation of the squared matrix

element in the infrared limits. In the collinear limit,

|Mn+1|2({a}) −→ 8πα
2pipj

Mn(bij,k({a}))⊗ P̂ı̃→i(z)⊗M∗
n(bij,k({a})) (1.2.5)

where the tensor products indicate spin correlations. In QED, these spin correlations

only exist for photon splittings into fermions, which do not have a true collinear

singularity in any case. In this thesis we will use spin-averaged splitting functions

and reduce this to an ordinary product. In the soft limit, a similar factorisation

holds where the Altarelli-Parisi splitting functions divided by the virtuality 2pipj

are replaced by an eikonal

Sij,k = pipk
(pipj)(pjpk)

(1.2.6)

accompanied by appropriate colour or charge correlators for QCD or QED evolution

respectively. These are the ingredients needed to define a subtraction scheme, to allow

us to calculate the parts of an NLO calculation individually without encountering

divergences.

Here we will use the Catani-Seymour (CS) subtraction method, which is built on

dipole factorisation. The subtraction terms include both soft and collinear singular-

ities, obtained by partial fractioning the eikonals [38, 39]. The dipole subtraction

terms are denoted by DS
ij,k and their integrals by ISı̃,k̃. Then an observable O has

expectation value

〈O〉NLO =
∑
{f̃}

∫
dΦn

(
{f̃}

)B ({ã}) + Ṽ ({ã}) +
∑
ı̃,k̃

ISı̃,k̃ ({ã})
O ({p̃})

+
∑
{f}

∫
dΦn+1 ({f})

Rn+1 ({a})O ({p})−
∑
ij,k

DS
ij,k ({a})O(bij,k ({p}))


(1.2.7)

where Ṽ , in addition to the one-loop MEs interfered with the Born contribution,
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contains the collinear counterterm. It is common to redefine IS to only cancel

the divergences from 1-loop diagrams, and absorb the collinear counterterm and

its cancellation into separate K and P terms. This simplifies the evaluation in 4

dimensions and separates the phase space dependence of the terms. Rn+1 is the real

ME squared.

When combining an NLO calculation with a particle-generating Markov process

such as a parton shower, care must be taken to avoid double-counting the first

emission. Further details will be discussed in chapter 3, but the main difficulty

lies in exponentiating only the logarithmically enhanced soft and collinear parts of

the subtraction terms. This requires defining suitable starting scale for the parton

shower, while treating hard emissions as IR-regular. Many matching methods have

been proposed and implemented, including POWHEG [40, 41], MC@NLO [42] and

KrkNlo [43].

1.2.4 Summary

The Standard Model of particle physics has been hugely successful in describing

a wide range of physics at collider experiments. Modern efforts focus on using

perturbation theory and resummation techniques to increase the precision of SM

predictions. Monte Carlo event generators are one aspect of this effort, implementing

automated methods to make precise predictions for many processes and observables.

In this thesis, we will detail the implementation of new methods to describe QED

radiative corrections in the event generator SHERPA [32].

1.3 Notation

Throughout this thesis we will use notation consistent with the SHERPA parton

shower and NLO matching publications, introduced in refs. [44] and [45].



38 Chapter 1. Introduction

A dipole parton splitting process is denoted ı̃ (k̃) → ij (k), where ı̃ is the emitter

parton and k̃ is the spectator parton. A tilde denotes quantities before the splitting,

as ordered in a parton shower ordering variable, and i and j are the splitting products.

The corresponding splitting function is denoted Sf̃
ı

(k̃)→fifj(k), where fi is the flavour

of parton i. Fermions are denoted f in general, or q = {u, d, c, s, t, b} for the quarks,

` = {e, µ, τ} for the charged leptons and ν = {νe, νµ, ντ} for the neutrinos. Neutrinos

are considered massless throughout this thesis. Scalars are denoted s and photons

are denoted γ. Momenta, masses and other quantities in splitting processes are

labelled with the splitting index.

For NLO calculations, the LO contribution to the squared ME is denoted B, such

that the total cross section σ =
∫

dΦB, where Φ is the Lorentz-invariant phase

space. Similarly, the real correction is represented by R and the virtual by V .

The strong coupling constant αs is always considered to run with the scale, usually

denoted by its argument. The EW coupling constant α depends on the input scheme

used in the calculation. Unless otherwise specified, for ME calculations we use a

fixed α in the Gµ scheme.
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QED parton showers

2.1 Introduction to parton showers

One of the standard tools, almost the defining feature, of any MC event generator

is a QCD parton shower. Early parton showers were developed in the 1980s due

to the need to describe the large number of final-state particles produced in the

newer, higher-energy particle colliders. The process of hadronisation depends on the

quantum properties of the hadronising parton ensemble, necessitating a modelling

of the whole partonic final state up to timescales comparable to hadronisation. A

parton shower provides this by modelling the perturbative splitting of quarks and

gluons over a wide range of energy scales using a Markov process. By solving variants

of the DGLAP equations for parton splittings of the initial and final states of a hard

process, the evolution between the hard scattering partons and the long-distance

states is bridged probabilistically. The first parton showers were built on the leading-

logarithmic (LL) collinear approximation of QCD MEs for the decay of off-shell

partons, ordered in the virtuality of the partons [46–49]. Initially, there was no de-

scription of momentum conservation in the shower since the process of hadronisation

involved a smooth momentum convolution into the momenta of hadrons. In addition

to collinear logarithms, soft logarithms were first resummed in a parton shower in

the work of Marchesini and Webber [50, 51]. This work also introduced angular
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ordering, ensuring the inclusion of colour coherence effects. This was developed into

a full-fledged parton shower in the event generator HERWIG [52]. For the case of

the initial state, an important development in QCD parton showers was the advent

of backward evolution [53]. This led to the interleaved initial- and final-state QCD

shower in many modern showers, pioneered by PYTHIA [54]. While early work on

parton showers was intended to replace the use of higher-order MEs, it became clear

that even at high-energy colliders, the soft- and collinearly-approximated parton

shower was not sufficient to describe the hard wide-angle radiation. Thus a method

to merge LO multileg MEs with the parton shower was developed [55, 56], which

became the cornerstone of the event generator SHERPA [57].

Despite the flourishing development of QCD parton showers over the last 40 years,

the need for precise description of QED radiation has been much less pronounced

and so QED showers are not ubiquitous in event generators. PHOTOS [23–26] was

the first process-independent tool developed for modelling QED final-state radiation.

HERWIG has a QED parton shower which includes all spin correlation effects [58].

PYTHIA also includes a QED shower which treats each ff̄ pair as an independent

dipole, thus approximating the correct multipole soft limit for photon emissions.

The parton shower in SHERPA has also been previously updated to include QED

splittings in order to model hard photon production [59]. However, until this work,

only positive dipoles have been included, leading to an overestimate of the photon

radiation produced in the soft limit. In addition, photon splittings into fermions

were previously not modelled correctly in the dipole picture. This has little effect

on observables where a hard photon is selected, but can have non-negligible effects

on reconstructed resonances, especially when dressed leptons are used to reconstruct

them. In this chapter, we will detail the modifications made to the QED parton

shower in SHERPA.

We begin by outlining the ingredients behind a parton shower algorithm. We follow

the description given in ref. [27], which, like the QED parton shower we will outline

here, is built on the CS dipole subtraction.
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First, we motivate an initial-state parton shower as the ability to model initial-state

radiation, not inclusively via PDFs, but exclusively such that actual particles are

produced. Since any parton shower must have an IR cutoff, however, the DGLAP

equations must be modified for initial-state radiation. The parton shower IR cutoff

means that the plus-prescription and δ-function part are no longer needed. This

would amount to including real-emission corrections to the cross section in the

LL approximation. This is the approach taken in many QED parton showers for

e+e− colliders, for example in the event generator BABAYAGA [60–64]. For the case

of parton showers at hadron colliders, however, the approach taken is to respect

unitarity of the LO cross section. This results in a probabilistic interpretation of the

splitting functions, at least in the leading-colour limit of a QCD parton shower. To

achieve unitarity, an extra term is added to the DGLAP equations (eq. (1.2.2)) to

represent the virtual corrections in the restricted phase space,

dfAa (x, t)
dlog t =

∑
b∈A

∫ zmax

x

dz
z

α

2πPb→a(z)fAb (x/z, t)

− fAa (x, t)
∑
b∈A

∫ zmax

zmin

dz α2π
1
2Pa→b(z), (2.1.1)

where the second term represents the probability for removing a particle of flavour a

through its splitting to other flavours. The factor 1/2 is due to the symmetry in the

splitting variable z and its complement 1− z. In this equation, we have also written

t instead of the factorisation scale µ2
F . This is the parton shower evolution variable,

which will be defined later.

A final-state parton shower, or more generally one which can model initial-final

interference as well as radiation from the initial and final states, does not need to

replicate PDF evolution, but is built from the same collinear factorisation picture

which will be detailed in the next section.

In chapter 1, we introduced a mapping from a Born particle configuration to that

of a real-emission event, eq. (1.2.4). This mapping is not uniquely defined for each

splitter-spectator pair, unlike its inverse. It depends not only on the three kinematical
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variables needed to describe the momentum of the newly created particle, but also

on its flavour (although the latter is often fixed by the Born particle configuration).

The parton shower uses the MC methods described in this section to select these

variables while respecting the underlying evolution equations.

Key to the parton shower algorithm is the ‘hit and miss’ provided by the veto

algorithm described below. The process begins at some scale t′ where all the possible

splitter partons are iterated over, then all the possible spectators. An overestimate

for the splitting is calculated and a new scale t is computed. The new scale is then

accepted with a probability which corrects for the overestimate. If the splitting is

accepted, the new particle is created and flavours, colours and kinematics are updated.

The whole process is repeated at the new lower scale until some IR cutoff tc, needed

to regulate the divergence of the splitting functions. This cutoff is usually taken

around the hadronisation scale for QCD showers, since quarks and gluons would no

longer be meaningful degrees of freedom below this scale. For QED evolution, a

natural cutoff for photon splittings is provided by the mass of the produced fermions,

and for photon emissions the cutoff should be chosen low enough to not affect the

observables of interest.

In this chapter, we describe the construction of a QED parton shower, starting

from the CS dipole subtraction scheme for NLO electroweak corrections. In the

construction we take inspiration from QCD parton showers based on CS subtraction.

In section 2.2.3 we show that the veto algorithm reproduces the desired integral of

the probability distribution. We present results from the updated QED shower in

SHERPA in section 2.4. Before concluding and providing an outlook in section 2.6,

we detail the additional considerations required in the case of initial-state radiation

at an e+e− collider in section 2.5.
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2.2 Construction of a QED parton shower

As motivated in section 1.2.2, parton showers based on CS dipole subtraction have

been highly successful phenomenological tools for QCD. In this section we describe

the construction of a QED parton shower from the CS dipole subtraction terms.

Eq. (1.2.7) for the expectation value of an IR-safe observable at NLO in the CS

dipole subtraction formalism is repeated here for convenience,

〈O〉NLO =
∑
{f̃}

∫
dΦn

(
{f̃}

)B ({ã}) + Ṽ ({ã}) +
∑
ı̃,k̃

ISı̃,k̃ ({ã})
O ({p̃})

+
∑
{f}

∫
dΦn+1 ({p})

Rn+1 ({a})O ({p})−
∑
ij,k

DS
ij,k ({a})O(bij,k ({p}))

 .

To construct a parton shower from the subtraction terms DS
ij,k, we start from the

factorisation of the (n+ 1)-particle phase space in the IR limit,

dΦn+1D
S
ij,k({a}) soft or collinear−−−−−−−−→ dΦn

 ∑
ı̃,k̃∈{f}

∑
fj

dΦij,k
1 DS

ij,k(rı̃,k̃{ã})
 , (2.2.1)

where {a}, {ã} are particle configurations, and rı̃,k̃ is the momentum mapping, eq.

(1.2.4). In a parton shower, our goal is to generate the one-particle phase space

dΦij,k
1 . We parametrise it in three variables t, z and the azimuthal angle φ,

dΦij,k
1 = 1

16π2 dt dzdφ
2π J(t, z, φ), (2.2.2)

where J(t, z, φ) is the Jacobian. Now we also use factorisation of the soft and collinear

limits of particle radiation, and factorise out the Born differential cross section dσB

from the radiative part,

dσ = dσB
∑

ı̃,k̃∈{f}

∑
fi

L(rı̃,k̃({a}))
L({ã})

DS
ij,k(rı̃,k̃({a}))
B({ã}) , (2.2.3)

where we have also included the particle luminosity factors L, since this is a differ-

ential cross section. The particle luminosity is given by

L({a}, µ2
F ) = x1f

A
f1(x1, µ

2
F )x2f

B
f2(x2, µ

2
F ), (2.2.4)
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where xi is the momentum fraction of fi in A or B, as appropriate. For final-state

radiation, since the initial-state flavours and momenta do not change, the ratio of

particle luminosities is 1. This is the essence of our parton shower factorisation.

We will give the explicit forms of the splitting functions DS
ij,k below. However, as

mentioned above, applying this without modification would violate unitarity, neither

resulting in the correct LO cross section nor the correct NLO one. Near the IR

limit, the logarithmic terms are dominant, and these exactly cancel between the

virtual corrections and real-emission contributions due to the KLN theorem. We

assume, in our LO-accurate parton shower, that virtual corrections exactly cancel

the finite (non-logarithmic) parts of the real corrections. This leads to the addition

of an unresolved-emission term

Ωı̃,k̃(t, t′) = exp
− 1

16π2
∑
fi

∫ t
′

t
dt
∫

dz
∫ dφ

2π
1
2
L(rı̃,k̃({a}))
L({ã})

DS
ij,k(rı̃,k̃({a}))
B({ã})

.
(2.2.5)

The product Ω(t, t′) = ∏
{ı̃,k̃}Ωı̃,k̃(t, t′) gives the total no-emission probability of the

parton shower, which is clearly seen by extending the sum over emitter-spectator pairs

into the exponential. Since Ω(t, t′) is a Poisson distribution in log t, the probability

of a branching at a scale t, starting from scale t′, is given by

P(t, t′) = dΩ(t, t′)
dlog t . (2.2.6)

In a final-state parton shower, the no-emission probability Ω = ∆, the Sudakov form

factor, which is defined to solve the DGLAP equations. However, where initial-state

particles are involved, Ω also contains a ratio of particle luminosities. A parton

shower uses our knowledge of the form of P(t, t′) using QCD or QED splitting

functions to solve eq. (2.2.6) for t, the splitting scale.

The forms of the emission and no-emission probabilities will inform our construction

of the parton shower algorithm in section 2.2.3 below. First, however, we will give

specific expressions for the parton shower splitting functions. The subtraction terms

DS
ij,k have different forms depending on whether ı̃ and k̃ are in the initial or final
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state.

2.2.1 Splitting functions

Final-final For a final-state splitter ı̃ and a final-state spectator k̃,

DS
ij,k = − 1

(pi + pj)2 −m2
ı̃

Q2
ı̃k̃ 〈. . . , ı̃, . . . , k̃, . . . |Vij,k| . . . , ı̃, . . . , k̃, . . . 〉, (2.2.7)

where | . . . , ı̃, . . . , k̃, . . . 〉 is a vector in colour and helicity space, and thus the product

indicates a squared matrix element, summed over final-state colours and spins.

The charge correlator is defined as [13,65–68]

Q2
ı̃k̃ =


Q
ı̃
θ
ı̃
Qk̃θk̃

Q
ı̃

2 , for ı̃ 6= γ

κı̃k̃, for ı̃ = γ,

(2.2.8)

where the Q are the charges of the particles and θ = 1 (−1) if the particle is in

the final (initial) state. Clearly Qk̃ = Qk, since the spectator does not change

flavour, and θk̃ = θk. The κı̃k̃ are parameters that can be chosen to implement a

spectator-assigning scheme but are subject to the constraint

∑
k̃ 6=ı̃

κı̃k̃ = −1 ∀ı̃ = γ, (2.2.9)

in order that the sum over all possible spectators adds up to the correct collinear limit.

There are various schemes for assigning spectators to photon splittings, discussed

further in chapter 4 and in ref. [69].

The parton shower splitting functions are the spin-averaged forms of Vij,k, in 4

dimensions, divided by the Born contribution,

Sı̃(k̃)→ij(k) = 〈s|Vij,k|s〉|ε=0

B
, (2.2.10)

in terms of the splitting variable yij,k and light-cone momentum fraction zi, which
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are defined as

yij,k = pipj
pipj + pipk + pjpk

and zi = pipk
pipk + pjpk

. (2.2.11)

We will usually suppress the splitting indices and write y to mean yij,k and z instead

of zi. From the definition of zi it is clear that zj = 1− zi, and so under i↔ j, each

splitting function is given by the exchange z ↔ 1− z.

Then the splitting functions are

Sf
ı̃

(k̃)→fiγj(k) = Sf̄
ı̃

(k̃)→f̄iγj(k) = 8π α
[

2
1− z + zy

− ṽı̃,k̃
vij,k

(
1 + z + m2

i

pipj

)]

Sγ
ı̃

(k̃)→fif̄j(k) = 8π α
[
1− 2z(1− z)− z+z−

]
.

(2.2.12)

The relative velocities v, ṽ are introduced to facilitate the analytic integration for

the case of massive partons. z± are the phase space boundaries. Explicit expressions

for these are given in the SHERPA parton shower literature, e.g. ref. [44]. In chapter

4 we use different solutions for the relative velocities and phase space boundaries,

which are detailed there.

Final-initial For a final-state splitter ı̃ and a massless initial-state spectator ã,1

DS
aj,k = − 1

(pi + pj)2 −m2
ı̃

1
yij,a

Q2
ı̃ã 〈. . . , ı̃, . . . , ã, . . . |Vij,a| . . . , ı̃, . . . , ã, . . . 〉,

(2.2.13)

where yij,a is the splitting variable defined below in eq. (2.2.14).

The splitting variables are

yij,a = 1−
pipj − 1

2

(
m2
ı̃ −m2

i −m2
j

)
pipa + pjpa

and zi = pipa
pipa + pjpa

. (2.2.14)

The initial-state splitting variable is often called xij,a, but we will retain the label

yij,a = y, to distinguish it from the momentum fraction x of the beam which is

carried by a given parton.
1The splitting functions for the case of a massive spectator are given in sec. 4.4.



2.2. Construction of a QED parton shower 47

Then, analogously to the final-final case,

Sf
ı̃

(ã)→fiγj(a) = Sf̄
ı̃

(ã)→f̄iγj(a) = 8π α
[

2
2− z − y − (1 + z)− m2

i

pipj

]

Sγ
ı̃

(ã)→fif̄j(a) = 8π α [1− 2(z+ + z)(z− − z)] .
(2.2.15)

Initial-final For a massless initial-state splitter ã and a final-state spectator k̃,

DS
aj,k = − 1

2papj
1
zaj,k

Q2
ãk̃ 〈. . . , ã, . . . , k̃, . . . |Vaj,k| . . . , ã, . . . , k̃, . . . 〉, (2.2.16)

where the splitting variables are defined by

zaj,k = 1− pjpk
pjpa + pkpa

and ui = pipa
pipa + pkpa

. (2.2.17)

Then the splitting functions are given by

Sf
ã

(k̃)→faγj(k) = Sf̄
ã

(k̃)→f̄aγj(k) = 8π α
[ 2
2− u− z − (1 + u)

]
Sγ

ã
(k̃)→faf̄j(k) = 8π α [1− 2z(1− z)] .

(2.2.18)

Initial-initial For a massless initial-state splitter ã and a massless spectator b̃,

DS
aj,b = − 1

2papj
1
zaj,b

Q2
ãb̃〈. . . , ã, . . . , b̃, . . . |Vaj,b| . . . , ã, . . . , b̃, . . . 〉, (2.2.19)

where the splitting variable zaj,b is now given by

zaj,b = 1− pjpa + pjpb
papb

. (2.2.20)

Then, as before, the splitting functions are

Sf
ı̃

(ã)→fiγj(a) = Sf̄
ı̃

(ã)→f̄iγj(a) = 8π α
[ 2
2− z − (1 + z)

]
Sγ

ı̃
(ã)→fif̄j(a) = 8π α [1− 2z(1− z)] .

(2.2.21)

Only one splitting variable is needed to specify the splitting functions in this case,

but for the full kinematics a second variable vi = pipa/papb must be defined [44].
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These splitting functions, for the four dipole cases discussed, reproduce both the soft

eikonal limit and, when massless fermions are involved, the collinear Altarelli-Parisi

limit [38].

2.2.2 The dipole picture and QED

Most QCD parton showers are built on the large-NC limit, or the leading-colour

approximation. This is justified by the fact that the next-to-leading term in the

expansion in NC goes as 1/N2
C , which for NC = 3 is approximately a 10% correction

on what is already formally a 10% effect, since αs ≈ 0.1. Many newer showers

go beyond this limit and include subleading colour effects [70–73]. However, in

QED, there is no leading-colour approximation since NC = 1. This reflects the

fact that photon emission is properly described by coherent radiation from a whole

charged multipole, rather than individual dipole terms. A parton shower can still

be built using a dipole picture, however, but all charge dipoles must be included.

This necessarily includes either same-charge dipoles or opposite-charge initial-final

interference, which in both cases will give a negative contribution as seen from the

charge correlator defined in eq. (2.2.8).

Now we will show how a ‘hit and miss’ algorithm, ordered in a suitable ordering

parameter defined later, reproduces the correct distribution of radiation according to

the splitting functions defined above. Hence, by iterating these splittings, we resum

the leading soft and collinear logarithms by exponentiating them into a Sudakov

factor. The problem of negative splitting functions will be solved by an analytic

weighting method.

2.2.3 The veto algorithm

The veto algorithm [74,75] is a method for generating a parton splitting at a scale

t (the parton shower evolution variable) according to a probability distribution f(t)

when the integral of the distribution, F (t) is unknown. To simplify the notation, the
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presence of only one splitting function is assumed here but the extension to multiple

functions, including flavour changing splittings, is straightforward. This description

is based on many excellent arguments in the literature, for example refs. [54, 76,77].

The differential probability for generating an emission at scale t, starting from an

upper scale t′, is given by eq. (2.2.6), i.e.

P(t, t′) = f(t) exp
(
−
∫ t
′

t
dt̃ f(t̃)

)
, (2.2.22)

and the new scale is generated according to the distribution of f(t):

t = F−1(F (t′) + log r), (2.2.23)

where r is a random number between zero and one, F (t) is the indefinite integral of

f(t), and F−1(x) is the inverse of F (t).

If F (t) is unknown, an overestimate g(t) ≥ f(t) is defined, where the integral G(t)

of the overestimate is known. Then we generate the new scale instead using the

integral of the overestimate G(t),

t = G−1(G(t′) + log r), (2.2.24)

and the new scale (and splitting) is accepted with probability f(t)/g(t). Then the

probability of a splitting being accepted, with n intermediate rejections, is

Pn(t, t′) = f(t)
g(t) g(t) exp

(
−
∫ t1

t
dt̃ g(t̃)

)

×
n∏
i=1

[∫ tn+1

ti−1

dti
(

1− f(ti)
g(ti)

)
g(ti) exp

(
−
∫ ti+1

ti

dt̃ g(t̃)
)]

, (2.2.25)

where t0 = t and tn+1 = t′. Note that n = 0 is allowed here: in that case t1 = t′ and

the second line of eq. (2.2.25) gives a factor of unity.

To reproduce eq. (2.2.22), we use that

P(t, t′) =
∞∑
n=0
Pn(t, t′), (2.2.26)

i.e. we cannot distinguish the number of rejections which occur before a splitting.
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Note that the product in eq. (2.2.25) can be simplified using properties of exponentials

and integrals,

n∏
i=1

exp
(
−
∫ ti+1

ti

dt̃ g(t̃)
)

= exp
(
−

n∑
i=1

∫ ti+1

ti

dt̃ g(t̃)
)

= exp
(
−
∫ tn+1

t1

dt̃ g(t̃)
)
. (2.2.27)

When summing over all n, using symmetry under ti ↔ tj, we also recognise the

infinite series

∞∑
n=0

n∏
i=1

∫ tn+1

ti−1

dti
(

1− f(ti)
g(ti)

)
g(ti) =

∞∑
n=0

1
n!

[∫ tn+1

t0

dt̃
(

1− f(t̃)
g(t̃)

)
g(t̃)

]n

= exp
(∫ t

′

t
dt̃
(

1− f(t̃)
g(t̃)

))
. (2.2.28)

Therefore, eq. (2.2.22) follows immediately upon summation of eq. (2.2.25) over all

numbers of rejections n.

In equation (2.2.22), the term

∆(t, t′) = exp
(
−
∫ t
′

t
dt̃f(t̃)

)
, (2.2.29)

which resums an infinite series, is defined as the Sudakov form factor and interpreted

as the probability for no branching to occur between the two scales t′ and t. In the

case of an NLO-matched parton shower, it will acquire additional meaning as the

exponential of the IR subtraction terms at NLO.

When we apply a lower cutoff tc to the algorithm, we will encounter events which

do not generate a splitting with t > tc. In those cases, we no longer generate eq.

(2.2.22), but only the exponential term, as expected. These events are rare in a

QCD parton shower, but much more common in a QED parton shower due to the

smallness of α.

We have shown that the veto algorithm correctly produces the probability distribu-

tion for one or zero emissions to occur, after any number of rejected splittings. To

extend the argument to a complete parton shower, therefore, we must consider the

fact that all evolution is strictly ordered in the variable t. Since g(t) ≥ f(t), and
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therefore the no-emission probability according to g(t) is smaller than that from f(t),

once we have generated no emissions in a t region, it is not necessary to revisit this

region. In this way, nested integrals from subsequent emissions decouple, and the

full parton shower evolution can be generated by repeated application of the veto

algorithm in descending t.

The weighted veto algorithm

When describing QED radiation in a dipole picture, we must be mindful that unlike

in QCD, there is no leading-colour limit. Thus, all dipoles must be included, some of

which have negative splitting functions due to the product of splitter and spectator

charges. This would destroy the probabilistic interpretation of the splitting functions.

To restore this, we can introduce an additional overestimate, h(t). We sample using

the positive-definite h(t), veto with probability 0 ≤ f(t)/g(t) ≤ 1, and then apply

the additional weight g(t)/h(t) analytically.

Using this method, the modified probability of a splitting being accepted after n

rejections is

Pn(t, t′) = f(t)
g(t) h(t) exp

(
−
∫ t1

t
dt̃ h(t̃)

)

×
n∏
i=1

[∫ tn+1

ti−1

dti
(

1− f(ti)
g(ti)

)
h(ti) exp

(
−
∫ ti+1

ti

dt̃ h(t̃)
)]

, (2.2.30)

and the correct distribution P(t, t′) is reproduced after applying the weight

wn(t, t1, ..., tn) = g(t)
h(t)

n∏
i=1

g(ti)
h(ti)

h(ti)− f(ti)
g(ti)− f(ti)

, (2.2.31)

and summing over n from 0 to infinity. To see that this is the correct weight, we

follow the same procedure as in equations 2.2.25-2.2.28 to find that the weighted

probability of acceptance after n rejections becomes

wnPn(t, t′) = f(t)
n∏
i=1

[∫ tn+1

ti−1

dti
(

1− f(ti)
g(ti)

)
h(ti)

g(ti)
h(ti)

h(ti)− f(ti)
g(ti)− f(ti)

]

× exp
(
−
∫ tn+1

t0

dt̃ h(t̃)
)
. (2.2.32)
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Simplifying and summing over all n,

wP(t, t′) =
∞∑
n=0

{
f(t) 1

n!

[∫ tn+1

t0

dt̃(h(t̃)− f(t̃))
]n

exp
(
−
∫ tn+1

t0

dt̃ h(t̃)
)}

(2.2.33)

= f(t) exp
(
−
∫ t
′

t
dt̃ h(t̃)

)
exp

(∫ t
′

t
dt̃ (h(t̃)− f(t̃))

)

= f(t) exp
(
−
∫ t
′

t
dt̃ f(t̃)

)
,

which reproduces eq. (2.2.22). This works for all choices of h(t), and the primary

reason for its use in this thesis is to correctly model photon emission from same-

sign dipoles. In this case, when there are negative QED splitting functions, we let

h(t) = −g(t). The weighted veto algorithm can also be used to probe statistically

unlikely regions with better precision. For example, with a weight h(t) = 10g(t),

the emission of a photon from a quark could be considered roughly as often as the

emission of a gluon. This is extremely useful in an interleaved shower when studying

observables which depend on QED radiation.

2.2.4 The generating functional of the parton shower

We will now put all the ingredients together and express the full parton shower

evolution as a generating functional. This will allow us to write down the effect

of the parton shower on a general IR-safe observable. We will also refer to this

formalism when we discuss matching in chapter 3.

The generating functional is recursively defined in terms of the splitting functions

Dij,k as

Fn(Φn, O) = ∆(µ2
Q, tc)O(Φn)︸ ︷︷ ︸

virtual + unresolved

+
∑
{ı̃,k̃}

∑
f

∫
dΦij,k

1 Θ(tij,k − tc) Sij,k ∆(µ2
Q, t)Dij,k︸ ︷︷ ︸

resolved

×Fn+1(Φn+1, O), (2.2.34)

where Sij,k is a ratio of symmetry factors, and Fn+1 is the result of the parton shower
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acting on the new (n+ 1)-particle configuration. Then the expectation value of an

observable O is given by

〈O〉PS =
∑
f

∫
dΦnB Fn(Φn, O), (2.2.35)

where B contains the appropriate parton luminosity factors.

2.2.5 Kinematics

To obtain the kinematics of the individual splittings, we invert the phase space

factorisation which emerges from the subtraction scheme. For details, see ref. [44].

It is important to note that initial-state spectators cannot absorb any transverse

recoil, so the whole final state undergoes a Lorentz transformation. In this way, the

initial-state radiation induces logarithmic corrections to the transverse masses of

intermediate resonances. This process has been improved with a new recoil scheme,

described in ref. [59].

2.2.6 Details of the implementation

There are a few remaining subtleties in implementing an interleaved QCD+QED

parton shower, which are detailed below.

Evolution variable. The choice of the evolution variable t is an important factor

in defining a parton shower algorithm. Here we follow the default choice made in

the QCD dipole shower in SHERPA, namely that final-state fermions emit vectors

(gluons and photons) with the modified transverse momentum

t = k̄2
T = (Q2 −m2

i −m2
j −m2

k) y (1− z), (2.2.36)

and that photon splitting into fermions is described by the modified virtuality

t = q̃2 = (Q2 −m2
i −m2

j −m2
k) y. (2.2.37)
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This ensures colour and charge coherence, and angular ordering where appropriate.

More details are given in section 4.2.2. Different choices of evolution variable are

made for initial-state evolution, which are described in the SHERPA user manual.

In addition, the generation of evolution variables can be simplified. Throughout

the description of the veto algorithm, sec. 2.2.3, we treated f(t) and g(t) as (in

principle) different functions of t, subject only to the constraint g(t) ≥ f(t). How-

ever, in the case of parton shower splitting functions, the t dependence is typically

straightforward. As can be seen in equations (2.2.7)-(2.2.19), the t dependence enters

only through the virtuality, and hence all splitting functions f(t) ∝ 1/t. Therefore

g(t) ∝ 1/t and F (t) ∝ G(t) ∝ log t. Using this fact, and defining an overestimate G′

of Sı̃(k̃)→ijk, eq. (2.2.24) is usually implemented as

t = t′ r2π/G′ . (2.2.38)

Infrared cutoff. For QCD evolution, the quarks and gluons are not physical de-

grees of freedom at scales below a few GeV due to confinement. For this reason,

the IR cutoff of a QCD parton shower is usually around 1-2 GeV. However, photon

emission has no such intrinsic cutoff, and photon splittings into electrons are kin-

ematically allowed to occur while the photon has virtuality greater than twice the

electron mass. This means that the evolution variable can in principle take values

of the order of the electron mass. In QED there is no process like hadronisation

to take care of the effects of softer radiation, so to properly model QED radiation

we must allow the parton shower to evolve to lower scales. Here we choose a cutoff

tc = 10−6 GeV2 for final-state evolution of leptons and photons. For initial-state

evolution of leptons, the IR cutoff is coupled with the upper cutoff on the PDF or

structure function momentum fraction, so the discussion is postponed to sec. 2.5.

Efficiency. In the case where many charged particles are present in the shower

evolution, for example as a result of gluon splittings into quark-antiquark pairs,

considering all dipoles as possible photon emitters prohibitively impacts efficiency,
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due to the abundance of negative weighted events. However, since these qq̄ pairs are

usually close in phase space due to the collinear enhancement in their production, soft

photon emissions will not resolve their individual charges if emitted outside the cone

spanned by the dipole. Since the dominant contribution to the radiation pattern is

from soft and collinear photons, the effect of all dipoles except that spanned by the qq̄

pair in question is to pairwise approximately cancel. This applies to all cases where

there are many final-state charge dipoles, and the obvious efficiency improvement is

to identify the dominant dipole in each case. The solution we propose is to identify as

spectator only the opposite-sign charge same-flavour (OSSF) particle which results

in the smallest dipole invariant mass1. This scheme must be used with consideration

of the process in question. In particular, whenever initial-final dipoles are important,

this scheme will fail. It will also fail for any process involving decay products of

W bosons, since these are not OSSF pairs. However, this scheme performs well in

most non-resonant situations, and in addition, where there are neutral resonances

this scheme will preserve their virtuality in the shower. We have verified that in

all processes presented in section 2.4, the transverse momentum distributions and

the resonance lineshapes are statistically in agreement between the unaltered shower

and the efficiency-improved shower. The relevant settings to effect these options are

detailed in appendix A.

Finally, we will discuss another important factor in any EW calculation, which has

not yet been systematically addressed for a QED shower.

2.3 α and electroweak input schemes

Before presenting results from the QED parton shower, we briefly discuss EW input

schemes and the treatment of α. For the evaluation of MEs in hard processes, it is

most appropriate to use a value of α which resums higher-order corrections. Using
1This scheme is similar to the one implemented in PYTHIA, where new ff̄ pairs are tracked

manually.
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α(0) for processes at scales of the EW gauge bosons or higher leads to logarithms

of the type log(m2
f/m

2
Z/W ), which are large for light flavours f . To absorb these

photonic vacuum polarisation corrections to the coupling, a commonly used choice

is the α(mZ) scheme. Alternatively, the Gµ scheme absorbs higher-order corrections

to the renormalisation of the weak mixing angle. In the Gµ scheme, α is a derived

parameter and does not run, so it will be denoted αGµ , without any scale dependence.

However, since the difference between α in different schemes is formally subleading,

we have the freedom to define a different scheme for radiative corrections [78]. In

the case of NLO calculations, of course, this must be consistent in all parts of the

NLO calculation to ensure cancellation of singularities. For the case of the shower,

which is unitary, we are free to use a running α in the shower, analogously to QCD.

For photon emissions, since most will become long-distance photons (i.e. they will

not split again), their QED coupling should be evaluated in the Thomson limit, so

we choose α(0). This is because the photonic wavefunction renormalisation already

exactly cancels the light-fermion logarithms in the renormalisation of the coupling

constant. For photon splittings into fermions, we choose α(t), where t is the splitting

variable, here the modified virtuality.

To implement these choices, and to allow for freedom in choosing the most appro-

priate EW input scheme in many different cases, some changes to the computation

of the running α in SHERPA were necessary.

The scale dependence of α is given, in terms of the Thomson limit, by

α(Q2) = α(0)
1− α(0)

3π

[
Πlep(Q2) + Πtop(Q2)

]
− Πhad(Q2)

, (2.3.1)

where each Πf(Q2) term is the vacuum polarisation induced by species f . Πhad

is fitted from data and implemented using a series of thresholds. Meanwhile, the

analytically known Πlep and Πtop have the form

Πf (Q2) = 1
3 −

(
1 + 2m

2
f

Q2

)
√√√√1− 4 m

2
f

Q2 log
1−

√
1− 4m2

f/Q
2

1 +
√

1− 4m2
f/Q

2


 . (2.3.2)
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Figure 2.1: The running of α with energy, displayed as 1/α, in the
α(0) scheme and in the α(mZ) scheme.

However, when one defines α at a scale µ > 0, the running must be computed from

this defined value and scale. To achieve this, we first compute α(0) in the chosen

scheme by rearranging eq. (2.3.1),

α(0) = α(µ2)(1− Πhad(µ2))
1 + α(µ2)

3π

[
Πlep(µ2) + Πtop(µ2)

] , (2.3.3)

then use this value of α(0) to compute all necessary values of α(Q2). Note that

while it appears that the hadronic vacuum polarisation is needed as input here, in

fact the dependence on Πhad disappears when the α(µ2) input scheme is used for the

calculation of a hard process at the scale µ.

Figure 2.1 shows the scheme dependence of the running α. From the residual plot,

it can be seen that taking the measured value at the Thomson limit and running to

Q2 = m2
Z using eq. (2.3.1) induces a small correction to the value of α as measured

at the Z boson mass and evolved from there. However, the schemes are consistent

to a high degree, showing that this method of modelling the running (in particular

the hadronic vacuum polarisation) is valid.

For all the LO hard process calculations discussed in this thesis, we use the Gµ input

scheme which takes {GF ,mW ,mZ ,mH} and the decay widths as inputs. In this
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scheme, α is a derived parameter and does not run. However, as discussed above, we

use a running α, defined in the α(0) scheme, for the radiative corrections. Wherever

an external photon is present, it is considered to couple with α(0).

Note: processes with external Born photons

The discussion above is predicated on the Born-level process under consideration

having no external photons. For a pure EW process at order n with ` external

photons, the correct power counting would therefore be α(0)`α(m2
Z)n−`, or similarly

α(0)`αn−`Gµ
if the Gµ scheme is preferred. The factor αn−` should be replaced by the

appropriate power counting for the process under consideration.

2.4 Final-state results

In this section, we will present results produced using the QED parton shower. More

work is needed to adapt the shower for the case of an electron-positron collider due

to the electron structure function (see sec. 2.5), so here we focus on showing its

applicability to charged lepton final states. We first use a test process νµν̄µ → e+e−

at centre-of-mass energies of 91.2 GeV and 500 GeV, which are proposed energies

of future e+e− colliders, where leptonic final states will be of great importance for

precision measurements [79]. By colliding muon neutrinos in this case study, we fully

isolate the final state to validate the method. Then, in section 2.4.2 we will study

the leptonic decays of a Higgs boson. We will again isolate the QED final state by

considering the Higgs to be produced through gluon fusion.

Throughout this section we will compare the QED parton shower with the YFS

soft-photon resummation. To produce the following results, SHERPA’s PHOTONS

module was used [17]. This produces exclusive photons in the soft approximation

using eikonal factors, which can be corrected either using collinear splitting functions,

or exact higher-order soft-subtracted MEs can be used, if available. While the YFS



2.4. Final-state results 59

framework can incorporate higher-order corrections to any order, and next-to-next-

to-leading order (NNLO) QED corrections have been implemented in SHERPA [18],

here we use the publicly available NLO EW corrections in PHOTONS for the resonance

decays presented here. Note that in all cases the total cross section is not changed

from the LO cross section, so the results are comparable with the LO unitary parton

shower without needing to account for differences in the total cross section. In

addition, the extension of the YFS algorithm to charged particle pair production

is included [1] (see chapter 4 for a detailed description of the YFS formalism and

the extension). All charged particles are considered massive in the YFS framework,

while in the parton shower, all charged leptons and the b and t quarks are massive,

but other quarks are treated massless. For all results, AMEGIC was used for the

tree-level ME generation [80].

2.4.1 Case study: νµν̄µ → e+e−

We will first look at a process νµν̄µ → e+e−. In this section we will present results

from this process on the Z pole (with a centre-of-mass energy of 91.2 GeV) and at

higher energy,
√
s = 500 GeV.

To analyse our QED parton shower in a way that is comparable to standard QCD par-

ton showers, we will use jet observables. We define our QED jets as objects produced

using a kT jet algorithm (sometimes referred to as the Durham jet algorithm) [81,82].

The distance parameter is given by

dij = min(p2
T i, p

2
Tj)

∆R2
ij

R2 , (2.4.1)

where ∆Rij is the distance in pseudorapidity and azimuthal angle, ∆R2
ij = ∆η2

ij +

∆φ2
ij. We use a radius parameter R = 1. We choose to include electrons, muons

and photons as input to the algorithm. This means we will miss contributions

from photon splittings into qq̄, pairs of light hadrons, or τ+τ−, but these are very

rare (see chapter 4). Using a jet algorithm to define a final state means that we
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Figure 2.2: The electron transverse momentum in νµν̄µ → e+e−,

comparing the YFS soft-photon resummation with the
QED shower prediction and the fixed-order LO distri-
bution, for two different collider energies. Left:

√
s =

91.2 GeV. Right:
√
s = 500 GeV. The ratio plot shows

the ratio to the YFS prediction.

are inclusive with respect to flavour, analogously to QCD parton showers. A kT

algorithm was chosen since it effectively reverses the parton shower evolution, which

is approximately ordered in kT (eq. (2.2.36)). The differential jet rate dn,n+1 allows

us to see at what scale the (n + 1)th jet is formed, i.e. at what scale the emission

happened. We will also study some observables, namely the photon multiplicity with

different energy cuts, and the electron transverse momentum, which do not depend

on this jet algorithm but similarly characterise our parton shower.

Figure 2.2 shows the cross section differential in the transverse momentum of the

hardest electron for the process νµν̄µ → e+e−, comparing the prediction from different

methods of modelling QED radiation. In addition, we show the total size of the

QED corrections by comparing to the fixed-order LO prediction for this observable.

The left plot shows a centre-of-mass energy of 91.2 GeV, where it is clear that the

YFS prediction and the shower agree to high precision. On the right, for
√
s = 500

GeV, the shower and YFS agree perfectly. For both collider energies, the radiative

corrections are approximately 5% in the last bin and up to 1% throughout the

distribution.

On the other hand, fig. 2.3 shows dσ/ dlog(d23), the differential cross section in the
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Figure 2.3: The 2-3 Durham jet rate in νµν̄µ → e+e−, comparing
the YFS method with the LO QED shower prediction
for two different collider energies. Left:

√
s = 91.2 GeV.

Right:
√
s = 500 GeV. The ratio plot shows the ratio

to the YFS prediction.
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Figure 2.4: The third jet transverse momentum in νµν̄µ → e+e−,
comparing the YFS method with the LO QED shower
prediction for two different collider energies. Left:√
s = 91.2 GeV. Right:

√
s = 500 GeV. The ratio

plot shows the ratio to the YFS prediction.
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Figure 2.5: The multiplicity of photons with kT ≥ 1 MeV in
νµν̄µ → e+e−, comparing the YFS method with the
LO QED shower prediction for two different collider en-
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√
s = 91.2 GeV. Right:

√
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Figure 2.6: The multiplicity of photons with kT ≥ 1 GeV in
νµν̄µ → e+e−, comparing the YFS method with the
LO QED shower prediction for two different collider en-
ergies. Left:

√
s = 91.2 GeV. Right:

√
s = 500 GeV.

The ratio plot shows the ratio to the YFS prediction.

2-3 Durham jet rate, as described above. This characterises the hardest emission

from the final state, which in the shower picture is the first emission. Compared to

the YFS prediction, for both collider energies, the parton shower overestimates hard

emissions. This is due to resumming the collinear logarithms, without including the

interference effects at higher orders, which are negative. Fig. 2.4 similarly shows the

third jet transverse momentum, where the jets are ordered in transverse momentum.

The shape differences in this observable are very similar to the d23 plot, and are also

up to 20% in size for the shower compared to the YFS.

Next, we study the multiplicity of photons produced by each method. We consider
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two different transverse momentum cuts, 1 MeV and 1 GeV. The former is shown in

figure 2.5, which clearly shows that the YFS method produces far more photons (with

kT ≥ 1 MeV) than the shower does. This is a result of the resummation of all soft

logarithms, where the number of photons increases as the energy decreases. While

the shower splitting kernels do capture the leading soft divergences, the resummation

is primarily of collinear logarithms and the veto algorithm, with its imposition of

ordered emissions, does not produce as many soft photons as the unordered YFS

approach. However, fig. 2.6 shows the photon multiplicity with a higher cutoff of

kT ≥ 1 GeV. This considers only the semi-soft and hard photons which have a

considerable impact on recoil of leptons and other inclusive observables. We can see

that the shower prediction is much closer to the YFS prediction in this case, although

large differences still emerge. The fact that both methods produce vastly different

numbers of photons (especially soft photons) but agree for a large part of kinematic

observables validates the QED parton shower as a description of higher-order QED

radiation.

2.4.2 Leptonic Higgs decay

In this section, we will study the processes gg → H → µ+µ− and gg → H →

e+e−µ+µ− in the Higgs effective field theory (HEFT). The HEFT is an effective

field theory in which we obtain a direct effective coupling of gluons to the Higgs,

L = LSM + gHEFT G
µν
a G

a
µνH + . . . , (2.4.2)

by integrating out the top quark in the SM loop-induced production of a Higgs via

gluon fusion. In the SM, other quarks also contribute to the loop, but since the top

Yukawa coupling is much greater than the other quark Yukawa couplings due to its

large mass, only this contribution must be considered in the HEFT.

We study gluon-induced Higgs production at the LHC, where the colliding protons

have a centre-of-mass energy of 13 TeV. We use the PDF set Pdf4Lhc21 from
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Figure 2.7: The dimuon transverse momentum in the gg → µ+µ−

process, comparing the YFS prediction with the inter-
leaved QCD+QED shower. The pure QCD shower pre-
diction is also included for comparison. Left: bare
muons, Right: photon-dressed muons with a cone size
∆R = 0.1.

the LHAPDF library [83]. SHERPA’s default parton shower, Csshower, was used

for the initial-state QCD shower [44]. Beam remnants, hadronisation, and multiple

interactions were not modelled.

gg → H → µ+µ−

The LO cross section for gg → µ+µ− at the 13 TeV LHC in the HEFT is 0.0028662(1)

pb. In this section we present differential cross sections in various kinematical

observables for bare muons and dressed muons. The muons are dressed with photons

in a cone of radius ∆R = 0.1, where ∆R =
√

∆η2 + ∆φ2. The primary muons,

whether bare or dressed, are subject to cuts on transverse momentum, pTµ > 10GeV,

and rapidity,
∣∣∣yµ∣∣∣ < 2.5. We compare the interleaved QCD+QED shower presented

in this chapter with the scenario where no QED radiation is included (QCD shower

only) in addition to the YFS soft-photon resummation supplemented with exact

NLO corrections.

First, figure 2.7 shows the dimuon transverse momentum distribution. The shape of
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Figure 2.8: The hardest muon transverse momentum in the gg →
µ+µ− process, comparing the YFS prediction with the
interleaved QCD+QED shower and the pure QCD
shower prediction. We show ratios to YFS (upper ratio
plot) and to the QCD shower only (lower ratio plot).
Left: bare muons, Right: photon-dressed muons with
a cone size ∆R = 0.1.

the distribution is dominated by QCD initial-state radiation, which induces trans-

verse recoil on the whole final state. However, there are small effects from QED

radiation recoil, as can be seen in the lower ratio plot. As can be seen from the

upper ratio plot, in both bare muons and dressed muons, the interleaved shower

agrees very well with the YFS prediction.

The distribution of the muon transverse momentum, shown in fig. 2.8, is given

already at LO by the kinematics of the Higgs decay. Even without any transverse

initial-state radiation, there is a peak at pTµ = mH/2. The distribution including only

initial-state QCD radiation is shown in the plot. The addition of QED final-state

radiation results in a softer hardest muon, as can be seen from the lower ratio plot.

Comparing the two QED radiation methods in the upper ratio plots, we see that

the full YFS including exact NLO corrections produces the largest recoil corrections,

though the soft logarithms account for the bulk of these. The interleaved QED+QCD

shower is in good agreement with YFS for both bare and dressed muons, with better
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Figure 2.9: The dimuon invariant mass in the gg → µ+µ− process,
comparing the full YFS prediction with the interleaved
QCD+QED shower. The pure QCD shower prediction
is also included for comparison. Left: bare muons,
Right: photon-dressed muons with a cone size ∆R =
0.1.

than 1% precision.

Finally, we study the Higgs lineshape in figure 2.9. This plot shows the cross section

differential in the dimuon invariant mass, for bare muons (left) and cone-dressed

muons (right) with a cone size of ∆R = 0.1. We can see that the QCD shower alone

produces very few events below the resonant peak, since if the final state is produced

on the resonance, it cannot radiate further. The ratio plot shows the interleaved

shower compared to the YFS prediction. For bare muons, we see that the shower

is in very good agreement with YFS in the vicinity of the resonance. Below the

resonance, the shower underestimates the cross section with respect to YFS, since

it does not contain NLO-accurate hard photon emissions. This disagreement is

accentuated for the case of dressed muons, since the kinematical impact of collinear

radiation is decreased when muons are cone-dressed and hard wide-angle radiation

contributes more strongly to the lineshape.

gg → H → µ+µ−e+e−

The LO cross section for gg → µ+µ−e+e− at the 13 TeV LHC in the HEFT is

0.00084(1) pb. Due to the complex final state, simulations for this process are
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Figure 2.10: The four-lepton bare invariant mass in gg →
µ+µ−e+e−, comparing the the QCD shower and YFS
prediction with the prediction from an interleaved
QCD+QED shower. The pure QCD shower predic-
tion is also included for comparison. Left: bare
leptons, Right: photon-dressed leptons with a cone
size ∆R = 0.1.

significantly more expensive than the processes we have studied so far. However,

we have found that the interleaved shower is faster or the same speed as the QCD

shower plus YFS simulations, when the one-spectator efficiency option described in

section 2.2.6 and in the appendix is enabled. We have validated that even for this

more complex final state, the one-spectator option reproduces the results of the full

dipole shower but with much higher statistical precision. In this section, we will

present distributions in the four-lepton invariant mass m4`, the hardest Z boson

transverse momentum pTZ = max((p
e

+ + p
e
−)T , (p

µ
+ + p

µ
−)T ), and the hardest lepton

transverse momentum pT` . The primary electrons and muons are subject to cuts

on transverse momentum, pT` > 10GeV, and rapidity, |y`| < 2.5. We compare the

interleaved QCD+QED shower presented in this chapter with the YFS soft-photon

resummation including collinearly-approximated ME corrections.

Figure 2.10 shows the four-lepton invariant mass differential cross section. The left

plot shows the observable for bare leptons, while the right plot shows the invariant

mass of four primary photon-dressed leptons. The main features of the lineshape

are the Higgs resonance at 125 GeV and the two on-shell Z threshold at 180 GeV.
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Above the threshold, the interleaved shower is in perfect agreement with the YFS

approach combined with the QCD shower. Between the Higgs resonance and the

di-Z threshold, the interleaved shower produces fewer events for the bare-lepton

observable. This is due to the shower producing fewer soft and collinear photon

emissions than YFS, as can be seen in the dressed lepton plot where this feature

disappears. Of more note are the differences in the two methods at the Higgs mass

and just below it. The YFS approach correctly resums all the soft logarithms and

hence produces more events just below the Higgs resonance, where the leptons have

only lost energy through relatively soft radiation. This effect is clearly mitigated in

the dressed lepton plot, where recoil from photon emissions is minimised. The QED

shower, by contrast, leaves more bare-lepton events exactly on the Higgs pole. We can

clearly see that both QED radiation methods produce a very different distribution

from that predicted by the QCD shower alone, which is clearly lacking modelling of

final-state radiation.

Next, we study the Higgs decay to Z bosons by reconstructing the momentum of

each Z and plot the hardest Z transverse momentum in fig. 2.11, using the flavour

identification of bare leptons (left) or dressed leptons (right). Here, we expect better

agreement between the QED radiation methods, since QED radiation is already

only a 3-6% correction to the distribution predicted by the LO QCD shower (as

seen from the lower ratio plots). Indeed, we see perfect agreement between the YFS

approach and the QED shower approach for both bare and dressed leptons, when

each is combined with the initial-state QCD shower. Unlike the H → µ+µ− case in

fig. 2.8, there is no peak at mH/2 because the decay preferentially proceeds with

one Z on-shell (since both cannot be on-shell). Note that since the pT cut is applied

to the leptons, the reconstructed Z bosons can have zero transverse momentum.

In figure 2.12 we show the cross section differential in the hardest lepton transverse

momentum. The left plot shows the hardest bare lepton pT , while the right plot

shows the hardest dressed lepton pT . The spectrum has a peak at mZ/2 due to

the preference for on-shell Z production in the Higgs decay. There is very good
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Figure 2.11: The hardest Z boson transverse momentum in gg →
µ+µ−e+e−, comparing the QCD shower and YFS
prediction with the prediction from an interleaved
QCD+QED shower. The pure QCD shower predic-
tion is also included for comparison. The upper ratio
plot shows the ratio to the YFS + QCD shower pre-
diction, while the lower shows the ratio with respect
to the QCD shower alone. Left: bare leptons, Right:
photon-dressed leptons with a cone size ∆R = 0.1.
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Figure 2.12: The hardest lepton transverse momentum in gg →
µ+µ−e+e−, comparing the QCD shower and YFS
prediction with the prediction from an interleaved
QCD+QED shower. The pure QCD shower predic-
tion is also included for comparison. The upper ratio
plot shows the ratio to the YFS + QCD shower pre-
diction, while the lower shows the ratio with respect
to the QCD shower alone. Left: bare leptons, Right:
photon-dressed leptons with a cone size ∆R = 0.1.
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agreement between the YFS prediction and the interleaved shower. Both methods

predict a different shape distribution than the LO QCD shower, with differential

cross section differences up to 15% for both bare and dressed leptons. Note that the

YFS prediction here includes exact NLO QED corrections to the radiation pattern,

and so produces more hard photonic radiation than the shower. This results in the

interleaved shower predicting a slightly higher hardest lepton pT , which is visible

when photonic radiation is not recombined.

Figure 2.13 shows the impact of the efficiency improvement described in section 2.2.6.

In this approximation, rather than including all possible charged dipoles for photon

emission, we identify OSSF pairs and consider only the dipoles spanned by these pairs

to radiate photons. In addition to improving efficiency, this is a form of resonance-

awareness which can help to avoid unphysical exchanges of momentum between

decaying resonances. Resonance-identification methods have been shown to reduce

the tendency of real-radiation modelling methods to distort lineshapes [67,84,85]. In

these plots we show the invariant mass of the Z boson, reconstructed from particular

flavours, for various methods in gg → H → µ+µ−e+e−. Only QED radiation is

included, since the initial-state QCD radiation affects all methods in the same way.

The top-left and top-right plots show the e+e− invariant mass for bare and dressed

electrons respectively, while the bottom two plots show the µ+µ− invariant mass.

The LO prediction is shown for comparison, which is the case where no radiation

effects are included. We see that the all-dipoles case, as compared to the OSSF

dipoles only case, performs far worse in terms of statistics. This plot shows the

result of simulating 109 weighted events for the YFS, OSSF-only and LO predictions,

and 1010 weighted events for the all-dipoles shower. Despite this, we can clearly

see the impact of large numbers of negative weights. The statistical precision is

not sufficient to verify whether the unconstrained momentum transfer distorts the

Z invariant mass spectrum, however, we can clearly see from these plots that the

OSSF approximation is a very good one.

The lower ratio plot of each plot in fig. 2.13 shows the impact of lepton definitions
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Figure 2.13: The dilepton invariant mass in the gg → µ+µ−e+e−

process, comparing the QED shower either with OSSF
dipoles only, or with all dipoles. The YFS resumma-
tion and LO prediction are also shown for comparison.
Both ratio plots are with respect to the YFS resumma-
tion, but the all-dipoles case is not shown in the lower
ratio plot. Top: electrons, Bottom: muons; Left:
bare leptons, Right: photon-dressed leptons with a
cone size ∆R = 0.1.
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on the invariant mass distribution. We see that the muon invariant mass is much

less impacted by QED radiation on the bare level, due to its higher mass/charge

ratio. The differences between YFS and the shower are also greater for the bare

electrons than for the bare muons, which is due to differences in how the IR cutoff

is implemented in each case. It is clear that dressing the leptons with photons

eliminates most of the differences between the YFS and QED shower methods, since

only the kinematic impact of the hardest photons (or semi-soft wide-angle photons)

remains. We will study the interplay of QED radiation and lepton definitions further

in chapter 4.

In this section we have presented results from the final-state QED parton shower.

An initial-state QED shower is not usually phenomenologically relevant at the LHC,

although as described in section 2.2, all initial-initial and initial-final dipoles are

implemented in the shower presented here. However, initial-state QED radiation is of

the utmost importance in lepton-lepton colliders. Before concluding this chapter, we

outline important considerations when implementing the initial-state QED parton

shower for electron-positron colliders.

2.5 The initial-state QED parton shower for

e+e− colliders

For electron-positron colliders, it is essential to model initial-state radiation both for

luminosity measurements and for processes of interest. For example, at low-energy

e+e− colliders, the measured rate of e+e− to hadrons is used to extract the hadronic

vacuum polarisation via the optical theorem [4]. Understanding these processes

requires precise modelling of the QED radiation produced from the initial and final

states. At future high-energy e+e− colliders such as the FCC-ee, the precision will be

high enough such that a simple structure function approach is unlikely to be sufficient

to describe the makeup of the initial states. In both these cases, the YFS approach
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can be used [86]. However, we stand to benefit significantly from the resummation of

collinear logarithms, which are formally of the same size as soft logarithms. We have

seen in this chapter that they can be very important in practice, too, especially when

the centre-of-mass energy is far from a resonance (e.g. some low-energy colliders

and any future collider above the Z mass). NLO corrections, and possibly even

higher orders, are also necessary to reach the precision of future experiments. There

have been many tools developed for NLO parton shower matching for QCD initial

states, from which we can take inspiration. These ideas will be discussed further

in chapter 3, but first we discuss the necessary prerequisite of a parton shower for

electron-positron initial states.

2.5.1 The electron structure function

In QCD, to obtain the PDFs for hadrons, they must be fitted to data and then

evolved numerically using the DGLAP equations. In QED, obtaining a structure

function for the electron is more straightforward. The DGLAP equations for QED

can be solved exactly to LL accuracy, using the initial condition

fe(x, 0) = δ(1− x), (2.5.1)

for the electron or positron (in pure QED they are identical to all orders; in the EW

theory they are identical at LO). With the inclusion of approximate higher-order

corrections and a modification of the collinear exponentials to take into account soft

radiation, this results in the LL structure function

fe(x,Q2) = β
exp

(
−γEβ + 3

4βS
)

Γ(1 + β) (1− x)β−1 + βH

∞∑
n=0

βnHHn(x), (2.5.2)

where β = α
π

(
log

(
Q

2

m
2
e

)
− 1

)
. This form of β comes from integration over all phase

space available for the emission of soft photons in the YFS framework, thus allowing

the resummation of soft radiation effects in the collinearly-derived structure function.

The soft photon residue βS can be set either to β, or to η = α
π

log
(
Q

2

m
2
e

)
. The βH
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logarithms which come with the hard coefficients Hn have the same freedom: one

can choose βH = βS, or define a mixed scheme in which βS = β, βH = η [86, 87].

Note that beyond LO+LL accuracy, the initial condition is a mixed electron-photon

state. The NLO PDFs have been recently derived in the one-flavour QED case [88–90].

These are expected to be implemented in a future version of MADGRAPH [91]. When

these PDFs are extended to the case of multiple fermions, and can be implemented

in an event generator in a similar way to hadron PDFs, this will allow for fully NLO-

accurate simulations of events at e+e− colliders. With the present LO+LL structure

function, any calculation is formally limited by the structure function accuracy. This

will be an active area of future research.

The LL structure function, eq. (2.5.2), has an integrable singularity at x = 1, since

0 < β < 1. This means that provided the observable of interest does not diverge

as x → 1, the result after integration over x will be finite, despite the singularity.

However, MC integration and event generation rely on sampling from fe(x), and

any numerical algorithm must have an upper limit xmax. For convenience, in the

following, we introduce a small positive number ε, defined as xmax = 1− ε. However,

no matter how small ε is taken, significant contributions to the total cross section

are missed, due to the singularity in fe(x).

This problem is traditionally solved by using the analytic knowledge of the singularity

structure to rescale the structure function near the numerical upper limit, to ensure

the correct total cross section is obtained. We define a second small number δ, such

that δ > ε. Then, assuming that the partonic cross section is roughly flat in x for

x > 1− δ, we can write

∫ 1−ε

1−δ
dxλ(ε, δ) fe(x,Q2) =

∫ 1

1−δ
dx fe(x,Q2), (2.5.3)

introducing the scale factor λ(ε, δ). Using the asymptotic form of eq. (2.5.2) and

solving for λ, we obtain

λ(ε, δ) = (δ/ε)β

(δ/ε)β − 1
, (2.5.4)
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Figure 2.14: The LL electron structure function at a scale 100 GeV,
compared to the weighted structure function usually
used for MC integration and event generation.

where β is evaluated at Q2 = s. Then the structure function W λ
e (x,Q2) used in MC

integration is

W λ
e (x,Q2) =



fe(x,Q2) 0 ≤ x ≤ 1− δ

λ(ε, δ)fe(x,Q2) 1− δ < x < 1− ε

0 else.

(2.5.5)

Figure 2.14 shows the logarithmic behaviour of the structure function as x→ 1, at

a scale Q = 100GeV. The weighted structure function, eq. (2.5.5), is also shown,

for the choices ε = 10−6, δ = 10−4. We can see that the weighted structure function

is discontinuous at the point x = 1− δ, and therefore is no longer a valid solution

of the DGLAP equations. If the weight λ(ε, δ) is also applied in the parton shower,

this will lead to an overestimate of emissions into the region 1− δ < x < 1− ε, which

is unphysical.

We can solve some of these problems by instead considering the unweighted structure

function with a cutoff ε, and defining a component proportional to δ(1− x) which
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contains the missing cross section contributions. This is defined as

W δ
e (x,Q2) =



fe(x,Q2) 0 ≤ x ≤ 1− ε

0 1− ε < x < 1

Cδ(1− x) x = 1.

(2.5.6)

Solving for C in the same way as above, again approximating Q2 = s, we obtain

C = εβ/2.

This method, rather than smearing the missing cross section contributions across the

high-x region, adds it into the x = 1 region. This has the advantage that a whole

kinematical region is not affected by the overweighting. It is also more physically

meaningful when considering photon emissions, since we define all emissions within

the 1 − ε < x < 1 region to be unresolvable, both in terms of detectability and in

their kinematical effects. Therefore, they are combined with the x = 1 no-emission

piece. This implementation is less convenient, however, since the phase space has

four distinct regions in e+e− collisions:

• x1 < 1− ε, x2 < 1− ε

• x1 < 1− ε, x2 = 1

• x1 = 1, x2 < 1− ε

• x1 = 1, x2 = 1.

Therefore, the event generation must be completed in four phases. In SHERPA, this

process has not been automated.

Both methods for dealing with the integrable divergence in the electron structure

function work well for LO computations. However, neither solve some of the problems

which arise from a unitary parton shower acting on the electron-positron initial state.
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2.5.2 Implementation of a QED initial-state shower

There are a few difficulties with implementing the QED parton shower, as described

in section 2.2, for the case of an e+e− collider.

One challenge lies in embedding the structure function into the veto algorithm (see

sec. 2.2.3). The parton shower splitting function includes the ratio of particle

luminosities L(rı̃,k̃({a}))/L({ã}). In the initial-state splitting e± → e±γ, both the

numerator and the denominator of this fraction contain the LL electron structure

function:
L(rãj,b̃({a}))
L({ã}) =

x
zaj,b

fe

(
x

zaj,b
, Q2

)
xfe(x,Q2)

, (2.5.7)

where zaj,b is the splitting variable defined in eq. (2.2.20). We can see from this

equation that the splitting function diverges for zaj,b → x. In addition, we can see

that as x→ 1, the emission phase space becomes restricted to very soft emissions,

i.e. zaj,b must be very close to 1, for the argument of the structure function to be

less than unity.

The fact that this ratio contains an additional divergence is not the only difficulty.

The veto algorithm requires an overestimate g(t) of the splitting function, which

is needed before any splitting kinematics are computed. This means we need an

expression which overestimates eq. (2.5.7) which is independent of zaj,b. The solution

to this appears straightforward: applying the same xmax logic as before leads to an

x-dependent overestimate given by

g(t) ⊃ xmaxfe(xmax, Q
2)

xfe(x,Q2)
. (2.5.8)

We would like to include the effect of radiation which, in a backwards-evolution

picture, takes the initial electron/positron line into the xmax < x < 1 region. This

radiation is not restricted to be soft, so may be very relevant to a range of observables.

We can achieve this to a first approximation by allowing the generation of zaj,b >

x/xmax. However, if the current x is above xmax, further emissions are forbidden.

These further emissions must be soft, since zaj,b is restricted to be very close to unity,
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so are unlikely to be relevant phenomenologically. This choice allows the dominant

effects of emission into the kinematically favoured x→ 1 region to be included. Eq.

(2.5.8) is not always strictly an overestimate in this case, but if this is problematic

in practice, it is always possible to reweight it.

Correctly overestimating the splitting function introduces another difficulty, how-

ever. The veto algorithm requires the new scale t to be calculated according to the

distribution of g(t), as in eq. (2.2.24) and eq. (2.2.38). For any sensible (small) value

of ε, this calculation is likely to occasionally produce a new scale which is, in floating-

point arithmetic, indistinguishable from the current scale. When this happens, the

algorithm will stall. By imposing a limit on the size of the overestimate used to

generate t, one can produce radiation using the shower. As expected, however, a

dependence on the form of the overestimate and on ε remains, so the results cannot

be trusted.

To avoid the divergence as zaj,b → x, we can flatten the function which is sampled

using standard MC techniques [54]. By sampling logarithmically in x − zaj,b, we

flatten the first-order 1/(x− zaj,b) pole.

To deal with large overestimates in the generation of new scales, which will be neces-

sary even with the above modification since fe(xmax, Q
2) is very large numerically,

we can use the method of analytic weights (see section 2.2.3). However, this method

has not been used before for large overweights and so should be stringently tested.

It will also have a negative impact on MC statistics, as with any method which

introduces large weight fluctuations between events.

The results of these new developments in modelling the e+e− initial state radiation

will be detailed in a future publication, and made available in a future release of

SHERPA.
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2.6 Conclusions

In this chapter we have presented novel results from a QCD+QED final-state parton

shower. After outlining the construction of a parton shower and detailing QED-

specific considerations, we validated our implementation using a test process νµν̄µ →

e+e− at two different energies: just above the s-channel resonance and far above

it. We saw that the parton shower produces a radiation pattern which is in good

agreement with that produced by the YFS soft-photon resummation, when the latter

is supplemented with exact NLO corrections.

We also presented results showing the applicability of our method to phenomeno-

logical studies. We studied the production of a Higgs boson via gluon fusion and

its decay to two or four leptons. We found that for H → µ+µ−, the QED shower

predictions agreed with the YFS predictions to within 1% for transverse observables

and within 5% for the Higgs invariant mass. Similarly, for the four-lepton final state,

the transverse momentum distributions of the hardest lepton and hardest Z were in

very good agreement. The differences in the Higgs invariant mass were larger for this

decay, but localised, as expected, just below the resonant H pole. The interleaved

shower presented in this chapter thus produces useful predictions, for a range of

processes, which are consistent with other methods for calculating QED radiative

corrections. We also validated the use of a primary dipole identification method to

preserve resonance lineshapes and improve efficiency.

Finally, we discussed the differences which arise when considering an electron-

positron collider. We presented the situations in which the current algorithm is

insufficient, and outlined methods to solve these difficulties. This will be an import-

ant topic of future research, becoming ever more relevant as future collider plans are

confirmed.

In the next chapter, we extend our interleaved QCD+QED shower by matching it to

NLO. We outline the proof of the MC@NLO method for QED and for QCD+QED,

and discuss details of the implementation. We will show that matching to NLO



2.6. Conclusions 81

improves the accuracy of our shower perturbatively while retaining the resummation

accuracy of the parton shower which we have demonstrated in this chapter.

The interleaved dipole shower was implemented in the event generator SHERPA and

will be incorporated in a future release in the SHERPA 3 series. All analyses and

plots were made using RIVET [92,93].





Chapter 3

QED MC@NLO

3.1 Introduction to NLO matching

As was described in section 1.2.3, there are various difficulties in computing NLO

observables numerically, but these have been solved by using phase-space slicing

or subtraction schemes. In this chapter we will review the solution to the addi-

tional problem of incorporating these NLO calculations into an event generator, in

particular, of combining an NLO calculation with a parton shower.

Around the turn of the 21st century, LO QCD plus parton shower predictions were

insufficient to describe the multi-jet final states being produced at colliders. As a

result, LO parton shower merging was developed [55,56], which allows one to describe

each additional jet with its own full matrix element correction to the parton shower

approximation. However, for many processes including Higgs production via gluon

fusion, large K-factors were observed in comparisons to data, indicating that NLO

virtual corrections are non-negligible in many cases. This led to the development of

matching methods.

The idea of NLO parton shower matching is to produce a prediction for an observ-

able 〈O〉 which contains the parton shower factor (containing emission probabilities

and Sudakov form factors), but which reproduces the correct NLO value for the
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observable, i.e.

〈O〉Matched = 〈O〉NLO +O(αm+2), (3.1.1)

for an observable which is O(αm) at LO.

As was explained in detail in chapter 2, a parton shower resums the leading logarithms

associated with the emission of soft or collinear radiation, whilst assuming perfect

cancellation of both the IR singularities and the finite parts of the NLO contribution

to an observable. Contrary to analytic resummation, a parton shower produces

exclusive final states containing a number of additional particles. The radiation

pattern is, however, formally only correct in the soft and collinear limits, although

the choice of finite parts of the splitting functions can improve the description away

from these limits. An NLO matched parton shower, on the other hand, describes

the first emission radiation pattern at LO everywhere in phase space. This is

interpolated with the parton shower resummed prediction in the soft and collinear

regions. Importantly, in contrast to LO merging predictions, the total cross section

is the correct NLO one and the NLO K-factor is present in observable predictions.

The K-factor is defined by σLO(1 +K) = σNLO, sometimes called a global K-factor,

and usually quoted as a percentage. In MC event generators, an NLO matched

parton shower allows us to carry out a full simulation of events at this accuracy,

including hadronisation, hadron decays, multiple interactions and underlying event.

The MC@NLO [42] and POWHEG [40] methods were developed to solve the problem

of double-counting the first emission, while exponentiating the appropriate parton

shower factors. Both methods utilise so-called additive matching, but some newer

matching methods use multiplicative matching, for example KrkNlo [43], or a

combination of both types. In this chapter, we will focus exclusively on the MC@NLO

method, since it only exponentiates the IR-singular parts of the real correction. This

is an advantage over POWHEG, which sometimes suffers from artificial local K-factors

caused by exponentiating large hard real corrections. However, MC@NLO has the

disadvantage that negative event weights occur when the parton shower overestimates

the NLO real-emission pattern. This most often occurs when the shower is leading-
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colour and is matched to full-colour NLO [94]. However, we will use weighted events

to produce distributions shown here; in addition, we do not need to pass events

through a detector simulation, and more events can be generated to overcome the

statistical inefficiencies caused by negative weights. For a detailed review of the

strengths and drawbacks of POWHEG and MC@NLO, see ref. [45].

In the following section, we will outline the MC@NLO method and show that the

predictions it produces have the desired properties. We will then summarise some

subtleties in the implementation of this method, in particular with regards to QED.

We present test results from a hypothetical neutrino collider in sec. 3.3.1. In section

3.3.2 we present results for a QCD+QED MC@NLO for Higgs production via gluon

fusion, where the EW corrections are effected to the Higgs decay to leptons. Finally,

we conclude in sec. 3.4.

3.2 Methods

3.2.1 The MC@NLO method in detail

In this section we will show how, by applying a parton shower to a subset of an NLO

calculation, we can generate a formula for the observable which reproduces its NLO

value. This calculation follows the original MC@NLO paper, ref. [42]. We will begin

by outlining the process symbolically, suppressing flavour sums, splitting indices,

and phase space mappings. The latter are given in equations (1.2.3) and (1.2.4).

The expectation value of an IR-safe observable at NLO can be written, with sub-

traction terms DS, as

〈O〉NLO =
∫

dΦn

[
B + Ṽ + IS

]
O(Φn)

+
∫

dΦn+1

[
RO(Φn+1)−DS O(Φn)

]
. (3.2.1)

Before we can extend this to NLO plus parton shower (NLOPS) accuracy, it will

be helpful to reformulate eq. (3.2.1) by adding and subtracting an additional set of
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subtraction terms DA, as

〈O〉NLO =
∫

dΦn B̄ O(Φn) +
∫

dΦn+1

[
RO(Φn+1)−DAO(Φn)

]
, (3.2.2)

where we define a B̄ term containing the Born and subtracted virtual terms, in

addition to the finite combination of both subtraction terms DA −DS, i.e.

B̄ = B + Ṽ + IS +
∫

dΦ1

[
DA −DS

]
. (3.2.3)

As was argued in ref. [42], generating the R andDA terms in eq. (3.2.2) independently

results in double counting, so we combine them into a subtracted real ME squared,

R−DA, and separate out the observable dependence:

〈O〉NLO =
∫

dΦn B̄ O(Φn) +
∫

dΦn+1

[
R−DA

]
O(Φn+1)

+
∫

dΦn+1D
A [O(Φn+1)−O(Φn)] . (3.2.4)

We will see that the new subtraction terms DA must capture the soft and collinear

parts of the real emission, which should be exponentiated by the parton shower.

The parton shower factor Fn acting on an n-particle state contribution to an observ-

able O can be written recursively as (eq. (2.2.34))

Fn(Φn, O) = ∆n(µ2
Q, tc)O(Φn) +

∫
dΦ1 ∆n(µ2

Q, t)KnFn+1(Φn+1, O), (3.2.5)

where Kn are the splitting kernels and

∆n(µ2
Q, t
′) = exp

(
−
∫ µ

2
Q

t
′

dΦ1Kn
)

(3.2.6)

is the Sudakov form factor.

As an aside, note that throughout this section the phase space element dΦ is written

symbolically as a single integral. Practically, we write the single-particle phase space

element dΦ1 in terms of a quantity t with units of energy squared, a dimensionless

variable z and the azimuthal angle φ. As in chapter 2, the phase space element is
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given by

dΦ1 = 1
16π2 dt dzdφ

2π J(t, z, φ), (3.2.7)

where J(t, z, φ) is the Jacobian. The variable t was referred to as the parton shower

evolution variable in chapter 2. The limits on the integral in the Sudakov form

factor, eq. (3.2.6), refer to the integral over t for the given emission. tc is the IR

cutoff of the parton shower, and µ2
Q is the shower starting scale, sometimes called

the resummation scale.

We would like to examine the effect of the parton shower on the NLO observable.

We will do this by expanding the formulae in α, defining our observable O to be

O(αm) at LO. First, we expand the Sudakov factor in α,

∆n(µ2
Q, t) = 1−

∫
dΦ1Kn +O(α2), (3.2.8)

and therefore the parton shower factor expands as

Fn(Φn, O) = O(Φn)−
∫

dΦ1KnO(Φn)

+
∫

dΦ1

(
1−

∫
dΦ1Kn

)
Kn

[
O(Φn+1)−

∫
dΦ1Kn+1O(Φn+1) + . . .

]
= O(Φn)−

∫
dΦ1KnO(Φn) +

∫
dΦ1KnO(Φn+1) +O(α2). (3.2.9)

To relate this to the NLO observable defined above, we let the splitting kernels be the

newly-defined subtraction terms, Kn = DA/B. Then the parton shower is applied

to eq. (3.2.4),

〈O〉NLOPS =
∫

dΦn B̄ Fn(Φn, O) +
∫

dΦn+1

[
R−DA

]
Fn+1(Φn, O). (3.2.10)

Recalling that B̄ = B +O(αm+1) and expanding in α, we obtain

〈O〉NLOPS =
∫

dΦn B̄ O(Φn) +
∫

dΦn+1D
A [O(Φn+1)−O(Φn)]

+
∫

dΦn+1

[
R−DA

]
O(Φn+1) +O(αm+2), (3.2.11)

i.e. the parton shower generates the third term of eq. (3.2.4). Eq. (3.2.11) is therefore

accurate to NLO.
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To obtain a clearer physical picture, we can expand the parton shower factor in eq.

(3.2.10) in terms of its Sudakov factor ∆̄A,

〈O〉NLOPS =
∫

dΦn B̄

[
∆̄AO(Φn) +

∫
dΦ1 ∆̄A D

A

B
O(Φn+1)

]

+
∫

dΦn+1

[
R−DA

]
O(Φn+1). (3.2.12)

This is the main idea of the MC@NLO method. However, there are many subtleties,

and to see these it will be important to include the splitting sums and indices which

we have neglected so far. The Sudakov factor ∆̄A, unlike the standard parton shower

Sudakov factor, must be integrated over all phase space. It is given by

∆̄A(t′) =
∏
ı̃,k̃

∆̄A
ı̃,k̃(t

′), (3.2.13)

where

∆̄A
ı̃,k̃(t

′) = exp
−∑

f

∫
dΦij,k

1 Θ(tij,k − t′)Sij,k
DA
ij,k

B

. (3.2.14)

Sij,k is a ratio of symmetry factors, explained in ref. [37], and we have also included

the sum over flavours. This encodes whether QCD and/or QED subtraction terms

are being considered. Eq. (3.2.12) is, more precisely,

〈O〉NLOPS =
∑
f

∫
dΦn B̄

[
∆̄A(tc)O(Φn)

+
∑
ı̃,k̃

∑
f

∫
dΦij,k

1 Θ(tij,k − tc)Sij,k ∆̄A
ı̃,k̃(t)

DA
ij,k

B
O(Φn+1)


+
∫

dΦn+1

R−∑
ij,k

DA

O(Φn+1). (3.2.15)

The Θ-functions ensure the uniqueness of the first emission and define a starting

scale for the parton shower.

The MC@NLO method as implemented within SHERPA, referred to henceforth as the

S–MC@NLO method, makes the choice DA
ij,k = DS

ij,k Θ(µ2
Q − tij,k). Modified versions

of the CS subtraction terms are used both for the NLO subtraction and the parton

shower evolution. While in QED the weighted veto algorithm (see sec. 2.2.3) is used
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in the ordinary shower to deal with negative charge correlators, in the S–MC@NLO

method it is needed even in QCD to deal with the exponentiation of subtraction

terms which are negative due to subleading colour or spin effects. However, beyond

the first emission, the usual spin-averaged and leading-colour shower can be used

to generate further emissions. The S–MC@NLO method has the advantage that to

generate the unresolved emission term proportional to B̄, the parton shower kernels

do not need to be integrated over the one-particle phase space. Integrating the

remaining DS is then easy since the IS are known analytically.

In the next section we will briefly consider the implementation of the S–MC@NLO

method. We will introduce terminology and discuss the modifications needed for a

QED matching, and for mixed matching to NLO QCD+QED.

3.2.2 Implementation

In an event generator, to generate events according to the MC@NLO equation (3.2.15),

we use eq. (3.2.10), shown in the previous section to be NLO accurate. A seed event

is generated either using B̄ (a so-called soft event or S-event) or R − DA (a hard

or H-event). S-events are passed to a one-step parton shower where the splitting

kernels are either exactly equal to DA/B, or are reweighted to this value using the

weighted veto algorithm. An emission may or may not occur, generating the first and

second terms of eq. (3.2.15) respectively. The event is then passed to the standard

parton shower to generate further emissions, starting from the scale of any emission

that occurred. If an H-event is selected, it already has real-emission kinematics,

and is thus passed directly to the standard shower. This generates the third term

of eq. (3.2.15). For further details of the implementation of the MC@NLO method

in SHERPA, see refs. [45, 59]. However, in this section we will discuss some of the

implementation details which are relevant for QED.

Scale choice. The choice of scales in QED MC@NLO is relevant despite the slow

running of α compared to that of αs. As has been argued [45,95], a lack of phase-space
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restrictions on the exponentiated (DA) part of the real emission can lead to logar-

ithmic contributions to MC@NLO of α log2 (q2/s), where q2 is the virtuality of the

emitter particle, instead of the correct parton shower contribution of α log2 (q2/µ2
F ).

This implies that where µ2
F � s, a careful choice of scale is needed. The scale chosen

must be soft- and collinear-safe, so the invariant mass of bare charged particles

cannot be used to define the scale.

Electron PDF. The electron structure function and the full electron PDF both

provide an obstacle to initial-state showers and MC@NLO, due to their divergent

behaviour. Some techniques to control this behaviour have been described in section

2.5.1. These involve using a cutoff to produce an overestimate which can be used

for shower evolution, and generating shower variables logarithmically to avoid the

divergence. The under-production of hard collinear radiation when a cutoff is used

can cause additional problems in MC@NLO compared to an LO parton shower,

however. When the subtracted real correction is sizeable and negative, there is

no room for an underestimate of the first shower emission, since the difference can

become negative for observables which are LO in the first emission. Work is currently

underway to minimise this issue.

Running α and EW input scheme. As described in sec. 2.3, external photons

(whether produced in the hard interaction or by a QED parton shower) should

couple with α(0). This is completely consistent with our matching procedure, since

differences between definitions of α enter beyond NLO. Here we make the choice to

use a running α for the O(αm+1) parts of the NLO calculation and for further shower

emissions, while using the Gµ scheme for the O(αm) parts. Specifically, however, we

use the coupling α(0) for photon emissions, since the majority of emitted photons will

become long-distance objects, and hence should have the appropriate long-distance

coupling. Correcting the NLO calculation thus involves rescaling the virtual-Born

interference term, the DA − DS term, and the subtracted real correction with a
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factor α(0)/αµ ≈ 0.96.

3.3 Results

In this section, we will present results produced using the QED MC@NLO method

for charged lepton final states. More work is needed to adapt the MC@NLO method

for the case of an electron-positron collider due to the electron structure function,

so here we will focus on validating the method for matching a final-state shower. To

this end, we first use a test process νµν̄µ → e+e− at 91.2 GeV and 500 GeV, then in

section 3.3.2 we will study the leptonic decays of a Higgs boson.

Throughout this section, we will compare the QED MC@NLO method with the LO

QED parton shower and with the YFS soft-photon resummation. To produce the

following results, SHERPA’s PHOTONS module was used [17]. Exclusive N -photon

final states are produced in the soft approximation using eikonal factors, and can

be corrected either using collinear splitting functions or exact higher-order soft-

subtracted MEs, if the latter are specifically implemented. While the YFS framework

can incorporate higher-order corrections to any order, and NNLO QED corrections

have been implemented in SHERPA [18], here we use the publicly available NLO

EW corrections in PHOTONS for the resonance decays presented here. Note that in

all cases the total cross section in the YFS prediction is not changed, and so the

NLO K-factor is not present. Also, the extension of the YFS algorithm to charged

particle pair production is included [1] (see chapter 4 for a detailed description of

the YFS formalism and the extension). It is also important to note that in the YFS

framework, all fermion masses must be taken into account to regulate the collinear

divergences. The parton shower results presented here were also produced with finite

lepton masses. The MC@NLO method can in principle also take into account all

fermion masses. However, to aid in efficiency of calculating the virtual contributions,

we have here set all fermion masses to zero in the NLO parts of the calculation. The

resummation includes the lepton masses. For all results, AMEGIC was used for the
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Born ME generation [80] and COMIX was used for the real-emission MEs [96]. The

one-loop MEs for MC@NLO were provided by OPENLOOPS [97–100]. We use the Gµ

EW input scheme for the Born ME calculation, and the running α scheme described

in sec. 2.2.6 for the shower and the YFS resummation. The MC@NLO EW scheme

is described in sec. 3.2.2.

3.3.1 Case study: νµν̄µ → e+e−

As in chapter 2, we first isolate the QED MC@NLO from other parts of event gener-

ation by looking at a process νµν̄µ → e+e−. In this section we will present results

from this process on the Z pole (with a centre-of-mass energy of 91.2 GeV) in ad-

dition to at higher energy,
√
s = 500 GeV. In the latter case, where the invariant

mass of the electron-positron pair (before any radiation) is far from the Z mass, the

on-shell Z decay ME is not usually appropriate. Hence, the PHOTONS module used

to produce the YFS prediction usually employs a collinearly-approximated NLO

correction. This would reduce its formal accuracy to the same as the parton shower.

However, it was observed that the collinearly-approximated correction to this process

suffers from an overestimate of hard radiation, and does not reproduce the correct

real-emission cross section to the desired accuracy. Therefore, we use the Z decay

ME to describe the process at 500 GeV. This is justified here, since in this process

the initial state completely factorises, there is no photon exchange diagram, and

there are no three-vector-boson vertices.

The majority of the cross section for this process resides at
√
s = 91.2 GeV. The

LO cross section is σLO = 3950.30(2) pb and the NLO total cross section is σNLO =

3985.1(3) pb resulting in a positive K-factor of 0.9%. At a centre-of-mass en-

ergy of 500 GeV, far above the Z pole, the Born cross section is much smaller,

σLO = 0.10524(1) pb, and there is a negative NLO K-factor of 7.6% since σNLO =

0.972197(1) pb.

First, fig. 3.1 shows a comparison of our MC@NLO implementation with the QED
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Figure 3.1: The electron transverse momentum in νµν̄µ → e+e−,
comparing the YFS soft-photon resummation with the
LO QED shower prediction and the QED MC@NLO pre-
diction for two different collider energies. Left:

√
s =

91.2 GeV. Right:
√
s = 500 GeV. The upper ratio plot

shows the ratio to the YFS prediction while the lower
shows the ratio of the LO QED shower to the QED
MC@NLO prediction.

parton shower and with the YFS soft-photon resummation for the cross section

differential in the electron transverse momentum. The left plot shows the electron

kT for a collider energy of
√
s = 91.2 GeV, while the right plot is for

√
s = 500

GeV. We see that the only difference between the methods for the process on the Z

mass is the NLO K-factor describing the difference in the total cross section. For

500 GeV, on the other hand, there is a shape difference between the methods, with

the MC@NLO producing comparatively more events with higher electron transverse

momentum. Since this observable does not depend on real radiation except through

small recoil effects, the YFS predictions only have LO accuracy here. In the NLO

calculation, resonant structures are also present, for example due to resonant di-Z

production in a box diagram, but these are very small and not visible here.

Fig. 3.2 shows an observable which is LO in the first emission, so here we expect to

see significant shape differences between the four predictions. In this plot we show

the cross section differential in the Durham 2→ 3 jet rate, produced by clustering
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Figure 3.2: The 2-3 Durham jet rate in νµν̄µ → e+e−, comparing the
YFS method with the LO QED shower prediction and
the QED MC@NLO prediction for two different collider
energies. Left:

√
s = 91.2 GeV. Right:

√
s = 500

GeV. The upper ratio plot shows the ratio to the YFS
prediction while the lower shows the ratio of the LO
QED shower to the QED MC@NLO prediction.

QED particles with a kT jet algorithm (for more details see sec. 2.4.1). We expect

that the MC@NLO result should give the full real-emission cross section for hard

emissions, and should tend to the shower-approximated result (multiplied by a K-

factor) for soft or collinear emissions. Comparing the MC@NLO prediction with

the YFS prediction (upper ratio plot), there is agreement to within a few percent

at all scales, indicating that both predictions are NLO accurate. However, the

MC@NLO approach produces slightly more hard radiation than the YFS method at

both collider energies. Looking at the lower ratio plot, we can see that the MC@NLO

corrects the overproduction of hard radiation that the LO shower suffers from.

Similarly, fig. 3.3 shows the third jet transverse momentum, produced using the same

Durham jet algorithm. This observable has a strong probability of corresponding to

the hardest photon transverse momentum, so we denote it kγT . Again, for both centre-

of-mass energies, both NLO-accurate predictions agree up to a K-factor. The shape

differences caused by only including a collinear resummation, in the form of the QED
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Figure 3.3: The third jet transverse momentum in νµν̄µ → e+e−,
comparing the YFS method with the LO QED shower
prediction and the QED MC@NLO prediction for two
different collider energies. Left:

√
s = 91.2 GeV.Right:√

s = 500 GeV. The upper ratio plot shows the ratio to
the YFS prediction while the lower shows the ratio of
the LO QED shower to the QED MC@NLO prediction.

shower, are corrected by the MC@NLO method. It is clear that the MC@NLO method

reproduces the correct shape across a wide range of photon transverse momenta.

The advantage of the MC@NLO method over the matrix-element-corrected YFS

resummation is that off-the-shelf NLO calculations can be used.

Fig. 3.4 shows the number of photons with kT ≥ 1 MeV produced by each method.

The YFS resummation predicts a higher average number of photons per event, with

the modal number of photons being 1, compared to the collinear resummation

methods which do not produce a large number of soft photons, and retain a modal

number of photons of 0. This difference is characteristic of the resummation method

employed in each case. The YFS approach primarily resums soft logarithms, and

collinear ones are only included through higher-order corrections, meaning that many

soft photons are produced. On the other hand, the parton shower is derived from

collinear resummation, and only includes the eikonal factors through modifications

to the splitting functions.
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Figure 3.4: The multiplicity of photons with kT ≥ 1 MeV in νµν̄µ →
e+e−, comparing the YFS method with the LO QED
shower prediction and the QED MC@NLO prediction for
two different collider energies. Left:

√
s = 91.2 GeV.

Right:
√
s = 500 GeV. The ratio plot shows the ratio of

the LO QED shower to the QED MC@NLO prediction.

The fact that the two classes of resummation produce vastly different numbers of

photons per event, but agree up to a few percent for physical inclusive distributions,

validates the methods as viable alternative descriptions of the same physical process.

To verify this statement, we show the number of photons produced by each method,

but with a higher kT cut of 1 GeV, in fig. 3.5. It is immediately clear that the two

classes of resummation methods produce similar numbers of hard photons. These

will provide the bulk of the recoil effects, in addition to being more detectable

experimentally. Differences in the zero-photon and one-photon bins still exist up

to 15% at the Z mass and 25% at 500 GeV, but as we have seen from the d23 and

third jet kT plots above, the overall differences in the radiation pattern are much

smaller than this. In particular, in the lower ratio plot comparing the shower and

MC@NLO methods, we see that with this harder photon energy cut the MC@NLO

method produces significantly more one-photon events than the shower. The 2-, 3-

and 4-photon bins are unchanged compared to fig. 3.4, as expected.
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Figure 3.5: The multiplicity of photons with kT ≥ 1 GeV in νµν̄µ →
e+e−, comparing the YFS method with the LO QED
shower prediction and the QED MC@NLO prediction for
two different collider energies. Left:

√
s = 91.2 GeV.

Right:
√
s = 500 GeV. The upper ratio plot shows

the ratio to the YFS prediction while the lower shows
the ratio of the LO QED shower to the QED MC@NLO
prediction.

3.3.2 Leptonic Higgs decay

One of the primary use cases of NLO EW matching for the LHC is in Higgs decays to

leptons, and their irreducible backgrounds in vector boson pair production. Recently

the QCD+QED NLO matched corrections were presented for pp→ V V ′ processes

where the vector bosons decay leptonically [101]. However, the method presented

is difficult to extend to Higgs decay processes due to POWHEG’s exponentiation of

large K-factors. Here we present the QCD+QED MC@NLO method, which has no

such issue.

In this section, we will study the processes gg → H → µ+µ− and gg → H →

e+e−µ+µ− in the HEFT. We will present a general method for automating the

matching of an interleaved QCD+QED parton shower with the the NLO EW correc-

tions to the Higgs decay and the NLO QCD corrections to the production process.

We refer to these NLO corrections as NLO QCD+QED in the following. The method
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Figure 3.6: A representative subset of the diagrams contributing at
each order (labelled) of the NLO QCD+QED calcula-
tion of the process gg → µ+µ−. Diagrams 3.6a, 3.6b
and 3.6c are individually squared, while the virtual cor-
rection diagrams 3.6d and 3.6e are interfered with the
Born process as shown.

is process-independent, but to aid in the explanation we will refer to these Higgs

decay processes throughout. For clarity, a subsection of the diagrams included in the

computation of gg → H → µ+µ− are shown in fig. 3.6. Note that we do not include

the mixed contribution, which enters at O(α3
s, α

3). Similarly, for the four-lepton

decay a selection of diagrams are shown in fig. 3.7. While diagram 3.7e emphasises

that pure weak corrections are included at this order, the dominant virtual EW

contribution will be from photonic vertex corrections to the Z decay.

The HEFT was introduced in section 2.4.2, but we will briefly recall it here since we

now work at NLO QCD+QED. In the HEFT, we obtain a direct effective coupling

of gluons to the Higgs,

L = LSM + gHEFT G
µν
a G

a
µνH + . . . , (3.3.1)

by integrating out the top quark in the SM loop-induced production of a Higgs via

gluon fusion. Of course, other quarks can run in the loop, but since the top Yukawa

coupling yt is much greater than the other quark Yukawa couplings due to its large

mass, other contributions can safely be ignored. Using this formalism, we neglect

EW corrections to the top quark loop, which would be dominated by EW Sudakov
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(a) O(α2
s, α

4) (b) O(α3
s, α

4) (c) O(α2
s, α

5)

(d) O(α3
s, α

4) (e) O(α2
s, α

5)

Figure 3.7: A representative subset of the diagrams contributing at
each order (labelled) of the NLO QCD+QED calcula-
tion of the process gg → µ+µ−e+e−. Diagrams 3.7a,
3.7b and 3.7c are individually squared, while the vir-
tual correction diagrams 3.7d and 3.7e are interfered
with the Born process as shown. While diagram 3.7e
emphasises that pure weak corrections are included at
this order, the dominant virtual EW contribution will
be from photonic vertex corrections to the Z decay.

virtual high-energy logarithms (these have been implemented in various automated

tools, see refs. [102–105]). In the diagrams in figs. 3.6 and 3.7, the ggH vertex is

shown as a black blob, since it is not a SM vertex. In the SM, this effective coupling

comes with a factor g2
syt. The numerical value of the ggH coupling used here is

gHEFT ≈ 5× 10−5.

Further to the discussion on the interleaved QCD+QED parton shower in section

2.4, we will briefly outline the MC@NLO procedure before presenting results.

The MC@NLO algorithm extends straightforwardly to match QCD+QED NLO in

these processes. Separating QCD and QED contributions, eq. (3.2.15) becomes

〈O〉NLOPS =
∑
f

∫
dΦn

B̄ ∆̄A(tc)O(Φn)

+
∑
ı̃,k̃

∑
f

∫
dΦij,k

1 Θ(tij,k − tc)Sij,k ∆̄A(tij,k)
DA
ij,k

B
O(Φn+1)


+
∫

dΦn+1

RQCD +RQED −
∑
ij,k

(
DA

QCD +DA
QED

)O(Φn+1). (3.3.2)

The RQCD and RQED terms are given by the matrix element squared of the diagrams
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in fig. 3.6b and 3.6c, respectively, and the equivalent diagrams where the gluon or

photon is emitted from the other external leg, for the gg → µ+µ− process. For

gg → µ+µ−e+e−, the diagrams 3.7b and 3.7c contribute. The B̄ function is defined

as

B̄ =B + ṼQCD + VEW + ISQCD + ISQED

+
∫

dΦ1

[
DA

QCD −DS
QCD

]
+
∫

dΦ1

[
DA

QED −DS
QED

]
. (3.3.3)

ṼQCD contains the collinear mass factorisation terms from the initial state, in addition

to the interference term shown in fig. 3.6d or 3.7d. VEW contains the interference

term, e.g. in fig. 3.6e or 3.7e. The shower kernel DA
ij,k/B and the Sudakov factor ∆̄A

are generated in the usual way with an interleaved shower, and therefore contain

both DA
QCD and DA

QED.

When an H-event is selected, it is selected to be either QCD or QED according to

the relative size of RQCD and RQED. If, as is the case here, the QED real emissions

are of interest, the ME can be overweighted by a factor αs/α so that QED real-

emission events are selected as often as QCD real-emission events. A corrective

weight is then applied as an analytic event weight. In a similar way, for S-events an

analytic overweighting can be applied to the QED splitting functions. The weights

in this case must also be applied to the Sudakov factors when no emission occurs,

as described in the weighted veto algorithm (section 2.2.3).

In this thesis, we are unable to present the full NLO QCD+QED corrections as

described, due to current structural limitations of the process handling in SHERPA.

Care must be taken when defining the different parts of a mixed NLO calculation

to account for all the possible divergences which arise, especially for processes with

four or more quarks at Born level. However, these results and considerations will be

presented in a future publication. Here, to demonstrate the validity of the method,

we present the pure EW NLO-matched parton shower, having already demonstrated

the success of the interleaved QCD+QED evolution in chapter 2. We focus on

distributions in invariant mass of final-state particles, since these are insensitive to
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Figure 3.8: The dimuon invariant mass in the gg → µ+µ− process,
comparing the QED MC@NLO with the YFS predic-
tion and the QED shower. Left: bare muons, Right:
photon-dressed muons with a cone size ∆R = 0.1.

QCD radiation, and hence are NLO accurate up to a K-factor.

We consider gluon-induced Higgs production at the LHC, where the colliding protons

have a centre-of-mass energy of 13 TeV. We use the PDF set Pdf4Lhc21 from the

LHAPDF library [83]. Beam remnants, hadronisation, and multiple interactions were

not modelled.

gg → H → µ+µ−

The LO cross section for gg → µ+µ− at the 13 TeV LHC in the HEFT is σLO =

0.0028662(1) pb. The NLO EW cross section is σNLO = 0.0028747(4) pb, which

results in a positive EW K-factor of 0.3%. In this section we present the differential

cross section in the muon invariant mass for bare muons and dressed muons. The

muons are dressed with photons in a cone of radius ∆R = 0.1, where ∆R =√
∆η2 + ∆φ2. The primary muons, whether bare or dressed, are subject to cuts on

transverse momentum, pTµ > 10GeV, and rapidity,
∣∣∣yµ∣∣∣ < 2.5. We compare the QED

MC@NLO with the YFS soft-photon resummation supplemented with exact NLO

corrections, in addition to the QED shower presented in the previous chapter.

Figure 3.8 shows the dimuon invariant mass in the gg → µ+µ− process. No QCD

corrections to the initial state are effected, apart from the gluon PDF. We compare
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our implementation of the QED MC@NLO with the QED shower described in the

previous chapter, and with the YFS resummation. We can see that the YFS and

MC@NLO approaches agree to within 2% for this observable when bare muons are

used to reconstruct the Higgs, and to within 4% when dressed muons are used. This

shows very good agreement, since this invariant mass distribution is approximately

a δ-function at LO. The MC@NLO prediction clearly has the same shape as the

parton shower prediction, but integrates to the total NLO cross section. Just below

the Higgs mass, the MC@NLO prediction has an enhancement of 2% above the YFS

prediction for both bare and dressed muons, though the differential cross section

in the immediate vicinity of the resonance is in excellent agreement when dressed

muons are used.

gg → H → µ+µ−e+e−

The LO cross section for the rare process gg → µ+µ−e+e− at the 13 TeV LHC in the

HEFT is σLO = 0.00085(2) pb. The NLO EW cross section is σNLO = 0.0097(6) pb,

resulting in a positive K-factor of 13%. To provide some context, the QCD K-factor

of around a factor of 2 was one of the primary motivations for the development of

matching methods. Here, we see that the EW corrections are also enhanced, and

must be included at the level of precision of modern experiments.

In this section, we will present distributions in the four-lepton invariant mass m4`,

as well as invariant masses of Z bosons reconstructed via the primary electrons and

muons. As before, the primary electrons and muons are subject to cuts on transverse

momentum, pT` > 10GeV, and rapidity, |y`| < 2.5. We compare the QED MC@NLO

with the YFS soft-photon resummation supplemented with collinearly-approximated

NLO corrections, in addition to the QED shower presented in the previous chapter.

Figure 3.9 shows the four-lepton invariant mass differential cross section. The main

features of the lineshape are the Higgs resonance at 125 GeV and the two on-shell

Z threshold at 180 GeV. The left plot shows the predictions for the invariant mass
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Figure 3.9: The four-lepton invariant mass in gg → µ+µ−e+e−,
comparing the QED MC@NLO with the YFS predic-
tion and the QED shower. Left: bare leptons, Right:
photon-dressed leptons with a cone size ∆R = 0.1.

distribution reconstructed from bare leptons, while dressed leptons are used in the

right plot. We use a cone dressing with a size ∆R = 0.1 to recombine photons into

primary leptons. Above the di-Z threshold, all three predictions are in excellent

agreement. Between the resonance and the threshold, for bare leptons, the parton

shower approach underestimates the cross section, while the YFS and the MC@NLO

approaches agree up to statistical uncertainty. This feature is not present in the

dressed lepton distribution. At the Higgs resonance, the MC@NLO shares the parton

shower feature of roughly 15% more events on the resonance compared to just below

it, compared to the YFS prediction. On the dressed level, the YFS and shower

agree perfectly at the resonance, and the MC@NLO prediction has the same shape,

but is modulated by the NLO cross section contribution in this region. At lower

invariant masses, however, the MC@NLO calculation corrects the underproduction

of events which the shower predicts, which is necessary for a good description of this

process at the bare level. Overall, the MC@NLO and YFS predictions agree within

a few percent. However, we can see in both plots that the MC@NLO suffers from

worse statistics, since all dipoles are considered in the MC@NLO S-events, and the

same-sign dipoles result in negative weights. This is a motivation to include the

OSSF dipole identification efficiency improvement, described in sec. 2.2.6, in the
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Figure 3.10: The hardest Z boson invariant mass in gg →
µ+µ−e+e−, comparing QED MC@NLO with the YFS
prediction and the QED shower. Left: bare leptons,
Right: photon-dressed leptons with a cone size ∆R =
0.1.

MC@NLO method. This would not impact the NLO accuracy of the simulation, and

has been shown in sec. 2.4.2 not to impact the parton shower logarithmic accuracy.

We study two more invariant mass distributions, in figs. 3.10 and 3.11. Z bosons

were reconstructed from the primary e+e− and µ+µ− pair, identified by their energy.

The left plots in both figures show the Z invariant mass reconstructed from bare

leptons, while the right plots show the same observable using photon-dressed leptons

with a cone size ∆R = 0.1.

Fig. 3.10 shows the larger of the two Z invariant masses, comparing the QED

MC@NLO prediction with the shower and the YFS predictions. We see that the

shape is well-reproduced in all cases, with the two main features being a small local

maximum at mH/2, and a large peak at mZ . Compared to the YFS prediction, the

MC@NLO predicts an excess of events on the mH/2 peak compared to just below

it, amounting to differences of up to 10%. The MC@NLO prediction improves on

the behaviour of the shower near the Z resonance for bare leptons, but for dressed

leptons the main advantage of the MC@NLO method is the correct NLO cross section,

mostly concentrated in the region 60-90 GeV.

On the other hand, fig. 3.11 shows the smaller of the Z invariant masses. We see
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Figure 3.11: The second Z boson invariant mass in gg →
µ+µ−e+e−, comparing QED MC@NLO with the YFS
prediction and the QED shower. Left: bare leptons,
Right: photon-dressed leptons with a cone size ∆R =
0.1.

this time that the peak at mH/2 is non-existent, though the Z resonance is still

clearly visible, but that there is a peak at around 30 GeV. This is produced by an

approximately on-shell Higgs decaying to an on-shell Z, leaving the other with the

remaining 35 GeV invariant mass. We do not see a difference in the position of this

peak for bare and dressed leptons, suggesting that any QED radiation effects are

small in this region. In both plots, we see that compared to the YFS distribution,

the MC@NLO prediction is skewed towards smaller Z invariant masses. This suggests

that the leptons have lost more energy to photon radiation and secondary charged

particles.

Overall, for the invariant mass distributions which are characterised by QED radi-

ation in this process, the MC@NLO method produces distributions consistent with

the YFS prediction at a level of a few percent, and the correct NLO cross section.

3.4 Conclusions

In this chapter we have presented novel results from a QCD+QED NLO matched

parton shower. After arguing that the MC@NLO method is NLO-accurate and that it
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extends to QED and mixed NLO corrections, we validated our implementation of the

method using a test process νµν̄µ → e+e− at two different energies: just above the

s-channel resonance, and far above it. We saw that the MC@NLO method performs

well in both cases, producing results highly consistent with the widely used YFS

soft-photon resummation in the former case. In the latter case, collinear logarithms

play a larger role in the differential cross section determination, since the electron

mass is comparatively smaller. The YFS approach only includes these logarithms at

fixed order, while the MC@NLO includes the exact NLO result and the resummation

of all orders of leading collinear logarithms. For this reason, we expect the MC@NLO

method to provide a more accurate description at this energy.

We also demonstrated the applicability of our method to phenomenological studies.

We studied the production of a Higgs boson via gluon fusion and its decay to two

or four leptons. By matching the NLO QCD corrections to the production process

to a QCD parton shower, and the NLO EW corrections to the decay to a final-state

QED parton shower, we produced an NLO QCD+QED matched parton shower. As

a first step, before the necessary process handling is available, we presented results

from the NLO EW matched parton shower. We studied the Higgs lineshape and

found large QED radiative corrections, as expected. These agreed well with the

YFS predictions (with ME corrections). In addition, we studied the lineshapes of

the intermediate Z bosons. We again found large QED corrections which were well-

modelled by the matched shower. We found that an advantage of the MC@NLO

approach is the freedom to use massless leptons in the ME calculation, while keeping

the mass dependence in the resummed parts of the calculation. In this way, collinear

logarithms are resummed without relying on small lepton masses to regularise them.

This is an advantage since NLO calculations using massless fermions are more widely

available than those with full mass dependence. We also studied the impact of

lepton dressing on various invariant mass observables. We showed that dressed

lepton observables have a reduced dependence on the radiative correction methods

used, and hence a smaller theoretical uncertainty, than bare leptons.
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Overall, our results show that in the precision era of particle physics, higher-order EW

and QED corrections need to be included, and their accuracy quantified through

the comparison of independent methods. Our implementation of the MC@NLO

method allows a new class of methods to be explored, including future extensions

of the method to electron-positron colliders. This would allow for another cross-

check of predictions for the e+e− → hadrons cross section, which is a vital input

to the calculation of (g − 2)µ, through the determination of the hadronic vacuum

polarisation.

The interleaved dipole shower and MC@NLO were implemented in the event generator

SHERPA, and will be incorporated in a future release in the SHERPA 3 series. One-

loop matrix elements were provided by OPENLOOPS [97–100]. All analyses and plots

were made using RIVET [92,93].





Chapter 4

Photon splitting corrections to

YFS

4.1 Introduction

Precision measurements of the SM continue to stress-test our understanding of

particle physics at an unprecedented level. In particular, charged and neutral Drell-

Yan production at hadron colliders like the LHC are used as standard candles due

to their large cross sections and exceedingly small experimental uncertainties, often

below the percent level. However, these electroweak precision observables have also

been brought to the forefront of searches for new physics, in the form of measured

deviations from the SM prediction. For example, the recent extraction of the W

boson mass, performed by the CDF experiment on legacy Tevatron data [106], is

in apparent tension with the world average [107] and previous hadron and lepton

collider measurements [108–125], as well as measurements of other fundamental EW

parameters in Z production [126–135]. Measurements such as this motivate precise

theoretical input with uncertainties in the permille range or lower. At this level of

required accuracy, higher-order QCD and EW corrections in vector-boson production

must be supplemented with additional sources of theoretical precision. In addition to

a consideration of the structure functions that describe the make-up of the incident
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particles, a detailed description of the vector boson’s decay is paramount. Special

emphasis must lie on the precise phase space distribution and flavour composition

of the accompanying radiation, in order to be able to precisely model the detector

response. With this chapter we contribute to the effort to determine the size and

uncertainty of higher-order QED corrections in the description of the decay of massive

vector bosons.

Higher-order corrections to Drell-Yan processes are known to NLO in the complete

EW SM [136–145]. The recent advances at NNLO QCD-EW mixed calculations

[146–155], though an impressive achievement in their own right, have not increased

the perturbative accuracy of the description of EW or QED radiative corrections

themselves. Alternatively, universal QED corrections can be resummed to all orders

either in traditional QED parton showers by means of the DGLAP equation [156] (see

chapter 2), or through the soft-photon resummation devised by Yennie, Frautschi,

and Suura [13]. These resummations can of course be matched to the fixed-order

calculations mentioned above (see chapter 3). As was described in chapter 2, a

QED parton shower is available in all major general-purpose Monte-Carlo event

generators: HERWIG [157, 158], PYTHIA [159, 160], and SHERPA [32, 59, 161], while

the YFS approach is implemented in HERWIG [16] and SHERPA [17, 18] for particle

decays. The implementation in SHERPA has recently been extended to also resum

initial-state soft-photon radiation in e+e− collisions [86]. In addition, dedicated MC

programs such as PHOTOS [23–26] are widely used to add QED final-state radiation

to any process.

To reach the necessary precision to make full use of the existing and future experi-

mental datasets, the QED effects impacting the leptonic final state of the Drell-Yan

process have to be understood in detail. These effects are driven by soft and collinear

photon radiation. They can be resummed to all orders, and be further improved

order by order in perturbation theory. Such calculations, matching to at least NLO

EW corrections and sometimes even including NNLO QED ones, have been imple-

mented using QED parton showers in HORACE [63,162–166] and POWHEG [167–170],
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using the structure function approach in RADY [142,143], and through a YFS-type

soft-photon resummation in WINHAC/ZINHAC [21], HERWIG [16] and SHERPA [17,18].

In addition, the PHOTOS Monte-Carlo provides an algorithm based on both soft-

photon resummation and ME corrections. Dedicated comparisons between SHERPA’s

YFS-type resummation and PHOTOS [171], between HORACE and PHOTOS [172], as

well as HORACE and WINHAC [173] have yielded very good agreement.

A key element in the description of final state radiative corrections, however, has

only been sporadically and not very systematically addressed: the possible split-

ting of the radiated bremsstrahlungs photons into secondary charged-particle pairs.

These corrections only enter at a relative O(α2) in Drell-Yan processes, but the pro-

duction of light flavours may be enhanced logarithmically and thus gain relevance.

In addition, and in contrast to QCD, photons and light charged flavours like elec-

trons, muons, or pions, are experimentally distinguishable – such conversions alter

the visible make-up of the final state and are thus of importance at the envisaged

theoretical precision. It is also important to consider here the usual experimental

and phenomenological practice of dressing charged leptons with photon radiation.

While definitions of QCD jets have been constantly refined, there has been little

discussion of dressed lepton algorithms since the adoption of cone-dressing strategies

where all photons within a certain radius of the lepton are absorbed. Considering

higher-order corrections in the form of photons splitting into charged particles has

the potential to spoil the physically meaningful definition of a lepton dressed with

photons. The treatment of charged leptons in the presence of secondary charged

flavours must therefore be handled with care. Thus, while a first implementation

of pair-production corrections exists in PHOTOS [174, 175], it only covers photon

splittings into electrons and muons, and their theoretical and phenomenological

impact has not been rigorously appraised. In this chapter, we address this issue

by introducing a rigorous independent framework to calculate these corrections and

study the resulting theoretical and phenomenological implications.

This chapter proceeds as follows: We begin by providing a brief summary of the
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YFS soft-photon resummation as implemented in SHERPA before providing a com-

prehensive description of the photon splitting implementation, including a detailed

examination of their interplay and the splitting properties in sec. 4.2. We then

present a detailed discussion of possible extensions of the standard lepton dressing

algorithm to cope with the presence of secondary pairs of (light) charged particles,

and quantify their effect on Z → e+e− decays in sec. 4.3. Finally, we offer some

concluding remarks in sec. 4.5.

4.2 Soft-photon resummation and photon

splittings

Incorporating photon-splitting processes alongside photon emissions are straightfor-

wardly implemented when both are described in a common parton shower framework,

as was discussed in chapter 2. In this chapter, however, we base our implementation

on the existing and superior description of photon emission corrections in the YFS

framework of the PHOTONS module in SHERPA [17], including its inherent coherent-

radiation formulation and existing NNLO QED and NLO EW corrections [18]. In

this section we thus start by providing a brief summary of the YFS soft-photon

resummation and its implementation in the SHERPA event generator. The remainder

of this section discusses the construction of the photon splitting algorithm in detail

before examining its properties.

4.2.1 The YFS soft-photon resummation

The work of Yennie, Frautschi and Suura [13] describes the IR singularities of QED

to all orders. To achieve this, the YFS approach considers all charged particles of the

theory to be massive, and as a consequence only singularities associated with soft-

photon emission are present. In particular, all photon splittings are finite and thus

do not partake in the analysis of the IR singular structure. Using that knowledge,
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the YFS algorithm reorders the perturbative expansion of a scattering or decay ME.

This is achieved by separating the IR divergences from the finite remainders to all

orders. The IR divergent terms form a series which can be exponentiated, amounting

to a resummation of soft-photon logarithms in the enhanced real and virtual regions,

leaving a perturbative expansion in IR-finite, hard photons (both real emissions and

virtual exchanges).

In the implementation of the YFS resummation in SHERPA for particle decays [17],

the all-orders soft-photon resummed differential decay rate is written as

dΓYFS = dΓ0 · eαY (ωcut) ·
∞∑

nγ=0

1
nγ!

[ nγ∏
i=1

dΦki
· α S̃(ki) Θ(k0

i − ωcut) · C
]
, (4.2.1)

wherein dΓ0 is the LO differential decay rate and the YFS form factor Y (ωcut)

contains the soft-photon logarithms. The decay rate is then summed over all possible

additional photon emissions with an energy larger than ωcut with respect to the LO

decay. Each emission is described through its eikonal S̃ and corrected for hard

emission effects up to a given order through the correction factor C.1

Unlike a conventional parton shower, where the resummation is reliant on the factor-

isation of subsequent emissions when ordered in an evolution variable, YFS photons

are unordered. They are also emitted coherently from the charged multipole through

the radiator function S̃ and are thus not inherently associated with a specific emitter

particle. Consequently, when the produced final state is to be further treated by a

dedicated photon-splitting parton shower, the existing configuration must be inter-

preted in the parton shower’s evolution and splitting language before any further

splittings take place. Of course, care has to be taken so as to not compromise its LL

soft-photon resummation. The effects of the algorithm we will describe in the follow-

ing are completely beyond the scope of the YFS formulation without any potential

overlap. Hence, this requirement amounts to ensuring the kinematic recoil induced

by a splitting photon on the primary charged particle ensemble (and possibly other

1The hard (real and virtual) photon-emission corrections C are available up to NLO EW for
leptonic W decays and up to NNLO QED + NLO EW for leptonic Z decays [18].
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existing photons) vanishes in the limit that the energy of the splitting photon van-

ishes. While this is trivially true as all charged particles are treated as massive, the

recoil assignment performed in this study and described in section 4.2.2 introduces

corrections to the momenta of the primary charged particle ensemble which scale

non-logarithmically with the photon energy and hence do not contribute to the LL

resummation.

4.2.2 Photon splittings

In this section we introduce the parton shower algorithm which computes the photon

splitting probabilities and kinematics, while the principal user input commands to

steer its behaviour are described in appendix A. We will use the usual notation

associated with a CS dipole shower. Since the YFS algorithm requires massive

charged particles, it is necessary to include all masses in this shower for consistency.

There are therefore no IR singularities associated with our photon splittings, since

the collinear pole is regulated by the fermion and scalar masses. However, the aim

is still to capture the correct behaviour in the quasi-collinear limit, accounting for

the logarithmic enhancement for collinear splitting into light flavours. Throughout

this section we will focus on configurations where all relevant particles are in the

final state of the decay process, i.e. decays of neutral resonances. In section 4.4, we

discuss the modifications needed to describe the decay of charged resonances.

The key part of the parton shower algorithm is, as usual, the veto algorithm (see

sec. 2.2.3). This allows us to avoid the problem of analytically integrating the

splitting functions, which are detailed below, by using an overestimate to evaluate

the cumulative emission probability, and then vetoing emissions with a probability

which corrects for the overestimate. The evolution begins at some starting scale tstart

which is the highest possible scale for a splitting to take place; we postpone its exact

definition to the end of this section. All splitting functions compete: a splitting

scale is calculated for each possible combination of splitter, splitting products, and
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spectator. Whichever splitting results in the highest splitting scale is selected. If

the splitting is accepted (not vetoed), a new particle is created and the flavours

and kinematics of existing particles are updated. The whole process is repeated,

starting from the selected splitting scale, and iterated until some IR cutoff tc is

reached. This cutoff is needed to regulate the divergence of the splitting functions

in the general case where these appear. For a QCD shower, a physical choice for the

cutoff is the hadronisation scale, which is of O(1GeV), well above ΛQCD where QCD

dynamics turn non-perturbative. For a QED shower, however, the splittings which

do not involve quarks can evolve to arbitrarily low scales. In the algorithm presented

here, which contains only splitting functions of photon emissions off charged scalars

and fermions as well as of photons splitting into massive fermions or pseudo-scalar

hadrons, the cutoff is dictated by the mass of the lightest fermion, i.e. tc = 4m2
e or

lower.

As stated earlier, in the case of a photon splitting to a fermion or scalar particle-

antiparticle pair, there is no soft divergence. The collinear divergence present for

massless splitting products is converted into a logarithmic collinear enhancement

when masses are included; hence, lighter particles will have a larger contribution to

photon splitting corrections. Here we include all possible splittings up to a mass

cutoff of 2mi . 1GeV in addition to τ pair production which, while rare, contributes

to some observables through the decays to lighter leptons or hadrons. Since most

splittings occur near or below the hadronisation scale, we consider hadrons, not

quarks, to be the relevant QCD degrees of freedom. Using this mass cutoff, the

hadrons which can be produced are the charged pions and kaons. They are pseudo-

scalars, and their interaction with photons is modeled using point-like scalar QED,

neglecting any substructure effects. We use the scalar splitting functions of ref. [39].

Depending on the experimental environment, the kaons and τ leptons might decay

before hitting any detector. This can be handled within the usual (hadron) decay

treatment available within the SHERPA framework [161,176].
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Splitting functions and spectator assignment. In the usual parton shower

notation, we use the following dipole splitting functions [39, 44,68]

Ss
ı̃

(k̃)→siγj(k) = Ss̄
ı̃

(k̃)→s̄iγj(k) = −Q2
ı̃k̃ α

[
2

1− z + zy
− ṽı̃,k̃
vij,k

(
2 + m2

i

pipj

)]

Sf
ı̃

(k̃)→fiγj(k) = Sf̄
ı̃

(k̃)→f̄iγj(k) = −Q2
ı̃k̃ α

[
2

1− z + zy
− ṽı̃,k̃
vij,k

(
1 + z + m2

i

pipj

)]

Sγ
ı̃

(k̃)→sis̄j(k) = Sγ
ı̃

(k̃)→fif̄j(k) = −Q2
ı̃k̃ α

[
1− 2z(1− z)− z+z−

]
,

(4.2.2)

for splittings involving the scalars s, fermions f , their antiparticles s̄ and f̄ , and a

photon γ, in terms of the splitting variable y and light-cone momentum fraction z.

These are defined as

y = pipj
pipj + pipk + pjpk

and z = pipk
pipk + pjpk

. (4.2.3)

Further, mi is the mass of the splitting product i, and z− and z+ are the phase space

boundaries

z± = 2µ2
i + (1− µ2

i − µ2
j − µ2

k) y
2(µ2

i + µ2
j + (1− µ2

i − µ2
j − µ2

k) y)
(1± vij,i vij,k) , (4.2.4)

where the dimensionless rescaled masses µ2
i = m2

i /Q
2 are introduced for convenience,

and Q2 = (pi+pj +pk)2 = (pı̃+pk̃)
2 is the invariant mass of the dipole. The relative

velocities ṽı̃,k̃, vij,k, and vij,i are given by

ṽı̃,k̃ =

√
λ(1, µ2

ı̃, µ
2
k̃)

1− µ2
ı̃ − µ2

k̃

,

vij,i =

√
(1− µ2

i − µ2
j − µ2

k)2 y2 − 4µ2
iµ

2
j

(1− µ2
i − µ2

j − µ2
k) y + 2µ2

i

,

vij,k =

√
(2µ2

k + (1− µ2
i − µ2

j − µ2
k)(1− y))2 − 4µ2

k

(1− µ2
i − µ2

j − µ2
k)(1− y)

.

(4.2.5)
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Finally, the charge correlator Q2
ı̃k̃ is defined in eq. (2.2.8), repeated here for conveni-

ence:

Q2
ı̃k̃ =


Q
ı̃
Qk̃θı̃

θk̃

Q
2
ı̃

ı̃ 6= γ

κı̃k̃ ı̃ = γ

with
∑
k̃ 6=ı̃

κı̃k̃ = −1 ∀ ı̃ = γ , (4.2.6)

where the Qı̃ and Qk̃ are the charges of the splitter and spectator respectively and

their θı̃/k̃ are 1 (−1) if they are in the final (initial) state. The κγk̃ must ensure that

the splitting functions are appropriately normalised such that the correct IR limit

is found, but are otherwise unconstrained. Here we choose

κγk̃ = − 1
Nspecs

, (4.2.7)

where Nspecs is the chosen number of possible spectators, i.e. we choose to weigh

all selected spectators k̃ equally. The photon splittings themselves are free of soft

divergences, hence the spectator is only needed for momentum conservation and,

in principle, any other particle of the process may assume this role. In the present

context, we consider all primary charged decay products as possible spectators of

photon splittings as our default, but the choice to consider only the splitting photon’s

originator particle (as reconstructed, described below) has also been implemented,

see appendix A. While the other present YFS photons and other neutral decay

products as well as the decaying particle itself are all valid spectators, the two

choices described above both guarantee that enough energy is available to allow

photon splitting into heavier flavours to occur. Limiting the number of spectators

also helps to reduce the computational complexity. For further photon radiation

off the products of a photon splitting, the spectator assignment, and therefore the

recoil, should be kept local in that system.

Evolution variable. For the evolution variable t used in the parton shower, the

requirement of LL accuracy means that any choice which preserves dt/t is formally

correct in the IR limit. We consider two variants, modified virtuality q̄2 and trans-
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verse momentum k2
T. We will usually refer to the modified virtuality simply as the

virtuality, since as we see from the definition in eq. (4.2.8) below, for photon emitters

the definitions coincide. The virtuality is defined in terms of the dipole invariant

mass Q2 and the masses of the emitter mı̃, splitting products mi/j, and spectator

mk. The modified virtuality is given by

q̄2 = (Q2 −m2
i −m2

j −m2
k) y +m2

i +m2
j −m2

ı̃ . (4.2.8)

Specifically, for the two relevant cases this translates to

q̄2
f→fγ = (Q2 −m2

f −m2
k) y (4.2.9)

for photon emissions, where the flavour f can either be a scalar s, fermion f , or their

antiparticles s̄ and f̄ , and

q̄2
γ→f f̄ = (Q2 − 2m2

f −m2
k) y + 2m2

f (4.2.10)

for photon splittings. We see that, as stated earlier, photon emissions are possible at

arbitrarily low evolution scales while photon splittings can only occur if the virtuality

exceeds the pair-production threshold. Likewise, the transverse momentum is given

by

k2
T = (Q2 −m2

i −m2
j −m2

k) y z(1− z)−m2
i (1− z)2 −m2

j z
2 . (4.2.11)

This is the momentum generated in the splitting which is transverse to the plane

defined by the emitter-spectator dipole. Again, for photon emissions this translates

to

k2
T f→fγ = (Q2 −m2

f −m2
k) y z(1− z)−m2

f (1− z)2 (4.2.12)

and to

k2
T γ→f f̄ = (Q2 − 2m2

f −m2
k) y z(1− z)−m2

f (z2 + (1− z)2) (4.2.13)

for photon splittings. As discussed, photon emissions are possible down to k2
T = 0,

but in this case the photon-splitting threshold also lies at k2
T = 0. As a result,
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the chosen IR cutoff tc will induce a minimal kT, and thus a minimal opening

angle, produced in the pair-creation process. The pair’s virtuality q̄2 automatically

introduces a pair-production threshold, making it a viable candidate for the ordering

variable for photon emissions. In addition, the Brodsky-Lepage-Mackenzie (BLM)

argument [177] states that since the only ultraviolet divergences in this process come

from vacuum polarisation insertions in the photon propagator, the correct choice of

scale to minimise higher-order corrections is the photon virtuality.

It can be seen that the relation

dt
t

= dk2
T

k2
T

= dq̄2

q̄2 (4.2.14)

holds, therefore both transverse momentum and virtuality are possible choices of

evolution variable and no Jacobian is needed to translate between them.

Using these definitions, there are three well-motivated choices for the global evolution

variable.

1. As in most QCD parton showers, t = k2
T is a viable choice. In analogy to QCD,

ordering photon emissions by transverse momentum results in the inclusion

of charge coherence effects [178], but there is no particular motivation to use

t = k2
T as the evolution variable for photon splittings into charged-particle

pairs.

2. Choosing t = q̄2 is an equally valid option. Due to the s-channel nature of

photon splittings, the photon virtuality is expected to be a good ordering

variable here, as outlined in the BLM approach to determining scales. In

addition, the gluon virtuality is commonly used in QCD parton showers to

describe the g → qq̄ splitting, as described in the PYTHIA manual [159]. But

since it does not implement angular ordering natively, it is not expected to

yield the best description of soft-photon emissions.

3. Following eq. (4.2.14), we are free to interpret the evolution variable differently

in different splitting processes as long as dt/t is invariant. As our default, we
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thus choose to interpret the evolution variable t as k2
T in photon emissions and

as q̄2 in photon splittings. We will refer to this the “mixed scheme” in later

sections.

All three choices are implemented, see appendix A, and some of their respective

consequences will be explored in sec. 4.2.3.

Generation of splitting variables. While the evolution variable t is generated as

usual in the veto algorithm, the light-cone momentum fraction z has to be generated

within its allowed range [z−, z+]. The integration limits z± are defined in eq. (4.2.4),

but in order to generate a Sudakov factor we work with the evolution variable t.

We generate a trial emission using the integral of the overestimate of the splitting

function, for which the z limits are necessary, but we do not yet know the value

of the kinematic variable y (eq. (4.2.3)). Using a change of variables to replace y

with the evolution parameter yields usable z ranges at this stage. Hence in the kT

ordered scheme, the z limits are [44]

z±,kT = min/max
[

1
2

(
1±

√
1− 4tc

Q2

)
, z±

]
. (4.2.15)

Note that the z± are not yet known, but can be overestimated by 0 and 1, respectively.

The above expression thus gives an overestimate of the true phase space available.

The number of splittings rejected as a result is very small, however, and does not

have a large impact on the efficiency of the algorithm.

On the other hand, in the virtuality ordered scheme q̄2 has no z dependence. This

means that y can be determined independently of the light-cone momentum fraction

z as well, y(t, z) = y(t), by solving eq. (4.2.8) for y. This implies that the z limits

can be written as

z±,q̄ = min/max
q2 +m2

i −m2
j

2q2
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×

1±
√√√√√1− 4m2

i q
2(

q2 +m2
i −m2

j

)2

√√√√√1 + 4m2
kq

2(
Q2 − q2 −m2

k

)2

 , z±


(4.2.16)

where q2 = q̄2 +m2
ı̃. Again, however, it is only a small price in efficiency to use larger

and simpler limits at the trial emission stage. In the results that follow, z−,q̄2 = 0

and z+,q̄2 = 1 have been used.

Kinematics. With the above definitions of the dipole variables y and z or, altern-

atively, with the evolution variable t and the splitting variable z, and the uniformly

distributed azimuthal splitting angle φ, we can now build the kinematics of the

splitting products i and j and the spectator k after the emission process. The new

momenta are given by an inversion of the momentum maps of ref. [39], and in their

construction we follow ref. [44]. In particular, for the final-final dipoles discussed here,

they are given in sec. 3.1.1 eq. (49)–(58) of ref. [44]. Note that this redistribution

of momenta is IR safe and does not spoil the LL accuracy of the YFS resummation,

since it introduces non-logarithmic corrections only.

Starting conditions. Having defined the evolution and splitting variables as well

as the splitting functions and kinematic mappings above, we now need to specify the

initial conditions to fully define the algorithm. As the photon emissions are already

generated by the YFS soft-photon resummation, the existing distribution has to be

reinterpreted as if it was generated by our shower algorithm. Then, the missing

photon-splitting corrections can be embedded into the existing calculation. By not

allowing further photon-radiation off the primary charged-particle ensemble, double

counting is avoided.

To determine the scale at which each existing photon has been produced, we calcu-

late the emission probabilities according to the splitting functions Sf
ı̃

(k̃)→fiγj(k) and

Ss
ı̃

(k̃)→siγj(k), respectively, for every existing soft-photon γj. Therein, every primary

charged particle (all existing charged particles of the process at the this stage) can act
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as possible emitter ı̃ or spectator k̃. One of those possible splitting functions is then

selected either according to its probability Sı̃k̃→ijk/
∑
ı̃k̃ S (default), or by selecting

the one with the largest splitting probability (see appendix A). Its reconstructed

evolution variable t is then set as the starting scale tstart,j of the further evolution for

photon γj. The above parton shower algorithm is then started at the largest of all

photons’ starting scale, tstart = max[tstart,j], but each individual photon’s evolution

is only active for t ≤ tj,start.

4.2.3 Properties of the photon-splitting algorithm

Having the algorithm to calculate photon splitting probabilities at hand, we can now

examine its properties and assess the consequences of the specific algorithmic choices

discussed above. To be precise, we use the example of an on-shell Z boson decaying

to an e+e− pair (maximising the number of radiated photons). Hence, as we are not

in a collider environment, we use a spherical coordinate system to measure relative

radial distances ∆Θ in the following.

We begin by presenting a detailed look into the conditions under which the photons

generated through the YFS soft-photon resummation split. As discussed, in a first

step, the existing distribution of photons and primary emitters must be clustered

in order to assign individual starting scales to the evolution of each photon. This

assignment is of course dependent on the choice of evolution variable for photon

emissions off charged particles as well as the choice of spectator scheme.

Fig. 4.1 shows the distribution of starting scales when the photon emissions are

reconstructed with the inverse emission kernels. In the left plot, the ordering vari-

able is interpreted as either a relative transverse momentum, t = k2
T (red) or a

virtuality, t = q̄2 (blue). In the transverse momentum ordering scheme we observe

an approximately logarithmic rise in the abundance of starting scales, starting at

the kinematic limit of k2
T ' 1

4 m
2
Z . This reflects the photon spectrum produced by

the soft-photon resummation. This logarithmic rise levels out at k2
T ≈ m2

e, formed
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by the reconstructed k2
T of ultra-soft photons of the event. This plateau ends at

the soft-photon cutoff ω2
IR,YFS used in the soft-photon resummation. In contrast,

in the virtuality ordering scheme we see that the majority of events have starting

scales above 10−6 GeV. In both cases the characteristic scale at t = m2
e is induced

by both the splitter and the spectator masses of the primary decay. The effect of

the IR cutoff is straightforward in the t = k2
T case, as shown by the labelled black

dashed line. In the t = q̄2 case the cutoff does not dictate the turning point of the

frequency plot, but, indirectly, the point at which the frequency falls to zero. Due to

normalisation this has the effect of increasing the frequency above the electron mass.

This appears as a flattening off of the plot just above the electron mass squared,

before the frequency falls towards zero at m2
Z independent of the IR cutoff. We note

that in the mixed ordering scheme, which we choose as our default ordering variable

scheme, tstart = k2
T,start.

On its right-hand side, fig. 4.1 shows the distribution of starting scales tstart =

k2
T when the reconstructed emission of a YFS photon from one of the final-state

charged particles is chosen either probabilistically according to the relative sizes of

the splitting functions (red, our default) or by simply choosing the more likely emitter

(yellow, dashed). There is no significant difference between the two schemes. A very

small difference occurs at the high tstart end. In the winner-takes-all scheme, large

starting scales are less likely because the emitter with the largest splitting function

is always chosen; the chosen emitter is the particle which results in a smaller starting

scale, due to the soft divergence and collinear enhancement of the splitting functions.

Having established the starting conditions of the photons’ evolution we can now

examine their splitting process into pairs of charged particles, and the interplay

of the choice of interpretation of the evolution variable in either splitting process.

Therefore, fig. 4.2 depicts the correlation of the starting scale tstart,j of a photon

and the collinearity, or opening angle ∆Θpair, of its splitting products (mainly e+e−

pairs), for all three different choices of interpretation of the evolution variable t:

q̄2, k2
T, or mixed. In the virtuality-ordered scheme where t = q̄2, photons can



124 Chapter 4. Photon splitting corrections to YFS

t
=

m
2 e

t
=

ω
2 IR

,Y
FS

t
=

m
2 e

t
=

ω
2 IR

,Y
FS

tstart = k2
T,start

tstart = q̄2
start

-15 -10 -5 0
0

0.02

0.04

0.06

0.08

0.1

log10(tstart [GeV2])

no
rm

al
is

ed
fr

eq
ue

nc
y

t
=

m
2 e

t
=

ω
2 IR

,Y
FS

t
=

m
2 e

t
=

ω
2 IR

,Y
FS

Probabilistic choice

Winner-takes-all choice

-15 -10 -5 0
0

0.02

0.04

0.06

0.08

0.1

log10(tstart [GeV2])

no
rm

al
is

ed
fr

eq
ue

nc
y

Figure 4.1: A comparison of the algorithmic choices made in re-
constructing the initial e± → e±γ splitting generated
by PHOTONS. Left: A comparison of the frequency of
the reconstructed starting scales tstart using two choices
for the evolution variable t, k2

T or q̄2, in the reconstruc-
ted initial e± → e±γ splitting. Right: A comparison
of the frequency of the reconstructed starting scales
tstart = k2

T,start using either a probabilistic determination
of the emitter lepton or a winner-takes-all in the recon-
structed initial e± → e±γ splitting. The threshold for
photons splitting into charged particle pairs is t > 4m2

e,
and ω2

IR,YFS is the IR cutoff of the YFS-style algorithm
which generates the photons.

only split if t exceeds the pair-creation threshold of the lightest charged species,

t ≥ 4m2
e ≈ 10−6 GeV2. Furthermore, there is also a strong correlation between

the starting scale of the evolution and the eventual splitting angle, which is mainly

a consequence of the identification of the starting scale tstart for each photon. As

already anticipated in section 4.2.2 above, the evolution scale in the kT-ordered

case is only constrained to be above the IR cutoff tc, which is also chosen to be

tc = 4m2
e here. This constrains the opening angle of the pair of splitting products

to be ∆Θpair & 10−4. The mixed scheme, in interpreting t = k2
T in reconstructing

the photon emission to define tstart and t = q̄2 in photon splittings, combines aspects

of these two schemes, producing a smooth distribution in the whole (tstart,∆Θpair)

space independent of tc, as long as tc ≤ 4m2
e. The opening angle becomes relevant

when studying the recombination properties of the splitting product into a dressed

primary charged particle, see sec. 4.3.1.

To further investigate the effects of our results on specific algorithmic choices, fig. 4.3
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Figure 4.2: The interdependence of the starting scale tstart of a
photon and the angular separation between the particles
produced in its splitting, ∆Θpair, in the in the q̄-ordered
scheme (left), the kT-ordered scheme (centre), and the
mixed ordering scheme (right).
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focuses on the same observable familiar from the previous figure: the interdependence

of the starting scale tstart and the opening angle ∆Θpair. As in fig. 4.1, we see here

that the effect of a winner-takes-all choice of starting scale as opposed to our default

probabilistic starting scale definition is not significant. The winner-takes-all choice

results in the distribution of starting scales being skewed to slightly smaller values,

as discussed above, which correlates loosely with a more collinear splitting. This

results in a slight extension of the high-frequency (red) region of the plot towards the

small-tstart small-angle corner in the lower two plots of fig. 4.3 compared to the upper

two plots. We also show the spectator scheme dependence in the photon splitting,

i.e. whether we allow both primary leptons to be spectators, or only the lepton that

the photon was reconstructed to have been emitted from. Since in photon splittings

the spectator’s only role is to absorb recoil to guarantee momentum conservation,

it is physically well motivated for the splitting photon’s progenitor to be the sole

particle to absorb its gained virtuality necessary for the splitting process. Note

that this choice does not affect the value of tstart, only the energy available in the

splitting, which affects the overall splitting probability and the allowed opening angle

of the splitting products. Fig. 4.3 shows that this choice has negligible effect on the

distribution of splitting events in the (tstart,∆Θpair) plane.

To conclude this section, fig. 4.4 shows the relative frequency of photons split-

ting into different species of charged lepton and hadron. As the driving factor

is the produced particle species’ mass, electron-positron pairs are most commonly

produced, around an order of magnitude more commonly the products of photon

splittings than muons or charged pions. The probability of producing a second pair

of a given species roughly follows the naïve expectation of being the square of the

probability of producing one pair. In a more detailed consideration one finds a

factor of α2 log(mZ/Eγ) log(tstart/m
2) associated with each secondary pair produc-

tion. Therein, Eγ is the energy of the bremsstrahlungs photon that subsequently

splits into the pair of particles of mass m, and tstart is its reconstructed starting

scale. Hence, we observe a single-logarithmic suppression of heavier flavours, modulo
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Figure 4.3: The interdependence of the starting scale tstart of a
photon and the angular separation between the particles
produced in its splitting, ∆Θpair, in the mixed ordering
scheme with different choices of kinematic spectators of
the photon splitting: both charged primary leptons (top
row) or only the primary lepton the splitting photon
was reconstructed to have been emitted from (bottom
row). We also show the dependence on the way in which
the starting scale of the evolution is chosen: probabilist-
ically (left column) or by always choosing the winning
dipole (right column).
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Figure 4.4: The relative abundance of secondary pairs of each spe-
cies of charged particle produced in photon splittings in
the mixed ordering scheme.

possible minor differences in the splitting function itself. This is well-reproduced by

our algorithm. In fact, in the current example, the drop in frequency of producing

an additional pair of particles of the same flavour is between 2.5 and 4.5 orders of

magnitude.

4.3 Lepton dressing beyond photons

In this section we analyse the final states produced by our algorithm, and in particular

the consequences of further resolving the photons produced by the standard soft-

photon resummation into charged-particle pairs. We will continue to use the decay of

an on-shell Z boson into an e+e− pair as a testbed for our algorithm. We will analyse

the corrections induced by photon splittings on a number of physical properties that

are related to the charged particle content of the radiation cloud surrounding the

primary decay products.

We continue to use a spherical coordinate system to measure relative radial distances

∆Θ. Further, please note that for this study we turn off kaon and τ decays for the

greatest accuracy in identifying primary final-state particles. By default, however,

kaon and τ lepton decays would be handled as normal in SHERPA [161], including
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various state-of-the-art parametrisations of all known decay channels and including

their own respective QED corrections.

4.3.1 Dressing strategies in the presence of photon

splittings

Lepton dressing is commonly used to define IR-safe observables through recombining

a primary bare lepton with its surrounding radiation cloud, in analogy with the jet

clustering of QCD. While lepton dressing is essential when massless leptons are

used in a calculation due to the presence of collinear singularities, the inclusion of a

lepton mass renders both dressed and bare lepton definitions physical. Nonetheless,

bare leptons suffer from large corrections that are logarithmic in the lepton’s mass,

making them particularly relevant for electrons. Hence, a dressed lepton definition

is also advantageous in calculations with massive, but light, leptons.

In practice there are two common methods for lepton dressing, analogous to jet

definitions in QCD: cone dressing and sequential recombination dressing. While a

sequential recombination algorithm typically uses either the anti-kt or Cambridge-

Aachen algorithm [179], the cone-based dressing uses the bare lepton to define the

cone axis and, at variance with historical QCD cone algorithms, keeps the cone

itself stable throughout the recombination procedure, rendering it collinear safe with

respect to photon emissions. In either case, unlike in QCD, the algorithm is not

completely blind to particle flavour since (at least) the primary bare lepton is used

as the dressing initiator and defines the flavour of the resulting dressed lepton. As

long as only photon radiation is considered as a higher-order correction to lepton

production, which is the current standard in both YFS based soft-photon resum-

mations [16, 17] and PHOTOS [24, 26], both algorithms work very straightforwardly

by subsequently combining the primary lepton with the surrounding photon cloud

using the respective distance measure.

When photon splittings are included in the QED corrections to lepton produc-
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tion as well, the radiation cloud surrounding the primary lepton becomes flavour-

diverse. Considering the underlying physical process, these photon-splitting cor-

rections are simply resolving the structure of the photons constituting the above

photon cloud. While these corrections are IR-finite when all lepton masses are

considered, large logarithmic effects can be expected in particular when branch-

ing into the lightest species, electrons, occurs. Further, the splitting into electrons

is the most probable branching for a photon emitter. Thus, while continuing to

dress the primary leptons with photons only is IR-safe, it is natural to demand

that the resulting dressed lepton definition does not strongly depend on whether

or not we include further photon splittings. We will thus investigate the follow-

ing choices for the flavour set fdress which is used to dress the primary lepton:
{γ} We continue to use only photons to dress the primary

charged lepton.

{γ, e} In addition to the mandatory dressing with the surrounding

photons, we also include the lightest charged particle, the

electron, in the dressing procedure of the primary lepton.

This is not only motivated by the fact that splittings into

e+e− pairs give the largest corrections, but also that experi-

mentally both electrons and photons are measured similarly

in the calorimeter. Of course, the presence of a magnetic

field between the interaction and the calorimeter does in

principle decorrelate the direction of their respective mo-

mentum vectors.

{γ, e, π,K} We also include the lightest hadronic splitting products in

the dressed lepton definition. Such a definition is a com-

promise between theoretical inclusivity and experimental

feasability.
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{γ, e, π,K,µ, τ} We include all species produced in our photon-splitting im-

plementation in order to be completely inclusive. It has

to be noted though, that in realistic experimental envir-

onments muons are well distinguishable even at low muon

energies, and τ leptons of course decay further before de-

tection rendering their inclusion in any realistic dressing

algorithm highly non-trivial.

A schematic of how both the cone and sequential recombination dressing algorithms

in the presence of photon splittings proceed is given in fig. 4.5. In the case of

cone dressing, the primary leptons should be identified and dressed with all QED

radiation that surrounds them, including other leptons and hadrons. In particular,

the flavour of the dressed lepton does not change even if flavours other than a

photon are included in it as it is determined entirely by the primary lepton. Thus,

in consequence, the cone-dressed lepton may have a net charge that is different from

that of its assigned flavour when not all photon-splitting products are recombined

into the same dressed lepton. We will use this algorithm for the remainder of this

study.
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Figure 4.5: Recombination matrices of lepton dressing strategies
beyond photon radiation. While γ labels the photon,
`p and fs denote the primary leptons and secondary
flavours, respectively.
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Figure 4.6: Left: The differential distribution of the dressed lepton

constituents, including radiated photons having Eγ >
0.1MeV, dependent on the angular distance ∆Θ from
the primary lepton. Right: The energy density ρ within
the dressed lepton as a function of the angular distance
∆Θ from the primary lepton. Shown are the predic-
tions without accounting for photon splittings (red),
compared to the predictions allowing photons to split:
dressed with photons only (blue), photons and electrons
(orange) or all particles (violet).

Nonetheless, a diagram of a flavour recombination matrix for sequential recom-

bination dressing is shown on the right-hand side of fig. 4.5. Here it is possible

to recombine a secondary (and hence soft/collinear) lepton-antilepton pair into a

photon, while allowing for even softer or more collinear surrounding photons to be

combined with these charged leptons first. On the level of primary leptons, then,

they are only dressed with photons, either from the final state or from previous

secondary-lepton clusterings. This has the obvious advantage that the charge and

flavour of the primary lepton matches that of the dressed lepton. However, it is

schematically more intricate and does not always yield circular dressed leptons, which

are favoured experimentally. The investigation of sequential recombination dressing

is left to a future study.

The first observables we examine offer closer looks into the substructure of the cone-

dressed leptons produced by different dressing strategies. We introduce the legend

notation: either photon splittings to charged flavours f are present (γ → f f̄) or they
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are not (no γ → f f̄); the dressing algorithm is specified by the set of particle flavours

fdress which are included in the dressing.

The left-hand side plot of fig. 4.6 displays the angular distance ∆Θ of the cone-dressed

lepton constituent from the primary lepton. To ensure IR safety, only photons with

Eγ > 0.1MeV are included. A cutoff just below the electron mass has been selected to

ensure that all electrons are included in the analysis. Besides observing the primary

lepton’s dead cone for ∆Θ . 2× 10−5, we find that for ∆Θ . 10−4 the constituent

multiplicity when including photon splittings, irrespective of the dressing scheme

used, coincides with the multiplicity when omitting such splitting. This corroborates

our earlier expectation that collinear photons largely lack the necessary virtuality

to split into a charged-particle pair. At larger angles, where the required virtuality

can be more easily gained, a photon’s probability to split increases. In consequence,

when including photon-splitting effects in the calculation, but not accounting for the

splitting products in the dressing, a drop in multiplicity can be observed. Including

electrons as well as photons in the dressing reincorporates most splitting products

into the dressed lepton definition (see fig. 4.4). We find an increase above the

reference of approximately the same number of constituents that are lost in the

γ → f f̄, fdress = {γ} case. The completely flavour-inclusive dressing definition then

shows the same effects scaled to the production of heavier secondary species: larger

virtualities, and thus larger ∆Θ, are needed for a non-zero splitting probability,

so fewer photons actually split into these heavier flavours. This leads to a much

smaller effect of these splittings, concentrated at the outside of the cone. We expect

out-of-cone effects to be small, since the frequency spectrum falls steeply towards

the edge of the cone. More generally, it appears that the splitting products are close

to collinear with the progenitor photon, at least on average.

On the other hand, the right-hand side plot of fig. 4.6 shows the distribution of

energy within the dressed lepton as a fraction of the energy of the entire dressed

lepton. Resolving photons into other species, i.e. pairs of charged particles, but

continuing to dress the primary lepton with photons only naturally decreases the
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Figure 4.7: The total charge of the cone-dressed electron and
positron with ∆Θdress = 0.1 and including all secondary
flavours, i.e. fdress = {γ, e, π,K, µ, τ}.

energy radial density of the dressed lepton. The fact that this energy density loss is

not constant but rather increases with the radial distance to the primary lepton is

again a result of the increasing possible off-shellness at larger ∆Θ, and therefore the

increased splitting probability. Even when the photon splitting products are part of

the dressing procedure (either secondary electrons only or the set {e, π,K, µ, τ}) the

energy density ρ falls below the reference at some distance from the primary lepton,

showing that a non-negligible number of more energetic splitting products end up

outside the dressing cone radius.

As mentioned above, it is possible for the charge of the dressed lepton to be different

from the charge of its primary constituent. This is shown in fig. 4.7 for the case of

cone dressing with ∆Θdress = 0.1. Fewer than a thousandth of the dressed leptons

are neutral or doubly charged, while a fraction of 10−7 of them are either triply

charged or appear to be their own antiparticle (a dressed electron having a charge

of +1 or a dressed positron having a charge of −1). Again, this is a consequence of

only partially capturing the photon splitting products.

In the next section we will look at the separate and combined effects of photon

splittings and flavour-aware lepton dressing on physical observables in the decay of

an on-shell Z boson.
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scheme.

4.3.2 Case study: Z boson decay

Next, we look at the decay of an on-shell Z boson into an e+e− pair and investigate

the impact of the photon splitting corrections introduced in this chapter on physical

observables. To be precise, we present the effects of including γ → f f̄ splittings and

the consequences of (not) using flavour-aware dressing algorithms on the decay rate,

differential with respect to the invariant mass m`` of the primary electron-positron

pair.

We begin by examining the bare differential decay rate, i.e. the invariant mass of

the primary lepton pair that is not dressed with the radiation around it, in order to

quantify the kinematic effect of photon splittings on the primary leptons themselves

without confusing this effect with the intricacies of the dressing algorithm. We

note that bare leptons are theoretically well-defined as all lepton masses are fully

accounted for. To this end, fig. 4.8 isolates the effect of allowing YFS photons

to split by presenting the bare invariant mass of the two most energetic leptons
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of opposite charge, one electron and one positron. In the overwhelming majority

of cases these are expected to be the primary electron-positron pair generated in

the on-shell Z decay. The largest deviation from the pure YFS prediction without

photon splittings, which is taken as the reference, is about 1% in the region of most

interest. It occurs just below the Z mass, at about 60 − 70GeV. It is driven by

extracting additional momentum from the primary leptons to accommodate the

necessary virtuality for photon splittings to occur. Although barely visible, this is

fueled by a minute reduction of the much larger differential decay rate closer to the

nominal Z mass itself. Although of less interest due to the smaller absolute decay

rate, the opposite effect is seen at very small invariant masses, below 50GeV. In this

regime, through the same mechanism, the decay rate is diminished by about 1− 2%

as the slope of the distribution is shallower but the momentum extraction is similar

in magnitude to that at larger invariant masses.

Finally, a change of the precise definition of the ordering variable, both for the

reconstructed starting scale of the evolution and the splitting scale of the eventual

photon splitting, generally increases the size of the corrections for this observable.

While using t = k2
T for all splittings only increases the observed corrections slightly,

due to the increased photon splitting probability as kT < q̄ throughout, using t = q̄2

almost doubles the size of the corrections as now the starting scales of each photon’s

evolution reconstruct to much larger values, see fig. 4.1. This is a consequence of the

different properties of these ordering variables as discussed in section 4.2.2, although

a priori all choices have the same formal accuracy.

Having assessed the basic kinematic effects on the bare primary leptons, we now turn

to dressed leptons. We will investigate the impact the different dressing strategies

discussed in sec. 4.3.1 have, once the radiation cloud around the primary leptons is

not comprised of only photons but is resolved further into various different flavours of

secondary charged particles. To this end, fig. 4.9 contrasts the pure YFS soft-photon

resummation without further photon splittings with a range of dressing strategies

when photon splittings are included. Four different cone sizes are considered, from a
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Figure 4.9: The dressed dilepton invariant mass m`` in on-shell Z
decay as described by the YFS soft-photon resumma-
tion only (red) or additionally resolving the photons
further into pairs of charged particles for four differ-
ent dressing cone sizes, ∆Θdress = 0.005 (top left),
0.02 (top right), 0.1 (bottom left), and 0.2 (bottom
right), in the mixed ordering scheme. We differenti-
ate various different dressing strategies, recombining
photons only (light blue), photons and electrons (dark
blue), photons, electrons and charged hadrons (orange),
and all charged particles (violet) within the dressing
cone with the primary charged lepton. Two ratios are
presented, either with reference to the soft-photon re-
summation without photon splittings (upper), or the
soft-photon resummation including photon splittings
and dressing the primary leptons with photons as well
as secondary electrons (lower).
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minimum ∆Θdress = 0.005 to a maximum ∆Θdress = 0.2. The upper ratio illustrates

the deviation of each prediction from the pure YFS case, due to both the presence of

photon splittings and the details of the dressing algorithm. The lower ratio isolates

the effect of the dressing strategy by showing the deviation with respect to the

photon-only-dressed events. In particular, this shows which secondary flavours are

recombined with the primary lepton into the dressed lepton. We observe that when

the photon radiation off the primary electrons is further resolved into charged-particle

pairs but the primary electrons are still only dressed with only the photons of their

surrounding radiation cloud, large effects are manifest. They range from slightly

over 2% for ∆Θdress = 0.005 to 6% for the commonly used ∆Θdress = 0.1, and up to

9% for the more inclusive cone radius of ∆Θdress = 0.2. This difference originates in

the fact that as long as only photons are included in the dressing, every photon lost

by resolving it into a charged-particle pair cannot be recombined into the dressed

lepton, which then ends up with less energy simply because higher-order corrections

have been included. The observation that our algorithm reconstructs higher starting

scales for hard wide-angle photons than either soft or collinear ones, and thus these

are more likely to possess the necessary virtuality to split into charged-particle pairs,

explains the dressing-cone-size dependence. However, when more inclusive dressing

algorithms are considered, the effect of photon splittings on the differential decay

rate is reduced, as is the ∆Θdress dependence. As photons predominantly resolve

into e+e− pairs, their inclusion in the dressed lepton definition already captures the

bulk of the effect, in particular at smaller dressing cone radii. Along the lines of

the above argument, photons need to be sufficiently separated from the primary

lepton in order to gain enough virtuality to split into the heavier particle species.

Thus, the inclusion of further secondary flavours in the dressing algorithm only plays

a role at larger dressing cones, with effects ranging from 1% at ∆Θdress = 0.1 to

2% at ∆Θdress = 0.2. The effect of changing the ordering scheme for the photon

splitting algorithm on fig. 4.9 is very similar to the effect on fig. 4.8. Again, using

the transverse momentum or virtuality ordered schemes increases the size of the
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Figure 4.10: The cone size dependence of different dressing
strategies in on-shell Z decay. The differential de-
cay rate dΓγ→f f̄

fdress,∆Θdress
/d logm`` has been divided by

the corresponding dΓno γ→f f̄
∆Θdress

/d logm``, in dependence
of both the flavour set fdress included in the dressing and
the dressing cone of size ∆Θdress. The left plot shows
the difference case where only photons are used in the
dressing (dotted) and using both photons and second-
ary electrons (solid), whereas the right plot shows
the difference between a dressing strategy using only
photons and electrons (solid) and all secondary fla-
vours (dashed).

corrections induced by photon splittings in a very similar way as before. It is still the

case that reincorporating splitting products in the dressing recovers the bare-lepton

level deviation from the pure YFS prediction. As above, it needs to be noted that

such a change in the ordering variable results in a suboptimal description of the

physical process, and is thus not recommended to be used as an estimator of the

intrinsic uncertainty.

In fig. 4.10 we show more clearly the recovery of the pure soft-photon prediction using

the two most relevant charged-particle-inclusive dressing strategies. The figure shows

the ratio of the differential cross section including photon splittings to that without

photon splittings for different dressing choices. We find that including charged

particles in the cone dressing limits the effect of photons splitting corrections to the

1% level, irrespective of cone size. Including electrons in the dressing similarly limits

the corrections to 2% even for the largest cone sizes considered here.
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4.3.3 Results: Drell-Yan production at hadron colliders

In this section we present results for the phenomenologically relevant case of Drell-

Yan at proton-proton colliders. We focus on the process pp→ e+e− at a centre-of-

mass energy of 13 TeV. We use SHERPA’s AHADIC for hadronisation and the PDF

set Pdf4Lhc21 from the LHAPDF library [83]. These results were produced with a

pre-release version of SHERPA 3.0. SHERPA’s default parton shower, Csshower, was

used for the initial-state QCD shower [44]. COMIX was used for ME generation [96].

As before, the effect of photon splittings is seen most clearly in the dilepton invariant

mass for a range of dressing strategies. In the hadron collider environment, it is clear

that dressing leptons with light hadrons is not appropriate due to the large number

of hadrons produced by unrelated QCD processes, such as initial-state radiation,

multiple interactions and pile-up. As a result, in this section we focus on the modified

cone dressing where secondary electrons are included in addition to photons.

Fig. 4.11 shows the dielectron invariant mass for bare electrons identified, as before, as

the highest-energy opposite-flavour pair. Whilst for the case of on-shell Z decay the

m
e

+
e
− spectrum was an LO observable in the QED radiative correction, in Drell-Yan

production the spectrum is given at LO by the x distribution of the initial partons.

The QED radiative corrections are large, however: they are around 50%. Hence we

expect the photon splitting corrections to this observable to be much smaller than

in the previous case study, but still non-negligible. This can be seen in the plot,

where there is only a small region in which photon splitting corrections contribute

a statistically significant correction. Below the Z peak, at an invariant mass of

around 60 GeV, there is a positive correction of 0.5% to the cross section. While

statistically significant on an event-generation level, the correction to this observable

is not significant physically since scale-variation uncertainties in the spectrum are

much larger than the MC statistical errors shown here. However, as before, these

corrections are dependent on the lepton definition used in the observable.

To see this, we also investigate the effect of photon splitting corrections on dressed
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Figure 4.11: The bare dilepton invariant mass m
e

+
e
− in Drell-Yan

production as described by the YFS soft-photon re-
summation only (red) or additionally resolving the
photons further into pairs of charged particles (blue),
in the mixed ordering scheme.

leptons. fig. 4.12 shows the dressed-electron invariant mass for a dressing cone size

of ∆Rdress = 0.1. We compare the usual photon-dressed electrons with those where

secondary electrons have also been included in the dressing. The upper ratio plot

shows the deviation with respect to the case where no photon splittings have been

included. There is a clear 1% correction in a large kinematical region below the Z

peak introduced by including γ → f f̄. However, as in the previous section, we see

that this deviation is almost eliminated when secondary electrons are recombined

into primary electrons in dressing cones. The lower ratio plot shows more clearly

the effect of changing the dressing algorithm. These results echo the findings from

the Z decay case study in a realistic collider environment.

In this section we have demonstrated the effectiveness of the proposed photon-

splitting algorithm in modelling higher-order QED radiation in Z decays, including

in neutral-current Drell-Yan processes. Before concluding this chapter, we briefly

discuss the modifications to the algorithm in order to model corrections toW decays.
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Dressed Leptons, ∆Rdress = 0.1
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Figure 4.12: The dressed dilepton invariant mass m
e

+
e
− in Drell-

Yan production as described by the YFS soft-photon
resummation only (red) or additionally resolving the
photons further into pairs of charged particles for a
dressing cone size of ∆Rdress = 0.1 in the mixed order-
ing scheme. We differentiate a dressing strategy recom-
bining photons only (blue), and recombining photons
and electrons (orange) within the dressing cone with
the primary charged lepton. Two ratios are presented,
either taking the soft-photon resummation without
photon splittings (upper ratio), or the soft-photon re-
summation including photon splittings and dressing
the primary leptons with photons as well as secondary
electrons (lower ratio), as the reference.
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4.4 Charged resonances

In this section we give the definitions for final-initial dipoles needed for the description

of photon splittings in the QED corrections of charged particle decays, such as

W → `ν.

The notation used to describe these dipoles is for the most part consistent with the

final-final dipoles described above. We consider a charged resonance ã (a) decaying

to a charged particle ı̃ (i) and a recoiling system {ñ} ({n}): ã→ ı̃ {ñ} before and

a→ i j {n} after the emission of a photon j, respectively. Ordinarily the recoil from

the splitting would be absorbed locally by either the spectator a when i is the emitter,

or vice versa. Since a is the decaying particle, however, we have chosen to keep its

momentum unchanged and redistribute the recoil effectively to the particle(s) {n}.

This allows us to use a single momentum map for both situations and to combine

both emitter-spectator designations into a single dipole splitting function. This not

only simplifies its description, but also removes problems with the positivity of the

partial-fractioned CS splitting functions in situations where the mass correction is

larger than the (quasi-)collinear emission term. Hence, we follow the treatment in

refs. [65, 180] to construct the splitting functions and kinematic variables.

As described in sec. 4.2, the first step in the photon splitting algorithm is to determine

the starting scale of each photon by reconstructing its emission history. In principle,

emission of a photon can occur from the decaying particle ã or from its charged

decay product ı̃. However, since the former splitting is suppressed by the decaying

particle’s mass, it is much more likely to act as spectator. Therefore, as discussed

above, we employ a single splitting function which contains the initial-state emission

term in addition to the final-state emission. As a consequence, in the soft limit the

full eikonal is recovered and the dipole radiates coherently, but splitting from the

initial-state particle is never kinematically considered when building the required

single-emitter history in the collinear interpretation of our parton shower.

After calculating the starting scale, the photons’ evolution begins and photon split-
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tings are considered. Since a photon is never considered to be emitted from the

initial-state charged particle, and the decaying particle has a restricted phase space

for absorbing recoil in any case, the spectator in all photon splittings is chosen to be

the final-state particle i. For this reason, we do not need the kinematic mappings

for a final-initial dipole. The splitting function and evolution variable definitions are

detailed below.

Splitting functions. The dipole invariant mass Q2 is defined as

Q2 = (p̃ı̃ − p̃ã)2 = (pi + pj − pa)2 (4.4.1)

for the case of a dipole with final-state emitter i and initial-state spectator a.

For convenience, we define the quantity

Q̄2 = m2
a −m2

i −m2
j −Q2. (4.4.2)

The kinematic variables z and y are defined differently from the final-final case; they

are given by

y = pipj
papi + papj − pipj − 2m2

i − 2m2
j

, z = pipa − pipj −m2
i

pipa + pjpa − 2pipj −m2
i −m2

j

.

(4.4.3)

In terms of these variables the splitting functions are given by

Sf
ı̃

(ã)→fiγj(a) = Sf̄
ı̃

(ã)→f̄iγj(a) = −Q2
ı̃ã α

[
2

1− z(1− y)

(
1 + 2m2

i

Q̄2

)
− (1 + z)

− m2
i

pipj
− (pipj)

Q̄2
m2
a

Q̄2
4

[1− z(1− y)]2

]
,

Ss
ı̃

(ã)→siγj(a) = Ss̄
ı̃

(ã)→s̄iγj(a) = −Q2
ı̃ã α

[
2

1− z(1− y)

(
1 + 2m2

i

Q̄2

)
− 2− m2

i

pipj

− (pipj)
Q̄2

m2
a

Q̄2
4

[1− z(1− y)]2

]
.

(4.4.4)

The additional factor (1 + 2m2
i /Q̄

2) is needed to recover the soft eikonal limit by

cancelling some of the mass dependence of the variables z and y. Note that mj = 0
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needs to be taken for the soft limit, so it is not present in this additional factor.

Evolution variable. As before, we consider two choices of evolution variable,

virtuality and transverse momentum. The form of these variables in terms of the

dipole invariant mass Q2 and the masses of the particles in the process are very

similar to those for final-final dipoles.

The virtuality is given by

q̄2 = (m2
a −m2

i −m2
j −Q2) y +m2

i +m2
j −m2

ı̃, (4.4.5)

while the transverse momentum can be written

k2
T = (m2

a −m2
i −m2

j −Q2) y z(1− z)−m2
i (1− z)2 −m2

j z
2. (4.4.6)

As before, the default scheme for the evolution variable is the mixed scheme, where

the transverse momentum is computed as the starting scale for photon evolution

but is interpreted as a virtuality thereafter. The pure transverse momentum and

virtuality schemes are implemented as well.

Having discussed the details of our photon splitting algorithm for the case of W

decays, we conclude this chapter.

4.5 Conclusions

In this chapter we detailed an extension to the soft-photon resummation in the Yennie-

Frautschi-Suura framework, which incorporates higher QED corrections originating

from photon splittings into charged-particle pairs. These photon-splitting corrections,

which resolve the substructure of the newly produced photons, are larger than

suggested by their fixed-order accuracy. In particular, they can be logarithmically

enhanced with the ratio of the lightest charged particle, the electron, to the possible

virtuality of the splitting photon.
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Using the decay Z → e+e−, we found that that the limit on the virtuality of the

photon bremsstrahlung off a primary lepton is strongly correlated with the angular

distance to this primary lepton, and thus also to the probability of that photon to

split. We also investigated the systematics of our photon-splitting algorithm and

found that algorithmic choices do not have a large impact on results. We found that

the frequency of occurrence of different species agreed with theoretical expectations,

showing a logarithmic dependence on the mass of the produced particles.

As a consequence of our extension, the MC prediction for the cloud of QED radiation

surrounding the primary leptons of a hard decay contains an array of particle flavours,

not solely photons. Hence, the standard dressing algorithms to define IR-safe dressed

leptons were found to develop a strong sensitivity to further resolving the initial soft-

photon cloud, in particular for larger dressing-cone radii. We therefore developed

a novel set of flavour-aware strategies for dressing charged leptons and investigated

their respective properties. We found that including secondary electrons as a minimal

addition in the dressing procedure already substantially reduces this dependence on

photon resolution, while an inclusion of all possible secondary flavours minimises it.

Using the example of the Z → e+e− decay rate, we investigated the dilepton invariant

mass in detail. We found corrections of around 1% from photon splittings, with

respect to the previous standard of not further resolving the initial photon radiation

on the bare electrons. In the more relevant case of leptons cone-dressed with photons

only, these could become much larger, namely up to 9% for large dressing cone radii

of ∆Θdress = 0.1 or 0.2. Introducing a flavour-aware dressing algorithm restored

the bare result to a large degree, however. The photon-splitting corrections were

reduced to 1− 2%, and their cone-size dependence was removed.

We then studied how the above effects translate to the general off-shell production

of a Drell-Yan electron-positron pair at a hadron collider. We found very small

corrections to bare leptons, as expected, while the corrections to photon-dressed

leptons were up to 1% for a cone size of ∆Rdress = 0.1. Including secondary electrons

in the dressing removes these corrections. Unlike the academic case of on-shell Z
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decay, it is not appropriate to include hadrons in lepton dressing in a hadron collider

environment due to the abundance of their production from QCD processes. These

findings reinforce the need for consistent treatment of higher-order QED corrections

and lepton definitions in theory, event generators and experiment.

The photon splitting corrections were implemented in the SHERPA Monte-Carlo event

generator and are incorporated in the SHERPA 3.0.0 release. All analyses and dressing

strategies were implemented using RIVET’s analysis tools [92, 93].





Chapter 5

Conclusions

In modern particle phenomenology, the precise prediction of SM processes is of

great importance, both for background subtraction in the search for new physics,

and for correct fitting of non-perturbative models to data. Since the inception of

QCD 50 years ago, QCD calculations have undergone a huge reduction in uncertainty,

allowing for accurate predictions of exclusive final states and differential distributions.

The EW sector, despite being the source of many precision observables at hadron

colliders, is often considered only to LO, due to the small size of α compared to

αs. In recent years, however, that has begun to change. In addition to the ever-

increasing precision of experimental measurements at the LHC and its upcoming

high-luminosity upgrade, there are other factors to motivate higher precision in

the EW sector. First, the extraction of the W boson mass from legacy Tevatron

data is in tension with previous measurements and with measurements of other

EW parameters. Second, the anomalous magnetic moment of the muon has been

measured to be in conflict with the current SM prediction. Finally, there are multiple

proposals for future e+e− colliders, for which theoretical research and development

must start imminently.

In this thesis, we presented three novel methods which increase the precision of QED

radiative corrections in an automated, process-independent way.

We took inspiration from QCD in chapters 2 and 3, developing an NLO-matched
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parton shower. This resums the leading logarithms associated both with the emission

of a collinear or soft photon, and with the splitting of a photon into a collinear

fermion pair. We demonstrated how the shower can be interleaved with a QCD

parton shower, respecting the hadronisation scale of QCD while allowing pure QED

radiation to continue to lower scales. We validated the shower, and its matched

MC@NLO method, for the test case of a neutrino collider, then presented results for

the phenomenologically relevant case of Higgs production via gluon fusion and its

subsequent leptonic decay. We showed that the shower and MC@NLO are in excellent

agreement with the YFS approach. We showed that a dipole identification helps to

improve efficiency by eliminating negative QED shower weights in many processes.

We also discussed the implementation of a QED parton shower (and hence an

MC@NLO implementation) for electron-positron colliders. Although this work is

ongoing, we discussed properties of the LL electron structure function, numerical

techniques to tackle its integrable singularity, and other considerations when imple-

menting a parton shower for e+e− initial states.

In chapter 4, we took a different approach, building on the hugely successful YFS

soft-photon resummation. We used the techniques developed in chapter 2 to extend

the formalism to resum the leading logarithms from charged particle pair production.

We found effects of a few percent on invariant mass distributions of resonance decay

products, corresponding to around a 1% correction to the Drell-Yan process at the

LHC. We studied the dependence of these observables on the flavour composition

of the QED radiation surrounding final-state leptons, and found situations in which

the usual method of cone dressing with photons introduces unphysical effects. One

example is the strong cone size dependence of the higher-order corrections. We

suggested alternative lepton dressing strategies to mitigate these effects, namely

cone dressing using secondary electrons and positrons in addition to photons, and

flavour-aware recombination dressing.

We implemented all methods described in this thesis in public MC code and analysis

frameworks. The extension to the YFS formalism was released as part of SHERPA
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3.0, while the QED parton shower and MC@NLO will be included in a future SHERPA

3 release. The lepton collider developments, once these are finalised and validated

against predictions made using the YFS approach and other parton shower codes,

will also be released as part of SHERPA. All analyses used to produce plots in this

thesis were implemented in RIVET and can be obtained from the author on request,

along with the SHERPA runcards. Public distribution of automated methods and

new results is vital to the collaboration of the particle physics community and the

continued progress in the development of our description of our universe.





Appendix A

Usage and settings

In this appendix we list the available keywords and settings which steer the calcula-

tion of the effects described in this thesis. All are correct at the time of publication,

however, these are subject to change between versions of SHERPA, so the reader is

encouraged to consult the appropriate version of the manual.

For the QED parton shower, under the scoped setting SHOWER, the following settings

can be changed:

EW_MODE This setting turns on splitting functions for the QED parton shower.

0 no QED splittings (default),

1 all QED splittings,

2 photon emissions off fermions only.

WED_FS_PT2MIN The infrared cutoff in t, the parton shower ordering variable, for

the QED final-state evolution. Default is 10−8 GeV2.

QED_IS_PT2MIN The infrared cutoff in t, the parton shower ordering variable, for

the QED initial-state evolution. Default is 2.5× 10−7 GeV2.

QED_SPECTATOR_SCHEME This setting controls which charged particles may act as

spectators for the emission of a photon off a fermion.
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One only the nearest OSSF particle considered (default),

All all charged external legs in the event considered.

The nearest particle is selected by taking the minimum invariant mass. All

charged particles are always considered as spectators for photon splittings and

are given equal weight, unlike in the YFS module described above. For an

s-channel process, this should generally be left at the default value. For a

t-channel process it is recommended that the All setting is used.

QED_ALLOW_FI This setting controls whether to allow initial-final interference in

the QED shower. Note that if switched on, QED_SPECTATOR_SCHEME must be

set to All.

false no initial-final interference (default),

true initial-final and final-initial dipoles included.

QED_ALLOW_II This setting controls whether to allow initial-state particles to par-

ticipate in the QED parton shower.

false no initial-state QED radiation,

true initial-initial dipoles included (default).

This setting is included to facilitate comparisons with the YFS final-state QED

radiation, or for efficiency improvements for quark initial states.

To turn on the QED MC@NLO, the NLO_Order parameter in the Process section of

the runcard must be set appropriately. In addition, the subtraction must be set as

follows:

NLO_SUBTRACTION_MODE This setting controls which IR divergences are subtracted.

QCD only QCD subtraction (default),

QED only QED subtraction,
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QCD+QED all SM IR divergences will be subtracted.

The MC@NLO is turned on in the usual way, using NLO_MODE: MC@NLO and the

associated settings. All of the QED shower and MC@NLO settings will be available

in a future release of SHERPA 3, however, the exact settings and default values are

subject to change. Any changes will be detailed in the relevant user manual.

For the modifications to the YFS resummation, under the scoped setting YFS, the

available settings are:

PHOTON_SPLITTER_MODE This setting governs which secondary flavours will be

considered.

0 photons do not split,

1 photons split into electron-positron pairs,

2 muons,

4 tau leptons,

8 and/or light hadrons (up to YFS_PHOTON_SPLITTER_MAX_HADMASS).

The settings are additive; the default is 15.

PHOTON_SPLITTER_MAX_HADMASS This setting sets the mass of the heaviest hadron

which can be produced in photon splittings. Note that vector splitting functions

are not currently implemented. Default is 0.5GeV.

PHOTON_SPLITTER_ORDERING_SCHEME This setting defines the ordering scheme

used.

0 transverse momentum ordering,

1 virtuality ordering,

2 mixed scheme (default).

PHOTON_SPLITTER_SPECTATOR_SCHEME This setting defines the allowed spectators

for the photon splitting process.
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0 all primary emitters may act as spectator (default),

1 only the photon’s reconstructed emitter is eligible as a spectator.

PHOTON_SPLITTER_STARTING_SCALE_SCHEME This setting governs the determina-

tion of the starting scale.

0 starting scale is chosed probabilistically (default),

1 the starting scale is chosen using a winner-takes-all strategy.

These are available from the SHERPA 3.0 release onwards.
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