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Abstract

This dissertation introduces an innovative methodology employing Bayesian ma-
chine learning to identify heterogeneous effects. This method provides a quantitative
perspective on potential effect-modifying factors influencing the heterogeneity in the
associations between the independent variable and the outcome.

The study cohort consisted of 43,487 individuals from the Chinese Longitudinal
Healthy Longevity Survey (CLHLS), a longitudinal cohort study of elderly Chinese
individuals. Numerous studies have shown that the association between smoking
or drinking and mortality varies significantly with mediators such as physical ac-
tivity level and diet. However, only some studies have systematically assessed the
heterogeneous effects of this association. To address this gap, this research inves-
tigates the association between smoking or drinking and mortality across several
subgroups identified by the Bayesian machine learning method. The results reveal
significant variations in the association based on body weight and physical activity
levels. Specifically, among individuals weighing 57 kilograms or more, a heightened
risk of mortality is observed with low levels of physical activity. In contrast, among
individuals weighing less than 57 kilograms, only a high level of physical activity is
linked to an increased mortality risk.

The methodology employed in this study involves a two-step approach. First,
the missForest algorithm was used for data imputation to handle missing values,
ensuring a robust and accurate dataset. MissForest’s non-parametric nature and
effectiveness in managing complex interactions and non-linear relationships make it
an ideal choice for this diverse dataset. Second, Bayesian Additive Regression Trees
(BART) were applied to analyze the imputed data. BART is particularly adept at
capturing non-linear relationships and interactions among predictors, enhancing the
statistical power to detect true heterogeneous effects.

By handling the imputation separately, we ensured that the BART model could
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focus on identifying and modeling the intricate interactions between smoking, drink-
ing, and mortality without the additional complexity of simultaneously imputing
missing values. In summary, using missForest for imputation, followed by BART
for modeling, provided a robust and effective methodology for our study. This com-
bination leveraged the strengths of both techniques, ensuring accurate and reliable
imputation of missing data and powerful, flexible modeling of the relationships be-
tween variables.

This research demonstrates that the Bayesian machine learning method can ef-
fectively identify heterogeneous effects between the independent variable and the
outcome. The integration of advanced statistical methods highlights the potential
for precision medicine approaches in epidemiological research. Furthermore, the
findings highlight the multifaceted nature of the relationships among body weight,
physical activity, smoking or drinking, and the risk of mortality. This underscores
the importance of considering lifestyle factors, such as smoking or drinking, along
with body weight and physical activity, when examining mortality risk. These in-
sights are valuable for precision medical interventions.

The methodology, specifically Bayesian Additive Regression Trees (BART), demon-
strates transparency, reproducibility, and robustness. This research contributes to
the biomedical field by providing valuable methodological insights and advancing our
understanding of potential effect-modifying factors in complex associations. Further
research is warranted to explore the underlying mechanisms and potential confound-
ing factors that may influence these associations.
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CHAPTER 1

Introduction

In this chapter, I provide the background for this research, which includes three

key components: 1) the urgent need to identify heterogeneous effects, 2) the epi-

demiological background of smoking or drinking in relation to mortality, and 3) the

research objective of identifying the heterogeneous effects of smoking or drinking on

mortality.

In recent years, the identification of heterogeneous effects in clinical studies has

gained prominence [1]. These effects reveal varying responses to therapies among

individuals, aligning with the goals of precision medicine, which aims to tailor pre-

vention and treatment strategies for optimal allocation of health resources [2]. A key

aspect of this field is identifying who benefits most from specific interventions and

who may not or might be harmed. Traditional subgroup analyses, while commonly

used, have limitations such as underpowered results, potential overlaps, and reliance

on pre-specified analyses that may underestimate the heterogeneous effects [1]. Ad-

ditionally, single-variable subpopulation definitions, like age or sex, often fail to

capture the complex mechanisms in treatment responses. More sophisticated, data-

driven methods that consider multiple characteristics are needed to address these

limitations.
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Recently, novel data-driven methods have been introduced to effectively iden-

tify combinations of heterogeneous effects in epidemiological studies [3]. These

innovative approaches leverage advanced statistical techniques and artificial intelli-

gence algorithms to overcome the challenges posed by traditional subgroup analyses.

One significant advantage of data-driven methods is their ability to analyze large

datasets containing diverse patient characteristics and treatment responses, allow-

ing researchers to discern patterns and associations that might remain undetected

through conventional methods. Moreover, these approaches can identify interac-

tions among variables that play a crucial role in determining the efficacy or risk of a

particular intervention without human bias. The increasing complexity of data from

epidemiological or clinical studies, such as genomics or proteomics, underscores the

need for such advanced methods [4].

Smoking and drinking are critical public health issues, often occurring together.

Numerous scientific investigations have unequivocally demonstrated the severe and

detrimental consequences of lifelong tobacco smoking. Simultaneously, a multitude

of studies have highlighted increased mortality rates associated with chronic heavy

drinking. Interestingly, evidence suggests that regular light drinking may have min-

imal impact on overall mortality and could potentially offer some protection against

coronary heart disease. The intertwining reality is that many individuals engage in

both smoking and drinking behaviors.

Furthermore, the neurochemical mechanisms of action of nicotine and alcohol

exhibit mutual reinforcement [5]. In response to the growing public health chal-

lenge https://publichealth.nyu.edu/events-news/news/2023/01/23/global

-public-health-goes-global-climate-summit posed by the coexistence of smok-

ing and drinking, numerous smoking cessation and alcohol reduction programs have

been implemented globally. These programs aim to promote healthier behaviors

and mitigate associated risks. However, despite the widespread adoption of these

interventions, a critical gap remains in our understanding. Specifically, no compre-

hensive studies have systematically assessed the heterogeneous effects on mortality

in individuals who both smoke and drink. Such investigations are essential for identi-

fying subpopulations that might be at heightened risk and for tailoring interventions
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to address the specific needs of these individuals [6]. By identifying and targeting

high-risk subgroups, healthcare resources can be allocated more effectively, thereby

improving overall population health outcomes.

This study leverages the Chinese Longitudinal Healthy Longevity Survey (CLHLS)

[7] to examine the effects of smoking and drinking on mortality. It aims to under-

stand their interplay and influence on health. Our study will thoroughly assess

the demographic, lifestyle, and health-related factors associated with smoking and

drinking behaviors. By examining these factors in tandem, we can elucidate po-

tential interactions and patterns that might contribute to differential mortality out-

comes in various subgroups. Moreover, we will consider other contextual factors,

such as socioeconomic status, access to healthcare, and environmental https://

vorstcanada.com/blogs/news/artemisinin-for-malaria influences, which may

further contribute to the heterogeneous effects of smoking and drinking on mortality.

The methodology employed in this study involves a two-step approach. We first

address the missing data using the missForest algorithm, ensuring that the imputed

values are consistent with the underlying data structure. We then apply BART

for modelling; BART, with its ability to model complex interactions and improve

statistical power, was well-suited for analyzing the heterogeneous effects of smoking

and drinking on mortality. By combining missForest and BART, we achieve a robust

and efficient analytical framework that maximizes the strengths of both methods.

This integrated approach not only simplifies the modelling process but also ensures

that the imputed data are of high quality, thereby enhancing the overall reliability

and validity of our findings.

In conclusion, the convergence of smoking and drinking behaviours represents a

significant public health challenge. While the adverse effects of lifelong tobacco [5]

smoking and chronic heavy drinking are well-established, the interplay between these

behaviours and their combined impact on mortality remains less explored. By lever-

aging data from the CLHLS and By combining missForest and BART, our research

seeks to bridge this knowledge gap and provide valuable insights into [8] the het-

erogeneous effects of smoking and drinking on mortality [9]. The integration of

advanced statistical techniques and data modelling highlights the potential for pre-
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cision medicine approaches in epidemiological research; we aim to identify high-risk

subpopulations and tailor interventions to enhance healthcare resource allocation

and improve overall population health; we hope to contribute to the development

of evidence-based and personalized public health strategies that pave the way for a

healthier and more resilient population.

1.1 Background

Heterogeneous exposure associations (HEAs) in public health reflect the variabil-

ity of exposure-outcome relationships across different subgroups. This variability is

influenced by numerous factors, including genetics, environment, lifestyle, and social

determinants of health, making it a complex yet vital area of study.

For example, research on smoking and lung cancer has shown that not only

genetic factors but also environmental and lifestyle factors significantly impact the

risk of lung cancer among smokers [10]. Individuals exposed to secondhand smoke

or those living in areas with high air pollution may face a higher risk, even if their

smoking habits are less severe [11] [12].

In the context of medication efficacy, consider the case of anti-hypertensive drugs.

The effectiveness of these drugs can vary significantly among different ethnic groups.

Certain blood pressure medications, for instance, are more effective in African Amer-

ican populations compared to Caucasian populations, underscoring the importance

of considering ethnic and racial backgrounds in treatment plans [13].

Similarly, in the field of mental health, the response to antidepressants is another

area where HEAs are evident. Studies have demonstrated that factors like age, gen-

der, genetic makeup, and the severity of depression can influence how individuals re-

spond to these medications. This variability necessitates a more tailored approach to

treatment https://biocertica.com/blogs/what-medicine-should-i-take/re

volutionizing-gout-management-a-personalized-approach-through-pharmac

ogenetics, moving away from the ’one size fits all’ model [14] [15].

In nutrition and dietetics, the concept of HEAs is increasingly recognized. The

impact of various diets on health outcomes, such as obesity, diabetes, and car-
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diovascular diseases https://primewomen.com/wellness/health/male-menopau

se/, can vary significantly based on an individual’s genetic background, metabolic

rate, and lifestyle. For instance, the effectiveness of a low-carbohydrate diet in

weight loss [4]and metabolic improvement might be more pronounced in some indi-

viduals, depending on their genetic predisposition to metabolize different types of

nutrients [16].

Understanding HEAs is crucial for developing more personalized and effective

healthcare and public health interventions. It allows researchers and practitioners

to tailor their approaches based on the unique characteristics of different subgroups,

thereby enhancing the effectiveness of treatments and preventive measures. As re-

search in this field advances, it becomes increasingly clear that a one-size-fits-all

approach is often inadequate in addressing the complex and varied nature of human

health and disease. Therefore, exploring heterogeneous exposure in societies is not

only a scientific necessity but also a practical imperative to ensure optimal health

outcomes for diverse populations [2] [17].

1.2 Research Objectives

The primary objective of this research is to investigate the relationship between

smoking and drinking habits and mortality within a study population, characterized

by a diverse range of baseline variables. Specifically, this study aims to explore

whether additional factors among these baseline variables significantly influence the

relationship between smoking or drinking and mortality. The goal is to identify

factors beyond smoking and drinking that may modulate or alter the impact of

these behaviours on the risk of death. To address this objective, the study will

collect and analyze multiple variables, including age, gender, race, socioeconomic

status, lifestyle factors, genetic background, medical history, and environmental

exposures. The analysis will assess whether these variables interact with smoking

or drinking habits in predicting mortality risk. This approach will help determine

if certain groups are more susceptible to the adverse effects of smoking or drinking

and identify factors that may mitigate or exacerbate the health risks associated with
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these behaviours.

This study uses the missForest algorithm for imputation, followed by BART for

modelling. By combining missForest and BART, we achieve a robust and efficient

analytical framework that maximizes the strengths of both methods. Separating the

imputation process from the analysis process ensures methodological transparency,

which allows us to maintain methodological rigour while optimizing computational

efficiency. We leverage advanced statistical techniques, specifically Bayesian Addi-

tive Regression Trees (BART), to uncover complex interactions and heterogeneous

effects that traditional methods might overlook. The innovative use of BART allows

for a more nuanced data analysis, providing insights into the potential synergistic

effects of multiple variables on mortality. This methodological approach not only

enhances the robustness and accuracy of the findings but also highlights the poten-

tial for precision medicine approaches in epidemiological research by demonstrating

the value of data-driven techniques in uncovering intricate relationships in public

health data.

The overarching aim of this research is to achieve a comprehensive understand-

ing of the multifactorial influences on mortality risk, particularly in the context of

smoking and drinking habits. This understanding is crucial for developing more

effective public health strategies and individualized preventive measures https://

newswebsite.com/5-signs-of-depression-in-women/. By identifying key base-

line variables that interact with smoking and drinking behaviours, this study seeks

to formulate precise health interventions that can reduce mortality risks associated

with unhealthy lifestyle choices. This will enable the development of targeted public

health interventions and improve our understanding of how various baseline charac-

teristics interact to affect health outcomes https://www.fruitandveggie.com/b

erry-compounds-can-reduce-high-blood-pressure-3494/.
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CHAPTER 2

Longitudinal cohort data for analysis

This section describes the data used in this study, including 1) study popula-

tion, which describes the cohort design and population size of CLHLS; 2) data on

mortality, which describes the collection of the mortality outcome in this study; 3)

exposure, which describe the data collection procedure of smoking and drinking in

the study and its encoding method; 4) effect modifiers, which describe the vari-

ables used in this study as mediator; 5) imputation technique, which describe the

methodology used for missing data imputation.

2.1 Study population

Our study draws on data from the Chinese Longitudinal Healthy Longevity Study

(CLHLS), a large-scale study of health status and quality of life conducted in 23

provinces out of 31 provinces in China since 1998 [18]. Follow-ups are conducted

every 2-3 years [18], and eight waves have been completed so far. The study cov-

ers about 85% of the Chinese population and aims to identify the determinants of

human health and longevity. CLHLS attempted to interview all consenting cen-

tenarians in the surveyed counties and cities [19]. The CLHLS researched 16,557
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centenarians and 23,081 people aged 90 and older by gender and place of residence

(i.e., living on the same street, city, town, or county). We conducted 96,805 face-

to-face interviews with 25,842 octogenarians and 19,650 younger adults aged 65 to

79, collecting detailed longitudinal data on older adults’ physical and mental health,

social participation, and cognitive functioning [20].

This matched recruitment procedure resulted in an oversampling of the oldest

and older men. In CLHLS, to reflect the unique sampling design, the age and

gender weights of urban and rural residents in the sample are consistent with the

total population distribution of the 22 provinces in the sample. In this study, we

excluded some participants from the CLHLS data to increase the accuracy and

validity of the analysis. We excluded participants younger than 65 years old (n=381)

and participants with missing values for smoking and drinking (n=308). Therefore,

the final dataset used for analysis in our study included 43,487 older adults aged 65

years or older from the CLHLS [21].

A significant advantage of using the CLHLS dataset is the information available

about participants’ sociodemographic characteristics, lifestyle behaviors, health sta-

tus, and other relevant factors. This allows researchers to control for potential

confounding variables and improve the accuracy of study results. Given the multi-

faceted nature of healthy aging and longevity [22], we need to consider a wide range

of variables and their potential impact, for example, lifestyle factors such as diet and

physical activity, as well as underlying health conditions and access to health care,

which may affect play an essential role in influencing the relationship between smok-

ing, drinking, and longevity. Therefore, we will carefully consider these variables in

our analysis to ensure the robustness of the results [23].

Many previous studies have published in-depth analyses of CLHLS [24], reveal-

ing complex interactions among various determinants of healthy longevity, and these

results laid the foundation for our research. Our study aimed to focus on the as-

sociation between smoking, drinking, and longevity in older adults, as well as the

heterogeneous effects of this association. To study these associations, we will use

sophisticated statistical methods to analyze data sets and draw meaningful conclu-

sions. We will use descriptive statistics, regression models [25], and other appro-
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priate techniques to examine the relationships between smoking, alcohol use, and

longevity outcomes. Additionally, we will identify potential interactions and changes

in these associations between different demographic groups by conducting subgroup

analyses. The study aimed to shed light on the link between smoking, drinking,

and longevity in older adults. Findings from this study have the potential to inform

targeted public health interventions and help advance knowledge in the areas of

healthy aging and longevity research.

2.2 Data on mortality

In this study, we ensured the reliability and validity of mortality data through

the following three aspects:

First, we obtained comprehensive information on vital status and date of death

through accurate and efficient data collection methods [26]. We used officially issued

death certificates whenever available to obtain the correct details of the deceased.

When death certificates were not available, we obtained information from the next

of kin or a local residential committee with in-depth knowledge of the deceased [26].

This approach ensured the reliability and completeness of the mortality data.

Secondly, to calculate the duration of follow-up for each participant [27], we

recorded the time interval between the date of the first interview and the date of

death [27], allowing us to estimate the length of time each individual was monitored

during the study.

Finally, for participants who were still alive when the last wave of data was

collected in 2018, their data were censored at the time of the final survey [28] .

This censorship technique is essential to ensure the integrity of the study. Data on

individuals who have not experienced the event of interest (in this case, death) at

the end of the study is critical. By examining data from the last survey, the analysis

accounted for the possibility that these individuals may still experience the event in

the future.

The accuracy and completeness of mortality data were ensured through the use

of official death certificates [29] and information from next of kin and local neighbor-
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hood committees [29]. This is crucial in epidemiological studies, as reliable mortality

data are essential for drawing accurate conclusions and making informed decisions

about public health interventions https://freescience.info/epidemiology-a

-comprehensive-guide/.

Furthermore, the calculation of follow-up duration provides essential insights into

the study’s temporal aspects. By accurately determining the period during which

each participant was monitored, researchers can appropriately weigh the data and

account for different exposure times in their analyses. This leads to a more precise

assessment of associations between variables and outcomes of interest [30].

Another crucial aspect of the study design is the application of review techniques.

By appropriately processing data from participants who have not experienced the

event of interest at the end of the study [30], the results remain unbiased and reflect

valid event rates in the population. Review techniques also enable researchers to

extend the duration of the research and capture long-term results, providing a more

complete understanding of the phenomenon being investigated.

In summary, this study adopted meticulous data collection methods and rigor-

ous research design to ensure the reliability and validity of mortality data. The

study accurately and comprehensively captured vital status and date of death by

using information from officially issued death certificates [31] [32], next of kin, and

local neighborhood committees [32] [27]. The calculation of the follow-up duration

allowed for a precise estimate of exposure time, thereby increasing the accuracy of

the analysis. Additionally, review techniques appropriately considered individuals

who had yet to experience the event of interest, providing unbiased and meaningful

results. Together, these methodological factors contribute to the robustness and

completeness of the study, ultimately yielding valuable insights into factors that

influence mortality outcomes.

2.3 Exposure

The data collection process consisted of face-to-face interviews facilitated by

trained interviewers who were key local staff members in the Chinese county-level
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network [33] system operated by the National Bureau of Statistics [22]. To ensure

the credibility and expertise of the interviewers, they all had at least 12 years of

formal education, with a significant number of them successfully obtaining university

degrees, which ensured a high level of proficiency and reliability during the data

collection process.

Researchers adopted a strategic approach to increase the comprehensiveness of

the health-related aspects examined during the interviews. Each interviewer was

accompanied by a local doctor, nurse, or medical student [34] who was fully trained in

conducting health examinations. This approach can incorporate additional health-

related measures and assessments, enriching the dataset with a broader range of

health-related information.

During the physical examination phase of the interview [35], skilled medical

staff took specific biometric measurements following a standardized protocol, in

which weight and height measurements (two critical indicators of health and well-

being) were carefully recorded. Medical staff strictly adhere to standardized pro-

cedures to ensure the accuracy and consistency of collected physical data and en-

hance the reliability of research results. The questionnaire and data of CLHLS can

be obtained through https://opendata.pku.edu.cn/dataset.XHTML?persiste

ntId=doi:10.18170/DVN/WBO7LK&version=2.0 [36].

We use an unambiguous classification system when analyzing health-related be-

haviors such as smoking and drinking [37]. Based on two specific questions, partici-

pants’ smoking status was classified as a current or non-current smoker, and alcohol

consumption was classified as a current or non-current drinker. This classification

method reflects participants’ smoking and drinking habits and facilitates a thorough

investigation of their potential health effects.

The primary focus of our study was to examine smoking or drinking status as

the primary exposure variable. Firstly, we identified smoking and drinking status

as current or non-current smoking or drinking via a questionnaire. Secondly, by

isolating and examining these behavioral aspects, we aimed to establish Significant

correlations between them and various health-related outcomes. Finally, the com-

prehensive dataset obtained through a rigorous data collection process allows us to
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explore potential associations between smoking or alcohol consumption and other

health factors in an accurate and evidence-based way that leads to the conclusion.

2.4 Effect modifiers

In this study, we selected candidate subgroup variables as variables that might

be evaluated in a population-based survey. My analysis included a total of 48

different variables, carefully chosen to provide a comprehensive understanding of

the characteristics of the study participants, as detailed in Table 2.1.

In Table 2.1, lots of mediators, which were measured in the study, were listed,

including a variety of demographics, lifestyle factors, health indicators, and disease

history [38]. Those mediators are divided into two catalogs: 1) basic demograph-

ics and lifestyles, the variables adopted in the CLHLS including age, gender, body

weight, etc. 2) Disease history and health indicators: the variables were measured

by the medical records, healthcare information system, and self-reported question-

naires. All those variables were included in the analysis as the mediator in the

model.

Table 2.1: Mediators of this study

Basic demographics and lifestyle

Age, gender, ethnicity, co-residence, years of schooling, marital status, residence,

occupation before retirement, physical activity, consumption of fruit, vegetables,

meat, fish, egg, bean, salt-preserved vegetables, sugar, tea, garlic, height.

Disease history and health indicators

Times of suffering from serious illness in the past two years, including hyperten-

sion, diabetes, heart disease, stroke, bronchitis, emphysema, pneumonia, asthma,

tuberculosis, cataracts, glaucoma, cancer, ulcer, Parkinson’s disease, bedsore, arthri-

tis, systolic and diastolic blood pressure, BMI, self-reported health, self-reported life

satisfaction, activity of daily living, social and leisure activities, MMSE score, psy-

chological well-being.
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The first set of variables captures essential demographic information, including

variables such as age, gender, and race. These essential characteristics play a crucial

role in https://www.bizmanualz.com/library/what-does-control-group-mea

n shaping an individual’s health status and are often examined in epidemiological

studies to discern potential associations with health outcomes. By including these

variables, I aimed to account for demographic effects that may confound or alter the

relationships under investigation.

The second set of variables measured statistical information about lifestyle fac-

tors, including variables such as diet and physical activity. The data can provide

insight into participant behaviors that directly impact health, so exploring these

lifestyle aspects can provide valuable information about participants’ overall health

and potential risk factors for specific health conditions.

The third set of variables incorporates statistical information on health indica-

tors, including variables such as selected activities of daily living (ADL), leisure

activities, blood pressure, and cognitive function [39]. To comprehensively assess

participants’ physical and cognitive health, these metrics provide a more detailed

understanding of participants’ functional abilities and physiological status, thereby

revealing underlying mechanisms behind the associations of interest.

Finally, a set of variables focused on disease history was included in the anal-

ysis, including measures of disease variables such as hypertension, diabetes, and

stroke to account for preexisting health conditions that may influence the findings

of this study. Illness history provides insight into participants’ past health experi-

ences and highlights potential vulnerability or protective factors that influence the

relationships under study.

In summary, selecting candidate subgroup variables is carefully designed to cap-

ture the full range of factors [40] relevant to the study objectives. By incorporating

demographics, lifestyle, health indicators, and disease history, our analysis compre-

hensively explains the complex interactions between these variables and the health

outcomes examined. These carefully selected variables are a vital component of

our study, allowing us to draw reliable and meaningful conclusions and helping us

explore the complex factors that influence population health.
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2.5 Imputation technique

The overall percentage of missing data stands at 4.7%. To address this issue, we

have chosen to utilize the missForest algorithm to imputation missing data within

the CLHLS dataset, as introduced by Stekhoven and Buhlmann in 2012.

The missForest algorithm, known for its nonparametric imputation technique,

involves the construction of a dedicated random forest model for each variable,

iteratively refining the imputed values. Extensive empirical evidence has indicated

the superior performance of this method compared to numerous other imputation

techniques, particularly in data scenarios characterized by intricate interactions and

non-linear relationships.

While Bayesian methods, including BART, Bayesian trees, and, in general Bayesian

statistics, are very adept at dealing with missing values and inherently possess mech-

anisms to handle missing data, this technique has been chosen over other imputation

methods, was motivated by several practical considerations that enhance the robust-

ness and efficiency of our analytical approach.

Firstly, missForest is well-regarded for its robustness and accuracy in imputing

missing values in datasets with complex interactions and non-linear relationships,

which is consistent with the characteristics of our dataset. Random forests, the

foundation of missForest, are adept at capturing non-linear relationships and in-

tricate interactions among variables. This ability ensures that the imputed values

are reflective of the underlying data patterns, thereby preserving the integrity and

inherent structure of the dataset.

Secondly, Unlike parametric methods that assume a specific distribution for the

data, missForest is nonparametric, meaning it does not make strong assumptions

about the underlying data distribution. This flexibility is crucial for the diverse

and potentially non-normally distributed variables in the CLHLS dataset, such as

sociodemographic characteristics, lifestyle behaviours, and health indicators.

Thirdly, The computational efficiency of missForest makes it practical for large

datasets, allowing for quick and effective handling of missing values without ex-

tensive computational resources.This efficiency ensures timely imputation without

sacrificing accuracy. Given the large size of the CLHLS dataset, the algorithm’s abil-
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ity to quickly and effectively handle missing values without extensive computational

resources was a practical consideration.

Lastly, separating the imputation process from the subsequent analysis phase

allows for clearer methodological transparency and reproducibility. By using miss-

Forest for imputation, we ensure that the missing data is handled consistently and

independently of the BART modelling process. This separation allows for an inde-

pendent evaluation of the imputation process, ensuring it does not introduce bias

into the subsequent analysis.

In addition, implementing missForest as a preprocessing step simplifies the over-

all modelling process. BART is known for its powerful capability to model complex,

non-linear interactions and its effectiveness in estimating heterogeneous treatment

effects (HTE). However, directly incorporating missing data handling within BART

could complicate the model structure and increase the computational burden. By

addressing missing values before applying BART, we reduce the complexity of the

BART model and improve computational efficiency.

In conclusion, the decision to use missForest for imputation, followed by BART

for modelling, is driven by their complementary strengths in handling the specific

challenges of the study. missForest provided a robust and accurate imputation of

missing data, ensuring a complete and reliable dataset for analysis. BART, with its

ability to model complex interactions and improve statistical power, was well-suited

for analyzing the heterogeneous effects of smoking and drinking on mortality. To-

gether, these methods maintained methodological rigour while optimizing computa-

tional efficiency and ensured a rigorous and thorough analysis, leading to meaningful

and actionable insights.

Given a dataset (X) with (n) observations and (p) variables, the goal is to im-

pute missing values and obtain a complete dataset (X∗). The missForest algorithm

accomplishes this through the following steps:

• Initialization: For each variable with missing values, the algorithm imputes the

missing values with the mean of the observed values for that variable, serving

as an initial imputation.

• Iterative imputation: The algorithm iteratively refines the initial imputations
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using a random forest model. A random forest is trained at each iteration using

the observed values as the response variable and the other variables (including

the imputed values) as predictors [41]. The trained random forest is then used

to predict the missing values in each variable [41]. This process is repeated for

a specified number of iterations or until convergence.

In this study, the random forest model used in the missForest algorithm is a

regression forest, where each tree predicts the missing values for a specific variable.

The predictions are obtained by averaging the predictions from multiple trees [6].
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CHAPTER 3

Methods and Outcome Estimation

This chapter provided outline details and a methodology section, focusing on

outcome estimation through advanced statistical techniques, including several parts,

“Bayesian Tree-Based Methods” is introduced, centering on “Bayesian Additive Re-

gression Trees (BART),” a machine learning algorithm for non-linear modeling in a

Bayesian framework. “Rationale for Using BART Methodology” justifies the choice

of BART for the research, “Analytical approach” section that describes the practical

implementation of BART in analyzing the data, “Convergence diagnostics for out-

comes” describes the validation methodology of the reliability of the BART model

outputs to ensure robust and reliable predictive modeling in research.

In recent years buzzwords such as “machine learning,” “data science,” “big data,”

“artificial intelligence,” and “deep learning” have come to permeate many scientific

disciplines. Fundamental to these terms is the concept of predictive modeling, which

dates back to the Finetti’s [42] work on exchangeability. The goal of predictive

modeling is to develop a statistical model [43] using observed data that will generalize

well to future or yet unseen observations. The outcome variable, is denoted as y

and predictor is denoted as x. Examples of predictive modeling come from a broad

range of applications [44]:
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• Predict whether a patient will develop coronary artery disease based on age,

sex, BMI, diet history, blood pressure, and serum cholesterol.

• Predict the survival probability of women with breast cancer based on demo-

graphics, cancer treatment history, and genes.

• Predict how much snow will fall in Iowa City, IA, in January 2020 from his-

torical weather patterns.

• Predict the price of a house using total square footage, number of bedrooms,

number of bathrooms, location, whether there is a basement [45], whether it

is one-story vs. two-story, etc.

3.1 Tree-Based Methods for Predictive Modeling

Predictive modeling focuses on the conditional probability distribution P(Y |x)

and its conditional mean E[Y |x]. Predictions ỹ are made by minimizing the error in

observed data (xi, yi)
n
i=1 using a loss function L(y, f(x)), where f maps predictors

to outcomes. For quantitative responses, the common loss function is squared error

L(Y, f(x)) = (Y − f(x))2, minimized when [44]

f(x) = min
c

EY |x
(
(Y − c)2|X = x

)
. (3.1.1)

where f(x) is the function mapping predictors to outcomes, c is a constant mini-

mizing the squared error, E is the expectation operator, Y is the outcome variable,

and X is the predictor variable.

Approximating the unknown function f varies from Generalized Linear Models

(GLMs) [46] [47] to neural networks, with tree-based models being popular.

Traditional linear regression models are often inadequate due to non-linear or

non-additive effects.

Yi = β0 + xi1β1 + · · ·+ xipβp + εi, εi ∼ N(0, σ2) (3.1.2)

where Yi is the response variable for the ith observation, β0 is the intercept term,
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xij is the jth predictor for the ith observation, βj is coefficient for the jth predictor,

ϵi is error term, and N(0, σ2) is normal distribution with mean 0 and variance σ2.

This leads to employing non-linear functions of predictors, where basis functions

transform x for linear models. With M basis functions gm(x) : Rp 7→ R, the model

becomes [44]

Y =
M∑

m=1

βmgm(x) + ε, ε ∼ N(0, σ2). (3.1.3)

whereY is the response variable, βm is the coefficient for the mth basis function,

gm (x) is mth basis function, and ϵ is the error term.

Tree-based methods, another alternative, model Y as a function of x without

assuming a specific functional form. Binary decision trees partition the predictor

space into hyper-rectangles, and within each partition, a simple model is fit. The

fitted function of such a tree is

f̂(x) =
L∑
l=1

µlI(x ∈ Rl). (3.1.4)

where f̂ (x) is fitted function of the tree, µl is mean response in region Rl, I(x ∈ Rl)

is indicator function, which is 1 if x ∈ Rl, otherwise 0, and L is the Number of

regions/partitions.

However, individual trees can be unstable, leading to ensemble methods like

bagged trees, random forests, and gradient boosted trees, which have become pop-

ular for their robustness.

3.1.1 Bayesian Tree-Based Methods

Bayesian tree-based methods differ by positing a joint probability model for

observed data and parameters, leading to a posterior distribution p(T , θ|y) used

for prediction and inference. These methods develop priors for the decision tree

structure and use MCMC algorithms for sampling. Chipman [48] introduced a

Bayesian CART model with independent Bernoulli nodes and simple rules for tree

modification.
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The seminal work by Chipman in 1998 [48] introduced the Bayesian CART

model, which has since inspired subsequent Bayesian tree-based models. These

models aim to flexibly estimate the conditional mean given a vector of predictors

x = (x1, ..., xLp)
⊤. Bayesian CART explores various decision trees to identify those

that likely explain the variation in Y , For continuous responses, this aligns with the

regression framework

Y = f(x) + ϵ, ϵ ∼ N
(
0, σ2

)
. (3.2)

Here, the conditional mean f(x)=E[Y |x] is approximated using a binary decision

tree T .

Bayesian CART Metropolis-Hastings Algorithm

The Bayesian CART Metropolis-Hastings algorithm samples from the posterior

distribution of the decision tree.tree [49]:

p(T |X,y) ∝ p(y|X, T )π(T ). (3.1.5)

where p(T |X,y) is posterior distribution of the tree, p(y|X, T ) is likelihood of the

data given the tree, π(T ) is the prior distribution of the tree.

Key steps include generating a candidate tree and accepting it based on a calcu-

lated probability. The transition kernel q defines four rules: Birth, Death, Change,

and Swap, which modify the tree’s structure. The algorithm starts with a single-

leaf tree, exploring various tree structures to determine the posterior distribution

effectively.

3.1.2 Bayesian Additive Regression Trees (BART)

The development of Bayesian CART [48] was followed by the development of

tree-based ensembles such as random forests [28] and gradient-boosted trees [50].

Borrowing ideas from these ensemble methods, Bayesian CART was extended by

Chipman [48] to incorporate an ensemble (or sum) of decision trees rather than just
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a single decision tree. Their model is referred to as Bayesian Additive Regression

Trees. The key difference between Bayesian CART and BART is that the conditional

mean is approximated with a sum of m decision trees [44].

E[Y |x] ≈
m∑
t=1

g(x; Tt, µt) (3.1.6)

where the function g(·) denotes a single decision tree parameterized by its structure

Ti and vector of leaf node means µt = (µ1t, ..., µLtt)
⊤, Y represents the response vari-

able, x represents the predictor variables, m is the Number of trees in the ensemble,

Tt is the structure of the t-th decision tree, µt is the vector of leaf node means for

the t-th tree.

BART seeks to solve the same standard regression problem as described by 3.2.

However, the regression function is comprised of m multivariate components (i.e.,

decision trees) that are constrained to be weak learners analogous to the methods

of boosted decision trees and random forests.

Since BART inherently fits an additive model, the decision trees can be viewed as

dimensionally adaptive basis functions. As such, the BART framework is a Bayesian

nonparametric regression model. Whereas boosting uses a sequence of trees to

iteratively fit residual variation in the response unexplained by the previous trees,

BART jointly fits the tree ensemble with each tree approximating a small portion

of the true regression function f(x) = E[Y |x].

BART employs the priors on each Tt in the ensemble and an iterative MCMC

algorithm, referred to as Bayesian back fitting MCMC [51] [52], is used to obtain

posterior draws of each tree in the ensemble and their corresponding leaf node pa-

rameters µt. Consequently, posterior draws of the re gression function f(x) = E[Y |x]

are obtained. Additionally, the posterior mean at x can be obtained by averaging

over the posterior draws of f(x) along with pointwise credible intervals computed

as quantiles from the posterior draws.

The posterior distribution of BART involves m decision trees, and their corre-

sponding vector of leaf node means {Tt, µt}mt=1. Similar to Bayesian CART, BART
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uses priors of the form [44],

π ({Tt, µt}mt=1 , σ) = π(σ2)
m∏
t=1

π(Tt, µt)

= π(σ2)
m∏
t=1

π(µt|Tt)π(Tt)

= π(σ2)
m∏
t=1

Lt∏
l=1

π(µlt|Tt)π(Tt).

(3.1.7)

where π(·) denotes a prior distribution, σ2 is the variance parameter for the noise in

the model, Lt is the Number of leaf nodes in the t-th tree, and µlt is the mean of the

l-th leaf node in the t-th tree. This formula represents the joint prior distribution

of the parameters in the BART model, including the decision tree structures Tt, the

leaf node means µt, and the variance σ2.

By using a prior of the form in 3.1.7, it is assumed that all tree structures in the

ensemble are independent, Tt ⊥⊥ Tt′ and all leaf nodes in the ensemble are indepen-

dent (within and between decision trees). This aids in the posterior computation

and eliminates the need for a reversible jump MCMC sampler since the dimension

of µt can change from iteration to iteration. Furthermore, simple analytic conjugate

priors can be used for µt|Tt and σ2. The BART model is summarized as [44].

Likelihood : Yi|xi,Θ = ({Tt, µt}mt=1 , σ) ∼ N

( m∑
t=1

gt(x; Tt, µt), σ
2

)
(3.1.8)

where Yi is the response variable for the i-th observation, xi is the predictor variables

for the i-th observation, Θ is the set of all parameters, including tree structures, leaf

node means, and variance, N(µ, σ2) is the Normal distribution with mean µ and

variance σ2.

Prior : π(Θ) = π(σ2)
m∏
t=1

Lt∏
l=1

π(µlt|Tt)π(Tt), (3.1.9)

This formula represents the prior distribution over all model parameters Θ, which

includes the variance σ2, the leaf node means µlt, and the tree structures Tt. where

Θ is the set of all model parameters.
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3.2 MCMC within BART framework

3.2.1 Exploring Markov Chain Monte Carlo in Bayesian

Context

In the realm of Bayesian analysis, when working with data X and a set of

parameters θ, the posterior distribution, represented as

p(θ | X) =
p(X | θ)P (θ)∫
p(X | θ)P (θ)dθ

(3.2.1)

is typically elusive in its analytical form [53]. This necessitates alternative inferential

strategies. One such strategy is the utilization of MCMC methods. These methods

simulate a Markov chain whose equilibrium distribution aligns with the sought-after

posterior, P (θ | X). This approach is effective due to the inherent characteristics of

ergodic Markov chains, where the probability distribution over the states stabilizes

irrespective of the starting point. In essence, navigating through such a chain and

noting its states over time parallels drawing samples from its equilibrium distribution

[54].

The key to achieving ergodicity in a Markov chain is ensuring that it is both

irreducible (every state is accessible from every other state) and aperiodic (states

are not revisited at predictable intervals) [55]. But the central question remains:

How can we ensure that the underlying Markov chain’s equilibrium distribution

matches our desired posterior? The answer lies in satisfying the reversibility or

detailed balance condition [56]. This condition mandates that the probability of

transitioning from any state to another is equal to the probability of the reverse

transition. Denoting the equilibrium distribution as π(·) and the transition kernel

(the function calculating the probability of moving from state θ to θ⋆) as K(θ⋆ | θ),

the detailed balance condition is formalized as [4].

K(θ⋆ | θ)π(θ) = K(θ | θ⋆)π(θ⋆). (3.2.2)

The reason this work is discussed in previous writings on Metropolis-Hastings
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or in [57] [57]. Conceptually, this can be thought of as ensuring that the proposed

transition kernel is unaffected by direction or time changes [58]; what matters is the

probability of occupying a specific state, as defined by π(·). In MCMC practice,

we propose a distribution π(·) and a kernel K(· | ·) that meet the aforementioned

conditions, thereby ensuring that we are traversing an ergodic Markov chain whose

equilibrium distribution is π(·).

3.2.2 Metropolis-Hastings Algorithm Elucidation

The Metropolis-Hastings algorithm, a seminal approach in computational statis-

tics, aims to generate a sequence of states aligned with a target distribution P (x).

This objective is achieved through a Markov process that ultimately converges to a

unique stationary distribution π(x), satisfying π(x) = P (x) as indicated in [59].

The essence of a Markov process lies in its transition probabilities P (x′ | x),

defining the likelihood of moving from a current state x to a new state x′. For the

process to have a distinct stationary distribution π(x), two key conditions must be

met [59]:

1. Stationary Distribution Existence: The system must possess a stationary dis-

tribution π(x). Detailed balance is a sufficient (but not necessary) condition

for this https://www.environmentalistsforeurope.org/what-is-a-non

-equilibrium-steady-state/, requiring that transitions between any pair

of states x and x′ are reversible. Mathematically, this means π(x)P (x′ | x) =

π(x′)P (x | x′).

2. Stationary Distribution Uniqueness: The stationary distribution π(x) must

be singular. This uniqueness is assured by the Markov process’s ergodicity,

necessitating each state to be (1) aperiodic—lacking fixed interval returns to

the same state; and (2) positive recurrent—having a finite expected return

time to the same state.

The Metropolis-Hastings algorithm constructs a Markov process with transition

probabilities designed to satisfy these conditions, thereby aligning its stationary
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distribution π(x) with the target P (x). The algorithm’s formulation begins with

the detailed balance condition:

P (x′ | x)P (x) = P (x | x′)P (x′), (3.2.3)

reformulated as

P (x′ | x)
P (x | x′)

=
P (x′)

P (x)
. (3.2.4)

The process entails bifurcating the transition into two stages: proposal and

acceptance-rejection. The proposal distribution g(x′ | x) specifies the conditional

probability of proposing state x′ from x, while the acceptance function A(x′, x) dic-

tates the probability of accepting the proposed state x′. Hence, the overall transition

probability is expressed as the product [44]:

P (x′ | x) = g(x′ | x)A(x′, x). (3.2.5)

Inserting this into the earlier align, we obtain [60]:

A(x′, x)

A(x, x′)
=

P (x′)

P (x)

g(x | x′)

g(x′ | x)
. (3.2.6)

subsequently, an acceptance ratio is selected that satisfies the above condition. A

typical choice is the Metropolis criterion [44]:

A(x′, x) = min

(
1,

P (x′)

P (x)

g(x | x′)

g(x′ | x)

)
. (3.2.7)

with this Metropolis acceptance function A, either A(x′, x) or A(x, x′) equals 1,

fulfilling the detailed balance.

The Metropolis-Hastings algorithm procedure is as follows [44]:

1. Initialization

1. Select an initial state x0.

2. Initialize counter t = 0.
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2. Iteration

1. Propose a new state x′ based on g(x′ | xt).

2. Compute acceptance probability A(x′, xt) = min
(
1, P (x′)

P (xt)
g(xt|x′)
g(x′|xt)

)
.

3. Decide acceptance or rejection:

1. Generate a random number u uniformly distributed in [0,1];

2. If u ≤ A(x′, xt), accept and set xt+1 = x′;

3. If u > A(x′, xt), reject and retain xt+1 = xt.

4. Increment: set t = t+ 1.

3.2.3 Formal derivation of the Metropolis-Hastings algo-

rithm

The Metropolis-Hastings algorithm is designed for generating a sequence of states

that conform to a specific distribution P (x). It leverages a Markov process which,

over time, converges to a unique stationary distribution π(x), where π(x) = P (x)

as referenced in [59].

A Markov process is characterized by its transition probabilities P (x′ | x), which

determine the likelihood of moving from a state x to another state x′. For π(x) to

be the unique stationary distribution of the process, two primary conditions must

be satisfied: [59]

1. Stationary Distribution Existence: The process should have a stationary distri-

bution π(x). The detailed balance is an adequate but not mandatory condition

for this, stating that for every state pair x, x′, the probability of transitioning

from x to x′ should be equal to the probability of transitioning from x′ to

x [61], i.e., π(x)P (x′ | x) = π(x′)P (x | x′).

2. Stationary Distribution Uniqueness: The stationary distribution π(x) needs

to be unique, ensured by the ergodic nature of the Markov process. This

requires each state to be (1) aperiodic, meaning the process doesn’t revisit

the same state at predictable intervals, and (2) positive recurrent, implying a

finite expected return time to each state [62].
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The Metropolis-Hastings algorithm constructs a Markov process by defining tran-

sition probabilities that meet the above conditions, aligning π(x) with the intended

distribution P (x). The derivation begins with the detailed balance condition [44]:

P (x′ | x)P (x) = P (x | x′)P (x′), (3.2.8)

which can be rephrased as [44]:

P (x′ | x)
P (x | x′)

=
P (x′)

P (x)
. (3.2.9)

The transition involves two phases: proposing a new state and deciding on its

acceptance. The proposal distribution g(x′ | x) indicates the likelihood of suggesting

a state x′ given the current state x, while the acceptance probability A(x,′ x) deter-

mines the chance of accepting x′. The transition probability is their product [63]:

P (x′ | x) = g(x′ | x)A(x′, x). (3.2.10)

integrating this into the previous equation, we get:

A(x′, x)

A(x, x′)
=

P (x′)

P (x)

g(x | x′)

g(x′ | x)
. (3.2.11)

choosing an acceptance ratio that satisfies this relation is crucial. The common

choice is the Metropolis criterion [64]:

A(x′, x) = min

(
1,

P (x′)

P (x)

g(x | x′)

g(x′ | x)

)
. (3.2.12)

with this criterion, A(x′, x) = 1 or A(x, x′) = 1, ensuring compliance with the

condition.

The algorithmic steps of Metropolis-Hastings are as follows [44]:

1. Initialization

1. Choose an initial state x0.

2. Initialize iteration counter t = 0.
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2. Iterative Process

1. Propose a new state x′ as per g(x′ | xt).

2. Compute the acceptance probability A(x′, xt) = min
(
1, P (x′)

P (xt)
g(xt|x′)
g(x′|xt)

)
.

3. Decide to accept or reject:

1. Generate a uniform random number u in the range [0, 1].

2. If u ≤ A(x′, xt), accept and set xt+1 = x′.

3. If u > A(x′, xt), reject and retain xt+1 = xt.

4. Increment the counter by setting t = t+ 1.

Under these conditions, the empirical distribution of the collected states x0, . . . , xT

will converge to P (x). The number of iterations T necessary for an effective esti-

mation of P (x) depends on various factors, including the relationship between P (x)

and the proposal distribution g, and the desired accuracy of the estimation [65]. For

discrete state spaces, the iteration count should approximate the autocorrelation

time of the Markov process [66].

It is crucial to note that the optimal choice of the proposal distribution g(x′ | x)

and the required number of iterations is not predetermined in general problems;

they are method parameters that must be tailored to the specifics of each case [67].

3.2.4 Gibbs Sampling Methodology

Gibbs sampling represents a unique instance of the Metropolis-Hastings algo-

rithm where every proposed state is accepted with a probability of one [68]. Un-

derstanding this is straightforward upon grasping the algorithm. Imagine a multi-

dimensional posterior distribution with parameters θ = (θ1, . . . , θD). The core prin-

ciple of Gibbs sampling involves iteratively sampling from the conditional distribu-

tion P (θd | X, θ−d), where θ−d denotes the set of all parameters except the dth:
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Gibbs Sampling Procedure: For each iteration t = 1, . . . , T , execute [69]

θ
(t+1)
1 := θ⋆1 ∼ P (θ

(t)
1 | X, θ

(t)
2 , θ

(t)
3 , . . . , θ

(t)
D )

θ
(t+1)
2 := θ⋆2 ∼ P (θ

(t)
2 | X, θ

(t+1)
1 , θ

(t)
3 , . . . , θ

(t)
D )

...

θ
(t+1)
D := θ⋆D ∼ P (θ

(t)
D | X, θ

(t+1)
1 , θ

(t+1)
2 , . . . , θ

(t+1)
D−1 )

(3.2.13)

To comprehend its effectiveness, note that

P (θ | X) = P (θd, θ−d | X) = P (θd | X, θ−d)P (θ−d | X). (3.2.14)

Disregarding the iteration labels, the transition probability is given by [70]:

α(θ⋆ | θ) = min
{
1,

P (θ⋆ | X)P (θd | X, θ−d)

P (θ | X)P (θ⋆d | X, θ⋆−d)

}
= 1.

(3.2.15)

In (3.2.15), the terms effectively cancel out due to the unique characteristic of

Gibbs sampling, where θ⋆−d = θ−d. Thus, each Gibbs sampling step can be seen as

a Metropolis-Hastings walk with guaranteed state acceptance.

The primary advantage of Gibbs sampling is its guaranteed acceptance of pro-

posals, but it requires the ability to compute the specific conditional distributions

mentioned above. This approach is feasible when P (θd) is conjugate to the posterior.

3.3 Rationale for Using BART Methodology

The concept of Heterogeneous Treatment Effects (HTE) indicates that within a

cohort, individual responses to a given treatment can vary markedly. In epidemiolog-

ical and clinical studies, the focus is often on assessing average effects, which might

mask the nuances of individual responses. Traditional methods examining HTE

typically analyze individual characteristics in isolation, potentially overlooking the

complexity of interactions between these characteristics. This approach can lead to

a lack of statistical power and a failure to recognize synergistic effects, resulting in
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an incomplete understanding of treatment responses.

Bayesian Additive Regression Trees (BART) offer a compelling solution to these

challenges. BART inherently automates the discovery of nonlinear relationships and

interactions, prioritizing these based on their significance. This automation reduces

the risk of model misspecification and inherent bias, which is common in traditional

interaction testing.

Moreover, BART’s integration into the counterfactual framework for investigat-

ing HTE enables the estimation of conditional average treatment effects based on

various covariates. BART’s efficacy has been demonstrated in extensive simulation

studies, outperforming competing methods. This makes it an ideal tool for exploring

HTE, aiding in hypothesis generation and informing future confirmatory analyses

in trials.

In the current study, BART is employed to examine multivariable HTE and

estimate conditional average effects within the Comprehensive Longitudinal Health

and Longevity Study (CLHLS). This application underscores BART’s robustness in

unraveling the complexities of HTE, illuminating the intricate interplay of variables

influencing treatment responses within the study.

The study employed the missForest algorithm for imputing missing data, en-

suring robust handling of non-random missingness. Bayesian Additive Regression

Trees (BART) were then utilized to model the complex interactions between smok-

ing, drinking, and mortality. The BART approach allowed for detecting non-linear

relationships and interactions among variables, improving the analysis’s statistical

power and depth. The iterative MCMC algorithm used within the BART framework

refined the model iteratively, providing posterior draws and credible intervals for the

estimated effects.

The benefits of using this combined methodology are significant, Firstly, the miss-

Forest algorithm provides high-quality imputation, maintaining the data’s integrity

and variability. BART’s ability to model complex interactions offers a comprehensive

understanding of how smoking and drinking behaviours influence mortality across

different subgroups. Secondly, by handling the imputation separately, we ensured

that the BART model could focus on identifying and modelling the intricate interac-
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tions between smoking, drinking, and mortality without the additional complexity of

simultaneously imputing missing values. In conclusion, this comprehensive method-

ology leveraged the strengths of both techniques and enabled the identification of

significant variations in mortality risk across different subgroups, highlighting the

nuanced impacts of smoking and drinking behaviours on health outcomes.

3.4 Analytical Approach

This study utilizes a binarized mortality outcome as the binary mortality out-

come and assesses Heterogeneous Treatment Effects (HTE) on an absolute scale,

specifically evaluating the mean difference in mortality over five years. The analysis

unfolds in two stages: first, BART models estimate conditional average treatment

effects based on covariates. Then, the logit BART model analyzes the binary mor-

tality outcome. The second stage adopts a “fit-the-fit” approach, applying the

estimated effects as dependent variables in classification tree models to identify dif-

ferential effects in covariate-defined subgroups, with a maximum tree depth of three

for interpretability.

BART models, typically fitted with 200 trees and specific hyperparameters, un-

derwent extensive hyperparameter evaluation through 10-fold cross-validation. This

included exploring combinations of power priors (1, 2, or 3), base priors (0.25, 0.5, or

0.95), and tree numbers (50, 200, or 400), with model diagnostics confirming robust

performance.

3.4.1 Causal inference framework

The goal of a trial is to estimate the effect of an intervention, denoted as Z, on an

outcome, Y . Under the counterfactual outcome framework, we assume individual i

has two potential outcomes: the outcome Yi(1) we would observe under intervention

(Z = 1), and the outcome Yi(0) we would observe under control (Z = 0).

Treatment Z has a causal effect for participant i if Yi(1) ̸= Yi(0) (i.e., the po-

tential outcomes differ under intervention vs. control). Since individual i cannot

experience both potential outcomes, and only one of the two potential outcomes
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can be observed for each individual in a specific trial, it cannot calculate the causal

effect for participant i with the observed data.

However, the randomization allows estimation of the Average Treatment Effect

(ATE) [71] across individuals without confounding. The Average Treatment Effect

(ATE) is a measure used to evaluate the effect of a treatment across the entire

population. It is defined as the difference in the expected outcomes between the

treated and untreated groups. The ATE provides a population-level estimate of the

treatment effect, which helps in understanding the general impact of the treatment

across the entire study sample.

∆ATE = E[Yi(1)− Yi(0)] (3.4.1)

where Yi(1) is the potential outcome for individual i if they receive the treatment,

Yi(0) is the potential outcome for individual i if they do not receive the treatment,

Yi(1) − Yi(0) is the individual treatment effect for individual i, representing the

difference in outcomes between receiving and not receiving the treatment.

In our studies, ∆ATE represents the average effect of smoking or drinking on

mortality across all individuals in the study. This measures the overall impact of

the treatment (smoking or drinking) on the outcome (mortality).

Beyond an overall summary, the treatment effect measure for each specific par-

ticipant with baseline covariate vector x (the Conditional Average Treatment Effect,

CATE) are also estimable from the observed data [72]. CATE can measure the aver-

age effect of a treatment for specific subpopulations defined by certain characteristics

or covariates. It provides a more granular view of the treatment effect, which can

vary across different subgroups.

∆CATE(x) = E[Yi(1)− Yi(0)|Xi = x] (3.4.2)

where ∆CATE(x) is the conditional average treatment effect for individuals with

covariates Xi = x, Xi is Covariates or characteristics of individual i, x is the specific

value of the covariates.

In our studies, ∆CATE(x) represents the effect of smoking or drinking on mor-
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tality for specific subgroups defined by characteristics such as age, gender, health

status, etc.

Heterogeneous Treatment Effects (HTE) are inferred if the CATE:

∆CATE(xi) = ∆CATE(xj) (3.4.3)

for two different covariate vectors xi and xj.

3.4.2 Technical Details: BART

BART estimates CATEs non-parametrically. It uses an ensemble of binary trees,

with prior distributions regularizing the fit. The mean function is approximated by

the sum of these trees’ outputs [73]. The model parameters include the trees Tj and

node values Mj, with the mean function represented as https://jmloyola.githu

b.io/posts/2019/06/introduction-to-bart:

Yi =
m∑
j=1

g (xi;Tj,Mj) + ϵi (3.4.4)

where Yi is the observed outcome for individual i, g(xi;Tj,Mj) is the prediction from

the j-th tree for individual i, parameterized by tree structure Tj and terminal node

parameters Mj, m is the Number of trees in the BART model, ϵi is the Error term,

typically assumed to be normally distributed with mean zero and variance σ2.

3.4.3 Sensitivity analysis

Three sensitivity analyses were performed: 1) using best/worst-case imputation,

2) using worst/best-case imputation, and 3) dropping the participants who died

in six months after the baseline survey. These strategies are designed to test the

robustness of the results under extreme scenarios https://cyberinsight.co/wh

at-are-offensive-cyber-security-strategies/. The details of the best/worst-

case and worst/best-case imputation are as follows:

Best/Worst-Case Imputation: In the best/worst-case scenario, the analysis as-

sumes an extreme scenario that is favorable to the smoking or drinking group: All
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missing mortality outcome data for participants in the smoking or drinking group

are imputed as ‘alive at five years’ [42]. Conversely, all missing mortality outcome

data for participants in the non-smoking or drinking group are imputed as ‘dead

at five years.’ This approach tests the robustness of the results under a scenario

that is most favorable to the hypothesis that smoking or drinking does not increase

mortality risk. The analysis is repeated with these imputations, and the impact on

the results is observed [74].

Worst/Best-Case Imputation: The worst/best-case scenario is the opposite of

the best/worst-case: All missing mortality outcome data for participants in the

smoking or drinking group are imputed as ‘dead at five years.’ All missing mortality

outcome data for participants in the non-smoking or drinking group are imputed

as ‘alive at five years’ [75]. This scenario tests the strength of the findings under

the most unfavorable conditions for the smoking or drinking group [76]. It assesses

whether the results still hold when assuming that missing data indicates the worst

possible outcome for the smoking or drinking group and the best possible outcome

for the non-smoking or drinking group [77].

Mediator Imputation: In both scenarios, after setting the mortality outcomes,

the mediators in the dataset (if any) are imputed using multiple imputations by

chained equations (MICE), a robust method for handling missing data in epidemio-

logical studies. This step ensures that the analysis accounts for missing information

in other relevant variables that could mediate the relationship between smoking or

drinking and mortality [70].

Drop the participants who died in six months after baseline research: those

participants who died in six months after the baseline were frail and there would be

measurement bias within their answers [78].

All BART models were fit using R statistical computing software v. 4.1.226

with the ‘BART’ package v. 2.924, and all CART models were fit using the ‘report’

package v. 4.1.1627. The descriptive statistics were performed on STATA v1.8. All

statistical code is made available at https://github.com/TingjiaoCui/HTE_for

_smoking_and_drinking.
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3.5 Convergence Diagnostics for Outcomes

Convergence in BART models is evaluated through specific methods for contin-

uous outcomes and probit and Multinomial BART models. The logit BART model

uses auxiliary latent variables for convergence diagnostics. Traditional MCMC diag-

nostic tools, including Geweke’s method, are applied to ensure robust convergence

monitoring [79].

The Geweke diagnostic, a key tool in Bayesian analysis, assesses the conver-

gence of MCMC chains by segmenting the chain into parts and comparing means

using a normality test [80]. Geweke’s diagnostic evaluates convergence by compar-

ing measures of two subsequences of a parameter. Given subsequences θA and θB,

the diagnostic uses a Z-score: the difference between the two sample means divided

by the estimated standard error. Geweke proposed in 1992 that when the chain is

stationary, the means of two subsequences are equal, and Geweke’s statistic shows

an asymptotically standard normal distribution [81],

ZAB =
θ̄A − θ̄B√

1
nA

ŜA + 1
nB

ŜB

d→ N(0, 1) (3.5.1)

Here,θ̄A and θ̄A are the means, ŜA and ŜA are the variances, and nA and nB are the

iteration counts of the subsequences [81].

In conclusion, my study leveraged BART to identify heterogeneous effects, ex-

panding upon the well-established ensemble Bayesian learning method. By focusing

on the identification of variables and cut-points that induce significant differences in

hazard ratios, my approach provides a nuanced perspective on potential effect mod-

ifiers contributing to the heterogeneity within the analyzed association. Stratifying

the analysis by age groups acknowledges the impactful role of age in the relation-

ship under investigation, aligning with best practices in epidemiological research [82].

The utilization of R and Stata for algorithm development and statistical analyses,

respectively, reflects my commitment to transparency, reproducibility, and robust-

ness in my methodology. Through these methodological choices and considerations,

my study contributes valuable insights to the realm of biomedicine, advancing my
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understanding of complex associations and enhancing my ability to uncover hetero-

geneity within them.
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CHAPTER 4

Results

In this chapter, I presented the results of the analysis, including four parts: 1)

Baseline characters, which describe the demographic information of the cohort; 2)

Heterogeneous effect identified by BART, which presents the heterogeneous effect

identified by BART and its effect in each subgroup, also some statistical test to

validate the model; 3) Subgroup analysis, which use COX regression with the ad-

justment of residency and age to further validate the effect in each predefined sub-

group identified by BART; 4) Sensitivity analysis, which apply different methods to

validate the robustness of the model.

4.1 Baseline characters

Table 4.1 presents the baseline characteristics of 43,487 participants [83] cate-

gorized into three age groups: 9,202 aged between 65-80 years, 23,732 aged 81-100

years, and 10,553 aged over 100. The table illustrates significant demographic and

health-related variations across these age groups, as indicated by the statistical p-

value of <0.001 for all measured parameters, suggesting strong evidence of difference

across age categories. In terms of gender distribution, females were more prevalent
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in the oldest age group, representing 80.3% of those over 100 years old, compared to

53.7% in the 81-100 years group and 47.0% in the 65-80 years group. This reflects

a higher female survival rate into advanced age. The participants predominantly

resided in rural areas, especially among the oldest, where 60.6% lived in rural set-

tings. Health-related characteristics varied significantly with age.

Smoking or drinking status showed a lower prevalence of current smokers or

drinkers in the oldest group (33.6%) compared to those aged 65-80 years (49.8%).

Cognitive function, assessed by the Mini-Mental State Examination (MMSE) [84],

showed a decrease in mean scores with increasing age, from 27.67 in the youngest

group to 13.83 in the oldest. Social activity scores also demonstrated a decrease with

age. Blood pressure readings indicated a trend of lower diastolic blood pressure with

advancing age. The ability to perform daily activities, as reflected by the sum of

the Activity of Daily Living score, showed an increase in dependency with age.

Fruit intake was least frequent in the oldest age group, with 30.0% reporting they

rarely ate fruit, compared to 26.8% and 41.2% in the 81-100 and 65-80 age groups,

respectively.

The comprehensive data highlight the shifting demographic and health-related

characteristics within an aging population and underline the importance of age-

specific considerations in epidemiological research. Specifically, the smoking or

drinking behaviour, significantly varied by age, which may indicate that its het-

rogeneous effect may vary by age groups.
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4.2 Heterogeneous effect identified by BART

Figure 4.1 shows a decision tree used to illustrate the results of my study on

detecting heterogeneous effects; it shows model results for the binary outcome mor-

tality of drinking alcohol or smoking, where percentages indicate the proportion of

individuals within each subgroup. The top value in each box is the estimated treat-

ment effect in the subgroup, which has corresponding covariate values. The bottom

value in each box is the proportion of the trial sample belonging to the subset. The

upper effect is the effect of the binary outcome of drinking and death within five

years in this group. The percentage below represents the number of people in this

group.

Figure 4.1: Model results for the binary outcome mortality of drinking or smoking

It is imperative to highlight that the variable pa bi indicates physical activity,

with pa bi=0 denoting individuals who do not exercise regularly. Furthermore, the

variable ”residence” distinguishes between urban and rural habitation statuses. The

variable named pa bi is the level of physical activity, where ‘1’ indicates a high level

of physical activity, and ‘0’ shows a low level of physical activity. The variable
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‘Weight’ is the body weight by kilogram, and the ‘residency’ is the participants’

living location, where ’0’ and ‘1’ indicate living in a city and town, and ‘2’ means

living in a rural.

Starting from the root, the population is first split based on weight, with one

branch for individuals with weight ≥57 (41% of the total population) and another for

those with weight < 57 (59%). In the ≥57 weight category, the further subdivision

is based on the physical activity level, creating two paths: low physical activity level

(pa bi = 0, 22%) and high physical activity level (pa bi = 1, 19%). The “pa bi =

0” path is split again by weight into < 63 and ≥63, with respective proportions of

10% to 13% and effect sizes ranging from -0.0043 to 0.0032. The “pa bi = 1” branch

shows a single effect size of -0.0021.

In the < 57 weight category, the tree also divides according to “pa bi,” resulting

in “pa bi = 0” (19%) and “pa bi = 1” (39%) paths. Further splits are made based

on residence (< 2 and ≥2 ) with effect sizes of -0.0035 and 0.0033, and weight (< 55

and ≥55 ) with effect sizes of -7.49e-6 and 0.0019, corresponding to 15%, 4%, 6%,

and 33% of the subgroups respectively. These branches reflect the study’s detailed

population stratification by weight, residence, and physical activity level, showing

the effect size in each subgroup to understand the heterogeneous effects.
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Figure 4.2: The autocorrelation of the estimated response surface from each BART

chain: the auto-correlations of f(xi) for randomly selected xi where i indexes subjects

Figure 4.2 presented autocorrelation function (ACF) plots for four separate

Markov chains in a BART model analysis. These plots are used to diagnose the

independence of samples within each chain. Ideally, the autocorrelation should drop

off quickly to near zero, indicating that the samples are not correlated and the chain

is mixing well, suggesting effective exploration of the posterior distribution.
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Each plot corresponds to one of the chains and depicts how the samples’ autocor-

relations decrease with increasing lag. The X-axis represents the lag, and the Y-axis

represents the autocorrelation coefficient, ranging from−0.2 to 0.8. The colored bars

at each lag point may represent the distribution of ACF values at different quantiles,

providing a visual representation of the variability in autocorrelation across lags.

A sharp decline in ACF at the initial lags, seen across all chains, indicates quick

decorrelation and sound mixing. This suggests that the chains efficiently explore the

parameter space and generate independent samples. This pattern of rapid decrease

in autocorrelation is a positive sign of convergence, implying that the posterior

samples drawn from these chains likely represent the actual posterior distribution.

This is essential for ensuring the robustness of the BART model’s estimations.

Figure 4.3: Geweke convergence diagnostics for probit BART: plot the Geweke Z

statistics for each subject. The Z exceeds the 95% limits a handful of times. Based

on this figure, we can conclude that the chains have converged.

Figure 4.3 illustrates a convergence diagnostic for a BART model using a se-

quence of Z-scores plotted over iterations of an MCMC simulation. The horizontal

axis indexes each iteration of the MCMC chain, extending from 0 to beyond 8000.

The vertical axis presents the computed Z-scores at each iteration. Horizontal lines

indicate thresholds for various confidence levels, typically corresponding to standard

normal distribution critical values for 95%, 99%, 99.9%, and 99.99% confidence in-

tervals.

The Z-scores are densely concentrated around the horizontal line representing
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zero, which implies that a significant proportion of the sampled values are near

the expected mean of the posterior distribution. This concentration around zero

suggests that the samples are from an equilibrium distribution. The majority of

Z-scores are contained within the outermost horizontal lines, likely representing the

99.999% confidence level, indicating that the values are within a range expected for

a converging MCMC chain. Additionally, the lack of discernible patterns or trends

in the Z-scores across iterations, such as systematic drifts, suggests the absence of

non-stationarity, further supporting the indication of convergence.

Figure 4.4: Trace plots for the BART Model: The traces demonstrate that samples

of f(xi) appear to adequately traverse the sample space.

Figure 4.4 depicts a stacked area plot, often used in the visualization of the

results from the BART model, particularly to show the distribution of probabilities

or contributions of different components over a series of iterations. Each colored

area represents the proportion of a certain feature or component (Y-axis) across

the iterations of the model (X-axis). The X-axis, ranging from 0 to 1000, indicates

the number of iterations or a subset of iterations during the MCMC simulation.

The Y-axis, showing values from 0 to 1.0, represents the estimated probability or
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proportion contributed by each component at each iteration.

The plot shows multiple layers of colors stacked on top of each other, with each

color corresponding to one of the 48 groups within the model. This indicates that

the model is examining multiple features or predictors simultaneously.

Such plots are useful for examining how the contribution of each component

changes throughout the MCMC process and can help identify which features are

consistently contributing more to the model’s output. If the layers remain parallel

and consistent, it suggests that the relative contributions of each component are

stable across iterations, which could imply that the model has reached a stable

solution.

The plot is a visualization of a BART model’s components’ probabilities or con-

tributions over MCMC iterations, indicating the model’s behavior and the stability

of the features’ effects within the model.
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Table 4.2: The Association between Smoking or Drinking and All-cause Mortality

within Pre-defined Subgroup by BART

Group No. of Partic-

ipants

Hazard Ratio

(95% CI) Smok-

ing or Drinking

Level 1 mediator Level 2 media-

tor

Weight ≥ 57 High level

physical activ-

ity level

9588 1.09 (0.98 – 1.11)

Low level

physical activ-

ity level

8474 1.12 (1.05 – 1.16)

Weight < 57 High level

physical activ-

ity level

8466 1.12 (1.05 – 1.16)

Low level

physical activ-

ity level

16959 1.03 (0.98 – 1.08)

Table 4.2 displays a BART model’s analysis results valid by COX regression,

showing hazard ratios for all-cause mortality in relation to smoking or drinking across

subgroups defined by weight and physical activity levels. It divides participants into

groups based on their weight (either greater than or equal to 57 or less than 57)

and their physical activity level (high or low). For each subgroup, the number of

participants and the hazard ratio for smoking or drinking is provided, along with

the 95% confidence interval (CI).

The hazard ratios suggest the relative risk of mortality associated with smoking

or drinking for individuals within these subgroups. A hazard ratio greater than 1

indicates a higher risk compared to the baseline risk [85], which is not explicitly

stated here but would be the risk for non-smokers or non-drinkers. For example,
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individuals with a weight of 57 or more and a low level of physical activity have

a hazard ratio of 1.12, suggesting that they have a 12% higher risk of mortality

associated with smoking or drinking compared to the baseline group. The confidence

interval of 1.05 – 1.16 indicates that this estimate is statistically significant with 95%

certainty.

Subgroups include individuals with weight ≥ with high physical activity (9588

participants, hazard ratio 1.09, 95% CI 0.98–1.11), weight ≥ with low physical

activity (8474 participants, hazard ratio 1.12, 95% CI 1.05–1.16), weight < 57 with

high physical activity (8466 participants, hazard ratio 1.12, 95% CI 1.05–1.16), and

weight < 57 with low physical activity (16959 participants, hazard ratio 1.03, 95%

CI 0.98–1.08), suggesting that higher physical activity may be associated with a

slight increase in the hazard ratio for mortality from smoking or drinking, though

the confidence intervals indicate a degree of uncertainty in these estimates.

Overall, this table communicates that body weight and physical activity levels are

significant mediators in the relationship between smoking or drinking and mortality,

and these relationships are quantified by the BART model.
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4.3 Subgroup analysis

The analysis investigated the association between smoking or drinking and mor-

tality in four subgroups based on body weight and physical activity level predefined

by the analysis from my heterogeneous effect analysis. The hazard ratios (HRs) [86]

and corresponding 95 percentage confidence intervals (CIs) were calculated for each

subgroup. All the models were adjusted from gender and age [87].

In the subgroup of individuals with a weight of 57 kilograms or more, a high

level of physical activity was associated with an HR of 1.09 (95% CI: 0.98 – 1.11),

while a low level of physical activity was associated with an HR of 1.12 (95% CI:

1.05 – 1.16).

Among individuals with a weight less than 57 kilograms, a high level of physical

activity was associated with an HR of 1.12 (95% CI: 1.05 – 1.16), while a low level

of physical activity had an HR of 1.03 (95% CI: 0.98 – 1.08).

These results indicate that the association between smoking or drinking and

mortality varied based on body weight and physical activity level significantly. In

the subgroup of individuals with a weight of 57 kilograms or more, both high and

low physical activity levels were associated with a higher risk [88] of mortality [89].

Among individuals with a weight of less than 57 kilograms, only a high level of

physical activity was associated with an increased risk of mortality [90].

These findings highlight the importance of considering lifestyle factors, such as

smoking or drinking, along with body weight and physical activity [74], when ex-

amining the risk of mortality. Further research is needed to understand better the

underlying mechanisms and potential confounding factors that may influence these

associations [91].

4.4 Sensitivity analysis

Sensitivity analyses dropping those participants who died in six months or under

best- and worst-case imputation of the missing outcomes resulted in very similar

final decision trees that selected the same covariates and resulted in nearly identical

subgroups and conclusions [92].
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Figure 4.5: Sensitivity analysis: Best-worse outcome imputation

Figure 4.5 presents the results of the sensitivity analysis by best-worse outcome

imputation of mortality. The results only have minor changes compared with the

main analysis, which indicates a good robustness of the analysis.

Figure 4.6: Sensitivity analysis: Worse-best outcome imputation

Figure 4.6 presents the results of the sensitivity analysis by worse-best outcome
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imputation of mortality. The results only have minor changes compared with the

main analysis, which indicates a good robustness of the analysis.

Figure 4.7: Sensitivity analysis: Removing those nearly death

Figure 4.7 presents the results of the sensitivity analysis by removing those nearly

dying. The results only have minor changes compared with the main analysis, which

indicates a good robustness of the analysis.

These three images, titled “Sensitivity Analysis,” describe the robustness of the

study’s findings by testing the results against different scenarios to assess if and

how conclusions may change under various conditions [93]. Sensitivity analysis is

crucial in research to ensure that the results are not unduly influenced by specific

assumptions or data treatment methods [94].

We conducted three different sensitivity analyses:

(1)Using best/worst-case imputation, see Figure 4.5;

(2)Using worst/best-case imputation, see Figure 4.6;

(3)Dropping the participants who died within six months after the baseline sur-

vey, see Figure 4.7 [95].

For each type of analysis, a corresponding decision tree is presented to show how

the outcome variable (possibly the participants’ mortality) is affected by variables

such as weight and physical activity (PA), indicated as “pa bi”.

50



The decision trees under each method show the probabilities and impacts of

different participant characteristics on the outcome. These trees can help identify

which factors are most influential and robust across various methods of handling

missing or uncertain data. For example, the first tree under the best/worst-case

imputation method shows that for participants with a weight of 63 or less and a

residence less than 2, there’s a specific probability (shown in the box) of the outcome

occurring. Similarly, other trees show different probabilities based on the weight

criteria and the physical activity index [96].

This type of analysis helps to confirm the reliability of the study’s conclusions by

showing that the significant findings hold true even when the data is manipulated

to account for potential uncertainties or biases [97].

The sensitivity analysis helps confirm the reliability of the study’s conclusions by

showing that the significant findings hold true even when the data is manipulated to

account for potential uncertainties or biases. I have done three types of sensitivity

analysis, and the results only show minor changes, which indicate the robustness of

my study.
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CHAPTER 5

Discussion

5.1 Conclusion and implication

This study investigates the heterogeneous effects of mortality associated with

smoking and drinking using novel machine learning-based methods, specifically by

combining the missForest algorithm and BART. The study’s implications are signifi-

cant, as it challenges traditional notions of the risks associated with these behaviours

and, if further validated by trials, offers a more nuanced understanding of their im-

pact on different subgroups within the elderly population.

Two distinct subgroups were identified where smoking and drinking consider-

ably increase mortality risks, characterized by specific combinations of body weight,

physical activity levels, and residency. In the geriatric population, these concurrent

risk factors suggest a synergistic increase in mortality risks. In contrast, other sub-

groups showed no traditional correlation between smoking, drinking, and increased

mortality risks, indicating a more complex relationship that varies with individual

characteristics.

The findings imply that public health interventions should be tailored to ad-

dress the specific needs of different subgroups. Smoking and drinking cessation

52



programs may offer substantial benefits to certain elderly subgroups, particularly

those with identified concurrent risk factors. However, for other subgroups, alterna-

tive strategies that do not focus solely on cessation may be more appropriate. This

study’s use of BART methods to identify heterogeneous effects demonstrates the

technique’s effectiveness and potential for broader application in public health and

precision medicine research.

The research’s nuanced insights into the relationship between smoking, drinking,

and mortality underscore the importance of individualized public health strategies.

It encourages the development of interventions that are responsive to the varying

impacts of these behaviors across different segments of the elderly population. This

approach could lead to more effective public health campaigns and potentially reduce

the mortality rates associated with smoking and drinking among the elderly.

In conclusion, the study contributes to a deeper understanding of the complex

interplay between smoking, drinking, and mortality in the elderly. It advocates for

a shift towards personalized public health interventions that consider the unique

characteristics of each subgroup, which could significantly improve the effectiveness

of smoking and drinking cessation efforts and enhance the well-being of the elderly

population.

5.2 Limitation and future work

While this study provides valuable insights into the relationship between smok-

ing, drinking, and mortality using the CLHLS cohort, it recognizes certain limi-

tations that warrant consideration. The CLHLS cohort, although extensive for the

Asian elderly population, could be further strengthened by external validation across

multiple cohorts from diverse ethnic backgrounds, including African and Caucasian

populations. Such validation could bolster the generalizability and applicability of

the findings. Additionally, conducting clinical trials would be an important step in

corroborating the associations found and testing the efficacy of interventions based

on these insights.

Looking ahead, the establishment of a benchmark for comparing the efficacy of
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various machine learning algorithms in this domain is a critical task. This bench-

mark would enable a systematic evaluation of different models, including but not

limited to tree-based approaches for detecting heterogeneous effect. The exploration

of graph-based models and reinforcement-learning based causal networks presents a

promising direction for future research. These advanced methods could offer new

perspectives and deeper insights into the causal relationships between lifestyle fac-

tors and mortality.

Further research could also delve into the development of personalized public

health strategies based on machine learning predictions. Tailoring interventions

to individual risk profiles identified through predictive modeling could lead to more

effective health outcomes. Additionally, investigating the mechanisms through which

smoking and drinking impact health could lead to the discovery of novel therapeutic

targets or preventative measures.

In terms of data analysis, future work could involve integrating longitudinal data

analysis techniques to account for time-varying effects and the potential evolution

of risk factors over time. The role of genetic predispositions and their corresponding

heterogeneous effect is another avenue that could be explored to provide a more

comprehensive understanding of mortality risks.

Lastly, the ethical implications of using machine learning in public health should

be carefully considered. The development of models that are not only accurate but

also fair and interpretable will be essential in ensuring the responsible application of

these technologies in healthcare settings. Accordingly, the methodology to increase

the model’s interpretability is vital in the future.

In summary, the study lays the groundwork for a wide array of future research

opportunities that could significantly advance our understanding of mortality risks

and contribute to improving public health strategies for the elderly population world-

wide.
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