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Abstract

This thesis explores the potential and implications of incorporating imprecision

into the Cox proportional hazards (PH) model, a widely endorsed method for ex-

amining the effects of covariates in survival analysis. Despite the fact that the

PH model does not impose any parametric assumptions regarding the distribution

of the baseline hazard function, it relies on the assumption of proportional haz-

ards over time, which is often not sustainable in real-world scenarios. The research

highlights the inherent limitations of the PH model, notably its vulnerability to de-

viations arising from factors like time-dependent covariates, which can compromise

the integrity of statistical analyses in vital areas such as clinical research and pub-

lic health. By introducing imprecision into the PH model, this thesis establishes

advanced methodologies that effectively balance the trade-off between imprecision

and validity when the conventional assumptions of the model are compromised. In

response to these limitations, the thesis introduces novel methodologies to address

the non-proportionality of hazards, proposing two innovative imprecise proportional

hazards models: the individual-based model and the group-based model. These

models offer a robust alternative to the conventional PH model by accommodating

variability within the hazard functions and enabling the estimation of more reliable

survival functions.

The thesis introduces another robust PH model designed for survival data with

continuous covariates. Diverging from traditional measurement error approaches,

the robust PH model integrates errors directly into covariate values as a strategy
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to mitigate the proportional hazards assumption. This shifts the focus from merely

diminishing estimation bias to enhancing model adaptability. The proposed model

incorporates additive errors into continuous covariates which are distribution-free,

but fluctuate strictly within a predefined small interval. Consequently, imprecise

estimates can be derived for individuals’ survival functions which enhances the flex-

ibility and reliability of the robust PH model, particularly when the validity of the

proportional hazards assumption is questioned.

This thesis concludes by introducing a novel imprecise estimation technique re-

ferred to as the Most Likely Data method (MLD) as an alternative to the well-known

maximum likelihood estimation (MLE). Unlike the MLE, which offers precise point

estimates through optimizing the likelihood function, the MLD focuses on interval

estimates derived from the most likely observed data configurations. In this method,

the parameter space is partitioned into intervals based on data that is most likely to

be observed compared to others, resulting in a distinct interval for each possible ob-

servations. For discrete distributions, the MLD method can be applied seamlessly to

both binomial and Poisson distributions, allowing partitioning the parameter space

for different observations and providing a close-form technique for identifying im-

precise estimates. In the context of the PH model, the MLD methodology revealed

promising results as a means of relaxing the PH assumption. The objective of intro-

ducing the MLD method in this thesis is to pave the way for further investigation

and development in the field of statistical inference.

Besides challenging the conventional application of the PH model in specific re-

search contexts, the findings of this thesis offer significant methodological advance-

ments that can enhance the robustness of conclusions drawn from survival data,

thus influencing future research and practices in similar fields.
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Chapter 1

Introduction

1.1 Overview

Research in many fields involves analyzing the occurrence of time-related events

as well as investigating the relationship between a variety of covariates, independent

variables, and event times of a particular subject. In medical research, survival

analysis is the umbrella of all statistical methods that are used to determine and

analyze death times, the recurrence of a disease, or to evaluate the effects of different

treatments on the survival experience of individuals. Survival analysis is primarily

used in medical research, but these statistical techniques are employed across a

wide range of disciplines under other terminology [21]. In engineering, for example,

the statistical methods associated with analysing the life history of machines or

manufactured items are referred to as reliability theory. Similarly, these methods can

be applied in many different fields such as sociology, biology, economics, demography,

criminology, and epidemiology [75].

Survival data are often affected by the presence of censorship, which prevents

other statistical methods, such as regression, from being implemented. Censoring

occurs when the time of the event of interest for a particular subject is unobserved

[46]. Censoring can be classified into different schemes, including right, left and

interval [55]. In right censoring, the survival time is greater than the observed time,

which is the most common type of censoring. Left censoring refers to the case where

the event of interest had already occurred prior to the beginning of a study. Interval

1



1.2. Imprecise probability 2

censoring occurs when a subject or individual experiences an event within an interval

of time, so the exact time may not be known. The censoring mechanism is assumed

to be independent of survival time, and to be non-informative [21, 49].

1.2 Imprecise probability

The term imprecise probability, according to Augustin [4], refers to all approaches

that replace precise, traditional probabilities with non-empty sets of precise proba-

bilities as their primary modeling entity, including all approaches that can be trans-

lated into an equivalent set of precise probabilities. These approaches include the

robust Bayes analysis [79], linear partial information [51], Levi’s approach to episte-

mology [56], as well as approaches based on non-linear functionals and non-additive

set-functions, covering lower and upper previsions in tradition of Walley’s book [87],

Weichselberger’s type of interval probabilities [89], or those which are based on

capacities including Shafer theory [28], random sets [12] and p-boxes[35]. Impre-

cise probabilities are represented by using lower and upper bounds for probabilities

rather than the standard theory of precise or single-valued probability [24]. Re-

searchers in a variety of areas of statistics have been motivated by a growing desire

to model complex uncertainties more comprehensively. There has been evidence

that imprecise probabilities are capable of providing excellent solutions to some of

the most difficult foundational problems in probability and statistics. Even though

imprecise probability theories are rarely explored in statistics since many are still

in their infancy, a wide range of methodological and philosophical foundations have

been developed, along with their specific applications, in somewhat divergent lit-

erature [4]. For those interested in learning more about imprecise probabilities,

we recommend Walley’s book [87], Augustin and his colleagues’ book [7] entitled

”Introduction to Imprecise Probabilities” as well as the website of the Society for

Imprecise Probability, sipta.org. The book includes both the core theory of impre-

cise probabilities as well as recent developments that can be applied to a variety

of application areas. The Nonparametric Predictive Inference (NPI), for instance,

provides a notable example of such a statistical methodology in which Augustin and
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Coolen combine Weichselberger’s interval probability and Hill’s A(n) assumption to

construct an imprecise probability based on frequentist principles [6, 22]. Recently,

Coolen and his collaborators have applied the NPI lower and upper probabilities

to analyzing various types of data in the context of statistical hypothesis testing

and prediction. For right-censored data, Coolen and Yan [23] presented the NPI

framework to construct lower and upper survival functions as an alternative to the

well-known Kaplan-Meier (KM) estimator. This approach inspired us to investigate

the possibility of incorporating imprecision into the PH model. In spite of the fact

that the NPI method is primarily used for prediction, the purpose of this thesis is

to investigate the effect of incorporating imprecision into the PH model in order to

find out how it affects the estimated regression parameter and survival functions of

populations.

1.3 Motivation

The Cox proportional hazards model (PH) is the most common method to study

the effects of covariates in survival analysis [48]. Despite the fact that the PH

model does not impose any parametric assumptions regarding the distribution of

the baseline hazard function, it relies on the proportionality of hazards assumption

[25]. As a result, the proportional hazards assumption implies that the hazard

ratios between any different individuals or objects remain constant over time. While

validating the PH assumption is crucial, the assumption is often unrealistic in real-

life situations [21, 84]. The PH assumption can be violated for a variety of reasons

such as time-dependent covariates, missed covariates, and natural changes in the

hazard function [50]. The violation of the PH assumption results in misleading

hazard ratios that provide an oversimplified understanding of complex survival data

structures [90].

This compromises the integrity of statistical conclusions and subsequent decisions

in clinical research, public health policy, and other sectors [40]. Although the PH

assumption can be assessed by a number of methods [37, 39], including the standard

K-M plot, log-minus-log plot, Schoenfeld’s residuals, and scaled Schoenfeld’s resid-
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uals test, etc., it has been shown that this assumption has not been tested or is not

reported in most studies [53]. Lack of consideration and discussion of the underlying

causes of apparent non-proportionality could result in biased hazard ratio estimates

and undermine the overall research effort as these causes could have substantial im-

plications for future studies. Based on a study conducted by Rahman [74] on the

deviations from proportional hazards in cancer clinical trials published between 2014

and 2016, almost a quarter of these clinical trials had evidence of deviations from

proportional hazards, yet only a few publications explicitly test for the PH assump-

tion in detail. Kuitunen [53] performed similar study to investigate the validity of

the PH assumption in Total Joint Arthroplasty studies retrieved from the PubMed

database, demonstrating that 45% of these studies had KM survival curves crossed,

while only 20% reported and addressed violations of the PH assumption. Further,

over seventy percent of phase III trials involving immune checkpoint inhibitors have

been analyzed using the proportional hazards assumption, even though these trials

exhibit crossing hazards [20].

Researchers are strongly encouraged to consider alternative models that can ac-

count for such complexities that are not adequately represented by the Cox PH

model if the PH assumption is violated. A number of alternative models are avail-

able, including extended Cox models which incorporate time-dependent covariates

or stratification to account for non-proportional hazards, Frailty models which con-

sider heterogeneity within survival data [41], Accelerated Failure Time Models [88],

Additive Hazard Models [60], parametric survival models such as the Weibull and

Gompertz [21], flexible parametric models such as Royston-Parmar model [78], ma-

chine learning approaches [9], and others. Due to the fact that the available ap-

proaches are based on specific NPH scenarios, there is no agreement on the optimal

best practices for dealing with violations of the PH assumption [9]. It is therefore

imperative to explore alternative models to enhance the robustness of conclusions

drawn from survival data. This thesis presents and investigates different approaches

to incorporating imprecision into the PH model, so that the proportional hazards

assumption can be relaxed.
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1.4 Contents and outline of the thesis

This thesis explores the implications of incorporating imprecision into the Pro-

portional Hazards model using various approaches. The thesis is structured as fol-

lows:

A comprehensive review of key concepts extracted from existing literature that

are pertinent to this study is presented in Chapter 2, which serves as the foundation

of the thesis. In the introduction, an overview of the PH model is provided, as well

as a discussion of parameters estimation and baseline survival and hazard functions.

This chapter introduces empirical likelihood methods, with a special focus on their

application in the presence of right-censored observations. A concise review of meth-

ods for generating PH survival data and the application of bootstrap methods to

PH data is provided in this chapter, which is designed to frame these concepts as

essential tools for analyzing the data in the following chapters.

Chapter 3 presents two novel variations of imprecise PH models based on Pois-

son empirical likelihoods: the Individual-based Imprecise PH (IPH) model and the

Group-based Imprecise PH (GPH) model. In the IPH model, each subject or in-

dividual in the data set has its own imprecision factor. The GPH model, on the

other hand, expands this concept to groups allowing for shared imprecision factors

within defined clusters. The IPH model can be viewed as a special case of the GPH

model, in which each group has a unique member. The exploration of these models

includes a detailed discussion of their properties, particularly the imprecise estima-

tion of survival functions. The chapter further enriches the research by conducting a

bootstrap study, which evaluates the advantages of utilizing these models and helps

in determining the optimal level of imprecision to be used.

In Chapter 4, robust PH models are presented for continuous covariates. The

model considers a surrogate version of the observed covariate values that raises

doubts regarding the proportional hazards assumption. This model introduces a

novel concept where observed covariate values are permitted to vary within small

intervals. By including these errors, we relax the PH assumption, as opposed to mea-

surement error modeling that increases the model’s accuracy. Despite these errors

remaining distribution-free, they are bounded by predefined intervals. Additionally,
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a variety of likelihoods including partial likelihood and empirical likelihood were

considered for this model. Furthermore, we examine the effects of including these

errors when estimating regression parameter, likelihood value gain, and imprecise

survival functions for specific individuals. We conclude this chapter by bootstrap

investigations aim to identify the optimal level of imprecision.

Chapter 5 explores the Most Likely Data (MLD) method, an innovative early-

stage statistical inference technique that can be used for estimation as an alternative

to the maximum likelihood approach, and consider its application to relax the PH

assumption. The MLD method involves considering all potential outcomes to iden-

tify the most probable parameter values yielding desired outcomes. The chapter

begins withThe chapter begins by introducing the novel MLD method, followed by

an exploration of its application across various contexts, including discrete distribu-

tions such as Binomial and Poisson, as well as within the PH model. As challenges

emerged in applying the MLD method to the PH model, alternative formulas for

marginal probabilities were considered, including a time-based probability approach.

A flexible version of the MLD method was then proposed, providing an adaptive

approach to address imprecise estimation, which is particularly advantageous in

complex models like the PH model. The chapter concludes with a discussion of the

challenges encountered and directions for future research.

The final chapter, Chapter 6, provides a comprehensive summary of the findings,

underscoring the significance of the novel approaches developed in the thesis. It re-

flects on the challenges encountered throughout the research and suggests possible

extensions and future research directions. In the appendix, we provide supplemen-

tary material and detailed R scripts designed specifically for the proposed methods.

These scripts are compatible with R version 3.6.1 [72].



Chapter 2

Background

2.1 Introduction

The purpose of this chapter is to provide the foundational materials required

to follow the thesis seamlessly. In the realm of survival analysis, the survival time

can be modeled as a continuous or discrete positive random variable denoted by T ,

where t refers to the actual survival time of an individual. F (t) is the distribution

function representing the cumulative probability of an event occurs at or prior to

time t. Three functions play a major role in survival analysis: the survival function,

S(t), the hazard function, h(t), and the cumulative hazard function, H(t). The

survival function indicates the probability that the event occurs after a given time

t. Since the survival function is the complement of distribution function, then

S(t) = P (T > t) = 1− F (t) (2.1)

The hazard function measures the instantaneous risk or hazard associated with an

event, such as mortality, and represents the conditional probability of the event

occurring at a specific time t for an individual conditional on having been survived

to that time. Further, the cumulative hazard function quantifies the cumulative risk

of an event occurring by time t.

7
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Continuous distributions

Suppose that the random variable associated with the survival time is continuous.

Now, let f(t) be the probability density function of the random variable T . The

cumulative distribution function of f(t) is given by

F (t) = P (T ≤ t) =

∫ t

0

f(u)du (2.2)

Based on the probability that the random variable T for an individual survival

time falls between [t, t + ∆t] conditional on T greater or equal to t, the hazard

function can be defined as follows

h(t) = lim
∆t→0+

P (t ⩽ T < t+∆t | T ≥ t)

∆t
(2.3)

By utilizing the properties of the conditional probability and the definition of

derivative it’s easy to see that

h(t) =
f(t)

S(t)
(2.4)

Noteworthy is the fact that S(t) = P (T > t) = P (T ≥ t) since T belongs to a

continuous distribution. The cumulative hazard function of the event occurring by

time t becomes

H(t) =

∫ t

0

h(u)du (2.5)

These functions can be determined from the others. For instance, the density

function can be obtained by the survival function as follows

f(t) =
d

dt
F (t) =

d

dt
(1− S(t)) = 0− d

dt
S(t) = − d

dt
S(t) (2.6)

By substituting 2.6 in 2.4, the hazard function can be derived by the survival

function as follows

h(t) =
− d

dt
S(t)

S(t)
= − d

dt
(lnS(t)) (2.7)

Similarly, by taking the integral of both sides in Equation (2.7), it is obvious since

S(0) = 1 and so lnS(0) = 0, the cumulative hazard function can be determined by
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the survival function by

H(t) = − lnS(t) (2.8)

Consequently, survival function can be written in terms of cumulative hazard func-

tion as follows

S(t) = e−H(t) (2.9)

Discrete distributions

In contrast to the continuous time, the hazard function related to the discrete

time distribution is given as follows

h(t) =
f(t)

S(t−)
(2.10)

In this equation, f(t) represents the probability mass function and S(t−) denotes

the survival function at the time just prior to time t. To ensure clarity, the notation

f(.) will be used interchangeably in this thesis based on the specific context being

discussed to refer to either the probability density function or the probability mass

function. The survival function for discrete time is given by

S(t) =
∏
tl≤t

[1− h(tl)] (2.11)

where tl denote the times at which there is positive probability mass such that tl ≤ t.

The cumulative hazard function is now defined as

H(t) =
∑
tl≤t

h(tl) (2.12)

Notice that Equation (2.9) relating survival and cumulative hazard functions

does not hold for a discrete distribution. Additionally, probability mass function at

time t can be expressed, using Equation (2.10) and Equation (2.11) as

f(t) = h(t)S(t−)

= h(t)

(∏
tl<t

[1− h(tl)]

)
(2.13)
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2.1.1 Empirical Likelihood

A robust nonparametric approach known as empirical likelihood is widely studied

in the literature as a method of statistical inference Owen [68]. The method extends

the concept of maximum likelihood estimation to situations where the underlying

distribution is unspecified [67]. Due to its nonparametric nature, it facilitates the

construction of confidence intervals and hypothesis testing without relying on para-

metric assumptions [68]. Shortly after the introduction of the empirical likelihood

method, Hall and Scala [38] provided an overview of its critical properties. A com-

prehensive book was published following this by Owen [68] provided a comprehensive

review of significant developments in the empirical method and pointed out various

variants and applications. This method is particularly notable for its ability to

incorporate side information through moment conditions, which increases its ap-

plicability in various fields including econometrics, biostatistics, and environmental

studies [71]. Furthermore, empirical likelihood has been successfully integrated into

regression analysis, enhancing its utility in examining relationships between vari-

ables under very general conditions [86]. This section explains how the empirical

cumulative distribution function (ECDF) can be viewed as a nonparametric esti-

mate of the CDF based on the empirical likelihood.

Definition 2.1.1 (Owen [68, p. 7]) Assume X1, . . . , Xn are independent and iden-

tically distributed random variables. Then, the empirical likelihood function for the

cumulative distribution function (CDF) is defined as follows

L(F ) =
n∏

i=1

F (xi)− F (x−i )

=
n∏

i=1

P (X ≤ xi)− P (X < xi)

=
n∏

i=1

P (X = xi)

(2.14)

Recall the definition of the ECDF, for a sample consisting of the following i.i.d.

random variables X1, . . . , Xn. The ECDF for the observed sample values x1, . . . , xn
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is defined as

Fn(x) = P (X ≤ x) =

∑n
i=1 1{Xi≤x}

n
(2.15)

where 1{Xi≤x} is an indicator function that equals 1 if X ≤ x and 0 otherwise.

Theorem 2.1.2 (Owen [68, p. 8]) Let X1, . . . , Xn be i.i.d. random variables, then

the ECDF in Equation (2.15) is the non-parametric MLE of the CDF F based on

empirical likelihood in Equation (2.14).

Proof.

Consider a scenario where X1, X2, ..., Xn are i.i.d. from a discrete distribution,

then empirical likelihood can be applied seamlessly. However, this likelihood is

invalid for i.i.d. random variables that are continuously distributed and always equal

zero due to the fact that P (X = xi) = 0. A solution is to extend the parameter space

to include discrete distributions [62]. Hence, the distribution function, F , should be

carefully defined by such a distribution that places positive probability, jump, on

every observed data and no probability elsewhere since assigning probability mass

outside the observed data will lead to smaller likelihood. It follows that shifting the

probability from an unobserved value to any observed data point will increase the

overall likelihood because it increases the probability assigned to the observed data

point, denoted by pi, while leaving the others unchanged.

For the case where the i.i.d. random variables from a discrete distribution with

the following k unique values x1, x2, . . . , xk in the sample such that k ≤ n. Let ni

denotes the number of times the value xi appears in the sample. Then, the empirical

log likelihood function can written as follows

ℓ(F ) = ln

(
k∏

i=1

pni
i

)
=

k∑
i=1

ni ln(pi) (2.16)

where pi is the probability assigned to each unique value xi and
∑k

i=1 pi = 1. La-

grange multipliers can be utilized to maximize ℓ(F ) subject to the constraint that

summation of these probabilities, pi, is equal to 1 or p1 + p2 + ...+ pk − 1 = 0. Con-

sider the function G(p1, p2, ..., pk, λ) such that G(p1, p2, ..., pk, λ) =
∑k

i=1 ni ln(pi) −
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λ(p1 + p2 + ...+ pk − 1), then

∂G

∂p1
=
n1

p1
− λ =⇒ p1 =

n1

λ
∂G

∂p2
=
n2

p2
− λ =⇒ p2 =

n2

λ
...

∂G

∂pk
=
nk

pk
− λ =⇒ pk =

nk

λ

∂G

∂λ
= −(p1 + p2 + ...+ pk − 1) =⇒

k∑
i=1

pi = 1

(2.17)

By substituting pi =
ni

λ
in
∑k

i=1 pi = 1 we obtain λ =
∑k

i=1 ni = n. Hence, the

estimates of these probabilities becomes

p̂i =
ni

n

where i = 1, 2, ..., k. For continuous distributions, there are n unique observation in

the sample which leads to same conclusion, but with p̂i =
1
n
. Thus, based on the

empirical likelihood, the ECDF is the non-parametric MLE for the CDF. □

2.2 Non-parametric survival methods

2.2.1 Kaplan-Meier estimation

Kaplan and Meier [33] suggested a standard estimator to the survival function

using the method of maximum likelihood. The Kaplan-Meier estimator is consid-

ered to be a great alternative to the life-table estimator since the life-table is very

sensitive to the choice of the constructed interval and it is inadequate when the ac-

tual event time is known as it might lose some information [21]. The Kaplan-Meier

estimate is also called the product-limit estimate of the survival function that takes

the censoring data into account. Suppose the event time, say death, is divided into

intervals t1 < t2 < ... < tk, such that each interval begins with death time and con-

tains at least one death, so k distinct intervals would be constructed. The estimated

probability of surviving during the interval [tj, tj+1 − ϵ) is (nj − dj)/nj where nj is
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the number of individuals at risk in this interval time including those who died or

were censored at this period. On the other hand, dj represents the individuals who

died in this interval. Then, Kaplan-Meier estimate of the survivor function at time

t, such that tj ≤ t < tj+1 can be defined by

ŜKM(t) =
∏
j:tj≤t

(
nj − dj
nj

)
(2.18)

2.2.2 Nelson-Aalen estimation

Nelson [65] and Aalen [1] proposed another estimate to the survival function

based on an empirical estimation of the cumulative hazard function, ĤNA(t) =∑
j:tj≤t

dj
nj
, where k represents the number of unique event times. The Nelson-Aalen

estimator of the survival function is given by

ŜNA(t) =
∏
j:tj≤t

exp

(
−dj
nj

)
(2.19)

In the absence of covariates, these two estimates, particularly the Kaplan-Meier

estimator, are commonly employed for nonparametric analysis of survival distri-

butions. The main difference between the Kaplan-Meier estimator and the Nelson-

Aalen estimator is that, in essence, the Kaplan-Meier is the generalization of the em-

pirical survival function, which is given by SKM(t) =
∏

j:tj≤t(1−hj), with hj = dj/nj.

On the other hand, the Nelson-Aalen estimator utilizes the relation between the

survival function and the cumulative hazard function in Equation (2.9). These two

estimators are quite similar and both are considered as nonparametric maximum

likelihood estimators [49], see also Section 2.3.1. Collett [21] indicated that since

exp(−x) = 1−x+ x2

2
− x3

6
+ · · · ≈ 1−x for small x, then the Kaplan-Meier survival

function can be considered as a generalization of the Nelson-Aalen survival function

when dj is small relative to nj as exp(−dj/nj) ≈ 1− (dj/nj). Andersen et al. [3] and

Fleming and Harrington [36] elaborated the construction of these estimators based

on the theory of counting processes.
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2.3 Empirical full likelihood for survival data

2.3.1 Construction of the full likelihood for survival data

The general full likelihood function for right-censored survival data is discussed

in this section. Suppose that a combination of event and right-censored observed

times, for n individuals were collected. Denote the random variables corresponding

to the event and censoring times of individuals by V and C, respectively. Assume

that censoring times are non-informative, the actual survival time of an individual

does not depend on its censoring time. Let X be a set of k covariates that do not

change with time and relate to the true event time, V , recorded for each individual

[69]. Suppose that the actual observed right-censored survival data are

(t1, δ1,x1), (t2, δ2,x2), (t3, δ3,x3), ..., (tn, δn,xn) (2.20)

where ti = min{vi, ci} represents the non-negative underlying event or right censor-

ing time. In addition, the non-censoring indicator variable is denoted by δi = I{vi ≤

ci} and xi = {xi1, xi2, ..., xik}.

For clarity and to avoid potential confusion, this thesis assumes the absence

of ties unless stated otherwise. Additionally, survival data as outlined in Equa-

tion (2.20) are considered to be time-ordered observations, such that t0 = 0 < t1 <

· · · < tn < tn+1 = ∞. In this context, the pair (xi, δi) are associated with time

point ti, where ti refers to survival times encompassing both event times and right-

censored times. On some occasions, this thesis employs t(i), with i = 1, 2, . . . , k ≤ n,

to denote ordered event times, explicitly excluding survival times related to right-

censored observations, even though these may contribute to the risk set at t(i). For

simplicity, infinitesimal values will be introduced randomly to resolve any ties in

the survival times, while maintaining the assumption that event times occur before

right-censored times.

We are mainly interested in making inferences on f(t, δ|x) which represents the

conditional probability density function of the survival data (2.20). Let fv(t|x),

Sv(t|x), fc(t), and Sc(t) represent the density and survival functions for event and

censoring times, respectively. Building on the methodology outlined by Collett [21]
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for deriving the full likelihood in the absence of covariates, the likelihood function

for survival data presented in Equation (2.20) can be established by determining

the probability distributions for both survival and censoring times in the following

phases:

I. Event time the conditional joint distribution of ti and δi = 1 given xi obtained

by

P (ti, δi = 1|xi) = P (vi, ci > vi|xi); since δi = 1 ⇒ ti = vi and ci > vi

= P (vi|xi)P (ci > vi); V and C are mutually independent

= fv(vi|xi)Sc(vi); which can be written as

= fv(ti|xi)Sc(ti)

(2.21)

II. Censoring time the conditional probability related to censoring times is given

by

P (ti, δi = 0|xi) = P (ci, vi > ci|xi); since δi = 0 ⇒ ti = ci and vi > ci

= P (ci)P (vi > ci|xi)

= P (ci)P (vi > ci|xi)

= fc(ti)Sv(ti|xi)

(2.22)

Therefore, the likelihood function of (ti, δi) given xi for i = 1, 2, ..., n can be

represented as the product of Equations (2.21) and (2.22) for the n observations as

follows
n∏

i=1

f(ti, δi|xi) =
n∏

i=1

[fv(ti|xi)Sc(ti)]
δi [fc(ti)Sv(ti|xi)]

1−δi

=
n∏

i=1

[fv(ti|xi)
δiSv(ti|xi)

1−δi ][fc(ti)
1−δiSc(ti)

δi ]

(2.23)

Careful readers of Equation (2.22) should note the existence of different versions

of Sv(ti|xi) according to the nature of the distribution function, i.e. discrete or

continuous. In the case of continuous distributions, we have

Sv(ti|xi) = P (Vi > ti|xi) = P (Vi ≥ ti|xi)

which indicate that there is no impact of using either > or ≥. For discrete distribu-

tion, however, we must emphasize that the survival function is given by

Sv(ti|xi) = P (Vi > ti|xi)
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Under the independent censoring assumption, the censoring functions fc(ti) and

Sc(ti) are uninformative [21, 46, 77], that is the censoring mechanism does not con-

tain any information about the parameter relevant to the survival time distribution,

V [77]. Hence, these censoring functions can be considered as a constant and the

left side of Equation (2.23) is proportional to the event time functions as follows

(see Kalbfleisch and Prentice [46, sec. 6.2])

n∏
i=1

f(ti, δi|xi) ∝
n∏

i=1

fv(ti|xi)
δiSv(ti|xi)

1−δi (2.24)

For simplicity, the subscript v will be removed from fv and Sv in Equation 2.24.

The next section describe two different variations of empirical likelihood for survival

data.

2.3.2 Poisson and Binomial empirical likelihoods

Two different variations of the empirical likelihood for survival data are described

in this section, namely Binomial and Poisson empirical likelihoods. In addition, this

section shows that the Kaplan-Meier estimator of the survival function and the

Nelson-Aalen estimator of the hazard function are the NPMLE maximizes the full

empirical likelihood for survival data. Assume the absence of ties among survival

times and consider the one-to-one relationship between the cumulative distribution

function and the cumulative hazard function. Then, the empirical likelihood can be

expressed in terms of the hazard function. In spite of this, there are various ways

in which this likelihood can be expressed in terms of the hazards due to the fact

that different formulas exist for discrete and continuous cumulative hazard functions

[3, 62, 63, 92]. It is not our intent to delve into much detail about these types of

empirical likelihood functions, but rather to provide a brief overview of the options

available. The book by Andersen et al. [3, p. 180-229], which uses martingale theory

and counting process to illustrate these representations in extensive detail, should

be highly recommended for interested readers.

The binomial empirical likelihood, denoted by the subscript EB, is defined based

on the purely discrete survival function S(t) =
∏

tl≤t[1−h(tl)] with f(t) = h(t)S(t−)

as indicated in Equations (2.11) and (2.10). To simplify the process, we replace h(ti)
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by pi and substitute both f(t) and S(t) into the empirical likelihood as follows

LEB(pi) =
n∏

i=1

f(ti)
δiS(ti)

1−δi

=
n∏

i=1

(pi ∏
l≤i−1

[1− pl]

)δi∏
l≤i

[1− pl]
1−δi


=

n∏
i=1

[
pδii [1− pi]

1−δi
∏
l≤i−1

[1− pl]
δi
∏
l≤i−1

[1− pl]
1−δi

]

=
n∏

i=1

[(
pi

1− pi

)δi∏
l≤i

[1− pl]

]
(2.25)

Since we assume discrete cumulative hazards then, we expect 0 < pi ≤ 1 for each

event time and pn = 1 for an event time tn [92]. Thus, this likelihood can be

rewritten as

LEB(pi) =
n∏

i=1

[
pδii
∏
l<i

[1− pl]

]
(2.26)

To obtain the NPMLE for the Binomial likelihood, we differentiate the logarithmic

function of Equation (2.26) w.r.t. a fixed, but arbitrary, pi and setting the derivative

equal to zero as follows

∂ℓEB

∂pi
=

∂

∂pi

(
n∑

j=1

δj ln pj +
n∑

j=1

∑
l≤j

ln[1− pl]

)

=
∂

∂pi

(
n∑

j=1

δj ln pj +
n∑

j=1

∑
l≤j

ln[1− pl]

)

=
δi
pi

−
∑n

l=1 1[l>i]

1− pi

(2.27)

It can be seen that the log-likelihood function reaches its maximum by the

Nelson-Aalen estimation of the hazard function, p̂i = δi
ni
, where ni =

∑n
l=1 1[l≥i]

represents the number of individuals in the risk set prior to time ti. When ties

occur, Li [57] and Thomas and Grunkemeier [85] suggested, although in different

notations, that the binomial empirical likelihood in Equation (2.26) should be ex-

pressed as follows

LEB(pi) =
k∏

i=1

[
pdii (1− pl)

ni−di
]

(2.28)
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where di reflects the number of events at the ordered time ti, and k is the number

of distinct event times. The resulted estimators when ties occur are ĥ(t(i)) = di
ni

and Ŝ(t) =
∏

t(l)≤t[1− ĥ(t(l))] =
∏

l:t(l)≤t[1−
dl
nl
]. This proves that the Kaplan-Meier

estimator of the survival function and the Nelson-Aalen estimator of the hazard

function are the NPMLE maximizes the full empirical likelihood for survival data

On the other hand, the Poisson empirical likelihood is determined based on the

continuous relation between the survival and the cumulative hazard functions as in

Equation (2.9), S(t) = exp(−H(t)) with f(t) = h(t) exp(−H(t)). As indicated by

Kiefer and Wolfowitz [47] and Johansen [44], the assumption of a purely continuous

cumulative hazard function does not lead to an MLE for this empirical likelihood

[62]. Consequently, expanding the space of the cumulative hazard function by in-

cluding discrete cumulative hazard functions is crucial to obtain an MLE [3]. The

cumulative hazard function is determined by H(t) =
∑

ti≤t h(ti) =
∑

ti≤t pi in this

case. This may result in an inconsistency issue which will be addressed later. The

asymptotic, Poisson, empirical likelihood for survival data, LEP , is given by

LEP (pi) =
n∏

i=1

f(ti)
δiS(ti)

1−δi

=
n∏

i=1

[
pδii exp(−H(ti))

]
=

n∏
i=1

[
pδii exp

(
−
∑
l≤i

pl

)] (2.29)

One may verify that the NPMLE for the Poisson empirical likelihood is p̂i =
δi
ni

by taking the derivative of the logarithmic function of Equation (2.29) with respect

to a fixed pi and setting it to zero as follows

∂ℓEP

∂pi
=

∂

∂pi

(
n∑

j=1

δj ln pj −
n∑

j=1

∑
l≤j

pl

)

=
δi
pi

−
n∑

l=1

1[l≥i]

(2.30)
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A noteworthy finding is that the Nelson-Aalen estimation of the hazard func-

tion maximizes both, the Binomial and the Poisson, empirical likelihoods. As it

has been indicated, changing from continuous to discrete cumulative hazard may

cause inconsistent issue in the Poisson likelihood due to the fact that
∏

tl≤t[1−
δi
ni
] ̸=

exp
(
−
∑

ti≤t
δi
ni

)
. With a continuous CDF, the issue will disappear, since these

jumps will converge uniformly to zero as the number of observations increases; how-

ever, the issue will persist when the distribution function is discrete regardless of

the number of observations [92].

In general, hazard function of a discrete distribution imposes the constraint that

jumps must be strictly less than one, except for the last event time which is equal

one. Therefore, it is recommended to consider the binomial version if the CDF is

discrete since the estimates obtained using the binomial are equal to the estimates

obtained from the empirical likelihood based on the CDF [62]. As opposed to the

Binomial version, the Poisson empirical likelihood does not impose any restrictions

on the height of jumps in the hazard function, which makes it an attractive option

when analyzing complex models [92].

2.4 Proportional hazards model

2.4.1 Introduction

A semiparametric proportional hazards model was presented by Cox [25], which

had a profound impact on the development of survival analysis, specifically in med-

ical research. Unlike the previous methods, the proportional hazards model pro-

vides a methodology that allows researchers to investigate the relationship between

survival experience and other covariates such as age, gender, heart rate, etc. In

order to implement this model, an essential assumption must be met, namely that

proportional hazards exist [25]. A comparison of the survival curves obtained by

Kaplan-Meier with the survival curves generated by the PH model for a data set

from the literature [21] is illustrated in Figure 2.1. This figure illustrates how the PH

model uses the entire event times associated with both groups in order to estimate

the survival function for each group. On the other hand, the Kaplan-Meier estima-
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Figure 2.1: Kaplan-Meier verses Cox estimations of the survival function

tor uses event times that correspond to each group separately in order to estimate

survival functions.

Let us consider a comparison between two groups in which ha(t) represents the

hazard function of patients under treatment, while hb(t) represents a placebo group.

It follows that the proportional hazards model assumes that ha(t) = ωhb(t), where

ω does not depend on time. Consequently, the quantity ω is referred to as the

hazard ratio, which indicates the relative risk of a patient receiving treatment as

compared to a placebo patient. Suppose that X1, X2, ..., Xp are covariates recorded

for each individual such that xi = (x1i, x2i, ..., xpi) corresponds to the values of these

covariates for ith individual. Then, the proportional hazards model for an individual

i is defined by

hi(t | xi) = h0(t)ϕ(xi;β) or hi(t) = h0(t)ϕi (2.31)

where ϕi = eβ
Txi = e

∑p
j=1 βjxji which clearly does not depend on the time, β is a p×1

vector of Cox regression coefficients, and the term h0(t) is unknown function called



2.4. Proportional hazards model 21

the baseline hazard function which can be considered as the hazard for individuals

with x = 0 [21]. Since the baseline hazard function, h0, is completely unknown, this

model is referred to as semiparametric [25, 27].

2.4.2 Estimating the PH Model

Cox [26] illustrated the estimation the β−coefficients obtained by a new approach

called Partial Likelihood which is based on the information that does not engage

either the nuisance function h0(t) or the actual data times (censored and failure) di-

rectly, but only failure rank [21, 26, 61]. In the construction of the partial likelihood

estimation, it is assumed that the model in Equation (2.31) is based on event times

”failure times” and individuals who failed at these times. In other words, the likeli-

hood function is uninformative in the interval between any successive failure times.

Suppose a data set consisting of n individuals and consider t(1) < t(2) < ... < t(k)

distinct ordered failure times where k ≤ n. In addition, let Rj represent the set of

individuals at risk at time t(j), i.e., individuals who are surviving at t(j) − ε. Then,

the probability that the jth individual with xj fails at time tj given one individual

from Rj failed at time tj is given by [21, 27]

(
hj(t)∑
l∈Rj

hl(t)

)δj

(2.32)

By utilizing Equation (2.31) and canceling out the nuisance function, h0(t) from

the numerator and the denominator

(
ϕj∑
l∈Rj

ϕl

)δj

(2.33)

Thus, Cox [25] proposed the following likelihood function for the model intro-

duced in Equation (2.31)

PL(β) =
k∏

j=1

(
ϕj∑
l∈Rj

ϕl

)δj

(2.34)
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In case there is censoring and death occur at the same, then it is assumed that

all censoring occur after the death [21]. Without loss of generality, consider the case

with only one covariate. Then, the parameter β can be estimated by taking the log

of PL(β) as follows

l(β) =
k∑

j=1

δj ln

[
ϕj∑
l∈Rj

ϕl

]

=
k∑

j=1

δj ln ϕj − δj ln
∑
l∈Rj

ϕl


= β

k∑
j=1

δjxj −
k∑

j=1

δj ln

∑
l∈Rj

eβxl


(2.35)

The score function of the log partial likelihood is

U(β) =
∂

∂β
l(β) =

k∑
j=1

δjxj −
k∑

j=1

δj

[∑
l∈Rj

xle
βxl∑

l∈Rj
eβxl

]
(2.36)

where the negative second derivative, information matrix, of the log partial likeli-

hood is

I(β) = − ∂2

∂β2
l(β)

=
k∑

j=1

δj


(∑

l∈Rj
x2l e

βxl

)(∑
l∈Rj

eβxl

)
−
(∑

l∈Rj
xle

βxl

)2
(∑

l∈Rj
eβxl

)2
 (2.37)

Now, one can utilize any optimization standard derivative-based method, such

as Newton-Raphson, to obtain the maximum likelihood estimate of β. There are

alternative methods of estimating the PH model’s parameters which will be discussed

later.
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2.4.3 Tied Survival Times

Partial likelihood assumes the absence of ties in survival times. However, this

assumption is frequently violated in real-life data due to data collection methods or

purely discrete survival times [58]. Observations censored at the time of a failure

have lived at least beyond that time, so it is reasonable to assume that they occurred

after the failure [27]. The issue arises when tied observations are related to event

times. Several approaches have been proposed to deal with tied observations across

event times in the PH model. This section presents three of the most common

approaches, namely the exact method [46], Breslow approximation [13], and Efron’s

approximation [29]. While the exact method is the most accurate approach due to

the inclusion of all possible permutations of those tied times, it is not practical given

its computational cost [21, 81]. Breslow suggested a crude approximation to resolve

the tied survival times issue. Consider k distinct event times, and let Dj denote the

set of all individuals who had an event at time t(j), dj be the number of observations

in Dj, and suppose that φj =
∏

i∈Dj
ϕi. Then, Breslow’s approximation is given by

PLb(β) =
k∏

j=1

φj[∑
l∈Rj

ϕl

]dj (2.38)

While Efron’s numerator shares the same numerator as Breslow’s, Efron’s denom-

inator is differs by using the summation over a simplified version of the permutations

as follows

PLe(β) =
k∏

j=1

φj∏dj
s=1

[∑
l∈Rj

ϕl −
(

s−1
dj

)
ϱj

] (2.39)

where ϱj =
∑

i∈Dj
ϕi. Both approximations result in computationally efficient solu-

tions. However, Efron’s approach performs better, in terms of the accuracy, when

the number of tied event times is large with respect to the size of the data set

[2]. Consequently, Efron’s method is the default method for fitting the proportional

hazards model when ties occur in the R and the S software [81, 83]. Where tied

observations appear in this thesis, ties will be broken by adding very small fractions

to tied observations.
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2.4.4 Estimating the hazard and survival functions

The emphasis in the previous subsection has been on the regression coefficients,

β, of the proportional hazards model. These estimates of β’s are informative to

study the relation between the covariate and the risk as well as to compare the risk

of different individuals or groups utilizing the hazard ratio. However, information

about the nuisance parameter, baseline hazard, is necessary to draw inferences about

the survival distribution of an individual with specific covariates values. Suppose

that a Cox PH model has been fitted to a given data with p covariates X1, ..., Xp

and the estimated coefficients of the fitted Cox PH model were β̂1, ..., β̂p, so the

hazard function of the ith individual as mentioned in Equation (2.31) is given by

hi(t) = h0(t)ϕi (2.40)

Assume that we are interested to estimate the survival function of individual

with a specific combination of covariates vector, xi. By integrating both sides of

Equation (2.40) we obtain ∫ t

0

hi(u)du =

∫ t

0

h0(u)ϕidu

= ϕi

∫ t

0

h0(u)du

(2.41)

From the definition of cumulative hazard function

Hi(t) = H0(t)ϕi (2.42)

Consequently, the survival function of the ith individual is given by

Si(t) = e−Hi(t)

= e−H0(t)ϕi

= S0(t)
ϕi

(2.43)

which forms a Lehmann family of distributions that has the form of S0(t)
m; where

0 < m < ∞ [46]. There are several methods for estimating the baseline survival

function in the proportional hazards model. Cox [25] proposed an estimation of the

survival function using an iterative method utilizing the parameters that obtained by
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the maximum partial likelihood; however, it is a complicated estimate [13, 25]. Al-

ternatively, Breslow [13] and Kalbfleisch and Prentice [45] estimators are considered

as the most common nonparametric approaches to estimate the baseline survival

function in the Cox PH model. The Breslow estimator, b, is constructed based on

estimating the cumulative baseline hazard function, Hb
0(t), which is analogous to

the Nelson-Aalen estimator in the absence of a covariate, see Section 2.2.2. Bres-

low’s cumulative baseline hazard estimator is determined by utilizing the estimated

parameters obtained by the partial likelihood as follows

Ĥb
0(t) =

∑
j:tj≤t

δi∑
l∈Rj

ϕ̂l

(2.44)

where Rj is the set of all individuals under risk at time tj, and ϕ̂l = eβ̂xl . Hence, the

baseline survival function can be obtained by substituting Ĥb
0(t) in Equation (2.9)

as follows

Ŝb
0(t) = exp[−Ĥb

0(t)] = exp

− ∑
j:tj≤t

δi∑
l∈Rj

ϕ̂l

 (2.45)

In the case of ties, the summation will be active over only events times, t(j), and δi

will be replaced by where dj is the number of failures at time t(j).

In contrast, Kalbfleisch and Prentice estimator, kp, extends the concept of the

Kaplan-Meier estimator, see Section 2.2.1, by the discretization of failure times to

approach a continuous function as follows [21, 45]

Ŝkp
0 (t) =

∏
j:tj≤t

ζ̂j (2.46)

where ζ̂j = 1 − ĥ0(tj) is the conditional probability of surviving at time tj for the

baseline individual which is zero at non event times. In the absence of ties, we have

ϕ̂j

1− ζ
ϕ̂j

j

=
∑
l∈Rj

ϕ̂l ⇔ 1− ζ
ϕ̂j

j =
ϕ̂j∑
l∈Rj

ϕ̂l

⇔ ζ
ϕ̂j

j = 1− ϕ̂j∑
l∈Rj

ϕ̂l

⇔ ζj =

[
1− ϕ̂j∑

l∈Rj
ϕ̂l

]ϕ̂−1
j
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Hence, the solution of Equation (2.48) is given by

ζj =

[
1− ϕ̂j∑

l∈Rj
ϕ̂l

]ϕ̂−1
j

; ϕ̂−1
j = e−βxj (2.47)

When ties occur, the conditional probability ζj has no closed form and can be

estimated as a solution for the following equation∑
k∈Dj

ϕ̂k

1− ζ ϕ̂k
j

=
∑
l∈Rj

ϕ̂l (2.48)

where Di is the set of individuals who failed at t(i).

2.5 Empirical full likelihood for the PH model

A brief description of the empirical full likelihood of the PH model is provided

in this section. Pan [69] suggested an empirical likelihood approach for Cox PH

model to estimate the regression coefficient, β, and H0(t), the baseline cumulative

hazard function, by profiling out H0(t). As a result, the estimated baseline cumu-

lative hazard is Breslow’s estimator with a well known drawback when paired with

S(t) =
∏

ti≤t[1− h(ti)] that its baseline hazard can exceed one which leads to neg-

ative values of the estimated baseline survival function, S0(t), in case of discrete

distributions [27, 46, 77]. Furthermore, the regression parameter estimate obtained

from the Poisson empirical likelihood under the PH model is identical to the es-

timate derived from Cox’s partial likelihood, differing only in their log-likelihood

values [92]. In contrast, Efron [29] proposed the full empirical likelihood for the

PH model to show that Cox’s partial likelihood function contains nearly all of the

information related to the regression parameters. Ren and Zhou [77] proposed the

same empirical likelihood for the PH model corresponding to β and F0(t) where the

baseline distribution function is profiled out to attain the full profile likelihood func-

tion for β. For small or moderate sample sizes, this method performs better than

Cox’s partial likelihood estimator, in terms of simulation standard error, simulation

relative bias, and simulation relative MSE [77]. The following subsections describe

the construction of the PH model using both the Poisson empirical likelihood and

the empirical likelihood based on F0.
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2.5.1 Poisson empirical likelihood for the PH model

This section illustrates the Poisson full empirical likelihood for the PH model,

as described by Pan [69] and Zhou [92]. The Poisson likelihood for the PH model is

constructed using the same methodology as presented in Section 2.3.2 for survival

data, but with the presence of a covariate. Based on the PH model, the hazard

function and cumulative hazard function of the ith individual are

hi(t) = h0(t)ϕi, Hi(t) = H0(t)ϕi (2.49)

with ϕi = eβxi as used in Equation (2.31). According to Equation (2.29), the full

likelihood associated with the proportional hazards model is given by

L(β, h0(t1), h0(t2), ..., h0(tn)) =
n∏

i=1

[
hi(ti)

δi exp(−Hi(ti))
]

=
n∏

i=1

[
(h0(ti)ϕi)

δi exp (−H0(ti)ϕi)
] (2.50)

While using the analogy described in Section 2.3.2, the baseline cumulative hazard

should be considered to be the sum of the masses assigned to observed times such

that h0(ti) = ∆H0(ti) = pi andH0(ti) =
∑

l≤i∆H0(tl) =
∑

l≤i pl [92]. Consequently,

the Poisson empirical likelihood for the PH model can be expressed as

L(β, p1, . . . , pn) =
n∏

i=1

[
(piϕi)

δi exp

(
−ϕi

∑
l≤i

pl

)]
(2.51)

Rewriting the exponential terms of the likelihood function with reference to pi will

be useful, so

n∏
i=1

exp

(
−ϕi

∑
l≤i

pl

)
= exp (−ϕ1p1)× · · · × exp (−ϕn(p1 + · · ·+ pn))

=
n∏

i=1

exp

(
−pi

∑
l≥i

ϕl

)

=
n∏

i=1

exp (−piri)

(2.52)

where ri =
∑

l≥i ϕl, representing the summation of the covariate effects for individ-

uals in the risk set at time ti− ε. Consequently, the Poisson empirical likelihood for
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the PH model is given by

L(β, p1, . . . , pn) =
n∏

i=1

[
(piϕi)

δi exp (−piri)
]

(2.53)

In order to maximize the likelihood function, let β be arbitrary, but fixed and

consider the term involving pi in Equation (2.53). If δi = 0, the term exp (−piri)

reaches its maximum value at pi = 0, since ri represents a summation of positive

quantities. When δi = 1, then the derivative of the log-likelihood function with

respect to a particular pi is given by

∂ℓ

∂pi
=

∂

∂pi

n∑
j=1

ln [(pjϕj) exp (−pjrj)]

=
1

pi
− ri

(2.54)

Now, by setting the derivative of the log-likelihood to zero we obtain the estimation

p̂i =
1
ri
. Since the second derivative of log-likelihood function with respect to pi is

negative, the likelihood function in Equation (2.53) attains its maximum for

p̂i =
δi
ri

(2.55)

The profile Poisson likelihood function of the PH model can be obtained by

substituting p̂i into Equation (2.53) as follows

L(β) =
n∏

i=1

[p̂iϕi]
δi exp(−p̂iri)

=
n∏

i=1

[
ϕi exp(−1)

ri

]δi (2.56)

In the absence of a covariate, this likelihood is reduced to the likelihood function

in Equation (2.29). In the following theorem, it is shown how this likelihood relates

to the Cox’s partial likelihood.

Theorem 2.5.1 (Zhou [92, p. 95])

Consider the case where there is no tie in the observed times. The estimate

obtained from maximizing the profiled log-likelihood in Equation (2.56) is equivalent

to the estimate obtained from the Cox’s partial log-likelihood in Equation (2.34).
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Additionally, the difference between the log-likelihood values is equal to the number

of times the event has occurred in the sample. Thus, the likelihood ratio will be the

same regardless of which likelihood is used.

Proof.

This can be verified by observing that the term exp(−1) in Equation (2.56) adds

no information about the regression parameter, so it can be excluded. It follows that

the Poisson profiled likelihood is proportional to the partial likelihood, leading to a

difference of −
∑n

i=1 1[δi=1], the number of events occurred in the sample, between

the partial log-likelihood value and the Poisson empirical log-likelihood value for the

PH model. □

As a consequence of using the Poisson empirical likelihood for the PH model, it

should be noted that the resulting cumulative baseline hazard and baseline survival

functions will be Breslow’s estimates as in Equations (2.44) and (2.45).

2.5.2 Empirical full likelihood for the PH model F0

Our objective in this section is to explain the basic idea behind the construction

of the empirical likelihood for PH model based on the baseline CDF, F0, which was

demonstrated in Ren and Zhou [77]. Recall Equation (2.43), which is an essential

tool to acquire the exact full likelihood function for the PH model;

S(t | xi) = S0(t)
ϕi

By differentiating both sides of Equation (2.43) w.r.t. t and using S(t) = 1 − F (t)

we have

d

dt
S(t | xi) =

d

dt
S0(t)

ϕi ⇒ −f(t | xi) = ϕi[−f0(t)][S0(t)]
ϕi−1

⇒ f(t | xi) = ϕif0(t)S0(t)
ϕi−1

(2.57)

Then, the likelihood function of (ti, δi | xi) under the proportional hazards model

can be obtained by substituting Equations (2.43) and (2.57) into Equation (2.24),
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as follows

n∏
i=1

f(ti, δi|xi) ∝
n∏

i=1

f(ti|xi)δiS(ti|xi)1−δi

∝
n∏

i=1

[ϕif0(ti)S0(ti)
ϕi−1]δi [S0(ti)

ϕi ]1−δi

∝
n∏

i=1

[ϕif0(ti)]
δi [S0(ti)

ϕi−1]δi [S0(ti)
ϕi ]1−δi

∝
n∏

i=1

[ϕif0(ti)]
δi [S0(ti)]

ϕiδi−δi+ϕi−ϕiδi

∝
n∏

i=1

[ϕif0(ti)]
δi [S0(ti)]

ϕi−δi

Accordingly, the full likelihood function for (β, F0) under the proportional hazards

model with the survival data (2.20) is given by

L(β, F0) =
n∏

i=1

[ϕif0(ti)]
δi [S0(ti)]

ϕi−δi (2.58)

It is noteworthy that in the absence of covariates, i.e., ϕi = 1 for every individual, the

empirical likelihood in Equation (2.58) reduces to the binomial likelihood discussed

in Section 2.3.2, see Zhou [92].

Theorem 2.5.2 (Ren and Zhou [77])

The baseline survival function in Equation (2.58) can be maximized for any fixed

value of β by

Ŝn(t) = 1− F̂n(t) =
∏
i:ti≤t

ri − δi
ri

(2.59)

where ri =
∑n

j=i ϕj. Consequently, the profile full likelihood function for the PH

model is given by

Lp(β) =
n∏

i=1

[
ϕi

ri

]δi [ri − δi
ri

]ri−δi

(2.60)

The proof of Theorem 2.5.2 can be found in Ren and Zhou [77] and in Ap-

pendix A.2. It should be recognized that the profile likelihood function in Equa-

tion (2.60) remains valid only when ri ≥ 1 for event times. Consequently, optimiza-

tion of the profile likelihood function is conducted under the constraint that ϕn ≥ 1

to ensure the validity of ri ≥ 1 for event times. This constraint can be satisfied by
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adjusting the covariate x for each individual such that x̃i = xi−xn before optimizing

the profile likelihood. Therefore, the subscript n in Equation (2.59) indicates that

the resulting survival function, obtained by substituting the MLE of Equation (2.60)

into Equation (2.59), represents the survival function for individuals with x = xn.

As a result, the baseline survival function can be estimated by S0(t) = Ŝ
exp[−β̂xn]
n .

2.6 Simulating survival data for the PH model

2.6.1 Parametric PH models

This section presents some of the well known parametric PH models and their re-

lated functions in order to facilitate later simulation studies. When the assumed the-

oretical distribution for survival times is plausible, parametric models provide addi-

tional insight into the nature survival data, particularly the hazard rate [59]. The ex-

ponential distribution, for instance, is appealing to model the survival time for a pop-

ulation with constant hazard. On the other hand, populations with monotonously

increasing or decreasing hazards can be modeled using the Weibull model. However,

if the distribution assumption is incorrect, the results will be misleading. Therefore,

when the assumed distribution is plausible, parametric tests are more effective than

nonparametric tests in this situation [21]. These models are particularly suited for

analyzing the effects of certain covariates on survival experience due to their inclu-

sion of covariates. In survival analysis, a variety of parametric models are available,

such as exponential, Weibull, gamma, lognormal, and Gompertz. Once a particular

model has been selected, the distribution function can be used to determine other

functions such as the hazard and the survival functions, see Section 2.1. In this

thesis, three of the most common parametric distributions that exhibit the propor-

tional hazards aspect are used. Table 2.1 provides a summary of various features of

these three distributions.
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Feature

Distribution

Exponential Weibull Gompertz

T ∼ Exp(λ) T ∼ Weibull(λ, ρ) T ∼ Gompertz(λ, ρ)

Parameter λ > 0 λ > 0 and ρ > 0 λ > 0 and ρ ∈ (−∞,∞)

Hazard h(t) λ λρtρ−1 λ exp(ρt)

Cumulative hazard H(t) λt λtρ λ
ρ (exp(ρt)− 1)

Density f(t) λ exp(−λt) λρtρ−1 exp(−λtρ) λ exp(ρt) exp
(

λ
ρ (1− exp(ρt))

)
Survival S(t) exp(−λt) exp(−λtρ) exp

(
λ
ρ (1− exp(ρt))

)
Table 2.1: Summary of the exponential, the Weibull and the Gompertz distributions

2.6.2 Survival times

This section illustrates how to generate survival data for Cox PH model as dis-

cribed by Bender, Augustin and Blettner [11]. The distribution function of the

survival times in the PH model is given by

F (v|xi) = 1− S(v|xi)

= 1− S0(v)
ϕi ; by Equation (2.43)

= 1− e−H0(v)ϕi

(2.61)

For any continuous random variable Y with distribution function F , W = F (Y )

and U = S(Y ) = 1−W are uniformly distributed from 0 to 1. Therefore, the survival

time V of the PH model in Equation (2.31) can be generated by the following given

that the cumulative baseline hazard function is invertible (i.e., positive baseline

hazard for all time v ≥ 0)

U = e−H0(V )ϕi

ln(U) = −H0(V )ϕi

H0(V ) =
− ln(U)

ϕi

V = H−1
0

(
− ln(U)

ϕi

)
(2.62)

where U ∼ Unif(0, 1) can be easily generated in any statistical software such as R

using the built-in runif function. There is no further assumption for β and X, but

it is essential to specify β, X, and appropriate form of H−1
0 before generating the
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survival times for the PH model using Equation (2.62). The hazard function can be

modeled parametrically in a PH model using Exponential, Weibull and Gompertz

distributions since the parameter λ affects the hazard multiplicatively in each family

[54]. However, a more flexible parametric model might be considered too, for more

details see Bender et al. [11, Section 2.5]).

Example 2.6.1 Based on the PH model, we may consider a Weibull distribution

for baseline hazards, where the hazards may be fixed or monotonically increasing or

decreasing. The Weibull distribution is constructed based on two positive parame-

ters: the scale parameter, λ, and the shape parameter, ρ. As a special case of the

Weibull distribution, survival times are exponentially distributed with a constant

baseline hazard when ρ = 1. On the other hand, ρ > 1 or 0 < ρ < 1 describe Weibull

distribution survival times with monotonically increasing or decreasing baseline haz-

ards, respectively. The cumulative hazard function for the Weibull model can be

determined as follows

H0(v) = λvρ (2.63)

Consequently, the inverse of the cumulative hazard function is given by

H−1
0 (z) =

(z
λ

)1/ρ
(2.64)

The survival times of the PH model can now be calculated by substituting H−1
0

in Equation (2.62) as follows

V =

(
− ln(U)

λϕi

)1/ρ

(2.65)

Example 2.6.2 Similar to those used in Weibull distribution, we have two parame-

ters in Gompertz distribution: a positive scale parameter denoted by λ and a shape

parameter denoted by ρ ∈ (−∞,∞). According to the Gompertz distribution, the

cumulative hazard function is given by

H0(v) =
λ (eρv − 1)

ρ
(2.66)
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The inverse of the cumulative hazard function of the Gompertz distribution is

therefore

H−1
0 (z) =

1

ρ
ln
(ρz
λ

+ 1
)

(2.67)

To obtain the survival times of the PHmodel, substituteH−1
0 into Equation (2.62)

as follows

V =
1

ρ
ln

(
1− ρ ln(U)

λϕi

)
(2.68)

2.6.3 Censoring times

Censoring times for the PH model can be generated such that the proportion of

censored observations is unaffected by either the choice of distribution of X or the

conditional distribution of V |X. We first assume any distribution for X, regressing

parameter β, and an appropriate form of the baseline hazards h0(t). The joint

resulting distribution for (X, V ) determines marginal distribution for V . Suppose

that Fv represents the cumulative distribution function of the marginal distribution

for V . We can now define the the random censoring time C which is independent

of V and X as follows

C = F−1
v (C̃) (2.69)

where C̃ is a random variable taking values in [0, 1] and independent of X and V

(e.g. one may consider C̃ ∼ Beta(a, b) for some choice of a and b). In practice,

one could replace the marginal distribution for V by the empirical distribution of

V, F̂v, based on a large random sample from the marginal distribution of V. Then,

C can be generated by Equation (2.69), using values of a and b that lead to the

desired proportion of censored observations noting that C̃ ∼ Beta(a, b) leads to

approximately the fraction b/(a + b) of right censored observations. For instance,

using C̃ ∼ Beta(4, 1) leads to approximately 20% of right censoring proportion.
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2.7 Bootstrap methods for the PH model

Bootstrap is an excellent tool for generating pseudo-samples with specified prop-

erties, particularly when dealing with complex data structures, for a variety of pur-

poses, such as estimating standard errors and confidence intervals. This section dis-

cusses bootstrap methods for the PH model, particularly, Zelterman’s method which

we have utilized in this thesis to assess the imprecise proportional hazards model.

Efron [30] developed a bootstrapping technique for survival data that incorporates

censoring observations into estimation of certain properties of the Kaplan-Meier

survival function in the absence of covariates. For the purpose of accommodating

covariates, Reid [76] proposed a conditional bootstrap method for generating sur-

vival times based on each covariate’s value using the Kaplan-Meier function. A

straightforward bootstrap methods for sampling survival data with covariates was

described by Efron and Gong [31] as well as Efron and Tibshirani [32]. These two

methods can be applied directly to Cox’s model by resampling the triples (Ti, δi, Xi)

non-parametrically from the original data either within each group or assuming

random covariate. There is a possibility that bootstrap samples do not follow the

proportional hazards assumption, which is considered a disadvantage of this method.

Hjort [66] describes a bootstrap method for evaluating the sampling accuracy of the

estimated coefficient associated with the proportional hazards model. The boot-

strap scheme of Hjort assumes that the censoring variables are known precisely, due

to a fixed endpoint [16]. It has been pointed out by Burr that the sensitivity of

influential points might be a drawback of Hjort’s method. That is, individuals with

higher values of a covariate when β̂ is positive tend to be censored, leading to a

new bootstrap method by Burr. In fact, both Burr’s and Hjort’s methods generate

survival and censored times separately with survival times conditioned on the ex-

act values of covariates in the original data. Essentially, using the survival function

Ŝ(t|xi) = Ŝ0(t)
ϕ̂i based on fitting the PH model to the original data one can generate

event times, v∗, for bootstrap samples in these methods. In the case of Hjort’s boot-

strap, the resampled censoring times c∗ can be determined for each individual by the

random common distribution Ĝ based on the Kaplan-Meier estimates for the sur-

vival function correspond to the censored observations. The only difference between
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Hjrot and Burr’s methods is that c∗ = t for observed right censored observations,

in Burr’s. As opposed to these methods, the variation in survival and censoring

times of the original data is better reflected in the bootstrap samples obtained by

Zelterman et al.’s method [91]. In other words, the proportion of censored obser-

vations in all bootstrap samples is identical to that in the original data, since any

right-censored observation in the original data will remain censored in all bootstrap

samples as well. Bootstrap observations in this approach are generated by choosing

a pair of time and censoring indicator (t∗, δ∗) from the observed data with replace-

ments, then determine the covariate x∗ based on a conditional distribution given

the selected pair. The next two sections illustrate the two bootstrap approaches as

described in Zelterman et al. [91] and N.L. Hjort [66], respectively.

2.7.1 Zelterman et al.’s bootstrap method for the PH model

There are two types of bootstrap approaches proposed by Zelterman et al. [91],

a restricted one in which all the observed values of x must be contained in the

bootstrap pseudo-samples, and an unrestricted one. In light of the fact that the

restricted approach can be extremely time-consuming and computer-intensive, we

have opted to use an unrestricted bootstrap method instead. In order to ensure

clarity, we will limit our attention to observations related to event times. The boot-

strap observations are denoted by an asterisk. Then, the bootstrap technique begins

by considering τi as the probability of selecting the distinct pair (t∗ = ti, δi = 1)

such that τi = P [t∗ = ti|δ∗i = 1] = ni/ñ where ni and ñ represent the num-

ber of events at time ti and the total number of events in the original data, re-

spectively. Additionally, assume the probability of selecting x∗ = xj denoted by

ωj = P [x∗ = xj] =
∑n

l=1 1[xl=xj ]/n. Regarding the conditional probability of choos-

ing x∗ = xj given the selected pair (t∗ = ti, δ
∗ = 1), Zelterman et al. [91] utilized

the approximation of the hazard function that h(t|x) = P [(t∗,δ∗)=(ti,1)|x]
P [t∗≥ti,δ∗=1|x] and applied

Bayes’ theorem to show that

πij = P [x∗ = xj|(t∗, δ∗) = (ti, 1)] =
ϕj

(
ñωj −

∑
l<i nlπlj

)∑n
k=1

[
ϕk

(
ñωk −

∑
l<i nlπlk

)] (2.70)

Note that the interval sums of Equation (2.70) are zero for l = 1 and only run
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over event times. The exterior summation, on the other hand, run over all possible

values of xj. In a similar manner, the conditional distributions of x∗ = xj given the

chosen pair (t∗ = ti, δ
∗ = 0) has been shown to be

πc
ij = P [x∗ = xj|(t∗, δ∗) = (ti, 0)] =

∑n
l=u πljτl∑n
l=u τl

(2.71)

where u = min{t : t ≥ ti}. As stated by Zelterman et al., these conditional proba-

bilities have some issues regarding the last observed time, tn. First, π
c
nj is undefined

when tn corresponds to censored observation, so πc
nj will be arbitrarily defined as

equal to πij associated with the longest-lived non-censored observations. In addi-

tion, the authors suggested that this remedy could also be applied if πnj /∈ [0, 1], for

non-censored observation. Hence, this unrestricted bootstrap can be explained as

follows [91]:

1. Fit the PH model to the original data and obtain an estimate for the regression

parameter using either Cox’s partial likelihood or any other estimator.

2. Assign τi as the probability of selecting the distinct pair (t∗ = ti, δi = 1) such

that τi = ni/ñ where ni and ñ are the number of observed events at time t(i)

and the total number of events in the dataset for the case of ties observations.

The thesis assumes the absence of ties, so τi = 1/ñ and τ ci = 1/(n− ñ) with n

is the total number of observations.

3. Assign ωj =
∑n

l=1 1[xl=xj ]/n, note xj can be either a single value or a vector.

4. Use results from Steps 1-3 in Equation (2.70) to compute π11,π12, ..., for all

πij related to event times.

5. Use πij obtained from Step 4 in Equation (2.71) to determine πc
ij.

6. Resample pairs of observations (t∗i , 1), i = 1, ..., ñ according to τi’s and use τ ci ’s

to resample pairs of observations (t∗i , 0), i = ñ+1, ..., n, both with replacement.

7. According to πij’s and π
c
ij’s from Steps 4 and 5 assign x∗ for each selected pairs

in Step 6.

8. Perform Steps 6-7 for B times to obtain B resamples.
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2.7.2 Hjort’s bootstrap method for the PH model

This section describes the bootstrap approach developed by Hjort. This boot-

strap approach is relatively straightforward to implement than Zelterman et al.’s

method. Although Hjort’s bootstrap is acknowledged for its sensitivity to influen-

tial factors, its simplicity, particularly with continuous covariates, is one of its most

compelling features. By contrast, Zelterman et al.’s method may yield negative

probabilities when the covariate is continuous due to Equation (2.70). The resam-

pled covariate values in Hjort’s method are identical to those observed in the original

data. Event times for individuals with covariate value xi are resampled according

to the following distribution function

F̂ (tj|xi) = 1−
∏
l≤j

(1−∆Ĥ0(tl))
ϕ̂i (2.72)

where the estimates of the baseline hazard are given by

∆Ĥ0(tj) = min

{
dj∑
l≥j ϕ̂l

, 1

}
(2.73)

Note that these baseline hazard estimates are a refined version of Breslow’s esti-

mates, and are intended to eliminate the possibility of negative probabilities resulting

from ∆Ĥ0(tj) > 1. These distribution function estimates determine the resampled

event times v∗i related to individuals with x = xi. Hjort proposed various schemes

for resampling the right-censored times, c∗i , for the ith individual. Among these

schemes, assuming a fixed endpoint for the censoring time. An alternative approach

involves assuming random censorship that is independent of event times [66]. In this

approach, the right-censored times for all individuals are resampled from a common

distribution function G, which is equivalent to Kaplan-Meier estimates based on

the right-censored observations, with 1 − δi replacing δi. The latter approach is

employed in this thesis. Given t∗i = min{v∗i , c∗i } and δ∗i = I{v∗i ≤ c∗i }, the resampled

data for the ith individual comprise (t∗i , δ
∗
i , xi). The procedure for conducting Hjort

bootstrap is outlined as follows:

1. Fit the proportional hazards model to the original data and derive an estimate

for the regression parameter, β̂.
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2. Substitute β̂ into Equation (2.73) to estimate the baseline hazard function

∆Ĥ0(tj).

3. Use β̂ and ∆Ĥ0(tj) to derive estimates of the CDF functions, F̂i, for each

individual as described in Equation (2.72).

4. Use the pairs (t1, 1−δ1), (t2, 1−δ2), . . . , (tn, 1−δn) to estimate the distribution

function for the resampled right-censoring times Ĝ.

5. Resample pairs of observations (v∗i , c
∗
i ) according to F̂i and Ĝ, i = 1, ..., ñ.

6. For each pair in Step 5, employ t∗i = min v∗i , c
∗
i and δ∗i = I{v∗i ≤ c∗i } to

construct the triplets (t∗i , δ
∗
i , xi), i = 1, 2, . . . , n

7. Repeat Steps 5− 6 for B times to obtain B resamples.



Chapter 3

Imprecise PH model

3.1 Introduction

The main intention of this chapter is to investigate opportunities for develop-

ing an imprecise proportional hazards model which can be employed when the PH

assumption is questionable. The Poisson full empirical likelihood function for the

PH model will be used to construct an imprecise proportional hazards model. To

accomplish this, the hazard function for each individual will be augmented by in-

cluding imprecision as an additional factor. Those additional factors can be incorpo-

rated either based on individual imprecision or based on group imprecision. In the

individual-based imprecise model, IPH, the imprecision terms are incorporated into

the hazard function of the ith individual at time t and permitted to vary throughout

the lifespan of each individual separately. The group-based imprecise model, GPH,

enables individuals within each group to share the same imprecision through divid-

ing the data into groups according to similar characteristics, e.g., gender. These

imprecision terms associated with the IPH or the GPH models are constrained to

lie in a predetermined small interval.

This chapter is organized as follows. Sections 3.2 discusses the construction of the

Poisson full empirical likelihood function for individual-based imprecise PH model.

Section 3.3 derives the Poisson full empirical likelihood related to the group-based

imprecise PH model. In Section 3.4, the asymptotic behaviour as imprecision in-

creases will be illustrated and the benefits of using the GPH model over the PH

40
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model when the PH assumption is violated will be assessed. Section 3.5 includes

comments on our findings as well as suggestions for possible future work.

3.2 Individual-based Imprecise PH model (IPH)

In the spirit of Section 2.5.1, we are constructing an individual-based imprecise

PH, hereafter IPH model, model assuming that imprecision applies to each individ-

ual separately. The IPH model includes an extra positive multiplicative factor in

the hazard function of the ith individual at time t such that the resulting model can

be expressed as follows

hi(t) = h0(t) exp(ϵi(t))ϕi (3.1)

The imprecision factors exp(ϵi(t)) in Equation 3.1 can vary throughout the lifespan

of each individual, but are constrained by a prespecified value ϵ∗, such that

|ϵi(t)| ≤ ϵ∗ (3.2)

Accordingly, the survival function, the cumulative hazard function, and the baseline

hazard function at time t using the IPH model are given by

Si(t) = exp[−Hi(t)] (3.3)

Hi(t) =
∑
l:tl≤t

hi(tl) =
∑
l:tl≤t

h0(tl) exp(ϵi(tl))ϕi (3.4)

h0(t) = ∆H0(t) = H0(t)−H0(t
−) (3.5)

Note that this model related to continuous time, so the continuous relation between

the survival and the cumulative hazard functions was employed as in Equation (3.3).

Due to the fact that the empirical likelihood will be written in term of hazard

function and that the empirical likelihood can not optimized under the continuous

distributions, the cumulative hazard function for particular individual at time t can

be determined as summation for the hazard estimates related to that individual

from time t0 = 0 up to t. Consequently, the Poisson empirical likelihood function
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for IPH model is given by

L(ψ) =
n∏

i=1

[
hi(ti)

δi exp (−Hi(ti))
]

=
n∏

i=1

[
[h0(ti) exp(ϵi(ti))ϕi]

δi exp

(
−
∑
l≤i

h0(tl) exp(ϵi(tl))ϕi

)] (3.6)

where ψ = {β, h0(t1), . . . , h0(tn), ϵ1(t1), . . . , ϵ1(tn), . . . , ϵn(t1), . . . , ϵn(tn)}. The con-

tribution of the ith individual to the empirical likelihood function under the IPH

model is given by

Li(ψi) = hi(ti)
δi exp [−Hi(ti)]

= [h0(ti) exp(ϵi(ti))ϕi]
δi exp

(
−
∑
l≤i

h0(tl) exp(ϵi(tl))ϕi

)
(3.7)

where ψi = {β, h0(t1), . . . , h0(ti), ϵi(t1), . . . , ϵi(ti)}. Please note that throughout this

thesis, we consider the convention that any expression of the form yδi evaluates to

zero when y = 0, even when δi = 0. Therefore, when δi = 0 the notation should

be interpreted to mean Li = exp
(
−
∑

l≤i h0(tl) exp(ϵi(tl))ϕi

)
. For ease of notation,

h0(ti) has been replaced by pi in what follows. In accordance with Equation (3.7),

the likelihood function is

L(ψ) = [p1 exp(ϵ1(t1))ϕ1]
δ1 exp [−p1 exp(ϵ1(t1))ϕ1]

× [p2 exp(ϵ2(t2))ϕ2]
δ2 exp [−p1 exp(ϵ2(t1))ϕ2 − p2 exp(ϵ2(t2))ϕ2]

× [p3 exp(ϵ3(t3))ϕ3]
δ3 exp [−p1 exp(ϵ3(t1))ϕ3 − p2 exp(ϵ3(t2))ϕ3 − p3 exp(ϵ3(t3))ϕ3]

× . . .

× [pn exp(ϵn(tn))ϕn]
δn exp [−p1 exp(ϵn(t1))ϕn − · · · − pn exp(ϵn(tn))ϕn]

By multiplying the contribution of all individuals and rearranging the likelihood

function with reference to pi, for i = 1, 2, . . . , n, one can write the full likelihood of

the IPH model as

L(ψ) =
n∏

i=1

[pi exp(ϵi(ti))ϕi]
δi exp(−pir∗i ) (3.8)

where r∗i =
∑

l≥i exp(ϵl(ti))ϕl represents the sum of the imprecision factors times

the covariate effect for all individuals at the risk at time ti.
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3.2.1 Profiling out the baseline hazard function

The next step is to profile out the terms pi from the likelihood function. Con-

sider arbitrary, but, fixed β and ϵi(t), and let δi = 0, so the likelihood function of

Equation (3.8) only involves the terms exp(−pir∗i ). Hence, the log-likelihood func-

tion can be maximized by taking p̂i = 0 when δi = 0 since r∗i is a sum of positive

quantities. The derivative of the log-likelihood function with respect to a particular

pi when δi = 1 is given by

∂ℓ

∂pi
=

∂

∂pi

[
n∑

j=1

δj ln pj + δjϵj(tj) + δjβxj − pjr
∗
j

]

=
1

pi
− r∗i

(3.9)

Now, by setting the derivative of the log-likelihood to zero and solving for pi we

obtain p̂i =
1
r∗i
. This maximizes the log-likelihood function when δi = 1, because

the second derivative of Equation (3.9) with respect to pi is negative. The empirical

likelihood function of the IPH model reaches its maximum at

p̂i =
δi
r∗i

(3.10)

for i = 1, 2, ..., n. Hence, the full profile likelihood function of the IPH model can

be obtained by substituting p̂i from Equation (3.10) into Equation (3.8),

Lp =
n∏

i=1

[p̂i exp(ϵi(ti))ϕi]
δi exp(−p̂ir∗i )

=
n∏

i=1

[
δi exp(ϵi(ti))ϕi

r∗i

]δi
exp(−δi)

=
n∏

i=1

[
δi exp(ϵi(ti))ϕi exp(−1)

r∗i

]δi
(3.11)

Notice that the product in this likelihood is taken effectively only over event

times and that the constant exp(−1) can be excluded from the likelihood function.

Additionally, the full profile likelihood function in Equation (3.11) is well defined

under the convention 00 = 1, so the likelihood function is proportional to
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Lp ∝
n∏

i=1

[
ϕi

exp(−ϵi(ti))r∗i

]δi
(3.12)

3.2.2 Maximizing the likelihood function of the IPH model

Given a fixed value for β, the contribution of the likelihood function at time ti

can be expressed as follows

Lp
i =

[
ϕi

exp(−ϵi(ti))r∗i

]δi
=

[
ϕi

exp(−ϵi(ti)) [exp(ϵi(ti))ϕi + exp(ϵi+1(ti))ϕi+1 + · · ·+ exp(ϵn(ti))ϕn]

]δi
=

[
ϕi

exp(ϵi(ti)− ϵi(ti))ϕi + exp(ϵi+1(ti)− ϵi(ti))ϕi+1 + · · ·+ exp(ϵn(ti)− ϵi(ti))ϕn

]δi
=

[
ϕi

ϕi + exp(ϵi+1(ti)− ϵi(ti))ϕi+1 + · · ·+ exp(ϵn(ti)− ϵi(ti))ϕn

]δi
(3.13)

The contribution Lp
i corresponding to event time ti achieves its maximum by

making the denominator as small as possible. That is, we consider the upper bound

of imprecision for the ith individual where i ̸= n at time ti, ϵi(ti) = ϵ∗, and the

lower bound of imprecision for all other individual in the risk set, ϵl(ti) = −ϵ∗ for

all l > i. Due to the fact that the profile likelihood is only be calculated at event

times, imprecision terms associated with censoring times cannot be determined.

Furthermore, the imprecision term corresponding to the last observation at tn makes

no contribution, since for i = n we have

Lp
n =

[
ϕn

exp(−ϵn(tn))r∗n

]δn
=

[
ϕn

exp(−ϵn(tn)) exp(ϵn(tn))ϕn

]δn
= 1

The likelihood function in Equation (3.12) attaining its maximum by setting

ϵl(ti) =


ϵ∗ ; for l = i < n

−ϵ∗ ; for l > i

Not determined ; for censored times and tn
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Hence, the maximized contribution of Lp
i at time ti is

max(Lp
i ) = max

[
ϕi

ϕi + exp(ϵi+1(ti)− ϵi(ti))ϕi+1 + · · ·+ exp(ϵn(ti)− ϵi(ti))ϕn

]δi
=

[
ϕi

ϕi + exp(−2ϵ∗)ϕi+1 + · · ·+ exp(−2ϵ∗)ϕn

]δi
=

[
ϕi

ϕi + exp(−2ϵ∗)
∑

l>i ϕl

]δi (3.14)

Consequently, the full likelihood function of Equation (3.12) can be profiled as

L(β) =
n∏

i=1

[
ϕi

ϕi + exp(−2ϵ∗)ri+1

]δi
=

n∏
i=1

[
exp(βxi)

exp(βxi) + exp(−2ϵ∗)ri+1

]δi (3.15)

where ri+1 =
∑

l>i ϕl =
∑

l>i exp(βxl) with rn+1 = 0. This profile likelihood has

a single parameter to be estimated, β, and the likelihood value converges to 1 as

ϵ∗ → ∞. It should be noted from the first line of Equation (3.14) that this model

considers the length of the imprecision interval rather than the exact value of the

bounds. For instance, considering either |ϵi(t)| ≤ 0.2 or ϵi(t) ∈ [0, 0.4] for the impre-

cision terms will yield the same estimates because both intervals have equal length.

Additionally, the estimated regression parameter using this likelihood and the par-

tial likelihood of the PH model are equal when ϵ∗ = 0; however, the denominators

of these likelihoods differ when ϵ∗ > 0. The denominator of the partial likelihood

is
∑

l≥i ϕl = ϕi +
∑

l>i ϕl while the likelihood of the IPH model has denominator

ϕi+exp(−2ϵ∗)
∑

l>i ϕl, which leads to higher value of the likelihood function accord-

ing to the chosen level of imprecision, ϵ∗. The estimated parameter obtained from

maximizing with respect to β in Equation (3.15) will be denoted by β̂(ϵ∗), which

represents the estimated regression parameter β̂ for a given level of imprecision ϵ∗.

Example 3.2.1 The purpose of this example is to demonstrate how each observed

event time contributes to the imprecision of the IPH model via ϵi(t). In order
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ti δi x

10 1 1

12 0 0

14 1 0

16 1 1

18 0 1

20 1 0

Table 3.1: Survival data (Example 3.2.1)

to serve our purpose, an artificial survival data consisting of six observations has

been created, as shown in Table 3.1. Consider the contribution of L1 according to

Equation (3.13). Only the following imprecision terms are needed in the evaluation

of L1,

ϵx1(t = 10) = ϵ∗ ϵx2(t = 10) = −ϵ∗ ϵx3(t = 10) = −ϵ∗

ϵx4(t = 10) = −ϵ∗ , ϵx5(t = 10) = −ϵ∗ ϵx6(t = 10) = −ϵ∗

It is obvious that δ2 = 0 when i = 2 results in L2 = 1, thereby eliminating the

need for imprecision terms at time t = 12. The same procedure may be followed to

obtain the remaining imprecision terms, these are shown in Table 3.2. The number

of imprecision factors that are required for evaluating the likelihood function is∑n−1
i=1 δi(n− i+ 1).

⋄

3.2.3 Hazard and Survival functions for the IPH model

In this section we illustrate the estimation of the hazard and survival functions

for a particular individual using the IPH model. Equation (3.10) can be employed

in conjunction with β̂(ϵ∗), ϵ̂1(t1), . . . , ϵ̂1(tn), . . . , ϵ̂n(t1), . . . , ϵ̂n(tn) obtained through

the optimization process to determine the baseline hazard function h0(t). Hence,

the baseline hazard function for the IPH model can be derived as follows
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xi

ti

1 0 0 1 1 0

10 ϵ∗ −ϵ∗ −ϵ∗ −ϵ∗ −ϵ∗ −ϵ∗

12+

14 ϵ∗ −ϵ∗ −ϵ∗ −ϵ∗

16 ϵ∗ −ϵ∗ −ϵ∗

18+

20

Table 3.2: Imprecision terms related to the likelihood function (Example 3.2.1) with

the superscript, +, refers to right-censored observations

h0(tj) =
δj
r∗j

=
δj∑

l≥j exp(ϵl(tj))ϕl

=
δj

exp(ϵj(tj))ϕj +
∑

l>j exp(ϵl(tj))ϕl

=
δj

exp(ϵ∗)ϕj + exp(−ϵ∗)
∑

l>j ϕl

(3.16)

At right-censored and non-observed times, the baseline hazard function in the IPH

model equals zero as a result of the profiled maximization of the empirical likeli-

hood, see Equation (3.10). Due to the adherence to a Poisson empirical likelihood,

the survival functions can be estimated by the continuous time relationship between

cumulative hazard and survival functions as in Equation (2.9). Different variants

of the hazard and survival functions can be constructed depending upon how im-

precision values are assigned to the individual being studied. These variants can be

classified into two classes: restricted and unrestricted functions.
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I. Restricted hazard functions for the IPH model

Recall the hazard function of the IPH model for an individual with x = xi at

time t

hi(t) = h0(t) exp(ϵi(t))ϕi

As a result of the optimization process, it is known that exp(ϵi(t)) = ϵ∗ if that indi-

vidual is observed to have had the event at time t and exp(ϵi(t)) = −ϵ∗ otherwise.

Consequently, the hazard function for the individual with x = xi is h0(t) exp(−ϵ∗)ϕi

in all survival times except for the time when the individual had the event, in which

case the hazard function will be h0(t) exp(ϵ
∗)ϕi. Suppose that there are several

individuals with the same covariate value, xi, then each will have its own hazard

function. The hazard function for individuals with x = xi who did not experi-

ence the event will be unique and equal to h0(t) exp(−ϵ∗)ϕi in all observed times.

Meanwhile, the hazard functions for individuals who have experienced the event

will be distinct. These individuals will have hazard functions equivalent to those

right-censored individuals in all observed times, with the exception of a spike equal

to h0(t) exp(ϵ
∗)ϕi reflecting the occurrence time of the event. To better understand

this aspect, recall the artificial survival data in Table 3.1 and consider estimating

the hazard function for individuals with x = 1 given ϵ∗ = 0.5. The estimated haz-

ard functions related to individuals with x = 1, namely the first, fourth, and fifth

individuals, are presented in Figure 3.1, along with Breslow’s estimate of the hazard

function using the PH model. The estimated hazard functions derived from the IPH

model increase at times t = 10 and t = 16 for the first individual and the fourth

individual, respectively. Additionally, the hazard functions of these individuals de-

creases if no events occur, and equal to the hazard function of the fifth individual,

right-censored. Thus, the imprecise restricted hazard functions for the IPH model

corresponding to individuals with x = xi can therefore be defined as follows

hi(t) = max{H(t|x = xi)} (3.17)

hi(t) = min{H(t|x = xi)} (3.18)
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Figure 3.1: The estimated IPH restricted hazard functions for x1 = 1, blue circles,

x4 = 1, green triangles, and x5 = 1, indigo crosses using ϵ∗ = 0.5 along with Breslow

estimates of the hazard function for individual with x = 1, red squares.

Where H(t|x = xi) represents the set of all hazard functions at time t for all individ-

uals with x = xi. As the estimated hazard function for the right-censored individual

is always the lowest among others, it will serve as the lower hazard function for

all individuals with x = xi. In contrast, the upper hazard function is equal to the

lower hazard function, but increases only if an individual with x = xi has the event,

therefore the term restricted is used. Accordingly, the lower hazard function can

be interpreted as the lower bounds for all of these hazard functions related to in-

dividuals with x = xi conditioned on the assumed level of imprecision, while the

upper hazard function will be regarded as the upper bounds of these functions as

illustrated in Figure 3.2. Hence, the PH assumption is relaxed by considering these

functions as imprecise estimates of the hazard functions which include all possible

hazard functions for the population of individuals with x = xi.
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Figure 3.2: The imprecise restricted hazard estimates related to the IPH model for

individual x = 1 using ϵ∗ = 0.5 along with Breslow estimates of the hazard function

for the same individual.
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Figure 3.3: The imprecise unrestricted hazard functions related to the IPH model

for individual x = 1 using ϵ∗ = 0.5 along with Breslow estimates of the hazard

function for the same individual.
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II. Unrestricted hazard functions for the IPH model

Based on the definition of the restricted hazard, in the case of continuous co-

variates, those individuals who have not experienced the event during the study

period or whose covariate values have not been observed in the data will only have

a lower hazard function. In other words, the estimated upper hazard functions for

these individuals are equal to their estimated lower hazard functions. Therefore,

another simple version of hazard functions, namely unrestricted, were introduced in

which the assumed limits of imprecision are assigned to the hazard function directly,

regardless of whether or not an individual with the same covariate value has expe-

rienced the event. Therefore, the upper hazard function will increase at all event

times. Nevertheless, the estimated baseline hazard function will still be constrained

to the values of imprecision factors that maximize the likelihood function. Hence,

the estimated unrestricted imprecise hazard functions are given by

hi(t) = h0(t) exp(ϵ
∗)ϕi (3.19)

hi(t) = h0(t) exp(−ϵ∗)ϕi (3.20)

The lower hazard functions resulting from either type are identical, whether re-

stricted or unrestricted. This is because according the definition of the restricted

lower hazard function, the minimum restricted lower hazard function is always re-

lated to individuals who are right-censored or unobserved where the imprecision

factor is equal to the lower imprecision bound. Based on the imprecision constraint,

the estimated imprecise hazard functions may be interpreted as upper and lower

bounds for all possible hazard functions for the entire population with the same

covariate value, irrespective of whether individuals experienced the event or not.

III. Restricted and unrestricted survival functions for the IPH model

The imprecise restricted and unrestricted survival functions for the IPH model

are determined by taking into account the imprecise upper and lower hazard func-

tions using Equations (3.17) and (3.18) for the restricted type or Equations (3.19)
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and (3.20) for the unrestricted as follows

S(t;xi) = exp[−H i(t)] = exp[−
∑
j:tj≤t

hi(tj)] (3.21)

S(t;xi) = exp[−H i(t)] = exp[−
∑
j:tj≤t

hi(tj)] (3.22)

A key feature of the IPH survival functions of either types is that the lower

survival function tends to be highly effected by increasing the level of imprecision,

ϵ∗, in comparison to the upper survival function. In the case of the restricted hazard

functions, this feature can be justified by recalling the lower and upper hazard

functions for individuals with x = xi at event time tj and substituting the baseline

hazard from Equation (3.16) as follows

hi(tj) = h0(tj) exp(−ϵ∗)ϕi

=
δj

exp(ϵ∗)ϕj + exp(−ϵ∗)
∑

l>j ϕl

exp(−ϵ∗)ϕi

=
δjϕi

exp(2ϵ∗)ϕj +
∑

l>j ϕl

(3.23)

hi(tj) =
δjϕi

ϕj + exp(−2ϵ∗)
∑

l>j ϕl

(3.24)

The imprecision factor exp(2ϵ∗) in Equations (3.23) appears to affect only ϕj

related to the individual who experienced the event at time tk. This results in

a slight decrease in the lower restricted hazard function which leads to a slight

increase in the upper survival function. Unlike the upper restricted hazard function

in Equations (3.24), where the imprecision effect exp(−2ϵ∗) impacts the summation

of ϕl related to all other individuals in the risk set at time tj. This explains why

increasing the imprecision has a relatively smaller impact on the upper survival

function than on the lower survival function. The same reasoning can be used to

explain this feature for the unrestricted functions. As a conclusion to this section,

we will examine how fitting the IPH model and increasing imprecision levels affect

the regression parameter and survival functions. This analysis will be conducted

in Example 3.2.2 and 3.2.3 using simulated data with a binary covariate and the

Stanford Heart Transplant data with a continuous covariate, respectively.
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n = 30 n = 60 n = 200

ϵ∗ β̂ ℓ β̂ ℓ β̂ ℓ

0 −0.4399 −87.470 −1.0339 −199.45 −0.5208 −858.06

0.2 −0.4316 −79.115 −1.0227 −181.99 −0.5198 −796.71

0.4 −0.4198 −71.095 −1.0072 −165.01 −0.5176 −735.98

1 −0.3634 −50.093 −0.9258 −118.63 −0.4982 −560.33

8 −5× 10−6 −24.000 −4× 10−5 −47.000 −0.0003 −157.00

Table 3.3: Estimated β using the IPH model given ϵ∗ = 0, 0.2, 0.4, 1, and 8

Example 3.2.2 The goal of this example is to investigate the effect of the IPH

model on the estimated regression parameter and on the estimated survival func-

tions. We generate survival data that follow the PH model, as discussed in Sec-

tion 2.6. The Weibull distribution is assumed for the survival times with shape

parameter ρ = 3 and scale parameter λ = 2, based on the corresponding functions

in Table 2.1. These survival times are dependent on the pre-specified distribution of

the covariates and the value of the regression coefficient. To keep the example sim-

ple, we assume X to be a single time-independent covariate following the Bernoulli

distribution with probability equal to 0.5 and a PH regression coefficient β = −0.5.

Within each group, we assume 20% of observations are right censored as illustrated

in Section 2.6.3. The IPH model was fitted to three simulated data sets with sample

sizes of 30, 60, and 200.

Table 3.3 presents the estimates of the regression coefficients and the log-likelihood

values for five different levels of imprecision, ϵ∗ = 0, 0.2, 0.4, 1, and 8, for each sim-

ulated sample. According to Table 3.3, as the imprecision level is increased, the

estimated parameter converges to zero and the log-likelihood value increases. By

decreasing the imprecision level, the estimate approaches the partial likelihood es-

timate, so when ϵ∗ = 0, we obtain the MLE of the PH model. The IPH restricted

and unrestricted survival functions were estimated for both groups based on the

simulated sample of size n = 60 and level of imprecision ϵ∗ = 0.2. These survival

functions, along with Breslow’s estimates are shown in Figure 3.4 for the restricted

survival functions and Figure 3.5 for the unrestricted survival functions. Super-
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Figure 3.4: The IPH restricted survival functions for x = 0, amber, and x = 1,

indigo , using ϵ∗ = 0.2 along with Breslow’s estimates, dashed lines.
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Figure 3.5: The IPH unrestricted survival functions for x = 0,amber, and x = 1,

indigo , using ϵ∗ = 0.2 along with Breslow’s estimates, dashed lines.



3.2. Individual-based Imprecise PH model (IPH) 55

0.2 0.4 0.6 0.8 1.0 1.2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

su
rv

iv
al

 fu
nc

tio
ns

Sx=1
R  (t) Sx=1

UR  (t) Sx=1
Bres (t)

Figure 3.6: The estimated IPH restricted, light-indigo , and unrestricted, indigo ,

survival functions for individuals with x = 1 using ϵ∗ = 0.6 along with Breslow

estimate, dashed line.

scripts have been used in the legend to distinguish between these functions, with

R, UR, and Bres representing restricted, unrestricted, and Breslow’s estimates of

the PH survival functions, respectively. To clarify, Breslow’s estimates refer to the

PH survival function for an individual in which the corresponding baseline survival

function is derived from the exponential of the negative Breslow’s estimator of the

baseline cumulative hazard function, though it may also be referred to interchange-

ably as PH survival function, unless otherwise specified.

Figure 3.4 illustrates that the survival functions derived from the PH model for

both groups are very close to the restricted upper survival functions obtained from

the IPH model. Even though it may not be obvious from the figure, it should be

noted that the PH survival functions may not fall within the restricted IPH upper

and lower survival functions. The unrestricted functions behave similarly, as shown

in Figure 3.5, with the exception that the PH survival functions will lie within

the corresponding unrestricted upper and lower survival functions. The reason for

this is that the estimates of the PH hazard function is always located within the
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unrestricted upper and lower hazard functions for binary covariate, except for the

last survival time.

Both figures indicate that the restricted and unrestricted upper survival func-

tions are less affected by imprecision changes than their corresponding lower sur-

vival functions, as we demonstrated earlier in Section 3.2.3. Figure 3.6 illustrates

this characteristic when the imprecision level is increased to 0.6 and the survival

functions of both types are estimated for individuals with the covariate value x = 1.

Figure 3.6 also indicates that the unrestricted survival functions exhibit larger dif-

ferences between the upper and lower survival functions compared to the restricted

survival functions. It is due to the fact that the unrestricted upper hazard function

increases at all event times, even if the event occurs for an individual from the other

group, unlike the restricted upper hazard function which increases only when an in-

dividual from the group with x = 1 has the event. Furthermore, the upper survival

functions of both types are identical, and either slightly greater than or equal to the

survival function estimate obtained from the PH model.

⋄

Example 3.2.3 Our objective in this example is to examine the effect of fitting the

IPH model to survival data when a continuous covariate is present using the Stan-

ford Heart Transplant data set [34], “stanford2” which is provided in the R survival

package. The data record the survival experience of 184 transplant patients, includ-

ing 71 right-censored observations. To simplify the analysis, we add infinitesimal

values to break any ties in the survival times. To determine the effect of age on the

survival of individuals with different levels of imprecision, we fitted the IPH model

to the entire data set. Although the original data contains other covariates recorded

for patients, they have not been considered in this example. Table 3.4 presents the

estimates of the regression parameter and the associated logarithmic likelihood val-

ues for ϵ∗ = 0, 0.2, and 0.4. As expected, the table shows that as the imprecision

level increases, the estimated β decreases towards 0 and the log-likelihood value in-

creases. Theorem 3.4.2 on page 77 illustrates the asymptotic behaviour of increasing

the imprecision level.
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ϵ∗ β̂ ℓ

0 0.0291 -621.99

0.2 0.0288 -577.73

0.4 0.0285 -533.88

Table 3.4: Estimates of β obtained from fitting the IPH model to the Stanford Heart

Transplant data using ϵ∗ = 0, 0.2, and 0.4

time 274 54 66 263 265 279 538 547 729 834 1866 1996 2878 65 136

status 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1

x 31 49 49 49 49 49 49 49 49 49 49 49 49 55 55

Table 3.5: Observed survival times related to individuals with x = {31, 49, 55} in

the Stanford Heart Transplant data

The IPH survival functions were estimated for intentionally selected individuals

at age 31, 37, 49, and 55, in order to highlight key aspects of the IPH model in

relation to survival data with a continuous covariate. A summary of the records

for these individuals is provided in Table 3.5, noting the absence of individuals at

the age of 37 which represent individuals who have not been observed. The table

reveals that the individual at age 31 was observed only once, corresponding to an

event time, while the individuals at age 49 exhibited twelve observations, ten of

which were event times and two being right-censored. Furthermore, at age 55, the

data comprises two individuals, both of whom experienced the event. In light of the

large disparity between the upper and lower survival functions of the unrestricted

survival functions, the imprecision levels were randomly selected for the restricted

survival functions using ϵ∗ = 0.4, whereas ϵ∗ = 0.04 for the unrestricted survival

functions.

The restricted and unrestricted IPH survival functions along with the corre-

sponding PH survival functions are shown in Figure 3.7 and Figure 3.8, respectively.

Figure 3.7 illustrates that the upper restricted survival functions obtained from the
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Figure 3.7: The restricted IPH survival functions for individuals with x = 31, 37,

49, 55 using ϵ∗ = 0.4 along with their corresponding PH survival functions based on

Breslow’s estimates.

IPH model are either closely aligned or slightly higher than the PH survival func-

tions. The figure also reveals a correlation between the number of events that occur

for individuals and the discrepancy between their upper and lower survival func-

tions. For instance, at age 37, where there are no individuals in the data set, both

the upper and lower survival functions are identical. Due to the occurrence number

of events for individuals at age 49, ten events, the figure displays a larger disparity

between the restricted upper and lower survival functions. Similar patterns were

observed for individuals at ages 31 and 55. Notably, the PH survival function does

not necessarily fall between the restricted upper and lower survival functions for a

continuous covariate. This phenomenon can be attributed to the restricted upper

hazard function which increases exclusively at event times corresponding to individ-

uals sharing the same covariate value. Thus, as the number of events occurring for

these individuals increases, the more likely the PH survival function will lie within

the imprecise IPH survival functions, as shown in Figure 3.7 for individuals aged 49.
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Figure 3.8: The unrestricted IPH survival functions for individuals with x = 31, 37,

49, 55 using ϵ∗ = 0.04 along with their corresponding PH survival functions based

on Breslow’s estimates.

The unrestricted upper and lower hazard functions exhibit an interesting char-

acteristic of being constantly increasing at all event times. As a result, this char-

acteristic ensures the existence of both upper and lower survival functions for all

individuals, including those who may be absent from the available data set. Conse-

quently, the difference between the unrestricted imprecise survival functions derived

from the IPH model is not influenced by the frequency of events reported for indi-

viduals, as demonstrated in Figure 3.8. It is worth noting that despite not being

explicitly visible in Figure 3.8, the estimates of the PH survival functions may not

fall within their corresponding unrestricted upper and lower survival functions.

⋄

The IPH model formalization incorporates individual-specific imprecision fac-

tors. However, the estimation process of the hazard or survival functions involves

considering the highest and lowest hazard functions associated with all individuals

sharing the same covariate value, as demonstrated in Equations (3.17) and (3.18).
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Building upon the analogy of the IPH model and the insights gained from Exam-

ples 3.2.3 and 3.2.2, we propose a novel generalized group-based imprecise model,

which imposes the natural sharing of the imprecision factors among sets of individu-

als. A more detailed analysis of this generalized model is presented in the subsequent

section, Section 3.3.

3.3 Group-based Imprecise PH model (GPH)

The GPH model is primarily proposed to avoid any unnecessary imprecision

that may arise as a result of individual imprecision in the IPH model, especially

in the case of binary covariates. Through dividing the data according to similar

characteristics, the GPH model imposes individuals within each group to share the

same level of imprecision during the study. The resulting hazard function at time t

for the ith individual under the GPH model is given by

hi(t) = h0(t) exp(ϵ[i](t))ϕi (3.25)

where [i] indicates the group that the ith candidate belongs to, with |ϵ[i](t)| ≤ ϵ∗.

Consider the case of survival data with a binary covariate representing gender of

patients, with a value of zero for females and one for males. By fitting the GPH

model with groups corresponding to the binary covariate, ϵ[i](t) = ϵ0(t) if the ith

individual is female and ϵ[i](t) = ϵ1(t) if the ith individual belongs to the male group.

Hence, all females will exhibit the same imprecision effect at all times, ϵ0(t), and

similarly for males, ϵ1(t).

According to this definition, the IPH model can be viewed as a special case of

the GPH model when there is only one candidate in each group. Based on similar

steps to those described in Section 3.2, it can be seen that the contribution of the

ith individual to the likelihood function is given by

Li =
[
pi exp(ϵ[i](ti))ϕi

]δi exp(−∑
tl≤ti

pl exp(ϵ[i](tl))ϕi

)
(3.26)

where pi = h0(ti). The likelihood function corresponding to the GPH model can be
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determined by multiplying the contributions L1, . . . , Ln as follows

L(ψ) =
[
p1 exp(ϵ[1](t1))ϕ1

]δ1 exp [−p1 exp(ϵ[1](t1))ϕ1

]
×
[
p2 exp(ϵ[2](t2))ϕ2

]δ2 exp [−p1 exp(ϵ[2](t1))ϕ2 − p2 exp(ϵ[2](t2))ϕ2

]
×
[
p3 exp(ϵ[3](t3))ϕ3

]δ3 exp [−p1 exp(ϵ[3](t1))ϕ3 − p2 exp(ϵ[3](t2))ϕ3 − p3 exp(ϵ[3](t3))ϕ3

]
× . . .

×
[
pn exp(ϵ[n](tn))ϕn

]δn
exp

[
−p1 exp(ϵ[n](t1))ϕn − · · · − pn exp(ϵ[n](tn))ϕn

]
where ψ = {β, p1, . . . , pn, . . . , ϵ[1](t1), . . . , ϵ[n](t1), . . . , ϵ[n](tn)}. Following this multi-

plication across all individuals and rearranging the likelihood function with reference

to pi, the Poisson empirical likelihood of the GPH model can be written as

L =
n∏

i=1

[
pi exp(ϵ[i](ti))ϕi

]δi exp(−pir∗[i]) (3.27)

where r∗[i] =
∑

l≥i exp(ϵ[l](ti))ϕl represents the sum of the shared imprecision factors

times the covariate effects for all individuals at risk at time ti. As with the IPH

model discussed in Section 3.2, the profile likelihood function for the GPH model

can be directly determined from Equation (3.12) by assuming fixed β and ϵ[l](ti).

Thus, the profile likelihood function for the GPH model is proportional to

Lp ∝
n∏

i=1

[
ϕi

exp(−ϵ[i](ti))r∗[i]

]δi
(3.28)

with p̂i =
δi
r∗
[i]

and r∗[i] =
∑

l≥i exp(ϵ[l](ti))ϕl.

3.3.1 Maximizing the likelihood function of the GPH model

To simplify the analyses, let us consider the case where the survival data is

limited to two groups, so we have two shared imprecision factors with ϵ0(ti) for the

group with x = 0 and ϵ1(ti) for x = 1. Thus, r∗[i] can be represented by

r∗[i] = exp(ϵ0(ti))
∑
l≥i

1[xl=0]ϕl + exp(ϵ1(ti))
∑
l≥i

1[xl=1]ϕl

Generalizing this representation to incorporate m distinct groups is straightfor-

ward. Consequently, the contribution Lp
i of the event time ti to the above likelihood
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function can be written as follows

Lp
i =

[
ϕi

exp(−ϵ[i](ti))r∗[i]

]δi

=

[
ϕi

exp(−ϵ[i](ti))
(
exp(ϵ0(ti))

∑
l≥i 1[xl=0]ϕl + exp(ϵ1(ti))

∑
l≥i 1[xl=1]ϕl

)]δj

=

[
ϕi(

exp(ϵ0(ti)− ϵ[i](ti))
∑

l≥i 1[xl=0]ϕl + exp(ϵ1(ti)− ϵ[i](ti))
∑

l≥i 1[xl=1]ϕl

)]δj
(3.29)

If xi = 0, then ϵ[i](ti) = ϵ0(ti) = ϵ∗ and ϵ1(ti) = −ϵ∗ maximize the contribution of Li,

and vice versa when xi = 1. Hence, Li corresponding to a non-censored observation

achieves its maximum at ϵ[i](ti) = ϵj(ti) = ϵ∗ with j ∈ {0, 1} for the group that

experience the event at time ti, and the lower bound of imprecision for other groups

in the risk set, −ϵ∗. Similar to the IPH model in Section 3.2, the imprecision terms

corresponding to the censoring times and also to tn have no impact on the likelihood,

because the product in the likelihood is taken only over failure times, and Ln = 1.

Consequently, the full likelihood function of Equation (3.28) can be profiled as

L(β) =
n∏

i=1

[
ϕi∑

l≥i ϕl

[
1[xl=xi] + exp(−2ϵ∗)1[xl ̸=xi]

]]δi (3.30)

zzz In order to demonstrate how the imprecision factors in Equation (3.29) are

determined, we will provide a brief example.

Example 3.3.1 This example illustrates how each observed individual contributes

to the imprecision of the GPH model via ϵ[i](t). In order to facilitate our purpose,

recall the artificial survival data in Table 3.1. Consider the contribution of L1 as

in Equation (3.29), it can be seen that only the following imprecision terms are

required when evaluating L1

ϵ[x=1](t = 10) = ϵ∗ ϵ[x=0](t = 10) = −ϵ∗

The imprecision terms are not required at t = 12 since it is a right-censored

observation, which implies that L2 = 1. By following the same procedure, the re-

maining imprecision terms can be obtained, see Table 3.6.
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x

ti

1 0 0 1 1 0

10 ϵ∗ −ϵ∗ −ϵ∗ ϵ∗ ϵ∗ −ϵ∗

12+

14 ϵ∗ −ϵ∗ −ϵ∗ ϵ∗

16 ϵ∗ ϵ∗ −ϵ∗

18+

20

Table 3.6: GPH’s imprecision terms for the Survival data in Table 3.1

When assessing the imprecision terms that maximize the likelihood functions,

Examples 3.2.1 and 3.3.1 demonstrate the differences between the GPH and IPH

models. In particular, in the IPH model, only the imprecision factor associated with

the individual who experienced the event equals the upper bound of the imprecision

level, whereas the imprecision factor associated with other individuals in the risk

set equals the lower bound of the imprecision level. This contrasts with the GPH

model, which assigns an upper bound of imprecision to all individuals in a risk set

who belong to the same group as the individual who experienced the event, and a

lower bound to those from other groups.

⋄

3.3.2 Hazard and survival functions for the GPH model

This section illustrates the estimation of the hazard and survival functions for

individuals with particular covariate values using the GPH model. The results of

the profile likelihood function in Equation (3.28) can be used as a basis for determin-

ing the baseline hazard function h0, along with β̂(ϵ∗), ϵ̂[1](t1), . . . , ϵ̂[n](tn) obtained

through maximizing the likelihood function. In view of this, the baseline hazard

function of the GPH model can be derived as follows
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h0(tj) =
δj
r∗[j]

=
δj

exp(ϵ∗)
∑

l≥j 1[xl=xj ]ϕl + exp(−ϵ∗)
∑

l≥j 1[xl ̸=xj ]ϕl

(3.31)

Note that the baseline hazard function is zero at right-censoring or non-observed

times due to the profiled maximization of the empirical likelihood. Similar to the

IPH model, the imprecise hazard and survival functions associated with the GPH

model can be introduced in different forms, restricted and unrestricted.

As a result of the optimization process, it is known that exp(ϵ[i](t)) = ϵ∗ whenever

an member of the group with covariate value x = xi is observed to have had the event

at time t, and exp(ϵ[i](t)) = −ϵ∗ otherwise. The restricted hazard function relies on

this result, so the upper hazard function for the group with x = xi is h0(t) exp(−ϵ∗)ϕi

in all survival times except for the time when a member of that group had the event,

in which case the hazard function will increase to h0(t) exp(ϵ
∗)ϕi. The lower hazard

function will reflect the scenario that none of these members has experienced the

event. Consequently, the restricted hazard functions for the GPH model are

hi(t) =

h0(t) exp(ϵ
∗)ϕi ; if an individual with x = xi had the event at t

h0(t) exp(−ϵ∗)ϕi ; otherwise

(3.32)

hi(t) = h0(t) exp(−ϵ∗)ϕi (3.33)

The unrestricted hazard functions assign the assumed imprecision limits directly

to the hazard function. This is regardless of whether or not members who share the

same covariate value have experienced an event. Consequently, the upper hazard

function will increase at all event times. Therefore, the imprecise unrestricted hazard

functions are

hi(t) = h0(t) exp(ϵ
∗)ϕi (3.34)
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Figure 3.9: The estimated imprecise GPH restricted hazard functions for the group

with x = 1 using ϵ∗ = 0.5 along with Breslow estimates of the hazard function.

hi(t) = h0(t) exp(−ϵ∗)ϕi (3.35)

According to the definition of the restricted and unrestricted lower hazard functions

in the GPH model, these functions are the same. In light of the imprecision con-

straint, the estimated imprecise hazard functions can be interpreted as upper and

lower bounds for the set of all possible hazard functions for the entire population

with the same covariate value, regardless of whether members of that population

experienced the event. Despite the fact that the lower hazard functions of the IPH

and GPH models are defined in the same way, their estimations will differ as a result

of the different likelihood functions.

Based on fitting the GPH model to the artificial survival data in Table 3.1, Fig-

ures 3.9 and 3.10 display the imprecise restricted and unrestricted hazard functions,

respectively, for individuals with x = 1. According to Figure 3.9, the restricted up-

per hazard function for individuals with x = 1 increases only when the event occurs

at t = 10 and t = 16 for individuals with x = 1. As opposed to the upper unre-

stricted hazard function in Figure 3.10, which increases at all event times regardless
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Figure 3.10: The estimated imprecise GPH unrestricted hazard functions for the

group with x = 1 using ϵ∗ = 0.5 along with Breslow estimates of the hazard function.

of which individual has experienced the event. The lower hazard functions in both

types decrease in all event times.

To determine the imprecise survival function for the GPH model, we substitute

the imprecise upper and lower hazard functions using Equations (3.34) and (3.35)

for the restricted type or Equations (3.32) and (3.33) for the unrestricted type as

follow

S(t;xi) = exp[−H i(t)] = exp[−
∑
j:tj≤t

hi(tj)] (3.36)

S(t;xi) = exp[−H i(t)] = exp[−
∑
j:tj≤t

hi(tj)] (3.37)

As opposed to the IPH model, increasing the imprecision level has relatively sim-

ilar effects on GPH upper and lower survival functions. Essentially, this feature can

be justified by considering the baseline hazard function related to the GPH model in

Equation (3.31), where individuals in each group share the same imprecision effect.

As a result of the fact that the unrestricted upper hazard function increases in all

event times regardless of whether an individual from the same group experiences the
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n = 30 n = 60 n = 200

ϵ∗ β ℓ β ℓ β ℓ

0 −0.4399 −87.470 −1.0339 −199.45 −0.5208 −858.06

0.2 −0.4246 −83.551 −0.9781 −193.21 −0.5164 −831.80

0.4 −0.4142 −80.468 −0.9351 −188.30 −0.5154 −811.07

1 −0.3998 −75.153 −0.8646 −179.77 −0.5140 −774.95

8 −1× 10−6 −72.372 −3× 10−6 −175.25 −9× 10−6 −755.68

Table 3.7: Estimated β using the GPH model given ϵ∗ = 0, 0.2, 0.4, 1, and 8

event or not, the unrestricted lower survival function appears to be affected more

than the restricted lower survival function.

Based on the data sets described in Example 3.2.2 and 3.2.3, the remainder of

this section will evaluate the impact of increasing imprecision levels on the GPH

regression parameter and survival functions.

Example 3.3.2 In this example we investigate the impact of the GPH model on the

estimated regression parameter and on the estimated survival functions. Consider

the simulated data sets that were presented in Example 3.2.2 in which the IPH

model was used. For this example, however, the simulated data sets were fitted

with the GPH model. The regression coefficients along with the likelihood values

are shown in Table 3.7 for each simulated sample based on the following levels

of imprecision: 0, 0.2, 0.4, 1, 8. Similar to the behavior observed in Example 3.2.2

for the IPH model, the GPH model demonstrates a consistent impact on both the

log-likelihood value and the parameter estimate when increasing the imprecision

level. Specifically, an increase in the imprecision level corresponds to an increase in

the log-likelihood, while the parameter estimate converges towards zero, as seen in

Table 3.7. Additionally, the GPH regression coefficient estimate converges towards

the estimate derived from the PH model as ϵ∗ approaches zero.

The GPH restricted and unrestricted survival functions were estimated for both

groups based on the simulated sample of size n = 60 using the level of imprecision

ϵ∗ = 0.2. These survival functions, along with the PH survival function based on
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Figure 3.11: The GPH restricted survival functions for x = 0, amber, and x = 1,

indigo , using ϵ∗ = 0.2 along with Breslow estimates, dashed lines, based on the

simulated data with size n = 60.

Breslow’s estimates are shown in Figure 3.11 for the restricted survival functions and

Figure 3.12 for the unrestricted survival functions. Figure 3.11 illustrates that the

survival estimates derived from the PH model for both groups are relatively similar

to the restricted lower survival functions obtained from the GPH model. However,

the PH survival estimates may not be within the range of GPH restricted survival

estimates due to the fact that the upper hazard estimates increase only at event

times related to an individual from the same group. Moreover, the figure reveals

that restricted upper survival functions are more influenced by imprecision changes

than lower survival functions since the lower hazard function is always decreases at

all event times. In terms of the unrestricted survival functions, Figure 3.5 demon-

strates that the PH survival functions consistently fall within the GPH model’s un-

restricted survival functions. Furthermore, the figure shows that imprecision levels

have a similar influence on the unrestricted survival functions. Figure 3.13 highlights

this aspect by estimating the GPH restricted and unrestricted survival functions us-

ing an imprecision level ϵ∗ = 0.6 for individuals with the covariate value x = 1. The
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Figure 3.12: The GPH unrestricted survival functions for x = 0, amber, and x = 1,

indigo , using ϵ∗ = 0.2 along with Breslow estimates, dashed lines, based on the

simulated data with size n = 60..

figure also indicates that the upper survival functions of both types are identical,

while the unrestricted survival functions exhibit larger differences between the up-

per and lower survival functions than the restricted survival functions because the

restricted upper hazard function increases only when an individual from the group

with x = 1 has the event.

In Figure 3.14 , the GPH and IPH models are compared using ϵ∗ = 0.2 for the

restricted survival estimates (top) and the unrestricted survival estimates (bottom)

along with the corresponding PH survival estimates. The comparison of the re-

stricted type survival estimates shown in Figure 3.14 (top) indicates a tendency for

the GPH survival estimates to expand upward as the imprecision level increases,

implying higher survival probability, as opposed to the IPH estimates. Possibly,

this is due to differences in how imprecision is incorporated into these models, with

the GPH model including a collective imprecision effect that affects all individuals

within each group, while the IPH model imposes a distinct imprecision effect on each

individual. With regard to the unrestricted survival estimates, Figure 3.14 (bottom)
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Figure 3.13: The GPH restricted, light-indigo , and unrestricted, indigo , survival

estimates for individuals with x = 1 using ϵ∗ = 0.6, based on the simulated data

with size n = 60.

illustrates that the unrestricted GPH survival estimates expand in both directions

as a result of the relatively similar impact of the imprecision level on the upper and

lower survival functions. In contrast, the unrestricted IPH survival estimates exhibit

similar attributes to restricted IPH survival estimates. These attributes have been

found to hold true when analysing survival data with a binary covariate.

⋄

Example 3.3.3 In this example we examine the effect of fitting the GPH model

to survival data for continuous covariate based on the Stanford Heart Transplant

data set [34], also used in Example 3.2.3. Notice that the similarity between the

GPH and the IPH models is directly influenced by the diversity of covariate values

in the survival data since the IPH model is a special case of the GPH model. In

other words, the GPH and IPH models tend to exhibit greater similarities when

there is limited repetition of covariate values among individuals. This suggests that
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Figure 3.14: IPH and GPH survival estimates for individuals with x = 0, 1, using

ϵ∗ = 0.2 for both the restricted (top) and unrestricted (bottom) functions, based on

the simulated data with size n = 60.
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ϵ∗ β̂ ℓ

0 0.0291 -508.99

0.2 0.0287 -464.45

0.4 0.0284 -420.19

Table 3.8: Estimates of β obtained from fitting the GPH model to the Stanford

Heart Transplant data using ϵ∗ = 0, 0.2, and 0.4

the results of using both models should be fairly comparable when the covariate is

continuous. Table 3.8 presents the estimates of the regression parameter and the

associated log-likelihood values obtained from fitting the GPH model to the Stan-

ford Heart Transplant data, grouped by the same age, using ϵ∗ = 0, 0.2, and 0.4.

As expected, the table shows that as the imprecision level increases, the estimated

regression parameter converges to zero and the log-likelihood value increases. Ad-

ditionally, Table 3.8 indicates that the estimates of the regression parameter are

relatively similar to those obtained from using the IPH model, as seen in Table 3.4.

Theorem 3.4.1 on page 74 illustrates the asymptotic behaviour of increasing the

imprecision level.

Figure 3.15 presents the survival estimates derived from the GPH and IPH mod-

els for individuals aged 37 and 49, using ϵ∗ = 0.8 for the restricted survival func-

tions (top), and ϵ∗ = 0.5 for the unrestricted survival functions (bottom) along

with the corresponding PH survival functions. Similar to what have been observed

for survival data with a binary covariate in Example 3.3.2, survival estimates ob-

tained from the GPH model are marginally higher than those obtained from the

IPH model. Perhaps this is due to the differences in regression coefficient estimates

and how each model incorporates the imprecision effect. Figure 3.15 (top) high-

lights that the higher number of observed events for a particular covariate value

is associated with a wider imprecision in the restricted survival estimates obtained

from both models. Consequently, the absence of individuals aged 37 in the data

will result in unique survival estimates since the lower and upper survival estimates

will be identical in each model. On the basis of the unrestricted survival estimates,
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Figure 3.15: IPH and GPH survival estimates for individuals with x = 37, 49, using

ϵ∗ = 0.8 for the restricted functions (top), and ϵ∗ = 0.5 for the unrestricted functions

(bottom).
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Figure 3.15 (bottom) demonstrates that the lower survival estimates derived from

the IPH and GPH models are almost indistinguishable. However, the unrestricted

upper estimates obtained from the IPH model progressively diverge upwards from

their GPH counterparts as the level of imprecision increases.

⋄

3.4 Assessing the IPH and GPH models

In this section, a variety of approaches are presented for exploring and gaining

insight into the effects of fitting the IPH and the GPH models. It has been observed

in Table 3.3 that, as the imprecision level, ϵ∗, increases the parameter estimate con-

verges to zero and the log-likelihood value increases for both the IPH and the GPH

models. The following theorems illustrate the effect of increasing ϵ∗ to infinity on

the likelihood contribution of ti and the imprecise hazard functions of an individual

based on both the GPH and the IPH models.

Theorem 3.4.1 Let ñij = ñj(ti) denote the number individuals in the risk set Ri

with x = xj. Additionally, let ñi[i] denote the number of observations in the risk set

Ri with the same covariate value x[i] as the individual who experiences an event at

time ti. By fitting the GPH model to survival data and assuming ϵ∗ → ∞, we get

(i) The restricted upper hazard function of an individual with x = xj reduces to

the Nelson-Aalen estimator, as given in Section 2.2.2, while the lower hazard

function will be zero, such that

h(ti|xj) =


1
ñij

; if an individual with x = xj has the event at ti

0 ; censoring times or event times for an individual with x ̸= xj

h(ti|xj) = 0
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(ii) The unrestricted hazard functions of an individual with x = xj will be

h(ti|xj) =


1

ñi[i]
; for event time ti

0 ; censoring times

h(ti|xj) = 0

(iii) The contribution of an event time ti to the likelihood function becomes

Li =
1

ñi[i]

Proof.

(i) The restricted upper hazard function for an individual with x = xj who has

the event at ti, using the GPH model as given in Equation (3.32), is

h(ti|xj) = h0(ti) exp(ϵ
∗)ϕj

=

(
1

exp(ϵ∗)
∑

l≥i 1[xl=xj ]ϕl + exp(−ϵ∗)
∑

l≥j 1[xl ̸=xj ]ϕl

)
exp(ϵ∗)ϕj

=
ϕj

ñijϕj + exp(−2ϵ∗)
∑

l≥i 1[xl ̸=xj ]ϕl

(3.38)

As ϵ∗ → ∞ the restricted upper hazard function for an individual with x = xj

who has the event at ti converges to
1
ñij

.

If an individual with x = xk ̸= xj experienced the event at ti, then from the

optimization exp(ϵ[i](t)) = exp(ϵk(t)) = ϵ∗ and exp(ϵj(t)) = −ϵ∗. Thus, the

restricted upper hazard function for an individual with x = xj at ti is

h(ti|xj) = = h0(ti) exp(−ϵ∗)ϕj

=

(
1

exp(ϵ∗)
∑

l≥i 1[xl=xk]ϕl + exp(−ϵ∗)
∑

l≥i 1[xl ̸=xk]ϕl

)
exp(−ϵ∗)ϕj

=
ϕj

exp(2ϵ∗)ñikϕk +
∑

l≥i 1[xl ̸=xk]ϕl

(3.39)

The restricted upper hazard function for an individual with x = xj given that

an individual from other groups had the event at time ti converges to zero as
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ϵ∗ → ∞. For right-censored survival times the upper hazard is equal to zero.

The restricted lower hazard function for an individual with x = xj at an event

or right-censored time ti, as given in Equation (3.33), is

h(ti|xj) =h0(ti) exp(−ϵ∗)ϕj

=

(
δi

exp(ϵ∗)
∑

l≥i 1[xl=xi]ϕl + exp(−ϵ∗)
∑

l≥i 1[xl ̸=xi]ϕl

)
exp(−ϵ∗)ϕj

=
δiϕj

exp(2ϵ∗)
∑

l≥i 1[xl=xi]ϕl +
∑

l≥i 1[xl ̸=xi]ϕl

(3.40)

Thus, the restricted lower hazard function for an individual with x = xj con-

verges to zero as ϵ∗ approaches infinity. □

(ii) The unrestricted upper hazard function for an individual with x = xj at the

event time ti, as given in Equation (3.34), is

h(ti|xj) = h0(ti) exp(ϵ
∗)ϕj

=
ϕj

ñi[i]ϕi + exp(−2ϵ∗)
∑

l≥i 1[xl ̸=xi]ϕl

(3.41)

In conjunction with the result that β̂ converges to zero as ϵ∗ increases, the

restricted upper hazard function for an individual with x = xj at the event

time ti converges to
1
ñij

as ϵ∗ approaches infinity.

The upper hazard for right-censored survival times is zero. Consequently, the

unrestricted upper hazard function obtained from the GPH model converges to

the baseline PH hazard function with β = 0 as ϵ∗ approaches infinity. Due to

the fact that the restricted and unrestricted lower hazard functions are equal,

the unrestricted lower hazard function for an individual with x = xi converges

to zero as ϵ∗ approaches infinity. □

(iii) According to Equation (3.28) the contribution of an event time ti to the like-
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lihood function is given by

Li =
ϕi

exp(−ϵ[i](ti))r∗[i]

=
ϕi

exp(−ϵ∗)r∗[i]

=
ϕi

ñi[i]ϕi + exp(−2ϵ∗)
∑

l≥i 1[xl ̸=xi]ϕl

(3.42)

Therefore, the contribution of event time ti to the likelihood function converges

to 1
ñi[i]

if ϵ∗ → ∞. □

Theorem 3.4.2 Fitting the IPH model to survival data and assume ϵ∗ → ∞, then

(i) The restricted hazard functions of an individual with x = xj will be

h(ti|xj) =

1 ; if an individual with x = xj has the event at ti

0 ; censoring times or event times for an individual with x ̸= xj

h(ti|xj) = 0

(ii) The unrestricted hazard functions of an individual with x = xj will be

h(ti|xj) =

1 ; event times

0 ; censoring times

h(ti|xj) = 0

(iii) The contribution of an event time ti to the likelihood function becomes

Li = 1

Proof.

In the same manner as Theorem 3.4.1, the proof for this theorem is straightfor-

ward by using the definition of the IPH model and its corresponding likelihood and

hazard functions, as in Equations (3.1), (3.16), (3.18), (3.17), (3.20), and (3.19). □
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3.4.1 Bootstrap investigation

The purpose of the section is to investigate whether including imprecision to the

PH model by fitting either the GPH or the IPH model is beneficial using Zelterman

bootstrap method, as illustrated in Section 2.7. The bootstrap investigation is to

give us insights into when these models could be applied, and what value should be

used for the imprecision level, ϵ∗.

Three types of survival data sets were considered: proportional hazards data,

non-proportional data with crossing hazard functions, and non-proportional data

with diverging hazard functions, which are represented by PH, CNPH, and DNPH,

respectively. The PH data were generated by assuming a single covariate X that

follows a Binomial distribution with p = 0.5, the regression parameter β = −0.5,

and the baseline hazard follows the Weibull distribution with scale parameter λ = 2

and shape parameter ρ = 3. Based on two non-proportional hazards distributions,

the DNPH data were generated such that the set with x = 0 drawn from Exp(λ = 1)

while the other set is drawn from Gompertz(λ = 2, ρ = 0.8). Similarly, the CNPH

data assumed Weibull(λ = 0.6, ρ = 0.8) for observations related to x = 0 and

Weibull(λ = 0.5, ρ = 1.5) for observations corresponding to x = 1. Figure 3.16

represents the true survival (left) and hazard (right) functions associated with these

three types of survival data.

Various factors are taken into account during the bootstrap analysis, including

sample size, N , percentage of right-censored observations, and level of imprecision,

ϵ∗. For each type of survival data, two sample sizes were considered to ensure

computational efficiency. These included generating original samples of moderate

size with N = 60, and relatively large samples with N = 1000 to capture a more

comprehensive representation. In addition, two types of censoring are employed,

namely complete (uncensored) data and 20% of right-censored data. When fitting

either the GPH or IPH model, we consider the following levels of imprecision: ϵ∗ =

0.0001, 0.1, 0.5, 1, 2, and 4.

The objectives and procedures of the study will be briefly described before we

move onto the details. The objective of this study is to evaluate the feasibility of

using either the GPH or the IPH model in place of the PH model when the PH
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Figure 3.16: Survival distributions (left) and hazard functions (right) for x = 0 and

x = 1 related to the PH, DNPH and CNPH data, respectively
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assumption is not valid for the observed data. The evaluation involves bootstrap

hypothesis testing based on the null hypothesis that the PH assumption is valid,

regardless of evidence to the contrary, as opposed to the alternative hypothesis that

the PH assumption is invalid. As part of the bootstrap study, we attempt to deter-

mine an appropriate test statistic, denoted by γ. The bootstrap distribution of the

test statistic is obtained by resampling under the null hypothesis using the Zelter-

man method, and computing the corresponding test statistics. The selection of the

appropriate test statistic will be based on the relative position of the observed test

statistic, γ, in its bootstrap distribution. In particular, the observed test statistic γ

should be located in the upper tail if the data set does not follow the PH assump-

tion. This indicates substantial evidence against the null hypothesis. Consequently,

the level of imprecision will be gradually increased until the null hypothesis can no

longer be rejected. We will investigate the suitability of two test statistics, including

ℓϵ∗ and ℓϵ∗ −ℓ0, where ℓϵ∗ and ℓ0 denote the maximum log-likelihood values resulting

from our models with imprecision and without imprecision, respectively.

The following procedure will be followed for each scenario of the generated data

outlined in this section:

1. Generate M = 100 original data sets, D1, . . . , DM , according to the assumed

scenario, such that the number of observations is N for each data set.

2. For each of the M original data sets fit the target model, either the IPH

or GPH, and evaluate the test statistic, leading to γ∗1 , . . . , γ
∗
M . Note that γ

depends on ϵ∗ and according to the choice of γ we will fit the imprecise PH

model several times according to the selected levels of ϵ∗. If we consider, for

instance, assessing the GPH model using γ = ℓϵ∗ − ℓ0 given ϵ∗ = 0.1, then we

fit the GPH model twice for each of the M data sets once without imprecision

assuming ϵ∗ = 0 to obtain ℓ0 and once with imprecision using ϵ∗ = 0.1 to

obtain ℓ0.1.

3. Resample R = 100 bootstrap samples under the null hypothesis that the

original data sets follow the PH assumption using the method proposed by
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Figure 3.17: The distributions of ℓ∗0 resulted from fitting the GPH model with ϵ∗ = 0

to the original (non-censored) survival data with N = 1000.

Zelterman et al. [91], as illustrated in Section 2.7, along with the estimated

parameters obtained from fitting the models without imprecision. In other

words, for each original data set, a traditional PH model will be fitted, and

the resulting parameter estimate is used to resample R bootstrap samples

according to the Zelterman et al. [91] method. This procedure will be applied

even if the original data do not follow the PH assumption, due to the null

hypothesis that the original data sets follow the PH assumption. For the

ith original sample we obtain bootstrap samples B1
i , B

2
i , . . . , B

R
i , where i =

1, 2, . . . ,M . Note that Zelterman bootstrapping may result in ties among the

observations of the bootstrap samples; therefore, very small fractions are added

to break any ties.

4. Calculate the test statistics γ1i , . . . , γ
R
i for the bootstrap samplesB1

i , B
2
i , . . . , B

R
i ,

where i = 1, 2, . . . ,M . Upon completion of this step, the result will be a ma-

trix of size M ×R, in which the ith row represents the bootstrap distribution

of γi
∗ for each of the M original data sets.

5. Record the quantiles where γ∗1 , . . . , γ
∗
M lie on their bootstrap distributions.

Consider investigating the impact of fitting the GPH model using γ = ℓϵ∗ , as
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Figure 3.18: Quantiles of ℓ̂∗ϵ for non-censored survival data using the GPH model

for N = 60 (left) and N = 1000 (right).

a test statistic. We know that increasing the imprecision level will increase the

contribution of each event time to the likelihood function which leads to a higher

likelihood value for both PH and non-PH data. Theorem 3.4.1 and Example 3.3.2

demonstrate that fitting the GPH model and increasing the imprecision level yield

to a higher likelihood value compared to fitting the PH model. When ϵ∗ = 0, the

majority of likelihood values of ℓ∗0 obtained from fitting the GPH model to the DNPH

data are higher than those obtained from fitting the GPH model to either PH or

CNPH data, see Figure 3.17. The boxplots in Figure 3.18 illustrate the quantiles of

ℓ∗ϵ∗ in their corresponding bootstrap distributions for N = 60 (left) and N = 1000

(right). For small ϵ∗ in the PH data, the quantiles of ℓ∗ϵ∗ are around the median,

and they gradually increase with increasing ϵ∗. Non-PH data, on the other hand,

showed initial quantiles of ℓ∗ϵ∗ relatively less than the median, which then slightly

decreased until ϵ∗ = 2, at which point the quantiles of ℓ∗ began to increase. Similar

patterns can be seen for N = 1000; however, the quantiles decrease sharply to zero

and remained until ϵ∗ = 2. Consequently, γ = ℓϵ∗ may not be an adequate statistic

to assess the benefits of fitting the GPH model to non-proportional hazards data,

in comparison to proportional hazards data.

Based on standard mathematical statistics, especially the Neyman-Pearson lemma
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Figure 3.19: Quantiles of (ℓ̂ϵ− ℓ̂0)
∗ for non-censored survival data (top) and for sur-

vival data with 20% of right-censored observations (bottom) using the GPH model

for N = 60 (left) and N = 1000 (right).
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Figure 3.20: The differences between the log-likelihood values obtained by fitting

the GPH model to the bootstrap samples and their corresponding 100 original data

sets with N = 1000
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and the generalized likelihood ratio test, we consider the log-likelihood increment

that results from imprecision instead of the log-likelihood value. Hence, the differ-

ences in log-likelihood values between GPH models with and without imprecision,

ℓϵ∗ − ℓ0, are used as test statistic. Let (ℓϵ∗ − ℓ0)
∗ denotes the value of ℓϵ∗ − ℓ0 related

to the original M data sets. Interestingly, as illustrated in Figure 3.19 (right), the

quantiles of (ℓϵ∗−ℓ0)∗ are in the opposite direction from what we anticipated for both

complete survival data (top) and survival data with 20% of right-censored observa-

tions (bottom). According to Figure 3.19 (right), the quantiles of the log-likelihood

increments for the DNPH and CNPH data are significantly lower than their boot-

strap counterparts where the PH assumption is held. For the PH data, the quantiles

of (ℓϵ∗ − ℓ0)
∗ are between 0.25 − 0.75 in their bootstrap distributions for small im-

precision level, and variability decreases as the imprecision level increases. Similar

results were demonstrated for survival data with right-censored observations, but

with higher variability. This result may not be visible for small or moderate-sized

data, as shown in Figure 3.19 (left). The remainder of this section investigates why

the bootstrap quantiles of (ℓϵ∗ − ℓ0)
∗ for non-proportional hazards data are lower

than those for proportional hazards data, particularly at small levels of imprecision.

Further, we will briefly comment on determining the optimal value of ϵ∗.

In order to validate the bootstrap results associated with ℓ0 = {ℓ10, . . . , ℓR0 }, we

first verify whether Zelterman bootstrapping is functioning correctly. This can be

done by inspecting the distribution of the difference between ℓ0 = {ℓ10, . . . , ℓR0 },

resulting from the bootstrap samples, and their corresponding ℓ∗0 for the original

100 data sets with N = 1000. The boxplots in Figures 3.20 illustrate that for

the PH data sets, the medians of the differences are generally close to zero, with

some variations on either side. Furthermore, both the CNPH and DNPH data sets

have positive medians, perhaps a gain of two to three in the log-likelihood values

for the former and slightly more for the latter, although the original log-likelihood

values for fitting the GPH model without imprecision were lower for the CNPH

compared to the PH, as shown in Figure 3.17. This is relevant because it is consistent

with the concept that Zelterman bootstrapping produces PH-like samples, thereby

increasing the log-likelihood value. Having confirmed that Zelterman bootstrapping
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is functioning as intended, we will now investigate the impact of including small ϵ∗

to the log-likelihood value. The following theorem approximates the value of ℓϵ∗ −ℓ0
for small ϵ∗.

Theorem 3.4.3 For small ϵ∗, the difference between the log-likelihood values re-

sulted from fitting the GPH model with imprecision level ϵ∗ and without imprecision

can be approximated by

ℓ̂ϵ∗ − ℓ̂0 ≈ 2ϵ∗η (3.43)

where η =
n∑

i=1

δir
′
i

ri
, ri is as used previously, and r′i =

∑
l≥i

1[xl ̸=xi]ϕl.

Proof.

Recall the GPH profile likelihood function in Equation (3.30), then the profile

log-likelihood function is

ℓϵ∗(β) =
n∑

i=1

δi lnϕi −
n∑

i=1

δi ln

(∑
l≥i

ϕl

[
1[xl=xi] + exp(−2ϵ∗)1[xl ̸=xi]

])

The derivative of this function with respect to ϵ∗ is

∂ℓϵ∗(β)

∂ϵ∗
=

∂

∂ϵ∗

n∑
i=1

δi lnϕi −
∂

∂ϵ∗

n∑
i=1

δi ln

(∑
l≥i

ϕl

[
1[xl=xi] + exp(−2ϵ∗)1[xl ̸=xi]

])

= −
n∑

i=1

δi
∂

∂ϵ∗
ln

(∑
l≥i

ϕl

[
1[xl=xi] + exp(−2ϵ∗)1[xl ̸=xi]

])

= −
n∑

i=1

δi

∂
∂ϵ∗

∑
l≥i ϕl1[xl=xi] +

∂
∂ϵ∗

∑
l≥i ϕl exp(−2ϵ∗)1[xl ̸=xi]∑

l≥i ϕl

[
1[xl=xi] + exp(−2ϵ∗)1[xl ̸=xi]

]
= 2

n∑
i=1

δi
∑

l≥i ϕl exp(−2ϵ∗)1[xl ̸=xi]∑
l≥i ϕl

[
1[xl=xi] + exp(−2ϵ∗)1[xl ̸=xi]

]
Hence, the derivative of the GPH profile log-likelihood function evaluated at

ϵ∗ = 0 is
∂ℓϵ∗(β)

∂ϵ∗

∣∣∣∣
ϵ∗=0

= 2
n∑

i=1

δir
′
i

ri

Where ri =
∑

l≥i ϕl, as used previously, and r′i =
∑

l≥i ϕl1[xl ̸=xi]. It is obvious that

changing ϵ∗ leads to change on β̂, so we can consider β̂ as a function of ϵ∗. Let ℓ̂ϵ∗

denote the log-likelihood function at its maximum such that ℓ̂ϵ∗ = ℓϵ∗
(
β̂(ϵ∗)

)
. Now,
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we can use first-order Taylor series to approximate the value of ℓ̂ϵ∗ for small ϵ∗ as

follows

ℓ̂ϵ∗ ≈ ℓ̂0 +
∂

∂ϵ∗
ℓϵ∗
(
β̂(ϵ∗)

)
· (ϵ∗ − 0)

≈ ℓ̂0 + 2ϵ∗
n∑

i=1

δir
′
i

ri

Consequently, the difference between the log-likelihood values resulting from fitting

the GPH model with imprecision level ϵ∗ and without imprecision can be approxi-

mated for small ϵ∗ > 0 by

ℓ̂ϵ∗ − ℓ̂0 ≈ 2ϵ∗η

where η denote the summation in the difference between the log-likelihood values,
n∑

i=1

δir
′
i

ri
. □

In order to shed light on the observed trend of log-likelihood gains for original

NPH data, CNPH or DNPH, residing within the lower tail of the bootstrap distri-

bution obtained from the GPH model, the following analysis aims to delve into the

underlying causes. This objective will be achieved by inspecting the implications

of deviating from the PH assumption through various examples that showcase di-

verse structures of both PH and NPH data, in particular by comparing the η values

derived from Theorem 3.4.3. Through this intensive examination, we hope to un-

cover any meaningful patterns or explanations for this phenomenon. Examples 3.4.1

and 3.4.2 examine survival data with a binary covariate for balanced groups, while

Example A.1.1 in Appendix A.1 examines survival data with imbalanced groups.

Given that the summation in η is taken effectively only over event times and to keep

these examples simple we assume that censored observations do not exist.

Example 3.4.1 For this example, we consider fitting the GPH model only to PH

data with a binary covariate, x, which includes evenly balanced groups that are

temporally ordered according to m-blocks. Assume a covariate in which each block

consists of an observation from each group in the following order

1︷︸︸︷
1, 0 ,

2︷︸︸︷
1, 0 , . . . ,

m︷︸︸︷
1, 0
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n β̂ η η/n PH test

4 0.94 1.123 0.281 1

20 0.226 8.87 0.444 0.88

200 0.033 98.35 0.491 0.87

2× 103 0.004 997.8 0.498 0.92

Table 3.9: The impact on η for evenly balanced PH survival data with a covariate

consisting of m-blocks of (1, 0)

For the stated type of survival data and a variety of sample sizes, Table 3.9 shows

the estimates of the regression coefficients and derivatives of log-profile likelihood

with respect to ϵ, denoted by η. Based on the null hypothesis that the correspond-

ing data follow the PH assumption, Table 3.9 also displays p-values of Schoenfeld

residuals test. It can be seen that β̂ converges to zero as n → ∞, which leads to

ϕ[0] = ϕ[1]. Consequently, η can be determined using the following

m

2m
,
m− 1

2m− 1
,
m− 1

2m− 2
,
m− 2

2m− 3
,
m− 2

2m− 4
,
m− 3

2m− 5
,
m− 3

2m− 6
, . . . ,

2

4
,
1

3
,
1

2
, 0

Similarly, when the temporally ordered covariate exhibits evenly distributed groups

in m-blocks, such that each block consists of two observations from each group and

is arranged as the following sequence

1︷ ︸︸ ︷
1, 1, 0, 0, . . . ,

m︷ ︸︸ ︷
1, 1, 0, 0

As n approaches infinity, ϕ[0] = ϕ[1] as illustrated in Table 3.10 which indicates that

η is comprised of the following

2m

4m
,

2m

4m− 1
,
2m− 2

4m− 2
,
2m− 2

4m− 3
,
2m− 2

4m− 4
,
2m− 2

4m− 5
,
2m− 4

4m− 6
, . . . ,

2

4
,
2

3
, 0, 0

We observe the same results for other PH data with equally balanced groups as

well. For instance, Table 3.11 indicates that when the temporally ordered binary
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n β̂ η η/n PH test

4 ∞ 0 0 1

20 0.44 8.51 0.425 0.8

200 0.06 98.1 0.491 0.77

2× 103 0.008 997.56 0.499 0.86

Table 3.10: The impact on η for evenly balanced PH survival data with a covariate

consists of m-blocks of (1, 1, 0, 0)

covariate contains m-blocks of (1, 0, 0, 1) or (1, 0, 0, 0, 1, 1), respectively, η can be

obtained by

{
2m

4m
,
2m− 1

4m− 1
,
2m− 1

4m− 2
,
2m− 2

4m− 3
,
2m− 2

4m− 4
,
2m− 3

4m− 5
,
2m− 3

4m− 6
, . . . ,

2

4
,
1

3
,
1

2
, 0

}

{
3m

6m
,
3m− 1

6m− 1
,
3m− 1

6m− 2
,
3m− 1

6m− 3
,
3m− 3

6m− 4
,
3m− 3

6m− 5
,
3m− 3

6m− 6
,
3m− 4

6m− 7
, . . . ,

3

6
,
2

5
,
2

4
,
2

3
, 0, 0

}

In light of the results in Tables 3.9, 3.10, and 3.11, it is reasonable to expect that

the maximum derivative of log-profile-likelihood with respect to ϵ∗ is of the order

n/2, with n the number of observations. In fact, we believe that this is true for

PH data with no censored observations and the groups are evenly balanced using

a considerably large sample, so that β̂ converges to zero, see Example A.1.1 for

imbalance data.

⋄

Example 3.4.2 The GPH model is fitted here to NPH data with a binary covariate.

The covariate is composed of evenly balanced groups that are temporally ordered

according to different scenarios. Suppose that the covariate consists of the following

three-blocks
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x n β̂ η η/n PH test

(

1︷ ︸︸ ︷
1, 0, 0, 1, . . . ,

m︷ ︸︸ ︷
1, 0, 0, 1)

4 -0.48 1.236 0.309 0.14

20 -0.081 8.915 0.446 0.72

200 -0.0079 98.3 0.49 0.92

2× 103 -0.0007 997.78 0.499 0.97

(

1︷ ︸︸ ︷
1, 0, 0, 0, 1, 1, . . . ,

m︷ ︸︸ ︷
1, 0, 0, 0, 1, 1)

6 -1.208 1.54 0.257 0.07

24 -0.27 10.58 0.441 0.59

204 -0.04 100.14 0.491 0.795

2004 -0.0052 999.58 0.499 0.9

Table 3.11: The impact on η for evenly balanced PH data with different covariates

structures

m︷ ︸︸ ︷
1, 1, . . . , 1,

2m︷ ︸︸ ︷
0, 0, . . . , 0,

m︷ ︸︸ ︷
1, 1, . . . , 1

such that the sample size n = m+2m+m = 4m for any positive integer m. For this

particular covariate structure of NPH data, Table 3.12 indicates that the estimates

of the regression coefficients reaches −0.821 when n = 2000. Notice, the value of

η is smaller than what would be expected for PH data, which is about 37.7% of

the sample size in this NPH data. Another possible scenario of non-proportional

n β̂ η η/n PH test

4 -0.48 1.24 0.31 0.14

20 -0.717 7.209 0.36 6.8× 10−5

200 -0.809 75 0.375 4.4× 10−44

2× 103 -0.821 753.29 0.377 0

Table 3.12: The impact on η for evenly balanced 3-blocks NPH survival data using

the (1{m}, 0{2m}, 1{m}) structure
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n β̂ η η/n PH test

6 0.014 2.186 0.364 0.062

18 -0.0836 7.29 0.405 2× 10−4

198 -0.149 84.54 0.427 0

1998 -0.155 857.31 0.429 0

Table 3.13: The impact on η for evenly balanced 3-blocks NPH survival data using

the (1{2m}, 0{3m}, 1{m}) structure

n β̂ η η/n PH test

6 0.362 2.158 0.36 0.63

18 0.463 7.216 0.401 0.25

198 0.534 83.94 0.42 3.7× 10−6

1998 0.5417 851.5 0.426 8.3× 10−51

Table 3.14: The impact on η for evenly balanced 4-blocks NPH survival data using

the (1{m}, 0{2m}, 1{2m}, 0{m}) structure

hazards data is associated with the following 4-blocks of a binary covariate

2m︷ ︸︸ ︷
1, 1, . . . , 1,

3m︷ ︸︸ ︷
0, 0, . . . , 0,

m︷ ︸︸ ︷
1, 1, . . . , 1

The findings presented in Table 3.13 illustrate that applying the GPH model to

this structure of covariate values, combined with increasing the sample size, yields

a η value approximately 30% of the actual sample size which is obviously less than

the log-likelihood increments found for PH data in Example 3.4.1.

Based on Table 3.14, it is evident that the log-likelihood gain is approximately

42% of the sample size for non-proportional hazards data related to the binary

covariate comprising of the following blocks

m︷ ︸︸ ︷
1, 1, . . . , 1,

2m︷ ︸︸ ︷
0, 0, . . . , 0,

2m︷ ︸︸ ︷
1, 1, . . . , 1,

m︷ ︸︸ ︷
0, 0, . . . , 0
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Various structures of NPH data have been examined, revealing that the ap-

proximate log-likelihood increments resulting from using the GPH model is smaller

for NPH data compared to PH data for large samples and evenly balanced groups

without censored observations.

For extreme cases of survival data, particularly when the regression coefficient

approaches infinity or negative infinity, the derivative of the log-profile likelihood

with respect to ϵ∗ will be zero. An example of that would be a covariate which

divides observations into distinct clusters, as can be seen in the following blocks

n/2︷ ︸︸ ︷
1, 1, . . . , 1,

n/2︷ ︸︸ ︷
0, 0, . . . , 0

Clearly, as β̂ approaches infinity we have ϕ[0] = 1 and ϕ[1] → ∞. Hence,∑n/2
i=1

r′i
ri

→ 0 for the first n/2 components of
r′i
ri
. For the second half of events,

the value of r′i = 0 since there is no observation left with x = 1, so

n∑
i=1

r′i
ri

→ 0

⋄

Contrary to our initial proposal , the investigation based on Theorem 3.4.3 and

Examples 3.4.1, 3.4.2 and A.1.1, indicate that fitting the GPH model to PH data

consistently yielded higher log-likelihood increments compared to NPH data. Fur-

ther, the disparity between the PH and NPH data diminishes in relation to the

log-likelihood gains achieved through the application of the GPH model as the data

becomes more imbalanced. A notable aspect highlighted by these examples is that

fitting the GPH model to small to moderate PH and NPH data does not result

in significant differences in log-likelihood gains. However, the disparity becomes

more apparent as the sample size increases. This aspect is consistent with our boot-

strap results in Figure 3.19 (left), which show no evidence of different log-likelihood

gains for PH versus NPH data when n = 60. On the other hand, the disparity in

log-likelihood gains resulting from fitting the GPH model for PH and NPH data is

clearly evident when using a sample size of n = 1000, as in Figure 3.19 (right).
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Having acknowledged that our initial proposal was incorrect, our proposal was

revised by rejecting the null hypothesis when the test statistic (ℓϵ∗ − ℓ0)
∗ related to

the original data resides within the lower tail of its bootstrap distribution. Accord-

ingly, the optimal level of imprecision level can be determined by finding the value of

ϵ∗ at which the null hypothesis cannot be rejected at a particular significance level.

Consider DNPH and CNPH data with N = 1000, Figure 3.19 (right) suggests that

the appropriate level of imprecision can be between 1 − 2 for DNPH and between

0.5−2 for CNPH. Thus, the GPH model can serve as a reliable alternative to the PH

model in scenarios where the PH assumption is questionable. This can be achieved

by fitting the GPH model and determining the optimal level of imprecision by con-

ducting bootstrap hypothesis testing using ℓϵ∗ − ℓ0 as a test statistic, and gradually

increasing the value of ϵ∗ until the null hypothesis can no longer be rejected.

3.5 Concluding remarks

In this chapter, two imprecise proportional hazards models are introduced based

on Poisson empirical likelihoods, namely an individual-based model, IPH, and a

group-based imprecise PH model. The IPH model assumes that each individual in

the data set has unique imprecision factors, whereas the GPH model allows groups

of individuals to share the same imprecision factors. Hence, the IPH model can be

viewed as a generalization of the GPH model, in which each group or category has a

unique member. Originally, we attempted to construct the full likelihood of the IPH

and the GPH models using the empirical likelihood based on the CDF, as described

in Section 2.5.2. Due to the complexity of the problem, however, we have instead

considered the Poisson empirical likelihood in light of the fact that proportionality

of the hazard can be handled easily.

When the imprecision level is zero, these models produce the MLE of the partial

likelihood for the PH model, and the difference of the log-likelihood values equals

the number of non-censored observations. As the imprecision level is increased, the

the estimate of the parameter converges to zero and the log-likelihood value increase.
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The estimation of lower and upper survival functions for specific individuals in

these models was approached through restricted and unrestricted survival functions.

It was observed that both the IPH and GPH models produced higher upper survival

estimates compared to the PH survival estimates. Furthermore, the unrestricted

survival estimates for both models exhibited a greater disparity between the lower

and upper survival estimates, which can be attributed to the escalating hazard at

each event time in contrast to the restricted survival estimates. The restricted sur-

vival estimates derived from both the GPH and IPH models are directly influenced

by the diversity of covariate values in the survival data. In other words, the GPH

and IPH models produce similar results when there is limited repetition of covari-

ate values among individuals. With the exception of GPH unrestricted survival

estimates, none of these survival estimations ensure that the PH survival estimates

will fall within the upper and lower survival estimates. It has been found that the

upper survival functions, both IPH restricted and unrestricted, are less sensitive to

imprecise levels than the lower survival functions.

When examining the scenario in which imprecision reaches infinite levels, inter-

esting findings emerged. Specifically, for the GPH restricted hazard estimates, it

was shown that the upper hazard estimates for an individual reduce to the Nelson-

Aalen estimator, while the lower hazard estimates equal zero. With respect to the

GPH unrestricted hazard estimates, it was found that the upper hazard estimates

for an individual converge to Breslow PH baseline hazard estimates with the regres-

sion coefficient set to zero. The corresponding lower hazard estimates equals zero

similar to the restricted type. As the IPH model is simply a special case of the

GPH model where each group consists of one member, the upper restricted hazard

estimates associated with the individual’s event time were reduced to one, while the

lower restricted hazard estimates were reduced to zero for event times associated

with other individuals, censored times, and lower restricted hazard estimates. The

IPH unrestricted hazard estimates, in contrast, converge to 1 for all event times,

and zero for right-censored time and for lower unrestricted hazard estimates. In

light of these results, our focus has shifted towards the GPH model in the bootstrap

assessment in Section 3.4.1.
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In order to assess the benefits of using the GPH and the impact of increasing the

impression level for both proportional hazards data and non-proportional hazards

data, we performed a bootstrap study following Section 2.7.1. Through bootstrap-

ping, we gained insight into when this model can be applied and what imprecision

level should be used. Three types of survival data were considered, namely pro-

portional hazards data, non-proportional data with crossing hazard functions and

non-crossing hazard functions. A key aspect of the GPH model revealed by the

bootstrap results is that for PH data, the GPH model generally results in more

significant increase in log-likelihood than for NPH data. In light of this finding, it

was decided to modify the null hypothesis in order to fit the purpose of the study.

The Log-likelihood increments, which are obtained from fitting the GPH model with

and without imprecision, were found to be appropriate statistics for evaluating the

validity of the PH assumption. Nevertheless, for small to moderate sample size,

there are no significant differences in log-likelihood gains, which suggests that this

test statistic can only be reliable for large samples. Further, the bootstrap hypoth-

esis test can also be employed to determine the optimal level of imprecision. This is

done by finding the value of ϵ∗ at which the null hypothesis cannot be rejected at a

particular significance level. Accordingly, the GPH model can be used instead of the

PH model safely in scenarios where the validity of the PH assumption is uncertain.



Chapter 4

Robust PH model

4.1 Introduction

In applications, covariates are often subject to measurement errors. A common

approach to dealing with this problem is to use the mismeasured version of the

covariate directly. However, this naive approach can lead to biased estimates and

incorrect conclusions if not properly addressed. In the realm of proportional hazards

models, measurement error presents a significant challenge, as evidenced by Prentice

[70], Nakamura [64], and Hu et al. [43], among others. The literature reveals a diverse

range of approaches and solutions to this issue.

Prentice [70], as highlighted by Augustin and Schwarz [8], delves into the limi-

tations of applying simple likelihood-based corrections in the proportional hazards

model. Prentice discusses the challenges of maintaining multiplicative form when

faced with time-dependent covariates. In response, the focus of analysis has been

shifted to the rare disease assumption, which allows analytical solutions to nor-

mal measurement errors to be developed, which align with the results of regression

calibration [42].

Hu et al. [43] contribute to the structural approach by exploring likelihood-based

methods within the framework of the classic additive error model, characterized by a

known error distribution [19]. They focus on situations where the surrogate covariate

is measured on all subjects, with the true covariate ascertained on a validation set

[17]. This method allows for the estimation of error distribution and the calculation

96
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of parameter estimators and their variances, offering practical application potential

[43].

Nakamura [64] presents a fundamental contribution to the concept of corrected

score functions and corrected log-likelihood as a solution to measurement for covari-

ates error in proportional hazards models. Despite the partial likelihood’s inherent

complexities, Nakamura proposes first and second-order approximations, yielding

surprisingly consistent estimators, as noted by Kong and Gu [52]. This method

demonstrates effectiveness in simulation studies and extends to non-normal mea-

surement errors, broadening its applicability [15, 80]. The interpretation by Au-

gustin [5] of Nakamura’s method offers a different perspective, suggesting that these

corrections are exact when applied to the Breslow likelihood. This insight extends

Nakamura’s method to a wider range of hazard models and measurement error dis-

tributions, underscoring its versatility.

The methods in the literature on measurement error in the proportional hazards

model are intended to enhance data analysis accuracy and reliability through the

reduction of estimation bias. Contrary to these methods, this chapter leverages the

incorporation of errors into covariate values as a strategy to mitigate the restrictions

imposed by the proportional hazards assumption. As a result, a more robust mod-

eling framework is achieved when the proportional hazards assumption is doubtful.

In our approach, we propose a modified version of the observed covariate values by

adding error terms for each covariate value. These errors are not restricted to any

particular distribution, and are independent of survival times and the covariate, but

are assumed to fluctuate within a small interval. The robust PH model is assessed

using different likelihoods to determine their impact on the estimation of the re-

gression parameter, the enhancement of the likelihood value, and the estimation of

survival functions for a particular individual.

This chapter is structured in the following manner: Section 4.2 provides an

overview of the robust PH model formulation. Section 4.3 introduces the model

utilizing the Poisson full likelihood, building upon the concepts discussed in Sec-

tion 2.5.1. Section 4.4 details the implementation of the robust PH model using an

empirical likelihood based on the CDF, aligning with the methodologies outlined by
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[77], also Section 2.5.2. Detailed simulation studies are provided in Section 4.5 that

investigate some aspects of the robust PH model in relation to imprecise survival

estimates and the reliability the robust PH model. The chapter concludes with

Section 4.6, offering some final observations and remarks.

4.2 Robust PH model

In this section we shall use a slightly different notation to that previously used,

in order to distinguish between the standard PH model and the robust PH model. In

the robust PH model, instead of using the observed value of the covariate for the ith

individual, xi, we consider a modified version of that value xi+ϵi. Consequently, the

function ϕi = exp(βxi) in Equation (2.31) will be replaced by αi = exp(β(xi + ϵi)).

The resulting robust PH model can be expressed as follows

hi(t) = h0(t)αi (4.1)

where ϵi is an imprecision term related to the covariate value xi, for i = 1, 2, . . . , n.

Furthermore, these imprecision terms are permitted to vary within a typically small

interval such that |ϵi| ≤ ϵ∗. It could be argued that assuming errors belong to a

specific distribution, as is commonly formulated, might be more reasonable than

adopting the less familiar unknown bounded errors. However, as emphasized in

Belforte et al. [10], the information available regarding measurement errors in real-

life applications tends to align closely with ’unknown but bounded’ errors, including

systematic and random errors, which are also often perceived to be bounded, since

errors greater than three standard deviations are commonly regarded as impossible.

In the context of applying the robust PH model in Equation (4.1), particularly

when the PH assumption is questionable, the task of selecting and validating an

appropriate level of imprecision is quite challenging. Therefore, the level of impre-

cision is currently regarded as subjective. This allows researchers the flexibility to

decide on the appropriate level of imprecision for their specific studies to ensure the

safe application of a PH-like model. For instance, the level of imprecision, ϵ∗, can be

considered as a few percent of the standard deviation or the IQR of the observed co-

variate values. Consequently, the covariate can be regarded as an imprecise measure
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of the covariate value for the individuals (e.g. height may be accurately measured

and recorded rounded to the nearest centimeter, so real height can be within half a

centimeter either side of the recorded value).

As part of the analysis of the robust PH model, different likelihood represen-

tations have been considered and outlined in Sections 4.3 and 4.4 related to the

poisson and empirical likelihoods, respectively. The regression coefficients and sur-

vival functions will therefore be subscripted by the lower case letters p and e to

indicate the corresponding likelihood function.

4.3 Robust-Poisson PH likelihood (RP)

This section illustrates the Poisson full likelihood for the robust PH model. This

is essentially a version of the Poisson full likelihood for the PH model, discussed in

Section 2.5.1, modified to include imprecision in the values of the covariate. Suppose

we observe the following survival data

(t1, δ1, x1), (t2, δ2, x2), . . . , (tn, δn, xn)

where ti is an observed value of Ti = min{Vi, Ci} and δi = I{Vi ≤ Ci} is the

censoring indicator. Here Vi and Ci, for i = 1, . . . , n, are independent positive

continuous random variables such that Ci is the censoring time associated with the

survival time Vi. Additionally, consider x1, . . . , xn as values of a one-dimensional

covariate that corresponds to the survival times V1, . . . , Vn. The generalization of

this methodology to multidimensional covariates is left for future studies. Based on

the robust PH model, the hazard function and cumulative hazard function of the

ith individual are

hi(t) = h0(t)αi, Hi(t) = H0(t)αi (4.2)

with αi = exp(β(xi + ϵi)) as used in Equation (4.1). According to Equation (2.50),

the Poisson full likelihood associated with the robust PH model is given by

L(βp, h0(t1), . . . , h0(tn), ϵi, . . . , ϵn) =
n∏

i=1

[
hi(ti)

δi exp(−Hi(ti))
]

=
n∏

i=1

[
(h0(ti)αi)

δi exp (−H0(ti)αi)
] (4.3)
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Theorem 4.3.1 Based on Poisson full likelihood function for the robust PH model

in Equation (4.3) we have the following:

(i) The baseline hazard function at time ti can be estimated, conditional on βp

and ϵ1, . . . , ϵn, by

ĥ0(ti) =
δi
ri

(4.4)

where ri =
∑n

l=i αl, αl = exp(βp(xl + ϵl)), and βp is the regression coefficient.

(ii) The profiled Poisson likelihood function for the robust PH model becomes

L(βp, ϵ) =
n∏

i=1

[
αi

ri

]δi
(4.5)

where ϵT = (ϵ1, ϵ2, ..., ϵn) is a vector that represents the amount of imprecision

associated with the observed covariate values x1, x2, . . . , xn.

(iii) The profiled Poisson likelihood function for the robust PH model in Equa-

tion (4.5) is equivalent to the partial likelihood for the robust PH model.

Proof.

(i) (ii) These results can be verified by following the exact same process described

in Section 2.5.1 by assuming fixed β and ϵ and profiling out the baseline hazard

function which then can be substituted in Equation (4.3) to obtain the profile

likelihood function for the robust PH model.

(iii) Consider t(1) < t(2) < ... < t(k) distinct ordered failure times where k ≤ n. As

discussed in Section 2.4.2, given that an individual from the risk set Ri has

experienced an event at time ti, the probability that the ith individual with

the imprecise covariate value x̃i = xi+ ϵi will experience the event at time ti is

Li(βp, ϵi, . . . , ϵn) =
hi(ti)∑
l∈Ri

hl(ti)
(4.6)

By substituting the robust PH hazard function from Equation (4.1) and can-

celing out the baseline hazard, h0(t), we obtain

Li(βp, ϵi, . . . , ϵn) =
αi∑
l∈Ri

αl

(4.7)
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Hence, the partial likelihood function for the robust PHmodel in Equation (4.1)

becomes

Lp(βp, ϵ) =
k∏

i=1

αi∑
l∈Ri

αl

(4.8)

which is equivalent to the profiled Poisson likelihood function for the robust

PH model in Equation (4.5). □

A constrained optimization technique will be required to maximize the profile

likelihood function since the imprecision terms, ϵi, are assumed to be restricted by

|ϵi| ≤ ϵ∗. In the examples that follow, the likelihood function in Equation (4.8)

will be maximized using the limited memory quasi-Newton optimization algorithm

for bound constrained optimization, L-BFGS-B, to estimate these imprecision terms

along with the regression coefficient. The L-BFGS-B optimization was implemented

in R version 4.2.2 using the optim function applied to the log-likelihood [18, 73].

It should be noted that we assume the absence of ties. Additionally, the covariate

values will be re-centered during the optimization process such that x̃i = xi+ ϵi−µ

where µ is the mean of x+ ϵ, following the common practice of dealing with contin-

uous covariates in the PH model. The impact of the re-centering process disappears

as each αi is multiplied by exp(−βpµ), resulting in canceling out their effect accord-

ing to Equation (4.5). A similar approach can be found in the ”survfit” function

of the survival package where centering covariate values prevents overflow in the

exponential function argument and enhances numerical stability without adversely

impacting the estimated parameters, according to Therneau [82, 84].

Theorem 4.3.2 Based on maximizing the likelihood function in Equation (4.5),

the imprecision term for the jth observation can be estimated as follows when β̂ > 0:

ϵ̂j =



Not determined ; for right-censored observations before the first event

ϵ∗ ; for the first observed event

−ϵ∗ ; for j = n and right-censored observations after the first event

∈ [−ϵ∗, ϵ∗] ; for other events
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Conversely, ϵj can be estimated when the regression estimate is negative as follows

ϵ̂j =



Not determined ; for right-censored observations before the first event

−ϵ∗ ; for the first observed event

ϵ∗ ; for j = n and right-censored observations after the first event

∈ [−ϵ∗, ϵ∗] ; for other events

Proof.

The following proves the case for positive regression estimates; similar steps

can be followed to prove the statement for negative regression estimates. The log-

likelihood, ℓ, associated with Equation(4.5) can be expressed as follows

ℓ(βp, ϵ) =
n∑

i=1

δi [lnαi − ln ri] (4.9)

where the summation is effectively calculated over only failure times. Based upon

a particular ϵj, it appears that ϵj only affects ℓ directly through αi when i = j and

indirectly through ri when i ≤ j. Accordingly, the derivative of ℓ with respect to ϵj

is given by
∂ℓ

∂ϵj
=

∂ℓ

∂αj

∂αj

∂ϵj

and observe that
∂αj

∂ϵj
= βpαj

since αj is always positive, then
∂αj

∂ϵj
is positive when βp > 0 and negative when

βp < 0. Furthermore,
∂ℓ

∂αj

=
δj
αj

−
∑
i≤j

δi
ri

(4.10)

To maximize the log-likelihood function, the value of ϵj is chosen such that the

first partial derivative with respect to ϵj is positive. This leads to the following

consequences:

1. For right-censored observations before the first event, those values of ϵj do not

affect the log-likelihood and their estimates are therefore not determined.
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2. For the first failure time, subscribed by (1),
∂ℓ

∂α(1)

=
1

α(1)

− 1

r(1)
, which is

positive since r(1) > α(1). Hence,
∂ℓ

∂ϵ(1)
> 0 only if ϵ̂(1) = ϵ∗ when β̂p > 0 or

ϵ̂(1) = −ϵ∗ when β̂p < 0.

3. For right-censored observations after the first event, we have
∂ℓ

∂αj

= −
∑

i≤j

δi
ri
<

0. Therefore,
∂ℓ

∂ϵj
can be positive when ϵ̂j = ϵ∗ and β̂p < 0 or when ϵ̂j = −ϵ∗

and β̂p > 0.

4. For the last observation if δn = 1, then

∂ℓ

∂αn

=
1

αn

−
∑
i≤n

δj
ri

=
1

αn

−
∑
i<n

δj
ri

− 1

αn

= −
∑
i<n

δj
ri

< 0

Consequently,
∂ℓ

∂ϵn
is positive only if ϵ̂n = ϵ∗ when β̂p > 0 or ϵ̂n = −ϵ∗ when

β̂p < 0. Additionally, the third consequence will be followed if δn = 0. □

In light of Theorem 4.3.2, it is evident based on Equation (4.10) that for rela-

tively small αj and a small j (early time) where there are not many i ≤ j, then

∂ℓ/∂αj is likely to be positive. This leads to imprecision terms that match the

sign of the regression parameter for early event observations. Conversely, ∂ℓ/∂αj

is likely to be negative for relatively large αj and j is large (late time) resulting

in imprecision terms of the opposite sign to the regression parameter for late event

observations. Additionally, it should be noted that ϵ̂i values determined by Theo-

rem 4.3.2 will be substituted into the likelihood function. Therefore, the optimiza-

tion will be performed only over the regression parameter and those ϵi ∈ [−ϵ∗, ϵ∗]

for which Theorem 4.3.2 failed to provide clear results. In the subsequent example,

we demonstrate the implementation of the robust PH model using simulated data.
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n = 30 n = 60 n = 200

ϵ∗ β̂p ℓ β̂p ℓ β̂p ℓ

0 -0.5252 -51.285 -0.5212 -131.58 -0.5554 -636.33

0.1 -0.5644 -50.252 -0.5520 -129.48 -0.5898 -628.75

0.5 -0.7531 -45.633 -0.6937 -120.49 -0.7510 -596.25

1 -1.1684 -38.811 -0.9625 -107.25 -1.0463 -550.83

1.2 -1.4369 -35.816 -1.1171 -101.28 -1.2044 -531.23

Table 4.1: Estimates of β and values of ℓ(β̂p, ϵ̂) for the RP model applied to the

datasets in Example 4.3.1 having β = −0.5. A range of values of ϵ∗ is considered:

0, 0.1, 0.5, 1 and 1.2.

Example 4.3.1 This example illustrates the behaviour of the robust PH model and

the effect of increasing the level of imprecision on the estimated regression coefficient

and imprecision terms, the maximum log-likelihood value, and the estimated base-

line hazard function. Three simulated PH datasets are considered with N = 30, 60,

and 200, each with baseline survival times following the Weibull distribution char-

acterized by ρ = 1.2 and λ = 2. The covariate X was generated using a normal

distribution with a mean of 10 and a variance of 9. Further, 20% of the observations

are right-censored in accordance with Section 2.6.3, and the regression coefficient

β was set to −0.5. The Robust PH model was then fitted to each dataset, using

four different levels of imprecision, namely ϵ∗ = 0.1, 0.5, 1, and 1.2. In order to il-

lustrate some characteristics of the model, we additionally generate another dataset

with n = 30 using the same settings, but assuming a positive regression coefficient

β = 0.5.

For the data set with β = −0.5, Table 4.1 shows the estimated regression coeffi-

cients and the log-likelihood values in the absence of imprecision, i.e. the standard

PH model where ϵ∗ = 0, and in the presence of imprecision using the robust PH

model. In the presence of increasing imprecision, it is observed that the log-likelihood

values increase reflecting the fact that the log-likelihood function is maximized over

a wide range of possible parameter values and the estimated regression parameters
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Data ϵ∗ = 0.1 0.5 1 1.2

t status x β̂ −0.56 −0.75 −1.17 −1.44

1.50 1 6.59 ϵ̂1 −0.10 −0.50 −1.00 −1.20

1.71 1 4.10 ϵ̂2 −0.10 −0.44 0.41 0.80

2.01 1 6.20 ϵ̂3 −0.10 −0.50 −1.00 −0.73

3.14 1 12.51 ϵ̂4 −0.10 −0.50 −1.00 −1.20

3.77 1 4.94 ϵ̂5 0.10 0.50 1.00 1.20

4.40 1 7.81 ϵ̂6 −0.10 −0.50 −1.00 −1.08

4.51 1 7.94 ϵ̂7 −0.10 −0.50 −1.00 −0.83

7.13 1 10.46 ϵ̂8 −0.10 −0.50 −1.00 −1.20

8.51 1 8.32 ϵ̂9 −0.10 −0.50 −0.74 −0.59

8.97 1 6.92 ϵ̂10 0.10 0.50 0.92 1.05

11.36 1 10.39 ϵ̂11 −0.10 −0.50 −1.00 −1.20

12.70 1 6.80 ϵ̂12 0.10 0.50 1.00 1.20

12.94 1 9.35 ϵ̂13 −0.10 −0.50 −0.77 −0.67

13.21 0 15.36 ϵ̂14 0.10 0.50 1.00 1.20

14.12 1 8.33 ϵ̂15 0.10 0.39 0.52 0.60

17.59 1 11.38 ϵ̂16 −0.10 −0.50 −1.00 −1.20

17.60 1 8.66 ϵ̂17 0.10 0.50 0.67 0.73

24.45 1 11.20 ϵ̂18 −0.10 −0.50 −1.00 −1.20

26.67 0 8.12 ϵ̂18 0.10 0.50 1.00 1.20

29.89 1 11.08 ϵ̂20 −0.10 −0.50 −1.00 −1.20

38.34 0 9.31 ϵ̂21 0.10 0.50 1.00 1.20

38.63 1 8.58 ϵ̂22 0.10 0.50 1.00 1.20

48.98 1 10.21 ϵ̂23 0.10 0.50 0.55 0.60

58.18 1 13.67 ϵ̂24 −0.10 −0.50 −1.00 −1.20

65.54 0 15.15 ϵ̂25 0.10 0.50 1.00 1.20

65.65 1 11.49 ϵ̂26 0.10 0.20 0.23 0.27

71.61 0 13.76 ϵ̂27 0.10 0.50 1.00 1.20

79.96 0 12.10 ϵ̂28 0.10 0.50 1.00 1.20

219.82 1 10.33 ϵ̂29 0.10 0.50 1.00 1.20

244.93 1 14.68 ϵ̂30 0.10 0.50 1.00 1.20

Table 4.2: Estimates of β, ϵ1, . . . , ϵ30 for the RP model applied to the dataset in

Example 4.3.1 with n = 30 having β = −0.5. A range of values of ϵ∗ is considered:

0, 0.1, 0.5, 1 and 1.2.
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Data ϵ∗ = 0.1 0.5 1 1.2

t status x β̂ 0.54 0.71 1.11 1.38

0.009 1 12.51 ϵ̂1 0.10 0.50 1.00 1.20

0.066 1 13.67 ϵ̂2 0.10 0.50 1.00 1.20

0.085 1 15.15 ϵ̂3 0.10 0.43 -0.37 -0.54

0.117 1 10.46 ϵ̂4 0.10 0.50 1.00 1.20

0.120 1 14.68 ϵ̂5 −0.10 −0.19 −0.70 −0.81

0.132 1 15.36 ϵ̂6 −0.10 −0.50 −1.00 −1.20

0.134 1 11.38 ϵ̂7 0.10 0.50 1.00 1.20

0.198 1 10.39 ϵ̂8 0.10 0.50 1.00 1.20

0.216 1 11.20 ϵ̂9 0.10 0.50 1.00 1.16

0.288 1 13.76 ϵ̂10 −0.10 −0.50 −1.00 −1.20

0.292 1 11.08 ϵ̂11 0.10 0.50 0.61 0.57

0.376 1 12.10 ϵ̂12 −0.10 −0.50 −0.85 −0.89

0.455 1 11.49 ϵ̂13 −0.10 −0.50 −0.66 −0.72

0.536 1 9.35 ϵ̂14 0.10 0.50 1.00 0.99

0.604 1 7.94 ϵ̂15 0.10 0.50 1.00 1.20

0.619 1 6.59 ϵ̂16 0.10 0.50 1.00 1.20

0.654 1 7.81 ϵ̂17 0.10 0.50 1.00 1.20

0.726 0 8.12 ϵ̂18 −0.10 −0.50 −1.00 −1.20

0.830 1 8.32 ϵ̂18 0.10 0.50 0.90 0.84

0.987 1 10.21 ϵ̂20 −0.10 −0.50 −1.00 −1.20

1.074 0 8.33 ϵ̂21 −0.10 −0.50 −1.00 −1.20

1.134 0 9.31 ϵ̂22 −0.10 −0.50 −1.00 −1.20

1.142 1 6.20 ϵ̂23 0.10 0.50 1.00 1.20

1.289 1 8.66 ϵ̂24 −0.10 −0.23 −0.14 −0.13

2.802 1 6.92 ϵ̂25 0.10 0.50 1.00 1.20

3.028 1 8.58 ϵ̂26 −0.10 −0.50 −0.47 −0.40

3.895 0 10.33 ϵ̂27 −0.10 −0.50 −1.00 −1.20

3.973 0 4.10 ϵ̂28 −0.10 −0.50 −1.00 −1.20

4.407 1 6.80 ϵ̂29 −0.10 −0.50 −0.82 −0.85

5.310 0 4.94 ϵ̂30 −0.10 −0.50 −1.00 −1.20

Table 4.3: Estimates of β, ϵ1, . . . , ϵ30 for the RP model applied to the data set in

Example 4.3.1 with n = 30 having β = 0.5. A range of values of ϵ∗ is considered: 0,

0.1, 0.5, 1 and 1.2.
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diverge from zero. The same pattern was observed for the data set with β = 0.5,

as reported in Table 4.3. For negative β, increasing ϵ∗ results in a decrease in the

regression coefficient while for positive β it results in an increase. Note that the

values of ϵ̂i determined by Theorem 4.3.2 will be substituted in the likelihood, and

the optimization will only be over the regression parameter and ϵi ∈ [−ϵ∗, ϵ∗] in

which Theorem 4.3.2 was not able to clearly figure them out.

In comparison to the GPH/IPH models, where increasing the level of imprecision

leads to shrinkage in the estimates of β, increasing the imprecision level in the robust

PH model results in an exaggeration of the regression estimate. This occurs because

the model tries to account for the additional variability in the covariate values.

Therefore, it is crucial to be aware that β̂ might overstate the true effect of the

covariate due to the imprecision introduced in the covariate values. Researchers

should be careful not to overinterpret the size of β̂, particularly when ϵ∗ is large. It

would be prudent to emphasize that the observed relationship could be inflated by

the noise introduced in the covariate.

Similarly, when applying the GPH/IPH models, it is advisable to consider that

the effect of the covariate may be underestimated due to the shrinkage effect in the

estimates in response to increased imprecision level. Hence, users should be cautious

about concluding that a small β̂ indicates a weak effect of the covariate; instead,

it might reflect the imprecision in the model. In both models, the uncertainty

increases in response to the increased imprecision level, but the direction of bias

in the estimates differs. This introduces complexities in interpreting the regression

coefficient, so practitioners should be cautious.

Furthermore, increasing the imprecision level substantially in the robust PH

model may result in non-convergence, particularly for small sized PH data. There-

fore, the occurrence of non-convergence during the optimization should be inter-

preted as a diagnostic indicator of an inappropriate selection of the imprecision

level, ϵ∗, necessitating a reduction in the imprecision level to successfully achieve an

MLE. Although this particular characteristic has not been reported for these data

sets, it is worth noting that it will be further highlighted in Section 4.5.

Table 4.2 and 4.3 show the estimates of the regression coefficient and imprecision
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terms for the data with n = 30. With respect to the estimated imprecision terms, it

is observed that a significant proportion of these terms, particularly those associated

with early-stage event occurrences, tend to adopt the imprecision limit that matches

the sign of the estimated regression parameter, β̂. This alignment is aimed at

maximizing the log-likelihood function of the robust PH model, as illustrated in

Theorem 4.3.2. Conversely, for individuals linked to later event and censoring times,

the optimization of contributions is often achieved when the majority of imprecision

terms assume the imprecision limit with a sign opposite to that of the estimated

regression parameter, as evidenced in Table 4.2 and Table 4.3.

However, due to the nature of constrained multivariate optimization, these im-

precision terms possess the flexibility to take any value within the predefined im-

precision interval. This range includes the potential for a change in their sign with

an increase in the imprecision level. The instances highlighted in Table 4.2 and 4.3

display this characteristic. The occurrence of this behaviour appears to be part of

the constrained multivariate optimization. This conclusion is drawn by keeping the

estimated imprecision terms and the estimated regression parameter constants as

shown in Table 4.2, while allowing the value of ϵ2 to vary within the imprecision

interval. It was observed that the log-likelihood function attains its maximum only

at the estimated ϵ̂2 displayed in Table 4.2 and that using other values within the

imprecision interval consistently leads to a reduction in the log-likelihood value. Fig-

ure 4.1 shows that upon implementing a minimal level of imprecision, the consequent

estimations of imprecision terms are observed to conform with the predetermined

imprecision limits, either−ϵ∗ or ϵ∗. As the level of imprecision increases, the variabil-

ity in the estimates of imprecision terms increases accordingly, thereby permitting

these values to fluctuate within the defined imprecision limits.

Consider estimating the baseline hazard functions for the simulated survival data

with n = 30. The estimates of β̂p and the imprecision terms ϵ̂ in Table 4.2 can be

substituted in Equation (4.4) to determine the baseline hazard function for the

robust PH model. Accordingly, the baseline hazard function is given by
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Figure 4.1: Estimates of imprecision terms ϵi for the RP model applied to the data

set in Example 4.3.1 with n = 30 (left) and n = 200 (right) having β = −0.5. A

range of values of ϵ∗ is considered: 0.1, 0.5, 1 and 1.2 (top-bottom).
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ĥ0(ti) =
δi
ri

=
δi∑n
l=i αl

=
δi∑n

l=i exp
(
β̂p(xi + ϵ̂i)

)
(4.11)

This baseline hazard function is intended to be represented as a function of ti to

emphasize that it equals zero except at event times. The construction of the robust

PH model utilizes the Poisson empirical likelihood approach, which yielded to an

estimation of the baseline hazard function analogous to Breslow’s estimate of the

baseline hazard function as in Equation (4.11). Consequently, this approach implies

that the baseline hazard function related to right-censored times is zero, while the

baseline hazard function related to event times can vary between zero and infinity.

Tables A.5 and A.6 in Appendix A.3 present the baseline hazard function esti-

mates derived from applying the robust PH model to the simulated datasets with a

sample size n = 30 using both negative and positive regression coefficients. These

datasets were examined employing different levels of imprecision ϵ∗ = 0.1, 0.5, 1, 1.2

along with estimated baseline hazard function results from the standard PH model.

Per above, increasing the imprecision level shows that these baseline hazard func-

tions exhibit monotonic behaviour; that is, increasing imprecision leads to a higher

baseline hazard for negative estimates of the regression coefficient. This phenomenon

occurs due to the fact that an increase in the imprecision level lowers the estimated

value of the regression coefficient, as mentioned earlier, resulting in a reduced denom-

inator in Equation (4.11). For a positive regression coefficient, the impact reverses

as illustrated in the referenced tables. Figure 4.2 further highlights the relationship

between the sign of the estimated regression coefficient and its influence on either

augmenting or diminishing the baseline hazard function. This is demonstrated by

comparing the baseline hazard estimates obtained from the robust PH model with

an imprecision level of ϵ∗ = 0.1 and the standard PH model, where ϵ∗ is assumed to



4.3. Robust-Poisson PH likelihood (RP) 111

be zero.

⋄

4.3.1 Imprecise hazard and survival functions

This section describes the estimation of the imprecise hazard and survival func-

tions for individuals with particular covariate values using the robust PH model. A

naive approach to determining the imprecise hazard and survival functions can be

achieved by directly plugging in the imprecision limits, −ϵ∗, ϵ∗, to Equation (4.2) in

accordance with the estimates of the regression coefficient, the imprecision terms,

and the baseline hazard function. When the regression coefficient is positive, the

upper and lower hazard functions for individuals with x = xj are as follows:

hj(t; ϵ
∗) = ĥ0p(t; ϵ

∗) exp
(
β̂ (xj − ϵ∗)

)
hj(t; ϵ

∗) = ĥ0p(t; ϵ
∗) exp

(
β̂ (xj + ϵ∗)

) (4.12)

The lower and upper survival functions for the individual with a covariate value

x = xj at time t given the level of imprecision ϵ∗ can be derived as follows

Sj(t; ϵ
∗) = exp

[
−
∑
l:tl≤t

hj(tl; ϵ
∗)

]
(4.13)

Sj(t; ϵ
∗) = exp

[
−
∑
l:tl≤t

hj(tl; ϵ
∗)

]
(4.14)

The reverse holds true when the regression coefficient is negative, i.e., the lower

hazard function is associated with the positive imprecision limit, ϵ∗, while the upper

hazard function is associated with the negative imprecision limit, −ϵ∗. The following

example illustrates how to estimate the naive hazard and survival functions for

individuals using the robust PH model.

Example 4.3.2 In this example, we explore the impact of increasing the level of

imprecision on the imprecise hazard and survival functions for different individu-

als. Our particular implementation of the robust PH model is based on the simu-

lated data set that includes 30 observations with the negative regression coefficient
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Figure 4.2: Estimates of baseline hazards for the RP model applied to the data set

in Example 4.3.1 with n = 30 having β = −0.5 (top) and β = 0.5 (bottom) using

ϵ∗ = 0.1, these estimates equal zero at non-event times.
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β̂ = −0.5644, as also used in Example 4.3.1. The naive hazard and survival func-

tions will be estimated for three different covariate values, x = 5, 9, 15 , representing

individuals with the minimum, mean, and maximum values of the covariate. Addi-

tionally, we consider two levels of imprecision ϵ∗ = 0.5, and 1. The resulting lower

and upper survival functions as derived in Equations (4.13) and (4.14) together

with the survival function corresponding to the standard PH model are presented

in Tables 4.4, 4.5, and 4.6 for individuals with x = 5, 9, 15, respectively.

Similar to the PH model, the lower and upper survival functions obtained by

the robust PH model decrease only at event times, while remain constant between

successive event times due to the fact the the baseline hazard function equal zero at

right-censored times. As a consequence of constructing the robust PH model based

on the Poisson type of empirical likelihood,the survival function for the last obser-

vation does not reach zero although the last observation related to an event time.

The survival values are therefore expressed as 0.00e+00 instead of 0, representing a

number that converges to zero. The tables reveal inconsistent behavior of the im-

precise survival estimates when increasing imprecision levels. Notably, the survival

function estimates generated by the standard PH model may not necessarily reside

within the interval delineated by the lower and upper survival estimates derived

from the robust proportional hazards model across all values of x.

Given a negative estimate of the regression coefficient, Table 4.4 shows that for

small values of x, the PH survival estimate tends to fall within the imprecise survival

estimates primarily at earlier times. On the other hand, the PH survival estimate

corresponding to higher values of x may lie between the lower and upper survival

estimates mostly at later times, as evidenced in Table 4.6. The duration during

which the PH survival estimates are enclosed within the corresponding imprecise

survival estimates varies according to changes in x as in Table 4.5, when x = 9.

Based on epsilon values of 0.5 and 1, Figure 4.3 illustrates the behaviour of the

naive imprecise survival estimates in comparison to those derived from the standard

PH model for individuals with covariate values of x = 5, 9, 15.

Indeed, as evidenced in Example 4.3.1 and other simulations, the baseline hazard

estimates exhibit a pronounced monotonic effect with increasing imprecision levels.
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time status Ŝ5;c(t)
ϵ∗ = 0.5 ϵ∗ = 1

Ŝ5;p(t) Ŝ5;p(t) Ŝ5;p(t) Ŝ5;p(t)

1.50 1 8.54e-01 7.75e-01 8.87e-01 4.30e-01 9.22e-01

1.71 1 7.20e-01 5.88e-01 7.79e-01 1.63e-01 8.39e-01

2.01 1 5.70e-01 3.31e-01 5.94e-01 2.00e-02 6.85e-01

3.14 1 4.36e-01 1.56e-01 4.17e-01 2.74e-04 4.53e-01

3.77 1 3.33e-01 7.36e-02 2.93e-01 3.74e-06 2.99e-01

4.40 1 2.30e-01 2.23e-02 1.67e-01 1.62e-09 1.41e-01

4.51 1 1.53e-01 5.52e-03 8.64e-02 3.02e-14 4.94e-02

7.13 1 9.83e-02 1.06e-03 3.98e-02 1.59e-21 9.77e-03

8.51 1 6.23e-02 1.96e-04 1.80e-02 5.15e-29 1.85e-03

8.97 1 3.79e-02 2.75e-05 7.12e-03 3.34e-39 1.91e-04

11.36 1 2.07e-02 2.23e-06 2.18e-03 4.64e-53 8.75e-06

12.70 1 1.11e-02 1.62e-07 6.34e-04 8.76e-68 3.30e-07

12.94 1 4.83e-03 3.42e-09 1.03e-04 2.16e-92 1.38e-09

13.21 0 4.83e-03 3.42e-09 1.03e-04 2.16e-92 1.38e-09

14.12 1 1.94e-03 3.71e-11 1.23e-05 4.93e-126 7.75e-13

17.59 1 6.59e-04 1.42e-13 8.91e-07 5.08e-172 2.79e-17

17.60 1 2.14e-04 4.14e-16 5.71e-08 5.31e-221 5.14e-22

24.45 1 5.59e-05 3.53e-19 2.05e-09 5.48e-284 4.20e-28

26.67 0 5.59e-05 3.53e-19 2.05e-09 5.48e-284 4.20e-28

29.89 1 7.91e-06 3.81e-24 9.38e-12 0.00e+00 1.57e-39

38.34 0 7.91e-06 3.81e-24 9.38e-12 0.00e+00 1.57e-39

38.63 1 5.17e-07 1.57e-31 3.13e-15 0.00e+00 1.99e-58

48.98 1 4.85e-09 1.46e-47 8.83e-23 0.00e+00 1.96e-114

58.18 1 6.02e-12 5.72e-72 2.84e-34 0.00e+00 8.36e-225

65.54 0 6.02e-12 5.72e-72 2.84e-34 0.00e+00 8.36e-225

65.65 1 3.46e-15 6.30e-99 5.74e-47 0.00e+00 0.00e+00

71.61 0 3.46e-15 6.30e-99 5.74e-47 0.00e+00 0.00e+00

79.96 0 3.46e-15 6.30e-99 5.74e-47 0.00e+00 0.00e+00

219.82 1 1.14e-21 3.25e-148 3.55e-70 0.00e+00 0.00e+00

244.93 1 1.30e-91 0.00e+00 0.00e+00 0.00e+00 0.00e+00

Table 4.4: Comparison of standard PH survival estimates and naive imprecise sur-

vival estimates for individuals with x = 5. The estimates were derived from the

RP model applied to the data set in Example 4.3.2, with n = 30 and β̂ = −0.5644,

using ϵ∗ values of 0.5 and 1.
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time status Ŝ9;c(t)
ϵ∗ = 0.5 ϵ∗ = 1

Ŝ9;p(t) Ŝ9;p(t) Ŝ9;p(t) Ŝ9;p(t)

1.50 1 9.81e-01 9.88e-01 9.94e-01 9.92e-01 9.99e-01

1.71 1 9.61e-01 9.74e-01 9.88e-01 9.83e-01 9.98e-01

2.01 1 9.33e-01 9.47e-01 9.75e-01 9.64e-01 9.96e-01

3.14 1 9.03e-01 9.13e-01 9.58e-01 9.26e-01 9.93e-01

3.77 1 8.74e-01 8.80e-01 9.41e-01 8.90e-01 9.89e-01

4.40 1 8.35e-01 8.29e-01 9.16e-01 8.28e-01 9.82e-01

4.51 1 7.95e-01 7.74e-01 8.87e-01 7.48e-01 9.72e-01

7.13 1 7.53e-01 7.14e-01 8.53e-01 6.39e-01 9.58e-01

8.51 1 7.12e-01 6.57e-01 8.21e-01 5.44e-01 9.43e-01

8.97 1 6.70e-01 5.97e-01 7.84e-01 4.37e-01 9.23e-01

11.36 1 6.22e-01 5.27e-01 7.40e-01 3.24e-01 8.97e-01

12.70 1 5.76e-01 4.64e-01 6.96e-01 2.36e-01 8.70e-01

12.94 1 5.21e-01 3.83e-01 6.37e-01 1.39e-01 8.27e-01

13.21 0 5.21e-01 3.83e-01 6.37e-01 1.39e-01 8.27e-01

14.12 1 4.66e-01 3.07e-01 5.73e-01 6.75e-02 7.71e-01

17.59 1 4.08e-01 2.33e-01 5.04e-01 2.51e-02 7.00e-01

17.60 1 3.56e-01 1.75e-01 4.40e-01 8.76e-03 6.33e-01

24.45 1 3.02e-01 1.24e-01 3.74e-01 2.26e-03 5.55e-01

26.67 0 3.02e-01 1.24e-01 3.74e-01 2.26e-03 5.55e-01

29.89 1 2.38e-01 7.06e-02 2.87e-01 1.78e-04 4.34e-01

38.34 0 2.38e-01 7.06e-02 2.87e-01 1.78e-04 4.34e-01

38.63 1 1.70e-01 3.06e-02 1.94e-01 2.65e-06 2.89e-01

48.98 1 9.61e-02 4.98e-03 8.24e-02 1.02e-11 8.67e-02

58.18 1 4.24e-02 3.14e-04 2.24e-02 2.21e-22 8.07e-03

65.54 0 4.24e-02 3.14e-04 2.24e-02 2.21e-22 8.07e-03

65.65 1 1.70e-02 1.49e-05 5.33e-03 2.55e-34 5.67e-04

71.61 0 1.70e-02 1.49e-05 5.33e-03 2.55e-34 5.67e-04

79.96 0 1.70e-02 1.49e-05 5.33e-03 2.55e-34 5.67e-04

219.82 1 2.74e-03 5.61e-08 3.85e-04 1.71e-55 5.09e-06

244.93 1 7.56e-12 2.87e-74 2.35e-35 0.00e+00 0.00e+00

Table 4.5: Comparison of standard PH survival estimates and naive imprecise sur-

vival estimates for individuals with x = 9. The estimates were derived from the

RP model applied to the data set in Example 4.3.2, with n = 30 and β̂ = −0.5644,

using ϵ∗ values of 0.5 and 1.
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time status Ŝ15;c(t)
ϵ∗ = 0.5 ϵ∗ = 1

Ŝ15;p(t) Ŝ15;p(t) Ŝ15;p(t) Ŝ15;p(t)

1.50 1 9.99e-01 1.00e+00 1.00e+00 1.00e+00 1.00e+00

1.71 1 9.98e-01 1.00e+00 1.00e+00 1.00e+00 1.00e+00

2.01 1 9.97e-01 9.99e-01 1.00e+00 1.00e+00 1.00e+00

3.14 1 9.96e-01 9.99e-01 1.00e+00 1.00e+00 1.00e+00

3.77 1 9.94e-01 9.99e-01 9.99e-01 1.00e+00 1.00e+00

4.40 1 9.92e-01 9.98e-01 9.99e-01 1.00e+00 1.00e+00

4.51 1 9.90e-01 9.97e-01 9.99e-01 1.00e+00 1.00e+00

7.13 1 9.88e-01 9.96e-01 9.98e-01 1.00e+00 1.00e+00

8.51 1 9.86e-01 9.95e-01 9.98e-01 9.99e-01 1.00e+00

8.97 1 9.83e-01 9.94e-01 9.97e-01 9.99e-01 1.00e+00

11.36 1 9.80e-01 9.93e-01 9.97e-01 9.99e-01 1.00e+00

12.70 1 9.77e-01 9.92e-01 9.96e-01 9.99e-01 1.00e+00

12.94 1 9.72e-01 9.90e-01 9.95e-01 9.98e-01 1.00e+00

13.21 0 9.72e-01 9.90e-01 9.95e-01 9.98e-01 1.00e+00

14.12 1 9.68e-01 9.87e-01 9.94e-01 9.98e-01 1.00e+00

17.59 1 9.62e-01 9.84e-01 9.93e-01 9.97e-01 1.00e+00

17.60 1 9.57e-01 9.81e-01 9.91e-01 9.96e-01 1.00e+00

24.45 1 9.50e-01 9.77e-01 9.89e-01 9.95e-01 9.99e-01

26.67 0 9.50e-01 9.77e-01 9.89e-01 9.95e-01 9.99e-01

29.89 1 9.40e-01 9.72e-01 9.86e-01 9.92e-01 9.99e-01

38.34 0 9.40e-01 9.72e-01 9.86e-01 9.92e-01 9.99e-01

38.63 1 9.27e-01 9.63e-01 9.82e-01 9.88e-01 9.99e-01

48.98 1 9.05e-01 9.44e-01 9.73e-01 9.77e-01 9.98e-01

58.18 1 8.73e-01 9.16e-01 9.59e-01 9.56e-01 9.96e-01

65.54 0 8.73e-01 9.16e-01 9.59e-01 9.56e-01 9.96e-01

65.65 1 8.40e-01 8.86e-01 9.45e-01 9.33e-01 9.93e-01

71.61 0 8.40e-01 8.86e-01 9.45e-01 9.33e-01 9.93e-01

79.96 0 8.40e-01 8.86e-01 9.45e-01 9.33e-01 9.93e-01

219.82 1 7.77e-01 8.34e-01 9.18e-01 8.92e-01 9.89e-01

244.93 1 3.34e-01 1.58e-01 4.19e-01 7.46e-04 4.99e-01

Table 4.6: Comparison of standard PH survival estimates and naive imprecise sur-

vival estimates for individuals with x = 15. The estimates were derived from the

RP model applied to the data set in Example 4.3.2, with n = 30 and β̂ = −0.5644,

using ϵ∗ values of 0.5 and 1.
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Nevertheless, it becomes apparent that this monotonic trend does not uniformly

apply to hazard estimates for specific individuals due to variations in the estimates

of the regression coefficient and the covariate effect, represented by α̂i, in response to

increased imprecision levels. Consequently, this variations gives rise to the observed

inconsistencies in behavior of the imprecise survival estimates.

Table 4.7 provides insight into two additional aspects of naive survival estimates

by analyzing the disparities between upper and lower survival estimates for indi-

viduals denoted as Ŝx;p(t)− Ŝx;p(t). Interestingly, Table 4.7 highlights a correlation

between the difference in the imprecise survival estimates and the covariate effect.

In particular, there is a noticeable tendency for the difference in imprecise survival

estimates to decrease over time for maximal covariate effects, related to x = 5.

However, this trend gradually diminishes and eventually reverses as the covariate

effect decreases and reaches its minimal value, i.e. when x = 15. Additionally, the

table demonstrates another inconsistency in naive survival estimates, which is that

increasing the imprecision level does not necessarily result in a wider difference be-

tween upper and lower survivals. This phenomenon becomes apparent at later time

points for individuals with x = 5, namely from time t = 4.40, and at earlier time

points for individuals with x = 15.

⋄

Envelope-type of hazard and survival functions

The naive estimation method aims to derive imprecise hazard and survival es-

timates for an individual based on a specified imprecision level, ϵ∗. However, these

imprecise estimates often fail to encompass the hazard and survival estimates derived

from lower imprecision levels, including ϵ∗ = 0. The inconsistency behavior observed

in the naive-type survival estimates presented in Example 4.3.2 is attributed to the

failure of monotonic properties in baseline hazard functions to consistently manifest

in individual hazard functions. Therefore, an alternative approach known as the

envelope method was proposed to overcome this limitation.

The envelope method introduces a key restriction that imprecision terms are

allowed to influence only the baseline hazard estimates. This choice is motivated
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Figure 4.3: Comparison of standard PH survival estimates and naive imprecise

survival estimates for x = 5, 9, 15 (top-bottom). These estimates were derived from

the RP model applied to the data set in Example 4.3.2, using ϵ∗ values of 0.5 (amber),

and 1 (indigo).
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time status
Ŝ5;p(t)− Ŝ5;p(t) Ŝ9;p(t)− Ŝ9;p(t) Ŝ15;p(t)− Ŝ15;p(t)

ϵ∗ = 0.5 1 0.5 1 0.5 1

1.50 1 1.12e-01 4.92e-01 6.57e-03 7.09e-03 7.23e-05 6.43e-06

1.71 1 1.91e-01 6.76e-01 1.36e-02 1.52e-02 1.51e-04 1.38e-05

2.01 1 2.63e-01 6.65e-01 2.77e-02 3.23e-02 3.14e-04 2.98e-05

3.14 1 2.61e-01 4.52e-01 4.52e-02 6.64e-02 5.26e-04 6.25e-05

3.77 1 2.19e-01 2.99e-01 6.18e-02 9.90e-02 7.39e-04 9.52e-05

4.40 1 1.44e-01 1.41e-01 8.63e-02 1.54e-01 1.08e-03 1.54e-04

4.51 1 8.09e-02 4.94e-02 1.12e-01 2.25e-01 1.47e-03 2.37e-04

7.13 1 3.88e-02 9.77e-03 1.39e-01 3.18e-01 1.94e-03 3.65e-04

8.51 1 1.78e-02 1.85e-03 1.63e-01 3.99e-01 2.41e-03 4.96e-04

8.97 1 7.09e-03 1.91e-04 1.87e-01 4.86e-01 2.97e-03 6.75e-04

11.36 1 2.18e-03 8.75e-06 2.12e-01 5.72e-01 3.67e-03 9.17e-04

12.70 1 6.34e-04 3.30e-07 2.33e-01 6.33e-01 4.41e-03 1.18e-03

12.94 1 1.03e-04 1.38e-09 2.53e-01 6.87e-01 5.49e-03 1.61e-03

13.21 0 1.03e-04 1.38e-09 2.53e-01 6.87e-01 5.49e-03 1.61e-03

14.12 1 1.23e-05 7.75e-13 2.66e-01 7.03e-01 6.75e-03 2.19e-03

17.59 1 8.91e-07 2.79e-17 2.71e-01 6.75e-01 8.29e-03 3.00e-03

17.60 1 5.71e-08 5.14e-22 2.65e-01 6.24e-01 9.91e-03 3.85e-03

24.45 1 2.05e-09 4.20e-28 2.50e-01 5.53e-01 1.18e-02 4.95e-03

26.67 0 2.05e-09 4.20e-28 2.50e-01 5.53e-01 1.18e-02 4.95e-03

29.89 1 9.38e-12 1.57e-39 2.16e-01 4.34e-01 1.50e-02 7.01e-03

38.34 0 9.38e-12 1.57e-39 2.16e-01 4.34e-01 1.50e-02 7.01e-03

38.63 1 3.13e-15 1.99e-58 1.63e-01 2.89e-01 1.96e-02 1.04e-02

48.98 1 8.83e-23 1.96e-114 7.74e-02 8.67e-02 2.93e-02 2.04e-02

58.18 1 2.84e-34 8.36e-225 2.21e-02 8.07e-03 4.36e-02 3.97e-02

65.54 0 2.84e-34 8.36e-225 2.21e-02 8.07e-03 4.36e-02 3.97e-02

65.65 1 5.74e-47 0.00e+0 5.31e-03 5.67e-04 5.87e-02 6.07e-02

71.61 0 5.74e-47 0.00e+0 5.31e-03 5.67e-04 5.87e-02 6.07e-02

79.96 0 5.74e-47 0.00e+0 5.31e-03 5.67e-04 5.87e-02 6.07e-02

219.82 1 3.55e-70 0.00e+0 3.85e-04 5.09e-06 8.43e-02 9.67e-02

244.93 1 0.00e+0 0.00e+0 2.35e-35 0.00e+0 2.61e-01 4.98e-01

Table 4.7: Comparison of the width of naive survival estimates for individuals with

x = 5, 9, 15 based on the RP model applied to the data set in Example 4.3.2, with

n = 30 and β̂ = −0.5644, using ϵ∗ values of 0.5 and 1.
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by the observation that baseline hazard estimates exhibit a monotonic behavior

as the level of imprecision increases. By focusing the impact of imprecision on the

baseline hazard, the envelope method ensures that the hazard and survival estimates

derived from the robust PH model at any lower imprecision level, including the case

where ϵ∗∗ = 0, are contained within the range of estimates produced at the selected

imprecision level, ϵ∗∗. This notation, ϵ∗∗, was specifically introduced to distinguish

the envelope method from the naive approach.

To understand how the envelope method operates, consider the process of esti-

mating the hazard function for an individual with a covariate value x = xj using the

standard PH model. This estimation yields a regression estimate, β̂c, which is then

applied to Breslow’s estimator to derive the baseline hazard estimate. This estimated

baseline hazard is subsequently used to calculate the individual-specific hazard func-

tion, ĥ0p(t) exp(β̂cxj), as detailed in Section 2.4.4. Extending this methodology, the

robust PH model is applied to the same dataset to estimate the hazard function

for the same individual. This results in a different estimate of the regression co-

efficient, β̂p, which is then used to determine the corresponding hazard function,

ĥ0p(t) exp(β̂pxj).

Let H(t|x = xj; ϵ
∗∗) represent the set of all possible hazard functions for an

individual with covariate value xj at time t, given the imprecision level ϵ∗∗. The

lower and upper bounds of the hazard function for this individual can then be

defined as:

hj(t; ϵ
∗∗) = min{H(t|x = xj; ϵ

∗∗)}

= min{h0c(t) exp(β̂cxj), h0p(t; ϵ∗∗) exp(β̂pxj)}
(4.15)

hj(t; ϵ
∗∗) = max{H(t|x = xj; ϵ

∗∗)}

= max{h0c(t) exp(β̂cxj), h0p(t; ϵ∗∗) exp(β̂pxj)}
(4.16)

These formulations highlight the core principle of the envelope method that

the imprecision effect directly impacts only the baseline hazard estimates, while

it indirectly influences the regression estimate β̂p. The lower and upper survival

estimates for the individual with a covariate value x = xj at time t given the level

of imprecision ϵ∗∗ can be derived as follows
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Sj(t; ϵ
∗∗) = exp

[
−
∑
l:tl≤t

hj(tl; ϵ
∗∗)

]
(4.17)

Sj(t; ϵ
∗∗) = exp

[
−
∑
l:tl≤t

hj(tl; ϵ
∗∗)

]
(4.18)

The envelope method offers a more reliable and encompassing approach to es-

timating hazard and survival functions under varying levels of imprecision. By

confining the imprecision effects to the baseline hazard, it maintains the integrity

of the estimates across different imprecision levels, providing a comprehensive view

of the potential variability in the data. We demonstrate the envelope estimation of

the imprecise hazard and survival functions for individuals in the example presented

below.

Example 4.3.3 In this example, we explore the impact of increasing the level of

imprecision on the envelope-type of imprecise hazard and survival functions for

different individuals. This application of the envelope imprecise estimates in this

example is based on the simulated data with n = 30 and β̂ = −0.5644, which was

also used in Example 4.3.1 and 4.3.2. The envelope imprecise hazard and survival

functions will be estimated for three different covariate values, x = 5, 9, 15 using two

levels of imprecision ϵ∗∗ = 0.5, and 1. Tables 4.8, 4.9, and 4.10 present the envelope

survival estimates resulting from Equations (4.17) and (4.18), along with standard

PH survival estimates for individuals with x = 5, 9, 15, respectively.

The survival estimates based on the standard PH model are always between the

envelope-type lower and upper survival estimates derived from the robust PH model

for all values of x. Further, the tables present consistent results supporting the enve-

lope approach such that survival estimates derived from lower levels of imprecision

are integrated within survival estimates obtained from higher levels of imprecision.

For small values of x, Table 4.8 shows that the PH survival estimates tend to fall at

or near the upper limit of the envelope survival estimates obtained from the robust

PH model. On the other hand, the PH survival estimates corresponding to higher

values of x lie close or at the lower limit of the envelope survival estimates from the

robust PH model, as shown in Table 4.10. As x varies between its minimum and
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time status Ŝ5;c(t)
ϵ∗∗ = 0.5 ϵ∗∗ = 1

Ŝ5;p(t) Ŝ5;p(t) Ŝ5;p(t) Ŝ5;p(t)

1.50 1 8.54e-01 8.39e-01 8.54e-01 7.69e-01 8.54e-01

1.71 1 7.20e-01 6.94e-01 7.20e-01 5.69e-01 7.20e-01

2.01 1 5.70e-01 4.68e-01 5.70e-01 2.97e-01 5.70e-01

3.14 1 4.36e-01 2.80e-01 4.36e-01 7.81e-02 4.36e-01

3.77 1 3.33e-01 1.67e-01 3.33e-01 2.05e-02 3.33e-01

4.40 1 2.30e-01 7.35e-02 2.30e-01 1.85e-03 2.30e-01

4.51 1 1.53e-01 2.82e-02 1.53e-01 6.25e-05 1.53e-01

7.13 1 9.83e-02 9.11e-03 9.83e-02 3.41e-07 9.83e-02

8.51 1 6.23e-02 2.85e-03 6.23e-02 1.60e-09 6.23e-02

8.97 1 3.79e-02 7.41e-04 3.79e-02 1.09e-12 3.79e-02

11.36 1 2.07e-02 1.32e-04 2.07e-02 5.33e-17 2.07e-02

12.70 1 1.11e-02 2.18e-05 1.11e-02 1.40e-21 1.11e-02

12.94 1 4.83e-03 1.55e-06 4.83e-03 3.12e-29 4.83e-03

13.21 0 4.83e-03 1.55e-06 4.83e-03 3.12e-29 4.83e-03

14.12 1 1.94e-03 6.95e-08 1.94e-03 1.08e-39 1.94e-03

17.59 1 6.59e-04 1.52e-09 6.59e-04 5.35e-54 6.59e-04

17.60 1 2.14e-04 2.77e-11 2.14e-04 3.12e-69 2.14e-04

24.45 1 5.59e-05 2.17e-13 5.59e-05 8.00e-89 5.59e-05

26.67 0 5.59e-05 2.17e-13 5.59e-05 8.00e-89 5.59e-05

29.89 1 7.91e-06 8.46e-17 7.91e-06 1.33e-125 7.91e-06

38.34 0 7.91e-06 8.46e-17 7.91e-06 1.33e-125 7.91e-06

38.63 1 5.17e-07 7.24e-22 5.17e-07 2.03e-186 5.17e-07

48.98 1 4.85e-09 7.19e-33 4.85e-09 0.00e+00 4.85e-09

58.18 1 6.02e-12 1.27e-49 6.02e-12 0.00e+00 6.02e-12

65.54 0 6.02e-12 1.27e-49 6.02e-12 0.00e+00 6.02e-12

65.65 1 3.46e-15 4.02e-68 3.46e-15 0.00e+00 3.46e-15

71.61 0 3.46e-15 4.02e-68 3.46e-15 0.00e+00 3.46e-15

79.96 0 3.46e-15 4.02e-68 3.46e-15 0.00e+00 3.46e-15

219.82 1 1.14e-21 5.97e-102 1.14e-21 0.00e+00 1.14e-21

244.93 1 1.30e-91 0.00e+00 1.30e-91 0.00e+00 1.30e-91

Table 4.8: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for individuals with x = 5. The estimates were derived from the

RP model applied to the data set in Example 4.3.2, with n = 30 and β̂ = −0.5644,

using ϵ∗∗ values of 0.5 and 1.
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time status Ŝ9;c(t)
ϵ∗∗ = 0.5 ϵ∗∗ = 1

Ŝ9;p(t) Ŝ9;p(t) Ŝ9;p(t) Ŝ9;p(t)

1.50 1 9.81e-01 9.81e-01 9.91e-01 9.81e-01 9.98e-01

1.71 1 9.61e-01 9.61e-01 9.82e-01 9.61e-01 9.95e-01

2.01 1 9.33e-01 9.33e-01 9.63e-01 9.33e-01 9.89e-01

3.14 1 9.03e-01 9.03e-01 9.39e-01 9.03e-01 9.76e-01

3.77 1 8.74e-01 8.74e-01 9.16e-01 8.74e-01 9.64e-01

4.40 1 8.35e-01 8.35e-01 8.80e-01 8.35e-01 9.43e-01

4.51 1 7.95e-01 7.95e-01 8.39e-01 7.95e-01 9.14e-01

7.13 1 7.53e-01 7.52e-01 7.95e-01 7.53e-01 8.70e-01

8.51 1 7.12e-01 7.10e-01 7.52e-01 7.12e-01 8.28e-01

8.97 1 6.70e-01 6.65e-01 7.07e-01 6.65e-01 7.79e-01

11.36 1 6.22e-01 6.11e-01 6.57e-01 6.06e-01 7.23e-01

12.70 1 5.76e-01 5.59e-01 6.08e-01 5.49e-01 6.70e-01

12.94 1 5.21e-01 4.91e-01 5.50e-01 4.66e-01 6.05e-01

13.21 0 5.21e-01 4.91e-01 5.50e-01 4.66e-01 6.05e-01

14.12 1 4.66e-01 4.21e-01 4.92e-01 3.72e-01 5.42e-01

17.59 1 4.08e-01 3.49e-01 4.31e-01 2.74e-01 4.74e-01

17.60 1 3.56e-01 2.87e-01 3.75e-01 1.97e-01 4.13e-01

24.45 1 3.02e-01 2.26e-01 3.18e-01 1.29e-01 3.51e-01

26.67 0 3.02e-01 2.26e-01 3.18e-01 1.29e-01 3.51e-01

29.89 1 2.38e-01 1.54e-01 2.51e-01 5.87e-02 2.76e-01

38.34 0 2.38e-01 1.54e-01 2.51e-01 5.87e-02 2.76e-01

38.63 1 1.70e-01 8.65e-02 1.80e-01 1.59e-02 1.98e-01

48.98 1 9.61e-02 2.49e-02 1.01e-01 3.29e-04 1.12e-01

58.18 1 4.24e-02 3.74e-03 4.47e-02 1.59e-07 4.92e-02

65.54 0 4.24e-02 3.74e-03 4.47e-02 1.59e-07 4.92e-02

65.65 1 1.70e-02 4.61e-04 1.79e-02 3.08e-11 1.98e-02

71.61 0 1.70e-02 4.61e-04 1.79e-02 3.08e-11 1.98e-02

79.96 0 1.70e-02 4.61e-04 1.79e-02 3.08e-11 1.98e-02

219.82 1 2.74e-03 1.00e-05 2.89e-03 8.03e-18 3.18e-03

244.93 1 7.56e-12 3.18e-51 7.98e-12 0.00e+00 8.79e-12

Table 4.9: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for individuals with x = 9. The estimates were derived from the

RP model applied to the data set in Example 4.3.2, with n = 30 and β̂ = −0.5644,

using ϵ∗∗ values of 0.5 and 1.
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time status Ŝ15;c(t)
ϵ∗∗ = 0.5 ϵ∗∗ = 1

Ŝ15;p(t) Ŝ15;p(t) Ŝ15;p(t) Ŝ15;p(t)

1.50 1 9.99e-01 9.99e-01 1.00e+00 9.99e-01 1.00e+00

1.71 1 9.98e-01 9.98e-01 1.00e+00 9.98e-01 1.00e+00

2.01 1 9.97e-01 9.97e-01 1.00e+00 9.97e-01 1.00e+00

3.14 1 9.96e-01 9.96e-01 9.99e-01 9.96e-01 1.00e+00

3.77 1 9.94e-01 9.94e-01 9.99e-01 9.94e-01 1.00e+00

4.40 1 9.92e-01 9.92e-01 9.99e-01 9.92e-01 1.00e+00

4.51 1 9.90e-01 9.90e-01 9.98e-01 9.90e-01 1.00e+00

7.13 1 9.88e-01 9.88e-01 9.97e-01 9.88e-01 1.00e+00

8.51 1 9.86e-01 9.86e-01 9.97e-01 9.86e-01 1.00e+00

8.97 1 9.83e-01 9.83e-01 9.96e-01 9.83e-01 1.00e+00

11.36 1 9.80e-01 9.80e-01 9.95e-01 9.80e-01 1.00e+00

12.70 1 9.77e-01 9.77e-01 9.94e-01 9.77e-01 1.00e+00

12.94 1 9.72e-01 9.72e-01 9.93e-01 9.72e-01 9.99e-01

13.21 0 9.72e-01 9.72e-01 9.93e-01 9.72e-01 9.99e-01

14.12 1 9.68e-01 9.68e-01 9.91e-01 9.68e-01 9.99e-01

17.59 1 9.62e-01 9.62e-01 9.89e-01 9.62e-01 9.99e-01

17.60 1 9.57e-01 9.57e-01 9.87e-01 9.57e-01 9.99e-01

24.45 1 9.50e-01 9.50e-01 9.84e-01 9.50e-01 9.98e-01

26.67 0 9.50e-01 9.50e-01 9.84e-01 9.50e-01 9.98e-01

29.89 1 9.40e-01 9.40e-01 9.80e-01 9.40e-01 9.98e-01

38.34 0 9.40e-01 9.40e-01 9.80e-01 9.40e-01 9.98e-01

38.63 1 9.27e-01 9.27e-01 9.74e-01 9.27e-01 9.96e-01

48.98 1 9.05e-01 9.05e-01 9.61e-01 9.05e-01 9.93e-01

58.18 1 8.73e-01 8.73e-01 9.41e-01 8.73e-01 9.86e-01

65.54 0 8.73e-01 8.73e-01 9.41e-01 8.73e-01 9.86e-01

65.65 1 8.40e-01 8.40e-01 9.20e-01 8.40e-01 9.79e-01

71.61 0 8.40e-01 8.40e-01 9.20e-01 8.40e-01 9.79e-01

79.96 0 8.40e-01 8.40e-01 9.20e-01 8.40e-01 9.79e-01

219.82 1 7.77e-01 7.77e-01 8.83e-01 7.77e-01 9.65e-01

244.93 1 3.34e-01 2.48e-01 3.80e-01 8.58e-02 4.15e-01

Table 4.10: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for individuals with x = 15. The estimates were derived from the

RP model applied to the data set in Example 4.3.2, with n = 30 and β̂ = −0.5644,

using ϵ∗∗ values of 0.5 and 1.
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maximum values in the data set, the PH survival estimates fluctuate between the

corresponding imprecise envelope survival estimates derived from the robust model

as in Table 4.8, where x = 9 representing individuals with covariate value approxi-

mately equal the mean, see Figure 4.4. This aspect is naturally consistent with the

definition of the lower and upper hazard functions in Equations (4.15) and (4.16).

The reverse results are found when the regression coefficient is positive.

Table 4.11 presents the disparities between the envelope upper and lower sur-

vival estimates, Ŝx;p(t) − Ŝx;p(t). Unlike the naive approach, the table illustrates

that the disparity between the envelope-type upper and lower survival functions ex-

pands with increasing levels of imprecision. This is an inevitable consequence of the

constraints imposed by the envelope estimation methodology. Moreover, although

not included in this thesis, the difference between the envelope imprecise survival

estimates decreases as the sample size increases.

Regarding the correlation between the disparities of the envelope-type upper and

lower survival estimates and the covariate effect, it remains consistent. Specifically,

there is a significant tendency for the difference between the imprecise survival

estimates to decline over time for maximum covariate effects, associated with x = 5

given that the regression coefficient is negative. Conversely, this trend fades away

and eventually reverses as the covariate effect decreases and reaches its minimum

value, as evidenced by the case of x = 15. Accordingly, differences between envelope-

type upper and lower survival estimates are not uniform across all individuals, and

differ according to the magnitude of the covariate effect, that is, the value of the

covariate and the sign of the regression coefficient. It has been observed that this

aspect exists in the naive imprecise survival estimates as well, indicating that it is

an inherent feature of robust model.

⋄
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Figure 4.4: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for x = 5, 9, 15 (top-bottom). These estimates were derived from

the RP model applied to the data set in Example 4.3.2, using ϵ∗∗ values of 0.5

(amber), and 1 (indigo).
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time status
Ŝ5;p(t)− Ŝ5;p(t) Ŝ9;p(t)− Ŝ9;p(t) Ŝ15;p(t)− Ŝ15;p(t)

ϵ∗∗ = 0.5 1 0.5 1 0.5 1

1.50 1 1.40e-02 8.43e-02 1.06e-02 1.68e-02 7.36e-04 8.27e-04

1.71 1 2.55e-02 1.51e-01 2.16e-02 3.41e-02 1.52e-03 1.71e-03

2.01 1 1.02e-01 2.73e-01 2.99e-02 5.52e-02 2.54e-03 2.93e-03

3.14 1 1.57e-01 3.58e-01 3.58e-02 7.30e-02 3.65e-03 4.31e-03

3.77 1 1.67e-01 3.13e-01 4.15e-02 9.01e-02 4.78e-03 5.70e-03

4.40 1 1.56e-01 2.28e-01 4.42e-02 1.08e-01 6.27e-03 7.62e-03

4.51 1 1.25e-01 1.53e-01 4.42e-02 1.19e-01 7.87e-03 9.70e-03

7.13 1 8.91e-02 9.83e-02 4.27e-02 1.17e-01 9.57e-03 1.20e-02

8.51 1 5.94e-02 6.23e-02 4.13e-02 1.16e-01 1.13e-02 1.43e-02

8.97 1 3.72e-02 3.79e-02 4.26e-02 1.14e-01 1.31e-02 1.68e-02

11.36 1 2.06e-02 2.07e-02 4.62e-02 1.17e-01 1.53e-02 1.98e-02

12.70 1 1.10e-02 1.11e-02 4.94e-02 1.21e-01 1.76e-02 2.29e-02

12.94 1 4.83e-03 4.83e-03 5.89e-02 1.39e-01 2.04e-02 2.70e-02

13.21 0 4.83e-03 4.83e-03 5.89e-02 1.39e-01 2.04e-02 2.70e-02

14.12 1 1.94e-03 1.94e-03 7.04e-02 1.69e-01 2.34e-02 3.14e-02

17.59 1 6.59e-04 6.59e-04 8.16e-02 2.01e-01 2.68e-02 3.66e-02

17.60 1 2.14e-04 2.14e-04 8.87e-02 2.16e-01 3.03e-02 4.20e-02

24.45 1 5.59e-05 5.59e-05 9.26e-02 2.21e-01 3.45e-02 4.83e-02

26.67 0 5.59e-05 5.59e-05 9.26e-02 2.21e-01 3.45e-02 4.83e-02

29.89 1 7.91e-06 7.91e-06 9.71e-02 2.17e-01 4.00e-02 5.73e-02

38.34 0 7.91e-06 7.91e-06 9.71e-02 2.17e-01 4.00e-02 5.73e-02

38.63 1 5.17e-07 5.17e-07 9.30e-02 1.82e-01 4.73e-02 6.94e-02

48.98 1 4.85e-09 4.85e-09 7.65e-02 1.11e-01 5.65e-02 8.83e-02

58.18 1 6.02e-12 6.02e-12 4.10e-02 4.92e-02 6.80e-02 1.13e-01

65.54 0 6.02e-12 6.02e-12 4.10e-02 4.92e-02 6.80e-02 1.13e-01

65.65 1 3.46e-15 3.46e-15 1.75e-02 1.98e-02 8.03e-02 1.39e-01

71.61 0 3.46e-15 3.46e-15 1.75e-02 1.98e-02 8.03e-02 1.39e-01

79.96 0 3.46e-15 3.46e-15 1.75e-02 1.98e-02 8.03e-02 1.39e-01

219.82 1 1.14e-21 1.14e-21 2.88e-03 3.18e-03 1.06e-01 1.88e-01

244.93 1 1.30e-91 1.30e-91 7.98e-12 8.79e-12 1.32e-01 3.29e-01

Table 4.11: Comparison of the width of envelope survival estimates for individuals

with x = 5, 9, 15 based on the RP model applied to the data set in Example 4.3.2,

with n = 30 and β̂ = −0.5644, using ϵ∗∗ values of 0.5 and 1.
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4.4 Robust-Empirical PH likelihood (RE)

Our objective in this section is to construct the empirical likelihood for robust

PH models based on the baseline CDF, F0;e, as demonstrated in Section 2.5.2. The

derivation steps of this likelihood is almost identical to Ren and Zhou [77]. Therefore,

we will summarize our finding to avoid extensive repetition. Recall the relation be-

tween the survival function and the cumulative hazard function, as in Equation (2.9).

This relationship is a crucial tool for deriving the full empirical likelihood function

for the robust PH model, where

Se(t | xi, ϵi) = exp(−He(t | xi, ϵi))

= exp(−
∫ t

0

he(t | xi, ϵi)du)

= exp(−
∫ t

0

h0;e(t)αidu)

= S0;e(t)
αi

(4.19)

By differentiating both sides of Equation (4.19) with respect to t and using Se(t) =

1− Fe(t), we obtain the following

d

dt
Se(t | xi, ϵi) =

d

dt
S0;e(t)

αi ⇒ −fe(t | xi, ϵi) = αi[−f0;e(t)][S0;e(t)]
αi−1

⇒ fe(t | xi, ϵi) = αif0;e(t)S0;e(t)
αi−1

(4.20)

Then, the likelihood function for the robust PH model can be obtained by sub-

stituting Equations (4.19) and (4.20) into the full likelihood for survival data in

Equation (2.24), as follows

n∏
i=1

fe(ti, δi|xi, ϵi) ∝
n∏

i=1

fe(ti|xi)δiSe(ti|xi)1−δi

∝
n∏

i=1

[αif0;e(t)S0;e(t)
αi−1]δi [S0;e(ti)

αi ]1−δi

∝
n∏

i=1

[αidF0;e(ti)]
δi [S0;e(ti)]

αi−δi

Accordingly, the full likelihood function for the robust PH model is given by

L(β, F0;e, ϵ) =
n∏

i=1

[αidF0;e(ti)]
δi [S0;e(ti)]

αi−δi (4.21)
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In the following theorem, we summarize the results of the optimization of the like-

lihood function above.

Theorem 4.4.1 Under the full empirical likelihood function for the robust PH

model we have:

1. The baseline survival function in Equation (4.19) can be estimated under the

constraint that αn ≥ 1 for any fixed values of β and ϵ by

Ŝ0n;e(t) = 1− F̂0n;e(t) =
∏
i:ti≤t

ri − δi
ri

(4.22)

where ri =
∑n

j=i αj and αn = 1 to meet the constraint that ri ≥ 1 for every

event time.

2. The profile empirical likelihood function corresponds to the robust PH model

is given by

L(βe, ϵ) =
n∏

i=1

(
αi

ri

)δi (ri − δi
ri

)ri−δi

(4.23)

Proof.

To avoid unnecessary repetition, this theorem can be proved easily and follows

the approach detailed in Appendix A.2 for Theorem 2.5.2, which involves using the

definition of the robust PH model outlined in Equation (4.2), where ϕi is simply

substituted for αi. □

It is important to notice that the profile likelihood function for the robust PH

model in Equation (4.23) depends on the constraint ri ≥ 1 for all event times. By

setting αn = 1, this constraint is satisfied since ri is the sum of positive values αj

with j ranging from i to n, similar to Section 2.5.2. During the optimization process,

the values of xi+ϵi are adjusted by xi+ϵi− (xn+ϵn). As a result of this convention,

the estimates β̂e, ϵ̂1, ϵ̂2, . . . , ϵ̂n can then be substituted into Equation (4.22) to obtain

the survival function corresponding to x = xn + ϵn, . Thus, the baseline survival

function can be determined by

Ŝ0;e(t) = Ŝ0n;e(t)
exp(−β̂e[xn+ϵ̂n])
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Imprecise survival functions

The imprecise survival functions can be estimated using two feasible approaches,

naive and envelop. The naive imprecise survival estimates may not incorporate sur-

vival estimates corresponding to lower levels of imprecision, as seen in Section 4.3.1.

The naive survival functions for the robust PH model based on the empirical likeli-

hood can be obtained by directly substitute the imprecision limits, −ϵ∗ and ϵ∗, to

Equation (4.19) in accordance with the estimates of the regression coefficient and the

baseline survival function. Hence, the resulting naive imprecise survival functions

when the estimate of the regression coefficient is positive for an individual with the

covariate value x = xj at time t using the level of imprecision ϵ∗ are given by

Sj(t; ϵ
∗) = Ŝ0;e(t)

exp(β̂e(xj+ϵ∗)) (4.24)

Sj(t; ϵ
∗) = Ŝ0;e(t)

exp(β̂e(xj−ϵ∗)) (4.25)

When the estimate of the regression coefficient is negative, the lower survival

estimates correspond to −ϵ∗, whereas the upper survival estimates are related to

ϵ∗. The baseline survival estimates obtained from the robust empirical likelihood

demonstrate monotonic properties in response to increased imprecision levels, as

shown in the simulations and examples. Similar to their counterparts in the robust

model based on Poisson likelihood, the inability of the naive approach to preserve

this property in the imprecise survival estimates for individuals leads to inconsistent

behavior. Consequently, the focus will be on the envelope-type of survival estimates,

which possess attractive features that compensate for the shortcomings of the naive

approach.

In the envelope approach, we restrict survival estimates derived from lower levels

of imprecision to fall within the range of the imprecise survival estimates obtained

from the robust PH model at the selected level of imprecision. In this context, the

imprecise survival estimates for an individual using a specific imprecision level, ϵ∗∗,

are regarded as an envelope encompassing all potential survival estimates associated

with imprecision levels less than ϵ∗∗. LetS(t|x = xj; ϵ
∗∗) denote the set of all possible

survival functions for an individual with a covariate value xj at the observed time t
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given the level of imprecision ϵ∗. It follows that the imprecise survival functions for

the individual with a covariate value x = xj at time t given the level of imprecision

ϵ∗∗ can be defined by

Sj(t; ϵ
∗∗) = min{S(t|x = xj; ϵ

∗∗)}

= min{Ŝ0(t)
exp(β̂cxj), Ŝ0;e(t; ϵ

∗∗)exp(β̂exj)}
(4.26)

Sj(t; ϵ
∗∗) = max{S(t|x = xj)}

= max{Ŝ0(t)
exp(β̂cxj), Ŝ0;e(t; ϵ

∗∗)exp(β̂exj)}
(4.27)

In light of this definition, it is apparent that only the baseline survival estimates

are directly impacted by the imprecision effect, while the regression coefficient β̂e is

influenced indirectly. Furthermore, the subscript c refers to the estimates derived

from the PH model based on empirical likelihood, which differs marginally from

those derived from the Poisson likelihood.

Theorem 4.4.2 Consider maximizing the likelihood function in Equation (4.23)

when the estimates of the regression parameter is positive. Then, the imprecision

term for the j-th observation can be estimated as follows:

ϵ̂j =



Not determined ; for right-censored observations before the first event

ϵ∗ ; for the first observed event

−ϵ∗ ; for j = n and right-censored observations after the first event

∈ [−ϵ∗, ϵ∗] ; for other events

Conversely, ϵj can be estimated when the regression estimate is negative as follows

ϵ̂j =



Not determined ; for right-censored observations before the first event

−ϵ∗ ; for the first observed event

ϵ∗ ; for j = n and right-censored observations after the first event

∈ [−ϵ∗, ϵ∗] ; for other events

Proof.

Although the subsequent proof addresses the case of positive regression estimates,

analogous steps can be applied to demonstrate the statement for negative regression
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estimates. The log-likelihood associated with Equation(4.23) can be represented as

follows

ℓ(βe, ϵ) =
n∑

i=1

δi ln

(
αi

ri

)
+ (ri − δi) ln

(
ri − δi
ri

)
(4.28)

where the summation is effectively calculated over only failure times. Based upon

a particular ϵj, it appears that ϵj only affects ℓ directly through αi when i = j and

indirectly through ri when i ≤ j. Accordingly, the derivative of ℓ with respect to ϵj

is given by
∂ℓ

∂ϵj
=

∂ℓ

∂αj

∂αj

∂ϵj

and observe that
∂αj

∂ϵj
= β̂eαj

since αj is always positive, then
∂αj

∂ϵj
is positive when β̂e > 0 and negative when

β̂e < 0. Furthermore, the derivative of the log-likelihood with respect to αj is

∂ℓ

∂αj

=
∂

∂αj

n∑
i=1

δi ln

(
αi

ri

)
+

∂

∂αj

n∑
i=1

(ri − δi) ln

(
ri − δi
ri

)
(4.29)

From Equation (4.10), the derivative of the first summation is

δj
αj

−
∑
i≤j

δi
ri

The derivative of the second summation is

∂

∂αj

n∑
i=1

(ri − δi) ln

(
ri − δi
ri

)
=
∑
i≤j

δi
ri

+
∑
i≤j

ln

(
ri − δi
ri

)
Hence, the derivative of the log-likelihood in Equation (4.29) can be expressed as

follows
∂ℓ

∂αj

=
δj
αj

+
∑
i≤j

ln

(
ri − δi
ri

)
(4.30)

In light of these derivatives, it can be determined that ϵj has the following properties:

1. These values of ϵj for right-censored observations prior to the first event do

not affect the log-likelihood, and hence their estimates cannot be determined.

2. For the first failure time, (1), we have

∂ℓ

∂α(1)

=
1

α(1)

+ ln

(
r(1) − 1

r(1)

)
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The following demonstrating that
∂ℓ

∂α1

> 0:

It is known that ln
(

r(1)−1

r(1)

)
is an increasing function of r(1). Since r(1) ≥

α(1)+α[n] = α(1)+1, then the minimum value that r(1) could be is r(1) = α(1)+1

which follows

ln

(
r(1) − 1

r(1)

)
≥ ln

(
(α(1) + 1)− 1

α(1) + 1

)
= ln

(
(α(1))

α(1) + 1

)
Define a function g(α(1)) as follows

g(α(1)) =
1

α(1)

+ ln

(
(α(1))

α(1) + 1

)
≤ ∂ℓ

∂α(1)

Therefore, proving that g(α(1)) > 0 implies that
∂ℓ

∂α(1)

> 0, so by differentiat-

ing g(α(1)) with respect to α(1) we have

∂

∂α(1)

g(α(1)) =
−1

α2
(1)

+

(
α(1) + 1− α(1)

(α(1))2

)
(

α(1)

α(1) + 1

)
=

−1

α2
(1)

+
1

α2
(1) + α(1)

(4.31)

The derivative of g(α(1)) is always negative for α(1) > 0 which indicates that

g(α(1)) is a decreasing function with respect to α(1). By analyzing the least

value of g(α(1)) as α(1) approaches infinity, it can be seen that

lim
α(1)→∞

1

α(1)

→ 0

lim
α(1)→∞

ln

(
(α(1))

α(1) + 1

)
≤ ∂ℓ

∂α(1)

→ 0

Therefore, g(α(1)) → 0 from the positive side as α(1) approaches infinity, con-

firming that g(α(1)) > 0 which implies that
∂ℓ

∂α(1)

> 0. Hence,
∂ℓ

∂ϵ(1)
> 0 only

if ϵ̂(1) = ϵ∗ when β̂e > 0 or ϵ̂(1) = −ϵ∗ when β̂e < 0.

3. For right-censored observations after the first event, ri > 1 for all i < n since

αn ≥ 1, leading to
∂ℓ

∂αj

< 0. Therefore, αj needs to be as small as possible,

i.e. ϵ̂j = ϵ∗ when β̂e < 0 and ϵ̂j = −ϵ∗ when β̂e > 0.
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4. For the final observation where δn = 1, the analytical proof of this case is

complicated, primarily because the likelihood holds only under the constraint

that αn = 1. Consequently, this affects all preceding observations where j < n.

Despite these complexities, extensive simulations reinforce that setting ϵn as

the limit of imprecision with a sign opposite to that of β̂e consistently yields

the highest likelihood. This result aligns with the findings presented in Theo-

rem 4.3.2. □

Theorem 4.4.2 reveals that imprecision terms related to the robust empirical

likelihood are estimated in the same manner as their counterparts in the robust

Poisson likelihood. That is for relatively small αj and a small j (early time) where

there are not many i ≤ j, then ∂ℓ/∂αj is likely to be positive leading to imprecision

terms that match the sign of the regression parameter. Conversely, ∂ℓ/∂αj is likely

to be negative for relatively large αj and j is large (late time) resulting in impre-

cision terms with the opposite sign of the regression parameter. As can be seen

from Theorem 4.4.2, the estimates of the imprecision terms follow a similar pat-

tern to their counterparts in Poisson likelihood of the robust model. Additionally,

it should be noted that the ϵ̂i values determined by Theorem 4.4.2 will be substi-

tuted into the likelihood function. Consequently, the optimization will be conducted

only over the regression parameter and ϵi terms within the range [−ϵ∗, ϵ∗] for which

Theorem 4.4.2 did not yield clear results. The upcoming example illustrates the

impact of increasing the imprecision level to the regression coefficient, likelihood

value, and the survival estimates for individuals using simulated data, also used in

Example 4.3.1.

Example 4.4.1 This example demonstrates how the robust PH model based on

the empirical full likelihood behaves when the level of imprecision is increased. The

model was fitted on the exact simulated datasets that used in Example 4.3.1. Ta-

ble 4.12 presents the regression coefficient estimates and log-likelihood values for

both the standard proportional hazards model and the robust PH model based on

the Empirical likelihood using different values of imprecision levels. The table re-
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n = 30 n = 60 n = 200

ϵ∗ β̂e ℓ β̂e ℓ β̂e ℓ

0 -0.5145 -74.129 -0.5157 -178.20 -0.5531 -799.51

0.1 -0.5546 -73.121 -0.5466 -176.13 -0.5874 -791.98

0.5 -0.7454 -68.577 -0.6878 -167.25 -0.7482 -759.68

1 -1.1659 -61.803 -0.9573 -154.14 -1.0431 -714.51

1.2 -1.4357 -58.814 -1.1120 -148.20 -1.2009 -694.99

Table 4.12: Estimates of β and values of ℓ(β̂e, ϵ̂) for the RE model applied to the

datasets in Example 4.4.1 having β = −0.5. A range of values of ϵ∗ is considered:

0, 0.1, 0.5, 1 and 1.2.

veals similar characteristics obtained from fitting the robust PH model based on

Poisson likelihood. That is increasing the imprecision level for a negative coefficient

will decrease the regression coefficient estimates, and the reverse holds true for a

positive regression coefficient.

The estimates of the regression coefficient and imprecision terms in Table 4.13

illustrate that there is a tendency for the imprecision terms to align with the sign

of the estimated regression parameter, β̂, particularly for early-stage event occur-

rences. Conversely, for individuals associated with later event and censoring times,

the optimization of contributions is often achieved when the majority of imprecision

terms take values with a sign opposite to that of the estimated regression parameter,

as demonstrated by Theorem 4.4.2.

These imprecision terms have the flexibility to take any value within the pre-

defined imprecision interval, including the potential for a change in their sign in

response to changes in the imprecision level, as highlighted in Table 4.13. This

behavior has been observed in Example 4.3.1 for the robust model based on the

Poisson likelihood which is believed to be an inherent characteristic of constrained

multivariate optimization.

In this example, the naive imprecise survival estimates based on the robust RE

likelihood have been omitted due to the same inconsistency issue observed in the
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Data ϵ∗ = 0.1 0.5 1 1.2

t status x β̂e −0.55 −0.75 −1.17 −1.44

1.50 1 6.59 ϵ̂1 −0.10 −0.50 −1.00 −1.20

1.71 1 4.10 ϵ̂2 −0.10 −0.47 0.41 0.80

2.01 1 6.20 ϵ̂3 −0.10 −0.50 −1.00 −0.73

3.14 1 12.51 ϵ̂4 −0.10 −0.50 −1.00 −1.20

3.77 1 4.94 ϵ̂5 0.10 0.50 1.00 1.20

4.40 1 7.81 ϵ̂6 −0.10 −0.50 −1.00 −1.08

4.51 1 7.94 ϵ̂7 −0.10 −0.50 −1.00 −0.83

7.13 1 10.46 ϵ̂8 −0.10 −0.50 −1.00 −1.20

8.51 1 8.32 ϵ̂9 −0.10 −0.50 −0.74 −0.59

8.97 1 6.92 ϵ̂10 0.10 0.50 0.92 1.05

11.36 1 10.39 ϵ̂11 −0.10 −0.50 −1.00 −1.20

12.70 1 6.80 ϵ̂12 0.10 0.50 1.00 1.20

12.94 1 9.35 ϵ̂13 −0.10 −0.50 −0.76 −0.67

13.21 0 15.36 ϵ̂14 0.10 0.50 1.00 1.20

14.12 1 8.33 ϵ̂15 0.10 0.39 0.52 0.60

17.59 1 11.38 ϵ̂16 −0.10 −0.50 −1.00 −1.20

17.60 1 8.66 ϵ̂17 0.10 0.50 0.67 0.73

24.45 1 11.20 ϵ̂18 −0.10 −0.50 −1.00 −1.20

26.67 0 8.12 ϵ̂18 0.10 0.50 1.00 1.20

29.89 1 11.08 ϵ̂20 −0.10 −0.50 −1.00 −1.20

38.34 0 9.31 ϵ̂21 0.10 0.50 1.00 1.20

38.63 1 8.58 ϵ̂22 0.10 0.50 1.00 1.20

48.98 1 10.21 ϵ̂23 0.10 0.50 0.56 0.60

58.18 1 13.67 ϵ̂24 −0.10 −0.50 −1.00 −1.20

65.54 0 15.15 ϵ̂25 0.10 0.50 1.00 1.20

65.65 1 11.49 ϵ̂26 0.10 0.23 0.23 0.27

71.61 0 13.76 ϵ̂27 0.10 0.50 1.00 1.20

79.96 0 12.10 ϵ̂28 0.10 0.50 1.00 1.20

219.82 1 10.33 ϵ̂29 0.10 0.50 1.00 1.20

244.93 1 14.68 ϵ̂30 0.10 0.50 1.00 1.20

Table 4.13: Estimates of β, ϵ1, . . . , ϵ30 for the RE model applied to the dataset in

Example 4.4.1 with n = 30 having β = −0.5. A range of values of ϵ∗ is considered:

0, 0.1, 0.5, 1 and 1.2.
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naive imprecise survival estimates based on the robust RP likelihood. The envelope-

type of imprecise lower and upper survival estimates, alongside the survival estimates

derived from the PH Empirical model, are presented in Tables 4.14, 4.15, and 4.16

for individuals with x = 5, 9, 15, respectively. These tables indicate that envelope

survival estimates are decreased at event times, but remain unchanged between suc-

cessive event times similar to the PH model. As compared to their Poisson-based

counterparts, envelope survival estimates derived from a robust PH model based on

empirical likelihood are always zero for the last observation associated with an event

time, as shown in Figure 4.5. Additionally, imprecise survival estimates obtained

from either the RP or RE likelihoods are comparable, particularly those based of

the naive approach as illustrated in Figure 4.6 (bottom) for individuals with x = 15.

However, the envelope-type of imprecise survival estimates derived from either the

RP or RE likelihood exhibit slight discrepancies, as illustrated in Figure 4.6 (top)

for individuals with x = 15. This disparity arises because the envelope survival

estimates are intended to encompass the PH survival estimates, which inherently

vary depending on the likelihood function employed. Further, It is apparent from

the tables that the imprecision level is correlated with the disparity between sur-

vival estimates for individuals. In spite of the fact that the PH survival estimates

have generally fallen within the envelope imprecise survival estimates for all indi-

viduals, the sign of the regression coefficient and the values of x are crucial factors

in determining how the PH survival estimates fluctuate within their imprecise sur-

vival estimates. Similar to the robust model based on the poisson likelihood, the

PH survival estimates converge to the upper survival estimates derived from the

robust empirical PH model for small x values, as shown in Table 4.14. Conversely,

Table 4.16 illustrates that the PH survival estimates align with the lower survival

estimates obtained from the RE model. For values of x between the highest and low-

est values of the covariate, Table 4.15 demonstrates that the PH survival estimates

exhibit fluctuations within the imprecise survival estimates as x = 9. Notably, the

reverse patterns are found when the regression coefficient is positive.

Table 4.17 displays the disparities between upper and lower survival estimates.

The table indicates that as the level of imprecision increases, the differences between
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time status Ŝ5;c(t)
ϵ∗∗ = 0.5 ϵ∗∗ = 1

Ŝ5;e(t) Ŝ5;e(t) Ŝ5;e(t) Ŝ5;e(t)

1.50 1 8.56e-01 8.41e-01 8.56e-01 7.70e-01 8.56e-01

1.71 1 7.24e-01 6.98e-01 7.24e-01 5.69e-01 7.24e-01

2.01 1 5.76e-01 4.73e-01 5.76e-01 2.97e-01 5.76e-01

3.14 1 4.44e-01 2.85e-01 4.44e-01 7.88e-02 4.44e-01

3.77 1 3.42e-01 1.71e-01 3.42e-01 2.09e-02 3.42e-01

4.40 1 2.39e-01 7.70e-02 2.39e-01 1.91e-03 2.39e-01

4.51 1 1.61e-01 3.03e-02 1.61e-01 6.63e-05 1.61e-01

7.13 1 1.05e-01 1.01e-02 1.05e-01 3.78e-07 1.05e-01

8.51 1 6.76e-02 3.25e-03 6.76e-02 1.85e-09 6.76e-02

8.97 1 4.19e-02 8.74e-04 4.19e-02 1.34e-12 4.19e-02

11.36 1 2.34e-02 1.64e-04 2.34e-02 7.23e-17 2.34e-02

12.70 1 1.28e-02 2.84e-05 1.28e-02 2.10e-21 1.28e-02

12.94 1 5.78e-03 2.20e-06 5.78e-03 5.62e-29 5.78e-03

13.21 0 5.78e-03 2.20e-06 5.78e-03 5.62e-29 5.78e-03

14.12 1 2.42e-03 1.09e-07 2.42e-03 2.53e-39 2.42e-03

17.59 1 8.60e-04 2.73e-09 8.60e-04 1.85e-53 8.60e-04

17.60 1 2.94e-04 5.69e-11 2.94e-04 1.62e-68 2.94e-04

24.45 1 8.12e-05 5.27e-13 8.12e-05 7.08e-88 8.12e-05

26.67 0 8.12e-05 5.27e-13 8.12e-05 7.08e-88 8.12e-05

29.89 1 1.26e-05 2.73e-16 1.26e-05 3.41e-124 1.26e-05

38.34 0 1.26e-05 2.73e-16 1.26e-05 3.41e-124 1.26e-05

38.63 1 9.30e-07 3.53e-21 9.30e-07 2.90e-184 9.30e-07

48.98 1 1.10e-08 9.71e-32 1.10e-08 0.00e+00 1.10e-08

58.18 1 1.88e-11 7.58e-48 1.88e-11 0.00e+00 1.88e-11

65.54 0 1.88e-11 7.58e-48 1.88e-11 0.00e+00 1.88e-11

65.65 1 1.49e-14 1.09e-65 1.49e-14 0.00e+00 1.49e-14

71.61 0 1.49e-14 1.09e-65 1.49e-14 0.00e+00 1.49e-14

79.96 0 1.49e-14 1.09e-65 1.49e-14 0.00e+00 1.49e-14

219.82 1 5.77e-21 1.34e-98 5.77e-21 0.00e+00 5.77e-21

244.93 1 0 0 0 0 0

Table 4.14: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for individuals with x = 5. The estimates were derived from the

RE model applied to the data set in Example 4.4.1, with n = 30 and β̂ = −0.5145,

using ϵ∗∗ values of 0.5 and 1.



4.4. Robust-Empirical PH likelihood (RE) 139

time status Ŝ9;c(t)
ϵ∗∗ = 0.5 ϵ∗∗ = 1

Ŝ9;p(t) Ŝ9;p(t) Ŝ9;p(t) Ŝ9;p(t)

1.50 1 9.80e-01 9.80e-01 9.91e-01 9.80e-01 9.98e-01

1.71 1 9.60e-01 9.60e-01 9.82e-01 9.60e-01 9.95e-01

2.01 1 9.32e-01 9.32e-01 9.63e-01 9.32e-01 9.89e-01

3.14 1 9.01e-01 9.01e-01 9.38e-01 9.01e-01 9.76e-01

3.77 1 8.72e-01 8.72e-01 9.14e-01 8.72e-01 9.64e-01

4.40 1 8.33e-01 8.33e-01 8.78e-01 8.33e-01 9.43e-01

4.51 1 7.92e-01 7.92e-01 8.37e-01 7.92e-01 9.13e-01

7.13 1 7.50e-01 7.50e-01 7.92e-01 7.50e-01 8.70e-01

8.51 1 7.09e-01 7.09e-01 7.48e-01 7.09e-01 8.27e-01

8.97 1 6.67e-01 6.67e-01 7.00e-01 6.67e-01 7.73e-01

11.36 1 6.19e-01 6.19e-01 6.43e-01 6.19e-01 7.04e-01

12.70 1 5.73e-01 5.73e-01 5.88e-01 5.73e-01 6.38e-01

12.94 1 5.18e-01 5.16e-01 5.18e-01 5.18e-01 5.41e-01

13.21 0 5.18e-01 5.16e-01 5.18e-01 5.18e-01 5.41e-01

14.12 1 4.63e-01 4.44e-01 4.63e-01 4.32e-01 4.63e-01

17.59 1 4.06e-01 3.68e-01 4.06e-01 3.18e-01 4.06e-01

17.60 1 3.54e-01 3.02e-01 3.54e-01 2.29e-01 3.54e-01

24.45 1 3.00e-01 2.38e-01 3.00e-01 1.51e-01 3.00e-01

26.67 0 3.00e-01 2.38e-01 3.00e-01 1.51e-01 3.00e-01

29.89 1 2.37e-01 1.62e-01 2.37e-01 6.85e-02 2.37e-01

38.34 0 2.37e-01 1.62e-01 2.37e-01 6.85e-02 2.37e-01

38.63 1 1.70e-01 9.18e-02 1.70e-01 1.86e-02 1.70e-01

48.98 1 9.63e-02 2.67e-02 9.63e-02 3.90e-04 9.63e-02

58.18 1 4.27e-02 4.08e-03 4.27e-02 1.94e-07 4.27e-02

65.54 0 4.27e-02 4.08e-03 4.27e-02 1.94e-07 4.27e-02

65.65 1 1.72e-02 5.08e-04 1.72e-02 3.89e-11 1.72e-02

71.61 0 1.72e-02 5.08e-04 1.72e-02 3.89e-11 1.72e-02

79.96 0 1.72e-02 5.08e-04 1.72e-02 3.89e-11 1.72e-02

219.82 1 2.60e-03 1.09e-05 2.60e-03 1.06e-17 2.60e-03

244.93 1 0 0 0 0 0

Table 4.15: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for individuals with x = 9. The estimates were derived from the

RE model applied to the data set in Example 4.4.1, with n = 30 and β̂ = −0.5145,

using ϵ∗∗ values of 0.5 and 1.
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time status Ŝ15;c(t)
ϵ∗∗ = 0.5 ϵ∗∗ = 1

Ŝ15;p(t) Ŝ15;p(t) Ŝ15;p(t) Ŝ15;p(t)

1.50 1 9.99e-01 9.99e-01 1 9.99e-01 1

1.71 1 9.98e-01 9.98e-01 1 9.98e-01 1

2.01 1 9.97e-01 9.97e-01 1 9.97e-01 1

3.14 1 9.95e-01 9.95e-01 9.99e-01 9.95e-01 1

3.77 1 9.94e-01 9.94e-01 9.99e-01 9.94e-01 1

4.40 1 9.92e-01 9.92e-01 9.99e-01 9.92e-01 1

4.51 1 9.89e-01 9.89e-01 9.98e-01 9.89e-01 1

7.13 1 9.87e-01 9.87e-01 9.97e-01 9.87e-01 1

8.51 1 9.84e-01 9.84e-01 9.97e-01 9.84e-01 1

8.97 1 9.82e-01 9.82e-01 9.96e-01 9.82e-01 1

11.36 1 9.78e-01 9.78e-01 9.95e-01 9.78e-01 1

12.70 1 9.75e-01 9.75e-01 9.94e-01 9.75e-01 1

12.94 1 9.70e-01 9.70e-01 9.92e-01 9.70e-01 9.99e-01

13.21 0 9.70e-01 9.70e-01 9.92e-01 9.70e-01 9.99e-01

14.12 1 9.66e-01 9.66e-01 9.91e-01 9.66e-01 9.99e-01

17.59 1 9.60e-01 9.60e-01 9.89e-01 9.60e-01 9.99e-01

17.60 1 9.54e-01 9.54e-01 9.86e-01 9.54e-01 9.99e-01

24.45 1 9.47e-01 9.47e-01 9.84e-01 9.47e-01 9.98e-01

26.67 0 9.47e-01 9.47e-01 9.84e-01 9.47e-01 9.98e-01

29.89 1 9.36e-01 9.36e-01 9.79e-01 9.36e-01 9.98e-01

38.34 0 9.36e-01 9.36e-01 9.79e-01 9.36e-01 9.98e-01

38.63 1 9.22e-01 9.22e-01 9.73e-01 9.22e-01 9.96e-01

48.98 1 8.99e-01 8.99e-01 9.59e-01 8.99e-01 9.93e-01

58.18 1 8.66e-01 8.66e-01 9.39e-01 8.66e-01 9.86e-01

65.54 0 8.66e-01 8.66e-01 9.39e-01 8.66e-01 9.86e-01

65.65 1 8.31e-01 8.31e-01 9.17e-01 8.31e-01 9.78e-01

71.61 0 8.31e-01 8.31e-01 9.17e-01 8.31e-01 9.78e-01

79.96 0 8.31e-01 8.31e-01 9.17e-01 8.31e-01 9.78e-01

219.82 1 7.62e-01 7.62e-01 8.78e-01 7.62e-01 9.65e-01

244.93 1 0 0 0 0 0

Table 4.16: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for individuals with x = 15. The estimates were derived from the

RE model applied to the data set in Example 4.4.1, with n = 30 and β̂ = −0.5145,

using ϵ∗∗ values of 0.5 and 1.
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upper and lower envelope-type survival estimates expand, reflecting an inevitable

consequence of the constraints embedded within the envelope estimation methodol-

ogy. Regarding the relationship between these disparities and the covariate effect,

which is one of the aspects of the robust model, a consistent pattern is observed. This

relationship is determined by the covariate effect, particularly the value of the covari-

ate and the sign regression coefficient. For instance, when x = 5 and β̂ = −0.5145,

the difference between imprecise survival estimates appears to decrease over time

since it is related to the maximum covariate effect. This trend diminishes and then

reverses as the covariate effect decreases and reaches a minimum value, as illustrated

when x = 9, 15.

⋄
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Figure 4.5: Comparison of standard PH survival estimates and envelope imprecise

survival estimates for x = 5, 9, 15 (top-bottom). These estimates were derived from

the RE model applied to the data set in Example 4.4.1, using ϵ∗∗ values of 0.5

(amber), and 1 (indigo).
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Figure 4.6: Comparison of envelope imprecise survival estimates (top) and naive

imprecise survival estimates (bottom) for individuals with x = 15. These estimates

were derived from both the RP model (amber), and the RE model (indigo) applied

to the data set in Examples 4.4.1 and 4.3.2, using ϵ∗∗ = ϵ∗ = 1.



4.4. Robust-Empirical PH likelihood (RE) 144

time status
Ŝ5;e(t)− Ŝ5;e(t) Ŝ9;e(t)− Ŝ9;e(t) Ŝ15;e(t)− Ŝ15;e(t)

ϵ∗∗ = 0.5 1 0.5 1 0.5 1

1.50 1 1.41e-02 8.58e-02 1.10e-02 1.73e-02 8.09e-04 9.06e-04

1.71 1 2.56e-02 1.54e-01 2.24e-02 3.52e-02 1.68e-03 1.88e-03

2.01 1 1.03e-01 2.78e-01 3.08e-02 5.67e-02 2.78e-03 3.20e-03

3.14 1 1.59e-01 3.65e-01 3.69e-02 7.49e-02 4.00e-03 4.70e-03

3.77 1 1.70e-01 3.21e-01 4.27e-02 9.23e-02 5.22e-03 6.21e-03

4.40 1 1.62e-01 2.37e-01 4.53e-02 1.10e-01 6.83e-03 8.26e-03

4.51 1 1.31e-01 1.61e-01 4.53e-02 1.21e-01 8.55e-03 1.05e-02

7.13 1 9.49e-02 1.05e-01 4.21e-02 1.20e-01 1.04e-02 1.29e-02

8.51 1 6.44e-02 6.76e-02 3.89e-02 1.18e-01 1.23e-02 1.54e-02

8.97 1 4.10e-02 4.19e-02 3.28e-02 1.06e-01 1.42e-02 1.81e-02

11.36 1 2.33e-02 2.34e-02 2.36e-02 8.51e-02 1.66e-02 2.13e-02

12.70 1 1.28e-02 1.28e-02 1.49e-02 6.50e-02 1.90e-02 2.47e-02

12.94 1 5.78e-03 5.78e-03 1.45e-03 2.35e-02 2.21e-02 2.90e-02

13.21 0 5.78e-03 5.78e-03 1.45e-03 2.35e-02 2.21e-02 2.90e-02

14.12 1 2.42e-03 2.42e-03 1.98e-02 3.09e-02 2.52e-02 3.37e-02

17.59 1 8.60e-04 8.60e-04 3.82e-02 8.80e-02 2.89e-02 3.92e-02

17.60 1 2.94e-04 2.94e-04 5.17e-02 1.25e-01 3.27e-02 4.49e-02

24.45 1 8.12e-05 8.12e-05 6.20e-02 1.50e-01 3.72e-02 5.17e-02

26.67 0 8.12e-05 8.12e-05 6.20e-02 1.50e-01 3.72e-02 5.17e-02

29.89 1 1.26e-05 1.26e-05 7.43e-02 1.68e-01 4.31e-02 6.12e-02

38.34 0 1.26e-05 1.26e-05 7.43e-02 1.68e-01 4.31e-02 6.12e-02

38.63 1 9.30e-07 9.30e-07 7.80e-02 1.51e-01 5.08e-02 7.41e-02

48.98 1 1.10e-08 1.10e-08 6.96e-02 9.60e-02 6.07e-02 9.41e-02

58.18 1 1.88e-11 1.88e-11 3.86e-02 4.27e-02 7.31e-02 1.20e-01

65.54 0 1.88e-11 1.88e-11 3.86e-02 4.27e-02 7.31e-02 1.20e-01

65.65 1 1.49e-14 1.49e-14 1.67e-02 1.72e-02 8.63e-02 1.48e-01

71.61 0 1.49e-14 1.49e-14 1.67e-02 1.72e-02 8.63e-02 1.48e-01

79.96 0 1.49e-14 1.49e-14 1.67e-02 1.72e-02 8.63e-02 1.48e-01

219.82 1 5.77e-21 5.77e-21 2.59e-03 2.60e-03 1.15e-01 2.03e-01

244.93 1 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0 0.00e+0

Table 4.17: Comparison of the width of envelope survival estimates for individuals

with x = 5, 9, 15 based on the RE model applied to the data set in Example 4.4.1,

with n = 30 and β̂ = −0.5145, using ϵ∗∗ values of 0.5 and 1.
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4.5 Simulations

In this section, we delve into a comprehensive simulation study aimed at pro-

viding valuable insights into the behavior and performance of RP survival models

under various scenarios, thereby facilitating their wide adoption and improving the

reliability of survival analysis in practical settings. The simulations examined two

specific aspects in detail. First, exploring one of the key issues of the RP model,

namely the failure to incorporate the PH survival function into the range of naive

imprecise survival functions. The second objective is to evaluate the performance of

RP models compared to traditional PH models in terms of estimation performance

when covariate measurement error is considered.

4.5.1 Inconsistency of the naive imprecise survival functions

This section undertakes an investigation of the inconsistency observed in the

behaviour of naive imprecise survival functions. Specifically, it is our intention to

determine whether or not the failure to include the PH survival function within the

range of imprecise survival functions derived from the robust model is a fundamental

characteristic of the naive imprecise survival estimates. While the simulations herein

utilize the robust model based on the Poisson likelihood, we anticipate that the

conclusions drawn from comparing the results with naive survival estimates based on

empirical likelihood will yield similar outcomes, especially for datasets of moderate

to large sizes. This simulation could also provide further understanding of how PH

survival estimates for individuals fluctuate within their respective envelope-type of

imprecise survival estimates according to the sign of the regression coefficient and

the values of x. Three distinct scenarios will be considered to gain a comprehensive

insight.

Scenario 1

The purpose of the scenario is to examine the impact of the regression coefficient

to the occurrence of this phenomenon. We generatem = 100 PH survival data of size

n = 600 with 20% of observations right-censored, as discussed in Section 2.6. The
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Weibull distribution is assumed for the baseline survival times with shape parameter

ρ = 1.5 and scale parameter λ = 0.2, based on the corresponding functions in

Table 2.1. The survival times for individuals are dependent on the pre-specified

distribution of a single time-independent covariate X ∼ N (10, 32) and different

values of the regression coefficient β = {−1,−0.5,−0.001, 0.001, 0.5, 1}. The PH

survival function along with the imprecise survival functions based on the level of

imprecision ϵ∗ = 1 will be estimated for individuals with x = 5, 10, 15. For each of

the 100 survival data the following steps will be followed:

1. Estimates the survival functions for individuals with x = 5, 10, 15

2. Partition the survival time into early, middle, and late intervals, which are

denoted by t{1}, t{2}, t{3}, respectively.

3. For each interval, compute the probability in which the PH survival estimates

are less than the lower survival estimates, Sx(t{i})− = P
(
Sx;c(t{i}) < Sx;p(t{i})

)
,

and probability that the PH survival estimates are greater than the upper sur-

vival estimates, Sx(t{i})+ = P
(
Sx;c(t{i}) > Sx;p(t{i})

)
, with i = {1, 2, 3} and

x = {5, 10, 15}. For instance, the probability that the PH survival estimates

for individuals with x = 5 are less than the lower imprecise survival estimates

at early times is denoted by S5(t{1})−. This probability represents the aver-

age of the PH survival estimates that are below the lower imprecise survival

estimates at each time within the first interval, t {1}. Similarly, one can de-

termine, S5(t{1})+, the PH survival estimates for individuals with x = 5 that

exceeding the upper imprecise survival estimates at early times.

4. The distributions of these probabilities will be shown in boxplot figures for

each value of the regression coefficient β = {−1,−0.5,−0.001, 0.001, 0.5, 1}.

Figure 4.7 illustrates the probabilities in which the naive imprecise survival esti-

mates fail to encompass the PH survival estimates at early, middle, and late times.

Figure 4.7 (left) presents the probabilities related to the negative regression coef-

ficients β = {−0.001,−0.5,−1}, respectively from top to bottom. On the other

hand, probabilities related to the positive regression coefficients β = {0.001, 0.5, 1},
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(4) β̂ = 0.5(3) β̂ = −0.5
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(6) β̂ = 1(5) β̂ = −1

Figure 4.7: Scenario 1: Probabilities of the PH survival estimates deviating from the

imprecise survival estimates based on the RP likelihood for m=100 datasets each of size

300 using ϵ∗ = 1.
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are shown in Figure 4.7 (right) from top to bottom, respectively. The simulation

results confirm what has been observed in Example 4.3.2.

The duration during which the PH survival estimates are enclosed within the

corresponding imprecise survival estimates varies according to the covariate effect,

β̂x. That is the PH survival estimates for individuals with moderate covariate

effects tend to fall within their imprecise survival estimates for all values of the

regression parameter, as seen for x = 10 in Figure 4.7. Clearly, this result is more

pronounced at very small regression coefficients as illustrated in Figure 4.7 (1,2),

but it is also true at other values of the regression coefficients with some fluctuation

where the imprecise survival estimates do not include the PH survival estimates, as

in Figure 4.7 (3-6).

The PH survival estimates for individuals with highest covariate effects, i.e. when

x = 5 for negative regression coefficients Figure 4.7 (1) and when x = 15 for posi-

tive regression coefficients Figure 4.7 (2), are more likely to lie above the imprecise

survival estimates. However, as the regressing coefficients deviate from zero the

imprecise survival estimates become able to capture the PH survival estimates, be-

ginning at early time then fluctuate as shown in Figure 4.7 (3, 5) for x = 5, and

Figure 4.7 (4, 6) for x = 15.

For individuals with lowest covariate effects, i.e. when x = 15 for negative re-

gression coefficients Figure 4.7 (1) and when x = 5 for positive regression coefficients

Figure 4.7 (2), the PH survival estimates are more likely to lie below the imprecise

survival estimates. The imprecise survival estimates start to capture the PH sur-

vival estimates at late times when the regressing coefficients deviate from zero. This

occurrence is evident in Figure 4.7 (3,5) for x = 15, and Figure 4.7 (4,6) for x = 5.

Simulating data using other sittings and distributions revealed similar patterns.

Scenario 2

This scenario investigates the impact of other factors on enclosing the PH survival

estimates with the imprecise survival estimates. These factors include sample size,

the proportion of right-censored observations, and the level of imprecision. A total of

m = 1000 datasets will be generated under different configurations. The simulation
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involves two proportions of right-censoring, specifically, specifically 20% and 50%,

were examined, with sample sizes of n = 60 and 150. Furthermore, the imprecise

survival functions will be estimated using two levels of imprecision, ϵ∗ = 0.05 and

0.1. Instead of the Weibull distribution, the Gompertz distribution was employed for

the baseline survival times, characterized by a shape parameter ρ = 0.05 and scale

parameter λ = 0.1, based on the corresponding functions described in Table 2.1.

The covariate was assumed to follow the uniform distribution with values ranging

between 0 and 1 with the regression coefficient β = −1.

Similar to the preceding scenario, the probabilities of the PH survival estimates

deviating from the imprecise survival estimates were computed over t{1}, t{2}, and

t{3}, for x = 0.2, 0.5, 0.8 for each of the 1000 data sets in every configuration. Fig-

ures 4.8 and 4.9 display the probabilities that the naive imprecise survival estimates

fail to encompass the PH survival estimates at early, middle, and late times for the

simulated data, with sample sizes n = 60 and 150, respectively. In both figures,

it is evident that a higher censoring proportion increases the probabilities for the

PH survival estimates to be encompassed within the corresponding imprecise sur-

vival estimates for individuals with moderate covariate effect, while reducing the

inclusion probabilities for individuals with high and low moderate covariate effect,

as evidenced by comparisons between the (1,2) and (3,4) in both figures. This phe-

nomenon could be attributed to the fact that the baseline hazard function is only

computed at event time and otherwise is zero. Consequently, given that half of the

observations are right-censored, it reduces the imprecision of the baseline hazard

estimates, leading to narrower imprecision between the upper and lower survival

estimates. Regarding the impact of increasing the imprecision level, as anticipated,

it gradually diminishes the deviation of PH survival estimates from the imprecise

survival estimates. This is observed by comparing the (1,3) and the (2,4) of these

figures. Based on a comparison between Figures 4.8 and 4.9, it is apparent that for

larger datasets, the imprecision level has less influence on reducing deviation prob-

abilities. Indeed, based on all simulations conducted, although not all are reported,

it is observed that the PH survival estimates for individuals with higher covariate

effects are more likely to exceed the imprecise survival estimates at very low im-
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(2) 20% right-censored; ϵ∗ = 0.1(1) 20% right-censored; ϵ∗ = 0.05
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(4) 50% right-censored; ϵ∗ = 0.1(3) 50% right-censored; ϵ∗ = 0.05

Figure 4.8: Scenario 2: Probabilities of the PH survival estimates deviating from the

imprecise survival estimates based on the RP likelihood for m = 1000 datasets each of size

60 with β = −1.
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(2) 20% right-censored; ϵ∗ = 0.1(1) 20% right-censored; ϵ∗ = 0.05
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(4) 50% right-censored; ϵ∗ = 0.1(3) 50% right-censored; ϵ∗ = 0.05

Figure 4.9: Scenario 2: Probabilities of the PH survival estimates deviating from the

imprecise survival estimates based on the RP likelihood for m = 1000 datasets each of size

150 with β = −1
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precision levels. Conversely, the PH survival estimates for individuals with lower

covariate effects typically fall below the imprecise survival estimates. If imprecision

is increased, the probability that naive imprecise survival estimates include PH sur-

vival estimates increases at early times when covariate effects are higher and later

when covariate effects are lower. However, this trend fluctuates in response to the

increased level of imprecision.

Scenario 3

In this scenario, we explore whether different behaviour of the naive upper and

lower survival estimates can be observed when fitting the robust PH model to non-

proportional hazards survival data. Therefore, we generate 100 non-PH survival

data, attributed to frailty effects, with each data set containing n = 600 observa-

tions, of which 20% are subject to right-censoring. The exponential distribution is

assumed for baseline survival times, with a fixed hazard rate parameter of λ = 2, as

detailed in Table 2.1. Additionally, a covariate X ∼ N (14, 32) is considered. The

average treatment effect across all institutions is specified as β = −1.2. The frailty

effect is introduced to reflect variations across 5 distinct institutions or clusters,

each consisting of 120 observations. This effect represents institution-specific devi-

ations from the average treatment effect, and is drawn from a normal distribution

with a mean of µ = 0 and standard deviation σ = 3. Subsequently, PH survival

functions are estimated alongside imprecise survival functions for individuals with

x = 10, 14, 18, using the imprecision levels ϵ∗ = 0.8 and 1.5.

Figure 4.8 illustrates the probabilities that the naive imprecise survival estimates

fail to encompass the PH survival estimates, using ϵ∗ = 0.8 (left) and ϵ∗ = 1.5 (right).

Nevertheless, similar trends were found regarding the deviation of the PH survival

estimates from the naive survival estimates. This confirms the influence of the

covariate effect on the pattern where the naive survival estimates fail to encompass

the PH survival estimates.

In light of the results obtained from the previous three scenarios, these results

can be relevant to imprecise survival estimates based on the envelope approach.

As opposed to focusing on the time periods during which PH survival estimates



4.5. Simulations 153

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

5 10 15
x

P
er

ce
nt

ag
e

grop
L_early__

G_early__

L_mid__

G_mid__

L_late__

G_late__

Sx(t{1})− Sx(t{2})− Sx(t{3})−

Sx(t{1})+ Sx(t{2})+ Sx(t{3})+

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 14 18
x

P
er

ce
nt

ag
e

grop L_early__ G_early__ L_mid__ G_mid__ L_late__ G_late__

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

10 14 18
x

P
er

ce
nt

ag
e

grop L_early__ G_early__ L_mid__ G_mid__ L_late__ G_late__

P
ro
b
a
b
il
it
y

xx

(2) ϵ∗ = 1.5(1) ϵ∗ = 0.8

Figure 4.10: Scenario 3: Probabilities of the PH survival estimates deviating from the

imprecise survival estimates based on the RP likelihood for m = 100 datasets each of size

600 based on NPH data (frailty)

exceed or fall below their corresponding envelope-type of survival estimates, this

results should provide insight into the relative positioning of PH survival estimates

within their imprecise counterparts. Specifically, PH survival estimates are shown to

reside either at their upper survival estimates for individuals characterized by higher

covariate effects, at the lower survival estimates for those with lower covariate effects,

or fluctuate within the corresponding imprecise survival estimates for individuals

with moderate covariate effects.

4.5.2 Robust PH model with covariate measurement error

The introductory section of this chapter provides a comprehensive overview of

the diverse range of methodologies and solutions found in the literature addressing

covariate measurement errors in PH models. Despite the primary objective of this

chapter being to mitigate the PH assumption by incorporating errors into covariate

values, a particular focus is directed towards exploring the estimation capabilities of

the RP and RE models when compared to the standard PH model in the context of

covariate measurement errors. As part of our simulations, we carefully examined two
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scenarios: one in which covariate measurement errors are present and one without

covariate measurement errors. As a result of these scenarios, we hope to provide

insight into the relative effectiveness of the robust PH model at different levels of

covariate measurement accuracy.

Scenario 1

This scenario assesses the estimation of the regression coefficient in the robust PH

model compared to the standard PH model, using survival data free from covariate

measurement errors. A total of 1000 survival data have been generated assuming the

Weibull distribution with shape ρ = 1.2, and scale λ = 2 for baseline survival times.

To maintain simplicity, we consider a single time-independent covariate following a

uniform distribution over the interval [10, 30], with a regression coefficient of β =

−0.5. Additionally, various sample sizes were considered, including n = 30, 60, 120,

with censorship rates of 20% and 50%. Based on the simulated data, the standard

and robust PH models were fitted under each configuration.

Table 4.18 presents the simulation averages of the estimates β̂p and β̂e, along-

side their respective standard deviations, relative bias, and the number of non-

convergence issues denoted as NA. Four levels of imprecision are employed in this

simulation: ϵ∗ = 0.001, 0.5, 1, 1.4. The relative bias, R.B, is computed as |(β̂−β)/β|,

where β represents the assumed true value of the regression parameter. Ideally, the

relative bias should be close to zero, indicating that the model is on average accurate

in estimating the true parameter.

Table 4.19 suggests that the standard PH Model based on either Poisson or Em-

pirical likelihoods, ϵ∗ = 0, demonstrates a consistent estimator with lower variability

and relative bias aligned with the assumed true parameter. In comparison, the ro-

bust PH model exhibits an increase in variability and relative bias of parameter

estimates with increasing imprecision, particularly for the RP likelihood. This sug-

gests that the RE method is less affected by the introduced imprecision. Notably,

the robust PH model, based on both likelihoods, exhibits non-convergences during

optimization due to the infinite summation of log likelihood functions resulting from
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Cens % n=30

20%

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.5322 0.1268 0.0644 0 -0.4951 0.1217 0.0099 0
0.001 -0.5325 0.1270 0.0651 0 -0.5253 0.1229 0.0507 2
0.5 -0.7348 0.2469 0.4696 0 -0.7223 0.2687 0.4445 13
1 -1.1215 0.7773 1.2430 1 -0.9890 1.7303 0.9779 54
1.4 -1.8588 3.7938 2.7176 9 -1.2385 4.5507 1.4770 155

n=60

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.5088 0.0746 0.0176 0 -0.5056 0.0744 0.0111 0
0.001 -0.5090 0.0747 0.0181 0 -0.5070 0.0906 0.0139 0
0.5 -0.6726 0.1283 0.3452 0 -0.6668 0.1260 0.3335 1
1 -0.9296 0.2452 0.8593 0 -0.9111 0.2312 0.8222 17
1.4 -1.2604 0.4855 1.5209 0 -1.1898 0.4438 1.3796 105

n=120

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.5023 0.0483 0.0046 0 -0.5003 0.0482 0.0005 0
0.001 -0.5025 0.0484 0.0051 0 -0.5005 0.0482 0.0010 0
0.5 -0.6510 0.0775 0.3021 0 -0.6482 0.0772 0.2964 0
1 -0.8723 0.1337 0.7446 0 -0.8674 0.1307 0.7349 2
1.4 -1.1384 0.2220 1.2769 0 -1.1174 0.2283 1.2348 45

n=30

50%

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.5624 0.2155 0.1248 0 -0.5516 0.1936 0.1031 0
0.001 -0.5628 0.2160 0.1255 0 -0.5983 1.0547 0.1965 3
0.5 -0.8382 1.0287 0.6764 2 -0.7323 2.0666 0.4645 20
1 -1.5939 3.9721 2.1877 19 -1.2304 2.7029 1.4608 108
1.4 -3.2603 7.8535 5.5205 41 -1.5656 3.7765 2.1311 208

n=60

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.5196 0.1023 0.0393 0 -0.5158 0.1022 0.0316 0
0.001 -0.5199 0.1024 0.0398 0 -0.5161 0.1023 0.0322 0
0.5 -0.6902 0.1846 0.3803 0 -0.6805 0.1721 0.3611 6
1 -0.9694 0.3961 0.9388 0 -0.9511 0.4524 0.9023 33
1.4 -1.3382 0.7580 1.6764 2 -1.2214 0.7062 1.4429 117

n=120

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.5041 0.0604 0.0082 0 -0.5019 0.0603 0.0039 0
0.001 -0.5043 0.0605 0.0087 0 -0.5022 0.0604 0.0043 0
0.5 -0.6503 0.0972 0.3006 0 -0.6473 0.0970 0.2945 0
1 -0.8676 0.1687 0.7353 0 -0.8614 0.1673 0.7228 4
1.4 -1.1298 0.2840 1.2596 0 -1.1104 0.3247 1.2208 54

Table 4.18: Scenario 1: Comparison between the robust PH estimates based on

the RP and RE likelihoods, using ϵ∗ = 0.001, 0.5, 1, 1.4, verses the standard PH

estimates, ϵ∗ = 0, applied to PH survival data the absence of measurement error.
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increasing the imprecision level. The presence of non-convergence in the robust PH

model can be perceived as a valuable feature rather than a drawback. This occur-

rence serves to highlight instances in which the standard PH model offers a superior

fit to the data set, thus indicating the need for a potential reduction in level of

imprecision or a consideration of the standard PH model. As expected, estimates

are more stable when the sample size is larger. Despite its limited effect on the

mean of estimates, censoring proportion has a significant impact on the mean of

standard deviations and the occurrence of convergence issues. Other simulations

were conducted using different distributions for the baseline and the covariate and

yielded similar outcomes to those presented.

Scenario 2: In this scenario, we are inspecting the impact of estimating the

regression coefficient under the standard PH model in the presence of the covariate

measurement errors. Therefore, we consider the same data sets as used in the pre-

vious scenario, but standard additive errors, τi’s, were added to the covariate value

of each individual as measurement errors. These measurement errors are assumed

to be normally distributed with mean µτ = 0 and standard deviation στ = 2. The

simulation mean of the estimators, the stranded deviations, the relative biases, and

the number of non-convergence issues, are presented in Table 4.19.

The presence of measurement errors in the covariates can result in potential

bias when estimating the PH model parameter as discussed in the literature when

using the standard PH model [5, 8]. Based on Poisson and Empirical likelihoods,

Table 4.19 illustrates that the classical PH model with ϵ∗ = 0 underestimates the

true parameter β = −0.5 due to measurement errors in the covariate. Despite

the large sample size of a data sets, the bias of estimates can still exist. Other

simulations, not presented here, have shown that the bias can become even more

pronounced when the true parameter deviates more from zero or when στ > 2.

The robust PH model, in contrast, exhibits an attractive attributes in accom-

modating the covariate measurement errors according on the selected level of im-

precision. While the estimates obtained from fitting the robust PH model reveal an

increase in variability as epsilon increases, the estimates are progressively improved
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Cens % n=30

20%

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.3476 0.0847 0.3047 0 -0.3431 0.0845 0.3137 0
0.001 -0.3478 0.0848 0.3044 0 -0.3433 0.0846 0.3134 0
0.5 -0.4326 0.1244 0.1348 0 -0.4269 0.1237 0.1462 0
1 -0.5566 0.2098 0.1132 0 -0.5451 0.1877 0.0902 3
1.4 -0.7040 0.3456 0.4079 0 -0.6435 1.2890 0.2870 11

n=60

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.3248 0.0488 0.3504 0 -0.3250 0.0911 0.3499 0
0.001 -0.3249 0.0489 0.3502 0 -0.3227 0.0488 0.3545 0
0.5 -0.3927 0.0671 0.2146 0 -0.3899 0.0669 0.2202 0
1 -0.4834 0.0971 0.0333 0 -0.4797 0.0966 0.0405 0
1.4 -0.5817 0.1371 0.1634 0 -0.5777 0.1398 0.1553 0

n=120

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.3198 0.0343 0.3604 0 -0.3185 0.0343 0.3629 0
0.001 -0.3199 0.0343 0.3602 0 -0.3186 0.0342 0.3628 0
0.5 -0.3821 0.0466 0.2359 0 -0.3804 0.0464 0.2392 0
1 -0.4623 0.0657 0.0754 0 -0.4601 0.0653 0.0797 0
1.4 -0.5453 0.0886 0.0906 0 -0.5431 0.0888 0.0862 0

n=30

50%

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.3718 0.1214 0.2564 0 -0.3668 0.1209 0.2664 0
0.001 -0.3720 0.1215 0.2561 0 -0.3670 0.1210 0.2660 0
0.5 -0.4706 0.2001 0.0588 0 -0.4615 0.2000 0.0770 4
1 -0.6387 0.6130 0.2774 2 -0.5850 0.8212 0.1700 13
1.4 -1.0533 3.4762 1.1067 4 -0.6831 0.8593 0.3661 43

n=60

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.3409 0.0668 0.3181 0 -0.3381 0.0668 0.3237 0
0.001 -0.3411 0.0668 0.3179 0 -0.3383 0.0668 0.3235 0
0.5 -0.4129 0.0932 0.1742 0 -0.4095 0.0932 0.1809 0
1 -0.5110 0.1399 0.0221 0 -0.5059 0.1353 0.0118 1
1.4 -0.6208 0.2079 0.2415 0 -0.6123 0.1982 0.2246 4

n=120

ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.3303 0.0443 0.3394 0 -0.3288 0.0443 0.3424 0
0.001 -0.3304 0.0444 0.3392 0 -0.3290 0.0443 0.3420 0
0.5 -0.3934 0.0605 0.2132 0 -0.3917 0.0604 0.2166 0
1 -0.4749 0.0861 0.0502 0 -0.4728 0.0858 0.0543 1
1.4 -0.5603 0.1188 0.1205 0 -0.5579 0.1185 0.1157 2

Table 4.19: Scenario 2: Comparison between the robust PH estimates based on the

RP and RE likelihoods, using ϵ∗ = 0.001, 0.5, 1, 1.4, verses the standard PH esti-

mates, ϵ∗ = 0, applied to PH survival data with measurement errors τ ∼ N (0, 22).
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ϵ∗ β̂p SD R.B NA β̂e SD R.B NA

0 -0.4045 0.0609 0.4944 0 -0.4025 0.0607 0.4969 0

0.001 -0.4047 0.0609 0.4942 0 -0.4046 0.0607 0.4967 0

0.5 -0.5073 0.0920 0.3659 0 -0.5045 0.0916 0.3694 0

1 -0.6587 0.1503 0.1766 0 -0.6545 0.1495 0.1819 1

1.4 -0.8424 0.2400 0.0530 0 -0.8128 0.6802 0.0160 16

Table 4.20: Scenario 2: Comparison between the robust PH estimates based on the

RP and RE likelihoods, ϵ∗ = 0.001, 0.5, 1, 1.4, verses the standard PH estimates,

ϵ∗ = 0, applied to PH survival data with measurement errors τ ∼ N (0, 22).

by moving closer to the true value and the bias diminishes considerably. In the con-

text of this specific simulation study, Table 4.19 indicates that for small data sets

the optimal value of the imprecision level falls within the range of 0.5 to 1, while an

ϵ∗ value ranging from approximately 1 to 1.4 seems to be suitable for large data sets

as it leads to favorable results. Table 4.19 provides evidence that the incidence of

non-convergence is significantly lower than Scenario 1, in which survival data were

free of measurement errors. Further analysis of these non-convergence instances re-

vealed that the estimated values exceeded the true parameter value, β = −0.5, at a

lower level of imprecision.

Overall, the robust PH model faces challenges in reliability when confronted with

increased variability and potential non-convergence issues at higher levels of impre-

cision. A comparison between the Poisson likelihood and the Empirical likelihood

within the robust PH model suggests that the former yields more stable estimates

and encounters fewer non-convergence issues, thereby indicating its potential ro-

bustness in handling measurement errors. As a consequence, it is crucial to exercise

caution when selecting the imprecision level in the robust PH model. This under-

scores the importance of developing future methods to assist researchers choose an

appropriate level of imprecision.

4.5.3 Bootstrap investigation

In response to the necessity of identifying the optimal level of imprecision in

the robust PH model, bootstrap investigations were undertaken. The following
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summarizes these investigations. Two types of survival datasets were investigated:

survival data with a valid PH assumption, PH, and survival data that violated

the PH assumption due to time-dependent covariates, NPH. A total of M=100

original survival datasets were studied for both PH and NPH scenarios. Each dataset

consisted of N = 60 observations, with 20% of them being right-censored. The

NPH data were generated with time-dependent effects formed by an interaction

with log-time according to the simsurv function from the simsurv R package [14].

Various levels of imprecision, ϵ∗ = 0.0001, 0.1, 0.5, 1, 2, were considered, and two test

statistics, ℓ̂ϵ and ℓ̂ϵ − ℓ̂0, were examined. Here, ℓ̂ϵ∗ and ℓ̂0 represent the maximum

log-likelihood values obtained by fitting the robust model with imprecision levels ϵ∗

and zero, respectively. The methodology closely followed the description outlined

in Section 3.4.1, where quantiles of the test statistics associated with the original

datasets were derived from their corresponding bootstrap distributions.

Figure A.2 (top) shows the quantiles of ℓ̂∗ϵ (left) and (ℓ̂ϵ − ℓ̂0)
∗ (right) for both

PH and NPH data. In fact, the figure suggests that increasing the imprecision level

does not lead to any significant impact. Further, other types of NPH data were

examined by incorporating frailty effects based on distinct clusters, using the same

R package. In spite of this, similar results were exhibited as shown in Figure A.2

(bottom).

Our analysis revealed Zelterman’s bootstrap method suffers from a negative

probability problem caused by Equation (2.70) for continuous covariates, which has

been corrected by re-scaling the probability values. Accordingly, another bootstrap

method developed by N.L. Hjort [66] was implemented, with the results provided in

Figure A.3. Similarly, the bootstrap analysis failed to demonstrate any substantial

impact resulting from increased levels of imprecision.

Comparable instances were encountered in Chapter 3 where bootstrap outcomes

failed to reveal any substantial influence of increasing imprecision levels in the GPH

model, except for larger datasets with n > 500. Hence, it is conceivable that ex-

ploring survival data with larger sample sizes may yield more noteworthy insights.

Nevertheless, the GPH likelihood optimization focuses exclusively on the primary

parameter, as the imprecision terms that maximize the likelihood function have
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been analytically identified. Despite leveraging parallel computing capabilities for

the bootstrap studies related to the robust PH model, computational complexity

and time requirements would escalate considerably when dealing with larger data

sizes. This is attributed to the necessity of estimating numerous imprecision terms

in addition to the primary regression parameter.

4.6 Concluding remarks

In this chapter, the robust PH model was developed to be used instead of the

standard PH model in cases where the PH assumption regarding a continuous co-

variate is in doubt. A robust proportional hazards model incorporates errors into

covariate values in order to overcome the limitations of the proportional hazards

assumption. As part of the proposed method, the observed covariate values are

modified by adding error terms to each covariate value. There is no distribution for

these errors, but they are allowed to fluctuate within a small interval determined

by the level of imprecision, ϵ∗. The model was constructed based on the Poission

and Empirical full likelihoods, such that when the imprecision level is zero, the ro-

bust PH model is reduced to the standard PH model as discussed in Section 2.5.

Nonetheless, as the level of imprecision increases, the estimated parameter derived

from the robust model deviates from zero.

Theorem 4.3.1 and 4.4.2 indicate that imprecision estimates for right-censored

observations prior to the first event time are not determined. Further, imprecision

term estimates for early event observations are matched by the regression parameter

sign. Contrary, imprecision term estimates corresponding to later event observations

and right-censored observations occurring after the first event are likely to have a

sign opposite to the regression parameter. For event observations in the middle,

imprecision terms may have any value within the predefined imprecision interval

due to the nature of constrained multivariate optimization.
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The estimation of imprecise hazard and survival functions for specific individ-

uals within the robust PH model has been approached through two methods: the

naive approach and the envelope approach. The naive approach directly incorpo-

rates the imprecision limits, −ϵ∗, ϵ∗, into the definition of the robust model to derive

the imprecise hazard and survival functions. However, it has been observed that

the estimates obtained from the standard PH model may not fall within the range

of the imprecise naive estimates. To address this limitation, the envelope method

has been proposed, which restricts the hazard and survival estimates derived from

the robust PH model based on lower imprecision levels, including those obtained

from fitting the standard PH model,to fall within the range of imprecise hazard and

survival estimates derived from the robust PH model based on the selected ϵ∗∗. Ac-

cordingly, the envelope-type of imprecise hazard and survival estimates for a specific

imprecision level, ϵ∗∗, is considered to encompass all potential hazard and survival

estimates associated with imprecision levels ϵ∗ lower than ϵ∗∗.

Several simulation scenarios were conducted to analyze the impact of the covari-

ate effect on the pattern where naive survival estimates fail to include PH survival

estimates. Interestingly, these findings can be extended to imprecise survival esti-

mates derived from the envelope approach, as they provide valuable insights into

the positioning of standard PH survival estimates within their counterparts, impre-

cise envelope survival estimates. More precisely, the standard PH survival estimates

demonstrate distinct patterns in relation to the corresponding robust imprecise sur-

vival estimates according to the covariate effect. The standard PH survival estimates

for individuals with higher covariate effects tend to reside at the upper survival es-

timates. Conversely, the standard PH survival estimates for individuals with lower

covariate effects reside at the imprecise lower survival estimates. For individuals with

moderate covariate effects, the standard PH survival estimates fluctuate within a

range of the corresponding imprecise survival estimates.

Additional simulations were conducted to investigate the estimation capabilities

of the robust PH model in comparison to the standard PH model in the context of
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measurement errors associated with continuous covariates. Two distinct scenarios

were examined: one involving accurately measured covariate and another where the

covariate is contaminated with measurement errors. In the absence of measurement

errors, the standard PH Model based on either Poisson or Empirical likelihoods

provides a stable estimator with lower variability and relative bias aligned with the

assumed true parameter. This feature does not hold true when the covariate suffers

from measurement errors since the estimates can be significantly biased. In this

case, the simulation results illustrate that the estimates derived from the robust PH

model gradually approach the true value, and the bias is substantially reduced as

Epsilon increases. Nevertheless, the reliability of the robust model is compromised

by increased variability and potential non-convergence challenges at higher levels of

imprecision.

To identify the optimal level of imprecision in the robust PH model, bootstrap

investigations were conducted on survival datasets using various approaches. The

studies, based on the selected test statistics, did not yield any valuable conclu-

sions regarding the optimal level of imprecision. Similar results were encountered in

Chapter 3 when the GPH model was applied to small to moderate-sized datasets,

suggesting that larger datasets with n > 500 might provide more significant insights.

However, the computational demands would significantly increase due to the con-

siderably escalated number of imprecision terms that need to be estimated.

As a conclusion, this chapter is intended to serve as an introduction to the ro-

bust PH model, and to pave the way for more sophisticated methodologies capable of

adeptly navigating the trade-off between imprecision and reliability in the context of

violations of the PH assumption by providing insights into their advantages. The ro-

bust PH model exhibits appealing characteristics that warrant further investigation.

As these initial findings suggest, the robust PH model may be a suitable alterna-

tive to the conventional PH model in circumstances where the PH assumptions are

questionable in relation to a continuous covariate. However, future investigations

need to establish a definitive methodology for determining the appropriate level of



4.6. Concluding remarks 163

imprecision.



Chapter 5

Most Likely Data

5.1 Introduction

A novel imprecise estimation technique referred to as Most Likely Data (MLD)

is discussed in this chapter, highlighting some key concepts, possible developments,

and potential applications. The objective of introducing the MLD method in this

chapter is to pave the way for further investigation and development in the field

of statistical inference. This will offer researchers a valuable tool for addressing

complex modeling challenges and improving parameter estimates reliability and in-

terpretability.

In statistical inference, the Maximum Likelihood Estimation (MLE) method

stands as a standard for parameter estimation, aiming to find parameter values

that maximize the likelihood of observing a given dataset under a specified statis-

tical model. By optimizing the likelihood function, MLE provides a point estimate

for the parameters, offering a straightforward and widely-used approach in various

fields of study. However, if the underlying model assumptions are incorrect, for in-

stance, or the actual data deviates from the model assumptions, MLE can provide

biased estimates, e.g. the violation of the PH assumption.

The MLD method, on the other hand, represents a novel approach to parameter

estimation that holds significant promise for advancing statistical inference tech-

164
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niques. By shifting the focus from point estimates to interval estimates based on

the most likely data configurations, MLD offers a unique perspective on parameter

uncertainty and model fitting. The MLD is designed to identify a range of parame-

ter values where the data of interest is the most likely data to be observed compared

to other possible data. This objective is achieved by dividing the parameter space

into partitions, or intervals, where the data of interest are explicitly the most likely

data to be observed compared to any alternative data sets. The resulting intervals,

termed MLD estimates or MLD imprecise estimates, which encompass parameter

values for which the data exhibit the highest probability. The MLD method pro-

vides a nuanced perspective on parameter estimation by considering the most likely

data configurations relative to the parameter space. This offers insights into the

uncertainty inherent in the estimation process.

This chapter is structured as follows: Section 5.2 discusses the MLD method, its

applications to discrete distributions. In Section 5.3, the application of the MLD

method to the PH model is investigated, and its limitations as an estimation ap-

proach are identified. Following this, Section 5.4 presents a flexible variant of the

MLD method and discusses its implications for discrete distributions and the PH

model. Lastly, Section 5.5 offers relevant comments and reflections concerning the

MLD method.

5.2 MLD Method

As opposed to the MLE, which seeks to determine a point estimate to maximize

the likelihood of observing a given dataset, the MLD aims to construct an interval

⟩θ, θ⟩ within the parameter space Θ where the data of interest D are explicitly the

most likely observed data compared to any alternative datasets. Suppose D refers

to the set of all potential data. The MLD estimates are constructed based on the

following definition
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⟨θ, θ⟩ = {θ : P (D|θ) ≥ P (D|θ), ∀θ ∈ Θ} (5.1)

where θ and θ represent the upper and lower bounds for the imprecise estimates. As

indicated in the definition, the inclusion of values from the parameter space is valid

for instances in which the observed data have the same probability as any other data

within D. While the notation of the MLD intervals may suggest closed bounded

intervals, this choice was made for convenience as it will be demonstrated later that

these intervals do not necessarily have to be closed.

Despite the fact that this thesis examines the application of the MLD concept to

discrete data and the PH model, the implications of this concept may extend across

a wide range of statistical fields. The next section demonstrates the MLD method

in the context of the binomial distribution.

5.2.1 MLD method for Binomial distribution

Recall that the probability mass function for the Binomial distribution of ob-

serving exactly x success in n trials

P (X = x) =

(
n

x

)
px(1− p)n−x

=
n!

x!(n− x)!
px(1− p)n−x

Figure 5.1 illustrates the most likely observed value of x = 0, 1, 2, 3, 4 over a

range of values of p, given n = 4. The figure highlights that to apply the MLD

method to the Binomial distribution, the following constraints must be satisfied in

order to determine the imprecise estimates for observing X = x

1. P (X = x | p, n) ≥ P (X = x− 1 | p, n)

2. P (X = x | p, n) ≥ P (X = x+ 1 | p, n)

Theorem 5.2.1 Assume the above binomial constraints hold, then the MLD im-

precise estimates of the parameter p in which X = x is the most likely observed

data using the binomial distribution, are determined by

x

n+ 1
≤ p ≤ x+ 1

n+ 1
(5.2)
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Proof.

To begin with, let us consider the first constraint. That is

P (X = x | p, n) ≥ P (X = x− 1 | p, n)
n!

x!(n− x)!
px(1− p)n−x ≥ n!

(x− 1)!(n− (x− 1))!
p(x−1)(1− p)n−(x−1)

n!

x(x− 1)!(n− x)!
px(1− p)n−x ≥ n!

(x− 1)!(n− x+ 1)(n− x)!
p(x−1)(1− p)n−(x−1)

p ≥ x

n+ 1

Therefore, in order to fulfill the first constraint, p is set to be greater than or equal

to x
n+1

. The second constraint is determined by the following

P (X = x | p, n) ≥ P (X = x+ 1 | p, n)
n!

x!(n− x)!
px(1− p)n−x ≥ n!

(x+ 1)!(n− (x+ 1))!
p(x+1)(1− p)n−(x+1)

n!

x!(n− x)(n− x− 1)!
px(1− p)n−x ≥ n!

(x+ 1)x!(n− x− 1)!
p(x+1)(1− p)n−x−1

x+ 1 ≥ np− xp+ xp+ p

p ≤ x+ 1

n+ 1

Hence, it can be concluded that X = x is most likely to be observed when p lies in

the interval
[

x
n+1

, x+1
n+1

]
. □

Two fundamental properties of the MLD method are noteworthy: firstly, the

imprecise estimates for p, making X = x most likely to be observed, are distinct

from just implementing the MLE for x − 1 and x + 1, using p̂x−1 = (x − 1)/n and

p̂x+1 = (x+ 1)/n, as indicated in Equation (5.2). For instance, the MLD imprecise

estimates for x = 2 is p ∈ [1/(n+ 1), 3/(n+ 1)] which is not equivalent to p̂1 = 1/n

and p̂3 = 3/n.

Secondly, the probability of observing x−1 and x is equivalent at p = x/(n+1),

and likewise for x and x+ 1 at p = (x+ 1)/(n+ 1).

Example 5.2.1 Consider an experiment involving tossing a coin four times, with

X representing the number of observed heads. Suppose this experiment involves an

unfair coin, where the probability of observing a head, denoted as p, can assume

any value in the interval [0, 1], and let x = 1. In practical scenarios where one seeks
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x p̂ p p

0 0 0 0.2

1 0.25 0.2 0.4

2 0.5 0.4 0.6

3 0.75 0.6 0.8

4 1 0.8 1

Table 5.1: Upper and lower estimates for p where x is most likely to be observed

to estimate p, the MLE method is often employed, yielding p̂ = x
n
= 1

4
= 0.25.

However, our interest lies in an imprecise estimation of p, aiming to identify a range

of p values where x = 1 is most likely to be observed compared to other values of

x. This objective is achieved by dividing the parameter space of p according to the

most likely data across various p values.

Instead of solely relying on the MLE of p, these imprecise estimates enhance the

robustness of the estimation. The upper and lower estimates for each value of x can

be derived by Equation (5.2) as shown in Table 5.1.

5.2.2 MLD method for Poisson distribution

Recall the Poisson distribution in which X is a discrete random variable rep-

resenting the number of events, x, observed within a given time period. Assume

that X follows the Poisson distribution with an average rate of events denoted by λ.

Then, the probability mass function for observing x events over specific time period

is given by

P (X = x) =
λx exp(−λ)

x!
(5.3)

Figure 5.2 shows the most likely observed number of events for x = 0, 1, 2, 3, 4, 5, 6,

7, 8 over range of λ values. The figure indicates that applying the MLD method to

the Poisson distribution in which the number of events X = x has the highest

probability to be observed are subject to the following constraints

1. P (X = x | λ) ≥ P (X = x− 1 | λ)
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Figure 5.1: MLD estimates for p based on a binomial experiment involving tossing

a coin four times

2. P (X = x | λ) ≥ P (X = x+ 1 | λ)

Due to the fact thatX are restricted to be Natural numbers, then x−1 = 0 whenever

x = 0.

Theorem 5.2.2 Assume the Poisson constraints hold, then the MLD imprecise

estimates of λ in which X = x is the most likely observed number of event, are

determined by

x ≤ λ ≤ x+ 1 (5.4)

Proof.

Consider the first constraint, then

P (X = x | λ) ≥ P (X = x− 1 | λ)

λx exp(−λ)
x(x− 1)!

≥ λ(x−1) exp(−λ)
(x− 1)!

λ ≥ x
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Figure 5.2: MLD estimates for observing x = 0, 1, 2, 3, 4, 5, 6, 7, 8 number of events

at particular time period based on the Poisson distribution

Similarly, the second constraint leads to λ ≤ x + 1. Hence, the MLD imprecise

estimates of λ based on the Poisson distribution are obtained by x ≤ λ ≤ x+ 1. □

According to Theorem 5.2.2, the MLD imprecise estimates that makes the num-

ber of events X = 3 and X = 6, for instance, the most likely number of events are

λ ∈ [3, 4], and λ ∈ [6, 7], respectively.

5.3 MLD method for the the PH model

A number of estimators have been developed, each grounded in distinct likelihood

functions, to estimate the regression parameter β within the PH model. However,

as far as our current understanding extends, none of these estimators have exhibited

imprecision in estimating the PH model. This section undertakes an exploration of

the potential application of the MLD method to the PH model, aiming to relax the

PH assumption. The investigation focuses primarily on survival data with binary

covariates. The structure of this section will rely on a foundational example to
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provide insight into the feasibility of employing the MLD method for estimating a

PH model.

Consider the artificial survival data in Table 5.2, comprising two groups, each

consisting of two patients. The covariate x represents the gender of those patients

such that x = 0 for Female patient, and male otherwise.

i t δ x

1 4 1 0

2 6 1 1

3 7 1 0

4 9 1 1

Table 5.2: Data set

To implement the MLD method, all possible orders of events must be considered

given the data set in Table 5.2, as in Section 5.2.1. Let β denote the parameter

space encompassing all parameter values corresponding to the potential sample or-

ders: MMFF, MFMF, FMMF, MFFM, FMFM, and FFMM. The main objective

is to investigate the possibility of dividing the parameter space, β, into subsets ac-

cording to what is the most likely data. For instance, what is the set of values in the

parameter space in which the data FMFM is the most likely order to be observed

compares to all others.

5.3.1 MLD for the PH model using marginal probability

One feasible approach to determine the probability of observing these data orders

involves examining the conditional probability that the individual with x = xj

experiences the event at time ti, given that one individual from Ri experiences the

event at time ti, as outlined in Equation (2.32). Consequently, multiplying these

conditional probabilities across all event times for all potential orders could represent

the probability of observing a specific order as follows
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Figure 5.3: MLD for the balanced data in Table 5.2

n∏
i=1

ϕi∑
l∈Ri

ϕl

This represents the marginal distribution of the rank statistic, as highlighted by

Kalbfleisch and Prentice [45], in scenarios without ties or censored observations. It

also corresponds to the partial likelihood method proposed by Cox [25]. Figure 5.3

illustrates the probabilities corresponding to these orders plotted against potential

values from the parameter space, β. Remarkably, according to Figure 5.3, MMFF

appears to be the most probable dataset whenever β > 0, while FFMM dominates

when β < 0.

Figure 5.3 indicates that these probabilities do not adequately account for the

proportion of each group in the risk set to adjust the estimate of the parameter

accordingly. This limitation becomes evident in Figure 5.4, where an additional

female observation is included the the data in Table 5.2. Despite this, MMFFF

emerges as the dominant most likely order when β > 0, illustrating how these

probabilities fail to address the impact of unbalanced observations in the risk set.

Indeed, the expectation was that these probabilities would fluctuate across some

intervals of β, thereby providing informative insights into the most likely observed
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Figure 5.4: MLD for the unbalanced data with one additional female observation

order within specific intervals of β.

5.3.2 MLD for the PH model using adjusted probability

In light of the limitations observed in Section 5.3.1 in which the MLD method

for the PH model based on marginal probabilities failed to effectively partition the

parameter space for different variants in the sample space. This issue arises be-

cause marginal probabilities do not address unbalanced observations in the risk set.

This section aims to adjust these marginal probabilities to overcome this limitation

by considering the number of observations in the risk set at each event time that

share the same covariate value with the individual who experienced the event. Con-

sequently, the MLD method will be applied to the PH model according to these

adjusted probabilities.

Consider, for instance, if a male have the event at t(i), then the adjusted proba-

bility will take into account the number of males in the risk set at t(i), rather than

focusing exclusively on that particular male. Let the individual who had the event

at t(i) as the ith individual, and Ri be the set of individuals at risk, survive or

censored prior to ti. The number of individuals in the set Ri whose share the same
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Figure 5.5: MLD for the balanced data in Table 5.2 based on the adjusted probability

covariate value as ith, denoted by ñi. Then, the adjusted probability at event time

ti is

ñjϕj∑
l∈Rj

ϕl

(5.5)

The adjusted probabilities for particular data based on the PH model can be

written as

n∏
j=1

ñjϕj∑
l∈Rj

ϕl

(5.6)

Generally, the estimate obtained from the adjusted probability is identical to the

one obtained by the marginal probabilities for both balance and unbalanced data

sets due to the fact that ñi does not involve any information about the parameter,

β, and it can be considered as a constant, see Figure (5.5) and Figure (5.6).

Although the suggested probability does not show any advantageous in terms of

partitioning the parameter space using the MLD method, the scale to these prob-

abilities, is appealing because at each value in the parameter space the sum of the

probabilities for all theses data orders is equal to 1. Therefore, this representation of
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Figure 5.6: MLD for the unbalanced data with additional female observation based

on the adjusted probability

probability will adopted for the rest of this chapter in the context of the PH model

instead of the original marginal probability.

5.3.3 Time-based MLD method for the PH model

The analyses conducted in Sections 5.3.1 and 5.3.2 yield identical conclusions,

namely, FFMM is the most likely observed data when β < 0, and MMFF whenever

β > 0. This section discusses an alternative approach to applying the MLD method

in the context of the PH model, that is a time-based approach. In this approach,

the range of parameter values where the observation of interest is most likely to be

observed compared to other possible observations will be identified at each event

time. The result of this process will be k intervals related to the k distinct event

times. Consequently, the intersection of these intervals represents the time-based

MLD imprecise estimates. However, an empty intersection indicates
[
β, β

]
= [0, 0]

and will be interpreted as that the given data is never most likely.

Suppose the interval Ii =
[
Ii, Ii

]
represents the range of parameter values in which

a particular observation of interest is most likely to be observed at time ti, with
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the lower and upper limits Ii and Ii, respectively. Let I = {I1, I2, . . . , Ik}, and

I =
{
I1, I2, . . . , Ik

}
denote the sets of lower and upper limits for the intervals Ii for

i = 1, 2, , . . . , k. The time-based MLD estimates for the PH model can be defined

as follows

[β, β] =


k⋂

i=1

Ii max(I) ≤ min(I)

[0, 0] max(I) > min(I)

(5.7)

The following theorem illustrate how to identify the lower and upper limits for

each interval Ii.

Theorem 5.3.1 Suppose the individual of interest to be most likely observed at tj

is characterized by x̃j and ñj which represent the covariate value and the number of

individuals from the same group in the risk set Rj. Let the other group represented

by xcj and n
c
j. The set of β values in which the observation of interest is most likely

to experience the event at time tj can be determined as follows

β(x̃j − xcj) ≥ ln

(
nc
j

ñj

)
(5.8)

Note: the direction of this inequality depends on the coding of x̃j and x
c
j.

Proof.

Consider the adjusted probability in Equation(5.5) and the definition of the MLD

in Equation(5.1), then an individual with x̃j is most likely to be observed at tj is

conditional on the following

P (x̃j | tj, β) ≥ P (xcj | tj, β)

ñjϕ̃j∑
l∈Rj

ϕl

≥
nc
jϕ

c
j∑

l∈Rj
ϕl

ñjϕ̃j ≥ nc
jϕ

c
j

exp(β(x̃j − xcj)) ≥
nc
j

ñj

β(x̃j − xcj) ≥ ln

(
nc
j

ñj

)
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. □

Example 5.3.1 Recall the artificial survival data in Table 5.2. For the sake of

simplicity, let P (F ) and P (M) denote the probability observing a female and a male

at t1, respectively. Additionally, P (M |F ) represents the probability of observing a

male at t2 giving observing a female at t2. Using this analogy of notations, P (F |FM)

indicates the probability of observing a female at t3 given observing a female at t1

and a male at t2.

Suppose the data of interest is FMFM as shown in the original data in Table 5.2,

then by Equation (5.8) the probability of observing a female at t1 is attainable with

β ∈ I1 = (−∞, 0]. To observe a male at t2 given a female was observed at t1, the

values x̃2 = 1, ñ2 = 2, xc2 = 0, and nc
2 = 1 will be substituted in Equation (5.8) which

suggest that a male is most likely to be observed at β ∈ I2 = [−0.6931,∞). As there

is only one of each group in the risk set of t3, observing a female, given that the first

observed individual was female and the second was male, is most likely to experience

the event when β ∈ I3 = (−∞, 0]. There is only one observation left at the last

event time, so any value in the parameter space leads to that male being most likely

to experience the event. Thus, the last event time can be neglected. By taking

the intersection of these intervals according to Equation(5.7), the time-based MLD

estimates for observing FMFM are [−0.69310, 0]. The following diagram illustrates

these steps.

Consider investigating the following two scenarios in which the first observation

is female: FFMM and FMMF, as shown in Figure 5.7. The figure indicates that

a female is most likely to observe at t1, P(F), when β is less than zero. For the

FFMM data set, observing female at the second time, P (F |F ), is most likely for

β < −0.6931. The remaining are two males, so they are the most likely observed

at t3 and t4. By taking the intersection of these two intervals, the time-based MLD

estimates for FFMM are [β, β] = (−∞,−0.6931]. For the FMMF data set, observing

a male at the second event time, P (M |F ), is most likely when β > −0.6931. At t3,

there is a male and a female, so to observe a male it is most likely when β ∈ [0,∞).

The intersection is equal to zero; therefore, this particular data is never most likely

to be observed compared to other.
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Most likely obs. at t1

At t1, F is the most likely to be observed when β ∈ I1 = (−∞, 0]

Most likely obs. at t2

At t2, M is the most likely to be observed when β ∈ I2 = [−0.6931,∞)

Most likely obs. at t3

At t3, F is the most likely to be observed when β ∈ I3 = (−∞, 0]

Most likely obs. at t4 There is only one M left ⇒ β ∈ I4 = (−∞,∞)

Similarly, one can find that MMFF is most likely when [β, β] = [0.6931,∞),

MFMF is the most likely data when [β, β] = [0, 0.6931], and MFFM is never most

likely data to be observed. Note that the time-based MLD does not hold using the

unadjusted marginal probability as non of the data sets in most likely due to the

fact that the marginal probability, partial likelihood, does not take into account the

number of individual from each group in the risk set.
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Figure 5.7: Time-based MLD probability for the most likely observations at t1, t2

and t3, given female observed at t1

5.4 Flexible MLD method

Based on the marginal probability or the adjusted variant, it is evident that

applying the MLD method to the PH model based on the marginal or adjusted

probabilities do not yield any significant insights in terms of partitioning the pa-

rameter space into subsets with explicit data are most likely observed data. While

the time-based MLD approach for the PH model exhibits appealing characteristics,

certain datasets are never most likely data. As a result, this section presents a flex-

ible MLD method designed to mitigate the constraints imposed by the requirement

of identifying the most likely data. Essentially, this alternative method widens the

scope within the parameter space to accommodate a wider range of potential values,

rather than rigidly assuming a dominant probability associated with the most likely

data. The flexible MLD approach holds promise, particularly in scenarios like the

PH model, where it may offer distinct advantages. Suppose that π ∈ [0, 1] refers to

the MLD imprecision term, a key element of the flexible MLD method. The flexible

MLD estimates given π are constructed based on the following definition
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Figure 5.8: Flexible MLD for method Binomial distribution for observing X = 2

using imprecision effect π = 0.8 given n = 4

⟨θ, θ⟩ = {θ : P (D|θ) ≥ (1− π)P (D|θ), ∀θ ∈ Θ} (5.9)

The following sections implement this method to the binomial distribution, the

Poisson, an the PH model.

5.4.1 Flexible MLD for method Binomial distribution

This section describe the application of the flexible MLD for method Binomial

distribution. For a given imprecision term π, one may consider applying the flexible

MLD method based on the following constraints:

1. P (X = x | p, n) ≥ (1− π)P (X = x− 1 | p, n)

2. P (X = x | p, n) ≥ (1− π)P (X = x+ 1 | p, n)

In spite of this, a closed-form solution is not feasible for determining flexible

imprecise estimates based on the Binomial distribution, since P (X = x | p, n)

surpasses the probability for any feasible values of X as the imprecision effect grows.
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Figure 5.8 illustrates this challenge considering the flexible imprecise estimates

for X = 2 using the imprecision term π = 0.8 with n = 4. The figure indicates the

difficulty in determining flexible imprecise estimates based on the the probabilities

of only X = 1 and X = 3. Therefore, it becomes necessary to conduct calcula-

tions encompassing all possible values of X across potential parameter values of p.

Then, applying the definition of the flexible MLD method in order to determine the

imprecise estimates.

Example 5.4.1 Consider applying the flexible MLD method to a binomial exper-

iment that involving tossing a coin four times as in Example 5.2.1. The imprecise

estimates of p in which X = x is the most likely observed based on the flexible

method are determined and presented in Table 5.3. the table shows these imprecise

estimates for x = 1, 2, 3, 4 using vaious values of the imprecision term π. When

π = 0, the imprecise estimates obtained by flexible method reduces to those ob-

tained from the standard MLD method. With an increase in the MLD imprecision

term, the interval of the imprecise estimates of p expanded to accommodate other

values from the parameter space in which X = x is more likely to be observe. Addi-

tionally, as the imprecision term π = 1 all potential data have the same probability

to be observed using any value from the parameter space.

5.4.2 Relaxed MLD for Poisson distribution

This section presents the application of the flexible MLD methodology within the

domain of the Poisson distribution. As with the Binomial distribution, the Poisson

distribution lacks a closed-form of deriving imprecise estimates for the parameter λ

under the flexible MLD framework. Hence, this challenge highlights the importance

of determining the probabilities for all possible values of X, and then identifying the

flexible imprecise estimates in which the data of interest is most likely to be observed

according to the predetermined imprecision term π. Accordingly, the flexible MLD

estimates in which X = 3 and X = 6 are most likely to be observed based on the

data set considered on Section 5.2.2 are given in Table 5.4.
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π
x=0 x=1 x=2 x=3 x=4

p p p p p p p p p p

0 0 0.2 0.2 0.4 0.4 0.6 0.6 0.8 0.8 1

0.1 0 0.2174 0.1837 0.4255 0.3750 0.6250 0.5745 0.8163 0.7826 1

0.2 0 0.2381 0.1667 0.4545 0.3478 0.6522 0.5455 0.8333 0.7619 1

0.3 0 0.2632 0.1489 0.4878 0.3182 0.6818 0.5122 0.8511 0.7368 1

0.4 0 0.2941 0.1304 0.5263 0.2857 0.7143 0.4737 0.8696 0.7059 1

0.5 0 0.3333 0.1111 0.5714 0.2500 0.7500 0.4286 0.8889 0.6667 1

0.6 0 0.3846 0.0909 0.6126 0.2105 0.7895 0.3874 0.9091 0.6154 1

0.7 0 0.4271 0.0698 0.6461 0.1828 0.8173 0.3539 0.9302 0.5730 1

0.8 0 0.4772 0.0476 0.6910 0.1544 0.8456 0.3090 0.9524 0.5228 1

0.9 0 0.5635 0.0244 0.5797 0.1144 0.8857 0.2403 0.9756 0.4365 1

1 0 1 0 1 0 1 0 1 0 1

Table 5.3: MLD imprecise estimates for p which maximize the probability of ob-

serving x given different values π

π
x=3 x=6

λ λ λ λ

0 3 4 6 7

0.1 2.700 4.444 5.400 7.777

0.2 2.401 4.999 4.899 8.366

0.3 2.100 5.345 4.583 8.944

0.4 1.898 5.773 4.243 9.660

0.5 1.733 6.214 3.915 10.58

0.6 1.550 6.694 3.635 11.83

0.7 1.342 7.274 3.302 13.66

0.8 1.096 8.040 2.913 16.73

0.9 0.775 9.235 2.450 23.66

1 0 ∞ 0 ∞

Table 5.4: Flexible MLD imprecise estimates for λ which maximize the probability

of observing x number of event during a period of time given different values π
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5.4.3 Flexible MLD method for the PH model

The limitations encountered when applying the standard MLD method to the

PH model prompted the consideration of the flexible MLD method. Even though the

MLD method for the PH model does not offer an advantage in terms of partitioning

the parameter space, the flexible MLD method is a more appealing alternative in

situations such as those encountered in the PH model. Consider an imprecision term

π ∈ [0, 1], the flexible MLD imprecise estimates for the observing the data D based

on the PH model are given by

[β, β] = {β : P (D|β) ≥ (1− π)P (D|β), ∀β ∈ Θ} (5.10)

In the context where D represents the dominant data sets, the selection criteria

for survival analysis involving binary covariates in the absence of right-censored

observations entail the inclusion of only two distinctive data sets within D. These

data sets are distinguished by covariate values demonstrating a monotonic pattern.

Specifically, they consist of data instances where covariate values are either (0s, 1s)

or (1s, 0s). For instance, within the artificial survival data used in Table 5.2, these

extreme data sets correspond to FFMM and MMFF orders. Therefore, the flexible

MLD estimates can be determined by the following constraints

[β, β] = {β : P (D|β) ≥ (1− π)P (FFMM|β), ∀β ∈ (−∞,∞)}

[β, β] = {β : P (D|β) ≥ (1− π)P (MMFF|β), ∀β ∈ (−∞,∞)}
(5.11)

Example 5.4.2 Reconsider the artificial survival data in Table 5.2 which related

to a binary covariate represent the gender with two individuals in each group. The

data sets with the covariate FFMM and MMFF found to be the dominant obser-

vations interns of their observing probabilities. On the other hand, the data with

the following orders FMFM, FMMF, MFMF, and MFFM are never most likely to

be observed. By applying the flexible MLD method, the limitations imposed by

the standard MLD method are relaxed, allowing for imprecise estimates for these

inferior data sets. Table 5.5 presents the imprecise estimates for the PH model for

all potential datasets, employing the flexible MLD method with various values of
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FFMM FMFM FMMF

β̂c Non-Conv. −0.9406 0.4812

90% CI NA (−2.9871, 1.1059) (−1.5615, 2.5239)

π β β β β β β

0 −∞ 0 NA NA NA NA

0.1 −∞ 0.0225 -0.1003 0.0286 -0.0349 0.0620

0.2 −∞ 0.0478 -0.2027 0.0603 -0.0734 0.1291

0.3 −∞ 0.0764 -0.3095 0.0960 -0.1166 0.2027

0.4 −∞ 0.1095 -0.4236 0.1369 -0.1657 0.2851

0.5 −∞ 0.1486 -0.5493 0.1847 -0.2228 0.3798

0.6 −∞ 0.1966 -0.6931 0.2426 -0.2914 0.4928

0.7 −∞ 0.2587 -0.8673 0.3165 -0.3780 0.6354

0.8 −∞ 0.3465 -1.0986 0.4193 -0.4969 0.8333

0.9 −∞ 0.4982 -1.4722 0.5926 -0.6931 1.1698

1 −∞ ∞ −∞ ∞ −∞ ∞

MFMF MFFM MMFF

β̂c 0.9406 −0.4812 Non-Conv.

90% CI (−1.1059, 2.9871) (−2.5239, 1.5615) NA

π β β β β β β

0 NA NA NA NA 0 ∞
0.1 -0.0286 0.1003 -0.0620 0.0349 -0.0225 ∞
0.2 -0.0603 0.2027 -0.1291 0.0734 -0.0478 ∞
0.3 -0.0960 0.3095 -0.2027 0.1166 -0.0764 ∞
0.4 -0.1369 0.4236 -0.2851 0.1657 -0.1095 ∞
0.5 -0.1847 0.5493 -0.3798 0.2228 -0.1486 ∞
0.6 -0.2426 0.6931 -0.4928 0.2914 -0.1966 ∞
0.7 -0.3165 0.8673 -0.6354 0.3780 -0.2587 ∞
0.8 -0.4193 1.0986 -0.8333 0.4969 -0.3465 ∞
0.9 -0.5926 1.4722 -1.1698 0.6931 -0.4982 ∞
1 −∞ ∞ −∞ ∞ −∞ ∞

Table 5.5: Imprecise estimates for β in the PH model based on the flexible method
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the imprecision parameter π. When π = 0, the imprecise estimates derived through

the flexible method are equal to those acquired via the standard the MLD method.

Furthermore, as the MLD imprecision term increases, the uncertainty surrounding

the estimates p becomes larger. This allows for a broader range of feasible values

from the parameter space. Additionally, when the imprecision parameter is set to

1, all possible data have an equal probability of being observed, regardless of the

specific value chosen from the parameter space.

5.4.4 Flexible time-based MLD method for the PH model

This section illustrates a significant improvement in the imprecise estimates

achieved through the time-based MLD approach. Specifically, datasets that were

previously unlikely to be observed after partitioning the parameter space according

to the most likely data will benefit from the flexible MLD method.

Theorem 5.4.1 Suppose the individual of interest to be most likely observed at tj

is characterized by x̃j and ñj which represent the covariate value and the number of

individuals from the same group in the risk set Rj. Let the other group represented

by xcj and n
c
j. The set of β values in which the observation of interest is most likely

to experience the event at time tj can be determined as follows

β(x̃j − xcj) ≥ ln

(
(1− π)nc

j

ñj

)
(5.12)

Proof.

The proof can be derived straightforwardly, similar to Theorem 5.3.1. □

Example 5.4.3 This example illustrates the flexible MLD estimates for one of the

never most likely data, namely, FMMF. The estimation will be based on the MLD

level of imprecision π = 0.3.

� At t1

Based on Theorem 5.4.4 and the adjusted probability in Equation (5.5), the
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imprecise estimates for observing a female at t1 is determined as follows

P (F ) ≥ (1− π)P (M)

−β ≥ ln
(1− 0.3)2

2

β ≤ −ln 0.7 = 0.3567

Hence, the imprecise estimates in which a female is more likely to be observed

at t1 are β ∈ I1 = (−∞, 0.3567].

� At t2

To find an interval of β where a male is more likely to be observe can be

calculated as follows

P (M | F ) ≥ 0.7P (F | F )

β ≥ ln
0.7

2

β ≥ −1.04982

Hence, the imprecise estimates for β corresponds a male individual to be most

likely observed data at the second event time are β ∈ I2 = [−1.04982,∞)

� At t3 = 7

we have

P (M | FM) ≥ 0.7P (F | FM)

β ≥ ln 0.7 = −0.3567

A male is the most likely individual to observed at t3 when β ∈ I3 = [−0.3567,∞)

Since the last event time has no impact on the time-based imprecise estimates, it will

be neglected. Thus, the flexible MLD imprecise estimates for the FMMF data based

on the level of imprecision π = 0.3 are [β, β] = [−0.3567, 0.3567]. Even though for

this particular data the flexible MLD estimates are symmetrical, simulation shows

that this cas is not always true.

5.4.5 Simulation study

This section delves into comparing the effectiveness of employing the flexible

MLD method, that based on the adjusted probabilities, versus the time-based flex-

ible MLD method within the framework of the PH model. Through a simulation



5.4. Flexible MLD method 187

study, valuable insights are sought into the accuracy of these methodologies in esti-

mating the parameters of the PH model.

One hundred survival data sets were generated under the assumption of a Weibull

distribution with shape parameter ρ = 1.1 and scale parameter λ = 2 for baseline

survival times related to individuals with x = 0. A single covariate was assumed to

follow a Binomial distribution with a probability of 0.5, having a regression coeffi-

cient of β = −1. The study considered two sample sizes: small n = 10 and moderate

n = 60. The flexible MLD method and the time-based flexible MLD method were

implemented for each dataset at varying levels of imprecision pi = 0.3, 0.6, 0.8.

Figure 5.9 illustrates the simulation results for datasets with n = 10. Figure 5.9

(top) shows results obtained from applying the time-based flexible MLD method,

while (bottom) shows results based on the flexible MLD method. Imprecise esti-

mates are displayed as bars to illustrate the range of the estimates. A teal-colored

bar signifies that the corresponding imprecise estimate contained the true parameter

value, while a red bar indicates otherwise. Additionally, standard PH estimates are

presented as circles, with teal circles indicating inclusion in the associated imprecise

estimates and red circles signifying exclusion.

Both methods demonstrate high sensitivity to the imprecision term π. Increas-

ing the level of imprecision raises the probability of imprecise estimates encom-

passing the true parameter. For the time-based MLD approach, the proportion of

imprecise estimates encompassing the true parameter were 22%, 52%, and 85% for

π = 0.3, 0.6, 0.8, respectively. Conversely, the inclusion proportions based the flexi-

ble MLD method 3%, 23%, and 50% for the same imprecision levels. Furthermore,

it was observed that the time-based estimates fluctuated around the true parame-

ter, while the imprecise estimates derived from the flexible MLD method tended to

cluster around 0. Furthermore, it was observed that while the time-based estimates

exhibited fluctuations around the true parameter, imprecise estimates derived from

the flexible MLD method tended to cluster around 0. As elaborated in Sections 5.3.1

and 5.3.2, this phenomenon appears to be the result of a limitation inherent in the

MLD method for the PH model. As discussed in these sections, all datasets are

considered as never most likely observed data except the dominant datasets, which
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Figure 5.9: MLD estimates for 100 datasets of size 10 using π = 0.3, 0.6, 0.8 according

to the time-based (top) and adjusted probability (bottom) methods, along with the true

parameter βt (dashed line) and the standard PH estimates βc (circles). Teal color denotes

inclusion within the imprecise estimates, while red signifies exclusion.
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have monotonous covariate values.

For data sets with n = 60, both methods fail to capture the true parameter

at lower level of imprecision as illustrated in Figure 5.10. This implies that as

the number of observations increases, there is a need for a substantial increase in

the level of imprecision to effectively capture the true parameter. As compared

to flexible MLD method, the flexible time-based MLD method performs better in

terms of robustness and reliability of encompassing both the true parameter and the

standard PH estimates across various imprecision levels π. Based on the simulation

results, it is important to carefully choose the imprecision level as well as their

impact on the trade-offs between estimation inclusion and reliability.
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Figure 5.10: MLD estimates for 100 datasets of size 60 using π = 0.3, 0.6, 0.8 according

to the time-based (top) and adjusted probability (bottom) methods, along with the true

parameter βt (dashed line) and the standard PH estimates βc (circles). Teal color denotes

inclusion within the imprecise estimates, while red signifies exclusion.
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5.5 Concluding remarks

This chapter has extensively discussed the novel concept of Most Likely Data

(MLD) as an imprecise estimation technique, which provides valuable insight into

parameter uncertainty and model fitting. Our initial objective was to clarify the

inherent limitations of the Maximum Likelihood Estimation (MLE) method, partic-

ularly within the Proportional Hazards (PH) model framework, where assumptions

such as the Proportional Hazard assumption can lead to inaccurate estimates.

The MLD method has been distinguished by its shift from point estimates to in-

terval estimates, providing a more nuanced understanding of parameter uncertainty

when compared to other methods. In our exploration of the application of MLD,

particularly with discrete distributions such as Binomial and Poisson and within the

PH model, we encountered a number of promising and limiting features.

In the context of discrete distributions, the MLD method applies seamlessly

to both the binomial and the Poisson distribution which results in partitioning

the parameter space for distinct data and providing a close-form to identifying the

imprecise estimates. In spite of this, both faced challenges in deriving closed-form

solutions for flexible imprecise estimates, especially when the imprecision effect grew

substantial. Similarly, within the PH model, applying the standard MLD method

based on marginal or adjusted marginal probabilities failed to effectively partition

the parameter space, restricting its utility to only the extreme data in which the

covariate values exhibited monotonic characteristics.

Furthermore, our exploration of the time-based MLD approach for the PH model

revealed promising improvements; unfortunately, certain datasets were unlikely to

be observed, making comprehensive estimations challenging. Nevertheless, while

addressing these limitations, the chapter also introduced a flexible MLD method,

offering a more adaptive approach to imprecise estimation. This is particularly

beneficial in complex models like the PH model. By widening the scope within the

parameter space, the flexible MLD method showed promise in mitigating constraints

encountered with standard MLD approaches as well as the time-based MLD method.

This chapter aiming to pave the way for advanced methodologies adept at bal-

ancing imprecision and reliability in statistical inference as the MLD has some ad-
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vantages over conventional models, particularly in scenarios where PH assumptions

are questionable. However, to ensure its effectiveness and reliability, future inves-

tigations must establish a definitive methodology for determining the appropriate

level of imprecision. Despite its potential, further research is needed to address lim-

itations such as effectively partitioning the parameter space. Overall, MLD shows

promise for significant contributions to statistical inference techniques, calling for

continued exploration and development in this field.



Chapter 6

Conclusions

This chapter summarizes the main findings of this thesis and discusses a few

areas for future research. The primary objective of this thesis is to explore opportu-

nities for relaxing the proportional hazards (PH) assumption and to pave the way

for further investigation and development in incorporating imprecision into the PH

model within the field of statistical inference. This thesis investigates three major

contributions: the development of novel imprecise proportional hazards models in

two variants, individual-based and group-based, which utilize Poisson empirical like-

lihoods to handle imprecision. Additionally, a robust PH model has been developed

for survival data with continuous covariates; this model incorporates additive er-

rors within covariate values to enhance adaptability by reducing dependency on the

proportional hazards assumption. The thesis also introduces the Most Likely Data

(MLD) method, a novel imprecise estimation technique that uses interval estimates

and prioritizes highly probable data configurations, aiming to refine the statistical

inference process in survival analysis. The MLD was implemented in the context of

the PH model for survival data with binary covariates. These methodologies have

been examined and shown to possess attractive features that enhance the robustness

and reliability as alternatives to the standard PH model.

In Chapter 2, we provide a comprehensive overview of key concepts essential

to the study’s objectives. A description of the PH model is provided, followed by

an exploration of parameter estimation and a discussion of baseline survival and

193
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hazard functions. This chapter also provides an overview of various empirical like-

lihood methods, emphasizing their utility in handling right-censored observations.

Furthermore, the chapter provides a detailed overview of methods for generating PH

survival data and illustrates how bootstrapping methods are applied. As a result of

these concepts, a solid framework is established for the subsequent analysis in the

following chapters, framing them as essential tools for the exploration of the thesis.

In Chapter 3, two imprecise proportional hazards models based on Poisson em-

pirical likelihoods are introduced: the individual-based model (IPH) and the group-

based imprecise PH model (GPH). The IPH model assigns unique imprecision factors

to each individual, while the GPH model allows groups of individuals to share the

same imprecision factors, essentially generalizing the IPH model. Initially, attempts

were made to construct the full likelihood of these models using empirical likelihood

based on the cumulative distribution function (CDF), but due to complexity, the

Poisson empirical likelihood was considered instead, particularly advantageous for

handling the hazard functions. At zero imprecision levels, these models produce

maximum likelihood estimates (MLE) of the partial likelihood for the PH model,

with parameter estimates converging to zero and log-likelihood values increasing as

imprecision levels rise. Estimation of lower and upper survival functions for spe-

cific individuals in these models was approached through restricted and unrestricted

survival functions, revealing disparities between lower and upper survival estimates.

When imprecision levels reach infinity, distinctive patterns emerge in hazard esti-

mates for both models. Specifically, the upper the GPH restricted and unrestricted

hazard estimates. The GPH upper restricted hazard estimates reduce to Nelson-

Aalen estimates, while the GPH upper unrestricted hazard estimates converge to

Breslow estimates for the baseline hazard function of the PH model. Bootstrap stud-

ies were conducted to assess the benefits of using the GPH model and the impact

of increasing imprecision levels for both proportional and non-proportional hazards

data, with findings suggesting the GPH model can be a safe alternative to the PH

model in scenarios where the validity of the PH assumption is uncertain. Surpris-

ingly, the likelihood values evident to has higher benifets when fitting the GPH
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model for survival data with a valid PH assumption.

In Chapter 4, we introduce the robust PH model as an alternative to the stan-

dard PH model, particularly in cases where the PH assumption regarding a contin-

uous covariate is doubtful. By incorporating errors into covariate values, the robust

PH model aims to overcome limitations associated with the proportional hazards

assumption. The method involves modifying observed covariate values with error

terms, which fluctuate within a small interval determined by the level of imprecision,

ϵ∗. The robust model is constructed based on Poisson and Empirical full likelihoods,

and when the imprecision level is zero, the robust model is reduced to the standard

PH model. However, as imprecision increases, estimated parameters deviate from

zero. The chapter explores the estimation of imprecise hazard and survival functions

through two methods: the naive approach and the envelope approach. Simulation

studies were conducted to examine the impact of covariate effects on survival esti-

mates and compare the robust PH model’s estimation capabilities versus a standard

PH model in the context of measurement errors. Moreover, bootstrap investigations

aim to identify the optimal level of imprecision, indicating that no feasible results

from increasing imprecision levels. This appears to be linked to the size of the sam-

ples used in these investigations. Overall, the chapter provides a basis for further

exploration of methodologies to determine appropriate levels of uncertainty.

In Chapter 5, we delved into the Most Likely Data method as an imprecise esti-

mation technique, offering valuable insights into parameter uncertainty and model

fitting. It begins by addressing the MLE limitations, particularly within the PH

model framework. The MLD method stands out for its shift from point to inter-

val estimates, providing a nuanced understanding of parameter uncertainty. While

exploring its application in various contexts, including discrete distributions like Bi-

nomial and Poisson and within the PH model, both promising and limiting features

are uncovered. Challenges arise in deriving closed-form solutions for flexible impre-

cise estimates, especially with substantial imprecision effects. Despite promising im-

provements with the time-based MLD approach for the PH model, certain datasets
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pose challenges for comprehensive estimations. However, the chapter introduces a

flexible MLD method, offering an adaptive approach to imprecise estimation, partic-

ularly beneficial in complex models like the PH model. Future investigations must

establish methodologies for determining appropriate imprecision levels to ensure ef-

fectiveness and reliability. Despite limitations, MLD holds promise for significant

contributions to statistical inference techniques, prompting further exploration and

development in this field.

In future research, conducting simulation studies could offer valuable insights

into comparing the accuracy of various methods such as the Individual-Based Pro-

portional Hazards (IPH), Group-Based Proportional Hazards (GPH), robust PH,

and Most Likely Data (MLD) for PH approaches in estimating true survival func-

tions, both under proportional hazards (PH) and non-proportional hazards (NPH)

scenarios. Moreover, employing a double bootstrap technique may help mitigate

biases arising from small to moderate-sized datasets. Addressing a key limitation of

this thesis, the Kolmogorov-Smirnov test could serve as an alternative to bootstrap

methods for evaluating the efficacy of the introduced models and determining opti-

mal levels of imprecision. This iterative process, gradually increasing the degree of

imprecision until minimal deviation is observed in survival estimates from Nelson-

Aalen estimates, holds promise for any of the proposed methods. Additionally,

survival and hazard estimates for imprecise estimates generated by flexible MLD

or flexible time-based MLD methods for the PH model could be straightforwardly

derived using Kalbfleisch-Prentice or Breslow estimates. Lastly, investigating the

impact of right-censored observations on MLD methods for the PH model could

further enhance the applicability of MLD techniques to real-world datasets.



Appendix A

Additional materials

A.1 η for PH and NPH data

In this appendix, we continue the our examples of Section 3.4.1 related to the

impact of including small ϵ∗ to the the value of ℓϵ∗ − ℓ0 for PH and NPH data.

Unlike Examples 3.4.1 and 3.4.2, the following example examines different covariate

patterns for imbalanced groups.

Example A.1.1 In order to gain a deeper understanding of the disparity in log-

likelihood improvement between the original NPH data sets and their bootstrap

samples due to imprecision, this example examines the effect of small ϵ∗ values on

the incremental changes in log-likelihood values when fitting the GPH model to both

PH and NPH data that exhibit an imbalance in group sizes. Specifically, we focus

on scenarios where the number of individuals in group one is twice and four times

larger than the number of individuals in group zero.

Consider fitting the GPH model to PH survival data that follow the same pattern

of covariate as in Example 3.4.1, but with two times as many 1’s as 0’s. Although

this analysis can be conducted using various PH data patterns, we are considering

using similar pattern of covariates to maintain consistency in these examples. For

PH data with the following patterns of covariates

1︷ ︸︸ ︷
1, 1, 0, . . . ,

m︷ ︸︸ ︷
1, 1, 0

197
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x n β̂ η η/n PH test

1︷ ︸︸ ︷
1, 1, 0, . . . ,

m︷ ︸︸ ︷
1, 1, 0

21 0.34 8.021 0.382 0.80

201 0.05 87.57 0.436 0.81

{ m
3m , m

3m−1 ,
2m−2
3m−2 ,

m−1
3m−3 ,

m−1
3m−4 ,

2m−4
3m−5 , . . . ,

1
3 ,

1
2 , 0} 1998 0.006 885.7 0.443 0.89

1︷ ︸︸ ︷
1, 1, 1, 1, 0, 0, . . . ,

m︷ ︸︸ ︷
1, 1, 1, 1, 0, 0

12 1.17 3.151 0.263 0.72

204 0.09 88.3 0.433 0.67

{2m
6m , 2m

6m−1 ,
2m

6m−2 ,
2m

6m−3 ,
4m−4
6m−4 , . . . ,

2
6 ,

2
5 ,

2
4 ,

2
3 , 0, 0} 1998 0.01 885.2 0.443 0.79

1︷ ︸︸ ︷
1, 1, 0, 0, 1, 1, . . . ,

m︷ ︸︸ ︷
1, 1, 0, 0, 1, 1

18 -0.132 7.07 0.393 0.57

198 -0.011 86.59 0.437 0.89

{2m
6m , 2m

6m−1 ,
4m−2
6m−2 ,

4m−2
6m−3 ,

2m−2
6m−4 , . . . ,

2
6 ,

2
5 ,

2
4 ,

2
3 , 0, 0} 1998 -0.001 886.08 0.443 0.97

Table A.1: The impact on η for PH data using different covariates patterns with

two times as many 1’s as 0’s

x n β̂ η η/n PH test

2m︷ ︸︸ ︷
1, . . . , 1,

2m︷ ︸︸ ︷
0, . . . , 0,

2m︷ ︸︸ ︷
1, . . . , 1

18 -0.56 6.34 0.352 5× 10−4

198 -0.63 73.7 0.372 2.1× 10−37

1998 -0.64 747.57 0.374 0

4m︷ ︸︸ ︷
1, . . . , 1,

3m︷ ︸︸ ︷
0, . . . , 0,

2m︷ ︸︸ ︷
1, . . . , 1

18 0.004 6.78 0.377 7e-04

198 -0.039 78.95 0.399 0

1998 -0.043 801.01 0.401 0

2m︷ ︸︸ ︷
1, . . . , 1,

2m︷ ︸︸ ︷
0, . . . , 0,

4m︷ ︸︸ ︷
1, . . . , 1,

m︷ ︸︸ ︷
0, . . . , 0

18 0.545 6.056 0.336 0.22

198 0.649 69.85 0.353 0

1998 0.661 708.07 0.354 0

Table A.2: The impact on η for NPH data using different covariates patterns with

two times as many 1’s as 0’s
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x n β̂ η η/n PH test

1︷ ︸︸ ︷
1, 1, 1, 1, 0, . . . ,

m︷ ︸︸ ︷
1, 1, 1, 1, 0

20 0.62 4.94 0.247 0.71

200 0.09 62.25 0.311 0.72

2000 0.01 637.88 0.319 0.84

1︷ ︸︸ ︷
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, . . . ,

m︷ ︸︸ ︷
1, 1, 1, 1, 1, 1, 1, 1, 0, 0

20 1.32 3.58 0.179 0.55

200 0.17 61.28 0.306 0.52

2000 0.02 636.96 0.318 0.7

1︷ ︸︸ ︷
1, 1, 1, 1, 0, 0, 1, 1, 1, 1, . . . ,

m︷ ︸︸ ︷
1, 1, 1, 1, 0, 0, 1, 1, 1, 1

20 -0.19 5.74 0.287 0.41

200 -0.02 63.03 0.315 0.85

2000 -0.002 638.67 0.319 0.95

Table A.3: The impact on η for PH data using different covariates patterns with

four times as many 1’s as 0’s.

1︷ ︸︸ ︷
1, 1, 1, 1, 0, 0, . . . ,

m︷ ︸︸ ︷
1, 1, 1, 1, 0, 0

1︷ ︸︸ ︷
1, 1, 0, 0, 1, 1, . . . ,

m︷ ︸︸ ︷
1, 1, 0, 0, 1, 1

Table A.1 indicates that as the sample size n increases, the log-likelihood increment

for these non-balanced PH data converges to approximately 44% of the sample

size. Similarly, when examining PH data with covariates consisting of m-blocks

following specific patterns, such as (1, 1, 0, 0, 0, 1, 1, 1, 1), (1, 1, 1, 1, 0, 0, 0, 1, 1), and

(1, 0, 0, 0, 1, 1, 1, 1, 1), consistent results are observed. Table A.2 reveals that the

log-likelihood increments for a range of non-proportional hazards (NPH) data, with

double the number of 1s as 0s, converge to 35 − 40% as the sample size increases.

These results illustrates that the log-likelihood gains achieved by fitting the GPH

model with a small epsilon to NPH survival data are smaller compared to their PH

data counterparts.

The same technique was employed to examine the effects of fitting the GPH

model to PH and NPH data, where one group has four times the number of mem-

bers as the other. In line with previous results, a significant decline in the log-profile
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x n β̂ η η/n PH test

4m︷ ︸︸ ︷
1, . . . , 1,

2m︷ ︸︸ ︷
0, . . . , 0,

4m︷ ︸︸ ︷
1, . . . , 1

20 -0.462 5.47 0.274 0.003

200 -0.508 57.78 0.289 0

2000 -0.513 581.1 0.291 0

8m︷ ︸︸ ︷
1, . . . , 1,

3m︷ ︸︸ ︷
0, . . . , 0,

4m︷ ︸︸ ︷
1, . . . , 1

15 0.064 4.16 0.277 0.016

195 0.0262 58.14 0.298 0

1995 0.023 598.2 0.299 0

4m︷ ︸︸ ︷
1, . . . , 1,

2m︷ ︸︸ ︷
0, . . . , 0,

8m︷ ︸︸ ︷
1, . . . , 1,

m︷ ︸︸ ︷
0, . . . , 0

15 0.602 3.42 0.228 0.31

195 0.777 46.59 0.239 0

1995 0.797 478.45 0.24 0

Table A.4: The impact on η for NPH data using different covariates patterns with

four times as many 1’s as 0’s.

likelihood increments of the GPH model with small Epsilon for PH data, reaching

approximately 32% of the sample size when n increases, as shown in Table A.3.

Moreover, Table A.4 illustrated that the log-likelihood gain for NPH data was re-

duced to 24 − 30% of the sample size. Despite the higher log-profile likelihood

increments for PH data compared to NPH data, the disparity decreases as the data

become more imbalanced.

A.2 Proof of Theorem 2.5.2

Here we profile out F0, the nuisance parameter. For simplicity, assume the

absence of ties in ti’s such that t1 < t2 < ... < tn. Following Owen [67], the

empirical likelihood approach is used to parametrize Equation (2.58) by restricting

all possible MLE of F0 to the distribution functions which places probability masses

pi only on the observed time points ti and the interval (tn,∞), see Figure (A.1).

Now, let pi = F0(ti)−F0(ti
−) for i = 1, 2, ..., n; pn+1 represents the probability mass

of F0 in the interval (tn,∞), and the distribution function F (t) =
∑n

i=1 pi1(ti≤t)
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t0=0 t1

p1

t2

p2

t3

p3

tn

pn

∞

pn+1

Figure A.1: Probability masses

such that
∑n+1

i=1 pi = 1, since the empirical cumulative distribution function, ECDF,

has been proven to be the non-parametric maximum likelihood estimator, NPMLE

[68, 77, 92]. The baseline survival function is given by S0(ti) = 1 − F0(ti) = 1 −∑n
j=1 pj1(tj≤ti) and since

∑n+1
i=1 pi = 1, then S0(ti) =

∑n+1
j=i+1 pj. Consequently, the

full likelihood in Equation (2.58) can be represented as follows

L(β, F0) =
n∏

i=1

(ϕipi)
δi

(
n+1∑

j=i+1

pj

)ϕi−δi

(1.1)

Let bi+1 =
∑n+1

j=i+1 pj, then the properties hold:

1. bi =
∑n+1

j=i pj

2. b1 =
∑n+1

i=1 pi = 1

3. bn+1 = pn+1

4. bi+1 =
∑n+1

j=i+1 pj =
∑n+1

j=i pj − pi = bi − pi

5. let ai = pi / bi, then bi+1 = (1− (pi / bi))bi = (1− ai)bi

Employing Property (5), pi and bi+1 can be expressed as pi = aibi and bi+1 =

(1− ai)bi. Substituting these expressions into Equation (1.1) leads to the following

likelihood function

L(β, F0) =
n∏

i=1

[
(ϕiaibi)

δi ((1− ai)bi)
ϕi−δi

]
=

n∏
i=1

[
(ϕiai)

δi bδi+ϕi−δi
i (1− ai)

ϕi−δi
]

=
n∏

i=1

[(
ϕiai
1− ai

)δi
]

n∏
i=1

[
bϕi

i (1− ai)
ϕi

]
(1.2)
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In accordance with properties (2) and (5), the second product in Equation (1.2) can

be determined by
n∏

i=1

(bi(1− ai))
ϕi =(b1(1− a1))

ϕ1 × (b2(1− a2))
ϕ2 × · · · × (bn(1− an))

ϕn

=(1− a1)
ϕ1 × ((1− a1)(1− a2))

ϕ2 × ((1− a1)(1− a2) . . . (1− an))
ϕn

=(1− a1)
∑n

i=1 ϕi(1− a2)
∑n

i=2 ϕi . . . (1− an)
ϕn

=
n∏

i=1

(1− ai)
ri

(1.3)

This result obtained by multiplying the contribution of all i’s and rearranging the

likelihood function with reference to 1 − ai, for i = 1, 2, . . . , n, using ri =
∑n

i=1 ϕi.

The empirical full likelihood function for the PH model can be rewritten by substi-

tuting Equation (1.3) into Equation (1.2) as follows

L(β, F0) =
n∏

i=1

[ϕiai]
δi [1− ai]

ri−δi (1.4)

Let the log full likelihood of (β, F0) denoted by ℓ = lnL(β, F0), then we have

ℓ =
n∑

i=1

ln
[
(ϕiai)

δi (1− ai)
ri−δi

]
=

n∑
i=1

[δi ln (ϕiai) + (ri − δi) ln (1− ai)]

(1.5)

The gradient of ℓ is determined with respect to each fixed ai where 1 ≤ i ≤ n to

identify the critical values. Consequently, the gradient is set zero and solve for ai as

follows

∂ℓ

∂ai
= δi

ϕi

ϕiai
+ (ri − δi)

−1

1− ai

=
δi
ai

− ri − δi
1− ai

∂ℓ

∂ai
= 0 ⇒ δi

ai
− ri − δi

1− ai
= 0

⇒ δi(1− ai)− (ri − δi)ai = 0

⇒ δi − δiai − riai + δiai = 0

⇒ δi − riai = 0

⇒ âi =
δi
ri
; ∀1 ≤ i ≤ n

(1.6)
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The estimates âi’s are evidently valid provided that ri ̸= 0. To consider the estima-

tion âi =
δi
ri
as the maximum estimation of ai’s, the Hessian matrix,H , is examined

to determine if it is positive or negative semidefinite. Note:

� The n×n Hessian matrix called positive semidefinite ⇒ for any nonzero vector

z with n real numbers zTHz > 0; Convex.

� The n×n Hessian matrix called negative semidefinite⇒ for any nonzero vector

z with n real numbers zTHz < 0; Concave.

The second partial derivative of the log full likelihood for any i is given by

∂2ℓ

∂a2i
=

−δi
a2i

− ri − δi
(1− ai)2

=

[
δi

(1− ai)2
− δi
a2i

]
− ri

(1− ai)2

(1.7)

Therefore, the second partial derivatives ∂2ℓ
∂alai

= 0 for any l ̸= i. Hence, Hessian

matrix can be represented by

H =


∂2ℓ
∂a21

∂2ℓ
∂a2a1

. . . ∂2ℓ
∂ana1

∂2ℓ
∂a1a2

∂2ℓ
∂a22

. . . ∂2ℓ
∂ana2

...
...

. . .
...

∂2ℓ
∂a1an

∂2ℓ
∂a2an

. . . ∂2ℓ
∂a2n



=


−δ1
a21

− r1−δ1
(1−a1)2

0 . . . 0

0 −δ2
a22

− r2−δ2
(1−a2)2

. . . 0
...

...
. . .

...

0 0 . . . −δn
a2n

− rn−δn
(1−an)2


It is necessary to confirm that for any nonzero vector zT = (z1, z2, · · · , zn) with

zi ∈ R for 1 ≤ i ≤ n, the condition zTHz < 0 holds, as follows

zTHz =

(
z1

[
−δ1
a21

− r1 − δ1
(1− a1)2

]
, · · · , zn

[
−δn
a2n

− rn − δn
(1− an)2

])
z1
...

zn


= z21

[
−δ1
a21

− r1 − δ1
(1− a1)2

]
+ · · ·+ z2n

[
−δn
a2n

− rn − δn
(1− an)2

] (1.8)
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To satisfy the maximization requirement we need −δi
a2i

− ri−δi
(1−ai)2

< 0 for all 1 ≤

i ≤ n. However, two cases will be discussed depend on the value of δi = 0 or 1.

Case 1: δi = 0

−δi
a2i

− ri − δi
(1− ai)2

=
−0

â2i
− ri − 0

(1− âi)2

=
−ri

(1− âi)2
< 0; only when ri > 0

This is satisfied since ri =
∑n

j=i ϕj and it is known that ϕj always positive, so

zTHz < 0 in this case.

Case 2: δi = 1 ⇒ âi =
δi
ri
= 1

ri

−δi
a2i

− ri − δi
(1− ai)2

=
−1(
1
ri

)2 − ri − 1(
1− 1

ri

)2
= −r2i +

1− ri(
1− 1

ri

)2
=

−r2i
(
1− 1

ri

)2
+ 1− ri(

1− 1
ri

)2
=

−r2i
(
1− 2

ri
+ 1

r2i

)
+ 1− ri(

1− 1
ri

)2
=

−r2i +
2r2i
ri

− r2i
r2i

+ 1− ri(
1− 1

ri

)2
=

−r2i + 2ri − 1 + 1− ri(
1− 1

ri

)2
=

ri − r2i(
1− 1

ri

)2 < 0; only when ri − r2i = ri(1− ri) < 0

Either ri < 0 which contradicted the fact that ri always positive. Thus, 1 − ri

must be negative which implies ri > 1; that is, ri =
∑n

j=i ϕj = ϕi+ϕi+1+· · ·+ϕn > 1,

so this constraint can be satisfied when ϕn ≥ 1 since ri > ϕn ≥ 1 for all 1 ≤ i ≤ n.

We can conclude that zTHz < 0 under the condition that ϕn ≥ 1. Consequently,

âi =
δi
ri

for all 1 ≤ i ≤ n maximizes the full likelihood function in Equation (1.4)

under the constraint that ϕn ≥ 1. As a result, the full profile likelihood function of

β based on the PH model, Lp, can be presented as follows by
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Lp(β) =
n∏

i=1

[ϕiâi]
δi [1− âi]

ri−δi

=
n∏

i=1

[
ϕi
δi
ri

]δi [
1− δi

ri

]ri−δi

=
n∏

i=1

Lpl(β)

[
ri − δi
ri

]ri−δi

(1.9)

such that Lpl(β) =
∏n

i=1

[
ϕi

ri

]δi
is the partial likelihood function of β driven by Cox

[25].

Before optimizing the log-likelihood function of Equation (1.9), it is essential to

ensure the constraint ϕn ≥ 1 is valid. Ren and Zhou [77] suggests that extensive

simulation studies indicate that setting xn = 0, ϕn = 1, results in stable performance.

This can be attained by re-coding the covariate x for each individual such that

x̃i = xi − xn. Consequently, the MLE of the full profile log-likelihood function, β̂e,

can be utilized to determine the survival estimates for individuals with x = xn, as

follows

Ŝn(ti) = b̂i+1

= (1− â1)(1− â2) . . . (1− âi)

=
∏
l≤i

1− âl

=
∏
l≤i

1− δl
rl

=
∏
l≤i

rl − δl
rl

(1.10)

The baseline survival function corresponds to x = 0, S0(ti), can be estimated by

Ŝ
exp[−β̂xn]
n . If we are interested in the survival function corresponds to the mean of

x, then it can be estimated by Ŝ
exp[β̂(x̄−xn)]
n .

A.3 Robust PH model (Poisson)
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time status h0;c(t) hϵ
∗=0.1
0;p (t) hϵ

∗=0.5
0;p (t) hϵ

∗=1
0;p (t) hϵ

∗=1.2
0;p (t)

1.496 1 2.189 2.781 7.560 90.395 502.441

1.709 1 2.351 2.996 8.193 104.184 643.284

2.010 1 3.233 4.363 17.071 224.244 1466.894

3.143 1 3.692 5.068 22.239 459.799 3344.994

3.774 1 3.711 5.091 22.297 460.103 3345.970

4.401 1 5.133 7.234 35.424 829.427 6602.518

4.511 1 5.609 7.976 41.363 1167.048 11288.112

7.132 1 6.142 8.818 48.805 1795.379 19298.865

8.508 1 6.301 9.049 50.156 1847.893 19939.613

8.966 1 6.847 9.917 58.250 2513.504 28491.089

11.360 1 8.357 12.219 74.447 3418.904 40709.971

12.703 1 8.666 12.686 77.825 3632.817 44020.387

12.936 1 11.465 17.114 114.360 6071.674 80096.517

13.208 0 0 0 0 0 0

14.120 1 12.575 18.920 134.047 8300.937 115809.730

17.588 1 14.937 22.582 165.134 11347.746 167443.174

17.601 1 15.525 23.492 173.008 12086.431 180835.103

24.446 1 18.573 28.206 209.483 15542.930 241057.943

26.669 0 0 0 0 0 0

29.893 1 27.003 41.812 339.153 29180.386 485892.780

38.340 0 0 0 0 0 0

38.628 1 37.688 59.025 504.106 48249.129 911048.042

48.983 1 64.511 105.323 1094.517 143016.336 3219747.784

58.177 1 92.473 153.224 1666.332 281857.432 7609017.234

65.542 0 0 0 0 0 0

65.648 1 103.079 170.304 1840.406 315415.415 8704825.458

71.607 0 0 0 0 0 0

79.959 0 0 0 0 0 0

219.825 1 206.218 332.016 3364.963 559459.487 15684171.752

244.929 1 2225.212 4186.390 92064.839 90133044.247 8074690681.285

Table A.5: Estimates of the baseline hazard functions resulted by fitting the PH

model and the robust PH model with ϵ∗ = 0.1, 0.5, 1, 1.2 using the survival data

with n=30 and negative β as in Example (4.3.1)
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time status h0;c(t) hϵ
∗=0.1
0;p (t) hϵ

∗=0.5
0;p (t) hϵ

∗=1
0;p (t) hϵ

∗=1.2
0;p (t)

9.30×10−3 1 7.88×10−5 4.95×10−5 4.67×10−6 2.01×10−8 4.67×10−10

6.55×10−2 1 8.27×10−5 5.20×10−5 4.91×10−6 2.16×10−8 5.05×10−10

8.48×10−2 1 9.06×10−5 5.72×10−5 5.58×10−6 2.96×10−8 8.48×10−10

1.16×10−1 1 1.14×10−4 7.40×10−5 8.82×10−6 5.07×10−8 1.58×10−9

1.19×10−1 1 1.16×10−4 7.57×10−5 9.02×10−6 5.16×10−8 1.61×10−9

1.31×10−1 1 1.47×10−4 9.86×10−5 1.24×10−5 7.34×10−8 2.37×10−9

1.33×10−1 1 2.33×10−4 1.62×10−4 2.43×10−5 2.09×10−7 8.22×10−9

1.97×10−1 1 2.53×10−4 1.77×10−4 2.75×10−5 2.63×10−7 1.14×10−8

2.15×10−1 1 2.66×10−4 1.87×10−4 2.94×10−5 2.87×10−7 1.26×10−8

2.88×10−1 1 2.90×10−4 2.04×10−4 3.36×10−5 3.73×10−7 1.86×10−8

2.92×10−1 1 4.28×10−4 3.11×10−4 5.84×10−5 8.43×10−7 4.83×10−8

3.75×10−1 1 4.87×10−4 3.59×10−4 7.52×10−5 1.35×10−6 8.84×10−8

4.54×10−1 1 6.35×10−4 4.75×10−4 1.06×10−4 2.18×10−6 1.61×10−7

5.36×10−1 1 8.18×10−4 6.19×10−4 1.45×10−4 3.51×10−6 2.95×10−7

6.03×10−1 1 9.04×10−4 6.92×10−4 1.73×10−4 5.45×10−6 5.40×10−7

6.18×10−1 1 9.54×10−4 7.31×10−4 1.86×10−4 6.16×10−6 6.43×10−7

6.54×10−1 1 9.81×10−4 7.52×10−4 1.92×10−4 6.34×10−6 6.63×10−7

7.26×10−1 0 0 0 0 0 0

8.30×10−1 1 1.10×10−3 8.49×10−4 2.17×10−4 7.32×10−6 8.03×10−7

9.87×10−1 1 1.20×10−3 9.25×10−4 2.45×10−4 9.30×10−6 1.06×10−6

1.07 0 0 0 0 0 0

1.13 0 0 0 0 0 0

1.14 1 2.14×10−3 1.66×10−3 4.41×10−4 1.53×10−5 1.65×10−6

1.28 1 2.26×10−3 1.75×10−3 4.66×10−4 1.61×10−5 1.73×10−6

2.80 1 2.78×10−3 2.14×10−3 5.74×10−4 2.05×10−5 2.23×10−6

3.02 1 3.07×10−3 2.38×10−3 6.48×10−4 2.38×10−5 2.66×10−6

3.89 0 0 0 0 0 0

3.97 0 0 0 0 0 0

4.40 1 2.25×10−2 1.92×10−2 8.90×10−3 1.16×10−3 2.63×10−4

5.31 0 0 0 0 0 0

Table A.6: Estimates of the baseline hazard functions resulted by fitting the PH

model and the robust PH model with ϵ∗ = 0.1, 0.5, 1, 1.2 using the survival data

with n=30 and positive β as in Example (4.3.1)
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Figure A.2: Quantiles of ℓ̂∗ϵ∗ (left) and (ℓ̂ϵ − ℓ̂0)
∗ (right) based on Zelterman’s boot-

strap for PH, time-dependent-NPH (top) and frailty-NPH (bottom) survival data

with 20% of right-censored observations using the robust Poisson PH model on fitted

to m = 100 data sets each with N = 60 observations.
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Figure A.3: Quantiles of ℓ̂∗ϵ∗ (left) and (ℓ̂ϵ − ℓ̂0)
∗ (right) based on Hjort’s bootstrap

for PH, time-dependent-NPH (top) and frailty-NPH (bottom) survival data with

20% of right-censored observations using the robust Poisson PH model on fitted to

m = 100 data sets each with N = 60 observations.



Appendix B

R codes

B.1 Simulating PH and NPH survival data

## simulate Weib.PH right -censored data (continuous covariate)

simWeib.PH.Cont = function(N, beta , lambda , rho , Cens_par)

{ # covariate

x = runif(N,10, 30)

# Event times (Weibull/Exponential)

v = runif(n=N)

V = (-log(v) / (lambda * exp(x * beta)))^(1/rho)

Fv=ecdf(V)

C=unname(quantile(Fv, rbeta(N,Cens_par[1],Cens_par [2])))

status=as.numeric(V <= C)

time = pmin(V, C)

Data <-data.frame("time"=time , "status"=status , x)

Data <-Data[order(Data[,1],-Data [,2]) ,]

i1 <- duplicated(Data [,1])

Data[i1 ,1] <-Data[i1 ,1]+ cumsum(rep(min(abs(diff(Data [,1])[diff(

Data [,1])!=0]))/(length(Data [,1])^2),sum(i1)))

return(Data)

}

# simulate Weib crossing hazards NPH right -censored data

simWeib.NPH.Bi <- function(N, lambda , rho , Cens_par)

{ v1 <- runif(n=as.integer(N/2))

V1 <- (-log(v1) / (lambda [1]))^(1/rho [1])

210
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Fv1 <-ecdf(V1)

C1<-unname(quantile(Fv1 , rbeta(as.integer(N/2),Cens_par[1],Cens_

par [2])))

status1 <-as.numeric(V1 <= C1)

time1 <- pmin(V1, C1)

v2 <- runif(n=as.integer(N/2))

V2 <- (-log(v2) / (lambda [2]))^(1/rho [2])

Fv2 <-ecdf(V2)

C2<-unname(quantile(Fv2 , rbeta(as.integer(N/2),Cens_par[1],Cens_

par [2])))

status2 <-as.numeric(V2 <= C2)

time2 <- pmin(V2, C2)

Data <-data.frame("time"=c(time1 ,time2), "status"=c(status1 ,

status2), x=c(rep(0,as.integer(N/2)),rep(1,as.integer(N/2))))

Data <-Data[order(Data[,1],-Data [,2]) ,]

i1 <- duplicated(Data [,1])

Data[i1 ,1] <-Data[i1 ,1]+ cumsum(rep(min(abs(diff(Data [,1])[diff(

Data [,1])!=0]))/(length(Data [,1])^2),sum(i1)))

return(Data)

}

# Gompertz Obs. required "VGAM" Package.

#simulate NPH right -censored data with non crossing hazards (

Weibull&Gompertz) .

simWeib.NPH.Bi.W_G <- function(N, lambda , rho , Cens_par)

{ ## Generate Weibull

V1=rweibull(N/2, shape=rho[2], scale =lambda [2])

Fv1 <-ecdf(V1)

C1<-unname(quantile(Fv1 , rbeta(as.integer(N/2),Cens_par[1],Cens_

par [2])))

status1 <-as.numeric(V1 <= C1)

time1 <- pmin(V1, C1)

#Generate2 Gompertz

V2=rgompertz(N/2, scale =lambda [1], shape=rho [1])

Fv2 <-ecdf(V2)

C2<-unname(quantile(Fv2 , rbeta(as.integer(N/2),Cens_par[1],Cens_

par [2])))

status2 <-as.numeric(V2 <= C2)
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time2 <- pmin(V2, C2)

Data <-data.frame("time"=c(time1 ,time2), "status"=c(status1 ,

status2), x=c(rep(0,as.integer(N/2)),rep(1,as.integer(N/2))))

Data <-Data[order(Data[,1],-Data [,2]) ,]

i1 <- duplicated(Data [,1])

Data[i1 ,1] <-Data[i1 ,1]+ cumsum(rep(min(abs(diff(Data [,1])[diff(

Data [,1])!=0]))/(length(Data [,1])^2),sum(i1)))

return(Data)

}

B.2 IPH model

# Log -lik function for the IPH

logL_IPH <-function(initial ,s,x,eps){

epsi <-eps[1]-eps [2]

v<-exp(initial*x)

vv<-v*exp(epsi)

r<-c(rev(cumsum(rev(vv)))[-1],0)

L<-ifelse(s==0,0,log((v*exp(-1))/(v+(r*s))))

logl <- sum(L)

return(-logl)

}

# IPH: fit , imprecise hazard for x_i, imprecise survival for x_i

# x_i is a covariate value for particular individual

# type= 1 for restricted , and 2 for Unrestricted # eps* >=0

IPH <-function(data ,eps ,x_i,type =1) {

eps=c(-eps ,eps)

data <-data[order(data[,1],-data [,2]) ,]

row.names(data)=NULL

s=data[,2]

x=data[,3]

Fit <-tryCatch ({ optim(0, fn=logL_IPH , s=s, x=x, eps=eps , method

= "BFGS", control = list(maxit =1000))$par}, error = function(e)

{0})

if(Fit ==0) {eps=c(0,-Inf)}

phi_all=exp(Fit*x)

phi_x=exp(Fit*x_i)
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r=c(rev(cumsum(rev(phi_all)))[-1],0)

h.denomenator=phi_all*exp(max(eps))+exp(min(eps))*r

h.t_j=ifelse(s==0,0,1/h.denomenator)

if (type ==1) {

u.eps_i.tj=ifelse(x==x_i,max(eps),min(eps))

u.h_x_t_j=h.t_j*exp(u.eps_i.tj)*phi_x

l.eps_i.tj=rep(min(eps),nrow(data))

l.h_x_t_j=h.t_j*exp(l.eps_i.tj)*phi_x

Sx=exp(-apply(cbind(u.h_x_t_j,l.h_x_t_j),2,cumsum))

return(list(Fit ,data.frame(l.h_x=l.h_x_t_j,u.h_x=u.h_x_t_j),

data.frame(LS.R=Sx[,1],SU.R=Sx[,2])))

} else {

u.eps_i.tj=rep(max(eps),nrow(data))

u.h_x_t_j=h.t_j*exp(u.eps_i.tj)*phi_x

l.eps_i.tj=rep(min(eps),nrow(data))

l.h_x_t_j=h.t_j*exp(l.eps_i.tj)*phi_x

Sx=exp(-apply(cbind(u.h_x_t_j,l.h_x_t_j),2,cumsum))

return(list(Fit ,data.frame(l.h_x=l.h_x_t_j,u.h_x=u.h_x_t_j),

data.frame(LS.R=Sx[,1],SU.R=Sx[,2])))

}

}

B.3 GPH model

require(fastDummies ,spatstat.utils)

# fastDummies for dummy_cols and spatstat.utils for revcumsum

# Log -lik function for the GPH

logL_GPH <-function(initial ,s,x,eps){

v=exp(initial*x)

x.dum <- dummy_cols(x,remove_selected_columns = TRUE)[,-1]

r<-if (sum(dim(x.dum)[2]) ==0) { data.frame(r1=c(rev(cumsum(rev

((1-x.dum)*v)))), r2=c(rev(cumsum(rev(x.dum*v)))))

} else {data.frame(X0=rev(cumsum(rev((1- rowSums(x.dum))*v))),

sapply(seq.int(sum(dim(x.dum)[2])), function(X,xv) rev(cumsum(

rev(xv[,X]))), xv=x.dum*v))}

eps.r<-exp(sapply(seq_len(ncol(r)), function (X,x,eps) ifelse(x

==X-1,max(eps),min(eps)),x,eps))
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L.denomenator <-exp(min(eps))*rowSums(eps.r * r)

L=v/L.denomenator

logl <-sum(ifelse(s==0,0,log(L)))

return(-logl)

}

# GPH: fit , imprecise hazard for x_i, imprecise survival for x_i

# x_i is a covariate value for particular individual

# type= 1 for restricted , and 2 for Unrestricted # eps* >=0

GPH <-function(data ,eps ,x_i,type =1) {

eps=c(-eps ,eps)

data <-data[order(data[,1],-data [,2]) ,]

row.names(data)=NULL

s=data[,2]

x=data[,3]

Fit <-tryCatch ({ optim(0, fn=logL_GPH , s=s, x=x, eps=eps , method

= "BFGS", control = list(maxit =1000))$par}, error = function(e)

{0})

phi_all=exp(Fit*x)

phi_x=exp(Fit*x_i)

v=exp(rowSums(t(Fit*t(x))))

x.dum <- dummy_cols(x,remove_selected_columns = TRUE)[,-1]

r<-if (sum(dim(x.dum)[2]) ==0) { data.frame(r1=c(rev(cumsum(rev

((1-x.dum)*v)))), r2=c(rev(cumsum(rev(x.dum*v)))))

} else {data.frame(X0=rev(cumsum(rev((1- rowSums(x.dum))*v))),

sapply(seq.int(sum(dim(x.dum)[2])), function(X,xv) rev(cumsum(

rev(xv[,X]))), xv=x.dum*v))}

if(Fit ==0) {eps=c(0,-Inf)}

eps.r<-exp(sapply(sort(unique(x)), function (X,x,eps) ifelse(x

==X,max(eps),min(eps)),x,eps))

h.denomenator <-rowSums(eps.r * r)

h.t_j=ifelse(s==0,0,1/h.denomenator)

if (type ==1) {

u.eps_i.tj=ifelse(x==x_i,max(eps),min(eps))

u.h_x_t_j=h.t_j*exp(u.eps_i.tj)*phi_x

l.eps_i.tj=rep(min(eps),nrow(data))

l.h_x_t_j=h.t_j*exp(l.eps_i.tj)*phi_x

hAll=data.frame(Lh.R=l.h_x_t_j,Uh.R=u.h_x_t_j)
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h_x_t_j=data.frame(apply(hAll ,1,min),apply(hAll ,1,max))

S_x_t_j=exp(-apply(h_x_t_j,2,cumsum))

return(list(Fit ,h_x_t_j,data.frame(LS.R=S_x_t_j[,2],SU.R=S_x_

t_j[,1])))} else {

u.eps_i.tj=rep(max(eps),nrow(data))

u.h_x_t_j=h.t_j*exp(u.eps_i.tj)*phi_x

l.eps_i.tj=rep(min(eps),nrow(data))

l.h_x_t_j=h.t_j*exp(l.eps_i.tj)*phi_x

hAll=data.frame(Lh.R=l.h_x_t_j,Uh.R=u.h_x_t_j)

h_x_t_j=data.frame(apply(hAll ,1,min),apply(hAll ,1,max))

S_x_t_j=exp(-apply(h_x_t_j,2,cumsum))

return(list(Fit ,h_x_t_j,data.frame(LS.UnR=S_x_t_j[,2],SU.UnR=

S_x_t_j[,1])))}

}

B.4 Zelterman et al. [91]’s Bootstrap

###### Functions ######

# The logL_IPH and logL_GPH functions are required.

# Our test statistic can be Le, Le-L0, or (Le_L0)/L0

Le<-function(A,epsilons){

A<-data.frame(A[order(A[,1],-A[,2]) ,])

i1 <- duplicated(A[,1])

if (sum(i1) >0) A[i1 ,1] <-A[i1 ,1]+ cumsum(rep(min(abs(diff(A[,1])[

diff(A[,1])!=0]))/(length(A[,1])^2),sum(i1)))

tryCatch ({

PL<-optim(0, fn=model , s=A[,2], x=A[,3], eps=c(0,0), method

= "BFGS", control = list(maxit =1000))

return(sapply(epsilons , FUN = function(X,c)(-optim(c, fn=

model , s=A[,2], x=A[,3], eps=c(-X,X), method = "BFGS", control =

list(maxit =1000))$value),c=PL$par))},

error = function(e) rep(NA,length(epsilons)),

warning = function(w) rep(NA ,length(epsilons)))

}

Le_L0<-function(A,epsilons){

A<-data.frame(A[order(A[,1],-A[,2]) ,])

i1 <- duplicated(A[,1])
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if (sum(i1) >0) A[i1 ,1] <-A[i1 ,1]+ cumsum(rep(min(abs(diff(A[,1])[

diff(A[,1])!=0]))/(length(A[,1])^2),sum(i1)))

tryCatch ({

PL<-optim(0, fn=model , s=A[,2], x=A[,3], eps=c(0,0), method

= "BFGS", control = list(maxit =1000))

return(sapply(epsilons , FUN = function(X,c,b)(-optim(c, fn=

model , s=A[,2], x=A[,3], eps=c(-X,X), method = "BFGS", control =

list(maxit =1000))$value -b),c=PL$par ,b=-PL$value))},

error = function(e) rep(NA,length(epsilons)),

warning = function(w) rep(NA ,length(epsilons)))

}

Le_L0_adj <-function(A,epsilons){

A<-data.frame(A[order(A[,1],-A[,2]) ,])

i1 <- duplicated(A[,1])

if (sum(i1) >0) A[i1 ,1] <-A[i1 ,1]+ cumsum(rep(min(abs(diff(A[,1])[

diff(A[,1])!=0]))/(length(A[,1])^2),sum(i1)))

tryCatch ({

PL<-optim(0, fn=model , s=A[,2], x=A[,3], eps=c(0,0), method

= "BFGS", control = list(maxit =1000))

return(sapply(epsilons , FUN = function(X,c,b)(-optim(c, fn=

model , s=A[,2], x=A[,3], eps=c(-X,X), method = "BFGS", control =

list(maxit =1000))$value -b)/b,c=PL$par ,b=-PL$value))},

error = function(e) rep(NA,length(epsilons)),

warning = function(w) rep(NA ,length(epsilons)))

}

# Zelterman for complete data

Zel.boot.complete <- function (d,R,epsilons) {

fit <-coxph(Surv(d[,1L],d[,2L])~d[,3L],data=d, ties = "breslow")

ex <- exp(fit$coef*c(0,1))

t<-apply(as.matrix.noquote(data.frame(table(d[d[,2L]>0,1L])))

,2,as.numeric)

n.e<-sum(t[,2L])

t.e<-nrow(t)

x.probs <-c(1-mean(d[,3]),mean(d[,3]))

t.probs <-t[,2L]/n.e

epi <-matrix(NA ,t.e,2)

for (i in seq_len(t.e)){
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d_pi<-colSums(t[,2] * epi , na.rm=TRUE)

unscaled <- ex*(n.e*x.probs -d_pi)

#unscaled = pmax(unscaled , 0)

epi[i,]<-unscaled/sum(unscaled)

}

epi <-apply(epi , 2L, function(X) {k<-X[!is.na(. bincode(X, c(0,

1), include.lowest =TRUE))];

X[is.na(. bincode(X, c(0, 1), include.lowest =TRUE))]<-k[

length(k)];

return(X)})

b.se<-matrix(sample(t[,1L], n.e * R,replace=T), nrow = R)

x<-matrix(NA,R,n.e)

for (j in seq_len(t.e)) {

x[,1:n.e][b.se==t[j,1L]]<-sample(c(0, 1), sum(b.se==t[j,1L

]),replace=TRUE , prob = epi[j,])

}

boot.all <-list(b.se ,c(rep(1,n.e)),x)

return(sapply(seq_len(R),FUN=function(X,AA ,epsilons) delta(A=

data.frame(AA [[1]][X,],AA[[2]],AA [[3]][X,]),epsilons),AA=boot.

all ,epsilons))

}

# Zelterman for only unique censored obs

Zel.boot.unique.cens <- function (d,R,epsilons) {

fit <-coxph(Surv(d[,1L],d[,2L])~d[,3L],data=d, ties = "breslow")

ex <- exp(fit$coef*c(0,1))

t<-apply(as.matrix.noquote(data.frame(table(d[d[,2L]>0,1L])))

,2,as.numeric)

n.e<-sum(t[,2L])

t.e<-nrow(t)

x.probs <-c(1-mean(d[,3]),mean(d[,3]))

t.probs <-t[,2L]/n.e

epi <-matrix(NA ,t.e,2)

for (i in seq_len(t.e)){

d_pi<-colSums(t[,2] * epi , na.rm=TRUE)

unscaled <- ex*(n.e*x.probs -d_pi)

#unscaled = pmax(unscaled , 0) # needed to fix negative
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probabilities for contenious covariate

epi[i,]<-unscaled/sum(unscaled)

}

epi <-apply(epi , 2L, function(X) {k<-X[!is.na(. bincode(X, c(0,

1), include.lowest =TRUE))];

X[is.na(. bincode(X, c(0, 1), include.lowest =TRUE))]<-k[

length(k)];

return(X)})

epin <-epi[t.e,2] # needed to fix NA in censoring probabilities

c<-apply(as.matrix.noquote(data.frame(table(d[d[,2L]==0,1L])))

,2,as.numeric)

n.c<-sum(c["Freq"])

deno.allcpi <-sum(t[t[,1]>=c[1] ,2]/n.e)

x1.num <-(t[,2]/n.e)*epi[,2]

x1.cpi <-sum(x1.num[t[,1]>=c[1]])/deno.allcpi

x1.cpi[is.na(x1.cpi)]<-epin

cpi <-cbind(1-x1.cpi ,x1.cpi)

b.se<-matrix(sample(t[,1L], n.e * R,replace=T), nrow = R)

b.sc<-matrix(c[1L], n.c * R)

stat <-c(rep(1,n.e),rep(0,n.c))

x<-matrix(NA,R,n.e+n.c)

for (j in seq_len(t.e)) {

x[,1:n.e][b.se==t[j,1L]]<-sample(c(0, 1), sum(b.se==t[j,1L

]),replace=TRUE , prob = epi[j,])

}

x[,n.e+1] <-sample(c(0, 1), R,replace=TRUE , prob = cpi)

boot.all <-list(b.se ,b.sc ,stat ,x)

return(sapply(seq_len(R),FUN=function(X,AA ,epsilons) delta(A=

data.frame(c(AA [[1]][X,],AA [[2]][X,]),AA[[3]],AA [[4]][X,]),

epsilons),AA=boot.all ,epsilons))

}

# Zelterman for right -censored data

Zel.boot.cens <- function (d,R,epsilons) {

fit <-coxph(Surv(d[,1L],d[,2L])~d[,3L],data=d, ties = "breslow")

ex <- exp(fit$coef*c(0,1))

t<-apply(as.matrix.noquote(data.frame(table(d[d[,2L]>0,1L])))

,2,as.numeric)



B.4. Zelterman et al. [91]’s Bootstrap 219

n.e<-sum(t[,2L])

t.e<-nrow(t)

x.probs <-c(1-mean(d[,3]),mean(d[,3]))

t.probs <-t[,2L]/n.e

epi <-matrix(NA ,t.e,2)

for (i in seq_len(t.e)){

d_pi<-colSums(t[,2] * epi , na.rm=TRUE)

unscaled <- ex*(n.e*x.probs -d_pi)

#unscaled = pmax(unscaled , 0)

epi[i,]<-unscaled/sum(unscaled)

}

epi <-apply(epi , 2L, function(X) {k<-X[!is.na(. bincode(X, c(0,

1), include.lowest =TRUE))];

X[is.na(. bincode(X, c(0, 1), include.lowest =TRUE))]<-k[

length(k)];

return(X)})

epin <-epi[t.e,2] # needed to fix NA in censoring probabilities

c<-apply(as.matrix.noquote(data.frame(table(d[d[,2L]==0,1L])))

,2,as.numeric)

n.c<-sum(c[,2L])

deno.allcpi <-sapply(seq_len(n.c),function(X,a,b,n.e) sum(a[a

[,1]>=b[X,1] ,2]/n.e), a=t,b=c,n.e)

x1.num <-(t[,2]/n.e)*epi[,2]

x1.cpi <-sapply(seq_len(n.c),function(X,a,b,w,k) sum(w[a[,1]>=b[

X ,1]])/k[X], a=t,b=c, w=x1.num ,k=deno.allcpi)

x1.cpi[is.na(x1.cpi)]<-epin

cpi <-cbind(1-x1.cpi ,x1.cpi)

b.se<-matrix(sample(t[,1L], n.e * R,replace=T), nrow = R)

b.sc<-matrix(sample(c[,1L], n.c * R,replace=T), nrow = R)

stat <-c(rep(1,n.e),rep(0,n.c))

x<-matrix(NA,R,n.e+n.c)

for (j in seq_len(t.e)) {

x[,1:n.e][b.se==t[j,1L]]<-sample(c(0, 1), sum(b.se==t[j,1L

]),replace=TRUE , prob = epi[j,])

}

for (j in seq_len(n.c)) {

x[,(n.e+1):(n.e+n.c)][b.sc==c[j,1L]]<-sample(c(0, 1), sum(b
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.sc==c[j,1L]),replace=TRUE , prob = cpi[j,])

}

boot.all <-list(b.se ,b.sc ,stat ,x)

return(sapply(seq_len(R),FUN=function(X,AA ,epsilons) delta(A=

data.frame(c(AA [[1]][X,],AA [[2]][X,]),AA[[3]],AA [[4]][X,]),

epsilons),AA=boot.all ,epsilons))

}

# Bootstrap main function is to select the appropriate bootstrap

function based on the censoring scheme

Zel.boot.all <- function (d,R,epsilons) {

if (sum(d[,2])<nrow(d) -1) Zel.boot.cens(d,R,epsilons)

else {if (sum(d[,2])==nrow(d) -1) Zel.boot.unique.cens(d,R,

epsilons)

else Zel.boot.complete(d,R,epsilons)}

}

# imp_args contains arguments associated with generated data ,

including:

# Cens: F for complete data or T for right censored data given Cens

_par

# Cens_par: vector of two parameters controlling right censoring

proportion and position.

# model: either ’IPH ’ or ’GPH ’ which indicates the fitted model.

Consequently , it will call logL_IPH or logL_GPH

# delta: 1,2,3 refer to the evaluated measures Le, Le-L0, or (Le-L0

)/L0 , which will call L0 , Le , Le_L0, or Le_L0_adj , respectively.

imp_args <-function(Cens ,model ,delta ,Cens_par){

Cens<<-Cens

model<<-ifelse(model =="CIPL",logL_CIPL ,logL_CIPI)

if (delta ==1) {

delta<<-Le

delta_type<<-"Le"} else {

if (delta ==2) {

delta <<-Le_L0

delta_type<<-"Le_L0"} else {

delta <<-Le_L0_adj

delta_type<<-"(Le-L0)/L0"}

}
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Cens_par<<-Cens_par

}

# Example

imp_args(Cens=T,model="GPH",delta=3,Cens_par=c(.4 ,.1))

epsilons=c(.1,.5,1,2)

set.seed (123)

# Simulate survival data M data sets each with N observations

Data=replicate(M,ifelse(Cens==F,list(simWeib.PH.com(N, beta=-.5,

lambda=2, rho =3)),list(simWeib.PH(N, beta=-.5, lambda=2, rho=3,

Cens_par))))

###### Zelterman et al.’s bootstrap ######

Zel.Boot=sapply(seq_len(M), FUN = function (X, Data ,epsilons) {

original <-delta(Data[[X]],epsilons) # calculate gamma* for

oroginal data sets use different lvls of epsilon*

Zel.Results=Zel.boot.all(Data[[X]],R,epsilons) # calculating

gamma for bootstrap samples

sapply(seq_len(epsilons), function(X,a,b) ecdf(a[X,])(b[X]),a=

Zel.Results ,b=original)}, Data ,epsilons)

B.5 Robust PH model

# required in both RP and RE to determine imprecision terms

New_eps_all <-function(Data , eps , Beta.and.eps) {

eps.all=rep(NA ,nrow(Data))

eps.all[Data [ ,2]==0]= - sign(Beta.and.eps [1])*eps

eps.all [1:( which(Data [ ,2]==1) [1]-1)]=0

eps.all[length(eps.all)]=-sign(Beta.and.eps [1])*eps

eps.all[which(Data [ ,2]==1) [1]]= sign(Beta.and.eps [1])*eps

eps.all[is.na(eps.all)]=Beta.and.eps[-1]

return(c(Beta.and.eps[1],eps.all))

}

# Log -lik function for the PH model

logL_pl=function(par ,s,x){

x=x-mean(x)

v=exp(par*x)

r=rev(cumsum(rev(v)))
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L=(v/r)^s

return(-sum(log(L)))

}

# Log -lik function for the RP model

logL_RP=function(par ,s,x,eps){ # This function required pars=sum(

Data[-nrow(Data) ,2]) -1 as input

eps.all=rep(NA ,length(x))

eps.all[s==0]=- sign(par [1])*eps

eps.all [1:( which(s==1) [1]-1)]=0

eps.all[length(eps.all)]=-sign(par [1])*eps

eps.all[which(s==1) [1]]= sign(par [1])*eps

eps.all[is.na(eps.all)]=par[-1]

eps.all[is.na(eps.all)]=0

x=x+eps.all

x=x-mean(x)

v=exp(par[1]*x)

r=rev(cumsum(rev(v)))

L=(v/r)^s

return(-sum(log(L)))

}

# RP: fit , imprecise hazard for x_i, imprecise survival for x_i

# x_i is a covariate value for particular individual

# type= 1 for naive , and 2 for envelop # eps* >=0

RP<-function(data ,eps ,x_i,type =1) {

if(eps ==0) {

BetaPH=optim(0, fn=logL_pl , s=data[,2], x=data[,3], method =

"BFGS", control = list(maxit =1000))$par

vPH=exp(BetaPH*data [,3])

rPH=rev(cumsum(rev(vPH)))

hx=(data[,2]/rPH)*exp(BetaPH*x_i)

Sx=exp(-cumsum(hx))

return(list(BetaPH ,hx ,Sx))

} else {

pars=sum(data[-nrow(data) ,2]) -1

Beta_imp=optim(c(0,rep(0,pars)), fn=logL_RP , s=data[,2], x=

data[,3], method = "L-BFGS -B", eps=eps , lower = c(-Inf ,rep(-eps ,
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pars)), upper=c(Inf ,rep(eps ,pars)), control = list(maxit =1000))$

par

Beta_imp=New_eps_all(data , eps=eps , Beta.and.eps=Beta_imp)

v=exp(Beta_imp[1]*(data [,3]+ Beta_imp[-1]))

r=rev(cumsum(rev(v)))

h.imp=(data[,2]/r)

if (type ==1) {

hx_imp=cbind(h.imp*exp(Beta_imp [1]*(x_i-eps)),h.imp*exp(

Beta_imp [1]*(x_i+eps)))

if(sign(Beta_imp [1]) ==1) {lu=c(1,2)} else {lu=c(2,1)}

hx_imp=hx_imp[,lu]

colnames(hx_imp)=c("Lhx.naive","Uhx.naive")

Sx=exp(-apply(hx_imp[,c(2,1)], 2,cumsum))

colnames(Sx)=c("LSx.naive","USx.naive")

return(list(Beta_imp ,hx_imp ,Sx))

} else {

BetaPH=optim(0, fn=logL_pl , s=data[,2], x=data[,3], method

= "BFGS", control = list(maxit =1000))$par

vPH=exp(BetaPH*data [,3])

rPH=rev(cumsum(rev(vPH)))

h.=( data[,2]/rPH)

hx_imp=cbind(h.*exp(BetaPH*x_i),h.imp*exp(Beta_imp [1]*x_i))

hx_imp=cbind(apply(hx_imp ,1,min),apply(hx_imp ,1,max))

colnames(hx_imp)=c("Lhx.envelop","Uhx.envelop")

Sx=exp(-apply(hx_imp[,c(2,1)], 2,cumsum))

colnames(Sx)=c("LSx.envelop","USx.envelop")

return(list(Beta_imp ,hx_imp ,Sx))

} }

}

# Log -lik function for the empirical PH model

logL_E=function(par ,s,x){

x=x-x[length(x)]

v=exp(par*x)

r=rev(cumsum(rev(v)))

L=ifelse(r==1,(s*par*x) ,(s*par*x) -(r*log(r))+((r-s)*(log(r-s))))

logl <- sum(subset(L,s==1))
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return(-logl)

}

# Log -lik function for the RE model

logL_RE=function(par ,s,x,eps){ # This function required pars=sum(

Data[-nrow(Data) ,2]) -1 as input

eps.all=rep(NA ,length(x))

eps.all[s==0]= - sign(par [1])*eps

eps.all [1:( which(s==1) [1]-1)]=0

eps.all[length(eps.all)]=-sign(par [1])*eps

eps.all[which(s==1) [1]]= sign(par [1])*eps

eps.all[is.na(eps.all)]=par[-1]

eps.all[is.na(eps.all)]=0

x=x+eps.all

x=x-x[length(x)]

v=exp(par[1]*x)

r=rev(cumsum(rev(v)))

L=ifelse(r==1,1,((v/r)^s)*(((r-s)/r)^(r-s)))

return(-sum(log(L)))

}

# RE: fit , imprecise survival for x_i

# x_i is a covariate value for particular individual

# type= 1 for naive , and 2 for envelop # eps* >=0

RE<-function(data ,eps ,x_i,type =1) {

BetaPH=optim(0, fn=logL_pl , s=data[,2], x=data[,3], method = "

BFGS", control = list(maxit =1000))$par

BetaE=optim(BetaPH , fn=logL_E, s=data[,2], x=data[,3], method = "

BFGS", control = list(maxit =1000))$par

if(eps ==0) {

xn=data[nrow(data) ,3]

v=exp(BetaE*(data[,3]-xn))

r=rev(cumsum(rev(v)))

Sn=cumprod ((r-data [,2])/r)

Sx=Sn^exp((-BetaE*xn)+( BetaE*x_i))

return(list(BetaE ,Sx))

} else {
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pars=sum(data[-nrow(data) ,2]) -1

Beta_imp=optim(c(BetaE ,rep(0,pars)), fn=logL_RE , s=data[,2], x=

data[,3], method = "L-BFGS -B", eps=eps , lower = c(-Inf ,rep(-eps ,

pars)), upper=c(Inf ,rep(eps ,pars)), control = list(maxit =1000))$

par

Beta_imp=New_eps_all(data , eps=eps , Beta.and.eps=Beta_imp)

xn_imp=data[nrow(data) ,3]+Beta_imp[length(Beta_imp)]

v.=exp(Beta_imp[1]*(data [,3]+ Beta_imp[-1]-xn_imp))

r.=rev(cumsum(rev(v.)))

Sn_imp=cumprod ((r.-data [,2])/r.)

if (type ==1) {

Sx=cbind(Sn_imp^exp((-Beta_imp [1]*xn_imp)+(Beta_imp [1]*(x_i-

eps))),Sn_imp^exp((-Beta_imp[1]*xn_imp)+(Beta_imp[1]*(x_i+eps)))

)

if(sign(Beta_imp [1]) ==1) {Sx=Sx[,c(2,1)]}

colnames(Sx)=c("LSx.naive","USx.naive")

return(list(Beta_imp ,Sx))

} else {

xn=data[nrow(data) ,3]

v=exp(BetaE*(data[,3]-xn))

r=rev(cumsum(rev(v)))

Sn=cumprod ((r-data [,2])/r)

Sx=Sn^exp((-BetaE*xn)+( BetaE*x_i))

Sx_imp=Sn_imp^exp((-Beta_imp [1]*xn_imp)+(Beta_imp [1]*x_i))

LU_Sx=cbind(apply(cbind(Sx ,Sx_imp),1,min),apply(cbind(Sx ,Sx_

imp),1,max))

colnames(LU_Sx)=c("LSx.envelop","USx.envelop")

return(list(Beta_imp ,LU_Sx))

}

}

}

B.6 MLD Method

## MLD for Binomial Distribution
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#eps level of imprecision , n number of trails , x number of

success , digits precision (opt)

BinMLD=function(eps ,n,x,digits =.001){

p=seq(0,1,digits)

All=data.frame(p,sapply(X=0:n, function(X,p,n) choose(n, X)* p^

X * (1-p)^(n-X), p, n))

if(any(eps ==0) & length(eps)==1L) {return(c(x/(n+1) ,(x+1)/(n+1)

))} else {

if(any(eps ==0)) {eps=eps[-which(eps ==0)]; eps0=c(0,x/(n+1) ,(x

+1)/(n+1))}

min_max=sapply(eps , function(X,All ,x) { All[,-c(1,x+2)]=All

[,-c(1,x+2)]*(1-X)

PCond=p[which(rowSums(All[,x+2]>=All[,-1])==( ncol(All) -1))

][-1]

return(c(X,min(PCond),max(PCond)))}, All ,x)

min_max[,eps ==1]=c(1,0,1)

if(exists("eps0")) {min_max=cbind(eps0 [1:3], min_max)}

return(t(min_max))}

}

BinMLD(eps=seq(0,1,by=.1),n=4,x=2)

## MLD for Poisson Distribution

#eps level of imprecision , x number of events , digits precision (

opt), tolerance range of x values to compare with default 10 (i.

e. 1:[x*10] wills be used as alternatives ti x) (opt)

PoisMLD=function(eps ,x,digits =0.01, tolerance =10){

lambda_range <- seq(0, x/2*100, by = digits)[-1] # Range of

lambda values

if(any(eps ==0) & length(eps)==1L) {return(c(x,x+1))} else {

if(any(eps ==0)) {eps=eps[-which(eps ==0)]; eps0=c(0,x,x+1)}

min_max=sapply(eps , function(X,x,lambda_range ,tolerance) {

results <- numeric(length(lambda_range))

for (i in seq.int(length(results))) {

# Calculate probabilities for X=x and other values of X

p_k <- dpois(x,lambda_range[i])

max_p_m <- max(sapply(seq.int(x*tolerance), dpois , lambda

= lambda_range[i])*(1 - X))
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# Store result where P(X = x) is greater than or equal to

(1-pi) * P(X = m) for all m != x

results[i] <- p_k >= max_p_m

}

return(c(X,range(lambda_range[results ==1])))

}, x, lambda_range ,tolerance)

min_max[,eps ==1]=c(1,0,Inf)

if(exists("eps0")) {min_max=cbind(eps0 [1:3], min_max)}

return(t(min_max))

}

}

PoisMLD(eps=c(0 ,0.1),x=3)

## MLD for the PH model (Time -based)

# x is a binary covariate vector , obtained after sorting the

survival observations by time

# This function takes a unique imprecision level only

TimeBasedPHMLD=function(x,eps) {

r<-data.frame(r1=c(rev(cumsum(rev((1-x))))), r2=c(rev(cumsum(

rev(x)))))

Beta_limits=sapply (1: length(x[-1]), function(X,x,r,eps) {

sign=(x[X]-(1-x[X]))

limit1=Inf*sign

limit2=sign*log((1-eps)*(r[X,(1-x[X])+1]/r[X,(x[X]-1)+2]))

return(c(min(limit1 ,limit2),max(limit1 ,limit2)))}

, x=x,r=r,eps=eps)

return(c(max(Beta_limits [1,]),min(Beta_limits [2,])))}

TimeBasedPHMLD(x=c(0,1,0,1),eps =0.2)

## MLD for the PH model (marginal probabilities)

# Thesis for only one data x must be ordered according to

survival time

# The code takes unique level of imprecision , default is eps=0

# The range of the parameter can be control with the precision ,

default is Beta=seq (-2 ,2 ,0.001)

PHMLD=function(x,Beta=seq( -2,2,0.001),eps=0){

Dominant.x1=c(rep(1,sum(x)),rep(0,length(x)-sum(x)))
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prob.Dominant.Xs1=sapply(Beta ,logL_pl ,x=Dominant.x)

Max.Prob.Dominants=apply((1-eps)*cbind(rev(prob.Dominant.Xs1),

prob.Dominant.Xs1),1,max)

Prob.x=sapply(Beta ,logL_pl ,x=x)

MLD=Prob.x>=Max.Prob.Dominants

range(Beta[MLD])

}

PHMLD(x=c(0,1,0,1),eps =0.1)
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[20] Castañon E., Sanchez-Arraez A., Alvarez-Manceñido F., Jimenez-Fonseca P.
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