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Accounting for quantum effects in stopping site
DFT calculations for muon spectroscopy

Alberto Hernández-Melián

Abstract

The technique of μ+SR is one of the most accurate methods of probing the local magnet

ism of materials, but to fully utilise its potential, knowledge of the location of the muon

sites is required. A popular method is to use density functional theory (DFT) to deter

mine the classical sites from first principles. In this thesis, we present the results of mul

tiple μ+SR experiments on crystalline materials, where in each case analysis was aided

by knowledge of the sites, with a focus on accounting for the quantum behaviour of the

muon.

The ground state of the molecular honeycomb lattice Cu(pym)1.5(H2O)(BF4)2 is de

termined using ZF μ+SR with a transition at 𝑇N = 4.02 ± 0.01K from a low-temperature

phase with an incommensurate magnetic structure, an unusual feature for a coordina

tion polymer. Above the transition interactions with fluorine atoms dominate the signal,

consistent with the class of candidate muon sites found through DFT calculations.

We also present results on a pair of very different systems where a combination of ZF

μ+SR experiments and DFT calculations suggest that different muon sites are realised on

the two sides of a structural transition. In the first case we look at magnetic switching in

themolecular crystal 4-(2-benzimidazolyl)-1,2,3,5-dithiadiazolyl with temperature, find

ing hysteretic behaviour centred at 274±11 K and caused by a structural phase transition.

We also report the results of applying an external current to the Mott insulator material

Sr2IrO4, finding that our experimental measurements can be explained by a change in the

class of muon sites realised as calculated by DFT and an additional FM component to the

magnetic structure with 𝑚𝑧 ≤ 0.0214 𝜇B.

The results of an analysis of a pair of analogous chiral spin chain compounds [Ni(pym)

(H2O)4]SO4 (𝑆 = 1) and [Cu(pym)(H2O)4]SiF6 ⋅H2O (𝑆 = 1/2) are also presented. Us

ing ZF μ+SR measurements on the nickel chain we confirm a phase transition at 𝑇N =

1.82 ± 0.02K to an ordered magnetic ground state and use the magnetic dipole field at
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each DFT site to determine the most likely pair of realised sites and confirm that our

calculations are consistent with a proposed canted AFM magnetic structure, which we

determine to have 1.27 𝜇B and make an angle of 34° with the 𝑐-axis. Similarly, TF μ+SR

measurements are used to confirm that the application of an external field stabilises an or

dered magnetic ground state with a phase transition at 𝐵 = 3T. By calculating the muon

sites and using the information to directly simulate the measured polarisation spectra

we also find that our results can be explained with an increasing field-dependent copper

magnetic moment up to 0.4 𝜇B.

Finally, the results of a series of quantum tunnelling calculations in a set ofmethylated

benzene crystals at low temperatures are presented. A potential energy barrier is con

structed for transitions between all possible pairs of sites using DFT calculations and the

transition rate is estimated using theWKB approximation. We then simulate the avoided

level crossing (ALC) μ+SR spectra expected in each case for different degrees of tun

nelling between sites, finding that more tunnelling narrows the resonances and decreases

their number. We find the greatest agreement with experimental data for an intermediate

amount of tunnelling over the case without tunnelling and with all possible transitions,

which is an encouraging result for this novel method of simulating muon quantum be

haviour.
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Chapter 1
Muon-spin spectroscopy and density functional
theory

Muon-spin spectroscopy (μ+SR) can provide a very sensitive probe of the local mag

netic fields in a material. A series of spin-polarised positive muons are implanted into

a sample and the precession and relaxation of the muon spin polarisation are studied

to extract information about both the sample's static and dynamic magnetic behaviour

(see Section 1.1 and references). The μ+SR technique is similar to others that follow the

spin depolarisation of a species like nuclear magnetic resonance (NMR) or electron spin

resonance (ESR), but has the advantage that experiments can be conducted without an

external magnetic field. We also find that the muon's large gyromagnetic ratio makes it

very sensitive to weak magnetic moments (such as in molecular magnets as discussed in

this thesis) when compared to techniques like neutron scattering and NMR. Some exam

ples of systems where muons have been used successfully to study magnetic properties

are molecular magnets [1, 2], non-metallic metals [3], skyrmion lattices [4] and super

conductors [5].

The fact that the muon probes locally has certain advantages when compared to bulk

techniques used to investigate magnetism, such as susceptibility measurements, which

average over the sample volume. Using μ+SR does, however, create the additional com

plication that to fully analyse the results of an experiment knowledge of the interstitial

siteswheremuons are implanted into the structure is required, especiallywhendetermin

ing magnetic structures and moment magnitudes. Additionally, as a positively-charged

defect in the unit cell, the muon will distort the charge density and atomic positions

around it, and so ultimately the magnetism observed, raising the question of if the mea

sured fields are intrinsic to the material or a result of implanting the muon. This must be

resolved by understanding the interaction between the muon and its environment.

One of the most effective methods of calculating the muon stopping sites in a mate

rial is to use the framework of density functional theory (DFT) to perform a geometric
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relaxation of the combined supercell and muon system [6, 7]. The resulting calculation

will make use of a quantum ab inito electronic structure calculation to obtain the forces

between atoms and then move the positions until these forces vanish. All the calcula

tions presented in this thesis were performed using the CASTEP DFT code [8]. An issue

with this method of calculating muon sites is, however, that the muon is treated as a

light proton with mass 𝑚𝜇 ≃ 𝑚𝑝/9 and so effects like zero-point motion and quantum

tunnelling, which already complicate calculations with proton defects [9] are even more

pronounced. Existing approaches to account for such quantum effects in DFT like path

integral molecular dynamics (PIMD) [10] have the disadvantage of being prohibitively

expensive computationally, especially for large systems with many possible sites. This

thesis aims to investigate ways of quantifying the degree to which the muon behaves like

a quantum particle and develop methods to model this behaviour in the context of muon

site calculations.

The rest of this chapter is separated into two sections. The first provides a brief intro

duction to μ+SR (Section 1.1) and the most common asymmetry functions used when

analysing experimental data. Similarly, the secondoutlines the basics ofDFT (Section 1.2)

as applied to the problem of calculating classical muon sites.

1.1 Muon-spin spectroscopy

1.1.1 Theory

A very useful probe of the magnetic environment inside a material is muon spin spec

troscopy (μ+SR) where, depending on the dominant effect, the last letter of the acronym

can stand for resonance, rotation or relaxation. Measurements are made using muons,

which are elementary particles belonging to the class of charged leptons with very simi

lar properties to electrons but a much higher mass (≃ 207𝑚𝑒) and a finite average lifetime

of 2.2µs [11]. The technique is less well known than alternatives like nuclear magnetic

resonance (NMR) or neutron scattering, in part because intense beams of muons are

difficult to create. They present some advantages, however, like being more sensitive to

magnetic fields (due to their larger magnetic moment than any nucleus) and allowing for
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the measurement of surface or interface effects by tuning the energy of the muon beam

[12].

W+

u

d

μ+

νμ

W+

μ+

νμ

νe

e+

(a) Pion decay (b) Muon decay

Figure 1.1 Feynman diagrams for positive muon creation and decay.

Aμ+SR experiment startswith a source of polarisedmuons, usually a particle accelerator.

For example, a proton beamfired at a graphite targetwill produce pions (𝑝+𝑝 → 𝜋++𝑝+

𝑛), which will then decay into muons (𝜋+ → 𝜇++ 𝜈𝜇), as shown in Figure 1.1a. Since the

pion has zero spin, the spins of the two products must have opposite values, and because

the neutrino's momentum is anti-aligned with its spin (negative helicity), we have our

polarised muons. These muons are then implanted into the sample of interest before

quickly decaying into a positron and two neutrinos (𝜇+ → 𝑒+ + 𝜈𝑒 + ̄𝜈𝜇). Of the three

products, we can only detect the positrons, which, because the decay is a weak process

(see Figure 1.1b) violating parity conservation [13], will be preferentially emitted in the

instantaneous direction of the muon spin (see Figure 1.4).

Between the implantation and the decay, however, the muon will stop at a muon site

(they thermalise in about 0.1–1 ns and without depolarisation since the process is elec

trostatic) and the spin will precess in the local magnetic field (for up to ∼ 20µs) so that

the emission direction will give us information about the sample [14]. Usually, positive

muons are used in μ+SR experiments because they will settle into regions of high elec

tron densitywheremeasurements can bemade of localmagnetic fields or charge densities

(through the hyperfine coupling) without the result being dominated by the positively

charged nuclei. The fundamental equation for μ+SR experiments where rotation domi

nates is the Larmor precession frequency
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𝜔 = 𝛾𝜇||𝐁|| , (1.1)

where 𝛾𝜇 = 2𝜋 × 135.5MHz/T is the gyromagnetic ratio for the muon and 𝐁 is the local

magnetic field that it experiences. The ratio determines the rate of precession of themuon

spin around the field and so sets the limit of the muon's sensitivity to magnetic fields and

its ability to resolve times.

1.1.2 Experimental setup

A schematic representation of the typical setup for a μ+SR experiment is shown in Fig

ure 1.2a, where the muons are implanted into the sample with their spin antiparallel to

their momentum and, after interacting with the local magnetic fields, decay and the di

rections of the emitted positrons are measured. Although modern experiments usually

contain many detectors, when analysing the results of an experiment we normally distin

guish only between forward and backward detector banks relative to the direction of the

muon polarisation1. This means that we obtain two histograms in time for the number of

positron counts 𝑁F(𝑡) and 𝑁B(𝑡) which are then combined into an asymmetry

𝐴(𝑡) = 𝑁F(𝑡) − 𝛼𝑁B(𝑡)
[𝑁F(𝑡) + 𝛼𝑁B(𝑡)]

, (1.2)

where the parameter 𝛼 is a calibration constant which accounts for the difference in detec

tor efficiency and geometry. The asymmetry function is of particular interest because it is

proportional to the time-dependent polarisation of the muon spins 𝑃𝛼 = ⟨𝑆𝛼(𝑡)⟩, which is

the expectation of the muon spin operator 𝑆𝛼 in a direction 𝛼 = 𝑥, 𝑦, 𝑧, and so is ultimately

the quantity that is modelled when analysing the results of an experiment.

Three main geometries can be used in a μ+SR experiment: the transverse-field (TF),

the zero (ZF) and the longitudinal (LF) field geometries. In the first, the external field is

arranged perpendicular to the initial muon spin (𝑧-axis) and the polarisation ismeasured

along the 𝑥-axis. In contrast, in the second two arrangements, both the initial muon spin

and the external field are oriented in the same direction, so that the polarisation of interest

is also along the 𝑧-axis.

1 This is true only in a zero or longitudinal field experiment; in a transverse field experiment more directions
(e.g. up, down, left, right) are normally used for a more complete analysis of the results.



Muon-spin spectroscopy 5

𝐁LF

𝐁TF

μ+

FB

S
e+ (26 MeV)

e+ (53 MeV)

𝐒𝜇

Figure 1.2 (a) Schematic diagram showing a typical μ+SR experiment, with spin-po
larised muons implanted into a sample surrounded by detectors. The magnetic field di
rections for the different geometries are also indicated. (b) Angular distribution of emit
ted positions relative to the muon spin at the time of decay for energies between 𝐸max/2
and 𝐸max.

Another consideration is the type ofmuon source used in an experiment, distinguished

by how the initial muon implantation time is determined. In a continuous muon source,

only one muon is present in the sample at any given time, so that there is no ambiguity

about when the decay occurs. This method has the advantage of a very high time resolu

tion, which allows the detection of highmagnetic fields at the cost of a very low count rate

and short sampling windows. In contrast, in a pulsed source, a large number of muons

are implanted into the sample in a short burst and assumed to be simultaneous, so that

we lose time resolution, and so accessible magnetic fields, but gain in count rate and can

collect data for longer. There is always a trade-off between the two approaches and both

have their uses.

1.1.3 Muon sites and magnetic fields

For a given muon site with position 𝐫𝜇, we can calculate the local magnetic field as the

sum of many different contributions

𝐁 = 𝐁ext + 𝐁dia + 𝐁con + 𝐁trans + 𝐁dip + 𝐁lor + 𝐁dem , (1.3)

where the different terms [15] are:
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μ+

𝐁lor

𝐁dip

+
+
+
+

+
+−

−
−
−
−

−

− − −−

−

−

−
−

−
−−++

+

+

+
++

+

+
+ +

𝐁dem

Figure 1.3 Schematic showing the calculation of dipolar fields in a sample,
where the dipole field 𝐁dip is calculated from the moments in the Lorentz
sphere (in white), whilst the moments are responsible for the macroscopic
𝐁lor and 𝐁dem fields, caused by surface charges in the sphere and sample
respectively.

• External Field (𝐁ext): An externally applied field

• Diamagnetic Field (𝐁dia): Induced magnetic field that opposes external field, espe

cially important in superconductors which expel all internal fields and are perfect

diamagnets.

• Contact hyperfine Field (𝐁con): Caused by the spin density induced by the conduction

electrons around the muon site [16].

• Transferred hyperfine Field (𝐁trans): In metals, caused by the Rudermann-Kittel-Ka

suya-Yosida (RKKY) interaction.

• Dipole Field (𝐁dip): Direct lattice sum over magnetic moments in the Lorentz sphere

[17]:

𝐁(𝐫𝜇) = ∑
𝑖

3(𝐦𝑖 ⋅ 𝐫𝑖)𝐫𝑖
(𝑟𝑖)5

− 𝐦𝑖

(𝑟𝑖)3
, (1.4)

where 𝐫𝑖 = 𝐑𝑖 − 𝐫𝜇 is the vector to each of the magnetic atoms and𝐦𝑖 is the magnetic

moment of that atom.



Muon-spin spectroscopy 7

• Lorentz Field (𝐁lor): Caused by magnetic medium outside Lorentz sphere and given

by 𝐁lor = (𝜇0𝐌sat)/3, where𝐌sat is the saturation magnetisation [18].

• Demagnetisation Field (𝐁dem): Caused sample edge effects and is given by 𝐁dem =

−𝜇0𝐍𝐌bulk, where 𝐍 is the demagnetising tensor and depends on the shape and

𝐌bulk is the bulk magnetisation.

We are usuallymost interested in the last three terms, which are caused by the dipolar

interaction between the muon spin and localised lattice spins, as shown in Figure 1.3.

1.1.4 Common asymmetry functions

In a muon experiment, we measure the time evolution of the average muon polarisation

𝑃𝐧(𝑡) = ⟨ ̂𝑆𝐧(𝑡)⟩ along a detector direction 𝐧, which is given by

𝑃𝐧 = Tr[ ̂𝜌(𝑡) (�̂� ⋅ 𝐧)] , (1.5)

where �̂� is the vector of Pauli spin matrices and ̂𝜌(𝑡) is the density matrix, which for a

time-independent Hamiltonian evolves in time as

̂𝜌(𝑡) = exp(−𝑖�̂�𝑡
ℏ ) ̂𝜌0 exp(𝑖�̂�𝑡

ℏ ) , (1.6)

where ̂𝜌0 = ̂𝜌(𝑡 = 0) is the initial value [19, 20]. If we treat the muon as an isolated

system2 where both the initial polarisation and the detector are along the 𝑧-axis we have

̂𝜌0 = ( ̂𝐼 + �̂�𝑧)/2. This means that for a diagonalisable Hamiltonian �̂�|𝑛⟩ = 𝐸𝑛|𝑛⟩, we have

𝑃𝑧(𝑡) = Tr[ ̂𝜌(𝑡) �̂�𝑧] = 1
2 [∑

𝑚𝑛
|

⟨𝑚
|

�̂�𝑧 |

𝑛⟩
|

2 cos(𝜔𝑚𝑛𝑡)] , (1.7)

where 𝜔𝑚𝑛 = (𝐸𝑚 − 𝐸𝑛)/ℏ and we have used the fact that Tr(�̂�𝑧) = 0.

If we now consider the Hamiltonian for the muon (𝑆 = 1/2) in a constant magnetic

field with direction (𝜃, 𝜙), which can be expressed in a basis with the spin being aligned

|↑⟩ = (1, 0) and anti-aligned |↑⟩ = (0, 1) with the 𝑧-axis, giving

�̂� = −(
𝛾𝜇ℏ
2 ) (�̂� ⋅ 𝐁) = −

𝛾𝜇ℏ𝐵
2 ( cos(𝜃) sin(𝜃) exp(−𝑖𝜙)

sin(𝜃) exp(𝑖𝜙) − cos(𝜃) ) , (1.8)

2 We can include the effect of the environment by considering a larger matrix using the tensor product 𝜌 =
𝜌𝜇 ⊗ 𝜌sys.
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which can be diagonalised to give

|+⟩ = sin(𝜃
2) |↑⟩ − cos(𝜃

2) exp(𝑖𝜙) |↓⟩

|−⟩ = cos(𝜃
2) |↑⟩ − sin(𝜃

2) exp(𝑖𝜙) |↓⟩ ,
(1.9)

and 𝐸± = ±𝛾𝜇ℏ ||𝐁||/2, where the eigenstates represent the cases where the spin is aligned

and anti-alignedwith the external field respectively. And so finally substituting back into

Equation 1.7 we arrive at

𝑃𝑧(𝑡) = cos(𝜃)2 + sin(𝜃)2 cos(𝛾𝜇||𝐁|| 𝑡) . (1.10)

Since we chose to measure along the 𝑧-axis without loss of generality, this result applies

to any measurement direction 𝐧 as long as the angle 𝜃 is measured between this axis and

the field 𝐁 (see Figure 1.4 for a diagram of the geometry).

𝐁

𝐒𝜇
𝜃

μ+

Figure 1.4 Precession of the muon spin 𝐒𝜇
around a static magnetic field 𝐁, describing a
cone with semi-angle 𝜃.

We can then generalise to a probability distribution of magnetic fields 𝑝(𝐁) by taking an

integral

𝑃𝐧(𝑡) = ∫ 𝑝(𝐁) [cos(𝜃)2 + sin(𝜃)2 cos(𝛾𝜇||𝐁|| 𝑡)] 𝑑3𝐁 , (1.11)

which for a polycrystalline sample where the field distribution is isotropic, so that 𝑝(𝐁) =

𝑝(||𝐁||), gives

𝑃𝐧(𝑡) = ∫4𝜋||𝐁||2 𝑝(||𝐁||) [13 + 2
3 cos(𝛾𝜇||𝐁|| 𝑡)] 𝑑||𝐁|| . (1.12)

1.1.4.1 Static field distributions

Three common cases of particular interest for ZF μ+SR experiments [12]:
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• When the muons in a powder sample are subject to a finite number of fields with

random directions but magnitudes 𝐵𝑖 and probabilities 𝑝𝑖, so that we have 𝑝(𝐵) =

∑𝑝𝑖𝛿(𝐵 − 𝐵𝑖), the integral in the previous section gives

𝑃𝑧(𝑡) = 1
3 + 2

3 [∑
𝑖

𝑝𝑖 cos(𝛾𝜇𝐵𝑖𝑡)] . (1.13)

• For a disordered material where each field component is given by an independent

Gaussian distribution with standard deviation 𝜎 = Δ/𝛾𝜇 and zero mean, which in

many cases can be justified by the central limit theorem3, we obtain the Kubo-Toyabe

relaxation function [21]

𝑃𝑧(𝑡) = 1
3 + 2

3
[

(𝛾𝜇)
2

2𝜋Δ2
]

3
2

[

∫
∞

0
4𝜋𝐵2 exp

[

−
(𝛾𝜇)

2𝐵2

2Δ2
]

cos(𝛾𝜇𝐵𝑡) 𝑑𝐵
]

= 1
3 + 2

3 (1 − Δ2𝑡2) exp(−Δ2𝑡2
2 ) . (1.14)

Note that the function initially resembles a Gaussian, since its Taylor expansion for

small times is parabolic, which is the only part that can sometimes be observed exper

imentally.

• Similarly, in a material which is ordered magnetically so that the field distribution is

Gaussian but with mean value of 𝐵𝑚we have

𝑃𝑧(𝑡) = 1
3 + 2

3 exp(−Δ2𝑡2
2 ) cos(𝛾𝜇𝐵𝑚𝑡) . (1.15)

• We can also consider the incommensurate case where the field varies in space as

𝐵(𝑥) = 𝐵0 cos(𝑘𝑥) [22,23], so that defining 𝜙 = 𝑘𝑥 we have

𝑝(𝐵) = ( 1
2𝜋)(∫

2𝜋

0
𝛿[𝐵0 cos(𝜙) − 𝐵] 𝑑𝜙) = 1

𝜋
1

√(𝐵0)
2 − 𝐵2

, (1.16)

and the corresponding polarisation function is

𝑃𝑧(𝑡) = 1
𝜋

[

∫
−𝐵0

−𝐵0

𝑑
cos(𝛾𝜇𝐵𝑡)

√(𝐵0)
2 − 𝐵2

]

= 𝐽0(𝛾𝜇𝐵𝑡) , (1.17)

3 This theorem states that under certain conditions the mean of many independent and identical random vari
ables with arbitrary distribution will tend to a Gaussian distribution.
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where 𝐽0(𝑥) is the zero-order Bessel function of the first kind, which can be approxi

mated for 𝑥 ≫ 1 as

𝑃𝑧(𝑡) = 𝐽0(𝛾𝜇𝐵𝑡) ≈ √ 2
𝜋𝛾𝜇𝐵0𝑡

cos(𝛾𝜇𝐵𝑡 −
𝜋
4) . (1.18)

1.1.4.2 Dynamic field distributions

Upuntil now, we have considered only the asymmetry due to static fields, which is a valid

assumption when dealing with static electronic moments and all nuclear moments (since

they have a relaxation time∼ 35µsmuch larger than the muon lifetime) [24]. A different

approach is needed, however, when accounting for muon diffusion or other effects that

lead to a time-varying local field. The process by which the change happens is usually

assumed to be Gaussian and Markovian, meaning that the next value depends only on

the current one and is sampled from a Gaussian distribution centred around it [12].

The simplest method of obtaining a dynamic polarisation function is to use the strong

collision approximation, where we assume that the muon spin evolves in a static field

which changes suddenly after certain times 𝑡𝑖. These times are distributed according to

𝑝(𝑡) ∝ exp(−𝑡/𝜏) so that 𝜏 is the mean time between changes (collisions) and after each

one the polarisation resets to 𝑃𝑧(𝑡 − 𝑡𝑖). This process then allows us to transform a static

asymmetry function into a dynamic one. Applying this to the Kubo-Toyabe relaxation

described in the previous section and using the fast fluctuation limit 𝜈/Δ ≫ 1we have

𝑃𝑧(𝑡) = exp(−2Δ2

𝜈 [exp(−𝜈𝑡) − 1 − 𝜈𝑡])

≃ exp(−𝜆𝑡) where 𝜆 = 2Δ2

𝜈 , (1.19)

where 𝜈 = 𝜏−1 is the fluctuation rate and we expect that Δ = √𝛾2
𝜇⟨(𝐵 − ⟨𝐵⟩)2⟩ in this

limit. We also find that as the fluctuation rate increases the relaxation decreases, an effect

known as motional narrowing, because the muon spins can't precess fast enough in the

rapidly changing field.

1.1.4.3 Muon-fluorine entangled states

In some cases, the assumption of an isolated quantumsystemused to deriveEquation 1.11

is not applicable and the quantum entanglement of the muon with other nuclei must be
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considered to calculate the polarisation. A common case of this is the interaction of the

muon with fluorine atoms [25], which must be simulated using the density matrix for

malism. Consider the case of a single fluorine atomwith a dipolar interaction [26] so that

the Hamiltonian is:

�̂� = (𝜇0ℏ2𝛾𝜇𝛾𝐹

4𝜋𝑟3 )
⏟

ℏ𝜔d

1
4 [𝝈𝜇 ⋅ 𝝈𝐹 − 3(𝝈𝜇 ⋅ ̂𝐫) (𝝈𝐹 ⋅ ̂𝐫)]

= (ℏ𝜔d
2 )

(

−1 0 0 0
0 1 1 0
0 1 1 0
0 0 0 −1

)

, (1.20)

where 𝐫 is the vector between the positions of the muon and fluorine, with 𝑟 = ||𝐫|| and

̂𝐫 = 𝐫/||𝐫||. This means that the polycrystalline polarisation is given by:

𝑃𝑧(𝑡) = 1
6 [1 + cos(𝜔d𝑡)] + 1

3 [cos(𝜔d𝑡
2 ) + cos(3𝜔d𝑡

2 )] . (1.21)

A similar analysis can be applied to the common F μ F case, where we have a muon

between two fluorine atoms [27–29]. This gives a 8 × 8 Hamiltonian, which ignoring the

interaction between the fluorine atoms and assuming a straight bond can be solved to

obtain

𝑃𝑧(𝑡) = 1
6
(

3 + cos(√3𝜔d𝑡) +
(

1 − 1
√3

)

cos
[(

3 − √3
2

)

𝜔d𝑡
]

+
(

1 + 1
√3

)

cos
[(

3 + √3
2

)

𝜔d𝑡
])

, (1.22)

where we have a signal with three distinct related frequencies.

1.1.5 Avoided level crossing resonances

The avoided level crossing (ALC) μ+SR technique usesmuonium, which is formedwhen

an implantedmuon captures an electron tomake a hydrogen atom analogue, to probe the

energy levels of a system. The muonium will usually combine with a radical (a reactive

part of the system with at least one unpaired electron), interacting through terms like

the hyperfine or quadrupolar interaction with nearby electrons, protons and atoms to



Muon-spin spectroscopy 12

form a quantised system whose energy levels can be tuned by applying an external mag

netic field [30]. This can induce avoided level crossings where mixing occurs between

the eigenstates of two levels, which appears in the time-integrated polarisation as a res

onance when scanning through the applied field. We can then extract information about

the system from the shape and location of the peaks, like the strength of the coupling

responsible or dynamics in the system.

𝐵

𝐸

Figure 1.5 Schematic of an avoided cross
ing in energy levels as a function of the ap
plied external magnetic field.

We start with the same expression for the polarisation in terms of the density matrix

formalism described in Section 1.1.4, with the additional simplification that the strong

applied magnetic fields means that the oscillations will be too fast to be measured exper

imentally, and so only terms with 𝐸𝑛 = 𝐸𝑚 (i.e. a level crossing) will contribute [31]:

𝑃𝑧(𝑡) = Tr[ ̂𝜌(𝑡) �̂�𝑧] = 1
2 [∑

𝑚𝑛
⟨𝑚

|

�̂�𝑧 |

𝑛⟩ ⟨𝑚
|

̂𝜌0 |

𝑛⟩𝛿(𝐸𝑛 − 𝐸𝑚)] , (1.23)

where 𝛿(𝑥) is the Dirac delta function which is only non-zero when 𝑥 = 0. Since we are

also no longer dealing with an isolated systemwe also use the Kronecker matrix product,

defined as

𝐴 ⊗ 𝐵 =
(

𝑎11𝐵 … 𝑎1𝑛𝐵
⋮ ⋱ ⋮

𝑎𝑚1𝐵 … 𝑎𝑚𝑛𝐵)

, (1.24)

to construct operators that act on the combined system. This means that for a system of

𝑛 particles with dimensions 𝑝1, … , 𝑝𝑛 the 𝑗-th particle has spin operators

𝑆𝛼
𝑗 = 𝐼𝑝1 ⊗ … ⊗ 𝑆𝛼

𝑝𝑗
⊗ … 𝐼𝑝𝑛 , (1.25)
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where 𝐼𝑛 is an identity matrix of size 𝑛×𝑛 and 𝛼 = 𝑥, 𝑦, 𝑧. In the simplest case we consider

Zeeman Hamiltonian terms describing the effect of the applied magnetic field

�̂�Z
𝑗 = −∑

𝛼
𝛾𝜇𝐁𝛼𝑆𝛼

𝑗 , (1.26)

and hyperfine terms describing pairwise interactions between spins

�̂�HF
𝑖𝑗 = ∑

𝛼𝛽
𝐴𝛼𝛽𝑆𝛼

𝑖 𝑆
𝛽
𝑗 , (1.27)

where the hyperfine tensor 𝐴𝛼𝛽 describes a general anisotropic coupling.

1.2 Density functional theory

The locations of muon stopping sites in a material are in general expected to be close to

the local minima in the electrostatic potential and so as a first approximation, this poten

tial can be constructed from the atomic positions [32] to calculate the sites. This method

is very inexpensive computationally and gives good results in systems like metals, where

the delocalised electrons shield themuon from the atoms and so prevent any large distor

tions. Unfortunately, this effect is not present in insulators or semiconductors and so this

approach, which ignores the effect of the muon on the atomic positions and the quantum

nature of the electrons, is not sufficient [7].

Instead, a more expensive full ab initio electronic structure calculation might be pre

ferred or even required. This thesis focuses on using the framework of DFT, which has

seen great advancements in recent years, to do this. The main idea is to solve the many-

body Schrödinger equation for the electrons by minimising an energy functional of the

electron density, which can be used to completely determine the ground state wavefunc

tion. To locate the stopping site of the muon and account for its effect on the other atoms

geometry optimisation is also employed to minimise the energy of the system with re

spect to the atomic positions (see Section 1.2.5.1).

1.2.1 Hohenberg-Kohn theorems

The objective of DFT is to solve the Schrödinger equation for a system of 𝑁 interacting

electrons
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[

𝑁
∑
𝑖

−∇2
𝑖

2 + 1
2
(

∑
𝑖≠𝑗

1
‖

𝐫𝑖 − 𝐫𝑗
‖

)

+ ∑
𝑖

𝑉ne(𝐫𝑖)
]

𝜓(𝐫1, … , 𝐫𝑁) =

𝐸𝜓(𝐫1, … , 𝐫𝑁) , (1.28)

where ∇2
𝑖 is the Laplacian with respect to the position of the 𝑖-th electron 𝐫𝑖 and 𝑉ne(𝐫)

is the external electrostatic potential on the electrons due to the atomic nuclei. We usu

ally make the simplifying assumption that the nuclei have classical positions and are

fixed with respect to the electronic motion (called the Born-Oppenheimer approxima

tion). This is justified by the observation that the nuclear masses are many times greater

than the electron mass and so their kinetic energy term in the Hamiltonian can be ne

glected [33]. To simplify the notation, we will only consider the real-space part of the

wavefunction 𝜓(𝐫1, … , 𝐫𝑁) here.

The ground state of the system can be found by applying a variational principle on

the energy with respect to the single-particle density, which is defined as:

𝜌(𝐫) = ∫𝑑𝐫2 …∫𝑑𝐫𝑁
|

𝜓(𝐫1, … , 𝐫𝑁)
|

2

where ∫𝜌(𝐫) 𝑑𝐫 = 𝑁 and 𝜌(𝐫) ≥ 0 .
(1.29)

This quantity ismuch simpler than the 3𝑁-dimensionalmany-bodywavefunction𝜓(𝐫1,… ,𝐫𝑁)

but is related to it by the Hohenberg-Kohn theorems [34], which state that the wavefunc

tion is uniquely determined by the potential (Theorem 1.1) and that the density uniquely

determines the wavefunction (Theorem 1.2). This means that given an external potential

we can find a unique ground state charge density.

Theorem 1.1. Different potentials �̂�(𝐫) and �̂�′(𝐫) lead to different ground states 𝜓 and 𝜓′ (with

�̂� ≠ �̂�′ + 𝑐).

We proceed by contradiction, subtracting the two equations assuming that the wave

functions are equal:

{

�̂�𝜓 = 𝐸𝜓

�̂�′𝜓′ = 𝐸′𝜓′
→ (�̂� − �̂�′)𝜓 = 𝜆𝜓 . (1.30)
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Since we specified that the potentials differ by more than a constant, �̂� − �̂�′ cannot be

equal to 𝜆.

Theorem 1.2. Different wavefunctions 𝜓 and 𝜓′ lead to different densities 𝜌 and 𝜌′.

Assuming that the two states are not degenerate, we have that:

{

⟨𝜓
|

�̂�
|

𝜓⟩ < ⟨𝜓′
|

�̂�
|

𝜓′⟩

⟨𝜓′
|

�̂�′
|

𝜓′⟩ < ⟨𝜓
|

�̂�′
|

𝜓⟩
→ ∫(�̂� − �̂�′) (𝜌 − 𝜌′) 𝑑𝐫 < 0 . (1.31)

So that if 𝜌 = 𝜌′we have a contradiction.

We can now define the total energy functional to be minimised, distinguishing be

tween the internal energy functional 𝐹[𝜌], containing the kinetic energy 𝑇 and the elec

tron-electron interaction 𝑉ee, and a term that depends on the external field

𝐸[𝜌] = 𝐹[𝜌] + ∫𝜌(𝐫)𝑉(𝐫) 𝑑𝐫 . (1.32)

For any other density 𝜌′(𝐫) we have 𝐸 ≤ 𝐸[𝜌′] so that the ground state can be found by

minimising the energy:

𝐸0 = min
𝜓→𝑁

⟨𝜓
|

�̂�
|

𝜓⟩

= min
𝜌→𝑁

[min
𝜓→𝜌

⟨𝜓
|

̂𝑇 + �̂�ee
|

𝜓⟩ + ∫𝜌(𝐫)𝑉ne(𝐫) 𝑑𝐫]

= min
𝜌→𝑁

[𝐹[𝜌] + ∫𝜌(𝐫)𝑉ne(𝐫) 𝑑𝐫]

→ 𝛿𝐹
𝛿𝜌 + 𝑉ne − 𝜇 = 0 , (1.33)

where𝜇 is an arbitrary constant that arises fromusing themethod of Lagrangemultipliers

to fix the total number of electrons. This means that solving the Schrödinger equation has

been expressed as a constrained minimisation problem, which can be further simplified

by separating the interacting electrons.

1.2.2 Kohn-Sham equations

To approximate the value of 𝐹[𝜌], and especially the kinetic energy ̂𝑇[𝜌], for minimisa

tion Kohn and Sham [35] used a non-interacting fictitious system with the same charge

density 𝜌(𝐫). This means that the energy functional now becomes
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𝐹[𝜌] = 𝑇[𝜌] + 𝐸ee[𝜌]

= 𝑇S[𝜌] + 1
2 [∬

𝜌(𝐫)𝜌(𝐫′)

‖

𝐫−𝐫′
‖

𝑑𝐫 𝑑𝐫′]
⏟

𝐸H[𝜌]

+ 𝐸xc , (1.34)

where we separated the mean-field part of 𝐸ee into a Hartree term 𝐸H and collected the

rest of our ignorance about the electronic interactions into the exchange-correlation func

tional

𝐸xc = 𝑇[𝜌] − 𝑇S[𝜌] + 𝐸ee[𝜌] − 𝐸H[𝜌] . (1.35)

This means that we can define the Kohn-Sham kinetic energy 𝑇S in terms of the single-

particle wavefunctions 𝜙𝑖, which depend on the density, giving

𝑇𝑆[𝜌] = −1
2
(

𝑁
∑
𝑖=0

∫𝜙∗
𝑖 (𝐫) [∇2𝜙𝑖(𝐫)] 𝑑𝐫

)

, (1.36)

and so the problem can be recast using a fictitious potential 𝑉𝑆 through which each elec

tron experiences the effect of the others by minimising Equation 1.34 to get

𝑉S(𝐫) = 𝑉ne(𝐫) + 1
2 [∫

𝜌(𝐫′)

‖

𝐫−𝐫′
‖

𝑑𝐫′]
⏟

𝑉H

+ 𝑉xc(𝐫) + 𝜇″ , (1.37)

where 𝜇″ is a second arbitrary constant related to 𝜇′.

We now compute the ground state density using a self-consistent field procedure by

starting with a trial 𝜌(𝐫) from which we can compute 𝑉𝑆(𝐫). The Kohn-Sham orbitals are

then solved to obtain a new estimate and the procedure repeated until the calculation

converges. The Kohn-Sham independent Schrödinger equation to solve is

[−∇2

2 + 𝑉S(𝐫)]𝜙𝑛 = 𝜖𝑛𝜙𝑛 , (1.38)

and from the Slater determinant description of the wavefunction, the electron density is

given by

𝜌(𝐫) = ∑
𝑛

𝑓𝑛
|

𝜙𝑛(𝐫)
|

2 , (1.39)

where we sum over the orbitals 𝜙𝑖 each with occupancy 𝑓𝑖 ∈ [0, 1]. We can then use

the Kohn-Sham energies 𝜖𝑛 to estimate the band structure of the material, although the
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results are not very accurate with quantities like band gaps consistently underestimated

[36].

1.2.3 Exchange-correlation functionals

Except for the exchange-correlation term𝐸𝑥𝑐[𝜌], theDFT formulation ofmany-bodyquan

tummechanics is exact (up to the details of the numerical implementation), and so having

concentrated all of our ignorance here, a useful calculation requires a good approxima

tion for it:

𝐸xc[𝜌] = 𝐹[𝜌] − 𝑇S[𝜌] − 1
2
[

∬
𝜌(𝐫)𝜌(𝐫′)

‖

𝐫 − 𝐫′
‖

𝑑𝐫 𝑑𝐫′
]

. (1.40)

The simplest functional, which is nonetheless quite effective and very cheap computation

ally is the Local Density Approximation (LDA), where we treat the electrons as locally

homogeneous and use the 𝐸𝑥𝑐 of a uniform electron gas [37]

𝐸xc[𝜌] = ∫𝜌(𝐫)𝑒LDA
xc [𝜌(𝐫)] 𝑑𝐫 . (1.41)

The exchange contribution can be solved analytically but not the correlation one, so very

accurate simulations performed using Quantum Monte Carlo methods must be used to

determine 𝑒LDA
xc [38].

We can improve the LDA result by taking the gradient of the density ∇𝜌 at the point

into account to obtain theGeneralisedGradientApproximation (GGA) 𝑒GGA
xc [𝜌(𝐫), ∇𝜌(𝐫)],

providing a semi-local approximation that is still quite fast. Many different parametrisa

tions of GGA exist; we usually distinguish between empirical functionals constructed to

be accurate for certain classes of materials from experimental data4 and functionals con

structed to preserve certain quantities and obey certain physical scaling laws5 . In general,

we find that GGA functionals are more accurate than LDA but tend to under-bind mol

ecules and atoms instead of over-binding like LDA. More complicated functionals can

be obtained by using higher derivatives of the density and including the kinetic energy

density (meta-GGA) but the returns are diminishing and calculations become more ex

pensive [37]. Some other examples are non-local functionals, which explicitly make use

4 The most famous being B3LYP (Becke, 3-parameter, Lee–Yang–Parr) for molecular systems [39].
5 An example is PBE (Perdew-Burke-Ernzerhof), which is commonly used for crystals [40].



Density functional theory 18

of information at other points instead of just derivatives at the cost of much more com

putation, and functionals constructed by fitting to experimental data, which are not very

general but can give very good results (see [41] for a review).

1.2.4 Practicalities and convergence

There aremultipleways of calculating the ground state of a systemusingDFT but a popu

lar method for periodic crystals (and implemented in CASTEP [8]) involves defining the

wavefunction in terms of a plane wave basis set and then using the conjugate gradients

method with respect to the Fourier coefficient vector to obtain the ground state [42].

1.2.4.1 Plane-wave basis set

One complication of solving the Schrödinger equation for a crystal is that we have a prac

tically infinite number of unit cells to consider. We can overcome this by taking advantage

of the periodicity of the system in real space, since by definition a crystal is composed of

infinitely repeating unit cells we can calculatemacroscopic quantities by considering only

the electrons in a single cell.

Theorem 1.3 (Bloch's theorem). The solutions to the Schrödinger equation for any periodic

potential 𝑉 can be expressed as plane waves modulated by a periodic Bloch function 𝑢(𝐫):

𝜓(𝐫) = exp[𝑖(𝐤 ⋅ 𝐫)]𝑢(𝐫) . (1.42)

A derivation can be found in Appendix A and the result is used to write the Block

functions 𝑢𝑛𝐤(𝐫), which are periodic in space, as a Fourier series, giving

𝜓𝑛𝐤(𝐫) = ∑
𝐆

𝑐𝑛𝐤+𝐆 exp(𝑖[(𝐤 + 𝐆) ⋅ 𝐫]) . (1.43)

This reduces the problem of an infinite number of electrons to a calculation over a dis

crete but still infinite set of 𝐤 points and 𝐆 vectors for the basis. We can then proceed by

introducing a plane-wave energy cut-off 𝐸c by considering that terms 𝑐𝑛,𝐤+𝐆 with lower

energy
‖

𝐤 + 𝐆
‖

2/2 will contribute more to the final result, since 𝜙 is assumed to be rela

tively smooth and so the high frequency components will contribute less. The planewave

with the largest value of 𝐆 then is
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1
2 ‖

𝐤 + 𝐆
‖

2 ≤ 𝐸c . (1.44)

1.2.4.2 Brillouin zone sampling

Although Bloch's theoremmakes DFT calculations possible, we still have an infinite num

ber of 𝐤-points at which the wavefunction must be considered. This can be resolved by

making the approximation that the wavefunction varies smoothly in 𝐤-space, and so we

only need to sample at a finite number of points

𝐹 = [ Ωcell

(2𝜋)3
] [∫ 𝑓 (𝐤) 𝑑3𝐤] = ∑

𝑖
𝑤𝑖 𝑓 (𝐤𝑖) , (1.45)

whereΩcell is the volume of the unit cell and the special points 𝐤𝑖 have weights 𝑤𝑖which

dependon the number of other symmetry-equivalent points. A generalmethod for choos

ing the points of an 𝑁1 ×𝑁2 ×𝑁3 grid was suggested by Monkhorst and Pack [43], using

an expression of the form

𝐤𝑛1𝑛2𝑛3 =
3
∑
𝑖
(2𝑛𝑖𝑁𝑖 − 1

2𝑁𝑖
)𝐛𝑖 , (1.46)

where 𝐛𝑖 are the reciprocal lattice vectors and 𝑛𝑖 = 1, … , 𝑁𝑖 giving a total of∏𝑖 𝑁𝑖 points.

1.2.4.3 Energy minimisation

Given all the details described above, we are now left with the task of calculating the

total energy of the system. Using a plane-wave basis, the Kohn-Sham equations can be

expressed as a non-linear eigenvalue problem of the form

∑
𝐆′

[12 ‖

𝐤 + 𝐆
‖

2 𝛿𝐆𝐆′ + 𝑉ee(𝐆 − 𝐆′) +

𝑉ne(𝐆 − 𝐆′) + 𝑉xc(𝐆 − 𝐆′)]𝑐𝑛𝐤+𝐆′ = 𝜖𝑖𝑐𝑛𝐤+𝐆 , (1.47)

where the potentials depend on the eigenvectors (orbitals) through the electron density

𝜌(𝐫). The problem then has to be solved by an iterative procedure called a self-consistent

field (SCF) calculation, where at each step we construct the Hamiltonian for a given den

sity, solve the corresponding eigenvalue problem and then use the result to calculate a

new density, repeating until a fixed point is reached [44].
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We could directly diagonalise the Hamiltonian at each iteration, but the number of

plane-waves required to accurately describe most physical systemsmakes this too expen

sive in most cases. Since most of the eigenstates will be unoccupied and we only need

to compute one for each electron, a more performant approach is to minimise the energy

with respect to the occupied Kohn-Sham orbitals, and so ultimately the plane wave co

efficients, under the constraint that the orbitals must remain orthonormal. Two common

iterative methods of performing the minimisation are:

• Steepest Descent (SD): We always move in the direction of greatest change in the

function value given by the gradient (Δ𝐱 = −𝜂∇𝐹). This results in a fast and simple

method but doesn't guarantee convergence of the minimisation.

• Conjugate Gradient Descent (CG): Instead of alwaysmoving in the steepest direction,

at each iteration we pick a search direction linearly independent from all previous

directions using the Gram-Schmidt procedure, ensuring that we need at most one

step per dimension of the problem to reach the minimum [45].

During each iteration of the SCFprocedure, we can decidewhether to keep the density

and orbitals consistent with each other, producing a trade-off between performance and

stability in the calculation:

• Density Mixing (DM): Update the density only once per SCF cycle, mixing with the

previous value to prevent instabilities. This gives a fast method which might not al

ways converge properly with the default mixing parameters.

• Ensemble DFT (EDFT): Recalculate the density every time the wavefunctions or oc

cupancies change, giving a slower but more stable method where the energy always

decreases at each step [46].

Some of the muon site calculations presented in this thesis required the more expen

sive EDFT method, most likely because the SCF convergence of the calculation is very

sensitive to the hydrogen defect state caused by adding the muon.

1.2.4.4 Pseudopotentials
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𝑟𝑟𝑐

𝑉AE

𝑉PP

𝑟𝜓AE

𝑟𝜓PP

Figure 1.6 Schematic of pseudopotential (𝑉PP) and result
ing wavefunction (𝜓PP) compared to the exact all-electron
potential (𝑉AE) and wavefunction 𝜓AE.

It has been shown that by using Bloch's theorem with a plane-wave basis with an energy

cut-off and careful sampling of the Brillouin zone at a finite number of 𝐤-points it becomes

possible to solve the Schrödinger equation for a crystal. Unfortunately, since the plane-

wave basis makes no assumptions about the shape of the orbitals, a prohibitively high

value of the energy cut-off is required to describe the rapid variation in the wavefunction

close to the nuclei due to the steep Coulomb potential.

Recognising that valence electrons far from the nuclei contribute much more to the

physical properties of interest than electrons close to the core, we can introduce an effec

tive pseudopotential whichmatches the Coulomb potential outside some cut-off radius 𝑟𝑐

but produces a smoother wavefunction in the core region, requiring fewer plane-waves.

• Norm-conserving (NCP): A potential which produces the same charge density 𝑛(𝐫)

as the all-electron potential outside the core region.

• Ultrasoft (USP): A potential where norm-conservation is relaxed, allowing charge

density to be moved outside the core region by using an auxiliary function [47].
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In general, Ultrasoft potentials offer both better performance and higher accuracy, and

so unless stated otherwise all calculations in this thesis used the on-the-flyUSP generated

by CASTEP.

1.2.4.5 Convergence testing

UsingDFTprovides a first-principlesmethod of solving the electronic structure of a phys

ical system, but any calculation involves a series of approximations, wherewe distinguish

between physical (e.g. Born-Oppenheimer, XC functional) and numerical ones. The sec

ond arise from the practical implementation of the method and require the convergence

of a series of parameters to ensure that the results are reliable.

The twomost important parameters to converge in aDFT+μ calculationwith CASTEP

are:

• Energy cut-off (𝐸c): Determines the size of the plane-wave basis set and so how ac

curately the shape of the wavefunction can be calculated (see Section 1.2.4.1). We

usually find that energy differences (and the properties that depend on them) con

verge more quickly than the energies themselves. This is because higher energy plane

waves contribute more to the wavefunction the near nuclei than to bonding between

atoms and we get cancellation of errors.

• 𝐤-point grid size: This usually depends on the parameters that generate theMonkhorst-

Pack sampling grid used (see Section 1.2.4.2) and determines how well the Brillouin

zone is sampled. To ensure that values are transferable between systems like with 𝐸c,

we sometimes consider the minimum spacing between sampled 𝐤-points instead of

the grid size itself.

When performing a convergence test we usually vary the value of each parameter to

increase the accuracy of a calculation (which also increases its computational cost) to

determine when the error in the total energy or forces falls below a certain threshold.

Fortunately, in the case of the two parameters mentioned previously, calculations can be

converged independently by using a cheaper value in one when determining the optimal

value for the other. An example of a convergence test for a unit cell containing carbon can
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be found in Figure 1.7, showing the error in the total energy decrease as we increase the

cut-off energy 𝐸c.

200 600 1,000

0

5

10

15

Energy cut-off (eV)

Δ𝐸
(e
V
)

Figure 1.7 Convergence testing of 𝐸𝑐
for pure carbon showing the error in
the total energy.

1.2.5 Force, vibrations and barriers

1.2.5.1 Geometry Optimisation

We can obtain optimised atomic positions in a local energy minimum from a DFT calcu

lation by performing a geometry optimisation of the unit cell, where the energy is min

imised with respect to the atomic positions by calculating the forces on each atom using

the Feynman-Hellman theorem [48] and then adjusting positions and iterating until the

unit cell is relaxed.

Theorem 1.4 (Feynman-Hellman theorem). Given an eigenstate �̂�𝜆
|

𝜓𝜆⟩ = 𝐸𝜆
|

𝜓𝜆⟩, the de

rivative of an eigenvalue energy with respect to a parameter 𝜆 is given by:

𝑑𝐸𝜆
𝑑𝜆 = ⟨𝜓𝜆

|

𝑑�̂�𝜆
𝑑𝜆

|

𝜓𝜆⟩ . (1.48)

We start by using the fact that ⟨𝜓𝜆
|

𝜓𝜆⟩ = 1, we have

𝑑
𝑑𝜆 ⟨𝜓𝜆

|

𝜓𝜆⟩ = ⟨𝜓𝜆
|

𝑑𝜓𝜆
𝑑𝜆 ⟩ + ⟨

𝑑𝜓𝜆
𝑑𝜆

|

𝜓𝜆⟩ = 0 , (1.49)

so that by differentiating the energy eigenvalue 𝐸𝜆we find
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𝑑𝐸𝜆
𝑑𝜆 = 𝑑

𝑑𝜆 ⟨𝜓𝜆
|

�̂�𝜆
|

𝜓𝜆⟩

= ⟨
𝑑𝜓𝜆
𝑑𝜆

|

�̂�𝜆
|

𝜓𝜆⟩
⏟

𝜖
|

𝜓𝜆⟩

+ ⟨𝜓𝜆
|

�̂�𝜆
⏟

𝜖⟨𝜓𝜆|

|

𝑑𝜓𝜆
𝑑𝜆 ⟩ + ⟨𝜓𝜆

|

𝑑�̂�𝜆
𝑑𝜆

|

𝜓𝜆⟩

= ⟨𝜓𝜆
|

𝑑�̂�𝜆
𝑑𝜆

|

𝜓𝜆⟩ . (1.50)

By treating each of the three position coordinates for each atom as a parameter, the force

on the 𝐼th nucleus is given by

𝐅𝐼 = − ∂𝐸
∂𝐑𝐼

= ⟨Ψ𝐑𝐼
|

− ∂�̂�
∂𝐑𝐼 |

Ψ𝐑𝐼⟩ , (1.51)

where 𝐑𝐼 is the position of the 𝐼th nucleus and
|

Ψ𝐑𝐼⟩ the electronic wavefunction para

metrised by all the atomic positions. This means that having performed a single-point

DFT calculation to obtain the ground state energy, the forces can be easily determined

without considering derivatives of the Kohn-Sham orbitals but of only the Hamiltonian,

many terms of which can be effectively evaluated.

The procedure described above to calculate the ground state atomic positions using

the Feynman-Hellman theorem is also the basis for finding the classical muon stopping

sites in amaterial. This is done by performing a geometry optimisationwith an additional

hydrogen atomwith a smallermass representing themuon. Since there aremanypossible

sites, the result depends on the initial position of the muon in the simulation cell. This

means that we can either predict the most likely positions (i.e. next to electronegative

atoms or in positions where one would find a hydrogen atom) or perform a series of

calculations with random initial positions to sample all possible sites (more details can

be found in Section 1.3).

1.2.5.2 Phonons

Many properties of a material are determined by the variation of the total energy around

the ground state configuration in the form of higher-order derivatives, and so their cal

culation using the framework of DFT is of particular interest. We can also compare these
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simulations with the result of experimental methods that probe the response of a mater

ial to a range of different stimuli, obtaining information like vibrational spectra, dielectric

functions, magnetic excitations and many others.

In the case of muons in a material, at least in this thesis, we are most interested in a

method of investigating the vibrations of a system, also called its lattice dynamics (see

[49] for a review). Within the limitations of the harmonic approximation, this will give

us information about the movement of the muon in the system, like its zero-point motion

and its degree of entanglement with other atoms, providing a first look at quantummuon

effects (see Section 1.3.1).

Using 𝑎 = 1, … , 𝑁 to label the different atoms in the unit cell and 𝛼 = 𝑥, 𝑦, 𝑧 for the

three spatial dimensions, we can define 𝐮𝑎𝛼 = 𝐱𝑎𝛼 − 𝐑𝑎𝛼 as the displacement from the

equilibrium positions. Using a Taylor expansion the total energy of the system up to

second order [50] we then have

𝐸 = 𝐸0 + ∑𝑎𝛼
∂𝐸
∂𝐮𝑎𝛼

⏟

0

+ 1
2(∑𝑎𝑎′𝛼𝛼′

∂𝐸
∂𝐮𝑎𝛼∂𝐮𝑎′𝛼′

)
⏟

Φ𝑎𝑎′
𝛼𝛼′

, (1.52)

where the quantity of interest is the force constants matrix Φ𝑎𝑎′

𝛼𝛼′. Assuming Born-von

Karman boundary conditions we can substitute a plane-wave solution of the form

𝐮𝑎𝛼 = ∑
𝑖𝐪

𝐕𝑖𝑎𝛼𝐪 exp[𝑖(𝐪 ⋅ 𝐑𝑎𝛼) − 𝜔𝑖𝑡] (1.53)

to obtain an eigenvalue equation

𝐷𝑎𝑎
𝛼𝛼′(𝐪)𝐕𝑖𝑎𝛼𝐪 = 𝜔2

𝑖𝐪𝐕𝑖𝑎𝛼𝐪 . (1.54)

We have also defined the dynamical matrix as

𝐷𝑎𝑎′

𝛼𝛼′(𝐪) = 1
√𝑀𝑎𝑀𝑎′ (

∑
𝑏

Φ𝑎𝑎′

𝛼𝛼′ exp[−𝑖(𝐪 ⋅ 𝐑𝑏)]
)

, (1.55)

where the sum is over all periodic images of the unit cell with vectors 𝐑𝑏 and Φ𝑎𝑎′

𝛼𝛼′ is

the Fourier transform of the force constant matrix. Some of the most common ab initio

methods of calculating phonons using DFT are:
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• Frozen phonons: The simplest and most direct approach, where the necessary deriv

atives are calculated by performing energy calculations with displaced atomic posi

tions. Unfortunately the displacement direction must be guessed, so the method is

not very general (useful for small symmetric systems). Another limitation is that this

method only works with 𝐪 = 0.

• Finite displacement: A systematic alternative to the frozen phonon approach where

every ion is displaced in 3D to compute the dynamical matrix, but the method has the

same limitation on the 𝐪 vector.

• Supercell method: An extension to the previousmethodswhere a supercell of the sys

tem is used to produce results for 𝐪 ≠ 0 at the cost of more expensive calculations. The

performance of this method can be greatly improved by using Fourier interpolation

to limit the number of 𝐪-points requiring a full calculation.

• Linear response: The most efficient method, using density functional perturbation

theory (DFPT) to directly compute the linear change in the wavefunction with atomic

displacements at any 𝐪. Unfortunately, the additional terms that need to be calculated

when using thismethodwith an ultrasoft pseudopotential negates any advantage that

they give over a simpler norm-conserving pseudopotential (see Section 1.2.4.4), and

so CASTEP only implements the latter [51].

In general, unless only a small number of modes for a small system are desired, the

linear responsemethod of calculating themuon is preferred, at leastwhen usingCASTEP.

1.2.5.3 Transition state search

A common method of understanding the possible transitions between muon sites is to

consider it as a chemical reaction where the atoms move between the two configurations.

We can then model the problem as one-dimensional by defining a reaction path 𝐑(𝜂) for

the atomic positions along the reaction coordinate 𝜂, to give a potential 𝑉(𝜂) between the

initial and final structures. We are then most interested in the transition state, defined

as the highest energy configuration along the reaction path, which will determine the
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probability of a given reaction happening [52]. The most useful transition state search

(TSS) methods to determine this state implemented in CASTEP are:

• Linear Synchronous Transit (LST): The maximum is bracketed by performing a series

of single-point energy calculations with a linearly interpolated reaction path.

• Quadratic Synchronous Transit (QST): Alternates between quadratic interpolation

between the endpoints and an intermediate state to find themaximumand constrained

minimisation to improve this intermediate state, producing amore accurate transition

state.

• Nudged Elastic Bands (NEB): The transition is discretised into individual frames be

tween the two endpoints by interpolation, which are then connected to adjacent frames

by a quadratic constraint (to reduce the effect of local minima, hence the name elastic

band) and nudged towards the minimal energy path by optimisation. The resulting

method is more expensive, but each frame calculation can be performed in parallel

and the resulting reaction path is much better [53].

1.3 Introduction to MuFinder

TheMuFinder program [54] is a set of routines implemented in the Python programming

language to simplify the process of performing DFT+μmuon site calculations. A graph

ical user interface (GUI) is also included, allowing a user to perform and analyse the

results of calculations without writing any code. It was initially developed by Ben Hud

dart as part of his PhD Thesis [20] and I have improved its performance and extended its

functionality as part of my thesis work (see Section 1.3.1).

The current implementation of MuFinder performs the geometry optimisation calcu

lations using the CASTEP program [8], but we have been considering the best way of

allowing users to use other codes instead. In the structural relaxation of the atomic posi

tions, the muon is represented by a classical hydrogen atom with an artificially reduced

mass. The algorithm used to generate the initial muon site positions is based on the one

described by Liborio, Sturniolo et al. [55]:
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1. Random initial positions are sampled uniformly from the unit cell.

2. A site is accepted if all its symmetry equivalent positions are:

– At least a distance 𝑟𝜇 from all other sites.

– At least a distance 𝑟𝑎 from all atoms.

3. Repeat until the required number of sites has been generated or a certain fraction of

the cell volume has been covered.

Once the geometry optimisation calculations converge, the MuFinder program in

cludes code to cluster similar sites into groups by computing a distance matrix (account

ing for the periodicity and symmetry of the system) and then employing the connected

components graph algorithm [56]. Another useful part of the program is the ability to

calculate the dipole magnetic field (see Section 1.1.3) at each of the candidate site using

the MuESR library [57]. To account for the distortion that the muon causes in the unit

cell we also take advantage of the fact that the fields combine linearly, so that

𝐁dip = 𝐁undist
super + 𝐁dist

single − 𝐁undist
single , (1.56)

where 𝐁undist
super is the field at the site due to the undistorted supercell, 𝐁dist

single is the field

due to a single distorted unit cell and 𝐁undist
single is the same but for an undistorted cell.

1.3.1 Phonon quantum methods

With the aim of providing MuFinder users with a simple method of determining if a

muon at their calculated sitesmight be subject to quantumeffects, I extended the program

with the ability to parse the output of DFT phonon calculations from CASTEP and use

the result to calculate a series of useful metrics for the behaviour of the muon, mostly

based on suggestions from Matjaž Gomilšek.

1.3.1.1 Zero-point energy

We start by estimating the muon zero-point energy, meaning that minimum energy that

the muon can have in its potential well approximated as a harmonic oscillator. After
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performing a DFT+μ calculation, we run a set of phonon calculations with the muon in

each of the optimised sites (see Section 1.2.5.2). If we are interested only in the muon

motion the calculations can be performed only for 𝐪 = 0 because as a localised defect

it will have no 𝐪-space dispersion. In the common case where the muon position is not

entangled with those of nearby nuclei, we find that the light muonmass means that there

will be three high frequency modes which describe only its motion [58]. The zero-point

energy can then be approximated by summing over the frequencies of those modes

𝐸ZPE =
3
∑
𝑖=3

ℏ𝜔𝑖
2 . (1.57)

1.3.1.2 Entanglement from normal modes

We can confirm the assumption of low entanglement between the muon and nearby

atoms by calculating the entanglement witness 𝑤1(𝑎, 𝐪) [59], which we define by pro

jecting the phonon normal modes onto the muon motion and summing over the squared

norms of the three most active. Since we expect that when the muon modes don't mix

with the rest of the nuclei this will add up to 3, we have that

𝑤1(𝑎, 𝐪) = −
(

3 −
3
∑
𝑖=1

∑
𝛼

|

𝑉𝑖𝛼
𝐪𝑎

|

2

)

1/2
, (1.58)

where 𝑉𝑖𝛼
𝐪𝑎 are the phonon eigenvectors for a given atom 𝑎 and point 𝐪, whilst 𝛼 = 𝑥, 𝑦, 𝑧

and 𝑖 ranges over the phonon modes as defined in Equation 1.54. Since we have 𝑤1 ∈

[−√3, 0], this means that a value close to 𝑤1 = 0 will indicate a system where the muon

motion is independent from the crystal lattice.

1.3.1.3 Entanglement from covariance

We can also explicitly calculate the covariance between the displacement of different nu

clei in the harmonic approximation [60]. Let the elementary displacement vectors at finite

temperature 𝑇 be

�̃�𝑖𝛼
𝐪𝑎 = 𝑉𝑖𝛼

𝐪𝑎 exp[𝑖(𝐪 ⋅ 𝐑𝑎)]√
ℏ

2𝑚𝑎𝜔𝐪𝑖
√coth(

ℏ𝜔𝐪𝑖

2𝑘𝐵𝑇
) , (1.59)

so that the correlation matrix between atoms 𝑎 and 𝑏 is given by
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𝐶𝛼𝛽
𝑎𝑏 = ∑

𝐪𝑙
𝑤𝐪�̃�

𝑙𝛼
𝐪𝑎�̃�

𝑙𝛽
𝐪𝑏 , (1.60)

where 𝑤𝐪 is the weight of each point when integrating over 𝐪-space (i.e. ∑𝑤𝐪 = 1).

A second entanglement witness 𝑤2 related to the Pearson correlation coefficient be

tween the nuclear positions can then be defined as

𝑤2(𝑎, 𝑏) = −
|

Tr(𝐶𝑎𝑏)

√Tr(𝐶𝑎𝑎𝐶𝑏𝑏)|
, (1.61)

where 𝑤2 ∈ [−1, 0] and as with 𝑤1 a value of 𝑤2 = 0 indicates that the motions of the two

atoms are independent.
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Chapter 2
Magnetism in a spin 1/2 honeycomb
coordination polymer antiferromagnet

In recent years there has been great interest in engineering materials with desirable mag

netic properties through careful selection of their components. An example of this is the

apparently simple honeycomb lattice, a hexagonal structurewith a two-atombasis, which

can exhibit complex states of matter like the massless Dirac fermions in graphene or the

topological quantum spin liquid (QSL) phase proposed by theKitaevmodel [61–64]. The

latter is an elusive state of matter where strong quantum fluctuations prevent magnetic

order down to the lowest temperatures and give rise to unusual excitations, with pos

sible application in topological quantum computing and understanding unconventional

superconductivity. This has brought great interest to magnetic systems which adopt this

structure but have enough flexibility that subtle structural changes can be used to tune

the strength of the interactions. A promising avenue of research is molecular magnets

like the novel antiferromagnetic coordination-polymer-based 𝑆 = 1/2 honeycomb lattice

Cu(pym)1.5(H2O)(BF4)2(pym = pyrimidine), which will be abbreviated as CHC and

will be the focus of our investigation. As a first step in tuning its properties, we use

muons to determine its low-temperature behaviour and ground state.

Cu F B C N O H

b

a

Figure 2.1 Atomic structure of honeycomb
compound Cu(pym)1.5(H2O)(BF4)2 .
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In the CHCmaterial, as shown in Figure 2.1, we find that each copper atom is connected

to another three by a bridging pyrimidine ligand. This produces a nearly perfect hon

eycomb lattice with one of the neighbouring copper atoms being slightly closer at 4.8 Å

than the other two at 5.9 Å. The honeycomb layers are alsowell separated from each other,

giving rise to the highly two-dimensional structure. We also find that the Cu pym Cu

interactions are all antiferromagnetic and expected to be relatively large, suggesting that

this might be a first step towards a molecule-based Kitaev lattice [65]. In this analytically

solvable model we have an infinite set of 𝑆 = 1/2 particles arranged into a honeycomb

lattice interacting through a Hamiltonian of the form

𝐻 = −𝐽𝑥
(

∑
⟨𝑖𝑗⟩𝑥

𝜎𝑥
𝑖 𝜎𝑥

𝑗
)

− 𝐽𝑦
(

∑
⟨𝑖𝑗⟩𝑦

𝜎𝑦
𝑖 𝜎

𝑦
𝑗
)

− 𝐽𝑧
(

∑
⟨𝑖𝑗⟩𝑧

𝜎𝑧
𝑖 𝜎𝑧

𝑗
)

, (2.1)

where the sums ⟨𝑖𝑗⟩𝛼 for 𝛼 = 𝑥, 𝑦, 𝑧 are taken over the three different directions of links

between atoms in the lattice. This model provides a surprisingly rich variety of different

phases depending on the relative strength of the interactions 𝐽𝛼, including a spin-liquid

ground state [66]. Although the CHC material under investigation is not thought to be

a Kitaev lattice, understanding the effect of the honeycomb lattice on its properties and

making use of the precise control of the interactions allowed by the molecular structure

will bring us closer to understanding QSLs and other exotic states of matter.

Since magnetic susceptibility measurements of the material show no evidence of the

long-range order expected in an AFM system down to 2 K, the main aim of this inves

tigation will be to understand the ground state of the CHC system. This will require a

combination of different techniques, with μ+SR being an important part due to its sensi

tivity to long-range order in the small magnetic moments involved.

The work in this chapter is based on data analysis performed by myself at the Univer

sity of Durham using measurements taken by myself, Tom Lancaster and collaborators

at the ISIS Neutron and Muon Source. The measured sample was prepared by Jamie

Manson at Eastern Washington University.

2.1 Experimental ZF μ+SR measurements

A series of μ+SR measurements were performed on a polycrystalline sample of CHC

material at different temperatures and applied fields using the EMU spectrometer at the
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ISIS Neutron and Muon Source which is part of the Rutherford Appleton Laboratory.

An example of the measured ZF spectra can be found in Figure 2.2, where we see clear

evidence of a phase transition with a sharp change in the oscillation and relaxation of the

asymmetry with temperature.
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Figure 2.2 Example ZF spectra below the transition temperature fitted to a Bessel func
tion (blue) and above the transition fitted to a F μmodel (orange).

2.1.1 Low-temperature measurements

The sample was first cooled to 𝑇 = 0.3K and a series of zero-field measurements were

made at increasing temperatures. At low temperatures, we see a fast oscillation which af

ter the first period is well approximated by a damped cosine function with a −45° phase

shift. This is characteristic of incommensurate long-range magnetic order with a field

distribution varying sinusoidally in space (see Section 1.1.4.1) and is more accurately

described by a Bessel function of the first kind 𝐽0(𝜔B𝑡). As the temperature increases

the frequency of the oscillation decreases whilst the relaxation rate increases and we ap

proach the phase transition. The resulting asymmetry spectra were fitted to the function

𝐴(𝑡) = 𝐴B exp(−𝜆B𝑡) 𝐽0(𝜔B𝑡) + 𝐴L exp(−𝜆L𝑡) + 𝐴l exp(−𝜆l𝑡) + 𝐴b . (2.2)

In addition to the oscillation, we also have two Lorentzian exponential relaxation terms

with amplitudes 𝐴L and 𝐴l which suggest two different muon sites and give a fast and
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a slow relaxation respectively, which is typical in this type of molecular antiferromagnet

[1]. After fixing the values of 𝐴B = 2.6%, 𝐴L = 6% and 𝐴l = 4.3% and globally fitting

𝐴b = 9.69 ± 0.02%, 𝜆B = 1.32 ± 0.04µs–1 and 𝜆L = 7.31 ± 0.12µs–1 across all spectra, the

temperature dependence of the remaining model parameters can be found in Figure 2.3,

where we notice that we have an anomaly at 𝑇A = 0.45K in the temperature-dependent

parameters 𝜔B and 𝜆𝑙.

We analyse the transition by identifying the Bessel function frequency 𝜔B, which is

related to the magnetic field 𝐵0 at the muon sites by 𝜔B = 𝛾𝜇𝐵0, as an effective order

parameter and fitting it to a phenomenological model

𝜔B = 𝜔0[1 − ( 𝑇
𝑇N

)
𝛼
]
𝛽
, (2.3)

which allows us to extract the transition parameters. This gives a transition temperature

of 𝑇N = 4.02 ± 0.01K whilst the exponents are 𝛼 = 1.44 ± 0.14 and 𝛽 = 0.44 ± 0.02. The

value of the 𝛽 exponent is unusual, being larger than expected from common theoretical

models for magnetic systems (for example, a 3D Heisenberg model [67] has 𝛽 ≃ 0.366).

The model seems to accurately capture the behaviour of the phase parameter close to the

transition, giving a reasonable value for the transition temperature, and even fixing 𝛼 = 1

and fitting close to the transition gives a similar value of 𝛽. This is closest to themean field

result of 𝛽 = 1/2, which is observed primarily in materials with long-range interactions

like superconductors, and so although the fluctuations aremost likely 3D further research

is required.

As mentioned previously, the possible anomaly in the Bessel function frequency be

low 1K with a characteristic feature around 𝑇A = 0.45K is of interest, being unusual for

this class of materials. We also note that the amplitude of 𝐴l decreases sharply below 𝑇A,

indicating that fewer muon sites contribute to this part of the signal. The cause of this

anomaly is not clear, although it is possibly a magnetic transition caused by an incom

plete ordering at the higher 𝑇N from magnetic frustration [68], or is perhaps due to the

influence ofmagnetic impurities or disorder in thematerial (e.g. stacking faults, etc) [69].

Interestingly, this anomalymight be related to the unusual results of SQUIDmagnetome

try measurements in the material, which is found to deviate from the expected Curie-like

behaviour with a shoulder at 𝑇 = 7K. A slight inflection around 4 K might correspond
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to the transition but the susceptibility keeps increasing at lower temperatures suggesting

paramagnetic behaviour, perhaps from impurities. We expect that these impurities arise

from intrinsic disorder in the system as observed in somemolecular superconductors [70,

71], and not from extrinsic imperfections caused by contamination during synthesis or

radiation damage.
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Figure 2.3 Dependence of asymmetry fitting parameters with temperature be
low the phase transition, including the curve in 𝜔B used to fit 𝑇N and a dashed
line indicating 𝑇A.

2.1.2 High-temperature measurements

Additionally, μ+SR ZF measurements were also taken at temperatures above the mag

netic transition where the low-frequency oscillations in the asymmetry no longer match

a Bessel function but were identified as similar to those seen in fluorine-containing mate

rials and sowere fitted to a so-called F μ signal [25], which arises from the dipole-dipole

interactions between a fluorine nuclei and themuon spin (see Section 1.1.4.3). The asym

metry can then be fitted to a combination of this characteristic combination of cosines and

two Lorentzian exponential relaxation terms

𝐴(𝑡) = 𝐴b exp(−𝜆b𝑡) + 𝐴L exp(−𝜆L𝑡) +

𝐴F exp(−𝜆F𝑡) × 1
6 [1 + 2 cos(𝜔F𝑡

2 ) + cos(𝜔F𝑡)] , (2.4)

where we can estimate the separation between the fluorine atom and the muon from

the calculated frequency using the fact that ℏ𝜔F = (𝜇0ℏ2𝛾𝜇𝛾F)/[4𝜋(𝑑F)
3]. After fixing

the values of 𝐴F = 2% and 𝜆F = 0µs–1 and globally fitting 𝐴b = 10.12 ± 0.11%, 𝜆b =
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0.014± 0.002µs–1 and 𝐴L = 10.85± 0.09%, the temperature dependence of the remaining

model parameters can be found in Figure 2.4.
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Figure 2.4 Dependence of the asymmetry fitting parameters with a temperature
above the phase transition.

Using the frequencies 𝜔F fitted from the asymmetry spectra the average muon-fluorine

distance was estimated to be 𝑑F = 1.33Å. We also performed a series of DFT+μ site

calculations (as described in Section 1.3) and found that all the low-energy sites have the

muon close to an oxygen atom (1.02 Å). These sites were, however, still close enough to

a fluorine atom (with a distance of 1.51 Å) to possibly explain the experimental results.

The fact that we also have a group of three other fluorine atoms slightly further away

from the muon might also be responsible for giving a higher frequency (and so a smaller

distance) than suggested by the DFT calculations, since the asymmetry might be better

described by a more complex function involving all nearby fluorine atoms instead of the

basic F μ used. In the future, it might be possible to construct an accurate model of

the asymmetry above the transition by combining the structural information obtained

from the DFT simulations with a density matrix calculation of the polarisation [26] as

described in Section 1.1.4.3.

2.2 Conclusions

Our aimwith this investigation was to probe the low-temperature behaviour and ground

state of the novel CHC compound, amolecular antiferromagnet with a honeycomb lattice

structure. By using a series of zero-field μ+SR measurements we find that the material

undergoes a phase transition at 𝑇N = 4.02 ± 0.01K into an ordered magnetic state which
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was found to be incommensurate, an unusual feature in amolecularmagnet. We also find

that above the transition the system becomes disordered and the interaction between the

muon and nearby fluorine atoms (as confirmed by DFT muon site calculation) domi

nates. The hope is that by taking advantage of the fact that the material is a coordination

polymer we can more easily tune the structure and interactions to study the effect on the

magnetism and better understand this class of materials.
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Chapter 3
Muon-spin relaxation investigation of magnetic
bistability in a crystalline organic radical
compound

Understanding the link between hysteresis and structure is an important theme in mate

rials design, since systems that exhibit hysteretic effects intrinsically possess memory and

are therefore of potential technological interest [72]. Recently, the crystalline organic rad

ical compound 4-(2-benzimidazolyl)-1,2,3,5-dithiadiazolyl (HbimDTDA) was reported

[73] to exhibit bistability in its magnetic and structural properties near room tempera

ture. In the solid state, the neutral radical crystallises into the orthorhombic 𝑃𝑏𝑐𝑎 space

group (see Figure 3.1). The magnetic switching effect follows from a subtle single-crys

tal-to-single-crystal structural phase transition that occurs without symmetry breaking,

but involves a significant reorganisation of themolecules. Structural analysis at 𝑇 = 100K

shows that the low-temperature structure of thematerial involves one-dimensional linear

arrays of HbimDTDA molecules, with each molecule forming part of a pancake-bonded

pair with a partner molecule on a neighbouring array Figure 3.1a. The geometry of the

pancake bonds, determined by overlap of the four lobes of each molecule's singly-occu

pied molecular orbital, orients the molecules to create a dense 3D network of supramol

ecular contacts. In contrast, the high-temperature structure of the system determined

at 𝑇 = 340K does not feature the pancake bonds, which are broken and replaced with

new electrostatic contacts Figure 3.1b. These two structural phases are related by a trans

lation in the [010] direction, such that the one-dimensional supramolecular structures

(defined by hydrogen bonding between neighbouring molecules) shift with respect to

one another. Analysis of the temperature dependence of the structural phase transition

confirms a first-order transition between two unique phases, occurring around 𝑇 ≈ 270K,

with significant thermal hysteresis [73].

Each radical unit carries a 𝑆 = 1/2 spin and the magnetism of the system is closely

linked to the structural transition. Magnetic susceptibility data were reported to indi
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cate diamagnetic low-temperature behaviour, which was explained in terms of electronic

overlaps promoted by the pancake bonds between 𝜋-radicals [73]. At high temperature

the susceptibility increases dramatically, consistent with the non-pancake bonded phase

being paramagnetic and comprising an unpaired 𝑆 = 1/2 spin per molecule, with some

degree of antiferromagnetic coupling between them.

H C N S

(a) 100 K (b) 340 K

Figure 3.1 (a) Low-temperature structure of HbimDTDA, with pancake bonds be
tween the linear arrays of molecules arranged along [010]. (b) High-temperature
structure following a shift along [010] that breaks the pancake bonds.
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Figure 3.2 Chemical structure diagram
of single HbimDTDA molecule.

Implanted muons are widely used as local probes of magnetism [12], with their extreme

sensitivity motivating their use to determine the magnetic order and dynamics in low-

moment, molecule-basedmagnets. Muons have been used rather less to look at magnetic

bistability, though they have proved an effective probe ofmolecular spin-crossover (SCO)

materials formed from bistable molecules that are able to switch from low to high spin

states via a cooperative phase transformation [74]. In this chapter, we report the use of
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muon-spin relaxation (μ+SR) techniques to examine the cooperativemagnetic switching

in HbimDTDA from a local perspective. We show that muons are sensitive to the bista

bility of the magnetic state and use this to elucidate the nature of the low- and high-tem

perature regimes, and provide a determination of the characteristic field fluctuation rate

in the low-temperature regime. We also determine the muon sites using first-principles

electronic structure methods to demonstrate how the muon is sensitive to the magnetic

environment in this chemically-complex material.

The work in this chapter is based on data analysis and DFT muon site calculations

performed by myself at the University of Durham using measurements taken by Tom

Lancaster and collaborators at the ISIS Neutron and Muon Source. Help in understand

ing the results and performing the simulations was given by Francis Pratt and Kathryn

Preuss.

3.1 Experimental μ+SR measurements

To investigate the hysteresis effect and themagnetism of the two phases of the compound,

μ+SR measurements were performed using the HiFi spectrometer at the STFC-ISIS Fa

cility (Rutherford Appleton Laboratory, UK). We employed the longitudinal field (LF)

geometry where an external magnetic field is applied along the initial muon-spin di

rection. Initially, a series of measurements were made in zero applied magnetic field,

sweeping temperatures such that each measurement was made at a fixed temperature

for 35min, with temperature changes taking 7min. Measurements were also made as a

function of applied field at fixed temperature, for 40min per point. We also performed

weak transverse field (wTF) measurements, where a small magnetic field (2 mT) is ap

plied perpendicular to the initial muon-spin direction. Each measurement took 24min,

with 7min for temperature adjustment. A polycrystalline sample of HbimDTDA was

prepared as described previously [73]. For the measurement it was wrapped in Ag foil,

sealed in an airtight Cu holder and then loaded into a 4Hecryostat.

3.1.1 Zero-field measurements
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peratures across the transition, offset
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The sample was first cooled to 𝑇 = 220K and a series of measurements in zero-applied

field (ZF) were made in increments of 10K up to 350K. Measurements were then re

peated for decreasing temperature. Example spectra for measurements taken on increas

ing temperature are shown in Figure 3.3. The observed trend is that spectra resemble an

exponential relaxation at low temperatures and become more Gaussian in character as

the temperature increases. To track their evolution, the spectra were fitted to a stretched

exponential relaxation function

𝐴(𝑡) = 𝐴ZF
R exp[−(𝜆ZF𝑡)𝛽] + 𝐴ZF

B , (3.1)

where the final term 𝐴ZF
B accounts for muon spins that do not relax, including those from

muons implanted in the sample holder. To simplify the fitting procedure we fix the pa

rameters which vary the least in a free fit, in this case 𝐴ZF
B = 12% and 𝜆ZF = 0.08µs–1 by

taking an average. We also find that the relaxing asymmetry 𝐴ZF
R increases from 15.1%

to 16.9% between the low- and high-temperature phases. The parameter 𝛽 allows us to

interpolate between an (i) approximately exponential decay, which results from a combi

nation of dynamically fluctuating, disordered magnetic moments in the fast fluctuation
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limit; and (ii) behaviour approaching Gaussian decay, which approximates the initial re

laxation of the Kubo-Toyabe function caused by static magnetic moments sampled from

a normal distribution [12].

The results of the fitting procedure are shown in Figure 3.4, where the fitted stretching

parameter is seen to change as a function of temperature across a transition region Fig

ure 3.4a. We can clearly see the hysteresis effect with the decreasing-temperature mea

surements (down triangles) consistently at higher values than the increasing-tempera

ture ones (up triangles) over a region centred on 𝑇 = 274 ± 11K. This was extracted

from the values of 𝛽 by fitting both sets of measurements to the phenomenological func

tional form

𝐴wTF
R (𝑇) = 𝐴H tanh[𝑘H(𝑇 − 𝑇0)] + 𝑐H , (3.2)

where 𝐴H, 𝑘H and 𝑐H are parameters which determine the shape and position of each

curve and are kept constant between themwhilst 𝑇0 determines the centre and is different

between the increasing and decreasing temperature curves. We can therefore determine

an approximate value for the width of transition by taking the difference between the

𝑇0 values. This value for the centre of the hysteresis loop also agrees with the values of

𝑇 ≈ 270K and Δ𝑇 ≈ 9K calculated from magnetic susceptibility and confirmed by X-ray

powder diffraction measurements reported in Ref [73].

The difference between the two regimes can be explained by the different distribu

tions of fluctuating magnetic moments in each. In the low-temperature phase we have

randomly oriented electronic moments (in a distribution of width Δ/𝛾𝜇 = √⟨𝐵2⟩, where

𝛾𝜇 = 2𝜋 × 135.5MHz/T is the muon gyromagnetic ratio) fluctuating at rate 𝜈 in the fast

fluctuation limit 𝜈 ≫ Δ. As the temperature increases through the transition, the density

of moments increases due to the structural transition. Crucially, these moments fluctuate

at a much faster rate in the higher temperature phase, with the result that the muon spin,

whose evolution is limited by the value of its gyromagnetic ratio, cannot complete a rota

tion before the local field fluctuates and changes value [12]. The electronic moments are

thereforemotionally narrowed from the spectra in the high-𝑇 regime. This leaves only the

random nuclear moments to account for a large part of the relaxation. The nuclear spins

are quasistatic and so are described by a Kubo-Toyabe-like function (of which we only



Experimental μ+SR measurements 43

200 225 250 275 300

0.75

1.00

1.25

1.50 (a)

T (K)
β

Dec. Temp. Inc. Temp.

150 200 250 300 350 400
26.0

26.5

27.0

27.5

28.0

28.5 (b)

T (K)

Aw
T

F
R

(%
)

0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5
(c)

B (T)

λ
LF

(µ
s−

1
)

T = 200 K T = 350 K

0.02 0.04
0

15

30

45

B2

(λ
−

λ
0)

−
1

Figure 3.4 (a) The result of fitting a stretched expo
nential function (Equation 3.1) to the ZF results, show
ing the temperature dependence of the line-shape pa
rameter 𝛽 for increasing (Inc.) and decreasing (Dec.)
temperature.(b) The result of fitting an exponentially
decaying cosine curve (Equation 3.3) to the wTF re
sults, forwhichwe show the relaxing asymmetry𝐴wTF

R .(c)
The result of fitting an exponential decay (Equation 3.4)
to the field-dependent LF data, giving the relaxation
parameter 𝜆LF fitted to the Redfield formula (Equa
tion 3.5).

observe the early-time, Gaussian part). The fact that the value of 𝛽 appears to plateau
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below 𝛽 ≈ 1.5 suggests that the motional narrowing is not complete.

3.1.2 Weak transverse-field measurements

In order to confirm the existence of the hysteresis loop, the temperature-dependent mea

surementswere also repeated over the same range but in aweak transversemagnetic field

(𝐵 = 2mT). Since the external field is so low, the only muon spins that will oscillate are

those in sites where the local field almost vanishes in zero field, andwhich are not rapidly

relaxed by dynamics. The size of the change we observe in amplitude with temperature

is small, suggesting that those muons contributing to this effect constitute only a small

fraction of the total ensemble, which might be explained by the change in the nature of

the muon sites with structural phase, as discussed below. The results were fitted to a

decaying cosinusoidal curve

𝐴(𝑡) = 𝐴wTF
R exp(−𝜆wTF𝑡) cos(𝜔𝑡 + 𝜙) + 𝐴wTF

B , (3.3)

with the resulting relaxation asymmetry shown in Figure 3.4b. We again see a consistent

separation between the measurements made in increasing and decreasing temperature

over the transition region, but compared to those above, the fittedparameters have amuch

lower uncertainty (in part because fitting a periodic cosine wave has less margin of error

than an exponential), and so the hysteresis loop is clearer. Repeating the fitting procedure

used in the previous section, we find that the loop for these measurements is centred on

the slightly lower temperature of 𝑇 = 249 ± 13K. The discrepancy between this and the

transition derived from the change in the 𝛽 parameter suggests the two measurements

are sensitive to different aspects of the muon's interaction with the system: 𝛽 reflects the

distribution of local magnetic fields; 𝐴wTF
R reflects the availability of muon sites in the

two regimes, as described below. We note also that for both sets of measurements the

transition appears to be continuous, although the resolution is not sufficient to rule out

steps on the scale of ≈ 10K.

3.1.3 Longitudinal-field measurements

To elucidate the dynamic response, a series of LF measurements were performed at both

𝑇 = 200K and 𝑇 = 350K by applying a series of external magnetic fields (up to 𝐵 = 0.5 T)
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along the direction of the muon spin. As the field magnitude increases the Zeeman term

in themuon's Hamiltonian dominates, and themuon spin is pinned along its initial direc

tion. Time-varying local fields can then cause a muon spin-flip and relax the asymmetry.

This state of affairs allows us to investigate the magnetic-moment dynamics in the two

phases by fitting the results to a series of exponential functions, quantifying the relax

ation due to the fluctuating magnetic fields. This is appropriate even in the high 𝑇 limit,

since the applied field rapidly quenches the Gaussian relaxation, leaving residual expo

nential relaxation reflecting electronic dynamics. The model used is therefore

𝐴(𝑡) = 𝐴LF
R exp(−𝜆LF𝑡) + 𝐴LF

B , (3.4)

where we fix the parameter 𝐴LF
B = 10% to simplify the fitting procedure. The value of the

relaxation rate 𝜆LF is also shown in Figure 3.4c for both temperatures. We see that only

the low-temperaturemeasurements show a decrease with increasingmagnetic field. This

relationship can be fitted to the Redfield formula [12]

𝜆LF = 2Δ2𝜈
[𝜈2 + (𝛾𝜇)

2(𝐵0)
2]

+ 𝜆0 , (3.5)

where Δ is the fluctuating amplitude (Δ2/𝛾2
𝜇 = ⟨(𝛿𝐵)2⟩), 𝜈 is the fluctuation rate (related

to 𝜏 = 𝜈−1 the correlation time between changes), 𝐵0 is the applied external field and 𝜆0

is an offset accounting for the component of the relaxation not reduced by the external

field. (Such an offset is often observed in dynamically-fluctuating molecular systems

[75]). This gives values of 𝜈 = 66 ± 12MHz and Δ = 3.1 ± 0.3µs–1 for the parameters.

In the high-temperature phase a very small relaxation rate is observed in applied field,

confirming that the ZF relaxation is caused by static nuclear moments, which are unable

to cause the required spin flips. On the other hand, the successful description of the low-

temperature relaxation parameters with the Redfield formula confirms that the muon-

spin relaxation is caused by randomised electronic moments with dynamics in the fast-

fluctuation limit.

3.2 Muon site analysis

The candidate muon sites for HbimDTDA were calculated using DFT geometry optimi

sation following the procedure described in Section 1.3 using the CASTEP code [8] with
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files generated by the MuFinder program [54], producing 30 candidate sites for each

phase in a 8.6 Å × 9.9 Å × 21.4 Å unit cell of the crystal. The calculations were run with

both a baremuon (Mu+) or amuonium (Mu0) atom by changing the number of electrons

in the system. The relaxed unit cells were analysed first by considering the distortions to

the atomic positions caused by the muon, which in this case are minimal between atoms

of the same molecule but more considerable between molecules, with a maximum radial

displacement of ≈ 1.0Å, especially for the sites �̄� / ■ and 𝖧 / ■ described below. Muon

sites corresponding to different relaxed structures were compared by using the vector be

tween the site and closest atom to position the muons in an undistorted cell. Finally, the

symmetry of the crystal was used to move all the sites to the same molecule and nearby

sites (𝑑 < 1Å) were grouped by averaging their positions. All the bare muon site simula

tions were also repeated for muonium, by adding an extra electron to the system for the

muon. This gave similar results, so that sites were matched with the bare muon ones by

assuming that ones closer than 0.5Å are equivalent. All sites were realised in both cases

with the exception of a single muon site (denoted 𝖲𝟣 / ■ below) which was not found in

the high-temperature phase.

The positions of the calculated candidate muon sites are shown in Figure 3.5 (only

for the case of Mu0 but the others are similar) and their respective energies are listed in

Table 3.1. Energies are given relative to the lowest-energy site for each column. The sim

ilarity in energy between the candidate sites in each class suggests that we might expect

each of them to be realised. We first find a set of candidate sites common to both struc

tures close to the nitrogen atoms in the sulphur-containing rings. Two of them (𝖲𝟣 /■ and

𝖲𝟤 /■) are located outside the region between rings in adjacent chains (see the shaded area

in Figure 3.1a), with the second being closer to the atoms which form the contact bond

between chains in the high-temperature phase (see Figure 3.1b). Another site (𝖲𝟥 / ■) is

located inside the region but away from the contact sulphur atoms, which might explain

why it has a similar energy at the lower temperature but is higher in energy at 340 K. The

other low-temperature site (�̄� / ■) has themuon attached to the non-hydrogenated nitro

gen atom in the central ring and is higher in energy for muonium but the lowest energy

site in the case of the bare muon.
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Apart from these common sites, for the 340 K structure we also find two new lower-

energy sites. One (𝖧 / ■) is found sharing the nitrogen atom with a hydrogen atom

in the central ring (see Figure 3.2) and the other (𝖲𝟦 / ■) is again attached to one of

the nitrogen atoms in the sulphur-containing ring, but in this case is inside the inter-ring

region and closer to the contact atoms. To explain the presence of the new sites we note

that the main difference between the two structural phases is the presence of the pancake

bonds between the sulphur rings in the lower-temperature state and the relative position

of the chain. The breaking of these bonds at higher temperatures seems to make the new

positions available.

H C N S

(a) 100 K (top) (b) 100 K (side)

(c) 340 K (top) (d) 340 K (side)

Figure 3.5 Diagrams showing the main sites for muonium at (a,b) 100 K,
with three low-energy sites (■, ■ and ■) and a slightly higher-energy site
(■) (c,d) 340 K, with two new lower energy sites (■ and ■).

3.3 Discussion

Conventionally we assume that a bare (or diamagnetic) muon spin couples to the local

magnetic field in a material, and probes the local field distribution without causing an

appreciable perturbation. The relevant muon sites from the previous section would then
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Site
Energy (eV)

Mu0 Mu+

100 K 340 K 100 K 340 K
𝖲𝟣 (■) 0.01 0.06 0.43 -
𝖲𝟤 (■) 0.01 0.17 0.38 0.93
𝖲𝟥 (■) 0.12 0.14 0.00 0.00
�̄� (■) 0.00 0.06 0.37 0.24
𝖧 (■) - 0.05 - 0.00
𝖲𝟦 (■) - 0.00 - 0.23

Table 3.1 Table comparing the ener
gies of the unit cell with the muon at
the different bare muon (Mu+) and
muonium (Mu0) sites calculated using
DFT, and given relative to the lowest
energy found in each column.

be the bare ones. The low-temperature regime of this material, which is thought to be

formed from singlet spins, was previously suggested to be diamagnetic on the basis of

bulk susceptibility measurements. However, if the muon takes the form of an unperturb

ing, diamagnetic probe, then the low-temperature relaxation cannot simply be explained

by the presence of highly-dilute magnetic impurities in a diamagnetic background, since

the Redfield behaviour observed relies on the presence of a dense array of magnetic mo

ments that rapidly fluctuate in time. It is therefore unlikely that the material is non-mag

netic in this regime. We suggest that instead we have fluctuating moments of sufficient

density to be approximated as giving rise to a Gaussian distribution of fields at any in

stant. One possibility here is the imperfect formation of the pancake bonds. This is caused

by normal crystal defects and for this type of DTDA dimer it is common to observe a few

percent of free Curie spins in an otherwise diamagnetic solid [76]. We distinguish the lo

cal magnetic field distribution in the low-temperature phase, featuring this distribution

of moments fluctuating in the fast fluctuation limit, from that in the high-temperature

regime, which likely comprises a denser distribution of moments, with a far greater char

acteristic fluctuation rate.

Since the muon is a local probe, the transition we observe likely reflects muons locally

detecting the switching of nearby clusters ofmolecules in the sample. A cluster in the low-

temperature state giving an exponential relaxation and one in the high-temperature state
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a Gaussian one. The stretched exponential used in the intermediate regime then models

the sum of contributions, whose relative size varies with temperature. We note that our

results in this system resemble those measured in spin-crossover systems based on iron

(II) ions which show a crossover between a low-spin (𝑆 = 0) state at low temperature and

a high-spin (𝑆 = 2) state at high temperature [74]. In those materials the muon spectra

were also fitted to a stretched-exponential function with 𝛽 < 1 in the low temperature,

low-spin configuration and 𝛽 approaching 𝛽 = 2 at high temperature. It was suggested

that the relaxation at low temperature reflected an incomplete crossover, with some spins

remaining in the high-spin configuration at low temperature and forming a very dilute

distribution leading to root-exponential relaxation [77]. A similar picture could be the

case here, with any regions that avoid the low-temperature structural transition giving

rise to a distribution of disordered spins, causing the observed relaxation. However, the

fact that we find 𝛽 ≲ 1 suggests that the density of moments in our system at low temper

atures is greater than the highly-dilute one that would be expected to give rise to 𝛽 ≈ 0.5,

which was the value observed in some of the low-temperature phases of the iron-based

spin-crossover systems [78].

Another possibility which could account for our data is that the muon's sensitivity

to the magnetism in the low-temperature, singlet state is caused by a perturbation the

muon makes to the system, as was suggested to be the case in molecular spin-ladder

materials [79]. This might involve the bare, charged muon causing a local distortion to

the nearest spin singlet, or that the sensitive species is derived from muonium, whose

extra electron is involved in causing the necessary distortion. The muon, along with its

local distortion, would then become the sensitive species, whose interactions give rise

to the observed relaxation. We note that the observed fluctuation amplitude Δ in this

regime corresponds to the magnetic field from an electron spin around ≈ 8Å from a

muon, providing a rough length scale for the interaction. If this is the case, then the

material could adopt a fairly uniform singlet ground state with few additional intrinsic

magnetic impurities. However, even in this case, the transition to a regime of large, dense

magnetic moments at high temperatures would continue to allow the muon to faithfully

probe the magnetic switching transition.
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Finally, the difference in the low-energy muon sites in this material's two structural

phases is a noteworthy feature which has not been discussed previously in materials of

this type. Since we find a range of muon sites in this system with very similar energy, we

would expect the muons to sample a range of internal magnetic fields. Although both a

bare muon and muonium allow several different low-energy candidate sites in the two

temperature regimes, owing to the range of fields probed, the two cases are unlikely to

lead to significant differences in the measured spectra. However, the observation of new

sites becoming available after a structural change likely applies well beyond this material.

Important questions remain about the nature of the phase transition in this system,

particularly related to the broadness of the transition compared to the width of the hys

teretic region. Inspection of the magnetic susceptibility data suggests the presence of

steps in the response [73]. Indeed, tracking the structural component of the transition

as a function of 𝑇 by powder x-ray diffraction also suggests a stepwise progression, with

reflections consistent with the high temperature phase appearing over a range of temper

atures. There has been recent interest in the possibility of realizing the devil's staircase

structure in such systems [80], where step-like transitions between the spin states have

been observed.

3.4 Conclusions

Muon-spin relaxation measurements, paired with muon-site analysis, have allowed us

to probe the hysteretic magnetic switching behaviour of HbimDTDA from a local per

spective. We identify a hysteresis width of Δ𝑇 ≈ 22K, centred on 𝑇 = 274K. The low-

temperature state gives rise to muon-spin relaxation which is well described by a model

that assumes a dense arrangement of disordered, dynamically-fluctuatingmoments. The

structural transition causes the muon sites in the two regimes to differ. However, in a

chemically-complex material such as this, a large number of sites of similar energy occur

in both regimes, with the result that we expect the muon to faithfully probe the system

across the transition. Although this latter feature of differingmuon sites in different struc

tural regimes has yet to be widely investigated, it may be a general feature that we should

expect in numerous systems.
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Chapter 4
Current-mediated control of magnetism in
Sr2IrO4

The focus of this chapter will be the strontium iridate compound Sr2IrO4(SIO), which is

a Mott insulator with 𝐽eff = 1/2 [81]. The material is expected to be a metal from both

conventional band theory and from a simple Mott-Hubbard picture, but the strong spin-

orbit interaction (SOI) from the 5𝑑 transition metal, which is in competition with the on-

site Coulomb energy𝑈, is enough to open up an insulating gap (see [82,83]). The metal-

insulator transition into the antiferromagnetic ground state happens at 𝑇𝑁 = 240K. An

interesting property of thismaterial is the strong coupling between its physical properties

and the crystal lattice, especially the Ir O Ir bond angle (see Figure 4.1). It has been

found that applying an external electric current can induce a straitening of the bond and

a corresponding weakening in the antiferromagnetic order [84], as discussed later.

Sr Ir O

c

a

Figure 4.1 Diagram showing part of the
crystal structure of Sr2IrO4 , with the IrO6
octahedra highlighted and not including
the additional rotated layers along the 𝑐-axis.

The compoundunder study crystallises in a layered cubic perovskite structurewith a long

𝑐-axis which can be understood as composed of rotated layers (see Figure 4.1) [85]. The
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material has space group 𝐼41/𝑎𝑐𝑑 and lattice parameters 𝑐 = 26.24Å and 𝑎 = 𝑏 = 5.52Å.

Its oxygen octahedra are also distorted from the typical arrangement, being stretched by

0.1 Å and rotated around the 𝑐-axis by 12°. The full unit cell can then be constructed

by rotating each layer by a quarter turn around the (1/4, 1/4, 𝑧) point where the oxygen

atoms would be if the octahedron wasn't distorted. The magnetic structure is also known

to be canted and antiferromagnetic, as shown in Figure 4.2 and calculated from single

crystal neutron diffraction measurements by Ye, Chi et al. [86]. When an electric current

is applied along the 𝑎 − 𝑏 plane, the canting along the 𝑏-axis disappears and a decrease

in the bulk magnetisation is observed [84]. It is also important to note that below 100 K,

and especially below 20 K, evidence exists for a reorientation of the magnetic moment

along the c-axis, with the magnetisation measured along the 𝑐-axis increasing whilst the

𝑎𝑏-plane value decreases [87]. This suggests a potential change in the magnetic structure

with canting of spins along the long 𝑐-axis of the crystal, the addition of which will help

explain the experimental results later.

Sr Ir O

b

a

Figure 4.2 Magnetic structure for Sr2IrO4
without an applied current as seen along
the 𝑐-axis.

Some previous studies have also used ZF μ+SR measurements to probe the magnetic

ground state of SIO without an applied current. First the older work by Franke, Baker et

al. [88], which observed two muon precession frequencies at low temperatures and then

the study by Miyazaki, Kadono et al. [89] which identified four candidate muon sites
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located close to the oxygen atoms. The location of the sites was determined by searching

the undistorted structure for local potential minima close to the oxygen atoms where a

comparison of the local dipolemagnetic field and experimental measurements suggests a

value of the Irmoment close to 0.36 𝜇B, from x-ray and neutron diffractionmeasurements.

In our analysis we used the smaller value of 0.208 𝜇B obtained by Ye, Chi et al. [86],

explaining some differences in our results which are discussed in Section 4.3.2.

Thework in this chapter is based on simulations performed bymyself at theUniversity

of Durham, with the aim is of explaining the unusual results of a series of μ+SRmeasure

ments on Sr2IrO4with and without an applied current performed by collaborators from

the Paul Scherrer Institut (PSI) led by Dr Chennan Wang.

4.1 Experimental ZF μ+SR measurements

To investigate the effect of applying an external current to SIO as series of zero-field μ+SR

measurements were performed on the GPS spectrometer at the Paul Scherrer Institut

(PSI) in Switzerland. The sample was composed of a set of small SIO crystals with the

long 𝑐-axis parallel to themuon beam and electrically connected in series with the current

running along the 𝑎𝑏-plane (see Figure 4.3).

Figure 4.3 Aphotograph of the Sr2IrO4
sample in the sample holder beforemea
surement.

A series ofmeasurementswere taken bothwith andwithout applying an external current,

to ensure sample quality and that the electrical leadswere not interferingwith the results.
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The results can be found in Figure 4.4, showing the magnetic fields corresponding to the

two observed muon frequencies with increasing temperature. We find good agreement

with previous measurements reported in the literature for the zero-current case whilst

when applying a current of 100 mA we observe a reduction in the site fields and a clear

splitting in fields at the two muon sites below 100 K, which will be explained later in this

chapter with the aid of DFT muon site calculations.
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Figure 4.4 Temperature dependence of magnetic field at the muon sites 𝐵𝑖 cal
culated from precession frequencies with and without an external current.

During the current-on measurements, we also had the additional complication that the

sample was generating joule heat. An additional flow of helium gas was used to remove

the heat and the temperature difference between the sample and cryostat sensors sta

bilised at around 5 K. This does mean however that the sample temperature is not exactly

known and the results in Figure 4.4 with the applied current are subject to a rescaling,

but we expect that there is no significant temperature gradient within the sample.
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4.2 Muon site DFT simulation

The muon sites in Sr2IrO4(without an applied external current) were calculated by per

forming a series of geometry optimisation calculations using the CASTEP program [8]

with input files generated by the MuFinder [54] software following the procedure de

scribed in Section 1.3. A total of 25 initial muon sites were generated and then symmetry

reduced in a 1 × 1 × 4 super-cell with the four-fold glide symmetry along the 𝑐-axis ap

plied. A summary of the parameters of the DFT geometry optimisation calculations can

be found in Table 4.1.

The muon sites after an external current is applied can be approximated by using the

more regular atomic structure determined experimentally, which lacks the rotation of the

octahedra, and fixing all the atoms in the unit cell, since the current is expected to hold

them in place. We then leave the muon free to relax from its previously calculated site

(where there was no current and the atoms were also free to move) in another geometry

optimisation calculation.

The dipole field from the iridium magnetic moments is assumed to be the main con

tribution to the magnetic field at each muon site. It was calculated using the procedure

described in Section 1.1.3 with the muESR library [57], using a 40 × 40 × 40 super-cell

and accounting for the distortion caused by the presence of the muon.

Quantity Value
Energy Cut-off 544.2277 eV
MP k-point grid 2 × 2 × 1
Supercell 1 × 1 × 1
Functional LDA
Spin-polarized? No
Δ𝐸/𝑁ion 1.36×10−6 eV
||𝐅||max 3.81×10−2 eV/Å

‖

Δ𝐑
‖max 4.59×10−4 Å

Table 4.1 Parameters of DFT muon
site calculations for Sr2IrO4without ex
ternal current.
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4.2.1 Effect of current on muon sites

We first consider the change in the muon site positions as the current is applied, shown

in Figure 4.5. For simplicity we show only a single layer of the material, instead of the

1 × 1 × 4 cell with the four-fold glide symmetry used in the DFT simulation, and include

only symmetry-inequivalent sites, having averaged over sites with similar positions. The

low-energy sites all have the muon close to an oxygen atom (with a distance of 1 Å). We

distinguish in-plane sites, where the muon is attached to an oxygen atom in the main

octahedral plane (see Figure 4.5a), and apical sites (in the unit cell apex), where the

muon is attached to one of the other two vertices of the octahedron (see Figure 4.5b).

When the external current is applied the muon sites remain very similar but we have

fewer distinct positions, most likely because of the more regular atomic structure.

(a) current-off in-plane sites (b) current-off apical sites

(c) current-on in-plane sites (d) current-on apical sites

Figure 4.5 Diagrams showing the main symmetry inequivalent muon sites (a) in
plane with lower (■) and higher (■) local fields, (b) in the apex with lower (■) and
higher (■) energy, (c) in-plane with the current on (■) and (d) in the apex with
lower (■) and higher (■) field (but only when 𝑚𝑧 ≠ 0), all with a ferromagnetic
magentic structure.
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4.3 Simulation of magnetic fields

We can quantify the effect of applying an external current to Sr2IrO4by considering the

change to the magnitude of the dipole magnetic field and in general find that with the

current on we have fewer distinct muon sites and that the field magnitudes at those sites

tend to be higher.

4.3.1 Effect of magnetic moment along 𝑐-axis

The magnetic structure is not entirely determined, so we consider a small variable mag

netic component along the 𝑐-axis (in the out-of-plane direction) and that the coupling

between adjacent layers can be either ferromagnetic (FM) or antiferromagnetic (AFM).

By increasing this 𝑚𝑧 component we increase the calculated dipole fields but also induce

a splitting in the field predicted at two of the sites. If these sites are realised experimen

tally, this additional 𝑚𝑧 component would explain the observed splitting in the muon

frequencies when an external current was applied (see Figure 4.4). Note that to simplify

the visualisations, which can be found at Figure 4.6 and Figure 4.7, the sites have been

grouped in the same way as in Figure 4.5, using both the muon positions in the unit cell

and the location of the site in the energy-local field magnitude plane. Each site has also

been identified with a colour, for two in-plane (■ and ■) and two apical (■ and ■) sites

without the current, which changes to three sites, one in-plane (■) and two apical (■ and

■) when it is applied.

4.3.2 Comparison with experimental data

Identifying the different muon sites by the colours used in Figure 4.5, we now compare

our simulations with the experimental results in Section 4.1 to determine which ones are

realised in each case. When the current is off we have two low-energy and high-field

muon sites at 258.93 G (■) and 162.86 G (■) respectively, both at an in-plane position

within the unit cell. The first gives a precession frequency that is in agreement with the

experimental results, whilst the second site gives a lower field than measured, perhaps

because this is not the site that is realised experimentally but a perturbation of the first
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(c) AFM (I = 0 mA)
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Figure 4.6 Dependence of muon site dipole field on the magnitude of the
𝑐-axis magnetic moment 𝑚𝑧 with FM (top) and AFM (bottom) coupling be
tween layers.

one with a slightly lower local field. The apical sites that we obtained from the simulation

in this case don't seem to appear experimentally.

To compare our simulations with the experimental results with the external current

we first have to determine a value for the 𝑧-axis component of the iridium magnetic mo

ment 𝑚𝑧, which had little effect on the calculated fields without the current. To do this

we use the field splitting observed with the current on, comparing the ratio 𝐵1/𝐵2 of the

smaller (𝐵1) and larger (𝐵2) experimental magnetic fields with the value simulated from

the matching muon sites with the ferromagnetic structure which also show the splitting

(■ and■ in Figure 4.7). We start by using cubic spline interpolation [90] to fit both the ex

perimental and simulated curves using the interpolate.CubicSpline function from
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(c) AFM (I = 100 mA)
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Figure 4.7 Dependence of muon site dipole field on the magnitude of the
𝑐-axis magnetic moment 𝑚𝑧 with FM (top) and AFM (bottom) coupling be
tween layers.

the scipy python library and then calculate the ratio between the two curves (see Fig

ure 4.8). Since the simulated ratio (right panel) is a decreasing function of the moment

size 𝑚𝑧 we can obtain an upper bound to finding the minimal value of the experimen

tal ratio (0.7 at 54.6 K), which corresponds to a value of 𝑚𝑧 ≤ 0.0214 𝜇B. A comparison

of the experimental data and the simulation with the new value of 𝑚𝑧 can be found in

Figure 4.9.

Using this value of 𝑚𝑧we find that when the current is on (at 100mA) the two muon

sites have 𝐵1 = 102.01G (■) and 𝐵2 = 145.76G (■). An interesting observation is that

applying the current seems to change the type of site which is realised, making the apical

sites more energetically favourable when compared to the in-plane sites which had lower

energy without the current (with a difference of 0.2 eV). This change also explains the
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Figure 4.8 Estimation of 𝑚𝑧 by matching the minimum ratio between site
magnetic fields 𝐵1/𝐵2 observed experimentally when a current is applied.

observed splitting in field, which is observed only in the apical sites located between

layers of Iratoms and caused by 𝑚𝑧 ≠ 0.
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Figure 4.9 Comparison of site magnetic fields calculated from μ+SRmeasure
ments against temperature compared to values simulated from DFT calcula
tions (assuming 𝑇 = 0K) with and without the external current.

Finally, we can compare our results for the calculated muon sites without the external

current with those obtained by Miyazaki, Kadono et al. [89]. The site positions were

given in terms of the spherical polar displacement (radial distance 𝑟, polar angle 𝜃 and

azimuthal angle𝜙) from the closest oxygen atom to each site. A comparisonwith theDFT

calculated sites can be found in Figure 4.10, where the lines show the values estimated

by Miyazaki, Kadono et al. [89] whilst the points show the two polar angles and radius
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calculated for each muon site, with reasonable agreement, especially in the azimuthal

angle.

The dipole fields reported by Miyazaki, Kadono et al. [89] for their different sites

can also be found in Table 4.2, where we have matched them with our results by first

distinguishing between in-plane and apical sites and then sorting by the local field. The

discrepancy might be explained by considering the highest frequency site "in-site 1" in

their results as not being realised in the DFT simulations and instead matching the in-

plane sites with the frequencies identified as belonging to the apical sites.

180°

150°

120°
90°

60°

30°

0°
0 0.5 1 1.5

𝑟 (Å)

in-plane
apical

Site

𝜃
𝜙

Angle

Figure 4.10 Comparison of the spherical polar coordinates 𝜃
and 𝜙 between the calculated muon sites and the nearest oxygen
atom with the values calculated by Miyazaki, Kadono et al. [89]
(shown as dark lines).

Site
Report Miyazaki

𝑓 (MHz) 𝜇Ir/𝜇B 𝑓 (MHz) 𝜇Ir/𝜇B

in-plane (■) 3.51 0.206 8.2(4) 0.426(2)
in-plane (■) 2.21 0.206
apical (■) 0.34 0.206 2.941(3) 0.4205(4)
apical (■) 0.07 0.206 2.79(4) 0.389(6)

Table 4.2 A table comparing the results of the DFT
simulations with the muon site frequencies measured
by Miyazaki, Kadono et al. [89], where the muon site
have been matched by first distinguishing between in-
plane and apical sites and then sorting by the frequency
within each category.

4.4 Conclusions

We have used a combination of DFT simulations and dipole field calculations to deter

mine themost likelymuon sites responsible for our experimental results. We identify two
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classes of sites (in-plane and apical) and find that the first are most likely realised with

out the current, which when applied changes the relative energies of the two classes and

makes the second more energetically favourable. The apical sites also have lower dipole

fields, explaining the decrease with current seen in experimental measurements (see Fig

ure 4.9). Additionally, we can explain the splitting in field seen with the current applied

by adding a slight ferromagnetic canting to the magnetic structure along the 𝑐-axis (with

𝑚𝑧 ≤ 0.0214 𝜇B), which differentiates two previously degenerate apical sites.

In conclusion, knowing that the applied current induces a change in the atomic and

magnetic structure of SIO, we would expect the experimental results to be explained by

a corresponding change in the environment of the same muon site. We instead find that

muon sites from a different class are realised, an unusual feature which confirms the use

fulness of calculating possible muon sites through a method like DFT+μwhen analysing

the results of an experiment. Interestingly, a similar feature of a structural phase transi

tion changingwhichmuon sites are likely realisedwas also seen in the crystalline organic

compoundHbimDTDA as described inChapter 3. Unfortunately, althoughwe have used

the energy of each site for this purpose, it is not always an indicator of how likely a given

site is to be realised experimentally or the relative occupancy of many possible sites. The

process by which a muon that enters a sample with an initial energy of around 4MeV

thermalises through interactions with other particles before settling into a site (ignoring

possible quantum effects) is not well understood and depends on the capture cross-sec

tion of the different local minima in the electronic structure and the effect that the pres

ence of the muon itself has on the other atoms. An avenue of further work is therefore

the simulation of the muon stopping process itself, with the aim of approximating this

cross-section, a topic which is discussed in more detail in Chapter 7.
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Chapter 5
Determining low-temperature magnetic order in
chiral spin chains

With the aim of engineering molecules with desirable quantum magnetic properties, we

consider the chiral spin chains [Cu(pym)(H2O)4]SiF6 ⋅H2Oand [Ni(pym)(H2O)4]SO4
(pym = pyrimidine), abbreviated as CPM and NPM respectively. Their structures are

analogous, with each unit cell containing one-dimensional chains of magnetic ions (Cu

and Nirespectively) related by a 41 screw symmetry along the chain (see Figure 5.11).

One important difference is that CPM has 𝑆 = 1/2 whilst NPM, due to its different mag

netic ion, has a spin of 𝑆 = 1.

The compounds belong to the larger class of 1D spin chains, where we have one di

mensional arrangements of spins which are assumed to approximately interact only with

their nearest neighbours along the chain. One of the simplestmodels of this is theHeisen

berg isotropic antiferromagnetic 𝑆 = 1/2 chain (sometimes called the XXXmodel), which

has a Hamiltonian of the form

𝐻 = −𝐽
(

∑
𝑖

𝐒𝑖 ⋅ 𝐒𝑖+1
)

. (5.1)

This system can be solved exactly using the Bethe Ansatz [91], with the resulting ground

state being disordered and supporting fractionalised spinon excitations. There exist sev

eral good experimental realisations of this model (see [92, 93]), for example, copper

pyrazine dinitrate Cu(pyz)(NO3)2(pyz = pyrazine) [94], composed of 𝑆 = 1/2 copper

atoms linked by pyrazine rings and well-separated from other chains by the nitrates, fol

lows the predicted behaviour until very low temperatures.

Another interesting example of a spin chain is the staggered Cu(pym)(NO3)2(H2O)2

(pym = pyrimidine) [95], where we still have copper magnetic ions but the nitrogen

atoms in the rings are in a different position. This means that the copper ions are not

arranged linearly but in a zig-zag pattern, giving rise to a staggered internal field perpen

dicular to any applied field. This is due to the alternating 𝑔-tensors along the chain aswell
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as Dzyaloshinskii-Moriya (DM) interactions. The resulting system is well described by

the sine-Gordon quantum field theory, which predicts a soliton / anti-soliton excitation

spectrum and a field-dependent spin gap [96].

A question about a spin chain which μ+SR is especially well suited to answer is the

nature of the ground state and its magnetism. On theoretical grounds the ground state

should be disordered for both the linear and staggered chains, but the realisations de

scribed above are only quasi-1D due to a small but non-zero inter-chain coupling, which

dominates at very low temperatures and induces a magnetic order.

Ni Cu C N O

(a) CPM

(b) NPM

Figure 5.1 Diagram showing the atomic structure of both chiral com
pounds, ignoring all atoms between chains.

Thework in this chapter is based on data analysis and simulations performed bymyself at

the University of Durham. Themeasurements for CPMwere taken by Tom Lancaster and
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collaborators whilst the NPM ones were taken by myself with help from Thomas Hicken.

The analysis was also supported by neutron scattering measurements performed by Paul

Goddard and collaborators from theUniversity ofWarwick. Both sampleswere prepared

by Jamie Manson at Eastern Washington University.

5.1 Nickel chiral chain

5.1.1 Zero-field μ+SR measurements

To investigate the low-temperature behaviour and ground state magnetism of the NPM

spin chain a series of zero-field μ+SR measurements were performed using the FLAME

instrument at the Paul Scherrer Institut (PSI) facility in Switzerland on a polycrystalline

sample of [Ni(pym)(H2O)4]SO4(pym = pyrimidine). We started by cooling the sample

down to the lowest temperature reachable by the cryostat of around 20 mK and then took

a series of measurements at increasing temperatures in steps of 0.2 K. Each measurement

recorded 35 MEv in about 60 min, with the temperature changes taking 5 min between

them. An example of the measured spectra can be found in Figure 5.2.
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Figure 5.2 Example of ZF μ+SR
spectra measured on NPM at 𝑇 = 0.2K.
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We found evidence for a phase transition and that the spectra in the low-temperature

phase are well described by a sum of two oscillating relaxing components, giving a fitting

function of the form

𝐴(𝑡) = 𝐴R cos(𝜔𝑡 + 𝜙R) exp(−𝜆R𝑡)

+ 𝐴r cos(𝑎𝜔𝑡 + 𝜙r) exp(−𝜆r𝑡)

+ 𝐴l exp(−𝜆l𝑡)

+ 𝐴b , (5.2)

where we fix the values of 𝐴b = 8% and 𝜆l = 0.55µs–1. We also performed a global

fit across all temperatures for some of the parameters, obtaining 𝐴l = 2.92 ± 0.02%,

𝐴R = 2.23 ± 0.07%, 𝐴r = 11.1 ± 0.1%, 𝜙R = –31 ± 2° and 𝜙r = –20 ± 1°. The most im

portant parameter, which was also fitted globally, is 𝑎 = 2.66 ± 0.04 the ratio between the

two oscillating frequencies. The evolution of the remaining parameters as a function of

temperature can be found in Figure 5.3. The fact that the abovemodel fits the experimen

tal data below the phase transition suggests that we have an ordered magnetic structure

experienced by muons stopping at two different sites. We can characterise the transition

by fitting the two frequencies to a phenomenological model of the form

𝜔(𝑇) = 𝜔0[1 − ( 𝑇
𝑇N

)
𝛼
]
𝛽
, (5.3)

where all the parameters are kept equal between them expect 𝜔0. Since we have so few

points around the transition, we fix 𝛼 = 3 to obtain 𝑇N = 1.82±0.02K and 𝛽 = 0.22±0.07.

The value of 𝛽would usually give the value of the critical exponent around the transition,

but in this case the fit should be treated more as a parametrisation with little physical

meaning due to the small number of data points close to 𝑇N.

In conclusion, by fitting themeasurements of the ZF μ+SR spectra at different temper

atures we confirm that a phase transition from a magnetically ordered low-temperature

state to a more disordered state at higher temperatures exists, with the change happen

ing around 𝑇N = 1.82 ± 0.02K. The fitting of the two distinct oscillation frequencies will

also help us understand the nature of the magnetic ground state, since it suggests that
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Figure 5.3 Temperature dependence of parameters in fitting of low-temper
ature ZF measurements of NPM chain.

the muons in the system realise two distinct sites and that the ratio between the magnetic

fields at the muon sites is given by

𝐵1
𝐵2

= 𝜔1
𝜔2

= 𝑎 = 2.66 ± 0.04 , (5.4)

where we have assumed that the magnetic moments on all the nickel atoms in the chain

are equal. We can then compute a set of candidate muon sites by using DFT and simulate

the expected field at each site given different possible magnetic structures to determine

the most likely one.

5.1.2 Calculation of candidate muon sites

The muon sites in the NPM chain material were calculated by performing a series of

geometry optimisation calculations using the CASTEP program using the method de

scribed in Section 1.3 andmaking use of the ensemble DFT procedure mentioned in Sec

tion 1.2.4.3, since the faster density mixing method failed to converge for this system.

The MuFinder [54] program was used to generate the CASTEP input files required to
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run the calculations. A total of 30 initial muon sites were generated in a compromise be

tween computational cost and finding all low-energy sites, since the unit cell has a large

size (7.93Å× 7 . 93Å× 18 . 45Å). A summary of the DFT parameters can be found in

Table 5.1.

Quantity Value
Energy Cut-off 625.862 eV
MP k-point grid 2 × 2 × 1
Supercell 1 × 1 × 1
Functional LDA
Spin-polarized? No
Δ𝐸/𝑁ion 1.18×10−6 eV
||𝐅||max 0.026 eV/Å

‖

Δ𝐑
‖max 7.31×10−4 Å

Table 5.1 Theparameters ofDFTmuon
site calculations for NPM.
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Figure 5.4 The energy of candidate muon sites above the minimum one
against distance to the closest nickel atom.

After relaxation, we find a large set of possible sites, with the lowest energy ones having

settled close to the most electro-negative atoms in the unit cell (mainly Oatoms). This

means that we can classify the sites by the nearest element, giving three classes: O , Nand

C. We can then plot the energy of each structure against the distance to the nearest nickel
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atom (as a proxy for the distance from the chain), giving the plot found in Figure 5.4. The

lowest energy sites have the muon positioned close to one of the 4 oxygen ions around

the nickel ions in the chain (see Figure 5.11b), either along the Ni O bond or between

the oxygen atoms of two adjacent chains.

To summarise, by performing a series of DFT calculations we have found many can

didate sites, which is not unexpected considering the complexity of the atomic structure,

but can conclude that the most likely to be occupied by a muon (due to having the lowest

energies) are very close to the oxygen atoms in the structure.

5.1.3 Calculation of dipole fields

Once themuon sites have been simulatedwe can calculate the dipole field contribution at

each location for differentmagnetic structures, with the ultimate aim ofmatching a pair of

sites to the experimental results. The field at a given site can have multiple contributions

(see Section 1.1.3), but in this case the dominant term is the dipole interaction [17] with

the nickel electronic moments in the chain which is given by

𝐁(𝐫𝜇) = ∑
𝑖

3(𝐦𝑖 ⋅ 𝐫𝑖)𝐫𝑖
(𝑟𝑖)5

− 𝐦𝑖

(𝑟𝑖)3
, (5.5)

where 𝐫𝜇 is the muon position, 𝐫𝑖 = 𝐑𝑖 − 𝐫𝜇 is the vector to each of the magnetic atoms

and𝐦𝑖 is the magnetic moment of that atom. The sum is usually performed over all the

atoms in a sphere of comparable diameter to the super-cell, since the magnitude of the

field decays relatively quickly.

The most likely magnetic structure, as deduced by our collaborators at the University

of Warwick led by Dr Paul Goddard using neutron scattering measurements, is a canted

antiferromagnetic one. The spins point mainly along the length of the chain, but the mo

ments are anti-aligned both along it and between adjacent atoms in neighbouring chains

(like XZA in Figure 5.11). We also expect a degree of canting away from this axis, as

well as a quarter-turn rotation along each chain, to respect the four-fold screw symmetry

of the atomic structure. An example of the proposed magnetic structure can be found in

Figure 5.5. Themagnitude of the nickel magnetic moment was also estimated to be about

1.55 𝜇B.



Nickel chiral chain 70

Ni C N O

Figure 5.5 Candidate magnetic
structure of nickel chiral chain.
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Figure 5.6 The ratio between site fields and required magnetic moment for all pairs
of sites with different amounts of moment canting.

To perform the calculation of the dipole field the muESR library [57] was used. For
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each possible value of the canting angle the field was calculated at each candidate site

using a 40 × 40 × 40 super-cell and the distortions due to the presence of the muon in

the central cell were accounted for by adding the field due to a single distorted cell and

subtracting the same for an undistorted one, taking advantage of the fact that magnetic

fields combine linearly. We can then compare with the experimental results to deduce

the most likely pair of sites and the amount of canting in the magnetic structure.

The results of this calculation can be found in Figure 5.6, where each point represents

a pair of sites and all sites are considered. On the 𝑥-axis we have the ratio between the

dipole fields at the sites whilst on the 𝑦-axis we have the nickel magnetic moment that

would be required to match the observed frequencies in the muon asymmetry. The size

of each point is proportional to the moment canting in the structure whilst its colour

represents the higher single-point energy of the relaxed structures in the site pair above

the lowest energy structure among all the sites (as a measure of how likely a given pair

is to be realised).

Mu Ni S C N O

(a) Site 1 (b) Site 2

Figure 5.7 Location of most likely muon sites in nickel chiral chain.

From this analysis, we find that the most likely sites are between a nickel atom from the

chain and a nearby oxygen atom (see Figure 5.7), which are also the lowest energy sites in

Figure 5.4. The required nickelmoment for this pair is around 1.27 𝜇B, found by repeating

the calculation for a range of canting angles in steps of 2°. The sites also have energies

of 0 eV and 0.17 eV above the minimum, low enough that their realisation is plausible.

We also find that the canting angle of the magnetic structure can significantly affect the
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results, with the predicted angle being 34°, more than the 18° suggested by the neutron

measurements. The fact that the analysis only considered the dipole contribution to the

magnetic field should also be kept in mind, since including other terms might help to

match the experimental results more closely.

In conclusion, by combining a series of ZF μ+SR measurements with simulations of

possible muon sites and the magnetic field expected at each one from different magnetic

structures we can explain the observed results. We find that the candidate muon site

between the nickel and oxygen atoms in the chiral chain is realised and can confirm that

our measurements are consistent with the ferromagnetic canted structure suggested by

neutron scattering measurements.

5.2 Copper chiral chain

An interesting property of the CPM chiral spin chain under consideration, with formula

[Cu(pym)(H2O)4]SiF6 ⋅H2Oand spin 𝑆 = 1/2, is that unlike most other examples it re

mains disordered to the lowest measured temperatures of 20mK, as confirmed by ZF μ+

SR measurements [97]. Bulk magnetisation measurements 𝑀(𝐻) for both crystal and

power samples of this compound [98] also provide subtle evidence of a phase transition

starting at around 3 T, perhaps caused by the additional terms in the spin chain Hamil

tonian arising from the four-fold chiral symmetry. Our investigation on this compound

therefore focuses on whether the application of an external magnetic field serves to sta

bilise a magnetic order, and if so whether we can identify more than one ordered phase

with increasing field.

5.2.1 Transverse Field MuSR measurements

To investigate the response of the CPM compound to an external magnetic field we use

the transverse-field (TF) μ+SR technique, where a field is applied perpendicular to the

initial muon spin. This means that the spin will process around in the combined external

and local magnetic field until decay, giving a polarisation that approximates the cosine

transform of the field probability distribution 𝑝(𝐵) at the muon site

𝑃(𝑡) = ∫
∞

−∞
𝑝(𝐵) cos(𝛾𝜇𝐵𝑡) 𝑑𝐵 . (5.6)
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The measurements were taken using the HAL-9500 instrument from the Swiss Muon

Source (S𝜇S) at the Paul Scherrer Institut (PSI). After cooling down the polycrystalline

sample made by combining many small crystallites down to 100 mK, we performed a

scan in increasing magnetic field in intervals of 1 T, measuring 3.5 MEv per detector over

a period of 4 h for each point.
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Figure 5.8 Examples of TF μ+SR Fourier transformed polarisation
spectra of CPM.

The resulting spectra for the CPM chain after applying the Fourier transform contained a

single broad peak, as seen in Figure 5.8. As the external field increases the peaks become

broader and shift away from the applied field. We can quantify this change by fitting each

peak to a Lorentzian curve of the form

�̂�(𝐵) = 𝐴𝑤2

[(𝐵 − 𝐵0)
2 + 𝑤2]

+ 𝐴0 , (5.7)

where 𝐴 is the height of the peak, 𝑤 its width, 𝐵0 is center and 𝐴0 a baseline. Since

the external field 𝐵ext is much higher than all the internal fields at the muon site it will

dominate, and so the peak location 𝐵0will be at a small offset away from it.

As shown in Figure 5.9, after fitting the measurements to this model we find that as

a function of the external field the field distribution gets wider and shifts away from the

applied field. We also observe a discontinuity in the 𝐵0 parameter around 𝐵 = 3Twhich
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provides evidence of a field-induced phase transition. We can then perform a series of

simulations to explain the results, concluding that the most likely explanation is the the

system remains disordered below the transition, but then orders into a commensurate

magnetic structure above the phase transition.
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Figure 5.9 Parameters of fit to Lorentzian model of CPM TF μ+SR spec
tra peaks.

5.2.2 DFT calculation of muon sites

Following a procedure identical to the one presented in Section 5.1.2, the muon sites for

the CPM compound we calculated by randomly selecting initial candidate positions and

then performing a structural relaxation using DFT. A total of 45 initial muon sites were

generated in a compromise between computational cost and finding all low-energy sites,

since the unit cell has a large size (11.2Å×11 .2Å×19 .3Å). A summary of the parameters

used in the DFT calculations can be found in Table 5.2.

After the geometry optimisationwe find thatmostmuons appear to have relaxed from

their random positions into positions close to an atom, although the details are not very

clear due to the complexity of the structure and large number of atoms. We therefore in

vestigate the character of each site by considering the distance to its nearest atomic neigh

bours instead, focusing on thosewith a value between 1–2Å and ignoring hydrogen. This

reveals that each site is close to two atoms and that the muon appears to have settled in

the middle of the bond between them (see Figure 5.10). An interesting observation is

that for the most common O F sites the presence of the muon distorts the unit cell by

stretching the bond between the associated oxygen and a nearby copper atom, breaking

the symmetry around the only magnetic ion.
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Figure 5.10 The distances from themuon site to the two nearest atoms
(excluding hydrogen).

Quantity Value
Energy Cut-off 544.23 eV
MP k-point grid 1 × 1 × 1
Supercell 1 × 1 × 1
Functional LDA
Spin-polarized? No
Δ𝐸/𝑁ion 1.73×10−6 eV
||𝐅||max 0.043 eV/Å

‖

Δ𝐑
‖max 5.02×10−4 Å

Table 5.2 Parameters of DFT muon
site calculations for CPM.

In summary, after performing a series of DFT calculations we have found a large num

ber of possiblemuon sites in the CPMcompound. This is not unexpected and very similar

to the analogous NPM chiral chain (see Figure 5.4), with the lowest energy, and so most

likely, sites located close to the oxygen atoms around the magnetic ion (CuandNirespec

tively). An interesting difference is that whilst the sites that were ultimately realised in

NPMhad themuon along theNi O bond, with CPMwe find that the analogous low-en

ergy site is instead on the other side of the oxygen atom, perhaps attracted by the nearby

electro-negative Fatom. The closeness to the fluorine nuclei is expected, since in a system



Copper chiral chain 76

with them this is usually where the muon sites will be found, a fact that can usually be

identified from a F μ signal in the ZF asymmetry 𝐴(𝑡) (see [25,26]).

5.2.3 Dipole fields with possible magnetic structures

Once we have determined the possible muon sites in the CPM compound, the next step is

to calculate the magnetic field at each muon position from the copper magnetic moments

in the compound. The exact arrangement of the copper spins is not known, but a series

of possible structures can be found in Figure 5.11, where we classify them according to

the plane along which the spins lie (XZ or XY) and the relative orientation between spins

in adjacent chains (ferromagnetic or antiferromagnetic). This means that we have four

possible commensurate structures, two where the spins are aligned along the length of

the chain and the spins are either parallel (XZF) or anti-parallel (XZA) between adjacent

chains and twowhere the spins are perpendicular to the chain direction and the spins are

again either parallel (XYF) or anti-parallel (XYA). In all cases adjacent spins in the same

chain are anti-parallel.

Figure 5.11 Possible magnetic structures when a magnetic field is applied
perpendicular to the chiral chain [99].

We can then calculate the dipole field due to the commensuratemagnetic structures in the

same manner as with the NPM chiral chain (see Section 5.1.3) by computing a sum over

the magnetic moments in a large super-cell of the compound. From neutron scattering

measurements [100], we expect that above the transition the compound adopts the XYF

structure and so a possibility that we considered is that below 3 T we have an incommen

surate helix where the nearest neighbors along the chain are rotated by 180° + 𝜖 to give a

structure which is a small perturbation away from the XYF one. The magnetic moments
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of the incommensurate helical structure [101] can be calculated by first computing the

Fourier components 𝐒𝜈𝐤which reproduce the XYFmagnetic moments𝐦𝑛𝜈 at atom 𝜈 and

unit cell 𝑛 as a helix

𝐦𝑛𝜈 = ∑
𝐤

𝐒𝜈𝐤 exp[−𝑖(𝐤 ⋅ 𝐑𝑛)] = cos(𝐤 ⋅ 𝐑𝑛 + 𝜙𝑛)𝐚 + sin(𝐤 ⋅ 𝐑𝑛 + 𝜙𝑛)𝐛 , (5.8)

where 𝐤 is a propagation vector which describes the direction and periodicity of the helix

and the vectors 𝐚 and 𝐛 define the axis of its ellipse (see [102] for details). For the case

of the chiral chain in the XYF arrangement we can choose the 𝑥 and 𝑦 axis as the ellipse

vectors and 𝐤 = (0, 0, 4𝜋) as the propagation vector, adjusting the phases to match the

spin directions in the unit cell. To then obtain a small helical perturbation we just need

to increase the magnitude of the propagation vector to 𝑘 + Δ𝑘. For the rest of this chapter

unless stated otherwise calculations involving the helical magnetic structure use a value

of Δ𝑘 = 2𝜋 × 0.005, which corresponds to a canting angle of 𝜖 = 0.45°. This value was

chosen as a placeholder until the effect of this parameter can be quantified better when

fitting to experimental data.

For the incommensurate case of the helical structure the dipole field was calculated

using the method described in the supplemental material of [103] on a larger super-cell

comprising 100 × 100 × 100 cells. In this case the result will not be a single magnetic field

vector but a set of field vectors with magnitudes expected to follow a distribution of the

form (see [104]):

𝑝(𝐵) = 2
𝜋

[

𝐵
√𝐵2 − (𝐵min)2√(𝐵max)2 − 𝐵2

]

, (5.9)

where 𝐵min and 𝐵min are the minimum and maximum field magnitudes respectively.

An example of one such distribution as compared to a fit of the model can be found in

Figure 5.12, showing excellent agreement.

We can use the fact that the helical distribution is characterised only by its limits to

condense all the dipole field results into Figure 5.13. Here we see the magnetic fields

calculated at each of the muon sites (differentiated by the energy excess calculated by

CASTEP over the site with the lowest energy) for all the commensurate structures (rep

resented by triangles with different directions) and the limits of the helical field distribu

tion. Some features of note are that for the low-energy sites which are likely to be realised



Copper chiral chain 78

20 30 40 50 60
0.00

0.05

0.10

0.15

0.20

Magnetic Field (mT)

Pr
ob
ab
ili
ty

Figure 5.12 Comparison of the theoretical dis
tribution (solid line) and the sampled field his
togram.

the commensurate magnetic fields are very similar, with some exceptions like the O F

and O O sites between 0.1 eV< 𝐸 < 0 . 2 eV. For these sites we also find that the helical

distribution is consistently higher than the commensurate fields, which might provide a

way of distinguishing the two possible magnetic structures in experimental data. Finally,

to investigate the effect of the deviation of the helix from the XYF structure we can con

sider the field distribution for different values of Δ𝑘 as shown in Figure 5.14 for the O F

sites, where we see that the distribution seems to oscillate between two forms. A similar

effect is observed in the distribution at the other muon site types.

5.2.4 Polycrystalline sample in magnetic field

Having calculated the dipole field at each of the muon sites we can now simulate the

muon polarisation 𝑃𝑧(𝑡) that one would expect to measure from a muon at such a site. In

the simple case of a zero field experiment this is given by

𝑃𝑧(𝑡) = ∑
𝑖

𝑝𝑖 ×
1
3 + 2

3 cos(𝛾𝜇𝐵𝑖𝑡) exp
[

−(ΔN𝑡)2

2
]

, (5.10)

where 𝑝𝑖 is the probability of occupying a site, 𝐵𝑖 is the field magnitude there and ΔN is a

phenomenological termwhich smears out the signal. The smearing can be understood as

arising mainly from dipolar interactions between the muon and nuclear moments in the
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Figure 5.13 Minimal and maximal fields in the helical structure distribution
(line) compared to static values for the commensurate structures (triangles) for
a subset of sites with 𝐸 < 0.6 eV.
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Figure 5.14 The dependence of 𝑘 = 𝑘0 + Δ𝑘
for the O F sites with 𝐸 < 0.2 eV.

structure and will be approximated using a Van Vleck sum [105]. To better visualise the
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resulting polarisation signals we consider the field-dependent polarisation spectrum by

taking the Fourier transform of 𝑃(𝑡) and using the fact that 𝑓 = 𝛾𝜇𝐵/2𝜋. Since the signal

is a linear combination of all the static field polarisations in the sample, the relative am

plitude of the frequency components will be approximately proportional to the magnetic

field distribution over all the muon sites.

For the commensuratemagnetic structure we have no information about themagnetic

field at the muon sites realised experimentally unlike in the NPM compound because no

phase transition to an orderedmagnetic structurewas observed at low temperatures in ZF

μ+SRmeasurements. We therefore assume an equal probability for each of the calculated

sites. Since the initial positions were randomly distributed in the unit cell the calculated

sites can be taken to be independent samples from the distribution of possiblemuon sites,

with the caveat that higher energy sites are less likely to be realised - which we model by

considering only sites below a certain cutoff energy 𝐸𝑐. This assumption is supported by

the fact that low-energy sites aremore common andwe expect that sites in the O F bond

will dominate.

An example of the spectrum averaged over all the muon sites can be found in Fig

ure 5.15. The different structures produce fairly similar results, which is to be expected

as they only differ by the direction of a few spins, but the smearing parameter ΔN has

a large effect on the amount of detail visible, and so the results of any comparison with

experimental data. The value used was chosen on the basis of the Van Vleck sum for the

second moment of the field distribution due to dipole contributions from nuclear mo

ments in a polycrystalline sample [12], given by

ΔN =
√

4
15(

𝜇0
4𝜋)

2
ℏ2(𝛾𝜇)

2

[

∑
𝑖

(𝛾𝑖)
2 𝐼𝑖(𝐼𝑖 + 1)
(𝑟𝑖)6 ]

= 0.271MHz , (5.11)

where the summation is performed over a large super-cell of the copper (𝐼Cu = 3/2 and

𝛾Cu = 70.965×106 rad/T⋅s) and fluorine ions (𝐼F = 1/2 and 𝛾F = 251.803×106 rad/T⋅s),

each a distance 𝑟𝑖 from the site. Since we also have a large number of possible sites with

different muon positions, we average the resulting value of ΔN over the lowest energy

sites (𝐸 < 0.05 eV), although the values for the different sites are very similar - dropping

to 0.196 MHz when 𝐸 < 1 eV. We suspect that our calculation of ΔN is overestimating
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the experimental value, since the moments are not truly randomised, some degree of

entanglement is expected between the nuclear moments.

A similar calculation of the averaged zero-field spectra for the helical incommensurate

structure can also be performed, although we must now average over both the magnetic

field values at each site (see Figure 5.12) and the different muon sites, which are still

assumed to be equiprobable. The results are shown in Figure 5.16, which also contains a

comparison with the XYF magnetic structure, which it resembles when Δ𝑘 = 0.
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Figure 5.15 Averaged zero-field spectra for different commensurate magnetic
structures with 𝐸 < 0.2 eV.

To simulate the TF μ+SR experimental results we need to calculate the polarisation

in the non-zero field case for a polycrystalline sample in the transverse field geometry,

which we can do by evaluating an integral over the surface of a sphere. We start with
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Figure 5.16 Comparison of spectra for commensurate and
helical magnetic structure, averaged over all muon sites with
𝐸 < 0.2 eV.

an expression for the time evolution of a single muon spin subject to a magnetic field 𝐁,

obtained by solving the Larmor equation [102], of the form

𝑃𝑆
𝑧(𝐁, 𝑡) = (𝐁 ⋅ ̂𝐳

||𝐁|| )
2
+ [1 − (𝐁 ⋅ ̂𝐳

||𝐁|| )
2
] cos(𝛾𝜇||𝐁|| 𝑡) , (5.12)

where we apply the external field along the 𝑥-axis and measure along the 𝑧-axis. The

field at each site is then given by 𝐁𝑖 = 𝐁ext + 𝐛𝑖, where the {𝐛𝑖} are internal site fields each

observed with probability 𝑝𝑖 and 1 ≤ 𝑖 ≤ 𝑁𝐵. Note that only the internal field contributes

to the numerator (𝐁𝑖 ⋅ ̂𝐳 = 𝐛𝑖 ⋅ ̂𝐳). Since the sample is polycrystalline, we consider only the

magnitudes of the internal fields 𝑏𝑖 = ‖

𝐛𝑖‖ andmust integrate over all possible orientations

with respect to the measurement axis, giving

𝑃𝑧(𝑡) = ∑
𝑖
(

𝑝𝑖
4𝜋)[∫

𝕊2
𝑃𝑆
𝑧(𝑏𝑖, ̂𝐫, 𝑡) 𝑑Ω] , (5.13)

where we integrate over the unit sphere to ensure that all possible directions of the inter

nal field are considered6, so that we have 𝑑Ω = sin 𝜃 𝑑𝜃 𝑑𝜙 in spherical coordinates. We

also define the radial unit vector to each point on the surface of the sphere as ̂𝐫 ∈ 𝕊2 =

{𝐱 ∈ ℝ3 : ||𝐱|| = 1}. The integral can then be approximated using the Lebedev quadrature

6 The denominator is explained by the fact that we have ∫𝑑Ω = 4𝜋.
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rule [106], where we sum the values of the integral at a finite set of points { ̂𝐫𝑗} ⊂ 𝕊2with

weights 𝑤𝑗 and 1 ≤ 𝑗 ≤ 𝑁𝐷. This means that our expression for the polarisation becomes

𝑃𝑧(𝑡) =
𝑁𝐵

∑
𝑖=1

𝑁𝐷

∑
𝑗=1

(
𝑝𝑖𝑤𝑗
4𝜋 )𝑃𝑆

𝑧(𝑏𝑖, ̂𝐫𝑖, 𝑡) . (5.14)

We can then substitute our expression for the single muon polarisation 𝑃𝑆
𝑧 and include a

Gaussian envelope term to obtain our final expression

𝑃𝑧(𝑡) =
𝑁𝐵

∑
𝑖=1

𝑁𝐷

∑
𝑗=1

(
𝑝𝑖𝑤𝑗
4𝜋 )

[

(
𝑓𝑖𝑗
𝐹𝑖𝑗

)
2
+

[

1 − (
𝑓𝑖𝑗
𝐹𝑖𝑗

)
2

]

cos(𝛾𝜇𝐹𝑖𝑗𝑡)
]

exp[(Δ𝑁)2 𝑡2
2 ] , (5.15)

where 𝑓𝑖𝑗 = 𝑏𝑖( ̂𝐫𝑗 ⋅ ̂𝐳) and 𝐹𝑖𝑗 =
‖

𝐵ext ̂𝐱+𝑏𝑖 ̂𝐫 𝑗
‖

= √𝐵2
ext + 𝑏2𝑖 + 2𝐵ext𝑏𝑖( ̂𝐫 ⋅ ̂𝐱). To comparemore

easily with the experimental measurements, we can finally take the Fourier transform of

our polarisation 𝑃𝑧(𝑡) to obtain a field distribution using 𝜔 = 𝛾𝜇𝐵, giving a spectra with

a single well-defined peak as expected.
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Figure 5.17 Comparison of simulated and experimental spectra at 𝐵 = 4T
when fitting μCu to match the (a) peak offset and (b) peak width.

We can thenfit the simulation results to a Lorentzian function as described inSection 5.2.1,

giving two main parameters: the width of the distribution 𝑤 and its offset from the ap

plied external field Δ𝐵 = 𝐵0 − 𝐵ext. An example of a fitted simulated distribution as

compared to experimental data can be found in Figure 5.17.
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Figure 5.18 Convergence of peak width fitting against the number
of timesteps (𝑁𝑇) and directions considered (𝑁𝐷) for 𝐵 = 4T.

In the simulation of the spectra we are left with a small set of parameters: the smearing

parameter ΔN which was approximated from the atomic structure by a Van Vleck sum

but is expected to be lower experimentally, the cut-off energy 𝐸c belowwhichwe consider

candidate muon sites to be realised, the degree of canting Δ𝑘 in the case where the sys

tem adopts an incommensurate XYH magnetic structure below the transition and most

important of all the magnitude of the copper magnetic moments in the structure μCu. For

a bare copper atom the magnetic moment is 1.0 𝜇B, but we expect spin chain fluctuations

to reduce it greatly - which is one of the reasons whymuons are well suited to investigate

systems of this type.

We proceed by considering μCu as dependent on the applied external field 𝐵ext and

extract its value by fitting its value to experimental data by matching the width of the

Lorentzian peak 𝑤 (see Figure 5.19). We also considered fitting to the other parameter

of the Lorentzian in the form of the offset from the applied field Δ𝐵, as shown in Fig

ure 5.20, but found that this produced very unrealistic values of the width and magnetic

moment. The fact that when fitting to the width the resulting values of the offset are

smaller than observed experimentally suggests that this shift is caused by an effect that

is not being taken into account, perhaps a macroscopic field like the Lorentz field or the
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demagnetising field. The simulations also depend on some computational parameters

that had to be converged, namely the number of time-steps (𝑁𝑇 = 197) and the number

of directions to consider when simulating the polycrystalline sample (𝑁𝐷 = 2030), where

the dependence can be found in Figure 5.18.
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Figure 5.19 Result of fitting simulatedTFμ+SR to experimental peakwidths
𝑤 using 𝐸𝑐 = ∞ and the XYF magnetic structure, showing a comparison of
peak shift Δ𝐵 (other parameter) with experiment (left) and fitted value of
the copper moment μCu (right).
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Figure 5.20 Result of unsuccessfully fitting simulated TF μ+SR to experimen
tal peak shift Δ𝐵 using 𝐸𝑐 = ∞ and the XYF magnetic structure, showing a
comparison of peakwidth𝑤 (other parameter) with experiment (left) and un
realistic value of the copper moment μCu (right).
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We proceed by considering the effect of different magnetic structures and values of the

cut-off energy 𝐸𝑐, the results of which can be found in Figure 5.21. All the structures pro

duce similar and reasonable values of the copper moments but we observe a difference

between the ferromagnetic and antiferromagnetic structures, the latter producing lower

values of μCu for the higher cut-off energies. The results also imply that if the material

adopts the XYF structure as suggested by neutron measurements even a relatively high

value of 𝐸𝑐 = 1 eV is acceptable, since the magnetic moment values increase and then

decrease with the cut-off. Realistically, we expect a value of 𝐸𝑐 < 0.1 eV to be most likely,

with a small number of the O F class of muon sites being realised. Similarly, repeat

ing the calculation for the XYF structure but for increasing values of ΔN, as shown in

Figure 5.22, we find that values decrease consistently, with the third panel showing the

originally calculated value of ΔN.
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Figure 5.21 Fitted copper magnetic moment as a function of external magnetic
field for possible magnetic structures and cut-off site energies 𝐸𝑐.
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Figure 5.22 Fitted coppermagneticmoment as a function of externalmag
netic field for different values of the nuclear smearing parameter ΔN and the
cut-off site energy 𝐸𝑐.

We also considered the possibility that for 𝐵ext < 3T the system adopts an incommensu

rate XYH helical magnetic structure, where the canting angle between spins in the helix

is represented by a small change in the propagation vector (0, 0, 𝑘0 + Δ𝑘) and 𝑘0 = 4𝜋

corresponds to the XYF commensurate structure. The result of this calculation can be

found in Figure 5.23, where each panel shows the change in the fitted moment with the

propagation vector change Δ𝑘 for different values of the applied external field. We find

that μCu is periodic with the helix angle and mostly independent of the energy cutoff 𝐸𝑐,

although higher values seem to increase the value slightly.

In conclusion, we can confirm from our TF μ+SR measurements that the CPM spin

chain undergoes a transition at 𝐵ext = 3T as suspected from magnetometry measure

ments. To better understand our results we performed a series of DFT calculations and

found that the sites most likely to be realised belong to the O F class, positioned on the

other side of the oxygen nuclei where the muon was found in the analogous NPM chain,
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Figure 5.23 Fitted coppermagneticmoment as a function of
external magnetic field for possible magnetic structures and
cut-off site energies 𝐸𝑐.

perhaps attracted by the nearby fluorine atom. We then calculated the dipole magnetic

field at each site and used the results to simulate the spectra for the different magnetic

structures. The results of this calculation confirm that the proposed XYF magnetic struc

ture, considered most likely from neutron scattering measurements, is consistent with

ourmuonmeasurements, althoughwewere unable to discount any of the other proposed

structures.

In our simulations we also fit the peak width from the experimental data by assum

ing a field dependent copper magnetic moment, giving a reasonable value ranging from

0.1 𝜇B to 0.5 𝜇B depending on the value of the site energy cutoff 𝐸𝑐, which limits the cal

culation to the lower energy sites. From similar materials and the results obtained for the

NPM chain we expect that only the low energy O F are experimentally realised, which

requires a value of 𝐸𝑐 = 0.1 eV, although increasing the value to 𝐸𝑐 = 1 eV does not change
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the results significantly. Although fitting of the experimental data to the XYF structure

provided values for μCu below the transition we expect that the disorder observed with

ZF μ+SR persists at least in part up to 3 T, when the system adopts the commensurate

XYF magnetic structure. We also considered the possibility that an incommensurate he

lical magnetic structure representing a small helical perturbation from the XYF structure

occurs below the transition and our simulations don't rule out this possibility, but since

we observe a single transition a disordered low-field phase is more likely.

5.3 Further Work

A series of ZF and TF μ+SRmeasurements were performed on the novel chiral spin chain

materials NPM and CPM respectively. For the nickel chain magnetic order was observed

below 𝑇N = 1.82 ± 0.02K and the two muon site magnetic fields extracted from the ZF

spectra were used to identify the most likely muon sites and confirm the canted AFM

magnetic structure suggested by neutron scattering measurements, giving an estimate of

the Nimoment magnitude and canting angle. Similarly, we found evidence of a phase

transition under external applied field in the CPM compound at 𝐵ext = 3T in the TF

measurements and used simulations of the results spectra to confirm that the suggested

orderedmagnetic structure is compatible with our results, giving a field dependent value

of the copper magnetic moment. Possible avenues of further work include a more accu

rate calculation of the magnetic field at a given muon site for both NPM and CPM, since

using only the dominant dipole field term did not reproduce the phase transition in the

CPM simulations, and the development of a more efficient method of simulating the TF

polarisation spectra for any polycrystalline sample as described in Appendix B which

would make this type of analysis and fitting easier.
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Chapter 6
Quantum tunnelling between muon sites in
methylated benzene crystals

This chapter presents some work to simulate the behaviour of muons in crystalline ben

zene and its methylated analogues (which will collectively be referred to as MB crystals,

even if benzene itself is not methylated), with a focus on possible quantum tunnelling

between the different sites. This has long been known to be a considerable contribution

to the movement of muons between sites at low temperatures in some systems [107,108]

and attempts have beenmade to simulate the process with ab initio approaches [7,59,109].

These simulations can then be used to better understand the results of μ+SR experiments

and increase the amount of information that can be extracted from them.

An issue with simulating muon quantum tunnelling in benzene (C6H6) is that the

problem is under-constrained, there are many possible sites with similar energies and

so many possible transitions. We instead start by considering methylated benzene crys

tals, where we add methyl groups (CH3) around the ring (see Figure 6.1). This change

will increase the distance between the benzene rings (see Table 6.1)and disallow some

muon sites (on the carbon atoms in the ring where the methyl group was added), and so

possible transitions, simplifying the problem [110–112].

(a) durene (b) o-xylene (c) m-xylene (d) p-xylene

Figure 6.1 Diagrams showing the positioning of the CH3groups in the
MB compounds.

Benzene crystallises into a solid below 279 K, adopting an orthorhombic configuration

with space group 𝑃𝑏𝑐𝑎 known as Phase I which is known to persist down temperatures

of 4 K where 𝑎 = 7.35Å, 𝑏 = 9.36Å and 𝑐 = 6.69Å [113]. Each unit cell contains four
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benzene molecules oriented at an angle of approximately 45° to the 𝑎 and 𝑐-axis. When

considering tunnelling between sites, if we focus on a single ring we have groups of four

parallel rings with different orientations and at increasing distances, as can be seen in

Figure 6.2. We would expect direct transitions from the central ring to another only for

𝑁 = 1 or 2, since the distance to further benzene molecules is too large.

(a) 𝑁 = 1 (b) 𝑁 = 2 (c) 𝑁 = 3

Figure 6.2 Diagram showing the arrangement of the benzene rings in a crystal, with
an increasing number of nearest neighbours included around the central ring which
is facing the observer.

Name Group 𝑎 (Å) 𝑏 (Å) 𝑐 (Å) 𝛽 (°) 𝑉 (Å3) 𝑑min (Å)
benzene Pbca 7.35 9.36 6.69 90.0 460.80 1.66
durene P21/c 11.51 5.58 6.82 112.89 403.26 2.63
m-xylene Pbca 10.16 7.46 16.88 90.0 1279.72 1.66
o-xylene P21/a 12.51 6.07 8.81 108.68 634.36 1.82
p-xylene P21/n 5.73 4.95 11.14 90.0 310.52 1.60

Table 6.1 The crystal space group and unit cell parameters for
the different methylated benzene compounds, as well as the min
imum site distance 𝑑min which greatly influences the degree of
quantum tunnelling.

The work in this chapter is based on simulations performed bymyself at the University of

Durham. The low-temperature ALC spectra for the differentMB crystals used to evaluate

the accuracy of the simulations were measured and analysed by Francis Pratt and collab

orators working at the ISIS Neutron and Muon Source, which is part of the Rutherford

Appleton Laboratory (RAL). The initial files describing the atomic structure of the MB

compounds used in the DFT simulations were provided by Leandro Liborio working at

the Scientific Computing Department also associated with RAL.
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6.1 Simulation of muon sites

We start by calculating the muon sites in the different crystalline benzene compounds by

performing a series of geometry optimisation calculations using the CASTEP program,

as described in Section 1.3. Instead of using random initial positions as in other chapters,

the muon site candidates were generated by considering all Catoms in the structure with

available covalent bonding positions (and so excluding the methyl groups). The possi

ble muon sites were then reduced by considering the symmetries of the crystal and the

muon initially positioned to share a carbon atom with a proton. The two particles were

placed with an angle of 100° between them and a distance of 1 Å from the carbon atom.

Additionally, we identified all other sites that a muon could tunnel to, with a distance

limit of 4 Å, to be used in the quantum tunnelling calculation discussed in Section 6.2. A

summary of the DFT parameters for the geometry optimisation calculations for the dif

ferent systems can be found in Table 6.2. In general, we found that for all theMB crystals,

the muons were already approximately positioned at the muon sites and so the structure

changed very little with the geometry optimisation.

Quantity
System

benzene durene m-xylene o-xylene p-xylene
Number of sites 21 3 21 19 11
Energy cut-off (eV) 700.00 700.00 700.00 700.00 700.00
MP k-point grid 4 × 3 × 4 2 × 5 × 3 3 × 4 × 2 1 × 3 × 1 3 × 6 × 3
Cell volume (Å3) 491.68 821.39 1279.71 634.36 621.05

‖

Δ𝐑
‖max (Å) 5.77 6.72 7.48 6.62 7.35

||𝐅||max (Å/eV) 7.91 7.65 6.18 7.86 7.93
Δ𝐸/𝑁ion (eV) 2.84 3.56 1.45 3.05 2.59

Table 6.2 Parameters ofDFTmuon site calculations for differentmethy
lated benzene crystals.

6.2 Simulation of quantum tunnelling

In theory, the method described in Section 6.3 can be used to simulate the ALC spectra

for the different methylated benzene crystals by calculating the hyperfine interaction ex

perienced at each muon site. Each site gives a set of resonances in the polarisation as the

applied field is varied, so that the different contributions can be averaged to obtain the
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Mu C H

(a) durene (b) m-xylene

Figure 6.3 Examples of muon sites
in methylated benzene compounds

full spectra. The main complication with this method is that the quantum nature of the

muon is not taken into account. A range of different quantum effects are possible, but in

this chapter we will focus on the case of quantum delocalisation between classical sites,

which happens when the muon ZPE is comparable to the barrier energy between sites.

The simple approach that we used to investigate this effect was to estimate the transition

rate 𝑘 between sites and average the hyperfine tensors at two sites when the value was

greater than a cutoff 𝑘𝑐, under the assumption that the muon would constantly tunnel

between the sites during the experimental measurement.

To estimate the transition rate between sites we make use of the Wentzel-Kramers-

Brillouin (WKB) method, which gives a semi-classical approximate solution to the 1D

time-independent Schrödinger equation by assuming that the wavefunction is a complex

exponential with a slowly varying amplitude and phase (i.e. 𝜓(𝑥) = exp(𝑖𝑆(𝑥)/ℏ)where

𝑆 is a complex function). This means that we need to first approximate the 1D potential

barrier between the sites and the ZPE of the muon at each site, which was calculated

using a phonon DFT calculation and the method described in Section 1.3.1.1.

6.2.1 Simulation of the energy barrier

We start bymaking the simplifying assumption that the transition of amuon between two

sites in the crystal can be described by a 1D potential 𝑉(𝑥) parameterised by a reaction
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coordinate that interpolates between the sites. In practical terms, this means that we use

the transition state search (TSS)method (see Section 1.2.5.3) as implemented in CASTEP

to calculate the energy barrier between all pairs of sites. For simplicity the linear synchro

nous transit (LST) method, where atom positions are linearly interpolated between the

two configurations, was used. The method then performs a series of energy calculations

along this path to locate the maximum barrier height and determine the general shape of

the potential.

A complication that arises when performing these calculations is that the two struc

tures being interpolated are the result of a previous geometry optimisation with subtly

different atomic positions. We therefore need to match the atoms in the two unit cells

whilst minimising the total pairwise distance, a task known as the linear sum assignment

problem. We define a 𝑁 × 𝑁 cost matrix 𝐶𝑖𝑗 containing the distance between atoms 𝑖

and 𝑗 in the two structures whilst taking periodic boundary conditions into account. The

distance between atoms of different species is infinite by definition, since they can't be

assigned to each other. Our task is then to find a Boolean matrix 𝑋𝑖𝑗 ∈ {0, 1} where a

given entry is non-zero only when atoms 𝑖 and 𝑗 are assigned to each other, so that the

minimal total distance is then given by

min
(

∑
𝑖

∑
𝑗

𝐶𝑖𝑗𝑋𝑖𝑗
)

. (6.1)

An implementation of the algorithm described by Crouse [114] was used to obtain this

optimal assignment and so successfully calculate the potential barriers between sites.

𝑥1 𝑥2

𝑦1

𝑦2

𝑥

𝑦

𝑘1

𝑘2

Figure 6.4 Part of piecewise potential well interpolation show
ing single quintic polynomial.
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Since we also need to perform a phonon calculation to estimate the ZPE at each site, we

can improve our estimate of the potential by using piecewise polynomial interpolation,

allowing us to also account for the shape of the potential minima around the muon sites.

We proceed by splitting the barrier at its extrema (minima and maxima), which in this

case always gives a double well with four intervals: two quadratic sections at the end

points representing the walls and two quintic polynomials between them and the barrier

maxima. We construct the quintic intermediate sections 𝑓 (𝑥) by using Hermite interpo

lation, which allows us to specify the value of the function and its first two derivatives at

the endpoints 𝑓 (𝑥𝑖) = 𝑦𝑖, 𝑓 ′(𝑥𝑖) = 0 and 𝑓 ″(𝑥𝑖) = 𝑘𝑖 as shown in Figure 6.4.

This means that to construct our potential we need to calculate the second derivatives

of the potential at the extrema. For the maximum, we can fit a quadratic function to the

intermediate barrier points found during the TSS search for the barriermaximumat 𝑥max,

limited to
|

𝑥− 𝑥𝑚𝑎𝑥| < 0.25 to exclude points that are close to the muon sites. On the other

hand, to approximate the shape of the minimum we can use the result of the phonon

calculation at the Γ point, performing a series of single-point energy DFT calculations

with the atoms perturbed along the three muonmode eigenvectors. This gives us an idea

of the anharmonicity of each minimum and can be used to fit a 3D quadratic polynomial

𝐸(𝐫𝜇) describing the energy as a function of the muon position, which can then be used

to calculate the second derivative along the direction between two muon sites. A full

description of the procedure used to construct the interpolated barrier can be found in

Appendix C.

Repeating the procedure described above for all pairs of muon sites maximum dis

tance of 𝑑pair < 4Åwe obtain a series of barriers, as shown in Figure 6.5. We find a large

number of possible site transitions 𝑁b and a range of site distances 𝑑pair but with very

similar shapes. All barriers are nearly symmetric double potential wells, with the two

endpoints 𝑥𝑖 having very similar energies and a central peak at 𝑥max. We find that most

barriers have a height 𝑉max = 𝑉(𝑥max) between 2–3 eV, but identify a class with a higher

𝑉max ∼ 4 eVwhich seems to correspond to the case where the muon crosses the plane of

a benzene molecule between two sites.
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(c) m-xylene (𝑁b = 20)
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(d) o-xylene (𝑁b = 27)
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(e) p-xylene (𝑁b = 8)

Figure 6.5 Calculatedpotential barriers for all transitions betweenmuon
sites in all methylated benzene crystals centred on the maximum. We in
dicate the number of barriers 𝑁b calculated in each case and show both
the points foundduring the TSS calculation and the piecewise polynomial
fitted to them.
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6.2.2 WKB Approximation

Aderivation of theWKBapproximation and its application to quantum tunnelling through

a potential barrier can be found in any undergraduate quantummechanics textbook (see

for example [115]). Unfortunately, in most cases the simplifying assumption of verti

cal barrier walls is made, since the approximation breaks down when the barrier energy

matches that of the particle 𝐸 = 𝑉 and the wavefunction no longer varies slowly. This

issue can be resolved by using connection formulas as explained inAppendix D and so the

transition probability across a smooth potential barrier 𝑉(𝑥) for a particle with energy 𝐸

is given by

𝑇 =
exp(−2𝛾)

[1 − 1
4 exp(−2𝛾)]

2 where 𝛾 = √2𝑚
ℏ2 ∫

̃𝑥2

̃𝑥1

√𝑉(𝑥) − 𝐸 𝑑𝑥 . (6.2)

Note that we integrate between the classical turning points 𝑥1 < ̃𝑥1 < ̃𝑥2 < 𝑥2which occur

when 𝑉( ̃𝑥𝑖) = 𝐸, meaning that the potential energy matches the total energy. This means

that the muon transition rate between sites is approximately

𝑘 = ( 𝐸
2𝜋ℏ) × 𝑇 , (6.3)

which can be understood as the particle attempting to tunnelwith frequency 𝑓 = 𝐸/(2𝜋ℏ)

and succeeding with probability 𝑇, by analogy with Gamow's theory of alpha decay

[116]. For our calculations, we assumed that the muon at each site before a transition has

energy obtained using the harmonic approximation by averaging the frequencies of the

three muon phonon modes as described in Section 1.3.1.1.

Performing this calculation for the possible site transitions from the previous section,

we obtain a range of rate values, shown as a function of the barrier distance 𝑑pair and

height𝑉max in Figure 6.6. A logarithmic scalewas used on the 𝑦-axis to show the expected

approximately linear dependence, since 𝑇 ≈ 𝑒−2𝛾 when the barrier is high and wide (i.e.

𝛾 ≫ 1). The same information is also presented in a different manner in Figure 6.7,

which shows the correlation between the barrier width and height whilst representing

the transition rate using the size of the points. In this representation, we can more clearly

see the transitionswith high barriers 3 eV< 𝑉max < 4 eV identified in the previous section
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Figure 6.6 Calculated transition rate 𝑘 between muon sites in different MB compounds
on a logarithmic scale as a function of the two main barrier parameters, its width and
height.
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Figure 6.7 Correlation between barrier height and width for
the possible muon site transition in different MB compounds,
with the size of the point indicating the corresponding transi
tion rate (on a logarithmic scale).

as involving crossing the plane of a benzene molecule which appear as smaller points in

the top-right of the plot.

6.3 Simulation of ALC spectra

Given the muon sites we can simulate the ALC spectra that would be observed experi

mentally using the method described in Section 1.1.5, calculating the resonance peak for

each site in the isolated system containing an electron, the muon and the hydrogen atom
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sharing the carbon atom in the benzene ring with it, giving a Hamiltonian containing

Hyperfine and Zeeman terms:

�̂� = ∑
𝑖𝑗

(𝐴𝜇)𝑖𝑗 (
̂𝑆𝑒)𝑖 (

̂𝑆𝜇)𝑖 + (𝐴𝐻)
𝑖𝑗
( ̂𝑆𝑒)𝑖 (

̂𝑆𝐻)
𝑗

+∑
𝑖

ℏ[𝛾𝜇( ̂𝑆𝜇)𝑖 + 𝛾𝑒( ̂𝑆𝑒)𝑖 + 𝛾𝐻( ̂𝑆𝐻)
𝑖
]𝐵𝑖 , (6.4)

where we have constructed the spin operators ( ̂𝑆𝛼)𝑖 to act on the combined system by

using the Kronecker product and identity matrices for each component 𝛼 = 𝜇, 𝑒, 𝐻 and

direction 𝑖 = 𝑥, 𝑦, 𝑧. We also have the hyperfine tensor (𝐴𝛼)𝑖𝑗 between the electron and

the other particles, the gyromagnetic ratio for each particle 𝛾𝛼 and the applied external

magnetic field 𝐵𝑖.

The hyperfine tensors 𝐴𝑖𝑗 can be calculated at each classical muon site from the elec

tronic structure as implemented in CASTEP [117], with the same DFT parameters as

when calculating the site positions (see Table 6.2). The resulting 3 × 3 matrix can be

described using three parameters 𝐴iso, 𝐷1 and 𝐷2 which are related to the eigenvalues

|

𝐴1| < |

𝐴2| < |

𝐴3| and three orthonormal eigenvectors 𝐚, 𝐛 and 𝐜 by

𝐴 = (𝐴iso + 𝐷1) (𝐚 ⊗ 𝐚) + (𝐴iso − 𝐷1 − 𝐷2
2 ) (𝐛 ⊗ 𝐛) + (𝐴iso − 𝐷1 + 𝐷2

2 ) (𝐜 ⊗ 𝐜) ,

where

{

𝐴iso = 1
3 (𝐴1 + 𝐴2 + 𝐴3)

𝐷1 = 𝐴3 − 𝐴iso

𝐷2 = 𝐴2 − 𝐴1 .

(6.5)

One complication that arises in the calculation of the hyperfine tensor is that due to its

low mass, the effect of the muon zero-point motion around the classical position can't in

general be disregarded [118]. This problem can bemitigated bymultiplying the hyperfine

parameters (𝐴iso, 𝐷1, 𝐷2) by quantum correction factors calculated by averaging over

the finite spread of the muon wavefunction. In this chapter, the factors were chosen by

hand to match the experimental results (𝐴F
iso = 1.15, 𝐷F

1 = 1.1, 𝐷F
2 = 1.0), but values

can also be calculated from first principles. One common method of doing this, first

presented by Möller, Ceresoli et al. [119], is similar to the procedure used to evaluate

the shape of the potential around the muon site minima (see Section 6.2). We identify

the three phonon modes which correspond to the muon, which are well separated from
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the rest due to the difference in mass, and then compute the hyperfine tensor with the

atoms displaced along each of the vibration eigenvectors. The result is then a weighted

average of the calculated tensors using the muon wavefunction, which we get by either

using the harmonic approximation, giving the ground state of a Harmonic oscillator with

the phonon frequency, or solving the Schrödinger equation directly for greater accuracy,

especially when the muon site is anharmonic.

The ALC spectra can then be simulated for the different MB compounds using the

quantumtools [120] library, which computes the average polarisation for different ap

plied magnetic fields by direct diagonalisation of the Hamiltonian in Equation 6.4. To

account for the effect of quantum tunnelling we introduce a cutoff transition rate 𝑘𝑐 above

which two sites are considered to be connected and then use the rate calculated in Sec

tion 6.2 to construct a graph with sites as nodes and edges between pairs that have a

transition rate over this threshold. We can then obtain the connected components of the

graph using a simple algorithm [56] as groups of sites whose hyperfine tensors we av

erage and treat as a single site. This means that a value of 𝑘𝑐 = 0 will average all sites

that could be connected into a single one whilst a value of 𝑘𝑐 = ∞ will treat each site in

dividually without any tunnelling. In general, we find that a lower value of 𝑘𝑐, and so a

greater degree of tunnelling, decreases the number of distinct resonances in the spectra

and narrows the remaining ones.
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Figure 6.8 Normalised ALC spectra for durene (left) measured exper
imentally at 4 K and (right) simulated with quantum tunnelling for dif
ferent values of the rate cutoff 𝑘𝑐, which in this case all give the same
values.

We find that the simplest spectra are those of durene (see Figure 6.8), where there is clear

agreement with experiment with two strong resonances. Since we have only two sym
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metry inequivalent sites, we can explain why the relative amplitudes of the resonances

don't match the experimental measurement by concluding that the sites are not occupied

with equal probability but with a ratio of approximately 2 : 1. We also find that in this

case the different values of 𝑘𝑐 produce the same spectra (which are superimposed) and

we find no evidence of quantum tunnelling. This is not unexpected since durene is the

crystal with the lowest number of sites and greatest minimum distance between them

due to the 4 methyl groups around the benzene rings (see Figure 6.1a). A combination

of these factors means that there is only a single pair where a transition can happen (see

Figure 6.5b) but the sites have similar hyperfine tensors due to being related by a crystal

symmetry, so that even 𝑘𝑐 = 0 leaves the spectra unchanged.
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Figure 6.9 Normalised ALC spectra for o-xylene (left) measured ex
perimentally at 10 K and (right) simulated with quantum tunnelling for
different values of the rate cutoff 𝑘𝑐.
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Figure 6.10 Normalised ALC spectra for m-xylene (left) measured ex
perimentally at 10 K and (right) simulated with quantum tunnelling for
different values of the rate cutoff 𝑘𝑐.

Similarly, for the cases of o-xylene (see Figure 6.9) andm-xylene (see Figure 6.10) we ob

tain some agreement between experiment and simulation, whilst also showing the effect

of quantum tunnelling on the spectra. In both cases we find that increasing the value of
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𝑘𝑐 broadens the resonances, which is to be expected since the spectra are then caused by

a larger number of independent sites instead of a smaller number of tunnelling sites with

averaged hyperfine tensors. By comparing with the experimental measurements, we can

clearly see that not all possible transitions are happening (𝑘𝑐 ≠ 0) but find evidence that

our calculations improve the accuracy of the simulated spectra over the case without tun

nelling, since some peaks are missing from that spectra (𝑘𝑐 = ∞). In the case of o-xylene

a slightly smaller experimental resonance at 𝐵 = 20 kG to the right of the main one disap

pears and in m-xylene the two main resonances between 15 kG and 20 kG are averaged

into a single one for 𝑘𝑐 > 20MHz.
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Figure 6.11 Normalised ALC spectra for benzene (left) measured ex
perimentally at 5 K and (right) simulated with quantum tunnelling for
different values of the rate cutoff 𝑘𝑐.

Finally, the most complicated spectra to simulate is that of benzene, which can be found

in Figure 6.11, where the lack of methyl groups around the benzene rings means that

a large number of muon sites are available and that the distance between the rings is

smaller. We therefore expect quantum effects to be more noticeable in this case, with a

greater number of tunnelling transitions possible between sites and a more pronounced

quantum correction. From the four large resonances found in the experimental spectra,

our simulation seems to reproduce the two central ones in the range 18–20 kG as seen

more clearly with 𝑘𝑐 = 20MHz. The fact that their relative amplitude is reversed also

indicates that our assumption that all muon sites are occupied equally doesn't hold in

this case as well. We don't see the two smaller resonances that appear experimentally

at 17 kG and 21 kG except for slight features in the simulated spectra. We suspect that a

more accurate calculation of the quantum correction factors to the hyperfine tensors used

would improve the agreement with experiment and plan to do so in the future.
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In conclusion, by comparing with experimental results we have shown that account

ing for quantum tunnelling between muon sites increases the accuracy of the simula

tion of the avoided-level crossing spectra for different methylated benzene crystals, bet

ter matching the resonance widths and preserving some peaks that disappear when no

tunnelling is considered. The simulationwas performed by using a combination of differ

ent first-principles DFT calculations to approximate the potential barrier between pairs

of sites and then estimating the transition rate using a semi-classical expression derived

by the WKB method. Those rates were then used to simulate the ALC spectra for the

different compounds with various degrees of quantum tunnelling. We found that con

sidering transitions with a rate greater than 𝑘𝑐 = 10–20MHz provided greater agreement

than both the case without tunnelling (𝑘𝑐 = ∞) and where all possible transitions below

a certain site distance happen (𝑘𝑐 = 0).

Some areas of further work include amore accurate calculation of the potential barrier

(using a more sophisticated TSS method than LST, with some alternatives discussed in

Section 1.2.5.3) and the transition rate, perhaps using a density matrix approach [121]

or adopting the techniques used to simulate proton tunnelling [122]. The accuracy of

the simulated ALC spectra results could be improved by a calculation of the hyperfine

quantum correction factors fromDFT [119] and the relative occupancies of themuon sites

estimated by fitting to experimental data. Related to this last possibility and applicable

to other systems, combining this type of simulation with fitting to experimental results

will probably require faster simulations of ALC spectra, which proved a bottleneck in

our calculations, either by optimising existing routines or by a more efficient numerical

algorithm which takes advantage of the structure of the Hamiltonian to be solved.
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Chapter 7
Conclusions and further work

This thesis aims to demonstrate the importance of knowing the location of the muon sites

and their environment when analysing the results of a μ+SR experiment, enhancing our

understanding of the materials under investigation and their interaction with the muon.

In Chapter 2we consider the molecular honeycomb lattice Cu(pym)1.5(H2O)(BF4)2

where the use of DFT calculations places the most likely low-energy sites close to oxygen

and fluorine atoms surrounding the complex structure. This will prove to be a common

feature of more than one molecular system containing Oand Fconsidered in this thesis.

The muons were also able to detect an incommensurate magnetic ground state below the

phase transition, despite the small magnetic moments present in the material.

We also find that DFT calculations suggest that the position of the muon sites realised

experimentally might change when a material undergoes a structural transition. This

happens both with the hysteretic molecular magnet 4-(2-benzimidazolyl)-1,2,3,5-dithia

diazolyl (HbimDTDA) inChapter 3, which displaysmagnetic switching behaviourwhen

the structure changeswith temperature, and in theMott insulator Sr2IrO4(SIO)described

in Chapter 4, where the structure can be altered considerably with the application on an

external electrical current. In the first case we have a large number of possible sites with

similar energies in the structure, a common feature in molecular systems, and find that

two new sites become available in the high-temperature phase, most likely due to the

changes in the structure and bonding between molecules in the material. In the case of

the SIO material, we find that the application of an external electric current, which al

ters both the structure and magnetism of the material, leads to a change in the relative

energies of the two classes of sites identified. In the ZF μ+SR measurements with the

applied current we also saw a splitting in the muon site fields, which we explained using

a calculation of the dipole magnetic field at each site as caused by an additional FM 𝑐-axis

component in the magnetic structure.

We used a combination of μ+SR measurements and DFT calculations to investigate

a pair of analogous spin chains [Ni(pym)(H2O)4]SO4and [Cu(pym)(H2O)4]SiF6 ⋅H2O
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(pym = pyrimidine) with 𝑆 = 1 and 𝑆 = 1/2 respectively in Chapter 5. In the first case,

a magnetic ordering transition was observed at low temperature and zero-field with ev

idence of two muon site frequencies in the measurements. By combining this informa

tion with the calculated sites and simulations of the magnetic field at each one from the

different possible magnetic structures we confirmed that the canted AFM arrangement

suggested by neutron scattering measurements was consistent with our results and ob

tained a value for the nickel magnetic moment. Similarly, for the copper chain which

remains disordered at the lowest temperatures, we found evidence of phase transition

with applied field using TF μ+SR measurements and confirmed that our results are con

sistent with an ordered magnetic structure above the transition. The most likely muon

sites realised were determined for each case based on the DFT energy of each site and

comparison with experimental data, giving similar results as expected from analogous

structures and proving essential in the simulation of the magnetic field and polarisation

spectra which followed.

Finally, in Chapter 6 we considered the case of quantum tunnelling between sites in

a series of methylated benzene structures. A new method was developed using DFT cal

culations and the WKB approximation to estimate the transition rate between muon sites

in the material and the results used to simulate the ALC spectra expected from the ma

terials, showing that a greater degree of tunnelling decreased the number of resonances

and made the remaining ones narrower. The results were then compared with experi

mental measurements, confirming that the addition of quantum tunnelling improves the

accuracy of our simulated spectra when compared to the casewhere all sites remain inde

pendent, with a better agreement in peak width and the appearance of some resonances

which were not visible without tunnelling.

A common theme in this thesis has been to combine knowledge of the muon sites

with other simulations to allow for direct comparison with μ+SR experimental results.

In some systems dipole magnetic fields were calculated at the muon sites to distinguish

between different candidate magnetic structures but another useful technique, especially

in the last two chapters, has been the direct calculations of muon polarisation spectra,

reproducing the results of both TF and ALC μ+SR measurements. A fundamental part

of these simulations was an efficient method of simulating the polarisation, which also
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opened up the possibility of fitting against experimental data to calculate properties like

the magnetic moment as demonstrated inChapter 5. In this first case, a more performant

method was proposed and partially implemented as discussed inAppendix B. Similarly,

the simulation of ALC muon spectra could be optimised in the future since the current

method relies on solving directly diagonalising the Hamiltonian for each value of the

applied magnetic field. Each of these matrices is related by a linearly-varying Zeeman

term (i.e. �̂�(𝐵) = �̂�0 + 𝐵Δ�̂�) meaning that a more efficient method taking advantage of

this structure might exist.

In some systems we also observed an important shortcoming of the DFT+μmethod:

although the energy of the geometry-optimised structure is usually a good indicator of

which muon sites are most likely to be realised we find that experimental results indicate

that this is not always the case. We sometimes find that non-minimal energy sites are oc

cupied instead or that multiple sites are realised with different probabilities7. A solution

to this problem is not clear, but it might be possible to combine ion implantation calcu

lations [124] to classically approximate the thermalisation of the high-energy implanted

muon with more accurate molecular dynamics calculations [125] to simulate the stop

ping process and so estimate the stopping cross-section for each muon site, giving more

accurate results.

As part of the work on improving calculations on the quantum behaviour of muons in

crystalline systems8, we also performed some computational experiments to extend the

CASTEP DFT code employed throughout this thesis by treating the muon as a quantum

object on the same level as the electrons. This required a series of modifications to the

internals of the FORTRAN program so that it would solve a pair of Schrödinger equations

describing the coupled electron and muon system

[

−∇2

2 − ∑
𝑛

𝑍𝑛
(𝐫 − 𝐑𝑛)

+ ∫
𝜌e(𝐫′)
(𝐫 − 𝐫′)

𝑑𝐫′

− ∫
𝜌𝜇(𝐫′)
(𝐫 − 𝐫′)

𝑑𝐫′ − 𝑉xc[𝜌𝑒, 𝜌𝜇] (𝐫)
]

𝜓𝑖(𝐫) = 𝜖𝑖𝜓𝑖(𝐫) (7.1)

7 A famous example of this is in semiconductors like silicon, where the metastable states with energy higher
than the ground state are realised [12,123].

8 DFT calculations with a quantum muon are usually performed using the expensive path-integral molecular
dynamics (PIMD) method [59] or Nuclear-Electronic orbitals method [126] which is more useful in non-
crystalline molecular systems that don't use plane wave basis sets.
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[

− ∇2

2𝑚𝜇
+ ∑

𝑛

𝑍𝑛
(𝐫 − 𝐑𝑛)

− ∫
𝜌e(𝐫′)
(𝐫 − 𝐫′)

𝑑𝐫′ + 𝑉xc[𝜌𝑒, 𝜌𝜇] (𝐫)
]

𝜒(𝐫) = 𝜆𝜒(𝐫) , (7.2)

where we add the second to last term in Equation 7.1 to represent the potential from the

muon charge density and change our exchange-correlation functional to account for the

new quantum particle in the system. In the muon part of the equations, we must account

for its different mass 𝑚𝜇 = 206𝑚𝑒 but don't need a Hartree term for the electrostatic re

pulsion between muons because there is only a single one in the system. This is the same

reason why as a first approximation we can use the same XC functional as in normal DFT

calculations, since there is no exchange between muons and the correlation is expected

to be small. A possible method of correcting the error in this approximation might be to

use a reduced muon mass to tune the quantum behaviour of the muon.

The changes made to CASTEP for this extension can be divided into two parts: an op

tion was added to the function calculating the kinetic energy to adjust the particle mass

being used (which simply scales the term) and modifications were made to the function

calculating the local potential acting on the particles so that the new termswere included.

For simplicity, in our initial implementation, another option was added to distinguish be

tween the electronic and muon calculations and the common terms transferred the two

by writing and reading from a pair of files. To solve the ground state of the combined

system, an external script was used to perform a small number of SCF iterations on each

part and the two calculations restartedwith updated potentials from the new charge den

sities until the results were consistent. Although the implementation is still incomplete,

we managed to obtain some initial results with a calculation with a Si8 unit cell, as seen

in Figure 7.1, where we see that the muon charge density is mostly localised at the centre

of the unit cell and the iso-surfaces are approximately spherical.

In conclusion, DFT+μ can be an important part of analysing muon experiments some

issues persist. Determining the degree towhich themuonbehaves like a quantumparticle

in a particular system is sometimes essential and an area of open research. As part of the

work for this thesis, the MuFinder program designed to simplify the running of muon

site calculations was extended to calculate a series of metrics which make use of DFT

phonon calculations to estimate how prevalent muon quantum effects are expected to

be in a given system, as discussed in Section 1.3.1. Similarly, the extension to DFT to
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(a) 𝑓 = 1 − 10-1 (b) 𝑓 = 1 − 10-3 (c) 𝑓 = 1 − 10-5

Figure 7.1 Example quantum muon calculation in Sicrystal, showing volume con
taining different fractions 𝑓 of the total muon charge density.

account for a muon wavefunction discussed in the previous section is still in its infancy

but might provide a fruitful avenue of research, providing a method of estimating the

quantum behaviour of the muon which balances accuracy and performance.
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Appendix A
Bloch's theorem

Following the derivation in Ashcroft and Mermin [127], we start with the fact that the

system is periodic by any real space lattice vector 𝐑 = 𝑛𝑖𝐚𝑖, where 𝐚𝑖 are the lattice vec

tors which define the parallelepiped of the unit cell. This means that we can define a

translation operator ̂𝑇𝐑 𝑓 (𝐫) = 𝑓 (𝐫 + 𝐑)which will always commute both all other trans

lations ( ̂𝑇𝐑 ̂𝑇𝐑′𝜓(𝐫) = ̂𝑇𝐑′ ̂𝑇𝐑𝜓(𝐫) = 𝜓(𝐫 + 𝐑 + 𝐑′)) and with the Hamiltonian ( ̂𝑇𝐑�̂�𝜓 =

𝐻(𝐫 + 𝐑)𝜓(𝐫 + 𝐑) = 𝐻(𝐫)𝜓(𝐫 + 𝐑) = �̂� ̂𝑇𝐑𝜓 since 𝐻(𝐫 + 𝐑) = 𝐻(𝐫)). This means that

the eigenstates of the Hamiltonian can be chosen to be simultaneous eigenstates of all

the translation operators (�̂�𝜓 = 𝜖𝜓 and ̂𝑇𝐑𝜓 = 𝑐(𝐑)𝜓). We can then use the fact that

𝑐(𝐑 + 𝐑′) = 𝑐(𝐑)𝑐(𝐑′) and that we can always write 𝑐(𝐚𝑖) = exp(2𝜋𝑖𝑥𝑖) to define

𝑐(𝐑) = exp[𝑖(𝐤 ⋅ 𝐑)] = ∏
𝑖

𝑐(𝐚𝑖)𝑛𝑖 , (A.1)

where 𝐤 = ∑𝑖 𝑥𝑖𝐛𝑖 and the 𝐛𝑖 are the reciprocal lattice vectors defined by 𝐚𝑖 ⋅ 𝐛𝑗 = 2𝜋𝛿𝑖𝑗.

So that we finally have

̂𝑇𝐑𝜓 = 𝜓(𝐫 + 𝐑) = 𝑐(𝐑)𝜓(𝐫) = exp[𝑖(𝐤 ⋅ 𝐑)]𝜓(𝐫) . (A.2)

This means that by separating the wavefunction into 𝜓(𝐫) = 𝑒𝑖𝐤⋅𝐫𝑢(𝐫) we find that 𝑢(𝐫)

also had the periodicity of the lattice

𝑢(𝐫 + 𝐑) = exp(−𝑖[𝐤 ⋅ (𝐫 + 𝐑)])𝜓(𝐫 + 𝐑)

= exp(−𝑖[𝐤 ⋅ (𝐫 + 𝐑)]) exp[𝑖(𝐤 ⋅ 𝐑)]𝜓(𝐫)

𝑢(𝐫) .

(A.3)

Under the assumption that the specific boundary conditions that we impose will not af

fect the physical properties, we assume Born-Von Karman boundary conditions where

the crystal is finite with 𝑁𝑖 primitive cells along 𝐚𝑖 and the wavefunction is also periodic

beyond this supercell. We can then obtain a condition on the values of 𝑥𝑖
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𝜓(𝐫 + 𝑁𝑖𝐚𝑖) = 𝜓(𝐫) → exp[𝑖𝑁𝑖(𝐤 ⋅ 𝐚𝑖)] = 1 → exp(2𝜋𝑖𝑁𝑖𝑥𝑖) = 1

→ 𝑥𝑖 = (𝑚𝑖
𝑁𝑖

) where 𝑚𝑖 ∈ ℤ ,
(A.4)

which in the limit of an infinite crystal 𝑁𝑖 → ∞, becomes 𝑥𝑖 ∈ [0, 1] ⊂ ℚ.
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Appendix B
Polarisation calculation in Fourier space

Although the procedure described in Section 5.2.4 to simulate the Fourier transform of

the polarisation function 𝑃𝑧(𝑡) works as expected, the calculation is computationally ex

pensive, especially since the simulation is then used to fit the magnitude of the magnetic

moment. The reason for this is then when evaluating Equation 5.15 a very high time res

olution is required, since this determines the resolution in magnetic field after taking the

Fourier transform. A small time step will give us a wide range of values in 𝐵-space but

most of them will be discarded, since we are only interested in the field values around

the applied external field 𝐵ext where we observe the peak.

A possible solution to this issue is that instead of evaluating 𝑃𝑧(𝑡) and then computing

the Fourier transform �̂�𝑧(𝐵) numerically using the FFT algorithm, we can compute the

Fourier transform of the expression analytically and then evaluate only over the desired

range in 𝐵-space. Taking advantage of the fact that the Fourier transform is linear in its

argument9 we can consider only a single term in the sum, which has the general form

𝐺(𝑡) = cos(𝑎𝑡) exp(−𝑏𝑡2)𝜃(𝑡),

where we have substituted 𝑎 = 𝛾𝜇𝐹𝑖𝑗 and 𝑏 = Δ2
N/2. We also need to multiply by the

Heaviside step function 𝜃(𝑡) to account for the fact that we only consider 𝑡 > 0 and will

be able to set 𝑎 = 0 for terms that don't contain a factor of cos(𝑡).

The Fourier transform for this function can be evaluated analytically by using the con

volution theorem10 to give

̂𝐺(𝜔) = 1
√8𝜋𝑏

[

√𝜋 exp(−𝜔2

4𝑏 ) + 2𝑖𝐹
(

𝜔
2√𝑏

)]

∗ [𝛿(𝜔 − 𝑎) + 𝛿(𝜔 + 𝑎)
2 ],

where we use 𝑓 ∗ 𝑔 to denote the convolution of two functions

9 That is to say that for ℎ(𝑥) = 𝑎 𝑓 (𝑥) + 𝑏𝑔(𝑥) we have ℎ̂(𝜔) = 𝑎 ̂𝑓 (𝜔) + 𝑏 ̂𝑔(𝜔).
10 Which states that the Fourier transform of a convolution is a product and vice-versa (ℎ(𝑥) = 𝑓 (𝑥) 𝑔(𝑥) ⟺

ℎ̂(𝜔) = ̂𝑓 (𝜔) ∗ ̂𝑔(𝑥)).
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( 𝑓 ∗ 𝑔) (𝑡) = ∫
∞

−∞
𝑓 (𝜏) 𝑔(𝑡 − 𝜏) 𝑑𝜏

and 𝐹(𝑥) is the Dawson integral, which is defined as

𝐹(𝑥) = 1
2 ∫

∞

0
𝑒−𝑡2/4 sin(𝑥𝑡) 𝑑𝑡.

So that we can now express �̂�𝑧(𝐵) as a sum of simpler terms

�̂�𝑧(𝐵) =
𝑁𝐵

∑
𝑖=1

𝑁𝐷

∑
𝑗=1

𝑝𝑖𝑤𝑗
4𝜋 ×

{

(
𝑓𝑖𝑗
𝐹𝑖ℎ

)
2
× 2𝐾(𝐵) +

[

1 − (
𝑓𝑖𝑗
𝐹𝑖ℎ

)
2

]

× [𝐾(𝐵 − 𝐹𝑖𝑗) + 𝐾(𝐵 + 𝐹𝑖𝑗)]
}

,

where we have defined the kernel function 𝐾(𝑥) as

𝐾(𝐵) = 1
4√𝜋ΔN [

√𝜋 exp
(

−𝛾2
𝜇𝐵2

2Δ2
N

)

+ 2𝑖𝐹
(

𝛾𝜇𝐵

2√2ΔN)

]

.

Our algorithm therefore reduces to evaluating the sum 𝑢𝑖 of a set of 𝐾(𝐵) functions cen

tred at some points 𝑦𝑖 at another set of points 𝑥𝑖, which can be expressed as

𝑢𝑖 =
𝑁
∑
𝑗=1

𝐾(𝑥𝑖 − 𝑦𝑗) ⋅ 𝑞𝑗. 𝑖 = 1, … , 𝑀

This is a well-known problem and can be efficiently solved by extending an implemen

tation [128] of the fast Gauss transform (FGT) based on approximating the kernel as a

sums-of-exponentials (SOE)

𝐾(𝑥) ≈ 𝑆(𝑥) =
𝑁𝐾

∑
𝑘=1

𝑤𝑘𝑒−𝑡𝑘𝑥,

where𝑤𝑘, 𝑡𝑘 ∈ ℂ. The Gaussian part of our kernel is simple to approximate and very effi

cient expansions exist (see [128]) but the imaginary part containing 𝐹(𝑥) is more compli

cated. The solution thatwe finally arrived at is to employ the algorithmdescribed in [129]

to construct a SOE approximation for a general kernel, which requires a greater number of

exponential terms than the Gaussian contributions but gives good results when applied

to the Dawson function.
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Appendix C
Polynomial interpolation of potential barrier

We want to construct a quintic polynomial 𝑃(𝑥) that satisfies a series of conditions, start

ing with the fact that it has two extrema at points 𝑥1 and 𝑥2, so that we define

𝑃′(𝑥) = (𝑥 − 𝑥1) (𝑥 − 𝑥2) (𝑎𝑥2 + 𝑏𝑥 + 𝑐) (C.1)

which we can then integrate to obtain an expression for 𝑃(𝑥), adding a last unknown 𝑑

for the constant of integration:

𝑃(𝑥) = 1
5𝑎𝑥

5 + 1
4 [𝑏 − 𝑎(𝑥1 + 𝑥2)]𝑥4 + 1

3 [𝑎𝑥1𝑥2 − 𝑏(𝑥1 + 𝑥2) + 𝑐]𝑥3

+ 1
2 [𝑏𝑥1𝑥2 − 𝑐(𝑥1 + 𝑥2)]𝑥2 + 𝑐𝑥1𝑥2𝑥 + 𝑑 (C.2)

We then impose the condition that the endpoints 𝑥1 and 𝑥2 also have certain values𝑃(𝑥𝑖) =

𝑦𝑖 and second derivatives 𝑃″(𝑥𝑖) = 𝑘𝑖, giving a system of linear equations

[

𝑥3
1 − 𝑥2

1𝑥2 𝑥2
1 − 𝑥1𝑥2 𝑥1 − 𝑥2 0

− 𝑥2
2𝑥1 + 𝑥3

2 − 𝑥1𝑥2 + 𝑥2
2 − 𝑥1 + 𝑥2 0

− 1
20𝑥

5
1 + 1

12𝑥
4
1𝑥2 − 1

12𝑥
4
1 + 1

6𝑥
3
1𝑥2 − 1

6𝑥
3
1 + 1

2𝑥
2
1𝑥2 1

1
12𝑥

4
2𝑥1 − 1

20𝑥
5
2

1
6𝑥

3
2𝑥1 − 1

12𝑥
4
2

1
2𝑥

2
2𝑥1 − 1

6𝑥
3
2 1

]

[

𝑎
𝑏
𝑐
𝑑
]

=

[

𝑘1
𝑘2
𝑦1
𝑦2 ]

which can be solved symbolically using Cramer's rule to give values for 𝑎, 𝑏, 𝑐 and 𝑑.

Similarly, to obtain information about the shape of the potential close to the sites, in

the form of second derivative values 𝑘𝑖we use the Γ-point phonon calculations performed

for each site (whilst taking advantage of the crystal symmetries), which were also used

to estimate the muon zero-point energy. Since the muon is much lighter than the other

atom in the unit cell, we always find three high-frequency modes (one for each spatial

dimension) with very high values for the muon component in their eigenvectors 𝐯𝑗. We

can then investigate the anharmonicity of the site minima by performing a series of sin

gle-point DFT energy calculations with the atom positions 𝐑0 displaced along the axis

defined by the phonon eigenvectors
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𝐑0 + ∑
𝑖

𝑞𝑖𝐯𝑖 , (C.3)

where 𝐪 ∈ 𝑄 = {𝜆(𝑖/𝑁) ̂𝐞𝑗 ∈ ℝ3 : −𝑁 ≤ 𝑖 ≤ 𝑁 and 1 ≤ 𝑗 ≤ 3} and ( ̂𝐞𝑗)𝑖 = 𝛿𝑖𝑗 is the stan

dard basis in ℝ3. We therefore perform 2𝑁 calculations over each axis with the scaling

parameter 𝜆 limiting the maximal displacement of any atom, since the 𝐯𝑖 are normalised.

We can then use the result of these calculations to both confirm the assumption of a

harmonic well and to compute the second derivative of the potential in the direction of

the muon transfer. We start by performing a multivariate quadratic regression over the

calculated energies in terms of the displacements by solving a linear system of equations:

𝐸𝑖 = ∑
|𝛼|<2

𝑐𝛼(𝑞𝑖)
𝛼 , (C.4)

giving a linear system of equations of the form

𝐄 = 𝑋𝐜 + 𝝐

[

𝐸1
𝐸2
⋮

𝐸𝑀 ]

=

[

1 𝑄11 … 𝑄13 𝑄11𝑄12 … 𝑄12𝑄13 𝑄2
11 … 𝑄2

13
1 𝑄21 … 𝑄23 𝑄21𝑄22 … 𝑄22𝑄23 𝑄2

21 … 𝑄2
23

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
1 𝑄𝑀1 … 𝑄𝑀3 𝑄𝑀1𝑄𝑀2 … 𝑄𝑀2𝑄𝑀3 𝑄2

𝑀1 … 𝑄2
𝑀3 ][

𝑐1
𝑐2
⋮

𝑐𝑀 ]

+ 𝝐 ,
(C.5)

where we have defined the matrix 𝑄𝑖𝑗 by joining the vectors in the set𝑄 as rows and also

have an additional vector 𝝐 representing the random error. The ordinary least squares

estimation of the coefficients 𝐜 then is

𝐜 = 𝑋𝖳𝑋−1𝑋𝖳𝐄 . (C.6)

The resulting polynomial 𝐸(𝐪) is then adjusted by a coordinate transform 𝐪 = 𝑀𝐱 + 𝐜 so

that the result is expressed in terms of the position of the muon in the unit cell 𝐱. We can

then calculate the shape of the potential in the direction of the transfer by substituting

𝐱 = ̂𝐯𝑡 + 𝐱0, where ̂𝐯 is the unit vector of the displacement between the muon sites. We

can then finally differentiate this 1D quadratic function 𝑃(𝑡) twice to obtain a value of

𝑘𝑖 = 𝑉″(𝑥𝑖) at the muon sites.
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Appendix D
Derivation of WKB transition rate formula

We start by expressing the wavefunction as 𝜓(𝑥) = exp(𝑖 𝑓 (𝑥)/ℏ)where 𝑓 (𝑥) is a complex

function, so that the Schrödinger equation is:

𝑑𝜓
𝑑𝑥2 = −

𝑝2

ℏ2𝜓 where 𝑝 = √2𝑚[𝐸 − 𝑉(𝑥)]

[ 𝑖
ℏ 𝑓 ″ − ( 1

ℏ2) 𝑓 2′] exp(
𝑖 𝑓
ℏ ) = −

𝑝2

ℏ2 exp(
𝑖 𝑓
ℏ )

𝑖ℏ 𝑓 ″ − 𝑓 2′ + 𝑝2 = 0 ,

(D.1)

so that expanding 𝑓 (𝑥) as a power series 𝑓 = 𝑓0 + ℏ 𝑓1 + ℏ2 𝑓2 + … in ℏwe have:

( 𝑓0)
2′ = 𝑝2

𝑖( 𝑓0)″ = 2( 𝑓0)′ ( 𝑓1)′

𝑖( 𝑓1)″ = 2( 𝑓0)′ ( 𝑓2)′ + ( 𝑓 ′1)
2 .

(D.2)

This means that to first order in ℏwe have:

( 𝑓0)′ = ±𝑝 → 𝑓0 = ±∫𝑝(𝑥) 𝑑𝑥 + 𝐶0

( 𝑓1)′ =
𝑖
2 [

( 𝑓0)″

( 𝑓0)′
] → 𝑓1 = 𝑖

2 ln(𝑝) + 𝐶1

𝜓 = 𝐶
√𝑝

exp[(± 𝑖
ℏ)(∫ 𝑝 𝑑𝑥)] .

(D.3)

Additionally, in the tunnelling case where we have 𝐸 < 𝑉(𝑥), the WKB approximation

can be written as:

𝜓 = 𝐶
√
|

𝑝
|

exp[1ℏ(∫
|

𝑝
|

𝑑𝑥)] . (D.4)

In the usual derivation of the quantum tunnelling probability, the simplifying assump

tion that the walls of the potential barrier are vertical is made. To obtain a more accurate

expression for the tunnelling rate by having smooth walls we must look at the behaviour

of the WKB approximation close to a classical turning point 𝑉 = 𝐸, where we have a
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transition between a classical and non-classical region [115]. For a barrier with a single

maximum, we have two turning points, labelled ̃𝑥1 and ̃𝑥2. We start considering the up

ward-sloping point ̃𝑥1, which we can shift to 𝑥 = 0 without loss of generality to give an

approximate wavefunction

𝜓(𝑥) ≈

{

1
√𝑝(𝑥)

[𝐴 exp(𝑖
ℏ [∫

0
𝑥 𝑝(𝑥′) 𝑑𝑥′]) + 𝐵 exp(−𝑖

ℏ [∫0
𝑥 𝑝(𝑥′) 𝑑𝑥′])] if 𝑥 < 0

1
√𝑝(𝑥)

[𝐶 exp(𝑖
ℏ [∫

𝑥
0 |

𝑝(𝑥′)
|

𝑑𝑥′]) + 𝐷exp(−𝑖
ℏ [∫𝑥

0 |

𝑝(𝑥′)
|

𝑑𝑥′])] if 𝑥 > 0
.(D.5)

Notice that at the turning point 𝑝(𝑥) → 0 and so our approximation for 𝜓 goes to infinity

as the WKB method fails, since the wavefunction is no longer varying slowly in space.

To resolve this issue we patch the two regions by approximating the potential near the

turning point by a Taylor expansion to first order

𝑉(𝑥) ≈ 𝐸 + 𝑉′(0)𝑥 , (D.6)

so that the Schrödinger equation becomes

𝑑𝜓𝑝

𝑑𝑥 = 𝛼3𝑥𝜓𝑝 where 𝛼 = [(2𝑚
ℏ2 )𝑉′(0)]

1/3
, (D.7)

which is Airy's equation with solutions given by a linear combination of the Airy func

tions 𝜓𝑝 = 𝑎Ai(𝛼𝑥) + 𝑏Bi(𝛼𝑥). Over the patching region we have 𝑝(𝑥) ≈ ℏ𝛼3/2√−𝑥, whose

integral matches the asymptotic behaviour of the Airy function for 𝛼𝑥 ≫ 0, so that we

obtain

𝑎 = 2𝐷√𝜋
𝛼ℏ and 𝑏 = 𝐶√𝜋

𝛼ℏ . (D.8)

Similarly for the other part of the wavefunction, where 𝛼𝑥 ≪ 0we have

𝐴 = √𝜋
𝛼ℏ(

−𝑖𝑎 + 𝑏
2 ) exp(𝑖𝜋

4 ) and 𝐵 = √𝜋
𝛼ℏ(

𝑖𝑎 + 𝑏
2 ) exp(−𝑖𝜋

4 ) , (D.9)

giving the so-called connection formulas for ̃𝑥1

𝐴 = (𝐶
2 − 𝑖𝐷) exp(𝑖𝜋

4 ) and 𝐵 = (𝐶
2 + 𝑖𝐷) exp(−𝑖𝜋

4 ) . (D.10)

An analogous calculation can be performed for the downward-sloping turning point at

̃𝑥2, with the wavefunction now being
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𝜓(𝑥) ≈

{

1
√𝑝(𝑥)

[𝐶′ exp( 𝑖
ℏ [∫

0
𝑥 |

𝑝(𝑥′)
|

𝑑𝑥′]) + 𝐷′ exp(−𝑖
ℏ [∫0

𝑥 |

𝑝(𝑥′)
|

𝑑𝑥′])] if 𝑥 < 0

1
√𝑝(𝑥)

𝐹 exp(𝑖
ℏ [∫

𝑥
0 𝑝(𝑥′) 𝑑𝑥′]) if 𝑥 > 0

.(D.11)

wherewe define𝐶′ = 𝐷𝑒−𝛾 and𝐷′ = 𝐶𝑒−𝛾with 𝛾 = ∫ ̃𝑥2
̃𝑥1 |

𝑝(𝑥)
|

𝑑𝑥. The connecting formulas

for ̃𝑥2 then are

𝐶′ = exp(−𝑖𝜋
4 )𝐹 and 𝐷′ = 𝑖

2 exp(−𝑖𝜋
4 )𝐹 , (D.12)

meaning that the transition rate is given by

𝑇 =
|

𝐹
𝐴

|

2
=

exp(−2𝛾)

[1 − 1
4 exp(−2𝛾)]

2 , (D.13)

which when 𝛾 ≫ 1 tends towards the more typical expression 𝑇 = 𝑒−2𝛾.
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