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Abstract

This thesis investigates statistical reproducibility (RP) as a predictive inference problem

within the framework of nonparametric predictive inference (NPI). NPI is focused on the

prediction of future observations using existing data. In this thesis, statistical reprodu-

cibility is defined as the probability of the event that, if the test was repeated under the

same conditions and with the same sample size, the same test outcome would be obtained.

This thesis presents contributions to NPI reproducibility for location tests and prelimin-

ary tests which are preliminary statistical analyses performed before the main or location

hypothesis testing to evaluate assumptions for their validity. There is an ongoing debate

about whether preliminary tests are necessary to validate assumptions for location tests;

some argue they are important for optimal performance while others caution against their

use.

This thesis aims to evaluate the RP for location tests, both with and without prelimin-

ary tests, aiming to examine the impact of preliminary tests on the RP for location tests.

The potential impact of preliminary tests on RP of location tests is explored through

simulation studies that compare RP of location tests with and without such preliminary

tests.

The findings suggest that the impact of preliminary tests on RP for location tests is

small, they do not substantially lead to improved or deteriorated RP of location tests.
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Chapter 1

Introduction

1.1 Motivation

One of the forms of statistical inference is hypothesis testing, where researchers in hypo-

thesis testing create different hypotheses about a population parameter and then analyze

sample data to determine which hypothesis is more supported by the evidence. This

procedure includes establishing a null hypothesis, which usually represents a default or

no-effect situation, and an alternative hypothesis, which reflects the researcher’s specu-

lation or the existence of an effect [97]. In applied research, it is common practice to

conduct data analyses using multi-stage procedures of hypothesis testing. These pro-

cedures involve the implementation of one or more preliminary tests before carrying out

the main tests of interest [53, 56]. This thesis restricts attention to location tests as the

main tests and preliminary tests of Normality and equality of variances. The purpose

of these preliminary tests is to evaluate certain assumptions or conditions necessary for

the location tests. One prevalent example of the multi-stage procedure is the comparison

of two population means using Student’s t-test. In this case, researchers often begin by

examining the Normality assumption through a preliminary goodness-of-fit test. If the

null hypothesis of Normality is rejected, then an alternative nonparametric test, such as

the Mann-Whitney test, is employed to analyze the data. On the other hand, if the null

hypothesis of Normality is not rejected, then further tests may be conducted to assess

additional assumptions, such as homogeneity of variances. Based on the outcomes of

these preliminary tests, researchers make decisions regarding the appropriate statistical

1
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analysis to be performed [53].

Many researchers have discussed the importance of applying preliminary tests such as

Normality and equality of variances tests to ensure the appropriate application of statist-

ical methods. For example, Micceri’s study [69] investigative achievement and psychomet-

ric measures revealed significant non-Normality in all 440 measures, including bimodality,

exponential level asymmetry, and tail weights ranging from the uniform to the double

exponential. Current studies have further demonstrated that the majority of real data

samples show at least slight deviations from Normality in terms of skewness and kurtosis

such as the study by Blanca et al[14]. Ruscio and Roche [83] also showed in their research

the assumption of variance homogeneity is often violated in published studies.

However, authors such as Wells and Hinze [102] and Schucany and Ng [84] highlight

several theoretical drawbacks against using preliminary testing. One essential issue is

the implicit nature of conclusions drawn from preliminary tests rather than explicit ones.

Acceptance of the null hypothesis, for example, the Normality assumption, based on in-

sufficient evidence may lead to unwarranted assumptions about the data distribution.

Additionally, assumptions underlying preliminary tests themselves raise questions about

their validity, thus creating a paradoxical situation. In practice, in small to moderate

sample sizes, preliminary tests may not guarantee alignment between sample and popu-

lation characteristics. Altman [4] emphasizes how even samples drawn from theoretically

Normal populations can show non-Normality. Furthermore, the application of preliminary

tests on the same data as subsequent analyses introduces the risk of uncontrolled error

rates, as emphasized by Schucany and Ng’s simulation study [84]. More recent studies

further question the necessity of preliminary testing. One of these is the study conduc-

ted by Shamsudheen and Hennig [86], their conclusions offer a broader consideration of

whether preliminary tests should be used in applied statistics. They argue that while

these tests can provide useful information, they may not always be necessary and can

add unnecessary complexity and potential errors. Additionally, studies by Zimmerman

[104, 105], Rasch, Kubinger, and Moder [78], and Rochon, Gondan, and Kieser [80] sug-

gest that preliminary testing can not only be pointless but also result in inflated error

rates and suboptimal test selections.
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In light of these critiques, the motivation for this research is to assess the impact of

preliminary tests on the reproducibility probability (RP) of location tests. reproducibility

probability (RP) is the probability of the event that if the test was repeated under the

same circumstances and with the same sample size, the same test outcome would be

obtained. The reproducibility probability is a helpful indicator of the confidence of the

results of statistical tests. Thus, it is essential to understand the potential impact of

these preliminary tests on the RP of the location tests. This raises questions about the

robustness of research findings when conducting preliminary tests before the location

tests. Does the inclusion of preliminary tests affect the RP of the location tests? Are

there differences between RP for location tests with preliminary tests and RP for location

tests conducted alone, without preliminary tests?

In this thesis, the reproducibility is assessed from a nonparametric predictive infer-

ence (NPI) perspective. NPI is a frequentist approach that relies on a few assumptions

and focuses on making predictions for future observations [21]. The predictive nature of

NPI provides a natural formulation of inference on reproducibility which is an important

characteristic of statistical test outcomes. We consider RP within a frequentist statistical

framework from the perspective of prediction [24].

1.2 Location tests

Location tests are statistical tests used to determine if there is a significant difference

between two or more populations or samples. They are often used in hypothesis testing to

compare means, medians, or other measures of central tendency between groups. There

are two different types of tests [19, 34]: parametric and nonparametric location tests.

The main difference between them is based on the fundamental assumptions regarding

the data under analysis [19, 34]. Parametric statistics deal with numerical data that

follow continuous and known distributions. When the data are on an interval or ratio

scale and the sample size is large, parametric statistical methods are suitable. However,

when the data do not conform to a known distribution, nonparametric statistics, also

known as distribution-free methods, become appropriate. Parametric approaches make

assumptions about the sample population’s underlying distribution, while nonparametric
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methods do not make any assumptions regarding the underlying population’s distribution.

Parametric tests assume that data follow a Normal distribution at the interval/ratio level

of measurement. In contrast, nonparametric methods do not assume Normality or any

specific distribution for the sample population and are often based on ranked or nominal

data instead of actual measurements [19, 34]. In numerous instances, a parametric test

can be replaced with a non-parametric test. Some examples of parametric tests are the z-

test, the Student’s t-tests, Analysis of Variance (ANOVA), and linear regression. Whereas

the Mann-Whitney U test, the Kruskal-Wallis test, the chi-square test for association, the

chi-square test for goodness-of-fit, and Spearman’s rank correlation are some examples of

nonparametric tests [19, 34].

The biggest advantage of parametric tests is that they are more powerful and precise

than nonparametric tests, meaning they have a better chance of identifying a true effect

or distinction in case it exists [99]. However, the biggest drawback of parametric tests is

that they are sensitive to violations of the assumptions of Normality and homoscedasticity

[66]. The biggest advantage of nonparametric tests is that they are more robust and

flexible than parametric tests, where they can deal with data that are skewed and have

outliers. Moreover, they also do not need large samples or random sampling to be valid[99].

However, the biggest drawback of nonparametric tests is that they are less precise and

powerful than parametric tests [99].

1.3 Preliminary tests in statistical analysis

A preliminary test is conducted to verify assumptions or conditions necessary for the

validity of subsequent statistical tests. Where the results of preliminary tests determine

which statistical test should be applied to evaluate the main hypothesis [47, 67]. Boon [16]

described the preliminary testing procedure as follows: If we need to test a hypothesis and

we are unsure whether to use a restricted but potentially incorrect model or a larger and

less precise model. In order to resolve this matter, we conduct a preliminary test on the

suitability of the restricted model. If this test does not show significance, we can continue

using the restricted model and perform a test designed for that model. Otherwise, we can

use a different main test that is more suitable for the larger model but has less strength
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compared to the first test when the restricted model is valid.

Common types of preliminary tests before using parametric statistical tests are Nor-

mality tests and equality of variances tests. Normality tests help to assess whether data

follow a Normal distribution and are usually a frequent preliminary step. Tests like the

Shapiro-Wilk test [87] or Kolmogorov-Smirnov test [58] are commonly used for this pur-

pose. Equality of variances tests are another important preliminary test for parametric

tests. Tests like Levene’s test [61] or F -test [93] help determine if there is a significant

difference between the variances across groups.

Applying a preliminary test for Normality to choose between a parametric test and

a nonparametric test is referred to as the two-stage procedure by some researchers. For

example, the two-stage procedure involving a preliminary Normality test is common for

choosing between the two-sample t-test and the Mann-Whitney U test for independent

samples [40, 80]. Freidlin et al. [41] referred to this as a "natural adaptive procedure"

where the Shapiro-Wilk for the Normality test is applied, and if the null hypothesis of

Normality is not rejected, the t-test is used. Otherwise, the non-parametric Wilcoxon

rank-sum test is applied. Similarly, performing preliminary tests for both Normality and

equality of variances to choose between a parametric test and a nonparametric test is

referred to as the three-stage procedure [53, 78, 80].

1.4 NPI-RP

This section presents the basic concept of nonparametric predictive inference (NPI) as

the main approach used in this thesis. In addition, the NPI bootstrap method (NPI-B)

and statistical reproducibility (RP) are presented, specifically focusing on NPI bootstrap

reproducibility probabilities (NPI-B-RP).

1.4.1 Nonparametric Predictive Inference (NPI)

Nonparametric predictive inference (NPI) is a frequentist statistical method that relies

on Hill’s assumption A(n) [52]. This assumption provides a direct probability for future

observations of a random quantity, conditional on the observed values of related random
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quantities [21]. Let n real-valued ordered observations x(1) < x(2) < . . . < x(n), where

n ≥ 1, correspond to continuous and exchangeable random quantities X1, . . . , Xn, Xn+1

enumerated in increasing order. For convenience, let x(0) = −∞ and x(n+1) = ∞. In

the case of non-negative random quantities, we set x(0) = 0. It is important to note that

x(n+1) does not represent an observed value for Xn+1. These n observations divide the

real line into n + 1 intervals Ij = (x(j−1), x(j)), where j = 1, 2, . . . , n + 1. The assumption

A(n) regarding a future observation Xn+1 based on n observations can be expressed as:

P (Xn+1 ∈ Ij = (x(j−1), x(j))) = 1
n + 1 , for j = 1, 2, . . . , n + 1. (1.4.1)

This implies that Xn+1 has an equal chance of being within any of the intervals created

by the ordered observed data. A(n) does not make any additional assumptions and can

be interpreted as a post-data assumption regarding exchangeability [21]. It assumes no

ties in the data or predictions. In the case of tied observations, it can be dealt with by

breaking them by a tiny amount [28, 29]. If we want to allow ties, the probabilities 1
n+1 can

be assigned to closed intervals Ij = [x(j−1), x(j)] instead of open intervals Ij = (x(j−1), x(j))

[20].

The NPI approach can be extended to incorporate m > 1 future observations by

consecutively applying Hill’s assumption A(n), A(n+1), . . . , A(n+m−1), denoted as A(.) [30].

Let Oi represent the possible orderings of the m > 1 future observations relative to

the existing n data observations. There are
(

n+m
n

)
possible orderings Oi, where i =

1, 2, . . . ,
(

n+m
n

)
, and under A(.), each ordering is equally likely [30]. For a specific ordering

Oi, let Si
j denote the number of future observations in the interval Ij = (x(j−1), x(j)), where

j = 1, 2, . . . , n + 1. The variable Si
j quantifies the count of future observations that fall

within each interval defined by the existing data. Then, based on the A(n) assumptions,

we have:

P

n+1⋂
j=1

Si
j = si

j

 = P (Oi) = 1(
n+m

n

) , i = 1, . . . ,

(
n + m

n

)
(1.4.2)

where si
j are non-negative integers and ∑n+1

j=1 si
j = m. Specific ordering only indicates the

number of future observations in each interval Ij, without making any assumptions about

the exact location of the future observations within the interval Ij.

In the NPI framework, uncertainty is typically represented using lower and upper

probabilities [8]. This approach does not focus on the exact positioning of future points.
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Instead, it emphasizes that a future point falls within an interval Ij delimited by two

consecutive observations x(j−1) and x(j). The lower probability of event A represents the

maximum lower bound for its precise probability. In statistical hypothesis testing, this

event could involve either rejecting or not rejecting the null hypothesis. In simpler terms,

a lower reproducibility probability indicates strong evidence in support of event A [8].

Within the NPI framework, lower probability considers only how m future observations

are ordered among the n current observations where event A must occur [22]. The upper

probability represents the minimum upper bound for event A, taking into consideration all

potential evidence favouring event A. Within the NPI framework, the upper probability

considers all possible orderings in which event A could occur [22].

Exchangeability in the NPI framework

Hill’s assumption requires that random variables are exchangeable. Exchangeability does

not necessarily indicate a type of dependence, as it is important to be able to learn from

observations about unobserved random variables without assuming any specific form of de-

pendence [90]. Additionally, exchangeability does not mean independence. For instance,

if random variables X and Y are independent, then acquiring information about X would

not affect our knowledge or beliefs regarding Y . The concept of exchangeability is util-

ized in situations with limited knowledge about the relevant random variable or when a

deliberate decision has been made to exclude this information, making independence an

unsuitable assumption [90].

In the context of the NPI framework, exchangeability suggests that, for real-valued

quantities, the orderings are equally probable before observing their values [90]. In a

frequentist statistics scenario, A(n) fills in the values of n observations and thus results

in a 1
(n+1) probability for a future observation to fall within each interval between two

consecutive observations. If one were to propose a minimal formulation, X1, . . . , X(n+n),

for n future observations, would not necessarily need to be exchangeable as only the

assumptions related to A(.) are required. Therefore, it may not be essential for the first

n observed quantities’ exchangeability. However, assuming all random quantities to be

exchangeable still holds logical significance [90].



1.4. NPI-RP 8

1.4.2 NPI-Bootstrap (NPI-B)

Nonparametric predictive inference bootstrap (NPI-B), introduced by Coolen and Bin-

Himd [24], is a distinctive bootstrap method designed specifically for predicting future

observations within the framework of nonparametric predictive inference (NPI). NPI-B

differs from other bootstrap methods that aim to estimate the characteristics of an as-

sumed underlying population distribution, as NPI-B explicitly quantify the uncertainty

in predicting future values [24].

NPI is a frequentist statistical framework explicitly focused on predicting future ob-

servations, enabling the development of a bootstrap method tailored for this purpose

(NPI-B) [24]. The NPI-B method relies on Hill’s assumption A(.), which states that a

future observation is equally likely to fall into any of the n + 1 intervals created by the

n data points [25]. Notably, NPI-B does not require assuming an underlying distribution

for the data, making it a completely nonparametric method [25]. NPI-B samples are not

drawn from the original data sample itself but from the predictive distribution for future

values given the data [25].

The NPI-B approach involves n data observations and focuses on predicting m future

observations. Let the number of bootstrap samples be denoted as N . The NPI-B approach

for real-valued data on a finite and an infinite interval works as follows: [24, 25].

1. Take n ordered observations x(1) < x(2) < . . . < x(n), assuming there are no ties

2. These n observation create n + 1 intervals.

3. Choose one interval of n + 1 intervals randomly.

4. If this interval is of finite length, sample an observation Uniformly. If the interval

is unbounded, such as (−∞, x(1)) or (x(n), +∞), sampling an observation involves

assuming the tails of a Normal distribution over these intervals. While if data is on

the non-negative real line (infinite interval [0, +∞) ) and the interval is (x(n), +∞),

we sample the future value from the tail of Exponential distribution.

5. Add this observation to the data n, leading to n + 1 observations in the data set.

6. Perform Steps 2-5, now with order n + 1 data, to obtain a further future value.
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7. Following Steps 2-6, in total m times to form an NPI-B sample.

8. Create more NPI-B samples of size m N times.

In Step 4, since it cannot be sampled observation Uniformly from an open-ended in-

terval (−∞, x(1)) and (x(n), ∞), it is assumed to sample the future observation over these

intervals from the tails of a Normal distribution, with an estimated mean (µ) which is

calculated as the midpoint of the interval µ = x(1)+x(n)
2 , and estimated standard deviation

(σ) is computed as x(n)−µ

Φ−1( n
n+1 ) , where Φ represents the CDF of the standard Normal dis-

tribution [25]. σ is estimated using the properties of the Normal cumulative function:

P (Y > x(n)) = 1 − Φ(x(n)−µ

σ
) = 1

1+n
[25]. For non-negative real-valued data, the NPI-B

algorithm uses the tail of an Exponential distribution with the estimated rate λ = ln(n+1)
x(n)

.

λ is estimated using P (Y < y) = 1 − e(−λy), given P (Y > x(n)) = 1
n+1 [25].

1.4.3 Statistical reproducibility

Reproducibility denotes the ability of future an experiment or studies to replicate the same

results as the original experiment result. It plays an important role in scientific methods,

providing researchers with confidence in the validity of their findings. Recently, reprodu-

cibility has gained increased attention within the scientific community, sparking extensive

discussions on its various aspects. Atmanspacher and Maasen [7] offers an overview of

many such facets. While the focus has largely been on topics like publication bias and

guidelines for best practices to prevent major reproducibility challenges, surprisingly little

attention has been given to the reproducibility of statistical inference methods—often a

key component in investigations [26].

Goodman [44] was the first to discuss the concept of reproducibility probability within

a hypothesis testing framework. He addressed a potential misunderstanding about the

interpretation of statistical p-values, specifically that a low p-value does not necessarily

improve the credibility of the test result. Goodman argued that the replication prob-

ability may be smaller than expected, highlighting the need for careful interpretation of

p-values to avoid misinterpretation. Goodman used the term replication probability in-

stead of reproducibility probability (RP). Goodman [44] defined statistical reproducibility

as the probability of observing a similarly significant outcome in the same direction if the
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experiment was to be repeated under the same circumstances and with the same sample

size. In a later extensive discussion of Goodman’s paper, Senn [85] emphasizes the dif-

ference between p-values and reproducibility probability (RP). While Goodman argues

that p-values can overstate the evidence against the null hypothesis, Senn argues that the

issues with p-values primarily arise from their misinterpretation and misuse rather than

the metric itself. Senn stresses the importance of distinguishing between the evidence

provided by p-values and the concept of reproducibility.

De Martini [38] assumed the power of the test as an estimator of RP to evaluate results

across a wide range of parametric tests. Moreover, he suggested defining statistical tests

themselves using the estimated RP. De Capitani and De Martini further explored this

power-based approach [35, 36, 37], who extended it to the estimation of RP for various

nonparametric tests, including the Wilcoxon signed-rank test, sign test, Kendall test,

and binomial test. In this approach, the power of a test is defined as the probability of

rejecting the null hypothesis when the alternative hypothesis is true. By leveraging the

power of the test as an estimator, researchers could infer the likelihood of reproducibility

based on the test’s ability to detect true effects.

Recently, a new perspective on RP was introduced by Coolen and Binhimd [24], em-

ploying the nonparametric predictive inference (NPI) framework of frequentist statistical

methods. With its explicitly predictive nature, the NPI framework provides a natural

way to make inferences about RP. By leveraging the predictive nature of NPI, it becomes

possible to predict the outcome of a future test based on the data from the initial test, as-

suming the future test is conducted under the same conditions and with the same sample

size as the initial test [13]. Coolen and BinHimd [24, 25] pioneered the use of NPI in

testing reproducibility, including investigating NPI reproducibility for basic nonparamet-

ric tests like the Wilcoxon Mann–Whitney test (WMT) and developing NPI bootstrap

for predictive inference [25]. Moreover, Alqifari and Coolen [3, 23] extended NPI repro-

ducibility to testing on population quantiles as well as for a precedence test. Moreover,

Simkus et al. [91] investigated NPI reproducibility in making final decisions based on

the outcomes of multiple t-tests, highlighting the potential challenge of reproducibility

in multiple testing scenarios. This thesis adapts Coolen and Binhimd [24] approach to

statistical reproducibility.
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In the context of Bayesian analysis, Billheimer [12] has examined predictive inference.

To enhance reproducibility, he recommended using predictive inference to predict future

observable data rather than infer unobservable parameters. This approach aligns with

the approach to statistical reproducibility proposed in this thesis; however, it suggests

utilizing the NPI framework instead of the Bayesian framework due to its not making

assumptions about the data.

1.4.4 NPI-RP

Senn [85] argued that the probability of reproducibility of a hypothesis test could be as low

as 0.5 in the most unfavourable case, particularly when a test statistic is near the threshold

value between rejecting and non-rejecting a null hypothesis. Coolen and Bin Himd [24]

confirmed this for certain fundamental tests related to one group of data or population,

finding that with minimum NPI lower reproducibility probability was 0.5 [26]. Whereas

when conducting basic tests with two groups of data or populations, the minimum NPI

lower reproducibility probability was below 0.5, and the reproducibility tended to be

worse if the null hypothesis was rejected and the test statistic was close to the threshold.

This issue is compounded by the design of hypothesis tests, which are often tailored

towards rejecting the null hypothesis, aligning with a key aim of many experiments [26].

Additionally, there is concern that both NPI lower and upper reproducibility probabilities

can remain relatively low for test statistic values far from their respective thresholds[26].

The NPI-based method for assessing the reproducibility of statistical hypothesis tests

involves conducting the test on the original data and then considering its results for all

potential future data sets of similar size, based on the assumption of post-data exchange-

ability [26]. However, this approach presents computational difficulties for complex tests

or larger data sets [26]. If it is possible to determine whether an ordering of future ob-

servations among the original data will result in rejection or non-rejection of the null

hypothesis without assuming specific values between two original observations, sampling

of the future orderings offers a solution leading to estimates of lower and upper reproducib-

ility probabilities according to NPI [26, 27]. In cases where conclusions of the hypothesis

test about a future data set can only be drawn from the precise knowledge of the future
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observations, applying the NPI bootstrap method [13, 25] is recommended [26].

1.4.5 NPI-B-RP

This thesis uses the nonparametric predictive inference bootstrap to estimate reproducibil-

ity probability (NPI-B-RP). NPI-B present a point estimate of reproducibility probability,

it does not enable providing of the results in terms of imprecise reproducibility probab-

ilities. The NPI-B-RP method takes advantage of the NPI-B framework for prediction,

allowing the estimation of RP by reiterating a statistical test multiple times and observing

the consistency of outcomes [13].

BinHimd [13] conducted a brief study on NPI-B-RP for the Wilcoxon Mann–Whitney

(WMT) test to demonstrate that NPI-B-RP yields results in line with theoretical values

for both lower and upper values of NPI-RP that can be calculated using small sample

sizes. Moreover, Simkus [90] adopted the BinHimd algorithm for the NPI-B-RP for the

Wilcoxon Mann-Whitney to calculate NPI-B-RP for the t-test with some differences such

as the number of times the entire bootstrap process is repeated h and report NPI-B-RP

using various statistics (minimum, mean, maximum).

In this thesis, it is difficult to calculate precise values of lower and upper reproducibility

probabilities for the two-stage procedure testing or three-stage testing (location tests with

preliminary tests). Therefore, we depend on the NPI bootstrap to estimate and assess

the reproducibility. Algorithm 1 for calculating NPI-B-RP for the location tests without

preliminary tests and preliminary tests only have been derived from the NPI-B-RP for the

WMT test, which was outlined in BinHimd’s thesis [13] and from the NPI-B-RP for t-test,

which was present in Simkus’s thesis [90]. We will rely on Simkus [90] mothed to report

NPI-B-RP. Thus, Algorithm 1 is applied with N = 1000 and h = 100 (these numbers

are optional and can be changed), and min, mean, and max of RP1, RP2, . . . , RPh were

chosen as outputs.

Simkus [90] discussed in her thesis the reasoning behind the presentation of algorithm

outputs and the selection of values for N and h. Various summary statistics were invest-

igated through simple simulations, including the minimum, mean, median, maximum, as

well as the 5th and 95th percentiles (representing the bootstrapped 90% confidence in-



1.4. NPI-RP 13

Algorithm 1: NPI-B-RP for an interest test
Require: original samples, N , and h.

1: Apply a test on the original samples, and make a decision about H0, T symbolizes the

decision, then record T = 1 if H0 is rejected at significance level α and otherwise record

T = 0.

2: Draw an NPI-B sample N times based on the original samples, with sample size as original

samples, and apply the same test. Each time record the test decision Tj , where

j = 1, 2, . . . , N , where we record Tj = 1 if H0 is rejected or Tj = 0 if H0 is not rejected.

3: compute RP, where RP = 1
N

∑N
j=1 I(T =Tj).

4: Perform steps 2-3 in total h times, leading to RP values RP1, . . . , RPh.

terval) of RP1, RP2, . . . , RPh. Simkus [90] found that there was no substantial benefit in

using the 90% confidence interval with the maximum and minimum values, as the differ-

ence between the minimum value and the 5th percentile, and between the 95th percentile

and the maximum value was negligible. Similarly, reporting the median did not provide

additional insight, as the mean and median values of RP1, RP2, . . . , RPh were very similar.

Thus, the mean value was considered the most important indicator of NPI reproducibil-

ity, referred to as the NPI-B-RP value. Additionally, the minimum and maximum values

of RP1, RP2, . . . , RPh were reported alongside the NPI-B-RP value. Simkus [90] chose

N = 1000 and h = 100, the primary objective was to strike a balance between compu-

tation time and accuracy. The value of h is set as 100, increase the value of h from 100

to 200 or even up to 500 leads to widening the gap between the minimum and maximum

values of RP1, RP2, . . . , RPh; however, this alteration is minimal and only causes a slight

difference in the mean value at the third decimal place. Larger h leads to proportionally

longer computational times without substantially enhancing accuracy. Simkus [90] found

that when N was raised from 1000 to 10, 000, the means of RP1, RP2, . . . , RPh remained

similar, differing only in the third decimal place, indicating that the algorithm performed

well at N = 1000.

In this thesis, we have made several important contributions to the field of nonpara-

metric predictive inference (NPI) and its application to statistical reproducibility, partic-

ularly in the context of preliminary and location tests. One primary contribution is the
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application of the NPI-B method, introduced by Coolen and BinHimd [24], to estimate the

reproducibility of various preliminary tests, such as tests of Normality (Shapiro-Wilk test,

Anderson-Darling test, and Lilliefors test) and equality of variances (F -test and Levene’s

test), as well as location tests (one-sample t-test, one-sample Wilcoxon test, Welch’s t-test,

ANOVA test, Welch’s ANOVA test, and Kruskal-Wallis test). Another key contribution

is the estimation of reproducibility probability for two-stage and three-stage testing pro-

cedures through the use of the NPI-B method. These multi-stage procedures are designed

to sequentially apply preliminary tests and location tests, providing a structured frame-

work for hypothesis testing that may enhance the reproducibility probability (RP) of the

results.

1.5 Outline of thesis

This thesis is organised as follows: Chapter 2 investigates the reproducibility (RP) of

Normality tests. We employ three well-known Normality tests which are Shapiro-Wilk

(SW), Anderson-Darling (AD), and Lilliefors (LF) to examine reproducibility under dif-

ferent distributions and sample sizes and compare their RP performance. Additionally,

RP for the Normality tests are explored under different levels of significance. The rela-

tionship between the overall mean of RP values in the rejection area and the estimated

power for the Normality tests is examined. The reproducibility of the Normality tests is

studied because it is considered an essential step in the topic of this thesis "the impact of

preliminary tests on RP of location tests", where the location tests require investigation

of the Normality assumption, investigated through Normality tests.

In Chapter 3, the reproducibility of equality of variances tests is investigated. The

primary focus is on the reproducibility of two key tests: F -test and Levene’s test. This

exploration examines the relationship between RP values and the p-values and explores

the relationship between RP in the rejection area and estimated power. For the F -test,

the investigation extends to both two-sided testing and upper one-sided testing, and the

examination of Levene’s test focuses on the two-sided test. This is conducted through

simulation studies, and the investigation takes into account scenarios involving both null

and alternative hypotheses. The examination of RP of equality of variances tests is an
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important aspect of this thesis. The research focus is on understanding how a preliminary

test of equality of variances influences the RP of location tests. Specifically, parametric

location tests require the assumption of homogeneity, a critical aspect investigated through

equality of variances tests.

Chapter 4 studies the reproducibility of the one-sample location tests with preliminary

test (the two-stage procedure). This involves employing the Shapiro-Wilk test as the

preliminary test for Normality to choose between the one-sample t-test or the one-sample

Wilcoxon signed-rank test. The reproducibility of the two-stage procedure is assessed in

various ways such as Case A which investigates full RP for all stages, Case B focuses on

RP for the outcome of the location tests, and Case C examine RP of the location test

conclusion, where for the bootstrap samples the same location test is applied as for the

original sample. Furthermore, RP for the one-sample t-test and Wilcoxon test without

performing the preliminary test is studied. Examine the impact of the preliminary test

of Normality on RP of location tests by comparing RP for the location test with and

without the preliminary test.

Chapter 5 addresses reproducibility for the two-sample location tests with preliminary

tests (three-stage procedures). In the three-stage procedures, the Shapiro-Wilk test for

Normality and the F -test for equality of two variances are used as preliminary tests to

choose between location tests, the two-sample t-test, Welch’s t-test, and the Wilcoxon-

Mann-Whitney (WMW) test. The same cases in Chapter 4 are used to assess the RP.

Additionally, RP for the two-sample t-test, Welch’s t-test, and the WMW test without

preliminary tests are studied. The effect of the preliminary tests on RP of the two-sample

location tests is investigated by comparing the RP values for location tests with and

without preliminary tests.

Chapter 6 presents reproducibility for the multiple-group location tests with prelim-

inary tests. The focus on the RP for two and three-stage procedures for multiple-group

location tests. The Shapiro-Wilk test is employed as a preliminary test for Normality

in the two-stage procedure to choose between the one-way ANOVA and Kruskal-Wallis

tests. The Shapiro-Wilk test and Levene’s test are employed as preliminary tests for

Normality and equality of variances in the three-stage procedure to choose between the
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ANOVA test, Welch’s ANOVA test and the Kruskal-Wallis test. The study is applied

to 3 and 5 groups as examples for the multiple groups. Additionally, we explore RP for

the location tests without preliminary tests to check the impact of the preliminary tests

on RP for multiple-sample location tests by comparing RP for location tests with and

without preliminary tests.

The final chapter 7 serves as a conclusion and the future works, summarizing key find-

ings, highlighting contributions to the field, and suggesting directions for future research.

In this thesis, calculations were performed using the statistical software program R

version 4.2.2. The random seed has been set to 1234 using ‘set.seed(1234)‘ in the R codes

to ensure that the same sequence of random numbers is generated each time the code is

run, leading to identical samples.



Chapter 2

Reproducibility for Normality Tests

2.1 Introduction

The assumption of Normality plays a crucial role in many statistical analyses, as many

procedures and tests rely on the assumption that the data follow a Normal distribution.

Assessing Normality in statistical analysis is essential, as it enables researchers to establish

if the data satisfies the assumption of Normality for specific statistical methods. Thus,

the motivation of this chapter lies in investigating the reproducibility probability (RP)

of Normality tests and understanding their role as preliminary tests in assessing the

reproducibility of location tests in subsequent chapters.

There are plenty of types of Normality tests designed to assess whether a sample is

drawn from a Normal population. The main tests for Normality include the Kolmogorov-

Smirnov (KS) test [58] which evaluates the maximum difference between the empirical

cumulative distribution function (CDF) of the sample and the theoretical CDF of the

Normal distribution. This comparison enables the evaluation of how closely the sample

data aligns with the distributional form of a Normal distribution. The Lilliefors correc-

ted KS test [62] is another important Normality test. The Shapiro-Wilk [87] test and

the Anderson-Darling (AD) [6] test are known for their robustness and sensitivity in de-

tecting deviations from Normality, especially in smaller sample sizes. The Cramer-von

Mises (CVM) test [31] evaluates the minimum distance between hypothetical and actual

probability distribution. Finally, the D’Agostino test [32] evaluates the skewness of a

sample distribution and helps in identifying substantial deviations from a symmetrical
17
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distribution.

This chapter focuses on three widely used Normality tests: the Shapiro-Wilk (SW)

test, the Anderson-Darling (AD) test, and the Lilliefors (LF) test. These tests are par-

ticularly prominent in statistical software and are commonly employed for assessing the

Normality assumption in various analyses. This chapter aims to assess RP for these

Normality tests under the assumption of Normal distribution and distributions different

from Normal distribution through simulation studies. Moreover, the chapter compares

the RP values of these tests and investigates the relationship between their RP in the

rejection area and their estimated powers. Additionally, this chapter examines the effect

of significance level on the RP values of these Normality tests.

Section 2.2 provides a brief introduction to these three Normality tests. The simulation

process is detailed in Section 2.3, where we simulate under both the null hypothesis and

the alternative hypothesis for the Normality tests. The results of the simulation and the

discussion of it are displayed in Subsection 2.3.1. Subsection 2.3.2 presents a comparison

for reproducibility of these three Normality tests and discusses the relationship between

their RP values in the rejection area and their estimated power. Subsection 2.3.3 compares

RP values for different levels of significance. The chapter concludes by summarizing the

most important results in Section 2.4.

2.2 Test for Normality

This section offers a brief introduction to three well-known Normality tests, namely the

Shapiro-Wilk, Anderson-Darling, and Lilliefors tests. These tests are very sensitive to

deviations from Normality and are widely recognized and employed for their robustness

and effectiveness in assessing Normality across various sample sizes and distributions.

2.2.1 Shapiro-Wilk (SW) test

The Shapiro-Wilk (SW) test developed by Shapiro and Wilk [87], is an effective method

for assessing deviations from Normality. The test statistic, denoted as W , is defined as

the squared Pearson correlation coefficient between the order statistics of a sample and
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scores representing how the order statistics would appear if the population followed a

Gaussian distribution [51]. Therefore, if the value of W is close to 1, the sample exhibits

behaviour similar to a Normal distribution, if W is less than 1, the sample does not follow

a Normal distribution [51].

The initial version of the SW test was originally designed for sample sizes ranging

from n = 3 to 50. It included tabulated percentage points of the null distribution for p-

values like 0.01, 0.02, 0.05, 0.1, 0.5, and others up to 0.99 [51]. Using tables was essential

for calculating and interpreting the SW test according to Shapiro and Wilk [87]. They

also suggested a normalizing transformation for W when 7 ≤ n ≤ 50 to improve the

test’s power and accuracy by making the distribution of W closer to a standard Normal

distribution [51]. However, even with this improvement, a reliance on tables remained

necessary for 4 ≤ n ≤ 6 because of the difficulty of deriving a simple mathematical

formula for the W statistic and its distribution for these very small sample sizes [51].

Then in 1982, Royston [81] introduced an extension to the SW test that allowed larger

sample sizes such as up to 2000; later in 1992 [82], he lifted this limitation even further

up to 5000. Royston devised an approximate normalization method suitable for computer

processing to compute the W value and its significance level for sample sizes ranging from

n = 3 to 2000. Subsequently, an enhanced algorithm was introduced that encompassed

sample sizes 3 ≤ n ≤ 5000.

Assume the sample consists of n independent and identically distributed observations

X1, X2, . . . , Xn from population X. The null hypothesis for the Shapiro-Wilk (SW) test

is H0: X is Normally distributed with unspecified µ and σ2 (N(µ, σ2)), against the al-

ternative hypothesis H1: X is not Normally distributed. If X(i) for i = 1, . . . , n represents

the n observations arranged in ascending sequence, the test statistic W is

W =

(∑n
i=1 aiX(i)

)2

∑n
i=1(Xi − X̄)2

(2.2.1)

where n is the number of observations, and X̄ is the sample mean. The vector of weights

a = (a1, . . . , an)T is determined by [82]:

a = mT V −1

(mT V −1V −1m)1/2 (2.2.2)

where mT = (m1, . . . , mn) is a vector composed of the expected values of the order
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statistics of n independent and identically distributed random variables sampled from the

standard Normal distribution (Y(n1) ≤ Y(n2) ≤ . . . ≤ Y(nn)), E(Y(ni)) = mi, and V = vi,j

is the corresponding n × n covariance matrix of order statistics cov(Y(ni), Y(nj)) = vij, for

i, j = 1, . . . , n [75].

The null hypothesis for the SW test is rejected if W ≤ W(α,n) where α is the significance

level. The critical value W(α,n) can be obtained in Shapiro and Wilk [87]. The Shapiro-

Wilk test is sensitive to deviations from Normality, especially in the centre part of the

distribution. The Shpiro-Wilk test is strongest against short-tailed (platykurtic) and

skew distributions and weakest against symmetric moderately long-tailed (leptokurtic)

distribution [82]. Moreover, the Shapiro-Wilk test is sensitive to sample size; it tends to

incorrectly reject Normality with large samples and fail to reject Normality with small

samples [50].

2.2.2 Anderson-Darling (AD) test

The Anderson–Darling (AD) test for goodness-of-fit was first proposed in 1952 [5, 6]. The

null hypothesis for the Anderson-Darling test applied to assess Normality is formulated

as follows: H0: data follow a Normal distribution. This is tested against the alternative

hypothesis: H1: data do not follow a Normal distribution. It involves ordering the test

samples with size greater than 7 with unknown mean and variance, then calculating the

statistic A2:

A2 = −n − 1
n

n∑
i=1

{(2i − 1) log P(i) + (2n + 1 − 2i) log(1 − P(i))} (2.2.3)

where P(i) = Φ
(

X(i)−X̄

σ

)
is the cumulative distribution function (CDF) of the standard

Normal distribution at X(i), and X(i) is the ordered sample of size n, X̄ is the sample

mean and σ is the standard deviation.

Stephens [94] suggests a modified statistic A2∗ to obtain critical values for all sample

data:

A2∗ = A2
(

1.0 + 0.75
n

+ 2.25
n2

)
(2.2.4)

The p-values for the adjusted Anderson-Darling statistic can be calculated as follows:

when A2∗ ≤ 0.2, then p-value = 1 − exp
(
−13.436 + 101.14A2∗ − 223.73(A2∗)2

)
. When
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0.2 < A2∗ ≤ 0.34, then p-value = 1 − exp
(
−8.318 + 42.796A2∗ − 59.938(A2∗)2

)
. When

0.34 < A2∗
< 0.6, then p-value = exp

(
0.9177 − 4.279A2∗ − 1.38(A2∗)2

)
. Otherwise, then

p-value = exp
(
1.2937 − 5.709A2∗ + 0.0186(A2∗)2

)
.

The Anderson-Darling test is more sensitive to deviation in the tail than the central

region [45]. This makes it more powerful for detecting deviations from Normality in the

tails caused by skewness or heavy tails. This is because the weight function used in the

Anderson-Darling test statistic gives more weight to the tails of the distribution than the

central region.

2.2.3 Lilliefors (LF) test

The Lilliefors test examines whether the data are sampled from a Normal distribution

with unknown mean and variance [62]. The initial step involves standardizing the data

as Yi = Xi−X̄
S

, where X̄ is the sample mean and S is an unbiased estimate of the sample

standard deviation [98]. Then, the test statistic Dn represents the maximum absolute

difference between the empirical distribution function (EDF) of standardized data and

that of a standard Normal distribution [98]:

Dn = nmax
i=1

∣∣∣∣Fn(Yi) − Φ(Yi)
∣∣∣∣ (2.2.5)

where Fn(.) represents empirical distribution function and Φ(.) is CDF of the standard

Normal distribution.

The null hypothesis of the sample following a Normal distribution with unknown mean

and variance is rejected at the specified significance level α if the value Dn exceeds the

1 − α quantile from the Lilliefors distribution tables [62].

The Lilliefors test has high sensitivity at the centre of the distribution [9]. The Lilliefors

test has lower power compared to other Normality tests such as the Shapiro-Wilk or

Anderson-Darling tests in identifying deviations from Normality [70].
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2.3 Simulation studies for the reproducibility of the

Normality tests

Simulation studies are conducted to investigate the reproducibility (RP) of the Shapiro-

Wilk, Anderson-Darling and Lilliefors tests, where we use the NPI-B-RP Algorithm 1

that is presented in Section 1.4.5 of Chapter 1, to find the RP values for Normality tests.

The inputs are an original sample with the sample size n, h = 100 and N = 1000.

Data are simulated under the null hypothesis of Normality tests H0 using a Normal

distribution with mean and variance equal to 1 denoted by N(1, 1). Moreover, data are

simulated under the alternative hypothesis of Normality H1, where four different non-

Normal distributions are considered, namely, the Weibull distribution with shape equal 3

and scale equal 2, denoted by Weibull(3, 2), the Student’s t-distribution with 3 degrees of

freedom, denoted by t(3), the Exponential distribution with rate 1, denoted by Exp(1),

and the Cauchy distribution with location parameter 0 and scale parameter 1, denoted by

Ca(0, 1). Non-Normal distributions were chosen to examine how different characteristics

of the data distribution, such as skewness, long tails, heavy tails, and outliers, affect the

reproducibility of the Normality tests. The Weibull distribution is chosen to examine how

shape and scale characteristics impact Normality tests’ reproducibility. The parameter of

shape that equals 3 leads to a Weibull distribution that is slightly skewed to the right, and

a scale parameter of 2 determines the width or spread of the distribution. The Student’s

t-distribution known for its relatively longer tail in comparison to the Normal distribu-

tion offers an understanding of how properties of data distribution, like tail behaviour and

symmetry, affect the reproducibility of tests for Normality. The Exponential distribution,

known for its long tail and constant hazard rate, provides a chance to investigate the

reproducibility of Normality tests when the distribution of the original samples deviates

substantially from the Normal distribution due to factors such as skewness, a long right

tail, or outliers. Finally, the Cauchy distribution’s heavy tails allow exploration of the

reproducibility of the Normality tests in scenarios with extreme outliers and high vari-

ability. Figure 2.1 shows the shapes of the probability density functions (PDFs) of these

chosen distributions.
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Figure 2.1: The probability density functions for selected distributions used in the simulation

studies.

The number of runs per simulation is K = 200, for each run, one original sample

of size n is generated from a chosen distribution, a Normality test is performed on this

original sample and NPI-B-RP is calculated using Algorithm 1. Different n sample sizes,

namely 5, 10, 20, and 50 are considered to evaluate the RP values across small, medium,

and large sample sizes. Since the sample sizes of the Anderson-Darling test for Normality

should be greater than 7 in the R program [46], we cannot apply the AD test for a sample

size of 5. The tests are performed with a 5% level of significance and with a two-sided

alternative hypothesis.

2.3.1 Results of the simulation studies

This subsection presents the results of the simulation studies for the reproducibility of the

Shapiro-Wilk test, Anderson-Darling test and Lillifores test, under the null hypothesis for

the Normality test when the distribution is N(1, 1), and under the alternative hypothesis

when distributions are Weibull(3, 2), t(3), Exp(1), and Ca(0, 1).

Results under H0

RP values for the Normality tests when data are simulated from N(1, 1) are presented in

Figures 2.2 - 2.5 for sample sizes 5, 10, 20, and 50. In all Figures, the dotted line represents

the threshold, with the rejection area to the left of the line and the non-rejection area

to the right. The x-axis represents the p-values for the Normality tests, and the y-axis
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represents the minimum, mean and maximum NPI-B-RP values. It can be noticed that

RP values for Normality tests tend to be high in the non-rejection area and low in the

rejection area when dealing with small sample sizes. As the sample size grows, the opposite

occurs, RP values tend to be larger for rejection of H0 than for non-rejection. This is due

to the power of Normality tests and the characteristics of the NPI-B samples. The NPI-B

samples are diverse in distribution because the NPI-B does not make any distributional

assumptions. Thus, when dealing with small sample sizes, these tests have lower power,

making it more challenging to detect deviations from Normality. Therefore, the NPI-B

samples can easily pass the Normality tests which lead to high RP in the non-rejection

area and low RP in the rejection area. As the sample size increases, the tests become

more powerful in identifying deviations from Normality. Therefore, the NPI-B samples

have more difficulty passing the tests of Normality, Which results in lower RP values in

the non-rejection area and higher RP values in the rejection area.

Furthermore, the relationship between RP values and p-values reveals a consistent

pattern. Specifically, the RP value tends to be lower when the p-value is close to the

threshold, gradually increasing as the p-value moves away from the threshold in both areas

of rejection and non-rejection. This behaviour is rooted in the strength of evidence for or

against the null hypothesis (H0). When the p-value is close to the significance threshold,

it indicates a marginal decision, where the evidence for or against H0 is relatively weak.

Consequently, the RP values of the tests are low because it is possible that the repeated

experiment will not lead to the same result as the original test. As the p-value moves

away from the threshold, the evidence for or against H0 strengthens, resulting in higher

RP values. This relationship has been observed in various studies such as [2, 13, 91].

It can be seen that as p-values for the Normality tests are close to one, the values

of RP of the Normality tests remain low and do not approach one. This is because the

simulations study is performed for the two-sided Normality tests. The two-sided tests are

designed to detect deviations from the null hypothesis in both directions. This means they

consider the possibility of deviations in either tail of the distribution. As a result, even

when the p-value is close to one, indicating weak evidence against the null hypothesis,

there might still be doubt regarding the actual underlying distribution. Consequently,
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Figure 2.2: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from N(1, 1), with n = 5, α = 0.05

the RP values do not approach one.

As the sample size increases, the variability in RP values of all tests increases. The

variability of the RP values attributed to the characteristics of the NPI-B samples and

the behaviour of different Normality tests with data. As the sample size increases, the

greater complexity and diversity of the NPI-B samples lead to a wider range of potential

test outcomes, resulting in increased variability in the RP values. The Anderson-Darling

test shows lower variability in RP values when compared to the Shapiro-Wilk test and

the Lilliefors test. This difference may stem from the greater sensitivity of the Anderson-

Darling test to deviations in the tails than the median, making it more powerful for

detecting deviations from Normality in the tails. This led to more consistent results

among different NPI-B samples, resulting in decreased variability in RP. In contrast, the

Shapiro-Wilk and Lilliefors tests are often more sensitive to departures in the central part

of the distribution. Also, the Anderson-Darling test tends to be less sensitive to sample

size variations compared to other tests, which may lead to more stable results and lower

variability in RP.



2.3. Simulation studies for the reproducibility of the Normality tests 26

Shapiro−Wilk test Anderson−Darling test Lilliefors test

0.00
0.25

0.50
0.75

1.00
0.00

0.25
0.50

0.75
1.00

0.00
0.25

0.50
0.75

1.00

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−R
P

 

Hypothesis  Not rejected  Rejected

Figure 2.3: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from N(1, 1), with n = 10, α = 0.05

Results under H1

This subsection presents the results of the simulation studies examining RP values for

the Normality tests when the data are sampled from distributions that differ from a

Normal distribution, namely Weibull(3, 2), t(3), Exp(1) and Ca(0, 1) distributions. These

distributions are chosen to provide insight into how deviations from Normality, such as

heavy tails, skewness, and other non-Normal characteristics, impact the RP of Normality

tests.

Figures 2.6 - 2.9 show RP values for the Normality test when data are drawn from

the Weibull distribution. Generally, RP values exhibit patterns close to observed when

sampling from N(1, 1), presented in Subsection 2.3.1, in terms of the relationship between

RP values and p-values for the Normality tests, the effect of sample size in RP values

and variability in the RP values. Although, Weibull(3, 2) is non-Normal distribution,

the number of original samples that reject and non-reject H0 is close to those when

data sampled from N(1, 1), as shown in Tables 2.1 and 2.2. This may be because when

the shape parameter is equal to 3, the Weibull distribution approximates the Normal

distribution [71].
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Figure 2.4: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from N(1, 1), with n = 20 α = 0.05

Figures 2.10 - 2.13 show the results for RP of the Normality tests when data are

sampled from t(3). It can be seen that the RP values exhibit similar patterns observed

when sampling from N(1, 1), presented in Subsection 2.3.1, in terms of the relationship

between RP values and p-values for the Normality tests, the effect of sample size in RP

values and variability in the RP values. However, the number of original samples in the

rejection region that increases with increasing sample size is higher than that when the

data are sampled from Normal and Weibull distributions, as given in Table 2.3.

Figures 2.14 - 2.17, show the results of RP for the Normality tests when data are

sampled from Exp(1) which is a long right tail distribution. RP values show similar

patterns observed when sampling from t(3). However, the number of original samples

that are located in the rejection area is higher than that observed in the t(3) distribution

case, as shown in Table 2.4. This is because the long right-tail of the Exp distribution

results in an increase in extreme values, outliers, and skewness in the data. As a result,

this impacts the performance of tests for Normality. Moreover, it is observed that RP

values in the rejection area tend to be high, and as the sample size increases, RP values

approach close to one. Whereas in the non-rejection area, as the sample size increases
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Figure 2.5: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from N(1, 1), with n = 50, α = 0.05

the number of original samples becomes small and has p-values close to the threshold

with low RP. This is simply due to the increase in the test power for larger sample sizes.

Therefore, RP decreases relatively for most of the non-rejection cases with larger sample

sizes compared to the non-rejection cases with smaller sample sizes.

Figures 2.18 - 2.21 show RP values when original samples are drawn from Ca(0, 1)

which is characterized by a heavy tail, the RP values for the Normality tests appear

similar patterns observed when sampling from Exp(1). However, the number of original

samples in the rejection area and RP values in the rejection area for all the Normality

tests are higher than observed in Exp(1). This can be traced back to the heavy-tailed

nature of the Cauchy distribution which leads to a higher probability of extreme values

occurring in the original samples and then the NPI-B samples. Thus, these extreme values

contribute to more original samples located in the rejection area and then high RP values.

Conversely, the Exponential distribution demonstrates different tail behaviour compared

to the Cauchy distribution. Although it also deviates from Normality, its tail behavior

may not be as pronounced as that of the Cauchy distribution leading to a comparatively

smaller number of original samples located in the rejection area and the low RP values

compared to Ca(0, 1).
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Figure 2.6: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

tests for data sampled from Weibull(3, 2), with n = 5, α = 0.05

2.3.2 Comparison between the Normality tests

A comparison is conducted between the Shapiro-Wilk test, Anderson-Darling test, and

Lilliefors test based on the overall mean of RP values (which are computed by averaging

the mean RP values across different original samples) and the number of original samples

in the rejection area. Furthermore, the relationship between the overall mean of RP values

in the rejection area with the estimated power for the Normality tests is examined. Gener-

ally, there is no substantial difference between the Normality tests in their reproducibility

and their estimated power.

Table 2.1 shows the number of original samples that are located in the non-rejection

and rejection areas and the overall mean of their RP values when data is from N(1, 1).

The observed proportions of cases where H0 is falsely rejected are in line with this pre-

determined α = 0.05. Additionally, it can be seen that the overall mean of RP values for

the Shapiro-Wilk test and Lilliefors test are approximately similar for sample sizes 10, 20,

and 50, and their RP values are higher than the RP values for the Anderson-Darling test

in the non-rejection area. While in the rejection area, RP for the Anderson-Darling test

is slightly higher than RP for the Shapiro-Wilk and Lilliefors tests. For the sample size
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Figure 2.7: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Weibull(3, 2), with n = 10, α = 0.05

of 5, The Lilliefors test has a higher overall mean of RP values in the non-rejection area

and lower in the rejection area than the RP of the Shapiro-Wilk test.

In the case of sampling under H1 which is considered in Subsection 2.3.1. When data

are drawn from Weibull(3, 2), Table 2.2 reveals that the Anderson-Darling test shows a

slightly higher number of original samples that reject (H0). For a sample size of 5, the

number of original samples that reject (H0) for the Shapiro-Wilk test is slightly higher

than the Lilliefors test. Moreover, the Anderson-Darling test has the highest overall mean

of RP values in the rejection area, while in the non-rejection area, the Shapiro-Wilk test

has the highest RP for sample sizes 10, 20, and 50. For size 5, the Lilliefors test has a

higher overall mean of RP values in the non-rejection area and has a lower RP in the

rejection area compared to the Shapiro-Wilk test.

In scenarios where the alternative distribution is t(3) a symmetric distribution with

longer tails than the Normal distribution, from the results presented in Table 2.3, it is

observed that the Shapiro-Wilk test shows a relatively highest number of original samples

that reject (H0). In contrast, the Lilliefors test shows the least number of rejections.

Notably, the Shapiro-Wilk test shows a higher mean of RP values in the non-rejection
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Figure 2.8: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Weibull(3, 2), with n = 20, α = 0.05

case for sample sizes 10, 20, and 50. Conversely, the overall mean of RP values of the

Anderson-Darling test is the highest in the rejection case. For a sample size of 5, the

Lilliefors test has a higher RP in the non-rejection area and lower in the rejection area

compared to the RP of the Shapiro-Wilk test.

Table 2.4 presents the number of original samples and the overall mean of RP values

for the Normality tests in both areas when data is sampled from the Exp(1) distribution.

The number of original samples that reject (H0) for the Shapiro-Wilk test is the highest

compared to other tests. However, it is worth noting that the number of original samples

that reject (H0) of the Shapiro-Wilk and the Anderson-Darling tests is similar for the

sample size of 50. Conversely, the Lilliefors test shows the least number of rejections.

Notably, the Shapiro-Wilk test has a little bit higher RP in the non-rejection area for

sample sizes 10 and 20, while the Anderson-Darling test has the highest RP in the rejection

area for sample sizes 10 and 20, followed by the Lilliefors test. For a sample size of 50, the

Shapiro-Wilk test and the Anderson-Darling test have the same mean of RP values in the

rejection area. For a sample size of 5, the Lilliefors test has a higher mean of RP values

in the non-rejection case and lower in the rejection area compared to the Shapiro-Wilk

test.
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Figure 2.9: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Weibull(3, 2), with n = 50, α = 0.05

Table 2.5 shows RP and the number of original samples for the Normality tests when

data are sampled from a heavy-tailed symmetric distribution Ca(0, 1). The Anderson-

Darling test exhibits a slightly higher number of original samples that reject (H0) than

the Shapiro-Wilk test for sample sizes 10 and 20, while this number is similar for both

tests for sample size n = 50. Conversely, the Lilliefors test consistently demonstrates

the lowest number of rejections for sample sizes 10, 20, and 50. In terms of RP values,

the Anderson-Darling test has a slightly higher RP in the rejection case for sample sizes

n = 10 and n = 20, followed by the Lilliefors test. For the sample size of 50, all tests have

approximately the same RP in the rejection area. whereas in the non-rejection area, the

Shapiro-Wilk test has slightly higher RP than other tests. For the sample size of 5, the

Lilliefors test has a higher RP in the non-rejection case and lower in the rejection area

compared to the RP of the Shapiro-Wilk test.

The estimated power of Normality tests is evaluated through Monte Carlo simula-

tions of 100, 000 datasets for non-Normal distributions Weibull(3, 2), t(3), Exp(1), and

Ca(0, 1), for different sample sizes of 10, 20, and 50. The Monte Carlo simulations are

calculated as the proportion of times a test produces p-value below the significance level

(α = 0.05) when the H1 of non-Normality is true to the total number of the simulation.
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Figure 2.10: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from t(3), with n = 5, α = 0.05

The results of simulations for the estimated power of Normality tests are shown in Fig-

ure 2.22. The results show that the estimated power for the Normality test increases as

the sample size increases. Furthermore, from the results the Shapiro-Wilk and Anderson-

Darling tests approximately show similar power. Whereas, the Lilliefors test demonstrates

the lowest power, particularly for t(3) and Exp(1) distributions.

When comparing the estimated power of Normality tests with the overall mean of

RP values in the rejection area, we generally observe that as the estimated power of the

Normality tests increases, the RP in the rejection area also increases. When compared

between tests, although the Shapiro-Wilk test has slightly higher power than Anderson-

Darling for t(3) and Exp(1) distributions, Anderson-Darling has the highest RP in the

rejection area, except for the sample size n = 50 and distribution Exp(1) both Shapiro-

Wilk and Anderson-Darling have the same power and RP. The Anderson-Darling exhibited

higher power and RP for the Ca(0, 1) distribution, especially for sample sizes of 10 and

20. Interestingly, although the Lilliefors test has the lowest power, it does not consistently

yield the lowest RP in the rejection area across all scenarios.

All tests showed greater estimated power when used on data from the Cauchy (0, 1) dis-
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Figure 2.11: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from t(3), with n = 10, α = 0.05

tribution and have the highest overall mean of RP values in the rejection area. Conversely,

these tests have the smallest estimated power when used on data with Weibull(3, 2) dis-

tribution and have the lowest mean of RP values in the rejection area. This is because

the Normality tests have high power to detect departures from Normality in data sampled

from a heavy-tailed distribution. When dealing with data that follow Weibull(3, 2) dis-

tribution with shape parameter 3 the distribution approaches Normal distribution, this

makes it difficult for Normality tests to detect deviations from Normality.
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Figure 2.12: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from t(3), with n = 20, α = 0.05
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Figure 2.13: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from t(3), with n = 50, α = 0.05



2.3. Simulation studies for the reproducibility of the Normality tests 36

Shapiro−Wilk test Lilliefors test

0.00
0.25

0.50
0.75

1.00
0.00

0.25
0.50

0.75
1.00

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−R
P

 

Hypothesis  Not rejected  Rejected

Figure 2.14: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from Exp(1), with n = 5, α = 0.05
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Figure 2.15: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Exp(1), with n = 10, α = 0.05
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Figure 2.16: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Exp(1), with n = 20, α = 0.05
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Figure 2.17: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Exp(1), with n = 50, α = 0.05
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Figure 2.18: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from Ca(0, 1), with n = 5, α = 0.05
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Figure 2.19: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Ca(0, 1), with n = 10, α = 0.05
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Figure 2.20: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Ca(0, 1), with n = 20, α = 0.05
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Figure 2.21: The relationship between NPI-B-RP and p-value for Shapiro-Wilk, Anderson-

Darling and Lilliefors tests for data sampled from Ca(0, 1), with n = 50, α = 0.05
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Tests
Shapiro-Wilk Anderson-Darling Lilliefors

Rejection Non-rejection Rejection Non-rejection Rejection Non-rejection

R RP N RP R RP N RP R RP N RP

n = 5 6 0.354 194 0.759 - - - - 6 0.320 194 0.781

n = 10 10 0.619 190 0.630 10 0.650 190 0.602 9 0.602 191 0.620

n = 20 10 0.764 190 0.524 10 0.805 190 0.477 8 0.749 192 0.509

n = 50 10 0.859 190 0.418 11 0.891 189 0.375 10 0.841 190 0.413

Table 2.1: Rejection (R) and non-rejection (N) counts for original samples from N(1, 1), along

with the mean of RP values.

Tests
Shapiro-Wilk Anderson-Darling Lilliefors

R RP N RP R RP N RP R RP N RP

n = 5 9 0.366 191 0.757 5 0.342 195 0.776

n = 10 9 0.615 191 0.631 9 0.647 191 0.604 7 0.626 193 0.622

n = 20 12 0.761 188 0.535 13 0.799 187 0.4908 9 0.774 191 0.518

n = 50 8 0.840 192 0.427 10 0.864 190 0.382 9 0.807 191 0.417

Table 2.2: Rejection (R) and non-rejection (N) counts for original samples from Weibull(3, 2),

along with the mean of RP values.

Tests
Shapiro-Wilk Anderson-Darling Lilliefors

Rejection Non-rejection Rejection Non-rejection Rejection Non-rejection

R RP N RP R RP N RP R RP N RP

n = 5 20 0.364 180 0.755 - - - - 19 0.353 181 0.777

n = 10 52 0.659 148 0.609 47 0.670 153 0.588 36 0.658 164 0.596

n = 20 68 0.824 132 0.458 67 0.849 133 0.409 57 0.822 143 0.438

n = 50 126 0.925 74 0.309 116 0.939 84 0.264 98 0.917 102 0.286

Table 2.3: Rejection (R) and non-rejection (N) counts for original samples from t(3), along

with the mean of RP values.
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Tests
Shapiro-Wilk Anderson-Darling Lilliefors

Rejection Non-rejection Rejection Non-rejection Rejection Non-rejection

R RP N RP R RP N RP R RP N RP

n = 5 29 0.363 171 0.747 - - - - 17 0.352 183 0.764

n = 10 85 0.652 115 0.559 78 0.682 122 0.533 51 0.655 149 0.540

n = 20 166 0.854 34 0.402 155 0.875 45 0.355 105 0.856 95 0.341

n = 50 200 0.984 0 N/A 200 0.984 0 N/A 191 0.966 9 0.169

Table 2.4: Rejection (R) and non-rejection (N) counts for original samples from Exp(1), along

with the mean of RP values.

Tests
Shapiro-Wilk Anderson-Darling Lilliefors

Rejection Non-rejection Rejection Non-rejection Rejection Non-rejection

R RP N RP R RP N RP R RP N RP

n = 5 66 0.411 134 0.748 - - - - 67 0.380 133 0.769

n = 10 124 0.753 76 0.586 128 0.777 72 0.561 122 0.767 78 0.567

n = 20 173 0.922 27 0.410 176 0.935 24 0.3658 167 0.927 33 0.359

n = 50 200 0.993 0 N/A 200 0.993 0 N/A 198 0.991 2 0.139

Table 2.5: Rejection (R) and non-rejection (N) counts for original samples from Ca(0, 1), along

with the mean of RP values.
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Figure 2.22: The estimated power for Shapiro-Wilk, Anderson-Darling and Lilliefors tests for

data sampled from Weibull(3, 2), t(3), Exp(1), and Ca(0, 1), with sample sizes 10, 20, and 50.
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2.3.3 Reproducibility of the Normality tests for different levels

of significance

The same simulation studies presented in Section 2.3 were conducted under H0 for the

Normality tests, with different levels of significance, namely 0.1 and 0.01. As a result,

we observe that from Figures 2.23 - 2.28, the RP values follow the same general pattern

which is that RP values tend to be low when p-values are close to a level of significance

and when p-values are far away from a level of significance RP values are high.

In the non-rejection area, RP values are generally high at lower significance levels and

decrease as the level of significance increases. Conversely, in the rejection area, RP values

tend to be notably low at small significance levels and increase with higher significance

levels. This is because if α decreases, it becomes more stringent and one tends to reject

H0 in fewer cases, leading to high RP in the non-rejection area and low RP in the rejection

area. The opposite happens at a high level of significance.

Figure 2.29 illustrates the overall mean of RP values for the Normality tests under

H0, with significance levels α set at 0.01, 0.05, and 0.1. For sample sizes of 5, the LF

test exhibits slightly higher RP values than the SW test in the non-rejection area when

α is 0.01 and 0.05. However, at α = 0.1, both tests show approximately the same mean

of RP values. Conversely, in the rejection area, the SW test demonstrates slightly higher

RP values than the LF test across different significance levels. For sample sizes of 10,

20 and 50, the AD test has the highest mean of RP values in the rejection area across

different significance levels. In the non-rejection area, the SW test has the highest mean

of RP values when α is 0.01 and 0.05. However, at α = 0.1 both the SW and LF tests

tend to have approximately the same mean of RP values, which are higher than those of

the AD test. In the non-rejection area, the Shapiro-Wilk test tends to show the highest

mean of RP values because it is designed to be sensitive to deviations from Normality,

particularly in the central part of the distribution. Conversely, in the rejection area, the

Anderson-Darling test showed the highest mean of RP values because it is more sensitive

to deviation in the tail than the median, making it particularly effective in identifying

extreme departures from Normality. The same results were obtained when performing

simulations under H1, if data are generated from Exp(1), as shown in Appendix A.2.
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Figure 2.23: The relationship between NPI-B-RP and p-value for Shapiro-Wilk test for data

sampled from N(1, 1), α = 0.01

In this chapter, we have explored the RP for Normality using various alternative

hypothesis scenarios. To further validate and extend our findings, additional simulations

were conducted where the data was generated from a mixture of Normal distributions.

These simulations were designed to assess the RP under more complex distributional

structures that might be encountered in practice.

Given the similarity in results to the previously discussed alternative examples, de-

tailed outcomes of these additional simulations are included in Appendix A.1. These

results reinforce the patterns observed with other alternative hypotheses, showing con-

sistent RP values and providing further evidence for the robustness of our findings.
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Figure 2.24: The relationship between NPI-B-RP and p-value for Shapiro-Wilk test for data

sampled from N(1, 1), α = 0.1
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Figure 2.25: The relationship between NPI-B-RP and p-value for Anderson-Darling test for

data sampled from N(1, 1), α = 0.01
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Figure 2.26: The relationship between NPI-B-RP and p-value for Anderson-Darling test for

data sampled from N(1, 1), α = 0.1
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Figure 2.27: The relationship between NPI-B-RP and p-value for Lilliefors test for data sampled

from N(1, 1), α = 0.01
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Figure 2.28: The relationship between NPI-B-RP and p-value for Lilliefors test for data sampled

from N(1, 1), α = 0.1
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Figure 2.29: The mean of RP values for Shapiro-Wilk, Anderson-Darling and Lilliefors tests for

data sampled from N(1, 1), for different levels of α = 0.01, 0.05, 0.1 and with different sample

sizes n = 5, 10, 20, 50 .



2.4. Conclusions 49

2.4 Conclusions

In this chapter, the reproducibility (RP) for three Normality tests has been examined,

namely the Shapiro-Wilk (SW) test, Anderson-Darling (AD) test and Lilliefors (LF) test.

The RP values of these Normality tests were investigated through a simulation study

under both the null hypothesis of Normality tests and their alternative hypothesis. These

simulations contain various distributions, sample sizes, and significance levels.

The RP values for Normality tests tend to be low when the p-value of Normality tests

is close to the level of significance, and RP values increase gradually as the p-value moves

away from the level of significance. Generally, there is no substantial difference between

the RP of these tests. However, the RP values of the AD test have less variability than

RP values for the SW and LF tests. The AD test typically has the highest mean of RP

values in the rejection area, whereas the SW test tends to have the highest mean of RP

values in the non-rejection area.

The RP values are different according to sample size. For small sample sizes, RP

values in the non-rejection area tend to be high, while RP values in the rejection area are

low. Conversely, for large sample sizes, RP values in the non-rejection area are low and

RP in the rejection area are high.

The relationship between the overall mean of RP values in the rejection area for the

Normality tests with estimated power was examined. when the estimated power of the

Normality tests increases, RP increases. Additionally, as the sample size increases, RP

values in the rejection area and estimated power for the Normality tests increase. When

data samples from a distribution that deviates much from Normal and for large sample

sizes, the Normality tests tend to have approximately similar RP values in the rejection

area, as well as similar estimated power. The Anderson-Darling test shows slightly high

RP in the rejection area and estimated power when data are sampled from Ca(0, 1)

distribution. The Shapiro-Wilk test has slightly high power but does not have high RP

when data are drawn from t(3) and Exp(1) distributions. In most cases, the Lilliefors

test displays the lowest power and RP.

The reproducibility for the Normality tests is investigated for different levels of signi-
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ficance, namely 0.01, 0.05 and 0.10. The observed pattern suggests that RP values in the

non-rejection area are high and RP values in the rejection area are low when α is small.

For larger values of α, RP values in the non-rejection decrease while RP values in the

rejection area increase.



Chapter 3

Reproducibility of Tests for Equality

of Variances

3.1 Introduction

The equality of variances assumption, also known as homoscedasticity or homogeneity of

variances, is an important assumption in many statistical tests, particularly parametric

statistical tests because they are sensitive to any difference. This assumption enables

accurate inference and appropriate interpretation of test results, where unequal sample

variances lead to biased and skewed test results. Common tests for the equality of vari-

ances are the F -test [93], Bartlett’s test [10] and Leven’s test [61]. Given the importance

of the assumption of the equality of variances, the motivation of this chapter lies in in-

vestigating the reproducibility probability (RP) of tests of the equality of variances and

understanding their role as preliminary tests in assessing the reproducibility of location

tests in subsequent chapters.

The tests considered in this chapter are the F -test for equality of two variances and

Levene’s test. The reasons for choosing these tests are: F -test for equality of variances

is a powerful test for detecting differences in variances between two samples, especially

when the sample sizes are equal [18], and it is relatively simple to compute and interpret.

Levene’s test is less sensitive to departures from Normality than other equality of variances

tests, making it a robust test [54].

51
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This chapter briefly introduces the F -test and Levene’s test for equality of variances in

Section 3.2. To examine reproducibility probability (RP) for F -test and Levene’s test and

understand the relationship between their RP and p-values and the relationship between

their RP and estimated power, a simulation study is conducted, and the investigation

takes into account scenarios involving both null and alternative hypotheses in Section 3.3.

Finally, the results and observations for RP for equality of variances tests are summarised

in Section 3.5.

3.2 Tests for equality of variances

This section briefly introduces the F -test for equality of two variances and Levene’s test,

which can be applied to multiple variances.

3.2.1 F -test for equality of two variances

The F -test [93] is used to determine if there is a significant difference between the variances

of the two samples. Suppose that there are two independent and identically distributed

samples {X1, X2, . . . , XnX
} and {Y1, Y2, . . . , YnY

} from two populations that each have a

Normal distribution, with sample sizes nX and nY and variances S2
X and S2

Y , respectively.

The variances for the two populations σ2
X and σ2

Y are unknown, then the null hypothesis

for F -test is expressed as H0 : σ2
X = σ2

Y and the alternative hypotheses are for two-sided

H1 : σ2
X ̸= σ2

Y , for a lower one-tailed test H1 : σ2
X < σ2

Y , or for an upper one-tailed test

H1 : σ2
X > σ2

Y . The test statistic for the F -test is [33]:

F = S2
X

S2
Y

=
∑nX

i=1(Xi − X̄)2/(nX − 1)∑nY
i=1(Yi − Ȳ )2/(nY − 1)

(3.2.1)

where X̄ =
∑

Xi

nX
and Ȳ =

∑
Yi

nY
are the sample means.

For a two-sided test, the larger sample variance is placed in the numerator and the

smaller sample variance in the denominator, ensuring the F -value is always greater than

or equal to 1. The null hypothesis is rejected for a two-sided test if F > F( α
2 ,nX−1,nY −1) or

F < F(1− α
2 ,nX−1,nY −1), for an upper one-tailed test if F > F(α,nX−1,nY −1), and for a lower

one-tailed test if F < F(1−α,nX−1,nY −1), where F(α,nX−1,nY −1) is the critical value of the

F -distribution with nX − 1 degree of freedom of the numerator and nY − 1 denominator
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degrees of freedom, and α is the significance level. F -test is highly sensitive to departures

from Normality and to outliers [77].

3.2.2 Levene’s test for equality of variances

Levene’s test [61] serves to examine the equality of variances among multiple groups or

samples. The assumption of equal variances across groups is an important assumption

for some statistical tests, such as analysis of variance (ANOVA) [73, 100].

Assume that samples {Xij : j = 1 . . . , ni, i = 1, . . . , M} from M populations with

mean µi and variance σ2
i for the i-th population, and distribution function F

(
X−µi

σi

)
.

The function F and the constants µi, and σi are unknown [63]. The null hypothesis is

H0 : σ2
1 = σ2

2 = . . . = σ2
M , against the alternative hypothesis H1 : σ2

i ̸= σ2
j not all the

population variances are equal [63].

The test statistic of Levene’s test is based on a one-way analysis of variance (one-way

ANOVA) using the values Zij = |Xij − X̃i|, where X̃i is the mean (or median) of the i-th

population [55, 63]. The test statistic is:

L = (nT − M)
(M − 1) ·

∑M
i=1 ni(Z̄i. − Z̄..)2∑M

i=1
∑ni

j=1(Zij − Z̄i.)2
(3.2.2)

where

Z̄i. =
∑ni

j=1 Zij

ni

, and Z̄.. =
∑M

i=1
∑ni

j=1 Zij

nT

where nT is the total number of observations in all groups.

When L exceeds the 100(1−α)th percentile of the F -distribution with degrees of free-

dom (M −1) and (nT −M), the null hypothesis is rejected [63]. Levene’s test does not re-

quire Normality of the underlying data [96]. Levene’s test is built upon the F -distribution

for the test statistic, which typically does not differentiate between the directions of the

alternative hypothesis (i.e., whether the variances are greater or less than each other).

Therefore, this thesis is limited to studying the reproducibility of the standard Levene’s

test for the two-sided alternative hypothesis.
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3.3 Simulation studies for reproducibility of the tests

for equality of variances

In this section, we explore the reproducibility of F -test and Levene’s test using simulation

studies. The reproducibility is computed using the NPI-B-RP Algorithm 1, as presented

in Section 1.4.5 of Chapter 1. The inputs are the two original samples with the sample

sizes nX and nY , respectively.

The simulations cover scenarios where the alternative hypothesis is two-sided for both

tests. Specifically, we simulate data under the null hypothesis H0 : σ2
i = σ2

j and under

the alternative hypothesis H1 : σ2
i ̸= σ2

j , where i ̸= j. Additionally, we extend the

investigation to include scenarios in which the alternative hypothesis for the F -test is

upper one-tailed, denoted as H1 : σ2
X > σ2

Y .

Data are generated from various distributions to conduct the simulations, and their

probability density functions (PDFs) are shown in Figure 3.1. Under the null hypothesis

H0, data are generated from Normal distributions with a mean of 1 and a standard de-

viation of 1 for both samples, denoted by N(1, 1), therefore σ2
X = σ2

Y = 1. Additionally,

data are generated from a non-Normal distribution, specifically the Exponential distribu-

tion with a rate of 1 for both samples, denoted by Exp(1), with σ2
X = σ2

Y = 1. Under

the alternative hypothesis H1, data are sampled from Normal distributions N(1, 22) and

N(1, 12), with σ2
X = 4 and σ2

Y = 1. Data are also drawn from non-Normal distributions

t(3) and Exp(1), with σ2
X = 3 and σ2

Y = 1. The reason for choosing these distributions

is that the Normal distributions are chosen to examine RP for the F -test and Levene’s

test when the Normality assumption is met, both for samples with the same variances

and different variances. Secondly, the non-Normal distributions are chosen to examine

the effects of violating the Normality assumption on RP for both the F -test and Levene’s

test, again for samples with the same variances and different variances.

The number of runs per simulation is K = 200, for each run, two original samples

of the same sample size n are generated from the chosen distributions, an equality of

variances test is performed on these original samples and NPI-B-RP is computed using
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Figure 3.1: PDFs for the investigated distributions.

the NPI-B-RP Algorithm 1. Data are simulated for sample sizes nX = nY = 10, 25. The

tests are performed with 5% level of significance.

3.3.1 Simulation results for the reproducibility of F -test

This subsection presents the simulation results for estimating the NPI-B-RP for F -test for

the equality of two variances. From Figure 3.2, which presents RP values for the F -test

in the case of the two-sided test, under the null hypothesis H0 when both original samples

are drawn from Normal distribution with σ2
1 = σ2

2 = 1. The RP values demonstrate a

general pattern: RP tends to be low when the p-values for the F -test are close to the

significance level α = 0.05. Conversely, when the p-value moves away from this threshold,

RP values increase in both the rejection and non-rejection areas. Furthermore, the RP

does not converge to one when the p-value approaches one. This is because when the p-

value is close to one in a two-sided test, it suggests limited evidence against H0 and does

not offer certainty about the actual equality of variances. This uncertainty is reflected in

the RP, which may not converge to one as the p-value approaches one.
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Figure 3.3 shows RP values for F -test in the case of the two-sided test, under H1 when

both original samples are drawn from Normal distribution with different variances σ2
1 = 4

and σ2
2 = 1. The relationship between the RP values and the p-values shows a similar

relationship to that observed when simulating under H0, with the difference being that

most of the original samples are in the rejection area with high RP values. For example,

with a sample size of 10, there are 104 original samples in the rejection area, whereas for

a sample size of 25, there are 181 samples.

The power for the F -test is estimated by conducting a Monte Carlo simulation for

10, 000 datasets that are simulated from Normal distributions with different variances

N(1, 22) and N(1, 12) respectively. For each simulated dataset, we perform the F -test

for equality of two variances. Then determine how often the test correctly rejects H0.

The proportion of times H0 is rejected out of the total number of simulations provides

an estimate of the power of the F -test. The relationship between the overall mean of RP

values in the rejection area and estimated power is examined. For sample size 10, the

estimated power equals 0.4943 whereas the mean of RP values in the rejection area is

equal to 0.685. For the sample size of 25, the power is equal to 0.917 and the mean of RP

values is 0.797. It is clear that as the power increases, the mean of RP values increases

in the rejection area.

Figure 3.4 illustrates the outcomes of RP for the F -test when both original samples

are drawn from Exp(1) under H0 (σ2
1 = σ2

2 = 1 ) for the two-sided hypothesis. RP

values show the general pattern, with a notable observation that, although data is being

simulated under H0, there is a large number of original samples located in the rejection

area with RP values exceeding 50%, in contrast to when samples are drawn from the

Normal distribution. Moreover, RP values show greater variability than those observed

when samples are drawn from the Normal distribution, especially in the non-rejection

area. This is due to the nature of data distributions and sensitivity of F -test to deviation

from Normality; original samples taken from Exp(1) deviate substantially from Normality

and generate NPI-B samples that also tend to be skewed. Consequently, the Type I error

rate will be much higher than α due to the violation of Normality, leading to increased

variability in RP values and the number of original samples that located in the rejection

area.
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Figure 3.2: The relationship between p-values and NPI-B-RP for the F -test, under H0, both

samples sampled from N(1, 12), in a two-sided test

Figure 3.5 presents RP values for the F -test when original samples are drawn from

t(3) and Exp(1) under H1 (σ2
1 = 3, σ2

2 = 1 ) for the two-sided hypothesis. RP values

show the general pattern, the most original samples are located in the rejection area.

The number of samples in the rejection area increases with increasing the sample size,

for example, there are 70 samples in the rejection area for a sample size of 10, whereas

there are 114 samples for a sample size of 25. There is variability in RP values in the

non-rejection area, but it appears to be diminished in the rejection area. This could be

because, in the non-rejection area, there is a wider range of possible data distributions

with varying degrees of variance inequality can still lead to non-rejection of H0. This

leads to greater variability in the RP values. However, where H0 is rejected, the results

are more constrained in the rejection area, resulting in reduced variability in RP values.

The relationship between the overall mean of RP values in the rejection area and the

estimated power for the F -test is examined. For the sample size of 10, the power of the

F -test is equal to 0.357 and the mean of RP in the rejection area is 0.739. For the sample

size of 25, the power of the F -test is equal to 0.555 and the mean of RP in the rejection

area is 0.768. Thus, it is clear that as the power of the F -test increases RP for the F -test

in the rejection area increases.

For the upper one-tailed F -test, Figure 3.6 shows RP values for F -test when data are

simulated under H0 and both original samples are drawn from N(1, 12). The RP values
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Figure 3.3: The relationship between p-values and NPI-B-RP for the F -test, under H1, samples

sampled from N(1, 22) and N(1, 12), in a two-sided test
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Figure 3.4: The relationship between p-values and NPI-B-RP for the F -test, samples sampled

from Exp(1) under H0, in a two-sided test

for the F -test show the general pattern and they show less variability compared to the

case of the two-sided test. The decreased variability in RP values for the one-sided upper

test, as opposed to the two-sided test, can be attributed to the nature of the examined

alternative hypothesis. For the upper one-tailed F -test is designed to identify whether the

variance of one population is significantly greater than the variance of another population

without considering whether the second might be larger. This hypothesis limits the range

of potential results because it is more effective at detecting such differences when they

exist, leading to reduced variability in test outcomes. Conversely, the two-sided test

considers both possibilities of unequal variances in either direction, resulting in a larger
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Figure 3.5: The relationship between p-values and NPI-B-RP for the F -test, under H1, samples

sampled from t(3) and Exp(1), in a two-sided test

range of potential outcomes and therefore increased variability in RP values. For the

same reason, RP values for the upper one-tailed F -test go close to one when the p-values

are close to one.

Similarly, when simulate data under H1 with samples from Normal distributions with

different variances σ2
1 = 4 and σ2

2 = 1, the RP values are shown in Figure 3.7. RP

values tend to be close to one as the p-value decreases close to zero. Moreover, for sample

size 10, there are 125 original samples in the rejection area of 200 samples and their

mean of RP values is equal to 0.705 whereas the estimated power equals 0.628. For the

sample size 25, the power of the test is equal to 0.950 and the mean of RP values in the

rejection area is equal to 0.853 for 192 original samples in the rejection area. Thus, as

the power increases, the mean of RP in the rejection area for the upper one-tailed F -test

also increases. Additionally, as the sample size increases, both the mean of RP in the

rejection area and the power increase.

Figure 3.8 illustrates the outcomes of RP for the F -test when both original samples

are drawn from Exp(1) under H0 for the upper one-tailed hypothesis. RP values show a

pattern similar to that observed when data are drawn from Normal distributions as shown

in Figure 3.6, with slight variability in RP values in the non-rejection area. Likewise

Figure 3.9 that shows RP values for upper one-sided F -test when data are drawn from

non-Normal distributions with different variances σ2
1 = 3 and σ2

2 = 1. Most original
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Figure 3.6: The relationship between p-values and NPI-B-RP for the F -test, under H0, samples

sampled from N(1, 12), in an upper one-sided test
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Figure 3.7: The relationship between p-values and NPI-B-RP for the F -test, under H1, samples

sampled from N(1, 22) and N(1, 12), in an upper one-sided test

samples are located in the rejection area, and the number decreases in the non-rejection

area as the sample size increases. For a sample size of 10, there are 83 samples in the

rejection area, whereas for a sample size of 25, there are 128 samples. The mean of RP

values for the F -test in the rejection area increases as the estimated power for the F -test

increases. For sample size 10, the power is equal to 0.414 and the mean of RP values in

the rejection area is equal to 0.745. For sample size 25, the power is equal to 0.615 and

the mean of RP values in the rejection area is equal to 0.772.
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Figure 3.8: The relationship between p-values and NPI-B-RP for the F -test, samples sampled

from Exp(1) under H0, in the upper one-tailed test

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
B

−
R

P
 fo

r 
F

−
te

st

Hypothesis  Not rejected  Rejected

(a) n = 10

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
B

−
R

P
 fo

r 
F

−
te

st

Hypothesis  Not rejected  Rejected

(b) n = 25

Figure 3.9: The relationship between p-values and NPI-B-RP for the F -test, under H1, samples

sampled from t(3) and Exp(1), in an upper one-sided test

3.3.2 Simulation results for the reproducibility of Levene’s test

This section shows the results of the simulation study that estimates the NPI-B-RP

for Levene’s test for equality of variances. Figure 3.10 shows the relationship between

p-values and RP values for Levene’s test, when both original samples are drawn from

Normal distribution with the same variances σ2
1 = σ2

2 = 1. This relationship shows the

general pattern: RP is low when p-value is close to the level of significance, and RP tend

to be high as p-value is far away from the level of significance. In the rejection area, where

the null hypothesis is rejected with a given significance level of 0.05, the RP values tend
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Figure 3.10: The relationship between p-values and NPI-B-RP for Levene’s test, under H0,

samples from N(1, 12), in a two-sided test
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Figure 3.11: The relationship between p-values and NPI-B-RP for Levene’s test, under H1,

samples from N(1, 22) and N(1, 12), in the two-sided test.

to be less than 50%, it means that the results are not very reproducible.

Figure 3.11 shows RP values for Levene’s test when data are drawn from Normal

distributions with different variance σ2
1 = 4 and σ2

1 = 1. For sample size 10, RP has

strong variability, especially when the p-value is close to the threshold. For the sample

size of 25, RP has no noticeable variability and most original samples are located in the

rejection area. Moreover, as the estimated power for Levene’s test and the sample size

increase, the RP for Levene’s test in the rejection area increases. To clear that for sample

size 10, the estimated power of Levene’s test equals 0.497 and the mean of RP values in
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Figure 3.12: The relationship between p-values and NPI-B-RP for Levene’s test, samples from

Exp(1) under H0, in the two-sided test
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Figure 3.13: The relationship between p-values and NPI-B-RP for Levene’s test, samples from

t(3) and Exp(1) under H1, in the two-sided test

the rejection area is equal to 0.453, whereas for sample size 25, the power is equal to 0.914

and RP is equal to 0.700.

Figure 3.12 shows RP values for Levene’s test if both original samples are drawn from

non-Normal distributions with the same variances σ2
1 = σ2

2 = 1. RP show the general

pattern, RP values in the rejection area for sample size 10 seem low reaching 0.5, while

in the non-rejection area are high. For sample size 25, RP values in the rejection area

are higher than those for sample size 10. Similarly, RP values for Levene’s test if original

samples are drawn from non-Normal distributions with different variances σ2
1 = 3 and
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σ2
2 = 1 that are shown in Figure 3.13. For the sample size of 10, there is variability in RP

values that are close to the threshold.

In later chapters of the thesis, Levene’s test is utilized as the preliminary test for

scenarios involving more than two groups. Therefore, we examine RP for Levene’s test

for three original samples. The results are approximately similar to RP for the two samples

but RP in the non-rejection area tends to be slightly lower than RP for two samples, and

RP in the rejection area tend to be slightly higher than RP for two samples. The results

are presented in Appendix B.

Additional simulations were conducted with data generated from a mixture of Normal

distributions under H0 to further explore the reproducibility probability (RP) in the

context of the F -test for equality of two variances and Levene’s test. Specifically, the

data for each group were generated from a mixture model defined as:X ∼ 0.4 · N(5, 12) +

0.6 · N(15, 22)

In these simulations, it was observed that the RP is high in the non-rejection area

as shown in Figures 3.14 and 3.15, indicating a strong probability that repeated tests

will yield consistent results. Additionally, it was noted that when performing F -test all

original samples fell into the non-rejection area, with p-values slightly far away from the

significance threshold as shown in Figure 3.14. This suggests that the variances of the

mixture Normal distributions do not differ enough to reject the null hypothesis under

the F -test. For Levene’s test, there are two original samples in the rejection area with

very small RP values that do not exceed 0.50, indicating non-reproducibility, as shown in

Figure 3.15.

3.4 Comparison between reproducibility of F -test and

Levene’s test

In this part, we discuss the differences between reproducibility for F -test and Levene’s

test. For Levene’s test, RP values show less variability than RP for the two-sided F -test,

particularly when dealing with non-Normal data. This is because of the diversity in the

NPI-B samples distributions, as well as the sensitivity of the F -test to deviations from
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Figure 3.14: The relationship between p-values and NPI-B-RP for F -test, samples from the

mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), under H0, in the two-sided test
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Figure 3.15: The relationship between p-values and NPI-B-RP for Levene’s test, samples from

a mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), under H0, in the two-sided test

Normality and outliers. In contrast, Levene’s test does not require the assumption of

Normality. This difference in sensitivity to Normality assumptions between the two tests

could explain the lower variability in RP values observed in Levene’s test. Moreover, in

the rejection area, RP values for Levene’s test and the number of original samples tend

to be smaller than those for the F -test and their RP value does not exceed 0.5 when

simulating data under H0. Furthermore, the effect of sample size on RP values differ

between the F -test and Levene’s test when dealing with non-Normal data. Larger sample

sizes result in more stable RP values for Levene’s test, conversely, RP values for the F

test show greater variability, especially in the non-rejection area.
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3.5 Conclusions

In conclusion, this chapter focused on investigating reproducibility probability (RP) for

the tests examining the equality of variances, specifically the F -test and Levene’s test.

This investigation is an integral part of the broader exploration of this thesis which fo-

cuses on reproducibility for multi-stage procedures, particularly in the context of location

tests which require investigation from the assumption of equality of variances through

preliminary tests such as F -test and Levene’s test. Through simulation studies, scenarios

involving the two-sided hypothesis and one-sided hypotheses under H0 and H1 for the

F -test are examined. Additionally, the RP for Levene’s test of the two-sided hypothesis

under H0 and H1 are studied.

The results for both tests revealed that the RP value show the general pattern for RP:

RP is low when the p-value is close to the threshold, and increases as the p-value moves

away from this threshold. Furthermore, for two-sided hypotheses, RP for both tests does

not approach one when the p-value is close to one. Whereas for an upper one-sided F -test,

RP tends to approach one as the p-value approaches one. Additionally, it is noticed that

the case of two-sided RP for the F -test has variability more than the upper one-tailed

F -test. When comparing RP for Levene’s and F -test, the RP for Levene’s test has less

variability than RP for the F -test especially when dealing with non-Normal data.

For the relationship between the overall mean of RP values in the rejection area and

the estimated power of the equality of variances tests, it is clear that as the power of the

test increases, the mean of RP values in the rejection area also increases. Additionally,

regarding the relationship between the sample size, power, and RP in the rejection area,

as the sample size increases, both the power and RP values increase.

It can be said that The F -test’s sensitivity to departures from the Normal assumption

contributes to greater variability in RP values. While, the RP values of Levene’s test

perform better than those for the F -test, depending on less variability in RP values and

low RP values in the rejection area when drawing from a Normal distribution. Therefore,

it is important to take into account the underlying assumptions of each test when choosing

a suitable approach for evaluating equality in variance. In cases where the data are known
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to deviate substantially from Normality or contain outliers, opting for Levene’s test may

be more robust and better reproducibility as it does not depend on the assumption of

Normality.



Chapter 4

Reproducibility of One-Sample

Location Tests with and without

Preliminary Test

4.1 Introduction

In statistics, the inference of the population mean is one of the most fundamental concepts,

which is typically done using location tests. One-sample location tests are a powerful

statistical tool for assessing whether a sample mean is consistent with a hypothesized

value or standard, and can be applied to a wide range of real-life scenarios. The results

of these tests can be used to inform decision-making processes in various fields, including

research, business, and healthcare. For example, in the field of healthcare, the one-sample

t-test is commonly employed to assess the efficacy of new treatments or medical equipment.

In this chapter, we focus on two types of one-sample location tests: the one-sample

t-test and the one-sample Wilcoxon signed-rank test. The t-test is a parametric test that

requires the assumption of Normality. The Wilcoxon test is a nonparametric test that

does not depend on any specific distributions.

The one-sample t-test is the most commonly used parametric location test to determ-

ine whether a population mean is significantly different from a hypothesized value [65].

Suppose that the hypothesized value for the population mean is µ0, and µ is the unknown

68
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population mean, the null hypothesis for t-test is H0 : µ = µ0, against the alternative

hypothesis H1 : µ ̸= µ0 [39]. The t-statistic follows a Student’s t-distribution with n − 1

degrees of freedom [39, 72]:

t = X̄ − µ0

S/
√

n
(4.1.1)

where X̄ is the sample mean, n is the sample size, and S is the sample standard deviation.

A commonly used nonparametric test is the one-sample Wilcoxon signed-rank test.

The null hypothesis for the one-sample Wilcoxon signed-rank test is H0 : η = η0 against

the alternative hypothesis H1 : η ̸= η0, where η is the population median and η0 is the

hypothesized value of the median in the population [103]. Suppose that X1, X2, . . . , Xn

is a random sample from the distribution of the continuous random variable X. The test

statistic for the one-sample Wilcoxon signed-rank test W is [43]

W = min(W+, W−) (4.1.2)

where

W+ =
n∑

i=1
Ri for all positive ranks (4.1.3)

W− = |
n∑

i=1
Ri| for all negative ranks (4.1.4)

where Ri is the rank of the difference |Xi − η0|, for i = 1, . . . , n.

In this chapter, the reproducibility probability (RP) for a two-stage procedure is in-

vestigated. The two-stage procedure involves a preliminary test for Normality followed

by either the one-sample t-test or the Wilcoxon test, depending on the outcome of the

Normality test. Additionally, the reproducibility of one-sample location tests without

conducting a preliminary test for Normality is explored. We aim to assess the impact of a

preliminary Normality test on the RP of the one-sample location tests by comparing the

RP values of location tests obtained with and without preliminary test. Furthermore, the

relationship between RP values for one-sample location tests and their estimated power

is examined.

Section 4.2 addresses the reproducibility probability (RP) for the two-stage procedure

(RP for one-sample location tests with a preliminary test for Normality). In Section 4.3,
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simulation studies for the reproducibility of the two-stage procedure and the reprodu-

cibility of the one-sample location tests without the preliminary test for Normality are

performed, this section also presents the simulation studies’ results. The impact of the

preliminary Normality test on RP for location tests is addressed in Section 4.4. Finally,

Section 4.5 provides a summary of the study.

4.2 Reproducibility for location tests with the pre-

liminary test of Normality

This section aims to evaluate the reproducibility of the two-stage procedure. In this two-

stage procedure, the initial stage involves assessing the assumption of Normality using a

preliminary test of Normality. If the null hypothesis for Normality at the first stage is

not rejected, then the analysis proceeds with the use of the one-sample t-test. If the null

hypothesis for Normality is rejected at the first stage, then the one-sample Wilcoxon test

is employed.

The reproducibility of the two-stage procedure can be assessed in various ways such

as:

1. Case A: Full reproducibility for the two-stage procedure, that is both the preliminary

test and the location test lead to the same conclusion.

2. Case B: Reproducibility for the same outcome for the location test, no matter which

test is used.

3. Case C : Reproducibility of the location test conclusion, where for the bootstrap

samples the same location test is applied as for the original sample without further

preliminary testing.

The motivations and aims for studying these cases are:

Case A: The aim is to examine if the combined two-stage RP is noticeably different

from the product of RPs for the two individual tests (preliminary test and location test).

The motivation behind this case study is to investigate the impact of a preliminary test on

the reproducibility of location tests. By contrasting the combined RP with the product
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of individual RPs, we can evaluate whether the inclusion of a preliminary test enhances

or diminishes the reproducibility of location tests.

Case B: The aim is to consider whether the application of preliminary tests to choose

the appropriate location tests enhances the reproducibility of the outcome of the loca-

tion test. The motivation behind this case is to understand the impact of performing a

preliminary test on the reproducibility of the outcome of the location test.

This case may be important from a practical perspective. For example, if testing

whether a new medication has a noticeable impact on the treatment of a disease. The

two-stage procedure is applied, the initial stage involves conducting a preliminary test to

investigate Normality. Subsequently, in the second stage, either the one-sample t-test is

conducted if the data follow a Normal distribution or the one-sample Wilcoxon signed-

rank test is used if the data do not follow a Normal distribution. Here, the reference

value is zero. if the location parameter (mean or median) is either smaller or larger than

zero, it indicates the effect of the new medication. Our interest is in the reproducibility of

the outcome (rejection or non-rejection) of the null hypothesis for location tests whether

we get this via the t-test or the Wilcoxon test. This two-stage procedure can provide

insights into the reproducibility of the location test outcomes (the effect of medication or

not). By comparing the RP values for this case with those for the location test without

the preliminary test, the researcher can assess the impact of the preliminary test on the

reproducibility of the results.

Case C : This case aims to investigate whether filtering original samples based on a

preliminary test’s outcome and applying a location test to all NPI-B samples without fur-

ther preliminary testing can improve the reproducibility of the original results, compared

to performing a location test without preliminary test. The motivation behind Case C

is to assess whether preliminary test filtering can help identify cases where the original

samples exhibit certain characteristics, such as increased skewness, which lead to NPI-B

samples also tending to be skewed. This skewness could negatively (or positively) impact

the RP of the location test. The goal is to determine if this approach can lead to a higher

RP compared to simply applying the location test without any pre-filtering based on the

preliminary test.
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The following steps assess the reproducibility probability values with the NPI-B samples

for the two-stage procedure. Suppose that N is the number of NPI-B samples and N∗
t

and N∗
W are two disjoint subsets of {1, 2, . . . , N}, N∗

t ∩ N∗
W = ∅, where N∗

t represents all

the indices for the NPI-B samples that pass the Normality test and perform the t-test,

and N∗
W represents all the indices for the NPI-B samples that do not pass the Normality

test and perform the Wilcoxon test.

Step 1: Perform a preliminary test for Normality on the original sample, with significance

level α1.

Step 2: If the null hypothesis HN
0 of the Normality test is not rejected, then perform the

one-sample t-test on the original sample and decide H t
0 with significance level α2,

set TSt = 1 if H t
0 is rejected or set TSt = 0 if H t

0 is not rejected. If HN
0 is rejected,

then proceed to perform the Wilcoxon test on the original sample and decide HW
0

with significance level α2, set TSW = 1 if HW
0 is rejected or TSW = 0 if HW

0 is not

rejected.

Step 3: Draw an NPI-B sample N time based on the original sample, with the same size as

the original sample.

• For Cases A and B, perform the Normality test as the preliminary test, fol-

lowed by either the t-test or the Wilcoxon test according to the Normality test

decision. Record the test decision for each iteration, where TSt
i = 1 if H t

0

is rejected for the i-th iteration, or TSW
j = 1 if HW

0 is rejected for the j-th

iteration, or record TSt
i = 0 if H t

0 is not rejected or TSW
j = 0 if HW

0 is not

rejected, where i ∈ N∗
t ⊂ {1, 2, . . . , N}, and j ∈ N∗

W ⊂ {1, 2, . . . , N}.

• For Case C, the t-test is performed on N NPI-B samples if the t-test was

applied to the original sample. Record the test decision Ts = 1 if H t
0 is rejected

for the s-th iteration (s = 1, 2, . . . , N), or record Ts = 0 if H t
0 is not rejected.

The Wilcoxon test is performed on N NPI-B samples if it ends up from the

two-stage procedure in the original sample. Record the test decision Ws = 1 if

HW
0 is rejected for the s-th iteration, or Ws = 0 if HW

0 is not rejected.

Step 4: Compute the RP based on the test decisions of the NPI-B samples.
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(i) The RP for Case A:

If the original sample passed the Normality test and the t-test was applied,

then RP is

RPt =
∑

i∈N∗
t

I{T St=T St
i }

1
N

where I{T St=T St
i } is an indicator function that takes the value 1 if the test

decision of the i-th NPI-B sample using the t-test matches the test decision of

the original one-sample t-test (TSt), and 0 otherwise.

If the original sample did not pass the Normality test and the Wilcoxon test

was applied, then RP is

RPW =
∑

j∈N∗
W

I{T SW =T SW
j }

1
N

(ii) The RP for Case B:

If the original sample passed the Normality test and t-test was applied, then

RP is

RPt =
∑

i∈N∗
t

I{T St=T St
i } +

∑
j∈N∗

W

I{T St=T SW
j }

 1
N

If the original sample did not pass the Normality test and the Wilcoxon test

was applied, then RP is

RPW =
∑

i∈N∗
t

I{T SW =T St
i } +

∑
j∈N∗

W

I{T SW =T SW
j }

 1
N

(iii) The RP for Case C :

If the original sample passed the Normality test and the t-test was applied,

then RP is

RPt =
N∑

s=1
I{T St=Ts}

1
N

If the original sample did not pass the Normality test and the Wilcoxon test

was applied, then RP is

RPW =
N∑

s=1
I{T SW =Ws}

1
N

Step 5: Perform Steps 3 and 4 in total h times, record the outcomes by RPtk
, and RPWk

,

where k = 1, 2, . . . , h.
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From Step 5: minimum, mean and maximum of RP values are chosen. The inputs of

this algorithm include the original sample, α1, α2, the number of runs h, and the number

of NPI-B samples per run N . We set h = 100, N = 1000, and α1 = α2 = 0.05, the reason

for choosing the N = 1000 and h = 100 is mentioned in Section 1.4.5 of Chapter 1.

Flowcharts for an illustrative example of the reproducibility assessment for the two-

stage test of one-sample location test for these cases in Appendix C.1.

4.3 Simulation studies for the reproducibility of the

location tests with and without Normality test

Simulation studies are conducted to explore the reproducibility of the two-stage procedure

testing. In this procedure, the Normality test is applied in the first stage, if the null

hypothesis for the Normality test is not rejected, then the one-sample t-test is used;

otherwise, the one-sample Wilcoxon signed-rank test is performed. Normality is assessed

using the Shapiro-Wilk (SW) test, which introduced and studied its reproducibility in

Chapter 2. The Shapiro-Wilk test was chosen because it is often considered one of the

best options for testing Normality because its power and its high RP values indicate good

reproducibility. Also, it can be applied to a sample size as small as 5. These simulation

studies are conducted by implementing the algorithm described in Section 4.2.

Simulation studies are also conducted to estimate the reproducibility of the one-sample

location tests, one-sample t-test and one-sample Wilcoxon signed-rank test, without the

preliminary test for Normality. This simulation is conducted by applying the NPI-B-RP

Algorithm 1, as presented in Section 1.4.5 of Chapter 1.

The null hypothesis for the first stage (Normality test) is that HN
0 : X the population

is Normally distributed, and the alternative hypothesis is that HN
1 : X the population

is not Normally distributed. The null hypothesis for the second stage test (one-sample

location test) is H2
0 : θ = 0 and the alternative hypothesis is H2

1 : θ ̸= 0, where θ is the

location parameter for population, H2
0 denotes the null hypothesis for the second stage of

the one-sample location test which is either the t-test (H t
0) hypothesis in which case θ is

the mean (µ), or the Wilcoxon test (HW
0 ) hypothesis in which case θ is the median (η),
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Figure 4.1: The probability density functions (PDFs) of the investigated distributions in

the simulation study.

likewise for H2
1 . The hypothesized value for the population mean was chosen equal to 0

because it represents the null hypothesis of no effect.

In these simulation studies, data are simulated under various distributions, each char-

acterized by distinct probability density functions (PDFs). These PDFs are illustrated

in Figure 4.1. Specifically, we generate data under the null hypotheses for both stages

HN
0 and H2

0 , the standard Normal distribution, denoted by N(0, 1) is chosen for this (Nor-

mality and µ = 0). Under the null hypothesis at the first stage and the alternative

hypothesis at the second stage HN
0 and H2

1 , we generate data from Normal distributions

with a mean of 1 and a standard deviation of 1, denoted by N(1, 1) (Normality and

µ ̸= 0). Under the alternative hypothesis for the first stage and the null hypothesis at the

second stage HN
1 and H2

0 , data are drawn from the standard Cauchy distribution, denoted

by Ca(0, 1) (non-Normality and η = 0). Under the alternative hypothesis at the first

and second stage HN
1 and H2

1 , data are drawn from a mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22).

The number of runs per simulation is K = 100, with various sample sizes of 5, 10,

20, and 50, considering different sample sizes allows a precise understanding of how as-

sumptions of Normality affect the reproducibility of the one-sample location tests across

various scenarios. The tests are performed for the two-sided hypothesis with a 5% level

of significance.
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4.3.1 Simulation results for the reproducibility for location tests

with preliminary test

In this section, the results of the simulation for NPI-B-RP for one-sample location tests

with the preliminary test for Normality are presented. The Cases A, B and C, introduced

in Section 4.2, are considered.

The results are represented visually in plots, where the y-axis represents the min,

mean, and max of RP values for the location tests with the preliminary test. In contrast,

the x-axis represents the p-values for the location test. The blue colour represents RP

values for the two-stage procedure, where the original sample passes the Normality test

and performs the t-test. The green represents RP values where the original sample does

not pass the Normality test and performs the Wilcoxon test.

The results for Case A

This part shows the results of the simulation studies for the full RP value for the two-stage

procedure. Generally, from Figures 4.2 - 4.5 that show these results, RP values tend to

be low if the p-value for the location test is close to the threshold and when the p-value

is far away from the threshold RP values become slightly high.

In scenarios with small sample sizes, it appears that the RP values for the one-sample

t-test are slightly higher compared to the RP values for the one-sample Wilcoxon test.

However, as the sample size increases, the RP values for the t-test decrease while the

RP values for the Wilcoxon test increase. This can be attributed to the ability of the

Normality test to detect deviations from Normality, which is weaker in small sample sizes

and more robust in larger sample sizes. For small sample sizes, when the Normality test is

applied in the first stage, most of the NPI-B samples usually pass the Normality test due

to the low power of the Normality test. Consequently, the t-test is performed more than

the Wilcoxon test. Thus, the RP for the t-test is higher than the RP for the Wilcoxon

test. On the other hand, for larger sample sizes, the Normality test gains more power

to detect deviation from Normality in the NPI-B samples, and since NPI-B samples vary

in distribution then most of them do not pass the Normality test, leading to the use of
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the Wilcoxon test instead of the t-test. Thus, the Wilcoxon test tends to have higher

RP compared to the t-test for the large sample sizes. Table 4.1 shows an illustrative

example, showing that for the small sample size n = 5, reveals that Nt, the total number

of NPI-B samples passing the Normality test, is greater than NW , the number of NPI-B

samples not passing the Normality test. However, for the larger sample size n = 50 from

Table 4.2, NW is greater than Nt. These tables emphasize the effect of sample size on the

performance of the Normality test and, subsequently, the choice of location test within

the two-stage procedure which ultimately affects their RP. On the other hand, this is

related to the strong variability in the RP values, which increase in the t-test as sample

size increases, and decrease in the Wilcoxon test as sample size increases. This is because

the NPI-B samples are varied in distribution, for the small sample size these samples tend

to pass the Normality test and perform the t-test thus there is slight variability in RP

for the t-test. As the sample size increases, these samples do not pass the Normality and

then apply the Wilcoxon test, thus the Wilcoxon test has low variability in RP values.

Performing the preliminary test for Normality in Case A introduces an additional

decision-making step in the testing process. This means that there are more opportun-

ities for errors to occur, which can lead to incorrect decisions, which involves incorrectly

rejecting a true null hypothesis (Type I error), or failing to reject a false null hypothesis

(Type II error), which can adversely affect the RP values. Specifically, when performing

the preliminary test for Normality, there is a chance that the test may incorrectly classify

a non-Normal sample as Normal or a Normal sample as non-Normal. Such misclassific-

ations can lead to the use of inappropriate statistical tests in the subsequent stage. For

example, the t-test might be incorrectly applied to non-Normal data or the Wilcoxon test

might be used for data that is Normally distributed. Each of these errors can result in the

wrong conclusion about the data, thus impacting the full RP of the two-stage procedure.

When the distribution deviates more from Normality and the sample size is large, all

original simulated samples reject the Normality and perform the Wilcoxon test in the

second stage. This is reflected in the high reproducibility values observed, as shown in

Figures 4.4 and 4.5, particularly for sample sizes of n = 50 and when the original samples

are drawn from the Cauchy distribution and mixture of Normal distributions.
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Figure 4.2: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case A, the original samples are drawn from N(0, 1).

Tables 4.1 and 4.2 summarize various outcomes based on the NPI-B samples. In

these tables, the notation Npt≥α2 represents the number of NPI-B samples that pass the

Normality test and have the p-value for the t-test greater than or equal to α2. Conversely,

Npt<α2 denotes the number of NPI-B samples that pass the Normality test but have the

p-value for the t-test less than α2. Additionally, the tables display the counts for NPI-B

samples that did not pass the Normality test. NpW ≥α2 represents the number of such

samples that have the p-value for the Wilcoxon test greater than or equal to α2, while

NpW <α2 denotes the number of NPI-B samples that did not pass the Normality test with

the p-value for the Wilcoxon test less than α2.

To explain how to evaluate reproducibility in Case A, we select four original samples

that have p-values close to the threshold and p-values that are very far from the threshold

in both areas, which are drawn from N(0, 1), considering smallest and largest sample

sizes that are studied (5 and 50). This selection is conducted for both the t-test and

the Wilcoxon test. The first selected original sample, denoted as s(N), is the original

sample that passes the Normality test and shows the smallest p-value for the t-test in the

non-rejection area. This choice enables RP to be evaluated in scenarios where the data

conform to the assumptions of the t-test and show relatively strong evidence against H2
0 .
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Figure 4.3: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case A, the original samples are drawn from N(1, 1).

The second selected original sample, denoted as g(N), is the original sample that passes

the Normality test and has the largest p-value for t-test in the non-rejection area. This

choice provides insight into situations where the evidence against H2
0 is weaker. Moving

to samples within the rejection area, the third original sample, denoted as s(R), is the

original sample that passes the Normality test but displays the smallest p-value for the

t-test. This choice allows RP values to be examined when the evidence against the null

hypothesis is relatively stronger in the rejection area. The fourth selected original sample,

denoted as g(R), is the original sample that passes the Normality test and has the largest

p-value for t-test in the rejection area. This can explore scenarios where the evidence

against the null hypothesis is weaker in the rejection region. Similarly, for the Wilcoxon

test, the original samples that do not pass the Normality test are selected.

For the s(N) for the t-test, the RP in Case A is calculated as the ratio of the total

number of NPI-B samples that passed the Normality test and have p-values for the t-test

greater than or equal to α2 to the total number of NPI-B samples. For sample size n = 5,

Npt≥α2 is equal to 490 out of 1000 NPI-B samples. To compute its RP, 490 is divided by

the total number of NPI-B samples, N = 1000, resulting in an RP of 0.490. For sample
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Figure 4.4: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case A, the original samples are drawn from Ca(0, 1).

size n = 50, Npt≥α2 is equal to 220, leading to an RP of 0.220. Similarly, RP for this case

is calculated for the s(N) for the Wilcoxon test. For sample size n = 5, NpW ≥α2 are equal

to 327 NPI-B samples, then RP is 0.327. For sample size n = 50, NpW ≥α2 is equal to 619

NPI-B samples divided by the total number of NPI-B samples giving RP = 0.619. For the

g(N) for the t-test, and for sample size n = 5, Npt≥α2 is equal to 633, then RP is 0.490.

For sample size n = 50, Npt≥α2 is equal to 169, leading to an RP of 0.169. Similarly,

RP for this case is calculated for the g(N) for the Wilcoxon test. For sample size n = 5,

NpW ≥α2 are equal to 373, then RP is 0.373. For sample size n = 50, NpW ≥α2 is equal to

751 NPI-B samples, then RP = 0.751. For the s(R) for the t-test, and sample size n = 5,

Npt<α2 is equal to 754, then RP is 0.754. For sample size n = 50, Npt<α2 is equal to 290,

leading to an RP of 0.290. Similarly, RP for this case is calculated for the g(R) for the

t-test. For sample size n = 5, Npt<α2 = 418, then RP is 0.418. For sample size n = 50,

Npt<α2 = 168 NPI-B samples, then RP = 0.168.

The results for Case B

This case shows the RP values for the same outcome for the location tests, no matter

which test is used. Figures 4.6 - 4.9 show the results of simulation for these RP. The RP
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Figure 4.5: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case A, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22).

values show the general pattern: RP is low when the p-value for location tests is close to

the threshold, and RP values are high as the p-value moves away from the threshold. The

RP values in the non-rejection area tend to decrease slightly as the sample size increases.

Whereas in the rejection area, RP values increase as the sample size increases. This is

traced back to the test power which increases with increasing the sample size.

When the distribution is Normal, most of the original samples pass the Normality test

and perform t-test, as shown in Figures 4.6 and 4.7. When the distribution is non-Normal,

most of the original samples perform the Wilcoxon test, especially for large sample sizes,

as shown in Figure 4.8.

Figures 4.6 and 4.8 show RP values under the null hypothesis for location tests. RP

values are higher than 50% in the non-rejection area. However, they do not reach close

to one when the p-value is close to one, this is because both tests in the two-stage are

performed for the two-sided test.

Figure 4.7 shows RP values under the alternative hypothesis for location tests. For

sample size n = 5, most RP values in the rejection area are less than 50%. Thus, the results
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t-test Wilicoxon test

s(N) g(N) s(R) g(R) s(N) g(N) s(R) g(R)

Npt≥α2 490 633 4 337 463 459 NA NA

Npt<α2 312 114 754 418 210 168 NA NA

Nt 802 747 758 755 673 627 NA NA

NpW ≥α2 198 253 242 245 327 373 NA NA

NpW <α2 0 0 0 0 0 0 NA NA

NW 198 253 242 245 327 373 NA NA

RP 0.49 0.633 0.754 0.418 0.327 0.373 NA NA

Table 4.1: NPI-B sample counts for non-rejection and rejection cases for Ht
0 and HW

0 with a

preliminary test for Normality. s(N) and g(N) denote the original sample with the smallest and

greatest p-values in the non-rejection area, while s(R) and g(R) represent the original sample

with the smallest and greatest p-values in the rejection area, respectively. Npt≥α2 is the number

of NPI-B samples passing the Normality test with a p-value for the t-test greater than or equal

to α, Npt<α2 is the number passing the Normality test with a p-value for the t-test less than

α, NpW ≥α2 is the number with a p-value for the Wilcoxon test greater than or equal to α, and

NpW <α2 is the number with a p-value for the Wilcoxon test less than α, samples from N(0, 1)

with n = 5.

are not very reproducible this is because NPI-B samples that did not pass the Normality

test and perform the Wilcoxon test cannot reject the null hypothesis for the Wilcoxon

test (this will be explained the reason in Subsection 4.3.2). This leads to a decrease in

the number of NPI-B samples that have the same result as the original sample, which

rejects the null hypothesis for the t-test, thereby obtaining low RP values. In contrast,

RP values in the non-rejection area are higher than 0.6, which indicates reproducibility.

As the sample size increases, RP values in the rejection area increase, whereas RP values

in the non-rejection area decrease.

To explain how to evaluate reproducibility in Case B, we select four original samples

for both location tests as presented in Case A in Section 4.3.1. Table 4.3 shows various

outcomes based on the NPI-B samples for these four original samples that are drawn from

N(0, 1) with sample size n = 20. For the original sample s(N) that passes the Normality

test and has the smallest p-value for the t-test in the non-rejection area, the RP value is
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t-test Wilicoxon test

s(N) g(N) s(R) g(R) s(N) g(N) s(R) g(R)

Npt≥α2 220 169 172 97 128 76 NA NA

Npt<α2 219 33 290 168 27 22 NA NA

Nt 439 202 462 265 155 98 NA NA

NpW ≥α2 402 658 190 347 619 751 NA NA

NpW <α2 159 140 348 388 226 151 NA NA

NW 561 798 538 735 845 902 NA NA

RP 0.22 0.169 0.29 0.168 0.619 0.751 NA NA

Table 4.2: NPI-B sample counts for non-rejection and rejection cases for Ht
0 and HW

0 with a

preliminary test for Normality. s(N) and g(N) denote the original sample with the smallest and

greatest p-values in the non-rejection area, while s(R) and g(R) represent the original sample

with the smallest and greatest p-values in the rejection area, respectively. Npt≥α2 is the number

of NPI-B samples passing the Normality test with a p-value for the t-test greater than or equal

to α, Npt<α2 is the number passing the Normality test with a p-value for the t-test less than

α, NpW ≥α2 is the number with a p-value for the Wilcoxon test greater than or equal to α, and

NpW <α2 is the number with a p-value for the Wilcoxon test less than α, samples from N(0, 1)

with n = 50.

computed as all NPI-B samples that pass the Normality test and have the p-values for the

t-test greater than or equal to α2 which is Npt≥α2 = 180 plus all NPI-B samples that do

not pass the Normality but have the p-value for Wilcoxon test greater than or equal to α2,

which are NpW ≥α2 = 384, divide by the total number of NPI-B samples (N = 1000), thus

RP = 0.564. Similarly, for the original sample s(N) that did not pass the Normality test

and has the smallest p-value for the Wilcoxon test in the non-rejection area, the RP value

is calculated as the ratio of all NPI-B samples that do not pass the Normality test and

have the p-value for Wilcoxon test greater than or equal to α2 which are NpW ≥α2 = 439

plus all NPI-B samples that pass the Normality test and have the p-values for the t-test

greater than or equal to α2 which are Npt≥α2 = 150 to the total number of NPI-B samples.

Likewise, the reproducibility is calculated for other samples.
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Figure 4.6: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case B, the original samples are drawn from N(0, 1).

The results for Case C

This part shows the results of simulations for the reproducibility of the location test

conclusion, where for the NPI-B samples the same location test is applied as for the

original sample without further a preliminary test. Generally, from Figures 4.10 - 4.13

that show these results for different distributions and sample sizes, RP values tend to be

low if the p-value for the location test is close to the threshold, while when the p-value

is far away from the threshold RP values become high. The results are similar to those

observed in Case B, except that the RP for original samples performing the Wilcoxon

test with a sample size of 5 always equals one. Additionally, for a sample size of 5 under

H2
1 , when original samples are drawn from N(1, 1), most of these original samples have

RP values for the t-test greater than 0.5, as shown in Figure 4.11. This is because H0 for

the Wilcoxon test is not rejected.
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Figure 4.7: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case B, the original samples are drawn from N(1, 1).

The relationship between RP and the estimated power for the two-stage pro-

cedure

Table 4.4 illustrates the relationship between the overall mean of RP values in the rejec-

tion area and the estimated power for the two-stage procedure. The RP values are for

samples located in the rejection area out of 100 original samples drawn from the N(1, 1)

distribution, under the alternative hypothesis. In the two-stage testing procedure, the

Shapiro-Wilk (SW) test for Normality is conducted, followed by either the t-test or the

Wilcoxon test based on the outcome of the SW test. This procedure is applied to both the

original sample and N NPI-B samples. RP represent the proportion of NPI-B samples

where the outcome of either test (t-test or the Wilcoxon test) matches that of the original

sample’s location test, divided by the total number of NPI-B samples.

A Monte Carlo simulation of 10, 000 datasets is performed to estimate the power of

the two-stage testing procedure, where the SW test is conducted in the first stage and

then proceeds with either the t-test or the Wilcoxon test based on the outcome of the

SW test. The power will be the proportion of datasets for which either test successfully

rejects the null hypothesis H2
0 to the total number of the datasets.
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Figure 4.8: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case B, the original samples are drawn from Ca(0, 1).

Table 4.4 shows that RP increases as the estimated power increases. This indicates

that as tests become better able to detect true effects, the reproduction of these results in

future studies also increases. Furthermore, as the sample size increases, both the estimated

power and RP increase. This is because larger samples offer more data, enhancing the

ability to detect true effects and consequently boosting the reproducibility of the results.

4.3.2 Simulation results for the reproducibility of location tests

without preliminary test

This subsection presents the outcomes obtained from the simulation studies focused on

estimating the RP using the NPI-B-RP method for the one-sample location tests without

the preliminary test of Normality. These RP values were studied to explore the effect of

the Normality test on RP of the location tests by comparing RP of these results with RP

values for location tests with the preliminary test of Normality which were presented in

the previous subsection.

The RP values of the one-sample t-test without the preliminary test for Normality are

illustrated in Figures 4.14 - 4.17. The RP values for the t-test without the preliminary
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Figure 4.9: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case B, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22).

test follow the general pattern for RP: when the p-value is close to the threshold the RP

values tend to be small, whereas if the p-value is far away from the threshold the RP

increases.

Figures 4.18 - 4.21 show the RP values for the Wilcoxon test without the preliminary

test for Normality. Generally, it can be noticed that the RP values for the Wilcoxon test

without performing the preliminary test for Normality also follow the general pattern for

RP. However, this pattern of RP is not true for sample size 5 where RP values for all

original samples are equal to one. This is because for the two-sided Wilcoxon test with

sample size n = 5 and α = 0.05 the null hypothesis is never rejected because the smallest

possible two-sided p-value with n = 5 is 0.0625, which is greater than the significance

level α = 0.05. Specifically, for a sample size of 5, there are 2n = 25 = 32 possible

rankings, the probability of observing the most extreme case under the null hypothesis

(all 5 observations being either greater than or less than the hypothesized median) is 1
32 .

For a two-sided test, the probability will be doubled to account for both sides, thereby the

smallest possible two-sided p-value is 2 · 1
32 = 0.0625. Consequently, the null hypothesis

cannot be rejected even when a true difference exists [43]. For this reason, the RP values
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t-test Wilicoxon test

s(N) g(N) s(R) g(R) s(N) g(N) s(R) g(R)

Npt≥α2 180 513 86 232 150 183 NA NA

Npt<α2 151 66 303 228 103 40 NA NA

Nt 331 579 389 460 253 223 NA NA

NpW ≥α2 384 337 98 298 439 615 NA NA

NpW <α2 285 84 513 242 308 162 NA NA

NW 669 421 611 540 747 777 NA NA

RP 0.564 0.85 0.816 0.470 0.589 0.798 NA NA

Table 4.3: NPI-B sample counts for non-rejection and rejection cases for Ht
0 and HW

0 with a

preliminary test for Normality. s(N) and g(N) denote the original sample with the smallest and

greatest p-values in the non-rejection area, while s(R) and g(R) represent the original sample

with the smallest and greatest p-values in the rejection area, respectively. Npt≥α2 is the number

of NPI-B samples passing the Normality test with a p-value for the t-test greater than or equal

to α, Npt<α2 is the number passing the Normality test with a p-value for the t-test less than

α, NpW ≥α2 is the number with a p-value for the Wilcoxon test greater than or equal to α, and

NpW <α2 is the number with a p-value for the Wilcoxon test less than α, samples from N(0, 1)

with n = 20.

for the Wilcoxon test for n = 5 are always equal to one which means there are N = 1000

NPI-B samples of N = 1000 NPI-B samples that have p-values greater than α.

Generally, the results of simulation for RP values for the one-sample location tests

without the preliminary test for Normality show that the RP tends to be low when the

p-value for the location test is close to α. When the p-value is close to α, it suggests weak

evidence against or for H0. This implies that the p-value for the test in future experiments

is not equally likely to be similar to the p-value for the original test, resulting in low RP

values. Conversely, when the p-value is far away from α, the RP tends to be high. This

is because when the p-value is far from the threshold, indicating strong evidence against

or for H0, it means the p-value for the test in future experiments is equally likely to be

similar to the p-value for the original test, thus leading to high RP values. Moreover,

the RP values do not reach one when the p-values are close to one this is because the
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Figure 4.10: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case C, the original samples are drawn from N(0, 1).

Sample size RP Power

n = 5 0.499 0.380

n = 10 0.769 0.807

n = 20 0.934 0.990

n = 50 0.997 0.999

Table 4.4: The relationship between the overall mean of RP values in the rejection area

and the estimated power for the two-stage procedure, samples from N(1, 1).

one-sample location tests are performed for the two-sided test.

When comparing the reproducibility for the t-test and the Wilcoxon test, there is no

substantial difference observed in RP values when conducting them without the prelim-

inary test for Normality for sample sizes of 10, 20 and 50. This is illustrated in Figures

4.22, 4.23 and 4.24. However, when data are sampled from non-Normal distributions,

slight variability in the RP of the t-test is observed. This is because the parametric t-test

is particularly sensitive to violations of Normality assumptions, resulting in greater vari-

ability in its RP values. In contrast, the nonparametric Wilcoxon test is more robust to

these violations, leading to more consistent RP values.
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Figure 4.11: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case C, the original samples are drawn from N(1, 1).

When data are simulated under the null hypothesis of location tests the most original

samples are located in the non-rejection area as shown in Figures 4.14, 4.16, 4.18 and 4.20.

Whereas when data are simulated under the alternative hypothesis of location tests, most

original samples are located in the rejection area, increasing the number as the sample

size increases as shown in Figures 4.15 and 4.19.

The relationship between RP and the estimated power for the one-sample

location tests without preliminary test

The relationship between the overall mean of RP values in the rejection area and the

estimated power for one-sample location tests without preliminary tests is examined.

Table 4.5 shows this relationship under the alternative hypothesis when samples are drawn

from N(1, 1). The estimated power is calculated via Monte Carlo simulation for the 10, 000

dataset. For each simulated dataset, we perform the location test. Then determine how

often the test correctly rejects H0. The proportion of times H0 is rejected out of the total

number of simulations provides an estimate of the power of the location test.

It is evident from the table that as the power increases, the RP also increases.

Moreover, with larger sample sizes, both RP in the rejection area and power tend to
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Figure 4.12: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case C, the original samples are drawn from Ca(0, 1).

increase. For sample size n = 50, both tests have the same power and RP, whereas,

for the sample sizes n = 5, 10, 20, the t-test has slightly better power and RP than the

Wilcoxon test. This is because the distribution is Normal.
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Figure 4.13: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case C, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure 4.14: The min, mean and max of RP values against the p-values for the one-sample

t-test, with original samples from N(0, 1).
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Figure 4.15: The min, mean and max of RP values against the p-values for the one-sample

t-test, with original samples from N(1, 1).
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Figure 4.16: The min, mean and max of RP values against the p-values for the one-sample

t-test, with original samples from Ca(0, 1).
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Figure 4.17: The min, mean and max of RP values against the p-values for the one-sample t-

test, with original samples from the mixture of Normal distributions 0.4·N(5, 12)+0.6·N(15, 22).
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Figure 4.18: The min, mean and max of RP values against the p-values for the one-sample

Wilcoxon test, with original samples from N(0, 1).
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Figure 4.19: The min, mean and max of RP values against the p-values for the one-sample

Wilcoxon test, with original samples from N(1, 1).
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Figure 4.20: The min, mean and max of RP values against the p-values for the one-sample

Wilcoxon test, with original samples from Ca(0, 1).
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Figure 4.21: The min, mean and max of RP values against the p-values for the one-sample

Wilcoxon test, with original samples from the mixture of Normal distributions 0.4 · N(5, 12) +

0.6 · N(15, 22).
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Figure 4.22: The mean of RP values against the p-values for the location tests, with original

samples from N(0, 1).
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Figure 4.23: The mean of RP values against the p-values for the location tests, with original

samples from N(1, 1).
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Figure 4.24: The mean of RP values against the p-values for the location tests, with original

samples from Ca(0, 1).



4.3. Simulation studies 98

Sample size
t-test Wilicoxon test

RP Power RP Power

n = 5 0.675 0.401 0.000 0.000

n = 10 0.756 0.806 0.750 0.782

n = 20 0.886 0.988 0.876 0.984

n = 50 0.994 1.000 0.994 1.000

Table 4.5: The relationship between the overall mean of RP values in the rejection area

and the power for the location tests without preliminary test, data are sampled from

N(1, 1).
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4.4 The impact of the preliminary test on reprodu-

cibility of location tests

This section assesses the influence of the preliminary test for the Normality on the re-

producibility of the one-sample location tests. Does conducting the preliminary test of

Normality improve and increase RP values for the location test or not? This is achieved

by comparing the RP for the location test with the Normality test with the RP for the

location test without the Normality test.

This comparison is done as follows: For Case A, the overall mean of RP values for

the t-test for this case is compared to the product of the overall mean of the individual

RP for the t-test and RP for the Normality test. Similarly, RP for the Wilcoxon test is

compared. For Case B, the overall mean of RP values for the t-test is compared to the

overall mean of the corresponding RP values for the t-test without the preliminary test

for Normality. Similarly, the overall mean of RP values for the Wilcoxon test is compared

to the overall mean of the corresponding RP values for the Wilcoxon test without the

preliminary test for Normality. For Case C, the overall mean of RP values for the t-test,

in this case, is compared to the overall mean of the RP values for all original samples that

perform the t-test without the preliminary test for Normality. similarly, the examination

is carried out for the Wilcoxon test.

These comparisons are displayed visually, where the light blue circle which represents

the RP values of the t-test with the preliminary test is compared to the dark blue circle

indicating the RP values of the t-test without the preliminary test. Similarly, we compare

the light green square representing the RP values of the Wilcoxon test with the preliminary

test to the dark green square representing the RP values of the Wilcoxon test without the

preliminary test. The preliminary test is shortened to the pre-test in the plots.

4.4.1 The impact of the Normality test on RP for location test

for Case A

Here, the results of comparing the overall mean of RP for Case A with the product of the

overall mean of the individual RP of location tests and the preliminary test are displayed,
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Figure 4.25: Comparing RP values for location tests with and without preliminary test (Case

A), plotted against their corresponding mean p-values. When the original samples are drawn

from N(0, 1).

illustrating the effect of applying the preliminary Normality test on the RP values for

the location tests. Figures 4.25 - 4.28 illustrate this comparison for the investigated

distributions and sample sizes. The preliminary test of Normality appears to have a

very small impact on the RP of the one-sample locations. There is no consistent and

clear pattern to this impact. This suggests that the reproducibility of the location test,

conditional on the Normality test outcome, is not substantially better than that of the

location test alone.

4.4.2 The impact of the preliminary test on RP for location test

for Case B

In this subsection, we present the results of comparing RP for Case B, which explore

the potential impact of the preliminary Normality test on the reproducibility of the same

outcome for the location tests. This comparison is made with RP values for a location

test conducted without the preliminary test. Figures 4.29 - 4.32 show this comparison.

The impact of the preliminary test of Normality on RP of the one-sample locations is very
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Figure 4.26: Comparing RP values for location tests with and without preliminary test (Case

A), plotted against their corresponding mean p-values. When the original samples are drawn

from N(1, 1).

small, Applying the Normality test does not substantially increase RP of the location test

or decrease RP.

The sample size of n = 5 is the most affected by applying the Normality test. Where

RP for the t-test with preliminary test is slightly higher than RP for the t-test without

preliminary test in the non-rejection area. Whereas the opposite happens in the Wilcoxon

test, RP for the Wilcoxon test without the preliminary test is higher than RP for the

Wilcoxon test with the preliminary test. This is because RP for Case B depends on

NPI-B samples that have the same outcome as original samples whether perform t-test

or Wilcoxon test. NPI-B samples, which initially failed to pass the Normality test and

subsequently use the Wilcoxon test, the H0 for the Wilcoxon test is never rejected when

the sample size is 5 and the significance level is 0.05. This leads to RP smaller than RP for

Wilcoxon without preliminary test, and RP for t-test higher than RP for t-test without

preliminary test.

As the sample size increases, RP for the t-test with a preliminary test decreases until

it becomes slightly lower than RP for the t-test without a preliminary test in the non-

rejection area. Meanwhile, RP for the Wilcoxon test, with and without the preliminary
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Figure 4.27: Comparing RP values for location tests with and without preliminary test (Case

A), plotted against their corresponding mean p-values. When the original samples are drawn

from Ca(0, 1).

test, remains almost the same. This is because as the sample sizes increase, most NPI-

B samples do not pass the Normality test and consequently perform the Wilcoxon test,

whose power is slightly lower than that of the t-test with a large sample size. This leads to

reduced RP for the t-test in Case B compared to RP for the t-test without a preliminary

test and results in similar RP for the Wilcoxon test with and without a preliminary test.

Generally, with increasing sample size, the difference between the reproducibility of

location tests with and without the preliminary test decreases. Thus, the preliminary

Normality test does not substantially enhance the reproducibility of the location test

outcomes.

4.4.3 The impact of the preliminary test on RP for location

tests for Case C

Here the comparison results for RP for Case C and RP for location tests without prelim-

inary tests are presented. We aim to determine whether filtering original samples based

on a Normality test’s outcome and applying a location test to all NPI-B samples without
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Figure 4.28: Comparing RP values for location tests with and without preliminary test (Case

A), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22).

further Normality testing can improve the RP of the location test results. By comparing

the overall mean of RP values for the t-test after filtering the original samples based on

passing the Normality test with the overall mean of RP values for the t-test without the

Normality test for all original samples. In addition, comparing the overall mean of RP

values for the Wilcoxon test after filtering the original samples based on failure to pass

the Normality test with the overall mean of RP values for the Wilcoxon test without the

Normality test for all original samples.

Figures 4.33 - 4.36 show this comparison for the investigated distributions and sample

sizes. The impact of the preliminary test of Normality on the reproducibility of the

location test results can vary depending on the distribution of the data and the type of

location test being used. It appears that for the t-test, the impact of the preliminary

Normality test is negligible when dealing with Normal distributions, as there is little

difference in the overall mean RP values between Case C and the scenario without the

Normality test. While, for the Wilcoxon test, there is slight variability in the RP values,

indicating a small impact of the preliminary test. In contrast, when the data follow

non-Normal distributions, the preliminary Normality test’s impact on the Wilcoxon test’s
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Figure 4.29: Comparing RP values for location tests with and without preliminary test (Case

B), plotted against their corresponding mean p-values. When the original samples are drawn

from N(0, 1).

reproducibility is smaller than its impact on the t-test. This means that filtering original

samples that meet the assumptions of the Normality test results leads to RP for the

location tests very close to RP for the location tests without the Normality test. In

general, this impact tends to be small. Thus, filtering the original samples according to

the Normality test does not substantially improve the reproducibility of location tests.

The x-axis shows the overall mean of p-values for location tests after filtering original

samples according to the Normality test and the overall mean of p-values for location tests

without Normality tests for all original samples. Filtering original samples that meet the

assumptions of the Normality test results leads to p-value close to the p-value for location

tests without the Normality test.

These simulation studies were also conducted on other distributions under alternative

hypotheses for location tests, and they led to results very similar to the results presented.



4.4. The impact of the Normality test on RP of location tests 105

n=5 n=10 n=20 n=50

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−
R

P
 

Case B (t−test)

t−test without pre−test

Case B (Wilcoxon test)

Wilcoxon test without pre−test

Figure 4.30: Comparing RP values for location tests with and without preliminary test (Case

B), plotted against their corresponding mean p-values. When the original samples are drawn

from N(1, 1).
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Figure 4.31: Comparing RP values for location tests with and without preliminary test (Case

B), plotted against their corresponding mean p-values. When the original samples are drawn

from Ca(0, 1).
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Figure 4.32: Comparing RP values for location tests with and without preliminary test (Case

B), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure 4.33: Comparing RP values for location tests with and without preliminary test (Case

C ), plotted against their corresponding mean p-values. When the original samples are drawn

from N(0, 1).
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Figure 4.34: Comparing RP values for location tests with and without preliminary test (Case

C ), plotted against their corresponding mean p-values. When the original samples are drawn

from N(1, 1).
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Figure 4.35: Comparing RP values for location tests with and without preliminary test (Case

C ), plotted against their corresponding mean p-values. When the original samples are drawn

from Ca(0, 1).
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Figure 4.36: Comparing RP values for location tests with and without preliminary test (Case

C ), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22).
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4.5 Conclusions

This chapter explored the reproducibility probability (RP) for one-sample location tests,

specifically focusing on the one-sample t-test and the one-sample Wilcoxon signed-rank

test. The investigation covered RP for the location tests with and without the preliminary

test for Normality through simulation studies. The RP values for the location tests

with the preliminary test of Normality (the two-stage procedure) involve applying the

Normality test in the first stage. Subsequently, if the null hypothesis for this Normality

test is not rejected, then the t-test is performed in the second stage. Otherwise, the

Wilcoxon test is applied. The objective is to assess the impact of the preliminary test on

RP values for these location tests.

Three cases of reproducibility probability for the two-stage procedures were examined:

Case A represents the full RP for the two-stage procedure. Case B represents the repro-

ducibility of the same outcome for the location test, no matter which test is used. Case

C represents reproducibility of the location test conclusion, where for the NPI-B samples

the same location test is applied as for the original sample.

The results of the simulation studies show that the RP for the one-sample location

test with and without preliminary test show the general pattern: as the p-value for the

location tests is close to the threshold, the RP values are low. RP values are affected by

the sample size, typically decreasing in the non-rejection area as the sample size increases,

while increasing in the rejection area with larger sample sizes. Moreover, from the results

of comparing the RP for the location tests with and without the preliminary test for

Normality, there is no substantial difference between RP for the one-sample location test

with and without the preliminary test of Normality for Cases A, B and C, which means

that the effect of the preliminary test of Normality on RP of location test is small. This

difference between the reproducibility of location tests with and without the preliminary

test decreases as the sample size increases.

There is a relationship between the overall mean of RP values for the one-sample

location tests with and without the preliminary test for Normality in the rejection area

and their estimated power. As the power of the location tests increases the RP values in
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the rejection area increase. The power and the RP values in the rejection area for the

location test increase as the sample size increases.



Chapter 5

Reproducibility of Two-Sample

Location Tests with and without

Preliminary Tests

5.1 Introduction

This chapter investigates the impact of preliminary tests on the reproducibility probability

(RP) of two-sample location tests. The investigation considers the following three-stage

procedure [78]: The Normality assumption is evaluated in the first stage. If the samples

pass the Normality test, then the three-stage approach proceeds with a test for the equality

of variances to determine if there is a significant difference between the variances of the

two samples. If the null hypothesis for the equality of variances test is not rejected,

then the two-sample t-test is applied. However, if the null hypothesis for the equality

of variances test is rejected, then Welch’s t-test is used. If one or both samples fail the

Normality test, then the Wilcoxon-Mann-Whitney (WMW) test is applied. Additionally,

the reproducibility of the two-sample location tests without applying preliminary tests is

evaluated. Thus, the effect of the preliminary tests on RP of the two-sample location

tests can be assessed by comparing RP for location tests with and without preliminary

tests. Furthermore, the relationship between the mean of RP values in the rejection area

with estimated power for the two-sample location tests with and without preliminary tests

is examined.

111
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This chapter is structured as follows: Section 5.2 provides a brief introduction to the

two-samples location tests. Section 5.3 the reproducibility of the three-stage procedures

for the two-sample location tests is investigated. Section 5.4 presents simulation studies

to assess RP values for the three-stage procedure, as well as for location tests without

preliminary tests. This section also provides the results of the simulations for RP of the

location tests with and without preliminary tests, and displays the relationship between

RP and the estimated power for location tests with and without preliminary tests. Com-

parison to identify the influence of the preliminary tests of Normality and equality of

variances on RP values for the two-sample locations tests is presented in Section 5.5.

Section 5.6 provides a summary of the key findings and results obtained in this chapter.

5.2 Two-sample location tests

This section provides a brief introduction to two-sample location tests, namely two-sample

t-test, Welch’s t-test, and Mann-Whitney U test.

5.2.1 Student’s two-sample t-test

Suppose that a sample {X1, X2, . . . , XnX
} from population X and an another sample

{Y1, Y2, . . . , YnY
} from population Y . The two-sample t-test is used to determine whether

there is a statistically significant difference in the means of two independent samples,

where the mean, denoted by µ, is a measure of central tendency that represents the average

value of a dataset. The null hypothesis is H0 : µX = µY , and the alternative hypotheses are

H1 : µX ̸= µY for two-sided testing. It is one widely used parametric test for this purpose

first introduced by Gosset under the pen name Student [95]. Before conducting the t-test,

certain assumptions need to be considered, including the homogeneity of variance and

Normality of the data. The test statistic for Student’s two-sample t-test is given by:

t = X̄ − Ȳ

Sp

√
1

nX
+ 1

nY

where X̄ and Ȳ are the means of samples, nX and nY are the sample sizes, and Sp is the

pooled standard deviation:

Sp =
√

(nX − 1)S2
X + (nY − 1)S2

Y

nX + nY − 2
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where S2
X and S2

Y represent the variances of samples. The null hypothesis is rejected in

favour of the two-sided alternative if |t| > tα/2.

5.2.2 Welch’s t-test

Welch t-test [101], also known as the unequal variance t-test or non-pooled variance t-

test. It is a more robust alternative to Student’s t-test when the assumption of equal

population variances is not met or when sample sizes differ between groups [11]. The null

hypothesis for the Welch’s t-test is H0 : µX = µY , and the alternative hypothesis for the

two-sided is H1 : µX ̸= µY . Welch’s t-test defines the test statistic t as follows [17]:

t = (X̄ − Ȳ ) − (µX − µY )√
(S2

X/nX) + (S2
Y /nY )

(5.2.1)

Under H0, Welch’s t-test has a Student t-distribution with the number of degrees of

freedom (df) derived using the Welch-Satterthwaite equation [17]:

df =

(
S2

X

nX
+ S2

Y

nY

)2

(
S2

X

nX

)2 (
1

nX−1

)
+
(

S2
Y

nY

)2 (
1

nY −1

) (5.2.2)

The null hypothesis is rejected when the p-value is less than or equal to the significance

level α.

5.2.3 Mann-Whitney U test

The Mann-Whitney U test, also known as the Wilcoxon rank sum test or the Wilcoxon-

Mann-Whitney (WMW) test, is a nonparametric test used as an alternative to the t-test

for comparing two samples or groups when the data are not Normally distributed [42]. The

Mann-Whitney test assesses whether the medians of the distributions for two populations

are different from each other, where the median, denoted by η, is a measure of central

tendency that represents the middle value of a dataset when arranged in ascending order.

The null hypothesis is H0 : ηX = ηY , against the alternative hypothesis for two-sided

testing H1 : ηX ̸= ηY , where ηX is the median for population X, and ηY is the median

for population Y [65]. The observations from both populations are combined and ranked

from smallest to largest. For each population, the ranks are summed separately. The
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Mann-Whitney U test statistic denoted as U is calculated based on the rank sums [49]:

U = min(UX , UY )

where

UX = nXnY + nX(nX + 1)
2 − RX

UY = nXnY + nY (nY + 1)
2 − RY

where RX is the sum of the ranks for population X, and RY is the sum of the ranks for

population Y . If the null hypothesis holds, indicating that both sets of observations were

obtained from identical populations, the median values would be similar and a significant

overlap between the two samples would be expected [74]. The measure U represents

this overlap between the two samples, with an expected similarity between UX and UY

[74]. Conversely, if there is minimal overlap, U will have significantly different values and

min(UX , UY ) will be small [74]. Thus, if U > Ucritical, we do not reject H0. If U ≤ Ucritical,

we reject H0, where Ucritical is the critical value of U obtained from the Mann-Whitney

table [88].

5.3 Reproducibility of the three-stage procedure test-

ing

In this section, the reproducibility from the NPI perspective for the three-stage procedure

is evaluated. This procedure involves testing for Normality and homogeneity of variances

for two groups. In the first stage, the Normality test is applied. If the null hypothesis

of the Normality is rejected for one or both samples, then the Wilcoxon-Mann-Whitney

test is used. Conversely, if both samples pass the Normality test, then the equality of

variances is assessed using a preliminary test. If the null hypothesis for the equality of

variances test is not rejected, then the two-sample t-test is applied, otherwise, Welch’s

t-test is used.

Three cases for studying the reproducibility of the three-stage procedure are con-

sidered, these are similar to the cases in Section 4.2.
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1. Case A: Full reproducibility for the three stages. This case examines the RP for

the same test outcome for all stages. For example, if original samples pass the

Normality test and equality of variances test and H0 for the t-test is not rejected,

RP is computed as the ratio of the number of NPI-B samples that pass the Normality

test and equality of variances test and H0 for the t-test are not rejected to the total

number of NPI-B samples.

2. Case B: the reproducibility for the same outcome for the location test, no matter

which test is used. RP, in this case, is the ratio to obtain the same outcome for

the location test (reject or not reject the null hypothesis) whether applying the t-

test, Welch’s t-test or WMW test across NPI-B samples similar to the outcome of

the location test that applied in the original sample to the total number of NPI-B

samples.

3. Case C : This case evaluates the RP of the location test conclusion, where for the

bootstrap samples the same location test is applied as for the original sample without

further preliminary testing. The RP is the ratio of NPI-B samples that have the

same result (reject or not reject) for the null hypothesis of the location test that

was applied to the original samples to the total number of NPI-B samples.

Suppose that N is the number of NPI-B samples and N∗
t , N∗

W t and N∗
W are three

disjoint subsets of {1, 2, . . . , N}, N∗
t ∩ N∗

W t ∩ N∗
W = ∅, where N∗

t is a subset of all the

indices for the NPI-B samples that pass the Normality test and equality of variances test

and t-test were applied, N∗
W t is a subset of all the indices for the NPI-B samples that pass

the Normality test but did not pass the equality of variances test and the Welch’s t-test

were performed, and N∗
W is a subset of all the indices for the NPI-B samples that do not

pass the Normality test and the WMW test were applied. To compute NPI-B-RP for the

three-stage procedure for two groups use the next steps:

Step 1: Perform a preliminary test for Normality separately on the original samples, with

significance level α1.

Step 2: If the null hypothesis HN
0 of the Normality test is not rejected, apply the preliminary

test for equality variances and make a decision about its null hypothesis HF
0 with
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the level of significance α2. If HF
0 is not rejected, then apply t-test with α3 and

decide H t
0, set TSt = 1 if H t

0 is rejected or set TSt = 0 if H t
0 is not rejected. If HF

0

is rejected, then apply Welch’s t-test with α3 and decide HW t
0 , set TSW t = 1 if HW t

0

is rejected or set TSW t = 0 if HW t
0 is not rejected. Whereas, if HN

0 for both or one

sample is rejected, then apply the WMW test with the level of significance α3 and

decide HW
0 , set TSW = 1 if HW

0 is rejected or set TSW = 0 if HW
0 is not rejected.

Step 3: Draw an NPI-B sample N times for each of the original samples, the same size as

the original samples.

• For Cases A and B, perform the Normality test and equality of variances test

as preliminary tests on the N pair of NPI-B samples, then t-test, Welch’s t-

test, or Wilcoxon test according to test decision of the preliminary tests. Each

time record the test decision TSt
i = 1 if H t

0 is rejected, TSW t
f = 1 if HW t

0 is

rejected, or TSW
j = 1 if HW

0 is rejected, or record TSt
i = 0 if H t

0 is not rejected,

TSW t
f = 0 if HW t

0 is not rejected, or TSW
j = 0 if HW

0 is not rejected, where

i ∈ N∗
t , f ∈ N∗

W t and j ∈ N∗
W .

• For Case C, the same location test is performed on the N pair of NPI-B samples

as for the original samples. Each time record the test decision Ts = 1 if H t
0 is

rejected, or WTs = 1 if HW t
0 is rejected, or Ws = 1 if HW

0 is rejected, or record

Ts = 0 if H t
0 is not rejected, or WTs = 0 if HW t

0 is not rejected, or Ws = 0 if

HW
0 is not rejected, where s = 1, . . . , N

Step 4: Compute the RP based on the test decisions of the NPI-B samples.

(i) The RP for Case A:

If both original samples passed the Normality test and the equality of variances

test and t-test was applied the RP is

RPt =
∑

i∈N∗
t

I{T St=T St
i }

1
N

If both original samples passed the Normality test and did not pass the equality

of variances test and Welch’s t-test was applied the RP is

RPW t =
∑

f∈N∗
W t

I{T SW t=T SW t
f

}
1
N
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If one or both original samples did not pass the Normality test and the Wil-

coxon test was applied the RP is

RPW =
∑

j∈N∗
W

I{T SW =T SW
j }

1
N

(ii) The RP for Case B:

If both original samples passed the Normality test and the equality of variances

test, and t-test was applied the RP is

RPt =
∑

i∈N∗
t

I{T St=T St
i } +

∑
f∈N∗

W t

I{T St=T SW t
f

} +
∑

j∈N∗
W

I{T St=T SW
j }

 1
N

If both original samples passed the Normality test and did not pass the equality

of variances test and Welch’s t-test was applied the RP is

RPW t =
∑

i∈N∗
t

I{T SW t=T St
i } +

∑
f∈N∗

W t

I{T SW t=T SW t
f

} +
∑

j∈N∗
W

I{T SW t=T SW
j }

 1
N

If one or both original samples did not pass the Normality test and the Wil-

coxon test was applied the RP is

RPW =
∑

i∈N∗
t

I{T SW =T St
i } +

∑
f∈N∗

W t

I{T SW =T SW t
f

} +
∑

j∈N∗
W

I{T SW =T SW
j }

 1
N

(iii) The RP for Case C :

If both original samples passed the Normality and the equality of variances

tests and t-test was applied the RP is

RPt =
N∑

s=1
I{T St=Ts}

1
N

If both original samples passed the Normality test but did not pass the test for

equality of variances and Welch’s t-test was applied the RP is

RPW t =
N∑

s=1
I{T SW t=W Ts}

1
N

If one or both original samples did not pass the Normality test and the Wil-

coxon test was applied the RP is

RPW =
N∑

s=1
I{T SW =Ws}

1
N

Step 5: Perform Steps 3 and 4 in total h times, record the outcomes by RPtk
,RPW tk

, or

RPWk
, where k = 1, 2, . . . , h.
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5.4 Simulation studies for the reproducibility of the

location tests with and without preliminary tests

Simulation studies are performed to investigate the reproducibility of the three-stage

procedure including testing for Normality and homogeneity of the variances and loca-

tion tests. We considered three main statistical tests, the t-test, Welch’s t-test and the

Wilcoxon-Mann-Whitney test. For the preliminary tests, we used the Shapiro-Wilk test

for testing the Normality which is independently conducted for each sample and the F -

test for testing the homogeneity of the variances of the two samples. These preliminary

tests are chosen because the Shapiro-Wilk test is known to be sensitive to deviations from

Normality, especially with small to moderate sample sizes. It gives high reproducibility

and can be applied to a sample size as small as 5, this was addressed in Chapter 2. The

F -test is easy to use; it provides a simple and straightforward way to determine if the

variances are significantly different. It also gives good reproducibility when the assump-

tion of Normality is met, its reproducibility was studied in Chapter 3. We apply these

simulations by performing the Steps in Section 5.3 with the inputs N = 1000 and h = 100,

and choosing the minimum, mean, and maximum from these h RP values.

Moreover, simulation studies are conducted to investigate reproducibility for the two-

sample location tests without the preliminary test for Normality or equality of variances.

This simulation is carried out by applying the NPI-B-RP Algorithm 1, as presented in

Section 1.4.5 of Chapter 1.

The null hypothesis for the preliminary Normality test is HN
0 : the population is

Normally distributed, against the alternative hypothesis is HN
1 : the population is not

Normally distributed. Whereas the null hypothesis for the preliminary equality of vari-

ances test is HF
0 : σ2

X = σ2
Y , and the alternative hypothesis is HF

1 : σ2
X ̸= σ2

Y , where

σ2
X and σ2

Y are the populations variances. For the location tests, the null hypothesis is

H3
0 : θX = θY , where θX and θY are the location parameter for populations X and Y ,

respectively, H3
0 denotes the null hypothesis for the third stage of the location test which

is either t-test (H t
0) hypothesis or Welch’s t-test (HW t

0 ) hypothesis in which case θ is the

mean, or the null hypothesis for WMW test (HW
0 ) in which case θ is the median. The
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Figure 5.1: PDFs for the chosen distributions for two groups used in the simulation studies.

corresponding alternative hypothesis is H3
1 : θX ̸= θY .

To simulate data for the three-stage procedure, different distributions are considered,

and their probability density functions are shown in Figure 5.1. We simulate data under

HN
0 , HF

0 and H3
0 , we generate data from N(0, 1) for pair original samples. Also, data

are simulated under HN
0 , HF

1 and H3
1 , we choose N(0, 1) and N(1, 22) distributions. In

addition, we chose Log Normal distribution LN(0, 1) for both samples to study RP under

HN
1 , HF

0 and H3
0 . Finally, we simulate data under HN

1 , HF
1 and H3

1 , where data are created

from Log Normal distribution LN(0, 1) and LN(1, 0.5).

The number of runs per simulation is K = 100, for each run, two original samples of

size n are generated from the chosen distributions and perform the steps in Section 5.3.

Different sample sizes nX = nY = 5, 10, 20, 50 are considered. All tests considered are

two-sided tests with a significance level of 0.05.
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5.4.1 The results of the reproducibility for three-stage proced-

ure

This part presents the results of RP for the three-stage procedure that is RP for the

location with the preliminary tests for Normality and equality of variances for two groups

for three Cases A, B, and C.

The colour scheme for the plots in this thesis is designed to provide clear visualization,

facilitating interpretation of the results. The blue colour is reserved for parametric tests

which are used when the assumptions of Normality and equality of variances are met.

The red colour denotes Welch’s parametric tests, which are used when the assumption of

equality of variances is violated. Finally, the green colour represents nonparametric tests

which do not make assumptions about the distribution of the data.

The results for Case A

The results of the simulation for the full reproducibility of the three stages for Case A

are shown in Figures 5.2 - 5.5. The RP values show the general pattern: RPs tend to be

lower when the p-value is close to the significance threshold (α), and RPs increase as the

p-value moves further away from the threshold. However, there is extreme variability in

the RP values for the location tests, especially the parametric tests.

The influence of the preliminary tests for Normality and equality of variances is notably

evident in the analysis of original samples, particularly when dealing with large sample

sizes. For instance, in scenarios where the distributions are Normal and exhibit equal

variances, the majority of original samples apply the t-test, as shown in Figure 5.2. If

the distributions are Normal but have different variances, then most original samples

choose Welch’s t-test, as shown in Figure 5.3. In cases where the distributions are non-

Normal, the prevailing choice for the majority of original samples is the WMW test,

clearly demonstrated in Figures 5.4 and 5.5.

The RP values for the WMW test tend to increase as the sample size increases. Con-

versely, RP values for the parametric tests decrease, as the sample size increases. This is

due to the Normality test ability; for the large sample size, the ability of the Normality
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Figure 5.2: The min, mean, and max of RP values for the three-stage procedure against p-values

for the location test stage. Original samples were drawn from N(0, 1), Case A.

test to detect skewness in the various NPI-B samples becomes strong, which leads to

non-exceeding a lot of NPI-B samples the Normality test and performing the WMW test,

resulting in high RP values for the WMW test and low RP for parametric tests and vice

versa.

When the variances of the distributions are equal, the RP for the t-test is slightly

better than those for Welch’s t-test, as shown in Figure 5.2. Conversely, in cases of

unequal variances, the RP for Welch’s t-test tends to be a little bit better than that

for those for the t-test, as shown in Figure 5.3. When the sample size is large and the

distributions deviate more from Normality, the RP values for the WMW test with the

preliminary test of Normality are high.

The results for Case B

This part shows the simulation results for RP values for the same outcome for the location

tests, no matter which test is used. Figures 5.6 - 5.9 illustrate these RP values obtained

from the simulations, these RP values show the general pattern. The RP values of the

location tests are affected by sample size, RP values tend to decrease in the non-rejection

area, as the sample size increases. While in the rejection area, RP values increase as the
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Figure 5.3: The min, mean, and max of RP values for the three-stage procedure against p-values

for location test. Original samples were drawn from N(0, 1) and N(1, 22), Case A.

sample size increases.

When original samples are drawn from N(0, 1) and N(1, 22), there is slight variability

in RP values for Welch’s t-test in the non-rejection area shown in Figure 5.7. This is

because RP for Case B depends on NPI-B samples having the same outcome as the

original sample, whether performing the t-test Welch’s t-test or the WMW test. For large

sample sizes in the non-rejection area, most NPI-B samples do not pass the Normality

test, resulting in the use of the WMW test. The RP for the WMW test exhibits variability

when the variances are different, which in turn affects the RP for original samples that

perform Welch’s t-test.

The results for Case C

The results of the simulation for the reproducibility of the three-stage procedure for Case

C are presented in Figures 5.10 - 5.13. The RP values for location tests with preliminary

tests follow the general pattern: RP is low when the p-value is close to the threshold and

high when the p-value is far away from the threshold. The results are similar to those

observed in Case B, however, the variability observed in RP values for Welch’s t-test in

Case B in Figure 5.7 decrease in Case C as shown in Figure 5.11 because RP for this
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Figure 5.4: The min, mean, and max of RP values for the three-stage procedure against p-values

for the location test stage. Original samples were drawn from LN(0, 1), Case A.

Sample size RP Power

n = 5 0.553 0.143

n = 10 0.581 0.269

n = 20 0.668 0.491

n = 50 0.778 0.872

Table 5.1: The relationship between RP and power for the three-stage procedure, samples

from N(0, 1) and N(1, 22).

case depends only on NPI-B samples that perform the same test as the original sample.

The relationship between RP and the estimated power for the three-stage

procedure

The relationship between the overall mean of RP values in the rejection area and the

estimated power for the three-stage procedure under the alternative hypothesis for the

location tests is examined. The overall mean of RP values for samples in the rejection

area out of 100 original samples. Where the three-stage testing procedure applies the

Shapiro-Wilk (SW) test and F -test to choose between location test t-test, Welch’s t-test,
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Figure 5.5: The min, mean, and max of RP for the three-stage procedure against p-values for

location test. Original samples were drawn from LN(0, 1) and LN(1, 0.52), Case A.

Sample size RP Power

n = 5 0.599 0.354

n = 10 0.726 0.714

n = 20 0.960 0.960

n = 50 0.987 1.000

Table 5.2: The relationship between RP and power for the three-stage procedure, samples

from LN(0, 1) and LN(1, 0.5).

or WMW test on both original sample and NPI-B samples. RP represents the proportion

of NPI-B samples that get the same location test result as the original sample to the total

number of NPI-B samples, regardless of which location test is used.

A Monte Carlo simulation of 10, 000 datasets is performed to estimate the power of the

three-stage testing procedure, where the SW test for Normality and F -test are conducted

as preliminary tests and then proceed with either the t-test, Welch’s t-test or the Wilcoxon

test based on the outcome of the preliminary tests. The power will be the proportion of

datasets for which of the tests successfully rejects the null hypothesis H2
0 to the total

number of datasets.
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Figure 5.6: The min, mean, and max of RP values for the three-stage procedure Case B against

p-values for the location test stage, samples are drawn from N(0, 1).

We observed from Table 5.1 that shows this relationship under the alternative hy-

pothesis for the location tests for Normal distributions and from Table 5.2 that shows

non-Normal distributions, the RP for location tests with preliminary tests increases as

their power increase. Additionally, power and RP increase with increasing sample size.

5.4.2 The results of the reproducibility for the location tests

without preliminary tests

This section shows the findings derived from simulations of location tests (the two-sample

t-test, Welch’s t-test, and WMW test ) conducted without preliminary tests. The RP

values for each test were presented in separate figures in Appendix D.2. Here, we will be

limited to displaying the mean of RP values for each test in one plot.

Figure 5.14 shows the results of simulations for the RP values for the location tests

without the preliminary tests. When both original samples are drawn from Normal distri-

butions having identical mean values and equality variances N(0, 1) (where µX = µY = 0,

and σX = σY = 1). The vast majority of original samples are located in the non-rejection

area since both original samples are drawn from distributions that have the same means.
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Figure 5.7: The min, mean, and max of RP values for the three-stage procedure Case B against

p-values for the location test, samples are drawn from N(0, 1) and N(1, 22).

The RP values for location tests show the general pattern: RP increases gradually as their

p-values move away from the threshold α = 0.05. Also, RP for the location test does not

reach close to 1 when the p-value is close to 1. This is because the tests are conducted

for the two-sided when the p-value close to 1 indicates that the evidence provided by the

data is not strong enough to reject H0, but it also does not strongly support it either.

This uncertainty can lead to different test outcomes, reducing the reproducibility of the

results.

When comparing the RP for these location tests: There exists noticeable variability in

RP for location tests when dealing with small sample sizes. However, as the sample size

increases, this variability decreases. This is because, for small sample sizes, the power of

the location test tends to be low. This lower power results in more diverse results, leading

to greater variability in RP. As the sample size increases, the power of location tests

increases because larger sample sizes provide more information, leading to more precise

estimates of population parameters, resulting in less variability in RP.

Moreover, RPs for the WMW test seem slightly higher than RPs for Welch’s t-test

followed by RPs for the t-test for the small sample size n = 5 in the non-rejection area.

As the sample size increases, RPs for the WMW test decrease slightly than those for the
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Figure 5.8: The min, mean, and max of RP values for the three-stage procedure Case B against

p-values for the location test stage, samples are drawn from LN(0, 1).

t-test and Welch’s t-test. This is because, for smaller sample sizes, it is more likely that

the assumptions of Normality and equal variances will be violated. This can impact the

effectiveness of parametric tests (t-test and Welch’s t-test), leading to slightly lower RPs

compared to the WMW test. However, with larger sample sizes, parametric tests become

less sensitive to violations of these assumptions, resulting in an improvement in their RP.

On the other hand, because the WMW test does not depend on these assumptions, its

RPs may not show change with increasing sample size. In addition, as the sample size

increases RPs for the t-test and Welch’s t-test become similar. This is because the impact

of unequal variances and non-Normality decreases with larger sample sizes, and the t-test

remains robust even when the equal variance assumption is violated.

Figure 5.15 presents simulation results for the RP of location tests without the pre-

liminary tests. The simulation was conducted with original samples drawn from Normal

distributions N(0, 1) and N(1, 22) (where µX = 0, µY = 1 and σ2
X = 1, σ2

Y = 4). For small

sample sizes, there are many original samples in the non-rejection area (where tests fail to

detect significant differences). However, as the sample size increases, most of the original

samples shift to the rejection area (where tests detect significant differences) with high
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Figure 5.9: The min, mean, and max of RP for the three-stage procedure Case B against

p-values for the location test, samples are drawn from LN(0, 1) and LN(1, 0.5).

RP values. Also, the p-values for the location test become closer to the threshold in the

non-rejection area with low RP values, as the sample size increases. While in the rejection

area, the RP values increase until they reach one when the p-value decreases to zero. This

is because the power of the location tests increases as the sample size increases, and a

greater proportion of original samples and the NPI-B samples show significant differences

since the means of distributions are different, resulting in higher reproducibility in the

rejection area and lower reproducibility in the non-rejection area.

It appears that RPs for Welch’s t-test and WMW test are approximately higher than

RP for the t-test for the small sample size in the non-rejection area. In the rejection area,

RP for t-test is the highest followed by RP for Welch’s t-test, then RP for the WMW

test. This is because Welch’s t-test is designed to handle unequal variances, while the

WMW test is non-parametric and does not assume any specific distribution, thus they

are robust to violations of assumptions such as Normality and equal variance which are

more pronounced in small sample sizes. As the sample size increases, the RPs for the

WMW test are smaller than those for Welch’s t-test and t-test in the non-rejection area.

However, in the rejection area, all three tests have approximately similar RP values.
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Figure 5.10: The min, mean, and max of RP values for the three-stage tests against p-values

for the location test stage, samples are drawn from N(0, 1), Case C.

Figure 5.16 presents simulation results for the RP of location tests without the pre-

liminary tests. The simulations were conducted with original samples drawn from non-

Normal distributions with the same means and variances LN(0, 1) (where µX = µY ≈

1.648 and σ2
X = σ2

Y ≈ 4.690). The majority of the original samples are located in the

non-rejection area since the means of the two populations are equal. The results show a

general pattern of RP. There exists noticeable variability in RP for location tests when

dealing with small sample sizes. However, as the sample size increases, this variability

decreases. It seems RPs for Welch’s t-test and the WMW test are higher than RP for the

t-test in the small sample size in the non-rejection area. As the sample size increases, RPs

for the WMW test are smaller than RPs for Welch’s t-test and t-tests in the non-rejection

area.

Figure 5.17 presents simulation results for the RP of the location tests without the

preliminary tests. The simulations were conducted with original samples drawn from non-

Normal distributions with different means and variances LN(0, 1) and LN(1, 0.5) (where

µX ≈ 1.648, µY ≈ 3.490 and σ2
X ≈ 4.690, σ2

Y ≈ 7.899). Since the original samples are

drawn from non-Normal distributions with different means, with increasing the sample
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Figure 5.11: The min, mean, and max of RP for the three-stage procedure against p-values for

location test, samples are drawn from N(0, 1) and N(1, 22), Case C.

size, most original samples shift to the rejection area with high RP values. Whereas in the

non-rejection area, p-values become close to the threshold with low RP values. Increasing

the size of the sample enhances the RP value for the WMW test, unlike parametric

tests which do not exhibit substantial enhancements in RP values within the rejection

area. Additionally, there are more original samples located in the non-rejection area for

parametric tests compared to those for the WMW test.

There exists noticeable variability in RP for the location tests when dealing with small

sample sizes. As the sample size increases, this variability decreases. It seems RPs for the

WMW test are the highest in the non-rejection area followed by Welch’s t-test. While

in the rejection area, as the sample size increases, it is clear that the RPs of the WMW

test perform better than the RPs of the parametric test, as they get closer to one in the

rejection area than those for the parametric test. This is because the WMW test is more

powerful when dealing with non-Normal distribution than the parametric test.
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Figure 5.12: The min, mean, and max of RP for the three-stage procedure against p-values for

location test, samples are drawn from LN(0, 1), Case C.

Sample size
t-test Welch’s t-test WMW test

RP Power RP Power RP Power

n = 5 0.600 0.158 0.600 0.138 0.570 0.111

n = 10 0.581 0.273 0.570 0.251 0.562 0.241

n = 20 0.682 0.494 0.680 0.486 0.665 0.469

n = 50 0.794 0.877 0.792 0.873 0.800 0.850

Table 5.3: The relationship between RP and power for location tests without the prelim-

inary test of Normality, samples are drawn from N(0, 1) and N(1, 22).

The relationship between RP and the estimated power for the location tests

without preliminary tests

Tables 5.3 and 5.4 present the relationship between the estimated power for location tests

without the preliminary tests with the overall mean of RP values in the rejection area,

under the alternative hypothesis for location tests. Generally, it is clear that as the power

increases, the RP increases. Moreover, as the sample size increases, the power and RP for

location tests increase. When distributions are Normal there is no substantial difference in

RP and power among location tests. When distributions are non-Normal and the sample
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Figure 5.13: The min, mean, and max of RP for the three-stage against p-values for location

test, samples are drawn from LN(0, 1) and LN(1, 0.5), Case C.

Sample size
t-test Welch’s t-test WMW test

RP Power RP Power RP Power

n = 5 0.649 0.369 0.618 0.344 0.588 0.344

n = 10 0.711 0.453 0.701 0.549 0.693 0.694

n = 20 0.780 0.710 0.778 0.722 0.823 0.961

n = 50 0.849 0.920 0.849 0.913 0.987 1.000

Table 5.4: The relationship between RP and power for location tests without the prelim-

inary test of Normality, samples are drawn from LN(0, 1) and LN(1, 0.5).

size is large, RP and power for the WMW test are slightly better than parametric tests.
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Figure 5.14: The means of RP values for the location tests against their p-values, when original

samples are sampled from N(0, 1).

n=5 n=10 n=20 n=50

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−
R

P
 

t−test Wt−test WMW test

Figure 5.15: The means of RP values for the location tests against their p-values, when original

samples are sampled from N(0, 1) and N(1, 22).
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Figure 5.16: The means of RP values for the location tests against their p-values, when original

samples are sampled from LN(0, 1).
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Figure 5.17: The means of RP values for the location tests against their p-values, when original

samples are sampled from LN(0, 1) and LN(1, 0.5).
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5.5 The impact of the preliminary tests on the re-

producibility of location tests

This section includes a comparative analysis between the reproducibility obtained through

the three-stage procedure and those obtained through location tests without preliminary

tests. The comparison is performed as discussed in Section 4.4. By comparing the RP of

the three-stage procedure with the RP for location tests without the preliminary tests,

we can assess the impact of the preliminary tests of Normality and equality of variances

on the RP of the two-sample location tests.

These comparisons are displayed visually in plots, where the comparison includes com-

paring the light blue circle representing the RP values of the t-test with the preliminary

tests with the dark blue circle indicating the RP values of the t-test without the prelim-

inary tests, also comparing the light green square which represents the RP values of the

WMW test with preliminary tests with the dark green square depicting the RP values of

the WMW test without preliminary tests, and comparing the light red triangle repres-

enting the RP values of Welch’s t-test with preliminary tests with the dark red triangle

represents the RP values of Welch’s t-test without preliminary tests.

5.5.1 The impact of the preliminary tests of Normality and

equality of variances on RP of location tests for Case A

The results of comparing full RP for the three stages (Case A) with the product of the

overall mean of the individual RP of location tests and the preliminary tests are presented.

The effect of applying preliminary tests for Normality and equality of variances on RP

for location tests for Case A are shown in Figures 5.18 - 5.21.

We observed that the product of RP for the WMW test and RP of the Normality test

tends to be slightly higher than RP for the WMW test with preliminary tests in most

scenarios. The difference between them decreases as the sample size increases, especially

when the distributions are non-Normal. This is because the two-stage procedure for the

two-sample results in increased error rates from both the Normality test and the WMW

test. If either of the NPI-B samples fails incorrectly to pass the Normality test this may
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Figure 5.18: Comparing the means of RP values for Case A of the three-stage procedure, when

both samples are sampled from N(0, 1).

lead to the unnecessary application of the WMW test. Error aggravation can result in a

lower overall RP compared to the product of individual RPs, as each test is considered

independently. The power of the Normality test increases with the sample size increase,

leading to a decreased error rate and then improved RP for the two-stage procedure.

There is a slight difference between RP for the t-test with preliminary tests and the

product of RP for the three individual tests (Normality and equality of variances test and

t-test). Similarly, for RP for Welch’s t-test. There is no specific pattern to this difference.

Generally, the difference between RP for location tests with preliminary tests and the

product of RP of individual location tests and the preliminary tests is considered small.

This suggests that the reproducibility of the location tests, conditional on the outcomes

of the Normality test and equality of variances test, is not substantially better than that

of the location test alone.
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Figure 5.19: Comparing the means of RP values for Case A of the 3-stage procedure, when

samples are sampled from N(0, 1) and N(1, 22).

5.5.2 The impact of the preliminary tests of Normality and

equality of variances on RP of location tests for Case B

The results of comparing the reproducibility of the outcome of location tests regardless

of which test is used (Case B) with the reproducibility of location tests without the

preliminary tests are presented. The impact of preliminary tests on RP of location tests

for Case B is very small as shown in Figures 5.22 - 5.25.

Under the null hypothesis for the location tests in the non-rejection area, the original

samples that pass the preliminary tests and do the t-test have a slightly higher overall

mean of RP values than RP for the t-test without preliminary tests. As the sample size

increases, RP for the t-test with preliminary tests decreases until becomes slightly lower

than that without preliminary tests. While the original samples that pass the Normality

test and fail to pass F -test and do Welch’s t-test have a slightly lower overall mean of RP

values than RP for Welch’s t-test without preliminary tests. As the sample size increases,

the RP for Welch’s t-test with preliminary test increases until becomes slightly higher

than that without preliminary tests. Whereas the original samples that fail to pass the
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Figure 5.20: Comparing the means of RP values for Case A of 3-stage procedure, when samples

are sampled from LN(0, 1).

Normality tests and do the WMW test have a slightly lower overall mean of RP values

than RP for the WMW test without Normality tests. As the sample size increases, RP

for the WMW test with preliminary tests convergence to that without preliminary tests

until they approximately become similar.

Under the alternative hypothesis for the location tests in the rejection area, RP for the

t-test with preliminary tests is smaller than RP for the t-test without preliminary tests.

As the sample size increases, RP for the t-test with and without preliminary test becomes

approximately similar. RP for Welch’s t-test with the preliminary tests is slightly higher

than that without the preliminary tests. As the sample size increases, the RP for Welch’s

t-test with the preliminary test decreases till becomes slightly smaller than that without

the preliminary t-test. While RP for the WMW test with and without preliminary tests

are approximately similar.

When the distributions are Normal and have different means and variances, RP for

Welch’s t-test without preliminary tests is slightly higher than RP for Welch’s t-test with

preliminary tests in the non-rejection area as shown in Figure 5.23.

This small difference between RP for location tests with and without preliminary tests
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Figure 5.21: Comparing the means of RP values for Case A of the 3-stage procedure, when

samples are sampled from LN(0, 1) and LN(1, 0.52).

can be traced back to the number of NPI-B samples that pass or fail the preliminary tests

and the power of each test on small and large sample sizes. Which enhances or decreases

RP for the other location test. Where RP for Case B depends on NPI-B samples that have

the same outcome as the original sample whether perform t-test Welch’s t-test or WMW

test. Generally, the difference between the reproducibility of location tests with and

without the preliminary test is very small. Thus, the preliminary tests for the Normality

and equality of variances do not substantially enhance the reproducibility of the location

test outcomes.

5.5.3 The impact of the preliminary tests of Normality and

equality of variances on RP of location tests for Case C

The comparison results for RP for Case C and RP for location tests without preliminary

tests are presented. We aimed to determine whether filtering the original samples based

on the Normality test and equality of variances results and applying the location test

to all NPI-B samples without further preliminary testing could improve the RP of the
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Figure 5.22: Comparing the means of RP values for Case B of the three-stage procedure, when

both samples are sampled from N(0, 1).

original location test results. By comparing the overall mean of RP values for the t-test

after filtering the original samples based on passing the Normality test and equality of

variances test with the overall mean of RP values for the t-test without the preliminary

tests for all original samples. Likewise, for Welch’s t-test, we compare the overall mean of

RP values for the Welch’s t-test after filtering the original samples based on passing the

Normality test and failure to pass the equality of variances test with the overall mean of

RP values for the t-test without the preliminary tests for all original samples. In addition,

comparing the overall mean of RP values for the Wilcoxon test after filtering the original

samples based on failure to pass the Normality test with the overall mean of RP values

for the Wilcoxon test without the preliminary tests for all original samples.

Figures 5.26 - 5.29 show the results of the comparison. The RP values for the para-

metric tests are less affected by the preliminary tests if the distributions are Normal. If

the variances are equal, the RP for the t-test is less affected by preliminary tests than the

RP for Welch’s t-test, as shown in Figure 5.26. However, if the variances are different, the

RP for Welch’s t-test is less affected than the RP for the t-test, as observed in Figure 5.27.

The RP for the WMW test is less affected by the preliminary tests if the distributions are
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Figure 5.23: Comparing the means of RP values for Case B of the three-stage procedure,

when samples are sampled from N(0, 1) and N(1, 22).

non-Normal, especially in the large sample sizes, as shown in Figures 5.28 and 5.29. This

means that filtering original samples that meet the assumptions of the preliminary tests

results leads to RP for location tests close to RP for location tests without preliminary

tests.

In Figure 5.29, RP for parametric tests with the preliminary tests is higher than those

without preliminary tests for sample sizes 10 and 20. This is because the number of

original samples that perform these parametric tests after being filtered according to the

preliminary tests results is much smaller than the total number of original samples that

perform parametric tests without preliminary tests.

Generally, the impact of filtering the original samples based on the preliminary test

results on RP of location tests is small and does not improve the RP substantially more

than the RP for location tests without the preliminary tests.

Similar results were also achieved when the simulation was conducted for a bimodal

distribution from a mixture of normal distributions. The detailed results are provided in

Appendix D.1.
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Figure 5.24: Comparing the means of RP values for Case B of the three-stage procedure, when

samples are sampled from LN(0, 1).
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Figure 5.25: Comparing the means of RP values for Case B of the three-stage procedure, when

samples are sampled from LN(0, 1) and LN(1, 0.5).
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Figure 5.26: Comparing the means of RP values for Case C of the three-stage procedure, when

both samples are sampled from N(0, 1).
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Figure 5.27: Comparing the means of RP values for Case C of the three-stage procedure, when

samples are sampled from N(0, 1) and N(1, 22).
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Figure 5.28: Comparing the means of RP values for Case C of the three-stage procedure, when

samples are sampled from LN(0, 1).
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Figure 5.29: Comparing the means of RP values for Case C of the three-stage procedure, when

samples are sampled from LN(0, 1) and LN(1, 0.5).
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5.6 Conclusion

In this chapter, we investigate the reproducibility probability (RP) of the three-stage

procedures for two groups. The three-stage procedure involves applying the Normality

test in the first stage. Subsequently, if the null hypothesis for this Normality test is

rejected for at least one group, then the WMW test is performed. If the null hypothesis

for the Normality test is not rejected for both groups, then the equality of variances test

is performed. If the null hypothesis for the equality of variances is not rejected, then

the t-test is applied in the third stage. Otherwise, Welch’s t-test is used. Moreover,

the reproducibility of the two-sample location tests without the preliminary tests is also

investigated through simulation studies. The goal is to provide valuable insights into the

impact of preliminary tests of Normality and equality of variances on RP of the two-

sample location tests by comparing RP for location tests with and without preliminary

tests.

Three cases of reproducibility probability for the three-stage procedures were ex-

amined: Case A represents the full RP for the three-stage procedure. Case B represents

the reproducibility of the same outcome for the location test, no matter which test is used.

Case C represents reproducibility of the location test conclusion, where for the NPI-B

samples the same location test is applied as for the original sample.

The findings show the RP for the three-stage procedures as well as RP for location

tests without preliminary tests follow the general pattern for RP: RP values are low when

the p-values for location tests are close to the threshold, and when the p-values are far

away from the threshold RP values become high. Moreover, RP for location tests has

more variability when the sample size is small, as the sample size increases this variability

decreases. From the investigation of the full RP for the three stages for Case A, RP

values for the WMW test tend to increase, as the sample sizes increase. Conversely, the

RP values for the parametric tests decrease with increasing sample sizes.

When comparing the RP for the location tests with and without the preliminary tests

for Normality and equality of variances for Cases A, B, and C, we found that the impact

of the preliminary tests of Normality and equality of variances on the RP of location tests
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is generally small. The RP values for the two-sample location tests with preliminary tests

do not worsen or improve compared to the RP values for the two-sample location tests

without preliminary tests. The impact of preliminary tests on the RP of the location

test diminishes substantially and eventually becomes negligible when dealing with large

sample sizes and distributions that substantially deviate from Normality.

Moreover, the relationship between the overall mean of RP values in the rejection

area and the estimated power for location tests with and without preliminary tests is

investigated. RP increases as the estimated power increases, and both increase as the

sample size increases.



Chapter 6

Reproducibility of Multiple-Group

Location Tests with and without

Preliminary Tests

6.1 Introduction

This chapter is an extension of the study of the reproducibility probability (RP) from the

nonparametric predictive inference (NPI) perspective for location tests and the impact of

applying preliminary tests in their RP. This chapter focuses on investigating the RP for

the two-stage procedure for multiple groups, where a preliminary test for Normality is

used to choose between one-way analysis of variance (one-way ANOVA) [59, 79, 92] and

Kruskal-Wallis tests [42, 68, 89] as multi-group location tests. Additionally, this chapter

studies RP for multiple-group location tests without performing the preliminary test for

Normality to examine the effect of a preliminary test of Normality on RP of location test

by comparing RP of location tests with and without the preliminary test. Furthermore,

this chapter conducts a brief investigation into the RP of the three-stage procedure for

multiple-group location tests with preliminary tests of Normality and homogeneity of

variances. This procedure involves performing a preliminary test for Normality, followed

by the Kruskal-Wallis test if the null hypothesis for Normality is rejected for at least

one group. Alternatively, if the null hypothesis of the Normality is not rejected, then

a preliminary test for equality of variances is conducted. If the null hypothesis for the

147
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equality of variances test is rejected, then Welch’s ANOVA test is applied; otherwise, the

one-way ANOVA test is used.

One-way or one-factor ANOVA is used to determine whether there are any statistically

significant differences among the means of three or more independent groups [92]. The one-

way ANOVA generalises the t-test to M groups, where M ≥ 2 [92]. The null hypothesis

of one-way ANOVA is H0 : µ1 = µ2 = . . . = µM , against the alternative hypothesis H1 :

Not all µi are the same (i = 1, 2, . . . , M) [92]. The test statistic is

F = Mean sum of square between groups
Mean sum of square within groups = SSB/(M − 1)

SSW /(nT − M) (6.1.1)

where

SSB =
M∑

i=1
ni(X̄i − X̄)2

and

SSW =
M∑

i=1

ni∑
j=1

(Xij − X̄i)2

where nT is the total number of observations across all groups, M is the number of groups,

ni is the number of observations in the i-th group, Xij is the j-th observation in the i-th

group, X̄i is the mean of the i-th group, and X̄ is the overall mean. The ratio F follows

F -distribution with (M − 1, nT − M) degree of freedom.

While the Kruskal-Wallis test is a nonparametric alternative test that does not depend

on the Normality assumption. Instead, it is employed to compare medians among multiple

groups. The statistical value for the Kruskal-Wallis test is typically obtained by computing

the H-statistic, which is based on the ranks of the observations [68].

H = 12
nT (nT + 1)

∑ Ri

ni

− 3(nT + 1) (6.1.2)

where Ri is the rank sum for the i-th group.

This chapter is structured as follows: Section 6.2 addresses the essential steps to

computing the reproducibility of the two-stage procedure for multiple groups. This re-

producibility will be investigated via simulations in Section 6.3. This section also presents

the reproducibility results for the two-stage procedure obtained via the simulation studies,

the reproducibility of the location tests without preliminary tests, and the relationship
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between RP and the estimated power for the location tests with and without the pre-

liminary test. Then, Section 6.4 focuses on studying the extent to which the preliminary

test affects RP of location tests by comparing between RP of the two-stage procedure

and RP of location tests without the preliminary test. Lastly, Section 6.5 focuses on

summarising the results of the RP of the two-stage procedure and location tests without

preliminary tests and the effect of the preliminary test on the RP of location tests.

6.2 Reproducibility for multiple-group location tests

with a Normality preliminary test

This section assesses the reproducibility of location tests for multiple groups with a pre-

liminary test for Normality (two-stage procedure). In this two-stage procedure, the first

stage involves testing the Normality assumption for each group using a statistical test

such as the Shapiro-Wilk test. The second stage involves testing the location difference

between the multiple groups using a statistical test such as one-way ANOVA and the

Kruskal-Wallis test. If the null hypothesis for the Normality test is rejected for at least

one group, then the Kruskal-Wallis test is used, while if all samples pass the Normality

test, then the one-way ANOVA test is applied.

Three cases for studying the reproducibility of the two-stage procedure are considered,

these are similar to the cases in Section 4.2 of Chapter 4.

Suppose that N is the number of NPI-B samples and N∗
A and N∗

K are two disjoint

subsets of {1, 2, . . . , N}, and N∗
A ∩ N∗

K = ∅. N∗
A represents indices for NPI-B samples

passing the Normality test and the ANOVA test is used, while N∗
K represents indices

for those not passing the Normality test and the Kruskal-Wallis test is performed. To

estimate NPI-B-RP for the two-stage procedure for multiple groups follow the next steps:

Step 1: Perform a preliminary test for Normality on M ≥ 2 original samples separately, at

significance level α1.

Step 2: If the null hypothesis HN
0 of the Normality test is rejected for at least one original

sample, perform Kruskal-Wallis test and decide about HK
0 with significance level
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α2, set TSK = 1 if HK
0 is rejected or TSK = 0 if HK

0 is not rejected. If all original

samples pass the Normality test, perform one-way ANOVA test and decide about

HA
0 with significance level α2, set TSA = 1 if HA

0 is rejected or set TSA = 0 if HA
0

is not rejected.

Step 3: Draw an NPI-B sample N times form each of the original samples, the same size as

the original samples.

• For Cases A and B, perform the Normality test as the preliminary test on the

set of N NPI-B samples. Then, ANOVA test or Kruskal-Wallis test is applied

based on the preliminary test decision. Record the location test decision each

time: TSA
i = 1 if HA

0 in i-iteration is rejected or TSA
i = 0 if HA

0 is not rejected,

or record TSK
j = 1 if HK

0 in j-iteration is rejected, or TSK
j = 0 if HK

0 is not

rejected, where i ∈ N∗
A ⊂ {1, 2, . . . , N} and j ∈ N∗

K ⊂ {1, 2, . . . , N}.

• For Case C, the ANOVA test is performed on the set of N NPI-B samples if

the ANOVA test was applied to the original samples. Each time record the

test decision As = 1 if HA
0 is rejected for s-iteration or record As = 0 if HA

0 is

not rejected, where s = 1, . . . , N . The Kruskal-Wallis test is performed on the

set of N NPI-B samples if it was performed on original samples. Each time

record the test decision Ks = 1 if H
(K)
0 is rejected, or Ks = 0 if H

(K)
0 is not

rejected.

Step 4: Compute the RP based on the test decisions of the NPI-B samples.

1. The RP for Case A:

If all original samples passed the Normality test and the one-way ANOVA test

was applied to the original samples the RP is:

RPA =
∑

i∈N∗
A

I{T SA=T SA
i }

1
N

where I{T SA=T SA
i } is an indicator function that takes the value 1 if TSA = TSA

i

and 0 otherwise.
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If one original sample at least did not pass the Normality test and the Kruskal-

Wallis test was applied the RP is:

RPK =
∑

j∈N∗
K

I{T SK=T SK
j }

1
N

2. The RP for Case B:

If all original samples passed the Normality test and the ANOVA test was

applied the RP is

RPA =
∑

i∈N∗
A

I{T SA=T SA
i } +

∑
j∈N∗

K

I{T SA=T SK
j }

 1
N

If one original sample at least did not pass the Normality test and the Kruskal-

Wallis test was applied the RP is

RPK =
∑

i∈N∗
A

I{T SK=T SA
i } +

∑
j∈N∗

K

I{T SK=T SK
j }

 1
N

3. The RP for Case C :

If all original samples passed the Normality test and the ANOVA test was

applied the RP is

RPA =
N∑

s=1
I{T SA=As}

1
N

If one original sample at least did not pass the Normality test and the Kruskal-

Wallis test was applied the RP is

RPK =
N∑

s=1
I{T SK=Ks}

1
N

Step 5: Perform Steps 3 and 4 in total h times, record the outcomes by RPAk
, or RPKk

,

where k = 1, 2, . . . , h.

6.3 Simulation studies

We conducted simulations to investigate the reproducibility probability (RP) of the two-

stage procedure designed to compare the means or medians of multiple groups. The

procedure involves the preliminary stage where the Shapiro-Wilk (SW) test is applied to
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each sample individually to assess their Normality. If all samples pass the preliminary

test, then the one-way ANOVA test is conducted. Otherwise, the Kruskal-Wallis test is

employed. To investigate the reproducibility probability for this two-stage procedure, a

simulation study is conducted by implementing the algorithm described in Section 6.2

with input parameters N = 1000 and h = 100. The investigation included two different

scenarios involving different numbers of groups: one with M = 3 and the other with

M = 5. Moreover, we conducted simulations to investigate the RP of location tests (one-

way ANOVA test and Kruskal-Wallis test) without performing the Normality test, we use

the NPI-B-RP Algorithm 1, as presented in Section 1.4.5 of Chapter 1.

The null hypothesis for location tests for multiple groups in the second stage H2
0 ,

typically states that there are no significant differences in the location parameters θ (e.g.

means or medians) among the groups being compared: H2
0 : θ1 = . . . = θM , against the

alternative hypothesis H2
1 : not all θ are equal. H2

0 represents HA
0 when the ANOVA test

is applied in the second stage in which case θ is the means, and H2
0 represents HK

0 when

Kruskal-Wallis test is applied in the second stage in which case θ is the medians.

To conduct the simulations, we consider four scenarios their probability density func-

tions are shown in Figures 6.1 and 6.2: Under HN
0 and H2

0 (Normality and equal means),

for cases where M = 3 and M = 5, all samples are generated from the standard Normal

distribution. Under HN
0 and H2

1 (Normality and different means), for M = 3, we generate

data from N(1, 1), N(0, 1), and N(2, 1). For M = 5, we generate data from N(1, 1),

N(0, 1), N(2, 1), N(2, 2), and N(0, 2), respectively. Under HN
1 and H2

0 (non-Normal and

equal means), for both M = 3 and M = 5, all samples are generated from t-distribution

with 4 of degree of freedom. Under HN
1 and H2

1 (non-Normal and different means), in the

case of M = 3, we select the distributions N(0, 1), N(1, 1), and LN(1, 2), respectively.

For M = 5, we opt the distributions N(0, 1), N(1, 1), LN(1, 2), Ca(1, 1), and t(4).

The number of runs per simulation is 50, with various sample sizes that are the same for

each group 5, 15, 30, these numbers were chosen because they present enough information

about the pattern of RP values. All the results are presented based on a two-sided test

with a significance level of 5% for both stages.
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Figure 6.1: PDFs for distributions are considered in the simulation, M = 3

6.3.1 Simulation results for the reproducibility for location tests

with the preliminary test

In this section, the results of the simulation for NPI-B-RP for the two-stage procedure

of multi-group location tests with the preliminary Normality test for Cases A, B and

C and for the 3 and 5 groups are presented. The results are represented visually in

plots, where the y-axis represents min, mean, and max RP values for the location tests

with the preliminary test. In contrast, the x-axis represents the p-values for the location

test stage. The blue colour represents RP values for the two-stage procedure, where the

original samples pass the Normality test and the ANOVA test is used. The green colour

represents RP values where at least one original sample does not pass the Normality test

and performs the Kruskal-Wallis test.

The results for Case A

Results for full reproducibility for the two-stage procedure are presented. Figures 6.3, 6.5,

6.7 and 6.9 illustrate simulation results for the two-stage procedure for Case A involving
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Figure 6.2: PDFs for distributions that are considered in the simulation, M = 5

3 groups. Similarly, Figures 6.4, 6.6, 6.8 and 6.10 show simulation outcomes for 5 groups.

The observed relationship between RP and the p-value for location tests from the

simulation study is that RP values tend to increase as the p-value moves further away

from the threshold, and when the p-value is close to the threshold, RP values tend to

decrease. This trend is particularly pronounced for the nonparametric test (Kurskal-

Wallis test) for all sample sizes and the parametric test (ANOVA test) with small sample

sizes.

When both the number of groups and sample size are large, the RP for ANOVA tends

to have the same value approximately near zero regardless of the location of the p-value

whether near the threshold or far, as shown in Figures 6.4, 6.6, and 6.8. Moreover,

as the sample size and the number of groups increases, the RP for the ANOVA test

decreases, while the RP for the Kruskal-Wallis test increases. This can be attributed

to the performance of the Normality test with NPI-B samples of diverse distributions.

Specifically, with the larger sample size and the larger number of groups, the chances of

all groups of NPI-B samples passing the Normality test decrease. Therefore, the non-

parametric test is applied instead of parametric tests, resulting in a reduced RP for
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Figure 6.3: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), M = 3.

ANOVA and an increased RP for the Kruskal-Wallis test.

The results for Case B

This section shows results for the reproducibility of the location test’s outcome. Figures

6.11, 6.13, 6.15, and 6.17 present the results of simulation studies for the RP of the two-

stage procedure for (Case B) for 3 groups. While Figures 6.12, 6.14, 6.16, and 6.18 show

the results for 5 groups. In this case, the RP whether for the ANOVA test or the Kurskal-

Wallis test exhibits a general pattern of RP, there is no difference in the performance of

the RP of ANOVA and Kruskal-Wallis tests as it was in Case A.

When all original groups are drawn from distributions that satisfy the null hypothesis

for both stages (Normality and equal means), as illustrated in 6.11 and 6.12, the majority

of original samples pass Normality test and proceed with the ANOVA test in the non-

rejection area. In cases where all original groups are drawn from distributions that are

Normal but possess different means, as shown in 6.13 and 6.14, the ANOVA test also

perform better than the Kruskal-Wallis test, according to the number of original samples,

most original samples opt for the ANOVA test after the Normality test.

When all original samples are drawn from distributions that are non-Normal but have

the same mean, as illustrated in 6.15 and 6.16, in large sample size the majority of original
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Figure 6.4: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), M = 5.

samples perform the Kruskal-Wallis test after applying Normality test in the non-rejection

area. However, in the small sample size, it seems that the ANOVA test is applied more

than the Kruskal-Wallis test. This is because when dealing with small sample sizes, the

Normality test has a lower power to detect deviations from Normality. Additionally,

the characteristics of the t(4) distribution, which may not be considered extremely high

in kurtosis, can lead to a relatively higher number of sets of original samples passing

the Normality test. This, in turn, results in a higher proportion of sets performing the

ANOVA test.

When the original groups are drawn from distributions not all are Normal and they

possess different means, as shown in 6.17 and 6.18, the Kruskal-Wallis test exhibits per-

formance better than ANOVA test, particularly for large sample sizes. It was observed

that the majority of original samples that performed the two-stage procedure seemed to

use the Kruskal-Wallis test after applying the preliminary test of Normality.

The RP values of the two-stage testing in Case B are affected by the number of groups,

with RP values for location tests in the non-rejection area decreasing as the number of

groups increases, while those in the rejection area increase. This is traced back to the

RP being affected by the power of the test and the effect size (the amount of difference

between the groups). As the number of groups increases, a larger effect size is required
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Figure 6.5: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(1, 1), N(0, 1),

and N(2, 1), M = 3.

to achieve statistical significance. On the other hand, the test has higher power when

the effect size is large enough to pass the significance level. This indicates that the null

hypothesis is more likely to be rejected when a true difference is present. As a result, the

RP values are higher in the rejection area. This is because the test consistently identifies

a true effect.

The results for Case C

Results of simulation studies for RP of the location test conclusion, where for the NPI-B

samples the same location test is applied as for the original sample without further the

preliminary test are presented. Figures 6.19, 6.21, 6.23, and 6.25 present the results of

the simulation study concerning the RP for three groups. Similarly, Figures 6.20, 6.26,

6.24, and 6.22 show the results for five groups. RP values for this case show the general

pattern for RP and they exhibit similar patterns observed in Case B.
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Figure 6.6: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(1, 1), N(0, 1),

N(2, 1),N(2, 2), and N(0, 2), M = 5.

Sample size RP Power

n = 5 0.675 0.693

n = 15 0.928 0.998

n = 30 0.997 1.000

Table 6.1: The relationship between RP and power for the two-stage procedure, samples

from N(1, 1), N(0, 1), and N(2, 1), M = 3.

The relationship between RP and the estimated power for the two-stage pro-

cedure

Tables 6.1 and 6.2 present the relationship between the overall mean of RP values in the

rejection area and the estimated power for the two-stage procedure that are discussed

in Section 4.3.1, for 3 groups, when original samples are from Normal and when not

all distributions are Normal, respectively. The relationship between RP and power is

positive: RP increases as power increases. Additionally, both RP and power increase as

the sample size increases.
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Figure 6.7: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from t(4), M = 3.

Sample size RP Power

n = 5 0.695 0.465

n = 15 0.887 0.982

n = 30 0.992 1.000

Table 6.2: The relationship between RP and power for the two-stage procedure, samples

from N(0, 1), N(1, 1), and LN(1, 2), M = 3.

6.3.2 Simulation results for the reproducibility of location tests

without the preliminary test

The results of the simulation studies for the reproducibility of multi-group location tests,

the one-way ANOVA test and the Kruskal-Wallis test, without preliminary tests for 3

and 5 groups, are presented.

Figures 6.27 and 6.28 present the results of RP values for the ANOVA test and Kruskal-

Wallis test without the preliminary test of Normality, for 3 groups and 5 groups, respect-

ively. These results are displayed under hypothesis HN
0 and H2

0 (Normality and equality

in means) when all groups are generated from N(0, 1). RP values for both multi-group

location tests for 3 and 5 groups show the general pattern for RP: RP is low when the
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Figure 6.8: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from t(4), M = 5.

p-value for location tests is close to α, and RP values increase gradually as the p-value

moves away from α. In this situation where all distributions are Normal and have the

same means, most of the original samples fall into the non-rejection area. When com-

paring the RP values of the ANOVA test with RP values for the Kruskal-Wallis test,

for the small sample size, the Kruskal-Wallis test demonstrates slightly higher RP values

compared to those for the ANOVA test. However, with an increase in sample size, the

RP values for the ANOVA test become slightly higher than that of the Kruskal-Wallis

test. This is because the Kruskal-Wallis test is more robust to small non-Normality NPI-

B samples, resulting in slightly higher RP values than the ANOVA test. As the sample

size increases, the ANOVA test gains power due to the central limit theorem, leading to

higher RP values compared to the Kruskal-Wallis test.

Moreover, RP values for both location tests without the preliminary test exhibit slight

variability, particularly for smaller sample sizes. Nevertheless, with a large sample size,

this variability tends to decrease. This is due to the low power of tests on small sizes.

As the sample size and the number of groups increase, the RP values for location tests

without preliminary tests decrease in the non-rejection area and increase in the rejection

area.

Figures 6.29 and 6.30 show the RP values for ANOVA and Kruskal-Wallis tests without



6.3. Simulation studies 161

n=5 n=15 n=30

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−
R

P
 

Figure 6.9: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), N(1, 1),

and LN(1, 2), M = 3.

a preliminary test for 3 and 5 groups, respectively. These results are presented under

hypotheses HN
0 and H2

1 (Normality and differences in means). In this scenario, where

all distributions are Normal but have different means, most original samples fall into

the rejection area and exhibit high RP values approaching one, indicating significant

differences in means among distributions. It appears that when the number of groups is

small (3), there is minimal difference in RP between the two location tests across various

sample sizes. However, when dealing with a larger number of groups (5), the RP values

for the Kruskal-Wallis test are slightly better than those of the ANOVA test. This is

because as the number of groups increases, the power of the ANOVA test is affected by

any slight deviation from Normality which leads to reduced RP values for the ANOVA

test. While the Kruskal-Wallis test maintains higher power because it does not depend

on the Normality assumption.

In Figures 6.31 and 6.32, the RP values for the location tests without the preliminary

test are presented for 3 and 5 groups, respectively. These results are displayed under

HN
1 and H2

0 (non-Normality and equality in means) the samples are generated from t-

distribution with the degree of freedom 4 for both 3 and 5 groups. In this situation where

all distributions are not Normal but have the same means, most of the original samples are
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Figure 6.10: RP values for then two-stage procedure Case A against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), N(1, 1),

LN(1, 2), Ca(1, 1), and t(4), M = 5.

located in the non-rejection area, and the RP of the Kruskal-Wallis test is approximately

higher than the RP of the ANOVA test for the small sample size. As the sample size

increases, RP values for Kruskal-Wallis decrease until they become a little less than RP

values for the ANOVA test.

Figures 6.33 and 6.34 display the RP values for the ANOVA test and Kruskal-Wallis

test without preliminary test, for 3 and 5 groups, respectively. These results are presented

under the hypothesis, HN
1 and H2

1 (non-Normality and differences in the means). The

RP values of the Kruskal-Wallis test are approximately the same as the RP values of the

ANOVA test in the rejection area for the small sample size. Increasing the sample size

improves the performance of the RP values for the Kruskal-Wallis test in the rejection

area, unlike the ANOVA test, which does not show substantial improvements in RP values.

Additionally, as the sample size increases, the number of original samples that are located

in the rejection area of the ANOVA test is less than that for the Kruskal-Wallis test. This

is because the Kruskal-Wallis test has a higher power than the ANOVA test, reflected in

the number of original samples located in the rejection area and their RP values.
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Figure 6.11: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), M = 3.

Sample size
ANOVA test Kruskal-Wallis test

RP Power RP Power

n = 5 0.692 0.701 0.682 0.635

n = 15 0.934 0.998 0.927 0.997

n = 30 0.997 1.000 0.997 1.000

Table 6.3: The relationship between RP and power for location tests without the Nor-

mality test, original samples from N(1, 1), N(0, 1), and N(2, 1), respectively, M = 3.

The relationship between RP and the estimated power for the multiple-group

location tests

Table 6.3 presents the relationship between the overall mean of RP values of location tests

in the rejection area and the estimated power for location tests without preliminary tests

under the alternative hypothesis, using samples drawn from Normal distributions for 3

groups. The table illustrates that both RP and power tend to increase with sample sizes,

and there is a positive correlation between power and RP.

Furthermore, Table 6.4 explores the relationship between the overall mean of RP

values in the rejection area and the power for location tests without preliminary tests,

under the alternative hypothesis, using samples not all drawn from Normal distributions
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Figure 6.12: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), M = 5.

Sample size
ANOVA test Kruskal-Wallis test

RP Power RP Power

n = 5 0.681 0.229 0.596 0.520

n = 15 0.707 0.646 0.889 0.978

n = 30 0.793 0.813 0.992 1.000

Table 6.4: The relationship between RP and power for location tests without the Nor-

mality test, original sample from N(0, 1), N(1, 1), and LN(1, 2), respectively, M = 3.

for 3 groups. It is evident from the table that as the power increases, RP also increases.

Moreover, the power and RP of the Kruskal-Wallis test are better than those of the

ANOVA test. This observation asserts that the Kruskal-Wallis test’s effectiveness in

detecting differences across multiple means, particularly in distributions with high kurtosis

(e.g., LN(1, 2) distribution, which exhibits high kurtosis). Similar findings for power have

been reported in previous studies such as [60] and [57].

Similar relationships between the overall mean of RP in the rejection area and the

power are found when the number of groups is 5.
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Figure 6.13: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(1, 1), N(0, 1),

and N(2, 1), M = 3.
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Figure 6.14: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(1, 1), N(0, 1),

N(2, 1),N(2, 2), and N(0, 2), M = 5.
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Figure 6.15: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from t(4), M = 3.
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Figure 6.16: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from t(4), M = 5.
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Figure 6.17: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), N(1, 1),

and LN(1, 2), M = 3.
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Figure 6.18: RP values for then two-stage procedure Case B against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), N(1, 1),

LN(1, 2), Ca(1, 1), and t(4), M = 5.
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Figure 6.19: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), M = 3.
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Figure 6.20: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), M = 5.
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Figure 6.21: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(1, 1), N(0, 1),

and N(2, 1), M = 3.

n=5 n=15 n=30

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−
R

P
 

Figure 6.22: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(1, 1), N(0, 1),

N(2, 1),N(2, 2), and N(0, 2), M = 5.
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Figure 6.23: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from t(4), M = 3.
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Figure 6.24: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from t(4), M = 5.
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Figure 6.25: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), N(1, 1),

and LN(1, 2), M = 3.
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Figure 6.26: RP values for then two-stage procedure Case C against p-values for location test.

ANOVA test (blue) and Kruskal-Wallis test (green). Samples are drawn from N(0, 1), N(1, 1),

LN(1, 2), Ca(1, 1), and t(4), M = 5.
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ANOVA test Kruskal−Wallis test

Figure 6.27: The means of RP values for the location tests without preliminary test against

their p-values, samples are sampled from N(0, 1), M = 3.
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ANOVA test Kruskal−Wallis test

Figure 6.28: The means of RP values for the location tests without preliminary test against

their p-values, samples are sampled from N(0, 1), M = 5.
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ANOVA test Kruskal−Wallis test

Figure 6.29: The means of RP values for the location tests without preliminary test against

their p-values, samples are sampled from N(1, 1), N(0, 1), and N(2, 1), M = 3.
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ANOVA test Kruskal−Wallis test

Figure 6.30: The means of RP values for the location tests without preliminary test against

their p-values, samples are sampled from N(1, 1), N(0, 1), N(2, 1), N(2, 2), and N(0, 2), M = 5.
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Figure 6.31: The means of RP values for the location tests without preliminary test against

their p-values, samples are sampled from t(4), M = 3.
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Figure 6.32: The means of RP values for the location tests without preliminary test against

their p-values, samples are sampled from t(4), M = 5.
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Figure 6.33: The means of RP values for the location tests without preliminary test against

their p-values, samples are sampled from N(0, 1), N(1, 1), and LN(1, 2), M = 3.
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Figure 6.34: The means of RP values for the location tests without preliminary test against their

p-values, samples are sampled from N(0, 1), N(1, 1), and LN(1, 2),Ca(1, 1), and t(4), M = 5.
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6.4 The impact of the preliminary test on the repro-

ducibility of location tests

This section evaluates the effect of the preliminary test for Normality on the reprodu-

cibility of multiple-group location tests. This evaluation involves comparing the RP for

the location test with the Normality test to the RP for the location test without the

Normality test, as discussed in Section 4.4.

The Figures in this section illustrate the RP of location tests, with circles representing

the ANOVA test and squares representing the Kruskal-Wallis test. The figures show two

conditions: one with the preliminary test of Normality (represented by unfilled symbols)

and the other without the preliminary test (filled symbols). The x-axis represents the

mean of the p-values for location tests, while the y-axis represents the overall mean of RP

values.

The results of the comparison for 5 groups are presented in Appendix E.1 because

they yield the same conclusion as those for 3 groups.

6.4.1 The impact of the preliminary test on RP for Case A

The results of comparing full RP for the two stages with the product of the individual

RPs for location tests and the preliminary test for 3 groups are presented, illustrating

the impact of applying the preliminary Normality test on the RP values for the location

tests. We compare the overall mean of RP values for location tests with the preliminary

test (Case A) to the product of the overall mean of individual RP values for location and

preliminary tests. Figures 6.35 - 6.38 show this comparison under different investigated

distributions. There is no substantial difference between RP for the two-stage procedure

for Case A and the product of the individual RP for location tests and the Normality

test. However, the RP value for the Kruskal-Wallis test with the Normality test is slightly

smaller than the product of individual RPs of Kruskal-Wallis and the Normality test. This

difference decreases with increasing sample sizes. This is because the two-stage procedure

for the three-sample results in increased error rates from both the Normality tests and the

Kruskal-Walllis test. If any of the NPI-B samples fail incorrectly to pass the Normality test
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Figure 6.35: Comparison of the mean of RP for location tests with and without the preliminary

test for Case A against the mean of their p-values, samples from N(0, 1), M = 3.

this may lead to the unnecessary application of the Kruskal-Wallis test. Error aggravation

can result in a lower overall RP compared to the product of individual RPs, as each test

is considered independently. Thus, the reproducibility of the location tests, conditional

on the outcomes of the Normality test is not substantially better than that of the location

test alone.

6.4.2 The impact of the preliminary test on RP of location tests

for Case B

The results of comparing the reproducibility of the outcome of the location tests (Case

B) with the reproducibility of location tests without the preliminary test of Normality

are presented.

Figure 6.39 illustrates the comparison between RP for location tests with and without

the Normality test under the null hypothesis for both stages (Normality and equality of

means) for 3 groups. Generally, the influence of the Normality test on RP for location

tests is negligible. When considering small sample sizes, the RP for Kruskal-Wallis with
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Figure 6.36: Comparison of the mean of RP for location tests with and without preliminary

test for Case A against the mean of their p-values, samples from N(1, 1), N(0, 1), and N(2, 1),

M = 3.

the preliminary test for Normality is lower than the RP for Kruskal-Wallis without the

preliminary test in both areas. Conversely, the RP for the ANOVA test with the pre-

liminary test is slightly higher than the RP for ANOVA without the preliminary test in

the non-rejection area and lower in the rejection area. However, with larger sample sizes,

the RP for Kruskal-Wallis with and without the preliminary test for Normality tends to

converge to approximately the same value in both areas. On the other hand, the RP

for the ANOVA test with the preliminary test becomes slightly smaller than the RP for

ANOVA without the preliminary test in the non-rejection area and higher in the rejection

area.

Figure 6.40 shows the comparison between RP of location tests with and without

the preliminary test for Normality, under HN
0 and H2

1 , for 3 groups. There is a small

difference between RP for location tests with and without the preliminary test. For the

sample size of 5, the RP of the ANOVA test with the preliminary test is smaller than that

without the preliminary test in the rejection area, and the RP of Kruskal-Wallis with the

preliminary test is higher than that without the preliminary test, the opposite happens
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Figure 6.37: Comparison of the mean of RP for location tests with and without preliminary

test for Case A against the mean of their p-values, samples from t(4), M = 3.

in the non-rejection area. However, this difference disappears as the sample sizes increase

when applying the Kruskal-Wallis test.

Figure 6.41 shows the comparison between RP of location tests with and without

the preliminary test for Normality, under HN
1 and H2

0 , for 3 groups. The impact of

the Normality test on RP for location tests is negligible. For large sample sizes, there

is no difference between the RP of Kruskal-Wallis with and without the preliminary

test. However, for small sample sizes, it appears that the RP of Kruskal-Wallis with the

preliminary test is slightly lower than the RP without the preliminary test in the non-

rejection area. In the case of the ANOVA test, for the sample size of 15, RP with the

preliminary test is slightly smaller than RP without the preliminary test in both areas.

Figure 6.42 shows the comparison between RP of location tests with and without the

preliminary test for Normality, under HN
1 and H2

1 , for 3 groups. There is a small difference

between RP for location tests with and without the preliminary test in the sample size

of 5, generally, RP of both tests with the preliminary test tend to be smaller than that

without the preliminary test. However, this difference disappears as the sample sizes
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Figure 6.38: Comparison of the mean of RP for location tests with and without preliminary

test for Case A against the mean of their p-values, samples from N(0, 1), N(1, 1), and LN(1, 2),

M = 3.

increase when applying the Kruskal-Wallis test.

Generally, the impact of the Normality test on the reproducibility of the outcome of

location tests is minimal. RP values of the ANOVA test are more affected by the prelim-

inary test of Normality than the Kruskal-Wallis test across most scenarios. With larger

sample sizes, the influence of the preliminary test tends to diminish, and in some cases, it

becomes negligible. Thus, the preliminary test for the Normality does not substantially

enhance the reproducibility of the location test outcomes.

6.4.3 The impact of the preliminary test on RP for location

tests for Case C

The comparison results for the reproducibility for Case C and reproducibility for location

tests without preliminary tests are shown. By comparing the overall mean of RP values

for the ANOVA test after filtering the original samples based on passing the Normality

test with the overall mean of RP values for the ANOVA test without the Normality test for
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Figure 6.39: Comparison of the mean of RP for location tests with and without preliminary

test (Case B) against the mean of their p-values, samples from N(0, 1), M = 3.

all original samples. Likewise, comparing the overall mean of RP values for the Kruskal-

Wallis test after filtering the original samples based on failure to pass the Normality test

with the overall mean of RP values for the Kruskal-Wallis test without the Normality test

for all original samples.

Figure 6.43 shows the comparison under HN
0 and H2

0 , it is evident that the effect of

the preliminary test of Normality on RP of location tests is small. It seems that the RP

of the ANOVA test has the least impact from applying the Normality test compared to

RP for the Kruskal-Wallis test.

Figure 6.44 presents the comparison results under HN
0 and H2

1 . The ANOVA test

appears to be minimally affected by the preliminary Normality test. However, for the

Kruskal-Wallis test, RP with the preliminary test is better than RP without the pre-

liminary test in the sample size of n = 5 in both areas. In contrast, for large sample

sizes, there is little difference between the RP values for the Kruskal-Wallis test with and

without the preliminary test.

Figure 6.45 illustrates the result of comparison when all original samples are not
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Figure 6.40: Comparison of the mean of RP for location tests with and without preliminary

test (Case B) against the mean of their p-values, samples from N(1, 1), N(0, 1), and N(2, 1),

M = 3.

Normal and have the same mean for 3 groups. The effect of the preliminary test for

Normality on RP of location tests is small. For sample sizes of 5 and 15, there are slight

differences between RP of location tests with and without the Normality test. For the

sample size of 30, there is no difference between RP of location tests with and without

the Normality test.

Figure 6.46 displays the comparison results under HN
1 and H2

1 . We observe that for

the Kruskal-Wallis test, the preliminary Normality test does not substantially affect RP

values in sample sizes of 15 and 30. However, for the sample size of 5, the RP for the

Kruskal-Wallis test without the preliminary test is higher than that with the preliminary

test in the rejection area. In the case of ANOVA, there is no substantial difference in RP

values in the rejection area between tests with and without the preliminary test in the

sample size of 5. However, in the non-rejection area, RP for ANOVA with the preliminary

test is lower than that without the preliminary test.

Generally, the impact of filtering the original samples based on the Normality test
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Figure 6.41: Comparison of the mean of RP for location tests with and without preliminary

test (Case B) against the mean of their p-values, samples from t(4), M = 3.

results on RP of location tests is small. As sample sizes increase, this impact tends to

diminish and, in some instances, becomes negligible. Thus, filtering the original samples

based on the Normality test result does not substantially improve RP for location tests

without preliminary tests.

Similar results were also achieved when the simulation was conducted for bimodal

distribution from a mixture of Normal distributions and the results are listed in Appendix

E.2.

A brief examination of RP for the three-stage procedure was conducted, which involved

the preliminary Normality test (Shapiro-Wilk) and the preliminary test of equality of
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Figure 6.42: Comparison of the mean of RP for location tests with and without preliminary

test (Case B) against the mean of their p-values, samples from N(0, 1), N(1, 1), and LN(1, 2),

M = 3.

variances (Levene’s test), followed by the location test (one-way ANOVA, one-way Welch’s

ANOVA, or Kruskal-Wallis) based on the outcomes of the preliminary tests. The same

results as observed in the two-stage procedure are obtained, this can be found in Appendix

E.3
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Figure 6.43: Comparison of the mean of RP for location tests with and without preliminary

test (Case C ) against the mean of their p-values, samples from N(0, 1), M = 3.
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Figure 6.44: Comparison of the mean of RP for location tests with and without preliminary

test (Case C ) against the mean of their p-values, samples from N(1, 1), N(0, 1), and N(2, 1),

M = 3.
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Figure 6.45: Comparison of the mean of RP for location tests with and without preliminary

test (Case C ) against the mean of their p-values, samples from t(4), M = 3.
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Figure 6.46: Comparison of the mean of RP for location tests with and without preliminary

test (Case C ) against the mean of their p-values, samples from N(0, 1), N(1, 1), and LN(1, 2),

M = 3.
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6.5 Conclusion

This chapter has studied the reproducibility probability (RP) for the two-stage procedure

for multiple groups. The two-stage procedure involves the preliminary Normality test

(Shapiro-Wilk), followed by the location test (one-way ANOVA or Kruskal-Wallis) based

on the outcome of the Normality test. Additionally, this chapter explores the reprodu-

cibility of multiple-group location tests without the preliminary test. The primary focus

was on investigating the impact of the Normality test on RP for multiple-group location

tests.

The RP of this two-stage procedure was examined under various Cases. The first Case

is Case A which studies full RP for two stages. Then, Case B focuses on the RP of the

outcome of the location tests. Finally, Case C studies RP of the location test conclusion,

where for the NPI-B samples the same location test is applied as for the original sample.

Simulation studies are conducted to investigate the aims of this chapter. The results

of the simulation show that RP for multiple-group location tests with and without prelim-

inary tests show the general pattern of RP: RP values are low when p-values for location

tests are close to the threshold, and RP are high when p-value for location tests is far

away from the threshold. RP values for parametric tests without preliminary tests tend

to be higher than nonparametric tests in the non-rejection area when the sample size is

large, and vice versa in the small sample sizes.

The chapter also examined the influence of sample size on the RP of location tests with

and without the Normality test. It was observed that, with larger sample sizes, the RP

of location tests tends to decrease in the non-rejection area. Conversely, in the rejection

area, the RP tends to increase as the sample size increases. In Case A, this impact is true

for the Kruskal-Wallis test, but for RP values of the ANOVA test are decreased in both

areas.

Furthermore, this chapter demonstrated the impact of the number of groups on RP

values. As the number of groups increases, RP values for location tests typically decrease

in the non-rejection area while increasing in the rejection area. The only exception to this

trend is observed in Case A of the RP for the two-stage procedure, where RP values for
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the ANOVA test decrease in both areas as the number of groups increases.

When comparing the RP for the location tests with and without the Normality test,

there is no significant difference between RP for the multiple-group location tests with

and without the Normality test, which means that the influence of the preliminary test

on RP of location tests is small. Moreover, the findings revealed that with larger sample

sizes, the influence of the preliminary tests on RP of the location tests tends to diminish,

and in certain scenarios, it becomes negligible.

Additionally, this chapter examined the relationship between the overall mean of RP

values in the rejection area and the estimated power for location tests with and without

preliminary tests for 3 groups. This relationship is positive, the RP increases as the power

increases. RP values and the estimated power for the Kruskal-Wallis test are better than

ANOVA when dealing with non-Normal distributions and large sample sizes.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

In conclusion, this thesis has investigated the impact of applying preliminary tests on the

reproducibility probability (RP) of location tests. Through applying simulation studies,

we have explored the reproducibility of location tests with and without preliminary tests

and the extent of the impact of conducting preliminary tests on RP of location tests. Our

investigation revealed that the effect of preliminary tests on the RP of location tests is

small, that is applying preliminary tests does not lead to a substantial improvement or

deterioration in the reproducibility of the location tests.

Chapter 6 primarily investigates the use of preliminary tests for assessing the assump-

tions of ANOVA. However, it is important to recognize that in practical applications,

researchers often rely more heavily on residual diagnostics to evaluate model assumptions

after fitting the model. If preliminary tests indicate Normality and homoscedasticity but

residual diagnostics suggest otherwise, this discrepancy needs careful consideration. This

discrepancy might highlight potential issues with the initial assumptions or indicate lim-

itations in the sensitivity of preliminary tests, suggesting that preliminary tests might

not always capture the complexity of the data or the nuances introduced by the model

fitting process. Studying reproducibility taking such further model checking practices into

account, beyond preliminary tests, is an important topic for future research.

The thesis began by studying the reproducibility of Normality tests in Chapter 2, which

189
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presented the reproducibility probability (RP) for three of the most famous Normality

tests: the Shapiro-Wilk test, Anderson-Darling test, and Lilliefors test, and compared

their performance in terms of RP. Moreover, their RP for different levels of significance

was studied. The findings show that RP for Normality tests tends to be low when their p-

value is close to the threshold, and RP increases gradually as the p-value moves away from

the level of significance. RP values vary according to sample size: for small sample sizes,

RP values in the non-rejection area tend to be very high, while RP in the rejection area is

very small. As the sample size increases, RP in the non-rejection area decreases and RP

in the rejection area increases. Overall, there is no substantial difference between the RP

of these tests. However, RP values of the Anderson-Darling test have less variability than

RP for the Shapiro-Wilk and Lilliefors tests. From the results, the Anderson-Darling

test has the slightly highest RP in the rejection area, while the Shapiro-Wilk test has

the highest RP in the non-rejection area. RP values for the Normality tests in the non-

rejection area tend to be high when the significance level is low, and RP values in the

rejection area tend to be low. As the significance level increases, RP in the non-rejection

area decreases and RP in the rejection area increases.

Chapter 3 addressed the reproducibility of equality of variances tests. RP for the

F -test and Levene’s test were studied. The results show that both tests have high RP

when their p-values are close to the level of significance, and as the p-value moves away

from the level of significance, their RP increases. We found that RP for the two-sided

F -test is not close to one if the p-value is close to one, while in the upper-sided F -test RP

is very close to one as the p-value approaches one. Additionally, we observed that when

dealing with non-Normal data, the RP values for Levene’s test are better than RP for the

F -test in terms of variability and RP value. The relationship between the overall mean of

RP values in the rejection area and the estimated power of the equality of variances tests

is positive; as the power of the test increases, the RP value increases. Similarly, for the

relationship between the sample size and the power and RP, as the sample size increases,

the power and RP increase.

Chapter 4 investigates the reproducibility of one-sample location tests, specifically

focusing on the one-sample t-test and the one-sample Wilcoxon test. The examination

encompasses scenarios with and without the inclusion of a preliminary test for Normality.
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In the scenario of RP for location tests with a preliminary test (the two-stage procedure),

the preliminary test for Normality is applied in the first stage. In the second stage, the

t-test is performed if the null hypothesis for Normality is not rejected, otherwise, the

Wilcoxon test is applied. Three cases of RP for the two-stage procedures were considered:

Case A: full RP for all stages. Case B: RP for the outcome of the location test. Case C

studies RP of the location test conclusion, where for the NPI-B samples the same location

test is applied as for the original sample. RP results for location tests with and without

the Normality test show the general pattern for RP: RP values are low when p-values

of location tests are close to the threshold and higher RP values when the p-value is far

away from the threshold. As the sample size increases, RP values in the non-rejection

area tend to decrease while RP values in the rejection area increase. Full RP for all

stages (Case A) shows that for a small sample size, RP for the t-test tends to be higher

than RP for the Wilcoxon test; with increasing sample size, RP for the t-test decreases

while RP for the Wilcoxon test increases. The impact of preliminary tests on RP of

location tests demonstrated no substantial difference. The influence of preliminary tests

on RP of location tests diminishes substantially for large sample sizes and non-Normally

distributed data. Additionally, this chapter examined the relationship between the overall

mean of RP values in the rejection area and the estimated power for location tests with

and without the Normality test. This relationship shows that as the power of location

tests increases the RP increases.

In Chapter 5, we investigated the RP of the two-sample location tests with and without

preliminary tests. In the scenario of RP for location tests with preliminary tests (the three-

stage procedure), location tests (t-test, Welch’s t-test, and Wilcoxon-Mann-Whitney) are

chosen according to the preliminary tests for Normality and equality of variances results.

Findings from simulation studies revealed that RP values show the same results observed

in Chapter 4. The impact of the preliminary tests of Normality and equality of variances

on RP of two-sample location tests is small.

Chapter 6 investigates the RP for the two-stage and three-stage procedures for compar-

ing means in multiple groups. The two-stage procedure involves a preliminary Normality

test followed by the multiple-sample location tests one-way ANOVA test or Kruskal-Wallis

test, while the three-stage procedure adds a preliminary test of equality of variances. The
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study was applied to three groups and five groups. Cases A, B, and C are examined,

revealing that the impact of preliminary tests on RP for location tests is generally limited.

The chapter also explores the influence of sample size and the number of groups on RP

of location tests with and without preliminary tests, indicating that, with larger sample

sizes, the impact of the preliminary test tends to diminish, and as the number of groups

increases leads to decreased RP of location tests in the non-rejection area and increase

RP in the rejection area. Moreover, this chapter examined the relationship between the

overall mean of RP values in the rejection area and the estimated power for location tests

with and without preliminary tests. this relationship shows that as the power of location

tests increases the RP increases. RP and power for the Kruskal-Wallis test are better

than ANOVA when dealing with non-Normal distributions and large sample sizes.

7.2 Future Work

The recommendations for the future work of this thesis are listed as follows:

1. This thesis investigated reproducibility for location tests and the preliminary tests

under equal sample sizes. Exploring RP for location tests alongside preliminary

tests for samples with varying sizes adds valuable dimensions to the research.

2. The research can be extended to multivariate tests, for example, multivariate t-tests

and multivariate analysis of variance (MANOVA). Examine how the preliminary test

of Normality impacts the RP of multivariate tests and compare the findings with

those from univariate tests.

3. Using the Anderson-Darling (AD) test to assess the Normality assumption may

lead to less variability in the results for the reproducibility probability for two and

three-stage procedures.

4. Studying the impact of applying the preliminary test for symmetry on RP for the

one-sample Wilcoxon signed-rank test, where the Wilcoxon test assumes the dis-

tribution of the paired differences is symmetric around the median. A preliminary

test for symmetry such as the triples test proposed by Randles et al [76] can be
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suggested to use before performing the Wilcoxon test. If the assumption is violated,

then the sign test can be used.

5. While Chapter 6 primarily examines the impact of preliminary tests on ANOVA

reproducibility, it is crucial to consider the influence of post-hoc tests on repro-

ducibility as well. Commonly employed tests such as Tukey’s Honestly Significant

Difference (HSD) [1] and Bonferroni correction [15] are frequently used for pairwise

comparisons following significant ANOVA results. These post-hoc tests are designed

to control for Type I errors when making multiple comparisons. However, their con-

servative nature can potentially increase the risk of Type II errors, thereby affecting

the reproducibility of research findings. Future research should study deeper into

quantifying the impact of various post-hoc tests on reproducibility, and investigat-

ing how these factors influence the replicability of research outcomes across different

experimental contexts and sample sizes.



Appendix A

Reproducibility for Normality Tests

A.1 Extended simulation examples

This section contains detailed results from the additional simulations involving data gen-

erated from a mixture of Normal distributions X ∼ 0.4 · N(5, 12) + 0.6 · N(15, 22). The

results are presented in Figures A.1- A.4. The RP values for these cases are approximately

similar to those from the main examples discussed in Chapter 2.
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Figure A.1: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from a mixture of normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), with

n = 5 and α = 0.05
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Figure A.2: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from a mixture of normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), with

n = 10 and α = 0.05
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Figure A.3: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from a mixture of normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), with

n = 20 and α = 0.05
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Figure A.4: The relationship between NPI-B-RP and p-value for Shapiro-Wilk and Lilliefors

test for data sampled from a mixture of normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), with

n = 50 and α = 0.05
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A.2 Reproducibility of Normality tests for different

levels of significance

The simulation study discussed in Section 2.3 was repeated under H1 for the Normality

test when data are sampled from Exp(1), using various significance levels: specifically,

0.01, 0.05, and 0.1. From Figure A.5 it can be seen generally that in the area of non-

rejection, RP values are high at lower significance levels and decrease as the level of sig-

nificance increases. On the other hand, within the rejection area, RP values are typically

low at small significance levels and increase with higher significance levels. For samples

of size 5, the LF test has a slightly higher RP than the SW test in the non-rejection area

when α = 0.01 and α = 0.05. However, at α = 0.1 both tests have approximately similar

mean of RP values. Conversely, in the rejection area, the SW test has a slightly higher

RP than the LF test at significance levels of α = 0.01 and α = 0.05. Nevertheless, at

α = 0.1 both tests have approximately the same mean of RP values. The AD test has the

highest mean of RP values in the rejection area for sample sizes of 10, and 20. However,

for the sample size of 50 AD and SW tests have approximately similar RP values at all

levels of significance. In the non-rejection area, the SW test has the highest mean of RP

values for sample sizes of 10 and 20 at all values of α. However, for the sample size of 50,

there are only RP values for the LF test at all levels of significance.
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Figure A.5: The mean of means RP values for SW, AD and LF tests in both cases rejection

(R) and non-rejection(N), sampled from Exp(1) for different levels of α.



Appendix B

Reproducibility for Equality of

Variances Tests

B.1 Levene’s test for equality of three variances

This section provides the reproducibility probability (RP) of Levene’s test results from

the simulation study when comparing the variances of the three original samples.

Figure B.1 shows the relationship between p-values and RP values for Levene’s test,

under H0, for the two-sided hypothesis. This relationship shows that RP is low when

the p-value is close to the level of significance, and RP tend to be high as the p-value is

far away from the level of significance. RP values in the rejection area tend to be low,

especially for the sample size of 10. Similarly, under H1, RP values for Levene’s test show

the general pattern as presented in Figure B.2. For the sample size of 10, RP has strong

variability, especially when the p-value is close to the threshold. For the sample size of

25, there is no noticeable variability in RP and all original samples are located in the

rejection area.

When dealing with non-Normal data and simulating under H0, the RP values for

Levene’s test show the general pattern for RP as observed in Figure B.3. There is variab-

ility in RP values that are close to the threshold for sample size 10, however, for sample

size 25 RP values are more stable.
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Figure B.1: The relationship between p-values and NPI-B-RP for Levene’s test, under H0,

samples sampled from N(0, 12), in a two-sided test
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Figure B.2: The relationship between p-values and NPI-B-RP for Levene’s test, under H1,

samples sampled from N(0, 12), N(0, 22) and N(0, 42), in a two-sided test.



B.1. Levene’s test for equality of three variances 201

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
B

−
R

P
 fo

r 
Le

ve
ne

's
 te

st

Hypothesis  Not rejected  Rejected

(a) n = 10

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
B

−
R

P
 fo

r 
Le

ve
ne

's
 te

st

Hypothesis  Not rejected  Rejected

(b) n = 25

Figure B.3: The relationship between p-values and NPI-B-RP for Levene’s test, samples

sampled from Exp(1) under H0, in a two-sided test



Appendix C

Reproducibility for the One-Sample

Location Tests with and without

Preliminary Test

C.1 Flowcharts for assessing RP

This section provides flowcharts showing how to evaluate the reproducibility for an ex-

ample for Cases A, B and C.
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Figure C.1: An illustrative example of the reproducibility assessment for the two-stage

test of one-sample location test for Case A.
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Figure C.2: An illustrative example of the reproducibility assessment for the two-stage

test of one-sample location test for Case B.
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Figure C.3: An illustrative example of the reproducibility assessment for the two-stage

test of one-sample location test for Case C.



Appendix D

Reproducibility for the two-Sample

Location Tests with and without

Preliminary Tests

D.1 Extended simulation examples

This section shows the results for RP values for two-sample location tests with and without

preliminary tests when data generated from a mixture of Normal distributions X ∼

0.4 · N(5, 12) + 0.6 · N(15, 22). The results are presented in Figures D.1- D.7. The RP

values are approximately similar to those when data are generated from an unimodal

distribution shown in the main examples discussed in Chapter 5.
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Figure D.1: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case A, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure D.2: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case B, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure D.3: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case C, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure D.4: The means of RP values against the p-values for the location tests without prelim-

inary tests, the original samples are drawn the mixture of Normal distributions 0.4 · N(5, 12) +

0.6 · N(15, 22).
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Figure D.5: Comparing RP values for location tests with and without preliminary test (Case

A), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure D.6: Comparing RP values for location tests with and without preliminary test (Case

B), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure D.7: Comparing RP values for location tests with and without preliminary test (Case

C ), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22).
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Figure D.8: The min, mean, and max of RP values for the t-test against p-values of the t-test,

when original samples are sampled from N(0, 1).

D.2 The results of the reproducibility for the loca-

tion tests without preliminary tests

This section shows the results of the reproducibility for the two-sample location tests (the

two-sample t-test, Welch’s t-test, and WMW test ) conducted without preliminary tests.

Figures D.8, D.9, and D.10 show the results of simulations for RP for the location

tests without preliminary tests. When both original samples are drawn from Normal

distributions having identical mean values and equality variances N(0, 1) (where µX =

µY = 0, and σX = σY = 1).

Figures D.11, D.12, and D.13 present simulation results for the RP of location tests

without preliminary tests. The simulation was conducted with original samples drawn

from Normal distributions N(0, 1) and N(1, 22).

Figures D.14, D.15, and D.16 present simulation results for the RP of location tests

without preliminary tests. The simulations were conducted with original samples drawn

from non-Normal distributions with the same means and variances LN(0, 1) (where µX =

µY ≈ 1.648 and σX = σY ≈ 2.944).

Figures D.17, D.18, and D.19 present simulation results for the RP of location tests
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Figure D.9: The min, mean, and max of RP values for the Welch’s t-test against p-values of

the Welch’s t-test, when original samples are sampled from N(0, 1).

t-test, Welch’s t-test, and WMW test without preliminary tests, respectively. The simu-

lations were conducted with original samples drawn from non-Normal distributions with

different means and variances LN(0, 1) and LN(1, 0.5) (where µX ≈ 1.648, µY ≈ 3.0689

and σX ≈ 2.944, σY ≈ 5.575).
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Figure D.10: The min, mean, and max of RP values for the WMW test against p-values of the

WMW test, when original samples are sampled from N(0, 1).
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Figure D.11: The min, mean, and max of RP values for the t-test against p-values of the t-test,

when original samples are sampled from N(0, 1) and N(1, 22).
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Figure D.12: The min, mean, and max of RP values for the Welch’s t-test against p-values of

the Welch’s t-test, when original samples are sampled from N(0, 1) and N(1, 22).
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Figure D.13: The min, mean, and max of RP values for the WMW test against p-values of the

WMW test, when original samples are sampled from N(0, 1) and N(1, 22).
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Figure D.14: The min, mean, and max of RP values for the t-test against p-values of the t-test,

when original samples are sampled from LN(0, 1).

n=5 n=10 n=20 n=50

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.0
0

0.2
5

0.5
0

0.7
5

1.0
0

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−R
P

Figure D.15: The min, mean, and max of RP values for the Welch’s t-test against p-values of

the Welch’s t-test, when original samples are sampled from LN(0, 1).
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Figure D.16: The min, mean, and max of RP values for the WMW test against p-values of the

WMW test, when original samples are sampled from LN(0, 1).
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Figure D.17: The min, mean, and max of RP values for the t-test against p-values of the t-test,

when original samples are sampled from LN(0, 1) and LN(1, 0.5).
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Figure D.18: The min, mean, and max of RP values for the Welch’s t-test against p-values the

Welch’s t-test, when original samples are sampled from LN(0, 1) and LN(1, 0.5).
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Figure D.19: The min, mean, and max of RP values for the WMW test against p-values of the

WMW test, when original samples are sampled from LN(0, 1) and LN(1, 0.5).
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Case A (ANOVA test)

Individual RP(ANOVA test & pre−test)

Case A (Kruskal−Wallis test)

Individual RP(Kruskal−Wallis test & pre−test)

Figure E.1: Comparison of the mean of RP for location tests with and without preliminary test

for Case A against the mean of their p-values, samples from N(0, 1), M = 5.
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Case A (ANOVA test)

Individual RP(ANOVA test & pre−test)

Case A (Kruskal−Wallis test)

Individual RP(Kruskal−Wallis test & pre−test)

Figure E.2: Comparison of the mean of RP for location tests with and without preliminary test

for Case A against the mean of their p-values, samples from N(1, 1), N(0, 1), N(2, 1), N(2, 2),

and N(0, 2), M = 5.
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Case A (ANOVA test)

Individual RP(ANOVA test & pre−test)

Case A (Kruskal−Wallis test)

Individual RP(Kruskal−Wallis test & pre−test)

Figure E.3: Comparison of the mean of RP for location tests with and without preliminary

test for Case A against the mean of their p-values, samples from t(4), M = 5.
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Case A (ANOVA test)

Individual RP(ANOVA test & pre−test)

Case A (Kruskal−Wallis test)

Individual RP(Kruskal−Wallis test & pre−test)

Figure E.4: Comparison of the mean of RP for location tests with and without preliminary test

for Case A against the mean of their p-values, samples from N(0, 1), N(1, 1), LN(1, 2),Ca(1, 1),

and t(4) ,M = 5.
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Case B (ANOVA test)

ANOVA test without pre−test

Case B (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.5: Comparison of the mean of RP for location tests with and without preliminary test

(Case B) against the mean of their p-values, samples from N(0, 1), M = 5.

E.1.2 The impact of the preliminary test on RP of location tests

for Case B

The results of comparing the reproducibility of the outcome of the location tests (Case

B) with the reproducibility of location tests without the preliminary test of Normality for

5 groups are presented.
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Case B (ANOVA test)

ANOVA test without pre−test

Case B (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.6: Comparison of the mean of RP for location tests with and without preliminary test

(Case B) against the mean of their p-values, samples from N(1, 1), N(0, 1), N(2, 1),N(2, 2), and

N(0, 2), M = 5.
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Case B (ANOVA test)

ANOVA test without pre−test

Case B (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.7: Comparison of the mean of RP for location tests with and without preliminary test

(Case B) against the mean of their p-values, samples from t(4), M = 5.
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Case B (ANOVA test)

ANOVA test without pre−test

Case B (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.8: Comparison of the mean of RP for location tests with and without preliminary test

(Case B) against the mean of their p-values, samples from N(0, 1), N(1, 1), LN(1, 2), Ca(1, 1),

and t(4), M = 5.
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Case C (ANOVA test)

ANOVA test without pre−test

Case C (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.9: Comparison of the mean of RP for location tests with and without preliminary test

(Case C ) against the mean of their p-values, samples from N(0, 1), M = 5.

E.1.3 The impact of the preliminary test on RP for location

tests for Case C

The comparison results for the reproducibility for Case C and reproducibility for location

tests without preliminary tests are shown for 5 groups.
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Case C (ANOVA test)

ANOVA test without pre−test

Case C (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.10: Comparison of the mean of RP for location tests with and without preliminary

test (Case C ) against the mean of their p-values, samples from N(1, 1), N(0, 1), N(2, 1),N(2, 2),

and N(0, 2), M = 5.
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Case C (ANOVA test)

ANOVA test without pre−test

Case C (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.11: Comparison of the mean of RP for location tests with and without preliminary

test (Case C ) against the mean of their p-values, samples from t(4), M = 5.
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Case C (ANOVA test)

ANOVA test without pre−test

Case C (Kruskal−Wallis test)

Kruskal−Wallis test without pre−test

Figure E.12: Comparison of the mean of RP for location tests with and without preliminary test

(Case C ) against the mean of their p-values, samples from N(0, 1), N(1, 1), LN(1, 2), Ca(1, 1),

and t(4), M = 5.
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Figure E.13: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case A, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22), M = 3.

E.2 Extended simulation examples

This section contains detailed results from the additional simulations involving data gen-

erated from a mixture of Normal distributions X ∼ 0.4 · N(5, 12) + 0.6 · N(15, 22), for

M = 3. The results are presented in Figures E.13 - E.18. The RP values are approxim-

ately similar to those when data are generated from an unimodal distribution, as shown

in the main examples discussed in Chapter 6.
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Figure E.14: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case B, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22), M = 3.
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Figure E.15: The min, mean, and max of RP values against the p-values for the two-stage

procedure for Case C, the original samples are drawn the mixture of Normal distributions

0.4 · N(5, 12) + 0.6 · N(15, 22), M = 3.
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Figure E.16: The means of RP values against the p-values for the location tests without prelim-

inary tests, the original samples are drawn the mixture of Normal distributions 0.4 · N(5, 12) +

0.6 · N(15, 22), M = 3.
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Figure E.17: Comparing RP values for location tests with and without preliminary test (Case

A), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), M = 3.
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Figure E.18: Comparing RP values for location tests with and without preliminary test (Case

B), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), M = 3.
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Figure E.19: Comparing RP values for location tests with and without preliminary test (Case

C ), plotted against their corresponding mean p-values. When the original samples are drawn

from the mixture of Normal distributions 0.4 · N(5, 12) + 0.6 · N(15, 22), M = 3.
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E.3 Reproducibility for the three-stage procedure

This section evaluates the reproducibility of the three-stage procedure testing. The pro-

cedure included location tests for multiple groups and preliminary tests for Normality and

equality of variances. Initially, each group’s Normality is tested using the Shapiro-Wilk

test. If any sample rejects the Normality assumption, the Kruskal-Wallis test is applied.

Otherwise, Levene’s test for variance equality is conducted. If the test fails to reject

the null hypothesis, one-way ANOVA is performed. However, if the null hypothesis is

rejected, indicating unequal variances, Welch’s ANOVA is used instead.

Welch’s one-way ANOVA is employed when the assumption of equal variances is not

met to compare the means of more than two independent groups. It has null and al-

ternative hypotheses like the conventional ANOVA test, which assumes equal population

variances across all groups [48].

The steps outlined in Section 5.3 are utilized to assess RP for the three-stage procedure,

accounting for changes in tests such as switching from Welch’s t-test to Welch’s ANOVA

and from the F -test to Levene’s test. The simulation studies in Section 6.3 are applied

for three and five groups, samples are sampled from N(0, 1), N(0, 22), and N(0, 42) for

three groups, and N(0, 1), N(0, 22), N(0, 42), N(0, 1), and N(0, 1) for five groups.

The simulation results for the reproducibility of the three-stage procedure testing for

Cases A, B, and C, as well as the reproducibility of multiple-sample location tests without

the preliminary test. These findings exhibit a pattern of reproducibility similar to that

observed in the two-stage procedure in Section 6.3.1.

Figures E.20 and E.21 show RP for multiple-sample location tests without preliminary

tests for 3 and 5 groups, respectively, under the scenario where group distributions are

Normal and have the same mean but have different variances. RP values for all location

tests show the general pattern of RP. There is variability in RP values and it decreases

with increasing in the sample size. Generally, RP values decrease in the non-rejection

area and increase in the rejection area with larger sample sizes and numbers of groups. In

cases of small sample sizes, RP for the Kruskal-Wallis test is slightly higher than that for

the parametric test in the non-rejection area. However, for larger sample sizes, RP for the



E.3. Reproducibility for the three-stage procedure 232

n=5 n=15 n=30

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.
00

0.
25

0.
50

0.
75

1.
00

0.00

0.25

0.50

0.75

1.00

p−value 

N
P

I−
B

−
R

P
 

ANOVA test Kruskal−Wallis test Welch's ANOVA test

Figure E.20: RP values against the p-values for location tests without preliminary tests, samples

from N(0, 1), N(0, 22), and N(0, 42), M = 3.

ANOVA test betters that for Welch’s ANOVA and the Kruskal-Wallis test, particularly

evident with a higher number of groups. This is because as the sample size increases, the

power of the ANOVA test increases, as it becomes more robust to the violation of equal

variances assumption. In contrast, the power of Welch’s ANOVA and the Kruskal-Wallis

test does not increase as dramatically with larger sample sizes [64].

Figures E.22 -E.27 show the simulation studies results for reproducibility in the three-

stage procedure for Case A, B and C. The RP values for both parametric and nonpara-

metric tests follow similar patterns observed in the two-stage procedure for Case A, B

and C presented in Section 6.3.1.

The effect of performing the preliminary tests for the Normality and the equality of

variances on RP for the multiple-sample location tests seem small for all cases as shown

in Figures E.28 - E.33.
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Figure E.21: RP values against the p-values for location tests without preliminary tests, samples

from N(0, 1), N(0, 22), N(0, 42), N(0, 1), and N(0, 1), M = 5.
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Figure E.22: RP values for three-stage procedure Case A, plotted against the p-values for

location tests, samples from N(0, 1), N(0, 22), and N(0, 42), M = 3.
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Figure E.23: RP values for three-stage procedure Case A, plotted against the p-values for

location tests, samples from N(0, 1), N(0, 22), N(0, 42), N(0, 1), and N(0, 1), M = 5.
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Figure E.24: RP values for three-stage procedure Case B, plotted against the p-values for

location tests, samples from N(0, 1), N(0, 22), and N(0, 42), M = 3.
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Figure E.25: RP values for three-stage procedure Case B, plotted against the p-values for

location tests, samples from N(0, 1), N(0, 22), N(0, 42), N(0, 1), and N(0, 1), M = 5.
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Figure E.26: RP values for three-stage procedure Case C, plotted against the p-values for

location tests, samples from N(0, 1), N(0, 22), and N(0, 42), M = 3.
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Figure E.27: RP values for three-stage procedure Case C, plotted against the p-values for

location tests, samples from N(0, 1), N(0, 22), N(0, 42), N(0, 1), and N(0, 1), M = 5.
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Figure E.28: Comparison of the mean of RP for location tests with and without preliminary

tests Case A, against the mean of their p-values, samples from N(0, 1), N(0, 22), and N(0, 42),

M = 3.
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Figure E.29: Comparison of the mean of RP for location tests with and without preliminary

tests Case A, against the mean of their p-values, samples from N(0, 1), N(0, 22), N(0, 42),

N(0, 1), and N(0, 1), M = 5.
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Figure E.30: Comparison of the mean of RP for location tests with and without preliminary

tests Case B, against the mean of their p-values, samples from N(0, 1), N(0, 22), and N(0, 42),

M = 3.
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Figure E.31: Comparison of the mean of RP for location tests with and without preliminary

tests Case B, against the mean of their p-values, samples from N(0, 1), N(0, 22), N(0, 42),

N(0, 1), and N(0, 1), M = 5.
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Figure E.32: Comparison of the mean of RP for location tests with and without preliminary

tests Case C, against the mean of their p-values, samples from N(0, 1), N(0, 22), and N(0, 42),

M = 3.
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Figure E.33: Comparison of the mean of RP for location tests with and without preliminary

tests Case C, against the mean of their p-values, samples from N(0, 1), N(0, 22), N(0, 42),

N(0, 1), and N(0, 1), M = 5.
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