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Spectral theory of random cusped hyperbolic surfaces

William Richard Hide

Abstract

The aim of this thesis is to study the spectral theory of random finite-area non-
compact hyperbolic surfaces, focusing on the spectral gap. We study the size of the
spectral gap for two different models of random surfaces: random covers and the Weil-
Petersson model.

First we show that for any non-compact finite-area hyperbolic surface X, there is

a constant C' > 0 such that a uniformly random degree-n cover X,, has no eigenvalues

1 _C (log log log n)2

below 4 loglogn

, other than those of X, with probability tending to 1 as n — oo.
Secondly, we show that for any e > 0, a € [0,1), as g — 0o a generic finite-area
genus g hyperbolic surface with n = O (¢%) cusps, sampled with probability arising

from the Weil-Petersson metric on moduli space, has no non-zero eigenvalue of the

Laplacian below i — (%)2 —e. For a = 0 this gives a spectral gap of size 13—6 —e¢ and

for any o < % gives a uniform spectral gap of explicit size.
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1 Introduction

A hyperbolic surface is a smooth, connected, orientable Riemannian surface with constant
Gaussian curvature —1. Let X be a finite-area non-compact hyperbolic surface. The L?2-

spectrum of the Laplacian A x, denoted spec (Ax), consists of:

e A simple eigenvalue at 0 and possibly finitely many eigenvalues in (O, i) Such

eigenvalues are often called small or exceptional eigenvalues.

1

e Absolutely continuous spectrum [Z,oo> with multiplicity equal to the number of

cusps of X.

e Possibly infinitely many discrete eigenvalues in H, oo)7 embedded in the absolutely

continuous spectrum. Such eigenvalues are called embedded eigenvalues.

The spectral gap of Ay, occasionally denoted here by SG (X), refers to the gap between
the simple zero eigenvalue and the remaining spectrum. As such, % is the optimal spectral
gap for a finite-area non-compact surface. i is also the bottom of the spectrum of the
Laplacian on the universal cover H.

The spectral gap is an important quantity, governing the exponential rate of mixing
of the geodesic flow on T'1X | | and providing error terms in prime geodesic counting

[Hu59)].

The main aim of this thesis is to study the following question.

Question 1.1. Does a random finite-area mon-compact hyperbolic surface have a large

spectral gap?

We study Question 1.1 for two different models of random surfaces, random covers §1.2

and Weil-Petersson random surfaces §1.3.

1.1 Motivation

We outline some motivation for studying Question 1.1.



Geometry

Let X be a finite-area hyperbolic surface which may be compact or non-compact. For any

subset A C X we define h* (A) e % where 0A is the boundary of A. If either

quantity is undefined for some A then h* (A) 4 . The Cheeger constant of X is then

hX)S b K(S).
Vol(S)< 3 Vol(X)

The Cheeger constant roughly quantifies how difficult it is to separate the surface into
reasonably sized pieces with a short curve. The Cheeger-Buser inequalities say that the

spectral gap is comparable to the Cheeger constant. In particular, the Cheeger inequality

[ | says that SG (X) > h(f)Q, whilst the Buser inequality | | says that there exists
C > 0 such that SG (X) < C-h(X).

Another natural measure of connectivity is the diameter of a surface. This is well defined
for compact surfaces and for non-compact surfaces one can consider the diameter of the
e-thick part X>.. A lower bound for spectral gap of the surface provides an upper bound

for the diameter [ |. In particular, if SG (X) > % then

diam (X-.) < - 2  log (vol (X)) + - 1 < loglog (vol (X)) + Oc (1)

So one can view the spectral gap as a measure of connectivity; a surface with a large spectral
gap is highly connected.
Random regular graphs

There is a close analogue between large-genus random hyperbolic surfaces and random
regular graphs. The spectrum of a graph G with n vertices is the set of eigenvalues of its

adjacency matrix Ag. When G is d-regular, the eigenvalues are given by

=d=2 =2 >...2 1.



Ao # A1 if and only if G is connected, in which case there is a spectral gap Ag — A;. The
spectral gap of G governs the rate at which a random walk on G converges to the uniform
measure, graphs with a large spectral gap are highly desirable for real-world applications.

However, there is a bound on what can be achieved; Alon and Boppana | | proved
that for any sequence G,, of d-regular graphs on n vertices has A\; > 2v/d — 1—o(1) as n — oo.
A connected d-regular graph with all non-trivial eigenvalues in [—2@,2@] is
called a Ramanugjan graph after Lubotzky, Phillips and Sarnak [ ]. In | ], Alon
conjectured that for any € > 0, a random d-regular graph on n vertices has no non-trivial
eigenvalues with absolute value above 2v/d — 1 + ¢ as n — o0o. In other words, almost
all d-regular graphs have almost optimal spectral gap. Alon’s conjecture was proved by
Friedman [Fr08].

It was conjectured | , ] that the distribution of the second largest eigenvalue
of a random d-regular graph, after re-scaling by ng, is the same as the distribution of
the largest eigenvalue of the Gaussian Orthogonal Ensemble. This would mean that there
is a constant C,, 4 such that ns (Al - 2\/Cﬁ) — Cy,q has Tracy-Widom distribution. If
Cp,q is of order 1, this would imply that A\; fluctuates at scales O (n_g) IfCpq =20
then this would imply that slightly more than half of all d-regular graphs are Ramanujan.
An important first step towards this conjecture is determining the optimal error bound

e = e(n) in Alon’s conjecture. It was shown by Bordenave | |, that one can take

loglogn
logn

€ = const - ( )2 . Subsequently, it was shown by Huang and Yau | | that one can
take ¢ = O (n™°) for some ¢ > 0.

Friedman conjectured that an extension of Alon’s conjecture holds for random covers
of finite graphs [ |. Given any finite graph G, one can define a notion of a degree-n
cover G, of G. Eigenvalues of G,, which do not appear as eigenvalues of G are called new-
eigenvalues. It was conjectured by Friedman that for any fixed finite graph G and for any
€ > 0, a uniformly random degree-n cover G, has no new-eigenvalues with absolute value
above p (G) + ¢ with probability tending to 1 as n — co. Here p (Q) is the spectral
radius of the adjacency operator on [2 (C;), where ,C’; is the universal cover of G. Friedman'’s

conjecture was proved by Bordenave and Collins | ]-

Ramanujan graphs of fixed degree with number of vertices tending to infinity were con-



structed by Lubotzky, Phillips and Sarnak | | and independently by Margulis | ].
Marcus, Spielman and Srivastava | | proved the existence of bipartite Ramanujan
graphs of all degrees d > 3 by proving a variant of a conjecture of Bilu and Linial [ .
In particular, they prove that every finite graph G has a degree-2 cover which has no

new-eigenvalues above p (G)

Selberg’s eigenvalue conjecture

Spectral theory of the Laplacian on certain arithmetic hyperbolic surfaces has important
consequences in Number Theory, see e.g. | ]. Let N > 1, the principal congruence

subgroup of SLy(Z) of level N is

['(N)={T €SLy(Z) |T=1 mod N}.

Consider the quotient X (N) e p (N)\H. Letting A; (X (N)) denote the first non-zero

eigenvalue of the Laplacian on X (N), in | | Selberg made the following conjecture.

Conjecture 1.2. For every N > 1,

AL (X(N)) =

|

Selberg’s Conjecture would imply the existence of surfaces with optimal spectral gap
in unbounded volume. Conjecture 1.2 remains open however there have been a number
of results in this direction. Selberg proved in [ ] that Conjecture 1.2 holds with the
bound 13—6. After many intermediate results | ) , ) , , ], the

best known result is the following due to Kim and Sarnak | ].

Theorem 1.3 (| ). For every N > 1,



Buser’s Conjecture

On a compact hyperbolic surface, the spectrum of the Laplacian consists of eigenvalues

0=X(X) <A (X) <--- S A(X) <o

with A\;(X) — oo as i — oo and the spectral gap is A; (X). In this case, there is an

asymptotic upper bound on A; in large genus.

Theorem 1.4 (| ). Let Y; be a sequence of compact hyperbolic surfaces with genera

g (i) = 00 asi — oco. Then

| =

lim sup A (¥;) <

1—+00
This is analogous to the Alon-Boppana bound for a d-regular graphs. It was conjectured

by Buser in | ] that + can in fact be attained asymptotically.

Conjecture 1.5 (] |)- There exists a sequence of compact hyperbolic surfaces {Y;};cy

with genera g (i) — 00 as i — oo and

1
lim A (Y;) = ~.
Buser showed in | ], using Selberg’s 1% Theorem and work of Jacquet-Langlands

[ ]! that there exists compact hyperbolic Y; surfaces with genera g (i) — oo as i — 00

and A1 (Y;) > 1%. In fact, Conjecture 1.2 implies Conjecture 1.5. Buser, Burger and
]

Dodzuik [ proved the slightly weaker A1 (Y;) > ¢ where ¢ can be arbitrarily close to
%, by using a more geometric approach (rather than Jacquet-Langlands). In particular,

they proved the following.

Lemma 1.6 ([ ). Let X be a finite area hyperbolic surface with an even number of
cusps {C;}. It is possible to deform the surface X in a certain way to a finite area hyperbolic

surface with boundary, where each cusp becomes a bounding geodesic of length t, and then

!By the work of Jacquet-Langlands [ ], to each principal congruence subgroup I" (V) one can associate
a cocompact T'(N) C SLz (R) with the property that s (]Hl/f‘N) > A1 (X (N)). For large enough N, H/T y
is a compact hyperbolic surface whose genus is an increasing function of N.

10



glue the geodesic corresponding to Ca;—1 to the one corresponding to Co; to form a family

of closed hyperbolic surfaces X such that

lim sup A (X ®) > inf (spec(Ax) N (0,00)).

t—0

Therefore Conjecture 1.5 would follow from the existence of a sequence of finite-area
non-compact hyperbolic surfaces X; with an even number of cusps and Vol (X;) — oo as
i — oo and inf (spec(Ax,) N (0,00)) — 1. Further progress towards Conjecture 1.5 ran

parallel with progress towards progress towards Conjecture 1.2, outlined in the previous

section, by either Jacquet-Langlands or Lemma 1.6.

1.2 Random covers

In this subsection, we outline our results for the random covering model which is obtained as
follows. Take a fixed hyperbolic surface X and for n € N, consider all degree-n Riemannian
covers X,, sampled uniformly at random. Since spec(Ax)Cspec (Ay, ) as multi-sets for any
degree-n cover X,,, it is natural to restrict attention to new eigenvalues, i.e. eigenvalues in
spec (Ax, ) which do not arise by a lifting from X.

Spectral gaps for random covers were first studied in | | for Schottky surfaces and

[ | for compact surfaces. The first result we highlight is the following.

Theorem 1.7 (] , Theorem 1.5]). Let Y be a compact hyperbolic surface. For any
e > 0 a uniformly random degree-n cover Y, has no new eigenvalues below 1% — ¢ with

probability tending to 1 as n — oo.

It is conjectured in [ ] that the same result holds with 2 replaced with §.

Following an intermediate result | |, Magee and Naud prove in | | that for X
conformally compact, a uniformly random cover X,, has no new resonances in any compact
set KC C {s | Re(s) > 3} with probability tending to 1 as n — oo, where § is the Hausdorff
dimension of the limit set of I'x. For L2-spectral gaps this result is optimal.

We want to study the case where the base surface X is finite-area and non-compact.

The first result of the thesis is the following, joint with Michael Magee.

11



Theorem 1.8 (] , Theorem 1.1]). Let X be a finite-area non-compact hyperbolic sur-
face. For any e > 0, a uniformly random degree-n cover has no new eigenvalues below %—5

with probability tending to 1 as n — oo.

Theorem 1.8 is an analogue of Alon and Friedman’s conjectures for finite-area non-
compact hyperbolic surfaces. As a corollary, taking X to be the thrice punctured sphere

which has A\ > % and using Lemma 1.6 we obtain a proof of Buser’s Conjecture.
Corollary 1.9. Conjecture 1.5 is true.

An alternative proof of Conjecture 1.5 is given in | ]. In fact, it is shown in [ ]
that every compact hyperbolic surface has a sequence of degree-n covers with no new
eigenvalues below i — On—oo(1). In particular, the surfaces in Corollary 1.9 can be taken
to be arithmetic.

An outstanding open problem is whether there exists a sequence of hyperbolic surfaces
{X;},en With Vol (X;) — oo with A; (X;) > 3. This would, for example, follow from
Selberg’s Conjecture 1.2. Such surfaces would be analogous to Ramanujan graphs. It is
interesting to ask whether the analogue of the Bilu-Linial conjecture (§1.1) holds in this
setting, that is, does every finite area hyperbolic surface have a degree-2 cover with no
new-eigenvalues below %?

In analogy with random regular graphs §1.1, it is natural to conjecture that after some
suitable re-scaling, the bottom of the new-spectrum of a random cover of a finite-area
non-compact hyperbolic surface has a limiting distribution?. As such, it is desirable to
determine the optimal rate at which one can allow ¢ = £ (n) to tend to 0 as n — oo in

Theorem 1.8. We prove a result in this direction.

Theorem 1.10. Let X be a finite-area non-compact hyperbolic surface. There is a constant

C > 0 such that a uniformly random degree-n cover has no new eigenvalues below

1 . (log log log n)2

4 loglogn

)

2For random covers of compact surfaces (or even random unitary bundles over non-compact finite-
area surfaces) it is perhaps natural to also conjecture that, after suitable re-scaling, A1 has Tracy-Widom
distribution. The finite-area non-compact case is more subtle since it could well be the case that there are
no non-zero eigenvalues with positive probability.

12



with probability tending to 1 as n — oo.

Theorem 1.10 follows from effectivising the arguments of | | and applying sub-
sequent powerful results of Bordenave and Collins | ]. In this thesis we will prove

Theorem 1.10 but stress that the method follows | ]

Remark 1.11. Let X = T'\H be a finite-area non-compact hyperbolic surface. Then T’
is a finitely generated free group with generators ~i,...,7, for some r. We can equip
Hom (T, U (n)) with a probability measure by choosing the image of the generators ¢ (71) , ..
in U (n) independently with Haar probability. Given ¢ € Hom (I',U (n)), Let p, : I' —
U (n) be the random C™ representation obtained via std,, o ¢ where std,, is the standard
representation. We consider the associated (random) unitary bundle F, and the Laplacian
A, on sections of E,. Then spec(Ag) N [0, %) consists of finitely many eigenvalues with
finite multiplicity. This setting was studied by Zargar | ] who proved the analogue of
Theorem 1.8 in the unitary case. For random unitary bundles, via the same methods of

Theorem 1.10 we can obtain a better rate.

Theorem 1.12 ([ ). For any finite-area non-compact hyperbolic surface X, there exists

a constant ¢ > 0 such that a random unitary bundle E4 over X of rank n has

(loglog n)2

inf specAy > c

1
4 logn
with probability tending to 1 as n — oo

1.3 Weil-Petersson random surfaces

Another model of random surfaces we are interested in is the Weil-Petersson model | ,
]. Consider the moduli space M, ,, with probability measure arising from the Weil-
Petersson metric §4.2. One can think of M, , as the space of all hyperbolic metrics that

a surface with genus ¢ and n cusps can wear, up to isometry. Mirzakhani was the first to

prove a spectral gap for Weil-Petersson random surfaces.

Theorem 1.13 (| , Theorem 4.8]). The Weil-Petersson probability that a genus g

2
compact hyperbolic surface has a non-zero Laplacian eigenvalue below %(27:1?1;7((;)(2)) ~

13
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0.0024 tends to zero as g — 0o.

Subsequently, Mirzakhani’s result was improved to 1% — ¢ independently by Wu-Xue
[ | and Lipnowski-Wright | | and recently to % — ¢ by Anantharaman and Monk
[AM23].

We study random non-compact surfaces in the Weil-Petersson model. Here, there is
flexibility for the rate at which g and n grow and it is interesting to ask what effect this has
on the spectrum of a Weil-Petersson random hyperbolic surface. Actually, if n is allowed

to grow faster than g, the spectral gap necessarily shrinks to 0.

Theorem 1.14 (] , Theorem 2|). There is a constant C' > 0 such that for any X €
Mg7n7

SG (X) < CQT“.

In this thesis, we study the case where the number of cusps grows slowly with the genus.

We prove the following.

Theorem 1.15. For any 0 < a < %, if n =0 (g%) then for any € > 0 the Weil-Petersson

probability that a genus g non-compact finite-area surface with n cusps has a non-zero

Laplacian eigenvalue below % — (20‘:1)2 — ¢ tends to zero as g — 0.

If @« = 0, i.e. the number of cusps is bounded, then Theorem 1.15 returns a spectral

gap of size 1% — ¢ as obtained in the works | , ].  An undesirable feature of

Theorem 1.15 is that the spectral gap goes to 0 as a — % However, one can extend
Mirzakhani’s methods, Theorem 1.13, to the case where n = o (\/5) to obtain the bound
SG(X) > 1 <27:ig1;7(()?(2)>2 for X € M, with high probability, c.f. | -

Subsequently, it was shown by Shen and Wu that if n grows faster than /g, a Weil-

Petersson random surface has an arbitrarily small spectral gap.

Theorem 1.16 (] ). Let n: N — N be any function with L\/gg) — 00 and @ — 0 as

g — 00. Then for any € > 0, the Weil-Petersson probability that X € Mg, satisfies
SG(X)<e

tends to 1 as g — oo.

14



It is natural to ask how many small eigenvalues does a random surface with many
cusps have? In a recent joint work with Joe Thomas, we study this problem and show the

following.

Theorem 1.17 (] ). Let g > 0 be fized. For any e > 0, there is a constant ¢ () > 0
such that a Weil-Petersson random surface X € Mg, has at least cn Laplacian eigenvalues

below € with probability tending to 1 as n — oo.

By a result of Ballmann, Mathiesen and Mondal | | it is known that every surface
in Mg, has at most 2g+n—2 exceptional eigenvalues and therefore Corollary 1.17 is optimal

up to a multiplicative factor. We do not prove Theorem 1.17 in this thesis.

1.4 Other related works

Brooks and Makover in | ] were the first to study spectral gaps of random surfaces.
They considered a combinatorial model of random surfaces, showing the existence of a
non-explicit uniform spectral gap with high probability. They considered a random closed
surface formed by gluing 2n copies of an ideal hyperbolic triangle with gluing determined
by a random trivalent ribbon graph and then applying a compactification procedure. They
proved the existence of a non-explicit constant C' > 0 such that the first non-zero eigenvalue
is greater than C with probability tending to 1 as n — oco. Other works on the Brooks-
Makover model include | , , ].

As described in §1.1, one can view spectral gap as a measure of connectivity. Other
notions of connectivity have been studied by probabilistic methods with great success. For
the diameter, by comparing with balls in the hyperbolic plane, one can show that logg
is the asymptotically minimal diameter of a genus g compact hyperbolic surface. It was
shown by Budzinski, Curien and Petri | ] that

lim min M

=1.
g—oo XeM, logg

For the Cheeger constant, it was shown by Budzinski, Curien and Petri | | that

limsup sup h(X) <
g—o0 XEM,

LS
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The Cheeger constant of H is equal to 1, asymptotically attained by large discs so there
there is a gap between the maximal Cheeger constant of a large volume compact surface
and its universal cover.

We briefly mention that there has been great recent progress on deterministic upper
bounds for A\; on compact hyperbolic surfaces with some very different perspectives, namely
conformal bootstrap | , | and linear programming | ]. We refer the reader
to the cited articles for an account of the literature here.

Other related work on spectral theory on random hyperbolic surfaces includes the study
of Laplacian eigenfunctions [ ) |, quantum ergodicity | |, local Weyl law

[ | and Gaussian Orthogonal Ensemble energy statistics | , ]

Plan of the thesis

First, the necessary background is introduced in Section 2. In Section 3 we prove Theorem
1.10. Next, In Section 4.2 we prove Theorem 1.15. Finally in Section 5 we discuss some
problems on embedded eigenvalues. The results of Section 4.2 rely on some estimates for

Weil-Petersson volumes which are proven in the Appendix A.

2 Background

In this section we introduce some background on the geometry and spectral theory of

non-compact hyperbolic surfaces.

2.1 Hyperbolic surfaces

Consider the upper half plane
H={z+iy|z,y € R,y >0},

with metric given by
dz? + dy?
v

16



The orientation preserving isometry group of H is PSLo(R) = SLy (R) / £ I, which acts by

Mébius transformations. The elements of PSLg (R) can be classified as follows.

a b
Definition 2.1. Let v = € PSLs (R) with v # I.

c d

1. ~ is parabolic if and only if |a + b| = 2,
2. ~ is hyperbolic if and only if |a + b| > 2
3. v is elliptic if and only if |a + b| < 2.

A hyperbolic surface is smooth, connected, orientable Riemannian surface with constant
curvature —1. Any hyperbolic surface can be realized as a quotient I'\H where T is a
discrete, torsion free subgroup of PSLy(R).

A parabolic cylinder is the quotient of H by a parabolic cyclic group. We define a cusp
to be the small end of a parabolic cylinder, with boundary the unique closed horocycle of

length 1. We can identify any cusp C with

¢ (1,00) x S,
with the metric
dr? + dz*
rz
where (r,x) € (1,00) x S1. By | , Lemma 4.4.6], in any finite-area hyperbolic surface,
cusps must be pairwise disjoint.
We shall closely follow [ , Section 2.2]. Let X = I'x\H be a finite-area non-compact

hyperbolic surface so that I'x is a finitely generated free group. For w € H, the Dirichlet

domain centered at w is defined by

Fo 12 el d(z,w) < d(z,qw) for all v € Tx}. (2.1)

We write F to denote some Dirichlet fundamental domain for I'y. Since F is a non-
compact polygon, it has some of its vertices on R U oo in HU JH. We call such a vertex a

cuspidal vertex. By e.g. | , Proposition 2.4], we can ensure that the cuspidal vertices

17



are distinct modulo I'x. The sides of F can be arranged in pairs so that the side pairing
motions generate I'x. The two sides of F meeting at a cuspidal vertex have to be pairs
since the cuspidal vertices are distinct modulo I'x. The side-pairing motion has to fix the
vertex and is therefore a parabolic element of I'x. This gives rise to a cusp in the quotient
I'x\H and each cuspidal vertex corresponds to a unique cusp in this way. We label the
cuspidal vertices by aj, ..., a, € cusp(X). We denote the stabilizer subgroup of the vertex
a; by

def
Fui = {"}/GFX ‘ ya; = Cli}.

Each I'y, is an infinite cyclic group generated by the parabolic element ~,,, which is the

side-pairing motion at the vertex a;. There exists o, € SLa (R) such that
a;il’yaiaai = . (2.2)
0q; 1s determined up to right multiplication by a translation. oq, is determined up to right

multiplication by a translation. We choose o, so that for each [ > 1, the semi-strip

PO zeH|0<a<1,y>1}

is mapped into F by oy;.

Definition 2.2. Fori=1,...,n and [ > 1, we define

def
Dai (l) = o-aiP(l)’

and

D)% £\ |i| Dq. (1).

Dy, (1) is the part of the fundamental domain in the ith cusp bounded below by the
length % horocycle and D (1) is a pre-compact region of F. By e.g. [ , Lemma 4.4.6],

the cusps Dy, (1) are pairwise disjoint and since I > 1, Dy, (I) N Dy, (1) = @ for i # j and

18



we can partition the fundamental domain as

2.2 Spectral theory

For an unbounded linear operator A on an Hilbert space H with domain D (A) C H, the
spectrum spec (A) of A is the set of A € C for which A — Ald : D (4) — H fails to have
a bounded inverse. In this section we define the Laplacian A on hyperbolic surfaces and

describe the spectrum spec (A).

2.2.1 Laplacian on non-compact finite-area surfaces

The Laplacian on C*° (H), denoted Ag, is given by

0? 0?
a0 =1 (5 + gy

Since any surface can be realized as X = I'\H, we can use the Laplacian on H to define
our Laplacian on X. Since Ay is invariant under the action of PSLy(R), it descends to an
operator on Cg° (X) . It extends uniquely to a non-negative unbounded self-adjoint operator
on L?(X). We let Ax denote the Laplacian on X and write spec (Ax) for the spectrum of
Ax. We write \j (X) to denote the jth smallest non-zero eigenvalue of Ax if it exists.
We briefly describe the spectral decomposition of L? (X). Our reference here is | -
Let B (X) denote the space of smooth, bounded functions on X. Let ¢ € C§° (Rp) and

a € Cusp (X). We define the incomplete Eisenstein series

Eo(z|9) = Y o (mog'2), (2:3)

vEl\T

which converges absolutely and gives a function in B (X)3. Let £ (X) C B(X) denote the

space of incomplete Eisenstein series.

3Setting ¢ = y° for s > 1, in 2.3 we obtain the Eisenstein series Eq (%, s) which is Laplacian eigenfunction
with eigenvalue s(1 — s) but is not square-integrable.
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Any function f € B(X) has a Fourier expansion

F@ala+iy) = 3 fam ()™,

mEeZ

where

1
o) = [ Flona i) .
One can check that for any a € Cusp (X) and ¢ € C§° (Rxo),

<f,Ea(*¢)>:/Ooofa,m(y)¢(y)zgé-

In particular, f is orthogonal to £ (X) if and only if for each a, fo ., (y) = 0 for y a.e. We
write C (X) to denote the smooth, bounded functions of X such that f,,, (y) = 0 a.e. for
every a € Cusp(X). Then

L?(X) =C(X) ® € (X),

where the bar means completion with respect to the L?-norm. The spectral decomposition

of A in C (X) consists entirely of eigenvalues, known as cusp forms. There are examples of

surfaces with infinitely many cusp forms e.g. principal congruence covers, although there

is a priori no reason that C(X) must even be non-empty. This problem is discussed in

more detail in Section 5. The spectral decomposition of A in £ (X) consists of absolutely

1

continuous spectrum in [17 oo> with multiplicity equal to the number of cusps and finitely

many eigenvalues below %, always including the trivial eigenvalue Ay = 0. Any eigenvalue of

A in € (X) is called a residual eigenvalue. Here, residual refers to the fact that the discrete

part of £ (X) is spanned by residues of Eisenstein series. Any eigenvalue above i is called

an embedded eigenvalue, since it is embedded in the continuous spectrum. An embedded

eigenvalue is necessarily a cusp form but there can also be cusp forms below %.

3 Spectral gaps for random covers

The material of this chapter is based on | ] joint with Michael Magee and [Hi23]. The

aim of this chapter is to prove the following, c.f. Theorem 1.10.

20



Theorem 3.1. Let X be a finite-area non-compact hyperbolic surface. There is a constant

C > 0 such that a uniformly random degree-n cover has no new eigenvalues below

1 o (log log log n)2

4 loglogn

with probability tending to 1 as n — oo.

3.1 Outline of the proof

We say an event A depending on a parameter n happens asymptotically almost surely and
write a.a.s. if the probability A holds tends to 1 as n — oo.
We first outline the proof for ¢ fixed, which is | , Theorem 1], and then explain the

extra steps to obtain the rates € = € (n) in Theorem 3.1.

Set up and approach

Let X be a fixed finite-area non-compact surface. Let ¢ € Hom (I', S,,) be a uniformly
random permutation and Xy the corresponding cover. Our aim is to demonstrate that for

any € > 0, a.a.s. for every s € [% + /5, 1] there exists a bounded operator
RX¢ (S) : Lr21ew (X¢) - Hr21ew (X¢) )

with

(AX¢ —8(1—8)) RX¢ ()\) :IdL%ew()%)' (3.1)

Since (3.1) implies that (Ax, —s(1—s)) : Ha, (Xg) = L?

new new

(Xy) is onto and therefore,

by self-adjointness, has no non-trivial kernel in H2,,,

(Xg), it would follow that a.a.s. Ax,
has no new eigenvalues s(1 —s) < 1 — .
new

Our approach is to construct an approximate inverse My, (s) : L2, (Xg) — HZo (X)),

i.e. a bounded operator with the property that

(AX¢ — 8(1 — S)) M¢ ()\) = IdL%ew(X¢>) + L¢ (S) ,
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where Ly () : L2o,, (Xp) — L2

new

(X4). If one can show that

s Mgz (x,) <1 (3.2)

then 1 is not in the spectrum of Ly (), in particular

(s () + o ) Loy (Xg) = Ly (Xo).
exists as a bounded operator. One can then take

def -1
Rx, () = My () (Idgg (x,) +Ls (V) -

in (3.1). The problem is then reduced to showing that (3.2) holds a.a.s (for an appropriate

choice of My (X)).

Building the approximate inverse

We build My(s) is by patching together a ‘cuspidal parametrix’ Mz)uslj(s) based on a model
resolvent in the cusps and an an interior parametrix Mglt(s) that localizes to a compact
part of Xy. We then let

My(s) = M) + MS™P(5)

and we get a resulting splitting
Lg(s) = L§*(s) + Ly (s).

In Section 3.4 we show that the term M ""(s) can be designed so that [[LS™"(s) < :

(or any small number) for any ¢, i.e. ||}LZ)uSp(s)|| can be bounded deterministically, and will

not cause issues in obtaining ||L4(s)|| < 1. This is achieved by ensuring M;USP(S) localises
sufficiently high up into the cusp, essentially above height %

The term Mg‘t(s) is based on averaging the resolvent kernel of the hyperbolic plane
over the fundamental group of ' (suitably twisting by ¢) to obtain an integral operator on
L2

sew (Xo). The problem with this is that the averaging will not obviously converge, so we
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have to multiply the hyperbolic resolvent kernel by a radial cutoff that localizes to radii
< T +1 to get a priori convergence for all s € (%, 1} . This gives us that Mglt(s) is bounded
(Lemma 3.13).

The effect of this cutoff is that the error term Lglt(s) is an integral operator with smooth

kernel.

Bounding Lfb“t (s)

We prove that we can unitarily conjugate Lglt(s) to

Zav ® py(7)

yES

acting on L? (F) ® V2, where F is a Dirichlet fundamental domain for I’ and (,0¢, V,?) is
the standard n — 1 dimensional irreducible representation of S,,. The a(s)’s are compact
operators on L? (F) and S is a finite set, which is fixed depending on the cut off 7. In
particular there are only finitely many v € I' for which a-(s) is non-zero.

Because I' is a free group of rank d, picking ¢ € Hom (I', S,) is the same as picking d per-

mutations indepentantly and uniformly at random. The breakthrough results of Bordenave

and Collins from | ] allow us to control the norm of
L@l s, (x,) = | 20 ar(5) © p6(1) |
yES

L2(F)®V,Q

a.a.s. In particular, if instead, the a.(s) were matrices in M, (C) for some fixed finite 7,

the work of Bordenave and Collins from | | would tell us that for any xk > 0, a.a.s.

ZGV ) ® pe(77) Z% ) ® pPoo(7) +x (3.3)
V€S crevo  II7ET Crei2(T)
where p : I' = End (€2(F)) is the right regular representation. This is where the fact that
T is free is exploited.
Because the a4 (s) are in reality compact operators on Hilbert spaces we can approximate

by finite rank operators to the same effect. The rank of the matrices we need to take to
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achieve (3.3) depends on the cutoff 7' through the size of the set S.

Crucially, we understand the operator in the right hand side of (3.3) well: it can be
unitarily conjugated to an operator on L?(H) that is the composition of multiplication with
a cutoff (with norm < 1) and an integral operator with real-valued radial kernel. This latter
operator is self-adjoint we can use the theory of the Selberg transform to estimate its norm
in Lemma 3.11. By choosing T sufficiently large in the beginning, we can force the norm
in the right hand side of (3.3) to be as small as we like, for s > % + €. Consequently, we
can control H]Lglt(s)H for any fired s > 1 + ¢ a.a.s.

We now want to be able to control ||I[ngt(s)|| for all s > §+¢ a.a.s. To do this, we show
that ||Lglt(s)|| does not fluctuate much on small intervals (Lemma 3.16). We can then split
up the interval (3 + ¢, 1) into a fine enough grid so that controlling HL;;“(S)H at each point
s reduces to controlling H]Lg“(s)H at a finite number of points in the grid. We can then
apply an intersection bound to control ||Lg‘t(s)|| at every point in the (finite) grid a.a.s,
thus bounding H]Lglt(s)H on (3 +¢,1] a.as.

In total, we have shown ||Ly(s)|| < 1 for every s > 1 +¢ a.a.s. giving the desired result.

Effetiving previous arguments

We now describe how this argument is made effective, i.e. how one can allow ¢ to depend
on n. We want to repeat the argument to control ||Ly(s)|| a.a.s. when s € [% + /& (n), 1}
where k (n) — 0 as n — co. To achieve this we need to take the cut-off T'=T (n) to grow
depending on k (n) and we need to cut off the cusps at a height proportional to x (n). Now

our operator Li;t(s) is conjugated to
> 3 8pe(7) (3.4)
~ES(n)

where S (n) now grows as n — co. We again want to approximate each a, by a finite rank

operator and compare (3.4) to

> by ®ps (),

vES(T)
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where b, € My, (C). However since S = S (n) is now growing as n — 0o, we need to take
larger and larger (depending on n) finite rank approximations of a.. In total, we need to
control the norm of a matrix polynomial with coefficients in M,, (C) where m = m (n),
where the number of terms of the polynomial also depends on n. To do this we apply
recent work of Bordenave and Collins | ] which, together with an effective linearisation
procedure (c.f. § 3.3), provides an effective version of (3.3). In order to access their results,
we also need to control the size of S = S (n) and the largest wordlength of any v € S. This

is achieved in Section 3.7.

3.2 Set up

Throughout the rest of this section, X = I'\H will be a fixed non-compact finite-area
surface. We consider all degree-n Riemannian covers of X, sampled uniformly at random.
We stress that the covers we consider need not be connected, however will be connected
with high probability, which we will observe shortly.

There is a 1-to-1 correspondence between degree-n covers X, of X = I'\H with labelled
fiber [n] def {1,...,n} and ¢ € Hom (T, S,,). Given a degree-n cover X,, fix a point zg € X

and assume the the fiber above ¢ is labelled by [n]. The monodromy map
¢ m (X, xo) = Sy,

which describes how the fiber of x( is permuted when following lifts of closed curves from
X to X, uniquely determines X,. Given ¢ € Hom (I', S,,) we can build a cover with
monodromy ¢ by

Xy EHx [n]/ ~

where (z,1) ~ (vz, ¢(7)i) for vy € T.

Since X is non-compact, I" is necessarily a free group, freely generated by some

717"’77(16]-_‘7
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and choosing ¢ € Hom (T, S,,) is the same as choosing

o;  $(v), i=1,....d
independently and uniformly at random in S,,. The surface X is connected if and only if T’
acts transitively on [n] via ¢. By a theorem of Dixon | ], two independent and uniformly
random permutations in .S,, generate S,, or A,, a.a.s and it follows that a uniformly random
cover Xy is connected a.a.s.
Let V, & ?%([n]) and V2 C V,, the subspace of functions on [n] with zero mean.

The representation of S,, on £2([n]) is its standard representation by 0-1 matrices and the

subspace V.0 is an irreducible subspace of dimension (n — 1): we write
py: T — End(V)
for the random representation of I' induced by the random ¢.

3.2.1 Function spaces

We define L2

new

(X,) to be the space of L? functions on X, orthogonal to all lifts of L?
functions from X. Then

L2 (Xy) =2 L2, (X) @ L? (X).

new

Fix F to be a Dirichlet fundamental domain for X (2.1). Let C*° (H; V,Y') denote the smooth

V9-valued functions on H. There is an isometric linear isomorphism between

C™ (Xp) N L2y (Xo),

and the space of smooth V%-valued functions on H satisfying

f(vz) =py (7) f(2), (3.5)
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for all v € T', with finite norm

def
11320 [ 1R g ) < .

We denote the space of such functions by Cf;o (]HI; Vf). The completion of Cgo (]HI; Vf)
with respect to || @ ||z2(7) is denoted by Lé (H; V;2); the isomorphism above extends to one

between L2

hew (Xg) and L3 (HS V7).
Let Ccofz) (H; Vf) denote the subset of C;o (H; VT?) consisting of functions which are
compactly supported modulo I'. We let Hg (IHI; V,?) denote the completion of C’gfb (]HI; Vf)

with respect to the norm

def
1Bz < 1o + 1A ey

We let H? (X4) denote the completion of C2° (X,) with respect to the norm

def
1By < 132 + 1A F B,

Viewing H? (X) as a subspace of L% (X,), we let

HZ, (Xs) <

new

H2 (X¢) N LIQIGW (X¢) .

There is an isometric isomorphism between HZ,,

(X4) and H; (H; V;?) that intertwines the

two relevant Laplacian operators.

3.3 Random matrix theory

In this section we introduce the necessary random matrix theory results. Recall T' is a
free group on d generators vi,...,74. The wordlength wl(y) is the length of v as a re-
duced word in v1,...,7v4, 7{1, .. 7731' Let po : I' = End (l2 (F)) denote the right regular
representation of I'.

As described in §3.1, we make essential use of the fact, due to Bordenave and Collins

[ ], that for any m € N and any finitely suppported map v — a., € M, (C), a uniformly
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random ¢,, € Hom (T, S,,) satisfies

1D~ ay ® ps(Mllemave < (1 +0ns00(1) 1Y ay ® poc(W)llemarm), (3.6)
yel’ vyerl

a.a.s. To obtain precise rates as in Theorem 1.10, it is necessary to have an effective version
of (3.6).

By the linearisation trick [ , |, proving 3.6 is equivalent to proving 3.6 for every
linear polynomial. More precisely for any m € N and ag, a1, ...aq € My, (C) with ag = ag,
a uniformly random ¢,, € Hom (T, S,,) satisfies
-1

d
a0 @ Idyo + Y (4 ® py (1) + 0} @ pg (47 1))

=1

CmeVQ
d

ag ® Idg2(p) + Z (ai ® Poo (71) + a;,‘k ® Poo (fyz_l))
i=1

)

Cm@e2(T)

<(1+ 0nso0(1))

a.a.s. The idea is that one can replace a polynomial of large degree (i.e. a. supported on
long words in I') with a polynomial of smaller degree (to eventually a. only supported on
generators and their inverses, i.e. a linear polynomial) at the cost of replacing M,, (C) by
M, (C) ® My, (C) for some k. Since (3.7) holds for matrices of every size, the statements
are equivalent. The benefit is that a statement like (3.7) is often easier to prove.

Again, for our purposes, we need a quantitative version of (3.6). We rely heavily on a

quantitative version (3.7) due to Bordenave and Collins | .

Theorem 3.2 (] , Corollary 1.4]). Let m < nV'°8™ and ag,ay,...aq € My, (C) with
ap = ay. Then there exists a constant ¢y > 0 such that for a uniformly random ¢ €

Hom (T, Sy,), with probability at least 1 — %,

d
ap @ Idyp + Y (a; ® py () + 0] @ py (1;1))
i=1
d
aq ® Id@(r) + Z (ai ® Poo (’YZ) + CL;‘ ® Poo (’Y':l))
i=1

CmeVY

Cm@e2(I) (logn)

To pass from (3.2) to a quantitative version of (3.6), we use an effective linearization

N

N[
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proved in | , Section §|.

In | , Section 8], the authors considered operators of the form »_ . p ay ® py (7)
where B; is the ball of size [ in the word metric of I' with our fixed choice of generators.
In our case, the operators we want to consider will be of the form ). g a, ® pg () where
S C By where |S| is roughly of size [ which shall give us a quantitative saving. This is only
a minor adaptation to the arguments in [ , Section 8|, however since this is a key point
for our method, we include the details.

We say that a subset S C I' is symmetric if g € S implies g~ € S.

Lemma 3.3. Let [ > 2 be an even integer and let S C B;. Consider (ag)ges with ay €
M, (C).  Then there exists a symmetric set S1 C By with |Si| < 4[5, (bg),cq, with
2

by € My, (C) @ My, (C) and 6 > 0 such that for any unitary representation (p, V') of T,

1> av@p() llemay =11 > by @ p () ez iy — b
yeS vESL

where

0 <4181 ay ® poo (V) lemazry.
yeS

Proof. We consider a set S C B L such that
Sci{g'h|gheS}.
We claim we can choose S so that
|S1] < 4[S].

Indeed if w € SN B%, we can just take w and the identity to be in S;. If w € S has
wordlength > é, then it can be written as g~ 'h for two words g,h € B L and we add both
words to S1. We make S symmetric by including the inverses of any word already added,
at worst doubling the size of ;.

Note that we can enlarge S to a symmetric set without changing the size of Sy, since 51

is symmetric. After possibly replacing M, (C) with M, (C) ® M; (C) and enlarging S to a
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symmetric set, we can assume that the symmetry condition a, = ai,l holds, in particular

p def E'\/GS ay @ p(7) is self-adjoint e.g. | , Proof of Theorem 1.1]. Explicitly, by

considering the operator P = > ves Gy @ p(7) € My, (C) @ M3 (C) ® End (V) with

L 0 a,
Qi ,
a*_, O
y

P satisfies the symmetry condition and || P||cmec2ey = |Pllemev-
We now follow | , Proof of Lemma 8.1]. Consider the element a € M, (C) ®

Mg,| (C) defined by (agyh)g,hesl’

1
a —1hs
#{. W) eSix sl (@) W=gn} "

dg,h =

when g~'h € S and a, 5 = 0 otherwise. Then

E dgﬁ = Qqp-

g,h651
g th=weS

We have
lall® <1l D agnanpll < 1 awalll <11 aw ® poo (w) ||,

g,h€S1 weS wes

The operator @+ [|||Id,,s,| is positive semi-definite and we let be M, (C)e Mg, (C) be

its self-adjoint square root. For g € S7 we define

bg d:ef lNJ (Idm & €g,@) € M, (C) ® M\S1| ((C) ’

where eg 1, def 0y ® 0, € Mp, (C) and 0 is the unit in I'. Then defining
2

QE Y by plg),

geS
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we have

Q Q=Y (ldn®egy) b (Idn @ eyp) @ p(g~'h)
g,hESl

Y €00 @ (ag + llallLy=rldm) ® p(g'h)
g,h651

=¢pp® | Y ay@p(7) +0ldemey |
yeS

where

0 < IS 1Y ay ® poo (1) | S 4ISTIY S ay ® poe () -

yeS vES

It follows that

1QII* = Il Z ay ® p(7) + 0ldcmey |lcmeyv = || Zav ® p(7)llemev + 0.
yeS YES

We can iterate this process to obtain the following, c.f. | , Lemma 8.2].

Lemma 3.4. Let | > 2 be an integer, S C Bj and let v = [logyl]. Then for each k €
{0,...,v} there is:

e An integer ni > 1 with n, < 21 |S|“°g2 ([logy 11-1)
o A symmetric set Sy C Bov—r with Sp = S, |Sk| < min {4k S|, ’BTJ%’} _

o A set (ak)

b) s, with af € My, (C) @ My, (C).

e A constant 0y, > 0 such that for k >

k_
Z as g Poo (7) Hcm@@”k*@lz(r) Skl
YESK—_1

such that for any unitary representation (p,V') of T,

Z ag Nlemecm-1gy = | Z dg ® p(V)|[Emecrrsy — Ok
YESk-1 YESk
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Proof. This is a straightforward consequence of iterating the procedure of Lemma 3.3. We

have
H2|Sy Hz 415 = 224" s
where v = [log, I] which gives
Ny < 2l |S‘ [logy 1] l(“ng ”—1)’
as claimed. 0
As a consequence we obtain the following, c.f. | , Lemma 8.3]
Lemma 3.5. Let | > 2 be an integer, S C By and set v = [logyl]. Consider (a”é)ges as
in Lemma 3.4 and denote ag = ag, a; = af, for 1 < i < 2d. Let (p, V) be any unitary
representation of I'. We have that for 0 < e < 1, if
2612 ’S|f10g2 1] l([logz -1 <1
and
2d 2d
lag @1y + > a; @ p(vi) [cmecmev < llao@Tdpr) + Y 0 poo(i) lemacmarm) (1+€),
=1 =1
then

I Z% ®@p(Y)|lemev < || Z ay @ poo (7) llemeiz(r) (1 + 2¢l? ’S’ﬂogz 11 j(Nogy H—l)) )
veS veS

Proof. For k € {1,...,v}, let a]; € M, (C) ® M,, (C) for g € Sk be as given by Lemma

3.4. For some k € {1,...,v}, assume that for some 0 < ¢, < 1,

I atepM <Y a @ pe (M1 +ea).

YESk YESk
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Then by Lemma 3.4 applied twice,

k— k— k
Yod T wpM -1 Y. AT @pe N I=1D d@p P11 k@ pee (1) I
YESk-1 YESK-1 YESK YESK
p26) [ 1D a2 @ poe (1) [ + O
YESk_1
<4-451Slerll > @ pee () -
YESK_1

(3.8)

By assumption, ¢, = ¢ < 1 and then by setting €;_1 def g gh |S| er (recalling 6 <

4% |S| || D meSi af™1 @ po (7) || from Lemma 3.4), By the definition of e;_; we see

co=c|[4-4'1S| <26 |s|Moe T Moe2 1-1)

=1

If one picks 2¢l2| S| (Mog211-1) < 1 then this ensures that e,_; < 1 for j = 1,...,k
and we can apply the inequality (3.8) inductively starting from k& = v to k = 1 provided

that each subsequent €,_; < 1. O
By applying Lemma 3.5 and Theorem 3.2 have the following corollary.

Corollary 3.6. Let m and l satisfy
2mi |S|[1og2 11 j(Moga 11=1)  ,v/Iogm.
Let S C By be a finite set whose size satisfies
20y [5]10% 1 171081 < (log (n))*

where cy is the constant in Theorem 3.6. Let v — ay € My, (C) be any map supported in

C1

S. For a uniformly random ¢ € Hom (I, Sy,), with probability at least 1 — T one has

212|S] [logy U] j(Tlogs z1-1)>

1) " ay @ pp (1) llemeve <Y ay @ poo (1) llemer) (1 +c1 T
(log (n))*

yeS yeS
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3.4 Cusp parametrix

In this subsection we introduce the cuspidal part of the parametrix. We make the assump-

tion that X has only one cusp to simplify notation. We identify the cusp C with

¢ (1,00) x S,

with the metric
dr? + dax?
r2

7 (3.9)

where (r,z) € (1,00) x S'. For each n € N we will define the cutoff functions x{,,xz,, :
C — [0,1] to be functions that are identically zero in a neighborhood of {1} x S1, identically

equal to 1 in a neighborhood of {co} x S1, such that

X(—;nXC_,n = XC_,n‘ (310)

We extend Xén by 0 to functions on X. Let x : N — (0,00) be some given function. Later
on (Lemma 3.17) we shall pick a specific function  (n), which will essentially be the rate we
can take inf spec .., (Ag) — i a.a.s.. As indicated by the subscript, the functions X(';n, Xcon
will depend on n through the function x(n). We lift Xén through the covering map to
obtain functions Xg,n, s on X4. Indeed, the cusp of X splits in Xy into several regions of
the form

(1,00) x R/mZ, (3.11)

with m € N, and with the same metric (3.9). In these coordinates the covering map sends
g 1 (r,x+mZ) — (r,x + 7).

In particular, it preserves the r coordinate. We then define.
Xemo EXE omy: Xs— [0,1],

where 7y : Xy — X is the covering map.
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Lemma 3.7. Given k : N — (0,00), for each n € N we can choose Xgn as above so that

K (n) '
30

Proof. One can find a 79 > 1 and a smooth function x/, : [0,00) — [0,1] with x}, = 0 for

T in [0, 1], XE‘ZF,O =1 for 7 > 79 such that

sup [(xdo)'s sup [(xdo)"| < 1.
[0,00) [0,50)

Then defining

N 0 for ¢t € [0, 1]
XZ,O (% (t—l)—i—l) for t € (1,00)

we have
K (n)
up (32, sup [(0,)"] < U, (312)
[0,00) [0,00)
Note that £, (1) =1 for 7 > 7, o % (1o —1) + 1. Let C’ be any cusp region of Xy as

in (3.11). Using the change of coordinates r = ™ we view C’ as
(0,00); x R/mZ,

with the metric (d7)? +e 27 (dz)? where z is the coordinate in R/mZ. In these coordinates,

one can calculate directly from the formula for the metric that

IVXE gll(r,2) = [T (7)),

and

[Axggl(r,2) = )" (7) = ' (7))

It follows from (3.12) that
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and

IAXE W lloo = sup [(x¢ )" = (X¢,

0,00
If one chooses x. ,, to be a function with x, (7) =0 for 7 < 7, and x; (1) =1 for 7 > 27,

(3.10) is satisfied and the lemma is proved. O

Let C4 denote the subset of X4 that covers C. We extend C to the parabolic cylinder
¢y (0,00) x S,

with the same metric (3.9), and let é¢ be the corresponding extension of Cy. Let H? (é¢>

denote the completion of C° (é¢> with respect to the given norm

def
1112 = 11172 + I AFIZ--

The Laplacian A = A@¢ extends uniquely from Cg° (@p) to a self-adjoint unbounded

operator on L? (@¢) with domain H? (@¢)
Lemma 3.8. For any f € H*(Cy), we have (Af, f) > 1| f||.

Proof. Tt suffices to prove this for C, replaced by (0,00) x R/mZ with the metric (3.9) i.e.
with only one connected component. Then changing coordinates to 7 we are working in
the region (—o0, 00) X R/mZ with the metric (d7)? +e27(dz)2. The corresponding volume

form is e”"d7 A dx and the Laplacian is given by A = —€T%€_T% - 62753—;2. Now suppose

f€eC®((—o0,00) x R/mZ). We calculate

02 1, 0

—7/2 /2 - _ Y - v
e 'Ae a2 4 902

s0if g =e T/2f € O ((—o0,00) x R/mZ) we have
/ Alf]fe "dr N dx = / / [e"™2Ae™?] (g) gdr A dz
—o00 J0

1 o0 n 1 oo n _
> / / ggdr N\ dx = / / ffe Tdr Adx.
4 —o0 J0 4 —o00 J0
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The inequality here used integrating by parts. The inequality obtained now extends to
H? <@¢) by density of C’é’o(@,) and continuity of (Af, f). O

Lemma 3.8 implies that the resolvent operator
def -1.72(p 2 (7
Ra ()€ (A—s(1-5)7": L (c¢) ~H (c¢),

is a holomorphic family of bounded operators in Re(s) > %, each a bijection to their image.

This gives an a priori bound for the resolvent: using
(A—s(L— ) Re ()] = 1.

and Lemma 3.8 we obtain that for f € L? (@,) and s € (3, 00)

1
IR, 2 < (3= s(1-9))  Ile (313)

Since

ARp, (s)f = f+s(1 = s)Rg (s)f,

we obtain for s € (3, 00)

ARz, (s)fllr2 < Il + s(1 = s)|[Rg, (s)fl 2

s(1—s)
< |14+
< ( i 5>> 1152
1
We now define the cusp parametrix as
def _
Mg (5) = X¢ 6B, ()XC 6 (3.15)

Here,

e (multiplication by) x. ,, 4 is viewed as an operator from L*(X,) to L? (C4) by mapping

first to L?(Cy) and then extending by zero. This is a bounded linear operator.
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. Ré¢(s) is a bounded operator from L?(Cg4) to H?(Cy).

e (multiplication by) x& , ¢ 18 viewed as a operator from H?(Cy) to H?(Xy), using that
Xé—,n, & localizes to Cy4 and then extending by zero. This operator is bounded because

derivatives of Xg .o re bounded and compactly supported.

Hence

MG (s) : L*(Xg) — H*(Xy)

is a bounded operator.

The covering map Cy — C extends in an obvious way to a covering map é¢ — C that
intertwines the two Laplacian operators. This, together with the fact that multiplication
by XC.n.é and Xér,m o leave invariant the subspaces of functions lifted through the covering
map, one sees that

M (s) (Liew (X4)) € Hpey (Xp) -

Because XZZL,n,¢XE,n,¢ = Xan,dﬂ
(A= s(1—s)) M (s) = Xg g + {A’ Xén,¢] Re, ()Xo = Xemo g (5), (3.16)

where
def + "
]prusp(s) = [Avxc,n,dj Réé(s)XC,n,q&’

and [A, B| 4f AB — BA denotes the commutator of linear maps. Here again we view x. . é

and Rg (s) as above, and |:A7Xé—,n,¢j| : H*(Cy) — L?*(X,). This means that Ly " (s) is an
operator on L?(Xy). By similar arguments to before, using that [A, x{ | only involves

radial derivatives (since xé o 1S radial), we obtain
L™ () (Liew (X)) C Liew (Xo).

Lemma 3.9. For s € [%—k \/m(n),l}, the operator L(Cbusp(s) is a self-adjoint, bounded

operator on L* (X4) with operator norm

g™ ()l 2 <

0| =
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Proof. As an operator on H2(6¢)

[A,XZ,W] = (AXZ{”, ¢>) _9 (VXZZH, ¢>) v

The first summand is a multiplication operator; for f € H? <é¢) we have

I(AXE p6)f N2 < IAXE ) ool £ 2 (3.17)

and by Schwarz inequality if || f|| g2 < 1 then

(VX 00) - Vi ez S IVXE, glloo IV £l 2
1 1 1
= [VXE nglloc{AF, )2 S NIVXE, gl I AFIIZ ] £112

< VX glloo (3.18)

The two estimates (3.17), (3.18) hence show that [A, x7 ¢ has norm bounded by [(AxS 8)lloat

QHVXZ’H’QSHOO as a map H> <é¢) — L*(X,). Since multiplication by X¢.n Das norm

< 1 from L? to L?, and R@¢(s) has norm from L?(Cy4) to H?(C4) bounded by 15— for

4k(n)
5 € {% + /K (n), 1} by (3.13) and (3.14). In particular, for s € |1 4+ /K (n), 1},

—

ISP, () < (HOXE ) oo + 219X gloc)

by applying Lemma 3.7. O

3.5 Operators on H
3.5.1 Resolvent on H

For s € C with Re(s) > 1, let

Ru(s) : L* (H) — L2(H), Ru(s) & (A — s(1 — )71,
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be the resolvent on the upper half plane. Letting r(x,y) o dp (x,y), Ru(s) is an integral

operator with radial kernel Ry(s;r) given by

def 1 (1 7N (1 —t)!
Ru(sir) = — dt. 3.20
IHI(S,?") An /0 (COSh2 (g) _ t) s ( )
For t € (0,1), we have
o t'1—eost ry Tl — )5t
or (cosh2 (5)—1t)° = —ssinh (5) cosh (5) (cosh2 (5) —t) stV

9 (11! :10g< t(1—t) ) £ (1 — ¢)s!
Os (cosh® (3) —t) * (cosh® (5) =) ) (cosh® (5) —#)

tH(1—t)

82 ts—l(l _ t)s—l B ) r r ts—l(l _ t)s_l
D501 (cosl® (5) — 60 o (5) cosh (3) (cosh? (5) — ¢) s+1

Each of these are smooth in (s,7,t) € [5,1] x [1,00) x (0,1). Because for s,r in a fixed
compact set of [%, 1] x [1,00), these all have absolute values bounded above by integrable
functions of ¢ € (0,1), we can interchange derivatives and integrals to bound Ry. Firstly,

there is a constant C' > 0 such that for ro > 1 and s € [%, 1] we have

| Rz (s; 7)1,

80%(3; r)' < Ce . (3.21)

Secondly, there is a constant C’ > 0 such that for any 7 > 1 and r € [1,T + 1] and all

s € [l 1]7

<C. (3.22)

3.5.2 Integral operators

If ko : [0,00) — R is smooth and compactly supported, which will suffice here, then one

can construct a kernel

k(x,y) & ko(du(z,y))
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with corresponding integral operator C*°(H) — C*°(H)

K[f)(z) / _, Ha) f) )

where dH is the hyperbolic area form on H. Such an operator commutes with the Laplacian

on H and hence preserves its generalized eigenspaces. If f € C*(H) is a generalized

eigenfunction of A with eigenvalue % + &2, ¢ >0, then by [ , Thm. 3.7, Lemma 3.9]
(cf. also Selberg’s original article [Se56])

K[f] =h&)f
where

N \6/_00 /u| \/cosh Sliﬂ::i)psii(u) dpdu.

By our assumptions on kg the integral above is convergent. Since L?(H) has a generalized
eigenbasis of C*>° eigenfunctions of the Laplacian, by Borel functional calculus K extends

from e.g. C°(H) to a self-adjoint operator on L?(H) with operator norm
1K || 2y = sup [A(E)]. (3.23)
£20

3.5.3 Interior parametrix on H

Let xo : R — [0, 1] be a smooth function such that

1 ift<0
Xo () =
0 ift>1

For T > 0, we define a smooth cutoff function xr by

xr(t) & xo(t = T).
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We then define the operator RI(HIT)(S) : L? (H) — L? (H) to be the integral operator with

radial kernel

def
R](HT)(S;T‘) = xr(r)Ru(s;r).
In radial coordinates the Laplacian on H is given by [ , pg. 50]
o 1 9 1 o2

"~ 9r2  tanhrdr sinh%r 0602

We now perform the following calculation, writing A, for the Laplacian acting on coordinate

xT:

[Ay —s(1— 8)] RS (s;7) = [Ay — s(1 — 8)] (xr(r) Raa(s; 7))
_[ 0? 1 0

~ 52 " tanhr By xr| Ru(s;r) + dr=0 (3.24)

which is understood in a distributional sense. We further calculate

0? 1 0 0? 0 0 1 0
ot~ | =gl - 2abaly - e el (329

Combining (3.24) and (3.25) we expect an identity of operators
(A —s(1—s) BRI (s) =1+ LY (s) (3.26)

where we define ]LI(HIT)(S) to be the integral operator with radial kernel

() ydef (O 1 D N 90 ORw
L) (—alr] = ol ) Ra(sir) = 20 Pl S i), (320

The identity (3.26) will be established in Lemma 3.12 below. The following estimates

can be easily obtained from (3.21) and (3.22).
Lemma 3.10. We have

1. ForT >0 and s € [3,1], L) (s; @) is smooth and supported in [T, T + 1].

42



2. There is a constant C' > 0 such that for any T'> 0 and s € [%, 1] we have
L (s:70)] < G

3. There is a constant C > 0 such that for any T > 0, s € [%, 1] and ro € [T, T + 1]

GL(T)
s (s0570)

<C.

We can now bound bound the operator norm of LI(HT)(S).

Lemma 3.11. There is a constant C > 0 such that for any T > 0 and s € [, 1] the

operator L]%IT)(S) extends to a bounded operator on L? (H) with operator norm

IS ()| L2y < CTe3#)T.

Proof. We apply (3.23) which tells us

- o0 (s; p) sinh(p)
L@ (s — \/5/ / dpdu
I H (8)ll 2 5218 _ Ju \/cosh — cosh(u) P

\L( ) (s; p)|sinh(p)
\f/ /|u \/cosh(p) — cosh(u )dpdu

T+1 T+1 —Sp
2\[0/ / ¢ sinh(p) dpdu
max(|ul,T) \/cosh(p) — cosh(u)

T+1 (T+1 :
< C/ —ST/ / Slnh(p) dpdu
max(|u|,T) \/cosh(p) — cosh(u)

T+1 h(T+1)
=C'e sT/ " /COS . Ay du
coshmax(|ul,T) \/ Y — COSh(u)

i _—sT the
=C"e V/cosh(T +1) — coshu
0

— /coshmax(|u|, T) — cosh |u|}du

< C///Te(%—s)T

where the third inequality used Lemma 3.10. O
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We will need to ensure that, for example,

1
I (e < .

for s € {% + /k(n), 1} . This means we have to take 7' = T (n) such that,

1
Te TVr) < = (3.28)
for all sufficiently large n. We will eventually take  (n) = 4(107%7;[)2 which ensures (3.28).

The following lemma shows that smoothly cutting off Ry(s) at radius 7' does not sig-

nificantly affect its mapping properties.

Lemma 3.12. For any T > 0 and s € [%,1], for any compact K C H, there is C' =

C(s,K,T) > 0 such that:

1. For any f € C°(H) with supp(f) C K we have R]%{T)(s)f € H*(H) and

IR () fll e < C (5, K, T)|| £l -

2. Furthermore, with f as above

(A —s(1—)RG (s)[f] = f + LG (9)If]

in the sense of equivalence of L? functions.

Proof. Suppose that compact K is given and f € C°(H) with supp(f) C K. Fory € K

we have R]%IT)(S; x,y) = 0 unless

ze K'(T,K) ¥ {2 : dz, K)<T+1}

44



with K’ compact. Therefore using the usual Hilbert-Schmidt inequality we obtain

IR ()12 e

_ / / RE (s;2,y) F(y)dH(y)
zeK' |JyeK

<[ ] B eeprane) ([ swram) me. 62

Recall that we write r = dg(x,y), hence the inner integral can be written in polar coordi-

2
dH(z)

nates as

27
/ R(T)(s z,y)2dH(y / / R(T (s;7)% sinhr dr df
yeK

< 277/ RI(HIT)(S,T) sinh r dr (3.30)
0

for M = M(K,T). Because xyr = 1 near 0, the type of singularity that R( )( r) has at

r = 0 is exactly the same as the type of singularity of Ry(s;r) near r = 0; namely by [ ,

(4.2)]

R[(HIT)(S;T) = —%log (2> +0O(1) (3.31)

as r — 0. The function Rﬁ_HT)(s; r) is smooth away from 0. Hence, since (log (%))2 sinhr — 0

asr — 0, R]%IT)(S; r) is in particular square integrable on [0, M]. This gives from (3.29)

IR e < [ O KD (o) < C o KT g (332)
zeK'’

We now aim for a bound on HAR ( )22 4, S0 as to prove RI(H[T)(S)[f] € H%*(H) and
bound its H?-norm.

Let g € C°(H) be a test function and f € C2°(H) with support as above. Consider

/D@80 = [ ([ R s o) ) Agte)da).

Because f and g are compactly supported and the singularity of RJ%IT) (z,y) is locally L!
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using (3.31), we can use Fubini to get

ED 11,80 = [ » ( | R x,ymg(:c)dH(x)) F(y)dH(y). (3.33)

We use hyperbolic polar coordinates for the inner integral, writing r = d(z,y) and 6 for
polar angle, Gy (r,0) def g(z), and the inner integral is understood as an improper integral

as follows:

/ R (s; 2, y) Ag(w)dH(z)
21 2
L (T) 0 . 0Gy\ . - 1 0°Gy
— lg%/ / (s;7) o <smh7’8r >(r,9) + (sinhr)2 502 Y(7,0) | dodr

2m
_ (T) (4. 5 9Gy\ = ) dédr
= 151(1)/6 /0 Ry (s;7) < o )(T,@)) dedr
2w poo
T D (oo (2 in 2G9N (7 a0 ) drdi
= lg% ; /E Ry 7 (s57) <37‘ <s1nhr o )(T,H)) drdf

2
— 1imy D) :
_lg%RH (s;€) smhe/

Yo
N
wn
£
=
=

2w aR ~ ~
+ lim / (s;7)sinh raGy (7, 0)drdo
e—0 or

2 R(T
= lim / (s;7) smhraac;( ,0)drdf (3.34)

e—0 T

where the last equality used (3.31) with smoothness of G,,. Now a similar calculation gives

% Ry 0Gy , -
. H L\ e OLy ~
lim / B (s;7)sinhr o (7, 0)drde
(1) 2 o
OBy (s;€)sinhe Gy(e,0)df
0

e—0 Or

2w poo o 8R(T)
—1i — | sinhr—E2 0)did
im ; /E 5 (bln 5 (s;7)Gy(T,0)dr

T

21 oo (T) ~ ~
—(y) — lim / ; (smhrag’f )(s;f)ay(f,e)dme. (3.35)
0 €

The second equality used [ , pg. 66]
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as € — 0 with lim._,0 Gy (¢, 0) = g(y). Now we note

1 0 R T
_ i inh H 7= A (T) .

sinhr or (sm " or (5;7) By *(s:7)
and so using (3.24), (3.25) and (3.27) we get, for 7 > 0,

1 oRr{
0 (sinhr H ) (s;7) = s(1 — S)R](HIT)(S; 7) + ]L](HIT)(S;f

~—

 sinhr Or or

Therefore

oo (R
—lgl{l) ; /6 aT(smhr o (8;7)Gy(T,0)drdd

= lim (s01 = 9B (5:7) + L (5 d(x.p)) ) g(x)dHi(z)
=0 d(z,y)>e

_ / (U= 9RD (sl p) + L (s d,p))) gl dmta) (3.36)

and this last integral is easily seen to converge by working in polar coordinates centered at
y and using g € C°(H) and (3.31).
Now combining (3.34), (3.35), and (3.36) gives, for (3.33),

(RS (5)171, Ag)
= [ [f(y)gly)dH(y)
yeH
e[ (L (0= R o) 4 LD s o)) o)) )
= {£,0)+ (s(1 = )BT (5)[£1. ) + (L ()], 9)
Note that by (3.32) and Lemma 3.11 all functions above are in L?(H). This identity now

clearly extends to any g € H?(H) and now self-adjointness of Ag on H?(H) gives that
R]%IT)(S) [f] € H?(H) and moreover

(A = s(1— )RS (s)[f] = f + LG (s)If]

in the sense of elements of L?(H). This proves the second part of the lemma.
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We now rewrite this identity as

ARD($)[f] = £+ 51— )RD (9)[] + L (s)1/]

and using Lemma 3.11 and (3.32) now gives

T
1ARE ()l 2y < els, KT f | e
Combining this with (3.32), this proves the first part of the lemma. 0

3.6 Interior parametrix

To build our interior parametrix, we define,

R]%I:?)I(S’ €, y) d:ef R]g—]IT) (S, z, y)IdV797

LY (si,y) < LY (s;2,9)Idyo,

and R](}HTz(s),LI(HTT)L(s) as the corresponding integral operators. The relevant properties are

summarized in the following Lemma.
Lemma 3.13. For all s € [3,1],
1. The integral operator R]EHTT)L(S)(I — X¢.,) is well-defined on C2% (H; V) and extends to

a bounded operator

RI(PHJ:,)L(S) (1 — xan> : L<2b (]HI; V7?) — qus (H; Vf) .

2. The integral operator Lg},’n(s)(l — Xc.n) 18 well-defined on CZ (H; V) and and ez-

tends to a bounded operator on L(Qﬁ(H; VY.

3. We have

[A 51— 8)] R by (5)(1 = xg.) = (1= Xgp) L pu(8)1 = xga) (337

as an identity of operators on Li(H; V).
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Proof. Suppose first that f € C’%(H; VY) (i.e. automorphic, smooth, and compactly sup-

ported modulo I'). We have for x € F

R (5)(1 = xg ) [f)() < / i RY (s, 9)(1 — X () f () dH(y). (3.38)
ye

The integrand here is non-zero unless d(z,y) < T + 1 and y is in the the support of
1 — x¢, which is a union of the I'-translates of a compact set K of of F. There is compact
K1 = K{(T) C F and finite set S = S(T) such that the integrand in (3.38) is supported
on the compact set Ko def Uvesfy_lK and the whole integral is zero unless x € K; (given
x € F to begin with). A proof of this fact is given in Lemma 3.14.

Let ¢ be a smooth function that is = 1 in Ky U K, valued in [0,1] and compactly

supported. Let {e; : 4 € [n — 1]} denote an orthonormal basis for V¥ and let

def

fi = (f,e;) € C(H).

The above shows that for x € I we have

R ()1 — xg.) (@) = RE) (s)(1 — xg,)[f]()

= "z_:l RI(H[T)(S) [(1 — XE,n) wfz:| (x)e; (3.39)
=1

hence
D0 - e = S B [(1-xg,) vh] @)
=1
‘2

IARD 60— xe I = 3 ARD () [(1-xe) ] @)
=1

Each function (1 - Xc n) ¥ f; is smooth here and has has compact support depending only
on T and X, ,,-
Now using Lemma 3.12 Part 1, the fact that (1 — XC_n) is valued in [0, 1], using ® is

supported only on finitely many ['-translates of F', together with automorphy of f, we get
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by integrating over F'

IR (S) (1= XEn) FIBacr) < D I AillFaq) < C'IF e,

IARD () (1= Xg,0) U122y < C 3 10 fill2ay < C' 122,

where C,C’" depend on s,T. Now this bound clearly extends to f € L;(H; V9). This proves
the first statement of the lemma.

The statement that Lg%(s) is well-defined and bounded on Lé(]HI; V9 is just an easier
version of the previous proof using Lemma 3.11 instead of Lemma 3.12. This gives the

second part of the lemma. We note that we also obtain
T “ T
Lz (5) (1 - XE,n> ] =Y L (s) {(1 - xan) wfz} & (3.40)
i=1

analogously to (3.39).

Now going back to (3.39) and using Lemma 3.12 Part 2 give, considering

(A = s(1= )R (1= x5, V]

A st - )RD ) [(1-x,) e e
=1

S (1) 106 [(1-xa) v
=1

_ (1 _ Xg’n) f+Lg(s) (1 - xg,n) [f]-

On the other hand, the fact that all functions at the two ends of the string of equalities

above satisfy the automorphy equation (3.5) almost everywhere implies that indeed

(A= s = DR (1=xe,) 1= (1= xen) £+ L) (1= x,) 1f]

as equivalence classes of measurable functions on H. This proves the final part of the

lemma. O

50



We define our interior parametrix

M (5) : Liew (Xo) = Hyowy (Xo) |

new

to be the operator corresponding under L2, (X,) & Li (H; V;?) and H?

new new

(Xy) = H (H; V)

to the integral operator RI(EHTr)z(S) (1 - Xc. n) . Then by defining
My (5) = M*(s) + Mg (s),
we obtain, using (3.16),

(Aqu - 8(1 - S)) M¢ (8) = (1 - X(?,n,¢> + Lglt<3) + Xg,n + X(—;n@Ré’,qﬁ (8) Xg,n,d)

= 1+ MJ*(s) + Mg (s). (3.41)

3.7 Probabilistic bounds on operator norms

In this section we prove the probabilistic estimates needed for the proofs of Theorem 3.1.
Some constants in this section will be important and others will not. We often write C
to denote some positive constant (which may only depend on possibly the choice of base
surface X') whose value we do not need to track and warn the reader that the precise value
of C' may change from line to line. Important constants will be indicated by a subscript or

given a numerical value.

3.7.1 Preliminaries

Throughout this subsection, let x : N — (0, 00) be given and let Xécn be chosen as to satisfy
the conclusion of Lemma 3.7. The purpose of this subsection is to ensure that our random

operators M™(s) are of the correct form as to apply Corollary 3.6.
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Let f € CF° (H; V;) with [|f]|2, ) < 0o. We have

L) (1 - xg,) (@) = / L (9) (si2.9) (1 xg,u0)) )

=> /yEF LI(HIYZ(S) (sive,9) p (v) (1 — Xgn (y)) f(y). (3.42)

We have an isomorphism of Hilbert spaces

L7 (H;C") = L* (F) @ V),

=)l edvo @ e

Conjugating by this isomorphism,

L](}HY:BL(S) (1 — XE,n) ~r def ZG(T) ) ® p¢ 1) :
~el

where

(s): L*(F) = L* (F)
lef

ol (7)
AR [ D ) (1360 ) )

Note that for any n € NT > 1, s € [%, 1] and v € I', the operator a% (s) is an Hilbert-
Schmidt operator with Hilbert-Schmidt norm bounded only depending on X. Indeed by

Lemma 3.10, we have

/WEF ‘LI([-]IT) (8;7,y) <1 — Xem (y)) ‘2 dH(x)dH(y) < C'Vol (X)?.

(7)

It is crucial that the map v + a3, (s) has finite support S whose size we can control. We
also need to bound the wordlength of any v € S to apply Theorem 3.6. This is achieved in

the following lemma.

Lemma 3.14. Given n and T > 0, there is a finite set S(T) C T' which contains the

52



support of the map v +— af(g,z(s) for any any s > % There is a constant C' > 0 such that

1S (T)| < Ck (n)*e?7, (3.43)
and if v € S(T') then its word-length wl () satisfies
wl(7)< Ck (n)? L. (3.44)

Proof. We define

K, % Supp (1 . Xg,n) CF

Recall from that Dg (L) is the region of the fundamental domain F with y > L . By the

definition of x,,, (Section 3.4), we have

K, C F\D, </<;(Cn)> ,

for some constant. We have that

70, (15 ) =L (2o (05)).

Recall that D (1) \ Dy (%) is the region of the cusp a bounded by the length 1 and the

(n)
length # horocycle. The diameter of (F\Dq (1)) is bounded by a constant depending only

n)

on X. The diameter of D (1)\Dq (%) is bounded above by log (%) + 2. It follows

that

diam (K,,) < C + log <ﬁ(1n)) .

Then for x € F', by Lemma 3.10, the expression

Ly (sva,y) (1 — Xem (y))

is non-zero only when y € K,, and d (yz,y) < T + 1. Recall that F is a Dirichlet domain
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about some point w, we can assume w € K,. Then

d(yr,w) < d(yz,y) +d(w,y)

< T+ 1+ diam (K,) .
Then since F is a Dirichlet domain about w,

d(yw,w) < d(yw,vz) +d(yr,w) = d(w,z) + d (yz,w) < 2d (yz, w)

<2(crion () +7).

Then we can employ a lattice point count to deduce that

IS(T)| < #{y el |d(yw,w) < C+2logk (n) + 2T}
1 e?T
< Cexp (2 <C’+log () +T>> <C——0,
K (n) K (n)
proving (3.43).

We now show property (3.44) holds. We assumed that F is a Dirichlet domain for T',
we can also assume that F is such that the set of side pairings {hl, cooy hy, hl_l, el h,;l}
for F contain our choice of generators 71,...,7; and their inverses. We let wl () denote

the minimal length of v as a word in {hl, ceuy hy, hl_l, ... ,h,;l} . Since any h; or its inverse

hi_l is a finite word in vy, . .., V4, 71_1, .. ,'ygl it follows that there is a constant C' > 0 with
wl(y) < Cwl().

We now set about bounding

sup wl (7).
veS(T)

By the previous argument, if v € S (T") then
~F O B (w, diam (K,) + T + 1) # 0. (3.45)

We claim that if v satisfies (3.45) and wl () > 1, then there is a 7/ with wl(y) = wl(y/) —1
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which satisfies (3.45). The case wl(y) = 1 is clear since w € F. For [ > 1 let I'; denote
the elements of T’ with wl () = . Since {hl, coos By hl_l, ce h;l} are side pairings for the

Dirichlet domain F', we see that see that

o o

UA (U =(UUw7) ulUU~F

~vel yely i<lvyel; i>lyel;

is disconnected. Here U°denotes the interior of U. Therefore if there claim were not true,

then one could find an [ > 1 with

U 7F N B (w,diam (K,,) + T+ 1) # 0, (3.46)
~vel
such that

U 2F N B (w,diam (K,) + T + 1) = 0,
vEl 1

in particular,

B(w,diam(Kn)—i-T—i-l)CU’Y]:\ U v
yer veli—1

Then since the ball of radius r in the hyperbolic plane is connected and the identity in I’

satisfies (3.45),

o

B (w,diam (K,)+T+1)c | |J |JF
i<l—1~€ely

This gives a contradiction to (3.46) and the claim follows. It follows that if v satisfies (3.45)
then wl (v) is bounded above by the number of v € T' which satisfy (3.45). Then by the

argument that led to (3.14),

2T (n)
sup wl(y) K C#{y €T |vFNB(w,diam (K,)+T+1) #0} < o< 5
~eS(T) K (n)
and the claim is proved. O

Currently, our operators »_ g a%(s) ® py (v~!) whose norm we wish to bound are

almost of the form of Corollary 3.6 except a%(s) : L?(F) — L?*(F) are not matrices.
(T)

However each a5, (s) is compact so can be approximated by finite rank operators. We need
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an effective version of this whilst having control over the rank in terms of the error.

Lemma 3.15. Let s € [%, 1] be given. For everyn € N and T > 1, there exists a finite
dimensional subspace W C L2 (X) with |[W| < C (S (T))? for some constant C and finite

rank operators b(WT,z : W — W for each v € S(T) such that

1

T T
1652 — 2622 < g5y

Proof. Let v € S(T), then since aSYT)(s) is compact, it has a singular value decomposition

a%(s) = an (aﬁfﬂ(s)) (-yei) fis

1€N

where {e;},cy and {fi},cy are orthonormal systems in L? (F) and {sn},cy is a decreasing

sequence of non-negative real numbers. Then by defining

b(%Trz(S) = Z Si (a(yT)(S)) (- €i) fi,

i=1

we see that b1 (s) : W, — W, where [W,| < 2r and

1662(s) = a6l < v (A)

’Y7n

We want r to be such that

1
(T) < -
Sr+1 (afy,n(s)> S QO‘S(T” . (347)

We have

e 2

> s (all®) = lafR$)lEs < €.

i=1
Then

o0 2 r 2
0< > s (o) = Il (s) s = - si (al)s))
i=r+1 i=1
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In particular,

Sy (a%(s)) < \/é

Taking 7 > 400 - C - S (T)? guarantees that (3.47) is satisfied. Then |W,| < CS(T)? for

each v € S (T') and taking

gives the conclusion. O
Finally we prove a simple deviations bound.

Lemma 3.16. There exists a constant ca > 0 depending only on X such that for any T > 1,
any v € S(T) and s1,s2 € [3,1],

Ha'(&(sl) - %?11),(52)’&2(7) < colsy — sal.

Proof. The operator

T

)

—~
~

(s2)

PN
53

as’y(s1) —a

2
3

)

is an integral operator with kernel

(IL«[(HIT) (s72,y) — Ly (172, y)) (1 ~ X (y)) :
We have for any T'> 1, v € S(T), by Lemma 3.13,

‘51 — S2

0
zggﬂdgf)(S;’wr,y)

‘ng(awﬂay)—ﬂéf)@;vxﬁﬂ‘< sup
s€[5,1]

<C|81*82|.

Then we see
(1)

lal") (1) — alT) (s2) | 27) < [lal) (s1) = 0l (s2) s, < e2ls1 — sal

for some constant ¢y > 0. ]
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3.7.2 Random operator bounds

We are now in a position to apply the results of Section 3.3 to our random operators L, 4(5).

v1oglogn 4-242(log log log n)?
24 and K ( ) loglogn ’

Lemma 3.17. With notations as above, Taking T =

we have that with probability tending to 1 as n — oo

3
sup 1Ln.6(3)2(m)eve < 5

s€ [%—h/n(n),l}

2
Proof. Let T = 7”0%}105’”1, k(n) = 4'242(&;1?5}10%") and let s € [ + /K ] be fixed.
Then by Lemma 3.15, there exists a finite dimensional subspace W C L? (X) with m =

C-<2, and operators b%T) : W — W for each v € S (T) such that

< €
W<

1
165 () = aST ()2 7S S5 @)

It follows that

1
1L0s(s) = D 0(8) @ oy () 2 (mrevy < 550 (3.48)
~eS(T)

We want to apply Corollary 3.6, to bound

> b? ) ® pg (V) llemeve,
~yeS(T

leading us to require that

2ml | §|[10g21 j(Mlogz 11-1) < pyv/logn

)

and

W=

12 |§|Mtee2 T j(Mog2 11=1) < (10g (n))7 .

Since m < C-%~5 and LS| < C’LTQ, c.f. Lemma 3.14 and Lemma 3.15, it is a simple

K(n)” r(n)
calculation to check both inequalities are satisfied if one takes 7" = 7”(’%}10@1 and K (n) =
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4-242(log log log n)?
loglogn

. We learn that with probability at least f’ we have

1
1, 30d-+100

12 15| Moe2 11 13 (Nogy 11-1)
1Y 652(8) ® ps () llemeve < 1Y 05(8) ® poo () llemaizry <1+ =

yeS yeS

=l Z b% ) @ poo (V) lemeiz(ry (L4 0(1)).
v€ES

We have an isometric linear isomorphism

L?(F) ® 2 (T') = L? (H),

f®6y > fory™t,

(with f o y~! extended by zero from a function on ). Under this isomorphism, the

operator . . ay, ,3( ) @ poo (¥71) is conjugated to

LD (s) (1 _ chn) L L2(H) — L2(H)

from Section 3.5. Since (1 - Xc. n) is valued in [0, 1], multiplication by it has operator norm

<1 on L%(H), we see that
1_s
ILD () (1~ xg) Iz < L ()2 < OT (m) e T GE),

Since s € { + /K 1} and & ( % we have

T (n) e~ T™(E=3) < T (n) e 28T M) = 4 (1)

Then by Lemma 3.11 we have

_ 1
1Y~ aD(8) @ poo (v r2my@izr) < 10’ (3.49)

yES
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for sufficiently large n. By the argument that led to (3.48), we see

_ 1
I Zb ® poo (7)) =D alT(5) @ poo(v L2 (mrmiz(ry < 20 (3.50)
veS yeS

Then by (3.48), (3.49) and (3.50), for our fixed choice of s,

2
H'Cn,d)(S)HL?(]—')@V,? < 5

with probability at least 1 — %
We now use a finite net argument to control all s € {% + vk (n), 1} uniformly. Let Y
be a finite set of points in [% + K (n), 1} so that each point of [% + K (n), 1} is within

1
55 (T) |e2”

of some element of )/, where ¢y is the constant in Lemma 3.16. We can pick ) so that

V| < 5c2 ]S (T)] < ;&?2. Then by applying an intersection bound, the probability that

2

1Ln.6() | 2m)0ve < =
9

for every point s € ) is bounded below by

2T eVioglogn
1-C————>1-C'""—n (3.51)
Vi () v
which tends to 1 as n — oo and
2
sup (| L, (s) |l 2(7)ecr < 5
sey
a.a.s. Finally, for sq,s9 € {% + £k (n), 1},
Lag(s1) = Lag(s) = 3 [alD(s1) = aP(s2)| @05 (7). (3.52)

YES(T)
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Then by Lemma 3.16, for some constant co > 0 we have
1a$7 (s1) = alP) (s2) [l 27y < cals1 — sal,
for all v € S(T) and s1, s2 € [so, 1]. We see that,
1£n,6(s1) = Lng(s2)lL2(m)cn < IS (T)| cals1 — saf-
Then by the choice of Y, it follows that

= sup Lo g(s)]l <
s€ [%Jr n(n),l]

(SN
ol W

sup [ L (s) | <
se€y

Since the prior happens with probability tending to 1 as n — oo, the first claim is proved.

O

3.8 Proofs of Theorem 3.1

It is now straightforward to conclude Theorem 3.1. Recall that our parametrix is defined

by

def

Miy(s) M ) + MG s),

then My (s) : L2

new

(Xy) — HZ

new

(X4) is a bounded operator and
(A)Q25 —s(1—5))My(s) =1+ Lglt(s) + }L(C;Sp(s),

by Section 3.6. We proved in Lemma 3.17 that there is a constant c¢3 (whose precise value

can be read off in Lemma 3.17) such that a.a.s.

LG ()1l <

ol W

)

for all s € |5+ \/@%, 1|. Then since by (3.19)

g™ ()] <

9

oo | =
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we have a.a.s.

sup LGt (s) +Lg™ (s)] <

(S

This implies that a.a.s.
. -1
Mig(s) (1+Lg"(s) +L5*P(s)

exists as a bounded operator L2, (Xy) — HZ2,, (X,) for every s € [ + \FI% }
giving a bounded right inverse for (AX(/) — s(1 — s)). It follows that a.a.s. (AX(]5 —s(1—s))
maps H2,,, (X,) onto L2, (Xy) for every s € {1 + \ﬁl‘i}glg’ggli:)‘;@l 1] and since it is self-

adjoint for s € [%, 1], it cannot have any kernel in H2,,,(Xy). Therefore a.a.s. Ay , cannot

new

have any new eigenvalues below

1 (logloglogn)?
4 P loglogn

4 Spectral gaps for Weil-Petersson random surfaces

The material in this chapter is based on [ ]. The main Theorem of this section is the

following, c.f. Theorem 1.15

Theorem 4.1. For any 0 < a < %, if n =0 (g®) then for any € > 0 the Weil-Petersson

probability that a genus g mon-compact finite-area surface with n cusps has a non-zero

Laplacian eigenvalue below i — (20‘%1)2 — ¢ tends to zero as g — 0.

Overview of proof

Our method is based on the approach of | , |, for compact surfaces. Both | ]
and | |, rely on Selberg’s trace formula, e.g. | , 9.5.3] to relate the spectrum of

the of a surface to its length spectrum. In the non-compact finite-area setting, there is a
version of Selberg’s trace formula, e.g. | , Theorem 10.2], but it is more complicated
with additional terms related to the absolutely continuous spectrum. Instead of dealing
with these additional terms directly, we prove a trace inequality which allows us to discard

them. In Section 4.1 we prove that if a surface X € M, has A; (X) < £ then A\; (X)
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satisfies an inequality (Theorem 4.2) involving the set of oriented primitive closed geodesics
P(X), which closely resembles the form of Selberg’s trace formula for compact surfaces, up
to well behaved error terms depending only the topology of the surface. Roughly we prove

that there are strictly positive functions R and f such that

RO (X).gm < 3 S — ) p ). (@)
Bt 2o (52)
where [ (X) is the length of the geodesic v € P (X). The proof of Theorem 4.2 relies
on results from | ]. The function R is large for small A\; (X) and bounding the Weil-
Petersson expectation of the right hand side of (4.1) will allow us to conclude Theorem 1.15
through Markov’s inequality.

In Section 4.3 we set about bounding the Weil-Petersson expectation of (4.1). To do
this we consider separately the contribution of simple and non-simple geodesics v € P (X)

and extend an argument of Wu-Xue | | to deal with non-compact surfaces. We explain

the methods of Section 4.3 in more detail in Section 4.3.1.

4.1 Analytic preparations

In this section we prove a version of Selberg’s trace formula, using a pre-trace inequality in
place of the usual pre-trace formula.

In Section 4.1.1 we exhibit a family of test functions fr where T = 4logg, and fr is a
non-negative, even, smooth function with support exactly (—7',7") whose Fourier transform
fr is non-negative on R U iR with fp (%) =0 (g2). The family of test functions fr is
defined by (4.3) with 7" = 4logg.

The goal of this section is to prove the following.

Theorem 4.2. For g > 2, let fr be the test function defined by (4.3) with T = 4logg.

For any e > 0, there exists a constant C'(g) > 0 such that for any non-compact finite-area
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surface X with genus g, n = o (g%) cusps and A (X) < 1—36,

~eP(x) k=1 2sinh { =5

C(e)log () g NIMD < 3 Z%mkmx» fr (5) +0ma).

(4.2)

Remark 4.3. Given k > 0, we could have stated Theorem 4.2 with the hypothesis A;(X) <
1 — K, (the statement is almost the same except the constant C/(g) will also depend on k)
however our geometric estimates (Section 4.3) are not strong enough to prove a spectral

gap larger than 1%. We therefore state Theorem 4.2 with the hypothesis A\ (X) < 1% to

simplify notation.

Throughout Section 4.1 we let X = I"x \H be a fixed non-compact finite-area hyperbolic

surface with genus g and n = o (g%> cusps and, for the sake of argument, A;(X) < 1%.
4.1.1 Test functions
In this subsection we introduce the family of test functions used in Theorem 4.2.
Proposition 4.4. There ezists an fi € C° (R) with

1. Supp(f1) = (~1,1).

2. f1 is mom-negative and even.

3. The Fourier transform fi satisfies fi (&) =0 for £ e RUIR.

4. f1 is non-increasing in [0,1).

Proposition 4.4 is based on | , Section 2.2], with the extra condition (4) for

convenience later on.

Proof of Proposition 4.4. Let ¢y be an even, C*°, real valued non-negative function whose

support is exactly (—1, 1) which is non-increasing in [0, 3). Let

z) & /R Wolx — o (t)dt
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It is proved in [ , Section 2.2] that f; satisfies (1) — (3). It remains to check (4).

Since fi is even we have f{(0) = 0. If 0 < = < 1, one can calculate that

[

2

fie) = [T e = 2) —vne + 2D o)+ 7 sula = p(e)i

Since v is positive, even and non-increasing in [0, %), we have 9((z) < 0 and ¢o(x — 2) —

Yoz +2) =2 0 forall 0 < z < % — x, so the first integrand is non-positive. The second

integrand is also non-positive since vy is non-negative. Therefore f](z) < 0 in [0, %) It

%<x<1,then

1
3
fit) = [ whienta - nar <o,
=3
and fi is non-increasing in [0, 1). O

From here on in, we fix such a function f;. For 7' > 1 we define

fr@) = (%) (4.3)

Then by Proposition 4.4, for each T' > 1, fr is a non-negative, even, smooth function with
support exactly (—7,T) whose Fourier transform fT is non-negative on R U iR. We also
have that fr is non-increasing in [0, 7).

Let k7 denote the inverse Abel transform of fr, i.e.

def —1 [ fr(u)
kr (p) = ﬂﬂ/p \/mdu. (4.4)

We see that kr is smooth, Supp (k) C [0,7') and since fr is non-increasing in [0,7"), k7 is
non-negative.
We now have a fixed family of test functions fr for T' > 1. We conclude this subsection

by stating a lower bound on fp in iR from | ].
Lemma 4.5 ([ , Lemma 2.4]). For any € > 0 there exists a constant C. > 0 such
that for allt € R>o and for all T > 1 the Fourier transform fT satisfies

fr(it) = TC.eT(1=9)t, (4.5)
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[ , Lemma 2.4] applies for any function satisfying properties (1) —(3) from Propo-

sition 4.4 so it also applies here. Lemma 4.5 tells us that small values of Ay imply large
values of fT (i\/i — )\1).

4.1.2 Eigenfunction estimates

Now we have a family of test functions, we proceed with the proof of Theorem 4.2. For

z,w € H, T > 1 we define

Let r : [0,00) — C be the function given by

iv/j—x f0<z<q,
r(z) =
T — i if x > %.
Let u; € L?(X) denote the normalized eigenfunction of the Laplacian on X corresponding

to the eigenvalue A;. Our starting point is the following.

Lemma 4.6 (Pre-trace inequality | , Proposition 5.2]). For allT > 1 and z € H we

have that

Yo frr Qo) ()P < Y kr(z72). (4.6)

Sy 1
J')‘J<Z ~vel'x

Lemma 4.6 is immediately deduced from | , Proposition 5.2], using the fact that fT
is non-negative on RUi[0, 1] (the image of [0, c0) under 7). We refer to the left hand side of
(4.6) as the spectral side and the right hand side as the geometric side. We prove Theorem
4.2 by integrating (4.6). We cannot integrate (4.6) over the full fundamental domain as the

contribution of the parabolic elements
Z kT (Zv ’}/Z) )
{relx\{Id}|[tr(y)|=2}

is not absolutely integrable over the fundamental domain F. We get around this by in-
tegrating over the region D(I), as defined in Definition 2.2, with [ = 2 (the choice [ = 2

could be replaced by any fixed [ > 1). This leads to another issue: we could potentially lose
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information on the spectral side after integrating. This could happen if an eigenfunction

concentrated outside D(2). The following lemma resolves this issue. From now on we write

D = D(2).
Lemma 4.7 (| , Lemma 4.1]). For any k > 0, there is a constant ¢ (k) > 0 such that
for any u; with \; % — Kk, we have

/ i (2)Pdp(z) > e ().
D

The constant ¢ does not depend on the surface X.

The upshot is that when we integrate (4.6) over D, we obtain something bounded on
the geometric side and we get a definite contribution from each eigenvalue on the spectral
side.

Remark 4.8. | , Lemma 4.1] is stated for quotients of H by geometrically finite sub-

groups of SLg(Z). The proof extends trivially to all finite-area non-compact surfaces, as

noted in | , Footnote 10].

4.1.3 Proof of Theorem 4.2
We conclude this section by proving Theorem 4.2.

Proof of Theorem 4.2. Recall that X is a finite-area non-compact hyperbolic surface with
genus g, n = 0 (g%> cusps. We write A\; = A; (X) and recall that X has first non-zero

Laplacian eigenvalue A; < 1%. Let T'=4logg. By Lemma 4.6,

Z fr(r ) |u;(z Z kr (z,7z) (4.7)

JiA <4 vel'x

Since fr is non-negative on iR, fr o r is non-negative on [0, 1] and (4.7) still holds if we

reduce the sum to just A\g and A;. Integrating (4.7) over D, we get

fr (r (00)) /D fup(2) 2dp(2) + fr (r (A1) /D s (2) Pdp(2) / S kr (2,72) du(2).

vel'x

(4.8)
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First we look at the spectral side. The eigenvalue A\g = 0 corresponds to the constant

eigenfunction
(5) = ——
ug (2) = —(——.
’ /Vol(X)
We have

frirOo) [ mote)ant) = T (5)-

Recall that

D:.7-“\|i|Dui(2).

Since Dy, (2) is isometric to {z € H | 0 < 2 < 1,y > 2}, Vol(Dq,(2)) = 3 for each i. By

Gauss-Bonnet, Vol(X) = 27 (2g — 2+ n) and we see that

Vol(D) 2m(29—2+n)—%5 n
Vol(X) ~ 27 (29—2+n) : _HO(Q)'

For the contribution of A, by Lemma 4.7 with x = there is a constant ¢ > 0 with

1
16~
fr(r (/\1))/D jur(2)Pdpa(2) = efr (r (M) (4.9)

Let € > 0 be given, then since A\; < 13—6, (A1) = iy /i — A1, then by Lemma 4.5, there is a

constant C; > 0 with

2 T(1—e)y /X=Xy

fr(r(\)) =2 TCee 4 (4.10)

Combining (4.8), (4.9) and (4.10), we see there exists a constant C'(¢) > 0 with

TC(e)e N iN (1 +0 (Z)) fr (;) < /D > kr(zyz)dp(z).  (411)

vel'x

We now look at the geometric side. We arrange the sum in the geometric side into the
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contribution from the identity, parabolic and hyperbolic elements to obtain

/Zszzvzdu Z/szvzdu)

v€l'x v€l'x

:/Dk;T (2,2) du(2) + > / kr (2,72) dp(2)

{relx|ftr(y)|>2}

+ > / kr (2,72) du(2).

{verx\{1d}lex(y) =2} 7 P
Interchanging summation and integration is justified since D is a compact region and kp
is supported in [0,7"), then for each z € D, #{v € I'x | d(z,7z) < T'} is finite and the

summation is over finitely many terms.

First we treat the contribution of the identity. Since kr(z,w) = kr (d(z,w)),

/D kr (2, 2) du(z) = Vol(D)kp(0).

A calculation involving the Abel Transform, see for example the proof of | , Theorem

9.5.3], gives that

kr(0) = ﬁ /_OO rf7(r) tanh(mr)dr.

We calculate
/ rfr(r) tanh(mr)dr = T/ rfi (Tr) tanh(rr)dr
/ tanh (W /> dr’
T
1
z ) dr' < =
/ <L T

where the last line follows from the fact that f; is compactly supported, thus fl is a

Schwartz function and decays faster that the inverse of any polynomial. Since Vol(D)

21 (29 —2+n) — 5, and X has o (g%> cusps, this tells us that

/D kr (2, 2) dpu(z) = O (). (4.12)
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Now we look at the hyperbolic terms. By the non-negativity of kp,

> /szvzdu() > /szvzdu)

{velx|ltr(v)[>2} {velx|ltr(v)[>2}

By arranging the sum into conjugacy classes and unfolding the integral, one can compute

that

e}

_ L (X)
/f br(5y2) du(z) = 3 me(klv(X))- (4.13)

{velx|ltr(v)|>2} ~eP(X) k=1 2 sinh

This computation is carried out in detail in | , Section 10.2].
It remains to bound the contribution of the parabolic elements. Any v € I'x\{Id} with
|tr(y)| = 2 is conjugate to 4., for some unique pair i € {1,...,n} and I € Z\{0}. Since the

centralizer of véi in I'y is I'y;, we see

Z /sz (z,vz)du(z ZZ Z /kT z Tﬁl’)/éiTZ) du(z).

{veTx\{1d}|tr(v)|=2} /P i=1 I€Z* 7€Ty \T

Since k7 and dp are invariant under isometries, by unfolding the integral, denoting I'- D def

UyeryD, we calculate

3 / kr (277l 2) du(z) = /

7€, \T Lo \I'D

br (294,2) du(2).
We can choose a fundamental domain F; for the action of T'y, on T'- D so that
FiCog{zeH|0<x<1,0<y<2},

and we see, recalling that G;il%ﬂai (2) =2z+1,
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We sum over the parabolic conjugacy classes to calculate,

> /kT(zvzdu nZ/ / kr(z, 2+ 1)du(z)

{relx \{I1d}|er(v)[=2} lez*

=n)Y / kr (arcosh <1 + l)) y2dy

leZ*

\f/ kr(p)sinh(p )
lEN mln{arcosh 1+l2) T} \/(joshi

(4.14)

On the second line we used that coshd(z,z+1) = 1 + % and on the third line we
used the change of variables p = arcosh (1 + %) and that Supp (kr) C [0,7). When

arcosh (1 + %) < T, we use that fr is the Abel transform of k7 to see that

T .
/ { i 1+ kr(p )Slnh( )d < kr(p) Slnh(p) dp = fr(0) = f1(0).

)T} \/cosh(p 0o +/cosh(p) —1 P

If arcosh (1 + %) < T then the contribution to the sum (4.14) is 0 and we conclude that

[

3 / br( ) < 20 (0) Z T < 20f1(0)log (2v2¢% )

{veTx\{1d}|[tr(v)|=2} * P
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Thus combining (4.11), (4.12), (4.13) and (4.1.3), we conclude that

T (o () ()

o

S Z Z%fT(klw(X))+2nf1(0)10g(2\@eg>+O(g),
2

’)/EP(X) k=1 2 sinh

Recalling that T' = 4log g, since fr is even,

fr <;> = /OOO2COSh (g) fr(x)dz = O (¢°),

and we deduce that

o0

CE)log () g" Vi< % %fT (kly (X)) — fr (;) +0 (ng),
'yGP(X) k=1 2sinh ( 72 )

as claimed. 0

Remark 4.9. By considering only the zero eigenvalue, the proof of Theorem 4.2 gives that

there exists a constant v > 0 such that for sufficiently large g and for any X € M, ,,

> i%ﬁ (k0 00) = o (§) +mg >
T2

yEP(X) k=1 2 sinh
This fact will be important in Section 4.4 when we want to apply Markov’s inequality to
the above quantity, viewed as a random variable on M, .
4.2 Weil-Petersson model

In this subsection, we introduce the necessary background on moduli space and the Weil-
Petersson metric needed for the remainder of the chapter. We refer to the survey of Wright
[ | for a more detailed exposition.

4.2.1 Moduli space

Let ¥, .4 denote a topological surface with genus g, c¢ labeled punctures and d labeled

boundary components where 2g +n + d > 3. A marked surface of signature (g, c,d) is a
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pair (X, ) where X is a hyperbolic surface and ¢ : £, . ¢ — X is a homeomorphism. Given

(i, ... lg) € RL,), we define the Teichmiiller space Ty cia (I, - - -,1l4) by

Marked surfaces (X,p) of signature (g,c,d) /
(B1,...,84) with lengths (I1,...,lq) ’

def
E,c,d (ll, cees ld) = {with labelled totally geodesic boundary components

where (X1, 1) ~ (X2, ¢2) if and only if there exists an isometry m : X; — Xo such that
9 and m o ¢y are isotopic. Let Homeo™ (Xg,c.d) denote the group of orientation preserving
homeomorphisms of 3, .4 which leave every boundary component setwise fixed and do
not permute the punctures. Let Homeod (3, 4) denote the subgroup of homeomorphisms

isotopic to the identity. The mapping class group is defined as
MCGy,cq 2 Homeot (Zg.c.a) /Homeod (Zg.c.q) -

Homeo™ (Xg,e.d) actson Ty cq (1, ..., 1) by pre-composition of the marking, and Homeoar (Xg.e.d)
acts trivially, hence MCGg.q acts on Tycq(l1,...,lq) and we define the moduli space

Mg,c,d (ll, ceey ld) by

ef
Mgea(ltynld) E Tyea iy oy lg) /MCGyca.

By convention, a geodesic of length 0 is a cusp and we suppress the distinction between

punctures and boundary components in our notation by allowing I; > 0. In particular,

Mg7c+d - Mg7c7d (0, . e ,0) .

4.2.2 Weil-Petersson metric

By the work of Goldman | |, the space Tyn (1) carries a natural symplectic structure
known as the Weil-Petersson symplectic form and is denoted by wy p. In the case where

[ =0, this agrees with the form arising from the Weil-Petersson Kahler metric on ’7’9’”4. It

“The cotangent space Tix,p)Tgn at (X, ) € Ty,n can be identified with the space of quadratic differen-
tials Q (X). The space Q(X) has an inner product (,)ywp, the Weil-Petersson inner product, inducing a
Riemannian metric on 7g,»,; the Weil-Petersson metric. The Weil-Petersson sympletic form wwp is the form
dual to Im (, )yyp-
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is invariant under the action of the mapping class group and descends to a symplectic form

on the quotient M, ,, (1). The form wy p induces the volume form

3g—3+n

def
dVolwp = (3 _3+ /\ WW P,

which is also invariant under the action of the mapping class group and descends to a
volume form on My, (1). We write dX as shorthand for dVoly p. We let V, , (1) denote
Vol p (Mg (1)), the total volume of My, (1), which is finite. We write V, to denote
Vo (0).

By work of Wolpert [ |, the Weil-Petersson symplectic form has a simple form in
Fenchel-Nielsen coordinates. Let ¥, . 4 be as before, a topological surface with with genus
g, ¢ labeled punctures and d labeled boundary components where 2g +n +d > 3. A pants

3g9—3+c+d such

decomposition of ¥, .4 is a collection of disjoint simple closed curves {ai}:?]
that cutting the surface along all curves gives a disjoint collection of topological pants.
For a marked surface (X, ), let l,, (X) to be the length of the unique geodesic in the

free homotopy class of ¢ (a;) and 7,, (X) be the corresponding twist parameter. Then if

c+d=n,
E,n (D o~ Rig*iﬂn « R39—3+n
(X7 90) = (lal (X) yrcc la3g—3+n (X) 77—041 (X) A ’Ta3g—3+n (X)> °
Then by a Theorem of Wolpert | , Theorem 1.3],
39—3+n
wwp = Y dl Adm,
i=1

i.e. the Weil-Petersson symplectic form is the standard sympletic form in Fenchel-Neilsen
coordinates.

As in | , , ], we define a probability measure on M, ,, by normalizing
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dVoly p. Indeed, for any Borel subset B C M, ,,

1
Pl (8] < o / 15dX,
g,n Mg,n

where

0 ifx¢B,
13 (X) =

1 ifxebB.

is the indicator function on B. We write E{;/), to denote expectation with respect to P{i%.

4.2.3 Mirzakhani’s integration formula

We recall Mirzakhani’s integration formula from | ]. We define a multi-curve to be
an ordered k-tuple (71, ...,7k) of disjoint, simple, non-peripheral closed curves. Let I' =
[71, -.-» 7] denote the homotopy class of a multi-curve. The mapping class group MCGy
acts naturally on homotopy classes of multi-curves and we denote the orbit containing I
by

Or ={(g- 71,9 -7) | g€ MCGy,}.

Given a function F : RE; — R, define F* : My, — R by

F'(X)= > F(la (X))l (X)),
(a1,...,ar)EOr
where [, (X) is defined for (X, ) € Ty, as the length of the geodesic in the homotopy class
of ¢ (;). Note that the function F' is well defined on My, since we are summing over the
orbit Or. Let S, (I') denote the result of cutting the surface Sy, along (71, ...,7%), then
Sgn (T') =L, Sy, n,; for some {(g;,n;)};_,. Each v; gives rise to two boundary components
7} and 77 of Sy (). Given z = (1, ..., 7;) € RE(, let M (S (') ;I = z) be the moduli
space of hyperbolic surfaces homeomorphic to Sy, (I') such that for 1 <i <k, l%_1 = l%_z =

z;. Let £ denote the tuple of coordinates x; of x such that ~; is a boundary component
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of Sy, n;- We have that

and we define

Vo (0,2) & Vol o (M (S0 (D)1 = ) = [ Vo, ().
=1

In terms of the above notation we have the following.

Theorem 4.10 (Mirzakhani’s Integration Formula | , Theorem 7.1]). Given T' =

[’71a "'7’71{:];

J.

where the constant Cp € (0,1] only depends on I'. Moreover, if g > 2 and I' = [y] where 7y

FF (X) dX = CF/ F(.Z‘l,..-,.l'k) Vg,n (Fvi) $1"'$kd$1"'d$k,

R

k
g,m >0

is a simple, non-separating closed curve, then Cr = %

4.3 Geometric estimates

Recall that the family of test functions f7 in Theorem 4.2 is defined in (4.3) with 7" = 4log g.

For X € Mgy, v € P(X), k € N, we shall denote

def I (X)
Hxk(v) = Wﬁ (kly (X))

The goal of this section is to prove the following.

Theorem 4.11. For 0 < a < %, let n = O(g®). For any 1 > 0 there exists a constant

c1(e1) > 0, independent of o, with

oo .
S 2
B | X - fxal) — fr (5) | < ntolog(e) g+ e (o) o)™ n g0,
YEP(X) k=1

where 5 > 0 is a universal constant.
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Throughout Section 4.3 we shall always have n = O (g®) for fixed 0 < a < %

Remark 4.12. The proof of Theorem 4.11 closely follows | , Chapters 6 & 7|, making
the necessary adaptations to the case of surfaces with cusps. We therefore omit some
arguments that are identical in the compact and non-compact case and instead refer the

reader to the relevant place.

4.3.1 Method

We prove Theorem 4.11 by considering separately the contribution of different types of

geodesics. As in [ |, we introduce the following notation.

Definition 4.13. For X € M, , we define

L. Pgep(X) L {7 € P(X) | v is simple and separating}.

( def

2. P ) = {y € P(X) | v is simple and non-separating}.

nsep

3. P™(X) def{ € P(X) | v is non-simple}.

Notice that P(X) = P, (X )UPy e, (X)UP™(X). We partition the sum 3 cp(x) 25y Hx ()

as

> ZHXk: Z Hxi(y)+ > ZHXk

YEP(X) k=1 YEP(X YEP(X
= Z Hxa(v) + Z Hxi(v)+ Y Hxa(y)
YEPSep(X) YEP sep(X) YEP™(X)
+ 2 ZHXk
yEP(X
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Subtracting f (%) and taking Weil-Petersson expectations, we see

Efp Z iHX,k(’Y) — fr <;>

VEP(X) k=1
n n ~ (1
<Eyp Z Hxa(m)| + [Efp Z Hxi(v)| —f <2>
’YEP?EP(X) VEPﬁsep(X)
(a) (b
+EGe | D D Hxs()| +EGR | Y. Hxa()|- (4.15)
YEP(X) k=2 | YEPTS(X)

(e (d)

The remainder of this section is dedicated to bounding terms (a) — (d), from which

Theorem 4.11 will follow.

e Since terms (a) and (b) depend on simple geodesics, we can bound them by applying

Mirzakhani’s integration formula directly.

e To bound (¢) we consider geodesics with length < 1 and length > 1 separately. The
contribution of geodesics with length > 1 can be bounded deterministically. Any
geodesic with length < 1 must be simple, by e.g. [ , Theorem 4.2.4], so we can

apply Mirzakhani’s integration formula directly to bound their contribution.

e To bound (d), we cannot apply Mirzakhani’s integration formula directly since the
geodesics are not simple. Instead, we pass from non-simple geodesics to subsurfaces
with simple geodesic boundary and apply Mirzakhani’s integration formula to the

simple boundary geodesics.

4.3.2 Contribution of simple separating geodesics

In this subsection we bound term (a) in (4.15), the contribution of simple separating

geodesics. In particular, we prove the following.

Lemma 4.14.

B | > Hxa(y)| <n’g.
VEPSep(X)
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Proof. We have

1
g,n E — E

VEPSep(X) T YEPE,(X)

We shall apply Mirzakhani’s integration formula, Theorem 4.10, to bound the integral in
(4.16). Recall that Sy, is a topological surface with genus g and n labeled punctures.
For 0 <17 < L%J, 0 < j < mn,let a;; be a simple closed curve in S, which separates
Sg.n into subsurfaces S; 11 and Sg_; ,—j+1, each with one boundary component and j and
n — j punctures respectively. Then «; ; partitions the punctures into two disjoint subsets
I and J of size j and n — j respectively. Let [c; ;] denote the homotopy class of «; ;. The
orbit MCGy , - [ ;] is determined by the set {(i,j +1,1),(g —i,n —j+1,J)}, since the
mapping class group does not permute the punctures. Therefore given ¢ and j, there are (?)
MCGy ,-orbits of simple separating closed curves on S, which separate off a subsurface

with genus ¢ and with j punctures. Recalling that

Hya(r) = —2 <X)X)>fT< (X))

2 sinh (lW(

we now apply Mirzakhani’s integration formula, Theorem 4.10, to see

T 2 Hratax

YEPEep (X)

Vij+1 (Qj,fv) Vog—in—j+1 (Qn_]wﬂﬁ)
< Z / < )smh E) fr(x) Van e

0<i<g,0<5<n 2
2<2i+75<2g+n—2

By Lemma A.1,

2sinh (2
Va,b(Qb—lvw) < Slnx(Q)Va,h
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giving

: /
Hx 1(v)dX
‘/.vgvn Mg,n Z

YEPSep(X)

4 n\ Viit1Vi—in—it1 . T
<—0 L Vg tlVg—in—j+ / h(Z dz.
ng Z <]> V:q,n 0 s <2> fT(x) €

0<i<g,0<j<n
2<2i45<2g4+n—2

Since fr is bounded independently of T" and supported in [0,T"), we see

/OOO sinh (%) fr(z)de < ez

By Lemma A .4,

n! Vigt1Vo—im—jn1 _ 12
R . <y
0<i<g,0<i<n 7 ' g
2<2i4+7<2g+n—2
giving
gn n? T 2
B | Y Hxa(y)| < o<y,
YEPEep(X)
as claimed. 0

4.3.3 Contribution of simple non-separating geodesics

In this subsection we deal with the contribution of simple non-separating geodesics (term

(b) in (4.15)). We prove the following.

Lemma 4.15.

e
Ep | Y. Hxa()| - f <2> <n’g+n-log(g) g
'YEIP”fLsep(X)

Proof. Let ap be an unoriented simple non-separating closed curve in Sy ,,. There is just
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one MCGy ,,-orbit of simple non-separating closed curves on Sy, and we have

Z Hx1(y)dX =2 Z Hx1(7v),

’Yep'}gr,sep(X) ’YEMCGQv"'aO

where the factor of 2 occurs since geodesics in P (X) are oriented. Applying Mirzakhani’s

integration formula, we get

1 [ 22
H dX = - _— V,— 0 d
[ X Haeux =g [T s @V 0,5 )

gmn 'Yerp'rszsep(X)

where the factor % occurs since qq is simple and non-separating, c.f. Theorem 4.10. By

n2
qu—l,n—&—? = Vg,n : <1 + 0 <g>> .

Then we have, by applying Lemma A.1,

: 2
Vo—1n+2 0,,, x, x) _ <2s1nh~”§) (1 L0 <nQ+ch>> |
‘/g,n xT g

Theorem A.3,

This gives

1 / 3 ly(X)
o — =~ fr (1 (X)) dX
ng,n Mgn ’Yepﬁsep(X) sinh ( W(2X)>

- /OTQSinh (g) fr() (1 +0 <”2+gm2>> dz.

Since fT (%) is even,

~

81



and we have

B | Y )| - (3)

’Yelpfwep(X)

= [z () e (10 (BN o - [ (3) (e
<|[ 2 (s (2) - o (3)) - setoraa

Using that 2 (cosh (%) — sinh (%)) =e ",

T x x
/0 2 (sinh (5) — cosh (§>) - fr(x)dx

Recalling T' = 4log g, we calculate

~

_l’_

< 1

r . x 1 +n?+n2x es (n? 4+ nT?) ) )
/ 2sinh (5) fr(z) (g) dr| € ——— == <n’g+n-log(9)’ g,
0

and

- (i
Eifp | > Hxa()|—fr <2> <n’g+n-log(g)’ g,
Fyep'fzsep(x)

as claimed. O
4.3.4 Iterates of primitive geodesics

We now look at the contribution of iterates of primitive geodesics (term (c) in (4.15)). The

aim of this subsection is to prove the following.

Lemma 4.16.

o0

Efe | D D Hxi(y)| <log(g)” - g.
YEP(X) k=2

In order to prove Lemma 4.16, we need the following soft geodesic counting bound.

Lemma 4.17. For any X € My, and any L > 0 we have

#{y € P(X) | 1<, (X) < L} < ge".
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Proof. Let #o(X, L) denote the number of closed geodesics on X with length < L which are
not iterates of closed geodesics of length < 2arcsinh(1). An immediate adaptation of the
proof of | , Lemma 6.6.4] using the non-compact version of the collar lemma (] ,

Lemma 4.4.6]) tells us that

#o(X,L) < (9= 1+75) e,

[ , Lemma 4.4.6] also tells us that the number of primitive geodesics on X with length

< 4arcsinh(1) is bounded above by 3g — 3 + n. Using that n = o (\/gj), we conclude that

#reP(X)[1<L(X) <L} <(g- 1+ 5) eH 0439 — 34 n < geF,

as claimed. 0
We now proceed with the proof of Lemma 4.16.

Proof of Lemma 4.16. Let X € M,,,. We write

> Hxk(v) = > > Hxp(y)+ > > Hxi(y).
=2

VEP(X) k= {yeP(X)lly(X)<1} k=2 {reP(X)lly (X)>1} k=2

By Lemma 4.16,

#{y € P (X) | 1<, (X) < L} < ge".

We then have

> > Hxp(y) < > L (X) b ™)

{yeP(XOIn (X)>1} k=2 (reP(X)1<l, ()<}

<<me<< (logg)? - g.

m=1
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Taking Weil-Petersson expectations, we see

o o0
e | Y0 Hxw(y)| =B > > Hxi(v)

YEP(X) k=2 (EP(X) |1y (X)<1} k=2

+0 ((log 9)° g) :
For each v € P(X),

Hx(v) =

b (X )fT (kL (X)) < £(0),
2

2 sinh (M

and if k > u&) then fr (kl, (X)) = 0. This tells us that

EYp Z Z Hxi(y)| < f(0)-T-Ef% Z

{(7EP(X)|ly(X)<1} k=2 {(7eP(X)iy(X)<1}

It remains to bound

1
g,n

{veP(X)iy(Xx)<1} 7

Any geodesic v € P(X) with length [, (X) < 1 < 4arcsinhl must be simple by e.g. |

Theorem 4.2.4]. Therefore we can apply Mirzakhani’s integration formula to get

n 1 1 1
E?/f/P Z l (X) < Vi / ‘/g—l,n+2 (Qna t, t)dt
{(yeP(X)|ly(X)<1} 7 gn Jo

+ Z n' . ‘/i>j+1vg_izn_j+1
j'( _])| v;],n

0<i<g,0<j<n
2<2i+j<2g+n—2

Vy_ n?
<<w+7<<1’
Von g

(4.17)

(4.18)

(4.19)

where on the last line we applied Lemma A.4 and Theorem A.3. Thus combining (4.17),

(4.18) and (4.19) we see

o0

B | Y. D Hxx(v)| < (logg)*- g,
YEP(X) k=2
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as required. O

4.3.5 Non-simple geodesics

We now need to deal with the contribution of the non-simple primitive geodesics, (term (d)

in (4.15)). In this subsection we shall prove the following

Lemma 4.18. There is a constant 1 > 0 such that for any 1 > 0 there is a constant

c1 (e1) > 0 such that

B | Y Hxa(y)| < (logg)®-g+ci(e1) (logg)™ - n? - gtHier.
~yEP™S(X)
We prove Lemma 4.18 through a sequence of lemmas. Before we give a brief outline of

the method, we need the concept of a filling closed curve.

Definition 4.19. Let X be a finite-area hyperbolic surface with possible boundary. A
closed curve n C Y is filling if the complement Y\ is a disjoint union of disks and cylinders
such that every cylinder either deformation retracts to a boundary component of Y or is a
neighbourhood of a cusp. We let #g;1(X, L) denote the number of oriented filling geodesics

on X with lengths < L.

Idea of the proof of Lemma 4.18

We shall extend the method of | , Section 7] to non-compact surfaces. The basic idea

is as follows.

e Given a surface X € Mg, and a geodesic v € P™ (X), we construct a subsurface
X (7) of X with geodesic boundary (of controlled length) which is filled by . The
multiplicity of the map v — X(v) is bounded by the number of filling geodesics of

X (7). This allows us to write

Y. Hxa(y) < > > Hxa(lx (7))

~EP™S(X) Y subsurface of X  filling geodesics v on Y
Y has geodesic boundary
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e We control the length of a filling geodesic in terms of [x (0Y) in Lemma 4.21 and
apply [ , Theorem 4] to bound the number of filling geodesics on a subsurface

and show that there is an explicit function A, supported in [0,27"), with

> Hxa(y) < > A(lx (3Y)).

yeP™S(X) Y subsurface of X
Y has geodesic boundary

e Since the boundary of each subsurface Y consists of simple closed geodesics, we can

apply Mirzakhani’s integration formula to bound the Weil-Petersson expectation of

> A(lx (9Y)).
{Ysubsurface of X with geodesic boundary}
Definition 4.20. Let X € M, be a hyperbolic surface and let v C X be a non-simple
closed geodesic. Let Ns(y) denote the d-neighborhood of v where § is sufficiently small to
ensure that Ns(v) deformation retracts to v and that the boundary ONs(7) is a disjoint
union of simple closed curves. We define X () to be the connected subsurface obtained

from Ns(vy) as follows: for each boundary component & € Ns(7),
e If £ bounds a disc we fill the disc into Nj(7y).

e If £ is homotopically non-trivial we shrink it to the unique simple closed geodesics in

its free homotopy class and deform Ng(vy) accordingly.

e If two different components &, &’ deform to the same geodesic then we do not glue

them together, we view X () as an open subsurface of X.

e If £ is freely homotopic to a closed horocycle bounding a cusp C; we fill the cusp into

Ns(7)-

After deforming Nj(vy) in this way we obtain the surface X ().
The construction of X (v) allows us to control Vol (X (7)) and the length of 0X () in
terms of [, (X), as summarized by the following lemma. Bounding Vol (X (7)) corresponds

to bounding the Euler characteristic of X () by Gauss-Bonnet.
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Lemma 4.21. Let X € My, and v be a non-simple closed geodesic on X. The subsurface
X () of X satisfies

1. v is a filling geodesic of X (7).

2. The length of the boundary satisfies

10X (7)) < 21,(X).

3. The volume satisfies

Vol (X (7)) < 4L, (X).

Lemma 4.21 is proved in | , Proposition 47] for compact surfaces. The proof in our

case is identical. This leads us to make the following definition.

Definition 4.22. With 7' = 4logg, X € Mg, we define

Sub(X) of {Y C X | Y is a connected subsurface of X with geodesic boundary},

and

Suby(X) € {y € Sub(X) | 1(dY) < 2T, Vol(Y) < AT},
where we allow two distinct simple closed geodesics on the boundary of Y to be a single

simple closed geodesic in X.

Lemma 4.21 tells us that for any X € M, ,, any non-simple geodesic v with length < T’
fills a subsurface X () € Suby(X). If any other 4" € P(X) satisfies X (7') = X () then +/

is also a filling geodesic of X () with length < 7. We have

{7 e P"(X) | X(v') = X(v)} C {oriented filling geodesics of X () with length < T}.
(4.20)
Therefore we will need to control the number of non-simple geodesics which fill a given

subsurface. This is achieved by the following theorem.
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Theorem 4.23 (| , Theorem 4]). Let m = 2¢g'—2+n' > 1. For any e, > 0 there exists
a constant c(e1,m) only depending on €1 and m such that for any X € My (21, ..., Tnr)

where x; > 0, we have

l—e] <n
#ﬁll(X, L) < C(Gl, m) . eL_ 2 1 Zi:l Ti

Remark 4.24. | , Theorem 4] is stated in for surfaces without cusps, i.e. z; > 0,
however the extension to z; > 0 is immediate. Indeed, [ , Theorem 4] follows from
[ , Theorem 38] and [ , Lemma 10]. | , Theorem 38] already holds for non-

compact surfaces and it is straightforward to check that the basic counting result [ ,
Lemma 10] generalizes to non-compact surfaces.

We can now pass from non-simple geodesics to subsurfaces with geodesic boundary.
This is done in the following lemma, proved in | , Proposition 30] for X € M,. The

proof is identical in our case.

Lemma 4.25. For any 1 > 0, X € My, there exists a constant c1 (e1) only depending

on €1 such that

Z Hx1(y) < Te" Z e~ +ei(en)T Z ez 3 HIOY), (4.21)

~EPRS(X) Y €Subr(X) Y €Subr (X)
(Y)[>34 1<|x(Y)[<33

Remark 4.26. The difference between the first and second term arises because we apply
Theorem 4.23 to subsurfaces with 1 < |x(Y)| < 34 whereas we only apply a soft geodesic
counting result, #gn(X, L) < Area(X) - e+, to subsurfaces with |x(Y)| > 34. The reason
for this is that it is not clear how badly the constant c(e;, m) from Theorem 4.23 depends
on the Euler characteristic m so we can only apply Theorem 4.23 to subsurfaces with
uniformly bounded Euler characteristic. As a consequence of forthcoming calculations, the
Weil-Petersson expectation of the number of subsurfaces Y € Subr(X) with |x(Y)| > k
is sufficiently small for any k > 34 so that we can accept the loss from the soft geodesic

counting.

For the remainder of the section, we assume that ¢ is sufficiently large so that for

Y € Subp(X), the map Y — 0Y is injective. This is justified since any two distinct
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subsurfaces in Y7, Y, € Subp(X) with 0Y; = 0Y, must satisfy Y1 UYs = X, giving

Vol (X) =27 (29 —2+n) < Vol (Y1) + Vol (Y2) < 8T = 32log g,

which is not possible for sufficiently large g.
We now want to apply Mirzakhani’s integration formula to bound the Weil-Petersson

expectation of the right hand side of (4.21). We introduce the following notation.

Notation 4.27. Let X € Mg . For a subsurface Yy € Subp(X), we write

Yo = Yo (¢, (90, a0, n0) , {(g91,a1,m1) , ..., (9q, ag,nq)}) = Yo (¢, 9, a, 1),

to indicate that Yj has the following properties.

e Y is homeomorphic to Sy x4q,Where k > 0.

— Yy has ag cusps and k simple geodesic boundary components. There are ng > 0
pairs of simple geodesics in Yy which correspond to a single simple closed geodesic
in X.

— The interior of its complement X\Y{ consists of ¢ > 1 components Y7, ..., Y,

where Y; is homeomorphic to Sy, n;+q,- We observe that n; > 1 and

i) 2i12gi =2+ ni+ai =29 —2+n— |x (Y0)].
11) ;-1:1 n; = k— 2710.
iii) Z?‘:l a; =N — ag.

Given X € M, and a choice of marking, any Yy(q,a,n, g) € Subyp(X) is freely homotopic
to the image under the marking of a subsurface Y’ C Sy, where Y is in the MCGy ,,-orbit of a
subsurface Yy = Yy(q, a, n, g) C Sy (with Y, homeomorphic to Sgo.k+ag, Where Sy.n\Yo has
g components Y7, ...,?q with ¥; homeomorphic to Sgini+a; With n; boundary components
and a; punctures). We write [ffo} to denote the homotopy class of Yp. Since the mapping
class group does not permute the punctures of Sy ,,, the number of distinct MCGy ,,-orbits of

subsurfaces corresponding to a given choice of g, (go, ao, n0),{(g91,a1,m1) ..., (9q, aq,ng) }
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is bounded above by

n!
agl - -+ ag!
Lemma 4.28.
| _won | (logg)®
Ee | Y e i | < g (4.22)
Y € Subp (X)

Ix(Y)[=34

Proof. We start by bounding the contribution of a given MCG, ,,-orbit to (4.22). Let go, ao,

k be fixed with m = 2g9g—2+k+ag > 34. By Gauss-Bonnet, we have that m < % < %log g.
For ng,n1,...,ng,a1,...,0q,91,--.,9q = 0 with Y7, n; = k — 2ng and Z?:ﬂ‘j =n — ap,

we have

. _ WaY)

% R L
g,n Mg?n [Y]eMCGg7n~[?0(q7Q7ﬂvg)]
! _1(3Y)

:Vg,n/M >, e T 121 (Ix (9Y)) dX,

9™ 1Y ]1EMCG g n-[0Y0 (¢,a,1,9)]

since the map Y — 9Y is injective. By applying Mirzakhani’s integration formula, one can

compute that

1 _uay)
— > e 7 1por (Ix (9Y))dX
gn J Mgn ¥
[Y]GMCGg,n[YO (‘L%ﬂ’g)]

<<€%T qu,k-i-ao Vgl,nlJral T ng»”q*‘lq
Vo -molng!---ng!

A near identical computation is carried out in detail in | , Proposition 31] so we omit

it here. We now sum over the MCGy ,,-orbits to bound the contribution of subsurfaces in
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Subz (X) with a given Euler characteristic. We calculate

(oY
Eyp Z e

Y €Subrp(X)
Ygsgo,k+a0

1 n _loy)

9™ [Y]EMCGg,n-[Yo(g,a:n,9)]

9

L%J k—2aq
Ir Z < n ) Vgo,k—l-ao Vgimatay ng,nq+aq
0,

-5 Qq ng-no!nl!-"nq!

no=0 ¢=1 {(g;,n;,4;)}]_,€A

where for a given ng and ¢, the summation is over the set of “admissible triples” A, whose el-
ements we denote by {(g;, n;, qj)}?zl, which we define to be the set of {(g1,a1,n1),...,(9¢,aq,1¢)}

where gj,a; > 0, n; > 1 and 2g; + a; +n; > 3 such that

i) ! (29 —24+ni+a;)=29—-2+n—m.
11) qu:l n; = ]C — 2”0.

Recalling that 34 <m =2g9 — 2+ k +ag < %logg is fixed, we apply lemma A.5 to see

L5) k—2
22: io Z n! .Vgoyk-‘-ao Varmaitar =+ Vggmg+ag
leeia ) cnalng! -t
n0=0 a=1 {(g;nj,0;)}7_ €A agp! ag! Vg - nolni!---ng!
L%J k—2ng a
n%  k*(2go +k +ag — 3)!
<<Z Z(ng+k+ao—3)!-—m<< (290 — 0 ),
no=0 gq=1 g g
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Summing over the possible values of gy, ag and k, we calculate

(Y
E%'p Z e o

Y €Suby (X)
Ix(Y)[>34

< Y% S EL] Y e

0<ao<[4L7] 1<k<[4L] +2—ag 34<290—2+k+ao<[4L] Y €Subp(X)
YESQD,kJraO
DD D
9290+a0+k’*2
0<ao<[4L7 1<k<[ 451 +2—a0 34<2g0—2+k+ao<[ 3= |
5 TT
<Toes — < Le
e 2 a )
9290+70+k72 gl8

since 2go + ag + k > 36 guarantees that 2gg + % + k > 18. Recalling that T' = 4log g, we
conclude that

1(8Y) ] 5
E%}np Z e 1 | « M

93
Y €Suby(X)
[x(Y)[>34

Y

as required. O

Lemma 4.29. There is a constant § > 0 such that for any 1 > 0,

T 1l—¢€
Effp | Y. e 2] < (logg)” n?- gt

Y € Subr (X)
1< x(Y)[<33

Proof. Let e1 >0, go = 0,a0 = 0 and k > 1 be fixed with 1 <m =2¢g9 — 2+ k + ap < 33.

The computation in | , Proposition 34] gives that there exists a fixed 8 > 0 Swith

1 1—e¢ & ~
R o) x
g I Mgn Y EMCGy,n-Yo(g,a,n,9)
TBes+erT

g,n . q-

®Note the value of 3 in [ , Proposition 34] is 66 and corresponds to the choice to consider |x(Y)| < 16
as opposed to our choice of 33. Here we could for example take 5 <135. Fixed powers of logg will be
negligible in the final calculations.
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Then we see that

Jk 2a0

E%{/np Z T _ 1- —=L1oY) < Tﬂ€2+€1T Z Z Z 917n1+a1 . ng,nq-i-aq’
a ! nol - gV,
Y eSubrp (X ) no=0 g¢=1 0! 0 q-Vgn

YgSgoJ@ﬂlg

where, as before, for given ng and ¢ the summation is over the set A of “admissible triples”
{(9j,m5,4;)}j=, where gj,a; >0, n; > 1 and 2g; + a; +n; > 3 such that S 20 -2+
n;+a;=2g—2+n—m, > n;=k—2ngand >39_, aj =n —ag. We apply Lemma A.5

to calculate that

|_ | k= 2ng v
Tﬁeg +ea1T Z Z Z Vormitar = Vagng+ag
= = ap! - ! nol - ng!Vyn
|_ | k= 2ng0 a
0 ao
B LterT Z Z n B, L+aT n
NCH 290+ao+k 2 <L TVez g2go+a0+k‘ 2°
no=0 g¢g=1

We sum over possible values of gg, ag and k to see that

T_1-<yy) IR N

| ¥ amen| ey e

WP 5 )
YeSubr(X) (90,a0,k) groreer
1<|x(Y)|<33 3<2g0+ao+k<35

2
n
< TheztaT. < (log )% n2gltier,

as claimed. O
We can now prove Lemma 4.18.

Proof of Lemma 4.18. Combining Lemma 4.25, Lemma 4.28 and Lemma 4.29 we deduce
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that for any e1 > 0 there exists a constant ¢; (£1) such that

ESp Z Hx1(7)
YEP™S(X)

1(dY) 1—e
<ITEG | S et | vaEe)TEY, | S e o)

YGSubT(X) YGSubT(X)
Ix(Y)[>34 1<|x(Y)[<33
< (log g)6 g+ c1(e1) (log g)5+1 n2gltier
concluding the proof. O

4.3.6 Proof of Theorem 4.11

Finally we conclude the section with the proof of Theorem 4.11.

Proof of Theorem 4.11. By Lemma 4.14, Lemma 4.15, Lemma 4.16 and Lemma 4.18 to-
gether with (4.15) we see that there is a constant 5 such that for any €1 > 0 there exists a
constant ¢ (¢1) with

oo

(i
Efvp | D D Hxa() = fr (2> < n’g+1log(9)° g+ c1 (e1) (log g) ™+ nPg'H4er.
YEP(X) k=1

4.4 Proof of Theorem 1.15

We now conclude with the proof of Theorem 1.15.

Proof of Theorem 1.15. Let n = O (¢g*) for some 0 < a < % and let 0 < e < min{i, % — a}

be given. For X € Mg, we define

A1 (X) if it exists,

% otherwise.
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Our aim is to prove that

200 + 1)?
_(O[_‘_)_é—] _>0’

5 (X) <
A1 (X) 16

g’n
]P)WP

=

as g — oo. By Remark 4.9, there exists a constant v > 0 such that for g sufficiently large,

Z iW)(z)fT(kl( ) — fT< >+Vng 0,

. kl
’yE'P(X) k=1 2SlIlh ( Vz

for any X € M, ,,. By Theorem 4.11, for any €; > 0 there is constant ¢; (1) > 0 with

Eyp Z Z Hx k(v < ) +vng| <n’g +log (g ) g+ci(er) (logg)ﬁJrl n2gltier
YEP(X

where 3 > 0 is a universal constant. Taking €1 < g and applying Markov’s inequality,

' lo 6 .
Piyp Z ZHXk (;) +vng > n*g' | <. (1 + gn(f) + (logg)ﬁ“) g 3

YEP(X

2
However, if X € Mg, has \(X) < 1 - (20‘121) — ¢, then since a € [0,1) this guarantees

that A1(X) < i and we can apply Theorem 4.2 to see

C(e)log (g) g"*~ Mi-Ml > ZHXk < >+O(”9)

YEP(X) k=

But since € < % —aq,

and we deduce that
1_
C(e) log (g) 94(1—5) 7—M(X) > C(s) log (9)9(1—5)((2a+1)+4e) >, 92a+1+2€—462 > n291+€’

for sufficiently large g. On the last line we used that ¢ < % and that n = O (¢g). We deduce
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that

> Y Hxuly) - fr <;> > n2glte,

YEP(X) k=1

for sufficiently large g. This tells us that for g sufficiently large,

pon |5, 00 < Lo Qe D’ | > i (. 291+
wp | )\Z_T_g S fwe Z Z xk(Y) — fr 5 ) Tvng >ntg
vEP(X) k=1
lo 6 5
e <1+g§])+(10g9)6“> g7z =0,
as g — 00. ]

5 Further problems

In this section, we highlight some further interesting problems on the spectral theory of

random cusped hyperbolic surfaces.

5.0.1 Embedded eigenvalues

A fascinating, fundamental open problem is whether a finite-area non-compact hyperbolic

surface X has to have infinitely many cusp forms [ ]. Since any eigenvalue above % is

necessarily a cusp form, this is equivalent to whether spec (Ax) contains infinitely many
L?-eigenvalues. In fact, weaker forms of this question are still open, which we now explain.
Let \; = % + t? € spec(Ax) be the L? eigenvalues of Ax and define the counting

function

Nx (T) ¥ # {j|r; <T}.

We also define
1 (T /1
My (T) / -z ( + it) dt.

N E -T %2 2
Roughly, My (T') counts the number of poles of the scattering determinant ¢ in Re(s) < %

up to height at most 7' and up to error O (T) | , Section 11.1]. The Weyl law for a
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finite area hyperbolic surface X reads

Ny (T) 4+ Mx (T) ~ VOZIL(WX)TQ. (5.1)

A surface X is said to be essentially cuspidal if the contribution to the Weyl law (5.1) is

dominated by eigenvalues, i.e.

Selberg proved for principal congruence covers X (N) that

from which it follows that

_ Vol (X (N))

T? TlogT).
i + O (T'logT)

Nx vy (T)

Selberg conjectured that every surface is essentially cuspidal. Despite being widely believed
to be false, Selberg’s conjecture is still open. Phillips and Sarnak make a very different

conjecture | , Conjecture 1].
Conjecture 5.1. Let 2g+n—3 >0 and n > 0.
1. The generic X in any Ty is not essentially cuspidal.

2. Except in the case where g = n = 1, the generic X € Ty, has only finitely many

etgenvalues.

Here generic is meant in the topological sense. The case of the once punctured torus is
omitted since every X € 711 has a symmetry of order 2 and the functions which are odd
with respect to this symmetry are all cuspidal.

Great progress on this problem was made in a series of works of Phillips and Sarnak
[ , , ] and Wolpert [ , ]. These works show that the first part

of Conjecture 5.1 is true under assumptions on the multiplicities of eigenvalues on X (N).
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By the work of Phillips and Sarnak, together with work of Luo | |, if the multiplicities
m (A) of eigenvalues A of X (V) are uniformly bounded (for each fixed N) then part (1) of
Conjecture 5.1 holds. By the work of Wolpert, if every eigenvalue on the thrice punctured
sphere X (2) is simple (i.e. has multiplicity one) then part (1) of Conjecture 5.1 holds.

It is interesting to ask whether probabilistic methods could be used to approach this

problem. We make the following conjecture.

Conjecture 5.2. A random degree-n cover of a non-compact finite-area hyperbolic surface

has only finitely many new embedded eigenvalues with probability tending to 1 as n — oo.

In the next section we briefly highlight some (non)-examples around Conjecture 5.2.

5.0.2 Examples
Flat bundles

We recall the construction described in Remark 1.11. Let X = I'\H be a non-compact
finite-area hyperbolic surface. Given ¢ € Hom (I', U (n)), one can consider the associated
C" bundle X,, and its Laplacian A, on L?-sections. Since I' is a free group, any ¢ €
Hom (I', U (n)) is determined by the images of the generators ~q,...,v4 of I We obtain
a probability measure on Hom (I", U (n)) by picking the images of 71, ..., 74 independently
with Haar probability.

One might try to adapt the approach of [ | to say something about Conjecture
5.2. Letting 7q,,. .., 7, denote the generators of the stability groups of the cusps of X, if
© (Ya1) »-- -9 (7a,) donot have 1 as an eigenvalue, then the twisted Laplacian A, has purely
discrete spectrum | ], in particular it must have infinitely many eigenvalues (although
they are not embedded). In fact, this happens almost surely for the random p,. It is
known by work of Collins and Male | ] that (p,, C") strongly converge to (X, 1? (I))
with probability tending to 1 as n — oo. Any approach to Conjecture 5.2 using strong

convergence must be wary of this fact.
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Covers

The fact that if a unitary representation p : I' — End (V') has the property that p (va,) ..., 0 (Vay)
have no fixed vectors then the twisted Laplacian A, has purely discrete spectrum yields

other examples of surfaces with infinitely many cusp forms.

Example 5.3 ([ ])- Let X be a non-compact finite-area hyperbolic surface and let X
be a cover of X such that X, and X have the same number of cusp, then X has infinitely
many cusp forms.

This follows since the Eisenstein series in the cover are all lifts, in the sense that

Eoi g (s) = 1(s) Eq; (5) (5:2)

for some holomorphic function 1 (which can be explicitly given). One can verify (5.2) by
hand from the definition of the Eisenstein series. The conclusion then follows from the

Weyl law (5.1) since (5.2) shows that X, has no new residual eigenvalues.

A Volume estimates

The purpose of this appendix is to prove the necessary Weil-Petersson volume estimates

used in the proof of Theorem 4.11. Similar estimates can be found in e.g. | , ,

; , J-

We need the following lemma in the proof of Lemma 4.14 and Lemma 4.15.

Lemma A.1. Let x1,...,2, = 0. For g,n >0, 2g —2+n > 0 we have

Vo (X1, .0, ) . ﬂ sinh (5)
Vo h

and

Vo (Qn_z,:vl,:@) _ 4 sinh (%) - sinh (%2) (1 Lo <n (m% + x%)))

Van 1 - T2

as g — 0o, where the implied constant is independent of n.

Remark A.2. Lemma A.1 is due to Mirzakhani and Petri [ , Proposition 3.1]. The
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proof of the second statement is identical to the proof of | , Lemma 20], if one uses

[ , Theorem A.1] in place of | , Page 286].

We require estimates for V, , where the number of cusps n is allowed to grow with the

genus g. The starting point is the following theorem of Mirzakhani and Zograf.

Theorem A.3 (| , Theorem 1.8]). There exists a constant B > 0 such that if n =
) (g%>, we have

Va.n(g)

S

(29 =3+ () (4m2) 1 (1 e (Hg(g))) |

as g — o0.

In order to control the contribution of simple separating geodesics, in Lemma 4.14 we

need the following lemma.
Lemma A.4. Ifn=o0 (g%), then

Z <n> Vijit1Vy—in—j+1 1+ n?
) < .
V:g?”

o<i<go<j<n M g
2<2i4+5<2g+n—2

The case that n is fixed is treated in | , Lemma 3.3]. The fact that the number
of cusps is growing with genus and the presence of the multiplicity (?) presents the new
difficulty here.

In the following, we shall frequently apply Stirling’s approximation which tells us that

there exist constants 1 < ¢; < ¢ < 2 with

w w
c1 - V2w (E> <w! < e V2w (E) , (A.1)
e e

for all w > 1.

Proof of Lemma A.J. By Theorem A.3, since n = o (\/§), we have

V.

an(e) = \2 (29— 3 +n)! (4n2) %" (1 +0 (1 +gn2>> : (A.2)
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By [ , Lemma 3.2, part 3] we have that for a,b >0, 2a +b > 1,
Vabra < Vatipra (A.3)
Applying (A.3) iteratively, for j > 1,
Vit S Vig a5 251

We can then apply Theorem A.3 to see that

2 2i+ 5 —2)! 2g—2i+n—7j—2)!
Viji1Vgmim—jr1 < (477) o 2+ : ) % / : ) - (A4)
\/ieraX{L]_lJ,O} \/gi+max{Ln_%_lj,O}
We also observe that
V9 <1 (A.5)
\/g—i+max{L"_§_1J,0} . \/i—l—max{Lj;lJ,O}
Then applying (A.2), (A.4) and (A.5),
Z n! ) V%,j—s—lvg—i,n—j-s-l
0<i<g,0<j<n gt(n—j)t Vo
2<214+5<2g+n—2
n! 204+5 -2 (29 -2t +n—3—2)!
< 3 .'(n_.)'( J EQ(in_?))' i=2t
0<i<g,0<j<n J: 1) g '
2<214-5<2g4+n—2
If ¢ = 0 then j > 2 and we have
n . . n—4 .
Z n! ‘(3—2)!(29—1—71—]—2)!_2 n! (2g+n—j-2)
2 m-1 (gtn-3) 2 5G- D) (2gtn-3)
2 n—4 j 2
n 7 n
L— + <L —,
g z} ¢t g

since n = o (\/g) By symmetry, the same calculation holds for the case that ¢ = g.
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Similarly, if ¢ = 1 then j > 0 and we calculate

n

n! j'(2g+n—
2 i <<Z g1

The same calculation holds in the case that ¢ = g — 1 by symmetry. If 2 < i < g — 2 then

we claim that

n! 2i+ 5 —2)1 (29 — 2i —j=2)!
. (2422 —2itn—j -2
gt(n—j)! (29 +n —3)!

(A.6)

It is a straightforward calculation to check that (A.6) holds in the case that i =2, j =0

andi=2,7=1. Nowlet L =2i+ j. Thenif 6 < L < n,

<

! 2i4+j—2)(29g—2i+n—j7—2) Ll-nkt Ln\*
'n.(zj N(29 —2i4+n—j—2) L”<<\fL<">,
jt(n—j)! (29 +n —3)! g

by Stirling’s approximation. If L = 6 then

a8y < () <o

ge
If6 <L <n-—1then

a5 () () G evere (5) (5)

13 n2 -3

SLzed g™ rl <g

IfngL\%(2g+n— 2), then since

()<
1

we have

nl (24 -2 (29— 2i+n—j—2) L'(2g+n—2—L)!

- - < 2"
gt(n —7)! (29 +n —3)! (29 +n —3)!
2"n! (29 — 2 —n)! <2n)" _3
< < (=) <g2
(29 +n — 3)! g g
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By symmetry, the case that 2i +j > % (29 + n — 2) is treated analogously. This establishes

the claim (A.6). We can now use the rough bound

#{(1,J) €Z>0|2<i<g—2,0<j<n,2<2i+j<29+n—2} < nyg,

to deduce that

a2+ -2 (2g—2i+n—35-2)! n
2 jt(n —j)! (29 +n —3)! <<?’
2<i<g—2,0<j<n 7 ’ '
2<2i+j<2g+n—2
and the result follows. O

In order to deal with the contribution of non-simple geodesics, we needed the following

Lemma.

Lemma A.5. Letn=o0 (\/ﬁ) and let go, ag,ng and k be given with m = 2go+ag+k —2 <

3logg—2. For1 < q<k—2ng,

n! \Z -V @0
Z . go,no+aov gamatayg (290 + k + ag — 3)!g—m,
ol ay! ’
{(g.a5.m)}{-, €A ! o
where the summation is taken over the set A of all “admissible triples” {(g1,a1,m1),...,(9q,aq,nq)}
where gj,a; >0, n; > 1 and 2g; + a; +n; = 3 such that
i) S (20 —24n;+a)=29—2+n—m,
i’i) ;-1:1 n; = k—2n0,
ii1) 3‘:1%’ =n—ag.
This is similar to estimates proved in [ | but here we need the number of cusps to

grow with genus and we have the extra multiplicity

We take a similar approach as in the proof of Lemma A.4. Lemma A.5 relies on a lot of

computations which, for the sake of readability, are done separately in Lemma A.6.
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Proof of Lemma A.5 given Lemma A.6. By | , Lemma 3.2, part 3] we see that for each
a; + n; = 2, we have

Vgnaﬁ-ni < Vgi+Lai+;i_2j7ai+ni_2|_ai+;i—2j'
This allows us to apply Theorem A.3 which tells us that there exists C; > 0 with
q (47r2)2gj+aj+nj73 (293 + a + nj — 3)'

j=1 \/gj + max { |Gt 0}

where since Vp3 = 1 we interpret the product in (A.7) as only over triples with g; +

q
Vg1 nitar " V;?q,nq+aq < Cl ; (A7)

max { L%WJ , 0} > 0. We also see by Theorem A.3 that
Vioaoih < C1 (47%) 2973 (990 1 g+ k — 3)1, (A.8)

and

2
Vo = \2 (29 — 3+ n (g))! (4n2)> >0 (1 +0 <1+Z(9)>> . (A.9)

We introduce the notation a; + n; 4t ax { L%J,O} By applying (A.7), (A.8) and

(A.9) and noting that n;! > 1 for each i, we calculate that

Z n Vaonotk " Varmitar - Vggngtag
~ agl -+ a,! Vgn - nolng!---ng!
ci nt o II52 (295 +aj +nj — 3)!
<<(290—|—k—|—a0—3)!z 1\/.67 - ' Jj=1 J J ']

The result then follows from the fact that

Z Ci\/g9 n! H?=1 (29 +aj +n; —3)!  po
q

T Vo +a+ ;[ l—east 2040 -3)! gm’
which is proved in Lemma A.6. O

We now need to prove Lemma A.6, which is purely computational.

Lemma A.6. Letn =o0 (\/§) and let gg, ag,ng and k be given with m = 2go+ag+k —2 <
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3logg—2 and 1 < g <k —2ng. With A as in Lemma A.5, we have

< (A.10)

> ClVa n! T2 (29j +a;+n;—3)! pao
gj +a; +n; H?:oaj! (29 +n — 3)! g

In the proof of Lemma A.6, we will frequently apply the following observation: if z; > 0

with Y7, #; = A, then

S
[[=!< A, (A.11)
i=1
which can be seen by the fact that the multinomial coefficient (x1 IS) is bounded below
by 1.
Proof. We first note that ¢ < 3logg. For {(g1,a1,n1),...,(9q,aq, 1)} € A, we claim that

if maxi<i<q (29; +ai +n; —3) <29 +n—3 —m — 8¢ then

cl/g nl 1721 (295 +a; +n; —3)!

1%, /g; +aj +ny [T} aj! (29 +n — 3)!

< g 2l (A.12)

This estimate is analogous to (A.6). Once we have established (A.12) we shall apply a
rough counting argument to bound the contribution of such terms to the sum (A.10).
Let maxi<i<q (29i + @i +n; —3) = 29 +n —3 —m — L. First we treat the case that

L> % (29 + n —m — 3). We apply Stirling’s approximation (A.1) to see that

(2g; +ni +a; — 3)! e V27 (2g; +ni + a; — 3) (2% + a; +n; — 3)29i+“i+”i_3
) :

Vot a e ot

(&

20 . o 2gi+a;+n;—3
<4\/E-( gi ¥ 0i & 1 3> . (A.13)
e
Applying Stirling’s approximation again, we see that
\/g N l \/g ( e )2g+n—3
(29+7’L—3)! CQ\/27T(2g+n—3) 2g+n—3
e 2g+n—3
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We also note that

<q (A.15)

by the multinomial theorem. By (A.13), (A.14) and (A.15),

iy n! H?:1 (29; +a; +n; — 3)!
H?:1 g; +aj +n; H?:g a;! (29 +n —3)!
H‘I,_l (2g9; + a; +nj — 3)(29j+aj+TLj—3)
n., qg 1= J J J
<q" - (4C1y/7) 29+ 3T (A.16)

We now bound the expression in (A.16). Given s integers z; > 0, Jensen’s inequality for

concave functions applied to the function log x tells us that

Zf:1 z;log z; < log (Zf1 95?) '
Zf:l i Zf:l i

If zf:]_ Xr; = A and maX1<i<s T; = B, then

S S 2
in log x; < Alog (21521%)
i—1 )

i=1%i

< Alog B,
and by exponentiating, we conclude that
S
[1= < B (A.17)
i=1

Note that (A.17) also holds if instead we just require x; > 0 since we can apply Jensen’s
inequality with only the non-zero terms. Recall that max;<;<q (2g; + a; +n; —3) = 29 +
n—3—m—Lfor L > %(2g+n—m—3). Since }.7 | (2g: —2+n; + a;) =2g—2+n—m,

then in particular, Y7 ; (2g; — 3+ n; +a;) < 29 +n —m — 3 and we can apply (A.17) to
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(A.16) to calculate that

7 (2 4+ ai+n;—3 (2g;+a;+n;—3)
v (o) Al B i =3
(29+n—3)( g+n=3)

. ¢ (294+n—3—m—L)%?
L e

5 1 2g+n—3 1 2g+n—3—3qg—qlog, C1
< n.9 qu = < n - .
rray) ()
Since ¢ < 3loggand n =0 (\/g)

1 2g4+n—3—3q—qlogy Cq 1\ Y g ;
q" () < <2> =g e L g 29

2

This justifies the claim in the case that L > % (29 +n—m —3).

In order to treat the remaining cases, we first make the following observation. Re-

calling that Z;I»:l (2gj+aj+n;—3) =29+n—m—3—(¢g—1) and that a; +n; o

max { LWLO}, we see that

q q

1 29+n—m-3—-(¢g—1
Z<gﬂ+a3+n3 52 (2gj +aj+n; —3) > 5 ( )
j=1 J=1

For any ¢ positive integers x;, we have

q
H Z (¢-1).
Then

q
- 29+n—m—-3—-(qg—1
H(gj+aj+nj)> J 5 (g )—q—1>>g,

J=1

since n = o (\/f]) and g,m = O (log g). We see that

V9
[[{o Vi +aj +n;

<1,
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and therefore

Cl\/g n! T2 (295 +a; +n; — 3)!
H?:1 gj +a; +mn; Hg‘:o aj! (29 +n— 3)!
Cfn! H?:l (29 + aj +n; — 3)! (A18)
[T a;! (29 +n —3)! '

The expression in (A.18) will be easier to work with for the remaining cases. Recalling that
maxi<i<q (2g; + a; + ni — 3) = 2g+n—3—m—L, we now treat the case that 8¢ < L < n—ao.
Since maxi<i<q (29; + a; + n; — 3) = 2g+n—3—m— L, this forces max;<;<q a; > n—ap—L.
Indeed if maxi<i<qa; <n — ag — L we would have that

max (2g; + n;) > 29 — 2go — no,

1<i<q

which is not possible. Since thereis an 1 < ¢ < g such that 2¢g;+a;4+n;—3 = 2g+n—3—m—1L

and we have 23:1,#(1 (29 +a;+n;—3)=L—(¢q—1) <L, we apply (A.11) to see that

q q
(29 +a;j+n; —=3)!'=29g4+n—-3—m—L)! H (295 + a; +n; — 3)!
j=1 j=1j#i
<L'(29+n—3—m—L). (A.19)

We then use the rough bound

| | |
< T < & < notk (A.20)
§=0 CL]‘! (maxlgigq CLi)! (n —ap — L)!

together with (A.19), to see that

n! Ilj=1 295 +aj+n; —3)!  paotlpl(2g4+n—3—m—L)! nootl
. < L.
szoaj! (29 +n — 3)! (29 +n — 3)! gmt
(A.21)

By applying Stirling’s approximation (A.1),

ao+L ao

n-IL\* n
L1<<ﬁ<) e
e-g

gm

n
gm+L
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If L = 8¢ then since n = o (\/ﬁ) and g < 3logg,
n-L\" -4 8q+3 =1

Now if 8¢ < L < n — ay,

ao . L ) L ) 8q ) 8q
i (L) <ot (24)" (229" ()
g e-g Vg \e-g €-g n-8q

< g3 <L>8q. (”'L)L_Sq
8q e-g

L—8q

_ . _

gggq.eLSq(n > <<927q7
€-g

which justifies the claim (A.12) in the case that 8¢ < L < n — ag. Finally we treat the case

that 8¢ <n —ap < L < W. We calculate, with (A.19) and (A.15), that

Cin! Ilj=y (295 +aj+n;—=3)!  C9.¢" - L!(2g4+n—m—3—L)!

<
[T a;! (29 +n —3)! (29 +n—3)!
Ct-q" (n—ap)! (29 + ag — m — 3)!
<
(29 +n —m)!
3log Cq 31 nt+l, n
< ((2539) g, (A23)

which justifies the claim (A.12) for 8¢ < n —ap < L < W. Note that in the case
that n < 8¢ — ng we can simply apply the argument in (A.23) with L > 8¢. The claim
(A.12) is now proved.

Now we have established (A.12), we apply the very rough bound for the size of the set
A,

|A| < g%,
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together with (A.12) to calculate

3 Clyg n![15_ (295 + a; + nj — 3)!
— q . _
{(gi,ai,mi)}l_ €A ;1':1 Vg t+a;+n; Hj:O a]! (29 +n — 3)!

maxlgigq(29i+ai+ni—3)<2g+n—2—m—8q
740 7z n% 7 w g
<<7m Z g 2l ’A’TQ 2l K g 2. (A24)
g g g
{(giaimi)}i_€eA
maxi<i<q(29i+ai+n;—3)<2g+n—2—m—8¢q

3

3|

We now consider the sum

5 N !5, (25 + a; +nj — 3)!
———— q ]
((goaimn}l_ €A gj +aj +n; Hj=0 a;! (29 +n —3)!
maXlgigq(291+ai+ni*3)_>2g+n737m78q
(A.25)
Let maxi<i<q (29; + a; +n; —3) = 29 +n —3 —m — L. Since 2g; + a; +n; —3 > 0 and
d9-129j+aj+n;—3=29+n—m~—3~—(¢—1), we see that L > ¢ — 1. By the same

arguments as in (A.21) and (A.22),if ¢ — 1 < L < 8¢ < 24log g then

! (2 4 a:+n; —3)! ao+L ao
— oo (g5 + 05 105 23! R (A.26)
ITj=0 ;! (29 +n—3)! gmr gm
We now bound the number of {(g1,a1,n1),...,(9q, ag,nq)} € A with maxi<i<q (2¢9; + a; +n; — 3)

=2g+n—3—m— L. Assume we have that 2g1 +a1+n1 —3=29+n—3—m— L. The

remaining q — 1 triples satisfy

Z (29i+a; +n;))=L+3(qg—1).

2<i<q

Since > n; = k — 2ng and > 7_, a; = n — ao, the triple (g1,a1,m1) is determined by
the choice of {(g2,a2,n2),...,(9q ag:nq)}. Then the number of {(g;,a;,n;)}i_, € A with

maxi<i<q (29; + a; +n; —3) = 29 + n —3 —m — L is therefore bounded above by

(L ;(2 (il 1_)1)) (A.27)
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Therefore combining (A.18), (A.26) and (A.27) we see that the sum (A.25) satisfies

> o n![15- (295 + a; + nj — 3)!
gj+a; +n; Ilj—oa;!(29+n-3)!

{(gi,ai,mi)}i_ €A
maxi gi<q(29i+a;+n;—3)>2g+n—3—m—8q

8q
L+6(qg—1)\CY ao
<<— 3 < N ql >><<n (A.28)
Log1 3(¢—1) gt gm
Combining (A.24) and (A.28), the result follows. O
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