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Spectral theory of random cusped hyperbolic surfaces

William Richard Hide

Abstract

The aim of this thesis is to study the spectral theory of random finite-area non-

compact hyperbolic surfaces, focusing on the spectral gap. We study the size of the

spectral gap for two different models of random surfaces: random covers and the Weil-

Petersson model.

First we show that for any non-compact finite-area hyperbolic surface X, there is

a constant C > 0 such that a uniformly random degree-n cover Xn has no eigenvalues

below 1
4−C

(log log logn)2

log logn , other than those of X, with probability tending to 1 as n→∞.

Secondly, we show that for any ε > 0, α ∈ [0, 12 ), as g → ∞ a generic finite-area

genus g hyperbolic surface with n = O (gα) cusps, sampled with probability arising

from the Weil-Petersson metric on moduli space, has no non-zero eigenvalue of the

Laplacian below 1
4 −

(
2α+1

4

)2− ε. For α = 0 this gives a spectral gap of size 3
16 − ε and

for any α < 1
2 gives a uniform spectral gap of explicit size.
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1 Introduction

A hyperbolic surface is a smooth, connected, orientable Riemannian surface with constant

Gaussian curvature −1. Let X be a finite-area non-compact hyperbolic surface. The L2-

spectrum of the Laplacian ∆X , denoted spec (∆X), consists of:

� A simple eigenvalue at 0 and possibly finitely many eigenvalues in
(

0, 1
4

)
. Such

eigenvalues are often called small or exceptional eigenvalues.

� Absolutely continuous spectrum
[

1
4 ,∞

)
with multiplicity equal to the number of

cusps of X.

� Possibly infinitely many discrete eigenvalues in
[

1
4 ,∞

)
, embedded in the absolutely

continuous spectrum. Such eigenvalues are called embedded eigenvalues.

The spectral gap of ∆X , occasionally denoted here by SG (X), refers to the gap between

the simple zero eigenvalue and the remaining spectrum. As such, 1
4 is the optimal spectral

gap for a finite-area non-compact surface. 1
4 is also the bottom of the spectrum of the

Laplacian on the universal cover H.

The spectral gap is an important quantity, governing the exponential rate of mixing

of the geodesic flow on T 1X [Ra87] and providing error terms in prime geodesic counting

[Hu59].

The main aim of this thesis is to study the following question.

Question 1.1. Does a random finite-area non-compact hyperbolic surface have a large

spectral gap?

We study Question 1.1 for two different models of random surfaces, random covers §1.2

and Weil-Petersson random surfaces §1.3.

1.1 Motivation

We outline some motivation for studying Question 1.1.
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Geometry

Let X be a finite-area hyperbolic surface which may be compact or non-compact. For any

subset A ⊂ X we define h∗ (A)
def
= length(∂A)

Vol(A) where ∂A is the boundary of A. If either

quantity is undefined for some A then h∗ (A)
def
= ∞. The Cheeger constant of X is then

h (X)
def
= inf

S⊂X
Vol(S)6 1

2
Vol(X)

h∗ (S) .

The Cheeger constant roughly quantifies how difficult it is to separate the surface into

reasonably sized pieces with a short curve. The Cheeger-Buser inequalities say that the

spectral gap is comparable to the Cheeger constant. In particular, the Cheeger inequality

[Ch70] says that SG (X) > h(X)2

4 , whilst the Buser inequality [Bu82] says that there exists

C > 0 such that SG (X) 6 C · h (X).

Another natural measure of connectivity is the diameter of a surface. This is well defined

for compact surfaces and for non-compact surfaces one can consider the diameter of the

ε-thick part X>ε. A lower bound for spectral gap of the surface provides an upper bound

for the diameter [Ma20]. In particular, if SG (X) > 1−δ2

4 then

diam (X>ε) 6
2

1− δ
log (vol (X)) +

4

1− δ
log log (vol (X)) +Oε,δ (1) .

So one can view the spectral gap as a measure of connectivity; a surface with a large spectral

gap is highly connected.

Random regular graphs

There is a close analogue between large-genus random hyperbolic surfaces and random

regular graphs. The spectrum of a graph G with n vertices is the set of eigenvalues of its

adjacency matrix AG . When G is d-regular, the eigenvalues are given by

λ0 = d > λ1 > λ2 > ... > λn−1.
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λ0 6= λ1 if and only if G is connected, in which case there is a spectral gap λ0 − λ1. The

spectral gap of G governs the rate at which a random walk on G converges to the uniform

measure, graphs with a large spectral gap are highly desirable for real-world applications.

However, there is a bound on what can be achieved; Alon and Boppana [Ni91] proved

that for any sequence Gn of d-regular graphs on n vertices has λ1 > 2
√
d− 1−o(1) as n→∞.

A connected d-regular graph with all non-trivial eigenvalues in
[
−2
√
d− 1, 2

√
d− 1

]
is

called a Ramanujan graph after Lubotzky, Phillips and Sarnak [LPS88]. In [Al86], Alon

conjectured that for any ε > 0, a random d-regular graph on n vertices has no non-trivial

eigenvalues with absolute value above 2
√
d− 1 + ε as n → ∞. In other words, almost

all d-regular graphs have almost optimal spectral gap. Alon’s conjecture was proved by

Friedman [Fr08].

It was conjectured [MN08, Sa04] that the distribution of the second largest eigenvalue

of a random d-regular graph, after re-scaling by n
2
3 , is the same as the distribution of

the largest eigenvalue of the Gaussian Orthogonal Ensemble. This would mean that there

is a constant Cn,d such that n
2
3

(
λ1 − 2

√
d− 1

)
− Cn,d has Tracy-Widom distribution. If

Cn,d is of order 1, this would imply that λ1 fluctuates at scales O
(
n−

2
3

)
. If Cn,d = 0

then this would imply that slightly more than half of all d-regular graphs are Ramanujan.

An important first step towards this conjecture is determining the optimal error bound

ε = ε (n) in Alon’s conjecture. It was shown by Bordenave [Bo20], that one can take

ε = const ·
(

log logn
logn

)2
. Subsequently, it was shown by Huang and Yau [HY21] that one can

take ε = O (n−c) for some c > 0.

Friedman conjectured that an extension of Alon’s conjecture holds for random covers

of finite graphs [Fr03]. Given any finite graph G, one can define a notion of a degree-n

cover Gn of G. Eigenvalues of Gn which do not appear as eigenvalues of G are called new-

eigenvalues. It was conjectured by Friedman that for any fixed finite graph G and for any

ε > 0, a uniformly random degree-n cover Gn has no new-eigenvalues with absolute value

above ρ
(
G̃
)

+ ε with probability tending to 1 as n → ∞. Here ρ
(
G̃
)

is the spectral

radius of the adjacency operator on l2
(
G̃
)

, where G̃ is the universal cover of G. Friedman’s

conjecture was proved by Bordenave and Collins [BC19].

Ramanujan graphs of fixed degree with number of vertices tending to infinity were con-
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structed by Lubotzky, Phillips and Sarnak [LPS88] and independently by Margulis [Ma88].

Marcus, Spielman and Srivastava [MSS15] proved the existence of bipartite Ramanujan

graphs of all degrees d > 3 by proving a variant of a conjecture of Bilu and Linial [BL06].

In particular, they prove that every finite graph G has a degree-2 cover which has no

new-eigenvalues above ρ
(
G̃
)

.

Selberg’s eigenvalue conjecture

Spectral theory of the Laplacian on certain arithmetic hyperbolic surfaces has important

consequences in Number Theory, see e.g. [Sa03]. Let N > 1, the principal congruence

subgroup of SL2(Z) of level N is

Γ (N) = {T ∈ SL2(Z) | T ≡ I mod N} .

Consider the quotient X (N)
def
= Γ (N) \H. Letting λ1 (X (N)) denote the first non-zero

eigenvalue of the Laplacian on X (N), in [Se65] Selberg made the following conjecture.

Conjecture 1.2. For every N > 1,

λ1 (X(N)) >
1

4
.

Selberg’s Conjecture would imply the existence of surfaces with optimal spectral gap

in unbounded volume. Conjecture 1.2 remains open however there have been a number

of results in this direction. Selberg proved in [Se65] that Conjecture 1.2 holds with the

bound 3
16 . After many intermediate results [GJ78, Iw89, LRS95, Sa95, Iw96, KS02], the

best known result is the following due to Kim and Sarnak [Ki03].

Theorem 1.3 ([Ki03]). For every N > 1,

λ1 (X(N)) >
975

4096
.

9



Buser’s Conjecture

On a compact hyperbolic surface, the spectrum of the Laplacian consists of eigenvalues

0 = λ0(X) < λ1(X) ≤ · · · ≤ λi(X) ≤ · · ·

with λi(X) → ∞ as i → ∞ and the spectral gap is λ1 (X). In this case, there is an

asymptotic upper bound on λ1 in large genus.

Theorem 1.4 ([Hu74]). Let Yi be a sequence of compact hyperbolic surfaces with genera

g (i)→∞ as i→∞. Then

lim sup
i→∞

λ1 (Yi) 6
1

4
.

This is analogous to the Alon-Boppana bound for a d-regular graphs. It was conjectured

by Buser in [Bu84] that 1
4 can in fact be attained asymptotically.

Conjecture 1.5 ([Bu84]). There exists a sequence of compact hyperbolic surfaces {Yi}i∈N

with genera g (i)→∞ as i→∞ and

lim
i→∞

λ1 (Yi) =
1

4
.

Buser showed in [Bu84], using Selberg’s 3
16 Theorem and work of Jacquet-Langlands

[JL70]1 that there exists compact hyperbolic Yi surfaces with genera g (i) → ∞ as i → ∞

and λ1 (Yi) > 3
16 . In fact, Conjecture 1.2 implies Conjecture 1.5. Buser, Burger and

Dodzuik [BBD87] proved the slightly weaker λ1 (Yi) > c where c can be arbitrarily close to

3
16 , by using a more geometric approach (rather than Jacquet-Langlands). In particular,

they proved the following.

Lemma 1.6 ([BBD87]). Let X be a finite area hyperbolic surface with an even number of

cusps {Ci}. It is possible to deform the surface X in a certain way to a finite area hyperbolic

surface with boundary, where each cusp becomes a bounding geodesic of length t, and then

1By the work of Jacquet-Langlands [JL70], to each principal congruence subgroup Γ (N) one can associate

a cocompact Γ̃ (N) ⊂ SL2 (R) with the property that λ1

(
H/Γ̃N

)
> λ1 (X (N)). For large enough N , H/Γ̃N

is a compact hyperbolic surface whose genus is an increasing function of N .

10



glue the geodesic corresponding to C2i−1 to the one corresponding to C2i to form a family

of closed hyperbolic surfaces X(t) such that

lim sup
t→0

λ1(X(t)) ≥ inf (spec(∆X) ∩ (0,∞)) .

Therefore Conjecture 1.5 would follow from the existence of a sequence of finite-area

non-compact hyperbolic surfaces Xi with an even number of cusps and Vol (Xi) → ∞ as

i → ∞ and inf (spec(∆Xi) ∩ (0,∞)) → 1
4 . Further progress towards Conjecture 1.5 ran

parallel with progress towards progress towards Conjecture 1.2, outlined in the previous

section, by either Jacquet-Langlands or Lemma 1.6.

1.2 Random covers

In this subsection, we outline our results for the random covering model which is obtained as

follows. Take a fixed hyperbolic surface X and for n ∈ N, consider all degree-n Riemannian

covers Xn sampled uniformly at random. Since spec(∆X)⊂spec (∆Xn) as multi-sets for any

degree-n cover Xn, it is natural to restrict attention to new eigenvalues, i.e. eigenvalues in

spec (∆Xn) which do not arise by a lifting from X.

Spectral gaps for random covers were first studied in [MN20] for Schottky surfaces and

[MNP20] for compact surfaces. The first result we highlight is the following.

Theorem 1.7 ([MNP20, Theorem 1.5]). Let Y be a compact hyperbolic surface. For any

ε > 0 a uniformly random degree-n cover Yn has no new eigenvalues below 3
16 − ε with

probability tending to 1 as n→∞.

It is conjectured in [MNP20] that the same result holds with 3
16 replaced with 1

4 .

Following an intermediate result [MN20], Magee and Naud prove in [MN21] that for X

conformally compact, a uniformly random cover Xn has no new resonances in any compact

set K ⊂ {s | Re(s) > δ
2} with probability tending to 1 as n→∞, where δ is the Hausdorff

dimension of the limit set of ΓX . For L2-spectral gaps this result is optimal.

We want to study the case where the base surface X is finite-area and non-compact.

The first result of the thesis is the following, joint with Michael Magee.
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Theorem 1.8 ([HM23, Theorem 1.1]). Let X be a finite-area non-compact hyperbolic sur-

face. For any ε > 0, a uniformly random degree-n cover has no new eigenvalues below 1
4−ε

with probability tending to 1 as n→∞.

Theorem 1.8 is an analogue of Alon and Friedman’s conjectures for finite-area non-

compact hyperbolic surfaces. As a corollary, taking X to be the thrice punctured sphere

which has λ1 >
1
4 and using Lemma 1.6 we obtain a proof of Buser’s Conjecture.

Corollary 1.9. Conjecture 1.5 is true.

An alternative proof of Conjecture 1.5 is given in [LM22]. In fact, it is shown in [LM22]

that every compact hyperbolic surface has a sequence of degree-n covers with no new

eigenvalues below 1
4 − on→∞(1). In particular, the surfaces in Corollary 1.9 can be taken

to be arithmetic.

An outstanding open problem is whether there exists a sequence of hyperbolic surfaces

{Xi}i∈N with Vol (Xi) → ∞ with λ1 (Xi) > 1
4 . This would, for example, follow from

Selberg’s Conjecture 1.2. Such surfaces would be analogous to Ramanujan graphs. It is

interesting to ask whether the analogue of the Bilu-Linial conjecture (§1.1) holds in this

setting, that is, does every finite area hyperbolic surface have a degree-2 cover with no

new-eigenvalues below 1
4?

In analogy with random regular graphs §1.1, it is natural to conjecture that after some

suitable re-scaling, the bottom of the new-spectrum of a random cover of a finite-area

non-compact hyperbolic surface has a limiting distribution2. As such, it is desirable to

determine the optimal rate at which one can allow ε = ε (n) to tend to 0 as n → ∞ in

Theorem 1.8. We prove a result in this direction.

Theorem 1.10. Let X be a finite-area non-compact hyperbolic surface. There is a constant

C > 0 such that a uniformly random degree-n cover has no new eigenvalues below

1

4
− C (log log log n)2

log log n
,

2For random covers of compact surfaces (or even random unitary bundles over non-compact finite-
area surfaces) it is perhaps natural to also conjecture that, after suitable re-scaling, λ1 has Tracy-Widom
distribution. The finite-area non-compact case is more subtle since it could well be the case that there are
no non-zero eigenvalues with positive probability.
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with probability tending to 1 as n→∞.

Theorem 1.10 follows from effectivising the arguments of [HM23] and applying sub-

sequent powerful results of Bordenave and Collins [BC23]. In this thesis we will prove

Theorem 1.10 but stress that the method follows [HM23].

Remark 1.11. Let X = Γ\H be a finite-area non-compact hyperbolic surface. Then Γ

is a finitely generated free group with generators γ1, . . . , γr for some r. We can equip

Hom (Γ,U (n)) with a probability measure by choosing the image of the generators ϕ (γ1) , . . . , ϕ (γr)

in U (n) independently with Haar probability. Given ϕ ∈ Hom (Γ,U (n)), Let ρϕ : Γ →

U (n) be the random Cn representation obtained via stdn ◦ ϕ where stdn is the standard

representation. We consider the associated (random) unitary bundle Eϕ and the Laplacian

∆ϕ on sections of Eϕ. Then spec (∆φ) ∩ [0, 1
4) consists of finitely many eigenvalues with

finite multiplicity. This setting was studied by Zargar [Za22] who proved the analogue of

Theorem 1.8 in the unitary case. For random unitary bundles, via the same methods of

Theorem 1.10 we can obtain a better rate.

Theorem 1.12 ([Hi23]). For any finite-area non-compact hyperbolic surface X, there exists

a constant c > 0 such that a random unitary bundle Eφ over X of rank n has

inf spec∆φ >
1

4
− c(log log n)2

log n
,

with probability tending to 1 as n→∞

1.3 Weil-Petersson random surfaces

Another model of random surfaces we are interested in is the Weil-Petersson model [GPY11,

Mi13]. Consider the moduli space Mg,n with probability measure arising from the Weil-

Petersson metric §4.2. One can think of Mg,n as the space of all hyperbolic metrics that

a surface with genus g and n cusps can wear, up to isometry. Mirzakhani was the first to

prove a spectral gap for Weil-Petersson random surfaces.

Theorem 1.13 ([Mi13, Theorem 4.8]). The Weil-Petersson probability that a genus g

compact hyperbolic surface has a non-zero Laplacian eigenvalue below 1
4

(
log(2)

2π+log(2)

)2
≈

13



0.0024 tends to zero as g →∞.

Subsequently, Mirzakhani’s result was improved to 3
16 − ε independently by Wu-Xue

[WX21] and Lipnowski-Wright [LW21] and recently to 2
9 − ε by Anantharaman and Monk

[AM23].

We study random non-compact surfaces in the Weil-Petersson model. Here, there is

flexibility for the rate at which g and n grow and it is interesting to ask what effect this has

on the spectrum of a Weil-Petersson random hyperbolic surface. Actually, if n is allowed

to grow faster than g, the spectral gap necessarily shrinks to 0.

Theorem 1.14 ([Zo87, Theorem 2]). There is a constant C > 0 such that for any X ∈

Mg,n,

SG (X) 6 C
g + 1

n
.

In this thesis, we study the case where the number of cusps grows slowly with the genus.

We prove the following.

Theorem 1.15. For any 0 6 α < 1
2 , if n = O (gα) then for any ε > 0 the Weil-Petersson

probability that a genus g non-compact finite-area surface with n cusps has a non-zero

Laplacian eigenvalue below 1
4 −

(
2α+1

4

)2 − ε tends to zero as g →∞.

If α = 0, i.e. the number of cusps is bounded, then Theorem 1.15 returns a spectral

gap of size 3
16 − ε as obtained in the works [LW21, WX21]. An undesirable feature of

Theorem 1.15 is that the spectral gap goes to 0 as α → 1
2 . However, one can extend

Mirzakhani’s methods, Theorem 1.13, to the case where n = o
(√
g
)

to obtain the bound

SG (X) > 1
4

(
log(2)

2π+log(2)

)2
for X ∈Mg,n with high probability, c.f. [SW22].

Subsequently, it was shown by Shen and Wu that if n grows faster than
√
g, a Weil-

Petersson random surface has an arbitrarily small spectral gap.

Theorem 1.16 ([SW22]). Let n : N→ N be any function with n(g)√
g →∞ and n(g)

g → 0 as

g →∞. Then for any ε > 0, the Weil-Petersson probability that X ∈Mg,n satisfies

SG (X) 6 ε

tends to 1 as g →∞.
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It is natural to ask how many small eigenvalues does a random surface with many

cusps have? In a recent joint work with Joe Thomas, we study this problem and show the

following.

Theorem 1.17 ([HT23]). Let g > 0 be fixed. For any ε > 0, there is a constant c (ε) > 0

such that a Weil-Petersson random surface X ∈Mg,n has at least cn Laplacian eigenvalues

below ε with probability tending to 1 as n→∞.

By a result of Ballmann, Mathiesen and Mondal [BMM17] it is known that every surface

inMg,n has at most 2g+n−2 exceptional eigenvalues and therefore Corollary 1.17 is optimal

up to a multiplicative factor. We do not prove Theorem 1.17 in this thesis.

1.4 Other related works

Brooks and Makover in [BM04] were the first to study spectral gaps of random surfaces.

They considered a combinatorial model of random surfaces, showing the existence of a

non-explicit uniform spectral gap with high probability. They considered a random closed

surface formed by gluing 2n copies of an ideal hyperbolic triangle with gluing determined

by a random trivalent ribbon graph and then applying a compactification procedure. They

proved the existence of a non-explicit constant C > 0 such that the first non-zero eigenvalue

is greater than C with probability tending to 1 as n → ∞. Other works on the Brooks-

Makover model include [Ga06, BCP21, SW22A].

As described in §1.1, one can view spectral gap as a measure of connectivity. Other

notions of connectivity have been studied by probabilistic methods with great success. For

the diameter, by comparing with balls in the hyperbolic plane, one can show that log g

is the asymptotically minimal diameter of a genus g compact hyperbolic surface. It was

shown by Budzinski, Curien and Petri [BCP21a] that

lim
g→∞

min
X∈Mg

diam (X)

log g
= 1.

For the Cheeger constant, it was shown by Budzinski, Curien and Petri [BCP22] that

lim sup
g→∞

sup
X∈Mg

h (X) 6
2

π
.
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The Cheeger constant of H is equal to 1, asymptotically attained by large discs so there

there is a gap between the maximal Cheeger constant of a large volume compact surface

and its universal cover.

We briefly mention that there has been great recent progress on deterministic upper

bounds for λ1 on compact hyperbolic surfaces with some very different perspectives, namely

conformal bootstrap [Bo22, KMP23] and linear programming [FBP23]. We refer the reader

to the cited articles for an account of the literature here.

Other related work on spectral theory on random hyperbolic surfaces includes the study

of Laplacian eigenfunctions [GMST21, Th22], quantum ergodicity [LS20], local Weyl law

[Mo21] and Gaussian Orthogonal Ensemble energy statistics [Ru22, Na22].

Plan of the thesis

First, the necessary background is introduced in Section 2. In Section 3 we prove Theorem

1.10. Next, In Section 4.2 we prove Theorem 1.15. Finally in Section 5 we discuss some

problems on embedded eigenvalues. The results of Section 4.2 rely on some estimates for

Weil-Petersson volumes which are proven in the Appendix A.

2 Background

In this section we introduce some background on the geometry and spectral theory of

non-compact hyperbolic surfaces.

2.1 Hyperbolic surfaces

Consider the upper half plane

H = {x+ iy | x, y ∈ R, y > 0},

with metric given by

dx2 + dy2

y2
.
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The orientation preserving isometry group of H is PSL2(R) = SL2 (R) /± I, which acts by

Möbius transformations. The elements of PSL2 (R) can be classified as follows.

Definition 2.1. Let γ =

 a b

c d

 ∈ PSL2 (R) with γ 6= I.

1. γ is parabolic if and only if |a+ b| = 2,

2. γ is hyperbolic if and only if |a+ b| > 2

3. γ is elliptic if and only if |a+ b| < 2.

A hyperbolic surface is smooth, connected, orientable Riemannian surface with constant

curvature −1. Any hyperbolic surface can be realized as a quotient Γ\H where Γ is a

discrete, torsion free subgroup of PSL2(R).

A parabolic cylinder is the quotient of H by a parabolic cyclic group. We define a cusp

to be the small end of a parabolic cylinder, with boundary the unique closed horocycle of

length 1. We can identify any cusp C with

C def
= (1,∞)× S1,

with the metric

dr2 + dx2

r2
,

where (r, x) ∈ (1,∞)× S1. By [Bu92, Lemma 4.4.6], in any finite-area hyperbolic surface,

cusps must be pairwise disjoint.

We shall closely follow [Iw02, Section 2.2]. Let X = ΓX\H be a finite-area non-compact

hyperbolic surface so that ΓX is a finitely generated free group. For w ∈ H, the Dirichlet

domain centered at w is defined by

Fw
def
= {z ∈ H | d (z, w) 6 d (z, γw) for all γ ∈ ΓX} . (2.1)

We write F to denote some Dirichlet fundamental domain for ΓX . Since F is a non-

compact polygon, it has some of its vertices on R ∪∞ in H ∪ ∂H. We call such a vertex a

cuspidal vertex. By e.g. [Iw02, Proposition 2.4], we can ensure that the cuspidal vertices
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are distinct modulo ΓX . The sides of F can be arranged in pairs so that the side pairing

motions generate ΓX . The two sides of F meeting at a cuspidal vertex have to be pairs

since the cuspidal vertices are distinct modulo ΓX . The side-pairing motion has to fix the

vertex and is therefore a parabolic element of ΓX . This gives rise to a cusp in the quotient

ΓX\H and each cuspidal vertex corresponds to a unique cusp in this way. We label the

cuspidal vertices by a1, ..., an ∈ cusp(X). We denote the stabilizer subgroup of the vertex

ai by

Γai
def
= {γ ∈ ΓX | γai = ai}.

Each Γai is an infinite cyclic group generated by the parabolic element γai , which is the

side-pairing motion at the vertex ai. There exists σai ∈ SL2 (R) such that

σ−1
ai γaiσai =

1 1

0 1

 . (2.2)

σai is determined up to right multiplication by a translation. σai is determined up to right

multiplication by a translation. We choose σai so that for each l > 1, the semi-strip

P (l)
def
= {z ∈ H | 0 < x < 1, y > l},

is mapped into F by σai .

Definition 2.2. For i = 1, . . . , n and l > 1, we define

Dai (l)
def
= σaiP (l) ,

and

D (l)
def
= F\

n⊔
i=1

Dai (l) .

Dai (l) is the part of the fundamental domain in the ith cusp bounded below by the

length 1
l horocycle and D (l) is a pre-compact region of F . By e.g. [Bu92, Lemma 4.4.6],

the cusps Dai (1) are pairwise disjoint and since l > 1, Dai (l) ∩ Daj (l) = ∅ for i 6= j and
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we can partition the fundamental domain as

F =D (l) t
n⊔
i=1

Dai (l) .

2.2 Spectral theory

For an unbounded linear operator A on an Hilbert space H with domain D (A) ⊂ H, the

spectrum spec (A) of A is the set of λ ∈ C for which A − λId : D (A) → H fails to have

a bounded inverse. In this section we define the Laplacian ∆ on hyperbolic surfaces and

describe the spectrum spec (∆).

2.2.1 Laplacian on non-compact finite-area surfaces

The Laplacian on C∞ (H), denoted ∆H, is given by

∆H = −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Since any surface can be realized as X = Γ\H, we can use the Laplacian on H to define

our Laplacian on X. Since ∆H is invariant under the action of PSL2(R), it descends to an

operator on C∞c (X) . It extends uniquely to a non-negative unbounded self-adjoint operator

on L2(X). We let ∆X denote the Laplacian on X and write spec (∆X) for the spectrum of

∆X . We write λj (X) to denote the jth smallest non-zero eigenvalue of ∆X if it exists.

We briefly describe the spectral decomposition of L2 (X). Our reference here is [Iw02].

Let B (X) denote the space of smooth, bounded functions on X. Let ψ ∈ C∞0 (R>0) and

a ∈ Cusp (X). We define the incomplete Eisenstein series

Ea (z | ψ)
def
=

∑
γ∈Γa\Γ

ψ
(
Imσ−1

a z
)
, (2.3)

which converges absolutely and gives a function in B (X)3. Let E (X) ⊂ B (X) denote the

space of incomplete Eisenstein series.

3Setting ψ = ys for s > 1, in 2.3 we obtain the Eisenstein series Ea (z, s) which is Laplacian eigenfunction
with eigenvalue s(1− s) but is not square-integrable.
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Any function f ∈ B (X) has a Fourier expansion

f (σa (x+ iy)) =
∑
m∈Z

fa,m (y) e2πmix,

where

fa,m (y) =

∫ 1

0
f (σa (x+ iy)) e2πmixdx.

One can check that for any a ∈ Cusp (X) and ψ ∈ C∞0 (R>0),

〈f,Ea (∗ | ψ)〉 =

∫ ∞
0

fa,m (y) ψ̄ (y)
dy

y2
.

In particular, f is orthogonal to E (X) if and only if for each a, fa,m (y) = 0 for y a.e. We

write C (X) to denote the smooth, bounded functions of X such that fa,m (y) = 0 a.e. for

every a ∈ Cusp(X). Then

L2 (X) = C (X)⊕ E (X),

where the bar means completion with respect to the L2-norm. The spectral decomposition

of ∆ in C (X) consists entirely of eigenvalues, known as cusp forms. There are examples of

surfaces with infinitely many cusp forms e.g. principal congruence covers, although there

is a priori no reason that C (X) must even be non-empty. This problem is discussed in

more detail in Section 5. The spectral decomposition of ∆ in E (X) consists of absolutely

continuous spectrum in
[

1
4 ,∞

)
with multiplicity equal to the number of cusps and finitely

many eigenvalues below 1
4 , always including the trivial eigenvalue λ0 = 0. Any eigenvalue of

∆ in E (X) is called a residual eigenvalue. Here, residual refers to the fact that the discrete

part of E (X) is spanned by residues of Eisenstein series. Any eigenvalue above 1
4 is called

an embedded eigenvalue, since it is embedded in the continuous spectrum. An embedded

eigenvalue is necessarily a cusp form but there can also be cusp forms below 1
4 .

3 Spectral gaps for random covers

The material of this chapter is based on [HM23] joint with Michael Magee and [Hi23]. The

aim of this chapter is to prove the following, c.f. Theorem 1.10.
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Theorem 3.1. Let X be a finite-area non-compact hyperbolic surface. There is a constant

C > 0 such that a uniformly random degree-n cover has no new eigenvalues below

1

4
− C (log log log n)2

log log n
,

with probability tending to 1 as n→∞.

3.1 Outline of the proof

We say an event A depending on a parameter n happens asymptotically almost surely and

write a.a.s. if the probability A holds tends to 1 as n→∞.

We first outline the proof for ε fixed, which is [HM23, Theorem 1], and then explain the

extra steps to obtain the rates ε = ε (n) in Theorem 3.1.

Set up and approach

Let X be a fixed finite-area non-compact surface. Let φ ∈ Hom (Γ, Sn) be a uniformly

random permutation and Xφ the corresponding cover. Our aim is to demonstrate that for

any ε > 0, a.a.s. for every s ∈
[

1
2 +
√
ε, 1
]

there exists a bounded operator

RXφ (s) : L2
new (Xφ)→ H2

new (Xφ) ,

with (
∆Xφ − s(1− s)

)
RXφ (λ) = IdL2

new(Xφ). (3.1)

Since (3.1) implies that
(
∆Xφ − s(1− s)

)
: H2

new (Xφ) → L2
new (Xφ) is onto and therefore,

by self-adjointness, has no non-trivial kernel in H2
new (Xφ), it would follow that a.a.s. ∆Xφ

has no new eigenvalues s(1− s) 6 1
4 − ε.

Our approach is to construct an approximate inverse Mφ (s) : L2
new (Xφ)→ H2

new (Xφ),

i.e. a bounded operator with the property that

(
∆Xφ − s(1− s)

)
Mφ (λ) = IdL2

new(Xφ) + Lφ (s) ,
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where Lφ (s) : L2
new (Xφ)→ L2

new (Xφ). If one can show that

‖Lφ (λ) ‖L2
new(Xφ) < 1, (3.2)

then 1 is not in the spectrum of Lφ (λ), in particular

(
IdL2

new(Xφ) + Lφ (λ)
)−1

: L2
new (Xφ)→ L2

new (Xφ) ,

exists as a bounded operator. One can then take

RXφ (λ)
def
= Mφ (λ)

(
IdL2

new(Xφ) + Lφ (λ)
)−1

.

in (3.1). The problem is then reduced to showing that (3.2) holds a.a.s (for an appropriate

choice of Mφ (λ)).

Building the approximate inverse

We build Mφ(s) is by patching together a ‘cuspidal parametrix’ Mcusp
φ (s) based on a model

resolvent in the cusps and an an interior parametrix Mint
φ (s) that localizes to a compact

part of Xφ. We then let

Mφ(s) = Mint
φ (s) + Mcusp

φ (s)

and we get a resulting splitting

Lφ(s) = Lint
φ (s) + Lcusp

φ (s).

In Section 3.4 we show that the term Mcusp
φ (s) can be designed so that ‖Lcusp

φ (s)‖ ≤ 1
8

(or any small number) for any φ, i.e. ‖Lcusp
φ (s)‖ can be bounded deterministically, and will

not cause issues in obtaining ‖Lφ(s)‖ < 1. This is achieved by ensuring Mcusp
φ (s) localises

sufficiently high up into the cusp, essentially above height 1√
ε
.

The term Mint
φ (s) is based on averaging the resolvent kernel of the hyperbolic plane

over the fundamental group of Γ (suitably twisting by φ) to obtain an integral operator on

L2
new (Xφ). The problem with this is that the averaging will not obviously converge, so we
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have to multiply the hyperbolic resolvent kernel by a radial cutoff that localizes to radii

≤ T + 1 to get a priori convergence for all s ∈
(

1
2 , 1
]
. This gives us that Mint

φ (s) is bounded

(Lemma 3.13).

The effect of this cutoff is that the error term Lint
φ (s) is an integral operator with smooth

kernel.

Bounding Lint
φ (s)

We prove that we can unitarily conjugate Lint
φ (s) to

∑
γ∈S

aγ(s)⊗ ρφ(γ)

acting on L2 (F) ⊗ V 0
n , where F is a Dirichlet fundamental domain for Γ and

(
ρφ, V

0
n

)
is

the standard n− 1 dimensional irreducible representation of Sn. The aγ(s)′s are compact

operators on L2 (F) and S is a finite set, which is fixed depending on the cut off T . In

particular there are only finitely many γ ∈ Γ for which aγ(s) is non-zero.

Because Γ is a free group of rank d, picking φ ∈ Hom (Γ, Sn) is the same as picking d per-

mutations indepentantly and uniformly at random. The breakthrough results of Bordenave

and Collins from [BC19] allow us to control the norm of

‖Lint
φ (s)‖L2

new(Xφ) =

∥∥∥∥∥∥
∑
γ∈S

aγ(s)⊗ ρφ(γ)

∥∥∥∥∥∥
L2(F)⊗V 0

n

,

a.a.s. In particular, if instead, the aγ(s) were matrices in Mr (C) for some fixed finite r,

the work of Bordenave and Collins from [BC19] would tell us that for any κ > 0, a.a.s.

∥∥∥∥∥∥
∑
γ∈S

aγ(s)⊗ ρφ(γ)

∥∥∥∥∥∥
Cr⊗V 0

n

≤

∥∥∥∥∥∥
∑
γ∈Γ

aγ(s)⊗ ρ∞(γ)

∥∥∥∥∥∥
Cr⊗l2(Γ)

+ κ (3.3)

where ρ∞ : Γ→ End
(
`2(Γ)

)
is the right regular representation. This is where the fact that

Γ is free is exploited.

Because the aγ(s) are in reality compact operators on Hilbert spaces we can approximate

by finite rank operators to the same effect. The rank of the matrices we need to take to
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achieve (3.3) depends on the cutoff T through the size of the set S.

Crucially, we understand the operator in the right hand side of (3.3) well: it can be

unitarily conjugated to an operator on L2(H) that is the composition of multiplication with

a cutoff (with norm ≤ 1) and an integral operator with real-valued radial kernel. This latter

operator is self-adjoint we can use the theory of the Selberg transform to estimate its norm

in Lemma 3.11. By choosing T sufficiently large in the beginning, we can force the norm

in the right hand side of (3.3) to be as small as we like, for s > 1
2 + ε. Consequently, we

can control ‖Lint
φ (s)‖ for any fixed s > 1

2 + ε a.a.s.

We now want to be able to control ‖Lint
φ (s)‖ for all s > 1

2 + ε a.a.s. To do this, we show

that ‖Lint
φ (s)‖ does not fluctuate much on small intervals (Lemma 3.16). We can then split

up the interval
(

1
2 + ε, 1

)
into a fine enough grid so that controlling ‖Lint

φ (s)‖ at each point

s reduces to controlling ‖Lint
φ (s)‖ at a finite number of points in the grid. We can then

apply an intersection bound to control ‖Lint
φ (s)‖ at every point in the (finite) grid a.a.s,

thus bounding ‖Lint
φ (s)‖ on (1

2 + ε, 1] a.a.s.

In total, we have shown ‖Lφ(s)‖ < 1 for every s > 1
2 + ε a.a.s. giving the desired result.

Effetiving previous arguments

We now describe how this argument is made effective, i.e. how one can allow ε to depend

on n. We want to repeat the argument to control ‖Lφ(s)‖ a.a.s. when s ∈
[

1
2 +

√
κ (n), 1

]
where κ (n)→ 0 as n→∞. To achieve this we need to take the cut-off T = T (n) to grow

depending on κ (n) and we need to cut off the cusps at a height proportional to κ (n). Now

our operator Lint
φ (s) is conjugated to

∑
γ∈S(n)

aγ ⊗ ρφ (γ) (3.4)

where S (n) now grows as n→∞. We again want to approximate each aγ by a finite rank

operator and compare (3.4) to ∑
γ∈S(T )

bγ ⊗ ρφ (γ) ,
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where bγ ∈ Mm (C). However since S = S (n) is now growing as n → ∞, we need to take

larger and larger (depending on n) finite rank approximations of aγ . In total, we need to

control the norm of a matrix polynomial with coefficients in Mm (C) where m = m (n),

where the number of terms of the polynomial also depends on n. To do this we apply

recent work of Bordenave and Collins [BC23] which, together with an effective linearisation

procedure (c.f. § 3.3), provides an effective version of (3.3). In order to access their results,

we also need to control the size of S = S (n) and the largest wordlength of any γ ∈ S. This

is achieved in Section 3.7.

3.2 Set up

Throughout the rest of this section, X = Γ\H will be a fixed non-compact finite-area

surface. We consider all degree-n Riemannian covers of X, sampled uniformly at random.

We stress that the covers we consider need not be connected, however will be connected

with high probability, which we will observe shortly.

There is a 1-to-1 correspondence between degree-n covers Xφ of X = Γ\H with labelled

fiber [n]
def
= {1, . . . , n} and φ ∈ Hom (Γ, Sn). Given a degree-n cover Xn, fix a point x0 ∈ X

and assume the the fiber above x0 is labelled by [n]. The monodromy map

φ : π1 (X,x0)→ Sn,

which describes how the fiber of x0 is permuted when following lifts of closed curves from

X to Xn, uniquely determines Xn. Given φ ∈ Hom (Γ, Sn) we can build a cover with

monodromy φ by

Xφ
def
= H× [n] / ∼

where (z, i) ∼ (γz, φ(γ)i) for γ ∈ Γ.

Since X is non-compact, Γ is necessarily a free group, freely generated by some

γ1, . . . , γd ∈ Γ,
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and choosing φ ∈ Hom (Γ, Sn) is the same as choosing

σi
def
= φ(γi), i = 1, . . . , d

independently and uniformly at random in Sn. The surface Xφ is connected if and only if Γ

acts transitively on [n] via φ. By a theorem of Dixon [Di69], two independent and uniformly

random permutations in Sn generate Sn or An a.a.s and it follows that a uniformly random

cover Xφ is connected a.a.s.

Let Vn
def
= `2([n]) and V 0

n ⊂ Vn the subspace of functions on [n] with zero mean.

The representation of Sn on `2([n]) is its standard representation by 0-1 matrices and the

subspace V 0
n is an irreducible subspace of dimension (n− 1): we write

ρφ : Γ→ End(V 0
n )

for the random representation of Γ induced by the random φ.

3.2.1 Function spaces

We define L2
new (Xφ) to be the space of L2 functions on Xφ orthogonal to all lifts of L2

functions from X. Then

L2 (Xφ) ∼= L2
new (X)⊕ L2 (X) .

Fix F to be a Dirichlet fundamental domain for X (2.1). Let C∞
(
H;V 0

n

)
denote the smooth

V 0
n -valued functions on H. There is an isometric linear isomorphism between

C∞ (Xφ) ∩ L2
new (Xφ) ,

and the space of smooth V 0
n -valued functions on H satisfying

f (γz) = ρφ (γ) f (z) , (3.5)
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for all γ ∈ Γ, with finite norm

‖f‖2L2(F)
def
=

∫
F
‖f(z)‖2V 0

n
dµH (z) <∞.

We denote the space of such functions by C∞φ
(
H;V 0

n

)
. The completion of C∞φ

(
H;V 0

n

)
with respect to ‖ • ‖L2(F) is denoted by L2

φ

(
H;V 0

n

)
; the isomorphism above extends to one

between L2
new (Xφ) and L2

φ

(
H;V 0

n

)
.

Let C∞c,φ
(
H;V 0

n

)
denote the subset of C∞φ

(
H;V 0

n

)
consisting of functions which are

compactly supported modulo Γ. We let H2
φ

(
H;V 0

n

)
denote the completion of C∞c,φ

(
H;V 0

n

)
with respect to the norm

‖f‖2H2
φ(H;V 0

n )

def
= ‖f‖2L2(F) + ‖∆f‖2L2(F).

We let H2 (Xφ) denote the completion of C∞c (Xφ) with respect to the norm

‖f‖2H2(Xφ)
def
= ‖f‖2L2(Xφ) + ‖∆f‖2L2(Xφ).

Viewing H2 (Xφ) as a subspace of L2 (Xφ), we let

H2
new (Xφ)

def
= H2 (Xφ) ∩ L2

new (Xφ) .

There is an isometric isomorphism between H2
new (Xφ) and H2

φ

(
H;V 0

n

)
that intertwines the

two relevant Laplacian operators.

3.3 Random matrix theory

In this section we introduce the necessary random matrix theory results. Recall Γ is a

free group on d generators γ1, . . . , γd. The wordlength wl (γ) is the length of γ as a re-

duced word in γ1, . . . , γd, γ
−1
1 , . . . , γ−1

d . Let ρ∞ : Γ→ End
(
l2 (Γ)

)
denote the right regular

representation of Γ.

As described in §3.1, we make essential use of the fact, due to Bordenave and Collins

[BC19], that for any m ∈ N and any finitely suppported map γ 7→ aγ ∈Mm (C), a uniformly
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random φn ∈ Hom (Γ, Sn) satisfies

‖
∑
γ∈Γ

aγ ⊗ ρφ(γ)‖Cm⊗V 0
n
6 (1 + on→∞(1)) ‖

∑
γ∈Γ

aγ ⊗ ρ∞(γ)‖Cm⊗l2(Γ), (3.6)

a.a.s. To obtain precise rates as in Theorem 1.10, it is necessary to have an effective version

of (3.6).

By the linearisation trick [Pi96, HT05], proving 3.6 is equivalent to proving 3.6 for every

linear polynomial. More precisely for any m ∈ N and a0, a1, . . . ad ∈Mm (C) with a0 = a∗0,

a uniformly random φn ∈ Hom (Γ, Sn) satisfies

∥∥∥∥∥a0 ⊗ IdV 0
n

+
d∑
i=1

(
ai ⊗ ρφ (γi) + a∗i ⊗ ρφ

(
γ−1
i

))∥∥∥∥∥
Cm⊗V 0

n

(3.7)

6 (1 + on→∞(1))

∥∥∥∥∥a0 ⊗ Id`2(Γ) +
d∑
i=1

(
ai ⊗ ρ∞ (γi) + a∗i ⊗ ρ∞

(
γ−1
i

))∥∥∥∥∥
Cm⊗`2(Γ)

,

a.a.s. The idea is that one can replace a polynomial of large degree (i.e. aγ supported on

long words in Γ) with a polynomial of smaller degree (to eventually aγ only supported on

generators and their inverses, i.e. a linear polynomial) at the cost of replacing Mm (C) by

Mm (C) ⊗Mk (C) for some k. Since (3.7) holds for matrices of every size, the statements

are equivalent. The benefit is that a statement like (3.7) is often easier to prove.

Again, for our purposes, we need a quantitative version of (3.6). We rely heavily on a

quantitative version (3.7) due to Bordenave and Collins [BC23].

Theorem 3.2 ([BC23, Corollary 1.4]). Let m 6 n
√

logn and a0, a1, . . . ad ∈ Mm (C) with

a0 = a∗0. Then there exists a constant c1 > 0 such that for a uniformly random φ ∈

Hom (Γ, Sn), with probability at least 1− c1√
n

,

∥∥∥∥∥a0 ⊗ IdV 0
n

+
d∑
i=1

(
ai ⊗ ρφ (γi) + a∗i ⊗ ρφ

(
γ−1
i

))∥∥∥∥∥
Cm⊗V 0

n

6

∥∥∥∥∥a0 ⊗ Id`2(Γ) +
d∑
i=1

(
ai ⊗ ρ∞ (γi) + a∗i ⊗ ρ∞

(
γ−1
i

))∥∥∥∥∥
Cm⊗`2(Γ)

(
1 +

c1

(log n)
1
4

)
.

To pass from (3.2) to a quantitative version of (3.6), we use an effective linearization
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proved in [BC23, Section 8].

In [BC23, Section 8], the authors considered operators of the form
∑

γ∈Bl aγ ⊗ ρφ (γ)

where Bl is the ball of size l in the word metric of Γ with our fixed choice of generators.

In our case, the operators we want to consider will be of the form
∑

γ∈S aγ ⊗ ρφ (γ) where

S ⊂ Bl where |S| is roughly of size l which shall give us a quantitative saving. This is only

a minor adaptation to the arguments in [BC23, Section 8], however since this is a key point

for our method, we include the details.

We say that a subset S ⊂ Γ is symmetric if g ∈ S implies g−1 ∈ S.

Lemma 3.3. Let l > 2 be an even integer and let S ⊂ Bl. Consider (ag)g∈S with ag ∈

Mm (C). Then there exists a symmetric set S1 ⊂ B l
2

with |S1| 6 4 |S|, (bg)g∈S1
with

bg ∈Mm (C)⊗M2|S1| (C) and θ > 0 such that for any unitary representation (ρ, V ) of Γ,

‖
∑
γ∈S

aγ ⊗ ρ (γ) ‖Cm⊗V = ‖
∑
γ∈S1

bγ ⊗ ρ (γ) ‖2Cm⊗C2|S1|⊗V − θ,

where

θ 6 4 |S| ‖
∑
γ∈S

aγ ⊗ ρ∞ (γ) ‖Cm⊗l2(Γ).

Proof. We consider a set S1 ⊂ B l
2

such that

S ⊂
{
g−1h | g, h ∈ S1

}
.

We claim we can choose S1 so that

|S1| 6 4 |S| .

Indeed if w ∈ S ∩ B l
2
, we can just take w and the identity to be in S1. If w ∈ S has

wordlength > l
2 , then it can be written as g−1h for two words g, h ∈ B l

2
and we add both

words to S1. We make S1 symmetric by including the inverses of any word already added,

at worst doubling the size of S1.

Note that we can enlarge S to a symmetric set without changing the size of S1, since S1

is symmetric. After possibly replacing Mm (C) with Mm (C)⊗M2 (C) and enlarging S to a
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symmetric set, we can assume that the symmetry condition aγ = a∗γ−1 holds, in particular

P
def
=
∑

γ∈S aγ ⊗ ρ (γ) is self-adjoint e.g. [BC23, Proof of Theorem 1.1]. Explicitly, by

considering the operator P̂ =
∑

γ∈S âγ ⊗ ρ (γ) ∈Mm (C)⊗M2 (C)⊗ End (V ) with

âγ =

 0 aγ

a∗γ−1 0

 ,

P̂ satisfies the symmetry condition and ‖P̂‖Cm⊗C2⊗V = ‖P‖Cm⊗V .

We now follow [BC23, Proof of Lemma 8.1]. Consider the element ã ∈ Mm (C) ⊗

M|S1| (C) defined by (ãg,h)g,h∈S1
,

ãg,h =
1

#
{

(g′, h′) ∈ S1 × S1 | (g′)−1 h′ = g−1h
}ag−1h,

when g−1h ∈ S and ãg,h = 0 otherwise. Then

∑
g,h∈S1

g−1h=w∈S

ãg,h = aw.

We have

‖ã‖2 6 ‖
∑
g,h∈S1

ãg,hã
∗
g,h‖ 6 ‖

∑
w∈S

awa
∗
w‖ 6 ‖

∑
w∈S

aw ⊗ ρ∞ (w) ‖2.

The operator ã+ ‖ã‖Idm|S1| is positive semi-definite and we let b̃ ∈Mm (C)⊗M|S1| (C) be

its self-adjoint square root. For g ∈ S1 we define

bg
def
= b̃

(
Idm ⊗ eg,∅

)
∈Mm (C)⊗M|S1| (C) ,

where eg,h
def
= δg ⊗ δh ∈MB l

2

(C) and ∅ is the unit in Γ. Then defining

Q
def
=
∑
g∈S1

bg ⊗ ρ(g),
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we have

Q∗Q =
∑
g,h∈S1

(
Idm ⊗ e∅,g

)
b̃2
(
Idm ⊗ eh,∅

)
⊗ ρ(g−1h)

=
∑
g,h∈S1

e∅,∅ ⊗ (ãg,h + ‖ã‖1g=hIdm)⊗ ρ(g−1h)

= e∅,∅ ⊗

∑
γ∈S

aγ ⊗ ρ (γ) + θIdCm⊗V

 ,

where

θ 6 |S1| ‖
∑
γ∈S

aγ ⊗ ρ∞ (γ) ‖ 6 4 |S| ‖
∑
γ∈S

aγ ⊗ ρ∞ (γ) ‖.

It follows that

‖Q‖2 = ||
∑
γ∈S

aγ ⊗ ρ (γ) + θIdCm⊗V ‖Cm⊗V = ‖
∑
γ∈S

aγ ⊗ ρ (γ) ‖Cm⊗V + θ.

We can iterate this process to obtain the following, c.f. [BC23, Lemma 8.2].

Lemma 3.4. Let l > 2 be an integer, S ⊂ Bl and let v = dlog2 le. Then for each k ∈

{0, . . . , v} there is:

� An integer nk > 1 with nv 6 2l |S|dlog2 le l(dlog2 le−1).

� A symmetric set Sk ⊂ B2v−k with S0 = S, |Sk| 6 min
{

4k |S| , |B2v−k |
}

.

� A set
(
akg
)
g∈Sk

with akg ∈Mm (C)⊗Mnk (C).

� A constant θk > 0 such that for k > 1,

θk 6
∥∥ ∑
γ∈Sk−1

ak−1
γ ⊗ ρ∞ (γ)

∥∥
Cm⊗Cnk−1⊗l2(Γ)

|Sk| ,

such that for any unitary representation (ρ, V ) of Γ,

‖
∑

γ∈Sk−1

ak−1
g ⊗ ρ(γ)‖Cm⊗Cnk−1⊗V = ‖

∑
γ∈Sk

akg ⊗ ρ(γ)‖2Cm⊗Cnk⊗V − θk.
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Proof. This is a straightforward consequence of iterating the procedure of Lemma 3.3. We

have

nv 6
v∏
i=1

2 |Si| 6
v∏
i=1

2 · 4i · |S| = 2v4
v(v−1)

2 |S|v ,

where v = dlog2 le which gives

nv 6 2l |S|dlog2 le l(dlog2 le−1),

as claimed.

As a consequence we obtain the following, c.f. [BC23, Lemma 8.3]

Lemma 3.5. Let l > 2 be an integer, S ⊂ Bl and set v = dlog2 le. Consider
(
avg
)
g∈Sv

as

in Lemma 3.4 and denote a0 = av∅, ai = avγi for 1 6 i 6 2d. Let (ρ, V ) be any unitary

representation of Γ. We have that for 0 < ε < 1, if

2εl2 |S|dlog2 le l(dlog2 le−1) < 1

and

‖a0⊗ IdV +
2d∑
i=1

ai⊗ρ(γi)‖Cm⊗Cnv⊗V 6 ‖a0⊗ Idl2(Γ) +
2d∑
i=1

ai⊗ρ∞(γi)‖Cm⊗Cnv⊗l2(Γ) (1 + ε) ,

then

‖
∑
γ∈S

aγ ⊗ ρ (γ) ‖Cm⊗V 6 ‖
∑
γ∈S

aγ ⊗ ρ∞ (γ) ‖Cm⊗l2(Γ)

(
1 + 2εl2 |S|dlog2 le l(dlog2 le−1)

)
.

Proof. For k ∈ {1, . . . , v}, let akg ∈ Mm (C) ⊗Mnk (C) for g ∈ Sk be as given by Lemma

3.4. For some k ∈ {1, . . . , v}, assume that for some 0 < εk < 1,

‖
∑
γ∈Sk

akγ ⊗ ρ (γ) ‖ 6 ‖
∑
γ∈Sk

akγ ⊗ ρ∞ (γ) ‖ (1 + εk) .
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Then by Lemma 3.4 applied twice,

‖
∑

γ∈Sk−1

ak−1
γ ⊗ ρ (γ) ‖ − ‖

∑
γ∈Sk−1

ak−1
γ ⊗ ρ∞ (γ) ‖ = ‖

∑
γ∈Sk

akγ ⊗ ρ (γ) ‖2 − ‖
∑
γ∈Sk

akγ ⊗ ρ∞ (γ) ‖2

6 εk (1 + 2εk)

‖ ∑
γ∈Sk−1

ak−1
γ ⊗ ρ∞ (γ) ‖+ θk


6 4 · 4k |S| εk‖

∑
γ∈Sk−1

ak−1
γ ⊗ ρ∞ (γ) ‖.

(3.8)

By assumption, εv = ε < 1 and then by setting εk−1
def
= 4 · 4k |S| εk (recalling θk 6

4k |S| ‖
∑

γ∈Sk−1
ak−1
γ ⊗ ρ∞ (γ) ‖ from Lemma 3.4), By the definition of εk−j we see

ε0 = ε

v∏
i=1

4 · 4i |S| 6 2εl2 |S|dlog2 le l(dlog2 le−1),

If one picks 2εl2 |S|dlog2 le l(dlog2 le−1) < 1 then this ensures that εk−j < 1 for j = 1, . . . , k

and we can apply the inequality (3.8) inductively starting from k = v to k = 1 provided

that each subsequent εk−j < 1.

By applying Lemma 3.5 and Theorem 3.2 have the following corollary.

Corollary 3.6. Let m and l satisfy

2ml |S|dlog2 le l(dlog2 le−1) 6 n
√

logn.

Let S ⊂ Bl be a finite set whose size satisfies

2c1l
2 |S|dlog2 le l(dlog2 le−1) 6 (log (n))

1
4 ,

where c1 is the constant in Theorem 3.6. Let γ 7→ aγ ∈ Mm (C) be any map supported in

S. For a uniformly random ϕ ∈ Hom (Γ, Sn), with probability at least 1− c1√
n

one has

‖
∑
γ∈S

aγ ⊗ ρϕ (γ) ‖Cm⊗V 0
n
6 ‖

∑
γ∈S

aγ ⊗ ρ∞ (γ) ‖Cm⊗l2(Γ)

(
1 + c1

2l2 |S|dlog2 le l(dlog2 le−1)

(log (n))
1
4

)
.
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3.4 Cusp parametrix

In this subsection we introduce the cuspidal part of the parametrix. We make the assump-

tion that X has only one cusp to simplify notation. We identify the cusp C with

C def
= (1,∞)× S1,

with the metric

dr2 + dx2

r2
, (3.9)

where (r, x) ∈ (1,∞) × S1. For each n ∈ N we will define the cutoff functions χ+
C,n, χ

−
C,n :

C → [0, 1] to be functions that are identically zero in a neighborhood of {1}×S1, identically

equal to 1 in a neighborhood of {∞} × S1, such that

χ+
C,nχ

−
C,n = χ−C,n. (3.10)

We extend χ±C,n by 0 to functions on X. Let κ : N→ (0,∞) be some given function. Later

on (Lemma 3.17) we shall pick a specific function κ (n), which will essentially be the rate we

can take inf specnew (∆φ)→ 1
4 a.a.s.. As indicated by the subscript, the functions χ+

C,n, χ
−
C,n

will depend on n through the function κ(n). We lift χ±C,n through the covering map to

obtain functions χ±C,n,φ on Xφ. Indeed, the cusp of X splits in Xφ into several regions of

the form

(1,∞)× R/mZ, (3.11)

with m ∈ N, and with the same metric (3.9). In these coordinates the covering map sends

πφ : (r, x+mZ) 7→ (r, x+ Z).

In particular, it preserves the r coordinate. We then define.

χ±C,n,φ
def
= χ±C ◦ πφ : Xφ → [0, 1],

where πφ : Xφ → X is the covering map.
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Lemma 3.7. Given κ : N→ (0,∞), for each n ∈ N we can choose χ±C,n as above so that

‖∇χ+
C,n,φ‖∞, ‖∆χ

+
C,n,φ‖∞ ≤

κ (n)

30
.

Proof. One can find a τ0 > 1 and a smooth function χ+
C,0 : [0,∞)→ [0, 1] with χ+

C,0 ≡ 0 for

τ in [0, 1], χ+
C,0 ≡ 1 for τ ≥ τ0 such that

sup
[0,∞)

|(χ+
C,0)′|, sup

[0,∞)
|(χ+
C,0)′′| ≤ 1.

Then defining

χ+
C,n (t)

def
=


0 for t ∈ [0, 1]

χ+
C,0

(
κ(n)
60 (t− 1) + 1

)
for t ∈ (1,∞)

,

we have

sup
[0,∞)

|(χ+
C,n)′|, sup

[0,∞)
|(χ+
C,n)′′| ≤ κ (n)

60
. (3.12)

Note that χ+
C,n (τ) ≡ 1 for τ > τn

def
= 60

κ(n) (τ0 − 1) + 1. Let C′ be any cusp region of Xφ as

in (3.11). Using the change of coordinates r = eτ we view C′ as

(0,∞)τ × R/mZ,

with the metric (dτ)2 +e−2τ (dx)2 where x is the coordinate in R/mZ. In these coordinates,

one can calculate directly from the formula for the metric that

‖∇χ+
C,φ‖(τ, x) = |[χ+

C ]′(τ)|,

and

|∆χ+
C,φ|(τ, x) = |[χ+

C ]′′(τ)− [χ+
C ]′(τ)|.

It follows from (3.12) that

‖∇χ+
C,n‖∞ = sup

[0,∞)
|(χ+
C,n)′| 6 κ (n)

30
,
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and

‖∆χ+
C,n‖∞ = sup

[0,∞)
|(χ+
C,n)′′ − (χ+

C,n)′| 6 κ (n)

30
.

If one chooses χ−C,n to be a function with χ−C (τ) ≡ 0 for τ ≤ τn and χ−C (τ) ≡ 1 for τ ≥ 2τn,

(3.10) is satisfied and the lemma is proved.

Let Cφ denote the subset of Xφ that covers C. We extend C to the parabolic cylinder

C̃ def
= (0,∞)× S1,

with the same metric (3.9), and let C̃φ be the corresponding extension of Cφ. Let H2
(
C̃φ
)

denote the completion of C∞c

(
C̃φ
)

with respect to the given norm

‖f‖2H2
def
= ‖f‖2L2 + ‖∆f‖2L2 .

The Laplacian ∆ = ∆C̃φ extends uniquely from C∞c

(
C̃φ
)

to a self-adjoint unbounded

operator on L2
(
C̃φ
)

with domain H2
(
C̃φ
)

.

Lemma 3.8. For any f ∈ H2(C̃φ), we have 〈∆f, f〉 ≥ 1
4‖f‖

2.

Proof. It suffices to prove this for C̃φ replaced by (0,∞)×R/mZ with the metric (3.9) i.e.

with only one connected component. Then changing coordinates to τ we are working in

the region (−∞,∞)×R/mZ with the metric (dτ)2 +e−2τ (dx)2. The corresponding volume

form is e−τdτ ∧ dx and the Laplacian is given by ∆ = −eτ ∂
∂τ e
−τ ∂

∂τ − e
2τ ∂2

∂θ2 . Now suppose

f ∈ C∞c ((−∞,∞)× R/mZ) . We calculate

e−τ/2∆eτ/2 = − ∂2

∂τ2
+

1

4
− e2τ ∂

2

∂θ2
,

so if g = e−τ/2f ∈ C∞c ((−∞,∞)× R/mZ) we have

∫
∆[f ]f̄ e−τdτ ∧ dx =

∫ ∞
−∞

∫ n

0
[e−τ/2∆eτ/2] (g) ḡdτ ∧ dx

≥ 1

4

∫ ∞
−∞

∫ n

0
gḡdτ ∧ dx =

1

4

∫ ∞
−∞

∫ n

0
ff̄e−τdτ ∧ dx.
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The inequality here used integrating by parts. The inequality obtained now extends to

H2
(
C̃φ
)

by density of C∞c (C̃φ) and continuity of 〈∆f, f〉.

Lemma 3.8 implies that the resolvent operator

RC̃φ(s)
def
= (∆− s(1− s))−1 : L2

(
C̃φ
)
→ H2

(
C̃φ
)
,

is a holomorphic family of bounded operators in Re(s) > 1
2 , each a bijection to their image.

This gives an a priori bound for the resolvent: using

(∆− s(1− s))RC̃φ(s)f = f,

and Lemma 3.8 we obtain that for f ∈ L2
(
C̃φ
)

and s ∈ (1
2 ,∞)

‖RC̃φ(s)f‖L2 ≤
(

1

4
− s(1− s)

)−1

‖f‖L2 . (3.13)

Since

∆RC̃φ(s)f = f + s(1− s)RC̃φ(s)f,

we obtain for s ∈ (1
2 ,∞)

‖∆RC̃φ(s)f‖L2 ≤ ‖f‖L2 + s(1− s)‖RC̃φ(s)f‖L2

≤

(
1 +

s(1− s)
1
4 − s(1− s)

)
‖f‖L2

=
1

1− 4s(1− s)
‖f‖L2 . (3.14)

We now define the cusp parametrix as

Mcusp
φ (s)

def
= χ+

C,n,φRC̃φ(s)χ−C,n,φ. (3.15)

Here,

� (multiplication by) χ−C,n,φ is viewed as an operator from L2(Xφ) to L2(C̃φ) by mapping

first to L2(Cφ) and then extending by zero. This is a bounded linear operator.
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� RC̃φ(s) is a bounded operator from L2(C̃φ) to H2(C̃φ).

� (multiplication by) χ+
C,n,φ is viewed as a operator from H2(C̃φ) to H2(Xφ), using that

χ+
C,n,φ localizes to Cφ and then extending by zero. This operator is bounded because

derivatives of χ+
C,n,φ are bounded and compactly supported.

Hence

Mcusp
φ (s) : L2(Xφ)→ H2(Xφ)

is a bounded operator.

The covering map Cφ → C extends in an obvious way to a covering map C̃φ → C̃ that

intertwines the two Laplacian operators. This, together with the fact that multiplication

by χ−C,n,φ and χ+
C,n,φ leave invariant the subspaces of functions lifted through the covering

map, one sees that

Mcusp
φ (s)

(
L2

new (Xφ)
)
⊂ H2

new (Xφ) .

Because χ+
C,n,φχ

−
C,n,φ = χ−C,n,φ,

(∆− s(1− s))Mcusp
φ (s) = χ−C,n,φ +

[
∆, χ+

C,n,φ

]
RC̃φ(s)χ−C,n,φ = χ−C,n,φ + Lcusp

φ (s), (3.16)

where

Lcusp
φ (s)

def
=
[
∆, χ+

C,n,φ

]
RC̃φ(s)χ−C,n,φ,

and [A,B]
def
= AB−BA denotes the commutator of linear maps. Here again we view χ−C,n,φ

and RC̃φ(s) as above, and
[
∆, χ+

C,n,φ

]
: H2(C̃φ) → L2(Xφ). This means that Lcusp

φ (s) is an

operator on L2(Xφ). By similar arguments to before, using that [∆, χ+
C,n,φ] only involves

radial derivatives (since χ+
C,n,φ is radial), we obtain

Lcusp
φ (s)

(
L2

new(Xφ)
)
⊂ L2

new(Xφ).

Lemma 3.9. For s ∈
[

1
2 +

√
κ (n), 1

]
, the operator Lcusp

φ (s) is a self-adjoint, bounded

operator on L2 (Xφ) with operator norm

‖Lcusp
φ (s)‖L2 ≤

1

8
.
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Proof. As an operator on H2(C̃φ)

[
∆, χ+

C,n,φ

]
=
(

∆χ+
C,n,φ

)
− 2

(
∇χ+
C,n,φ

)
· ∇.

The first summand is a multiplication operator; for f ∈ H2
(
C̃φ
)

we have

‖(∆χ+
C,n,φ)f‖L2 ≤ ‖(∆χ+

C,n,φ)‖∞‖f‖L2 (3.17)

and by Schwarz inequality if ‖f‖H2 ≤ 1 then

‖(∇χ+
C,n,φ) · ∇f‖L2 ≤ ‖∇χ+

C,n,φ‖∞‖∇f‖L2

= ‖∇χ+
C,n,φ‖∞〈∆f, f〉

1
2 ≤ ‖∇χ+

C,n,φ‖∞‖∆f‖
1
2 ‖f‖

1
2

≤ ‖∇χ+
C,n,φ‖∞. (3.18)

The two estimates (3.17), (3.18) hence show that [∆, χ+
C,n,φ] has norm bounded by ‖(∆χ+

C,n,φ)‖∞+

2‖∇χ+
C,n,φ‖∞ as a map H2

(
C̃φ
)
→ L2 (Xφ). Since multiplication by χ−C,n,φ has norm

≤ 1 from L2 to L2, and RC̃φ(s) has norm from L2(C̃φ) to H2(C̃φ) bounded by 5
4κ(n) for

s ∈
[

1
2 +

√
κ (n), 1

]
by (3.13) and (3.14). In particular, for s ∈

[
1
2 +

√
κ (n), 1

]
,

‖Lcusp
φ (s)‖L2

new(Xφ) ≤
(
‖(∆χ+

C,n,φ)‖∞ + 2‖∇χ+
C,n,φ‖∞

)
· 5

4κ (n)
6

1

8
, (3.19)

by applying Lemma 3.7.

3.5 Operators on H

3.5.1 Resolvent on H

For s ∈ C with Re(s) > 1
2 , let

RH(s) : L2 (H)→ L2(H), RH(s)
def
= (∆H − s(1− s))−1 ,
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be the resolvent on the upper half plane. Letting r(x, y)
def
= dH (x, y), RH(s) is an integral

operator with radial kernel RH(s; r) given by

RH(s; r)
def
=

1

4π

∫ 1

0

ts−1(1− t)s−1(
cosh2

(
r
2

)
− t
)
s
dt. (3.20)

For t ∈ (0, 1), we have

∂

∂r

ts−1(1− t)s−1(
cosh2

(
r
2

)
− t
)
s

= −s sinh
(r

2

)
cosh

(r
2

) ts−1(1− t)s−1(
cosh2

(
r
2

)
− t
)
s+1

,

∂

∂s

ts−1(1− t)s−1(
cosh2

(
r
2

)
− t
)
s

= log

(
t(1− t)(

cosh2
(
r
2

)
− t
)) ts−1(1− t)s−1(

cosh2
(
r
2

)
− t
)
s
,

∂2

∂s∂r

ts−1(1− t)s−1(
cosh2

(
r
2

)
− t
)
s

= − sinh
(r

2

)
cosh

(r
2

) ts−1(1− t)s−1(
cosh2

(
r
2

)
− t
)
s+1
·

[
1 + s log

(
t(1− t)(

cosh2
(
r
2

)
− t
))] .

Each of these are smooth in (s, r, t) ∈ [1
2 , 1] × [1,∞) × (0, 1). Because for s, r in a fixed

compact set of
[

1
2 , 1
]
× [1,∞), these all have absolute values bounded above by integrable

functions of t ∈ (0, 1), we can interchange derivatives and integrals to bound RH. Firstly,

there is a constant C > 0 such that for r0 ≥ 1 and s ∈ [1
2 , 1] we have

|RH(s; r)| ,
∣∣∣∣∂RH
∂r

(s; r)

∣∣∣∣ ≤ Ce−sr0 . (3.21)

Secondly, there is a constant C ′ > 0 such that for any T > 1 and r ∈ [1, T + 1] and all

s ∈ [1
2 , 1],

∣∣∣∣∂RH
∂s

(s; r)

∣∣∣∣ , ∣∣∣∣∂2RH
∂s∂r

(s; r0)

∣∣∣∣ ≤ C ′. (3.22)

3.5.2 Integral operators

If k0 : [0,∞) → R is smooth and compactly supported, which will suffice here, then one

can construct a kernel

k(x, y)
def
= k0(dH(x, y))
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with corresponding integral operator C∞(H)→ C∞(H)

K[f ](x)
def
=

∫
y∈H

k(x, y)f(y)dH(y)

where dH is the hyperbolic area form on H. Such an operator commutes with the Laplacian

on H and hence preserves its generalized eigenspaces. If f ∈ C∞(H) is a generalized

eigenfunction of ∆ with eigenvalue 1
4 + ξ2, ξ ≥ 0, then by [Be16, Thm. 3.7, Lemma 3.9]

(cf. also Selberg’s original article [Se56])

K[f ] = h(ξ)f

where

h(ξ) =
√

2

∫ ∞
−∞

eiξu
∫ ∞
|u|

k0(ρ) sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu.

By our assumptions on k0 the integral above is convergent. Since L2(H) has a generalized

eigenbasis of C∞ eigenfunctions of the Laplacian, by Borel functional calculus K extends

from e.g. C∞c (H) to a self-adjoint operator on L2(H) with operator norm

‖K‖L2(H) = sup
ξ≥0
|h(ξ)|. (3.23)

3.5.3 Interior parametrix on H

Let χ0 : R→ [0, 1] be a smooth function such that

χ0 (t) =


1 if t 6 0,

0 if t > 1.

.

For T > 0, we define a smooth cutoff function χT by

χT (t)
def
= χ0(t− T ).
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We then define the operator R
(T )
H (s) : L2 (H) → L2 (H) to be the integral operator with

radial kernel

R
(T )
H (s; r)

def
= χT (r)RH(s; r).

In radial coordinates the Laplacian on H is given by [Bo16, pg. 50]

− ∂2

∂r2
− 1

tanh r

∂

∂r
− 1

sinh2 r

∂2

∂θ2
.

We now perform the following calculation, writing ∆x for the Laplacian acting on coordinate

x:

[∆x − s(1− s)]R(T )
H (s; r) = [∆x − s(1− s)] (χT (r)RH(s; r))

=

[
− ∂2

∂r2
− 1

tanh r

∂

∂r
, χT

]
RH(s; r) + δr=0 (3.24)

which is understood in a distributional sense. We further calculate

[
− ∂2

∂r2
− 1

tanh r

∂

∂r
, χT

]
= − ∂2

∂r2
[χT ]− 2

∂

∂r
[χT ]

∂

∂r
− 1

tanh r

∂

∂r
[χT ]. (3.25)

Combining (3.24) and (3.25) we expect an identity of operators

[∆− s(1− s)]R(T )
H (s) = 1 + L(T )

H (s) (3.26)

where we define L(T )
H (s) to be the integral operator with radial kernel

L(T )
H (s; r)

def
=

(
− ∂2

∂r2
[χT ]− 1

tanh r

∂

∂r
[χT ]

)
RH(s; r)− 2

∂

∂r
[χT ]

∂RH
∂r

(s; r). (3.27)

The identity (3.26) will be established in Lemma 3.12 below. The following estimates

can be easily obtained from (3.21) and (3.22).

Lemma 3.10. We have

1. For T > 0 and s ∈ [1
2 , 1], L(T )(s; •) is smooth and supported in [T, T + 1].
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2. There is a constant C > 0 such that for any T > 0 and s ∈ [1
2 , 1] we have

|L(T )
H (s; r0)| ≤ Ce−sr0

3. There is a constant C > 0 such that for any T > 0, s ∈
[

1
2 , 1
]

and r0 ∈ [T, T + 1]

∣∣∣∣∣∂L
(T )
H
∂s

(s0; r0)

∣∣∣∣∣ ≤ C.
We can now bound bound the operator norm of L(T )

H (s).

Lemma 3.11. There is a constant C > 0 such that for any T > 0 and s ∈ [1
2 , 1] the

operator L(T )
H (s) extends to a bounded operator on L2 (H) with operator norm

‖L(T )
H (s)‖L2(H) 6 CTe(

1
2
−s)T .

Proof. We apply (3.23) which tells us

‖L(T )
H (s)‖L2 = sup

ξ≥0

∣∣∣∣∣√2

∫ ∞
−∞

eiξu
∫ ∞
|u|

L(T )
H (s; ρ) sinh(ρ)√

cosh(ρ)− cosh(u)
dρdu

∣∣∣∣∣
6
√

2

∫ ∞
−∞

∫ ∞
|u|

|L(T )
H (s; ρ)| sinh(ρ)√

cosh(ρ)− cosh(u)
dρdu

6 2
√

2C

∫ T+1

0

∫ T+1

max(|u|,T )

e−sρ sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu

6 C ′e−sT
∫ T+1

0

∫ T+1

max(|u|,T )

sinh(ρ)√
cosh(ρ)− cosh(u)

dρdu

= C ′e−sT
∫ T+1

0

∫ cosh(T+1)

cosh max(|u|,T )

dy√
y − cosh(u)

du

= C ′′e−sT
∫ T+1

0

[√
cosh(T + 1)− coshu

−
√

cosh max(|u|, T )− cosh |u|
]
du

6 C ′′′Te(
1
2
−s)T

where the third inequality used Lemma 3.10.
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We will need to ensure that, for example,

‖L(T )
H (s)‖L2(H) <

1

5
,

for s ∈
[

1
2 +

√
κ(n), 1

]
. This means we have to take T = T (n) such that,

Te−T
√
κ(n) <

1

5
(3.28)

for all sufficiently large n. We will eventually take κ (n) = 4(log T )2

T 2 which ensures (3.28).

The following lemma shows that smoothly cutting off RH(s) at radius T does not sig-

nificantly affect its mapping properties.

Lemma 3.12. For any T > 0 and s ∈ [1
2 , 1], for any compact K ⊂ H, there is C =

C(s,K, T ) > 0 such that:

1. For any f ∈ C∞c (H) with supp(f) ⊂ K we have R
(T )
H (s)f ∈ H2(H) and

‖R(T )
H (s)f‖H2 ≤ C(s,K, T )‖f‖L2 .

2. Furthermore, with f as above

(∆− s(1− s))R(T )
H (s)[f ] = f + L(T )

H (s)[f ]

in the sense of equivalence of L2 functions.

Proof. Suppose that compact K is given and f ∈ C∞c (H) with supp(f) ⊂ K. For y ∈ K

we have R
(T )
H (s;x, y) = 0 unless

x ∈ K ′(T,K)
def
= {x : d(x,K) ≤ T + 1 }
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with K ′ compact. Therefore using the usual Hilbert-Schmidt inequality we obtain

‖R(T )
H (s)[f ]‖2L2(H)

=

∫
x∈K′

∣∣∣∣∫
y∈K

R
(T )
H (s;x, y)f(y)dH(y)

∣∣∣∣2 dH(x)

≤
∫
x∈K′

(∫
y∈K

R
(T )
H (s;x, y)2dH(y)

)(∫
y∈K
|f(y)|2dH(y)

)
dH(x). (3.29)

Recall that we write r = dH(x, y), hence the inner integral can be written in polar coordi-

nates as

∫
y∈K

R
(T )
H (s;x, y)2dH(y) =

∫ 2π

0

∫ ∞
0

R
(T )
H (s; r)2 sinh r dr dθ

≤ 2π

∫ M

0
R

(T )
H (s; r)2 sinh r dr (3.30)

for M = M(K,T ). Because χT ≡ 1 near 0, the type of singularity that R
(T )
H,n(s; r) has at

r = 0 is exactly the same as the type of singularity of RH(s; r) near r = 0; namely by [Bo16,

(4.2)]

R
(T )
H (s; r) = − 1

4π
log
(r

2

)
+O(1) (3.31)

as r → 0. The function R
(T )
H (s; r) is smooth away from 0. Hence, since

(
log
(
r
2

))2
sinh r → 0

as r → 0, R
(T )
H (s; r) is in particular square integrable on [0,M ]. This gives from (3.29)

‖R(T )
H (s)[f ]‖2L2(H) ≤

∫
x∈K′

C(s,K, T )‖f‖2L2(H)dH(x) ≤ C ′(s,K, T )‖f‖2L2(H). (3.32)

We now aim for a bound on ‖∆R(T )
H (s)[f ]‖2L2(H) so as to prove R

(T )
H (s)[f ] ∈ H2(H) and

bound its H2-norm.

Let g ∈ C∞c (H) be a test function and f ∈ C∞c (H) with support as above. Consider

〈R(T )
H (s)[f ],∆g〉 =

∫
x∈H

(∫
y∈H

R
(T )
H (s;x, y)f(y)dH(y)

)
∆g(x)dH(x).

Because f and g are compactly supported and the singularity of R
(T )
H (x, y) is locally L1
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using (3.31), we can use Fubini to get

〈R(T )
H (s)[f ],∆g〉 =

∫
y∈H

(∫
x∈H

R
(T )
H (s;x, y)∆g(x)dH(x)

)
f(y)dH(y). (3.33)

We use hyperbolic polar coordinates for the inner integral, writing r = d(x, y) and θ for

polar angle, Gy(r, θ)
def
= ḡ(x), and the inner integral is understood as an improper integral

as follows:

∫
x∈H

R
(T )
H (s;x, y)∆g(x)dH(x)

=− lim
ε→0

∫ ∞
ε

∫ 2π

0
R

(T )
H (s; r̃)

(
∂

∂r

(
sinh r

∂Gy
∂r

)
(r̃, θ̃) +

1

(sinh r)2

∂2Gy
∂θ2

(r̃, θ̃)

)
dθ̃dr̃

=− lim
ε→0

∫ ∞
ε

∫ 2π

0
R

(T )
H (s; r̃)

(
∂

∂r

(
sinh r

∂Gy
∂r

)
(r̃, θ̃)

)
dθ̃dr̃

=− lim
ε→0

∫ 2π

0

∫ ∞
ε

R
(T )
H (s; r̃)

(
∂

∂r

(
sinh r

∂Gy
∂r

)
(r̃, θ̃)

)
dr̃dθ̃

= lim
ε→0

R
(T )
H (s; ε) sinh ε

∫ 2π

0

∂Gy
∂r

(ε, θ̃)dθ̃

+ lim
ε→0

∫ 2π

0

∫ ∞
ε

∂R
(T )
H
∂r

(s; r̃) sinh r̃
∂Gy
∂r

(r̃, θ̃)dr̃dθ̃

= lim
ε→0

∫ 2π

0

∫ ∞
ε

∂R
(T )
H
∂r

(s; r̃) sinh r̃
∂Gy
∂r

(r̃, θ̃)dr̃dθ̃ (3.34)

where the last equality used (3.31) with smoothness of Gy. Now a similar calculation gives

lim
ε→0

∫ 2π

0

∫ ∞
ε

∂R
(T )
H
∂r

(s; r̃) sinh r
∂Gy
∂r

(r̃, θ̃)dr̃dθ̃

=− lim
ε→0

∂R
(T )
H
∂r

(s; ε) sinh ε

∫ 2π

0
Gy(ε, θ̃)dθ̃

− lim
ε→0

∫ 2π

0

∫ ∞
ε

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃)Gy(r̃, θ̃)dr̃dθ̃

=ḡ(y)− lim
ε→0

∫ 2π

0

∫ ∞
ε

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃)Gy(r̃, θ̃)dr̃dθ̃. (3.35)

The second equality used [Bo16, pg. 66]

∂R
(T )
H
∂r

(s; ε) = − 1

2πε
+O(1)
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as ε→ 0 with limε→0Gy(ε, θ̃) = ḡ(y). Now we note

− 1

sinh r

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃) = ∆R

(T )
H (s; r̃)

and so using (3.24), (3.25) and (3.27) we get, for r̃ > 0,

− 1

sinh r

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃) = s(1− s)R(T )

H (s; r̃) + L(T )
H (s; r̃).

Therefore

− lim
ε→0

∫ 2π

0

∫ ∞
ε

∂

∂r

(
sinh r

∂R
(T )
H
∂r

)
(s; r̃)Gy(r̃, θ̃)dr̃dθ̃

= lim
ε→0

∫
d(x,y)>ε

(
s(1− s)R(T )

H (s; r̃) + L(T )
H (s; d(x, y))

)
ḡ(x)dH(x)

=

∫
x∈H

(
s(1− s)R(T )

H (s; d(x, y)) + L(T )
H (s; d(x, y))

)
ḡ(x)dH(x) (3.36)

and this last integral is easily seen to converge by working in polar coordinates centered at

y and using g ∈ C∞c (H) and (3.31).

Now combining (3.34), (3.35), and (3.36) gives, for (3.33),

〈R(T )
H (s)[f ],∆g〉

=

∫
y∈H

f(y)ḡ(y)dH(y)

+

∫
y∈H

(∫
x∈H

(
s(1− s)R(T )

H (s; d(x, y)) + L(T )
H (s; d(x, y))

)
ḡ(x)dH(x)

)
f(y)dH(y)

= 〈f, g〉+ 〈s(1− s)R(T )
H (s)[f ], g〉+ 〈L(T )

H (s)[f ], g〉.

Note that by (3.32) and Lemma 3.11 all functions above are in L2(H). This identity now

clearly extends to any g ∈ H2(H) and now self-adjointness of ∆H on H2(H) gives that

R
(T )
H (s)[f ] ∈ H2(H) and moreover

(∆− s(1− s))R(T )
H (s)[f ] = f + L(T )

H (s)[f ]

in the sense of elements of L2(H). This proves the second part of the lemma.
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We now rewrite this identity as

∆R
(T )
H (s)[f ] = f + s(1− s)R(T )

H (s)[f ] + L(T )
H (s)[f ]

and using Lemma 3.11 and (3.32) now gives

‖∆R(T )
H (s)[f ]‖L2(H) ≤ c(s,K, T )‖f‖L2(H).

Combining this with (3.32), this proves the first part of the lemma.

3.6 Interior parametrix

To build our interior parametrix, we define,

R
(T )
H,n(s;x, y)

def
= R

(T )
H (s;x, y)IdV 0

n
,

L(T )
H,n(s;x, y)

def
= L(T )

H (s;x, y)IdV 0
n
,

and R
(T )
H,n(s),L(T )

H,n(s) as the corresponding integral operators. The relevant properties are

summarized in the following Lemma.

Lemma 3.13. For all s ∈ [1
2 , 1],

1. The integral operator R
(T )
H,n(s)(1− χ−C,n) is well-defined on C∞c,φ(H;V 0

n ) and extends to

a bounded operator

R
(T )
H,n(s)

(
1− χ−C,n

)
: L2

φ

(
H;V 0

n

)
→ H2

φ

(
H;V 0

n

)
.

2. The integral operator L(T )
H,P,n(s)(1− χ−C,n) is well-defined on C∞c,φ

(
H;V 0

n

)
and and ex-

tends to a bounded operator on L2
φ(H;V 0

n ).

3. We have

[∆− s(1− s)]R(T )
H,P,φ(s)(1− χ−C,n) = (1− χ−C,n) + L(T )

H,P,n(s)(1− χ−C,n) (3.37)

as an identity of operators on L2
φ(H;V 0

n ).
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Proof. Suppose first that f ∈ C∞c,φ(H;V 0
n ) (i.e. automorphic, smooth, and compactly sup-

ported modulo Γ). We have for x ∈ F

R
(T )
H,n(s)(1− χ−C,n)[f ](x)

def
=

∫
y∈H

R
(T )
H (s;x, y)(1− χ−C,n(y))f(y)dH(y). (3.38)

The integrand here is non-zero unless d(x, y) ≤ T + 1 and y is in the the support of

1− χ−C , which is a union of the Γ-translates of a compact set K of of F̄ . There is compact

K1 = K1(T ) ⊂ F̄ and finite set S = S(T ) such that the integrand in (3.38) is supported

on the compact set K2
def
= ∪γ∈Sγ−1K and the whole integral is zero unless x ∈ K1 (given

x ∈ F̄ to begin with). A proof of this fact is given in Lemma 3.14.

Let ψ be a smooth function that is ≡ 1 in K2 ∪ K, valued in [0, 1] and compactly

supported. Let {ei : i ∈ [n− 1]} denote an orthonormal basis for V 0
n and let

fi
def
= 〈f, ei〉 ∈ C∞(H).

The above shows that for x ∈ F we have

R
(T )
H,n(s)(1− χ−C,n)[f ](x) = R

(T )
H,n(s)(1− χ−C,n)[ψf ](x)

=
n−1∑
i=1

R
(T )
H (s)

[(
1− χ−C,n

)
ψfi

]
(x)ei (3.39)

hence

‖R(T )
H,n(s)(1− χ−C,n)[f ](x)‖2V 0

n
=

n−1∑
i=1

∣∣∣R(T )
H (s)

[(
1− χ−C,n

)
ψfi

]
(x)
∣∣∣2 ,

‖∆R(T )
H,n(s)(1− χ−C,n)[f ](x)‖2V 0

n
=

n−1∑
i=1

∣∣∣∆R(T )
H (s)

[(
1− χ−C,n

)
ψfi

]
(x)
∣∣∣2 .

Each function
(

1− χ−C,n
)
ψfi is smooth here and has has compact support depending only

on T and χ−C,n.

Now using Lemma 3.12 Part 1, the fact that
(

1− χ−C,n
)

is valued in [0, 1], using ψ is

supported only on finitely many Γ-translates of F , together with automorphy of f , we get
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by integrating over F

‖R(T )
H,n(s)

(
1− χ−C,n

)
[f ]‖2L2(F) ≤ C

∑
i

‖ψfi‖2L2(H) ≤ C
′‖f‖2L2(F),

‖∆R(T )
H,n(s)

(
1− χ−C,n

)
[f ]‖2L2(F) ≤ C

∑
i

‖ψfi‖2L2(H) ≤ C
′‖f‖2L2(F),

where C,C ′ depend on s, T . Now this bound clearly extends to f ∈ L2
φ(H;V 0

n ). This proves

the first statement of the lemma.

The statement that L(T )
H,n(s) is well-defined and bounded on L2

φ(H;V 0
n ) is just an easier

version of the previous proof using Lemma 3.11 instead of Lemma 3.12. This gives the

second part of the lemma. We note that we also obtain

L(T )
H,n(s)

(
1− χ−C,n

)
[f ] =

n−1∑
i=1

L(T )
H,n(s)

[(
1− χ−C,n

)
ψfi

]
ei (3.40)

analogously to (3.39).

Now going back to (3.39) and using Lemma 3.12 Part 2 give, considering

(∆− s(1− s))R(T )
H,n(s)

(
1− χ−C,n

)
[f ]

=

n−1∑
i=1

(∆− s(1− s))R(T )
H (s)

[(
1− χ−C,n

)
ψfi

]
ei

=
n−1∑
i=1

((
1− χ−C,n

)
ψfi + L(T )

H,n(s)
[(

1− χ−C,n
)
ψfi

])
ei

=
(

1− χ−C,n
)
f + L(T )

H,n(s)
(

1− χ−C,n
)

[f ] .

On the other hand, the fact that all functions at the two ends of the string of equalities

above satisfy the automorphy equation (3.5) almost everywhere implies that indeed

(∆− s(1− s))R(T )
H,n(s)

(
1− χ−C,n

)
[f ] =

(
1− χ−C,n

)
f + L(T )

H,n(s)
(

1− χ−C,n
)

[f ]

as equivalence classes of measurable functions on H. This proves the final part of the

lemma.
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We define our interior parametrix

Mint
φ (s) : L2

new (Xφ)→ H2
new (Xφ) ,

to be the operator corresponding under L2
new (Xφ) ∼= L2

φ

(
H;V 0

n

)
andH2

new (Xφ) ∼= H2
φ

(
H;V 0

n

)
to the integral operator R

(T )
H,n(s)

(
1− χ−C,n

)
. Then by defining

Mφ (s) = Mint
φ (s) + Mcusp

φ (s),

we obtain, using (3.16),

(
∆Xφ − s(1− s)

)
Mφ (s) =

(
1− χ−C,n,φ

)
+ Lint

φ (s) + χ−C,n + χ+
C,n,φRC̃,φ (s)χ−C,n,φ

= 1 + Mint
φ (s) + Mcusp

φ (s). (3.41)

3.7 Probabilistic bounds on operator norms

In this section we prove the probabilistic estimates needed for the proofs of Theorem 3.1.

Some constants in this section will be important and others will not. We often write C

to denote some positive constant (which may only depend on possibly the choice of base

surface X) whose value we do not need to track and warn the reader that the precise value

of C may change from line to line. Important constants will be indicated by a subscript or

given a numerical value.

3.7.1 Preliminaries

Throughout this subsection, let κ : N→ (0,∞) be given and let χ±C,n be chosen as to satisfy

the conclusion of Lemma 3.7. The purpose of this subsection is to ensure that our random

operators Mint(s) are of the correct form as to apply Corollary 3.6.
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Let f ∈ C∞φ
(
H;V 0

n

)
with ‖f‖2L2(F) <∞. We have

L(T )
H,n(s)

(
1− χ−C,n

)
[f ](x) =

∫
y∈H

L(T )
H,n(s) (s;x, y)

(
1− χ−C,n(y)

)
f(y)

=
∑
γ∈Γ

∫
y∈F

L(T )
H,n(s) (s; γx, y) ρφ

(
γ−1

) (
1− χ−C,n (y)

)
f(y). (3.42)

We have an isomorphism of Hilbert spaces

L2
φ (H;Cn) ∼= L2 (F)⊗ V 0

n ;

f 7→
∑
ei

〈f |F , ei〉V 0
n
⊗ ei.

Conjugating by this isomorphism,

L(T )
H,n(s)

(
1− χ−C,n

)
∼= Ln,φ(s)

def
=
∑
γ∈Γ

a(T )
γ,n(s)⊗ ρφ

(
γ−1

)
,

where

a(T )
γ,n(s) : L2 (F)→ L2 (F)

a(T )
γ,n(s)[f ](x)

def
=

∫
y∈F

L(T )
H (s; γx, y)

(
1− χ−C,n (y)

)
dH(y).

Note that for any n ∈ N,T > 1, s ∈
[

1
2 , 1
]

and γ ∈ Γ, the operator a
(T )
γ,n (s) is an Hilbert-

Schmidt operator with Hilbert-Schmidt norm bounded only depending on X. Indeed by

Lemma 3.10, we have

∫
x,y∈F

∣∣∣L(T )
H (s; γx, y)

(
1− χ−C,n (y)

)∣∣∣2 dH(x)dH(y) 6 CVol (X)2 .

It is crucial that the map γ 7→ a
(T )
γ,n(s) has finite support S whose size we can control. We

also need to bound the wordlength of any γ ∈ S to apply Theorem 3.6. This is achieved in

the following lemma.

Lemma 3.14. Given n and T > 0, there is a finite set S (T ) ⊂ Γ which contains the
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support of the map γ 7→ a
(T )
γ,n(s) for any any s > 1

2 . There is a constant C > 0 such that

|S (T )| 6 Cκ (n)2 e2T , (3.43)

and if γ ∈ S (T ) then its word-length wl (γ) satisfies

wl(γ)6 Cκ (n)2 e2T . (3.44)

Proof. We define

Kn
def
= Supp

(
1− χ−C,n

)
⊂ F.

Recall from that Da (L) is the region of the fundamental domain F with y > L . By the

definition of χ−C,n (Section 3.4), we have

Kn ⊂ F\Da

(
C

κ (n)

)
,

for some constant. We have that

F\Da

(
C

κ (n)

)
= (F\Da (1))

⊔(
D (1) \Da

(
C

κ (n)

))
.

Recall that D (1) \Da

(
C
κ(n)

)
is the region of the cusp a bounded by the length 1 and the

length C
κ(n) horocycle. The diameter of (F\Da (1)) is bounded by a constant depending only

on X. The diameter of D (1) \Da

(
C
κ(n)

)
is bounded above by log

(
C
κ(n)

)
+ 2. It follows

that

diam (Kn) 6 C + log

(
1

κ (n)

)
.

Then for x ∈ F , by Lemma 3.10, the expression

L(T )
H (s; γx, y)

(
1− χ−C,n (y)

)

is non-zero only when y ∈ Kn and d (γx, y) 6 T + 1. Recall that F is a Dirichlet domain
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about some point w, we can assume w ∈ Kn. Then

d (γx,w) 6 d (γx, y) + d (w, y)

6 T + 1 + diam (Kn) .

Then since F is a Dirichlet domain about w,

d (γw,w) 6 d (γw, γx) + d (γx,w) = d (w, x) + d (γx,w) 6 2d (γx,w)

6 2

(
C + log

(
1

κ (n)

)
+ T

)
.

Then we can employ a lattice point count to deduce that

|S (T )| 6 # {γ ∈ Γ | d (γw,w) 6 C + 2 log κ (n) + 2T}

6 C exp

(
2

(
C + log

(
1

κ (n)

)
+ T

))
6 C

e2T

κ (n)2 ,

proving (3.43).

We now show property (3.44) holds. We assumed that F is a Dirichlet domain for Γ,

we can also assume that F is such that the set of side pairings
{
h1, . . . , hk, h

−1
1 , . . . , h−1

k

}
for F contain our choice of generators γ1, . . . , γd and their inverses. We let wl (γ) denote

the minimal length of γ as a word in
{
h1, . . . , hk, h

−1
1 , . . . , h−1

k

}
. Since any hi or its inverse

h−1
i is a finite word in γ1, . . . , γd, γ

−1
1 , . . . , γ−1

d it follows that there is a constant C > 0 with

wl (γ) 6 Cwl (γ) .

We now set about bounding

sup
γ∈S(T )

wl (γ) .

By the previous argument, if γ ∈ S (T ) then

γF ∩B (w,diam (Kn) + T + 1) 6= ∅. (3.45)

We claim that if γ satisfies (3.45) and wl (γ) > 1, then there is a γ′ with wl (γ) = wl (γ′)−1

54



which satisfies (3.45). The case wl (γ) = 1 is clear since w ∈ F . For l > 1 let Γl denote

the elements of Γ with wl (γ) = l. Since
{
h1, . . . , hk, h

−1
1 , . . . , h−1

k

}
are side pairings for the

Dirichlet domain F , we see that see that

⋃
γ∈Γ

γF\

 ⋃
γ∈Γl

γF

 =

⋃
i<l

⋃
γ∈Γi

γF

◦ t
⋃
i>l

⋃
γ∈Γi

γF

◦ .
is disconnected. Here U◦denotes the interior of U . Therefore if there claim were not true,

then one could find an l > 1 with

⋃
γ∈Γl

γF ∩B (w,diam (Kn) + T + 1) 6= ∅, (3.46)

such that ⋃
γ∈Γl−1

γF ∩B (w,diam (Kn) + T + 1) = ∅,

in particular,

B (w,diam (Kn) + T + 1) ⊂
⋃
γ∈Γ

γF\

 ⋃
γ∈Γl−1

γF

 .

Then since the ball of radius r in the hyperbolic plane is connected and the identity in Γ

satisfies (3.45),

B (w,diam (Kn) + T + 1) ⊂

 ⋃
i<l−1

⋃
γ∈Γi

γF

◦ .
This gives a contradiction to (3.46) and the claim follows. It follows that if γ satisfies (3.45)

then wl (γ) is bounded above by the number of γ ∈ Γ which satisfy (3.45). Then by the

argument that led to (3.14),

sup
γ∈S(T )

wl (γ) 6 C# {γ ∈ Γ | γF ∩B (w,diam (Kn) + T + 1) 6= ∅} 6 C
e2T (n)

κ (n)2 ,

and the claim is proved.

Currently, our operators
∑

γ∈S a
(T )
γ,n(s) ⊗ ρφ

(
γ−1

)
whose norm we wish to bound are

almost of the form of Corollary 3.6 except a
(T )
γ,n(s) : L2 (F) → L2 (F) are not matrices.

However each a
(T )
γ,n(s) is compact so can be approximated by finite rank operators. We need
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an effective version of this whilst having control over the rank in terms of the error.

Lemma 3.15. Let s ∈
[

1
2 , 1
]

be given. For every n ∈ N and T > 1, there exists a finite

dimensional subspace W ⊂ L2 (X) with |W | 6 C (S (T ))3 for some constant C and finite

rank operators b
(T )
γ,n : W →W for each γ ∈ S (T ) such that

‖b(T )
γ,n(s)− a(T )

γ,n(s)‖L2(F) 6
1

20|S(T )|
,

Proof. Let γ ∈ S (T ), then since a
(T )
γ (s) is compact, it has a singular value decomposition

a(T )
γ,n(s) =

∑
i∈N

sn

(
a(T )
γ,n(s)

)
〈·, ei〉fi,

where {ei}i∈N and {fi}i∈N are orthonormal systems in L2 (F) and {sn}n∈N is a decreasing

sequence of non-negative real numbers. Then by defining

b(T )
γ,n(s)

def
=

r∑
i=1

si

(
a(T )
γ (s)

)
〈·, ei〉fi,

we see that bTγ (s) : Wγ →Wγ where |Wγ | 6 2r and

‖b(T )
γ,n(s)− a(T )

γ,n(s)‖ 6 sr+1 (A) .

We want r to be such that

sr+1

(
a(T )
γ,n(s)

)
6

1

20|S(T )|
. (3.47)

We have
∞∑
i=1

si

(
a(T )
γ,n(s)

)2
= ‖a(T )

γ,n(s)‖2H.S 6 C,

Then

0 6
∞∑

i=r+1

si

(
a(T )
γ,n(s)

)2
= ‖a(T )

γ,n(s)‖2H.S −
r∑
i=1

si

(
a(T )
γ,n(s)

)2

6 C − rsr
(
a(T )
γ,n(s)

)2
.
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In particular,

sr

(
a(T )
γ,n(s)

)
6

√
C

r
.

Taking r > 400 · C · S (T )2 guarantees that (3.47) is satisfied. Then |Wγ | 6 CS (T )2 for

each γ ∈ S (T ) and taking

W =
⋃

γ∈S(T )

Wγ ,

gives the conclusion.

Finally we prove a simple deviations bound.

Lemma 3.16. There exists a constant c2 > 0 depending only on X such that for any T > 1,

any γ ∈ S (T ) and s1, s2 ∈
[

1
2 , 1
]
,

‖a(T )
γ,n(s1)− a(T )

γ,n(s2)‖L2(F) ≤ c2|s1 − s2|.

Proof. The operator

a(T )
γ,n(s1)− a(T )

γ,n(s2)

is an integral operator with kernel

(
L(T )
H (s; γx, y)− L(T )

H (s; γx, y)
)(

1− χ−C,n (y)
)
.

We have for any T > 1, γ ∈ S (T ), by Lemma 3.13,

∣∣∣L(T )
H (s; γx, y)− L(T )

H (s; γx, y)
∣∣∣ 6 sup

s∈[ 1
2
,1]

∣∣∣∣ ∂∂sL(T )
H (s; γx, y)

∣∣∣∣ |s1 − s2|

6 C |s1 − s2| .

Then we see

‖a(T )
γ (s1)− a(T )

γ (s2)‖L2(F) 6 ‖a(T )
γ (s1)− a(T )

γ (s2)‖H.S. 6 c2 |s1 − s2| ,

for some constant c2 > 0.
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3.7.2 Random operator bounds

We are now in a position to apply the results of Section 3.3 to our random operators Ln,φ(s).

Lemma 3.17. With notations as above, Taking T =
√

log logn
24 and κ (n) = 4·242(log log logn)2

log logn ,

we have that with probability tending to 1 as n→∞

sup
s∈
[

1
2

+
√
κ(n),1

] ‖Ln,φ(s)‖L2(F)⊗V 0
n
<

3

5
.

Proof. Let T =
√

log logn
24 , κ (n) = 4·242(log log logn)2

log logn and let s ∈
[

1
2 +

√
κ (n), 1

]
be fixed.

Then by Lemma 3.15, there exists a finite dimensional subspace W ⊂ L2 (X) with m =

|W | 6 C e3T

κ(n)3 and operators b
(T )
γ : W →W for each γ ∈ S (T ) such that

‖b(T )
γ,n(s)− a(T )

γ,n(s)‖L2(F) 6
1

20 |S (T )|
.

It follows that

‖Ln,φ(s)−
∑

γ∈S(T )

b(T )
γ,n(s)⊗ ρφ (γ) ‖L2(F)⊗V 0

n
6

1

20
. (3.48)

We want to apply Corollary 3.6, to bound

‖
∑

γ∈S(T )

b(T )
γ,n(s)⊗ ρφ (γ) ‖Cm⊗V 0

n
,

leading us to require that

2ml |S|dlog2 le l(dlog2 le−1) 6 n
√

logn,

and

l2 |S|dlog2 le l(dlog2 le−1) 6 (log (n))
1
4 .

Since m 6 C e3T

κ(n)3 and l, |S| 6 C e2T

κ(n)2 , c.f. Lemma 3.14 and Lemma 3.15, it is a simple

calculation to check both inequalities are satisfied if one takes T =
√

log logn
24 and κ (n) =
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4·242(log log logn)2

log logn . We learn that with probability at least 1− c1√
n

, we have

‖
∑
γ∈S

b(T )
γ,n(s)⊗ ρφ (γ) ‖Cm⊗V 0

n
6 ‖

∑
γ∈S

b(T )
γ,n(s)⊗ ρ∞ (γ) ‖Cm⊗l2(Γ)

(
1 +

l2 |S|dlog2 le l
3
2

(dlog2 le−1)

n
1

30d+100

)

= ‖
∑
γ∈S

b(T )
γ,n(s)⊗ ρ∞ (γ) ‖Cm⊗l2(Γ) (1 + o (1)) .

We have an isometric linear isomorphism

L2 (F)⊗ `2 (Γ) ∼= L2 (H) ,

f ⊗ δγ 7→ f ◦ γ−1,

(with f ◦ γ−1 extended by zero from a function on γF). Under this isomorphism, the

operator
∑

γ∈S a
(T )
γ,n(s)⊗ ρ∞

(
γ−1

)
is conjugated to

L(T )
H (s)

(
1− χ−C,n

)
: L2(H)→ L2(H)

from Section 3.5. Since
(

1− χ−C,n
)

is valued in [0, 1], multiplication by it has operator norm

≤ 1 on L2(H), we see that

‖L(T )
H (s)

(
1− χ−C,n

)
‖L2(H) 6 ‖L

(T )
H (s)‖L2(H) < CT (n) e−T (n)( 1

2
−s).

Since s ∈
[

1
2 +

√
κ (n), 1

]
and κ (n) = 4(log T (n))2

T (n)2 , we have

T (n) e−T (n)( 1
2
−s) 6 T (n) e−2 log(T (n)) = o (1) .

Then by Lemma 3.11 we have

‖
∑
γ∈S

a(T )
γ,n(s)⊗ ρ∞(γ−1)‖L2(F)⊗l2(Γ) <

1

10
, (3.49)
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for sufficiently large n. By the argument that led to (3.48), we see

‖
∑
γ∈S

b(T )
γ,n ⊗ ρ∞

(
γ−1

)
−
∑
γ∈S

a(T )
γ,n(s)⊗ ρ∞(γ−1)‖L2(F)⊗l2(Γ) <

1

20
. (3.50)

Then by (3.48), (3.49) and (3.50), for our fixed choice of s,

‖Ln,φ(s)‖L2(F)⊗V 0
n
<

2

5
,

with probability at least 1− c1√
n

.

We now use a finite net argument to control all s ∈
[

1
2 +

√
κ (n), 1

]
uniformly. Let Y

be a finite set of points in
[

1
2 +

√
κ (n), 1

]
so that each point of

[
1
2 +

√
κ (n), 1

]
is within

1

5|S (T ) |c2
,

of some element of Y, where c2 is the constant in Lemma 3.16. We can pick Y so that

|Y| 6 5c2 |S (T )| 6 C e2T

κ(n)2 . Then by applying an intersection bound, the probability that

‖Ln,φ(s)‖L2(F)⊗V 0
n
<

2

5

for every point s ∈ Y is bounded below by

1− C e2T

√
nκ (n)2 > 1− C ′ e

√
log logn

√
n

, (3.51)

which tends to 1 as n→∞ and

sup
s∈Y
‖Ln,φ(s)‖L2(F)⊗Cn 6

2

5
,

a.a.s. Finally, for s1, s2 ∈
[

1
2 +

√
κ (n), 1

]
,

Ln,φ(s1)− Ln,φ(s2) =
∑

γ∈S(T )

[
a(T )
γ (s1)− a(T )

γ (s2)
]
⊗ ρφ

(
γ−1

)
. (3.52)
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Then by Lemma 3.16, for some constant c2 > 0 we have

‖a(T )
γ (s1)− a(T )

γ (s2)‖L2(F) ≤ c2|s1 − s2|,

for all γ ∈ S (T ) and s1, s2 ∈ [s0, 1]. We see that,

‖Ln,φ(s1)− Ln,φ(s2)‖L2(F)⊗Cn ≤ |S (T )| c2|s1 − s2|.

Then by the choice of Y, it follows that

sup
s∈Y
‖Ln,φ(s)‖ 6 2

5
=⇒ sup

s∈
[

1
2

+
√
κ(n),1

] ‖Ln,φ(s)‖ 6 3

5
.

Since the prior happens with probability tending to 1 as n→∞, the first claim is proved.

3.8 Proofs of Theorem 3.1

It is now straightforward to conclude Theorem 3.1. Recall that our parametrix is defined

by

Mφ(s)
def
= Mint

φ (s) + Mcusp
φ (s),

then Mφ(s) : L2
new (Xφ)→ H2

new (Xφ) is a bounded operator and

(
∆Xφ − s(1− s)

)
Mφ(s) = 1 + Lint

φ (s) + Lcusp
φ (s),

by Section 3.6. We proved in Lemma 3.17 that there is a constant c3 (whose precise value

can be read off in Lemma 3.17) such that a.a.s.

‖Lint
φ (s)‖ 6 3

5
,

for all s ∈
[

1
2 +
√
c3

log log logn√
log logn

, 1
]
. Then since by (3.19)

‖Lcusp
φ (s)‖ 6 1

8
,
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we have a.a.s.

sup
s∈
[

1
2

+
√
c3

log log logn√
log logn

,1
]
.

‖Lint
φ (s) + Lcusp

φ (s)‖ 6 4

5
.

This implies that a.a.s.

Mφ(s)
(

1 + Lint
φ (s) + Lcusp

φ (s
)−1

exists as a bounded operator L2
new (Xφ)→ H2

new (Xφ) for every s ∈
[

1
2 +
√
c3

log log logn√
log logn

, 1
]
,

giving a bounded right inverse for
(
∆Xφ − s(1− s)

)
. It follows that a.a.s.

(
∆Xφ − s(1− s)

)
maps H2

new (Xφ) onto L2
new(Xφ) for every s ∈

[
1
2 +
√
c3

log log logn√
log logn

, 1
]

and since it is self-

adjoint for s ∈ [1
2 , 1], it cannot have any kernel in H2

new(Xφ). Therefore a.a.s. ∆Xφ cannot

have any new eigenvalues below

1

4
− c3

(log log log n)2

log log n
.

4 Spectral gaps for Weil-Petersson random surfaces

The material in this chapter is based on [Hi22]. The main Theorem of this section is the

following, c.f. Theorem 1.15

Theorem 4.1. For any 0 6 α < 1
2 , if n = O (gα) then for any ε > 0 the Weil-Petersson

probability that a genus g non-compact finite-area surface with n cusps has a non-zero

Laplacian eigenvalue below 1
4 −

(
2α+1

4

)2 − ε tends to zero as g →∞.

Overview of proof

Our method is based on the approach of [WX21, LW21], for compact surfaces. Both [WX21]

and [LW21], rely on Selberg’s trace formula, e.g. [Bu92, 9.5.3] to relate the spectrum of

the of a surface to its length spectrum. In the non-compact finite-area setting, there is a

version of Selberg’s trace formula, e.g. [Iw02, Theorem 10.2], but it is more complicated

with additional terms related to the absolutely continuous spectrum. Instead of dealing

with these additional terms directly, we prove a trace inequality which allows us to discard

them. In Section 4.1 we prove that if a surface X ∈ Mg,n has λ1 (X) 6 3
16 then λ1 (X)
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satisfies an inequality (Theorem 4.2) involving the set of oriented primitive closed geodesics

P(X), which closely resembles the form of Selberg’s trace formula for compact surfaces, up

to well behaved error terms depending only the topology of the surface. Roughly we prove

that there are strictly positive functions R and f such that

R (λ1 (X) , g, n) 6
∑

γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(
klγ(x)

2

)f (klγ (X)) , (4.1)

where lγ (X) is the length of the geodesic γ ∈ P (X). The proof of Theorem 4.2 relies

on results from [Ga02]. The function R is large for small λ1 (X) and bounding the Weil-

Petersson expectation of the right hand side of (4.1) will allow us to conclude Theorem 1.15

through Markov’s inequality.

In Section 4.3 we set about bounding the Weil-Petersson expectation of (4.1). To do

this we consider separately the contribution of simple and non-simple geodesics γ ∈ P (X)

and extend an argument of Wu-Xue [WX21] to deal with non-compact surfaces. We explain

the methods of Section 4.3 in more detail in Section 4.3.1.

4.1 Analytic preparations

In this section we prove a version of Selberg’s trace formula, using a pre-trace inequality in

place of the usual pre-trace formula.

In Section 4.1.1 we exhibit a family of test functions fT where T = 4 log g, and fT is a

non-negative, even, smooth function with support exactly (−T, T ) whose Fourier transform

f̂T is non-negative on R ∪ iR with f̂T
(
i
2

)
= O

(
g2
)
. The family of test functions fT is

defined by (4.3) with T = 4 log g.

The goal of this section is to prove the following.

Theorem 4.2. For g > 2, let fT be the test function defined by (4.3) with T = 4 log g.

For any ε > 0, there exists a constant C(ε) > 0 such that for any non-compact finite-area
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surface X with genus g, n = o
(
g

1
2

)
cusps and λ1(X) 6 3

16 ,

C(ε) log (g) g
4(1−ε)

√
1
4
−λ1(X) 6

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(
klγ(x)

2

)fT (klγ (X))− f̂T
(
i

2

)
+O (ng) .

(4.2)

Remark 4.3. Given κ > 0, we could have stated Theorem 4.2 with the hypothesis λ1(X) 6

1
4 − κ, (the statement is almost the same except the constant C(ε) will also depend on κ)

however our geometric estimates (Section 4.3) are not strong enough to prove a spectral

gap larger than 3
16 . We therefore state Theorem 4.2 with the hypothesis λ1(X) 6 3

16 to

simplify notation.

Throughout Section 4.1 we let X = ΓX\H be a fixed non-compact finite-area hyperbolic

surface with genus g and n = o
(
g

1
2

)
cusps and, for the sake of argument, λ1(X) 6 3

16 .

4.1.1 Test functions

In this subsection we introduce the family of test functions used in Theorem 4.2.

Proposition 4.4. There exists an f1 ∈ C∞c (R) with

1. Supp(f1) = (−1, 1).

2. f1 is non-negative and even.

3. The Fourier transform f̂1 satisfies f̂1(ξ) > 0 for ξ ∈ R ∪ iR.

4. f1 is non-increasing in [0, 1).

Proposition 4.4 is based on [MNP20, Section 2.2], with the extra condition (4) for

convenience later on.

Proof of Proposition 4.4. Let ψ0 be an even, C∞, real valued non-negative function whose

support is exactly (−1
2 ,

1
2) which is non-increasing in [0, 1

2). Let

f1(x)
def
=

∫
R
ψ0(x− t)ψ0(t)dt.
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It is proved in [MNP20, Section 2.2] that f1 satisfies (1) − (3). It remains to check (4).

Since f1 is even we have f ′1(0) = 0. If 0 < x < 1
2 , one can calculate that

f ′1(x) =

∫ 1
2
−x

0
(ψ0(x− z)− ψ0(x+ z))ψ′0(z)dz +

∫ 1
2

1
2
−x
ψ0(x− z)ψ′0(z)dz.

Since ψ0 is positive, even and non-increasing in [0, 1
2), we have ψ′0(z) 6 0 and ψ0(x− z)−

ψ0(x + z) > 0 for all 0 6 z 6 1
2 − x, so the first integrand is non-positive. The second

integrand is also non-positive since ψ0 is non-negative. Therefore f ′1(x) 6 0 in [0, 1
2). If

1
2 6 x < 1, then

f ′1(x) =

∫ 1
2

x− 1
2

ψ′0(t)ψ0(x− t)dt 6 0,

and f1 is non-increasing in [0, 1).

From here on in, we fix such a function f1. For T > 1 we define

fT (x)
def
= f1

( x
T

)
. (4.3)

Then by Proposition 4.4, for each T > 1, fT is a non-negative, even, smooth function with

support exactly (−T, T ) whose Fourier transform f̂T is non-negative on R ∪ iR. We also

have that fT is non-increasing in [0, T ).

Let kT denote the inverse Abel transform of fT , i.e.

kT (ρ)
def
=
−1√
2π

∫ ∞
ρ

f ′T (u)√
coshu− cosh ρ

du. (4.4)

We see that kT is smooth, Supp (kT ) ⊆ [0, T ) and since fT is non-increasing in [0, T ), kT is

non-negative.

We now have a fixed family of test functions fT for T > 1. We conclude this subsection

by stating a lower bound on f̂T in iR from [MNP20].

Lemma 4.5 ([MNP20, Lemma 2.4]). For any ε > 0 there exists a constant Cε > 0 such

that for all t ∈ R>0 and for all T > 1 the Fourier transform f̂T satisfies

f̂T (it) > TCεe
T (1−ε)t. (4.5)
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[MNP20, Lemma 2.4] applies for any function satisfying properties (1)−(3) from Propo-

sition 4.4 so it also applies here. Lemma 4.5 tells us that small values of λ1 imply large

values of f̂T

(
i
√

1
4 − λ1

)
.

4.1.2 Eigenfunction estimates

Now we have a family of test functions, we proceed with the proof of Theorem 4.2. For

z, w ∈ H, T > 1 we define

kT (z, w)
def
= kT (d(z, w)) .

Let r : [0,∞)→ C be the function given by

r(x) =


i
√

1
4 − x if 0 6 x 6 1

4 ,√
x− 1

4 if x > 1
4 .

Let uj ∈ L2(X) denote the normalized eigenfunction of the Laplacian on X corresponding

to the eigenvalue λj . Our starting point is the following.

Lemma 4.6 (Pre-trace inequality [Ga02, Proposition 5.2]). For all T > 1 and z ∈ H we

have that ∑
j:λj<

1
4

f̂T (r (λj)) |uj(z)|2 6
∑
γ∈ΓX

kT (z, γz) . (4.6)

Lemma 4.6 is immediately deduced from [Ga02, Proposition 5.2], using the fact that f̂T

is non-negative on R∪ i[0, 1
2 ] (the image of [0,∞) under r). We refer to the left hand side of

(4.6) as the spectral side and the right hand side as the geometric side. We prove Theorem

4.2 by integrating (4.6). We cannot integrate (4.6) over the full fundamental domain as the

contribution of the parabolic elements

∑
{γ∈ΓX\{Id}||tr(γ)|=2}

kT (z, γz) ,

is not absolutely integrable over the fundamental domain F . We get around this by in-

tegrating over the region D(l), as defined in Definition 2.2, with l = 2 (the choice l = 2

could be replaced by any fixed l > 1). This leads to another issue: we could potentially lose
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information on the spectral side after integrating. This could happen if an eigenfunction

concentrated outside D(2). The following lemma resolves this issue. From now on we write

D = D(2).

Lemma 4.7 ([Ga02, Lemma 4.1]). For any κ > 0, there is a constant c (κ) > 0 such that

for any uj with λj 6 1
4 − κ, we have

∫
D
|uj(z)|2dµ(z) > c (κ) .

The constant c does not depend on the surface X.

The upshot is that when we integrate (4.6) over D, we obtain something bounded on

the geometric side and we get a definite contribution from each eigenvalue on the spectral

side.

Remark 4.8. [Ga02, Lemma 4.1] is stated for quotients of H by geometrically finite sub-

groups of SL2(Z). The proof extends trivially to all finite-area non-compact surfaces, as

noted in [Ga02, Footnote 10].

4.1.3 Proof of Theorem 4.2

We conclude this section by proving Theorem 4.2.

Proof of Theorem 4.2. Recall that X is a finite-area non-compact hyperbolic surface with

genus g, n = o
(
g

1
2

)
cusps. We write λj = λj (X) and recall that X has first non-zero

Laplacian eigenvalue λ1 6 3
16 . Let T = 4 log g. By Lemma 4.6,

∑
j:λj<

1
4

f̂T (r (λj)) |uj(z)|2 6
∑
γ∈ΓX

kT (z, γz) . (4.7)

Since f̂T is non-negative on iR, f̂T ◦ r is non-negative on [0, 1
4 ] and (4.7) still holds if we

reduce the sum to just λ0 and λ1. Integrating (4.7) over D, we get

f̂T (r (λ0))

∫
D
|u0(z)|2dµ(z) + f̂T (r (λ1))

∫
D
|u1(z)|2dµ(z) 6

∫
D

∑
γ∈ΓX

kT (z, γz) dµ(z).

(4.8)
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First we look at the spectral side. The eigenvalue λ0 = 0 corresponds to the constant

eigenfunction

u0 (z) =
1√

Vol(X)
.

We have

f̂T (r (λ0))

∫
D
|u0(z)|2dµ(z) =

Vol (D)

Vol (X)
f̂T

(
i

2

)
.

Recall that

D = F\
n⊔
i=1

Dai (2) .

Since Dai (2) is isometric to {z ∈ H | 0 < x < 1, y > 2}, Vol (Dai(2)) = 1
2 for each i. By

Gauss-Bonnet, Vol(X) = 2π (2g − 2 + n) and we see that

Vol(D)

Vol(X)
=

2π (2g − 2 + n)− n
2

2π (2g − 2 + n)
= 1 +O

(
n

g

)
.

For the contribution of λ1, by Lemma 4.7 with κ = 1
16 , there is a constant c > 0 with

f̂T (r (λ1))

∫
D
|u1(z)|2dµ(z) > cf̂T (r (λ1)) . (4.9)

Let ε > 0 be given, then since λ1 6 3
16 , r(λ1) = i

√
1
4 − λ1, then by Lemma 4.5, there is a

constant Cε > 0 with

f̂T (r (λ1)) > TCεe
T (1−ε)

√
1
4
−λ1 . (4.10)

Combining (4.8), (4.9) and (4.10), we see there exists a constant C(ε) > 0 with

TC(ε)e
T (1−ε)

√
1
4
−λ1 +

(
1 +O

(
n

g

))
f̂T

(
i

2

)
6
∫
D

∑
γ∈ΓX

kT (z, γz) dµ(z). (4.11)

We now look at the geometric side. We arrange the sum in the geometric side into the
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contribution from the identity, parabolic and hyperbolic elements to obtain

∫
D

∑
γ∈ΓX

kT (z, γz) dµ(z) =
∑
γ∈ΓX

∫
D
kT (z, γz) dµ(z)

=

∫
D
kT (z, z) dµ(z) +

∑
{γ∈ΓX ||tr(γ)|>2}

∫
D
kT (z, γz) dµ(z)

+
∑

{γ∈ΓX\{Id}||tr(γ)|=2}

∫
D
kT (z, γz) dµ(z).

Interchanging summation and integration is justified since D is a compact region and kT

is supported in [0, T ), then for each z ∈ D, #{γ ∈ ΓX | d(z, γz) < T} is finite and the

summation is over finitely many terms.

First we treat the contribution of the identity. Since kT (z, w) = kT (d(z, w)) ,

∫
D
kT (z, z) dµ(z) = Vol(D)kT (0).

A calculation involving the Abel Transform, see for example the proof of [Bu92, Theorem

9.5.3], gives that

kT (0) =
1

4π

∫ ∞
−∞

rf̂T (r) tanh(πr)dr.

We calculate

∫ ∞
−∞

rf̂T (r) tanh(πr)dr = T

∫ ∞
−∞

rf̂1 (Tr) tanh(πr)dr

=
1

T

∫ ∞
−∞

r′f̂1

(
r′
)

tanh

(
πr′

T

)
dr′

6
2

T

∫ ∞
0

r′f̂1

(
r′
)
dr′ � 1

T
,

where the last line follows from the fact that f1 is compactly supported, thus f̂1 is a

Schwartz function and decays faster that the inverse of any polynomial. Since Vol(D) =

2π (2g − 2 + n)− n
2 , and X has o

(
g

1
2

)
cusps, this tells us that

∫
D
kT (z, z) dµ(z) = O (g) . (4.12)
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Now we look at the hyperbolic terms. By the non-negativity of kT ,

∑
{γ∈ΓX ||tr(γ)|>2}

∫
D
kT (z, γz) dµ(z) 6

∑
{γ∈ΓX ||tr(γ)|>2}

∫
F
kT (z, γz) dµ(z).

By arranging the sum into conjugacy classes and unfolding the integral, one can compute

that

∑
{γ∈ΓX ||tr(γ)|>2}

∫
F
kT (z, γz) dµ(z) =

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(
klγ(x)

2

)f (klγ (X)) . (4.13)

This computation is carried out in detail in [Iw02, Section 10.2].

It remains to bound the contribution of the parabolic elements. Any γ ∈ ΓX\{Id} with

|tr(γ)| = 2 is conjugate to γlai for some unique pair i ∈ {1, . . . , n} and l ∈ Z\{0}. Since the

centralizer of γlai in ΓX is Γai , we see

∑
{γ∈ΓX\{Id}||tr(γ)|=2}

∫
D
kT (z, γz) dµ(z) =

n∑
i=1

∑
l∈Z∗

∑
τ∈Γai\Γ

∫
D
kT

(
z, τ−1γlaiτz

)
dµ(z).

Since kT and dµ are invariant under isometries, by unfolding the integral, denoting Γ ·D def
=

∪γ∈ΓγD, we calculate

∑
τ∈Γai\Γ

∫
D
kT

(
z, τ−1γlaiτz

)
dµ(z) =

∫
Γai\Γ·D

kT

(
z, γlaiz

)
dµ(z).

We can choose a fundamental domain F̃i for the action of Γai on Γ ·D so that

F̃i ⊆ σai{z ∈ H | 0 < x 6 1, 0 < y 6 2},

and we see, recalling that σ−1
ai γaiσai (z) = z + 1,

70



∑
τ∈Γai\Γ

∫
D
kT (z, τ−1γlaiτz)dµ(z) =

∫
F̃i
kT (z, γlaiz)dµ(z)

=

∫
σ−1
ai (F̃i)

kT (z, z + l)dµ(z)

6
∫ x=1

x=0

∫ y=2

y=0
kT (z, z + l)dµ(z).

We sum over the parabolic conjugacy classes to calculate,

∑
{γ∈ΓX\{Id}||tr(γ)|=2}

∫
D
kT (z, γz)dµ(z) 6 n

∑
l∈Z∗

∫ 1

0

∫ 2

0
kT (z, z + l)dµ(z)

= n
∑
l∈Z∗

∫ 2

0
kT

(
arcosh

(
1 +

l2

2y2

))
y−2dy

= n
∑
l∈N

√
2

l

∫ T

min
{

arcosh
(

1+ l2

8

)
,T
} kT (ρ) sinh(ρ)√

cosh(ρ)− 1
dρ.

(4.14)

On the second line we used that cosh d (z, z + l) = 1 + l2

2y2 and on the third line we

used the change of variables ρ = arcosh
(

1 + l2

2y2

)
and that Supp (kT ) ⊆ [0, T ). When

arcosh
(

1 + l2

8

)
6 T , we use that fT is the Abel transform of kT to see that

∫ T

min
{

arcosh
(

1+ l2

8

)
,T
} kT (ρ) sinh(ρ)√

cosh(ρ)− 1
dρ 6

∫ T

0

kT (ρ) sinh(ρ)√
cosh(ρ)− 1

dρ = fT (0) = f1 (0) .

If arcosh
(

1 + l2

8

)
6 T then the contribution to the sum (4.14) is 0 and we conclude that

∑
{γ∈ΓX\{Id}||tr(γ)|=2}

∫
D
kT (z, γz)dµ(z) 6 2nf1(0)

b
√

8 coshT c∑
l=1

1

l
6 2nf1(0) log

(
2
√

2e
T
2

)
.
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Thus combining (4.11), (4.12), (4.13) and (4.1.3), we conclude that

TC(ε)e
T (1−ε)

√
1
4
−λ1 +

(
1 +O

(
n

g

))
f̂T

(
i

2

)
6

∑
γ∈P(X)

∞∑
k=1

lγ(X)

2 sinh
(
klγ(X)

2

)fT (klγ(X)) + 2nf1(0) log
(

2
√

2e
T
2

)
+O (g) .

Recalling that T = 4 log g, since fT is even,

f̂T

(
i

2

)
=

∫ ∞
0

2 cosh
(x

2

)
fT (x)dx = O

(
g2
)
,

and we deduce that

C(ε) log (g) g
4(1−ε)

√
1
4
−λ1 6

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(
klγ(x)

2

)fT (klγ (X))− f̂T
(
i

2

)
+O (ng) ,

as claimed.

Remark 4.9. By considering only the zero eigenvalue, the proof of Theorem 4.2 gives that

there exists a constant ν > 0 such that for sufficiently large g and for any X ∈Mg,n,

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(
klγ(x)

2

)fT (klγ (X))− f̂T
(
i

2

)
+ νng > 0.

This fact will be important in Section 4.4 when we want to apply Markov’s inequality to

the above quantity, viewed as a random variable on Mg,n.

4.2 Weil-Petersson model

In this subsection, we introduce the necessary background on moduli space and the Weil-

Petersson metric needed for the remainder of the chapter. We refer to the survey of Wright

[Wr20] for a more detailed exposition.

4.2.1 Moduli space

Let Σg,c,d denote a topological surface with genus g, c labeled punctures and d labeled

boundary components where 2g + n + d > 3. A marked surface of signature (g, c, d) is a
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pair (X,ϕ) where X is a hyperbolic surface and ϕ : Σg,c,d → X is a homeomorphism. Given

(l1, ..., ld) ∈ Rd>0, we define the Teichmüller space Tg,c+d (l1, . . . , ld) by

Tg,c,d (l1, ..., ld)
def
=

{
Marked surfaces (X,ϕ) of signature (g,c,d)

with labelled totally geodesic boundary components
(β1,...,βd) with lengths (l1,...,ld)

}
/ ∼,

where (X1, ϕ1) ∼ (X2, ϕ2) if and only if there exists an isometry m : X1 → X2 such that

ϕ2 and m ◦ϕ1 are isotopic. Let Homeo+ (Σg,c,d) denote the group of orientation preserving

homeomorphisms of Σg,c,d which leave every boundary component setwise fixed and do

not permute the punctures. Let Homeo+
0 (Σg,c,d) denote the subgroup of homeomorphisms

isotopic to the identity. The mapping class group is defined as

MCGg,c,d
def
= Homeo+ (Σg,c,d) /Homeo+

0 (Σg,c,d) .

Homeo+ (Σg,c,d) acts on Tg,c,d (l1, ..., ld) by pre-composition of the marking, and Homeo+
0 (Σg,c,d)

acts trivially, hence MCGg,c,d acts on Tg,c,d (l1, ..., ld) and we define the moduli space

Mg,c,d (l1, ..., ld) by

Mg,c,d (l1, ..., ld)
def
= Tg,c,d (l1, ..., ld) /MCGg,c,d.

By convention, a geodesic of length 0 is a cusp and we suppress the distinction between

punctures and boundary components in our notation by allowing li > 0. In particular,

Mg,c+d =Mg,c,d (0, . . . , 0) .

4.2.2 Weil-Petersson metric

By the work of Goldman [Go84], the space Tg,n (l) carries a natural symplectic structure

known as the Weil-Petersson symplectic form and is denoted by ωWP . In the case where

l = 0, this agrees with the form arising from the Weil-Petersson Kähler metric on Tg,n4. It

4The cotangent space T ∗(X,ϕ)Tg,n at (X,ϕ) ∈ Tg,n can be identified with the space of quadratic differen-
tials Q (X). The space Q (X) has an inner product 〈, 〉WP, the Weil-Petersson inner product, inducing a
Riemannian metric on Tg,n; the Weil-Petersson metric. The Weil-Petersson sympletic form ωWP is the form
dual to Im 〈, 〉WP.
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is invariant under the action of the mapping class group and descends to a symplectic form

on the quotient Mg,n (l). The form ωWP induces the volume form

dVolWP
def
=

1

(3g − 3 + n)!

3g−3+n∧
i=1

ωWP ,

which is also invariant under the action of the mapping class group and descends to a

volume form on Mg,n (l). We write dX as shorthand for dVolWP . We let Vg,n (l) denote

VolWP (Mg,n (l)), the total volume of Mg,n (l), which is finite. We write Vg,n to denote

Vg,n (0).

By work of Wolpert [Wo85], the Weil-Petersson symplectic form has a simple form in

Fenchel-Nielsen coordinates. Let Σg,c,d be as before, a topological surface with with genus

g, c labeled punctures and d labeled boundary components where 2g + n+ d > 3. A pants

decomposition of Σg,c,d is a collection of disjoint simple closed curves {αi}3g−3+c+d
i=1 such

that cutting the surface along all curves gives a disjoint collection of topological pants.

For a marked surface (X,ϕ), let lαi (X) to be the length of the unique geodesic in the

free homotopy class of ϕ (αi) and ταi (X) be the corresponding twist parameter. Then if

c+ d = n,

Tg,n (l) ∼= R3g−3+n
+ × R3g−3+n

(X,ϕ) 7→
(
lα1 (X) , . . . , lα3g−3+n (X) , τα1 (X) , . . . , τα3g−3+n (X)

)
.

Then by a Theorem of Wolpert [Wo85, Theorem 1.3],

ωWP =

3g−3+n∑
i=1

dli ∧ dτi,

i.e. the Weil-Petersson symplectic form is the standard sympletic form in Fenchel-Neilsen

coordinates.

As in [Mi13, WX21, LW21], we define a probability measure on Mg,n by normalizing
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dVolWP . Indeed, for any Borel subset B ⊆Mg,n,

Pg,nWP [B]
def
=

1

Vg,n

∫
Mg,n

1BdX,

where

1B (X) =


0 if x /∈ B,

1 if x ∈ B.

is the indicator function on B. We write Eg,nWP to denote expectation with respect to Pg,nWP .

4.2.3 Mirzakhani’s integration formula

We recall Mirzakhani’s integration formula from [Mi07]. We define a multi-curve to be

an ordered k-tuple (γ1, ..., γk) of disjoint, simple, non-peripheral closed curves. Let Γ =

[γ1, ..., γk] denote the homotopy class of a multi-curve. The mapping class group MCGg,n

acts naturally on homotopy classes of multi-curves and we denote the orbit containing Γ

by

OΓ = {(g · γ1, ..., g · γk) | g ∈ MCGg,n} .

Given a function F : Rk>0 → R>0, define FΓ :Mg,n → R by

FΓ (X) =
∑

(α1,...,αk)∈OΓ

F (lα1 (X) , ..., lαk (X)) ,

where lαi (X) is defined for (X,ϕ) ∈ Tg,n as the length of the geodesic in the homotopy class

of ϕ (αi). Note that the function FΓ is well defined onMg,n since we are summing over the

orbit OΓ. Let Sg,n (Γ) denote the result of cutting the surface Sg,n along (γ1, ..., γk), then

Sg,n (Γ) = tsi=1Sgi,ni for some {(gi, ni)}si=1. Each γi gives rise to two boundary components

γ1
i and γ2

i of Sg,n (Γ). Given x = (x1, ..., xk) ∈ Rk>0, let M (Sg,n (Γ) ; lΓ = x) be the moduli

space of hyperbolic surfaces homeomorphic to Sg,n (Γ) such that for 1 6 i 6 k, lγ1
i

= lγ2
i

=

xi. Let x(i) denote the tuple of coordinates xj of x such that γj is a boundary component
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of Sgi,ni . We have that

M (Sg,n (Γ) ; lΓ = x) =
s∏
i=1

Mgi,ni

(
x(i)
)
,

and we define

Vg,n (Γ, x)
def
= VolWP (M (Sg,n (Γ) ; lΓ = x)) =

s∏
i=1

Vgi,ni

(
x(i)
)
.

In terms of the above notation we have the following.

Theorem 4.10 (Mirzakhani’s Integration Formula [Mi07, Theorem 7.1]). Given Γ =

[γ1, ..., γk],

∫
Mg,n

FΓ (X) dX = CΓ

∫
Rk>0

F (x1, ..., xk)Vg,n (Γ, x)x1 · · ·xkdx1 · · · dxk,

where the constant CΓ ∈ (0, 1] only depends on Γ. Moreover, if g > 2 and Γ = [γ] where γ

is a simple, non-separating closed curve, then CΓ = 1
2 .

4.3 Geometric estimates

Recall that the family of test functions fT in Theorem 4.2 is defined in (4.3) with T = 4 log g.

For X ∈Mg,n, γ ∈ P(X), k ∈ N, we shall denote

HX,k(γ)
def
=

lγ (X)

2 sinh
(
klγ(x)

2

)fT (klγ (X)) .

The goal of this section is to prove the following.

Theorem 4.11. For 0 6 α < 1
2 , let n = O (gα). For any ε1 > 0 there exists a constant

c1 (ε1) > 0, independent of α, with

Eg,nWP

 ∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)� n2g + log (g)5 · g + c1 (ε1) (log g)β+1 · n2 · g1+4ε1 ,

where β > 0 is a universal constant.
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Throughout Section 4.3 we shall always have n = O (gα) for fixed 0 6 α < 1
2 .

Remark 4.12. The proof of Theorem 4.11 closely follows [WX21, Chapters 6 & 7], making

the necessary adaptations to the case of surfaces with cusps. We therefore omit some

arguments that are identical in the compact and non-compact case and instead refer the

reader to the relevant place.

4.3.1 Method

We prove Theorem 4.11 by considering separately the contribution of different types of

geodesics. As in [WX21], we introduce the following notation.

Definition 4.13. For X ∈Mg,n we define

1. Pssep(X)
def
= {γ ∈ P(X) | γ is simple and separating}.

2. Psnsep(X)
def
= {γ ∈ P(X) | γ is simple and non-separating}.

3. Pns(X)
def
= {γ ∈ P(X) | γ is non-simple}.

Notice that P(X) = Pssep(X)tPsnsep(X)tPns(X). We partition the sum
∑

γ∈P(X)

∑∞
k=1HX,k(γ)

as

∑
γ∈P(X)

∞∑
k=1

HX,k(γ) =
∑

γ∈P(X)

HX,1(γ) +
∑

γ∈P(X)

∞∑
k=2

HX,k(γ)

=
∑

γ∈Pssep(X)

HX,1(γ) +
∑

γ∈Psnsep(X)

HX,1(γ) +
∑

γ∈Pns(X)

HX,1(γ)

+
∑

γ∈P(X)

∞∑
k=2

HX,k(γ).
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Subtracting f̂
(
i
2

)
and taking Weil-Petersson expectations, we see

Eg,nWP

 ∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)
6Eg,nWP

 ∑
γ∈Pssep(X)

HX,1(γ)


︸ ︷︷ ︸

(a)

+

∣∣∣∣∣∣Eg,nWP

 ∑
γ∈Psnsep(X)

HX,1(γ)

− f̂ ( i
2

)∣∣∣∣∣∣︸ ︷︷ ︸
(b)

+ Eg,nWP

 ∑
γ∈P(X)

∞∑
k=2

HX,k(γ)


︸ ︷︷ ︸

(c)

+Eg,nWP

 ∑
γ∈Pns(X)

HX,1(γ)


︸ ︷︷ ︸

(d)

. (4.15)

The remainder of this section is dedicated to bounding terms (a) − (d), from which

Theorem 4.11 will follow.

� Since terms (a) and (b) depend on simple geodesics, we can bound them by applying

Mirzakhani’s integration formula directly.

� To bound (c) we consider geodesics with length < 1 and length > 1 separately. The

contribution of geodesics with length > 1 can be bounded deterministically. Any

geodesic with length < 1 must be simple, by e.g. [Bu92, Theorem 4.2.4], so we can

apply Mirzakhani’s integration formula directly to bound their contribution.

� To bound (d), we cannot apply Mirzakhani’s integration formula directly since the

geodesics are not simple. Instead, we pass from non-simple geodesics to subsurfaces

with simple geodesic boundary and apply Mirzakhani’s integration formula to the

simple boundary geodesics.

4.3.2 Contribution of simple separating geodesics

In this subsection we bound term (a) in (4.15), the contribution of simple separating

geodesics. In particular, we prove the following.

Lemma 4.14.

Eg,nWP

 ∑
γ∈Pssep(X)

HX,1(γ)

� n2g.
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Proof. We have

Eg,nWP

 ∑
γ∈Pssep(X)

HX,1(γ)

 =
1

Vg,n

∫
Mg,n

∑
γ∈Pssep(X)

HX,1(γ)dX. (4.16)

We shall apply Mirzakhani’s integration formula, Theorem 4.10, to bound the integral in

(4.16). Recall that Sg,n is a topological surface with genus g and n labeled punctures.

For 0 6 i 6 bg2c, 0 6 j 6 n, let αi,j be a simple closed curve in Sg,n which separates

Sg,n into subsurfaces Si,j+1 and Sg−i,n−j+1, each with one boundary component and j and

n − j punctures respectively. Then αi,j partitions the punctures into two disjoint subsets

I and J of size j and n− j respectively. Let [αi,j ] denote the homotopy class of αi,j . The

orbit MCGg,n · [αi,j ] is determined by the set {(i, j + 1, I) , (g − i, n− j + 1, J)}, since the

mapping class group does not permute the punctures. Therefore given i and j, there are
(
n
j

)
MCGg,n-orbits of simple separating closed curves on Sg,n which separate off a subsurface

with genus i and with j punctures. Recalling that

HX,1(γ) =
lγ (X)

2 sinh
(
lγ(X)

2

)fT (lγ (X)) ,

we now apply Mirzakhani’s integration formula, Theorem 4.10, to see

1

Vg,n

∫
Mg,n

∑
γ∈Pssep(X)

HX,1(γ)dX

6
∑

06i6g,06j6n
262i+j62g+n−2

∫ ∞
0

(
n

j

)
x2

sinh
(
x
2

)fT (x)
Vi,j+1

(
0j , x

)
Vg−i,n−j+1

(
0n−j , x

)
Vg,n

dx.

By Lemma A.1,

Va,b(0b−1, x) 6
2 sinh

(
x
2

)
x

Va,b,
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giving

1

Vg,n

∫
Mg,n

∑
γ∈Pssep(X)

HX,1(γ)dX

6
4

Vg,n

 ∑
06i6g,06j6n

262i+j62g+n−2

(
n

j

)
· Vi,j+1Vg−i,n−j+1

Vg,n

∫ ∞
0

sinh
(x

2

)
fT (x)dx.

Since fT is bounded independently of T and supported in [0, T ), we see

∫ ∞
0

sinh
(x

2

)
fT (x)dx� e

T
2 .

By Lemma A.4,

∑
06i6g,06j6n

262i+j62g+n−2

n!

j! (n− j)!
· Vi,j+1Vg−i,n−j+1

Vg,n
� n2

g
,

giving

Eg,nWP

 ∑
γ∈Pssep(X)

HX,1(γ)

� n2

g
· e

T
2 � n2g,

as claimed.

4.3.3 Contribution of simple non-separating geodesics

In this subsection we deal with the contribution of simple non-separating geodesics (term

(b) in (4.15)). We prove the following.

Lemma 4.15.∣∣∣∣∣∣Eg,nWP

 ∑
γ∈Psnsep(X)

HX,1(γ)

− f̂ ( i
2

)∣∣∣∣∣∣� n2g + n · log (g)2 · g.

Proof. Let α0 be an unoriented simple non-separating closed curve in Sg,n. There is just
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one MCGg,n-orbit of simple non-separating closed curves on Sg,n and we have

∑
γ∈Psnsep(X)

HX,1(γ)dX = 2
∑

γ∈MCGg,n·α0

HX,1(γ),

where the factor of 2 occurs since geodesics in P (X) are oriented. Applying Mirzakhani’s

integration formula, we get

∫
Mg,n

∑
γ∈Psnsep(X)

HX,1(γ)dX =
1

2

∫ ∞
0

x2

sinh(x2 )
fT (x)Vg−1,n+2 (0n, x, x) dx,

where the factor 1
2 occurs since α0 is simple and non-separating, c.f. Theorem 4.10. By

Theorem A.3,

Vg−1,n+2 = Vg,n ·
(

1 +O

(
n2

g

))
.

Then we have, by applying Lemma A.1,

Vg−1,n+2 (0n, x, x)

Vg,n
=

(
2 sinh x

2

x

)2(
1 +O

(
n2 + nx2

g

))
.

This gives

1

Vg,n

∫
Mg,n

∑
γ∈Psnsep(X)

lγ(X)

sinh
(
lγ(X)

2

)fT (lγ (X)) dX

=

∫ T

0
2 sinh

(x
2

)
fT (x)

(
1 +O

(
n2 + nx2

g

))
dx.

Since f̂T
(
i
2

)
is even,

f̂T

(
i

2

)
=

∫ T

0
2 cosh

(x
2

)
fT (x)dx,
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and we have∣∣∣∣∣∣Eg,nWP

 ∑
γ∈Psnsep(X)

HX,1(γ)

− f̂T ( i
2

)∣∣∣∣∣∣
=

∣∣∣∣∫ T

0
2 sinh

(x
2

)
fT (x)

(
1 +O

(
1 + n2 + nx2

g

))
dx−

∫ T

0
2 cosh

(x
2

)
fT (x)dx

∣∣∣∣
�
∣∣∣∣∫ T

0
2
(

sinh
(x

2

)
− cosh

(x
2

))
· fT (x)dx

∣∣∣∣+

∣∣∣∣∫ T

0
2 sinh

(x
2

)
fT (x)

(
n2 + nx2

g

)
dx

∣∣∣∣ .
Using that 2

(
cosh

(
x
2

)
− sinh

(
x
2

))
= e−x,

∣∣∣∣∫ T

0
2
(

sinh
(x

2

)
− cosh

(x
2

))
· fT (x)dx

∣∣∣∣� 1.

Recalling T = 4 log g, we calculate

∣∣∣∣∫ T

0
2 sinh

(x
2

)
fT (x)

(
1 + n2 + n2x

g

)
dx

∣∣∣∣� e
T
2

(
n2 + nT 2

)
g

� n2g + n · log (g)2 · g,

and ∣∣∣∣∣∣Eg,nWP

 ∑
γ∈Psnsep(X)

HX,1(γ)

− f̂T ( i
2

)∣∣∣∣∣∣� n2g + n · log (g)2 · g,

as claimed.

4.3.4 Iterates of primitive geodesics

We now look at the contribution of iterates of primitive geodesics (term (c) in (4.15)). The

aim of this subsection is to prove the following.

Lemma 4.16.

Eg,nWP

 ∑
γ∈P(X)

∞∑
k=2

HX,k(γ)

� log (g)2 · g.

In order to prove Lemma 4.16, we need the following soft geodesic counting bound.

Lemma 4.17. For any X ∈Mg,n and any L > 0 we have

#{γ ∈ P (X) | 1 6 lγ (X) 6 L} � geL.
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Proof. Let #0(X,L) denote the number of closed geodesics on X with length 6 L which are

not iterates of closed geodesics of length 6 2arcsinh(1). An immediate adaptation of the

proof of [Bu92, Lemma 6.6.4] using the non-compact version of the collar lemma ([Bu92,

Lemma 4.4.6]) tells us that

#0(X,L) 6
(
g − 1 +

n

2

)
eL+6.

[Bu92, Lemma 4.4.6] also tells us that the number of primitive geodesics on X with length

6 4arcsinh(1) is bounded above by 3g − 3 + n. Using that n = o
(√
g
)
, we conclude that

#{γ ∈ P (X) | 1 6 lγ (X) 6 L} 6
(
g − 1 +

n

2

)
eL+6 + 3g − 3 + n� geL,

as claimed.

We now proceed with the proof of Lemma 4.16.

Proof of Lemma 4.16. Let X ∈Mg,n. We write

∑
γ∈P(X)

∞∑
k=2

HX,k(γ) =
∑

{γ∈P(X)|lγ(X)<1}

∞∑
k=2

HX,k(γ) +
∑

{γ∈P(X)|lγ(X)>1}

∞∑
k=2

HX,k(γ).

By Lemma 4.16,

#{γ ∈ P (X) | 1 6 lγ (X) 6 L} � geL.

We then have

∑
{γ∈P(X)|lγ(X)>1}

∞∑
k=2

HX,k(γ)�
∑

{γ∈P(X)|16lγ(X)6T
2
}

lγ (X) e−lγ(X)

6

bT
2
c∑

m=1

me−m ·#{γ ∈ P (X) | m 6 lγ (X) 6 m+ 1}

� g

bT
2
c∑

m=1

m� (log g)2 · g.
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Taking Weil-Petersson expectations, we see

Eg,nWP

 ∑
γ∈P(X)

∞∑
k=2

HX,k(γ)

 =Eg,nWP

 ∑
{γ∈P(X)|lγ(X)<1}

∞∑
k=2

HX,k(γ)


+O

(
(log g)2 g

)
. (4.17)

For each γ ∈ P(X),

HX,k(γ) =
lγ (X)

2 sinh
(
klγ(x)

2

)fT (klγ (X)) 6 f (0) ,

and if k > T
lγ(X) then fT (klγ (X)) = 0. This tells us that

Eg,nWP

 ∑
{γ∈P(X)|lγ(X)<1}

∞∑
k=2

HX,k(γ)

 6 f(0) · T · Eg,nWP

 ∑
{γ∈P(X)|lγ(X)<1}

1

lγ(X)

 . (4.18)

It remains to bound

Eg,nWP

 ∑
{γ∈P(X)|lγ(X)<1}

1

lγ(X)

 .
Any geodesic γ ∈ P(X) with length lγ(X) 6 1 < 4arcsinh1 must be simple by e.g. [Bu92,

Theorem 4.2.4]. Therefore we can apply Mirzakhani’s integration formula to get

Eg,nWP

 ∑
{γ∈P(X)|lγ(X)<1}

1

lγ(X)

 6
1

Vg,n

∫ 1

0
Vg−1,n+2(0n, t, t)dt

+
∑

06i6g,06j6n
262i+j62g+n−2

n!

j! (n− j)!
· Vi,j+1Vg−i,n−j+1

Vg,n

� Vg−1,n+2

Vg,n
+
n2

g
� 1, (4.19)

where on the last line we applied Lemma A.4 and Theorem A.3. Thus combining (4.17),

(4.18) and (4.19) we see

Eg,nWP

 ∑
γ∈P(X)

∞∑
k=2

HX,k(γ)

� (log g)2 · g,
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as required.

4.3.5 Non-simple geodesics

We now need to deal with the contribution of the non-simple primitive geodesics, (term (d)

in (4.15)). In this subsection we shall prove the following

Lemma 4.18. There is a constant β1 > 0 such that for any ε1 > 0 there is a constant

c1 (ε1) > 0 such that

Eg,nWP

 ∑
γ∈Pns(X)

HX,1(γ)

� (log g)6 · g + c1 (ε1) (log g)β1 · n2 · g1+4ε1 .

We prove Lemma 4.18 through a sequence of lemmas. Before we give a brief outline of

the method, we need the concept of a filling closed curve.

Definition 4.19. Let X be a finite-area hyperbolic surface with possible boundary. A

closed curve η ⊂ Y is filling if the complement Y \η is a disjoint union of disks and cylinders

such that every cylinder either deformation retracts to a boundary component of Y or is a

neighbourhood of a cusp. We let #fill(X,L) denote the number of oriented filling geodesics

on X with lengths 6 L.

Idea of the proof of Lemma 4.18

We shall extend the method of [WX21, Section 7] to non-compact surfaces. The basic idea

is as follows.

� Given a surface X ∈ Mg,n and a geodesic γ ∈ Pns (X), we construct a subsurface

X(γ) of X with geodesic boundary (of controlled length) which is filled by γ. The

multiplicity of the map γ 7→ X(γ) is bounded by the number of filling geodesics of

X(γ). This allows us to write

∑
γ∈Pns(X)

HX,1(γ) 6
∑

Y subsurface of X
Y has geodesic boundary

∑
filling geodesics γ on Y

HX,1 (lX (γ)) .
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� We control the length of a filling geodesic in terms of lX (∂Y ) in Lemma 4.21 and

apply [WX21, Theorem 4] to bound the number of filling geodesics on a subsurface

and show that there is an explicit function A, supported in [0, 2T ), with

∑
γ∈Pns(X)

HX,1(γ) 6
∑

Y subsurface of X
Y has geodesic boundary

A (lX (∂Y )) .

� Since the boundary of each subsurface Y consists of simple closed geodesics, we can

apply Mirzakhani’s integration formula to bound the Weil-Petersson expectation of

∑
{Y subsurface of X with geodesic boundary}

A (lX (∂Y )) .

Definition 4.20. Let X ∈ Mg,n be a hyperbolic surface and let γ ⊂ X be a non-simple

closed geodesic. Let Nδ(γ) denote the δ-neighborhood of γ where δ is sufficiently small to

ensure that Nδ(γ) deformation retracts to γ and that the boundary ∂Nδ(γ) is a disjoint

union of simple closed curves. We define X(γ) to be the connected subsurface obtained

from Nδ(γ) as follows: for each boundary component ξ ∈ Nδ(γ),

� If ξ bounds a disc we fill the disc into Nδ(γ).

� If ξ is homotopically non-trivial we shrink it to the unique simple closed geodesics in

its free homotopy class and deform Nδ(γ) accordingly.

� If two different components ξ, ξ′ deform to the same geodesic then we do not glue

them together, we view X(γ) as an open subsurface of X.

� If ξ is freely homotopic to a closed horocycle bounding a cusp Ci we fill the cusp into

Nδ(γ).

After deforming Nδ(γ) in this way we obtain the surface X(γ).

The construction of X(γ) allows us to control Vol (X(γ)) and the length of ∂X(γ) in

terms of lγ (X), as summarized by the following lemma. Bounding Vol (X(γ)) corresponds

to bounding the Euler characteristic of X(γ) by Gauss-Bonnet.

86



Lemma 4.21. Let X ∈Mg,n and γ be a non-simple closed geodesic on X. The subsurface

X(γ) of X satisfies

1. γ is a filling geodesic of X(γ).

2. The length of the boundary satisfies

l (∂X(γ)) 6 2lγ(X).

3. The volume satisfies

Vol (X(γ)) 6 4lγ(X).

Lemma 4.21 is proved in [NWX20, Proposition 47] for compact surfaces. The proof in our

case is identical. This leads us to make the following definition.

Definition 4.22. With T = 4 log g, X ∈Mg,n, we define

Sub(X)
def
= {Y ⊂ X | Y is a connected subsurface of X with geodesic boundary},

and

SubT (X)
def
= {Y ∈ Sub(X) | l(∂Y ) 6 2T,Vol(Y ) 6 4T},

where we allow two distinct simple closed geodesics on the boundary of Y to be a single

simple closed geodesic in X.

Lemma 4.21 tells us that for any X ∈Mg,n, any non-simple geodesic γ with length 6 T

fills a subsurface X(γ) ∈ SubT (X). If any other γ′ ∈ P(X) satisfies X(γ′) = X(γ) then γ′

is also a filling geodesic of X(γ) with length 6 T . We have

{γ′ ∈ Pns(X) | X(γ′) = X(γ)} ⊆ {oriented filling geodesics of X(γ) with length 6 T}.

(4.20)

Therefore we will need to control the number of non-simple geodesics which fill a given

subsurface. This is achieved by the following theorem.
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Theorem 4.23 ([WX21, Theorem 4]). Let m = 2g′−2+n′ > 1. For any ε1 > 0 there exists

a constant c(ε1,m) only depending on ε1 and m such that for any X ∈ Mg′,n′(x1, ..., xn′)

where xi > 0, we have

#fill(X,L) 6 c(ε1,m) · eL−
1−ε1

2

∑n
i=1 xi .

Remark 4.24. [WX21, Theorem 4] is stated in for surfaces without cusps, i.e. xi > 0,

however the extension to xi > 0 is immediate. Indeed, [WX21, Theorem 4] follows from

[WX21, Theorem 38] and [WX21, Lemma 10]. [WX21, Theorem 38] already holds for non-

compact surfaces and it is straightforward to check that the basic counting result [WX21,

Lemma 10] generalizes to non-compact surfaces.

We can now pass from non-simple geodesics to subsurfaces with geodesic boundary.

This is done in the following lemma, proved in [WX21, Proposition 30] for X ∈ Mg. The

proof is identical in our case.

Lemma 4.25. For any ε1 > 0, X ∈ Mg,n, there exists a constant c1 (ε1) only depending

on ε1 such that

∑
γ∈Pns(X)

HX,1(γ)� TeT
∑

Y ∈SubT (X)
|χ(Y )|>34

e−
l(∂Y )

4 + c1 (ε1)T
∑

Y ∈SubT (X)
16|χ(Y )|633

e
T
2
− 1−ε1

2
l(∂Y ). (4.21)

Remark 4.26. The difference between the first and second term arises because we apply

Theorem 4.23 to subsurfaces with 1 6 |χ(Y )| 6 34 whereas we only apply a soft geodesic

counting result, #fill(X,L) 6 Area(X) · eL+6, to subsurfaces with |χ(Y )| > 34. The reason

for this is that it is not clear how badly the constant c(ε1,m) from Theorem 4.23 depends

on the Euler characteristic m so we can only apply Theorem 4.23 to subsurfaces with

uniformly bounded Euler characteristic. As a consequence of forthcoming calculations, the

Weil-Petersson expectation of the number of subsurfaces Y ∈ SubT (X) with |χ(Y )| > k

is sufficiently small for any k > 34 so that we can accept the loss from the soft geodesic

counting.

For the remainder of the section, we assume that g is sufficiently large so that for

Y ∈ SubT (X), the map Y 7→ ∂Y is injective. This is justified since any two distinct
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subsurfaces in Y1, Y2 ∈ SubT (X) with ∂Y1 = ∂Y2 must satisfy Y1 ∪ Y2 = X, giving

Vol (X) = 2π (2g − 2 + n) 6 Vol (Y1) + Vol (Y2) 6 8T = 32 log g,

which is not possible for sufficiently large g.

We now want to apply Mirzakhani’s integration formula to bound the Weil-Petersson

expectation of the right hand side of (4.21). We introduce the following notation.

Notation 4.27. Let X ∈Mg,n. For a subsurface Y0 ∈ SubT (X), we write

Y0 = Y0 (q, (g0, a0, n0) , {(g1, a1, n1) , . . . , (gq, aq, nq)}) = Y0

(
q, g, a, n

)
,

to indicate that Y0 has the following properties.

� Y0 is homeomorphic to Sg0,k+a0where k > 0.

– Y0 has a0 cusps and k simple geodesic boundary components. There are n0 > 0

pairs of simple geodesics in Y0 which correspond to a single simple closed geodesic

in X.

– The interior of its complement X\Y0 consists of q > 1 components Y1, ..., Yq

where Yi is homeomorphic to Sgi,ni+ai . We observe that ni > 1 and

i)
∑q

i=1 2gi − 2 + ni + ai = 2g − 2 + n− |χ (Y0)| .

ii)
∑q

i=1 ni = k − 2n0.

iii)
∑q

j=1 aj = n− a0.

Given X ∈Mg,n and a choice of marking, any Y0(q, a, n, g) ∈ SubT (X) is freely homotopic

to the image under the marking of a subsurface Y ⊂ Sg,n where Y is in the MCGg,n-orbit of a

subsurface Ỹ0 = Ỹ0(q, a, n, g) ⊂ Sg,n (with Ỹ0 homeomorphic to Sg0,k+a0 , where Sg,n\Ỹ0 has

q components Ỹ1, ..., Ỹq with Ỹi homeomorphic to Sgi,ni+ai with ni boundary components

and ai punctures). We write
[
Ỹ0

]
to denote the homotopy class of Ỹ0. Since the mapping

class group does not permute the punctures of Sg,n, the number of distinct MCGg,n-orbits of

subsurfaces corresponding to a given choice of q, (g0, a0, n0) , {(g1, a1, n1) , . . . , (gq, aq, nq)}
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is bounded above by

n!

a0! · · · · · aq!
.

Lemma 4.28.

Eg,nWP

 ∑
Y ∈SubT (X)
|χ(Y )|>34

e−
l(∂Y )

4

� (log g)5

g3
. (4.22)

Proof. We start by bounding the contribution of a given MCGg,n-orbit to (4.22). Let g0, a0,

k be fixed with m = 2g0−2+k+a0 > 34. By Gauss-Bonnet, we have that m 6 4T
2π 6 5

2 log g.

For n0, n1, . . . , nq, a1, . . . , aq, g1, . . . , gq > 0 with
∑q

i=1 ni = k − 2n0 and
∑q

j=1 aj = n− a0,

we have

1

Vg,n

∫
Mg,n

∑
[Y ]∈MCGg,n·[Ỹ0(q,a,n,g)]

e−
l(∂Y )

4 1[0,2T ] (lX (∂Y )) dX

=
1

Vg,n

∫
Mg,n

∑
[∂Y ]∈MCGg,n·[∂Ỹ0(q,a,n,g)]

e−
l(∂Y )

4 1[0,2T ] (lX (∂Y )) dX,

since the map Y 7→ ∂Y is injective. By applying Mirzakhani’s integration formula, one can

compute that

1

Vg,n

∫
Mg,n

∑
[Y ]∈MCGg,n·[Ỹ0(q,a,n,g)]

e−
l(∂Y )

4 1[0,2T ] (lX (∂Y )) dX

�e
7
2
T Vg0,k+a0Vg1,n1+a1 · · ·Vgq ,nq+aq

Vg,n · n0!n1! · · ·nq!
.

A near identical computation is carried out in detail in [WX21, Proposition 31] so we omit

it here. We now sum over the MCGg,n-orbits to bound the contribution of subsurfaces in
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SubT (X) with a given Euler characteristic. We calculate

Eg,nWP

 ∑
Y ∈SubT (X)
Y∼=Sg0,k+a0

e−
l(∂Y )

4


6

b k
2
c∑

n0=0

k−2a0∑
q=1

∑
A

1

Vg,n
·
(

n

a0, . . . , aq

)
·
∫
Mg,n

∑
[Y ]∈MCGg,n·[Ỹ0(q,a,n,g)]

e−
l(∂Y )

4 1[0,2T ] (lX (∂Y )) dX

�e
7
2
T

b k
2
c∑

n0=0

k−2a0∑
q=1

∑
{(gj ,nj ,qj)}qj=1∈A

(
n

a0, . . . , aq

)
.
Vg0,k+a0Vg1,n1+a1 · · ·Vgq ,nq+aq

Vg,n · n0!n1! · · ·nq!
,

where for a given n0 and q, the summation is over the set of “admissible triples” A, whose el-

ements we denote by {(gj , nj , qj)}qj=1, which we define to be the set of {(g1, a1, n1) , . . . , (gq, aq, nq)}

where gj , aj > 0, nj > 1 and 2gj + aj + nj > 3 such that

i)
∑q

i=1 (2gi − 2 + ni + ai) = 2g − 2 + n−m.

ii)
∑q

i=1 ni = k − 2n0.

iii)
∑q

j=1 aj = n− a0.

Recalling that 34 6 m = 2g0 − 2 + k + a0 6 5
2 log g is fixed, we apply lemma A.5 to see

b k
2
c∑

n0=0

k−2n0∑
q=1

∑
{(gj ,nj ,aj)}qj=1∈A

n!

a0! · · · · · aq!
.
Vg0,k+a0Vg1,n1+a1 · · ·Vgq ,nq+aq

Vg,n · n0!n1! · · ·nq!

�
b k

2
c∑

n0=0

k−2n0∑
q=1

(2g0 + k + a0 − 3)! · n
a0

gm
� k2 (2g0 + k + a0 − 3)!

gm
.
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Summing over the possible values of g0, a0 and k, we calculate

Eg,nWP

 ∑
Y ∈SubT (X)
|χ(Y )|>34

e−
l(∂Y )

4



�e
7
2
T

∑
06a06d 4T

2π
e

∑
16k6d 4T

2π
e+2−a0

∑
3462g0−2+k+a06d 4T

2π
e

Eg,nWP

 ∑
Y ∈SubT (X)
Y∼=Sg0,k+a0

e−
l(∂Y )

4


�e

7
2
T

∑
06a06d 4T

2π
e

∑
16k6d 4T

2π
e+2−a0

∑
3462g0−2+k+a06d 4T

2π
e

k2 (2g0 + a0 + k − 3)!na0

g2g0+a0+k−2

�T 5e
7T
2

1

g2g0+
a0
2

+k−2
� T 5e

7T
2

g18
,

since 2g0 + a0 + k > 36 guarantees that 2g0 + a0
2 + k > 18. Recalling that T = 4 log g, we

conclude that

Eg,nWP

 ∑
Y ∈SubT (X)
|χ(Y )|>34

e−
l(∂Y )

4

� (log g)5

g3
,

as required.

Lemma 4.29. There is a constant β > 0 such that for any ε1 > 0,

Eg,nWP

 ∑
Y ∈SubT (X)
16|χ(Y )|633

e
T
2
− 1−ε1

2
l(∂Y )

� (log g)β · n2 · g1+4ε1 .

Proof. Let ε1 > 0, g0 > 0, a0 > 0 and k > 1 be fixed with 1 6 m = 2g0 − 2 + k + a0 6 33.

The computation in [WX21, Proposition 34] gives that there exists a fixed β > 0 5with

1

Vg,n

∫
Mg,n

∑
Ỹ ∈MCGg,n·Ỹ0(q,a,n,g)

e
T
2
− 1−ε1

2
lX(∂Ỹ )1[0,2T ]

(
lX

(
∂Ỹ
))

dX

� T βe
T
2

+ε1T

Vg,nn0! · · ·nq!
Vg1,n1+a1 · · ·Vgq ,nq+aq .

5Note the value of β in [WX21, Proposition 34] is 66 and corresponds to the choice to consider |χ(Y )| 6 16
as opposed to our choice of 33. Here we could for example take β <135. Fixed powers of log g will be
negligible in the final calculations.
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Then we see that

Eg,nWP

 ∑
Y ∈SubT (X)
Y∼=Sg0,k+a0

e
T
2
− 1−ε1

2
l(∂Y )

� T βe
T
2

+ε1T

b k
2
c∑

n0=0

k−2a0∑
q=1

∑
A

n!

a0! · · · aq!
Vg1,n1+a1 · · ·Vgq ,nq+aq

n0! · · ·nq!Vg,n
,

where, as before, for given n0 and q the summation is over the set A of “admissible triples”

{(gj , nj , qj)}qj=1 where gj , aj > 0, nj > 1 and 2gj + aj + nj > 3 such that
∑q

i=1 2gi − 2 +

ni + ai = 2g− 2 + n−m,
∑q

i=1 ni = k− 2n0 and
∑q

j=1 aj = n− a0. We apply Lemma A.5

to calculate that

T βe
T
2

+ε1T

b k
2
c∑

n0=0

k−2n0∑
q=1

∑
A

n!

a0! · · · aq!
Vg1,n1+a1 · · ·Vgq ,nq+aq

n0! · · ·nq!Vg,n

�T βe
T
2

+ε1T

b k
2
c∑

n0=0

k−2n0∑
q=1

na0

g2g0+a0+k−2
� T βe

T
2

+ε1T na0

g2g0+a0+k−2
.

We sum over possible values of g0, a0 and k to see that

Eg,nWP

 ∑
Y ∈SubT (X)
16|χ(Y )|633

e
T
2
− 1−ε1

2
l(∂Y )

� ∑
(g0,a0,k)

362g0+a0+k635

T βe
T
2

+ε1T na0

g2g0+a0+k−2

� T βe
T
2

+ε1T · n
2

g
� (log g)β n2g1+4ε1 ,

as claimed.

We can now prove Lemma 4.18.

Proof of Lemma 4.18. Combining Lemma 4.25, Lemma 4.28 and Lemma 4.29 we deduce
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that for any ε1 > 0 there exists a constant c1 (ε1) such that

Eg,nWP

 ∑
γ∈Pns(X)

HX,1(γ)



�eTTEg,nWP

 ∑
Y ∈SubT (X)
|χ(Y )|>34

e−
l(∂Y )

4

+ c1 (ε1)TEg,nWP

 ∑
Y ∈SubT (X)
16|χ(Y )|633

e
T
2
− 1−ε1

2
l(∂Y )


� (log g)6 g + c1 (ε1) (log g)β+1 n2g1+4ε1 ,

concluding the proof.

4.3.6 Proof of Theorem 4.11

Finally we conclude the section with the proof of Theorem 4.11.

Proof of Theorem 4.11. By Lemma 4.14, Lemma 4.15, Lemma 4.16 and Lemma 4.18 to-

gether with (4.15) we see that there is a constant β such that for any ε1 > 0 there exists a

constant c1 (ε1) with

Eg,nWP

 ∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)� n2g + log (g)6 g + c1 (ε1) (log g)β+1 n2g1+4ε1 .

4.4 Proof of Theorem 1.15

We now conclude with the proof of Theorem 1.15.

Proof of Theorem 1.15. Let n = O (gα) for some 0 6 α < 1
2 and let 0 < ε < min

{
1
4 ,

1
2 − α

}
be given. For X ∈Mg,n, we define

λ̃1 (X)
def
=


λ1 (X) if it exists,

1
4 otherwise.
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Our aim is to prove that

Pg,nWP

[
λ̃1 (X) 6

1

4
− (2α+ 1)2

16
− ε

]
→ 0,

as g →∞. By Remark 4.9, there exists a constant ν > 0 such that for g sufficiently large,

∑
γ∈P(X)

∞∑
k=1

lγ (X)

2 sinh
(
klγ(x)

2

)fT (klγ (X))− f̂T
(
i

2

)
+ νng > 0,

for any X ∈Mg,n. By Theorem 4.11, for any ε1 > 0 there is constant c1 (ε1) > 0 with

Eg,nWP

 ∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)
+ νng

�n2g + log (g)6 g + c1 (ε1) (log g)β+1 n2g1+4ε1 ,

where β > 0 is a universal constant. Taking ε1 <
ε
8 and applying Markov’s inequality,

Pg,nWP

 ∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)
+ νng > n2g1+ε

�ε

(
1 +

log (g)6

n2
+ (log g)β+1

)
g−

ε
2 ·

However, if X ∈ Mg,n has λ1(X) 6 1
4 −

(2α+1)2

16 − ε, then since α ∈ [0, 1
2) this guarantees

that λ1(X) 6 3
16 and we can apply Theorem 4.2 to see

C(ε) log (g) g
4(1−ε)

√
1
4
−λ1(X) 6

∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)
+O (ng) .

But since ε < 1
2 − α, √

1

4
− λ1(X) >

2α+ 1

4
+ ε,

and we deduce that

C(ε) log (g) g
4(1−ε)

√
1
4
−λ1(X) > C(ε) log (g) g(1−ε)((2α+1)+4ε) �ε g

2α+1+2ε−4ε2 > n2g1+ε,

for sufficiently large g. On the last line we used that ε < 1
4 and that n = O (gα). We deduce
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that ∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)
> n2g1+ε,

for sufficiently large g. This tells us that for g sufficiently large,

Pg,nWP

[
λ̃1 (X) 6

1

4
− (2α+ 1)2

16
− ε

]
6 Pg,nWP

 ∑
γ∈P(X)

∞∑
k=1

HX,k(γ)− f̂T
(
i

2

)
+ νng > n2g1+ε


�ε

(
1 +

log (g)6

n
+ (log g)β+1

)
g−

ε
2 → 0,

as g →∞.

5 Further problems

In this section, we highlight some further interesting problems on the spectral theory of

random cusped hyperbolic surfaces.

5.0.1 Embedded eigenvalues

A fascinating, fundamental open problem is whether a finite-area non-compact hyperbolic

surface X has to have infinitely many cusp forms [PS85]. Since any eigenvalue above 1
4 is

necessarily a cusp form, this is equivalent to whether spec (∆X) contains infinitely many

L2-eigenvalues. In fact, weaker forms of this question are still open, which we now explain.

Let λj = 1
4 + t2j ∈ spec (∆X) be the L2 eigenvalues of ∆X and define the counting

function

NX (T )
def
= # {j | rj 6 T} .

We also define

MX (T )
def
=

1

4π

∫ T

−T
−ϕ
′

ϕ

(
1

2
+ it

)
dt.

Roughly, MX (T ) counts the number of poles of the scattering determinant ϕ in Re(s) < 1
2

up to height at most T and up to error O (T ) [Iw02, Section 11.1]. The Weyl law for a
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finite area hyperbolic surface X reads

NX (T ) +MX (T ) ∼ Vol (X)

4π
T 2. (5.1)

A surface X is said to be essentially cuspidal if the contribution to the Weyl law (5.1) is

dominated by eigenvalues, i.e.

NX (T ) ∼ Vol (X)

4π
T 2.

Selberg proved for principal congruence covers X (N) that

MX(N) (T )� T log T,

from which it follows that

NX(N) (T ) =
Vol (X (N))

4π
T 2 +O (T log T ) .

Selberg conjectured that every surface is essentially cuspidal. Despite being widely believed

to be false, Selberg’s conjecture is still open. Phillips and Sarnak make a very different

conjecture [Sa03, Conjecture 1].

Conjecture 5.1. Let 2g + n− 3 > 0 and n > 0.

1. The generic X in any Tg,n is not essentially cuspidal.

2. Except in the case where g = n = 1, the generic X ∈ Tg,n has only finitely many

eigenvalues.

Here generic is meant in the topological sense. The case of the once punctured torus is

omitted since every X ∈ T1,1 has a symmetry of order 2 and the functions which are odd

with respect to this symmetry are all cuspidal.

Great progress on this problem was made in a series of works of Phillips and Sarnak

[PS85, PS85b, PS92] and Wolpert [Wo92, Wo94]. These works show that the first part

of Conjecture 5.1 is true under assumptions on the multiplicities of eigenvalues on X (N).

97



By the work of Phillips and Sarnak, together with work of Luo [Lu01], if the multiplicities

m (λ) of eigenvalues λ of X (N) are uniformly bounded (for each fixed N) then part (1) of

Conjecture 5.1 holds. By the work of Wolpert, if every eigenvalue on the thrice punctured

sphere X (2) is simple (i.e. has multiplicity one) then part (1) of Conjecture 5.1 holds.

It is interesting to ask whether probabilistic methods could be used to approach this

problem. We make the following conjecture.

Conjecture 5.2. A random degree-n cover of a non-compact finite-area hyperbolic surface

has only finitely many new embedded eigenvalues with probability tending to 1 as n→∞.

In the next section we briefly highlight some (non)-examples around Conjecture 5.2.

5.0.2 Examples

Flat bundles

We recall the construction described in Remark 1.11. Let X = Γ\H be a non-compact

finite-area hyperbolic surface. Given ϕ ∈ Hom (Γ,U (n)), one can consider the associated

Cn bundle Xϕ and its Laplacian ∆ϕ on L2-sections. Since Γ is a free group, any ϕ ∈

Hom (Γ,U (n)) is determined by the images of the generators γ1, . . . , γd of Γ. We obtain

a probability measure on Hom (Γ,U (n)) by picking the images of γ1, . . . , γd independently

with Haar probability.

One might try to adapt the approach of [HM23] to say something about Conjecture

5.2. Letting γa1 , . . . , γak denote the generators of the stability groups of the cusps of X, if

ϕ (γa1) , . . . , ϕ (γak) do not have 1 as an eigenvalue, then the twisted Laplacian ∆ϕ has purely

discrete spectrum [Se89], in particular it must have infinitely many eigenvalues (although

they are not embedded). In fact, this happens almost surely for the random ρϕ. It is

known by work of Collins and Male [CM14] that (ρϕ,Cn) strongly converge to
(
λ, l2 (Γ)

)
with probability tending to 1 as n → ∞. Any approach to Conjecture 5.2 using strong

convergence must be wary of this fact.
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Covers

The fact that if a unitary representation ρ : Γ→ End (V ) has the property that ρ (γa1) , . . . , ρ (γak)

have no fixed vectors then the twisted Laplacian ∆ρ has purely discrete spectrum yields

other examples of surfaces with infinitely many cusp forms.

Example 5.3 ([Ve90]). Let X be a non-compact finite-area hyperbolic surface and let Xφ

be a cover of X such that Xφ and X have the same number of cusp, then Xφ has infinitely

many cusp forms.

This follows since the Eisenstein series in the cover are all lifts, in the sense that

Eai,φ (s) = η (s)Eai (s) , (5.2)

for some holomorphic function η (which can be explicitly given). One can verify (5.2) by

hand from the definition of the Eisenstein series. The conclusion then follows from the

Weyl law (5.1) since (5.2) shows that Xφ has no new residual eigenvalues.

A Volume estimates

The purpose of this appendix is to prove the necessary Weil-Petersson volume estimates

used in the proof of Theorem 4.11. Similar estimates can be found in e.g. [Mi13, MP19,

NWX20, GMST21, LW21].

We need the following lemma in the proof of Lemma 4.14 and Lemma 4.15.

Lemma A.1. Let x1, . . . , xn > 0. For g, n > 0, 2g − 2 + n > 0 we have

Vg,n (x1, ..., xn)

Vg,n
6

n∏
i=1

sinh
(
xi
2

)(
xi
2

) ,

and

Vg,n
(
0n−2, x1, x2

)
Vg,n

=
4 sinh

(
x1
2

)
· sinh

(
x2
2

)
x1 · x2

(
1 +O

(
n
(
x2

1 + x2
2

)
g

))
,

as g →∞, where the implied constant is independent of n.

Remark A.2. Lemma A.1 is due to Mirzakhani and Petri [MP19, Proposition 3.1]. The
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proof of the second statement is identical to the proof of [NWX20, Lemma 20], if one uses

[LW21, Theorem A.1] in place of [Mi13, Page 286].

We require estimates for Vg,n where the number of cusps n is allowed to grow with the

genus g. The starting point is the following theorem of Mirzakhani and Zograf.

Theorem A.3 ([MZ15, Theorem 1.8]). There exists a constant B > 0 such that if n =

o
(
g

1
2

)
, we have

Vg,n(g) =
B
√
g

(2g − 3 + n (g))!
(
4π2
)2g−3+n(g)

(
1 +O

(
1 + n (g)2

g

))
,

as g →∞.

In order to control the contribution of simple separating geodesics, in Lemma 4.14 we

need the following lemma.

Lemma A.4. If n = o
(
g

1
2

)
, then

∑
06i6g,06j6n

262i+j62g+n−2

(
n

j

)
· Vi,j+1Vg−i,n−j+1

Vg,n
� 1 + n2

g
.

The case that n is fixed is treated in [Mi13, Lemma 3.3]. The fact that the number

of cusps is growing with genus and the presence of the multiplicity
(
n
j

)
presents the new

difficulty here.

In the following, we shall frequently apply Stirling’s approximation which tells us that

there exist constants 1 < c1 < c2 < 2 with

c1 ·
√

2πw
(w
e

)w
< w! < c2 ·

√
2πw

(w
e

)w
, (A.1)

for all w > 1.

Proof of Lemma A.4. By Theorem A.3, since n = o
(√
g
)
, we have

Vg,n(g) =
B
√
g

(2g − 3 + n)!
(
4π2
)2g−3+n

(
1 +O

(
1 + n2

g

))
. (A.2)
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By [Mi13, Lemma 3.2, part 3] we have that for a, b > 0, 2a+ b > 1,

Va,b+4 6 Va+1,b+2. (A.3)

Applying (A.3) iteratively, for j > 1,

Vi,j+1 6 Vi+b j−1
2
c,j+1−2b j−1

2
c.

We can then apply Theorem A.3 to see that

Vi,j+1Vg−i,n−j+1 �
(
4π2
)2g+n (2i+ j − 2)!√

i+ max
{
b j−1

2 c, 0
} · (2g − 2i+ n− j − 2)!√

g − i+ max
{
bn−j−1

2 c, 0
} . (A.4)

We also observe that

√
g√

g − i+ max
{
bn−j−1

2 c, 0
}
·
√
i+ max

{
b j−1

2 c, 0
} � 1. (A.5)

Then applying (A.2), (A.4) and (A.5),

∑
06i6g,06j6n

262i+j62g+n−2

n!

j! (n− j)!
· Vi,j+1Vg−i,n−j+1

Vg,n

�
∑

06i6g,06j6n
262i+j62g+n−2

n!

j! (n− j)!
(2i+ j − 2)! (2g − 2i+ n− j − 2)!

(2g + n− 3)!
.

If i = 0 then j > 2 and we have

n∑
j=2

n!

j! (n− j)!
· (j − 2)! (2g + n− j − 2)!

(2g + n− 3)!
=
n−4∑
j=2

n!

j (j − 1) (n− j)!
· (2g + n− j − 2)!

(2g + n− 3)!

�n2

g
+

n−4∑
j=3

nj

gj−1
� n2

g
,

since n = o
(√
g
)
. By symmetry, the same calculation holds for the case that i = g.

101



Similarly, if i = 1 then j > 0 and we calculate

n∑
j=0

n!

j! (n− j)!
· j! (2g + n− j − 4)!

(2g + n− 3)!
�

n∑
j=0

nj

gj+1
� 1

g
.

The same calculation holds in the case that i = g − 1 by symmetry. If 2 6 i 6 g − 2 then

we claim that

n!

j! (n− j)!
(2i+ j − 2)! (2g − 2i+ n− j − 2)!

(2g + n− 3)!
� g−3. (A.6)

It is a straightforward calculation to check that (A.6) holds in the case that i = 2, j = 0

and i = 2, j = 1. Now let L = 2i+ j. Then if 6 6 L ≤ n,

n!

j! (n− j)!
(2i+ j − 2)! (2g − 2i+ n− j − 2)!

(2g + n− 3)!
� L! · nL

gL
�
√
L

(
Ln

ge

)L
,

by Stirling’s approximation. If L = 6 then

√
L

(
Ln

ge

)L
�
(
n

g

)6

� g−3.

If 6 < L 6 n− 1 then

√
L

(
Ln

ge

)L
=
√
L

(
Ln

ge

)L(6n

ge

)6

·
( eg

6n

)6
�
√
Lg−3

(
L

6

)6(Ln
ge

)L−6

6 L
13
2 e6−Lg−3 · n

2

g
� g−3.

If n 6 L 6 1
2 (2g + n− 2), then since

(
n

i

)
6 2n,

we have

n!

j! (n− j)!
(2i+ j − 2)! (2g − 2i+ n− j − 2)!

(2g + n− 3)!
� 2n

L! (2g + n− 2− L)!

(2g + n− 3)!

6
2nn! (2g − 2− n)!

(2g + n− 3)!
�
(

2n

g

)n
� g−3.
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By symmetry, the case that 2i+ j > 1
2 (2g + n− 2) is treated analogously. This establishes

the claim (A.6). We can now use the rough bound

#{(i, j) ∈ Z>0 | 2 6 i 6 g − 2, 0 6 j 6 n, 2 6 2i+ j 6 2g + n− 2} � ng,

to deduce that

∑
26i6g−2,06j6n
262i+j62g+n−2

n!

j! (n− j)!
(2i+ j − 2)! (2g − 2i+ n− j − 2)!

(2g + n− 3)!
� n

g2
,

and the result follows.

In order to deal with the contribution of non-simple geodesics, we needed the following

Lemma.

Lemma A.5. Let n = o
(√
g
)

and let g0, a0, n0 and k be given with m = 2g0 +a0 +k− 2 6

3 log g − 2. For 1 6 q 6 k − 2n0,

∑
{(gj ,aj ,nj)}qi=1∈A

n!

a0! · · · aq!
.
Vg0,n0+a0 · · ·Vgq ,nq+aq

Vg,n
� (2g0 + k + a0 − 3)!

na0

gm
,

where the summation is taken over the set A of all “admissible triples” {(g1, a1, n1) , . . . , (gq, aq, nq)}

where gj , aj > 0, nj > 1 and 2gj + aj + nj > 3 such that

i)
∑q

i=1 (2gi − 2 + ni + ai) = 2g − 2 + n−m,

ii)
∑q

i=1 ni = k − 2n0,

iii)
∑q

j=1 aj = n− a0.

This is similar to estimates proved in [WX21] but here we need the number of cusps to

grow with genus and we have the extra multiplicity

n!

a0! · · · · · aq!
.

We take a similar approach as in the proof of Lemma A.4. Lemma A.5 relies on a lot of

computations which, for the sake of readability, are done separately in Lemma A.6.
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Proof of Lemma A.5 given Lemma A.6. By [Mi13, Lemma 3.2, part 3] we see that for each

ai + ni > 2, we have

Vgi,ai+ni 6 V
gi+b

ai+ni−2

2
c,ai+ni−2bai+ni−2

2
c.

This allows us to apply Theorem A.3 which tells us that there exists C1 > 0 with

Vg1,n1+a1 · · ·Vgq ,nq+aq 6 Cq1

q∏
j=1

(
4π2
)2gj+aj+nj−3

(2gj + aj + nj − 3)!√
gj + max

{
baj+nj−2

2 c, 0
} , (A.7)

where since V0,3 = 1 we interpret the product in (A.7) as only over triples with gj +

max
{
baj+nj−2

2 c, 0
}
> 0. We also see by Theorem A.3 that

Vg0,a0+k 6 C1

(
4π2
)2g0+a0+k−3

(2g0 + a0 + k − 3)!, (A.8)

and

Vg,n =
B
√
g

(2g − 3 + n (g))!
(
4π2
)2g−3+n(g)

(
1 +O

(
1 + n (g)2

g

))
. (A.9)

We introduce the notation aj + nj
def
= max

{
baj+nj−2

2 c, 0
}

. By applying (A.7), (A.8) and

(A.9) and noting that ni! > 1 for each i, we calculate that

∑
A

n!

a0! · · · · · aq!
.
Vg0,n0+k · Vg1,n1+a1 · · · · · Vgq ,nq+aq

Vg,n · n0!n1! · · ·nq!

� (2g0 + k + a0 − 3)!
∑
A

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
.

The result then follows from the fact that

∑
A

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
� na0

gm
,

which is proved in Lemma A.6.

We now need to prove Lemma A.6, which is purely computational.

Lemma A.6. Let n = o
(√
g
)

and let g0, a0, n0 and k be given with m = 2g0 +a0 +k− 2 6
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3 log g − 2 and 1 6 q 6 k − 2n0. With A as in Lemma A.5, we have

∑
A

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
� na0

gm
. (A.10)

In the proof of Lemma A.6, we will frequently apply the following observation: if xi > 0

with
∑s

i=1 xi = A, then
s∏
i=1

xi! 6 A!, (A.11)

which can be seen by the fact that the multinomial coefficient
(

A
x1,...,xs

)
is bounded below

by 1.

Proof. We first note that q 6 3 log g. For {(g1, a1, n1) , . . . , (gq, aq, nq)} ∈ A, we claim that

if max16i6q (2gi + ai + ni − 3) 6 2g + n− 3−m− 8q then

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
� g−

7
2
q. (A.12)

This estimate is analogous to (A.6). Once we have established (A.12) we shall apply a

rough counting argument to bound the contribution of such terms to the sum (A.10).

Let max16i6q (2gi + ai + ni − 3) = 2g + n − 3 − m − L. First we treat the case that

L > 1
2 (2g + n−m− 3). We apply Stirling’s approximation (A.1) to see that

(2gi + ni + ai − 3)!√
gj + aj + nj

< c2

√
2π (2gi + ni + ai − 3)√

gj + aj + nj
·
(

2gi + ai + ni − 3

e

)2gi+ai+ni−3

< 4
√
π ·
(

2gi + ai + ni − 3

e

)2gi+ai+ni−3

. (A.13)

Applying Stirling’s approximation again, we see that

√
g

(2g + n− 3)!
>

1

c2

√
g√

2π (2g + n− 3)
·
(

e

2g + n− 3

)2g+n−3

�
(

e

2g + n− 3

)2g+n−3

. (A.14)
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We also note that

n!

a0! · · · aq!
6 qn, (A.15)

by the multinomial theorem. By (A.13), (A.14) and (A.15),

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!

�qn ·
(
4C1

√
π
)q ∏q

j=1 (2gj + aj + nj − 3)(2gj+aj+nj−3)

(2g + n− 3)(2g+n−3)
. (A.16)

We now bound the expression in (A.16). Given s integers xi > 0, Jensen’s inequality for

concave functions applied to the function log x tells us that

∑s
i=1 xi log xi∑s

i=1 xi
6 log

(∑s
i=1 x

2
i∑s

i=1 xi

)
.

If
∑s

i=1 xi = A and max16i6s xi = B, then

s∑
i=1

xi log xi 6 A log

(∑s
i=1 x

2
i∑s

i=1 xi

)
6 A logB,

and by exponentiating, we conclude that

s∏
i=1

xxii 6 BA. (A.17)

Note that (A.17) also holds if instead we just require xi > 0 since we can apply Jensen’s

inequality with only the non-zero terms. Recall that max16i6q (2gi + ai + ni − 3) = 2g +

n−3−m−L for L > 1
2 (2g + n−m− 3). Since

∑q
i=1 (2gi − 2 + ni + ai) = 2g−2 +n−m,

then in particular,
∑q

i=1 (2gi − 3 + ni + ai) 6 2g + n−m− 3 and we can apply (A.17) to
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(A.16) to calculate that

qn ·
(
4C1

√
π
)q ∏q

j=1 (2gj + aj + nj − 3)(2gj+aj+nj−3)

(2g + n− 3)(2g+n−3)

�qn ·
(
4C1

√
π
)q · (2g + n− 3−m− L)(2g+n−3)

(2g + n− 3)(2g+n−3)

6qn · 23qCq1

(
1

2

)2g+n−3

6 qn
(

1

2

)2g+n−3−3q−q log2 C1

.

Since q 6 3 log g and n = o
(√
g
)
,

qn
(

1

2

)2g+n−3−3q−q log2 C1

�
(

1

2

)g
= g

− g
log2 g � g−

7
2
q.

This justifies the claim in the case that L > 1
2 (2g + n−m− 3).

In order to treat the remaining cases, we first make the following observation. Re-

calling that
∑q

j=1 (2gj + aj + nj − 3) = 2g + n − m − 3 − (q − 1) and that aj + nj
def
=

max
{
baj+nj−2

2 c, 0
}

, we see that

q∑
j=1

(gj + aj + nj) >
1

2

q∑
j=1

(2gj + aj + nj − 3) >
2g + n−m− 3− (q − 1)

2
.

For any q positive integers xi, we have

q∏
i=1

xi >
q∑
i=1

xi − (q − 1) .

Then

q∏
j=1

(gj + aj + nj) >
2g + n−m− 3− (q − 1)

2
− q − 1� g,

since n = o
(√
g
)

and q,m = O (log g). We see that

√
g∏q

j=1

√
gj + aj + nj

� 1,
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and therefore

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!

� Cq1n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
. (A.18)

The expression in (A.18) will be easier to work with for the remaining cases. Recalling that

max16i6q (2gi + ai + ni − 3) = 2g+n−3−m−L, we now treat the case that 8q 6 L 6 n−a0.

Since max16i6q (2gi + ai + ni − 3) = 2g+n−3−m−L, this forces max16i6q ai > n−a0−L.

Indeed if max16i6q ai < n− a0 − L we would have that

max
16i6q

(2gi + ni) > 2g − 2g0 − n0,

which is not possible. Since there is an 1 6 i 6 q such that 2gi+ai+ni−3 = 2g+n−3−m−L

and we have
∑q

j=1,j 6=q (2gi + ai + ni − 3) = L− (q − 1) 6 L, we apply (A.11) to see that

q∏
j=1

(2gj + aj + nj − 3)! = (2g + n− 3−m− L)!

q∏
j=1,j 6=i

(2gj + aj + nj − 3)!

6 L! (2g + n− 3−m− L)!. (A.19)

We then use the rough bound

n!∏q
j=0 aj !

6
n!

(max16i6q ai)!
6

n!

(n− a0 − L)!
� na0+L, (A.20)

together with (A.19), to see that

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
� na0+LL! (2g + n− 3−m− L)!

(2g + n− 3)!
� na0+L

gm+L
L!.

(A.21)

By applying Stirling’s approximation (A.1),

na0+L

gm+L
L!�

√
L

(
n · L
e · g

)L
· n

a0

gm
.
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If L = 8q then since n = o
(√
g
)

and q 6 3 log g,

Cq1
√
L

(
n · L
e · g

)L
� Cq1g

−4q (8q)8q+ 1
2 � g

−7q
2 . (A.22)

Now if 8q < L 6 n− a0,

Cq1
na0

gm
.
√
L

(
n · L
e · g

)L
� Cq1

√
L
√
g

(
n · L
e · g

)L
·
(
n · 8q
e · g

)8q

·
(
e · g
n · 8q

)8q

� g
−7q

2 ·
(
L

8q

)8q

·
(
n · L
e · g

)L−8q

6 g
−7q

2 · eL−8q ·
(
n · L
e · g

)L−8q

� g
−7q

2 ,

which justifies the claim (A.12) in the case that 8q 6 L 6 n− a0. Finally we treat the case

that 8q < n− a0 < L 6 2g+n−3−m
2 . We calculate, with (A.19) and (A.15), that

Cq1n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
� Cq1 · qn · L! (2g + n−m− 3− L)!

(2g + n− 3)!

� Cq1 · qn (n− a0)! (2g + a0 −m− 3)!

(2g + n−m)!

� g3 logC1 (3 log g)n+1 nn

(2g)n
� g−

7
2
q, (A.23)

which justifies the claim (A.12) for 8q < n − a0 < L 6 2g+n−3−m
2 . Note that in the case

that n 6 8q − n0 we can simply apply the argument in (A.23) with L > 8q. The claim

(A.12) is now proved.

Now we have established (A.12), we apply the very rough bound for the size of the set

A,

|A| � g3q,
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together with (A.12) to calculate

∑
{(gi,ai,ni)}qi=1∈A

max16i6q(2gi+ai+ni−3)62g+n−2−m−8q

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!
∏q
j=1 (2gj + aj + nj − 3)!∏q
j=0 aj ! (2g + n− 3)!

�na0

gm

∑
{(gi,ai,ni)}qi=1∈A

max16i6q(2gi+ai+ni−3)62g+n−2−m−8q

g−
7
2
q � |A| · n

a0

gm
· g−

7
2
q � na0

gm
· g−

q
2 . (A.24)

We now consider the sum

∑
{(gi,ai,ni)}qi=1∈A

max16i6q(2gi+ai+ni−3)>2g+n−3−m−8q

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!
∏q
j=1 (2gj + aj + nj − 3)!∏q
j=0 aj ! (2g + n− 3)!

.

(A.25)

Let max16i6q (2gi + ai + ni − 3) = 2g + n − 3 −m − L. Since 2gj + aj + nj − 3 > 0 and∑q
j=1 2gj + aj + nj − 3 = 2g + n −m − 3 − (q − 1), we see that L > q − 1. By the same

arguments as in (A.21) and (A.22), if q − 1 6 L 6 8q 6 24 log g then

n!∏q
j=0 aj !

∏q
j=1 (2gj + aj + nj − 3)!

(2g + n− 3)!
� na0+L

gm+L
L!� na0

gm
· g−

L
4 . (A.26)

We now bound the number of {(g1, a1, n1) , . . . , (gq, aq, nq)} ∈ A with max16i6q (2gi + ai + ni − 3)

= 2g+ n− 3−m−L. Assume we have that 2g1 + a1 + n1 − 3 = 2g+ n− 3−m−L . The

remaining q − 1 triples satisfy

∑
26i6q

(2gi + ai + ni) = L+ 3 (q − 1) .

Since
∑q

i=1 ni = k − 2n0 and
∑q

j=1 aj = n − a0, the triple (g1, a1, n1) is determined by

the choice of {(g2, a2, n2) , . . . , (gq, aq, nq)}. Then the number of {(gi, ai, ni)}qi=1 ∈ A with

max16i6q (2gi + ai + ni − 3) = 2g + n− 3−m− L is therefore bounded above by

(
L+ 6 (q − 1)

3 (q − 1)

)
. (A.27)
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Therefore combining (A.18), (A.26) and (A.27) we see that the sum (A.25) satisfies

∑
{(gi,ai,ni)}qi=1∈A

max16i6q(2gi+ai+ni−3)>2g+n−3−m−8q

Cq1
√
g∏q

j=1

√
gj + aj + nj

n!
∏q
j=1 (2gj + aj + nj − 3)!∏q
j=0 aj ! (2g + n− 3)!

�na0

gm

8q∑
L=q−1

(
L+ 6 (q − 1)

3 (q − 1)

)
Cq1

g
L
4

� na0

gm
. (A.28)

Combining (A.24) and (A.28), the result follows.
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