Iron Age and Roman landscapes in the East Midlands: a case study in integrated survey.

Taylor, Jeremy

How to cite:

Use policy
The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.
VOLUME II CONTENTS

CONTENTS OF VOLUME II xv
FIGURES 282
APPENDIX 1: GAZETTEER OF EXCAVATED AND SURVEYED SITES 447
APPENDIX 2: THE CLASSIFICATION AND RECORDING OF THE FIELDWALKED POTTERY 455
APPENDIX 3: CALIBRATED C-14 DATES FROM THE REGION 458
APPENDIX 4: THE QUANTIFIED POTTERY DATA 475
ACKNOWLEDGEMENTS
Figure 1.1  A hypothetical model of the structure of space
Figure 2.1 The action of a) mouldboard ploughs (from Nicholson 1980, fig. 3), b) tine and chisel ploughs (Spoor 1980, fig. 5), and c) subsoilers on the soil (Spoor 1980, fig. 6).
Figure 2.2  The derivation of a ploughsoil assemblage B<sub>40</sub> at a hypothetical settlement site A (after Haselgrove 1985, fig. 1.3).
Figure 2.3 The effect of temper type and firing temperature on abrasion resistance (after Skibo et al. 1989).
Figure 2.4  Graph of the breakage rate of a group of trampled pottery through time (data from Kirkby & Kirkby 1976, table 3). B = 1 is the point at which further breakage ceases.
Figure 2.5  The percentage frequency distributions of three pottery assemblages of fabrics A (organic temper), C (sand temper), and D (no temper) a) before trampling and b) after trampling (data from Nielsen 1991).
Figure 2.6  The frequency distribution by size category of a single group of sherds after five successive trampling events (data from Kirkby & Kirkby 1976, table 3).
Figure 2.7 The changing frost resistance of different tempered ceramics with increased firing temperature (data from Skibo et al. 1991).
Figure 2.8 Surface minimum temperatures at Butser Hill, Station 1, 1st November 1987 to 31st March 1988 (data from Reynolds 1988).
Figure 2.9 Schematic diagram showing the variable effects of soil erosion on the surface densities of artefacts from an area with uneven initial distribution a), after common low density erosion b), and rare high level erosion along rills or gullies c).
Figure 2.10 Surface collection results at BLG by sherd count. a) iron age pottery, b) Roman pottery, c) Roman pottery adjusted to separate means for zones A and B, and d) proportion of iron age pottery per 20 metre square. Zone A was walked by the experienced team, B by the inexperienced (after Haselgrove 1985, figs. 1.5 & 1.6).
Figure 3.1 Map of the Welsh Marches (from Whimster 1989, fig. 5) showing the distribution of crop mark discovery over time.
Figure 3.2 The air photographic reconnaissance history of Northamptonshire between 1979 and 1983 (data from Brown 1980; 1981; 1982; 1983).
Figure 3.3 Map of Northamptonshire showing areas of destruction through mineral extraction and urban development (black) and areas of extensive woodland (hachured). Data from Foard (1979) with additions.
Figure 3.4 The proportion of available agricultural land under arable and temporary pasture in Northamptonshire in 1979 (after Foard 1979, fig. 13).
Figure 3.5  a)The four types of elementary structural relationships used for analysing air photographs (after Whimster 1989, fig. 21 with additions), and b) examples of the four site types used by the RCHM Air Photographic Unit for morphological classification.
Figure 3.6  An example of site classification using MORPH on a crop mark complex in Kent. A and Bi are considered linear systems, Bii, C, and G are enclosures, D a linear feature, and Biii, E, F, H, I, and J are maculae (from Edis et al. 1989, fig. 2).
### Figure 3.6 Bi and Bii

**A (Fig. 3.6 Bi)**
- **TYPE:** Linear system
- **PATTERN:** Accreted
- **SHAPE:** Mixed
- **FORM:** Ditch/foundation
- **CONTINUITY:** Continuous
- **TRACKWAYS:** Unit defined
- **ENCLOSURE:**
  - **COMPLEX ?:** Yes
  - **No. OF UNITS:** 5?
  - **UNIT SIZE:** Not definable

**B (Fig 3.6 Bii)**
- **TYPE:** Enclosure
- **LINEARITY:** Rectilinear
- **SYMMETRY:** Symmetric
- **SHAPE:** Rectangular
- **ELONGATED:** Yes
- **SIDES:** Straight
- **CORNERS:** Curved
- **FORM:** Ditch
- **CONDITION:** Incomplete
- **CONTINUOUS:** No
  - **SIZE (L):** 100m
  - **SIZE (B):** 60m
- **INTERNAL FEATURES:** Non structural

### C (Bi)
- **CATEGORY:** Crop mark
- **GROUPING**
  - **CONJUNCTION:** Accreted
  - **ALIGNMENT:** Parallel & Perpendicular
  - **CLUSTERING:** Linear
  - **LINEAR ELEMENTS**
    - **FORM:** Ditch & foundation
    - **SHAPE:** Mixed
    - **WIDTH:** 1-5m, 2-8m
    - **CONTINUITY:** Continuous
- **MACULAE**
  - **NUMBER:** None

### D (Bii)
- **CATEGORY:** Crop mark
- **GROUPING**
  - **CONJUNCTION:** None
  - **ALIGNMENT:** In line
  - **CLUSTERING:** Nucleated
  - **LINEAR ELEMENTS**
    - **FORM:** Ditch
    - **SHAPE:** Straight & Angular bend
    - **WIDTH:** 10m
    - **CONTINUITY:** Interrupted
- **MACULAE**
  - **NUMBER:** 2

---

Figure 3.7  The classification of sites Bi and Bii from figure 3.6 using MORPH (A & B) and a simple non-hierarchical landscape-based method (C & D).
Figure 3.8  The Tallington/West Deeping area of the lower Welland valley showing selected landscape features and monument numbers from Bowen and Butler (1960), figure 7 with additions and alterations.
Figure 4.1 A Model for the interpretation of geoprospection data
A) ARCHAEOLOGICAL CONDITIONS

Past human behaviour must be of a type that is likely to cause:

i) stable change to soil conditions

ii) change which is discernible from that created by non-archaeological causes

iii) change which is spatially and/or chronologically separable from other archaeological events.

B) PEDOLOGICAL AND ENVIRONMENTAL CONDITIONS

The soil type studied must:

i) be suitable for change in a way that is measurable

ii) preserve the changes caused by archaeological action through time.

C) SURVEY CONDITIONS

The nature of the data recovered and analysed is affected by:

i) the principles and technology of the equipment used

ii) the design and layout of the survey

iii) the methods of data storage and presentation used.

Figure 4.2 Boundary conditions affecting the recovery of archaeological information from geoprospection.
Figure 4.3  a) The cross-sectional signature of a high resistance structure (a wall) using resistivity tomography. b) A schematic diagram showing the tomography section for two intercutting low resistance structures (ditches), after Noel 1992, figures 62 & 63.
Figure 4.4 Three examples of the seasonal effects of rain on resistivity anomalies from a) chalk (Woodhenge & Hog's Back, Clark 1990, fig. 39), b) limestone (Garchy, Hesse 1966) and c) sandstone (Durham, Batt 1987).
Figure 4.5  A simplified diagram showing how, by combining the results of conventional resistivity area survey with tomographic sections, a three-dimensional model of electrical anomalies can be constructed (from Clark 1990, fig. 48).
Figure 4.6 The effect of changing recording intervals on the resolution of magnetometry profiles. A continuously recorded trace from one transect taken over two Roman pottery kilns (shown top, left and centre) has a distinctive profile when compared to a modern iron object (top right). This only becomes apparent when the recording interval of the survey is 0.5 metres or less (from Clark 1990, fig. 62).
Figure 4.7  Map of the solid geology of eastern England (from Hodge et al. 1984, fig. 3). Areas with Jurassic geology generally respond well to magnetometry as do those with Cretaceous sands and Tertiary sands and clays. The chalk and Pleistocene sands of East Anglia have low magnetic susceptibility and thus poorer anomaly definition. The presence of extensive drift deposits in this area further complicates interpretation, a problem that is not significant in Northamptonshire (marked in outline) where they are largely absent.
Figure 4.8  Percentage frequency distributions for magnetic susceptibility samples (in $10^{-6}$ emu g$^{-1}$) from Froitzheim (Scollar 1990, 402) and Shiptonthorpe background survey and settlement area (Taylor 1989, appendix 1), where n = the number of samples.
Figure 4.9  Soil phosphate profiles at Woolaw, Northumberland showing clear distinctions between strata from different archaeological areas (after Clogg & Ferrell 1992, fig. 1).
Figure 4.10 Scatter plot showing how soils from specific land use categories are distinctive when represented by two-dimensional projections using magnetic susceptibility and soil density. Further variables create further dimensions and can identify clear finger prints for soils from specific contexts (from Freij 1988, table 1).
Figure 4.11 Phosphate and magnetic susceptibility scores for samples from classified contexts at Shiptonthorpe (data from Taylor 1989, appendices 1 & 2). Habitation-Buildings samples were taken from inside known Roman buildings, Habitation-Surfaces samples came from surfaces outside them.
Figure 5.1  Location map of the study region.
Figure 5.2 The distribution of Scored wares in eastern England (after Elsdon 1992).
Figure 5.3 The distribution of Dragonby/Sleaford wares in eastern England (after Cunliffe 1991, fig. 4.9).
Figure 5.4 The coinage zones of the late iron age in eastern England (after Haselgrove 1987)
Figure 5.5 The distribution of La Tene III burials in eastern England (after Whimster 1981).
Figure 5.6 The civitates of eastern England (after Millett 1990).
Figure 5.7 Known Roman sites at the time of Haverfield's (1902) survey.
Figure 5.8 The number of instances of excavations, stray finds and air photographic surveys from Northamptonshire recorded in the *Journal of Roman Studies* between 1921 and 1960.
Figure 5.9 The distribution of known Roman sites in the Nene Valley in 1931, 1956 and 1972 (after Taylor 1975).
Figure 5.10 The distribution of known Roman sites in Northamptonshire in 1980 (after RCHM 1980).
Figure 5.11 Roman sites discovered between 1956 and 1980 in the Nene Valley compared to areas of urban development and quarrying.
Figure 5.12 A generalised map of crop mark visibility in the study region. The map uses the levels of visibility listed in table 3.1. \textit{Black = level v), \ white = level i).}
Figure 5.13 The distribution of air photographs by 1 kilometre square across Northamptonshire (data from RCHM Air Photographic Unit).
The numbers are five density scores used by the RCHM, 5 being the highest concentrations of air photographs and 1 the lowest (data from RCHM Air Photographic Unit).
Figure 5.15 The distribution of iron age and Roman pottery scatters recorded by David Hall.
Figure 5.16 Examples of the main forms characterising iron age pottery groups 1 to 5.
<table>
<thead>
<tr>
<th>a) Group 1</th>
<th>b) Group 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fengate f488</td>
<td>Bancroft 1</td>
</tr>
<tr>
<td>Gt Oakley f28</td>
<td>Bancroft 2</td>
</tr>
<tr>
<td>Gretton A1</td>
<td></td>
</tr>
<tr>
<td>Gretton A2</td>
<td></td>
</tr>
<tr>
<td>Fengate f1551</td>
<td></td>
</tr>
<tr>
<td>Fengate f6</td>
<td></td>
</tr>
<tr>
<td>Gretton B1</td>
<td></td>
</tr>
<tr>
<td>Gretton B2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gt. Oakley f9</td>
</tr>
<tr>
<td>Gt. Oakley f28</td>
</tr>
<tr>
<td>Gretton A1</td>
</tr>
<tr>
<td>Gretton A2</td>
</tr>
<tr>
<td>Pennyland 1</td>
</tr>
<tr>
<td>Hartigans 1</td>
</tr>
<tr>
<td>Fengate f3</td>
</tr>
<tr>
<td>Fengate f6</td>
</tr>
<tr>
<td>Pennyland 2</td>
</tr>
<tr>
<td>Gretton B1</td>
</tr>
<tr>
<td>Gretton B2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fengate f3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekley 1</td>
</tr>
<tr>
<td>Weekley 2</td>
</tr>
<tr>
<td>Odell 1</td>
</tr>
<tr>
<td>Weekley 3</td>
</tr>
<tr>
<td>Odell 2</td>
</tr>
<tr>
<td>Weekley 4</td>
</tr>
<tr>
<td>Odell 3</td>
</tr>
<tr>
<td>Weekley 5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Odell 1</td>
</tr>
<tr>
<td>Odell 2</td>
</tr>
<tr>
<td>Odell 3</td>
</tr>
</tbody>
</table>

Figure 5.17 Calibrated dates for each pottery group found in the same stratigraphic context (a), and found within the same phase or phases from a site (b). Calibrated dates and references are listed in Appendix 3.
Figure 5.18 Distribution map of the excavated and surveyed sites listed in appendix 1 and used for the analyses in chapter 6.
Figure 6.1 Map of the study region showing the main topographical and pedological zones (A-P), the location of the three study areas (1-3) and the Raunds Area Project (4). The main river valleys are the Welland (A), the lower Nene (B), the middle Nene (F), the upper Nene (I), the Avon (J), the Ise (G), the Tove (L), the Ouse (N), and the Cherwell (P). Deeply dissected high uplands over clays lie at D, K and H. Lightly dissected upland with boulder clays lie at E and M, and over limestone at C. O covers lightly dissected uplands over variable geology (data from Foard 1979).
Figure 6.2 Location map of the Maxey/Barnack case study showing detailed study blocks
Figure 6.3 Crop mark, field walking and excavated evidence around Maxey
Figure 6.4 Phase plans of Maxey 66
Figure 6.6 Early first millennium BC phase plan of Maxey 63, 64 and 65
Middle Iron Age Phase 1

Figure 6.6 middle iron age phase 1 at Maxey 63, 64 and 65
Figure 6.7 Middle iron age phase 2 at Maxey 63, 64 and 65
Figure 6.8 Late iron age features at Maxey 63, 64 and 65
Figure 6.9 Early Roman features at Maxey 63, 64 and 65
Late Roman

Figure 6.10 Later Roman features at Maxey 63, 64 and 65
Figure 6.11 Crop mark and excavated evidence around Tallington
Figure 6.12 Tallington, early first millennium BC phases 1 and 2
Figure 6.13 Tallington, early first millennium BC phase 3 and 4
Figure 6.14 Tallington, middle and late iron age features
Figure 6.15 Crop marks and excavated evidence around Barnack
Figure 6.16 Phase 1 features from Pryor and O'Neill's excavations at Barnack 8
Figure 6.17 Phase 2 features from Pryor and O'Neill's excavations at Barnack 8
Figure 6.18 Phase 3 features from Pryor and O'Neill's excavations at Barnack 8
Figure 6.19 A) Middle and B) Late iron age features at Barnack 9
Figure 6.20 Roman features at Barnack 9
Figure 6.21 An interpretive map of earlier first millennium BC features across the Maxey/Barnack case study.
Figure 6.22 Map of the Wollaston/Ecton case study showing the location of gazetteer sites and the detailed study blocks
ark and excavated evidence around Wollaston
Figure 6.24 Earlier first millennium BC features at Wollaston 107
Figure 6.25 Middle iron age features at Wollaston 107
Figure 6.26 Late iron age features at Wollaston 107
Figure 6.27 Early Roman features at Wollaston 107
Figure 6.28 Late Roman features at Wollaston 107
Figure 6.29 Phase plans of the excavations at Wollaston 106
Figure 6.30 A) The earlier first millennium BC settlement at Wollaston 108, and the middle iron age phases at Strixton 87 (B & C)
Figure 6.31 Crop mark and excavated evidence around Grendon
Figure 6.32 Earlier first millennium BC features at Grendon 44
Figure 6.33 Later first millennium BC features at Grendon 44
Figure 6.34 Earlier Roman features at Grendon 44
Figure 6.35 Later Roman features at Grendon 44
Figure 6.36 Wollaston 109, iron age phase 1
Figure 6.37 Wollaston 109, iron age phase 2
Figure 6.38 Earlier prehistoric features at Grendon 43
Figure 6.40 Late iron age and Roman features at Grendon 43
Figure 6.41 Crop marks and excavated evidence around Earls Barton
Figure 6.42 Early features at Earls Barton 32
Figure 6.43 Middle iron age features at Earls Barton 32
Figure 6.44 Late iron age features at Earls Barton 32
Figure 6.46 Late Roman features at Earls Barton 32
Figure 6.47 Crop marks and excavated evidence around Ecton
Figure 6.48 Ecton 33 phase 1 features
Figure 6.49 Ecton 33 phase 2 features
Figure 6.50 Crop marks and excavated evidence around Great Doddington
Figure 6.51 Phase 1 (A) and phase 2 (B) features at Great Doddington 39
Figure 6.52 Map of the Hunsbury/Quinton case study showing the location of gazetteer sites and the detailed study blocks.
Figure 6.53 Crop marks and excavated evidence around Hunsbury Hill
Figure 6.54 Earlier first millennium BC features at Briar Hill 14
Figure 6.55 Later first millennium BC features at Briar Hill 14
Figure 6.57 Late iron age features at Wootton Hill Farm 111
Figure 6.58 Phase plans of the Roman buildings at Wootton 112
Figure 6.59 Crop marks and excavated evidence around Quinton
Figure 6.60 Iron age (A) and Roman (B) features at Quinton 74
Figure 6.61 Earlier phase plans of the features at Piddington 75
Figure 6.62 Later phase plans of the features at Piddington 75
Figure 6.63 The Barnack 8 and Maxey 65 enclosures compared to the early iron age examples from West Harling, Norfolk
Figure 6.64 The Wollaston 107, Earls Barton 32 and Wootton Hill 111 enclosures and a schematic plan (E) suggesting their basic spatial organisation.
Figure 7.1 Distribution map of the pottery scatters recovered by David Hall showing the five sample blocks chosen for comparative purposes in section 7.6
Figure 7.2 Cascade diagram showing the date ranges assigned to each of the 33 fabric groups analysed
Figure 7.3 Regression analysis for the correlation between sherd size and weight for fabric 3.1

\[ y = -1.6854 - 8.2598e^{-3}x + 7.0087e^{-3}x^2 \quad R^2 = 0.954 \]
Figure 7.4 Regression analysis for the correlation between sherd size and weight for fabric 4.2
Figure 7.5 Regression analysis for the correlation between sherd size and weight for fabric 9

\[ y = 4.1271 - 0.24251x + 1.0197e^{-2x^2} \quad R^2 = 0.919 \]
Figure 7.6 The average sherd weights for all fabrics, fabric 3.1 (shell) and fabric 4.2 (grey) of six sample groups of assemblages from the survey.
Figure 7.7 The relative proportion of fabric 3.1 in the six groups of assemblages when recorded by sherd weight and sherd count
Figure 7.8 The relative proportion of fabric 4.2 in the six groups of assemblages when recorded by sherd weight and sherd count
Figure 7.9 A simplified frequency distribution of the weight of pottery present in assemblages in the a) Iron Age and b) Early periods
Figure 7.10 A simplified frequency distribution of the weight of pottery present in assemblages in the a) Early/Mid and b) Middle periods.
Figure 7.11 A simplified frequency distribution of the weight of pottery present in assemblages in the a) Mid/Late and b) Late periods
Figure 7.12 A simplified frequency distribution of the weight of pottery present in the Saxon period
Figure 7.13 Trend surface for Early period pottery across the region.
Figure 7.14 Trend surface for Early/Mid period pottery across the region
Figure 7.15 Trend surface for Middle period pottery across the region
Figure 7.16 Trend surface for Mid/Late period pottery across the region
Figure 7.17 Trend surface for Late period pottery across the region
Figure 7.18 The numbers of scatters within each quartile scale through time
Figure 7.19 Distribution map of all Early scatters by residual quartile
Figure 7.20 Distribution map of all Early/Mid scatters by residual quartile
Figure 7.21 Distribution map of all Middle scatters by residual quartile
Figure 7.22 Distribution map of all Mid/Late scatters by residual quartile
Figure 7.23 Distribution map of all Late scatters by residual quartile
Figure 7.24 The proportion of scatters newly appearing in a period a), and not appearing in the subsequent period b) for the survey as a whole (1 = Lowest Quartile, 4 = Highest)
Figure 7.25 Distribution map of continuity and discontinuity in occupation between the Early and Early/Mid periods.
Figure 7.26 Distribution map of continuity and discontinuity in occupation between the Early/Mid and Middle periods.
Figure 7.27 Distribution map of continuity and discontinuity in occupation between the Middle and Mid/Late periods
Figure 7.28 Distribution map of continuity and discontinuity in occupation between the Mid/Late and Late periods
Figure 7.29 Distribution map of continuity and discontinuity in occupation between the Late and Saxon periods.
Figure 7.30 The percentage deviation from the survey mean of new occupation a), and abandonment b) in area 1
Figure 7.31 The percentage deviation from the survey mean of new occupation a), and abandonment b) in area 2
Figure 7.32 The percentage deviation from the survey mean of new occupation a), and abandonment b) in area 3
Figure 7.33 The percentage deviation from the survey mean of new occupation a), and abandonment b) in area 4.
Figure 7.34 The percentage deviation from the survey mean of new occupation a), and abandonment b) in area 5.
Figure 7.35 Frequency histogram of scatter areas for the survey
Figure 7.36 Distribution map of all the areas of scatters from the survey
Figure 7.37 Frequency histogram of scatter areas for a) area 1 and b) area 2
Figure 7.38 Frequency histogram of scatter areas for a) area 3 and b) area 4
Figure 7.39 Frequency histogram of scatter areas for area 5
Figure 7.40 The distribution of Early/Mid period finewares
Figure 7.41 The proportions of Early/Mid finewares by sample area
Figure 7.42 The distribution of Middle period finewares
Figure 7.43 The proportions of Middle period finewares by sample area
Figure 7.44 The distribution of Mid/Late period finewares
Figure 7.45 The proportions of Mid/Late period finewares by sample area
Figure 7.47 The proportions of Late period finewares by sample area
The proportions of structural class 1, 2 and 3 scatters by sample area.

Figure 7.49
Figure 7.50 Distribution map of all scatters associated with iron slag
Figure 7.51 Distribution map of all scatters associated with querns
A) PRELIMINARY SURVEY (REGIONAL)
   i) Reconnaissance History
   ii) Archaeological Visibility & Survival
   iii) Existing Archaeological Groundwork

B) MAPPING
   i) Area Selection
   ii) Pre-survey analysis
   iii) Mapping (units & scales)
   iv) Mapping Records

C) ANALYTICAL RECORD
   i) Classification Procedure
   ii) Interpretation Records

D) INTERPRETIVE MAPS
   i) Plots of Selected Sites and Elements
   ii) Superimposed Groundwork Plots

E) RECOMMENDATIONS
   i) Air Photographic Targeting
   ii) Excavation - Dating
   iii) Excavation - Use
   iv) Ground Based Survey

Figure 8.1 Outline structure of a pilot air photographic survey for Northamptonshire
Figure 8.2 An Outline of the air photographic classification procedure for a pilot study.
APPENDIX 1: GAZETTEER OF EXCAVATED AND SURVEYED SITES

1. AILSWORTH (VILLA)
   Grid ref: TL 109 977

2. ALDWINCLE
   Grid ref: SP 995 803

3. APETHORPE
   Grid ref: TL 026 949
   Bibliography: RCHM 1975.

4. ASHLEY
   Grid ref: SP 787 916

5. ASHTON
   Grid ref: TF 048 890

6. BANCROFT I (VILLA)
   Grid ref: SP 8273 4033

7. BANCROFT II (TEMPLE/MAUSOLEUM)
   Grid ref: SP 8253 4058

8. BARNACK I
   Grid ref: TF 051 069

9. BARNACK II
   Grid ref: TF 081 066

10. BARNWELL
    Grid ref: TL 073 837

11. BLACKTHORN
    Grid ref: SP 804 642

12. BOROUGH HILL
    Grid ref: SP 388 626

13. BOZEAT
    Grid ref: SP 896 599

14. BRIAR HILL I
    Grid ref: SP 7362 5923

15. BRIAR HILL II
    Grid ref: SP 740 589
16  BRIAR HILL III
Grid Ref:  SP 738 588

17  BRIGSTOCK I
Grid ref:  SP 961 858
Bibliography:  Greenfield E. 1963; 1971; RCHM 1975

18  BRIGSTOCK II
Grid ref:  SP 925 841
Bibliography:  Jackson D.A. 1983

19  BRIXWORTH
Grid ref:  SP 747 719
Bibliography:  Mattingly H. 1945; Woods P.J. 1970

20  CAMP HILL
Grid ref:  SP 7355 5884
Bibliography:  Shaw M. 1979a; Shaw M. & Williams J.H. 1980a

21  CASTOR I (NORMANGATE FIELD)
Grid ref:  TL 116 979

22  CASTOR II (VILLAGE)
Grid ref:  TL 126 986

23  COLLEYWESTON
Grid ref:  TF 005 013
Bibliography:  Knocker G.M. 1965

24  CORBY
Grid ref:  SP 856 868
Bibliography:  Jackson D.A. 1982

25  COSGROVE
Grid ref:  SP 7947 4212
Bibliography:  Quinnell H 1992

26  COTTERSTOCK
Grid ref:  TL 093 911

27  CRICK
Grid Ref:  SP 570 726
Bibliography:  Gwilt pers. comm.

28  CULWORTH
Grid Ref:  SP 544 470
Bibliography:  Audouy M. 1995

29  DEANSHANGER
Grid ref:  SP 769 396

30  DRAUGHTON
Grid ref:  SP 776 766
Bibliography:  Grimes W.F. 1946; 1958; RCHM 1981

31  DUSTON
Grid Ref:  SP 730 605
Bibliography:  Sharp S. 1871; Mattingly H. 1932; RCHM 1985
32 EARLS BARTON (CLAY LANE)
Grid ref: SP 845 625

33 ECTON
Grid ref: SP 824 654

34 FARTHINGSTONE (CASTLE YARD)
Grid ref: SP 617 563

35 FEN GATE (CAT'S WATER)
Grid ref: TL 215 990

36 FEN GATE (STOREY'S BAR)
Grid ref: TL 212 990

37 FEN GATE (VICARAGE FARM)
Grid ref: TL 208 993
Bibliography: RCHM 1969; Pryor F.M.M. 1984

38 GEDDINGTON
Grid ref: SP 875 826
Bibliography: Jackson D.A. 1979a

39 GREAT DODDINGTON
Grid ref: SP 882 658

40 GREAT OAKLEY I
Grid ref: SP 881 866
Bibliography: Jackson D.A. 1982

41 GREAT OAKLEY II
Grid ref: SP 887 869
Bibliography: Meadows I.D. 1993

42 GREAT WELDON
Grid ref: SP 929 900
Bibliography: Smith D.J., Hird L. & Dix B 1990

43 GREN D ON I
Grid ref: SP 873 617

44 GREN DON II
Grid ref: SP 897 637
Bibliography: RCHM 1979; Jackson D.A: 1992; No Date

45 GRETTON I
Grid ref: SP 908 944
Bibliography: Jackson D.A. 1979b

46 GRETTON II
Grid ref: SP 910 946
Bibliography: Jackson D.A. 1974; Jackson D.A. & Knight D 1985

47 GUI LS BOROUGH
Grid ref: SP 673 728
48 HARDINGSTONE
Grid ref: SP 764 574

49 HARROLD
Grid ref: SP 953 573

50 HARTIGANS
Grid ref: SP 851 423
Bibliography: Green H.S. 1993

51 HELPSTON
Grid ref: TF 123 042
Bibliography: Dakin G.F. 1969; Challands A. 1975

52 HIGHAM FERRERS
Grid ref: SP 954 689
Bibliography: Meadows I.D. 1993

53 HUNSBURY
Grid ref: SP 735 583
Bibliography: Dryden H.E.L. 1885; Baker R.S. 1891; Smith R.A. 1912; George T.J. 1917; Fell C.I. 1936; RCHM 1985; Jackson D.A. 1995a; 1995b

54 IRCHESTER I
Grid ref: SP 918 664

55 IRCHESTER II
Grid ref: SP 922 669

56 IRTHLINGBOROUGH
Grid ref: SP 958 715
Bibliography: Dix B. (ed.) 1988

57 KETTERING
Grid ref: SP 873 804

58 LAXTON
Grid ref: TF 068 971
Bibliography: Jackson D.A. & Tylecote R.F. 1988

59 LONGTHORPE I
Grid ref: TL 158 977

60 LONGTHORPE II
Grid ref: TL 164 975

61 LYNCH FARM I
Grid ref: TL 149 977
62 LYNCH FARM II
Grid ref: TL 145 976

63 MAXEY (BARDEYKE FIELD)
Grid ref: TF 125 077
Bibliography: Simpson W.G. 1985

64 MAXEY (EAST & WEST FIELDS)
Grid ref: TF 1280 0770
Bibliography: Pryor F.M.M. *et al.* 1985

65 MAXEY (OS 124)
Grid ref: TF 126 075
Bibliography: Simpson W.G. 1981

66 MAXEY (PLANTS FARM)
Grid ref: TF 115 080
Bibliography: Gurney D.A. *et al.* 1993b

67 MILEOAK
Grid ref: SP 667 477
Bibliography: Green C. & Draper J. 1978

68 MOULTON PARK
Grid ref: SP 775 645
Bibliography: Williams J.H. & Mynard D.C. 1974; Shaw T.M. 1979b

69 ODELL
Grid ref: SP 956 568

70 ORTON LONGUEVILLE (HALL FARM)
Grid ref: TL 176 056

71 ORTON LONGUEVILLE (MONUMENT 97)
Grid ref: TL 1665 9525
Bibliography: RCHM 1969; Dallas C. 1975a; 1975b; 1975c

72 OVERSTONE
Grid ref: SP 805 646
Bibliography: Williams J.H. 1976

73 PENNYLAND
Grid ref: SP 862 411
Bibliography: Williams R.J. 1993

74 PIDDINGTON
Grid ref: SP 7965 5400

75 QUINTON
Grid ref: SP 7755 5368

76 RAINSBOROUGH
Grid ref: SP 526 348

77 REDLANDS FARM
Grid ref: SP 959 705
RINGSTEAD I
Grid ref: SP 977 748
Bibliography: Jackson D.A. 1980

RINGSTEAD II (TOP LODGE)
Grid ref: SP 9820 7379
Bibliography: Shaw M. & Blinkhorn P. 1993

RUSHDEN
Grid ref: SP 943 663

SACREWELL
Grid ref: TF 077 005
Bibliography: Challands A. 1974a; 1974b

STANTONBURY
Grid ref: SP 8443 4123
Bibliography: Mynard D. 1987

STANTON LOW
Grid ref: SP 842 430
Bibliography: Woodfield C. 1989

STANWELL SPINNEY
Grid ref: SP 870 694
Bibliography: Dix B. & Jackson D.A. 1989

STANWICK
Grid ref: SP 972 716

STIBBINGTON
Grid ref: TL 085 986

STRIXTON
Grid ref: SP 894 618
Bibliography: RCHM 1979; Hall D.N. 1971; Hall D.N. & Nickerson N. 1969

TALLINGTON
Grid ref: TF 103 090

THORPLANDS
Grid ref: SP 7893 6506
Bibliography: Hunter R. & Mynard D. 1977

THRIPSTON
Grid ref: TL 002 782
Bibliography: RCHM 1975; Jackson D.A. 1993

TOWCESTER (ALCHESTER ROAD)
Grid ref: SP 688 485

TOWCESTER (DEFENCES)
Grid ref: SP 689 486

TOWCESTER (GRAMMAR SCHOOL)
Grid ref: SP 6900 4880
94 TOWCESTER (PARK STREET)
Grid ref: SP 693 488
Bibliography: Lambrick G. 1977b; 1980b; Burnham B.C. & Wacher J.S. 1990

95 TOWCESTER (WOOD BURCOTE)
Grid ref: SP 685 469
Bibliography: Turland R.E. 1977

96 TWYWELL
Grid ref: SP 952 787
Bibliography: Jackson D.A. 1975

97 UPTON
Grid ref: SP 713 602

98 WAKERLEY I
Grid ref: SP 941 983
Bibliography: Jackson D.A. & Ambrose T.M. 1978

99 WAKERLEY II (HARRINGWORTH/WAKERLEY)
Grid ref: SP 935 979
Bibliography: Jackson D.A. 1981

100 WALTON (WAVENDON GATE)
Grid Ref: SP 903 369

101 WEEKLEY
Grid ref: SP 884 817
Bibliography: RCHM 1979; Jackson D.A. & Dix B. 1988

102 WEEKLEY HALL WOOD
Grid ref: SP 874 813
Bibliography: Jackson D.A. 1976b

103 WERRINGTON
Grid ref: TF 1664 0386

104 WHILTON LODGE (BANNAVENTA)
Grid ref: SP 612 645
Bibliography: RCHM 1981; Dix B. & Taylor S. 1988

105 WHITTLEBURY
Grid ref: SP 732 456
Bibliography: RCHM 1982

106 WOLLASTON (BYPASS)
Grid ref: SP 9025 6250
Bibliography: Chapman A. & Jackson D.A. 1993

107 WOLLASTON QUARRY
Grid ref: SP 895 636 - SP 899 645
Bibliography: Meadows, I.D. 1993; pers. comm.

108 WOLLASTON
Grid Ref: SP 909 641
Bibliography: Hall D.N. 1970

109 WOLLASTON
Grid ref: SP 884 636
Bibliography: Meadows I.D. pers comm.
110 WOLLASTON
Grid Ref: SP 879 629
Bibliography: Meadows I.D. & Jackson D.A. pers. comms.

111 WOOTTON HILL FARM
Grid ref: SP 738 578
Bibliography: Jackson D.A. 1990

112 WOOTTON VILLA
Grid Ref: SP 736 582

113 WOUGHTON
Grid ref: SP 8615 3774
Bibliography: Mynard D. 1987

114 WYMBUSH
Grid ref: SP 8285 3893
Bibliography: Mynard D. 1987
APPENDIX 2 THE CLASSIFICATION AND RECORDING OF THE FIELDWALKED POTTERY

Introduction

The pottery studied for chapter 7 was recovered from a very diverse and extensive region and covered a considerable date range. For the purposes of the study some way had to be devised to synthesise this information such that it could be managed effectively and studied critically. It was decided to construct an archive for the pottery that consisted of three main elements. The first was a catalogue of the macroscopic fabric descriptions of the pottery. These were carried out using a 10x magnifying lens and a standardised recording sheet. Although descriptions of fabrics may vary considerably between researchers it was hoped that some degree of cross-referencing would be possible if the definition of certain terms were made explicit.

The fabric classifications were intended to form the basic structure of the archive as they provide information on the method of production and possible provenance of the pottery. In order to carry out further study however, it was important to attempt to cross-reference the fabrics to sources or at least commonly known 'wares'. This term allows us to group pottery into commonly recognised form and fabric classifications which are linked to a source (be that a kiln group or broad region), a distinctive manufacturing technique and/or at least a broad chronological period. For these purposes three main sources were used for reference: the fabric archive held by Northamptonshire Archaeology (formerly the Northamptonshire Archaeology Unit), the catalogue produced by Pauline Marney for her work at Towcester and Milton Keynes (cf. Brown & Alexander 1982; Brown & Woodfield 1983; Marney 1989), and for the iron age the classificatory scheme used by Knight (cf. 1984; Williams 1993). This process of grouping the fabrics into wares produced the 33 fabric groups used in the case study. The link between these groups and the fabrics used in the original quantified record sheets held on archive is listed below alongside a common name used for their identification. For a full assessment of the fabric archive and dating the reader is referred to the archive held by the author.
<table>
<thead>
<tr>
<th>Ware No.</th>
<th>Fabrics</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4.1a, 4.1b</td>
<td>Lower Nene Valley Greywares</td>
</tr>
<tr>
<td>2</td>
<td>14, 14.1</td>
<td>Lower Nene Valley cream coloured and painted wares</td>
</tr>
<tr>
<td>3</td>
<td>4.1c, 5.8</td>
<td>Lower Nene Valley cream coloured and painted wares</td>
</tr>
<tr>
<td>4</td>
<td>5.2, 5.6, 5.7</td>
<td>Lower Nene valley mortaria</td>
</tr>
<tr>
<td>5</td>
<td>4.10, 9, 9.4, 9.5, 9.8, 9.9, 10</td>
<td>Early gog tempered wares</td>
</tr>
<tr>
<td>6</td>
<td>9.6, 9.7</td>
<td>Soft pink gogged wares</td>
</tr>
<tr>
<td>7</td>
<td>4.2</td>
<td>Upper and middle Nene greywares</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
<td>Early Roman oxidised fabrics</td>
</tr>
<tr>
<td>9</td>
<td>4.2b, 4.5b</td>
<td>Early Upper Nene greywares</td>
</tr>
<tr>
<td>10</td>
<td>5.9, 27</td>
<td>Oxidised Oxfordhire wares</td>
</tr>
<tr>
<td>11</td>
<td>5.5</td>
<td>Oxfordhire colour coated wares</td>
</tr>
<tr>
<td>12</td>
<td>9.1</td>
<td>Early fine gog/shell tempered wares</td>
</tr>
<tr>
<td>13</td>
<td>4.3, 4.8</td>
<td>Late Roman greywares</td>
</tr>
<tr>
<td>14</td>
<td>24.5</td>
<td>Late Roman sandy oxidised ware</td>
</tr>
<tr>
<td>15</td>
<td>24.2</td>
<td>Black Burnished Ware 1</td>
</tr>
<tr>
<td>16</td>
<td>9.2, 9.3</td>
<td>Second century gogged wares</td>
</tr>
<tr>
<td>17</td>
<td>5.3, 5.4</td>
<td>Mancetter Hartshill mortaria</td>
</tr>
<tr>
<td>18</td>
<td>5.1</td>
<td>Lincolnshire mortaria</td>
</tr>
<tr>
<td>19</td>
<td>15.1</td>
<td>South and central Gaulish Samian</td>
</tr>
<tr>
<td>20</td>
<td>15</td>
<td>East Gaulish Samian</td>
</tr>
<tr>
<td>21</td>
<td>3.1, 3.8</td>
<td>Later Harrold shelly wares</td>
</tr>
<tr>
<td>22</td>
<td>3.6</td>
<td>Cambridgeshire shelly wares</td>
</tr>
<tr>
<td>23</td>
<td>3.7, 3.10, 3.11, 3.12, 8.1</td>
<td>Early shell tempered wares</td>
</tr>
<tr>
<td>24</td>
<td>4.2c, 4.4, 4.11, 25</td>
<td>Second century sandy greywares</td>
</tr>
<tr>
<td>25</td>
<td>4.5, 4.6, 4.7, 6.1, 24, 4.4b, 10.3</td>
<td>Mid Roman greywares</td>
</tr>
</tbody>
</table>

Cross referencing between Fabric records and fabric groups used for analysis.
<table>
<thead>
<tr>
<th>Page</th>
<th>Numbers</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>4.9, 10.1, 10.2</td>
<td>South/central Northamptonshire sandy wares</td>
</tr>
<tr>
<td>27</td>
<td>12.1, 12.2, 12.3, 5.10</td>
<td>White/cream sandy wares</td>
</tr>
<tr>
<td>28</td>
<td>3.2, 3.3, 3.5, 3.9, 7.1, 17, 18.2, 21, 21.1, 21.2, 21.3, 23</td>
<td>Other shell tempered wares</td>
</tr>
<tr>
<td>29</td>
<td>28</td>
<td>Spanish amphorae</td>
</tr>
<tr>
<td>30</td>
<td>13, 18, 18.1, 19, 20, 22</td>
<td>Early-Middle Saxon wares</td>
</tr>
<tr>
<td>31</td>
<td>11</td>
<td>Early Harrold wares</td>
</tr>
<tr>
<td>32</td>
<td>21.4, 21.5</td>
<td>Hand made iron age wares</td>
</tr>
<tr>
<td>33</td>
<td>24.1, 24.3, 24.4</td>
<td>Second century quartz tempered wares</td>
</tr>
</tbody>
</table>
APPENDIX 3: CALIBRATED C-14 DATES FROM THE REGION

This section contains the radiocarbon dates used in determining the approximate date ranges for the five ceramic groups selected for the studies in chapter 6. They are listed in order of their uncalibrated date from earliest to latest. Each date was calibrated using the OxCal software (Stuiver & Kra 1986) and a calibration diagram produced. Each diagram displays the calibrated date estimates at one and two sigma to the nearest ten years. Below is a list of the dates with their laboratory codes and bibliographic reference.

<table>
<thead>
<tr>
<th>Date</th>
<th>Code</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fengate f488</td>
<td>HAR 773</td>
<td>Pryor 1984</td>
</tr>
<tr>
<td>Gt. Oakley f9</td>
<td>HAR 4494</td>
<td>Jackson 1982</td>
</tr>
<tr>
<td>Gt. Oakley f28</td>
<td>HAR 4064</td>
<td>Jackson 1982</td>
</tr>
<tr>
<td>Hunsbury 2</td>
<td>HAR 10569</td>
<td>Jackson 1995a</td>
</tr>
<tr>
<td>Gretton A1</td>
<td>HAR 3015</td>
<td>Jackson 1979b</td>
</tr>
<tr>
<td>Gretton A2</td>
<td>HAR 2760</td>
<td>Jackson 1979b</td>
</tr>
<tr>
<td>Hunsbury 1</td>
<td>HAR 10568</td>
<td>Jackson 1995a</td>
</tr>
<tr>
<td>Bancroft 1</td>
<td>UB 3234</td>
<td>Williams &amp; Zeepvat 1994</td>
</tr>
<tr>
<td>Pennyland 1</td>
<td>HAR 4852</td>
<td>Williams 1993</td>
</tr>
<tr>
<td>Bancroft 2</td>
<td>UB 3233</td>
<td>Williams &amp; Zeepvat 1994</td>
</tr>
<tr>
<td>Hunsbury 3</td>
<td>HAR 10570</td>
<td>Jackson 1995a</td>
</tr>
<tr>
<td>Hartigans 1</td>
<td>HAR 872</td>
<td>Green 1993</td>
</tr>
<tr>
<td>Fengate f1551</td>
<td>HAR 3196</td>
<td>Pryor 1984</td>
</tr>
<tr>
<td>Fengate f3</td>
<td>GaK 4198</td>
<td>Pryor 1984</td>
</tr>
<tr>
<td>Fengate f6</td>
<td>UB 822</td>
<td>Pryor 1984</td>
</tr>
<tr>
<td>Pennyland 2</td>
<td>HAR 4853</td>
<td>Williams 1993</td>
</tr>
<tr>
<td>Gretton B1</td>
<td>HAR 3104</td>
<td>Jackson 1979b</td>
</tr>
<tr>
<td>Twywell</td>
<td>NPL 225</td>
<td>Jackson 1975</td>
</tr>
<tr>
<td>Gretton B2</td>
<td>HAR 2761</td>
<td>Jackson 1979b</td>
</tr>
<tr>
<td>Ringstead</td>
<td>HAR 1664</td>
<td>Jackson 1980</td>
</tr>
<tr>
<td>Weekley 1</td>
<td>HAR 2007</td>
<td>Jackson &amp; Dix 1988</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Weekley 2</td>
<td>HAR 1844</td>
<td>Jackson &amp; Dix 1988</td>
</tr>
<tr>
<td>Hartigans 2</td>
<td>HAR 873</td>
<td>Green 1993</td>
</tr>
<tr>
<td>Odell 1</td>
<td>HAR 2853</td>
<td>Knight 1984</td>
</tr>
<tr>
<td>Weekley 3</td>
<td>HAR 1725</td>
<td>Jackson &amp; Dix 1988</td>
</tr>
<tr>
<td>Odell 2</td>
<td>HAR 2851</td>
<td>Knight 1984</td>
</tr>
<tr>
<td>Weekley 4</td>
<td>HAR 2008</td>
<td>Jackson &amp; Dix 1988</td>
</tr>
<tr>
<td>Odell 3</td>
<td>HAR 2913</td>
<td>Knight 1984</td>
</tr>
<tr>
<td>Weekley 5</td>
<td>HAR 1779</td>
<td>Jackson &amp; Dix 1988</td>
</tr>
</tbody>
</table>
DATE Great Oakley f28 : 2500±80BP

68.2% confidence
650BC (0.17) 750BC
730BC (0.83) 520BC
95 4% confidence
800BC (1.00) 410BC

DATE Hunsbury 2 : 2420±100BP

68.2% confidence
760BC (0.26) 650BC
660BC (0.29) 630BC
600BC (0.63) 400BC
95.4% confidence
850BC (1.00) 250BC
DATE Gretton Ditch A 1: 2410±280BP

2800BP
2600BP
2400BP
2200BP
2000BP

1000BC 600BC 400BC 200BC AD
Calibrated date

68.2% confidence
760BC (0.30) 680BC
660BC (0.06) 630BC
550BC (0.64) 390BC
95.4% confidence
790BC (1.00) 390BC


DATE Gretton Ditch A 2: 2390±260BP

2700BP
2600BP
2500BP
2400BP
2300BP
2200BP
2100BP

900BC 800BC 700BC 600BC 500BC 400BC 300BC 200BC 100BC
Calibrated date

68.2% confidence
760BC (0.23) 700BC
540BC (0.77) 390BC
95.4% confidence
770BC (1.00) 390BC

DATE Hunsbury 1: 2390±70BP

68.2% confidence
760BC (0.27) 690BC
540BC (0.73) 390BC
95.4% confidence
770BC (1.00) 380BC

Calibrated date

DATE Bancroft 1: 2383±42BP

68.2% confidence
750BC (0.01) 740BC
520BC (0.99) 390BC
95.4% confidence
760BC (0.20) 680BC
660BC (0.02) 630BC
550BC (0.78) 390BC

Calibrated date
DATE Gretton ditch B 1: 2240±70BP

95.4% confidence
410BC (1.00) 110BC

DATE Twywell: 2230±90BP

68.2% confidence
400BC (1.00) 190BC

95.4% confidence
520BC (1.00) 40BC
DATE Hartigans 2: 2100±80BP

68.2% confidence
3500BC (0.12) 3100BC
2100BC (0.88) 100BC
95.4% confidence
370BC (1.00) 60AD

DATE Odell 1: 2050±100BP

68.2% confidence
2000BC (1.00) 60AD
95.4% confidence
370BC (1.00) 130AD
DATE Weekley 4: 2000±70BP

DATE Odell 3: 1930±100BP
DATE Weekley 5: 1910±80BP

- 68.2% confidence
- AD (1.00) 220AD
- 95.4% confidence
- 110BC (0.98) 260AD
- 290AD (0.02) 330AD

Calibrated date

400BC 200BC AD 200AD 400AD 600AD
APPENDIX 4: A) FIELD SURVEY POTTERY QUANTIFICATION BY COUNT

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site 1</td>
<td></td>
</tr>
<tr>
<td>Site 2</td>
<td></td>
</tr>
<tr>
<td>Site 3</td>
<td></td>
</tr>
<tr>
<td>Site 4</td>
<td></td>
</tr>
<tr>
<td>Site 5</td>
<td></td>
</tr>
<tr>
<td>Site 6</td>
<td></td>
</tr>
<tr>
<td>Site 7</td>
<td></td>
</tr>
<tr>
<td>Site 8</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table continues with more sites and fabric types. Each entry represents the count of pottery fragments found at each site for each fabric.
APPENDIX 4: B) FIELD SURVEY POTTERY QUANTIFICATION BY WEIGHT

<table>
<thead>
<tr>
<th>Grid Ref</th>
<th>Easting</th>
<th>Northing</th>
<th>Weight (g)</th>
<th>Total Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>105</td>
<td>105</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>106</td>
<td>106</td>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>107</td>
<td>107</td>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>108</td>
<td>108</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>5</td>
<td>109</td>
<td>109</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td>110</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>7</td>
<td>111</td>
<td>111</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>8</td>
<td>112</td>
<td>112</td>
<td>90</td>
<td>90</td>
</tr>
<tr>
<td>9</td>
<td>113</td>
<td>113</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Note: The table continues with more grid references and their corresponding weights.
Acknowledgements

During the long and somewhat tortuous progress of this thesis I have received the help and support of a great many people. In the department I would especially like to thank Yvonne Beadnell for her advice with illustrations, Phil Cogg for patiently assisting me with the trend surface analysis, Pam Lowther for access to OxCal, and the secretaries for dealing with my more disorganised moments. I would also like to thank various members of the teaching staff for the patience and understanding they have shown over the delays and intermissions that occurred. I have also much appreciated the support of other post grads, especially Chris Loveluck, Steve Willis and Moraig Brown. During 1993 I contracted cancer and suspended my research until after treatment. Amongst those who helped so much at a difficult time I would especially like to say thanks to Jill Davy, whose ability to listen and support was second to none.

During my various visits to Northamptonshire Glenn Foard, Steve Parry, Ian Meadows and Jenny Kitchen have been particularly giving of their time and enthusiasm. I would also like to express thanks to Bob Bewley and the RCHM air photographic unit. Finally, I would especially like to thank my mum and dad for all their help and support (both personal and financial), Melanie Blackmore for putting up with the endless moans and delays, Adam Gwilt and Ed Eastaugh for beer, their friendship and doing the washing up, and Martin Millett for all things archaeological and departmental.