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Abstract: This thesis is a collection of investigations on applications of imprecise

probability theory to system reliablity engineering with emphasis on using survival

signatures for modelling complex systems. Survival signatures provide efficient

representation of system structure and facilitate several reliability assessments by

separating the computationally expensive combinatorial part from the subsequent

evaluations submitted to only polynomial complexity. This proves useful for situa-

tions which also account for the statistical inference on system component lifetime

distributions where Bayesian methods require repeated numerical propagation for

the samples from the posterior distribution. Similarly, statistical methods involving

imprecise probabilistic models composed of sets of precise probability distributions

also benefit from the simplification by the signature representation. We will argue

the pragmatic benefits of using statistical models based on imprecise probability

models in reliability engineering from the perspective of inferential validity and

provision of objective guarantees for the statistical procedures. Imprecise probability

methods generally require solving an optimization problem to obtain bounds on

the assessments of interest, but monotone system structures simplify them without

much additional complexity. This simplification extends to survival signature models,

therefore many reliability assessments with imprecise (interval) component lifetime

models tend to be tractable as will be demonstrated on several examples.
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Chapter 1

Introduction

Devices are of little use to us if they do not function properly, but whether they will

function or not is subjected to uncertainty. Reliability theory studies the failure laws,

It constructs mathematical models and reasons with the chance of that a device is

functioning. Once we have obtained such models, we can take the reliability aspects

into account during the design and decision processes.

Systems are collections of interconnected devices, their components, which together

provide a common functionality, or a multitude of them. Reliability of a system, its

capacity so fulfil its purpose, is also studied in reliability theory. A system can be

treated as a singular device, but that would make assessment about its reliability

and its improvement practically difficult since the survival analysis requires multiple

observations of device’s failure in order to draw conclusions. Instead, the model

of a system can be split into two parts. The first aims to describe properties and

failure laws of each of the devices which compose it, and the second describe their

interconnections and their role in providing system’s functionalities. Hence, reliability

is assessed for each of the components individually and then integrated in order to

obtain the reliability of the overall system. This approach allows us to inspect the

effect of particular components and propose changes which would be beneficial to
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overall system performance.

Reliability itself, as a quantity, is defined as the probability of realization of a

desired event. Assessing reliability can therefore be considered as a predictive

inference problem. Since system reliability is assessed by integrating reliability of its

components, with respect to their role in providing system functionalities, we must

consider how to construct predictive inferences on transformed random variables.

Given the component probability laws, assessment of system reliability becomes a

numerical problem of performing uncertainty propagation.

Assessing reliability of large real-world systems is still a challenging task due to the

necessity of summation over the set of all possible combinations of component states

in order to apply the law of total probability. Several simplifications are possible

for systems with special structure function, like fault trees, or systems with concise

structure representation, like binary decision diagrams. In practice, many systems

are contain multiple component of the same type which follow identical failure laws.

For this special case, survival signature methodology for describing system structure

was developed to facilitate reliability analyses.

In a realistic case, we must also consider that the inference on component reliability

must be drawn through statistical procedures on samples with finite, often small,

size. This introduces additional uncertainty which need to be accounted and has

been addressed. The most widely used statistical method uses point estimates which

can be easily propagated into system reliability, but these occlude the sampling

uncertainties unless some sensitivity analysis is performed, e.g. via bootstrapping.

Another class of methods, which incorporate uncertainty of the estimates, are based

on Bayesian statistics, which can construct predictive distributions for component

states which can easily be numerically propagated into predictive distribution about

the system state via Monte Carlo methods. Nevertheless, they rely on the choice

of precise prior distributions which may influence the inferences with small samples

and are hence referred to as subjective methods.
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Sensitivity analysis for Bayesian methods require us to consider sets of prior distri-

butions and their influence on the system reliability. Considering sets of probability

laws generate and extension of precise probability theory into imprecise probability

theory, which provides richer uncertainty modelling framework and leads to more

robust statistical methods. Bayesian sensitivity analysis, considering multiple prior

distributions, is directly integrated with the statistical inference into generalized

Bayesian inference. Imprecise probabilities also provide framework for alternative

statistical inferences through direct, possibly set-valued, inversion of the sampling

models. Nevertheless, computations with imprecise probability models are not

tractable in the general case due to the intrinsic optimization task which is required

for constructing bounds on event probability assessments and expected values.

The objective of this thesis is to explore possibilities of using imprecise probability

theory for system reliability assessments. It originated from research work for

UTOPIAE, H2020, an EU project which explored topics of uncertainty modelling -

including imprecise probability theory - and optimization in problems of engineering

design.

Several chapters are adaptations of published work of the author:

• Section 4.2 on phased mission analysis is based on a SECESA2018 conference

contribution [1],

• Section 4.3 decomposition approach to computing survival signatures is based

on an ESREL2019 conference contribution [2],

• Section 5.1 on masked system inference is based on a SMPS2018 conference

contribution [3],

• Section 5.4 robust markov analysis is based on a IDT2019 coference contribution

[4],

• Section 5.5 on markov chain monte carlo method for sampling set of probability

distributions is based on a UQOP2021 conference contribution [5],

• and parts of the reliability theory sections and imprecise probability sections
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are based on the respective chapters contributed to a book on uncertainty

optimization [6].

Further original contributions include:

• investigation geometrical properties of survival signatures in Section 2.3.4,

• computation of system remaining useful life in Section 4.1,

• theoretical analysis of imprecise Monte Carlo method for a set of uniform

distributions in Section 5.6.

• adaptation of inference with coarse observations to system reliability inference

in Section 5.3

The rest of the thesis is organized as follows: The basic definitions and mathematical

relations used in reliability theory are given in Section 2.1. The section includes

definition of reliability and basic notions used to describe its time evolution. Subse-

quent parts focus on describing and computing reliability of interconnected systems.

Several system models are described in Section 2.2. System/survival signatures as an

alternative efficient description of the system structure are described in Section 2.3

together with an overview of their applications in Section 2.3.5 and methods for

their computation in Section 2.3.6. A brief introducion to uncertainty is given in

Section 3.1 followed by an overview of topics from probability theory in Section 3.2.

Section 3.3 provides an overview of mathematical theories of imprecise probability

models and Section 3.4 gives a brief description of statistical method and their

connection to imprecise probabilities. Some examples on applications of system

signatures are given in Section 4.1 for computing the system remaining life and

in Section 4.2 for assessing reliability of phased missions, which is adapted from

[1]. A specific method for computation of survival signatures using decomposition

approach adapted from [2] is described in Section 4.3. Section 5.1 studies possibilities

of system identification under interval uncertainties adapted from [3]. Investigation

in probability models with interval parameters in the context of phased missions are

in Section 5.2. Some examples of statistical inferences for system reliability solved
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using imprecise probability theory are given in Section 5.3 applied for interval valued

observations and in Section 5.4, which is adapted from [4], for assessment of system

reliability from system failure observations using markov models. The remaining

sections investigate possibilities of numerical methods for imprecise probability infer-

ence using Markov chain Monte Carlo in general in Section 5.5, which was presented

in [5], and on a simple model to investigate its theoretical properties in Section 5.6.



Chapter 2

Reliability

2.1 Mathematical theory of reliability

Reliability theory is a field at the interface of mathematics and engineering. The

primary interest is to ensure that a system (a device, policy, treatment, etc.) will

behave as desired. Historically, since the behaviour cannot be predicted with certainty,

a lot of interest was allocated into assessing the validity of the logical statement the

system will work. The natural choice of the validity measure seems to be probability,

since probability theory offers a consistent reasoning apparatus in which one can,

deductively, from a set of basic assessments, derive probabilities of related statements

similarly as in the familiar system of binary logic.

Probability theory is commonly used for assessing statements about both the fre-

quency of events, and the likeliness of occurrence of a specific outcome in the next

conducted trial. The first interpretation focuses on describing the sampling process,

the anticipated relative ratio of occurrences of any particular trait of outcome, the

aleatory uncertainty. If the predictive model is well-calibrated, the relative frequency

tends to be close to the numerical value assigned to it by the model, where the

closeness is understood in a limit of infinitely many trials, as in the law of large
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numbers. The second interpretation is also often termed epistemic uncertainty, since

for any particular separate observation, an assigned numerical value of probability

does not correspond to any observable quantity. The outcome of the next observation

is a precise value and we will perceive it as such, once the observation is realised.

Probability theory, here, serves as a tool to describe our state of knowledge, percep-

tion of likeliness of occurrence of an event, and allows us to reason about particular

attributes of the future observation, including what actions we might take in order

to improve the chance that the future observation will have desired properties. Like,

“Is the system more likely to function if we use component A instead of component

B?”. In the epistemic interpretation, the quality of a reasoning procedure manifests

as an observable quantity through relative frequency of correct decisions in a series

of repeated applications and the quality of the analytic methods rather than of the

constructed models.

Both interpretations are relevant for applications of reliability theory. Aleatory

interpretation plays a role, e.g., for planning processes in which we assume that

components will need to be replaced over time and we need to schedule the main-

tenance and inspection policies ([7, 8]), or for the statistical quality control. With

good enough models, we can assess the long time costs associated with operating the

systems and also optimise the policies addressing their manufacture, maintenance,

and the logistical issues associated with the replacements. In such scenarios, failures

are anticipated and sometimes, we may discover that using a lower quality component

may be beneficial from an economical perspective, leading to overall lower costs of

the operation.

On the other hand, with some systems, usually the one-of-a-kind ones, we simply

cannot afford for them to fail. Some examples are nuclear power plants, air planes,

residential buildings, or space missions. In these cases, we need to ensure that either

the system works perfectly, or that we can detect an upcoming failure in time to

mitigate its consequences. The issue is addressed by the so-called risk analysis which
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focuses on enlisting possible undesirable events and construct measures aimed at

preventing them. Reliability analysis is used here for quantitative assessment of

whether the preventive measures are adequate, but the underlying interpretation of

probability is purely epistemic.

In this chapter, we will describe the basic question of reliability theory - predicting

the functionality of the system. We will revise the basics of survival analysis and

system modelling with further focus on the methodology of survival signatures for

system modelling and reliability assessment. In this chapter, we restrict ourselves to

description using probability theory, which has been standard in this field, although

the nature of the uncertainties involved in some of the applications is better captured

by imprecise probability models which will be described later in Section 3.3. The

actual meaning behind the assigned numerical probabilities varies among applications

and it is, therefore, up to the particular analysts to translate it for their situation.

For simplicity, we may, here-on, assume the frequency interpretation of probability

measures, thus the probability of system functioning will mean that with increasing

amount of instances of the same system, reliability is the limit fraction of the

functional ones. Nevertheless, if any quantity in a model is uncertain in an epistemic

sense, the overall model inherits this interpretation and can further only be used to

describe our degree of belief in the occurrence of an event.

2.1.1 Structural reliability

The core of the reliability theory is a specific problem of probability theory - evaluating

the probability of an event [9–11]. Advanced problems, survival analysis, multi-

state and multi-component systems, then use a more complicated structure of the

probability space. The constructed uncertainty models can then be applied to solve

decision making problems of maintenance planning or reliability allocation.

Our general aim is to construct a system which will function as desired. Once put

into operation, the system will occupy a specific state x ∈ ΩX . Suppose that in the
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set ΩX we may further distinguish states which we label as being desirable, ΩM ⊂ ΩX ,

to represent what we actually mean by if a system functions. This might represent

that the stresses on a bridge are smaller than its resistance so it will not collapse or

that two planes pass at safe distance and will not crash, etc. But since the system is

subjected to interaction with the real world, hence inherits its intrinsic uncertainties,

our knowledge about the actual state will also be uncertain. Say we model it by a

random variable X obtaining values in ΩX . Now, instead of precisely determining

whether it is functioning (true or false), we must employ more sophisticated method

to measure the validity of statements. Since we have decided to model uncertainties

by the means of probability theory, we will measure the reliability of a system

by the probability that the event {X ∈ ΩM} occurs. The greater the probability

becomes, the greater confidence we have that the system will actually work once

deployed, or, in the frequency interpretation, the larger fraction of deployed systems

will be functional.

From the high level perspective, and for simplicity, we will consider the state of a

system as a binary random variable X ∈ {0, 1}, with X = 1 representing that the

system functions, that X ∈ ΩM , and X = 0 otherwise, i.e. X ∈ Ωc
M . There is also

a possibility to refine our model to include states of partial failure, or even several

degrees of degradation, but we will omit that for it would shift our concerns away

from the basic reliability formulation towards general performance prediction.

2.1.2 Survival analysis

A common property of real devices is their deterioration, their reliability will gradually

decrease in time. But devices are usually required to function over the whole time

periods, w.l.o.g. say the interval [0, T ]. In order to take the time evolution into

account, instead of a single random variable X, we need to investigate the whole

stochastic process X(t), representing the state of the system at time t, and reformulate

the device mission event as {∀t ∈ [0, TM ] : X(t) ∈ ΩM}.
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Much interest in reliability theory lies in modelling this deterioration process [9].

An intuitive way is to consider that a device depletes some intrinsic resources (or

equivalently that it is accumulating a “wear out”) and define the failure state as

such with these resources depleted. Let us consider a non-decreasing function H(t),

which models cumulative depletion of some inner resource, and H0 the amount of

this resource available to the device. Then we consider the device functional at time

t, if it has not yet depleted its inner resources, i.e. if H(t) < H0. Equivalently, we

can interpret this as the device not having reached a critical amount of “wear out”,

e.g. like accumulation of sediments, or overall mass loss due to abrasion.

In order to provide an assessment of reliability, we need to model H(t) and H0,

which will generally both be uncertain. If these models are available (e.g. based on

physics models), we can, again, employ probability theory to assess probability of

the event of interest. These models may be available for specific problems (crack

formation, abrasion, see [12] for more). If they are not available for the investigated

system, reliability theory aims to provide ways of constructing them by the methods

of statistical inference. Some examples are shown in Section 3.4 and more can be

found in statistics textbooks, e.g. [13].

Let us consider a common scenario for a new device put into operation. If we assume

that the device is functioning at time t = 0 (we try to assure this by post-production

testing but it is possible to generalize the methods for cases with so-called hidden

failures), we can model the time to failure (TTF), the time when the device depletes

its inner resources - the time it fails. As a random variable, TTF is non-negative

and can be described by its cumulative distribution function (CDF) F (t) or, more

commonly in the reliability theory context, its survival function R(t).

FTTF(t) = P (TTF < t), RTTF(t) = 1 − FTTF(t). (2.1)
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The advantage of modelling the TTF lies in the straightforward specification of the

probability that a device will be operational over the whole mission time TM ,

P (device fulfils its mission) = P (TTF > TM) = RTTF(TM). (2.2)

Therefore, we investigate how the system reliability changes in time. The state

is modelled as a stochastic process X(t) for some t ≥ 0. The simplest case is

when the X is a non-increasing processes (once a system fails it will not recover its

functionality). Then we model just the time to the component’s failure, TTF, and

define the stochastic process as X(t) = {TTF > t}.

It is also possible that a system fails and regains its functionality later due to repair

or replacement of its components. In these scenarios, we rather model system’s

availability A(t) - its probability of functioning at any givent time: A(t) = EX(t)

The most commonly used distribution to describe the TTF is the exponential

one because of its simplicity and convenient mathematical properties. This model

assumes that the failures occur at random with constant failure rate regardless

its operational history. For the exponential distribution, R(t) = exp(−λt), for a

failure rate parameter λ. The exponential distribution is often used just for its

mathematical convenience, although there are situations where its usage is justified,

e.g. for modelling devices during the stable life phase (see Figure 2.1). Other

distributions, which provide more flexible modelling opportunities, are, e.g., Weibull,

Cauchy, Log-normal or Gamma distributions. More about the basic mathematical

models can be found in any introductory text in reliability theory, e.g. in [9].

A useful specification of TTF can be done via the failure rate function (also sometimes

called the hazard rate) λ(t). Failure rate describes an immediate failure probability:

0 ≤ λ(t) := lim
h→0+

P (TTF ∈ [t, t + h]|TTF > t)
h · P (TTF > t) = f(t)

R(t) , (2.3)

where the second equality is valid in cases of absolutely continuous CDFs and f(.)
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Figure 2.1: The bathtub curve demonstrating the evolution of the failure rate
for common types of devices’ failure modes. Different devices may exhibit various
combinations of the depicted modes.

denotes the probability density function (PDF) of the TTF.

Using Equation 2.3, the failure rate is determined by the distribution of the TTF.

The opposite is also true, as one can derive the TTF distribution from the failure

rate as

R(t) = exp
(

−
∫ t

0
λ(x)dx

)
. (2.4)

It can therefore be seen also as the rate of depleting the inner resources H0, as

described in this section’s introduction. The failure rate also allows us to describe

some qualitative properties of the failure laws. A general model of the evolution of

the failure rate of a device over its lifetime is depicted in Figure 2.1. During the first

period, failures are mainly caused due to the faults of the manufacturing process

(the infant mortality), in the second, the device experiences random failures due to

the volatile nature of its environment (stable life), and in the last, the failures tend

to be caused by wearing out of parts and components (wear out phase).

These phases may be mixed during the device lifetime and often just one is used to

describe device failure law. Mathematically, a failure rate is a combination of the

following phases:
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• the failure rate is constant (stable life) - e.g. electrical components are judged

to have constant failure rates,

• the failure rate is increasing (wear out) - e.g. mechanical components are

subjected to abrasion, etc.,

• the failure rate is decreasing (infant mortality) - e.g. software, as bugs are

discovered and fixed during early stages.

2.2 System reliability

One of the typical attributes of the contemporary world is its complexity. Every

device and service available to us provides us with a building block, an opportunity

to use it for constructing a new system with its own objectives. As a consequence,

many of the devices and services that we rely upon are practically composed of many

interconnected smaller subsystems. We can reflect this by our mathematical models

and use the tools of probability theory to deduce the probability model for the system

behaviour from the probability models for the behaviour of its components and their

mutual interconnection. Exploiting the system structure also leads to significant

savings of resources. If we were to assess the reliability of a complex system, like a

space shuttle, by standard statistical methods, we would have to design an experiment

in which we test (break) multiple copies of the same system. This would clearly lead

to a vast waste of resources in the system design process. Identifying the system

components will, instead, allow us to carry out cheaper experiments separately for

those and even utilize our past experience with them. Nevertheless, the separate

experiments would not allow us to learn about dependencies among the failure

modes of components (common cause failures, cascading failures) which have to be

addressed separately.

The way we carry out inference about complex systems may be decomposed into

three major stages:
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1. Construct a model of the system consisting of components (subsystems) re-

flecting dependencies between states of the components and the state of the

system as a whole.

2. Gather data and carry out inference about components, based on e.g. statistical

methods or expert elicitation procedures.

3. Integrate the acquired models of the components behaviour with the model of

their influence on the system behaviour in order to obtain a model for time to

failure of the whole system.

The first stage is a domain of engineers who have to specify the system topology and

carry out risk analyses to identify potential modes of failure and describe how the

system operates. Component models can be obtained by statistical methods and

are also often included in the component specification in the case of sub-contracting.

Although, often, only partial specifications are available in this case like first and

second moments of the component failure laws. In this section, we will further focus

on the first and the third part of the inference process; on how to integrate the

acquired information.

2.2.1 Structure function

Description of the dependency among the state of the system and the states of

its components can be provided by a deterministic function. For each possible

combination of components states, functioning or failed, we determine whether the

system is functioning or not. The uncertainty of the system state will then arise

solely due to the uncertainties about the states of its components.

We will restrict ourselves to systems with binary components since it covers many

practical scenarios. This restriction can be dropped if necessary to describe any

relationship among the system and its components, but would lead to more compli-

cated mathematical models. Let us denote the (deterministic) state of the system as

xS ∈ {0, 1} and a vector of states of its N components as x ∈ {0, 1}N . We define
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the (deterministic) structure function as a function φ which maps states of the

components onto the state of the system, thus xS = φ(x). The structure function is

therefore, in our restricted case, a boolean function on N variables (an example is

given in Table 2.1).

Table 2.1: Structure function of a serial-parallel system

x φ(x) x φ(x)

0 ,0 ,0 ,0 0 0 ,0 ,0 ,1 0

1 ,0 ,0 ,0 1 1 ,0 ,0 ,1 1

0 ,1 ,0 ,0 0 0 ,1 ,0 ,1 1

1 ,1 ,0 ,0 1 1 ,1 ,0 ,1 1

0 ,0 ,1 ,0 0 0 ,0 ,1 ,1 1

1 ,0 ,1 ,0 1 1 ,0 ,1 ,1 1

0 ,1 ,1 ,0 0 0 ,1 ,1 ,1 1

1 ,1 ,1 ,0 1 1 ,1 ,1 ,1 1

If an uncertainty about the component states is present, first, we model the states

of the components by a random vector X. Note the capital letter representing

random variables as usual in the probability theory literature. The state of the

system will inherit the uncertainty from the states of its components and becomes a

binary random variable XS. We can now assess the system reliability by taking the

expectation of φ(X),

Rel = P (XS = 1) = Eφ(X) =
∑

x∈{0,1}N

φ(x)P (X = x). (2.5)

The reliability of a system can also be expressed by the reliability function h :

[0, 1]N → [0, 1], which directly models the relation between a vector representing

probabilities that each individual component functions and probability that the

system functions. For example, for a series system (all components have to function to
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consider the system to be functioning) with N = 3 components with pi := P (Xi = 1)

being the reliability of component i, it holds that P (XS = 1) = h(p1, p2, p3) =

p1 · p2 · p3.

The structure function, as defined here, is dependent only on the current states

of the components and, thus, allows us to separate static structure dependencies

from temporal evolution of component states as described in Section 2.1.2). The

same applies for the reliability function, which only depends on the probability that

components function at a given time instance. Generalisations are possible, but the

actual mathematical model is dependent on the investigated scenario.

The evaluation of a system reliability has generally exponential complexity. It would

require us to sum over all the elements of the state space (∼ 2N ). A simplification is

posible using disjunctive normal form with number of terms corresponding to number

of minimal path sets in the system. The reliability function share the number of

terms, therefore also the computational complexity.

2.2.2 Basic systems

Here are structure and reliability functions of some common simple systems consist-

ing of N components. Random states of components are denoted by Xi and the

probability that a component functions by pi.

Parallel systems

At least one component needs to be functional. See Figure 2.2.

φ(X) = max({Xi : i = 1..N})

Rel = 1 −∏
i=1..N(1 − pi)
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Figure 2.2: Reliability block diagram of a parallel system

Series systems

All components need to be functional. See Figure 2.3.

φ(X) = min({Xi : i = 1..N})

Rel = ∏
i=1..N pi

Figure 2.3: Reliability block diagram of a series system

(Voting) K-of-N systems

At least K components need to be functional. See Figure 2.4.

φ(X) =


1; ∑

i=1..N Xi >= K

0; ∑
i=1..N Xi < K

Rel = ∑N
i=K

(
N
i

)
pi(1 − p)(N−i)
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Figure 2.4: Reliability block diagram of a 2-of-3 system

Coherent systems

Coherence is a reasonable assumption for engineered systems. We assume that they

function if all their components function, and that component failure cannot lead to

an improvement in system function. Monotonicity provides desirable properties for

numerical methods and simplifies various algorithms.

A system is coherent if

• its structure function is monotone non-decreasing,

• φ(0) = 0,

• φ(1) = 1,

where the arguments of φ is considered as a vector of component states, i.e. 0 and 1

refer to the minimal and maximal lattice element in {0, 1}N .

2.2.3 Graphical models

The structure function can be generally described by a table, prescribing the state of

the system to every possible configuration, but such a table would be impractical

to construct, work with, and inspect for any system of realistic size because the

number of rows grows exponentially with the number of components. There exist

several alternative ways to specify the structure function. These enable us to present

the structure function graphically which also allows us to analyse it qualitatively
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Figure 2.5: A Fault Tree of example system with structure function given in Table 2.1.
“TOP” represents failure of the system, FCi failures of respective components (basic
events), FPx are macro-events. Note that the logic is inverted in comparison with
the structure function since both the basic events and the top event represent failures
instead of working states.

by the tools and notions of graph theory. Graphical models provide methods to

represent system structure in a visually understandable manner and facilitate their

communication and validation.

2.2.3.1 Fault trees

Fault trees, or analogically success trees with inverted logic, provide a consise way of

representing some multi-component systems. The requirement for using fault trees is

that the system can be recursively decomposed into combinations of serial or parallel

subsystems, up to the level of the indivual components. If such system representation

is possible, it greatly simplifies complexity of evaluating system state and reliability

[14, 15]. System reliability can be computed recursively with O(N log N) complexity.

The fault tree can be constructed using fault tree analysis (FTA) [9, 16]. The

aim is to, recursively, describe which causes lead to an event being decomposed.

We start by defining a top level event, the event of system failure, and investigate

which causes trigger it. The causes do not have to be directly elicited in terms of

states of singular components, but instead represent state of some subsystem. The

procedure recurs to find the causes of these causes up to so-called basic events, the

finest refinements of the state space. These may be individual component states.

In order to specify the reliability of the system, it is necessary just to describe the
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probabilities of the occurrence of these basic events. The state of the whole system

is then assessed through a structure function φ(e), arguments of which are vectors

denoting the occurrence or states of the basic events ei ∈ {0, 1}.

A fault tree represents a hierarchical boolean formula. The actual fault tree is

composed of events and gates. The events are events in the sense of probability

theory, subsets of the sample space, logical statements (binary). The gates are boolean

functions (e.g. AND, OR, K-of-M, NOT) used to describe how the combination of

events induces a macro-event higher in the tree hierarchy.

An example of a fault tree corresponding to the structure function in Table 2.1 is

shown in Figure 2.5.

The fault tree methodology provide a way for conducting risk analysis of general

systems where we cannot construct the structure function nor sometimes even elicit

all the components and events influencing the state of the system. The reason is

that we advance from the top event to arbitrary depth. The tree, which models the

relations between events and the causes of these events, may be constructed from

expert knowledge, or from fault logs obtained from deployed systems. The FTA can

also easily consider external factors leading to failure.

2.2.3.2 Reliability block diagrams

The influence of system components on the final system state can be specified using a

network (a graph). System functionality can be defined using connectivity properties

between selected nodes. This leads to possible definition of k-terminal network

reliability, where the system is considered functional when the k selected nodes are

connected on a subgraph composed of elements representing functional components

(nodes and edges). These networks constitute a natural way for modelling systems

whose function is related to various kinds of transportation and communication

(railroads, computer networks, etc.).
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Figure 2.6: An example of RBD which leads to the structure function in Table 2.1.
The system is considered functional if there exists a path between terminal nodes
S,T through blocks of functional components.

Reliability block diagram (RBD) is a special case of a 2-terminal network system.

Two virtual nodes are defined with rest of the nodes representing state of the

system components. System is then considered functional if these two virtual

nodes are connected by a path through functional components. These virtual

nodes may represent initial and terminal state of a process decomposed into its

individual subprocesses. Parallel branches represent alternative sub-processes and

serial branches represent sequences of dependent sub-processes.

RBDs capture how the system components are connected [17] and are not limited to

serial parallel systems and can be generally used to depict any structure function.

An example of an RBD, equivalent to the structure function in Table 2.1, is shown

in Figure 2.6. It is a 2-terminal network, where the nodes that need to be connected

in order to consider the system functional are denoted “S” and “T” and do not

correspond to any physical component of the system. Components of the system are

represented by nodes “C1-4”, where the number indicates the column in Table 2.1

corresponding to the respective component.

2.2.3.3 Binary decision diagrams

Binary decision diagrams (BDDs) represent Boolean functions as directed acyclic

graphs, where each node represents a decision variable and the edges correspond to

the possible values of that variable [18]. The representation is based on Shannon’s
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Figure 2.7: An example binary decision diagram with structure function from
Table 2.1. Dashed edges represent paths where the respective components are
nonfunctioning. For functioning alternative, the probability of the path set is given.

decomposition, which recursivelly decompose the structure function into branches

for functional and failed alternatives of individual component states. Path through

the branches represent independent events and the probability of their occurence

can be reconstructed as a product of respective failure or success probabilities as

depicted on Figure 2.7.

One significant advantage of BDDs in system reliability analysis is their ability to

efficiently handle large-scale systems. Traditional methods for analyzing system reli-

ability can become computationally infeasible when dealing with systems comprising

numerous components or intricate failure scenarios. BDDs offer a compact represen-

tation of the system’s failure space, enabling efficient traversal and manipulation of

the state space [19]. BDD representation can be constructed for arbitrary structure

function including fault and event trees [20, 21], networks [22], flowgraphs [23] and

systems with common cause failures [24].
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2.2.3.4 Bayesian networks

The structure function assumes that the dependencies between the components and

the system states are precisely known, but this may not always be the case. It may

be that we did not reach necessary depth when constructing a fault tree to ensure

unique relationship between an event and its triggers. As an example take a railway

trip. One of the trains might be delayed and you miss your connection, but you still

might be lucky enough to encounter a helpful railroad clerk who will direct you to

an alternative connection. Or not.

To model such situations, the structure function might be naturally generalised to

include uncertainties about the dependencies among the states of the events in the

fault tree simply by stating the probability of the event obtaining based on the

states of the events lower in the tree hierarchy. A (graphical) tool used to depict

these models is known as the Bayesian network (BN) [25, 26]. This graphical

model visualizes assumed conditional independencies among model variables, where

variables are assumed conditionally independent given state of their parent variables.

This model can also be symbollicaly extended to allow modelling more complicated

structures - Bayesian programs [27].

The construction may be done by FTA, but now we do not formulate the dependencies

between a macro-event and its causes by boolean functions, but as conditional

probabilities. This is, of course, a much more challenging task, but it also provides

an advantage. It allows us to work with less detailed models since we need not

to advance the tree construction up to the level in which all the relations would

be deterministic and these conditional probabilities can be inferred by statistical

methods. Thus the main role of the FTA would be to elicit the relevant events and the

assumptions on the conditional independence. Once the BN is constructed and the

stochastic models are provided, the system reliability may be assessed, deductively,

according to the theory of probability.
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For X denoting the random vector of system components’ states,

P (XS = 1|X = x) =
∑

y1,y2

P (XS = 1|XA = y1, XB = y2)·

· P (XA = y1, XB = y2|X = x),
(2.6)

where XA, XB are the only macro events such that the state of the system is

conditionally independent from component states given XA, XB according to our

structural assumptions.

The state of the system, can be assessed recursively by marginalising over X.

P (XS = 1) =
∑

x∈{0,1}N

P (XS = 1|X = x)P (X = x). (2.7)

Bayesian networks can also be used to model dependencies among the component

failures, e.g. common cause failures, where some external disturbance might affect

multiple components at the same time. In such a case, component reliabilities may

be specified as conditional on the occurrence of this disturbing event, e.g.

P (Xi(t) = 1|XD(t) = 0) = Ri(t)

P (Xi(t) = 1|XD(t) = 1) = 0,

(2.8)

for some disturbing event XD(t). In this scenario, the disturbing event would surely

render the component failed. In order to assess the overall system reliability, the

probability of occurrence of this disturbing event also has to be specified.

An example of a graphical Bayesian network is shown in Figure 2.8. For each of

its nodes, a probability table conditional on its predecessors (unconditional for the

terminal events) has to be specified.

2.2.4 Phased missions

Some real systems do not operate under the same conditions and with the same

functional requirements during their whole lifetime and we might be able to identify

different phases of their missions. The physical system may remain the same over
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Figure 2.8: Example of a Bayesian network with two macro-events XA, XB and a
common event XD disturbing components 4, 5.

these phases but the functionalities we require it to provide or the loads exerted

upon the components may differ among these phases. Such scenarios are known

in the literature as phased missions systems (PMS) [28]. An example might be an

aircraft journey, where the aircraft must take-off, cruise along the flight path, and,

finally, land again. PMSs thus do not provide an alternative way of modelling the

structure function, but rather provide a whole new class of complex system scenarios

to be analyzed.

The modelling is performed in two basic steps. First, we need to identify different

phases and for each of those we construct a model describing what constitutes a

successful operation in this phase. These models may be specified by fault tree or

RBD models. Then we need to link the models of all the phases together. If the

phases are specified by fault trees, this linking will result into a single extended fault

tree characterizing the whole mission. Similarly with the RBDs. In both cases, the

following treatment is similar to that introduced earlier, but with some specifics

which need to be taken into account.
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Figure 2.9: Transformation of RBDs of mission phases into a RBD of a phased mission
according to the Esary’s identity [28]. The events Ui,j represent the conditional
events that a component j does not fail at phase i given that it is functioning at its
beginning. The “start” and “terminal” nodes are omitted.

A mission is considered successful if the system did not fail in any of its phases. From

(monotone) structure function point of view, this means that for each time, which

denotes the end of a mission phase, a milestone, the system must be functional at

that time. The monotonicity assures that the system was functional also during

the whole phase. For a mission with K phases and milestones t1, . . . , tK , the joint

mission structure function is given by:

φmission(X(t1), . . . , X(tK)) :=
K∏

i=1
φi(X(ti)), (2.9)

where φmission represents the structure function of the whole mission (defined as

φmission : {0, 1}N ·K → {0, 1} for an N component system) and φi are structure

functions in the respective phases (φi : {0, 1}N → {0, 1}).

Phased mission models can also be used for an on-line decision making during the

mission execution. Once a model of the mission is constructed, we may not only

assess the probability of successful completion of a mission, but, in case we have

modelled them, also the probabilities of completion of mission deviations. This

may be useful in case some disturbances occur, which would endanger the mission’s

completion.

A method of modelling PMs by combining fault trees of individual phases is presented

in [29]. Methods based on binary decision diagrams allow quick assess of risks of

possible alternatives and adaptation of the mission [30, 31].
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2.3 System signatures

One problem with structure functions is their high dimensionality in practical

scenarios. For a system with N binary state components (xi ∈ {0, 1}), the structure

function requires specifying 2N entries, which turns the following reliability analysis

into a computationally expensive process.

System signatures were introduced to facilitate analyses of large heterogeneous

systems [32–34]. They are used to simplify the prescription of the relation between

the system state and the component states. Assuming some simplifying relations

among the components interactions, we can compress the remaining relevant aspects

of the structure function into a lower dimensional summary - a signature.

Two distinct types of signatures are the system signature and the survival

signature.

The original system signatures were introduced by Samaniego [35] and celebrated

successful applications in the system reliability analysis and system structure op-

timization [33]. On the other hand, they could only be applied to systems with

components with independent identically distributed (i.i.d.) lifetimes, which is overly

restrictive for many practical scenarios since most of the systems are composed of

heterogeneous components. This limitation was overcome using survival signature

(denoted as the A-vector in [36]) and its extension to systems with multiple types of

component [37].

2.3.1 Signatures as conditional probabilities

The signatures utilize decompositions of the component state-space {0, 1}N to com-

pute the system reliability

P (TS) = Eφ(X) =
∑

x∈{0,1}N

φ(x)P (X = x) (2.10)
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For an arbitrary ancillary random variable L, we can decompose the formula for

computing reliability, Equation 2.10, using the law of total expectation.

E[φ(X)] = E {E[φ(X)|L]} . (2.11)

Suppose that we can group the components of the system such that states of

the components of the same group are exchangeable. We may choose the ancillary

random variable L to be a vector of numbers of functioning components of each group

(arbitrarily ordered) and define the system survival signature as Φ(l) = E[φ(X)|L = l].

Due to the exchangeability assumption, the conditional probability P (X|L) is uniform

on the subset of X = {0, 1}N for which L = l. This allows us to compute Φ according

to the laws of classical probability as the fraction of functional states,

Φ(l) = |{x ∈ X : L(x) = l, φ(x) = 1}|
|{x ∈ X : L(x) = l}|

, (2.12)

where the notation L(x) represents the dependency of L on the actual component

states.

The dynamics of the components’ states will induce a stochastic process on the

state of the system. Two basic assessments about the system are then usually of

interest, the system availability A(t) = E[φ(X(t))] (the probability that a system

is operational at a given time instant, regardless of its history) and the system

reliability Rel(t) = P (∀τ ≤ t : φ(X(τ)) = 1), also called the survival function

(the probability that the system has not failed before the time of interest). These

two assessments are equivalent if the system is coherent and the component state

processes are non-increasing.

The signatures we describe in this section both rely on this formula, but differ in the

choice of the ancillary decomposition variable L.
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2.3.2 System signature

The system signature is introduced for systems composed of components with i.i.d.

times to failure. The i.i.d. requirement either restricts us to analyse systems

consisting of multiple instances of the same component or to systems for which we

assume that the other components are totally reliable (cannot fail).

The system signature is defined as a discrete probability vector q1, ..., qN , where qi

denotes the probability that the i-th component failure will result in the failure of

the system. The expression for system reliability can be simplified into

P (TTFsys > t) =
N∑

i=1
qiP (TTF(i:N) > t), (2.13)

where TTF(i:N) denotes the ith order statistic (a random variable describing the

probability distribution of ith failure time in the sample of size N).

In the i.i.d. case,

P (TTF(i:N) > t) =
N∑

r=N−i+1

(
N

r

)
[1 − F (t)]r[F (t)]N−r, (2.14)

where F is the common CDF for the component lifetimes.

Samaniego has shown that the system signature may serve as a way of comparing

systems. He provides theorems about how different stochastic orderings of system

signatures implies stochastic orderings of system TTF [33]. This enables us to define

system optimization problems as problems of finding systems with optimal signatures

(although there is not exactly a one-to-one relation between systems and signatures).

He also introduces random mixtures of systems, which enable us to split the system

optimization problem into two steps. An optimization problem in the continuum

space of mixtures rather than directly the original discrete one and a subsequent

problem of finding a system with the most similar signature to that obtained in the

previous step.
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2.3.3 Survival signature

An extension to system signatures may be made for systems consisting of multiple

types of components. In this scenario, we assume that the TTFs of components of

the same type are exchangeable (i.i.d. implies exchangeability). This allows us to

model more scenarios than the system signature (e.g. network system with both

switch-boards and transmission ducts). The scenario in which the TTF of each of

the components is different is also included as an extreme case.

Let us assume that we have a system with K distinct component types, denote

Gj the set of components of type j and Mj the number of components of type

j in the system. We can introduce a natural decomposition of {0, 1}N into Dl,

where l ∈ ⊗K
i=1{0, 1, ..., Mi} is a multi-index l = (l1, ..., lK). The subset Dl := {x ∈

ΩX : ∑ I(xi ∈ Gj) = lj, ∀j} represents the subset of the component state-space

ΩX = {0, 1}N . This corresponds to a decomposition into disjoint sets Dl where for

each component type j exactly lj components are functioning. Denoting the event

that the system is functional as S, the probability P (S|Di) may be viewed, due to

the exchangeability assumption, as the probability of success in a Bernoulli trial (the

number of favourable events divided by the number of all the possible events) and

may be derived from the structure function as

Φ(l) := P (S|X ∈ Dl) = |{x ∈ Dl : φ(x) = 1}|
|Dl|

=
 K∏

i=0

(
Mi

li

)−1
 ∑

x∈Dl

φ(x). (2.15)

In the case that the component states are also stochastically independent, the

probability that the joint component states belong to a certain partition is

P (X ∈ Dl) =
K∏

i=0

(
Mi

li

)
[P (Xi = 1)]li [P (Xi = 0)]Mi−li . (2.16)
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Without the independence assumption, another formula needs to be used; perhaps

even a numerical simulation.

The survival function of the system is therefore separated into a time dependent

(component reliability) and a time independent (system structure survival signature)

factors, and

P (TTFsys > t) =
(M1,...,MK)∑

l=0
P (S|X(t) ∈ Dl)Pt(X(t) ∈ Dl),

where the summation is over all the values of multi-index l < M and Pt denotes the

time-dependent component state process.

If the TTF distribution of the components is independent on all the other components,

the relation simplifies into

P (TTFsys > t) =

=
(M1,...,MK)∑

l=0
Φ(l)

K∏
k=1

[(
Mk

lk

)
[Pt(Xi(t) = 1)]lk [Pt(Xi(t) = 0)]Mk−lk

]
,

=
(M1,...,MK)∑

l=0
Φ(l)

K∏
k=1

[(
Mk

lk

)
[1 − Fk(t)]lk [Fk(x)]Mk−lk

]
.

(2.17)

The survival signature also allows us to incorporate uncertainties about the system

structure. [38] shows how structure function can be treated as a (possibly interval

valued) conditionial probability and how this can be integrated into the survival

signature methodology. Nevertheless, uncertainty and imprecision in the structure

function would require application of specialized methods for computing the sig-

natures from the system specification which would not depend on cut or path set

representation.

2.3.4 Geometry of signatures

The survival and system signatures are closely related. For systems with a single

type of components, the N -dimensional Samaniego’s signature is given as a difference

of the (N + 1)-dimensional survival signature vector [36, 37].
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qi = Φ(N + 2 − i) − Φ(N + 1 − i); i ∈ {1, ..., N}. (2.18)

An attempt was made to define Samaniego’s signatures for a multicomponent system

with Mk components for types k ∈ {1..K} [37]. This system signature is defined as a∑
k=1..K Mk vector representing probability that the system will fail upon j-th failure

of k-th component type:

qk(jk) = P (TS = T k
jk:mk

), (2.19)

where TS is time of system failure and T k
jk:mk

the j-th order statistics for iid compo-

nents of type k.

As discussed in [37], such system signature fails to achieve separation of system

specification and component failure distributions since these need to be taken into

account during evaluation of the signature.

The issues occur because the signature in Equation 2.19 is defined as a marginal

probability, therefore needs to be marginalized during computation. Nevertheless,

the perspective using system signature as a “differential” (Equation 2.18) of the

survival signature still applies and is explored in [39, 40] referred to as the “third

direct partial logic derivative (DPLD)”, which is denoted ∂Φ(l1,...,lK)⇓
∂lk↓ in the papers.

Denote ql+
l− = Φ(l+) − Φ(l−) the difference of two consecutive survival signature

entries such that l+ > l−. Then this is a discrete exterior derivative of the survival

signature, which acts as a potential in the space of combinations of number of working

components by respective types.

For any path p representing progression of the vector l due to failing components

from l1 := (M1, ..., MK) to l0 := (0, .., 0),∑
k=1..K

(Mk+1)−1∑
i=1

qpi
p(i+1)

= Φ(l1) − Φ(l0) = 1. (2.20)
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Figure 2.10: Example of the tensor structure of the survival signature. Axes x and y
denote number of functional components of the first and the second type, and the
tilted axis represent number of functional components of the third type. Node colors
represent the survival signature value (green=1, red=0). Edge colors represent the
survival derivative (red=1, green=0).

Proposition 2.3.1 (Is signature.). With the failure progression p fixed, qi := qpi
p(i+1)

is the system signature in the sense of Samaniego.

Corollary 2.3.1 (Is independent.). Probability ql+
l− that system failure occurs during

the transition l+ → l− is path independent.

Proposition 2.3.1 can be used to define a sampling technique for computing bounds

on individual signature entries. Although these bounds can be uninformative for sig-

nificant signature entries, they allow to rule out insignificant entries for computation

techniques, which evaluate signature entries individually. Similar elimination was

used in [41], which proposes using heuristic methods suitable for network systems.

The proposed bounds are applicable for general systems.
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Consider randomly sampling the failure progression and a failure position based on

the progression. For a specific signature entry l and progressions p passing through

the entry, the probability that the failure position d will be strictly lower than l is

exactly the value of the survival signature Φ(l). Any other progression will enter the

quadrant < l through some entry m < l and the probability of failure occuring at a

position strictly lower than l is Φ(m) ≤ Φ(l).

P (d < l) = P (d < l|p ∩ l = l) + P (d < l|p ∩ l = ∅),

≤ Φ(l)(P (p ∩ l = l) + P (p ∩ l = ∅)),

≤ Φ(l).

(2.21)

Similarly for the quadrant > l with intersection point m > l and Φ(m) ≥ Φ(l).

P (d > l) = P (d > l|p ∩ l = l) + P (d > l|p ∩ l = ∅),

≤ (1 − Φ(l))(P (p ∩ l = l) + P (p ∩ l = ∅)),

≤ (1 − Φ(l)).

(2.22)

Therefore, irrespective of the failure progression sampling,

P (d < l) ≤ Φ(l) ≤ 1 − P (d > l). (2.23)

2.3.5 Applications of system signatures

Survival signatures significantly reduce time-complexity of system reliability analyses,

especially when repeated computation of system reliability is required like in system

survival function reconstruction, importance analysis, or redundancy allocation.

A comprehensive overview of practical applications of survival signatures is given in

[32].
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Several algorithms for system survival and availability function reconstruction were

presented in [34]. These simulation algorithms separate sampling the progression

of component states ([X1(t), ..., Xn(t)]), resp. progression of number of functioning

components ([L1(t), ..., Lk(t)]), and transform them into a sample of progression of

the system state (XS(t)). The presented algorithms construct the samples of system

state process by:

1. XS(t) ∈ {0, 1}, such that the system failure can occur upon component failure

with probability given by the conditional survival signature (pfail = 1−Φi/Φi−1),

2. Xs(t) ∈ [0, 1], where the system state is given by the value of the survival

signature for component states at time t and understood as a continuous

“production level” which is averaged over the Monte Carlo samples.

Survival signatures also allow for seamless transformation of predictive distributions

of component lifetimes to predictive distribution of the system state, including cases

with imprecise probabilistic predictive distributions. [42] demonstrated integration of

non-parametric predictive inference of component life-times. Bayesian inference for

component life-times was investigated in [43], together with assessment of optimal

redundancy allocation. Inferences based on robust Bayesian inference were integrated

in system predictive distributions in [44]. Reliability analysis of two-component

networks with imprecise component failure laws was demonstrated in [45].

Systems with common cause and cascading failures can also benefit from survival

signature representation. [46] investigates common cause failures using nonparametric

predictive inference for predicting number of failing components. Common cause

failure models based on alpha-factor models and importance measures for individual

common cause groups were studied in [47]. Modelling cascading and common cause

failures with survival signatures is presented in [48].

Survival signatures can also be used for performing importance analyses, especially

identification of critical components based on system service time. Since the survival
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signature clusters components of common type, importance analysis can be natively

performed for component types. An importance measure based on logical differential

calculus are investigated in [39, 49], which provide component type importance

measures conditional on number of functioning components. Importance on the

individual component level requires construction of multiple signatures distinguishing

the component state. Using survival signature for time-dependent relative component

importance was investigated in [50]. This approach is extended further investigated

for marginal and extended to joint importance in [51], which also presents importance

measures based solely on the single, original system survival signature.

Survival signatures have also been successfully applied for phased mission reliability

assessment [52]. Application of survival signatures to phased missions with imprecise

component failure times were investigated in [1].

Mean residual life can be computed from the survival signature [53]. Such result can

be used for constructing optimal preventive maintenance policies, as was done in

[54].

Signatures can also be applied to model lifetime of stress-strength systems under

repeated stress cycles [55, 56].

Possible extensions of survival signatures for multi-state systems are investigated in

[57–60].

2.3.6 Computation of system signatures

Computation of the signatures is a difficult task with comparable complexity to

assessing reliability from a structure function specification. The source of the

complexity originates from the necessity to enumerate and evaluate the structure

function for each variation of component states, number of which grows exponentially.

The advantage is that, for many practical applications, it suffices to compute the

signature in advance and use it as a proxy system structure model for repeated
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computations in reliability analyses.

According to the definitions of respective signatures, we can compute their entries by

enumeration of respective cut or path sets and proper normalization. This method

is implemented in an R package ReliabilityTheory [61]. This can also be done by

exhaustive traversal over all 2N component states during which the traversed state

is determined to be either a cut or a path set. If the studied system is coherent,

specifically when its structure function is non-decreasing, an early stopping can be

empoyed to limit the computational complexity as was done in a C++/Python

package Signature Calculator [62] for reliability block diagrams.

Integrating system signatures from signatures of two series or parallel subsystems

was presented in [63] for system signatures and in [42] for survival signatures. The

approach using decomposition into subsystems for a general system, computing

signatures of the subsystems, and their subsequent integration was explored in [64]

for system signatures and in [2] for survival signatures.

Significant improvement in computation allowing evaluating signatures for larger

systems was achieved in [65, 66]. These propose a prior transformation of the

structure function into a binary decision diagram form, which leads to significant

reduction of the space which needs to be traversed by the computational algorithm.

This leads to a recursive scheme, which traverse the binary decision diagram by

component indices, computes the survival signatures for both cases - component i is

working and component i is failed, and integrate the partial results using efficient

tensor operations.

Nevertheless, computation of exact signatures for general non-trivial systems in-

evitably lead to combinatorial explosion of traversed states. Recently, approximation

methods are being introduced. In [41, 67], heuristic methods (dijkstra algorithm

to identify the minimal amount of working components and percolation theory for

identification of path sets) are first used to identify non-significant entries of the
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signatures which are omitted in the subsequent approximation of the remaining

entries using Monte Carlo estimates. Limiting the amount of Monte Carlo sim-

ulations is addressed in [68] using entropy-driven methods to focus the sampling

efforts to relevant entries. Another option is limit the amount of entries for which

survival signature is computed and use machine learning methods for estimating the

remaining entries as was done in [69] using ensembles of neural networks.

2.3.7 Summary

Both the system and survival signatures allow us to greatly reduce the complexity

of system reliability analyses for general systems. They allow us to compress the

system specification independent of its component failure distributions. This is

especially advantageous in situations when multiple evaluations of system reliability

is required, like survival function reconstruction, importance analysis, redundancy

optimization or statistical inference as demonstrated in Section 2.3.5. Computation of

the signatures still suffers from combinatorial explosion of states, but can be carried

in advance and reused in multiple analyses. Some efficient methods for survival

signature computation have already been developed (see Section 2.3.6) and more are

being investigated. Signatures also provide a level of system annonymization. They

are sufficient for carrying reliability inferences, yet identification of the exact system

structure from its signature is not possible.



Chapter 3

Uncertainty quantification

3.1 Introduction to uncertainty

The desired outcome of an engineering project is a system which provides the service

it was designed for. But the exact future behaviour of a system in the real world is

unknown until the system is built and tested. This applies also to the use of familiar

systems that operate under novel environmental conditions. This poses a dilemma:

how to design systems so that they meet our requirements once deployed? We need

some procedure(s) to aid us with the decision making.

We would like to be able to assess consequences of various actions - making predictions

of the future behaviour. Science is a field which explores relations between various

aspects of reality and constructs models, upon which we may base our predictions. But

there is no guarantee that these models are totally accurate. Mathematical models

are usually simplifications of the occurring phenomena, often various additional

simplifications have to be made in order to make the computation tractable, and

the numerical evaluation itself may introduce additional error (e.g. when simulating

processes described by differential equations). Furthermore, another type of error is

introduced when providing numerical inputs for the models, their parameters. These
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also come from scientific inference and, therefore, suffer from the similar issues as

the models themselves. Their usual sources are: measurements with finite resolution,

statistical inference, and expert elicitation. All these are subjected to uncertainty.

The field of modelling uncertainties is nowadays dominated by two complementary

theories, probability theory and interval arithmetic. Although these two allow

us to model many situations, they contain several drawbacks, which make their

application difficult for practical applications. Interval arithmetic, used for worst-

case scenario modelling, is often overly conservative and fails to capture correlations

among quantities of interest. Probability theory requires us to specify how likely the

occurrence of each possible outcome is, which can be impossible up to the required

level of precision required to construct the mathematical models.

Combining interval arithmetics with probability theory yields a relatively novel

theory of Imprecise Probability (IP), which allows greater flexibility in modelling

uncertainties and ignorance. We will provide some applications of imprecise prob-

ability theory for systems reliability engineering. Imprecise models are already

well established in the field of reliability engineering. Barlow and Proschan [10]

constructed bounds on survival functions based on qualitative properties of the

hazard functions (increasing/decreasing hazard rate). Recently, it has been argued

that precise probability models are not appropriate for risk quantification [70] and

proposed an approach resembling hypothesis testing. The issue with the precise

probability model can be reduced to the following example: consider evaluating risk

of a falling ball hitting a point at a ground. If the ball is directly above the mark, it

will hit it with certainty. Nevertheless, if the initial position of the ball is uncertain,

say modelled by a Gaussian distribution, the increasing uncertainty (variance in

position) will actually decrease the evaluated probability of hitting the target - hence

the risk evaluated by probability risk assessment methodology. Therefore, using

precise probability models for risk assessment can lead to false confidence in system

safety.
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Regarding probability theory, we will show two complementary approaches for

building an axiomatic theory of probability. The fist one is based on Kolmogorov’s

formulation [71] in which a probability distribution is represented by a positive

additive measure (Section 3.2.1). Such measure, which is a set function, will directly

encode the modelled probabilities of various assertions about the outcomes of random

experiments, allows us to assess an expected value of a random variable, and also

extends the models to derived random quantities. This approach to probability

theory has became dominant across fields because it offers an intuitive description of

random outcomes and enables us to construct efficient general algorithms for solving

many practical problems (Monte Carlo algorithms, Bayesian inference, etc.). Some

extensions of the measure theoretic formulation for imprecise probability will be

shown in Section 3.3.1.

Another approach for constructing an axiomatic base for probability theory is based

on a functional representation of random quantities [72, 73] described in Section 3.2.3.

Uncertainty models are represented by a functional, the prevision, which corresponds

to the expected value operator in the measure theoretic approach. A model is

specified by assessing the expected values for several selected functions - the random

variables. This allows us to pose less assumptions on the models since the underlying

probability measure is not required to be specified exactly, but also pose limitations in

extending the assessments to derived quantities. These extensions will (mostly) result

only in bounds on the expectations of the derived random variables. Generalizations

of this approach, the lower prevision theory, is described in Section 3.3.4.

Finally, we will show how imprecise probability models naturally arise in statistical

inference. Imprecise probability formulation allows us to decrease the amount of

necessary additional modelling assumptions and lead to more trustworthy - valid -

inferences. Specifically, we will discuss a less-known theory of fiducial inference in

Section 3.4.3, which aims to provide direct statistical inversion without the necessity

to specify Bayesian priors. The aim of fiducial inference is to provide posterior
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distributions with proper calibration properties and validity guarantees, which are

further elaborated in Section 3.4.5 which discusses a promising theory of Inferential

Models.

3.2 Probability theory

Suppose that we are to perform an experiment. We will denote the set of all its

possible outcomes as the sample space, Ω. Let us further assume that an outcome

cannot be exactly determined prior to its actual observation - it is uncertain. But

even though the experimental outcome can be random (i.e. we are not able to predict

it with any finite algorithm), multiple repetitions of the same experiment may follow

some predictable law. Probability theory aims to describe these laws.

3.2.1 Basics of probability theory

Definition 3.2.1 (Probability.). Let Ω be a sample space and A a σ-field (a collection

of subsets) over Ω. We will call a set function P : A → R a probability measure, if

• ∀E ∈ A : P (E) ∈ [0, 1],

• P (Ω) = 1,

• ∀Ei ∈ A, which are mutually disjoint, : P (∪∞
i=1Ei) = ∑∞

i=1 P (Ei).

The tuple K := (Ω, A, P ) from Definition 3.2.1 is called a probability field.

Let us again consider the experiment with the set of possible outcomes Ω. If the law

of outcomes can be described by a probability distribution P , it represents that over

multiple repetitions of the (exactly the same) experiment, for any chosen E ∈ A, the

relative number of outcomes which will be elements of E, will converge to P (E) as

the number of repetitions increases.

Engineering problems usually contain multiple quantities of interest and models

describing their connection. If these quantities are uncertain, and the law governing
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their observations can be described by a probability distribution, we could specify

a sample space for each of them and derive assessments about the outcomes for

each of them. But in order to provide a connection among them, including possible

correlations, we will consider the actual quantities as random variables.

Definition 3.2.2 (Random Variable.). Let (Ω, A, P ) be a K-probability field and

(ΩX , AX) a measurable space. Any AX-A-measurable function X : Ω → ΩX will be

called a random variable (RV).

Let us also denote L(Ω) the set of all random variables on (Ω, A).

Now we are interested in how can we derive the distribution law of the random

variables. The probability measure from Definition Definition 3.2.1 measures proba-

bilities of events in the sample space. We need to propagate this model in order to

assess statements about random variables. The answer will also allow us to specify

distributions of other derived quantities, like Z = f(X, Y ).

Definition 3.2.3 (Preimage.). For an arbitrary mapping f : X → Y , for any set

E ⊂ Y its pre-image is

f−1(E) := {a ∈ X : f(a) ∈ E}. (3.1)

So a random variable, a mapping from a probability space, induces its own probability

space with set of outcomes being the image of original sample space, ΩX = X(Ω)

and AX = {X(E) : E ∈ A}.

For a set E ∈ AX , the probability that the RV X obtains a value in E is

PX(E) := P (X ∈ E) = P (X−1(E)) = P ({ω : X(ω) ∈ E}). (3.2)
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Each random variable induces its own probability field (ΩX , AX , PX), where PX =

P ◦X−1. We will use notation X ∼ PX for denoting that PX is the (induced) measure

of X. For the derived quantities, say Z = f(X, Y ), we may proceed analogically.

Furthermore, the situation simplifies if the sample spaces Ω and ΩX are the real lines

and the mapping defining the new random variable is monotone.

Theorem 3.2.1 (Random variable transform.). Let X : (R, B, P ) → (R, B) be a

strictly increasing random variable and [a, b] ⊂ R an interval. Because there exists

unique classical inverse X−1 of X, which is also an increasing function, we can

express the distribution of X as

PX([a, b]) = P (X ∈ [a, b]) = P (X < b) − P (X < a)

= P ([X−1(a), X−1(b)]).
(3.3)

And similarly for a decreasing X, where the interval the for pre-image is given by

swapping the bounds, i.e. [X−1(b), X−1(a)].

Special attention in probability theory is given to the cumulative distribution functions

(CDFs), which represent the probability that a real valued RV attains a value smaller

than the argument. A CDF FX : R → [0, 1] represents, for each a ∈ R, the probability

of event {X ∈ [−∞, a]}. The probability of all the other events in the Borel algebra

on the real line, B, can be derived through the axioms of probability measures. CDF

therefore uniquely represent whole probability measure, which would be intractable

to work with otherwise.

In special cases, the CDF of a derived quantity can be easily derived from Theo-

rem 3.2.1. For increasing functions f , the CDF of an extended RV Y = f(X) can be

calculated as

FY (y) = P (f(X) < y) = FX(f−1(y)). (3.4)

Similarly for the case of a decreasing function f , where FY (y) = 1 − FX(f−1(y)).
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3.2.2 Repeated sampling

Compared to the analysis on the real line, it is convenient to also introduce some

summaries of the random variables. This can be done through the expected value

functional (E : L(Ω) → R), where L is space of all real random variables on the

sample space Ω.

Definition 3.2.4 (Expectation of a ranfom variable.). Let X be a RV on (Ω, A, P ).

Then

EPX
[X] :=

∫
ΩX

xdPX =
∫

Ω
X(ω)dP, (3.5)

will be called the expected value of random variable X. The subscript representing

the underlying distribution (PX) is usually omitted, and we will also do so for precise

random variables. We introduce it because of the necessity of computing expected

values for various probability measures later in the chapter.

The expected value represents a typical value, the limit of average values of multiple

draws. By the law of large numbers, the average of the finite amount of draws from

X will converge towards EX.

Theorem 3.2.2 (Law of Large Numbers.). Let X1, . . . , Xn be a series of random

variables such that each of them is distributed according to the same law with a finite

expected value EX1 =: µ ∈ R. Then

lim
n→∞

1
n

n∑
i=1

Xi = µ, (3.6)

where the real number µ can be viewed as a degenerate random variable M s.t.

∀ω ∈ Ω : M(ω) = µ.

The law of large number is the core principle which allows us to perform statistical

inference. It guarantees that we will approach correct assessments about the sampling

distributions (means, other moments, probability statements, etc.) with increasing

number of observations.
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Another important result of the probability theory, the central limit theorem, states

what is the asymptotic convergence rate towards these values. It also provides

theoretical guarantee for convergence of numerical Monte Carlo algorithms [74] which

are used to approximate probability distributions of random variables.

Theorem 3.2.3 (Central Limit Theorem.). Let X1, . . . , Xn be a series of random

variables such that each of them is distributed according to the same law with a finite

expected value EX1 =: µ ∈ R and a finite variance E(X1 − µ)2 =: σ2 ∈ R+. Then

lim
n→∞

1√
nσ

n∑
i=1

(Xi − µ) ∼ N (0, 1), (3.7)

where N (0, 1) is the standard normal distribution. The convergence is meant in the

distributional sense:

Xi
d→ X ⇒ ∀Y ∈ L(Ω) : EPXi

[Y (X)] → EPX
[Y (X)]. (3.8)

3.2.3 Probability via expectation

Another approach to build an axiomatic theory of probability is explained by Whittle

[72]. The idea is that, instead of focusing on the probability distributions as measures

on a sample space, we investigate the random variables from the functional perspective.

Whittle therefore describes a system based on axioms posed on the expected values,

instead of on the probability measures. He further shows how to reproduce results of

the standard approach (measure-based) to probability theory.

Definition 3.2.5 (Expected Value.). Let (Ω, A) be a measurable space and L(Ω)

the set of all random variables on Ω. We will call a functional E : L(Ω) → R the

expected value, if

• ∀X ∈ L(Ω) : X ≥ 0 ⇒ E(X) ≥ 0,

• ∀a, b ∈ R, ∀X, Y ∈ L(Ω) : E(aX + bY ) = aE(X) + bE(Y ),

• E(1) = 1,



3.2. Probability theory 56

• if, ∀ω ∈ Ω, a sequence Xn(ω) increases monotonically to X(ω), then E(X) =

limE(Xn).

Starting from the axioms of the expected value functional leads to the same theo-

retical system as Kolmogorov’s approach. In the precise probability case, both the

approaches are equivalent, but this is no longer the case with imprecise probabilities,

where the theory of Lower Previsions [75] allows us to represent a larger set of models

than the IP extension of the measure theoretic approach.

A similar approach to formulate probability theory was also explored by de Finetti and

Savage [73, 76] from a decision making perspective. A notable difference introduced

by de Finetti is that the expected values are called previsions, but denote the same

object. Also, in the notation, de Finetti further does not distinguish between the

symbol for probability of an event and for an expectation of a random variable, both

are P , because there exists a one-to-one mapping between events and binary random

variables. We can obtain the probability of any event E ⊂ Ω by calculating the

expected value of its indicator function IE ∈ L(Ω). The meaning is usually evident

from the context.

IE(ω) :=


1, ω ∈ E,

0, ω /∈ E,

P (E) = E(IE).

(3.9)

An interesting feature, that both Whittle and de Finetti have presented, is the

possibility to extend our partial knowledge to other random variables. Given a set of

known expectations for RVs K ⊂ L(Ω), we can derive bounds for the expectation of

another RV Y /∈ K.
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To do this, we can use corollaries of the expectation axioms (Definition 3.2.5). Given

two RVs (mappings from the sample space) s.t. ∀ω ∈ Ω : X(ω) ≤ Y (ω), we can derive,

due to the linearity and positivity of the expectation functional, that E(X) ≤ E(Y ).

Therefore, if we already know the expectations E(Xn) of several RVs Xn, we trivially

know the expectation of their arbitrary countable linear combination Z = ∑
aiXi,

which is E(Z) = ∑
aiE(Xi).

For an arbitrary RV Y , we can acquire the lower bound on its expectation by taking

the supremum over all the RVs in the span of X1, ..., Xn, which are strictly lower

than Y . Similarly for the upper bound.

Theorem 3.2.4 (Extension of the expected value operator.). Let K = {X1, ...}

be a countably infinite set of random variables with known expectations and Z :=

{∑n
i=1 aiXi + b : Xi ∈ K, ai, b ∈ R, n ∈ N} the linear span of K ∪ {1}. The consistent

(coherent in de Finetti’s treatment) bounds for the expected value E(Y ) can be obtained

as

sup
Z∈Z,Z≤Y

E(Z) ≤ E(Y ) ≤ inf
Z∈Z,Z≥Y

E(Z), (3.10)

where by Z ≥ Y we mean that ∀ω ∈ Ω : Z(ω) ≥ Y (ω).

For Ω, K, which are both finite, where |Ω| = N, |K| = n, the extension is a linear

program.

sup
Z∈Z,Z≤Y

E(Z) = sup
b∈R; a∈Rn

∀ω∈Ω:b+
∑n

i=1 aiXi(ω)≤Y (ω)

b +
n∑
i

aiE(Xi). (3.11)

Its dual is

sup
Z∈Z,Z≤Y

E(Z) = inf
p∈(R+

0 )n∑n

i
pi=1

∀Xj∈K:
∑n

i=1 piXj(ω)=E(Xj)

n∑
i

piY (ωi), (3.12)

which effectively means, that we are extremizing the expectation over some set of

admissible distributions p, which would yield the known expectations for all Xn ∈ K.
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3.3 Imprecise probability theory

The history of imprecision in probabilistic assessments dates back to Boole’s work

on inductive logic [77], who identified certain situations in which the available

information is not sufficient to construct precise probability statements. For some

probability assessments, only bounds could be constructed.

Bounds on probability statements can also be used when precise values were in-

tractable (e.g. Markov inequality, Jensen’s, Chebyschev’s). Some early examples

may also be found in the field of sensitivity analysis for statistical inference [78].

Nevertheless, by the mid 20th century, a separated theory of imprecise probabilities

began to emerge as a generalisation of probability theory. This includes, among other,

introduction of non-additive measures by Choquet [79], generalisation of statistical

inference by Dempster [80], Walley’s work on statistical inference with imprecise

probabilities [81], and development of the theory of lower previsions [75].

Special emphasis is put on extending our (partial) specification of the model to

answer enquiries about derived quantities in a consistent manner. This means that

given some claims about some aspects of some random variables, we are interested

in what other claims can be deduced about transformed random variables.

3.3.1 Interval probabilities

We begin by introducing an extension to measure-theoretic probability given by

Weichselberger [82] and similarly by Walley [83]. The idea is to assign to every event

E ∈ Ω a pair of real numbers ∈ [0, 1], which represent lower and upper bounds for

the probability of that event. These lower and upper bounds will reoccur within

the rest of the theory of imprecise probabilities because they are extreme points of

an underlaying convex set of precise probability distributions. They also have an

epistemological interpretation - the lower bound measure the evidence supporting

the occurrence of E, and the upper bound measure the evidence, which contradicts
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E. Their difference can be used as a measure of our ignorance.

Definition 3.3.1 (R-probability). An interval valued set function P on a measurable

space (Ω, A) will be called a R-probability, if - ∀E ∈ A : P (E) = [L(E), U(E)] s.t.

0 ≤ L(E) ≤ U(E) ≤ 1, - the set M := {p : p is K-probability , ∀E ∈ A : p(E) ∈

P (E)} ≠ ∅.

We will call the tuple R := (Ω, A, L, U) a R-probability field. The set M from the

second axiom is called the structure (Weichselberger) or the credal set (Walley) of R.

The letter R- represents reasonable. It corresponds to the property of avoiding

sure loss introduced in Section 3.3.4. The definition directly implies, that for a

R-probability P , L(∅) = 0 and U(Ω) = 1 through the non-emptiness of the credal

set.

An R-probability is directly connected to a set of precise probabilities via its credal

set. It is also apparent, that for any set of precise probabilities we may construct an

R-probability s.t. this set will be a subset of its credal set, but such construction

may not be unique. In order to specify an R-probability, we would need to define

the L and R functions for all the elements in the respective algebra A. Precise

probability theory uses cummulative density functions of probability density functions

(Radon-Nikodym derivatives of the probability measure) for this purpose, from which

probabilities of particular events can ba derived. Analogues for the interval models

exist in the form of P-boxes [84] or pairs of probablity density functions [85].

Simpler IP models can be used to assess judgements about more complex ones. If we

specify an R-probability via (possibly finite) set of precise models, we automatically

also include all their convex combinations in the structure of such an R-probability.

Given two K-probabilities p, q ∈ M, the credal set of some R-probability, for all their

convex combinations r = λp + (1 − λ)q, λ ∈ [0, 1], r(E) will take values in between

p(E), q(E) for all the events E ∈ A due to the axioms of probability measures. Thus,

L(E) ≤ r(E) ≤ U(E) so r ∈ M.
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Therefore, the credal set of a R-probability is equal to its convex hull.

A one-to-one correspondence between probability bounds and the underlying credal

set is a desired feature in IP theory. In Weichselberger’s treatment, this may be

achieved by tightening the requirements on the probability bounds L, U .

Definition 3.3.2 (F-probability). An R-probability P , which also satisfies

∀E ∈ A :
(

inf
p∈M

p(E) = L(E)
)

∧
(

sup
p∈M

p(E) = U(E)
)

,

is called an F-probability and the corresponding tuple F := (Ω, A, L, U), the F-

probability field.

The letter F- represents feasible. It corresponds to the notion of coherence introduced

in Section 3.3.4. For every F-probability, we also immediately obtain that L(Ω) = 1

and U(∅) = 0, because this is true for each of the elements of the credal set, therefore

also their infimum and supremum. The axioms of F-probabilities directly imply a

relation which is reoccurring throughout many parts of IP theory and which enables

us to focus our attention solely on either the L or the U function. The other follow

through the conjugacy property

∀E ∈ A : U(E) + L(Ec) = 1. (3.13)

Example 3.3.1 (Interval probabilities.). An example of F- and R- probabilities

is given in Table 3.1. LF , UF and LR, UR correspond to F- and R- probability

bounds respectively. A K-probability is also shown in column P to demonstrate

non-emptiness of the respective credal sets.

Since an F-probability defines an underlying credal set and the probability assessments

can be obtained through extremization over this set, we may define also the lower and

upper expected values for derived random variables through similar extremization.

The lower expectation would be given by Equation 3.14 and the upper one similarly

with taking a supremum instead of the infimum.
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E[X] := inf
p∈M

Ep[X]. (3.14)

Table 3.1: Example of F- and R- probabilities on a simple finite sample space
Ω = {0, 1, 2}. L ≤ P ≤ U .

E LF UF P LR UR

∅ 0.00 0.00 0.00 0.00 0.33

{0} 0.33 0.60 0.50 0.33 0.60

{1} 0.30 0.50 0.40 0.30 0.50

{2} 0.00 0.37 0.10 0.00 0.55

{0, 1} 0.63 1.00 0.90 0.00 1.00

{0, 2} 0.50 0.70 0.60 0.00 0.90

{1, 2} 0.40 0.67 0.50 0.00 0.83

{0, 1, 2} 1.00 1.00 1.00 0.50 1.00

A desirable property in the imprecise probability framework is the possibility to

derive probability bounds on all the events E ∈ A from the knowledge of the bounds

only for some events E ′ ∈ A′ ⊂ A. This operation is commonly referred to as an

extension (with some adjectives corresponding to the theories and actual definitions).

In Weichselberger’s treatment, a F-probability may be derived from the underlying

set of K-probabilities.

Definition 3.3.3 (Support.). Let (Ω, A) be a measurable space. Denote A′ =

A/{∅, Ω} and let AL, AU ⊂ A′.

If there exist a non-empty set M of probability distributions and set functions L, U

s.t.
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• ∀E ∈ AL, p ∈ M : L(E) ≤ p(E),

• ∀E ∈ AU , p ∈ M : U(E) ≥ p(E),

• L(∅) = U(∅) = 0, L(Ω) = U(Ω) = 1,

then P = (L, U) is called a partially determinate R-probability.\ We will call (AL, AU )

the support of P .

Definition 3.3.4 (Partially determinate F-probability). Let (Ω, A, L, U) be a par-

tially determinate R-probability field with support (AL, AU). If also

• ∀E ∈ AL : L(E) = infp∈M p(E),

• ∀E ∈ AU : U(E) = supp∈M p(E),

then P is called partially determinate F-probability.

For partially determined F-probabilities, there exist a straightforward way of calcu-

lating probability bounds for events outside of their support. The procedure is called

normal completion in Weichselberger’s and natural extension in Walley’s treatment.

It simply exploits the extremizing property of F-probabilities over their respective

credal sets M, thus

∀E ∈ A : L(A) = inf
p∈M

p(A). (3.15)

Example 3.3.2 (Partial F-Probability). Let us consider a partially determinate

F-probability on Ω = {0, 1, 2}, AL = AU = {{0}, {1}} with L, U on AL given in

Table 3.1, and a credal set M.\ For an arbitrary event E ∈ A, we can calculate its

lower probability by solving the optimization problem

L(E) = min
p∈M

p(E).
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Especially, denoting a := P ({0}), b := P ({1}), c := P ({2}),

L({0, 1}) = min
0.33 ≤ a ≤ 0.67

0.1 ≤ b ≤ 0.17

a + b + c = 1

a + b = 0.67.

The bounds for the rest of events in A are given in Table 3.1.

Weichselberger’s treatment provides a useful framework to define the lower and

upper probabilities and even desired extending properties for partial specifications.

Probability bounds given for all the elementary events E ∈ A′ ⊂ Ω can be extended

into bounds for arbitrary event E ∈ Ω by solving a linear optimization problem.

For the derived random variables Y = f(X), we may calculate the imprecise prob-

abilities that they will obtain a value in an element of their respective σ-algebras,

similarly as in the precise case through Equation 3.2.

The imprecision in the distributions will also manifest in the imprecision in the

expected values. We can calculate the lower and upper expectations, but for the

structures introduced in this section, we can only do so through an optimization of

the expected value over the credal set.

3.3.2 Capacities

F-probabilities offer good starting point for reasoning about probability bounds

but provide only limited space for modelling and other manipulation of interval

probabilities. Capacities originated in the work of Choquet [79] on the generalization

of measure theory for non-additive measures. They provide further useful properties

and structure to imprecise probability models which allows us to simplify specification

of the bounds for arbitrary event E ∈ A and the expectations of random variables.
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Definition 3.3.5 (Super-, Sub-additivity.). Let (Ω, A) be a measurable space. A

set function g : A → R is called a capacity, if it is monotone, i.e.

∀A, B ∈ A : A ⊂ B ⇒ g(A) ≤ g(B). (3.16)

A capacity g is further called super-additive if

∀A, B ∈ A : A ∩ B = ∅ ⇒ g(A ∪ B) ≥ g(A) + g(B). (3.17)

If the inequality is reversed, it is instead called sub-additive.

Note that if the structure M of a F-probability is closed (i.e. arginf belongs to M),

then both L and U are super- and sub-additive capacities, respectively.

Definition 3.3.6 (N-monotonocity.). A capacity g is said to be n-monotone if for

any collection En ⊂ A of n elements

g

 ⋃
E∈En

E

 ≥
∑

E⊂En

(−1)|E|+1g

( ⋃
E∈E

E

)
. (3.18)

If g is monotone for every n ∈ N, then it is called ∞-monotone.

Any n-monotone capacity is also n > m-monotone.

2−monotone capacities are coherent (as defined in Section 3.3.4). A pair of super- and

sub-additive capacities, such that the sub-additive one dominates the super-additive

one, constitute an F-probability.

Definition 3.3.7 (Möbius Inverse.). For a super-additive capacity g defined on a

finite space Ω, we define, for every event E ⊂ Ω, a function mg : 2Ω → R, the Möbius

inverse, as

mg(E) :=
∑

A⊂E

(−1)|E\A|g(A). (3.19)
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The benefit is that there exists an inverse mapping, which enables us to reconstruct

the capacity from its Möbius inverse as

g(E) =
∑

A⊂E

mg(A). (3.20)

The dual capacity, the upper probability, can be reconstructed as

g∗(E) =
∑

{A∈2Ω:A∩E ̸=∅}
mg(A). (3.21)

A special class of models is composed of ∞-monotone lower probabilities on finite

spaces. Their Möbius inverses (aka the mass functions) are non-negative for every

event. Conversely, any normalized (∑m = 1) non-negative function m : 2Ω → R with

a finite support induces a ∞-monotone lower and upper probabilities by Equation 3.20

and Equation 3.21, respectively. The mass function is explicitly used in the evidence

theory [86] for basic probability assignments on the focal elements.

Let us assume, that we have a collection of interval-valued measurements:

{(0.2, 0.6), (0.4, 0.8), (0.1, 0.3)}.

By the Laplace indifference principle, we assign to each of the interval an equal mass

m = 1
3 . With such a mass function, we can construct lower and upper probabilities

via Equation 3.20 and Equation 3.21. For example

L([0.3, 1]) = m((0.4, 0.8)) = 1
3

U([0.3, 1]) = m((0.2, 0.6)) + m((0.4, 0.8)) = 2
3 .

(3.22)

Capacities also provide us means for calculating not only the bounds on probabilities

of events, but also on the expected values of random variables. If an F-probability

is viewed as a pair of capacities, we can define an integration functional which will

enable us to compute the bounds on the expected value, similar to which we are

used to from the precise probability theory (Definition 3.2.4).
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Definition 3.3.8 (Choquet integral). For a capacity g : A → R and a real valued

function f measurable on A, the Choquet integral is defined as

(C)
∫

fdg =
∫ ∞

0
g(f ≥ x)dx +

∫ 0

−∞
(g(f ≥ x) − 1)dx, (3.23)

where f ≥ x denotes {t ∈ Ω : f(t) ≥ x}.

Theorem 3.3.1 (Lower expectation of a function via capacities). For a coherent

2-monotone lower probability g : A → R, the lower expectation of a function f is

given by the Choquet integral.

P (f) = (C)
∫

fdg. (3.24)

Remark 3.3.1. Remark: if the capacity represents a 2-monotone upper probability,

the integration would yield the upper expectation.

3.3.3 Random sets

A set-valued evidence may be encountered in many practical scenarios, may it be

the error bounds of measuring devices or an interval valued expert elicitation. There

exists an approach on how to handle these within precise probability theory in the

case that we know that the imprecision is not inherent to the actual realisation of

the experiment and only comes as a coarsening of precise values via our imperfect

methods. In such a case, we may introduce an additional assumption on the stochastic

nature of how the coarsening occurs, a conditional model on where the actual value

lies in the set (e.g. as in the treatment of censored data in reliability theory). But

in some cases, this assumption may be unjustifiable and bias our assessments. The

imprecision may also be caused by the very nature of the of the experiment, where

the random observation itself is set-valued and cannot be treated by the mentioned

method. In order to rigorously address these situations, probability theory may be

generalized for the set valued observations into theory of random sets [87–89].
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Random set theory is a basis for Dempster-Shafer theory of evidence [86] and

some modern statistical methods [90]. Random set models have also been used for

sensitivity analysis [91] and uncertainty modelling in general [92].

Definition 3.3.9 (Random Set.). Let (Ω, A, P ) be a probability space, S a collection

of subsets of ΩΦ, and Φ : Ω → S a map.

If

{ω : Φ(ω) ∩ K ̸= ∅} ∈ A; ∀ compact K ⊂ ΩΦ, (3.25)

then we will call Φ a random set.

The definition of a random set is almost identical to that of a random variable (Defi-

nition 3.2.2) we just need to impose proper measurability properties. Nevertheless,

the treatment of the random sets is slightly different. For a random set Φ, we can

assess several claims.

Definition 3.3.10 (Random Set Descriptors.). Let Φ : Ω → S ⊂ 2ΩΦ be a random

set derived from probability space (Ω, A, P ). Then for E ∈ S and x ∈ ΩΦ. We

define:

• the belief function Bel(E) := P (Φ ⊂ E),

• the plausibility function Pl(E) := P (Φ ∩ E ̸= ∅),

• the contour function C(x) := P (x ∈ Φ).

The belief and plausibility functions corresponds to lower and upper probabilities

and L and R functions from Section 3.3.1, respectively. As imprecise probability

models, the belief and plausibility functions induced by random sets are ∞−monotone

capacities and, therefore, coherent lower probabilities. Therefore, we also know the

form for the derived lower and upper expectations via Theorem 3.3.1.
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(a) Belief and Plausibility function of a Ran-
dom set compared to the Cumulative Distri-
bution function of Standard Normal distribu-
tion.

(b) Contour function of a Random set com-
pared to the Probability Density function of
Standard Normal distribution.

Figure 3.1: An example of a random set constructed from Chebyshev’s inequality
with µ = 0, σ = 1.

Due to the coherency,

∀A ∈ B :

Bel(A) ≤ P (A) ≤ Pl(A)

Bel(A) + Pl(Ac) = 1

Bel(A) + Bel(B) ≤ Bel(A ∪ B)

(3.26)

Random sets can be used for statistical inference with little assumptions. The models

can (and have been [91]) be constructed from Chebyshev’s inequality (Theorem 3.3.2)

if only the population mean and variance are know. This represents the tightest

bounds for the respective probabilities over all possible probability distributions

compliant to these assumptions. If the population mean and variance are unknown,

Saw [93] has proposed a variant of the Chebyshev’s inequality based on their sample

estimates.

The construction from Chebyshev’s inequality defines a random set induced by an

uniformly distributed random variable, say U ∼ Uni([0, 1]). The random sets, as

models for a random variable with mean µ and variance σ2, are constructed via
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mapping ΘC(u) := [µ − σ√
u
, µ + σ√

u
]. An example of such a constructed random set

is depicted in Figure 3.1.

Theorem 3.3.2 (Chebyshev inequality.). For a random variable X with finite

expectation µ = E(X) and finite non-zero variance σ2 = E((X − µ)2) and ∀a ∈ R :

a > 0,

P (|X − µ| ≥ aσ) ≤ 1
a2 . (3.27)

Since they are analogical to precise probability theory, some of the useful results

are also available for the theory of random sets. Especially variants of the law of

large numbers (Theorem 3.2.2) and the central limit theorem (Theorem 3.2.3) can

be generalized for random sets [89]. [94, 95] provide means on how to perform Monte

Carlo simulation with random set models via constructing an empirical random set

from drawn samples such that the approximations of the Bel and Pl functions are

unbiased estimates and converge almost surely to the population ones.

3.3.4 Lower previsions

The expectation treatment can be also specified for imprecise models in the form

of super-(and conjugated sub-)linear functionals in the theory of lower previsions.

The theory was studied by Walley [81] with further extensive theoretical treatment

given by Troffaes and de Cooman [75] and is build upon de Finetti’s behavioral

interpretation of uncertainty [73]. Random variables are therefore referred to as

gambles in this line of work to emphasise that they represent prior uncertain rewards

of bets and their combinations. Constructed lower previsions of gambles can then be

interpreted as bounds on expected values of the respective random variables with

respect to an underlying credal set - the set of precise probability models.

Properties of lower previsions are derived from certain rationality criteria for a

gambler which aims to specify a (partial) preference relation amongst a set of

gambles. These criteria specify how to construct reasonable subsets of the set of
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all gambles which ensure that any combination of gambles ensure the gambler to

at least avoid sure loss and accept sure gain. These minimal requirements ensure

that a gamble (or combination of them) which would result in negative utility gain

regardless of the outcome is deemed as not acceptable or desirable. Similarly, a

gamble with only positive utility gain is always acceptable or desirable. Further

criteria consider dominance and combination of gambles and allow construction of

extensions of partially specified preference models - in this case a completion of a

set of consistent acceptable gambles by all the gables that dominate them and their

non-negative linear combinations.

The lower previsions for a gamble are then defined as the supremum price for which

a gambler would be willing to pay for the gamble with uncertain reward.

Definition 3.3.11 (Lower Prevision.). Given G the set of all gambles and A ⊂ G a

set of some consistent gambles (any non-negative linear combination of them avoids

sure loss), their extension D := {g ∈ G : g ≥ ∑n
1 λkfk, n ∈ N, λ ∈ R+

0 , f ∈ A},

and the coherent lower prevision P (f) := sup{λ ∈ R : f − λ ∈ D},

Avoiding sure loss and coherency have special behavioral implications. From the

gambling perspective, once a gambler specifies his previsions, he is assumed to accept

any gable or their combination which he evaluates as acceptable. This becomes

more obvious once we assume a casino or an insurance company in the gambler’s

position. Avoiding sure loss ensures that no combination of gambles would lead to

negative gain irrespective of the actual realization of the random event. But only

avoiding sure loss may lead to overly conservative assessments. Therefore coherency

ensures that the bounds on prevision are minimal yet compatible with gambler’s

knowledge. From the mathematical perspective, coherency allows to specify the

imprecise previsions as extreme points of some underlaying convex set of precise

probability distributions (the credal set) and consequently evaluation of the lower

and upper previsions by means of optimization over the credal set.
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Remark 3.3.2. The conjugated upper prevision P (f) = −P (−f).

The lower and upper probabilities for an event can be again constructed as previsions

on its indicator function.

If the lower prevision is specified only for some gambles f1, ..., fn, it can be extended

for arbitrary gambles as

P (f) = sup{µ ∈ R : f − µ ≥
n∑
1

λk(fk − P (fk)), λk ∈ R+
0 }

In the case that for each gamble its supremum buying price equals the infimum

price for which the gambler would also sell the respective gamble, i.e. P (f) = P (f),

the prevision corresponds to de Finetti’s linear previsions and such prices would

represent their fair prices.

3.4 Methods of statistical inference

In this section, we will briefly revise the basic methods of statistical inference

for data analysis. We will hereafter assume that we have a set of measurements

x = {x1, ..., xn}, independent and identically distributed (i.i.d.) samples, which were

generated according to some precise ground truth distribution P̂ . Our intention is to

construct probabilities of various events of interest based/conditioned on this dataset.

Common practice is to construct an approximation (model) P of the sampling

distribution P̂ and estimate the desired probabilities from P .

A simple way of inferring probability distributions from a set of samples is given by

non-parametric methods. Here, for an arbitrary event E, the probability is estimated

as P (E) = 1
n
#{xi; xi ∈ E}, the relative ratio of observations which comply with E.

Distributions inferred in this way are usually labelled as empirical and constitute

models with least additional assumptions. An example of an empirical CDF is

depicted in Figure 3.2 with a label “empirical”.
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3.4.1 Inference about model parameters

Alternatives to the non-parametric methods search for an approximative distribution

by inverting an apriori-selected set of low-dimensional sampling distributions, say

P := {Pθ, θ ∈ Θ}. Based on the axiomatic theory of probability, precise methods

mainly comprise of two methodologies - frequentist and Bayesian. Nevertheless, the

common inference scheme for constructing distributional point-estimates, i.e. selecting

a single best-fitting probability distribution, is simply this:

1. Choose (subjectively) a set of plausible sampling distributions P.

2. Construct the likelihood function L(θ; x), which models the probability of

observing the collection x for each parameter θ.

3. Select θ̂ that best fits the observations and approximate P̂ by P = Pθ̂ (the

point estimate approach), or construct a mixture of distributions from the

chosen family with mixing weights w(θ) ∝ L(θ; x)π0(θ) and approximate P̂ by

P = w(θ)Pθ(the Bayesian approach; π0 is called the prior distribution).

4. Evaluate the approximations of desired probabilities from inferred distribution

P .

The data samples may come in various forms. Most commonly, they are considered

precisely specified (e.g. real values for a random variables which obtains value on

real line) in which case the likelihood function for inference from set of independent

samples will take the form

L(θ; x) =
n∏

i=1
fθ(xi), (3.28)

where fθ is the probability density function of distributions from the chosen family

P indexed by θ.

As mentioned earlier, the observations may also be imprecisely specified. There are

multiple reasons which lead to this situation. For example, some observations may

be censored or, in multivariate analysis, one of the covariates might be completely

missing). Such observations may be included in the likelihood function via their
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partial likelihood (which is the value of probability density function at observed

point in case of precise observations in Equation 3.28):

Li(θ; Oi) = Prθ(Xi ∈ Oi), (3.29)

where Oi denotes observed set value, and Xi RV representing i-th observation.

Example 3.4.1 (Maximum likelihood inference.). Let us assume that we have a set

of observations x := {x1, ..., xN} of a positive random variable X. We choose the

set of admissible sampling distributions of the RV X to be the set of all exponential

distributions (F (x; θ) = 1 − exp(−θx)). Using methods of statistical inference, we

want to estimate the value of distribution parameter θ.

Frequently used frequentist method is the so-called maximum likelihood estimation

(MLE) which has convenient asymptotic properties. Here we seek such value of θ

which maximises the likelihood function Equation 3.28. Thus

θMLE = argmaxθ∈Θ L(θ; x), (3.30)

and construct P = PθMLE
.

Resulting estimated distribution CDF is depicted in Figure 3.2 with label “MLE”.

Example 3.4.2 (Bayesian inference.). Let us assume the same scenario as in

Example 3.4.1. We again select the set of admissible sampling distributions of the

RV X, P, to be the set of all exponential distributions. But now, we apply the

Bayesian procedure, which results in a model capturing our uncertainty about the

distribution parameter θ in a form of probability distribution in contrast to the single

value estimated by MLE.

First, a prior distribution π0(dλ), which represents our knowledge about λ before

observing the data, has to be elicited. Then, our knowledge is refined via the Bayes
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Figure 3.2: Example of precise probability inferences: an empirical distribution, a
maximum likelihood estimate, and prior and posterior predictive distributions from
the Bayesian inference.

updating rule to construct our posterior knowledge about θ as

w(θ) = p(θ|x) ∝ L(θ; x)p0(θ). (3.31)

Equation 3.31 specifies the posterior probability density function (the mixing weight),

up to a normalization constant. From that, we can construct the predictive distribu-

tion for a future sample Xn+1 as a weighted average of predictions of all the models

in P. Thus

p(xn+1|x) =
∫

θ p(xn+1|θ)p(θ|x)dθ

Z(x) , (3.32)

where Z(x) is a normalization constant.

An example of the Bayesian inference is depicted in Figure 3.2 with CDFs labeled

as the “prior” and the “posterior” for prior and posterior predictive distributions

respectively.
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For particular choices of families of likelihood functions, we can find a family of

prior distributions which is closed under the Bayes’ updating. This means that

the posterior distribution lies in the same family, so we only need to update its

parameters. We call these the conjugated families. For the particular choice of the

exponential model for observed samples in Example 3.4.2, the conjugated family

of distributions of θ are the Gamma distributions. This class also induces a closed

form for the posterior predictive distribution (Equation 3.32). If no conjugate form

can be found for the Bayesian inference, the problem needs to be solved numerically,

usually by Monte Carlo algorithms [74].

3.4.2 Robust Bayesian inference

One application of IP theory was to provide means for sensitivity analysis for various

decision making problems under uncertainty. In the case of Bayesian inference, it got

labeled Robust Bayesian analysis [78]. In the Bayesian framework, we can analyse

the sensitivity on both the prior distribution and/or the observation model (on

the likelihood function). A straightforward solution is to consider sets of functions

(priors and likelihoods) instead of just a single one in the analysis. The set of prior

distributions would define an F-probability with the respective credal set. The credal

set for the posterior F-probability would be given by the set of all updated prior

distributions. All the assertions of interested would then be given by extremization

over the posterior credal set (Equation 3.14).

Example 3.4.3 (Robust Bayes inference.). Assume the same observations as in

Example 3.4.1 and Example 3.4.2 and the same set of admissible sampling models,

P. This leads to the same likelihood function (Equation 3.28). Now, assume that

we cannot properly specify one prior distribution for the Bayesian analysis as in

Example 3.4.2. Instead, let us consider a set of prior distributions, again conjugated

with our likelihood (i.e. Gamma distributions).
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Figure 3.3: Bounds for prior and posterior predictive CDFs resulting from Robust
Bayesian inference compared to the empirical distribution of samples.

For drawing inferences from the IP model, we need to consider answers from all

the singular models in the credal set. In the case of reconstructing the predictive

CDFs, we construct the bounds for all the CDFs from the set of all the updated prior

distributions. Therefore

F (x) := min
π∈Π0

1
Zπ(x)

∫ x

0

∫
θ
p(xn+1|θ)L(θ; x)π(θ)dθdxn+1. (3.33)

An example of a Robust Bayesian inference is depicted in Figure 3.3, where the

lower and upper bounds are given for both the prior and the posterior predictive

distributions.

A powerful result of the robust Bayesian inference is a closed form solution for the

imprecise dirichlet model for inference about parameters of multinomial distribution

[81]. The power lies in two features. First, the model is constructed for multinomial

sample distributions. It can therefore be used for any inferential scenario with finite
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set of outcomes, therefore also for inferences in general spaces after a finite grouping

of its elements. The inferred parameters are the probability masses for the considered

categories. The second feature is that the imprecise dirichlet model can model

entirely vacuous prior previsions. This means that the prior probability bounds for

an observation to be of arbitrary category is [0, 1].

Compare this with Example 3.4.3, where even though we have used a set of prior

distributions, the prior previsions of P (X < 4) would be approximatelly (0.2, 1) ̸=

(0, 1). Imprecise dirichlet model employs the ideal non-informative prior for Bayesian

inference, which cannot be obtained as any precise probability distribution.

Robust Bayesian inference provides a tool for detecting and analysing conflict - the

inconsistencies among observations and our prior distribution. It may occur, that our

prior previsions about distribution parameters are off, in which case they will bias all

the subsequent assessments and make them not reliable. Sometimes, we can interpret

one of the parameters of prior distributions proportional to our confidence about the

prior judgement. By choosing the set of priors such that they include distributions

with various levels of this confidence, we can observe how the actual observations

change our predictions w.r.t. these levels. If there is no conflict between our prior

assessments and the observations, the imprecision in answers of the model tends to

decrease with increasing sample size and the predictive sets will be nested if ordered

by the confidence parameter. But if there is a conflict, the imprecision may increase

and we may observe a shift in the predicted values - loss of the nestnessness property.

The consistency can be analyzed graphically by plotting the predictions against the

parameter for the confidence in prior [44]. An example is show in Figure 3.4 for the

inference about the success probability in a Bernoulli trial with a set of Beta prior

distributions which is a class which possesses this confidence parameter.

Example 3.4.4 (Conflicting evidence.). Let us consider a collection of i.i.d. Bernoulli

trials (realization of one trial is either 1 or 0, or success or failure). The distribution of

number of successes s in n trials can be described by parametric Binomial distribution
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P (S = s) =
(

n
s

)
θs(1 − θ)n−s, where parameter θ represents probability of success in

singular trial.

For Bayesian updating, there exist a conjugated family of distributions of θ for

Binomial observation model, the Beta distribution family, with PDF:

p(θ|y, m) = θym−1(1 − θ)m−ym−1

B(ym, m − ym) , (3.34)

where y represents “point estimate” of θ, m can be seen as the “confidence measure”

mentioned earlier, and B(., .) is the Beta function.

Bayesian updating (Equation 3.31) of parameters y, m after observing s successes in

n trials is given by:

mn = m0 + n, yn = m0y0

m0 + n
+ s

mn + n
, (3.35)

where subscripts n and 0 denote updated and prior beta parameters respectively.

We can distinguish two basic scenarios w.r.t the relation of “consistence” of prior

previsions and observations. For the same, randomly generated observation (n, s),

transformation of the set of prior beta distribution parameters into a set of posterior

beta distribution parameters is depicted in Figure 3.4 for cases with and without

prior-data conflict.

In case of no conflict among the two information sources, we can observe a collection

of nested previsions of interest (bayesian optimal point estimates of posterior binomial

parameter θ, i.e. y) in the direction of increasing confidence in prior (increasing m),

whereas in case of conflicting evidence, a shifting trend may be observed in the same

direction. The conflict also results into greater posterior imprecisions compared to

the inference in non-conflicting information situation.

Sensitivity analysis, similarly to the robust Bayesian statistics, was also explored in

the frequentist framework. Frequentist induction, with precise probabilities, assumes

that there exist a precise sampling distribution from which the i.i.d. observations
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(a) Without conflicting information. (b) With conflicting information.

Figure 3.4: Comparison of prior and posterior sets of parameters of beta distribution
- mean value y and (pseudo)count m. The box labeled ‘PRIOR’ represents chosen
set of prior parameters for the Robust Bayesian inference. The shape labeled
‘POSTERIOR’ represents imprecise posterior distribution constucted as a collection
of precise Bayesian posteriors when applied on individual pairs of values from the
‘PRIOR’. ‘GT’ represents the truth mean value used to sample the ‘observed mean’.
Prior and posterior imprecision refers to imprecision in the mean value parameter y.

are generated. This assumption may be weakened, as has been done in [96], where a

possibility of imprecise sampling distributions and desirable subsequent properties of

imprecise frequentist inference. Strong motivation for this extension is theoretical

impossibility of observing identically distributed samples due to variability in exper-

imental setting (although it might be negligible). Their approach include precise

distributions as a special case and in the case of a precise sampling process, the

imprecisions in the inferred distributions converge to zero - the inferred IP law

converges to a precise law.

3.4.3 Fiducial inference

Another important considerations of frequentist inference procedures lies in the

validity principle - e.g. bounding the type I error in hypothesis testing and proper

calibration of confidence intervals. Generally we want to ensure that “It’s unlikely

that the procedure leads to incorrect conclusions”. If our statistical procedure

constructs a system of nested confidence sets indexed by their coverage probability
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α, we require that

PX|θ(θ ∈ CX(1 − α)) ≥ 1 − α. (3.36)

Bayesian procedures can only comply with these asymptotically and can be severely

biased by the information supplied through the prior distribution in the cases when

only small number of observations is available. On the other hand, the results of

Bayesian procedures, the posterior distributions, can straightforwardly be propagated

to obtain assertions about derived quantities, f(X).

The aim of fiducial inference is to construct posterior distributions, similar to

Bayesian inference, but without the need to specifying prior distribution which can

bias the inference. The problem of obtaining distributional estimate in the frequentist

framework was introduced by Fisher in his work on fiducial inference [97] which

later inspired the development of the standard theory of confidence intervals and

Neyman-Pearson hypothesis testing procedures. Alternative fiducial procedures were

introduced by Fraser [98] who studied statistical inference from the perspective

of noisy measurement of a precise quantity. This allowed to seamlessly shift the

uncertainty model on the parameter space and provide probabilistic statements about

the quantity in question. Eventually, the approach was developed into a mature

theory allowing to preform prior-free inference with distibutional estimates. [99–101]

formulated the inference for general distribution parameters where modelling the

sampling process as a transformation of an ancillary random variable with known

distribution. Using a copy of the ancillary variable allows us to construct posterior

fiducial distribution modelling uncertainty about the unknown model parameters.

Confidence intervals can be constructed from such posteriors in the same way as

credible set from Bayesian posterior distributions. Additional information can be

included in the inference using Bayes rule.

Further advancements in fiducial inference were enabled by Dempster [80, 102] by

introducing set-valued inversions of the sampling model. Such ideas were further
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developed into the evidence theory by Dempster and Shafer [86]. A review of the

development, properties and some applications of fiducial inference theory is given

by Hannig in [103].

3.4.3.1 Basic fiducial inference procedure

Generally, fiducial inference can be carried by inverting the structural equation.

This equation provides an alternative to the likelihood function representation from

Bayesian or Fisher’s approach. Assume that we can write the observed variable as a

(parametrized) transformation of a random variable with known distribution.

X = A(θ, U), U ∼ PU (3.37)

The fiducial inverse is then taken as the inversion of Equation 3.37 sampled through

an independent copy of U, U∗ ∼ PU .

Θ = Gx(U∗)|Gx(U∗) ̸= ∅

Gx(u) := {θ : x = A(θ, u)}.

(3.38)

The fiducial procedure using structural equation can be summarized as follows. Given

a random variable X:

1. Construct the sampling model X = A(θ, U)

• where U is an ancillary RV with known distribution,

• and θ are model parameters.

2. Construct fiducial inversion Θ(x, u) := {θ : x = A(θ, u)}.

3. If X is known, and U would be observed, Θ represents plausible model param-

eters.

4. Observation x and the distribution of U induce a (random set) model for θ.

5. If Θ is singleton, it is equivalent to fiducial inference with precise posterior

distribution.
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3.4.3.2 Considerations about generalization

When the dimension of U and Θ are the same, the inversion can usually be

constructed, although we may need to use numerical methods. When the dimensions

of the ancillary random variable U is higher that that of Θ, the inversion may

result in an empty set with probability 1. Fraser solved this problem for a class of

sampling models by dimension-reduction. Hannig presents a general methodology

which indroduces conditioning the posterior on existence of the inversion (since

the existence of observations implies the existence of fiducial inversion) [103]. The

observation space of N random variables is divided into low-dimensional orbits

specified by e.g. sufficient statistics as in the above case of the normal sampling

model.

Generally, the structural model can always be constructed from the likelihood

function. In the case of i.i.d. observations, the structural equation can be specified by

parametrized quantile functions and the ancillary random variables are i.i.d. uniform:

Xi = A(Θ, Ui) = F −1
Θ (Ui), Ui ∼ Unif(0, 1)

Θ = Gx(U∗
1 , . . . , U∗

n)|Gx(U∗
1 , . . . , U∗

n) ̸= ∅
(3.39)

3.4.3.3 Examples of Fiducial inference

Example 3.4.5 (Fiducial inference for Gaussian random variable.). For a set of n

i.i.d. observations from the Gaussian distribution with sample mean ⟨X⟩:

Xi ∼ N (µ, σ)
√

n

(
µ − ⟨X⟩

σ

)
∼ N (0, 1)

√
n

(
µ − ⟨X⟩

σ

)
= U,

(3.40)

where U is the ancillary random variable from Equation 3.37 with standard normal
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distribution. Considering that the variance σ is know and the mean value µ is the

parameter of inference interest, we can invert the Gaussian model algebraically to

µ = U
σ√
n

+ ⟨X⟩. (3.41)

This inversion in Equation 3.41 corresponds to the usual procedure used to derive

confidence intervals for the mean of Gaussian distribution with known variance:

frequency: PX|µ

(
√

n

(
µ − ⟨X⟩

σ

)
> a

)
= qa

confidence: PX|µ

(
µ >

aσ√
n

+ ⟨X⟩
)

= qa

(3.42)

where qa is the quantile of ancillary random variable A ∼ N(0, 1).

Example 3.4.6 (Fiducial binomial inference). Let us have samples y1, y2 ∼ F , where

F is a general distribution. Define random variable X = ∑
yi<θ 1, where θ represents

the median of distribution F and an ancillary random variable U ∼ Bi(2, 0.5)

The fiducial inversion can be constructed even though the random variable X is

unobserved using Equation 3.38:

Θ =

θ :
∑
yi<θ

1 = U

 , (3.43)

which can be expressed explicitly as:

Θ((y1, y2), u) =



(−∞, y(1)) , u = 0

[y(1), y(2)) , u = 1

[y(2), ∞) , u = 2

(3.44)
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Thus, the induced random set model is:

Θ ∼



(−∞, y(1)) , p = 0.25

[y(1), y(2)) , p = 0.5

[y(2), ∞) , p = 0.25

(3.45)

The inferred posterior is imprecise and can be used to derive belief and plausibility

functions (Definition 3.3.10):

∀B ∈ Bθ :

Belx(θ ∈ B) = PU(u : Θ((y1, y2), u) ⊂ B)

Plx(θ ∈ B) = PU(u : Θ((y1, y2), u)
⋂

B ̸= ∅)

(3.46)

3.4.4 Nonparametric predictive inference

Another example of a fiducial method is non-parametric predictive inference

(NPI) [104]. The method assumes exchangeability of the observations and bases its

indifference principle on Hill’s assumption about posterior distribution of percentiles

[105] - indifference among all possible orderings.

After observing N real valued observations x = {x1, ..., xN}, NPI constructs a

predictive random set for the next observation XN+1 by placing mass 1/(N + 1) on

each of the intervals (xi, xi+1), i = 0...N , where x0, xN+1 are some bounds of the

XN+1 support (possibly infinite). The corresponding lower and upper probabilities

may be derived by Equation 3.20 and Equation 3.21. It was shown that the result of

the inference is an ∞-monotone capacity and an F-probability [106].

The procedure may continue to derive predictive distribution about multiple future

observation by extending the Hill’s assumption.

NPI has also been extended to include situations with censored observations without

the need of including any restrictive censoring assumptions [107, 108] and are well
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Figure 3.5: Lower and upper cumulative distribution function obtained via NPI.

suited for applications together with survival signatures [42] or survival analysis in

general [109].

An example of NPI lower and upper CDFs is show in Figure 3.5 compared to the

empirical distribution.

A weaker analogue of non-parametric predictive inference can be derived using the

fiducial argument. The difference is that the fiducial argument assumes independence

of observations instead of the weaker property of exchangeability. The fiducial

inference about distribution median (Example 3.4.6) can be extended to general

quantiles. Consider N i.i.d. ordered observations, x1, ..., xN , including extra bounds

x0, xN+1. The fiducial posterior on quantile q place probability mass on individual

intervals [xk, xk+1] equal to binomial probability mass function
(

N
k

)
qk(1 − q)N−k.

Distribution of quantiles can be used to construct a predictive inference using the

inverse transformation sampling:
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XN+1 = Q(A), A ∼ Unif(0, 1) (3.47)

where Q(A) is the fiducial posterior on quantile qA.

Theorem 3.4.1 (Fiducial predictive is NPI.).

P (XN+1 ∈ [xk, xk+1]) = 1
N + 1 . (3.48)

Of Theorem 3.4.1. For a fixed quantile q and any of the intervals [xk, xk+1], the

fiducial posterior probability quantile q belonging to the interval is given by binomial

probability mass function. The total posterior mass placed on the interval can be

expressed as the expected value over the randomly sampled quantiles.

P (XN+1 ∈ [xk, xk+1]) =
∫ 1

0

(
N

k

)
qk(1 − q)N−kdq. (3.49)

For k ∈ 0, N , the integrand becomes a simple polynomial function and the integral

equals to 1
N+1 .

For k ∈ {0..N} all the integrals are equal since, using per partes integration,

I[N, k] :=
∫ 1

0

(
N

k

)
qk(1 − q)N−kdq

=
[(

N

k

)
1

k + 1qk+1(1 − q)N−k

]1

0
− (−1)

(
N

k

)
N − k

k + 1

∫ 1

0
qk+1(1 − q)N−k−1dq

= 0 +
(

N

k + 1

)∫ 1

0
qk+1(1 − q)N−k−1dq

= I[N, k + 1]
(3.50)

Hence the predictive mass placed on each interval [xk, xk+1], k ∈ 0..N is 1
N+1 .
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3.4.5 Inferential models

Specifying uncertainties with precise probability models has more subtle issues.

[70] shown how a precise probability model can lead to paradoxical situation in

risk assessment, where increasing uncertainty about observation lead to decreasing

calculated risk when computing probability of satellite collisions. The inferences

which lead to precise posterior distribution turn out to fail to satisfy the frequentist

calibration properties in non-trivial cases [110].

The Fundamental Frequentist’s Principle:

“It’s unlikely that the procedure leads to incorrect conclusions”.

When constructing posterior predictive intervals CX on a chosen significance level α

for an uncertain value, we would like to comply with the coverage property:

PX|θ(θ ∈ CX(1 − α)) ≥ 1 − α (3.51)

Martin and Liu [90] presented inferential models - a statistical framework built

on Fraser’s structural models, but replacing the copy of the ancillary variable by a

random set with superior calibration properties. The idea for reliably capturing a

value of the predicted random variable is to construct a random set which covers it

with reasonable probability. The validity of inferences can be obtained by using this

principle on the fiducial ancillary variable A, such that

P (S ∋ A) ≥st Unif(0, 1), (3.52)

where S is the valid predictive random set for A.

This leads to construction of random set structures, which can be used to obtain

valid confidence intervals on any level of significance and to carry out hypothesis

testing for arbitrary derived assertions. The result of these inferences are generally

random sets, belief and plausibility functions of which can be used to bound the



3.4. Methods of statistical inference 88

inferences about the investigated random variable. This leads to random set posterior

distributions, which are valid, leading to desirable properties of the derived belief

and plausibility functions:

∀θ ∈ Ωθ, B ∈ Bθ, α ∈ [0, 1]

sup
θ /∈B

PX|θ({Belx(θ ∈ B) ≥ 1 − α}) ≤ α,

sup
θ∈B

PX|θ({Plx(θ ∈ B) ≤ α}) ≤ α,

(3.53)

Such posterior random sets can be used for construction of hypothesis testing

procedures. For given H0 : θ ∈ B, reject H0 if Plx(θ ∈ B) ≤ α.

Besides of that, inferential models allow us to develop derived methods for situations

with additional knowledge, propagate the resulting random sets to obtain assessments

about derived quantities, and naturally analyse imprecise observations without

additional modelling assumptions.



Chapter 4

System reliability assessment

examples

4.1 Computing remaining useful life of a system

This section introduces a method to estimate residual lifetime with knowledge of the

number of functioning components. It can be applied in situations where we directly

observe the number of functioning components or when we model a hidden process

of the number of functioning components based on some proxy observations (power

input, waste output, system performance, etc.).

We will assume the following properties of the system:

• Lifetimes of components of the same type are exchangeable

• Lifetimes of components of different types are independent

• The system is coherent (the structure function is non-decreasing)

• The components are non-repairable (their state processes are non-increasing)

Note that the last two imply that: The system state process is non-increasing.

The residual lifetime, conditioned only on the knowledge that the system is functional
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at time t, can be computed as

P (St|S0) = P (St ∩ S0)
P (S0)

S0⊂St= P (St)
P (S0)

=
∑

l Φ(l)P (Lt = l)∑
l Φ(l)P (L0 = l)

(4.1)

We will denote St the event that the system is functional at time t and L representing

the number of functioning components. In the following derivations, we will assume

only one component type. The extension to systems with multiple component types

is possible by assumming L as a vector representing the number of functioning

components of respective types.

P (St|S0, L0 = k) = P (St, S0|L0 = k)
P (S0|L0 = k) ,

S0⊂St= P (St|L0 = k)
P (S0|L0 = k) ,

(4.2)

where P (S0|L0 = k) = Φ(k), the survival signature for k functioning components.

Next, we derive the conditional probability P (St|L0). Denote DX = {0, 1}N the

domain of component states, DL = [0, N ] the domain of number of functioning

components L(x) and DX(k) = {x ∈ DX : L(x) = k} the set of all combinations of

component states such that exactly k components are functional.

P (St|L0 = k) =

=
∑

x∈Dx

P (St|Xt = x, L0 = k)P (Xt = x|L0 = k)

=
∑

x∈Dx

φ(x)P (Xt = x|L0 = k)

=
∑

x∈Dx

φ(x)
∑

y∈Dx

P (Xt = x|X0 = y, L0 = k)P (X0 = y|L0 = k)

(4.3)
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Due to the exchangeability assumption,

P (X0 = y|L0 = k) = δ(L(y)=k)
1

|DX(k)| = δ(L(y)=k)
1(
N
k

) , (4.4)

therefore we sum only y ∈ DX(k).

The exchangeability assumption can be used to calculate the transition probability

P (Xt = x|X0 = y, L0 = k). If x ≤ y, L(y) = L0 = k and L(x) = l, then the

transition represents failure of k − l and survival of l components, which is equal for

any x, y and depends only on l, k.

Considering L(Xt) = l, denote Pt(k → l) := P (L(Xt) = l|L0 = k) the transition

probability from l to k functioning components in time t. With an additional

i.i.d. assumption on component failure times, Pt(k → l) = R(t)lF (t)k−l representing

survival of l and failure of k−l components. This transition probability Pt(k → l) = 0

for l > k due to the non-repairability assumption.

P (St|L0 = k) = 1(
N
k

) ∑
l∈DL

(
N − l

k − l

)
Pt(k → l)

∑
x∈Dx(l)

φ(x) (4.5)

The conditional residual lifetime can be calculated as:

P (St|S0, L0 = k) =
∑

l∈DL

(
N−l
k−l

)
Pt(yk → xl)N (l)
N (k) , (4.6)

where N (l) is the number of distinct states x ∈ DX(l) s.t. φ(x) = 1. The N (l) is

equivalent to the counting signature introduced in Definition 4.3.1, so Φ(l) = N (l)
|DX(l)| .

Substituting for N in Equation 4.6, we get a representation in terms of survival

signatures:

P (St|S0, L0 = k) =
∑

l∈DL

(
N−l
k−l

)(
N
l

)
Φ(l)Pt(yk → xl)

Φ(k)|DX(k)| . (4.7)

The procedure is demonstrated on a simple example of a 5-component bridge system

with single component type with independent exponential lifetimes with mean time
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Figure 4.1: RBD of a bridge system used in the demonstration example.

Figure 4.2: Survival functions representing the time to system failure based on the
number of functioning components. Standard method for computing the survival
function assumes that all the components are functional at the initial time, therefore
it overlaps with the k0 = 5 curve.

to failure of 2 time units. The RBD of the system is depicted in Figure 4.1. Survival

functions of the remaining life are depicted in Figure 4.2.

In conclusions, residual life can be inferred with no additional demands on computa-

tion of any special survival signatures when the system state process is non-increasing.

This is a benefit since complexity such computations are exponential. There are

possible applications for condition monitoring based on observation of the number of

functioning components or an ancillery variable with number of functioning com-

ponents modelled as a hidden process. These results are not applicable to cases

with repairable components because of the requirement that the event S0 ⊂ St in

Equation 4.2.
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4.2 Phased mission analysis with survival

signatures

This section is an exerpt of a conference paper submitted for SECESA 2018, [1].

Sometimes, a system may be required to perform multiple tasks in a sequence, like an

airplane, which has to (at least) take-off, cruise, and land again. Such situations are

denoted as Phased Missions and are considered successful if the system successfully

completes all the phases. Generally, in each of the phases, different conditions and

failure modes may apply. Assessing the mission reliability requires us to merge

individual specifications of all the phases into a specification of the whole mission.

The method for computation phased mission reliability using survival signatures

was introduced in [52]. This section describes how phased missions can be modelled

using survival signatures and investigates how the ordering of the phases influence

mission reliability.

4.2.1 Phased mission reliability

For an arbitrary system, its reliability is defined as the probability that it will

complete its mission. If we require a system to stay functioning for its whole mission

time TM , the reliability can be calculated by assessing the probability of the event:

XM :=
{

inf
t≥0

{t : XS(t) = 0} > TM

}
, (4.8)

where XS corresponds to a random variable (RV) representing the system state with

XS = 0 meaning that the system is not functioning.

A system is a device composed of distinctive subsystems. The reliability of each of

the system components may be assessed individually. To assess the reliability of a

system, it is necessary to model dependencies between states of the components and

the states of the system.
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For a binary system S (i.e. we only distinguish two states - functioning and failed)

composed of N binary components, this dependency may be described by a structure

function φS : {0, 1}N → {0, 1}. With dependency modelled by a structure function

and states of components being random, the probability of the system functioning

may be obtained by calculating the expected value of its structure function:

P (XS = 1) = E{φ(X1, . . . , XN)}, (4.9)

where XS ∈ {0, 1} represents the state of the system and Xi ∈ {0, 1} the state of

component i.

The component state can evolve in time and in that case we need to provide a

stochastic model for its state at any time point t considered, i.e. describe a stochastic

process of component state {Xi(t)}|t. Having this description for each of the system

components, we may describe the stochastic evolution of the system state. For each

time t, the probability of the system functioning can be obtained by calculating the

expectation in Equation 4.9 for (random) component states at time t.

If we assume that a component is non-repairable, i.e. it remains failed once failed,

description of the stochastic process of its state simplifies greatly. In such case, it

suffices to model time to failure (TTF) of a component as a positive random variable,

say Ti. The probability that a component functions at an arbitrary positive time

t is then equivalent to the probability that the component survived up to time t,

i.e. probability of event {Ti > t}. This probability is modelled by a survival function

Ri(t) := P (Ti > t). In this section, we will consider systems with non-repairable

components.
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4.2.2 Survival signatures

Evaluation of Equation 4.9 requires us to sum over the set of all possible component

states, the cardinality of which increases exponentially with the number of compo-

nents. Survival signatures, described in Section 2.3 can decrease the complexity.

For system a composed of K distinct types with exchangeable failure types in each

group and total amount of Mj component of type j in the system, distribution of

system failure time can be expressed via its survival signature as:

P (TS > t) =
M1∑

l1=0
. . .

MK∑
lK=0

ΦS(l)P (L(t) = l), (4.10)

where

P (L(t) = l) =
K∏

j=1

[(
Mj

lj

)
[Rj(t)]lj [1 − Rj(x)]Mj−lj

]
, (4.11)

where Rj(.) denotes the survival function common to components of type j.

Once we can model a system solely by modelling its TTF with a survival function

RS(.), the event describing successful mission completion can be simplified to an

equivalent event XM = {TS > TM}. Mission reliability can then be assessed as:

RelS = RS(TM). (4.12)

A phased mission consists of a series of W phases. The whole system mission time

TM may be divided into intervals [τi−1, τi], for i = 1, . . . , W representing time frames

of the mission phases, with τ0 = 0. For each of the phases we have to consider that:

• different components might be used in different ways, which can be modelled

by separate structure functions for each of the phases, and

• components might be subjected to different conditions, which affects their

deterioration rates and, therefore, failure probabilities.
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A phased mission is considered successful if it successfully completes all

its phases.

We can reflect this by constructing a structure function for the whole mission. Taking

the time evolution of (non-repairable) component states into account, the structure

function of a mission can be expressed as:

φP M(x(τ1), . . . , x(τW )) =
W∏

i=1
φi(x(τi)), (4.13)

where φi is structure function describing requirements on phase i and vector x(τi)

represents states of components at the end of phase i.

To simplify PM reliability computation using survival signatures, minor adjustments

have to be considered.

Phased mission state space

The PM structure function is a function of component states at the end of the phases.

This means that every component may be functional or not at each of phase end.

Care must be taken to include our assumption of non-repairability of the components,

i.e. to exclude states for which some component is non-functional at one time and

functional later. The new component state evolution space, ΩX , will be a subset of

{0, 1}K·W which excludes these.

Component grouping

Grouping of components into types with exchangeable lifetimes have to take into

account whether components of the group are stressed in exactly the same way

throughout the whole mission. In simplified case, where all the components are

stressed in all the phases, we may employ the same discrimination as in single phased

systems, i.e. grouping them by they physical type. Further discussion on component

grouping is provided in [52].
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State space decomposition

The auxiliary RV L introduced via the law of total expectation for convenient state

space decomposition, will just change form reflecting the change of state space

and component grouping. It is a vector of values which represent the number of

functioning components in a group, now also for the end of each phase. The dimension

of the vector will therefore be K · W , where K is the number of component groups

and W the number of phases. The ordering can be made arbitrary, e.g.:

l = (l1, . . . , lW ), (4.14)

where li is a K-dimensional vector, elements of which represents number of respective

functioning components at the end of phase i.

Taking the changes introduced earlier, the survival signature is defined exactly in

the same way. We only need to reflect the change of ΩX and what does it mean that

l holds (i.e. x is such that lij components of type j function at the end of phase i).

The PM reliability can be computed as the expectation of the structure function for

RV X := (X(τ1), . . . , X(τW )). We can decompose the expectation via law of total

expectation through the augmented auxiliary RV L as:

RelP M := EφP M(X)

=
M1∑

l1=0
. . .

MKW∑
lKW =0

ΦP M(l)P (L = l),
(4.15)

where the mixing probability P (L = l) represents the probability that lj
i −lj

i−1 failures

of component of group j occur in phase i. In the case where all the components are

present in all the phases, it can be calculated as:

P (L = l) =
W∏

i=1

K∏
j=1

(
lj
i−1

lj
i

)
p

lji
ij(1 − pij)(lji−1−lji ), (4.16)

where pij denotes probability that a single component of group j survives phase i,

given that it has been functioning at the beginning of the phase, and lj
0 is the total
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Figure 4.3: Survival function of a simple PM with serial (1) and parallel (2) phases
for both possible orderings of the phases.

amount of components of group j in the system (i.e. the amount functioning at the

beginning of the first phase).

4.2.3 Ordering of the phases

In robust design, we are interested in how to design our system to increase their

performance, one of which is their reliability. Sometimes, we require a system to

perform multiple actions, but we might not be dogmatic about which order it does

it. This section addresses the question of whether, and how does the reliability of a

PM depend on the ordering of the phases.

We will demonstrate on two examples that the order may matter. The presented

figures depict mission reliability for an arbitrary time t ∈ [0, TM ] (the means of

conducting such analyses is described in [52] and will be omitted here).

The first example depicts (in Figure 4.3) differences in reliability functions for a

PM consisting of 3 components with exchangeable TTF distributions (i.e. K=1)

and equal failure rate in each of the phases. One of the phases requires all the
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Figure 4.4: Survival function of a PM with three phases for all the possible permuta-
tions of phase ordering.

components to be functional, the other just one of them (serial and parallel systems,

respectively). Reliability of the whole PM is equal to reliability at the time t = 2,

the end of mission. Even from this simple example it is apparent, that ordering of

the phases plays a significant role in system design.

Second example (in Figure 4.4) does the similar, just to provide a slightly more

complex result for comparison. Now, the PM consists of 3 phases with the same

component failure rates. Structure functions for each phase are described by reliability

block diagrams depicted in Figure 4.5.

The examples show a phenomenon which was observed irrespective of the actual

structure functions of the phases. The survival function of the PM systems differs

greatly for possible orderings. The same applies for the mission reliability (survival

function at the mission time TM ). Therefore, the phase ordering should be optimised

whenever it is possible.
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Figure 4.5: Reliability block diagrams for mission phases. Top-left: phase 1, top-right:
phase 2, bottom: phase 3. The numbers identify individual physical components.

4.2.4 Properties of the ordering

No mathematical relations, that could easily decide which ordering is better has

been found. In order to find the best ordering, a full optimisation process has to

be conducted over all possible permutations of phase orders. This means, that for

each of the permutation, we need to calculate the PM system survival signature.

Nevertheless, a simple relation has been found, which can either serve as a heuristics

to avoid necessity of calculating signatures for each ordering, or as an tool to restrict

our search space.

A simple bound on PM system reliability can be obtained by applying the chain rule.

Since:

RelP M = P (F1)P (F2|F1) . . . P (FW |F1, . . . , FW −1), (4.17)

where event Fi represents successful completion of phase i.

Given that all P (Fi|F1:i−1) are probabilities (i.e. ≤ 1), the PM reliability can be

bounded by P (F1), and consequently also by P (Fi) for any i. Therefore:

RelP M ≤ min
i∈1,...,W

P (Fi), (4.18)

where P (Fi) = Eφi(X(τi)).



4.2. Phased mission analysis with survival signatures 101

4.2.5 Conclusions

We have reviewed survival signatures for system reliability modelling and its general-

isation for phased missions (PMs). Further, we have introduced preliminary work

on dependency of PM reliability on ordering of the phases. Examples provided in

Figure 4.3 and Figure 4.4 clearly show that the ordering matters, which introduces

further possibilities for designing reliable missions. So far, in order to find the most

reliable phase ordering, an optimisation has to be run over the set of all permutations

of mission phase orderings.

A simple heuristic method has been introduced which aims to help with PM system

design (Equation 4.18). It provides no guarantees of optimality, but may be used as

a heuristics, or to restrict the search space for reliability optimisation. The derived

bound in Equation 4.18 depends on the ordering of the phases only through the

hazard function which influences the probability that a component is functional at

time τi and can be computed without taking into account the actual structure of

a PM. This means that these partial (smaller and easier) survival signatures can

be calculated only once before the optimisation process and used to discard some

orderings without the need to construct the (more expensive) survival signature of

the whole PM system. Consequently, the bound may also be used for preliminary

reliability analysis to discard inadmissible designs or identify critical phases and

components.
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4.3 Decomposition approach for survival

signatures computation

The following section is an exerpt of a conference contribution submitted for ES-

REL2019, [2].

We introduce a formula for computing system survival signatures by the means of

merging survival signatures of multiple subsystems. The algorithm extends previous

results for survival signatures on merging systems with no common components to

systems with common components. It also extends existing results on merging de-

pendent systems for calculating Samaniego’s system signatures to survival signatures.

Apart from these trivial extensions, we also introduce a novel decomposition method

which allows us to decouple the dependencies among subsystems according to a wider

class of events which may lead to savings of computational resources.

The survival signatures prove to be a very powerful computational tool for systems

composed of groups of multiple components with similar failure laws, e.g. various

networks with many hubs and transitions.

Suppose we have N random (basic) events on an underlying probability space

(Ω, A, P ). From herein, we will represent these events by binary random variables,

where Xi = 1 if the ith event obtains and 0 otherwise. Denote X (=: {0, 1}N) the

joint state space of these random variables and X the random state vector. With

the notation [N ] := {1, . . . , N}, suppose we have a system, ([N ], φ), with a structure

function φ : X → {0, 1} representing the system state based on the occurrence of the

basic events. We will model this system by a success tree with the top level event,

“the system is functioning”, represented by a binary random variable Xtop. The

system reliability can be calculated as the expected value of the structure function,

P (Xtop = 1) = E{φ(X)}. (4.19)
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In the rest of the section, we will describe a methodology which will simplify

the computation of Equation 4.19, especially for procedures needing its repeated

evaluation.

The computation of the expected value in Equation 4.19 is NP-hard, since it requires

us to sum over the whole state space X . Survival signature allows us to construct the

reliability polynomial of a system, evaluation of which can be done with a polynomial,

instead of the original exponential, complexity.

Suppose that we have another random variable Y on the common probability space.

We will denote DY a decomposition of the state space X , s.t.

DY
X (y) := {X ∈ X : Y = y}. (4.20)

The subscripts and superscripts will sometimes be omitted if they are evident from

the context. We will usually denote the respective arguments by lower case letter, so

the reader should be able to deduce them.

By the law of total expectation, Equation 4.19 can be expressed as

P (Xtop = 1) =
∑

y

E{φ(X)|X ∈ DY (y)}PY (y), (4.21)

where by subscripts of the common probability measure P , we denote induced

measures for respective random variables.

Suppose that we can group the basic events into K groups by their type, such that

events in the same group are exchangeable, meaning that their joint probability

distribution is invariant under permutation of event indices. Define function C : [N ] →

[K], which assigns each basic events its type and a vector function C : X → NK
0 ,

Ck(x) =
∑

i

δ(C(i),k)xi, (4.22)

where δ(i,j) is the Kronecker delta function.
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For the ease of presentation, suppose that the basic events represent whether some

system components are functioning (Xi = 1) or not. Define a K-dimensional random

vector L = C(X), which represents, for each element, the random number of

functioning components of the respective types. The exchangeability assumption

become an assumption that the component failure times are exchangeable among

the components of the same type.

Applying the decomposition in Equation 4.21 by L yields

P (Xtop = 1) =
∑

l

E{φ(X)|L = l}PL(l),

=
M∑

l=0
Φ(l)PL(l),

(4.23)

where M := (M1, . . . , MK) denotes the vector of total number of components of each

of the types in the system and Φ is the survival signature introduced in [37]. The

summation is over all l ∈ NK
0 such that 0 ≤ l ≤ M in the sense of vector partial

ordering.

The original survival signatures are conditional probabilities. Since the procedures

described later in the section will require us to perform multiple arithmetical opera-

tions with them, we might arrive to accumulating vast numerical error over the course

of the computation. For this reason, and in order to simplify some relationships, in

this section we will describe their equivalent representation through “conditional

counts”, the counting signatures.

Due to the exchangeability assumption we have made earlier, the survival signature

can be expressed as a classical probability. Recall the definition of state space

decomposition D in Equation 4.20. Since the total number of states for which L = l

is dependent only on the number of components in the system and not its topology,

we can focus solely on describing the cardinality of the set DL,Xtop(l, 1) in order to

specify the survival signature, where the double superscript represents decomposition

by the joint event L ∩ Xtop.
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Definition 4.3.1 (Count signature). For a system with top level event Xtop, denote

N (l, e) :=
∣∣∣DL,Xtop(l, e)

∣∣∣ , (4.24)

the system’s counting signature. If the second argument e is omitted, it will denote

e = 1.

The survival signature can be computed from the counting signature as

Φ(l) = N (l)
|DL(l)| = N (l)∏K

j=1

(
Mj

lj

) . (4.25)

4.3.1 Independent systems

Construction of the survival signature of a system constructed as a series or a parallel

system of two subsystems with known signatures was already introduced in [108].

Here, we introduce a generalization of those results for arbitrary system connection.

We will state them for the counting signatures N , of which the survival signatures Φ

may be obtained via Equation 4.25. Manipulating with the counting signatures allows

us to avoid necessity of evaluating probability mass functions of hypergeometric

distribution as in [37] in order to normalize the results.

Let (⋃R
i=1 I i, φ) be the system of interest composed of subsystems (I i, φi), such that

they have no components in common, i.e. i ̸= j ⇒ I i ∩ Ij = ∅.

We will denote XI = {0, 1}|I| the state space of components indexed by elements

of an index set I. The subscript on X will often imply that we refer to a subspace

of some larger joint space. Let φ̂ denote the top level gate structure function, that

is φ(X) = φ̂(X1
top, . . . , XR

top), where X i
top = φi(XI1) represent the top level events of

the respective subsystems. Denote Mi the vector of the total number of components

of each type in subsystem i and N i their counting signatures.
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The following lemmas will aid us with the proofs to come.

Lemma 4.3.1 (Law of total counts.). Let us have a system and random variables

A, B. ∣∣∣DA(a)
∣∣∣ =

∑
b

∣∣∣DA,B(a, b)
∣∣∣ . (4.26)

Proof. DB is a total disjoint decomposition of the state space and the set cardinality

is an additive measure.

Lemma 4.3.2 (Product counts.). Let us have a system with index set I and random

variables A, B, s.t. A is independent on all the basic events indexed by indices in

some set K ⊂ I and B is independent on all in I \ K. Then

DA
X (a) ∩ DB

X (b) = DA
XI\K

(a) ⊗ DB
XK

(b). (4.27)

Proof. If A is independent on basic events indexed by indices in K, then

DA
X (a) ∩ DB

X (b) = DA
XI\K

(a) ⊗ 2K. (4.28)

And similarly for B. The intersections can then be executed space-wise.

Now, we can state the formula for the counting signature of a system composed of

independent subsystems.

Proposition 4.3.1 (Combination of independent systems.).

N (l, e) =
∑

α∑
j

αj=l

∑
z

φ̂(z)=e

R∏
i=1

N (αi, zi). (4.29)

Proof. We need to show that N (l, e) =
∣∣∣DL,Xtop

X (l, e)
∣∣∣ for each l, e.

Denote A = (L1, . . . , LR), where Li = C(XIi\K), and Z = (X1
top, . . . , XR

top), where

X i
top = φi(XIi) are the respective top level events of the subsystems.
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∣∣∣DL,Xtop
X (l, e)

∣∣∣ =
∑
α,z

∣∣∣DL,Xtop
X (l, e) ∩ DA,Z

X (α, z)
∣∣∣ ,

=
∑

α∑
j

αj=l

∑
z

φ̂(z)=e

∣∣∣DA,Z
X (α, z)

∣∣∣ ,

=
∑

α∑
j

αj=l

∑
z

φ̂(z)=e

∣∣∣∣∣
R⋂

i=1
DLi,Xi

top
X (αi, zi)

∣∣∣∣∣ ,

=
∑

α∑
j

αj=l

∑
z

φ̂(z)=e

∣∣∣∣∣
R⊗

i=1
DLi,Xi

top
XIi

(αi, zi)
∣∣∣∣∣ ,

=
∑

α∑
j

αj=l

∑
z

φ̂(z)=e

R∏
i=1

∣∣∣∣DLi,Xi
top

XIi
(αi, zi)

∣∣∣∣ ,

=
∑

α∑
j

αj=l

∑
z

φ̂(z)=e

R∏
i=1

N i(αi, zi),

= N (l, e).

(4.30)

4.3.2 Dependent systems

The results from the last section required the subsystems to be independent. In this

section, we will introduce a generalized procedure which will allow us to compute

counting signatures for a larger class of systems. The procedure is similar to that of

[111], who introduced a decoupling scheme for Samaniego’s signatures.

The method in [111] allows us to split the state space into disjoint parts in which we

can treat the systems as independent and use similar results to those described in

Section 4.3.1. They decomposed the state space according to all the possible states

of the shared components. Once the states of all the shared components are known,

a new structure function is induced for which the subsystems are independent.

We proceed in a similar fashion but 1) provide results for systems with multiple

types of components via their counting signatures and 2) our generalization allows us

to decompose according to a wider class of events which allows us to choose among
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them according to the computational complexity.

Suppose we have a system (I, φ) and a random vector, we will refer to it as the

boundary, B. Define a set I \ K of all the indices of basic events (component states)

such that B is independent on all the events indexed by elements of I \ K.

Definition 4.3.2 (Decomposed counting signature). If there exists, for each

b in the state space of B, a structure function φ̃b : XI\K → {0, 1}, such that

∀y ∈ DB
K : φ̃b(xI\K) = e ⇒ φ(z) = e, where z ∈ XI : zi = yi if i ∈ K and xI\K,i

otherwise, then we define the decomposed counting signature

Nb(l, e) :=
∣∣∣DLI\K,Xb

XI\K
(l, e)

∣∣∣ , (4.31)

where Xb = φ̃b(XI\K) and LI\K = C(XI\K).

The reasoning behind the decomposed counting signature is this. We require, that the

relation between xI\K and xtop becomes deterministic for each possible realization of b,

such that xtop is some function of xI\K and b. If the requirement from Definition 4.3.2

holds, then this can be achieved by construction of the introduced new structure

functions φ̃b, for each b. These take as arguments the states of the components

indexed by elements in I \ K.

The interpretation of the decomposed counting signature is the number of states in

the restricted space state XI\K, which will render the system into state e such that

exactly lk components of each respective type k, from those indexed by I \ K, are

functional.

Suppose that we have a system (I, φ) composed of R subsystems (I1, φ1), . . . , (IR, φR).

Suppose that the system state is described by a top level structure function

φ̂ : {0, 1}R → {0, 1} such that ∀x ∈ X : φ(x) = φ̂(φ1(xI1), . . . , φR(xIR)), where

the subscripts of x denote its projection on the respective subsystem state spaces.

Suppose further that the subsystems are sharing some components, that is that for

some i, j : I i ∩ Ij ̸= ∅.
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Let B be a boundary, as introduced in Definition 4.3.2, such that all the indicis

of the shared components in all the subsystems belong to the set K induced by B.

Denote XB the state space of B, Mb the supremum of C(y) over y ∈ DB
K(b) (the

number of components Definition 4.3.2 of each type among those indexed by K) and

N B(h, b) :=
∣∣∣DLK,B

XK
(h, b)

∣∣∣ the counting signature of the boundary.

Proposition 4.3.2 (Boundary decomposition.). If, for each of the subsystems

there exists an augmented structure function φ̃i
b for each b ∈ XB, as required in

Definition 4.3.2, then

N (l, e) =
∑

b∈XB

Mb∑
h=0

N B(h, b)
[ ∑

(α1,...,αR)∑
i

αi+h=l

∑
z∈{0,1}Rφ̂(z)=e

R∏
i=1

N i
b (αi, zi)

]
, (4.32)

where N i
b are the respective counting signatures of the subsystems.

Proof. ∣∣∣DL,Xtop(l, e)
∣∣∣ =

∑
b

∣∣∣DB(b) ∩ DL,Xtop(l, e)
∣∣∣

=
∑

b

∑
h

∣∣∣DLK,B(h, b) ∩ DLI\K,Xb(l − h, e)
∣∣∣

=
∑

b

∑
h

∣∣∣DLK,B
XK

(h, b) ⊗ DLI\K,Xb

XI\K
(l − h, 1)

∣∣∣
=
∑

b

∑
h

∣∣∣DLK,B
XK

(h, b)
∣∣∣ · ∣∣∣DLI\K,Xb

XI\K
(l − h, e)

∣∣∣

(4.33)

The
∣∣∣DLK,B

XK
(h, b)

∣∣∣ is the counting signature of the boundary and the first two sums

correspond to the first two sums in proposition Proposition 4.3.2.

Denote A = (L1, . . . , LR), where Li = C(XIi\K), and Z = (X1
b , . . . , XR

b ), where

X i
b = φ̃i

b(XIi).
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∣∣∣DLI\K,Xb

XI\K
(l − h, e)

∣∣∣ =
∑

α

∑
z∈{0,1}R

∣∣∣DA,Z,LI\K,Xb

XI\K
(α, z, l − h, e)

∣∣∣
=

∑
α∑

i
αi+h=l

∑
z∈{0,1}R

φ̂(z)=e

∣∣∣DA,Z
XI\K

(α, z)
∣∣∣

=
∑

α∑
i

αi+h=l

∑
z∈{0,1}R

φ̂(z)=e

R∏
i=1

∣∣∣∣DLi,Zi

XIi\K
(αi, zi)

∣∣∣∣ .
(4.34)

Since Zi = φ̃i
b(XIi) are the respective augmented top events,

∣∣∣∣DLi,Zi

XIi\K
(αi, zi)

∣∣∣∣ = N i
b (αi, zi).

It can be seen that Proposition 4.3.2 is a generalization of the Proposition 4.3.1. For

independent systems, the boundary may be chosen as a constant event, say B ≡ b0,

thus independent of all the basic events of the system and with N B(0, b0) = 1 and 0

otherwise. In such a case, the first two sums in Proposition 4.3.2 disappear and we

arrive to the same summation as in the Proposition 4.3.1.

Although it might be difficult to ensure existence of the augmented structure functions

φ̃b in a general system, the situation gets easier in fault and success trees. In their

hierarchical structure, the boundaries may be composed of some macro events or a

collection of them. Nevertheless, an arbitrary choice still would not guarantee the

existence of φ̃b and further investigation has to be performed. We will not present

sufficient conditions for a validity of boundaries, but an example of both a valid and

an invalid choices are demonstrated on an example in Section 4.3.4.

4.3.3 An example of decoupling systems with shared

components

We will demonstrate the formula in Proposition 4.3.2 on a simple example. Suppose

that a success tree of a system is such as on Figure 4.6. Suppose that components

{1, 2} are of type 0 and the component x3 is of type 1. The total number of

components of each type in the system will therefore be M = (2, 1). We identify
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Figure 4.6: An example system. The shared component is highlighted in red color.

two subsystems ({1, 3}, AND) and ({2, 3}, AND) with E1, E2 being the respective

subsystem top level events. The original system top event structure function φ̂ = OR.

The set of shared basic events among the subsystems is K = {3}.

For the computation of the original system’s counting signature, we need to choose a

suitable boundary and compute the subsystems decomposed counting signatures. A

natural boundary to choose is B = {X3} with state space XB = {0, 1}. The boundary

counting signature is shown in Table 4.1. The induced augmented structure functions

for E1, E2 are shown in Table 4.2 and N 1
b = N 2

b in Table 4.3.

Table 4.1: The boundary counting signature N B(l, (x3)).

l \ x3 (0) (1)

(0,0) 1 0

(0,1) 0 1

Table 4.2: Augmented structure functions φi
b of subsystems ({1, 3}, AND) and

({2, 3}, AND).

x1 φ̃1
(0)(x1) φ̃1

(1)(x1) x2 φ̃2
(0)(x2) φ̃2

(1)(x2)

0 0 0 0 0 0

1 0 1 1 0 1
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Table 4.3: Decomposed counting signatures (Definition 4.3.2) of the subsystems
({1, 3}, AND) and ({2, 3}, AND). Only N 1

b is shown since they are identical. The
subscript of N denotes the realization of b = (x3).

l N 1
(0)(l, 0) N 1

(0)(l, 1) N 1
(1)(l, 0) N 1

(1)(l, 1)

(0, 0) 1 0 1 0

(1, 0) 1 0 0 1

According to Proposition 4.3.2:

For l < (1, 1), the counting signature is zero.

For l = (1, 1),

N ((1, 1)) =
∑

x3∈{0,1}

∑
α:
∑

j
αj+(0,1)=(1,1)

·
[
N 1

x3(α1, 1)N 2
x3(α2, 1) + N 1

x3(α1, 0)N 2
x3(α2, 1) + N 1

x3(α1, 1)N 2
x3(α2, 0)

]
= N 1

1 ((0, 0), 0)N 2
1 ((1, 0), 1) + N 1

1 ((1, 0), 1)N 2
1 ((0, 0), 0)

= 2
(4.35)

For l = (2, 0), it implies that α1 = α2 = (1, 0) and b = (x3) = (0), so the only

contribution to Equation 4.35 can come from N 1
(0)((1, 0), 1)N 2

(0)((1, 0), 1), but that is

null (see Table 4.3).

For l = (2, 1), all the components are functional, α1 = α2 = (1, 0) and b =

(x3) = (1), so the only non-zero contribution to the counting signature comes from

N 1
(1)((1, 0), 1)N 2

(1)((1, 0), 1) = 1. Therefore N ((2, 1)) = 1.

For all other l ∈ NK
0 , the counting signature is zero.

Both the counting signature and the survival signature Equation 4.25 of the example

system are shown in Table 4.4.
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Figure 4.7: An example success tree. Shared components are highlighted in red, and
the chosen boundary for decomposition in green color.

Table 4.4: The counting signature N and the survival signature Φ of the system
from Figure 4.6.

l N (l) Φ(l)

(0,0) 0 0.

(1,0) 0 0.

(2,0) 0 0.

(0,1) 0 0.

(1,1) 2 2/3

(2,1) 1 1.

4.3.4 An example of decoupling by boundary in a success

tree

In this section we wish to demonstrate the advantage that our method provides

over decoupling only over the state space of the shared components. For larger

sets of shared components, the decomposition would decouple the the state space
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into 2|K| subsets for which the subsystems would be independent. The generalized

procedure introduced in Section 4.3.2 allows us to, sometimes, identify a more efficient

decomposition and thus decrease the CPU cost of our computation.

In the example to follow, we would need to construct 24 augmented success trees and

merge them independently, if we were to decompose according to the set of shared

components. Instead, by using the boundary decomposition, we only need to do this

22 times.

Suppose that a success tree of a system is such as on Figure 4.7. Suppose that,

for the sake of simplicity, all the components are of the same type. We identify

two subsystems ({1, 3, 4, 5, 6}, AND) and ({2, 3, 4, 5, 6}, AND) with E1, E2 being the

respective subsystem top level events. The original system top event structure

function φ̂ = OR. The set of shared basic events among the subsystems is K =

{3, 4, 5, 6}.

We select boundary B be the macro-events E3, E4. Clearly, for each b ∈ XB, if we

fix (e3, e4) = b, a new success tree with only basic events {x1, x2} is created. The

augmented structure functions φ̃1
b , φ̃2

b are taken to be the structure functions in this

derived success tree in which (e3, e4) = b. That is φ̃1
b(x1) = AND(x1, e3, e4) and

φ̃2
b(x2) = AND(x2, e3, e4). If φ̃1

b(xI1) = 1, then φ1(y) = 1 for any choice of y ∈ DB(b),

since all the choices of y result in the same derived success tree with (e3, e4) = b.

Such a choice of B therefore complies with the requirements of Proposition 4.3.2.

Remark 4.3.1 (Non-compliant boundary.). It is possible to choose a boundary which

will not comply with the requirements of Proposition 4.3.2. Such a choice could

be B = (E1). Then, φ̃1
b(xI1) = (b1), which does not depend on which y ∈ DB(b)

was chosen - that is fine. But φ̃2
b would, since, e.g. if we set φ̃2

b=(0)(x2 = 1) = 1,

then we can find y1, y2 ∈ DB((0)), such that φ2(y1) = 1 and φ2(y2) = 0, namely

y1 = (x1, x3, x4, x5, x6) = (0, 1, 1, 1, 1) and y2 = (0, 0, 0, 0, 0).
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Let us now compute the counting signature of the example system.

The boundary counting signature, N B is given in Table 4.5.

Table 4.5: The boundary counting signature N B(l, (e3, e4)).

l \ b = (e3, e4) (0,0) (0,1) (1,0) (1,1)

0 1 0 0 0

1 0 2 2 0

2 0 1 1 4

3 0 0 0 4

4 0 0 0 1

The decomposed counting signatures of the subsystems are shown in Table 4.6, where

only N 1
b is shown since N 1

b (l) = N 2
b (l).

Table 4.6: N 1
b (l, e) = N 2

b (l, e).

l = 0 l = 0 l = 1 l = 1

b = (e3, e4) e = 0 e = 1 e = 0 e = 1

(0,0) 1 0 1 0

(0,1) 1 0 1 0

(1,0) 1 0 1 0

(1,1) 1 0 0 1

Now, according to the Proposition 4.3.2,

N (l) =
∑

b

∑
j

N B(j, b)
∑

α∑
i

αi+j=l

[
N 1

b (α1, 1)N 2
b (α2, 1) + N 1

b (α1, 0)N 2
b (α2, 1) + N 1

b (α1, 1)N 2
b (α2, 0)

]
(4.36)

Notice that in order for the whole system to be functional, at least one of the

subsystems has to be. From Table 4.6, we can see that only choice of b, for which
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N i
b (·, 1) > 0 is b = (1, 1). The rest would result into a summation of zeros.

Further, in order for N 1
(1,1)(α1, 1), N 2

(1,1)(α2, 1) to be positive, (α1, α2) = (1, 1), so

this term will only contribute when j = l − 2.

In order for N 1
(1,1)(α1, 0)N 2

(1,1)(α2, 1) to be positive, (α1, α2) = (0, 1) and for

N 1
(1,1)(α1, 1)N 2

(1,1)(α2, 0) it must be so that (α1, α2) = (1, 0). So both these terms

will only contribute when j = l − 1.

For a general l, we therefore get relation

N (l) = N B(l − 2, (1, 1))N 1
(1,1)(1, 1)N 2

(1,1)(1, 1)

+ N B(l − 1, (1, 1))
[
N 1

(1,1)(0, 0)N 2
(1,1)(1, 1) + N 1

(1,1)(1, 1)N 2
(1,1)(0, 0)

]
= N B(l − 2, (1, 1)) + 2 · N B(l − 1, (1, 1)).

(4.37)

The reconstructed counting signature and survival signature (derived via Equa-

tion 4.25) are shown in Table 4.7.

Table 4.7: The counting signature N and the survival signature Φ of the system
from Figure 4.7.

l N Φ

0 0 0

1 0 0

2 0 0

3 8 0.4

4 12 0.6

5 6 1

6 1 1
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4.3.5 Conclusions

We have introduced an approach for constructing system signatures from (decom-

posed) signatures of its subsystems. It generalizes the results previously available

for constructing survival signatures of independent subsystems and for constructing

Samaniego’s signatures for subsystems with shared components via decoupling over

the state space of the shared components. Our method allows us to use a larger class

of possible decompositions, which can result in saving of computational resources

and, therefore, possibility to compute signatures of larger systems. The sufficient

conditions for validity of the choice of a particular decomposition were not stated in

this work.



Chapter 5

Investigations on set valued

statistical methods

5.1 Interval inference on masked systems

This section is an exerpt of a conference contribution submitted to SMPS2018, [3].

Outside of controlled experiment scope, we have only limited information available to

carry out desired inferences. One such scenario is when we wish to infer the topology

of a system given only data representing system lifetimes without information about

states of components in time of system failure, and only limited information about

lifetimes of the components of which the system is composed. This scenario, masked

system inference, has been studied before for systems with only one component type,

with interest of inferring both system topology and lifetime distribution of component

composing it. In this section we study similar scenario in which we consider systems

consisting of multiple types of components. We assume that distribution of component

lifetimes is known to belong to a prior-specified set of distributions and our intention

is to reflect this information via a set of likelihood functions which will be used to

obtain an imprecise posterior on the set of considered system topologies.
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5.1.1 Introduction

Masked system inference concerns about carrying out inferences about the underlying

system model from system failure time observations, rather than the more commonly

studied situations where life test data is available on components. Our inference may

concern lifetime distributions of system components or structure of the system. Also,

the prior information may be available in various forms and sometimes prevents us

from constructing suitable prior distributions for Bayesian inference.

We will study here a scenario in which we wish to infer unknown structure of the

system from masked system lifetimes given prior distribution on system structure

and a set of credible component lifetime distributions. System structures will be

specified by survival signatures (introduced in [37]) and we will use theory of imprecise

probabilities (IP; more in [112]) to describe and obtain inference results.

System reliability inferences with survival signatures based on component failure

observations were described in [43] and further extended for IP framework in [44].

Masked system structural inference in Bayesian framework for single component type

systems were studied by Aslett in [113], where further elaboration of the nature of

inference on masked system with uncertain structure and its numerical solution by

Monte Carlo algorithms is presented.

5.1.2 Masked system inference

Let ΩS be a set of considered systems. We model underlying distribution of component

lifetimes with a parametric model and we index collection of component lifetime

distributions by multi-parameter θ ∈ ΩΘ. For each combination of system s and set

of distributions indexed by θ we assume that we can calculate the system survival

function R(t|s, θ) = P (Tsys > t).

We further assume that the observables, D, are distributed according to system

lifetime distribution (elements di represent observations of system failure times, r.v.
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Tsys). With additional assumptions about dependency among observations (e.g. i.i.d.),

we can construct the observation model f(d|θ, s) ≜ L(θ, s; d), for inference purposes:

L(s, θ; D) =
∏

i

f(di|s, θ) =
∏

i

−
[

∂

∂t

Rsys(t|s, θ)
]

t=di

 , (5.1)

where specific form of f(di|θ, s) depends on our system model and shall be given by

Equation 5.5.

The system design is considered unknown and is therefore included in the likelihood,

which then enables joint inference about the reliability and the topology of the

system.

5.1.3 Imprecise probability inference of masked systems

In IP inference we operate with set of models (set of priors, set of likelihoods). For

each of singular model of this set, we can carry out standard inference and analyse

the collection partial results. If our aim is to infer probability of some event of

interest, in IP scenario we can calculate the bounds for coherent inferences - lower

and upper probabilities, where lower probability is minimal inferred probability over

the models in the set, and similarly for the upper probability.

In system inference with uncertainty about both component lifetime distributions

and system structure, we can choose different uncertainty models for these respective

variables. By imprecision we model situations in which we know only possible domain

of random variable and are unable to specify prior distribution for Bayesian inference.

Such case will lead to IP inference, where each particular value of imprecise random

variable defines a stochastic model on which standard Bayesian inference can be

performed and the results integrated.
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In our case, we assume that we can construct prior distribution on system structures

and know only set in which component lifetime distribution parameter θ lies. Lower

bound on posterior predictive survival function can be obtained as:

P (Tsys > t|D = d) = min
θ∈ΩΘ

∫
s
Rsys(t|s, θ)L(s, θ; d)

Z(θ, d) f(s|θ)ds, (5.2)

where Rsys is the system lifetime survival function, L is the likelihood function

described in Equation 5.1, f is prior density for Bayesian inference and factor Z is

for posterior distribution normalization, i.e. Z(θ, d) =
∫

s L(s, θ; d)f(s|θ)ds.

Upper bound is obtained via maximization of the same expression.

Similarly we can also introduce the lower posterior distribution on system structure

as:

f(S = s|D = d) = min
θ∈ΩΘ

L(s, θ; d)
Z(θ, d) f(s|θ), (5.3)

with respective maximizations in case of upper bound.

5.1.4 Survival signatures for system state modelling

Via component state space decomposition, we can express the system survival function

for systems consisting of K distinct types of components, with Mk components of

type k with i.i.d. lifetimes for each component type k, as:

Rsys(t|s, θ) =
∑

l
P (Tsys > t|L(t) = l, s, θ)P (L(t) = l|s, θ)

=
∑

l
ϕs(l)

K∏
k=1

(
Mk

lk

)
Rlk

θ,k(t)F Mk−lk
θ,k (t),

(5.4)

where ϕs(l) = P (Tsys > t|L(t) = l, s) is called survival signature of system s, random

vector L(t) represents number of functioning components of each respective type

at time t (i.e. Li is number of functioning components of type i), summation is

over all possible combinations l of numbers of functioning component of each type.

Survival functions Rθ,k and cumulative distribution functions (CDFs) Fθ,k indexed
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by component type k and (multi-)parameter θ denote respective lifetime distribution

characteristics for distinct component types.

The single observation density for systems described by survival signatures is therefore

given by:

f(di|s, θ) = −
[

∂

∂t

Rsys(t|s, θ)
]

t=di

=

−
∑

l
ϕs(l)

K∑
k=1


(

Mk

lk

)[
∂

∂t

(
Rlk

θ,k(t)F Mk−lk
θ,k (t)

)]
t=di

K∏
k ̸=j=1

(
Mj

lj

)
R

lj
θ,j(di)F Mj−lj

θ,j (di)


=
∑

l

{
ϕs(l)

K∏
k=1

[(
Mk

lk

)
F Mk−lk

θ,k (di)Rlk
θ,k(di)

]
K∑

k=1

[(
lk

Rθ,k(di)
− Mk − lk

Fθ,k(di)

)
fθ,k(di)

]}
,

(5.5)

where fθ,k(.) is probability density function of kth component type lifetime.

We have derived everything necessary to be able to compute both the imprecise

posterior and posterior predictive distributions in the setting where only masked

system lifetime data are available and when the system design may be unknown.

This allows us to perform joint inference on the component lifetime parameters and

the topology of the system using imprecise probability.

In the remainder of the section we will demonstrate the method for inference of

system structure and predictive system lifetime.

5.1.5 Examples

In the experiments, we shall assume that the real system structure is one of those

described by survival signatures in Table 5.1 (those are all simply connected systems

of order 4, as defined and listed in [113], each with a random component type

assignment). These systems consists of K = 2 types components, 2 components of

each type (M1 = M2 = 2). Underlying component type lifetime distributions are

assumed to be exponential with rates λ1 = 0.45 and λ2 ∈ [0.06, 1.12] (ΩΘ = ΩΛ1⊗ΩΛ2).

Prior distribution on systems (f(s|θ) in Equation 5.2 and Equation 5.3) is chosen to

be uniform for all choices of λ2 .
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The data, observed system failures, for experiments are simulated from system labeled

as 6, which will be hereon referred to as the “ground truth’ ’ system. Ground truth

hazard rate for components of type 2 is chosen to be λ2 = 0.32. We will not perform

inference on λ2 and considered it a fixed imprecise parameter for the purpose of

investigating properties of the role of imprecision in the analyzed models. Although

this is an artificial assumption, it may represent, for example, a situation in which

components are provided by various manufacturers with contract-specified tolerances

on component reliability.

Table 5.1: Survival signatures of systems in ΩS. Zero row is being omitted (ϕs(0) = 0).

l1 l2 1 2 3 4 5 6 7 8 9 10 11

0 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 1.00

0 2 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00

1 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00

1 1 0.00 0.00 0.25 0.50 0.50 0.75 0.50 0.50 0.75 1.00 1.00

1 2 0.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 0 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00

2 1 0.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00

2 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

5.1.6 Survival predictions are not monotonic, nor convex

Since the predictions are defined by their bounds, it is necessary to acquire them by

optimization. Optimization problems are greatly simplified for monotonic functions

(we only need to investigate bounds of the set) or convex or concave functions

(where efficient gradient based algorithms may be employed). Although the survival

function predictions are monotone in case of know system structure (|Ωs| = 1), neither

of these desired properties could be proven analytically in general for predictions

with unknown system structure. Conducted experiment (see Figure 5.1) provides a
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Figure 5.1: Dependency of posterior survival function predictions for various selected
times on imprecise λ2 obtained by analysing 250 data samples

counterexample for monotonicity, convexity and concavity of posterior predictions in

case of unknown system structure. Furthermore, Figure 5.3 provides a counterexample

for the same in case of system structure posterior inference.

5.1.7 Imprecise structure posterior and system

identification

Two basic inferences of our interest are for the system lifetime survival function (via

Equation 5.2), and for posterior system distribution (via Equation 5.3). An example

of predictive and structure inferences are shown in Figure 5.2. On the left side, the

intervals for each system represents lower and upper bounds for posterior on the

set ΩΘ. On the right picture, one set of prediction bounds for prior distribution

on system structures (before updating by observations) and another for posterior

obtained via Bayesian updating are compared with the Kaplan-Meier estimate and

the ground truth survival function.

The system identification, which would be done by comparing system posterior

probabilities in Bayesian decision making, has to be done in IP setting. As can be
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Figure 5.2: Inference results with imprecise distribution parameter λ2 for sample
sizes 50 (top) and 250 (bottom). Left: imprecise posterior distribution on systems.
Right: predictions of system lifetime survival function.

seen in Figure 5.2, left, upper probabilities for multiple systems approach 1 in this

experiment whilst the lower remain near 0. Therefore, there are several systems

for which we are indecisive. The explanation of this wide range is illuminated

in Figure 5.3, where we plot system posterior distributions obtained for various

fixed λ2 by standard Bayesian inference (i.e. inner function which is optimized in

Equation 5.3). In different regions of ΩΘ, one system becomes dominant over others

and this effect is further increased with increasing sample size.

We can observe that an useful informative inference, we might obtain in IP setting,

is that of rejection of several system structures. As is apparent from Figure 5.2 and

also from Figure 5.4, upper posterior probability for some of the systems tends to

approach 0, which indicates their unfitness to observations.
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Figure 5.3: Dependency of system structure posterior distributions on fixed λ2 . Each
vertical slice at selected λ2 represents system posterior distribution (i.e. sums to 1).
Left image for 50 data samples, right for 250. Thick curve denotes the evolution of
posterior distribution of the ground truth system.

5.1.8 Response to varying the support

Next example investigates differences between disjoint choices of underlying support

set ΩΘ. We perform two imprecise inferences separately for λ2 support divided by

the value of (known) λ1. The resulting imprecise system posteriors are shown in

Figure 5.4.

From Figure 5.4 it is apparent, that some structures like 3 and 10, which were

comparable by the means of inference in original support set (Figure 5.2, left), exhibit

significant differences in case when the support is focused because the likelihood

of these systems is small in these regions (see Figure 5.3). Similar behaviour was

also observed in case of simply narrowing the λ2 support where upper posterior

probability of many systems approached 0. These results are being omitted here due

to space limitations.

This scenario might be applicable for purposes of experimental design towards

inference about adversarial systems. Proper choice of the support set ΩΘ, and

therefore the experimental settings, seems to influence identifiability of underlying

unknown system structure.
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Figure 5.4: Influence of choice of the support set for λ2 on structure posterior
distribution. In the left picture, the GT λ2 lies in investigated set, in the right one
it does not.

5.1.9 Concluding remarks

We have demonstrated a novel methodology for inference in limited prior knowledge

scenario, which allows us to avoid introducing some redundant and possibly unjustified

modelling assumptions.

For the described situation, we have shown that the optimized functions of interest

are nor monotone nor convex and, so far, have to be solved by general optimization

procedures (in Section 5.1.6).

It has also been indicated in Section 5.1.7 and Section 5.1.8, that IP inference

cannot generally serve for proper system identification, as IP reasoning allows for

indecisiveness, but rather as a tool for system rejection in case of low upper posterior

probability.

The behaviour which was presented was observed among multiple experiments that

were conducted, although no analytical guarantees may be given at this stage of

research. A follow-up generalizing study which would take into account even aspects

which were only touched here (symmetrical properties of systems and rigorous IP

decision theory) is necessary to further understand advantages and limitations of

proposed methodology.
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5.2 Phased mission systems with interval

parameters

This section is a continuation of the contribution [1] presented at SECESA2018

conference. The objective is to introduce extension to phased mission model from

Section 4.2 which include epistemic uncertainty on component failure rates and phase

duration. In this section we present results which allow us to assess reliability of

a PM system with epistemic uncertainty about component failure rates and phase

durations.

5.2.1 Imprecision

Engineering, and also other applied fields, have to take uncertainties in our models into

account in order to produce reliable conclusions. The first step is to reflect possible

uncertainties in the value of parameters of our models. Although the uncertainty

may be modelled by stochastic models and inferred via statistical methods, often we

face a situation in which we need to include an additional, strong, assumption to be

able to carry out the inference (e.g. random censoring). This may bias our analyses

and make them unreliable. In cases of limited information (or also for the purpose of

sensitivity analysis), interval models may be employed, which model our uncertainty

of a parameter value by an interval of its possible range. Imprecisions in parameters

of stochastic models are studied within the theory of Imprecise Probabilities [112,

114].

In this section, we will derive novel results which take into account interval uncertainty

in the duration of mission phases and component failure laws. We will restrict

ourselves to the specific scenario in which the sub-systems, representing individual

phases, are coherent and the failure probability of components is modelled by

exponential distributions, i.e. a constant failure rate law. Restriction to constant

failure rate models provides us with a necessary simplification of the expression for
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PM system reliability while still allowing us to address a wide class of real world

situations.

5.2.2 System properties

We investigate a system with the following properties:

• structure function of each of the phases corresponds to a structure function

of some coherent system. I.e. each φi(.) is non-decreasing in x and there-

fore φP M(.), a product of non-decreasing functions, is also non-decreasing in

(x(τ1), . . . , x(τW )) (in the sense of partial ordering of component states),

• hazard rate of components of group j in phase i is constant and equal to

λij. I.e. the conditional probability from Equation 4.16 will take the form

pij = exp(−∆i · λij), where ∆i := (τi − τi−1) is the duration of phase i.

5.2.3 Monotonicity properties

Theorem 5.2.1 (Monotonicity in hazard). Reliability of a PM (Equa-

tion 4.15) satisfying assumptions from Section 5.2.2 is non-increasing function of

λ := (λ11, . . . , λW K).

Proof.

1. All the RVs representing component states are binary, therefore:

Pr(X > x) =



0 ; x ≥ 1

1 ; x < 0

Pr(X = 1) ; x ∈ [0, 1)

(5.6)

2. For each component i

Pr(Xi(t) = 1) = Pr(Ti > t), (5.7)

where Ti is the component failure time and Pr(Ti > t) = exp (−Hi(t)), where
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Hi(t) is the hazard function of component i.

3. Hi(t) = ∑ρ(t)
j=0 λj,c(i)∆j for each time, which coincide with end of some of the

mission phases. ρ(.) is a mapping selecting which one is that, and c(.) select to

which group the component belongs.

4. Hazard rate is strictly increasing in λj,c(i), and, therefore, Pr(Xi(t)) is strictly

decreasing.

5. Given two processes X̃(t), X(t) of component states, subjected to failure rates

λ̃, λ, respectively, s.t. λ̃ ≥ λ, X̃(t) is stochastically dominated by X(t) at each

time corresponding to an end of a phase.

6. Since PM reliability is an expectation of a monotone function, the expectation

is lower or equal for the dominated process.

Theorem 5.2.2 (Monotonicity in time). Reliability of a PM Equation 4.15 satisfying

assumptions from Section 5.2.2 is non-increasing function of ∆ := (∆1, . . . , ∆W ).

Proof.

1. The reliability of a PM effectively depends on phase time through the conditional

probability of component failure during a phase, pij = exp(−∆i · λij) (from

Equation 4.16).

2. For any altered system with ∆̃i = αi∆i, we can construct an auxiliary PM

system with equivalent expression for reliability by, instead, assuming that

∆̃i = ∆i and λ̃ij = αiλij, ∀j.

3. ∀i : αi ≥ 1 ⇒ ∀i, j : λ̃ij ≥ λij ⇒ λ̃ ≥ λ.

4. Reliability of PM is non-increasing in λ, therefore reliability of the altered

system is lesser or equal to that of the former one.
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5.2.4 Implications to interval analysis

We have proved, for our specific scenario, that the reliability of such a PM is monotone

in both failure rates and phase durations, so interval analysis can be carried out at

the cost of just two precise probabilistic analyses. If we are interested in assessing

reliability of such PM across a set of plausible failure rates λ ∈ Ωλ and phase

durations ∆ ∈ Ω∆, the lower bound can be attained in the upper extreme corner of

Ωλ × Ω∆, i.e.:

min
(λ,∆)∈Ωλ×Ω∆

RelP M(λ, ∆) = RelP M

(
λ, ∆

)
, (5.8)

where λ := max{λ ∈ Ωλ} and ∆ := max{∆ ∈ Ω∆}.

Similarly like in Equation 5.8 for the upper bound, i.e.:

max
(λ,∆)∈Ωλ×Ω∆

RelP M(λ, ∆) = RelP M (λ, ∆) , (5.9)

where λ := min λ ∈ Ωλ and ∆ := min ∆ ∈ Ω∆.

Corollary 5.2.1 (Using survival signatures.). For a PM system modelled via survival

signatures, the lower bound on reliability is attained for respectively the largest failure

rates of each component group and largest plausible phase durations. Analogically for

the upper bound.

5.2.5 Conclusions

We have provided theorems which allows us to assess reliability of phased missions

subjected to epistemic uncertainty in both component failure rates and phase dura-

tions. Reliability of a special case of phased mission was shown to be a monotone

function of these both (Theorem 5.2.1 and Theorem 5.2.2). This allows us to calculate

lower and upper probabilities of successful completion of a mission with almost no

further computational effort (Equation 5.8). The main contribution to computational

complexity arises from calculating the survival signature and has to be done only

once, i.e. the same amount as for assessing reliability of precisely specified system.
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5.3 Fiducial inference with coarse data

The section is inspired by Scott Ferson’s talks on p-box inference with imprecise

observations (his full report can be found in [115]) enriched by an application to

system reliability with survival signatures.

It is often the case that the data we want to draw inferences from observations that are

not precisely specified. This may be due to irreducible measurement errors or due to

unspecified censoring. Coarse data are often handled by introducing assumptions on

the censoring procedure, like censoring at random. This still requires introduction of

additional modelling assumptions. In this section we will demonstrate how inference

can be carried out without the assumptions about censoring by constructing a

posterior random set. Theoretical properties of direct set-value observation inference

are described in [87]. We will demonstrate a straightforward application of empirical

random sets for system reliability assessment.

The method mimics using Monte Carlo method for constructing fiducial posterior

distribution and propagating it to obtain inferences of interest. Empirical random sets

consist of a collection of synthetic set-valued samples which may be used to estimate

probability bounds on events of interests or even lower and upper expectations via

Choquet’s integration (Theorem 3.3.1).

We will assume that the sample is a set of i.i.d. observations where each observation

may be specified by an interval (i.e. xi ∈ [xi, xi]).

An example of two set-valued samples, which differ in the extent of coarsening, are

shown in top row of Figure 5.5. The example was created using randomly sampled

observations from exponential distribution with mean value 3.14. The coarsening is

performed by randomly sampling the imprecision width from a uniform distribution

with maximum value 1 (low imprecision) or 5 (high imprecision). We would expect

that the difference in precision of the observation will be reflected in the inference

result.



5.3. Fiducial inference with coarse data 133

(a) Observed data with low imprecision. (b) Observed data with high imprecision.

(c) Empirical distribution and MLE with cen-
soring of low imprecision samples.

(d) Empirical distribution and MLE with cen-
soring of high imprecision samples.

Figure 5.5: Observed data and inferred distributions.

5.3.1 Fiducial inference

Extension of the fiducial procedure (Section 3.4.3.1) to set-valued observations is

straightforward. The idea behind fiducial inversion is to, for each sampled u ∼

U , construct a set of plausible parameters θ. An extension towards set-valued

observations can be constructed by considering a union of plausible parameters for

all the particular values from the observed set sample instead.

Therefore, for X being the observed set,

Θ(X, u) :=
⋃

x∈X

Θ(x, u). (5.10)
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The empirical random set is constructed by random sampling of the ancillary distri-

bution U and constructing a collection of Θ(X, U).

The inferred posteriors may be used to also obtain assessments about transformed

variables - like predictive inference. Empirical random sets (Monte Carlo) may be

used for numerical propagation.

Let us have confidence structures for X, Y , constructed from ancillary RVs U1, U2,

and a new RV Z = g(X, Y ). If X, Y are stochastically independent, we may

construct a Cartesian product XY (u) = X(u1) × Y (u2) and a confidence structure

via Equation 5.11.

Z(u) = {g(x, y) : (x, y) ∈ XY (u)}. (5.11)

5.3.2 Exponential model

We will demonstrate how to apply this inference for a reliability problem. We consider

the sample to be exponentially distributed and proceed to infer its mean value.

Let Xi
i.i.d.∼ exp(λ). Therefore

∑
i

Xi

λ
∼ γ(n, 1).

We can choose an ancillary random variable U ∼ γ(n, 1) which leads to the fiducial

inversion on the exponential mean λ = ⟨X⟩
u

= Θ(x, u).

If Xi are imprecise, so will be the sample mean, and we can set

Θ(x, u) =
{

λ : ⟨X⟩L

u
≤ λ ≤ ⟨X⟩U

u

}
, (5.12)

where the supersripts L,U correspond to lower and upper bounds respectively.
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Figure 5.6: Fiducial posterior distribution for exponential mean for the samples with
different extent of coarsening corresponding to Figure 5.5.

Figure 5.7: Posterior distribution of failure probability at t = 3 for the samples with
different extent of coarsening corresponding to Figure 5.5.

Constructed fiducial posteriors of exponential mean for the samples depicted in

Figure 5.5 are depicted on Figure 5.6.

Furthermore, the constructed posterior can be used to compute various inferences

of interest. Figure 5.6 shows a transformed inference on failure probability at time

t = 3 constructed by propagating the empirical fiducial posterior through analytical

expression for exponential CDF.

The posteriors can also be used to infer reliability of systems. For a 5-component

bridge system in Figure 5.8 assuming i.i.d. distributions of the component lifetimes,

P (S|λ) = ∑5
i=0 bi exp(−λt)i(1 − exp(−λt))(5−i), where b is the survival signature of

the system.
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Figure 5.8: Reliability block diagram of a simple bridge system.

Figure 5.9: Predictive inference of system failure probabilities at selected times for
observations corresponding to Figure 5.5.

Inferences of system failure probabilities at selected times are depicted at Figure 5.9.

5.4 Robust Markov analysis

The following section is an exerpt of a conference contribution submitted to IDT2019,

[4].

Markov analysis is a wide-spread tool for modelling interactions among components

in complex systems. It is based on modelling the evolution of system’s component

states by Markov Chains. But, as in many other uncertainty models, it might

often be overly optimistic to assume that we can construct a precise stochastic

model which properly captures the uncertainties present in the investigated system.

This issue is addressed by the theory of Imprecise Probabilities and, specifically for

stochastic processes, by the theory of Imprecise Markov Chains. In this section,

we will demonstrate how Imprecise Markov Chains can not only serve as a robust
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alternative to classical stochastic models, but also how they can facilitate analyses

by the means of problem dimension reduction and also, by the means of deliberate

model construction, enable analyses which would not be possible by using solely

precise probability models.

5.4.1 Introduction

Modelling reliability of a complex systems is a daring task. One of the difficulties

lies in properly capturing the interactions among the system components during

the system’s functional lifetime. In order to model these complex interactions, it is

necessary to use flexible models to capture the dynamical evolution of the system

component states. Markov analysis is used for this purpose. The stochastic evolution

is modelled by (Continuous Time) Markov Chains [9, 116]. But the introduced

complexity poses a challenge to properly capture all the possible interactions. We

will therefore demonstrate the use of a framework for statistical inference of the

Markov Models in order to ground the models by empirical evidence, and to robustify

them by using models from the theory of Imprecise Probability (IP; [81, 112]).

One way of viewing the IP theory, is from the point of view of sensitivity analysis

[78]. Instead of requesting to specify a single stochastic model, or a single sampling

distribution, or a single prior distribution for Bayesian inference, we seek ways to

analyse a whole set of them at once. Once working with a set of models, we lose

the precision of the assertions we are used to from classical uncertainty analysis.

Instead, we can infer bounds on the assertions of interest, guaranteed to include the

correct answer (as long as the correct model is included in the set of assumed laws).

The general aim of inference in the IP theory is to assess lower and upper bounds

on functionals of interest (probabilities of events and expected values). For a set of

probability measures P and some random variable Y , we define the lower and upper

expectations as

EY := inf
P ∈P

EP Y, EY := sup
P ∈P

EP Y. (5.13)
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The analogies for lower and upper probabilities follow from the representation of

events by indicator functions.

Due to construction of the IP theory, we only need to focus on either lower or upper

expectation since, for so-called coherent models, one can be derived from the other

via conjugacy relation E[Y ] = −E[−Y ].

In this section, we will focus on an application of results from a sub-field of IP

theory, on theory of Imprecise Markov Chains [117]. Recent development concluded

in efficient computational schemes which enable us to conduct robust inferences

on stochastic dynamical systems [118]. An outline of the numerical methods will

be presented in Section 5.4.4. It has also been recently discovered how to perform

Robust Bayesian Inference on the characteristics of the process dynamics [119], as

will be shown in Section 5.4.4.1. Imprecise Markov Chains can also be used to reduce

complexity of high-dimensional problems by the technique of lumping. This is not

unknown to precise Markov Chain models, but its imprecise variant provides more

flexibility because the lumping generally results in an Imprecise Markov Chain model

[120]. This will be shown in Section 5.4.5.2.

Our selected application field is Reliability Theory. We will combine the above-

mentioned advancements in the field of Imprecise Markov Chains with modelling

techniques of Reliability Theory. The state-space lumping can be naturally combined

with Survival Signatures, which also serve as a dimension reduction technique [37].

These will be covered in Section 5.4.5.1 and in Section 5.4.5 in general. We will

further use the flexibility of the IP theory in order to propose a novel method to

1) enable statistical inference for Markov Reliability analysis for realistic scenarios

at all, and 2) include additional high-level information into the models in order to

decrease the imprecision of the answers. This will be explained in Section 5.4.6 and

demonstrated on an example of reliability inference from a collection of observations

for a simple system in Section 5.4.7.
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5.4.2 Survival analysis

Many systems are engineered such that they are functional at the instant of de-

ployment but their components will deteriorate over time. In such scenarios, we

investigate how the system reliability changes in time. The component states are

here modelled as stochastic processes Xi(t) and the joint states as X(t) for some

t ≥ 0. The simplest case is when all the Xi are non-increasing processes (once a

component fails it will not recover its functionality). Then we can equivalently model

just the time to the component’s failure, say Ti, and define the stochastic process as

Xi(t) = {Ti > t}.

The dynamics of the components’ states will induce a stochastic process on the

state of the system. Two basic assessments about the system are then usually of

interest, the system availability A(t) = E[φ(X(t))] (the probability that a system

is operational at a given time instant, regardless of its history) and the system

reliability Rel(t) = P (∀τ ≤ t : φ(X(τ)) = 1), also called the survival function (the

probability that the system has not failed before the enquired time instant). These

two assessments are equivalent if the system is coherent and the component state

processes are non-increasing.

5.4.3 Markov analysis

The evolution of component states may take complex form and include interaction

among the components states and their deterioration rates. We will model the

joint component state processes by Markov Chains on the joint component state-

space since they can capture various interactions among component state dynamics

(load-share system, spare components, component renewals, etc [9]).

In this section, we will focus on the Markov method for modelling the time evolution

of component states. We will revise some of the basic elements of Markov processes,

numerical methods for evaluating the availability of the system, and a prevision
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centred formulation for evaluating functionals . f → E[f(X(t))], t ∈ R+, such as

the availability. The space X is assumed to be finite. Instead of a single random

variable for each of the components, we will now model the state evolution of each

component as a stochastic process Xi(t). For fixed t, X(t), the joint state of all the

system components, is a random vector with state space X . Since the component

states evolve over time, so will the system state and its reliability. In time analysis,

we will be interested in the availability function A : t → E[φ(X(t))]. A denotes the

probability that system is functional if its service is required at time t.

If the component state process X(t) is non-increasing in t, then we can use A(t) to

express the distribution of system’s time to failure

S(t) := P (Tsys ≥ t) = P ({ω|∀τ < t : φ(X(τ)(ω)) = 1})

= P ({ω|φ(X(t))(ω) = 1}) = A(t).
(5.14)

We will be further interested in looking at stochastic processes X as a families of

functionals (X → R) ∋ f → E[f(X(t))], t ∈ R+. Such as A.

5.4.3.1 Continuous time Markov chains

Describing a random process corresponds to describing a random variable with an

infinite dimensional co-domain, the functions. Markov chains provide a rich class of

processes which can be described consistently and manipulated efficiently. We can

evaluate functional f → E[f(X(t))], if we know the distribution of X(t).

The distribution X(t) at any time point is uniquely characterised by an initial

distribution π0(x) := P (X(0) = x) and a family of conditional distributions T t
s :=

P (X(t) = y|X(s) = x). The distribution of X(t) at any t ≥ 0 may be obtained via

the law of total probability as P (X(t) = y) = ∑
x∈X P (X(t) = y|X(0) = x)π0(x).
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A homogeneous continuous time Markov chain (HCTMC) parametrized by

a transition rate matrix Q (a stochastic matrix, i.e. each row sums to 0 and all

non-diagonal elements are non-negative) induces a family of transition matrices

{T t
s : 0 ≤ s ≤ t} such that

T t
s(x, y) = exp(Q(t − s))(x, y). (5.15)

Together with an initial distribution π0, Equation 5.15 specifies

P (X(t) = y) =
∑
x∈X

π0(x) exp(Qt)(x, y). (5.16)

Let L (X ) be a space of all functions X → R. We may also look at the transition

matrix as an operator T t
s : L (X ) → L (X ).

For a function f ∈ L (X ) and x ∈ X , denote

[T t
sf ](x) := E[f(X(t))|X(s) = x]. (5.17)

In the case of HCTMC, due to the homogeneity, T t
sf = T t−sf , where we will omit

the subscript if it is zero, so T t−s := T t−s
0 .

5.4.3.2 Evaluating functionals

There exist multiple ways for evaluating E[f(X(t)|X(0)]. The commonly used one is

based on the additive property of probability measures. It consists of computing the

conditional probabilities P (X(t) = y|X(0)) for y ∈ X . This allows us to construct

T tf ∈ L (X ) as T tf(x) = ∑
y∈X f(y)P (X(t) = y|X(0) = x). The expected value of

f(X(t)) will be E[T tf(X(0))]. But this method is not applicable if we model the

stochastic process by a non-additive measure. One way would be obtain a similar

results as a Choquet integral E[f(X(t))|X(0) = x] = (C)
∫

fdPX(t)|X(0)=x, but we

will use a different method in this section, which also enables us to use efficient

computational methods introduced by [117] and [118] for non-additive Markov

Processes.
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Due to its definition, Equation 5.15, we can decompose any transition operator into

a concatenation of partial operators. For arbitrary times t > s > r ≥ 0,

[
T t

rf
]

(x) = [T s
r ◦ T t

sf ](x). (5.18)

Let s = u0 < u1 < . . . < un = t be a discretization of the time domain. Then

combining Equation 5.15, Equation 5.17 and Equation 5.18, by induction,

[
T t

sf
]
(x) =

[
T u1

s ◦ . . . ◦ T t
un−1f

]
(x) = [T u1

s f1] (x), (5.19)

where fn = f and fi = T ui+1
ui

fi+1. Therefore, we can evaluate T t
sf recursively by

evaluating fi, starting from fn = f .

We can approximate the inference by a linearized scheme up to an arbitrary precision,

similarly as we do with the Euler method for solving ordinary differential equations.

Given the time short is small enough,

∀x ∈ X :

fn(x) = f(x)

. . . . . .

fi(x) ≈ [(I + (ui+1 − ui)Q) fi+1] (x)

. . . . . .

E[f(X(t))|X(0) = x] ≈ [(I + (u1 − u0)Q) f1] (x),

(5.20)

where I denotes the identity operator.

Denote Lt
s := limn→∞(I + t−s

n
Q)n, where by the exponent n we denote n operator

concatenations. Then, under some regularity conditions, Lt
s → T t

s [117].

5.4.3.3 An example

Suppose we have a transition diagram given by Figure 5.10 with state space

X = {0, 1}3 and want to evaluate P (X ∈ A = {111, 101, 011}). If P is an additive
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measure, then

PX(A) =
∑
y∈X

IA(y)PX(y) =
∑
y∈A

PX(y), (5.21)

where IA denotes the indicator function of set A (IA(x) = 1 if x ∈ A and 0 otherwise).

For fixed t, we can evaluate P (X(t) = x) via Equation 5.16 and also P (X(t) ∈

A|X(0) = x) via Equation 5.21 as

PX(t)|X(0)=x(A) =
∑
y∈A

T t(x, y) =
∑
y∈A

exp(Qt)(x, y). (5.22)

We can also proceed via the functional representation and use Equation 5.17. In

Equation 5.21 we have used that PX(A) = E[IA(X)]. In the functional represen-

tation, PX(t)|X(0)=x(A) = (T tIA) (x). We can assess P (X(t) ∈ A|X(0) = x) also as

E[IA(X(t))|X(t(0)) = x]. This can be solved numerically via a linearized discretiza-

tion scheme based on Equation 5.20.

5.4.4 Imprecise Markov chains

Suppose that we cannot determine a single transition rate matrix Q and instead have

a set of ‘plausible’ matrices Q. Set Q induces a set of stochastic processes P and we

may use these as our model of the system evolution. For computing expectations

of f ∈ L (X ) over a set of stochastic processes, we need to precisely specify, which

processes are present in the set of measures P. If P is a set of HCTMC with transition

rates in Q, then the lower expectation Equation 5.13 is defined, in accordance with

Equation 5.13, as

Ef(X(t)) = inf
Q∈Q

∑
x∈X

P (X(0) = x)
∑
y∈X

exp(Qt)(x, y)f(y), (5.23)

and similarly for the upper expectation.

But the optimisation problem in Equation 5.23 is generally intractable. Instead, we

can take P to be a larger set of stochastic processes which comply with our knowledge.

A stochastic process (not necessarily a HCTMC, see [117]) is said to be consistent
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with Q if for each t ∈ R+
0

lim
∆→0

P (X(t + ∆))T t+∆
t − I

∆ ∈ Q. (5.24)

This means that Q encapsulates transition rates locally, but the rates may differ

over time.

Taking P to be a set of stochastic processes consistent with Q, we can construct a

family of sets of transition operators T t
s such that

[
T t

sf
]

(x) := E[f(X(t))|X(s) = x]

=
[

inf
T ∈T t

s

Tf

]
(x)

= lim
n→∞

[(
I + t − s

n
Q
)n

f
]

(x),

(5.25)

where Q : L (X ) → L (X ) is the lower transition rate operator defined for each

x ∈ X as [
Qf

]
(x) := inf

Q∈Q
[Qf ](x). (5.26)

We can decompose the lower transition operator similarly to Equation 5.18. With

s < t,

E[f(X(t))|X(0) = x] =
[
T s ◦ T t

sf
]

(x), (5.27)

which would not hold if we would take only HCTMCs, since the transition rate

matrices would need to be identical for 0 → s and s → t, but here we allow them to

differ as long as they are consistent with Q.

Similarly as Equation 5.18 and Equation 5.19 in the last section, Equation 5.27 allows

us to construct an iterative scheme for computing lower expectations of functionals

in L (X ) (for more details and convergence conditions see [117] and [118]). For a

discretization of the time dimension s = u0 < . . . < un = t,
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fn = f

. . . . . .

fi ≈
(
I + (ui+1 − ui)Q

)
fi+1

. . . . . .

E[f(X(t))|X(s) = x] ≈
[(

I + (u1 − u0)Q
)

f1
]

(x).

(5.28)

5.4.4.1 Inference of the transition rate operator

In this section, we will demonstrate how statistical inference can be used in order

to construct the transition rates governing stochastic processes. We will show some

results for inferences about the transition rate matrix of a HCTMC. Especially, we

will focus on a Robust Bayesian inference method proposed in [119].

Suppose that we observe the trajectory, say ω, of a Markov chain. Denote dx the

total holding time (
∫
Ix(X(t))dt) in state x and nxy the number of transitions from

state x to state y. For the inference about the transition rate matrix generating the

stochastic process, we may use the following likelihood results [121]

L(ω|Q) =
∏

x,y∈X
x ̸=y

(qxy)nxy exp(−qxydx), (5.29)

which leads to the Maximum Likelihood Estimator qMLE
xy = nxy

dx
.

5.4.4.2 Robust Bayesian inference

We will further be interested in using Equation 5.29 for Bayesian inference. Because

the likelihood belongs to the exponential family, it was proposed in [119] to use

a product of gamma priors for the Bayesian inference. For a chosen collection of
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hyper-parameters α = {αxy, x ̸= y ∈ X } and β = {βx, x ∈ X }, the prior density π is

π(Q|α, β) =
∏

x,y∈X
x ̸=y

(qxy)αxy−1 exp(−qxyβx)

=
∏

x,y∈X
x ̸=y

Gamma(qxy|αxy, βx).
(5.30)

Combining the prior, Equation 5.30, with the likelihood, Equation 5.29, we can pose

the exact form for the posterior mean,

E[qxy|α, β, ω] = αxy + nxy

βx + dx

. (5.31)

To avoid the necessity to choose any particular prior distribution, we may, instead,

select a whole set of them. This method is known as a Generalized Bayesian inference

[81] and will generally lead to a set of posterior distribution, hence a set of posterior

mean estimates and an Imprecise Markov Chain.

In [119], a set of prior distributions based on the imprecise Dirichlet model (IDM)

(introduced in [81]) has been proposed. Among the advantages of the IDM model is

the property of prior-ignorance. Before observing any samples, the IDM generates

vacuous inferences (all events have lower probability 0 and upper probability 1 - this

is impossible to achieve with precise priors).

In combination with Equation 5.29 and Equation 5.31, this model leads to a posterior

set of rate matrices

Qs :=
{
Q ∈ Q, s.t.

(
∀x, y ∈ X , x ̸= y : qxy = sA(x, y) + nxy

dx

)
, A ∈ T

}
, (5.32)

where T denotes the set of all transition matrices (conditional probabilities of

transitioning from one state in X to another).

As in the IDM model, an analyst have to specify a pseudo-count parameter controlling

the updating sensitivity. It is denoted s in Equation 5.32 and is recommended to
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be set between 1 and 2. If set to 0, the model would correspond to the maximum

likelihood estimate, Equation 5.29.

The derived posterior set of transition rate matrices leads also to a tractable lower

transition rate operator, Equation 5.26. For f ∈ L (X ),

[Qf ](x) = s

dx

min
y∈X

(f(y) − f(x)) +
∑

y∈X \{x}

nxy

dx

(f(y) − f(x)). (5.33)

These results require that every state had been observed, i.e. that ∀x ∈ X : dx > 0.

This may be overly restrictive requirement for application of the method in realistic

scenarios from reliability theory and will be resolved in Section 5.4.6.

5.4.5 Dimension reduction

In this section we will present some methods which help us to decrease the computa-

tional complexity arising from the combinatorial explosion of the system components’

state space. Since each component is binary and arbitrary combination of component

states is permitted, the cardinality of the state-space X would be 2N , where N is the

number of components in the systems. This itself often makes it intractable to assess

reliability for some real systems even without taking into account the dependencies

influencing their deterioration or imprecise probability models.

5.4.5.1 Survival signatures

Survival signatures were introduces to facilitate analyses of large heterogeneous

systems [37]. They are used to simplify the prescription of the relation between

the system state and the component states. Assuming some simplifying relations

among the components interactions, exchangeability of their states, we can compress

the remaining relevant aspects of the structure function into a lower dimensional

summary. If the exchangeability assumption holds, we can still recover exact inference

about the system reliability.
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For an arbitrary ancillary random variable L, we can decompose the expected value

in #eq-rel-rel_definition via the law of total expectation into

E[φ(X)] = E {E[φ(X)|L]} . (5.34)

Suppose that we can group the components of the system such that states of

the components of the same group are exchangeable. We may choose the ancillary

random variable L to be a vector of numbers of functioning components of each group

(arbitrarily ordered) and define the system survival signature as Φ(l) = E[φ(X)|L = l].

Due to the exchangeability assumption, the conditional probability P (X|L) is uniform

on the subset of X for which L = l. This allows us to compute Φ according to the

laws of classical probability as the fraction of functional states,

Φ(l) = |{x ∈ X : L(x) = l, φ(x) = 1}|
|{x ∈ X : L(x) = l}|

, (5.35)

where the notation L(x) represents the dependency of L on the actual component

states.

If the uncertainty model is given by an additive measure, E[Φ(L)] = ∑
l Φ(l)P (L = l).

But since we intend to carry out inferences with imprecise probability models, which

are generally non-additive measures, we will rather work directly with the functional

formulation. The (lower) survival function at a particular time point t will simply

be E[Φ(L(t))], where L(t) := L(X(t)) and we can use the scheme in Equation 5.20

or Equation 5.28 to compute the requested value.

5.4.5.2 State-space lumping

Lumping serves as a way to decrease sizes of state-spaces of Markov models by

grouping some of the states together. But, if the aim is to obtain a Markov Chain

again after the lumping, its uses are limited and the existence of a limped HCTMC is

not always guaranteed [122]. In general, the lumped process may not remain Markov

or homogeneous after the procedure. Generally, it will become a Homogeneous
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(generated by a single set of transition rate operators Q at each time) Imprecise

Markov Chain [120].

Let Q be a transition rate matrix of a (precise) HCTMC with state space X . Let

Λ : X → X̂ be a surjective function mapping states from the original state-space on

their respective groups in the new state-space. The evolution of the lumped state

X̂(t) = Λ(X(t)) will be induced by the evolution of state X according to the original

HCTMC.

Let f ∈ L (X ) be lumpable w.r.t. Λ, meaning that there exists f̂ ∈ L (X̂ ) s.t.

∀x ∈ X : f(x) = f̂(Λ(x)). (5.36)

The transition rate operator Q̂ : L (X̂ ) → L (X̂ ) of the lumped process can be

evaluated as

[Q̂f̂ ](x̂) = min
x∈Λ−1(x̂)

∑
ŷ∈X̂

f̂(ŷ)
∑

y∈Γ(ŷ)
Q(x, y)

 . (5.37)

5.4.5.3 Combining lumping and survival signatures

Since lumping and signatures share similar principles and goals, they can be combined

for the purposes of Markov analysis. Lumping will allow us to simplify the joint

state-space of the system components and survival signature will provide a method

for constructing a lumpable function which we will use for assessing the system

reliability.

In order to utilize the survival signatures, we need to assure exchangeability of the

states of the grouped components. Clearly, for any Markov model of the component

degradation, we may consider each component of its own distinct type. But such

a model would lead to no savings of computational resources. Since we intend to

perform statistical inference based on observations of independent copies of a system,

we will include assumptions in our statistical model to make the inference possible

and tractable.
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Figure 5.10: On the left: transition diagram of a 3-component load-share system.
Edge labels represent the elements qxy of stochastic matrix Q. On the right: transition
diagram of the same system after lumping by the number of functioning components.

Let us aggregate the system components into several groups. A simple assumption

which will make the combination possible is to assume that the transition rates

depend only on the number on functioning components of each group. An example

of such Markov model is depicted on Figure 5.10. The example also demonstrates,

that this assumption leads to a precise HCTMC after lumping, which we currently

need in order to carry out statistical inference as described in Section 5.4.4.1.

This assumption also ensures exchangeability of the component states. If we therefore

use Λ(X) = L(X), as used in Section 5.4.5.1, as the lumping map, and Φ ◦ L ∈

L (X ) as the lumping function, we may use the procedures in Equation 5.20 and

Equation 5.28 on the lumped process to assess the system reliability (= E[Φ(L(X))]).

5.4.6 Forced semi-vacuous model with structural

assumptions

The drawback of the methods mentioned in Section 5.4.4.1, the MLE and Equa-

tion 5.33, is the necessity to observe all the possible states x ∈ X . Otherwise the

null value of the denominator dx will cause that the expressions will not be properly
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defined. Given the cardinality of the state-space in reliability problems and often a

low number of observations, it is highly unlikely that all the states will be observed.

Although we have demonstrated some methods to reduce the size of the state-space

in the Section 5.4.5, it still remains unlikely to observe all the states even from this

smaller state-space in practical applications.

Recall the linearized computation scheme for assessing lower expectations of func-

tionals of stochastic processes, Equation 5.28. If we replace the linear approximation

by the original expression it approximates, the general step of the procedure may be

viewed as

fi(x) = [T ui+1
ui

fi+1](x). (5.38)

While evaluating fi for each of the states x ∈ X during the step, two situations may

occur based on the data from which we draw our inferences about the underlying

transition rate matrix. Either state x was observed, in which case we may use the

original scheme with Q given by Equation 5.33. If state x was not observed, then we

know nothing about transitions from x, thus nothing about E[X(t) = y|X(s) = x]

for any y, s, t. But we can reflect this ignorance in the IP models simply by calling

for the properties of the transition operator for which Tf ≥ inf f .

But a bare inclusion of vacuous model may lead to excessively imprecise inferences.

There is still an additional information we can supply to the model in order to

improve our inferences. That is by introducing additional structural assumptions.

It is not too preposterous, in many reliability applications, to assume that no more

than one failure may occur at any time instance. Exceptions could of course be

found if we were to include possibilities of e.g. common cause failures. Nevertheless,

even in those cases, the method we are going to introduce might still be applied at

least partially.
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Assume that for each of the states x ∈ X , we can rule out some states W (x) ⊂ X

for which we deem the transition x → y ∈ W (x) to be impossible. In the case of

non-increasing component state processes, this would be e.g. transitions that would

renew some component’s functionality. If we judge that only one failure can happen

at any time instant, then we could rule out all the transitions which would render

two or more components non-functional at the same time. In any case, such an

assumption will have an effect on both the lower transition rate operator emerging

from the robust Bayesian inference (Equation 5.33) and also on the vacuous prevision.

In the selection of the set of prior distributions for the robust inference, leading

to the set of posterior rate matrices in Equation 5.32, we can narrow down the

set of admissible transition operators T . If we rule out transitions W (x) for state

x, we can reflect this in the set of admissible transition operators by selecting

T0(x) := {A(x, y) ∈ T : A(x, z) = 0, ∀z ∈ W (x)}. This would lead to an enhanced

posterior transition rate operator

[Q̃f ](x) := s

dx

min
y∈X \W (x)

(f(y) − f(x))

+
∑

y∈X \[{x}∪W (x)]

nxy

dx

(f(y) − f(x)).
(5.39)

The introduced assumption will also affect the vacuous prevision T ≥ inf f simply

by taking the infimum only over the set of admissible transitions. Hence [T̃ f ](x) ≥

infy∈X \W (x) f(y).

Therefore, we redefine the step in the linear approximation scheme in Equation 5.28

as

[T ui+1
ui

f ](x) ≈


[(I + (ui+1 − ui)Q̃)f ](x), dx > 0,

miny∈X \W (x) f(y), dx = 0.

(5.40)

Now, the inference is always possible.



5.4. Robust Markov analysis 153

5.4.7 Example

We will introduce the methodology on a simple example. We assume the system

topology as depicted on Figure 5.11, a system with two types of components. Its

survival signature in Table 5.2. We include the assumption about exchangeability

of the states of components in the same group, so that we can lump the original

state space model according to what was described in Section 5.4.5.3. The structure

of the lumped HCTMC, including additional assumptions that 1) component state

processes are non-increasing, and 2) only one failure may occur at any time instant,

is depicted on Figure 5.12. The arrows represent the only admissible transitions.

We simulate several observations of the system lifetime. The simulated experimental

procedure produce evolution of the system components’ states from which we can

extract dx and nxy needed for the likelihood function, Equation 5.29. The simulation

is terminated by the time the system reaches a failure state, therefore we never

observe all the states in the state-space.

The inference of the survival function (Equation 2.5) is computed via the linearized

scheme (Equation 5.28) as Rel(t) = E[Φ(L(t))|L(0) = M] =
[
T tΦ

]
(M). M repre-

sents vector of number of components of each type in the system, hence L(0) = M

implies that all the components are functional at time 0. Analogously it is done for

the upper bound.

Resulting inferences of the bounds on the survival function are show on Figure 5.13.

The inference seems to properly envelope the ground truth (GT) survival function,

exhibit great imprecision if the data is scarce (the first plot with 5 observations),

and approaches the ground truth survival function as the number of observations

increases.
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Figure 5.11: Reliability block diagram of the example system. Components of type 1
are represented by the white blocks and components of type 2 are the green ones.

Table 5.2: Survival signature of the example system. Zero contributions are omitted.

l1 l2 Φ l1 l2 Φ l1 l2 Φ

3 0 0.1 0 3 0.2 1 5 0.8

4 0 0.4 1 3 0.31 2 5 0.9

5 0 1 2 3 0.47 3 5 1

2 1 0.033 3 3 0.67 4 5 1

3 1 0.166 4 3 0.85 5 5 1

4 1 0.466 5 3 1 0 6 1

5 1 1 0 4 0.4 1 6 1

0 2 0.066 1 4 0.56 2 6 1

1 2 0.1066 2 4 0.74 3 6 1

2 2 0.2 3 4 0.88 4 6 1

3 2 0.3866 4 4 0.9466 5 6 1

4 2 0.66 5 4 1

5 2 1 0 5 0.6
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Figure 5.12: Lumped transition diagram of the example system. Only the depicted
arrows signify admissible state transitions of the system.

5.4.8 Conclusions

Imprecise Markov Chains present a natural way for conducting Markov analysis in

reliability theory. They allow us to robustify our inferences by including multiple

plausible models of the systems’ dynamics. So far, it seems that they provide the

only way to conduct statistical inference in this field because they enable to include

vacuous models to substitute for the lack of observations. Imprecise Markov Chains

also provide a general lumping framework for dimension reduction for large state-

spaces. Combined with the Survival Signature framework, they present a powerful

analytic technique for conducting inferences on large - real world systems. Although

the method was demonstrated only on a small system, both lumping and survival

signatures are being used to enable analyses which would be intractable otherwise

due to their high dimensionality. Besides that, Imprecise Probability models allow

us to conduct Robust Bayesian inference, which mitigate some of the controversies

about selecting prior distributions in Bayesian inference.
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Figure 5.13: Inferred bounds for the survival function of the example system for
n=5,15,50, and 150 observations (depicted respectively from top to bottom).

5.5 Simultaneous sampling from a set of

distributions

The following section is an exerpt of a conference contribution submitted to

UQOP2021, [123].

We propose an extension to Markov Chain Monte Carlo methods for inferences

in the imprecise probability framework. The algorithm is based on simultaneous

sampling from all the Markov chains targeting the distributions in the credal set.

The algorithm constructs a chain of random sets, which can be used for conservative

estimation of lower and upper expected values of derived random variables. Tight

bounds on the set of estimators arising from the set of admitted stochastic models

can be obtained when the credal set is finite for general models. Conservative bounds

can be obtained for some classes of models also when the credal set is uncountable.
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Computational complexity for uncountable credal sets is not bounded and heuristic

fixes need to be implemented.

5.5.1 Introduction

Computations with sets of probability distributions can be helpful for sensitivity

analysis in stochastic inference [78] or when imprecise models are used as an uncer-

tainty model [81]. We will refer to this set of probability distributions as a credal

set M. These probability distributions define a set of random variables on some

common measurable space (X, B) and treated as a set of mappings X : Ω → X ,

such that P (dX) =. Our aim will be to evaluate or estimate expected values of

function(s) f : X → R over the set of distributions in M. For coherent imprecise

models, that is those which adhere to some rationality constraints [112], the set of

expected values over this set is convex. This enables us to limit our focus solely

on lower and upper bounds over this set. We will denote these as lower and upper

expected values defined in Equation 5.41.

Ef := inf
P ∈M

∫
fdP and Ef := sup

P ∈M

∫
fdP. (5.41)

Coherency of the stochastic model will also ensure that these bounds will be conju-

gated such that Ef = −E(−f).

Computing expected values of stochastic models is generally an intractable problem.

Common practice is to estimate them, most often with Monte Carlo methods [74].

Monte Carlo methods simulate random sampling procedures and use statistical

techniques to estimate population parameters - here the theoretical expected values.

For imprecise models, an extension of Importance Sampling Monte Carlo can be

used [124, 125]. Importance Sampling constructs a set of samples from an ancillary

distribution PY and estimates expected values based on theoretical results for chang-

ing measures. Under some mild conditions, the expected value can be obtained as
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Ef(X) =
∫

f(x)PX(dx) =
∫

f(y)dPX

dPY
(y)PY (dy), where dPX

dPY
is the Radon-Nikodym

derivative. The extension for imprecise models is achieved by constructing common

independent samples from PY and estimating the lower expected value by subsequent

minimization of Ef(X) through varying dPX

dPY
for PX ∈ M.

We will show how another technique, Markov Chain Monte Carlo, can be extended

for inferences with imprecise probability models.

5.5.2 Markov chain Monte Carlo

Markov Chain Monte Carlo (MCMC) [126] is a class of methods which are used

when we cannot sample from the targeted distribution directly. It constructs and

subsequently samples a Markov chain (Xi)∞
i=1 whose stationary distribution is the

target distribution. These samples will not be independent like in the case of Impor-

tance Sampling, but, still, the Law of Large Numbers and a variant of Central Limit

Theorem hold, so it can be used to estimate expected values of interest. The chain

is characterised by an initial distribution P0 for X0 and a transition kernel such that

Xi ∼ K(Xi−1, .). The transition operator is constructed so that the targeted distri-

bution is its invariant, i.e. P = KP . The underlying idea is that, individually, each

of the samples can be viewed as a sample from the target distribution. Nevertheless,

because P0 is generally different from the target distribution, the chain would only

asymptotically converge towards the target distribution.

Still, it can be shown, that under some mild conditions, an expected value of

f : X → R can be estimated from a sample of finite trajectory of (Xi)k+n
k by

Êf = 1
n

k+n∑
i=k

f(Xi) (5.42)

for k, n both large enough.

In this section, we will adhere to the common notation and represent samples of

random variables by respective lower-case letters. We aim to assess EP f . MCMC
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algorithms generally proceed as follows. Let P be the target distribution and KP a

Markov Chain transition kernel with stationary distribution P . The initial position

x0 is sampled from some distribution P0 and the sample trajectory, (x0, . . . , xi), is

sequentially extended by sampling Xi+1 from KP (xi, .).

A variant of Markov Chain Monte Carlo is the Metropolis-Hastings procedure [126]

which constructs KP with an aid of an ancillary kernel Q. Let prefix d· represent

the densities of respective probability measures. New position, xk+1, is sampled as

follows:

1. Sample from X ′ ∼ Q(xk, .);

2. Set xk+1 =


x′ with probability aP (xk, x′)

xk with probability 1 − aP (xk, x′)
,

where aP (x, x′) := min({1, dP (x′)dQ(x′,x)
dP (x)dQ(x,x′) }).

These will further be denoted simply by lower-case letters, i.e. q(x, .) := dQ(x, .).

5.5.3 Simultaneous sampling

The proposed extension of MCMC for imprecise probability models lies in sampling

a set of chains targeting all the distributions in some credal set M. We will therefore

first discuss how to sample from some set of distributions simultaneously. Let

ΓP : A → X be a mapping which transforms some ancillary random variable A

with known distribution PA into a random variable with distribution P . Then

ΓP (A) d= X ∼ P , which means that for functions f : X → R, we can use the

ancillary random variable to compute the expected values EPA
f(ΓP (A)) = EP f(X).

As an example, let P be an exponential distribution with rate λ. We can choose

the ancillary random variable to be A ∼ Unif((0, 1)) and ΓP : [0, 1] → R : ΓP (A) =
−log(1−A)

λ
. This ΓP , which is exactly the quantile function of the respective exponential

variable, satisfy ΓP (A) ∼ Exp(λ). This procedure is commonly reffered to as the
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inverse-transform method [74].

However, in order to extend the inverse-transform sampling to sets of distributions,

we define ΓM : A → 2X as a mapping which takes the union of all ΓP ; P ∈ M. Hence

ΓM(A) is a non-empty random set such that, by construction, ∀P ∈ M, ΓP (A) ∈

ΓM(A) a.s. For integrable functions of interest, f : X → R, it will therefore also

hold that ∀P ∈ M : f(ΓP (A)) ∈ f(ΓM(A)). We will define the expected value of f

over M by the Aumann integral [87, 127]

EMf := Ef(ΓM(A)) = {Ef(X) : X ∈ S(ΓM(A))}, (5.43)

where S(ΓM(A)) is the set of all integrable selectors of ΓM(A) [87], i.e. all random

variables X, such that X ∈ ΓM(A) almost surely.

Clearly, by construction, M ⊂ S(ΓM(A)), so

∀P ∈ M : inf EMf ≤ EP f, (5.44)

so we can use inf Ef(ΓM(A)) as a lower bound for infP ∈M Ef(X) = Ef .

Now, in the case of independent sampling, empirical approximation of ΓM(A) and

Equation 5.44 could be used to compute estimates on the lower bound for expected

values. Operations with sets are realized via Minkowski operators. Convergence is

assured by the strong law of large numbers [128]. But we shall construct dependent

samples in our MCMC scheme.

5.5.4 Markov chain Monte Carlo for imprecise models

Here we describe how trajectories of several Markov Chains can be constructed

simultaneously. The algorithm is based on an extension of the Metropolis-Hastings

procedure described in Section 5.5.2. A general propagation step can be rewritten

with an aid of ancillary random variables which will later serve a similar purpose as

in Section 5.5.3. Given the last position of the chain targeting distribution P is xk:
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1. Sample ancillary UQ ∼ Unif((0, 1)).

2. Construct a proposal step x′ = ΓQ(xk,.)(uQ).

3. Sample ancillary UA ∼ Unif((0, 1)).

4. Set xk+1 =


x′ if uA < aP (xk, x′)

xk otherwise

where aP (x, x′) = min({1, dP (x′)dQ(x′,x)
dP (x)dQ(x,x′) }) is the Metropolis-Hastings acceptance prob-

ability and ΓP , together with the respective U , represents a mapping, such that

ΓP (U) ∼ P as in Section 5.5.3.

This whole operation can be summarized such that Xk+1 = ΓKP (Xk,.)(UQ, UA) and ap-

plied recursively to describe the whole Markov chain via ancillary variables. Denoting

U0 an ancillary variable for sampling the initial position X0,

X0 = ΓP0(U0) (5.45)

Xk = ΓKP (Xk−1,.)(UQk, UAk). (5.46)

We will further use superscript P to specify the chain target distribution, thus

denoting XP
k the k-th position of the Metropolis-Hastings chain targeting P .

The ancillary variables can now be utilized for simultaneous sampling. Let M be

a credal set, a set of probability distributions on some common space X . Define

Xk = {ΓP k(UQk, UAk), P ∈ M} a set of k-th positions of respective Markov Chains

targeting distributions P ∈ M. Since X contains each individual sample, inf Xk ≤

ΓP k(UQk, UAk) = XP
k ,

1
n

k+n∑
i=k

inf f(Xk) ≤ inf
P ∈M

1
n

k+n∑
i=k

f(ΓP k(UQk, UAk))

= inf
P ∈M

1
n

k+n∑
i=k

f(XP
k ) = inf

P ∈M
ÊP f.

(5.47)
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Figure 5.14: An iteration of iMCMC. A new step x′ (orange) is proposed based on
current positions of all the chains (blue) in M, acceptance criterion a(x, x′) (red)
is computed and chains are propagated (black dashed) based on common random
variable U (green horizontal line). One of the sheaves, M2, is split during this step.

Similarly as in Section 5.5.3, we can use the sampled set-process as a lower estimate

of the lower expected value of interest.

The procedure can be visualised as follows. First, represent M by M ⊂ Rd, which is

trivial if M is a set of parametrized distributions. (Example: M = [1, 2] ⊂ R for

representing a set of exponential distributions, M, with rate parameters λ ∈ M .) In

order to keep an analogue to the Markov property for the constructed chain of sets,

we define random elements Y : M → X. These are random mappings representing

relation between individual distributions P ∈ M (aka M) and random samples, XP ,

related to them. In the notation introduced above, Xk = Yk(M) is the collection of

samples from all the distributions in M. Figure 5.14 depicts a sample of Yk (blue

line), proposed moves for each of the chains (orange line), evaluated acceptance

criteria (red line below), and new positions of the chains Yk+1 (dashed black line).

In the example, some chains accepted their proposals and some rejected.
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Figure 5.15: An example trajectory of a set of Markov chains. Depicted in red are 5
individual chains. Green area represents convex closure of sets of positions of 1000
chains.

An example of evolution of the set of chains is depicted in Figure 5.15. In this example,

we construct chains for an imprecise normal distribution with means µ ∈ [−2, 2].

Therefore M = [−2, 2]. The set-valued estimator, Equation 5.47 - left-hand side,

gives lower bound on EX̂ of −2.4 < 2.

5.5.5 Practical implementation

In this section we will describe how we can practically simultaneously propagate

even uncountably many chains. We achieve this by propagating sets of pairs (m, x),

where m ⊂ M and x ∈ X . These pairs represent that each of the Markov Chains

targeting P ∈ m is, at the given step, at the same position.

Denote MC k = {(m1
k, x1

k), (m2
k, x2

k), . . .} as the set of these pairs at step k. In the

introduced notation, Yk(y) = x ⇐⇒ ∃ pair (m, x) ∈ MC k : y ∈ m.

At each step, we require that ⋃i mi
k = M in order to propagate chains for all P ∈ M.

Also, omitting the details on boundaries, we require that, for each k, each P ∈ M

lies in exactly one of mi
k. For technical reasons, we will assume that the distributions

in M have non-empty intersection of their supports and that all chains start from a
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common initial point; thus MC 0 = {(M, x0)}. This requirement can be bypassed.

We choose a common proposal kernel Q for all P ∈ M. The MCMC procedure

described in Section 5.5.4 will proceed similarly only jointly for each of the pairs in

MC k. At each step, for each of the pairs, we will construct proposal position x′
i by

sampling from Q(xi
k, .). This will be common to all P ∈ mi

k because of the choice

of common proposal kernel Q and common ancillary variable UQ, and will depend

solely on the last position of the set of chains, xi
k. The ancillary decision variable UA

is again common to all chains, so one of three situations may occur. Either

1. ∀P ∈ mi
k : uA < aP (xi

k, x′
i),

2. ∀P ∈ mi
k : uA ≥ aP (xi

k, x′
i),

3. ∃P1, P2 ∈ mi
k : uA < aP1(xi

k, x′
i) ∧ uA ≥ aP2(xi

k, x′
i).

In cases 1,2, the whole pair (mi
k, xi

k+1) will be included in MC k+1. In the latter case,

we will instead include two new pairs into MC k+1, (mi+
k , x′

i) and (mi−
k , xi

k), based

on which P ∈ mi
k accept or reject the proposal. We refer to the latter situation as

branching.

The method is indicated in Figure 5.14. In the figure, we can see 4 distinct pairs

(mi
k, xi

k), common proposals x′i for each of the pairs, and a split occurring for m2
k.

MC k+1 therefore equals {(m1
k, x′

1), (m2+
k , x′

2), (m2−
k , x2

k), (m3
k, x3

k), (m4
k, x4

k)}.

Splitting of credal sets is generally an intractable task since we would need not only

to check uncountable many conditions, but also find a way how to represent an

arbitrary partition of mi
k. Nevertheless, in certain cases, this can be done efficiently.

Assume that the credal set M is a set of distributions from the same exponential

family. Their densities can therefore be represented in natural form as

p(x|η) = h(x)g(η) exp [ηT (x)] . (5.48)

Inserting Equation 5.48 into the criterion for accepting proposal x′, we obtain
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uA < aη(x, x′) = h(x′)g(η) exp [ηT (x′)] q(x′, x)
h(x)g(η) exp [ηT (x)] q(x, x′)

= h(x′)q(x′, x)
h(x)q(x, x′) exp [η(T (x′) − T (x))]

log(uA) − log
(

h(x′)q(x′, x)
h(x)q(x, x′)

)
< η(T (x′) − T (x)),

(5.49)

which is a linear condition if we represent M as M ⊂ R in the space of natural

parameters.

A similar simplification occurs also for joint distributions of independent random vari-

ables. A special case are hierarchical models if the imprecision is in variables without

parents like Bayesian inference with imprecise prior distributions. For inference on

model parameters θ in the light of observation x with imprecise hyperparameters η,

the posterior is:

pη(θ|x) = L(x|θ)p0(θ|η)∫
L(x|θ)p0(θ|η)dθ

. (5.50)

Plugging Equation 5.50 into the acceptance ratio for proposal τ :

a(θ, τ) = pη(τ |x)q(τ, θ)
pη(θ|x)q(θ, τ)

= q(τ, θ)
q(θ, τ)

L(x|τ)
L(x|θ)

p0(τ |η)∫
L(x|τ)p0(τ |η)dτ

p0(θ|η)∫
L(x|θ)p0(θ|η)dθ

= q(τ, θ)
q(θ, τ)

L(x|τ)
L(x|θ)

p0(τ |η)
p0(θ|η)

∝ exp [η (T (τ) − T (θ))] .

(5.51)

Another advantage of the finite implementation is that Xk will remain finite. This

enables us to evaluate inf f(Xk) through comparison of all elements instead of solving

an intractable optimization problem.

5.5.6 Representation through a set of inequalities

Although we may represent the splitting conditions by hyper-planes for a wide class

of models, tracking the branches could still be intractable. In order to facilitate this
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task, we will introduce how to numerically represent credal sets as sets of inequalities.

This poses some restrictions on M since it also needs to be represented in this way.

Assume that the imprecise model allows linear splitting as described in Section 5.5.5.

Denote C(M) a set of linear inequality constraints cT
j η > bj, such that M = {η :

Cη ≻ b}, where ≻ represents point-wise vector dominance. We rewrite Equation 5.49

as b(ua, x, x′) < s(x, x′)T η for the sake of compact representation. At each branch-

ing occurrence, the newly created sets m+
k , m−

k can be represented as new sets of

inequalities, such that

C(m+
k ) = C(mk) ∪ {s(xk, x′

k)T η > b(uA, xk, x′
k)},

C(m−
k ) = C(mk) ∪ {−s(xk, x′

k)T η > −b(uA, xk, x′
k)},

(5.52)

while omitting the boundary cases again. Branching occurs if ∃η1, η2 : s(x, x′)T η1 >

b(uA, x, x′) ∧ s(x, x′)T η2 < b(uA, x, x′). This can be checked by solving two linear

programs. Define

b := min
η∈m

s(x, x′)T η,

b := max
η∈m

s(x, x′)T η = − min
η∈m

−s(x, x′)T η.

(5.53)

Condition η ∈ m represents the set of linear inequality constraints C(m). Clearly, b

and b represent achievable bounds on b = s(x, x′)T η so branching occurs iff b ∈ (b, b).

If b < b, then all η ∈ m accept the proposal x′. If b > b, then all η ∈ m reject it.

This procedure would add a new constraint at each branching occasion. This might

eventually make some of them redundant. Whether a constraint is redundant and

can be removed from C(m) can be checked every couple of iterations in order to

decrease the size of involved linear programs. This can be done for each constraint

cT
j η > bj in C(m) by either:

• Solving minη∈m cT
j η. If the solution is greater than bj, then the constraint is

redundant.
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• Solving a dual problem to minη∈m cT
j η. If constraint j is inactive, it is redundant.

5.5.7 Credal set merging

Branching emerging from the above mentioned procedures would produce an ever

increasing number of partitions of M and become intractable for construction of

long chains. In this section, we will show how to partially counter this tendency

through special choice of the proposal kernel Q.

qm(x′|x) = (1 − α)qrw(x′|x) + αq(x′). (5.54)

If the proposal kernel is independent on the last position of the chain it enables

proposing the same position even for deviated chains with positive probability that

all will accept this proposal. On this occasion, previously branched chains would

coalesce. This tendency can also be achieved by introducing the independent proposal

distribution as a component of a proposal mixture (Equation 5.54) together with the

standard random walk kernel.

Occasional merging of the split branches allows us to decrease the computational

demands of the procedure. If it is allowed, we need to adjust our implementation in

order to keep track of the individual chains in order to estimate Ef by the minimum

of MCMC estimates over M as on the right-hand side of Equation 5.47. In the

uncountable case, an expensive post-hoc analysis is required in order to untangle all

possible trajectories of the chains and obtain theoretically tighter bounds than from

the set representation on the left-hand side of Equation 5.47. Random set induced

bounds on Ef are therefore used in practice.

Nevertheless, the branching tendency for uncountable credal sets still leads to

exponential growth of credal set partitions. Although the merging is frequent,

it cannot be guaranteed that the number of partitions will remain within limits

imposed by our hardware. A pragmatic solution to this problem is to limit ourselves
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Figure 5.16: An example of evolution of the number of credal set partitions for
|M| = 1000.

to calculations with finite credal sets. For an infinite one, it is possible to create its

finite subset and use the resulting estimators to estimate lower expectation over the

original set. A combination of a dense finite subset of the original credal set with

the above mentioned methods can counter both the computational costs of tending

to large number of chains individually and the pathological excessive branching.

Evolution of the number of branches for |M| = 1000 for a simple model of imprecise

normal distribution is depicted in Figure 5.16. During the evolution, the active

amount of branches remains a fraction of the original credal set size.

5.5.8 Discussion

We have introduced several steps towards Markov Chain Monte Carlo methods

for imprecise probabilities based on an extension of Metropolis-Hastings algorithm.

The procedure can be used to obtain conservative bounds on extremes of MCMC

estimators arising from Markov Chains targeting individual distributions in the credal

set. For a class of problems, it was shown in Section 5.5.5 how to design a numerically

tractable representations of the set of individual chains even for uncountable credal

sets.



5.6. Simultaneous sampling for uniform distribution 169

Nevertheless, we judge that the methodology is still not ready for practical use.

For uncountable credal sets, the exact procedure leads to high demand on computa-

tional resources through excessive branching of the chains. Although this tendency

can be limited to some extent, as described in Section 5.5.7, it cannot be guaranteed

that these requirements will be bounded. A heuristic approach was proposed in

Section 5.5.7 based on finite approximation of infinite credal sets. Preliminary results

show that this could limit the computational demands at the cost of introducing

additional error to the estimates.

No theoretical analysis of convergence was provided. As shown in Section 5.5.4, the

procedure practically constructs a Markov Chain (Yk) of mappings M → X with

unspecified structure. Properties of associated random sets Xk = Yk(M) might be

more accessible.

5.6 Simultaneous sampling for uniform

distribution

In this section we aim to explore further the imprecise Markov Chain Monte Carlo

method proposed in Section 5.5. The method was presented on a general inference

problem with a set of target distribution. This section will investigate its properties

on a simple model.

5.6.1 Nested set of uniform distribution

The target set of models is a nested set of uniform distributions. This provides both

simple enough problem for some theoretical investigation. Simultaneously, it provides

possible applications for models which can be modelled as inverse sampling procedures

or for creating predictive random sets for inferential models from Section 3.4.5.



5.6. Simultaneous sampling for uniform distribution 170

For simplicity, we consider a one-sided nested set of uniform distributions M =

{Unif(0, m) : m ∈ [0, 1]}.

If we construct a random set from a seed variable A ∼ Unif(0, 1) by

R = {A max P : P ∈ M} , (5.55)

where max P represents the maximum value the uniform distribution P = Unif(0, m)

can obtain (thus max P = m), we obtain exactly predictive random set from Sec-

tion 3.4.5.

5.6.2 Transition kernel for set of uniform distributions

Considering each distribution P ∈ M individually, the acceptance ratio a(x, x′) is

simple to evaluate since the uniform distribution has constant density on its support.

a(x, x′) =


1; x′ ≤ max P

0; x′ > max P

(5.56)

Corollary 5.6.1 (Persistent zero.). Since M ∋ Unif(0, 0) ≡ 0,

then 0 will be present in each collection of samples Xk = Yk(M).

Corollary 5.6.2 (Explicit starting sample.). Since M ∋ Unif(0, 0) ≡ 0,

then {0} = ⋂
P ∈M supp(P ) = X0.

The transition from Xk to Xk+1 is depicted on Figure 5.17. Algorithmically, given a

proposal A ∼ Unif(0, 1),

Xk+1 = {x ∈ Xk : x ≤ A} ∪ {A}. (5.57)
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Figure 5.17: Transition of the simultaneous sampling of nested uniform distributions.
The “X” mark individual elements of X

5.6.3 Asymptotic properties

The constructed process is a random set process. To explore its properties, we

investigate the properties of individual random sets (from Section 3.3.3).

First trivial observation is that the contour function γ(x) = δ(x). This is because

0 ∈ Xk, ∀k and the probability of convering x is zero since we sample individual

points.

Next, consider general (for simplicity) closed set E ⊂ [0, 1] and the hitting probability

Tk(E) = P (Xk ∩ E ̸= ∅). Considering Metropolis-Hastings proposal A ∼ Unif(0, 1),

we can express Tk+1(E) using law of total probability considering cases:

1. Xk ∩ E ̸= ∅ and A ≥ min(E),

2. Xk ∩ E = ∅ and A ∈ E.

Therefore

Tk+1(E) = Tk(E) · P (A > min(E)) + (1 − Tk(E)) · P (A ∈ E)

= Tk(E) · (1 − min(E)) + (1 − Tk(E)) · (max(E) − min(E)).
(5.58)
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If there exist a stable distribution such that Tk(E) = Tk+1(E), then

T (E) = T (E) − T (E) min(E) + max(E) − min(E) − T (E) max(E) + T (E) min(E)

= T (E)(1 − max(E)) + max(E) − min(E)
(5.59)

Therefore

T (E) = max(E) − min(E)
max(E) , (5.60)

with a special edge case of T ({0}) = 1 due to Corollary 5.6.1.

Theorem 5.6.1 (Fixed point exists.). For fixed E ⊂ [0, 1], there exists T (E) such

that T (E) = Tk(E) = Tk+1(E).

Proof. Since the mapping [0, 1] ∋ Tk(E) → Tk+1(E) ∈ [0, 1] in Equation 5.58 is

continuous surjection on a compact closed set, there exists at least one fixed point

according to Brouwer fixed point theorem.

5.6.4 Numerical comparison

In Table 5.3 we compare the hitting probabilities of investigated sampling method-

ologies. On this particular example, it can be seen that the proposed simultaneous

sampling method has at least the same hitting probability than simple uniform sam-

pling. Nevertheless, if we compare it with a naive construction of a valid predictive

random set R from Equation 5.55, the hitting probabilities are lower. For |E| → 0,

the hitting probability tends to 0.
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Table 5.3: Comparison of probability of hitting E with random uniform sample A,
stable distribution of the proposed procedure T (E) and valid predictive random set
R.

E P (A ∈ E) T (E) P (R ∩ E ̸= ∅)

[0,1] 1 1 1

[1/2,1] 1/2 1/2 1/2

[1/4,1] 3/4 3/4 3/4

[1/4, 1/2] 1/4 1/2 3/4

[1/2,3/4] 1/4 1/3 1/2

5.6.5 Conclusions

In this section, we have demonstrated a simple investigation into properties of

simultaneous sampling methodology introduced in Section 5.5 on nested set of

uniform distributions. The investigated model is simple enough to calculate the

evolution of hitting probabilities and even find a stable hitting distribution for specific

class of events (closed subsets of [0, 1]).

The constructed random set process still consist of individual samples of measure

0. This itself disqualifies the method from possibility of being used as a sampling

technique for constructing predictive random sets for inferential models framework

(Section 3.4.5) since the coverage probability γ(x) = 0, ∀x ∈ [0, 1], which is does not

stochastically dominate uniform distribution.

Nevertheless, the methodology still poses beneficial qualities, namely construction of

singular point samples at each step, which makes it useful for practical numerical

applications. As shown in Table 5.3, the method provides sligtly higher hitting

probabilities for particular events, which may lead to better frequentist coverage

properties than simple single-point sampling with minimal additional computational

effort.
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Conclusions

The thesis presented multiple results from investigation of application of imprecise

probabilities to system reliability engineering. Emphasis was put on using survival

signature models (Section 2.3) and their versatility in system analysis (Section 2.3.5).

Computation of system signatures is still a challenging task, but recent results already

allow to compute them for large real-world systems (Section 2.3.6).

Further investigations were focused on application of imprecise probability methods

for statistical inference of system reliablity. Reliable and robust statistical inference

of system component failure laws is necessary to provide confidence in the system

reliability assessment itself. Apart from revision of generally used statistical methods

like maximum likelihood estimation and Bayesian inference, fiducial methods based

on direct inversion of the structural uncertainty model and methods based on

imprecise probabilities were investigated (Section 3.4). These promise to provide

additional benefits in terms of robustness and inferential validity of the constructed

models (Section 3.4.5), but at the cost of increased computational complexity, which

was attempted to bypass by the proposed sampling algorithm (Section 5.5 and

Section 5.6).

In conclusion, survival signatures provide effective representation of complex systems.
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Using survival signatures transfers combinatorial complexity of system reliability

assessment to a preprocessing phase and allow efficient computations afterwards.

The signatures preserve the monotone structure of coherent systems, which facilitates

analyses of systems subjected to severe uncertainty. Imprecise probabilities show as

a versatile tool for uncertainty modeling including problems of statistical inference.

Imprecision allows us to avoid including additional assumptions into statistical models

and lead to well-calibrated statistical methods like fiducial inference, nonparametric

predictive inference or inferential models. This family of fiducial methods allow us to

construct Bayes-like posterior distributional estimates for the parameters of interest

without the need of artificially specifying prior distributions needed for Bayesian

inference. At the moment, the methods are often computationally and analytically

more demanding which limits their practical applications to specific cases.

Survival signatures have been demonstrated as a promising methodology for system

reliability analysis with uncertainty modelled using imprecise probability theory.
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