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Abstract

During the lifetime of a system, repairs may be performed when the system fails.

It is most common to assume either perfect repair or minimal repair. However, a

repair actually will sometimes be between minimal repair and perfect repair, which

is called imperfect repair. The Kijima type I virtual age model can be used to model

these types of repairable systems. This model contains a parameter which reflects

the restoration level after each repair.

This thesis considers statistical inference for the Kijima type I model, which deals

with repairable systems that can be restored to the operating state through system

replacement or repair after the system fails. We present Bayesian analysis for the

Kijima type I virtual age model, including consideration of the system’s overall time

to failure if a given number of repairs is possible. We use both Bayesian analysis,

which specifies a single prior distribution, and a robust Bayesian analysis approach.

A set of prior distributions is used in robust Bayesian analysis in order to deal with

uncertainty regarding prior knowledge of the Kijima type I model parameters in a

flexible way and to enhance the objectivity of the analysis in an imprecise Bayesian

framework by computing predictive posterior distribution bounds for the reliability

function of the system.

Finally, we discuss the use of the developed methods to decide about optimal

replacement. Optimal replacement is the methodology of replacing a system compo-

nent at the most advantageous or efficient moment to increase its performance and

minimize overall expected costs. Two policies are introduced with cost functions
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based on time and number of failures to make a decision on optimal replacement

time or optimal number of failures of the system under the Kijima type I model us-

ing the Weibull distribution. These policies illustrate how the Bayesian and robust

Bayesian analysis can be used for inferences about the optimal replacement and the

expected total cost.



Declaration

The work in this thesis is based on research carried out at the Department of Math-

ematical Sciences, Durham University, Durham, England. No part of this thesis has

been submitted elsewhere for any other degree or qualification, and it is all my own

work unless referenced to the contrary in the text.

Copyright © 2024 by Mosa Mbark Alsabhi.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

v



Acknowledgements

First and foremost, I am expressing my gratitude to my almighty Allah for the

numerous blessings he has given me, both in my general life and in accomplishing

this thesis specifically.

I would like to convey my grateful appreciation and gratitude to my supervisors,

Professor Frank Coolen and Dr Jonathan Cumming, for their support and guidance

throughout my PhD journey. I truly appreciate all your patience and invaluable

mentorship, which has significantly supported my progress.

I am extremely thankful to my parents for their unwavering support, prayers, and

belief in me throughout my life. I also thank my brothers and sisters for their prayers

and encouragement. Thank you to my wife, Zainab, for her patience, support, and

understanding during the times when my work demanded much of my attention.

I am grateful to the Saudi Arabian Cultural Bureau in London and Taibah

University in Saudi Arabia for granting me a scholarship and supporting my studies

abroad financially. I also extend my thanks to Durham University for providing the

facilities and resources that have helped me study smoothly. Lastly, I would like

to express my gratitude to all of my friends and anyone else who has helped and

supported me in any way in my educational.

vi



Contents

Abstract iii

Declaration v

Acknowledgements vi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Weibull distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3 Virtual age models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Basic models of repairable systems . . . . . . . . . . . . . . . 9

2.3.3 Kijima models . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.2 Bayesian statistics . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 Markov Chain Monte Carlo (MCMC) . . . . . . . . . . . . . . 16

3 Bayesian inference for Kijima type I model 18

3.1 Likelihood and posterior function for the Kijima type I model . . . . 20

3.2 Mixed priors for the parameters: continuous and discrete . . . . . . . 23

3.2.1 Posterior distribution and Bayesian estimators . . . . . . . . . 24

vii



Contents viii

3.2.2 Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 Continuous priors for the parameters . . . . . . . . . . . . . . . . . . 33

3.3.1 Posterior distribution . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Experimental analysis . . . . . . . . . . . . . . . . . . . . . . 35

3.4 The system reliability function after each repair . . . . . . . . . . . . 38

3.5 A system reliability function for a given number of repairs . . . . . . 47

3.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Robust Bayesian inference for Kijima type I model 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 Selecting the set of prior distributions . . . . . . . . . . . . . . . . . . 60

4.3 Set of prior distributions for repair effectiveness parameter . . . . . . 61

4.3.1 Simulation study of prior assumptions regarding repair effec-

tiveness parameter . . . . . . . . . . . . . . . . . . . . . . . . 63

4.4 Sets of priors for scale and repair effectiveness parameters . . . . . . . 71

4.4.1 Simulation study of prior assumptions regarding scale and re-

pair effectiveness parameters . . . . . . . . . . . . . . . . . . . 73

4.5 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5 Optimal replacement decisions 82

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.2 Policy A: Replacement decision depending on time . . . . . . . . . . 86

5.2.1 Robust Bayesian replacement decision . . . . . . . . . . . . . 91

5.3 Policy B: Replacement decision depending on number of repairs . . . 97

5.3.1 Robust Bayesian replacement decision . . . . . . . . . . . . . 101

5.4 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6 Conclusions 109

Appendix 113

A Trace and histogram plots of MCMC simulation study 113



Contents ix

B Posterior predictive distribution and reliability function correspond-

ing to continuous priors 116

B.1 Posterior predictive distribution . . . . . . . . . . . . . . . . . . . . . 116

B.2 Reliability function with fixed λ and β . . . . . . . . . . . . . . . . . 117

B.3 Reliability function with fixed β . . . . . . . . . . . . . . . . . . . . 118

Bibliography 119



Chapter 1

Introduction

1.1 Overview

In reality, many engineered objects (EOs) [5], such as production systems, cars, and

aircraft, are repairable. A repairable system is one that can be returned to a satis-

factory state using any method other than replacing the entire system after it fails

to function [2, 16]. As the costs related to the usage of some engineered objects have

become higher, it is important to ensure the continued functioning of these systems

in terms of cost and reliability. Failure of some parts in systems, such as aircraft

and patient monitoring systems, can have dangerous or even deadly consequences.

Therefore, maintaining their functionality through high-quality repairs is important

to prevent such severe outcomes.

Modelling work supposes that the reliability of a repairable system is based on

both the ageing and the effectiveness of the repair. Most studies assumed that re-

pair effectiveness is presented as perfect repair, called "as good as new" (AGAN),

or minimal repair, called "as bad as old" (ABAO), where the corresponding proba-

bilistic models for successive failures are the Renewal Processes (RP) and the Non-

Homogeneous Poisson Processes (NHPP), respectively [21, 76]. Repair efficiency

typically lies somewhere between these two extreme scenarios, as it is often better

than minimal repair but is not necessarily perfect, commonly known as imperfect

repair [15, 21, 76].

1
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Modelling the effectiveness of imperfect repair is important in various scenarios,

particularly when planning maintenance strategies or estimating system lifetimes.

Examples of such systems include components in infrastructure such as nuclear

power plants or transportation systems such as aeroplanes and trains [21]. Also,

railway track repair, another example, can benefit from an imperfect repair model

due to the variety of failure modes and repairable nature of track components [52, 64].

These systems may still appear to be in normal working condition even at the end

of their planned life. Some reliability requirements are important to justify the

extension of their functioning life. One approach is to account for the effectiveness

of repair actions. These repairs, carried out after failures, aim to restore the system

to a functional state. Modelling the effects of these repair actions is of great practical

interest and is an important first step in assessing corrective maintenance efficiency

[21].

Several models to describe imperfect repair have been introduced. The most

commonly used models are two virtual age models, which Kijima introduced [39],

namely the Kijima type I and Kijima type II models. Doyen and Gaudoin [21]

have introduced two other virtual age models, namely the Arithmetic Reduction of

Age model (ARA) and the Arithmetic Reduction of Intensity model (ARI). Virtual

age models describe system performance after the repair action process to make an

inference about a system’s status after maintenance [25].

This thesis focuses on the Kijima type I model combined with the Weibull dis-

tribution, which deals with repairable systems that can be restored to the operating

state after repair when a system fails. We will use Bayesian inference for this model

because the engineers’ prior knowledge of the failure process can significantly im-

prove the model’s inferences by identifying prior assumptions or beliefs about the

model’s parameters and updating it with observed failure data in order to obtain

the posterior distribution and make inferences. Modelling and inference for the

Kijima type I model are typically complex and challenging. Most literature uses

numerical methods to deal with the complex nature of virtual age models to make

inferences. We develop an analytical method and also employ a Markov Chain

Monte Carlo (MCMC) approach, using Bayesian methods, for estimating Kijima
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type I model parameters. The results are then compared with those obtained from

Maximum Likelihood Estimation (MLE). To predict the system reliability with the

uncertainty until the time to replace it when the number of failures is known, we

develop a novel Bayesian method for the Kijima type I model using the posterior

predictive empirical reliability function.

In addition to the Bayesian analysis, which specifies a single prior distribution, we

also present a robust Bayesian analysis approach, which suggests using a set of prior

distributions. Consequently, we need to define a set of prior distributions, which lead

to a set of posterior inferences. In this context, this approach is attractive because

it allows for modelling partial or incomplete prior knowledge of failure distribution

parameters in a flexible way using bounds to enhance the objectivity of the analysis

in an imprecise Bayesian framework. Therefore, we propose a novel approach to the

robust Bayesian analysis of the Kijima type I model based on a set of priors. After

identifying a set of prior distributions, we will compute posterior bounds to achieve

robust inferences.

In order to decide whether to replace or repair a system, it is necessary to take

both corrective and preventive replacement costs into account. These costs play a

crucial role in evaluating the consequences of system cost and reliability. In this

study, we analyse two commonly used maintenance or replacement strategies to

determine the optimal time and the number of failures for the replacement of the

system. We will use the Kijima type I model to make a decision and analyze optimal

replacement policies. In this thesis, we will employ our developed inference methods

to examine both situations by incorporating Bayesian and robust Bayesian inferences

and making decisions. The following are some of the accomplishments of this thesis:

1. Developing a novel method using Bayesian analysis to predict the total pre-

dictive system reliability for a given number of repairs.

2. Developing a novel approach using robust Bayesian analysis. This approach

uses a set of prior distributions to flexibly model partial or incomplete prior

knowledge of the Kijima type I model parameters. By defining a set of prior

distributions for the effective repair parameter and the scale parameter with
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the effective age parameter, we compute the posterior predictive empirical

reliability bounds to achieve robust inferences.

3. Developing and predicting the optimal replacement time and the number of

repairs needed based on Bayesian methods and robust Bayesian analysis. This

analysis includes both corrective and preventive replacement costs, which are

important for evaluating system cost and reliability.

1.2 Outline of this thesis

The organization of this thesis is as follows: In Chapter 2, preliminary concepts

relevant to the topics studied in this study are introduced and summarized. The

chapter offers an overview of various lifetime distributions that are applicable in

the context of reliability applications and some general Bayesian concepts. Also,

we provide an overview and discussion of virtual age models, including those for

perfect, minimal, and imperfect maintenance, which can be described by virtual age

models.

In Chapter 3, we consider the Kijima type I model and a Weibull lifetime distri-

bution for the virtual age model inferences. We present a Bayesian method for this

model to make inferences as an alternative method to frequentist techniques. We de-

velop an analytical method using the Bayesian method for the Kijima type I model

parameters, and another method uses MCMC. Also, we develop a novel Bayesian

method for the Kijima type I model to predict the system’s reliability using pos-

terior predictive reliability after each repair and the posterior predictive empirical

reliability function to predict the total system reliability with the uncertainty until

the time needed to replace it when the number of failures is known. A simulation

analysis is then conducted to investigate the performance of the presented methods.

This chapter was presented at the 15th International Conference of the ERCIM WG

on Computational and Methodological Statistics (CMStatistics, 17 - 19 December

2022).

Chapter 4 presents robust Bayesian statistical inference by introducing a set of

prior distributions for some parameters of the Kijima type I model using the Weibull



1.2. Outline of this thesis 5

distribution. The robustness was evaluated using the upper and lower bounds of

the empirical posterior predictive reliability function based on the introduced set

of priors using the MCMC method. Then, to study the effect of the set of prior

distributions, a simulation investigation is conducted.

In Chapter 5, we illustrate the use of the developed methods for optimal re-

placement policies using the Kijima I model. We illustrate how Bayesian and robust

Bayesian methods can be applied to infer the optimal replacement time and the

expected total cost.

Part of the results from Chapter 4 and 5 were presented at the 12th IMA Interna-

tional Conference on Modelling in Industrial Maintenance and Reliability (MIMAR,

4 - 6 July 2023).

Finally, Chapter 6 summarizes the conclusions of this thesis. Also, we point to

some future work to extend what was presented in this thesis.



Chapter 2

Background

This chapter introduces the relevant concepts underlying the research in this thesis.

First, we present a general outline of system reliability and discuss some of the

common lifetime distributions that are usually used. Then, we provide an overview

of virtual age models and define the Kijima type I model combined with the Weibull

distribution. Statistical inference for this model is the main topic of this thesis.

Finally, we introduce an overview of Bayesian inference.

2.1 Introduction

A system’s reliability is generally defined as its ability to successfully perform its

intended function during a period of time [49]. In reality, the longer a system can

perform its intended function, the more reliable it is. Reliability deals with design

and analysis activities that extend a component’s life by controlling or eliminating

potential failure conditions, such as reducing harmful environmental impacts, reduc-

ing loads and pressures applied to a system during its use, and providing preventive

maintenance programs to reduce the number of failures [55].

In reality, if a system is repairable, it can be restored to operating condition

after failure by some method other than replacing the entire system. Examples of

repairable systems include mechanical systems, software systems, medical technol-

ogy, and manufacturing processes [45]. To extend their functioning life, corrective

maintenance must be carried out to restore the system’s functioning whenever it

6
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fails [21]. Repair, or corrective maintenance (CM), restores the functional state of a

system so that the system can return to normal functioning. Therefore, corrective

maintenance plays a significant role in increasing the life span of a repairable system,

which has a considerable impact on a system’s overall reliability [38].

One approach to achieving system reliability is by considering the impact of

repair actions or corrective maintenance. Repair activities are undertaken following

a failure with the objective of restoring the system to a state where it can resume

its intended function. The efficiency of maintenance is subject to several models: (i)

"as bad as old" (ABAO), also known as minimal repair, where the corresponding

model is a Non-Homogeneous Poisson Process (NHPP); and (ii) "as good as new"

(AGAN), also known as perfect repair where the Renewal Processes (RP) is the

corresponding model. The ABAO approach assumes that the system will return to

the same state as before the failure. The AGAN assumption is that the process of

repair results in a state that is equivalent to a new system. Maintenance models

that address imperfect repair indicate that the system state after repair is between

AGAN and ABAO. Virtual-age models such as the Kijima type I model are examples

of such models [17, 21].

2.2 Weibull distribution

The Weibull distribution [57] is commonly used for modelling reliability and for

modelling time to failure. It has been extensively employed for modelling data in

engineering, reliability, and biological studies [57]. Suppose that T , representing

time to failure, has the Weibull distribution [49], then, T has the probability density

function

f(t) = λβtβ−1 exp (−λtβ) , (2.2.1)

for t > 0, with shape parameter β > 0 and scale parameter λ > 0. The reliability

function of the Weibull distribution is

R(t) = P (T > t) = exp(−λtβ) , (2.2.2)
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and the hazard rate is

h(t) =
f(t)

R(t)
= λβtβ−1 . (2.2.3)

The hazard rate h(t) determines whether a system’s failure rate decreases or in-

creases with age [61]. The hazard rate is a strictly increasing function if β > 1,

and it is strictly decreasing if β < 1. When β = 1, the Weibull distribution has a

constant hazard rate and is equivalent to the Exponential distribution [49, 51]. The

Lognormal and Gamma distributions are among other distributions used for failure

data analysis, but we do not consider them in this thesis.

2.3 Virtual age models

Assume that a repairable system begins operating at time t = 0. The time t will

be called the calendar age of the repairable system since it began operation. The

virtual age of a system is the age that describes the state of a system after a repair

action [25]. Modelling work supposes that the virtual age involves quantifying the

effect of repair on the lifetime of the system, which assesses the system’s condition

relative to its operational and repair history, while the calendar age refers to the

time that has passed since the system started functioning [23]. It is clear that the

virtual age depends on how well previous repairs were done. There are some types of

repair quality that can be taken into account in the virtual age. In case of minimal

repair, the virtual age is equivalent to the calendar age. In the case of perfect repair,

the virtual age of a system resets to zero when a repair takes place, and the state of

the system is as if it were new. The imperfect maintenance scenario determines that

after a repair, the virtual age returns to a time between zero and the calendar age,

and the state of the system improves to some intermediate level between as good as

new (AGAN) and as bad as old (ABAO) [20, 25].

2.3.1 Notation

The failure events that occur randomly during time can be described by a point

process Nt, t ≥ 0, where Nt is the number of failures observed during a period of
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time [0, t] [18, 23]. In this thesis, it is assumed that repairs are done after every

failure and that corrective maintenance times are negligible. The failure intensity,

which completely determines the distribution of the random processes that define

the failure times of a repairable system, is represented as follows:

λt = lim
∆t→0

1

∆t
P (Nt+∆t −Nt− = 1|Ht−), t ≥ 0 , (2.3.4)

where Ht− represents the past of the failure process up to time t, and Nt− represents

the number of events before time t.

Prior to the occurrence of the first failure, the intensity of failure is supposed

to be a continuous function of time, λ(t), referred to as the initial intensity. Typi-

cally, it is assumed that the system under consideration will experience continuous

deterioration before failure, so the initial intensity will increase with time [17].

2.3.2 Basic models of repairable systems

2.3.2.1 As good as new

The Renewal Process (RP) can be used to model a repairable system where the times

between failures are independent random variables with identical distributions. The

times can represent a failure of any repairable system, for example, a production

system. When the system fails, it is immediately replaced with an identical system

or repaired to its original state. This means that the process considers the system

to be restored and returns to a state identical to the new system (as good as new)

after repair [23, 32]. The failure intensity for a renewal process is

λt = λ(t− TNt−
) ,

where Nt− represents the number of failures during time interval [0, t] and TNt−

indicates the last renewal time, so t−TNt−
is the duration that has passed since the

previous renewal.
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2.3.2.2 As bad as old

The as bad as old repair usually assumes that the repair process does not change

the state of the system before its failure and is usually known as minimal repair.

This means that a repair does not affect the subsequent random behaviour of the

system as if no failure had taken place [23, 78]. In this case, the random process is

assumed to be a Non-Homogeneous Poisson Process (NHPP), with failure intensity

being a continuous time function represented as

λt = λ(t) .

Based on this equation, the failure intensity after the repair remains the same as

before the repair. A minimal repair does not affect the system’s future behaviour

as if no failure takes place [21].

2.3.3 Kijima models

Kijima and Sumita [41] introduced the concept of the virtual age, and Kijima [39]

was the first to introduce virtual age models. Kijima virtual age models are based

on the idea that repair actions reduce the age of a system [25]. Modelling work

supposes that at any given failure time t, a corresponding virtual age of the system

is linked with it, which is a function of the number of repairs and the failure time.

Kijima’s models have become popular for reliability applications because they allow

the effect of repairs to be modelled from an as-good-as-new Renewal Process (RP)

to an as-bad-as-old Non-Homogeneous Poisson Process [25, 73].

Modelling work supposes a repairable system observed from the starting of the

operation T0 = 0, where Ti denotes the time of the ith failure or repair and the times

between failures are given by x1, x2, . . . , xn [53, 46]. Let Vn represent the virtual

age of the system immediately after the (n)th repair [39]. If Vn−1 = y, then the nth

failure time has cumulative distribution function

FTn(x|y) =
F (x+ y)− F (y)

1− F (y)
(2.3.5)
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where FTn(x|y) represents the conditional CDF after each repair. At the nth failure,

the real age for any system is denoted by Sn, which is given by

Sn =
n∑

i=1

xi , (2.3.6)

where S0 = 0.

Kijima introduced two models of the virtual age [39]. The first one, called the

Kijima type I model, assumes that the nth repair has the ability to remove the

damages that occurred between the (n − 1)th and the nth repair. The virtual age

after the nth repair is

Vn = Vn−1 + qxn , (2.3.7)

where when the system is new, V0 = 0. The virtual age after the first repair is

V1 = qx1. The virtual age after the second repair will be V2 = q(x1 + x2). Vn

represents the virtual age that is instantaneously subsequent to the nth repair, and

q ∈ [0, 1] is a parameter that represents the effect of a repair. Modelling work

supposes that when q = 0, this model indicates perfect maintenance (AGAN), and

when q = 1, it represents minimal maintenance (ABAO). Furthermore, in the case

of 0 < q < 1, the model corresponds to imperfect repairs [37].

The Kijima type II virtual age model assumes that the nth corrective maintenance

has the ability to remove the cumulative damage for both current and previous

failures. The virtual age is

Vn = q(Vn−1 + xn) , (2.3.8)

where q is the parameter that describe the efficiency of the nth repair, 0 ≤ q ≤ 1 and

when the system is new, V0 = 0. The virtual age after the first repair is V1 = qx1,

and after the second repair, it is V2 = q(qx1 + x2). Therefore, Vn can be expressed

as

Vn = q(qn−1x1 + qn−2x2 + ....+ xn) =
n∑

i=1

qn+1−ixi . (2.3.9)

To understand the concepts related to the virtual age of the Kijima type I model,

it is critical to analyze the relationship between real age and virtual age while varying
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Figure 2.1: Virtual age against real age for varying q values [74]

the value of q. Figure 2.1 shows the relationship between real age and virtual age

according to q based on the Kijima type I model, where Sn represents the time of the

nth failure (real age), and Vn represents the virtual age directly before nth failure.

Figure 2.1 (a) corresponds to minimal repair, where the virtual age continues to

increase as the actual age increases, which means that nothing changes after each

repair. Therefore, the virtual age is equal to the actual age. Figure 2.1 (b) represents

imperfect repair where the virtual age has been reduced between minimal and perfect

repair. Figure 2.1 (c) represents perfect repair as q = 0, where the virtual age is

reduced to zero after each repair [74].

The Kijima type I model assumes that corrective maintenance will only deal with

the damages and the wearout created during the last operation period. On the other

hand, the Kijima type II model assumes that corrective maintenance could address

all the wear out as well as damages that are accumulated till the current failure time

[53]. The Kijima type I and type II models can be applied to a single repairable

system to analyze the effects of repairs over time. Additionally, the Kijima models

can be extended to analyze multiple identical systems [53]. This thesis focuses on

scenarios where multiple samples are collected from identical repairable systems,

which will be discussed in Chapter 3.
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2.3.3.1 Kijima type I model with Weibull distribution

For i = 1, 2, . . . , n, consider the virtual age Vi, and consider the observed time

between failures x1, x2, . . . , xn. The time Ti is distributed according to the following

conditional cumulative distribution function (CDF)

FTi
(x|vi−1) =

F (x+ vi−1)− F (vi−1)

1− F (vi−1)
, (2.3.10)

where F (t) is the CDF of the time to failure of a new system [39]. By assuming a

Weibull distribution for Ti with scale parameter λ and and shape parameter β, as

specified in Section 2.2, and using Equation (2.3.10), the ith failure time Ti has the

following CDF

FTi
(x|vi−1) =

exp (−λ(vi−1)
β)− exp (−λ(x+ vi−1)

β)

exp (−λ(vi−1)β)

= 1− exp (−λ(x+ vi−1)
β) exp(λ(vi−1)

β)

= 1− exp
[
−λ
(
(x+ vi−1)

β − (vi−1)
β
)]

.

(2.3.11)

Therefore, Ti has conditional probability density function

fTi
(x|vi−1) = βλ(x+ vi−1)

β−1 exp
[
−λ
(
(x+ vi−1)

β − (vi−1)
β
)]

, t ≥ 0 . (2.3.12)

By introducing the Kijima type I, where vi−1 = q
∑i−1

j=0 xj, into Equation (2.3.11),

the CDF of Ti is

FTi
(x|vi−1) = 1− exp

[
−λ

(
(x+ q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]
, (2.3.13)

the reliability function of Ti is

RTi
(x|vi−1) = exp

[
−λ

(
(x+ q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]
, (2.3.14)
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and the probability density function (PDF) of Ti is

fTi
(x|vi−1) = βλ(x+ q

i−1∑
j=0

xj)
β−1 exp

[
−λ

(
(x+ q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]
,

(2.3.15)

with the Weibull scale parameter λ > 0, the Weibull shape parameter β > 0, and

repair efficiency parameter 0 ≤ q ≤ 1.

Generally, these functions are used to study lifetime involving the repairable

system based on Kijima type I models. Therefore, they can be used to construct

theoretical results, such as inferences for repairable systems based on Bayesian meth-

ods. In this thesis, the Kijima type I model functions presented in this section will

be used for Bayesian inferences, which will be further discussed in Chapter 3.

2.4 Bayesian inference

2.4.1 Introduction

The term "Bayesian" is derived from Reverend Thomas Bayes, who proposed in

1763 what is presently referred to as Bayes’ theorem [49]. Since that time, scientists

have used Bayesian approaches for statistical inference. Mostly, subtle and unex-

pected difficulties with other statistical inference methods have caused the continued

renewal and development of the Bayesian procedure of reasoning [49]. The Bayesian

method is one of the two main methodologies for statistical inference and has prac-

tical applications in statistical fields and related areas. In the Bayesian approach,

the model parameters are considered random variables, and it is necessary to de-

fine a joint prior distribution that characterizes the understanding of the model’s

unknown parameters in addition to the data and the model. By employing Bayes’

theorem, the prior information is combined with the likelihood function to generate

a posterior distribution [43, 49].
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2.4.2 Bayesian statistics

In Bayesian statistics, modelling work supposes that parameters are treated as un-

known random quantities whose prior distribution demonstrates the current knowl-

edge about the parameter. Assume t1, t2, . . . , tn be the sample data D and θ =

(θ1, θ2, ..., θp) denote the parameters of the model [49]. Bayes’ theorem states that

g(θ|D) =

[∏n
i=1 f(ti|θ)

]
g(θ)

f(D)
=

f(D|θ)g(θ)
f(D)

, (2.4.16)

where f(D) is the marginal distribution of the sample such that

f(D) =


∫
θ

f(D|θ)g(θ)dθ, if θ is continuous∑
θ

f(D|θ)g(θ), if θ is discrete
(2.4.17)

where g(θ|D) is the posterior probability density of the parameter θ given a data

set D, and g(θ) is the prior probability density of the parameter θ, which represents

information about the parameter before the data is observed. f(D) is the marginal

probability density of the data, which is represented as a normalizing constant [49],

and f(D|θ) is the likelihood function. The likelihood is the function through which

the sample data D changes the prior beliefs about θ, and it may be considered as

the function that represents the information about θ which is in the data [49].

Since the factor f(D) does not depend on θ, and D is fixed, Bayesian updating

can be expressed according to

g(θ|D) ∝ g(θ)ℓ(θ|D) . (2.4.18)

Equation (2.4.18) presents that the posterior distribution is proportional to the

product of the likelihood function and the prior distribution. The constant of pro-

portionality, which is the marginal distribution of the data, is important to be sure

that the posterior distribution integrates or sums to one [29, 49].

In Bayesian decision theory, various loss functions are employed for Bayesian de-

cisions, including the squared error loss function and the absolute error loss function.
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These functions are used to make optimal decisions by minimizing the expected loss.

The loss function, often represented as L(θ, θ̂), measures the loss when a decision or

action is made using the estimated parameter value θ̂, while the actual parameter

value is θ [49]. The squared error is the most common loss function [49], which is

L(θ, θ̂) = (θ − θ̂)2 .

The Bayesian estimator refers to an estimator that aims to minimize the risk

or loss associated with the posterior distribution. For a squared-error loss function,

the value θ̂, which minimizes the expected loss, is the posterior mean in the Bayes

estimator for θ [49].

Predictive distributions quantify uncertainty about a future observation and play

an important role in statistics and related topics such as machine learning. In

Bayesian statistics, the posterior predictive distribution is the conditional distribu-

tion of a future observation given data observations [26].

The posterior predictive distribution for T is conditional on the observed data

D, and can be obtained as [16, 29]

f(t|D) =


∫
θ

f(t|θ)g(θ|D)dθ, if θ is continuous∑
θ

f(t|θ)g(θ|D), if θ is discrete
(2.4.19)

2.4.3 Markov Chain Monte Carlo (MCMC)

The Markov Chain Monte Carlo (MCMC) method is useful for approximating com-

plex posterior distributions [1]. It is based on the idea that a Markov chain converges

to a stationary distribution. The MCMC method is used to simulate a Markov chain

that converges to a target distribution, which is the desired posterior distribution of

the parameter of interest. The Gibbs Sampling and Metropolis-Hastings methods

are two of the most commonly used MCMC methods. The Gibbs Sampling method

involves sampling from the conditional distributions of each parameter of interest.

The Metropolis-Hastings method, which was presented in 1970 by Hastings [35], is

a random walk algorithm that uses an acceptance-rejection step to sample from the
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posterior distribution. It proposes a new state of the Markov Chain and then de-

cides whether or not to accept it based on the acceptance probability. Both methods

are useful for obtaining a sample from the posterior distribution of the parameters.

However, if there is no closed form or known conditional distribution for a parame-

ter, Gibbs sampling is not applicable, and Metropolis-Hastings (MH) might be used

[28].

The random walk chain of the Metropolis-Hastings algorithms is suitable for a

diverse range of Bayesian inference problems. With the Metropolis-Hastings algo-

rithm, samples from the conditional posterior distribution are sampled by proposing

new values from a proposal distribution and these values are accepted according to

an acceptance proportion. Assume we wish to generate a random value for θ from a

posterior distribution g(θ|D) [1]. We can use random walk Metropolis-Hastings to

generate a sample (θ1, θ2, ...), where the algorithm is as follows [1, 69]

1. Start with initial value θ0.

2. Generate value θ∗ from a candidate proposal distribution g(θ|θi)

3. Calculate

R =
g(θ∗|D)

g(θi|D)

4. Generate u from U(0, 1)

5. If u < R then set θi+1 = θ∗; otherwise set θi+1 = θi

6. Repeat Steps 2-5 for a chosen number of iterations.

Using this algorithm, samples are obtained from the posterior distribution, and the

quantities of interest are obtained by taking their average.

In this thesis, we are going to use Bayesian techniques, as described in this

section, to transform the prior information about the parameters in the Kijima type

I model with Weibull distribution to a posterior distribution given data. We are

going to use these principles directly for the Kijima type I model in Chapter 3.



Chapter 3

Bayesian inference for Kijima type I

model

For the statistical inference using repair models, NHPP and RP models have been

widely presented, but fewer papers address statistical inference for virtual age models

[15]. The maximum likelihood estimator (MLE) is the most studied for the virtual

age models. [78] conducted a study that presented a method for obtaining MLE by

solving the derivatives of the log-likelihood function for the Kijima type I model.

Because there are no closed-form solutions for some of these equations, the authors

proposed an algorithm based on Monte Carlo simulation. Wang and Yang [77]

introduced a method of nonlinear constrained programming to get the maximum

likelihood estimates of the Kijima type I and II models, where negative log-likelihood

is the objective function, and model parameters are the constrained variables. A

solution for Kijima models using MLEs for multiple and single repairable systems

was proposed by Mettas and Zhao [53]. Tanwar and Bolia [56] presented the MLE

for parameters of the Kijima type I and II models in the cases of corrective and

preventive maintenance. The estimated parameters are used to approximate the

expected number of failures for the suggested methodologies through Monte Carlo

simulation.

Some papers have recently been presented on Bayesian analysis using the virtual

age models of repairable systems. Chukova et al. [13] compared the Markov Chain

Monte Carlo (MCMC) estimation method to the MLE estimation after modelling

18
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imperfect repair under the Weibull, Gamma, and Exponential lifetime distributions.

In this study, it was determined that the MLE and Bayesian approaches yield similar

outcomes when applied to large sample sizes. Also, a Bayesian study was performed

for the arithmetic reduction of age (ARA) model proposed by Doyen and Gaudoin

[21] by Corset et al. [15] using a variety of potential priors. The MCMC method

is used to obtain Bayesian estimates, and the outcomes are contrasted with MLE.

Egemen [22] suggested a unifying virtual age model that combines perfect, imperfect

and minimal repairs and introduces generalizations of existing repair models. Ege-

men also considered a Bayesian framework for statistical inference for this model,

and the posterior and posterior predictive analyses are conducted using MCMC. He

dealt with the effective age as an unobservable parameter and used the power law

intensity function.

While these studies have been made by using both MLE and Bayesian infer-

ence to virtual age models, such as the Kijima type I model, these studies have

not addressed the challenge of estimating total predictive system reliability with a

given number of repairs affecting the ageing of the system as far as we know. This

is important because the number of repairs influences system ageing and, conse-

quently, its reliability, which is an important consideration for effective maintenance

planning.

To examine a system’s reliability, the Weibull distribution is often appropriate

[57] since it can capture a wide range of failure patterns. In this chapter, we focus on

the Kijima type I model and a Weibull lifetime distribution for the virtual age model.

Section 2.3 briefly introduced the Kijima type I model. This is one of the important

methods for analyzing the performance of repairable systems in engineering asset

management after repair. In reality, the quality and efficiency of repairs impact the

reliability and functional continuity of systems. Poor repair efficiency can result

in higher costs and reduced system reliability, while effective repairs can minimize

costs and enhance reliability. In industries, reducing costs while improving repair

effectiveness is important. Therefore, actions can be taken to manage the cost

and effectiveness of repairs, especially in industries dealing with critical repairable

systems. The Bayesian method provides a flexible framework for modelling and
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incorporating the performance of repairable systems into analyses based on the

Kijima type I model, which contributes to making decisions to improve system life

and reduce costs.

In this chapter, we present a Bayesian method that enables the use of prior

information and the data on failure processes using the Kijima type I model. Section

3.1 presents the likelihood function and the posterior distribution for the model

employed in this thesis, specifically the Kijima type I model. Most literature uses

numerical methods because of the Kijima type I model’s mathematical complexity.

We present an analytic method using the Bayesian method for the Kijima type I

model’s parameters, and the results are compared with the MLE in Section 3.2.

Also, a Markov Chain Monte Carlo (MCMC) approach is used, using continuous

priors for Bayesian analysis in Section 3.3, where the results will be illustrated with

a suitable and poor choice of priors. In Section 3.4, we present the reliability of a

system and analyse predictive reliability changes after each repair. In Section 3.5, we

develop a novel method using the posterior predictive empirical reliability function

to predict the total system reliability with the uncertainty until the time needed to

replace it when the number of failures is known.

3.1 Likelihood and posterior function for the Kijima

type I model

According to Yañez et al. [78], and Mettas and Zhao [53], two different expressions

of the likelihood function can be obtained for the Kijima type I model based on the

experiment of data collection. The first expression is the likelihood function based

on the failure-terminated data, which we will use in this thesis. This method is

suitable when failure data are observed up to the time of the nth failure occurrence,

where the number of failures n is determined beforehand. The likelihood function

is given by

ℓ =
n∏

i=1

fTi
(xi|vi−1) , (3.1.1)

The Kijima type I model with Weibull lifetime distribution, which is given in
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Equation (2.3.15), has three parameters: the Weibull scale parameter λ, the Weibull

shape parameter β, and the repair efficiency parameter q. Based on the failure-

terminated data, the likelihood function is

ℓ(λ, β, q|D) =
n∏

i=1

βλ(xi + q

i−1∑
j=0

xj)
β−1 exp

[
−λ

(
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]

= λnβn

n∏
i=1

(xi + q

i−1∑
j=0

xj)
β−1 exp

[
−λ

n∑
i=1

(
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]
.

(3.1.2)

Assume the scenario where M samples are collected from an identical system, and

each sample experiences a different number of failures due to different operational

conditions and usage patterns. In order to represent the observations, a list of vectors

DM is used, where each vector represents the sequential failure times of length nm

for each sample. The likelihood function is

ℓ(λ, β, q|DM) =
M∏

m=1

(
λnmβnm

nm∏
i=1

(xmi + q
i−1∑
j=0

xmj)
β−1×

exp

[
−λ

nm∑
i=1

(
(xmi + q

i−1∑
j=0

xmj)
β − (q

i−1∑
j=0

xmj)
β

)])

= λ
∑M

m=1 nmβ
∑M

m=1 nm

M∏
m=1

(
nm∏
i=1

(xmi + q
i−1∑
j=0

xmj)
β−1

)
×

exp

[
−λ

M∑
m=1

nm∑
i=1

(
(xmi + q

i−1∑
j=0

xmj)
β − (q

i−1∑
j=0

xmj)
β

)]
(3.1.3)

where m = 1, ......, M and xmi is the ith failure time of the mth sample from identical

system.

For a given continuous prior joint density g(λ, β, q), the joint posterior distribu-

tion of the three parameters (λ, β, q) is

g(λ, β, q|Dm) =
g(λ, β, q)ℓ(λ, β, q|Dm)∫ 1

0

∫∞
0

∫∞
0

g(λ, β, q)ℓ(λ, β, q|Dm)dλdβdq
, (3.1.4)

where ℓ(λ, β, q|Dm) is the likelihood function of the Kijima type I model, the nor-
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malization factor is
(∫ 1

0

∫∞
0

∫∞
0

g(λ, β, q)ℓ(λ, β, q|Dm) dλ dβ dq
)−1

. The posterior

distribution can be expressed as

g(λ, β, q|Dm) ∝ g(λ, β, q)ℓ(λ, β, q|Dm) . (3.1.5)

From the joint posterior distribution, the marginal posterior distribution of each

parameter can be obtained by integrating or summing with respect to the other two

parameters and is shown in the following three Equations [62]:

g(λ|β, q,Dm) ∝ g(λ)ℓ(λ, β, q|Dm) , (3.1.6)

g(β|λ, q,Dm) ∝ g(β)ℓ(λ, β, q|Dm) , (3.1.7)

g(q|β, λ,Dm) ∝ g(q)ℓ(λ, β, q|Dm) . (3.1.8)

Bayesian estimation of model parameters relies on calculating the expected value

of the posterior distribution using squared error loss where, in some situations,

closed-form expressions are unavailable. In such cases, numerical estimations can

be done using different sampling techniques. We will use the Markov Chain Monte

Carlo (MCMC), implemented by the Metropolis-Hastings method as described in

Subsection 2.4.3 where θ = (λ, β, q).

Two approaches are employed to analyze the Kijima type I model using Bayesian

methodology. The first analysis involves utilizing analytical solutions, where closed-

form expressions for estimations are attainable within a Bayesian framework with

discrete priors in Section 3.2. In the second approach, a Markov Chain Monte Carlo

(MCMC) method is used, using continuous priors for Bayesian analysis in Section

3.3. To elucidate the performance of the first approach, we compare the results

obtained from the analytical method with discrete priors to the results derived from

the MLE method, which is the most studied estimation method in the literature.

These approaches will be illustrated with a suitable and poor choice of priors.
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3.2 Mixed priors for the parameters: continuous

and discrete

When the scale parameter λ, shape parameter β, and effective age parameter q

are unknown, determining a general joint prior for λ, β, q may cause complexities

in Bayesian inference. To deal with this issue, we employ a similar approach to

Soland’s method [72] and extend it for the Kijima type I model. Soland introduced

a family of joint prior distributions, where Soland chose a continuous conditional

prior for the scale parameter λ and a discrete prior for the shape parameter β for

the Weibull distribution. For the Kijima type I model, we take this concept further

by introducing a discrete prior for the q parameter as an extension of the Soland

method.

A shape parameter β < 1 indicates a decreasing failure rate, whereas a shape

parameter β > 1 indicates an increasing failure rate. Assume that experts can give

reasonable values for β with the probability for each value based on prior knowledge

of the underlying failure of the system. Thus, assume that β ∈ {β1, β2, ...., βS} with

prior probability p′1, p
′
2, ..., p

′
S, respectively, where 0 ≤ p′s ≤ 1 and

∑S
s=1 p

′
s = 1, that

is

P (β = βs) = p′s, s = 1, 2, ...., S . (3.2.9)

When there is no information about which value of β is more likely to represent

prior knowledge, a discrete uniform distribution can be used.

The q represents the repair efficiency where its value is between 0 and 1. When

q has a discrete prior, the experts can choose the values and the probability of each

value based on the knowledge of the efficiency of the repair activities. Assume that

q ∈ {q1, q2, ...., qK} with prior probability q′1, q
′
2, ..., q

′
K , respectively, where 0 ≤ q′k ≤ 1

and
∑K

k=1 q
′
k = 1, that is

P (q = qk) = q′k, k = 1, 2, ...., K . (3.2.10)

Again, if the experts are unsure which value is more likely for the effective repair
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parameter, the same probability values will be used for each value (a discrete uniform

distribution).

Finally, assume that the conditional prior of λ given β = βs and q = qk be

Gamma(a, b) with pdf

g(λ|β = βs, q = qk) =
ba

Γ(a)
λa−1 exp(−λb) (3.2.11)

The Gamma prior distribution for λ is chosen to attain a conjugate prior. In Equa-

tion 3.2.11, the parameters a and b of the Gamma distribution are constants, not

varying with β and q. Therefore, the prior distribution of λ is independent of β and

q. This independence is chosen to simplify the Bayesian inference.

3.2.1 Posterior distribution and Bayesian estimators

The likelihood function given in Equation (3.1.3) can be rewritten as follows. For

convenience, denote

N =
M∑

m=1

nm , (3.2.12)

usk =
M∏

m=1

(
nm∏
i=1

(xmi + qk

i−1∑
j=0

xmj)
βs−1

)
, (3.2.13)

rsk =
M∑

m=1

nm∑
i=1

(
(xmi + qk

i−1∑
j=0

xmj)
βs − (qk

i−1∑
j=0

xmj)
βs

)
(3.2.14)

Then, the likelihood function is

ℓ(λ, βs, qk|Dm) = λNβN
s usk exp(−λrsk) . (3.2.15)
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Assume that λ, β and q are a priori independent. Multiplying the likelihood by the

prior of λ, β and q, we obtain the joint posterior distribution, which is

g(λ, βs, qk|Dm) ∝ ℓ(λ, βs, qk|Dm)g(λ|β = βs, q = qk)P (β)P (q)

= λNβN
s usk exp(−λrsk)

ba

Γ(a)
λa−1 exp(−λb)p′sq

′
k

= βN
s usk

ba

Γ(a)
λN+a−1 exp [−λ(b + rsk)] p

′
sq

′
k .

(3.2.16)

Multiplying the likelihood by the conditional prior given in Equation (3.2.11),

we obtain the conditional posterior of λ given β = βs, q = qk which is

g(λ|β = βs, q = qk, Dm) = βN
s usk

ba

Γ(a)
λN+a−1 exp [−λ(b + rsk)] (3.2.17)

From Equation (3.2.17) the conditional posterior distribution of λ given β = βs, q =

qk is Gamma(N + a, rsk + b). Let A be the normalizing constant given in Equa-

tion (3.2.19) and integrate Equation (3.2.16) with respect to λ, the marginal joint

posterior distribution of (β, q) is

pβ,q(βs, qk|Dm) = AβN
s usk

ba

Γ(a)
p′sq

′
k

∫ ∞

0

λN+a−1 exp [−λ(b + rsk)] dλ

= A
βN
s uskb

ap′sq
′
kΓ(N + a)

Γ(a)(rsk + b)N+a
,

(3.2.18)

where A is the normalising constant, which is given by

A =

(
S∑

s=1

K∑
k=1

βN
s uskb

ap′sq
′
kΓ(N + a)

Γ(a)(rsk + b)N+a

)−1

. (3.2.19)

From Equations (3.2.17) and (3.2.18), the marginal posterior distribution of λ is

g(λ|Dm) =
S∑

s=1

K∑
k=1

g(λ|β = βs, q = qk, Dm)pβ,q(βs, qk|Dm) (3.2.20)

The parameter value that minimizes the expected squared error loss of the pos-

terior is the posterior mean, as briefly explained in the Subsection 2.4.2. Therefore,

the Bayesian estimators for λ, β and q are
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λ̂ = E[λ|Dm] =

∫ ∞

0

λg(λ|Dm)dλ

=
S∑

s=1

K∑
k=1

pβ,q(βs, qk|Dm)

∫ ∞

0

λg(λ|β = βs, q = qk, Dm)dλ

=
S∑

s=1

K∑
k=1

pβ,q(βs, qk|Dm)
N + a

rsk + b

(3.2.21)

β̂ = E[β|Dm] =
S∑

s=1

K∑
k=1

βspβ,q(βs, qk|Dm) (3.2.22)

q̂ = E[q|Dm] =
S∑

s=1

K∑
k=1

qkpβ,q(βs, qk|Dm) (3.2.23)

From Equations (2.3.12) and (3.2.16) the posterior predictive distribution for Ti

is specified by pdf

fTi
(x|xi−1, Dm) =

S∑
s=1

K∑
k=1

∫ ∞

0

g(λ, βs, qk|Dm)fTi
(x|vi−1)dλ

= A
S∑

s=1

K∑
k=1

βN
s usk

ba

Γ(a)
p′sq

′
kβs(x+ qk

i−1∑
j=0

xj)
βs−1

∫ ∞

0

[
λN+a−1 exp (−λ [b + rsk]) ×

exp

(
−λ

[
(x+ qk

i−1∑
j=0

xj)
βs − (qk

i−1∑
j=0

xj)
βs

])]
dλ

= A

S∑
s=1

K∑
k=1

βN
s uskb

ap′sq
′
kβs(x+ qk

∑i−1
j=0 xj)

βs−1Γ(N + a)

Γ(a)
[
(x+ qk

∑i−1
j=0 xj)βs − (qk

∑i−1
j=0 xj)βs + b + rsk

]N+a+1

(3.2.24)

3.2.2 Simulation study

This subsection presents the results of a simulation study to illustrate the method-

ology presented in Section 3.2, where we used continuous and discrete priors to

estimate the parameters. Also, the results of Bayesian estimators will be compared

with the MLE. We generate different samples of the Kijima type I model of sizes

nm ×M , combinations of nm ∈ [25, 75, 100, 200] and M ∈ [20, 50, 100, 250, 400]
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where nm is the number of failure times for each sample M for two scenarios: high

and low-quality repair efficiency. For high-quality repair efficiency, we assume that

q = 0.25, and we assume that q = 0.85 for low-quality repair efficiency. We use

λ = 3, and β = 2 for both scenarios. For both repair efficiency scenarios, the esti-

mations are carried out based on two cases of the selection of the hyperparameters

a and b and the values of βs and qk. In Case 1, a good prior is selected, where the

hyperparameters and the values of βs and qk are selected so that the mean of each

prior is near the values of actual parameters. In Case 2, a poor prior is selected,

with hyperparameters and values of βs and qk selected such that the mean value of

each prior is far from the values of actual parameters.

In Case 1, we assume that the values of the Gamma hyper-parameters are

a = 12 and b = 4, where the mean of the Gamma distribution is a
b
= 12

4
= 3

which is the actual value of λ. Also, assume that the prior probabilities for

βs = (1.90, 1.92, 1.94, 1.96, 1.98, 2.00, 2.02, 2.04, 2.06, 2.08) is a discrete Uniform

denoted as p′s =
1
S
, where S represents the total number of β values and the prior

probabilities for qk = (0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29. 0.30) when

q = 0.25 and qk = (0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89) when

q = 0.85 is a discrete Uniform denoted as p′s = 1
K

, where K represents the total

number of q values. However, in Case 2, assume that the values of the Gamma

hyper-parameters are a = 2 and b = 5, where the mean of Gamma distribu-

tion is 0.4 which is far from the actual value of λ. Also, assume that the prior

probabilities for βs = (1.25, 1.35, 1.45, 1.55, 1.65, 1.75, 1.85, 1.95, 2.05, 2.15)

is a discrete Uniform denoted as p′s = 1
S

and the prior probabilities for qk =

(0.230, 0.244, 0.258, 0.272, 0.286, 0.300, 0.314, 0.328, 0.342. 0.356) when q = 0.25

and qk = (0.84, 0.85, 0.86, 0.87, 0.88, 0.89, 0.90, 0.91, 0.92, 0.93) when q = 0.85

is a discrete Uniform denoted as p′s =
1
K

values.

The Bayesian estimators developed in Section 3.2 for λ, β and q are used for

this simulation and compared with the MLE for each case. The results are given in

Tables 3.1 for high-quality repair efficiency scenario and 3.2 for low-quality repair

efficiency scenario, where "BE Case 1" represents the Bayesian estimation for Case

1, and "BE Case 2" represents the Bayesian estimation for Case 2. Also, Figure
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3.1 and Figure 3.2 show the estimated results for each scenario when q = 0.25 and

q = 0.85, where the red horizontal line represents the true value and the lines of

different colours with points describe different numbers of sequential failure times

for each sample process nm with increasing M . The results presented in the table

and shown in the figures show that as we increase the number of sequential failure

times for each process nm, the results change hardly. However, by increasing the

number of sequential processes M , the estimated values for λ and q change and get

closer to the true value, whereas β̂ shows less change.

For parameter estimates, in terms of the closest value to the true values, Case 1

gives the best estimator for the parameters, followed by the MLE and Case 2. For

the estimation of λ and q, the prior has impacted the results for both repair efficiency

scenarios. We can see in Figure 3.1 for high-quality repair efficiency and in Figure

3.2 for low-quality repair efficiency that the estimation of Bayesian estimators with

good prior selection in Case 1 is closer to the true values than the estimators with

a poor prior selection in Case 2, especially for smaller sample sizes. As a result,

the resulting estimations may not be satisfying if the informative prior choice is not

appropriate. However, for the estimation of β, the prior has less impact, especially

when q = 0.25.
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True values: λ = 3, β = 2, and q = 0.25

nm M
MLE BE Case 1 BE Case 2

λ̂ β̂ q̂ λ̂ β̂ q̂ λ̂ β̂ q̂

25

20 2.4884 1.9773 0.3195 2.8069 1.9966 0.2716 2.3429 2.0240 0.3270

50 2.7772 2.0031 0.2715 2.8386 1.9990 0.2665 2.5430 1.9956 0.3056

100 2.8717 1.9915 0.2569 2.8727 1.9893 0.2586 2.7119 1.9800 0.2797

250 2.8988 2.0059 0.2582 2.8942 2.0040 0.2599 2.8336 2.0047 0.2668

400 2.9905 2.0008 0.2503 2.9862 1.9997 0.2514 2.9448 1.9942 0.2569

75

20 2.5137 1.9753 0.3228 2.8416 2.0038 0.2740 2.3916 2.0075 0.3279

50 2.7927 1.9860 0.2759 2.8619 1.9926 0.2683 2.5664 1.9691 0.3120

100 2.8802 2.0245 0.2555 2.8758 2.0218 0.2580 2.7534 2.0311 0.2683

250 2.9225 2.0034 0.2577 2.9184 2.0026 0.2591 2.8592 1.9997 0.2675

400 3.0357 2.0069 0.2457 3.0313 2.0062 0.2466 3.0390 2.0361 0.2394

100

20 2.5652 1.9842 0.3115 2.8497 2.0065 0.2720 2.4049 2.0046 0.3261

50 2.8014 1.9735 0.2773 2.8751 1.9807 0.2688 2.5664 1.9559 0.3151

100 2.8639 2.0061 0.2610 2.8672 2.0058 0.2622 2.7081 1.9931 0.2854

250 2.9159 1.9981 0.2596 2.9115 1.9974 0.2609 2.7995 1.9660 0.2845

400 3.0222 2.0099 0.2467 3.0180 2.0093 0.2476 3.0566 2.0485 0.2340

200

20 2.6217 1.9899 0.3013 2.8661 2.0059 0.2698 2.4480 1.9931 0.3247

50 2.8419 2.0030 0.2645 2.8721 2.0046 0.2628 2.5861 1.9776 0.3087

100 2.8589 2.0055 0.2617 2.8611 2.0054 0.2627 2.7169 1.9999 0.2836

250 2.9280 1.9978 0.2582 2.9234 1.9974 0.2593 2.7406 1.9545 0.2684

400 3.0222 1.9971 0.2494 3.0207 1.9974 0.2497 2.8406 1.9504 0.2503

Table 3.1: Comparing MLE and Bayesian estimation of λ, β, and q for both Cases
when q = 0.25
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Figure 3.1: The impact of different sample sizes using MLE and Bayesian for both
cases when q = 0.25.
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True values: λ = 3, β = 2, and q = 0.85

nm M
MLE BE Case 1 BE Case 2

λ̂ β̂ q̂ λ̂ β̂ q̂ λ̂ β̂ q̂

25

20 2.5446 2.0249 0.9778 2.9303 2.0156 0.8486 2.6638 2.1136 0.8271

50 2.7636 2.0176 0.9001 2.9181 2.0190 0.8481 2.7883 2.0812 0.8258

100 2.8119 1.9881 0.8996 2.9187 2.0039 0.8485 2.8687 2.0398 0.8269

250 2.8365 1.9991 0.8991 2.9286 2.0146 0.8535 2.8991 2.0486 0.8298

400 2.9632 1.9950 0.8649 2.9960 2.0005 0.8499 2.9759 2.0430 0.8171

75

20 2.5703 2.0140 1.0000 2.9634 2.0265 0.8491 2.7259 2.0949 0.8275

50 2.7343 1.9952 0.9467 2.9557 2.0132 0.8493 2.8603 2.0500 0.8265

100 2.8446 2.0255 0.8636 2.8911 2.0288 0.8464 2.8970 2.0260 0.8489

250 2.8428 2.0007 0.9021 2.9499 2.0100 0.8560 2.8904 2.0500 0.8211

400 3.0002 2.0003 0.8518 3.0078 2.0016 0.8486 2.9760 2.0497 0.7966

100

20 2.5750 2.0116 1.0000 2.9573 2.0264 0.8487 2.7769 2.0768 0.8280

50 2.7225 1.9811 0.9694 2.9912 2.0001 0.8503 2.8561 2.0430 0.8269

100 2.8146 2.0087 0.8936 2.9244 2.0164 0.8492 2.8445 2.0499 0.8244

250 2.8349 1.9972 0.9096 2.9582 2.0058 0.8580 2.8858 2.0500 0.8168

400 2.9994 2.0061 0.8462 2.9987 2.0063 0.8470 2.9723 2.0500 0.7946

200

20 2.5958 2.0058 1.0000 2.9709 2.0206 0.8486 2.8555 2.0501 0.8291

50 2.7743 2.0064 0.9116 2.9420 2.0133 0.8484 2.8092 2.0498 0.8246

100 2.8115 2.0083 0.8951 2.9326 2.0133 0.8501 2.8222 2.0500 0.8206

250 2.8416 1.9972 0.9066 2.9670 2.0020 0.8597 2.8826 2.0500 0.8042

400 2.9834 1.9944 0.8660 3.0127 1.9981 0.8512 3.0191 2.0315 0.7964

Table 3.2: Comparing MLE and Bayesian estimation of λ, β, and q for both Cases
when q = 0.85
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Figure 3.2: The impact of different sample sizes using MLE and Bayesian for both
cases when q = 0.85.
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3.3 Continuous priors for the parameters

In this section, the MCMC method, which is explained in Section 2.4.3, will be used

to estimate the scale, shape and repair efficiency parameters of the Kijima type

I model, along with the system reliability. Specifically, we will focus on continu-

ous probability distributions, called continuous priors, to represent expert beliefs

regarding the parameters.

The Gamma distribution, defined on the interval [0,∞], is a conjugate prior for

the scale parameter λ when other parameters are fixed [49]. Thus, a Gamma distri-

bution is chosen as the prior distribution for the scale parameter λ > 0, with hyper-

parameters a > 0 and b > 0. The probability density function of the Gamma(a, b)

distribution is

πλ(λ) =
ba

Γ(a)
λa−1 exp(−λb) , (3.3.25)

with Gamma function Γ(a) =
∫∞
0

ta−1 exp(−t)dt.

A shape parameter β < 1 indicates a decreasing failure rate, whereas a shape

parameter β > 1 indicates an increasing failure rate. Experts can give an expected

interval for β based on prior knowledge of the underlying failure of the system.

Therefore, we consider it reasonable to express prior knowledge by choosing a Uni-

form distribution as the prior distribution for the shape parameter β with the interval

[β1, β2]. The pdf of the Uniform(β1, β2) distribution is

πβ(β) =
1

β2 − β1

β ∈ [β1, β2] . (3.3.26)

The parameter q represents the repair efficiency where its value is between 0 and

1. The Beta distribution is defined on the interval [0, 1], so we select a Beta distribu-

tion as the prior distribution for the effective age parameter q, with hyperparameter

c, d > 0. Assume that the experts can choose the values of hyperparameters c

and d based on the knowledge of the efficiency of the repair activities. The pdf of

Beta(c, d) distribution is
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πq(q) =
1

B(c, d)
qc−1(1− q)d−1 , (3.3.27)

with Beta function B(c, d) = Γ(c)Γ(d)
Γ(c+d)

, where Γ(.) denots the Gamma function.

Assume that λ, β and q are a priori independent, the prior joint distribution is

π(λ, β, q) = πλ(λ)πβ(β)πq(q)

=
ba

Γ(a)
λa−1 exp(−λb)

1

β2 − β1

1

B(c, d)
qc−1(1− q)d−1

∝ λa−1 exp(−λb)
1

β2 − β1

qc−1(1− q)d−1 .

(3.3.28)

3.3.1 Posterior distribution

Considering Equation (3.3.28) and the likelihood function in Equation (3.1.3), the

joint posterior distribution for λ, β and q, given data is specified by the pdf

g(λ, β, q|Dm) ∝ ℓ(λ, β, q|Dm)π(λ, β, q)

= λNβNu exp(−λr)λa−1 exp(−λb)
1

β2 − β1

qc−1(1− q)d−1
(3.3.29)

where u =
∏M

m=1

(∏nm

i=1(xmi + q
∑i−1

j=0 xmj)
β−1
)
, N =

∑M
m=1 nm and

r =
M∑

m=1

nm∑
i=1

(
(xmi + q

i−1∑
j=0

xmj)
β − (q

i−1∑
j=0

xmj)
β

)
(3.3.30)

The Bayesian estimator is the expected value of the posterior distribution by us-

ing the mean squared error. Analytical derivation of the estimators is not possible

based on this posterior distribution when we use continuous priors, so a numerical

method is needed for estimation. There are many different sampling methods for

numerical estimates. We will use the Markov Chain Monte Carlo (MCMC) method,

implemented by the Metropolis-Hastings Algorithm, to derive a numerical estima-

tion of the three parameters λ, β and q. Also, the reliability function and posterior

predictive distribution can not be solved theoretically because of the difficulty of the

integration approaches, as shown in Appendix B. Therefore, a numerical method is
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needed to solve this problem.

3.3.2 Experimental analysis

This subsection presents the results of an experimental analysis to illustrate the

impact of the methodology presented in Section 3.3, where we used continuous priors

for each parameter. We generate different samples using high and low-quality repair

efficiency from the Kijima type I model of sizes nm ×M , where nm ∈ [10, 20] and

M ∈ [ 10, 20]. We use the same λ, β and q values, which are presented in Subsection

3.2.2 for both repair efficiency scenarios. For q = 0.25 and q = 0.85, the estimations

are carried out based on two cases of the selection of the hyperparameters of each

prior distribution. Assume that a good prior is selected in Case 1. For each prior

distribution, hyperparameters are selected so that the means of the priors are close

to the actual values of the parameters. Conversely, assume that a poor prior is

selected in Case 2. For each prior distribution, hyperparameters are selected so that

the mean of the priors is far from the actual parameters’ values. Assume that the

values of the hyperparameters are selected and given in Table 3.3 for both Cases,

where "Beta scenario 1" in the fourth column represents the chosen hyperparameter

values of the Beta distribution for a high-quality repair efficiency scenario, and "Beta

scenario 2" in the fifth column represents the chosen hyperparameter values of the

Beta distribution for a low-quality repair efficiency scenario.

Distributions Gamma Uniform Beta scenario 1 Beta scenario 2

Hypereparameters a b β1 β2 c d c d

Case 1 12 4 1 3 1 3 6 1

Case 2 20 5 1 5 1 4 5 2

Table 3.3: Hyperparameters of priors.

Since the posterior distributions are difficult or impossible to analyze with stan-

dard analytical techniques, the Metropolis-Hastings (MCMC) method is used to de-

rive the sample from the posterior distribution and estimate the parameters. 30000

observations are generated from the posterior distribution for λ, β, and q. We con-
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sider the first 5000 observations to be burn-in and discard them, while every other

observation is used to make an inference. Figure 3.3 shows the histogram and trace

plot for Case 1, and Figure 3.4 shows the histogram and trace plot for Case 2 when

nm = 10 and M = 10, where the red line represents the true value and blue line

represent estimated value. The histograms show that in both cases, the posterior

distributions of λ, β, and q show a noticeable peak around the estimated value

presented in Table 3.4. In Case 1, the central point is closer than Case 2 to the true

values of each parameter. The diagnostic trace plot for each parameter indicates

that the chains are generally stationary and mixing well, and there are no signs or

evidence that chains are not convergent. The other histograms and trace plots for

each data sample size and both Cases are shown in Appendix A, which show similar

results, where the histogram central point for each parameter becomes closer to the

true value when we have larger sample sizes.

The estimated parameters results are given in Table 3.4 and 3.2 based on Case

1 and Case 2 for both high and low-quality repair efficiency. The results presented

in the tables show that as we increase the number of sequential failure times for

each process nm, the results hardly change. However, by increasing the number of

sequential processes M , the estimated values for each parameter change and get

closer to the true value. Also, for both repair efficiency scenarios, the estimated

parameters with good prior selection in Case 1 are closer to the true values than the

estimators with poor prior selection in Case 2, especially for smaller sample sizes.

Therefore, for parameter estimators, in terms of the closest value to the true values

based on the two Cases, Case 1 gives a better estimator for the parameters than

Case 2. In addition, when data sample sizes increase, Case 1 and Case 2 give more

similar results, especially when we have high repair efficiency.
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True values: λ = 3, β = 2, and q = 0.25

nm M
Case 1 Case 2

λ̂ β̂ q̂ λ̂ β̂ q̂

10
10 4.0409 2.4163 0.2079 5.0872 2.4957 0.1657

20 3.1759 1.9459 0.2246 3.6283 1.9510 0.1835

20
10 4.0619 2.1818 0.1779 4.9013 2.2188 0.1438

20 3.0449 2.0080 0.2553 3.4265 2.0026 0.2223

Table 3.4: Estimated values of λ, β and q using MCMC when q = 0.25.
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Figure 3.3: Histogram and trace plot of generated draws of λ, β and q for case 1
when q = 0.25. The red line represents the true value, and the blue line represents
the estimated value for each parameter.
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Figure 3.4: Histogram and trace plot of generated draws of λ, β and q for Case 2
when q = 0.25.The red line represents the true value, and the blue line represents
the estimated value for each parameter.

True values: λ = 3, β = 2, and q = 0.85

nm M
Case 1 Case 2

λ̂ β̂ q̂ λ̂ β̂ q̂

10
10 4.0758 2.4130 0.6394 5.4209 2.7169 0.4736

20 3.2719 1.9486 0.7935 3.6063 2.0075 0.6761

20
10 3.9569 2.1020 0.6620 4.6766 2.2227 0.5237

20 3.1937 2.0336 0.8005 3.5068 2.0798 0.6956

Table 3.5: Estimated values of λ, β and q using MCMC when q = 0.85

3.4 The system reliability function after each repair

Repair activities play a crucial role in keeping and returning system functionality.

Modelling work supposes that modelling repair effects provide an understanding of

how these repairs impact the system’s reliability. In the reliability of a system, we
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will analyse how the predictive reliability changes after each repair in this section.

This analysis will present helpful insights into system performance after each repair

and draw inferences based on the posterior predictive reliability function derived

from each repair event.

Under the Kijima type I model, repairable systems are restored to a level be-

tween the new and old states. Modelling work of the Kijima type I model supposes

that each repair could improve the system’s performance. Therefore, the system’s

reliability after each repair will increase and will be returned to the virtual age

vi−1 = qti−1 based on the repair efficiency. The posterior predictive reliability func-

tion will be used to predict the system’s reliability after each repair based on the

posterior distribution presented in Section 3.2 and Section 3.3. Therefore, from

Equation (2.3.14) and (3.2.16) in Section 3.2 the predictive reliability function for

Ti is

RTi
(x|xi−1, Dm) =

S∑
s=1

K∑
k=1

∫ ∞

0

g(λ, βs, qk|Dm)RTi
(x|vi−1)dλ

= A

S∑
s=1

K∑
k=1

βN
s usk

ba

Γ(a)
p′sq

′
k

∫ ∞

0

[
λN+a−1 exp (−λ [b + rsk])×

exp

−λ

(x+ qk

i−1∑
j=0

xj)
βs − (qk

i−1∑
j=0

xj)
βs

 dλ

= A
S∑

s=1

K∑
k=1

βN
s usk

ba

Γ(a)
p′sq

′
k ×

∫ ∞

0

[
λN+a−1.×

exp

−λ

(x+ qk

i−1∑
j=0

xj)
βs − (qk

i−1∑
j=0

xj)
βs

+ b + rsk

 dλ

(3.4.31)

Multiplying by

Γ(N + a)
[(

(x+ qk
∑i−1

j=0 xj)
βs − (qk

∑i−1
j=0 xj)

βs

)
+ rsk + b

]N+a

Γ(N + a)
[(

(x+ qk
∑i−1

j=0 xj)βs − (qk
∑i−1

j=0 xj)βs

)
+ rsk + b

]N+a
(3.4.32)

to simplify and solve the integral, so the predictive reliability function is
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RTi(x|xi−1, Dm) = A

S∑
s=1

K∑
k=1

βN
s uskb

ap′sq
′
kΓ(N + a)

Γ(a)
[(

(x+ qk
∑i−1

j=0 xj)βs − (qk
∑i−1

j=0 xj)βs

)
+ rsk + b

]N+a

(3.4.33)

where A is the normalising constant, which is given in Equation (3.2.19). Also,

from Equation (2.3.14) and (3.3.29) in Section 3.3 the predictive reliability function

for Ti is

RTi
(xi|xi−1, Dm) =

∫ 1

0

∫ β2

β1

∫ ∞

0

R(xi|vi−1)g(λ, β, q|D) dλdβdq

= A

∫ 1

0

∫ β2

β1

∫ ∞

0

exp

[
−λ

(
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]
λN×

βNu exp(−λr)λa−1 exp(−λb)qc−1(1− q)d−1dλdβdq

= A

∫ 1

0

∫ β2

β1

βNuqc−1(1− q)d−1

∫ ∞

0

λN+a−1×

exp

[
−λ

(
r + b+

(
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

))]
dλdβdq

= A

∫ 1

0

∫ β2

β1

βNuqc−1(1− q)d−1×

Γ(N + a)[
r + b+

(
(xi + q

∑i−1
j=0 xj)β − (q

∑i−1
j=0 xj)β

)]N+a
dβdq

(3.4.34)

where A is the normalising constant that is given in Equation (3.4.35).

A−1 =

∫ 1

0

∫ β2

β1

∫ ∞

0

g(λ, β, q|D) dλdβdq

=

∫ 1

0

∫ β2

β1

βNuqc−1(1− q)d−1

∫ ∞

0

λN+a−1

exp [−λ (r + b)] dλdβdq

=

∫ 1

0

∫ β2

β1

βNuqc−1(1− q)d−1 Γ(N + a)

[r + b]N+a
dβdq

(3.4.35)

The reliability function can not be solved analytically because of the difficulty of

the integration approaches when continuous priors are used. Therefore, a numerical
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method is needed to solve this problem.

This section uses the posterior predictive distribution to generate samples, and

the results are used to plot the posterior predictive reliability function after each

repair. As a result of this, it will be possible to see an overview of the system relia-

bility behaviour after each repair process to make inferences. It assists organizations

in evaluating the repair methods using reliability data. The preferred repair method

may be adopted if the system’s probability of functioning effectively is enhanced

through repair to a level comparable to, or nearly equivalent to, that of a new sys-

tem. In contrast, low reliability after repair can indicate a need for better training

or more advanced repair methods. The posterior predictive reliability proposed in

this section is illustrated by examples. We illustrate this by using the method pre-

sented in Section 3.2 in Example 3.4.1 and the methods presented in Section 3.3 in

Example 3.4.2.

Example 3.4.1

This example comprises two cases based on repair efficiency q. In Case 1, we simu-

late data assuming higher quality repair efficiency. In Case 2, we modify the data

to assume lower quality repair efficiency and investigate its effect on a system’s

predictive reliability functions.

This example illustrates predictive reliability functions after each repair based on

two cases, employing the posterior predictive distribution for the method presented

in Section 3.2. We generate data using the Kijima type I model where, in Case 1,

we assume that λ = 3, β = 2 and q = 0.25 and we assume that q = 0.85 in Case

2 and keeping the same values for λ and β as in Case 1. Assume that we generate

data where nm = 10 and M = 10 where data for Case 1 and Case 2 are presented

in Table 3.6 and Table 3.7, respectively.

Assume prior λ has Gamma(12, 4) distribution and assume that the prior dis-

tribution for βs = (1.90, 1.92, 1.94, 1.96, 1.98, 2.00, 2.02, 2.04, 2.06, 2.08)

is a discrete Uniform denoted as p′s = 1
S
, where S represents the total number

of β values in Case 1 and Case 2. Also, assume that the prior distribution for

qk = (0.21, 0.22, 0.23, 0.24, 0.25, 0.26, 0.27, 0.28, 0.29. 0.30) in Case 1 and
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m
Failure Time

1 2 3 4 5 6 7 8 9 10

1 0.665 1.096 1.333 1.378 1.841 1.878 1.898 2.026 2.161 2.725

2 0.750 0.954 1.207 1.734 1.755 1.777 2.270 2.322 2.509 2.652

3 0.771 0.908 1.289 1.656 1.826 1.983 2.456 2.728 2.851 2.952

4 0.422 1.575 1.932 2.262 2.320 2.626 2.703 2.727 2.739 3.212

5 0.732 0.949 1.003 1.447 2.025 2.131 2.303 2.361 2.374 2.823

6 0.408 0.485 1.041 1.405 1.495 1.505 1.523 1.628 1.845 2.445

7 0.061 0.600 1.311 1.981 2.332 2.395 2.644 2.651 3.007 3.163

8 0.504 1.113 1.224 1.404 1.761 1.872 2.198 2.219 2.293 2.409

9 0.709 1.659 2.079 2.443 2.635 3.027 3.211 3.397 3.472 3.474

10 0.476 0.995 1.334 1.484 2.092 2.447 2.732 2.998 3.099 3.263

Table 3.6: Failure times data where q = 0.25 (Case 1)

m
Failure Time

1 2 3 4 5 6 7 8 9 10

1 0.665 0.905 1.018 1.036 1.300 1.316 1.324 1.384 1.448 1.780

2 0.750 0.837 0.957 1.264 1.273 1.282 1.560 1.582 1.673 1.742

3 0.771 0.823 1.022 1.215 1.294 1.368 1.635 1.775 1.834 1.883

4 0.422 1.368 1.532 1.687 1.710 1.857 1.891 1.901 1.906 2.156

5 0.732 0.826 0.847 1.095 1.436 1.484 1.566 1.592 1.598 1.845

6 0.408 0.438 0.829 1.029 1.069 1.073 1.081 1.129 1.239 1.608

7 0.061 0.566 1.060 1.462 1.639 1.667 1.788 1.792 1.977 2.052

8 0.504 0.917 0.963 1.046 1.238 1.289 1.463 1.472 1.507 1.563

9 0.709 1.372 1.579 1.758 1.846 2.046 2.134 2.223 2.259 2.259

10 0.476 0.818 0.998 1.068 1.443 1.631 1.778 1.915 1.964 2.047

Table 3.7: Failure times data where q = 0.85 (Case 2)
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qk = (0.80, 0.81, 0.82, 0.83, 0.84, 0.85, 0.86, 0.87, 0.88, 0.89) in Case 2 is a

discrete Uniform denoted as p′s = 1
K

, where K represents the total number of q

values.

Assume that five failure times are simulated from the posterior predictive distri-

bution to plot the system reliability function, where we assume that the system kept

operating after the fifth failure until the system ended. Figure 3.5 and Figure 3.6

show the predictive reliabilities of a system RTi
(x|xi−1, Dm) under repair efficiency

for Case 1 and Case 2 respectively. The blue line is the system reliability function

after each repair action, where we have five failures. Also, the endpoint of each curve

represents the failure time after each repair.

In Case 1, where high-quality repair is assumed, the system reliability increases

after each repair action, as shown in Figure 3.5, indicating that the repair actions

have restored the system’s functionality to a level comparable to or nearly equivalent

to a new one. On the other hand, In Case 2, where low-quality repair is assumed,

the system reliability hardly increases after each repair action, as shown in Figure

3.6, indicating that the repair actions have restored the system’s functionality to

a level that is better slightly than before failure. Also, it’s noted that the system

reliability decreases as the number of repairs increases after each repair because of

the cumulative effect of performance degradation over the lifetime, suggesting that

the system becomes less capable of reaching optimal functionality with each repair.
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Figure 3.5: The system reliability function after each failure using Case 1
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Figure 3.6: The system reliability function after each failure using Case 2
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Example 3.4.2

In this example, we generate data based on high-quality and low-quality repair

efficiency, As illustrated in the previous Example 3.4.1.

This example illustrates predictive reliability functions after each repair based on

two cases, employing the posterior predictive distribution for the method presented

in Section 3.3. Also, we generate data using the Kijima type I model where, in Case

1, we assume that λ = 3, β = 2 and q = 0.25 and we assume that q = 0.85 in Case

2 and keeping the same values for λ and β as in Case 1. Assume that we generate

data where nm = 10 and M = 10 where data for Case 1 and Case 2 are presented

in Table 3.6 and Table 3.7, respectively.

Assume that Gamma(12, 4), U [1, 4] and Beta(1, 3) are chosen as prior distri-

butions for λ, β and q respectively in Case 1. In Case 2, we only modify the

hyperparameters of Beta distribution and assume Beta(6, 1).

We simulate five failure times from the posterior predictive distribution using

MCMC. These simulated failure times are then used to plot the reliability function

using numerical integration in R, where we assume that the system kept operating

after the fifth failure until the system ended. Figure 3.7 and Figure 3.8 show the

predictive reliabilities of a system RTi
(x|xi−1, Dm) under repair efficiency for Case

1 and Case 2 respectively. The blue line is the system reliability function after

each repair action, where we have five failures. Also, the endpoint of each curve

represents the failure time after each repair. In Case 1, where high-quality repair is

assumed, the system reliability increases after each repair action, as shown in Figure

3.7, indicating that the repair actions have restored the system’s functionality to a

level comparable to or nearly equivalent to a new one. On the other hand, In Case 2,

where low-quality repair is assumed, the system reliability hardly increases after each

repair action, as shown in Figure 3.8, indicating that the repair actions have restored

the system’s functionality to a level that is larger slightly than before failure. Also,

it’s noted that the system reliability decreases as the number of repairs increases

after each repair because of the cumulative effect of performance degradation over

the lifetime, suggesting that the system becomes less capable of reaching optimal

functionality with each repair.
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Figure 3.7: The system reliability function after each failure using Case 1
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Figure 3.8: The system reliability function after each failure using Case 2
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3.5 A system reliability function for a given number

of repairs

In the previous Section 3.4, we analysed the predictive reliability function of the

system separately after each failure time, considering the effective age parameter q.

This analysis provided helpful insights into system performance after each repair and

allowed for inferences based on the posterior predictive reliability function derived

from each repair event. In this section, the total system reliability when a total

number of repairs is given will be explored. We will use the posterior predictive

empirical reliability function to predict the total system reliability until the time

needed to replace it if the number of failures is known. Modelling work supposes

that the number of repairs is considered in this section to model the impact of

maintenance activities on the total reliability of the system. As far as we know,

no studies on virtual age modelling analysis using the total system reliability for a

given number of repairs have been reported in the literature so far.

The empirical reliability function estimator [16] has been widely used for in-

ferences on the reliability function. Let n denote the number of repairs, and

t1, t2, . . . , tn be the times of repair. The empirical reliability function of T is

P (T > t|ti−1, Dm) =
1

n

n∑
i=1

I(Ti > t) . (3.5.36)

This function estimates the probability that the time Ti exceeds a specific value

t. The sum in this equation counts the number of observations greater than t. Then,

we divide the number counted by the total number of repairs to obtain the predictive

probability of observations greater than t.

This section uses the posterior predictive distribution to generate samples, and

the results are used to plot the empirical posterior predictive reliability function

by taking the mean or median of different empirical posterior predictive reliability

functions. The interval for the posterior predictive empirical reliability function is

also derived by taking the α
2

and 1 − α
2

quantiles of different empirical posterior

predictive reliability functions. As a result of this, it will be possible to see an
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overview of the overall system reliability behaviour of the number of repair processes

and the level of uncertainty measured as a result of the confidence bounds to make

inferences and decisions.

The empirical posterior predictive reliability helps predict the probability of a

system performing within time, considering a specific number of repairs. It assists

organizations in evaluating the overall risk associated with this particular repair

count, contributing to the development of safer and more efficient systems. Addi-

tionally, it helps decision-makers to make more informed decisions, including choices

related to system replacement after a certain number of repairs. For example, this

may involve using optimal replacement policies, a topic that will be explored in

Chapter 5. The empirical posterior predictive reliability proposed in this section is

illustrated by examples using the presented methods in Section 3.2 and Section 3.3.

Example 3.5.1

Based on repair efficiency q, this example comprises two cases. We simulate data in

Case 1, assuming high repair efficiency, and in Case 2, assuming low repair efficiency,

to investigate its effect on a system’s predictive reliability functions.

The example illustrates empirical predictive reliability functions for different

numbers of repair actions based on the two cases, employing the posterior predictive

distribution for the method presented in Section 3.2. Also, we generate data using

the Kijima type I model where, in Case 1, we assume that λ = 3, β = 2 and q = 0.25

and we assume that q = 0.85 in Case 2 and keeping the same values for λ and β as

in Case 1. Assume that we generate data where nm = 10 and M = 10 where data

for Case 1 and Case 2 are presented in Table 3.8 and Table 3.9, respectively.

In this example, we will use the same prior information illustrated earlier in Ex-

ample 3.4.1 for λ, β and q. We generated 100 different samples from the posterior

predictive distribution with different numbers of repair actions and derived the pos-

terior predictive empirical reliability function of each sample. Thus, we will obtain

100 posterior predictive empirical reliability functions at each failure time t. Then,

we take the average of these estimates at each time t, which is presented by the blue

step line in Figure 3.9 to Figure 3.12 for Case 1 and Case 2 respectively, to show
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m
Failure Time

1 2 3 4 5 6 7 8 9 10

1 0.665 1.096 1.333 1.378 1.841 1.878 1.898 2.026 2.161 2.725

2 0.750 0.954 1.207 1.734 1.755 1.777 2.270 2.322 2.509 2.652

3 0.771 0.908 1.289 1.656 1.826 1.983 2.456 2.728 2.851 2.952

4 0.422 1.575 1.932 2.262 2.320 2.626 2.703 2.727 2.739 3.212

5 0.732 0.949 1.003 1.447 2.025 2.131 2.303 2.361 2.374 2.823

6 0.408 0.485 1.041 1.405 1.495 1.505 1.523 1.628 1.845 2.445

7 0.061 0.600 1.311 1.981 2.332 2.395 2.644 2.651 3.007 3.163

8 0.504 1.113 1.224 1.404 1.761 1.872 2.198 2.219 2.293 2.409

9 0.709 1.659 2.079 2.443 2.635 3.027 3.211 3.397 3.472 3.474

10 0.476 0.995 1.334 1.484 2.092 2.447 2.732 2.998 3.099 3.263

Table 3.8: Failure times data where q = 0.25 (Case 1)

m
Failure Time

1 2 3 4 5 6 7 8 9 10

1 0.665 0.905 1.018 1.036 1.300 1.316 1.324 1.384 1.448 1.780

2 0.750 0.837 0.957 1.264 1.273 1.282 1.560 1.582 1.673 1.742

3 0.771 0.823 1.022 1.215 1.294 1.368 1.635 1.775 1.834 1.883

4 0.422 1.368 1.532 1.687 1.710 1.857 1.891 1.901 1.906 2.156

5 0.732 0.826 0.847 1.095 1.436 1.484 1.566 1.592 1.598 1.845

6 0.408 0.438 0.829 1.029 1.069 1.073 1.081 1.129 1.239 1.608

7 0.061 0.566 1.060 1.462 1.639 1.667 1.788 1.792 1.977 2.052

8 0.504 0.917 0.963 1.046 1.238 1.289 1.463 1.472 1.507 1.563

9 0.709 1.372 1.579 1.758 1.846 2.046 2.134 2.223 2.259 2.259

10 0.476 0.818 0.998 1.068 1.443 1.631 1.778 1.915 1.964 2.047

Table 3.9: Failure times data where q = 0.85 (Case 2)
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the estimate of the empirical posterior predictive reliability function. The two red

dashed lines present the 90% confidence bands for the posterior predictive empirical

reliability function for each time t. These are derived by excluding the highest 5%

and the lowest 5% of values of 100 empirical posterior predictive reliability functions.

The blue line represents the mean of several different empirical predictive reliability

functions. The resulting function has many steps because of the averaging process

across all these functions at each time point t. On the other hand, the boundaries

of the confidence intervals for the empirical posterior predictive reliability function,

which are represented by red dashed lines, have steps equal to the number of repairs,

n, because at any given time, t, the function can only assume one of the possible

values, each with a probability of 1
n

for each observation.

In Case 1, because of high-quality repair actions, Figure 3.9 shows the posterior

predictive empirical reliability function drops to zero faster when we have a small

number of repairs, which means the system generally maintains an increase in the

probability of reliability over time when the number of repairs is increased. In case

2, due to ineffective or low-quality repair actions, Figure 3.10 shows the posterior

predictive empirical reliability function drops to zero with a slight change when

the number of repairs is increased. That means that the system fails fast, and the

system functionality generally stays similar over time. Therefore, Figures 3.9 and

3.10 show that the posterior predictive empirical reliability function drops to zero

faster in Case 2 than in Case 1 for each number of repair actions. The upper and

lower bands of the posterior predictive empirical reliability function represent the

uncertainty for each Case. Wider bands indicate greater uncertainty about reliability

estimates at each time point t, while narrower bands suggest greater confidence in

reliability estimates. The posterior predictive empirical reliability function bounds

drop to zero faster in Case 2 than in Case 1 for each number of repair actions, which

is shown in Figures 3.9 and 3.10.
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(d) Six repair actions

Figure 3.9: Different posterior predictive empirical reliability functions based on the
numbers of repair actions with the confidence band using conditional and discrete
priors Case 1.
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(d) Six repair actions

Figure 3.10: Different posterior predictive empirical reliability functions based on
the numbers of repair actions with the confidence band using conditional and discrete
priors Case 2.
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Example 3.5.2

This example comprises two cases based on repair quality. In Case 1, we simulate

data assuming higher quality repair efficiency. In Case 2, we modify the data to as-

sume lower quality repair efficiency and investigate its effect on a system’s predictive

empirical reliability functions with lower and upper bands for different numbers of

repair actions.

The example illustrates empirical predictive reliability functions for different

numbers of repair actions based on the two cases, employing the posterior predictive

distribution for the method presented in Section 3.3. Also, we generate data using

the Kijima type I model where, in Case 1, we assume that λ = 3, β = 2 and q = 0.25

and we assume that q = 0.85 in Case 2 and keeping the same values for λ and β as

in Case 1. Assume that we generate data where nm = 10 and M = 10 where data

for Case 1 and Case 2 are presented in Table 3.8 and Table 3.9, respectively.

In this example, the same priors information illustrated earlier in Example 3.4.2

are used for λ, β and q. We generated 100 different samples from the posterior

predictive distribution with different numbers of repair actions and derived the pos-

terior predictive empirical reliability function of each sample. Thus, we will obtain

100 posterior predictive empirical reliability functions at each failure time t. Then,

we take the average of these estimates at each time t, which is presented by the

blue step line in Figure 3.11 and Figure 3.12 for Case 1 and Case 2 respectively, to

show the estimated posterior predictive empirical reliability function. The two red

dashed lines present the 90% confidence bands for the posterior predictive empirical

reliability function for each time t. These are derived by excluding the highest 5%

and the lowest 5% of values of 100 empirical reliability functions.

In Case 1, because of high-quality repair actions, Figure 3.11 shows the posterior

predictive empirical reliability function drops to zero faster when we have a small

number of repairs, which means the system generally maintains an increase in the

probability of reliability over time when the number of repairs is increased. In Case

2, due to ineffective or low-quality repair actions, Figure 3.12 shows the posterior

predictive empirical reliability function drops to zero with a slight change when

the number of repairs is increased. That means that the system fails fast, and the
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system functionality generally stays similar over time. Therefore, Figures 3.11 and

3.12 show that the posterior predictive empirical reliability function with the 90%

confidence bands drops to zero faster in Case 2 than in Case 1 for each number of

repair actions.
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(d) Six repair actions

Figure 3.11: Different posterior predictive empirical reliability functions based on
the numbers of repair actions with the confidence band using continuous priors Case
1.



3.5. A system reliability function for a given number of repairs 55

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

E
m

pi
ric

al
 R

el
ia

bi
lit

y 
F

un
ct

io
n

Average ERF

90% confidence bands

(a) Three repair actions

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

E
m

pi
ric

al
 R

el
ia

bi
lit

y 
F

un
ct

io
n

Average ERF

90% confidence bands

(b) Four repair actions

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

E
m

pi
ric

al
 R

el
ia

bi
lit

y 
F

un
ct

io
n

Average ERF

90% confidence bands

(c) Five repair actions

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

t

E
m

pi
ric

al
 R

el
ia

bi
lit

y 
F

un
ct

io
n

Average ERF

90% confidence bands

(d) Six repair actions

Figure 3.12: Different posterior predictive empirical reliability functions based on
the numbers of repair actions with the confidence band using continuous priors Case
2.
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3.6 Concluding remarks

A Bayesian method using the Kijima type I model with Weibull distribution has

been presented in this chapter. The Kijima type I model is used to analyse the per-

formance of repairable systems in engineering asset management after repair. The

parameters are estimated utilizing analytical solutions when closed-form expressions

for estimations are attainable within a Bayesian framework with discrete priors. Al-

ternatively, a Markov Chain Monte Carlo (MCMC) method can be used to estimate

the parameters using continuous priors for Bayesian analysis. The estimations are

explored based on two cases of the selection of the hyperparameters of each prior

distribution. In case 1, a good prior is selected. Hyperparameters of each prior

distribution are selected so that the mean of each prior is near the values of actual

parameters. In case 2, a poor prior is selected. To evaluate the performance of the

analytical solutions, we compare the results obtained from the analytical method

with discrete priors to the results derived from the MLE method for high and low-

quality repair efficiency using the parameter q. For parameter estimates, in terms of

the closest value to the true values, Case 1 gives the best estimator for the parame-

ters, followed by the MLE and then Case 2. The selection of prior has impacted the

estimated results, especially for the scale parameter λ and repair efficiency param-

eter q. A bad prior choice negatively impacts the results more than MLE because

of its biased influence, while a good prior improves outcomes by effectively incor-

porating relevant prior knowledge with the data, leading to more accurate results

compared to those obtained using MLE.

The reliability of a system has been derived, and the changes to the predictive

reliability have been analysed after each repair based on Bayesian methodology and

simulated data using the Kijima type I model. The posterior predictive reliability of

a system has been estimated based on the MCMC method using continuous priors

for the parameters and analytical solutions with discrete priors. Based on repair

efficiency q, high-quality and lower-quality repair data are used. In high-quality

repair efficiency data, the system’s predictive reliability increases after each repair

action, indicating that the repair actions have restored the system’s functionality
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to a level comparable to or nearly equivalent to a new one. On the other hand, In

lower-quality data, where low-quality repair is assumed, the system reliability hardly

increases after each repair action, indicating that the repair actions have restored

the system’s functionality to a slightly better level than before failure.

We develop and illustrate a novel method using the posterior predictive empirical

reliability function to predict the total system reliability until the time needed to

replace it when the number of failures is known and illustrate it. When a total

number of repairs is given, the total system reliability with the interval has been

illustrated for different numbers of repair actions using analytical solutions with

discrete priors and the MCMC method using continuous priors for the parameters.

High-quality and lower-quality repair data are used based on repair efficiency q to

investigate its effect on a system’s predictive empirical reliability functions with lower

and upper bands for different numbers of repair actions. When the repair efficiency

has high quality, the posterior predictive empirical reliability function drops to zero

faster when we have a small number of repairs, which means the system generally

maintains an increase in the probability of reliability over time when the number

of repairs is increased. When the quality of repair efficiency is low, the posterior

predictive empirical reliability function drops to zero with a slight change when the

number of repairs is increased. That means that the system fails fast, and the system

functionality generally stays similar over time.



Chapter 4

Robust Bayesian inference for Kijima

type I model

4.1 Introduction

Bayesian analysis for the Kijima type I model parameters with the Weibull distri-

bution allows experts to include opinions. In reality, the expert, such as a repair

technician, formulates their opinions in the form of a prior distribution for the pa-

rameters. However, without training, expecting an expert to formulate their beliefs

in the form of a specific prior distribution may be unreasonable. This training is

part of the elicitation process [14, 27], which aims to include an expert’s previous

beliefs about the parameters into a mathematical distribution. One must obtain

information from an expert after training and then fit distributions to achieve a

distribution that suitably represents their prior beliefs [27].

In reality, there are many repair technician experts in any area, so we could ask

many repair experts to introduce a specific prior distribution. Many experts often

disagree, making arriving at a precise prior difficult [70]. To have a separate model

for each repair expert could be one solution that can be used to collect different prior

distributions, but this would quickly become unmanageable. However, it is generally

impossible to identify a unique prior that fully aligns with different experts’ opinions.

The significant consequence of this uncertainty is the impact of inaccurately specified

priors on quantities of interest, such as posterior set probabilities and means [70].

58
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Clearly, there is uncertainty regarding the specification of this prior knowledge.

To deal with this uncertainty, the concept of Bayesian robustness has been intro-

duced [8]. The concept of robust Bayes analysis, also known as Bayesian sensitivity

analysis, explores the robustness of outcomes obtained through Bayesian analysis in

the face of uncertain aspects of the analysis [6, 8, 36]. Robust Bayesian methods

expand the Bayesian approach by acknowledging that the Bayesian approach can

take different forms of uncertainty inference depending on subjective inputs, such

as prior information [65, 68]. The concept of robust Bayes relies on the experts’

uncertainty by defining a set of prior distributions that reflect their opinion [70].

Therefore, we get a set of posterior distributions when each prior is combined with

the likelihood function. This set of posteriors can then be used for inferences, re-

sulting in bounds on inferences such as probabilities and other quantities of interest

[8].

The idea of bounding probability dates back to the 19th century and was first

proposed by Boole [10]. Since then, many papers have been presented on the bound-

ing of probability methods for many areas of statistics. However, the use of a set

of priors was suggested first by Good [30, 31]. After Good’s papers, Berger [6, 7]

developed robust Bayesian analysis and discussed the use of a set of priors. The

underlying idea behind using a set of priors is that no single distribution can ad-

equately represent uncertainty, but the set of distributions may form a reasonable

model for expressing uncertainty.

In Chapter 3 of this thesis, we used MCMC to get the uncertainty for the em-

pirical posterior predictive reliability function using a single prior. However, there

is still a possibility for sensitivity to a single prior distribution for the Kijima type I

model parameters. In order to investigate the influence of the prior uncertainty, we

can employ a set of prior distributions, which leads to a robust Bayesian analysis.

Therefore, this chapter will present robust Bayesian statistical inferences using a set

of the parameters’ prior distributions. The set of priors will reflect imprecision in

posterior predictive system reliability bounds. This allows for modelling partial or

imperfect prior knowledge on the Kijima type I model in a flexible way using robust

Bayesian analysis.
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This chapter is organised as follows: Section 4.2 presents an overview of the

selection of the set of priors. A set of prior distributions for the repair effectiveness

parameter q is introduced in Section 4.3, leaving the other parameters fixed. Differ-

ent sets of prior distributions for the parameter q are studied with two cases of repair

quality. Also, we will introduce a set of prior distributions on the repair effectiveness

parameter q and the scale parameter of Weibull distribution λ in Section 4.4. We

study different sets of prior distributions for the parameters λ and q with two cases

of repair quality.

4.2 Selecting the set of prior distributions

When we select a set of priors, the problem is which prior distributions are reason-

able to include in the set. In some sense, a reasonable prior distribution can be

thought of as one that accurately represents the experts’ prior beliefs. Berger [8]

indicates that the size of the set of prior distributions should represent the experts’

prior knowledge when performing a robust Bayesian analysis. If the experts have

considerable prior knowledge, choosing a concise set of priors to reflect uncertainty is

recommended. On the other hand, if the experts have minimal or no prior knowledge

about the parameters, a set of priors should include all, or approximately all, priors,

as suggested by Berger. This means there is no longer a precise prior distribution

but rather a class of priors reflecting the uncertainties of all experts.

Also, when choosing a class of priors, Berger suggested that one should select

the class that can be easily worked with and which is easy to elicit [8]. Furthermore,

the class of prior distributions should include as many reasonable priors as possible

in order to guarantee robustness. [8].

Modelling work supposes that after selecting a set of prior distributions denoted

by M(0), the Bayesian robustness is examined in terms of its influence on the poste-

rior and the resulting posterior inferences (for example, probabilities, means, etc.),

where the set of posterior inferences, denoted by M(n), is investigated as the prior

distribution changes in class M(0). According to Berger [8], any prior in M(0) can

be chosen when the range of results is small (according to statisticians and expert
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judgements) since all of them lead to similar results. This means that the result is

robust. When the range of results is large, more information is required to get a

smaller class M(n), such as adding and collecting more data. As a result, the range

of the inference will reflect the robustness and uncertainty of the inference when

selecting a specific prior distribution from the set of priors M(0) [70].

In the following sections, a set of prior distributions for the repair effectiveness

parameter q is introduced in Section 4.3, and we will introduce a set of prior distri-

butions for the repair effectiveness parameter q and λ in Section 4.4.

4.3 Set of prior distributions for repair effectiveness

parameter

Using the posterior predictive empirical reliability function enables the system re-

liability function to be calculated based on the fixed prior hyperparameters (c, d)

and data where the Weibull distribution scale parameter λ and the Weibull distri-

bution shape parameter β are fixed. c, d > 0 are the hyperparameters of the Beta

distribution, where this distribution is the prior distribution of the repair efficiency

parameter q. In this section, we discuss the use of sets of priors M(0) on the repair

effectiveness parameter q, which allows for uncertain and incomplete prior knowl-

edge. Modelling work supposes that the set of priors M(0) is defined by modifying

the Beta(c, d) distribution within the set of prior parameters. The goal is to study

the robustness of uncertainty results using the upper and lower posterior predictive

reliability functions depending on a set of priors and data.

In the uncertainty of prior information, we will take a set that contains all pos-

sible prior distributions over all or approximately all expected q values, but by

guessing the lower c1 and upper c2 values of hyperparameters c with w a fixed con-

stant number to control the distribution’s shape and the strength of the prior beliefs

it represents. This effectively creates a constraint that shapes the parameter space

of the Beta distribution from optimistic to pessimistic in terms of repair efficiency,

which helps quantify the uncertainty in prior beliefs. The set of prior distributions
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on q is given by

M(0) = {Beta(c, d) : c1 ≤ c ≤ c2, d = w − c, for given c+ d = w} . (4.3.1)

When the interval of c is c ∈ [c1, c2] then by substituting c into the expression

c+d = w, the interval of d is d ∈ [w−c2, w−c1]. The set of the posterior probability

distributions, M(n), is calculated by multiplying the likelihood function and each

prior distribution within M(0) for q.

Due to the complexity of the posterior predictive empirical reliability function

of the Kijima type I model, which is presented in Equation (B.2.3), It is inherently

difficult to establish the proof of upper and lower posterior predictive empirical

reliability functions based on prior parameters. Therefore, we present a possible

argument for lower and upper posterior predictive empirical reliability function.

In the Kijima type I model, modelling work supposes that q = 1 corresponds to

minimal repair, and q = 0 corresponds to perfect repair. It suggests that system

reliability is bounded between these extreme cases, with the upper bound corre-

sponding to situations where the system is repaired perfectly after failures and the

lower bound corresponding to situations where the system is repaired minimally af-

ter failures. Therefore, the upper bound of the system reliability is obtained when

the repair is perfect q = 0. On the other hand, the lower bound of system reliability

is obtained when the repair is minimal q = 1.

We have a set M(0) of priors for effective repair parameters in this section,

focusing on a set of Beta distributions. Based on the Beta prior distribution of q, the

expected value is c
w

where w = c+ d. This framework allows for representing beliefs

about repair efficiency, ranging from pessimistic to optimistic, based on the expected

values of the Beta distributions. When we have an upper expected value belief of

Beta, we represent a pessimistic case of repair efficiency, while when we have a low

expected value belief of Beta, we represent an optimistic case of repair efficiency.

Therefore, by assuming that c is an interval where c ∈ [c1, c2] and c + d = w, the

prior parameter pair that maximizes E[q] is c2
w

, and the prior parameter pair that

minimizes E[q] is c1
w

. Thus, a prior parameter in M(0) that minimizes the system
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reliability is (c2, d) where d = w− c2 and a prior parameter in M(0) that maximizes

the system reliability is (c1, d) where d = w − c1. The lower and upper posterior

predictive empirical reliability functions of T are

P (T > t|ti−1, Dm) = inf
P∈P ∗

(P (T > t|ti−1, Dm)) = P (T > t|ti−1, c2, d,Dm) , (4.3.2)

P (T > t|ti−1, Dm) = sup
P∈P ∗

(P (T > t|ti−1, Dm)) = P (T > t|ti−1, c1, d,Dm) , (4.3.3)

where P ∗ is a set of posterior predictive empirical reliability function solutions.

There are no conjugate prior distributions or closed-form solutions for the pa-

rameter q and system reliability. We need a numerical method to get the upper and

lower estimates of system reliability based on the posterior set. Therefore, we es-

timate the parameters and posterior predictive empirical reliability functions using

MCMC.

4.3.1 Simulation study of prior assumptions regarding repair

effectiveness parameter

The aim of this simulation is to illustrate the upper and lower empirical predictive

reliability functions based on the set of prior distributions method presented in

Section 4.3 using the Kijima type I model based on two cases of repair efficiency q.

We simulate data by assuming higher quality repair efficiency in Case 1 and lower

quality repair efficiency in Case 2 with a different set of priors and investigate its

effect on a system’s lower and upper predictive empirical reliability functions.

We generate data using the Kijima type I model using Monte Carlo simulation

where, in Case 1, we assume λ = 3, β = 2 and q = 0.25 and we assume q = 0.85 in

Case 2 and keeping the same values for λ and β as in Case 1. Assume we generate

data where nm = 10 and M ∈ [5, 10] where data for Case 1 and Case 2 are presented

in Table 3.8 and Table 3.9, respectively, where we take the first five rows when M = 5

and the all the rows when M = 10.

Assume that λ and β are fixed, and a set of Beta distributions is chosen as prior

distributions for q in Case 1 and 2. Assume that w = 5.5 and we take three sets of
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prior distributions with different hyperparameter intervals, given by

M(0)
1 = {Beta(c, d) : 0.5 ≤ c ≤ 5, d = 5.5− c, } ,

M(0)
2 = {Beta(c, d) : 1.5 ≤ c ≤ 4, d = 5.5− c, } ,

M(0)
3 = {Beta(c, d) : 2 ≤ c ≤ 3.5, d = 5.5− c, } .

Based on the mean c
w

of the Beta distribution, the first set is the widest, representing

the lowest certainty about q, while the second set is narrower, suggesting a medium

level of certainty. The third set is the narrowest, indicating the lowest uncertainty

about q.

nm = 10 M
M(0)

1 M(0)
2 M(0)

3

B(0.5, 5) B(5, 0.5) B(1.5, 4) B(4, 1.5) B(2, 3.5) B(3.5, 2)

Case 1

q̂
5 0.2932 0.3734 0.3101 0.3542 0.3190 0.3452

10 0.2733 0.3114 0.2815 0.3028 0.2860 0.2984

Case 2

q̂
5 0.7032 0.9357 0.7436 0.8696 0.7649 0.8410

10 0.7459 0.9298 0.7745 0.8695 0.7902 0.8471

Table 4.1: Estimated values of q using MCMC with different sets of Beta priors for
q
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Figure 4.1: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and five repair actions
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Figure 4.2: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and ten repair actions
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Figure 4.3: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and five repair actions
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Figure 4.4: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and ten repair actions
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Figure 4.5: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and five repair actions
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Figure 4.6: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and ten repair actions
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Figure 4.7: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and five repair actions
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Figure 4.8: Upper and lower posterior predictive empirical reliability function with
different sets of beta priors for q and ten repair actions
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In Table 4.1, The Metropolis-Hastings (MCMC) is used to estimate the param-

eter q using squared error loss based on each upper and lower value of c hyperpa-

rameter within each specified Beta distribution priors set. Three different sets of

Beta(c, d) priors are assumed for q where c + d = 5.5 to quantify the uncertainty

in prior beliefs with different hyperparameter intervals of c for each set. We get the

upper estimated value of q when the prior is Beta(c = 5, d = 0.5) and the lower esti-

mated value of q when the prior is Beta(c = 0.5, d = 5) for the first set and for both

cases based on repair efficiency quality data. Also, in the second and third sets of

Beta priors, the upper q estimated value is obtained when we have the upper values

of c and the lower q estimated value is obtained when we have the lower values of

c. The difference between the estimated value of upper and lower q increases when

the set increases and decreases when the data increases.

We generated 100 different samples from the posterior predictive distribution

based on each set of priors for each case. Then, we took the average of these esti-

mates at each time t. Thus, we obtain 100 posterior predictive empirical reliability

functions at each failure time t for each upper and lower. Then, we take the average

of these estimates at each time t. The upper and lower posterior predictive empirical

reliability functions are obtained using Beta(0.5, 5) and Beta(5, 0.5), respectively,

for the first set. In Figures 4.1 to 4.8, the red line represents the upper estimated

predictive empirical reliability function using Beta(0.5, 5), and the blue line rep-

resents the lower predictive empirical reliability function using Beta(5, 0.5). Also,

the grey and black lines show the upper and lower estimated posterior predictive

empirical reliability functions, respectively, for the second set, and the green and

violet lines show the upper and lower posterior predictive empirical reliability func-

tions, respectively, for the third set. These lines reflect the range of the estimated

empirical predictive reliability function based on the posterior estimate.

Based on the first set, which represented the lowest certainty, Figures 4.1 to 4.8

show results with the widest range between upper and lower estimated predictive

empirical reliability functions, which indicates the lowest level of robustness. For

the second set, which has a range of prior assumptions suggesting stronger certainty

than the first set, the figures show a smaller difference between the upper and lower
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estimated predictive empirical reliability functions, implying an enhancement in

reliability as uncertainty decreases. The third set, representing the strongest level

of certainty among all three sets, resulted in the lowest difference between upper and

lower estimated predictive empirical reliability functions. Thus, the impact of prior

certainty levels on the robustness of estimated upper and lower predictive empirical

reliability functions indicates more robust results when dealing with a narrower set

of priors.

To provide a more comprehensive understanding of the variability and uncer-

tainty in the posterior predictive empirical reliability functions, we have plotted

ribbons representing a 90% interval. To plot the interval, we calculated the 5th and

95th percentiles of the reliability estimates at each failure time t across generated

samples. The 90% interval offers a measure of the spread of predictions, ensuring

that the majority of the posterior predictive distribution is covered. By showing

these intervals, we enhance the interpretability of the results by highlighting the un-

certainty and variability in predictions of the upper and lower posterior predictive

empirical reliability functions based on each set of prior distributions. The ribbons

in Figures 4.1 to 4.8 clearly show the confidence we can have in the reliability esti-

mates at different time points, with the shaded regions indicating the interval within

which 90% of the predictions of posterior predictive empirical reliability functions

lie for each set of the prior distributions. Wider ribbons indicate greater uncertainty

about reliability estimates at each time point t, while narrower bands suggest greater

confidence in reliability estimates.

From Table 4.1, where we have different M = 5, M = 10, the difference between

the upper and lower values for parameter q become smaller when we increase M for

both cases. Also, each set’s upper and lower lines become closer when we increase

the amount of data as shown in Figures 4.1 to 4.4 when M = 5 and in Figures 4.5 to

4.8 when M = 10 for Case 1 and 2. That means that the imprecision in Kijima type

I’s lower and upper predictive empirical reliability function decreases when we have

more data. Consequently, the robustness of inferences improves. This robustness

suggests that any prior from M(0) yields similar results across the evolved set M(n),

thus enhancing the confidence in the reliability of these inferences.
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4.4 Sets of priors for scale and repair effectiveness

parameters

Using the posterior predictive empirical reliability function enables the system relia-

bility function to be calculated based on the fixed prior parameters (a, b, c, d) and

data when the shape parameter β is fixed, a, b > 0 are the parameters of Gamma

prior distribution for λ and c, d > 0 are the parameters of Beta prior distribution for

q. In this section, we discuss the use of sets of priors M(0) on the repair effectiveness

parameter q and scale parameter λ, which allows for uncertain and incomplete prior

knowledge. Modelling work supposes that the set of priors M(0) is defined by mod-

ifying Beta(c, d) and Gamma(a, b) within the set of prior parameters. The goal is

to study the robustness of uncertainty results using the upper and lower posterior

predictive reliability functions depending on the prior parameter combinations and

data.

In this section, not only does the hyperparameter c take an interval but also a

and b, which helps to identify the uncertainty in prior beliefs based on the prior

distributions of λ and q. Let the hyperparameters be a ∈ [a1, a2], b ∈ [b1, b2],

c ∈ [c1, c2] and c+ d = w, so we have a set of priors on λ and q given by

M(0) = {π(λ|a, b)π(q|c) : a1 ≤ a ≤ a2, b1 ≤ b ≤ b2, c1 ≤ c ≤ c2, c+ d = w} ,

(4.4.4)

when the interval of c is c ∈ [c1, c2] then by substituting c into the expression

c + d = w, the interval of d is d ∈ [w − c2, w − c1]. The set of the posterior

probability distributions, M(n), is calculated by multiplying the likelihood function

and each prior distribution within M(0) for λ and q.

Based on prior parameters, proving upper and lower posterior predictive empir-

ical reliability functions is inherently difficult due to the complexity of the posterior

predictive empirical reliability function of the Kijima type I model, which is pre-

sented in Equation (B.3.5). Therefore, we present an argument supporting lower

and upper posterior predictive empirical reliability functions. Based on the Weibull
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distribution [49], the expected lifetime of a system is

E[T ] =
1

λ
1
β

Γ(1 +
1

β
) (4.4.5)

From equation (4.4.5), the scale parameter is in the denominator, which means

that when β is fixed, the expected lifetime for a system E[T ] is minimized when λ is

maximized, while the expected lifetimes for a system E[T ] is maximized when λ is

minimized. Also, in general, q = 1 corresponds to a minimal repair, whereas q = 0

corresponds to a perfect repair, which suggests that system reliability is bounded

between these extreme cases, as described in Section 4.3. Therefore, the upper

bound of the system reliability is obtained when λ is minimized, and the repair is

perfect q = 0. On the other hand, the lower bound of system reliability is obtained

when λ is maximized, and the repair is minimal q = 1.

We have a set M(0) of priors for the scale and effective repair parameters in this

section. We have a set of priors for λ based on Gamma distribution and a set of

priors for q based on Beta distribution. Based on the Gamma prior distribution of

λ, the expected value is a
b
, which means that the upper prior belief about λ cor-

responds to the prior upper expected value of the Gamma distribution, while the

lower prior belief about λ corresponds to the prior lower expected value. Therefore,

by assuming that a and b are values within the intervals [a1, a2] and [b1, b2] respec-

tively, the prior parameter pair that maximizes E[λ] is a2
b1

, and the prior parameter

pair that minimizes E[λ] is a1
b2

. Also, the expected value is c
w

based on the Beta

prior distribution of q where w = c + d which means that an upper expected value

represents prior information of a pessimistic case of repair efficiency, whereas a lower

expected value represents prior information of an optimistic case of repair efficiency.

Therefore, by assuming that c is an interval where c ∈ [c1, c2] and c + d = w, the

prior parameter pair that minimizes E[q] is c1
w

, while the prior parameter pair that

maximizes E[q] is c2
w

. Thus, assuming prior independence of the parameters, a prior

parameter combination in M(0) that minimizes the system reliability is (a2, b1, c2, d)

where d = w − c2 and a prior parameter combination in M(0) that maximizes the

system reliability is (a1, b2, c1, d) where d = w − c1. The lower and upper posterior
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predictive empirical reliability functions of T are

P (T > t|ti−1, Dm) = inf
P∈P ∗

(P (T > t|ti−1, Dm)) = P (T > t|ti−1, a2, b1, c2, d,Dm) ,

(4.4.6)

P (T > t|ti−1, Dm) = sup
P∈P ∗

(P (T > t|ti−1, Dm)) = P (T > t|ti−1, a1, b2, c1, d,Dm) ,

(4.4.7)

where P ∗ is a set of posterior predictive empirical reliability function solutions.

Again, there are no conjugate prior distributions or closed-form solutions for the

parameters. We need a numerical method to get the upper and lower estimates of

system reliability based on the posterior set. Therefore, we estimate the parameters

and posterior predictive empirical reliability functions using MCMC.

4.4.1 Simulation study of prior assumptions regarding scale

and repair effectiveness parameters

The aim of this simulation is to investigate the set of prior distributions method

introduced in this Section 4.4 using the Kijima type I model with two cases based

on the repair efficiency parameter with different sets of priors and investigate its

effect on a system’s lower and upper predictive empirical reliability functions.

We generate data using the Kijima type I model using Monte Carlo simulation

where, in Case 1, we assume higher quality for repair efficiency where λ = 3, β = 2

and q = 0.25 and we assume lower quality for repair efficiency where q = 0.85 in Case

2 and keeping the same values for λ and β as in Case 1. Assume we generate data

where nm = 10 and M ∈ [5, 10] where data for Case 1 and Case 2 are presented in

Table 3.8 and Table 3.9, respectively, where we take the first five rows when M = 5

and all the rows when M = 10.

Assume that β is fixed, a set of Gamma distributions is chosen as prior distri-

butions for λ and a set of Beta distributions is chosen as prior distributions for q in

Case 1 and 2. Assume we select w = 5.5 and the interval for the first set a ∈ [5, 20],

b ∈ [1, 10] and c ∈ [0.5, 5] and interval for the second set a ∈ [3, 12], b ∈ [5, 15]
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and c ∈ [1, 4.5]. The sets of priors for λ and q given by

M(0)
1 = {π(λ|a, b)π(q|c) : 5 ≤ a ≤ 20, 1 ≤ b ≤ 10, 0.5 ≤ c ≤ 5, d = 5.5− c} ,

M(0)
2 = {π(λ|a, b)π(q|c) : 3 ≤ a ≤ 12, 5 ≤ b ≤ 15, 1.5 ≤ c ≤ 4.5, d = 5.5− c} .

nm = 10 M
First set Second set

G(5, 10)B(0.5, 5) G(20, 1)B(5, 0.5) G(3, 15)B(1, 4.5) G(12, 5)B(4.5, 1)

Case 1

λ̂
5 3.3728 4.0592 2.9539 3.3926

10 3.2960 3.6914 3.0198 3.2240

q̂
5 0.2693 0.2720 0.3269 0.3402

10 0.2486 0.2538 0.2897 0.2958

Case 2

λ̂
5 3.7136 4.05901 3.6279 3.8503

10 3.5756 3.6801 3.4955 3.5225

q̂
5 0.7524 0.8636 0.7604 0.8458

10 0.7497 0.8357 0.7586 0.8308

Table 4.2: Estimated values using MCMC with different sets of priors for λ and q
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Case 1 when M = 5

Figure 4.9: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and five repair actions.
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Case 1 when M = 5

Figure 4.10: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and ten repair actions.
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Case 2 when M = 5

Figure 4.11: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and five repair actions.
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Case 2 when M = 5

Figure 4.12: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and ten repair actions.
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Case 1 when M = 10

Figure 4.13: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and five repair actions.
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Figure 4.14: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and ten repair actions.
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Case 2 when M = 10

Figure 4.15: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and five repair actions.
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Case 2 when M = 10

Figure 4.16: Upper and lower posterior predictive empirical reliability function with
different sets of priors for λ and q and ten repair actions.



4.4. Sets of priors for scale and repair effectiveness parameters 79

In Table 4.2, for the estimation of the parameters, λ and q, the Metropolis-

Hastings (MCMC) method is used with squared error loss based on the upper and

lower values of hyperparameters in the specified priors. Two sets of priors are se-

lected. we get the upper values for q and λ when the priors are Gamma(a = 20, b =

1) for λ and Beta(c = 5, d = 0.5) for q while the lower values for q and λ obtained

withe priors Gamma(a = 5, b = 10) for λ and Beta(c = 0.5, d = 5) for q using the

first set and for Case 1 and 2. Also, in the second set, the upper λ and q values

are obtained when we have the upper values of c and a the lower value of b while

the lower λ and q values are obtained when we have the lower values of c and a the

upper value of b. The difference between the estimated value of upper and lower λ

and q decreases when the data increases.

The upper and lower posterior predictive empirical reliability functions are

obtained using Gamma(5, 10) and Beta(0.5, 5) and Gamma(20, 1) Beta(5, 0.5),

respectively, for the first set and Gamma(3, 15) Beta(1, 4.5) and Gamma(12, 5)

Beta(4.5, 1), respectively, for the second set. We generated 100 different samples

from the posterior predictive distribution based on each set of priors for each case.

Then, we took the average of these estimates at each time t. Thus, we will obtain

100 posterior predictive empirical reliability functions at each failure time t for each

upper and lower. Then, we take the average of these estimates at each time t. In

Figures 4.9 to 4.16, the red line represents the upper predictive empirical reliabil-

ity function and the blue line represents the lower predictive empirical reliability

function using each set. These lines reflect the range of the estimated empirical

predictive reliability function based on the posterior estimate.

To comprehensively understand the variability and uncertainty in the posterior

predictive empirical reliability functions, we have plotted ribbons representing a

90% interval by calculating the 5th and 95th percentiles of generated samples. The

ribbons in Figures 4.9 to 4.16 clearly illustrate the confidence in the reliability esti-

mates at different time points, with the shaded regions indicating the interval within

which 90% of the predictions of posterior predictive empirical reliability functions

lie for each set of prior distributions. Wider ribbons indicate lower certainty about

reliability estimates at each time point t, while narrower ribbons suggest a strong



4.5. Concluding remarks 80

level of certainty in the estimates.

From Table 4.2, where we have different M = 5, M = 10, the difference between

the upper and lower values for parameter q become closer when we increase M for

both cases. Also, each set’s upper and lower lines become closer when we increase

the data, which are shown in Figures 4.9 to 4.12 when M = 5 and in Figures 4.13 to

4.16 when M = 10 for Case 1 and 2. That means that the robustness based on the

lower and upper predictive empirical reliability function of Kijima type I increase

when we have more data. This robustness suggests that any prior from M(0) yields

similar results within the set M(n), thus improving confidence in the accuracy of

these inferences.

4.5 Concluding remarks

A robust Bayesian method that enables the use of sets of prior information to inte-

grate prior uncertainties using the Kijima type I model has been presented in this

chapter. A set of prior distributions for the repair effectiveness parameter q is in-

troduced in Section 4.3, and we introduced a set of prior distributions for the repair

effectiveness parameters q and λ in Section 4.4. The imprecision was evaluated us-

ing the upper and lower empirical posterior predictive reliability functions. Then,

to study the effect of the uncertainty of prior distributions, a simulation investiga-

tion is conducted with different sets of prior distributions for the parameters, which

are studied in two cases and different sample sizes. The upper and lower empirical

posterior predictive reliability functions are estimated using MCMC with respect to

the different sets of priors. The results have shown that the imprecision in Kijima

type I’s lower and upper predictive empirical system reliability decreases while the

robustness increases when we have more data. Also, these results helped us to con-

fidently infer that any prior in M(0) can be chosen when we have more data since

the range becomes smaller, which leads to similar results.

As with any statistical method developed for real-world applications, the real

value of the method presented in this chapter is important to be shown by real-

world applications. With the same model assumptions as for classical inference
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methods, no additional modelling effort is required; instead, the question is how

the uncertainty about the prior distributions can be used to support real-world

decisions. Optimal replacement policies will be presented in the following chapter,

which explores this important aspect.



Chapter 5

Optimal replacement decisions

5.1 Introduction

In this chapter, we illustrate how predictive inference can be used to infer the optimal

replacement policy using the Kijima type I model based on Bayesian approaches

described in Chapter 3 and Chapter 4. In particular, we focus on determining the

optimal replacement of the item depending on time and the number of repairs. This

includes the cost of the replacement item and repair cost.

The failure to perform maintenance adequately to maintain technological sys-

tems can lead to significant risks. In reality, for instance, according to Kutor et al.

[42], research conducted by the World Health Organization reveals that preventable

factors account for approximately 80 per cent of all medical item failures, with inad-

equate maintenance alone contributing to around 60 per cent of performance-related

issues. Furthermore, between 1994 and 2004, maintenance issues were implicated in

up to 42 per cent of fatal airline accidents in the United States alone [33].

The systems used to produce goods and provide services constitute the vast ma-

jority of the cost of most industries. These systems are susceptible to degradation

and accidents resulting from operational and environmental conditions [76]. Main-

tenance actions are implemented to ensure system availability and efficiency. In

reality, maintenance might be expensive in terms of both resources and materials

[66]. Maintenance costs constitute a significant portion of the overall operating costs

for manufacturers, accounting for approximately 15 to 60 per cent of total produc-

82
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tion costs [54]. It is important to establish an effective maintenance strategy that

takes into account the required resources and production plans. Such a strategy

directly results in the reduced occurrence of system failures and decreases the costs

of systems maintenance [76].

When a piece of machinery becomes older, it enters a phase where its failure rate

increases, known as the wear-out phase. During this period, the item experiences

age-related failures, resulting in a decrease in its resistance to failure and an increase

in failure rate over time. These failures are caused by processes such as crack growth,

corrosion, wear, and creep, which are all time-dependent forms of physical degra-

dation [67]. In the area of maintenance, a preventive replacement strategy requires

making decisions for the optimal time for item replacement. The replacement of an

item is an important aspect of maintenance decision-making within a time-based pre-

ventive maintenance program. This task aims to ensure that the system remains in

a condition that satisfies various predetermined performance levels. Most literature

discusses two primary strategies for preventive replacement: age-based and constant

time interval or periodic replacements [34]. In the age-based strategy, replacement

occurs after a time of continuous operation without failure. If the item fails before

time has elapsed, replacement takes place at the time of failure. On the other hand,

the periodic replacement policy involves performing preventive maintenance on an

item at regular time intervals. The timing of maintenance is not dependent on the

unit’s failure history but instead follows a fixed schedule. Additionally, the item

is repaired when failures occur between the scheduled maintenance intervals [59].

This approach removes the need to keep records of item usage. However, the system

requires ongoing inspections to detect any failures that may arise between constant

time replacements. Furthermore, this strategy has the disadvantage of replacing

relatively good items more frequently than necessary [67].

In order to determine the optimal time or the number of repairs for replacing

a specific system, it is necessary to specify a cost function that considers both cor-

rective and preventive replacement costs. Corrective replacement refers to instances

where the system unexpectedly stops functioning, requiring the customer to seek

assistance from maintenance services to resolve the issue. This type of maintenance
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is unplanned and usually more expensive than planned maintenance. On the other

hand, preventive maintenance is performed on a regular basis according to prede-

termined replacement schedules. The advantages of preventive maintenance include

enhanced system reliability, reduced replacement costs, decreased system downtime,

and improved spare inventory management [50].

The study of repairable systems is an important field within reliability engineer-

ing, as most items used in manufacturing applications can be repaired when they fail

[11]. Optimal replacement of systems has long been a subject of interest in academic

research. Many replacement policies have been proposed in the literature for models

involving repairable systems. For instance, Barlow and Hunter [3] examined a peri-

odic replacement policy, while Park [63] suggested a policy that replaces the system

at its nth failure and minimally repaired until the nth failure. Muth [58] presented a

replacement policy where the system is replaced at the first failure after a specified

time point and minimally repaired in case of failure before that time point. Naka-

gawa and Kowada [60] analyzed a replacement policy based on both the number of

minimal repairs performed and the system’s age. Boland and Proschan [9] analyzed

a periodic replacement policy for a model with minimal repair and increasing repair

cost dependent on the number of corrective maintenance activities in each cycle.

Recently, there has been an increased focus on imperfect maintenance [66]. Im-

perfect maintenance involves a wide range of models where the repair lies between

minimal repair and perfect repair. One particular subset of imperfect maintenance

models is virtual age models [11]. In a study conducted by Cassady et al. [11],

simulation modelling and analysis were employed, employing the concept of Kijima

type I and Kijima type II models. They explored the impact of imperfect repair

on item availability and proposed a generic availability function that can be used

to determine optimum item replacement intervals based on expected cost per unit

of time. Makis and Jardine [48] offered new insights into the optimal replacement

strategy for a system. They made the assumption that the replacement cost re-

mained constant while the repair cost was set by the age of the system and the

number of failures. By considering certain conditions related to costs and the fail-

ure rate, Makis and Jardine [48] showed that the most efficient policy for minimizing
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the average cost per unit of time is a control-limit kind. This means the system is

replaced at the nth failure only if its age exceeds a critical value that depends on n.

Love et al. [47] presented a policy iteration algorithm that generates a sequence of

enhancing control-limit policies using the Kijima type I model, and the algorithm

was further investigated and improved by Dimitrakos and Kyriakidis [19].

Finkelstein [24] examines a system that gets repaired only when it fails. The

author constructed a model to determine the cost of repair based on the repair level

and explored the optimization of the repair level for the system. Lim et al. [44]

investigate maintenance based on the age of the system, with replacement occurring

at a specific maintenance age. They supposed that either a minimal or perfect

repair is conducted upon failure. Sheu et al. [71] differentiate between small and

large failures. After a small failure, the system is repaired, and it is replaced after

a certain number of small failures, or at the occurrence of a large failure, or when

a specific time is reached, whichever comes first where failures can only be detected

through maintenance, and the length of the maintenance interval depends on the

number of minor failures. Chang [12] also considers the occurrence of both minor

failures that need minimal repairs and extreme breakdowns that require corrective

replacement where preventive replacement is performed either at a specific age or

upon completion of a designated working time.

Kijima et al. [40] examined the general repair model, which involves bringing

the system to a better state through repair. This model contains two cases, namely

minimal repair and perfect repair. Kijima et al. [40] made the assumption that

the costs of repair and replacement remain constant. They focused on a periodic

replacement problem, where the system is replaced at scheduled times, and whenever

it fails, the repair takes place. They derived the average cost per unit of time and

proposed an approximation method to determine the optimal replacement period.

Yevkin and Krivtsov [79] conducted a study on optimal maintenance policies

within the context of the Kijima type I model, considering underlying Weibull dis-

tributions. They investigated different replacement policies using two approaches.

The first approach involved an approximate formula for the expected number of

failures, while the second used the Monte Carlo method. The study compared these



5.2. Policy A: Replacement decision depending on time 86

policies across various model parameter values and demonstrated the effectiveness

of the proposed methods.

A replacement strategy requires making a decision on the optimal time for system

replacement. The objective is to minimize the cost to determine the optimal system

replacement policies based on the virtual age model using the Bayesian approach.

A key challenge in this thesis involves decision-making aimed at minimizing the cost

function, which includes both corrective and preventive replacement costs, using the

Kijima type I virtual age model under Weibull distribution.

In this chapter, we consider two different replacement policies based on the Ki-

jima type I model and the statistical models we developed in Chapters 3 and 4. The

statistical methods we have developed in this thesis contain a Bayesian and robust

Bayesian approach, which enhances the robustness based on the prior assumptions.

In this chapter, we minimize the expected total cost to get the optimal time or num-

ber of repairs for system replacement using the Bayesian method, and we establish

boundaries for the expected costs of the optimal replacement time and number of

failures based on the Kijima type I model data, using the robust Bayesian lower and

upper methods.

This chapter is arranged as follows. In Section 5.2, we consider a replacement

policy based on the time in which the new approaches can be applied to support

replacement decisions, followed by examples illustrating the proposed method. Sec-

tion 5.3 considers a replacement policy based on the number of repairs in which

our new approaches can be applied to support replacement decisions, followed by

examples illustrating the proposed method. Some concluding remarks are presented

In Section 5.4.

5.2 Policy A: Replacement decision depending on

time

Using the Kijima type I model, modelling work supposes that the system can be

replaced by a new one with a cost C0 or repaired with a cost C1 < C0. The system

can be replaced at an optimal time or corrected at a failure time. As described by [2],
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we can minimize the average total cost Cτ and decide on the optimal replacement

time by selecting replacement policies. This section uses the policy which states

that we replace at age τ and perform repairs up to age τ [3]. Using the renewal

argument [4], the average total cost per unit of time is

Cτ =
C0 + C1W (τ)

τ
(5.2.1)

where W (τ) is expected number of repairs during [0, τ ] and the preventive replace-

ment time τ is constant. Based on this policy, replacements of a system are im-

plemented periodically, while when a system fails, the repair is performed with the

repair time being negligible in the time interval. The goal is to minimise the ex-

pected cost function in Equation (5.2.1) in order to get the optimal replacement

time τ ∗.

It can be seen from Equation (5.2.1) that W (τ) is required to compute Cτ . We

use the posterior predictive distribution to simulate different samples and then apply

the Monte Carlo method to calculate the average expected number of repairs W (τ)

for each time period τ because there is no analytical solution for W (τ) due to the

complexity of Kijima type I. Thus, the optimal replacement time τ ∗ that minimizing

Cτ is

τ ∗ = argmin
τ

(Cτ ) . (5.2.2)

We also present a 90% interval for the cost function by calculating the 5th and 95th

percentiles based on generated samples to understand the variability and uncertainty

of cost functions.

Example 5.2.1

In this example, we illustrate the optimal replacement time corresponding to the

minimal expected cost and related expected number of repairs, and we investigate

the influence of variation in the replacement costs C0. By sampling from the poste-

rior predictive distribution, we use the MC method to calculate W (τ) and predict

the expected cost Cτ per unit of time with data from Table 3.8, where nm = 10
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and M = 10 and λ = 3, β = 2 and q = 0.25. We also present a 90% interval by

calculating the 5th and 95th percentiles of generated samples from the posterior pre-

dictive distribution to understand the variability and uncertainty of cost functions

comprehensively. In Table 5.1, by assuming C1 = 1 with different replacement costs

C0, we get the minimal predicted expected cost per unit of time. When C0 = 1.5,

Cτ∗ = 3.2221 and the expected number of repairs is 2.8982 in the first column from

Table 5.1. The optimal expected cost Cτ∗ and the optimal expected number of re-

pairs is reached at τ ∗ = 1.365. Thus, it is recommended that the system be replaced

at time τ ∗ = 1.365. Figure 5.1 represents the curves with 90% interval of the cost

function of policy A with different values of the replacement cost C0. When the re-

placement cost increases, the predicted expected cost and the optimal replacement

time will increase, as shown in Table 5.1 and Figure 5.1 because as the replacement

cost increases, it is recommended to do more repairs to avoid the high expense of the

replacement cost, which leads to an increase in the expected cost and replacement

time

true values: λ = 3, β = 2 and q = 0.25

C0 = 1.5 5 10 20

τ ∗ 1.365 2.660 3.885 5.280

W (τ ∗) 2.8982 8.4442 14.8552 25.3542

Cτ∗ 3.2221 5.0554 6.3977 8.5898

Table 5.1: Predictive total cost with different replacement cost
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(d) C0 = 20

Figure 5.1: Predictive total cost and replacement time

Example 5.2.2

This example illustrates the change of the optimal replacement time corresponding

to the minimal expected cost and related expected number of repairs by variation of

the parameter β and q values and various values of the replacement costs. The same

method in Example 5.2.1 is used to find the minimal predictive cost with different

replacement costs. When we increase both β and q parameters, the predictive

expected cost increases while the expected number of repairs and the replacement
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time decrease, as shown in Tables 5.1 - 5.3. For example, when we have q = 0.25 and

C0 = 1.5, we get the minimal predicted expected cost per unit of time. Cτ∗ = 3.2221

when the expected number of repairs is 2.8982 that is shown in Table 5.1. The

optimal expected cost Cτ∗ and the optimal expected number of repairs is reached at

time τ ∗ = 1.365. Thus, it is recommended that the system be replaced at τ ∗ = 1.365,

where the expected cost will be 3.2221 and prepare for approximately 3 failures.

This information helps to plan repairs and costs and determine the optimal time for

replacement rather than continuing the repair. However, when we have q = 0.55

and C0 = 1.5, we get the minimal predicted expected cost that is Cτ∗ = 3.6667

when the expected number of repairs is 1.9284 which is presented in Table 5.2. The

optimal expected cost Cτ∗ and the optimal expected number of repairs is reached at

time τ ∗ = 0.935. This means that the expected cost will increase, and the expected

number of repairs and replacement time will decrease when the quality of repair

efficiency decreases, and the parameter value is close to 1.

q = 0.55

C0 = 1.5 5 10 20

τ ∗ 0.935 1.635 2.310 3.200

W (τ ∗) 1.9284 5.4034 10.4530 19.8450

Cτ∗ 3.6667 6.3629 8.8541 12.4515

q = 0.85

τ ∗ 0.725 1.315 1.865 2.570

W (τ ∗) 1.3944 4.6754 9.5650 18.505

Cτ∗ 3.9922 7.3577 10.4906 14.9824

Table 5.2: Predictive total cost with different replacement cost and q values
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β = 1.1

C0 = 1.5 5 10 20

τ ∗ 3.000 8.060 13.280 21.955

W (τ ∗) 9.3312 29.6428 53.4540 96.9842

Cτ∗ 3.6104 4.2981 4.7781 5.3283

β = 1.5

C0 = 1.5 5 10 20

τ ∗ 1.460 3.505 4.915 7.600

W (τ ∗) 3.9590 12.2236 20.0036 38.2402

Cτ∗ 3.7390 4.9140 6.1044 7.6631

Table 5.3: Predictive total cost with different replacement cost and β values

5.2.1 Robust Bayesian replacement decision

Using the replacement policy presented in this section, we will use the robust

Bayesian methods with the repair costs, replacement costs and a scheduled removal

that gives the optimal replacement time. However, robust Bayesian analysis deals

with a set of cost functions. Therefore, we have a set of optimal replacement times

D instead of only one optimal replacement time. Modelling work supposes one

method to deal with the uncertainty issue is using the Γ-minimax criterion, which

was investigated by Vidakovic [75]. It corresponds to making the most pessimistic

decision. Using the Γ-minimax criterion, we will make a robust decision by selecting

the optimal replacement time that minimizes the upper bound of the cost function

using a set of prior distributions.

In this subsection, we will use the lower and upper of the robust Bayesian set

introduced in Sections 4.3 and Section 4.4 for the age replacement policy. The upper

and lower of each hyperparameter of the prior set in the robust Bayesian analysis will

lead to the upper and lower bounds for the expected total cost for age replacement

of the system. Also, the robust Bayesian will lead to the upper and lower bounds

for the optimal replacement time of the item based on the lower and upper optimal



5.2. Policy A: Replacement decision depending on time 92

expected total cost. The optimal decision of replacement time that minimizes the

upper bound of the cost functional is given by

τ ∗ = argmin
τ∈D

(Cτ ) (5.2.3)

where Cτ is the upper cost function.

Example 5.2.1.1

This example clarifies the optimal replacement time related to the upper and

lower average total costs with varying replacement cost values, using the method

developed in Section 4.3 and the expected cost function in this section. Assume that

nm = 10 and M = 10, λ = 3, β = 2 and q = 0.25 where the data is given in Table 3.8

and the set of priors is M(0) = {Beta(c, d) : 0.5 ≤ c ≤ 5, d = 5.5−c, }. By sampling

from the posterior predictive distribution using each extreme prior, we use the MC

method to calculate W (τ) as explained in Section 5.2 and predict the expected cost

Cτ with a 90% interval of the expected cost function. In Table 5.4, when we use

the upper value of the hyperparameter c, the minimal upper cost Cτ∗ is shown

with the replacement time τ ∗, while the minimal lower cost Cτ∗ with replacement

time τ ∗ is shown when we use the lower value of the hyperparameter c. When we

have the replacement cost C0 = 1.5, the lower optimal minimal average predictive

cost is 3.2533, which is reached at 1.365 units of time, while the upper optimal

minimal average predictive cost is 3.3541, which is reached at 1.230 units of time as

presented in Table 5.4 and shown in Figure 5.2 with 90% intervals of the lower and

upper expected cost functions which present the variability and uncertainty for cost

functions. Therefore, the results of this study indicate that the optimal replacement

interval is between 1.230 and 1.365 units of time when C0 = 1.5. This recommended

replacement time boundary allows management to choose the replacement time at

the most convenient and effective cost. By using robust Bayesian decisions, the

management can use the minimum of the maximum expected predicted total cost,

representing the worst-case scenario, as the optimal replacement time. That means

the management will choose a decision that reduces sensitivity to unpredictable

situations. Management can generally determine the optimal replacement time,
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which is 1.230 units of time, based on the minimum of the upper-cost function when

C0 = 1.5. Furthermore, when we have the replacement cost C0 = 10, the lower

optimal minimal average predictive cost is 6.6580, which is reached at 3.550 units

of time, while the upper optimal minimal average predictive cost is 6.9889, which

is reached at 3.360 units of time as presented in Table 5.4 and shown in Figure 5.3

with 90% ribbons of the lower and upper expected cost functions. Therefore, the

results indicate that the optimal replacement interval is between 3.360 and 3.550

units of time when C0 = 10. The management can generally determine the optimal

replacement time, which is 3.360 units of time as the optimal time for replacement,

based on the minimum of the upper-cost function when C0 = 10. It is clear that

when the replacement cost increases, the optimal replacement time increases to avoid

the high cost of the replacement.

true values: λ = 3, β = 2 and q = 0.25

C0 Cτ∗ Cτ∗ τ ∗ τ ∗

1.5 3.3541 3.2533 1.230 1.365

5 5.2652 5.0373 2.375 2.545

10 6.9889 6.6580 3.360 3.550

20 9.4605 8.9775 4.800 5.095

Table 5.4: Upper and lower predictive expected total cost with replacement time
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Figure 5.2: upper and lower predictive total cost and replacement time when C0 =
1.5
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Figure 5.3: upper and lower predictive total cost and replacement time when C0 = 10
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Example 5.2.1.2

In this example, we will illustrate the optimal replacement time corresponding to

the upper and lower average costs with varying values of the replacement cost, using

the developed method in Section 4.4 and the expected cost function in this section.

Assume that nm = 10 and M = 10, λ = 3, β = 2 and q = 0.25 where the data is

given in Table 3.8 and the set of priors is M(0) = {π(λ)π(q) : 5 ≤ a ≤ 20, 1 ≤ b ≤

10, 0.5 ≤ c ≤ 5, d = 5.5−c}. By sampling from the posterior predictive distribution

using the extreme values of the priors, we use the MC method to calculate W (τ)

and predict the expected cost Cτ with a 90% interval of the expected cost function.

In Table 5.5, when we use the hyperparameters a = 20, b = 1 and c = 5, the

minimal upper cost Cτ∗ is shown with the replacement time τ ∗, while the minimal

lower cost Cτ∗ with replacement time τ ∗ is shown when we use the hyperparameters

a = 5, b = 10 and c = 0.5. When we have the replacement cost C0 = 1.5, the lower

optimal minimal average predictive cost is 3.3783, which is reached at 1.360 units

of time, while the upper optimal minimal average predictive cost is 3.5582, which

is reached at 1.265 units of time as presented in Table 5.4 and shown in Figure 5.4

with 90% confidence bands which present the variability and uncertainty for cost

functions. Therefore, the results of this study indicate that the optimal replacement

interval is between 1.265 and 1.360 units of time when C0 = 1.5. Based on the

minimum of the upper-cost function when C0 = 1.5, the management can generally

determine the optimal replacement time, which is 1.265 units of time as the optimal

time for replacement. Also, when we have the replacement cost C0 = 10, the lower

optimal minimal average predictive cost is 6.7155, which is reached at 3.495 units

of time, while the upper optimal minimal average predictive cost is 7.0492, which is

reached at 3.790 units of time as shown in Figure 5.5 with 90% confidence bands and

presented in Table 5.5. Therefore, the results indicate that the optimal replacement

interval is between 3.495 and 3.790 units of time when C0 = 10. The management

can generally determine the optimal replacement time, which is 3.495 units of time as

the optimal time for replacement, based on the minimum of the upper-cost function

when C0 = 10.
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true values: λ = 3, β = 2 and q = 0.25

C0 Cτ∗ Cτ∗ τ ∗ τ ∗

1.5 3.5582 3.3783 1.265 1.360

5 5.3912 5.1326 2.525 2.595

10 7.0492 6.7155 3.495 3.790

20 9.4240 8.9763 4.995 5.205

Table 5.5: Upper and lower predictive expected total cost with replacement time
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Figure 5.5: upper and lower predictive total cost and replacement time when C0 = 10

5.3 Policy B: Replacement decision depending on

number of repairs

Using the Kijima type I model, modelling work supposes the system can be replaced

by a new one with a cost C0 or repaired with a cost C1 < C0. The system can

be replaced at an optimal number of failures or repaired at each failure before

replacement. This section uses the policy which states that we replace at the nth

failure and perform repairs for the first n − 1 [63]. The average total cost per unit

of time is given by

Cτ =
C0 + C1(n− 1)

τn
(5.3.4)

where τn is the expected length of the cycle. In Equation (5.3.4), the total cost

is minimized with respect to n [79]. The goal is to minimise the expected cost

function 5.3.4 in order to get the optimal replacement failure n∗. We use the posterior

predictive distribution to simulate different samples and then apply the Monte Carlo
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method to calculate the average predictive expected cost Cτ based on the τn of each

sample for each number of repairs n. Then, we show a 90% interval by calculating

the 5th and 95th percentiles based on generated samples to understand the variability

and uncertainty of cost functions.

Example 5.3.1

In this example, by using policy B, we illustrate the optimal replacement failure

corresponding to the minimal expected cost and related expected length of the

cycle, and we investigate the influence of variation in the replacement costs C0. By

sampling from the posterior predictive distribution, the predictive average expected

cost is calculated using the MC method for different numbers of failure samples n

for each replacement cost. We also present a 90% interval by calculating the 5th and

5th percentiles of samples generated from the posterior predictive distribution. This

interval provides a comprehensive understanding of the variability and uncertainty

in the cost functions. The average length of cycle τ ∗n of the repair is calculated at

the optimal failure n∗ corresponding to the predictive minimal expected cost when

a system is replaced by a new one. Assume λ = 3, β = 2 and q = 0.25 where

the data is given in Table 3.8 when nm = 10 and M = 10 . Also, let C1 = 1 with

different values of C0. When we have C0 = 1.5, we get the minimal expected cost

Cτ∗ = 2.9308 at the n∗ = 3 given in Table 5.6 first column. Therefore, the system

is recommended to be replaced at n∗ = 3 where the cycle length is τ ∗n = 1.3049.

This means that the company or management is recommended to repair the first

two failures and perform replacement at failure number three. Figure 5.6 represents

the curves with 90% interval of the cost function of policy B with different values of

C0. When the replacement cost increases, the predicted expected cost and optimal

replacement failure will increase, as presented in Table 5.6 and shown in Figure 5.6,

which is as expected when the replacement cost increases, it is recommended to do

more repairs to avoid the high expense of the replacement cost, which leads to an

increase in the expected cost and replacement time.
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true values: λ = 3, β = 2 and q = 0.25

C0 = 1.5 5 10 20

n∗ 3 8 14 26

Cτ∗ 2.9308 4.7178 6.2775 8.5013

τ ∗n 1.3049 2.6240 3.7292 5.3436

Table 5.6: Predictive total cost with different replacement cost
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Figure 5.6: Predictive total cost and number of failures
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Example 5.3.2

This example analyses the change of the optimal replacement failure correspond-

ing to the minimal expected cost and related expected length of the cycle by vari-

ation of the parameter β and q values and various values of the replacement costs.

The same method in Example 5.3.1 is used to find the optimal failure correspond-

ing to predictive minimal expected cost with different replacement costs. When

we increase q parameters, the predictive expected cost increases while the expected

length of the cycle and the replacement failure decrease, as shown in Tables 5.6

to 5.8. For example, when we have q = 0.25 and C0 = 1.5, we get the minimal

predicted expected cost that is Cτ∗ = 2.9308 when the length of the cycle is 1.3049

that is shown in Table 5.6. The optimal expected cost Cτ∗ and the expected length

of the cycle are reached at n∗ = 3. Also, when we have C0 = 1.5 and q = 0.55, we

get the minimal predicted expected cost that is Cτ∗ = 3.3966 when the length of the

cycle is 0.8574 which is presented in Table 5.2. The optimal expected cost Cτ∗ and

the expected length of the cycle are reached at n∗ = 2. Therefore, when the repair

efficiency parameter is close to 1, the expected cost will increase, and the expected

replacement failure and the cycle length decrease. Also, when the β value increases,

the expected cost will increase except when c0 = 1.5, and the optimal replacement

n∗ and the expected cycle length decrease.
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q = 0.55

C0 = 1.5 5 10 20

n∗ 2 6 11 21

Cτ∗ 3.3966 6.2539 8.8024 12.4830

τ ∗n 0.8574 1.6651 2.3230 3.2414

q = 0.85

C0 = 1.5 5 10 20

n∗ 2 5 10 19

Cτ∗ 3.6036 7.1086 10.2736 14.5982

τ ∗n 0.8073 1.3291 1.8946 2.5982

Table 5.7: Predictive total cost with different replacement cost and q values

5.3.1 Robust Bayesian replacement decision

Using the replacement policy presented in this section, we will use robust Bayesian

methods with the corrective maintenance costs, replacement costs and a scheduled

removal that gives the optimal replacement failure. However, robust Bayesian analy-

sis deals with a set of cost functions. Therefore, we have a set of optimal replacement

failures N instead of only one optimal failure. Modelling work supposes that one

method to deal with the uncertainty issue is using the Γ-minimax criterion, as dis-

cussed in Subsection 5.2.1. Thus, the robust decision will be made by selecting the

replacement failure that minimizes the upper bound of the cost function using a set

of prior distributions.

In this subsection, we will use the lower and upper of the robust Bayesian set

presented in Sections 4.3 and 4.4 for the failure replacement policy. The upper and

lower of each hyperparameter of the prior set in robust Bayesian will lead to the

upper and lower bounds for the expected total cost for failure replacement of the

system. Also, the robust Bayesian will lead to the upper and lower bounds for the

optimal replacement failure of the system based on the lower and upper optimal

expected total cost. The optimal decision of replacement failure that minimizes the
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β = 1.1

C0 = 1.5 5 10 20

n∗ 10 29 51 113

Cτ∗ 3.5594 4.2793 4.7720 5.3174

τ ∗n 3.1686 7.9082 12.7631 25.0037

β = 1.5

C0 = 1.5 5 10 20

n∗ 4 11 22 40

Cτ∗ 3.3236 4.6382 6.0575 7.6340

τ ∗n 1.4982 3.2167 5.2118 7.8088

Table 5.8: Predictive total cost with different replacement cost and β values

upper bound of the cost functional is given by

n∗ = argmin
n∈N

(Cτ ) (5.3.5)

where Cτ is the upper cost function.

Example 5.3.1.1

This example clarifies the optimal replacement time related to the upper and

lower average total costs with varying replacement cost values, using the developed

method in Section 4.3 and the expected cost function in this section. Assume that

nm = 10 and M = 10, λ = 3, β = 2 and q = 0.25 where the data is given in Table 3.8

and the set of priors is M(0) = {Beta(c, d) : 0.5 ≤ c ≤ 5, d = 5.5−c, }. By sampling

from the posterior predictive distribution using each extreme prior, we use the MC

method to predict the expected cost Cτ with a 90% interval of the expected cost

function. In Table 5.9, when we use the upper value of the hyperparameter c, the

minimal upper expected cost Cτ∗ is shown with the replacement failure n∗, while the

minimal lower expected cost Cτ∗ with replacement failure n∗ is shown when we use

the lower value of the hyperparameter c. When we have the replacement cost C0 =
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1.5, the lower optimal minimal average predictive cost is 2.9936, which is reached at

failure 3, while the upper optimal minimal average predictive cost is 3.0822, which

is reached at failure 3 as presented in Table 5.9 and shown in Figure 5.7 with 90%

confidence bands which present the variability and uncertainty for cost functions.

Since the results of this study indicate that the optimal replacement failure occurs

at 3 when C0 = 1.5 for both upper and lower costs, the company or management can

generally determine 3 failures as the optimal point for replacement when C0 = 1.5

with expected cost 3.0822, which represents the worst-case scenario. This helps the

management to make cost plans more robust and flexible. Furthermore, when we

have the replacement cost C0 = 10, the lower optimal minimal average predictive

cost is 6.5631, which is reached at failure 14, while the upper optimal minimal

average predictive cost is 6.8877, which is reached at failure 14 as shown in Figure

5.8 with 90% confidence bands and presented in Table 5.9. Since the results of this

study indicate that the optimal replacement failure occurs at 14 when C0 = 10 for

both upper and lower costs, the company or management can generally determine

14 failures as the optimal point for replacement when C0 = 10 with expected cost

5.1147. This means that when the replacement cost increases, both upper and lower

expected costs increase, as does the optimal number of repairs. Thus, in order to

avoid the high replacement cost, more repairs are recommended, which leads to an

increase in expected costs, as presented in Table 5.9.

true values: λ = 3, β = 2 and q = 0.25

C0 Cτ∗ Cτ∗ n∗ n∗

1.5 3.0822 2.9936 3 3

5 5.1147 4.9013 8 8

10 6.8877 6.5631 14 14

20 9.3796 8.8965 26 26

Table 5.9: Upper and lower predictive expected total cost with replacement failure
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Figure 5.7: upper and lower predictive total cost and replacement failure when
C0 = 1.5
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Figure 5.8: upper and lower predictive total cost and replacement failure when
C0 = 10
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Example 5.3.1.2

In this example, we will illustrate the optimal replacement time corresponding

to the upper and lower average costs with varying values of the replacement cost,

using the developed method in Section 4.4 and the expected cost function in this

section. Assume that nm = 10 and M = 10, λ = 3, β = 2 and q = 0.25 where

the data is given in Table 3.8 and the set of priors is M(0) = {π(λ)π(q) : 5 ≤ a ≤

20, 1 ≤ b ≤ 10, 0.5 ≤ c ≤ 5, d = 5.5−c}. By sampling from the posterior predictive

distribution using each extreme prior, we use the MC method to predict the expected

cost Cτ with a 90% interval of the expected cost function. In Table 5.10, when we

use the hyperparameters a = 20, b = 1 and c = 5, the minimal upper expected

cost Cτ∗ is shown with the replacement failure n∗, while the minimal lower expected

cost Cτ∗ with replacement failure n∗ is shown when we use the hyperparameters

a = 5, b = 10 and c = 0.5. When we have the replacement cost C0 = 1.5, the lower

optimal minimal average predictive cost is 3.1248, which is reached at failure 3,

while the upper optimal minimal average predictive cost is 3.2924, which is reached

at failure 3 as presented in Table 5.10 and shown in Figure 5.9 with 90% confidence

bands which present the variability and uncertainty for cost functions. Since the

results of this study indicate that the optimal replacement failure occurs at 3 when

C0 = 1.5 for both upper and lower costs, the company or management can generally

determine 3 failures as the optimal point for replacement when C0 = 1.5. Moreover,

when we have the replacement cost C0 = 10, the lower optimal minimal average

predictive cost is 6.6213, which is reached at failure 15, while the upper optimal

minimal average predictive cost is 6.9539, which is reached at failure 15 as shown

in Figure 5.10 with 90% confidence bands and presented in Table 5.10. Since the

results of this study indicate that the optimal replacement failure occurs at 15 when

C0 = 10 for both upper and lower costs, the company or management can generally

determine 15 failures as the optimal point for replacement when C0 = 10.

Furthermore, when we have the replacement cost C0 = 5, the lower optimal

minimal average predictive cost is 4.9986, which is reached at failure 8, while the

upper optimal minimal average predictive cost is 5.2538, which is reached at failure

9 as presented in Table 5.10. Therefore, the results of this study indicate that the
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optimal replacement interval is between 8 and 9 failures when C0 = 5. This recom-

mended replacement failure boundary allows management to choose the replacement

failure at the most convenient and effective cost. By using robust Bayesian deci-

sions, the management can use the minimum of the maximum expected predicted

cost, representing the worst-case scenario, as the optimal replacement failure. That

means the management or company will choose a decision that reduces sensitivity

to unpredictable situations. The management can generally determine the optimal

replacement failure, which is the 9 failure as the optimal failure for replacement,

based on the minimum of the upper-cost function when C0 = 5. Therefore, based

on the increase in replacement costs, the number of repairs increases with the ex-

pected costs using the worst-case scenario. These results indicate performing more

repairs to avoid the high replacement cost ultimately leads to an increase in the

expected costs, as presented in Table 5.10.

true values: λ = 3, β = 2 and q = 0.25

C0 Cτ∗ Cτ∗ n∗ n∗

1.5 3.2924 3.1248 3 3

5 5.2538 4.9986 8 9

10 6.9539 6.6213 15 15

20 9.3442 8.9036 27 27

Table 5.10: Upper and lower predictive expected total cost with replacement failure
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Figure 5.9: upper and lower predictive total cost and replacement failure when
C0 = 1.5
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Figure 5.10: upper and lower predictive total cost and replacement failure when
C0 = 10
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5.4 Concluding remarks

In this chapter, we have presented an application of the Kijima type I mode in order

to help decision-makers using Bayesian and robust Bayesian inference with decision

theory. To the best of our knowledge, this is a novel application of the Kijima type

one virtual age model. To conduct this analysis, we assigned a cost function for

decision-makers concerning the replacement policy.

We introduced two replacement policies depending on the time and number of

repairs. Based on different replacement costs, the results indicate that when the

replacement cost increases, the expected cost and the optimal replacement time will

increase. Additionally, with varying repair efficiency values, the outcomes show that

the expected cost increases, while the expected number of repairs and replacement

time decreases when the repair efficiency parameter is close to 1 or minimal repair.

The robust Bayesian analysis leads to the upper and lower bounds for the opti-

mal replacement time and optimal replacement failure of the system based on the

lower and upper optimal expected total cost. This cost boundary allows manage-

ment to choose the optimal replacement time at the most convenient and effective

cost. By using robust Bayesian decisions, the management can use the minimum of

the maximum expected predicted cost, representing the worst-case scenario, as the

optimal replacement failure. That means the management or company will choose

a decision that reduces sensitivity to unpredictable situations. Therefore, to make a

robust decision, we use the Γ-minimax criterion, which corresponds to making the

most pessimistic decision.



Chapter 6

Conclusions

This chapter summarizes the main results of this thesis and provides some sugges-

tions for related future research. We presented a new method using the posterior

predictive empirical reliability function to predict the total system reliability until

the time needed to replace it when the number of failures is known. We also pre-

sented a robust Bayesian statistical inference development to reflect the uncertainty

of prior distribution on posterior predictive system reliability. We further presented

an important study on these methods to support management decisions on system

replacement.

In Chapter 3, we used Bayesian analyses of the Kijima type I model with Weibull

distribution to make inferences as an alternative method to frequentist techniques.

We developed an analytical method using the Bayesian method for the Kijima type

I model parameters, and another method used MCMC. Also, we develop a Bayesian

method for the Kijima type I using the posterior predictive reliability to predict

system reliability after each repair and the posterior predictive empirical reliabil-

ity function with uncertainty to predict the total system reliability until the time

needed to replace it when the number of failures is given. We then conducted a

simulation to investigate the performance of the presented methods. The analysis

of simulations was conducted on different sample sizes, considering both high and

low-quality repair efficiency as well as prior selection. The results obtained from the

analytical method with different prior choices are compared with MLE. The results

from the simulation study showed that when the prior choice is accurate for the

109
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parameters, the estimated results increased the accuracy better than MLE in terms

of the closest value to the true values. Moreover, we analysed the predictive sys-

tem reliability function after each failure and the total time until failure given the

number of repairs based on high-quality repair efficiency and lower-quality repair

efficiency data. We found in high-quality repair, the system’s predictive reliability

increases after each repair action, indicating that the repair actions have restored

the system’s functionality to a level comparable to or nearly equivalent to a new one.

However, in low-quality repair, the system’s predictive reliability hardly increases

after each repair action, which means that the repair actions have restored the sys-

tem’s functionality to a slightly better level than before failure. Further, when the

repair efficiency has high quality, the predictive system reliability function of total

time until failure given the number of repairs drops to zero faster when we have a

small number of repairs, which means the system generally maintains an increase

in the probability of reliability over time when the number of repairs is increased.

However, when the quality of repair efficiency is low, the predictive system reliability

function of total time until failure, given the number of repairs, drops to zero with a

slight change when the number of repairs is increased. That means that the system

fails fast, and the system functionality generally stays similar over time.

In Chapter 4, we presented a robust Bayesian statistical inference method to

integrate prior uncertainties for the Kijima type I model using the Weibull distribu-

tion. The method includes robustness based on the imprecision, which was evaluated

using the upper and lower empirical posterior predictive reliability functions, which

provide robustness against the model’s prior assumptions by introducing a set of

prior. We introduced a set of prior distributions for the repair efficiency parameter

q, leaving the other parameters fixed, and we also introduced a set of prior distribu-

tions for the repair efficiency parameter q and the scale parameter λ. Simulations

were conducted on different sample sizes, considering both high and low-quality

repair efficiency. We evaluated the robustness against the uncertainty of prior by

employing the upper and lower empirical posterior predictive reliability functions

using the MCMC method in the context of different prior sets. The results have

shown that the imprecision in Kijima type I’s lower and upper predictive empiri-
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cal reliability function decreases while the robustness increases when we have more

data. Also, these results increase confidence to infer that any prior in M(0) can be

chosen since any prior from M(0) yields similar results within the set M(n).

In Chapter 5, we illustrated the use of the developed methods. We focused on

making a decision of optimal replacement under Kijima’s type I model based on

two policies with cost functions. We illustrated how Bayesian and robust Bayesian

analysis can be applied to infer the optimal replacement and the expected total cost.

We calculated the expected total cost using the Bayesian method. The results show

that the expected cost increases while the expected number of repairs and replace-

ment time decreases when the repair efficiency decreases. Thus, high-quality repair

efficiency that restores systems to approximately new states is important for min-

imizing expected costs and extending the lifetime of the system. Also, the results

indicate that as replacement costs increase, the expected cost and optimal replace-

ment time will also increase because as the replacement cost increases, it is usually

recommended to do more repairs to avoid the high cost of the replacement, which

leads to an increase in the expected cost and replacement time. In robust Bayesian

analysis, we use the Γ-minimax criterion to make a robust decision, which corre-

sponds to making the most pessimistic decision since we have a set of expected total

costs, which helps the management to reduce sensitivity to unpredictable situations.

There are many interesting and challenging topics based on the work presented

in this thesis. In this thesis, we employed the Kijima type I model with the Weibull

distribution. Future studies may consider alternative virtual age models, such as

Kijima’s type II model [39] and the Arithmetic Reduction of Age model [21]. Fur-

thermore, using these methods to evaluate the system performance using both cor-

rective and preventive maintenance data is a more challenging topic. Because of the

complexity of these data, it will be more challenging to model the reliability of the

system.

In robust Bayesian inferences, we introduced a set of prior distributions for the

repair effectiveness parameter q, as well as for both the repair effectiveness param-

eter q and the scale parameter λ. Also, we introduced the concept of robustness

inferences by defining the range between upper and lower empirical reliability func-
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tions. Another interesting challenge for future research involves introducing a set of

priors for the repair effectiveness parameter q, the scale parameter λ, and the shape

parameter β together. Also, robustness inferences might be studied more in the

future by defining another robustness criterion, which allows for a better analysis of

robustness against the uncertainty of priors.



Appendix A

Trace and histogram plots of MCMC

simulation study

This Appendix presents the diagnostics for each parameter λ, β and q. The his-

togram plots and trace plots for each parameter for the experimental analysis in

Section 3.3.2 are given.
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Figure A.1: Histogram and trace plot of generated draws of λ, β and q for Case 1
when q = 0.25.
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Figure A.2: Histogram and trace plot of generated draws of λ, β and q for Case 2
when q = 0.25..
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Figure A.3: Histogram and trace plot of generated draws of λ, β and q for Case 1
when q = 0.85..

Figure A.4: Histogram and trace plot of generated draws of λ, β and q for Case 2
when q = 0.85..



Appendix B

Posterior predictive distribution and

reliability function corresponding to

continuous priors

B.1 Posterior predictive distribution

From Equation (2.3.12) and the posterior distribution in Equation (3.3.29), the

posterior predictive distribution is

f(xi|xi−1, Dm) =

∫ 1

0

∫ β2

β1

∫ ∞

0

f(xi|vi−1)g(λ, β, q|D) dλdβdq

= A

∫ 1

0

∫ β2

β1

∫ ∞

0

λβ(xi + q

i−1∑
j=0

xj)
β−1 exp

(
−λ

[
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

])

λNβNu exp(−λr)λa−1 exp(−λb)qc−1(1− q)d−1dλdβdq

(B.1.1)

where A is the normalising constant that is given in Equation (B.1.2).
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A−1 =

∫ 1

0

∫ β2

β1

∫ ∞

0

g(λ, β, q|D) dλdβdq

=

∫ 1

0

∫ β2

β1

βNuqc−1(1− q)d−1

∫ ∞

0

λN+a−1 exp [−λ (r + b)] dλdβdq

=

∫ 1

0

∫ β2

β1

βNuqc−1(1− q)d−1 Γ(N + a)

[r + b]N+a
dβdq

(B.1.2)

The posterior predictive distribution cannot be solved analytically, so a numerical

method is needed to solve this problem.

B.2 Reliability function with fixed λ and β

This Appendix presents the complex posterior predictive empirical reliability func-

tion, which is discussed in Section 4.3.

RTi
(xi|xi−1, Dm) =

∫ 1

0

R(xi|vi−1)g(λ, β, q|D) dq

= A

∫ 1

0

exp

[
−λ

(
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]
λN×

βNu exp(−λr)qc−1(1− q)d−1dq

(B.2.3)

where r and u are given in Equation (3.3.30) and A is the normalising constant that

is

A−1 =

∫ 1

0

g(λ, β, q|D) dq

=

∫ 1

0

λNβNu exp(−λr)qc−1(1− q)d−1

(B.2.4)

The predictive posterior reliability cannot be solved analytically, so a numerical

method is needed to solve this problem.
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B.3 Reliability function with fixed β

This Appendix presents the complex posterior predictive empirical reliability func-

tion, which is discussed in Section 4.4.

RTi
(xi|xi−1, Dm) =

∫ 1

0

∫ ∞

0

R(xi|vi−1)g(λ, β, q|D) dλdq

= A

∫ 1

0

∫ ∞

0

exp

[
−λ

(
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

)]
λN×

βNu exp(−λr)λa−1 exp(−λb)qc−1(1− q)d−1dλdq

= A

∫ 1

0

βNuqc−1(1− q)d−1

∫ ∞

0

λN+a−1×

exp

[
−λ

(
r + b+

(
(xi + q

i−1∑
j=0

xj)
β − (q

i−1∑
j=0

xj)
β

))]
dλdq

= A

∫ 1

0

βNuqc−1(1− q)d−1×

Γ(N + a)[
r + b+

(
(xi + q

∑i−1
j=0 xj)β − (q

∑i−1
j=0 xj)β

)]N+a
dq

(B.3.5)

where r and u are given in Equation (3.3.30) and A is the normalising constant that

is

A−1 =

∫ 1

0

∫ ∞

0

g(λ, β, q|D) dλdq

=

∫ 1

0

βNuqc−1(1− q)d−1

∫ ∞

0

λN+a−1 exp [−λ (r + b)] dλdq

=

∫ 1

0

βNuqc−1(1− q)d−1 Γ(N + a)

[r + b]N+a
dq

(B.3.6)

The predictive posterior reliability cannot be solved analytically, so a numerical

method is needed to solve this problem.
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