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Abstract

The dynamic behaviour of the Solar Corona is dominated by its magnetic field.
Complex magnetic structures can form in the corona which have the potential to
catastrophically erupt, releasing vast amounts of energy in the form of coronal mass
ejections – eruptions which can ultimately result in increased space weather activ-
ity. This thesis discusses a variety of numerical methods used to model the coronal
magnetic field, including new approaches and techniques that could theoretically be
used to improve space weather predictions.
The thesis consists of three relatively unconnected chapters. We first describe a
new magnetic field model which calculates a magnetofrictional equilibrium with an
imposed solar wind profile. These ‘outflow fields’ appear to approximate the real
coronal magnetic field more closely than the established potential field model, take
a similar time to compute, and avoid the need to impose an artificial source surface.
Including the solar wind tends to increase the open magnetic flux compared to a
potential field, reducing the well known discrepancy with in situ observations.
These equilibrium fields can be used as initial conditions for the bulk of our research,
which is the application of both magnetofrictional and MHD models to investigate
which quantity or quantities can best predict the loss of equilibrium of magnetic
flux ropes – one of the primary mechanisms behind coronal mass ejections. Using
a very large parameter study in 2.5D, we find that in our models eruptions can be
predicted reliably using certain ratios between measurable diagnostic quantities.
We finish the thesis by describing in detail the development of a brand-new mag-
netofrictional model, based on an icosahedral grid. Although we have not yet used
this code to its full potential, preliminary tests indicate that this new model could
be useful in future simulations involving the prediction of magnetic flux rope erup-
tions.
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CHAPTER 1

Introduction

1.1 The Sun

Being the most obvious thing in the sky, the source of all the energy in the solar

system and indisputably essential for life on Earth, the Sun has been an object of

interest to humanity for quite some time. Although for most of recorded history

the ability of the Sun to produce seemingly limitless energy was attributed to the

supernatural, we now know it to be sustained by nuclear fusion – the process by

which hydrogen ions bond together to form helium, producing a large amount of

energy as they do so. The Sun is primarily composed of hydrogen (around 73 %),

with the remainder mainly helium [1]. Fusion can only take place where the pressure

and temperature are very high, and as such it only occurs near the centre, in the

core. The structure of the Sun is shown in Figure 1.1.

From about 0.25 to 0.7 solar radii (the solar radius being around 6.96× 105km)

we find the radiative zone, where fusion reactions are rare. Here radiative transfer

and thermal conduction are the primary source of the heat transfer away from the

core [2]. In this zone the plasma temperature falls from around 15× 106K down to

1.5 × 106K. This region is relatively dynamically stable as the density gradient is
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Figure 1.1: Cutaway diagram of the structure of the Sun, roughly to scale. From
https://www.universetoday.com/40631/parts-of-the-sun/.

not particularly high. In contrast, further from the core (from around 0.7 radii to

near the solar surface) we have the convective zone, where the plasma itself moves in

large convection cells, transporting energy to the surface more quickly than radiation

alone. It is this dynamic process that leads to many of the phenomena observed in

the solar atmosphere. Of particular note is the process known as ‘supergranulation’,

where the motion of convection cells beneath the solar surface cause large-scale flows

on the photosphere. These flows drag the coronal magnetic field around, potentially

causing it to become twisted. By the time the plasma has reached the top of the

convective zone it has cooled considerably, to an average of 5.6× 103K.

The ‘surface’ of the Sun is not as well-defined as for a rocky planet. However,

most of the light we observe on Earth has originated directly from the photosphere

– the point at which the plasma ceases to be opaque. Hence most observations

throughout history have been of the photosphere, and there is indeed much to be

observed. Historically, the most notable features observed on the photosphere were

sunspots: regions where the surface appears considerably darker than its surround-

ings. This is due to their being cooler, at around half the average surface tempera-

ture. The first records of sunspot observations are from ancient China [3], and they

have been studied extensively ever since.

A particularly significant discovery was of the Solar Cycle, the 11-year period
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over which solar activity waxes and wanes. At the peak of the solar cycle (known

as solar maximum) we observe the largest number of sunspots, as well as increases

in magnetic activity and frequency of solar flares. The concept of such a cycle was

first hypothesised in the 18th Century [4], although it took until George Hale [5] in

1908 for the link between sunspots and magnetic fields to be established. It was

found reasonably soon afterwards that the overall magnetic field of the sun changes

polarity after each cycle. The precise mechanism behind the cycles is still an active

area of research, as is the prediction of the strength and timing of solar maxima.

Figure 1.2: White light image of the corona taken during the 1st August 2008
total solar eclipse and processed by M. Druckmüller. We observe coronal holes
at the poles, alongside coronal arcades, streamers and prominences. From http:

//www.zam.fme.vutbr.cz/~druck/Eclipse/Index.htm.

Above the photosphere lies the chromosphere, a relatively thin layer (a few thou-

sand kilometres) which is transparent to most visible light. The chromosphere is

less dense and slightly cooler than the photopshere, except near its upper boundary

where the temperature rises rapidly through the ‘transition region’ into the solar at-

mosphere, or ‘corona’. The corona is considerably less dense than the photosphere,

and is also far hotter – up to several million Kelvin. This counter-intuitive tempera-

ture increase is of great interest to many researchers, who as yet have failed to reach

a general consensus as to its cause. Historically, the corona was only visible during

solar eclipses (as in Figure 1.2), when the far brighter photosphere is conveniently

obscured by the Moon. Although eclipses are still arguably the best time to make

3
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observations of the corona, with the aid of a coronagraph it can be observed at other

times, and several classes of features have long been identified. The structure of the

magnetic field in the corona varies throughout the solar cycle. At solar minimum

(the ‘quiet sun’) the magnetic field in the corona has a relatively simple dipolar

structure, like the field produced by a bar magnet aligned with the poles. Near the

poles the magnetic field is open (the magnetic field lines do not connect back to the

surface) – such locations are known as ‘coronal holes’. Around solar maximum the

corona is far more interesting, as the magnetic field structure is more complex and

we are more likely to observe features such as coronal loops, magnetic flux ropes

and solar flares.

In this thesis we focus almost entirely on the corona, and in particular the config-

uration of the magnetic field within it. Due to the low density of the plasma in this

region, the magnetic field structure dominates the dynamics (as opposed to the fluid

itself), with the development and application of the methods we use reflecting this.

This dominance of the magnetic field can be quantified by calculating the ‘plasma

beta’ (β) – the ratio of the fluid pressure to magnetic pressure. In the corona the

plasma beta is generally very low. Of particular relevance to our research is the

formation of magnetic flux ropes, which are twisted bundles of magnetic flux. These

flux ropes can become unstable and result in coronal mass ejections (CMEs), violent

events during which large amounts of plasma and energy are ejected from the Sun.

These events are significant enough that their effects can be felt on Earth, as

the disturbances in the magnetic field propagate through interplanetary space (en-

couraged by the solar wind) and interact with the Earth’s magnetic field. These

interactions are responsible for increases in the intensity of the aurorae, and the

effects from large CMEs have been known to damage satellites and adversely affect

power distribution networks. Thus the prediction of such events would be advanta-

geous, and is the primary justification behind our research.
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1.2 Structure of this Thesis

We continue in this chapter by introducing existing work relevant to my PhD re-

search. This includes the study of solar phenomena related (if only tangentially)

to the main focus, including the differential rotation of the solar surface, the solar

wind and coronal mass ejections (CMEs). We will then outline some of the most

common magnetic field models, including potential field, source-surface (PFSS),

magnetofriction and full magnetohydrodynamics (MHD). We then discuss the con-

cept of magnetic helicity, and finish with a brief review of recent research particularly

relevant to my own – in particular the proposed ‘eruptivity index’.

Chapter 2 details the content of my first paper ([6]), which introduces a new

method for the calculation of steady-state coronal magnetic fields, taking into ac-

count a prescribed solar wind outflow velocity. These fields take a similar time to

compute as the established PFSS fields, but have some significant advantages.

In Chapter 3 we then discuss the main focus of my PhD research – predicting

magnetic flux rope eruptions. We have undertaken extensive parameter studies using

two modelling methods (magnetofriction and MHD) in both Cartesian and polar

coordinates and have sought to determine theoretically measurable scalar quantities

that can be used to make reliable predictions of future eruptions. The results from

this study have been published in two papers ([7, 8]), with the first of these based

on only the Cartesian magnetofrictional model, and the second introducing two new

models, including full MHD. We have sucessfully identified several scalar quantities

that appear to be good predictors of eruptivity, at least in our simple 2.5D cases, and

note that the flux rope behaviour is generally consistent between magnetofriction

and MHD.

Chapter 4 discusses my unpublished progress on a new magnetofrictional code,

using an icosahedral grid to model the entire corona. This includes discussion of

the advantages of using such a grid, the procedure for optimising the grid and

the implementation of differential operators on a non-regular lattice. We compare

the outflow fields calculated using the method from Chapter 2 to equilibria with

solar wind outflow on the new icosahedral grid and find that the two models are in

agreement.
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We then conclude with a discussion on the possible uses of the existing research

and how it can be extended further, with the ultimate aim being to make real-time

predictions of flux rope eruptions and their subsequent effects on Earth.

1.3 Phenomena Relevant to Our Work

1.3.1 Solar Rotation

Unlike the Earth, the Sun is not a rigid body and as such it is free to rotate at

different rates, depending on latitude. It rotates fastest at the equator, where a single

rotation takes around 25 days, and is slowest at the poles where a single rotation

takes around 38 days [9]. This considerable difference causes the photosphere to

shear relative to itself, in turn dragging around the coronal magnetic field which is

essentially attached to the photosphere at its base.

The rotation of the Sun was first observed by tracking the movements of sunspots

on the surface, but as sunspots are rarely found at latitudes higher than 30◦ this is

not sufficient to provide accurate measurements of rotation speeds at all latitudes.

The use of magnetogram data (measuring the strength of the radial magnetic field)

from the photosphere improved the precision of magnetic feature tracking on the

surface such that differential rotation profiles could be estimated across the entire

surface (eg. [10, 11]) although the long intervals between successive observations

meant that there was considerable disagreement amongst the literature.
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Figure 1.3: The photospheric rotation rate according to [9], in degrees/day as given
by Equation 1.2, plotted in solid black. The Carrington rotation rate is plotted for
reference in red.
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In this thesis we adopt the frequently used differential rotation profile of [9],

namely that the rotation rate at the surface is

2.902− 0.464 sin2 θ − 0.328 sin4 θ microrad s−1, (1.1)

or in more intuitive units

14.4− 2.30 sin2 θ − 1.6 sin4 θ deg day−1, (1.2)

where θ is the solar latitude, measured from the equator. This is plotted in Figure

1.3, along with the Carrington rotation rate for reference. This rotation profile was

deduced from 15 years’ worth of daily magnetograms obtained from the Mount Wil-

son telescope, essentially by comparing successive observations against each other.

We use this profile for all of the simulations in this thesis which use spherical coor-

dinates. Conversion to code units and the choice of a reference frame are discussed

further for the specific models in Chapter 3.

In the context of our research, the differential rotation of the surface is significant

as it causes coronal loops and arcades (regions where the magnetic field lines connect

back to the surface) to become sheared as the footpoints (where the loops attach

to the photosphere) move along the surface at different rates. This introduces the

shear that is necessary to form magnetic flux ropes, among many other features.

Is it not particularly relevant to the research in this thesis, but it should be noted

that this rotation profile does not extend uniformly all the way to the core of the

Sun. The rotation rate in the upper regions of the convective zone is slightly higher

than at the surface, and from around 0.7 solar radii (0.7R⊙) down to the core the

rotation speed is almost independent of latitude – the Sun rotates roughly uniformly

at approximately the Carrington rate (one rotation per 25.38 days). Thus there is

a region at around 0.7R⊙ known as the Tachocline [12] at which the rotation rate

changes rapidly at most latitudes. These results studying regions deep within the

Sun have been deduced relatively recently from helioseismology.
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1.3.2 The Solar Wind

The Solar Wind, proposed and observed since the early 20th century but first jus-

tified by Eugene Parker in his seminal 1958 paper ([13]) is a supersonic stream of

charged particles emanating from the Sun. Its presence not only affects the be-

haviour of the magnetic field in the solar corona, and as such is directly relevant to

our research, but the flow outward from the Sun is responsible (at least partially)

for accelerating plasma emitted from the Sun potentially as far Earth and beyond.

This mechanism allows the behaviour of the solar magnetic field to influence the

Earth’s magnetosphere.

The models we use in our research do not require a sophisticated solar wind

model, and as such although Solar Wind research is a vast field unto itself we do

not delve into a great detail here. However, we do require justification for the

imposed solar wind velocities (or boundary conditions) used in our models, and so

we will derive the imposed velocity profile used in Chapters 2 and 3, repurposed

from Parker’s paper [13].

We begin by neglecting the effect of the magnetic field in the solar corona – the

precise opposite of many assumptions used later in this thesis. We then seek to find

a hydrodynamic equilibrium with a radial velocity profile that can later be explicitly

combined with our magnetic field models. In order to find an equilibrium solution

whereby the plasma pressure is zero at infinity, we assume a steady radial velocity

field satisfying the equations of continuity, momentum and the ideal gas law:

∇ · (ρv) = 0 (1.3)

ρ(v · ∇)v = −∇p+ ρg (1.4)

p = ρRT, (1.5)

where v is the velocity field, g the gravitational force (which can alternatively be

expressed as the gradient of a potential g = ∇Ψ), ρ the density, T temperature, p

gas pressure and R the ideal gas constant. We assume spherical coordinates, and

radial dependence of the variable fields. The gravitational force is also radial and

8



equal to

g = −GM⊙
r2

er, (1.6)

with G the gravitational constant and M⊙ the mass of the Sun. We assume a

time-independent solution, and as such the continuity equation (1.3) for v = v(r)er

becomes

v(r)r2ρ = D, (1.7)

for some constant D. The momentum equation (1.4) reduces to

ρv
dv

dr
= −dp

dr
− GM⊙ρ

r2
. (1.8)

We now assume that the solar wind expansion is isothermal (there exist more com-

plex models which relax this assumption but this is sufficient for our purposes).

In this case, we can simplify the equations by re-expressing them in terms of the

constant sound speed

cs =

√
γ
p

ρ
, (1.9)

where the constant γ is the specific heat capacity ratio. It appears that Parker sets

γ to unity, so we shall here as well.

Using the sound speed equation to eliminate the pressure p we can obtain

ρv
dv

dr
= −c2s

dρ

dr
− GM⊙ρ

r2
(1.10)

v
dv

dr
= −c2s

1

ρ

dρ

dr
− GM⊙

r2
. (1.11)

To eliminate the density entirely we use the continuity equation:

1

ρ

dρ

dr
= r2v

d

dr

(
1

r2v

)
(1.12)

leading to

v
dv

dr
= −c2sr

2v
d

dr

(
1

r2v

)
− GM⊙

r2
. (1.13)
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Expanding the derivative and rearranging:

v
dv

dr
= −c2sr

2v

(
− 2

r3v
− 1

r2v2
dv

dr

)
− GM⊙

r2
(1.14)

v
dv

dr
= −c2s

(
−2

r
− 1

v

dv

dr

)
− GM⊙

r2
(1.15)

(
v − c2s

v

)
dv

dr
=

2c2s
r

− GM⊙
r2

. (1.16)

Defining a ‘critical radius’ rc =
GM⊙
2c2s

(at which the velocity equals the sound speed)

allows this to be integrated more easily:

(
v − c2s

v

)
dv

dr
=

2c2s
r2

(r − rc) (1.17)

v2

2
− c2s ln

∣∣∣∣
v

cs

∣∣∣∣ = 2c2s

(
ln

∣∣∣∣
r

rc

∣∣∣∣+
rc
r
+

C

4

)
, (1.18)

with some constant of integration C. The integration of the logarithms has been

performed such that the velocity only appears relative to the sound speed, and the

radius only relative to the critical radius. This is now an implicit equation for the

radial velocity v, depending only on constants.

The choice of the constant C affects the nature of the solutions considerably. To

see this, consider the contours of the function

f(r, v) =
v2

c2s
− 2 ln

∣∣∣∣
v

cs

∣∣∣∣− 4

(
ln

∣∣∣∣
r

rc

∣∣∣∣+
rc
r

)
, (1.19)

which are shown in Figure 1.4.

We can narrow down the possibilities for the constant C by considering these

contour lines. A reasonable physical solution must have zero (or very small) velocity

at the solar surface, and we also require that the velocity is positive throughout –

this leaves two possibilities. The first are the contour lines in Figure 1.4 which start

at the origin, increase in velocity as far as the critical radius rc and then fall back

to zero. These slow solutions are sometimes referred to as the ‘solar breeze’. The

second is the contour line starting at the origin and becoming supersonic (v = cs)

at the critical radius, with the velocity continuing to increase beyond this point.

10



1 2 3 4 5

Radius (r/rc)

0.5

1.0

1.5

2.0

2.5

3.0

O
u

tfl
ow

V
el

o
ci

ty
(v
/c
s
)

Figure 1.4: Contour plot of the function f(r, v) = v2

c2s
− 2 ln| v

cs
| − 4(ln| r

rc
|+ rc

r
), with

each contour line representing a potential solution to the Parker Solar Wind Model.
The solution for fast solar wind is the line passing through the origin and (1, 1),
corresponding to f(r, v) = −3.

This corresponds to the ‘fast solar wind’, and is the velocity profile we choose to

approximate in our simulations.

Choosing the constant C such that v(rc) = cs gives C = −3, so the implicit

solution for the velocity is

v2

c2s
− 2 ln

∣∣∣∣
v

cs

∣∣∣∣ = 4

(
ln

∣∣∣∣
r

rc

∣∣∣∣+
rc
r

)
− 3. (1.20)

We wish to find an implicit approximation of this for the implementation of the

solar wind into our models.

At this point we need to find approximate values for the constant terms in

this equation, to motivate neglecting some of the terms. Assuming the corona is

isothermal, the sound speed cs is given by the equation

cs =

√
kbT0

mp

. (1.21)

Taking the temperature of the corona to be 1× 106K [2], along with the Boltzmann
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constant kb and proton mass mp gives cs ≈ 91 km/s. The critical radius rc is then

rc =
GM⊙
2c2s

. (1.22)

Using the gravitational constant G and the mass of the sun M⊙ ≈ 2×1030 kg gives a

critical radius of rc ≈ 11.5R⊙ (later in this thesis we use rc = 10R⊙, also commonly

used in the literature – this makes no functional difference to our simulations). Thus,

given our simulation domain only extends (in general) to 2.5R⊙ we can assume the

ratio r/rc is reasonably small, as is the ratio v/cs. Thus we can neglect the first

term in the implicit equation and can rearrange to give

−2 ln

∣∣∣∣
v

cs

∣∣∣∣ = 4

(
ln

∣∣∣∣
r

rc

∣∣∣∣+
rc
r

)
− 3 (1.23)

ln

∣∣∣∣
v

cs

∣∣∣∣ = −2 ln

∣∣∣∣
r

rc

∣∣∣∣− 2
rc
r
+

3

2
(1.24)

v

cs
= A

(rc
r

)2
e−2 rc

r , (1.25)

with A = e3/2. We can then rewrite this such that the velocity profile satisfies

the upper boundary condition v(r1) = v1, for the upper boundary r = r1 (usually

2.5R⊙):

vout(r) = v1
r21e

−2rc/r

r2e−2rc/r1
. (1.26)

This is the velocity profile that we use in the coronal equilibria code (Chapter 2),

and for the axisymmetric spherical models in the eruptivity criteria study (Chapter

3). Figure 1.5 compares this approximation to the ‘true’ Parker solution, and we

see that the profiles are acceptably similar up to around 5R⊙ (which is larger than

the domains used in our models). The precise nature of the velocity profile does

not tend to affect the behaviour of the magnetofrictional models too greatly, in any

case.

In fact, the solar wind term used in previous magnetofrictional studies (eg. [14])
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Figure 1.5: Comparison of the ‘true’ Parker solution (in blue) with our explicit
approximation (in red), up to 10 Solar Radii (the critical radius).

instead use a simple power law, such as

v(r) =

(
r

r1

)11.5

, (1.27)

which is not at all realistic but serves its intended purpose of encouraging eruptive

behaviour.

As some of our simulations are in Cartesian coordinates, it seems prudent to

check whether such a steady-state solution with positive vertical velocity can also be

found in Cartesian geometry. In Chapter 3 we will discuss the boundary conditions

necessary to encourage such a solution to form (in the absence of a magnetic field)

but here we examine the analytical case.

We assume the continuity, momentum and ideal gas equations as for the spherical

coordinate case, but now impose a gravitational field

g = − Gρ

1 + y2
ey, (1.28)

where y is the vertical direction, assuming the domain is 0 < y < 1, and G is a

constant. Fixing this constant is difficult as the unrealistic geometry of the Carte-

sian domain means the radial coordinate in spherical space cannot map exactly

to the vertical coordinate in Cartesian space. In any case, a realistic value of the

gravitational force is higher than that which we use in the simulations, wherein we

reach a compromise between computational time and physical accuracy. In these
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coordinates the continuity and momentum equations become

vρ = A, (1.29)

for a constant A, and

ρv
dv

dy
= −dp

dy
− Gρ

1 + y2
. (1.30)

Proceeding in the same manner as the spherical coordinate case (eliminating the

pressure and density) we obtain

v
dv

dy
= c2s

1

v

dv

dy
− G

1 + y2
, (1.31)

or

(v − c2s
v
)
dv

dy
= − G

1 + y2
. (1.32)

This can be integrated to give an implicit equation for v(y):

v2

2
− c2s ln|

v

cs
| = −c2s

∫
G

1 + y2
dy = c2s(−G arctan(y) + C). (1.33)

Note that any solution v(y) here also corresponds to a solution −v(y), so care must

be taken in the code to ensure the positive solution is naturally favoured, either

using the boundary conditions or a sufficiently positive initial condition. Unlike in

the spherical case, the only physical constraint on the constant C is that the solution

is single-valued (the wind does not turn back on itself). This corresponds to

C ≤ 1 +Gπ

2
. (1.34)

The contours of the function

f(y, v) =
v2

2
− ln|v|+ arctan(y) (1.35)

are shown in Figure 1.6, with the case satisfying this inequality (the fastest-possible

speed) highlighted in red. We observe that the positive physical solutions are nonzero

at y = 0 and increase modestly toward the top of the domain, which is qualitatively
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Figure 1.6: Contour plot of the function f(y, v) = v2

2
− ln|v|+ arctan(y), equivalent

to the case with the constants G = 1 and cs = 1. The fastest-possible physical
solution is shown in red – all the contour lines below this are valid solutions.

quite different to the spherical coordinate case. This is to be expected to a degree,

as the Cartesian domain can only correspond to a region relatively near to the solar

surface. The equilibria reached by the LARE code in the absence of a magnetic field

(see Chapter 3 for details) are consistent with these solutions.

1.3.3 Flux Ropes and CMEs

Much of the research in this thesis is on the study of eruptive events in the solar

corona – specifically coronal mass ejections (CMEs). These are large ejections of

heated plasma from the low corona out into interplanetary space ([15]), accompanied

by significant changes to the magnetic field. The material ejected by an eruption

can then propagate through interplanetary space and interact with the Earth’s mag-

netic field, which can be potentially problematic. CMEs are associated with flaring

(another phenomenon observed in the lower corona), but are distinguished by the

ejection of plasma rather than merely light.

There are many mechanisms proposed for the large buildup and release of energy

associated with CMEs. It is generally accepted that flows on the solar surface cause
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the magnetic field in the lower corona to become twisted in various ways, with an

accompanying increase in magnetic energy. Such magnetic configurations can be

very complex, and can exist in quasi-equilibrium for some time. If this equilibrium

is lost, an eruption occurs and the built-up energy is released relatively quickly,

often in only a few hours ([16]). Figure 1.7 shows an image of a CME in progress,

illustrating the sheer size of a large eruption.

Figure 1.7: Image of a coronal mass ejection on 16th April 2012, taken by the Solar
Dynamics Observatory (credit to NASA).

The proposed mechanisms for CMEs can be roughly categorised into two groups:

the ‘breakout model’ and the ‘flux injection model’. While the magnetic field is

in equilibrium, the forces of magnetic pressure from a twisted magnetic field act

upwards and are balanced by magnetic tension from an overlying magnetic field. In

the breakout model (eg. [17]), magnetic reconnection removes overlying flux until

these forces are no longer in balance, then resulting in a loss of equilibrium.

The flux injection model (eg. [18]) instead proposes that the topology of the

magnetic field prior to a CME is in the form of a magnetic flux rope. Such a flux

rope exists in quasi-equilibrium until the current, poloidal flux, twist, or some other

parameter becomes too great and there is a catastrophic loss of equilibrium. Such

instabilities are discussed further in Section 1.5. This theory more closely resembles
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the models we employ in this thesis.

The poloidal flux in the rope itself originates either from shearing motions on

the solar surface or emergence of the sheared structure from the convective zone.

Shearing motions can occur due to various factors: either the differential rotation

of the Sun or the effects of supergranulation on the surface due to motion below the

photosphere. The mechanism behind flux rope formation is described in [19], with

the rough process illustrated in Figure 1.8 (reproduced from that paper). A magnetic

arcade sits above a line of zero polarity on the surface (the polarity inversion line, or

PIL). Shearing then causes the magnetic footpoints to move in opposite directions

on each side of the PIL, and additional flows towards the PIL then bring these

footpoints together, forming the helical structure of a flux rope.

(A) (B)

(D) (E) (F)

(C)

Figure 1.8: The formation of a flux rope due to shearing and flux cancellation of a
magnetic arcade. In panel (B) the arcade is sheared along the PIL. The magnetic
footpoints are then brought closer together in panel (C) due to the effect of photo-
spheric diffusion. These footpoints can then reconnect at the PIL to form a twisted
structure – a flux rope (in panel (F)). Recreated from Figure 1 of [19].

Once a flux rope has formed, these surface motions can continue to increase the

size of the rope and the twist of the magnetic field, processes generally accompanied

by corresponding increases in the magnetic energy and magnetic helicity. Eventually,

if the magnetic pressure in the rope becomes high enough to resist both the magnetic

tension from the overlying field and the gravitational force on the plasma within it,

then the rope can erupt. However, it is equally possible for the flux cancellation at

the PIL to result in the flux rope diffusing away into irrelevance without any rapid

release of energy. The conditions for an eruption to occur are complex, and are
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discussed in more detail in Section 1.5 and Chapter 3.

Determining the precise conditions for such a flux rope eruption is still very

much an open question. Our work in Chapter 3 focuses on determining which, if

any, measurable properties of the magnetic field can be used to predict an eruption.

1.4 A Brief Summary of Magnetic Field Models

This section will describe three models that can be used to represent the magnetic

field in the solar corona. These models are used for different purposes throughout

the work in this thesis, but are by no means a comprehensive list. Although not

directly relevant to this thesis, we also discuss linear and non-linear force free fields

as these models may be useful predictive tools in future, in combination with the

results from Chapter 3.

1.4.1 MHD and Magnetofriction

MHD

The most physically accurate magnetic field models we employ in this thesis use the

full set of magnetohydrodynamic equations. These combine the fluid equations with

Maxwell’s magnetic field equations. If one were to have infinite computing power

and a perfectly comprehensive set of boundary conditions then full MHD would

always be used, but this is naturally often not the case.

We start with the magnetic field: Maxwell’s equations. The first of these is

Faraday’s Law of induction:
∂B

∂t
= −∇× E (1.36)

which describes how the magnetic field B is influenced by an electric field E.

We then have the low-freqency Ampère’s Law:

µ0j = ∇×B, (1.37)

describing the magnetic field generated by an electric current density j (or vice
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versa). The displacement current term from the more general Ampère’s Law can

be neglected for our purposes as the relevant velocities are far from relativistic.

The constant µ0 is the permittivity of free space, equal to 4π × 10−7N/A2. In the

interest of being mathematicians and the general simplification of things, we can set

this constant to unity without loss of generality, although care must be taken with

units throughout.

The third of the equations we use is the solenoidal condition, the constraint

that we must not have magnetic monopoles. Mathematically, this means that the

divergence of the magnetic field is zero:

∇ ·B = 0. (1.38)

This is consistent with Faraday’s Law without constraint on the electric field as the

divergence of the curl of the electric field is zero. Extreme care must be taken in

numerical models to ensure that the magnetic field remains divergence-free. Some

models do this by an adjustment at each timestep (known as divergence cleaning,

discussed in [20]), but all of the models in this thesis instead employ a vector po-

tential A, such that

B = ∇×A. (1.39)

Faraday’s Law can then be rewritten as

∂A

∂t
= −E+∇Φ, (1.40)

which is if anything simpler to calculate than in the original form. The addition of

the arbitrary vector potential ∇Φ does not affect the dynamics and so is generally

neglected from the equations – but it does play a significant part in the discussion

on helicity in Section 1.6. The method used in the LARE2D code ([21], used in

Chapter 3) to ensure this condition is more complex, but is fundamentally the same

approach.

In addition to Maxwell’s equations we also require Ohm’s Law for electrically

19



conductive fluids:

E = ηj− v×B. (1.41)

The first term here is proportional to the electric current density j, with a constant

resistivity η. The second term accounts for the relative motion of the fluid, which

has a velocity field v. In the solar corona, the effect of the resistivity is relatively

small, and most of the electric field is generated from the motion of the fluid itself.

These magnetic field equations (including the solenoidal condition) can be combined

to form the MHD induction equation:

∂B

∂t
= ∇× (v×B) + η∆B. (1.42)

If it were not for the velocity field v, we would now have a closed system of

equations. To compute the velocity (or more accurately the change in the velocity)

we must also use the fluid equations. We start with the continuity and momentum

equations:

Dρ

Dt
= −ρ∇ · v (1.43)

Dv

Dt
=

1

ρ
j×B− 1

ρ
∇P + g, (1.44)

introducing the density and pressure fields ρ and P . The gravitational force is

imposed as g. Note that this differs from the non-magnetic momentum equation by

the addition of the Lorentz force term 1
ρ
j×B, which describes the influence of the

magnetic field on the fluid. The derivatives here are material derivatives (moving

with the fluid), lending themselves to the velocity remap method used in the LARE

code.

We can then close the system completely with the equation for the internal fluid

energy ϵ (which is proportional to the fluid temperature) and the ideal gas law:

Dϵ

Dt
= −P

ρ
∇ · v +

η

ρ
j2 (1.45)

ϵ =
P

ρ(γ − 1)
, (1.46)
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where we observe internal energy contributions from both friction in the fluid motion

and the magnetic energy lost from the resistivity η. The ideal gas law relates the

pressure and density of the fluid and depends on the constant γ, the specific heat

capacity ratio.

Solving such a large system of equations is understandably complex. One has

three independently variable fields (B, ρ, ϵ) which must be calculated at every timestep.

One must also perform a remap step to deal with the material derivatives in the

fluid equations. Another disadvantage of full MHD is the limitation on the timestep

itself, due to the necessity of resolving sound waves. These restrictions can become

especially problematic when the plasma beta (the ratio of fluid pressure to magnetic

pressure) is low, as is the case in the majority of the corona. This limitation also

exists in magnetofriction (see Chapter 4.1 for a full discussion) but generally to a

lesser degree.

Despite these limitations, relatively recent improvements in computing capability

have allowed for ever-more complex simulations. Although modelling the entire

corona is now possible (eg. [22]), in general MHD simulations are used to focus

on smaller regions and specific events. Indeed, for certain phenomena MHD is the

only suitable option, such as for eruptive events whose mechanism relies heavily on

either the behaviour of the fluid (such as shocks) or the peculiarities of magnetic

reconnection (eg. [23]). However, it is hoped (and justified somewhat in Chapter 3)

that the conditions for flux rope eruptions do not fundamentally depend on factors

that can only be modelled in full MHD.

Of particular note to our work are the simulations of [24, 25], which model a

fully three-dimensional flux rope in 3D Cartesian space. Altering the orientation

of the overlying magnetic field results in flux ropes that may either remain stable

indefinitely or erupt. The two scenarios could then be compared against one another

to determine whether there are any observable precursors to an eruption. The speed

limitation of these full 3D MHD simulations meant that only very few simulations

could be run in this manner, however – a problem that we have sought to overcome

with our simpler models. Similarly, [26] successfully model eruptions in full 3D

MHD, but the small number of simulation runs thwarts any definitive conclusions
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regarding the prediction of imminent eruptions.

Magnetofriction

The magnetofrictional method (MF) is used as the basis for most of the evolving

magnetic field models in this thesis. Magnetofriction is computationally much sim-

pler and faster than full MHD, whilst retaining enough of the physics to model

the magnetic fields sufficiently accurately. In essence, we can remove the problems

caused by the fluid equations by not including them. We instead close the system

of Maxwell’s equations and Ohm’s law by using a ‘frictional velocity’ field v, which

can be calculated explicitly from the magnetic field B.

This is possible as the timescale of the fluid motion is in general far faster than

that of the magnetic field, and so in general the magnetic field can be considered

as being in quasi-equilibrium. In particular, such an equilibrium will have a small

Lorentz force j×B, as is approximately the case throughout the much of the corona.

Thus in the absence of external effects we wish to recreate magnetic field dynamics

that will relax toward such a state.

To achieve this, we set the velocity field to be proportional to the Lorentz force

itself:

v = f(B) j×B, (1.47)

for some (yet to be determined) function of the magnetic field f . This approach dates

back to [27], although in that case it was still in conjunction with a pressure field

and so is not what we would now call magnetofriction. The method of [28] removes

the fluid entirely, and also introduces the phrase ‘ficticious fluid’ to describe the

resulting velocity field.

In addition to the convergence properties, we also require that the evolution of

the magnetic field is independent of the overall magnetic field strength. To ensure

this, we require that the velocity field itself is independent of the magnetic field

strength, and assume a form similar to

v =
j×B

B2
. (1.48)
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This is the form used by [29], in which the magnetofrictional method as we use it

is formally proposed. The denominator in this form can lead to numerical problems

at or near magnetic null points, however, as the current can be significantly larger

than the magnetic field strength itself in some cases. Thus in the magnetofrictional

models used in this thesis we use a ‘softened’ denominator

v = ν0
j×B

B2 +B2
0δe

−B2

δB2
0

, (1.49)

where the denominator has a minimum value determined by the value of the small

constant δ. There are naturally many alternative ways to achieve such a softening

effect, such as by merely imposing a minimum value on the denominator. Here B0 is

a constant (in space, but not necessarily in time) factor proportional to the overall

magnetic field strength. The effect of softening on a simple 1D magnetofrictional

model is discussed in detail in [30]. The constant ν0 controls the relaxation rate,

and can depend on space if necessary (as in [14], for instance).

Unlike in MHD codes, the solar wind cannot appear self-consistently, and so it

must be added on to this fictitious velocity term, so the overall equation for the

‘velocity’ is:

v = ν0
j×B

B2 +B0δe
−B2

δB2
0

+ vout(r), (1.50)

where the vout term is the solar wind outflow profile as discussed in Section 1.3.2.

Thus the full set of magnetofrictional equations is

∂B

∂t
= −∇× E (1.51)

E = ηj− v ×B (1.52)

µ0j = ∇×B (1.53)

v = ν0
j×B

B2 +B2
0δe

−B2

δB2
0

+ vout(r)er. (1.54)

Magnetofriction has been used with static boundary conditions to find equilib-

rium solutions of the magnetic field (force-free fields, eg. [29,31]), but in this thesis

we will use the model in conjunction with dynamic boundary conditions. Although
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the coronal magnetic field relaxes slowly compared to the fluid motion, it is still far

faster than the motion of the underlying photospheric surface, to which the mag-

netic field is essentially attached. Thus it is reasonable to approximate the field a

series of quasi-static equilibria. This approach was first developed by [32], and has

been used extensively for various applications (eg. [33–41]).

Similar dynamic boundary conditions can also be used with full MHD (eg. [42]),

although with further limitations such as the necessity of determining boundary

conditions for the fluid in addition to the magnetic field.

The magnetofrictional method can be combined with complex lower boundary

data influenced by observations of the magnetic field on the solar surface (such as

from the Heliospheric and Magnetic Imager (HMI) instrument on the Solar Dynam-

ics Observatory) to model the evolution of the magnetic field throughout the entire

corona. Notably, magnetofriction applied in this way allows for the formation of

magnetic flux ropes and their subsequent eruption (or failure to do so), with be-

haviour qualitatively very similar to full MHD equivalents. Moreover, it has also

been shown (eg. [43, 44]) that in numerical simulations flux ropes lose equilibrium

at the same point in both MHD and magnetofrictional simulations. This in support

of [28] (based on the analysis of [45]), who assert that the linear stability properties

of MHD and magnetofriction are the same (although they also note that this result

is not significant enough in itself to draw any notable conclusions). Although any

stable equilibria in MHD are stable in MF, oscillations around such an equilibrium

are possible in MHD, whereas in MF these will be supercritically damped due to

the equations being parabolic rather than hyperbolic.

The magnetofrictional models described in this thesis follow directly from the

implementation of the existing magnetofrictional code developed at St Andrews and

Durham universities, known as DumFric (Durham magneto-Friction). In Chapter

3 we use two 2.5D magnetofrictional models, both in Cartesian and spherical ge-

ometries. In Chapter 4 we describe the development of a new magnetofrictional

code on an icosahedral grid. This seeks to remove one of the limitations of existing

models – namely that as the spherical grid converges at the poles the condition on

the numerical timestep becomes more restrictive, which either results in unrealistic

24



relaxation rates or longer than ideal computational times.

Magnetic Boundary Conditions

As mentioned previously, one of the advantages of magnetofriction over MHD is

that the boundary conditions are much simpler, only requiring conditions on the

magnetic field. In MHD we also require boundary conditions on the fluid, which are

discussed in Chapter 3 when introducing our MHD model.

In general, we impose magnetic boundary conditions such that the current par-

allel to the boundaries is zero, which under the MF equations prevents energy flow

through the boundaries. This is enforced by setting the values of the magnetic field

in a layer of ghost cells just outside the boundary. The remaining magnetic field

values in the ghost cells (those perpendicular to the boundary) can then be deter-

mined using the solenoidal condition. The imposed solar wind velocity encourages

the magnetic field to become radial near the top boundary, but imposing a radial

condition explicitly is at odds with allowing for flux rope eruptions, during which

the magnetic field clearly should not be radial when the rope itself passes through

the upper boundary.

With such static boundary conditions the system will eventually relax into a

force-free state. In order to model dynamic coronal phenomena we add additional

conditions to the lower boundary. Motions on the solar surface can be represented

by directly replacing the frictional velocity field v on the lowermost cell with the

velocity field of choice. In the simulations described in this thesis the only imposed

velocity is that of the solar differential rotation (see Section 1.3.1), although it is

also common to model meridional flow.

The other significant dynamic boundary condition models the effect of supergran-

ular diffusion. The motion of the supergranules effectively increases the magnetic

diffusion rate in the photosphere to be significantly higher than in the corona ([32]).

Thus on the lower boundary we replace the standard magnetofrictional term for the

electric field E with values equivalent to 2D diffusion of the radial component of

the magnetic field constrained to the surface. In Cartesian coordinates (with y the
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vertical direction) this is equivalent to

∂By

∂t
= −η0

(
∂2By

∂x2
+

∂2By

∂z2

)
= −(∇× E)y =

∂Ez

∂x
− ∂Ex

∂z
, (1.55)

which can be satisfied by setting

Ex(x, 0, z) = η0
∂By(x, 0, z)

∂z
ex (1.56)

Ez(x, 0, z) = −η0
∂By(x, 0, z)

∂x
ez, (1.57)

where η0 is a constant ‘supergranular diffusion rate’. In the 2.5D simulations dis-

cussed in Chapter 3 there is additionally no dependence on the z coordinate so one

of these terms disappears.

The specific implementation of the magnetofrictional boundary conditions in our

work is described in more detail in Chapter 3, in addition to a discussion on how

these conditions can be modified to work in conjunction with full MHD, which is

necessary when making direct comparisons between the two methods as we seek to

do.

The Staggered Grid

Numerically, our MF models use a finite difference scheme on a ‘staggered grid’

([46]), which is a natural choice for magnetic field calculations as it both allows

for the enforcement of the solenoidal condition to machine precision and derivatives

which are equivalent to a central difference scheme. In brief, the staggered grid

means that different field quantities are saved in different locations in space.

To motivate this, consider a regular Cartesian grid in 3D. Each vertex (grid

point) is assigned an integer numerical index, and the points halfway between each

vertex are assigned half-integer indices. The magnetic field B is stored with each

component at the centre of a different grid face, ie.

Bi,j+1/2,k+1/2
x , Bi+1/2,j,k+1/2

y , Bi+1/2,j+1/2,k
z , (1.58)
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with the magnetic flux through each face being equal to

Bi,j+1/2,k+1/2
x ∆y∆z, Bi+1/2,j,k+1/2

y ∆x∆z,Bi+1/2,j+1/2,k
z ∆x∆y (1.59)

respectively, for grid resolutions of ∆x in the x direction, etc.. The current density

j and vector potential A are stored on grid lines:

ji+1/2,j,k
x , ji,j+1/2,k

y , ji,j,k+1/2
z , (1.60)

or as line integrals

ji+1/2,j,k
x ∆x, ji,j+1/2,k

y ∆y, ji,j,k+1/2
z ∆z, (1.61)

(with A being identical). The curl operator (eg. B = ∇ × A) is calculated using

Stokes’ Theorem: ∫∫
∇×A dA =

∮
A dl, (1.62)

where the left hand side is an integral over the area of the respective face, and the

right hand side is the sum of the line integrals around its edges.

Numerically, on the staggered grid this translates (shown here for the magnetic

flux in the x direction) to

Bi,j+1/2,k+1/2
x ∆y∆z = Ai,j+1/2,k

y ∆y + Ai,j+1,k+1/2
z ∆z − Ai,j+1/2,k+1

y ∆y − Ai,j,k+1/2
z ∆z,

(1.63)

or, dividing through by the areas:

Bi,j+1/2,k+1/2
x =

1

∆y
(Ai,j+1,k+1/2

z − Ai,j,k+1/2
z )− 1

∆z
(Ai,j+1/2,k+1

y − Ai,j+1/2,k
y ), (1.64)

which is merely a central difference scheme (second-order accurate). The equivalents

in the other coordinate directions are:

Bi+1/2,j,k+1/2
y = − 1

∆x
(Ai+1,j,k+1/2

z − Ai,j,k+1/2
z ) +

1

∆z
(Ai+1/2,j,k+1

x − Ai+1/2,j,k
x ),

(1.65)

Bi+1/2,j+1/2,k
z =

1

∆x
(Ai+1,j+1/2,k

y − Ai,j+1/2,k
y )− 1

∆y
(Ai+1/2,j+1,k

x − Ai+1/2,j,k
x ). (1.66)
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The curl operator for j = ∇×B is similar but shifted by half a cell in each respective

direction. Note that the solenoidal condition on the magnetic field is automatically

enforced – the net magnetic flux through each grid cell is given by

∇ ·Bi+1/2,j+1/2,k+1/2 = (Bi+1,j+1/2,k+1/2
x −Bi,j+1/2,k+1/2

x )∆y∆z+

(Bi+1/2,j+1,k+1/2
y −Bi+1/2,j,k+1/2

y )∆x∆z+

(Bi+1/2,j+1/2,k+1
z −Bi+1/2,j+1/2,k

z )∆x∆y = 0. (1.67)

This is equivalent to adding all the line integrals of A around the grid cell together,

but in both directions – summing precisely to zero over each cell. On irregular

grids (such as in Chapter 4) this still holds true and so this approach is useful for

maintaining a strict divergence-free condition.

As the current density j is stored in the same place on the grid as the vector

potential A, the diffusive term E = ηj can be computed with no numerical trickery.

However, the ideal location for the magnetofrictional term v is not as clear. In order

to compute the cross product j×B, at least one (and probably both) of these fields

will need to be averaged to a different location on the grid. This may compromise

the accuracy of the central-difference derivatives. A simple averaging of both the

magnetic field and current density can be used on a regular grid, but a more complex

approach must be taken for our implementation described in Chapter 4.

1.4.2 PFSS (Potential Field, Source Surface)

Potential field models are the simplest way to model the solar corona while still

retaining some degree of realism. The PFSS model was first used by [47] and [48]

in the late 1960s. The model seeks to calculate a potential magnetic field which

satisfies a lower boundary condition at the base of the corona, which in practice is

usually provided by magnetogram data. Such a field takes the form

B = ∇Φ (1.68)
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for some scalar field Φ. Combined with the solenoidal condition ∇ ·B = 0 we find

that Φ is a solution to Laplace’s equation

∇2Φ = 0. (1.69)

Such a magnetic field is current-free (and hence force free) as the curl of a gradient

is zero. This is in fact a reasonable first approximation for much of the solar corona,

where the average current density away from active regions is generally small.

The popularity of the PFSS model is due to its comparative computational sim-

plicity and the fact that the only required boundary data is a radial magnetogram on

the surface, compared to more physically accurate models which require either more

data or more assumptions. In fact, despite the enormous increases in computing

capability since their inception, PFSS solutions of the corona are still widely used

for a number of applications, albeit with various additions and modifications to the

original models (eg. [49, 50]). In particular, models based on PFSS framework are

among the most widely used for space weather prediction ([51]).

The ‘source-surface’ part of the name comes from the chosen upper boundary

condition. PFSS models specify that the magnetic field lines are purely radial at

a given radius, often taken to be 2.5R⊙. The justification for this is that the solar

wind opens out the potential arcades such that they become radial at around this

altitude. However, there are significant discrepancies between this assumption and

physical observations of the corona – which our work in Chapter 2 seeks to address.

Previous attempts have been made to improve on the standard PFSS model,

such as experimenting with a nonspherical source surface (eg. [49, 52]), or allowing

the source surface height to vary with time (eg. [53]). The latter authors showed

that in general a suitable source surface height can be chosen to match open flux

observations at any given time, but this is not of any use for predictions as the

optimum source surface radius varies in an irregular and unpredictable manner.

In general, the predicted amount of open magnetic flux (the surface integral of

the unsigned magnetic field strength at a given radius) does not match observations

either at 1 AU or closer to the Sun, usually underestimating the true value. This
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is the so-called ‘open flux problem’ ([54]), whereby the heliospheric magnetic flux

is often measured at twice or more than the value predicted by PFSS models. Our

‘outflow fields’, discussed in Chapter 2, are calculated similarly to PFSS fields but

take into account the effect of the solar wind, which reduces this discrepancy to a

degree. Another possible solution to the problem is to account for the influence of

‘switchbacks’ (eg. [55], [56]): locations in the magnetic field where the field lines

double back on themselves. The radial magnetic field will be double-counted in

these locations and so the total open flux will be overestimated.

Despite their limitations, PFSS models are used extensively in this thesis as

initial conditions for both the magnetofriction and MHD models. Potential fields are

ideal initial conditions for magnetofriction as the system will remain in equilibrium

unless dynamic boundary conditions (or an imposed outflow) are applied, given the

frictional velocity term will be zero in the absence of any current.

A potential field also represents the state with minimum magnetic energy

EM =
1

2µ0

∫
B2dV (1.70)

for a given normal component of the magnetic field on the boundary. The reference

potential fields used in Chapter 3 are not PFSS fields as the upper boundary con-

dition is not radial – the upper boundary of these reference fields is instead chosen

to match the primary magnetic field to which the reference field is compared. The

numerical processes for calculating such fields is very similar, however.

Numerical calculation of PFSS fields on a staggered grid

Analytic expressions can be found for PFSS fields, usually in conjunction with a

Fourier Transform on the lower boundary. However, in this thesis we are concerned

with evaluating such fields numerically. In particular, PFSS fields are used as the

initial condition for many of our dynamic simulations, all of which take place on

a ‘staggered grid’ (see Section 1.4.1). There are many different ways to calculate

these solutions, several of which have been used in our work. In the PFSS model the

magnetic field can be expressed entirely in terms of the scalar potential Φ, which is
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stored at the centre of grid cells. In the notation of Section 1.4.1 this is

Φi+1/2,j+1/2,k+1/2. (1.71)

In Cartesian coordinates, the magnetic field B = ∇Φ is then simply

Bi,j+1/2,k+1/2
x =

1

∆x
(Φi+1/2,j+1/2,k+1/2 − Φi−1/2,j+1/2,k+1/2) (1.72)

Bi,j+1/2,k+1/2
y =

1

∆y
(Φi+1/2,j+1/2,k+1/2 − Φi+1/2,j−1/2,k+1/2) (1.73)

Bi,j+1/2,k+1/2
z =

1

∆z
(Φi+1/2,j+1/2,k+1/2 − Φi+1/2,j+1/2,k−1/2), (1.74)

and the solenoidal condition on the magnetic field then determines the numerical

condition on Φ. This is long-winded in three dimensions, so if we consider a 2D

system (dropping the z component) then this condition is

∆Φi+1/2,j+1/2 =
1

∆x2
(Φi+3/2,j+1/2 − 2Φi+1/2,j+1/2 + Φi−1/2,j+1/2)+

1

∆y2
(Φi+1/2,j+3/2 − 2Φi+1/2,j+1/2 + Φi+1/2,j−1/2) = 0. (1.75)

One hopes that the 3D extension is clear. Ghost points just outside the domain

can be used to enforce the boundary conditions. The simplest procedure for solving

such a system of equations is the Gauss-Seidel method, whereby each element of

Φi+1/2,j+1/2 is calculated in turn such that based on the existing values of its neigh-

bour, the value of ∆Φi+1/2,j+1/2 is then precisely zero in that cell. Once all interior

points are updated the boundary conditions are then imposed and the process re-

peats until the solution has converged to an acceptable degree. This procedure is

simple to implement but is in general very slow to converge.

Quite a considerable improvement on this method can be made by using ‘Suces-

sive over-relaxation’ (SOR). Similarly to Gauss-Seidel, we calculate a value Φ̃i+1/2,j+1/2

based on the neighbouring points such that ∆Φ̃i+1/2,j+1/2 = 0, but instead of setting

the new value to be Φnew = Φ̃ we combine with the old value as follows:

Φnew = ωΦ̃ + (1− ω)Φold, (1.76)
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for a constant parameter ω. Setting ω = 1 recovers Gauss-Seidel. Convergence is

theoretically guaranteed for 0 < ω < 2, but the fastest convergence generally occurs

in the region of ω ≈ 1.5. It is possible to deduce the optimum ω analytically for

simple grids, but for our purposes it is determined with trial and error, and varies

depending on the nature of the grid.

SOR is still very slow to converge at high resolutions, especially in three dimen-

sions. Thus for the irregular grids described in Chapter 4 we must use a ‘multigrid’

method. This is discussed in more detail in that chapter, but in essence is merely

SOR applied at different grid resolutions, enabling convergence at multiple scales

far more quickly than any alternatives.

If we have a regularly-spaced grid (either in Cartesian or spherical coordinates)

then the method of separation of variables allows us to decompose a solution to

B = ∇Φ into eigenfunctions – Fourier modes in Cartesian coordinates or spherical

harmomics in spherical coordinates. This reduces the numerical solution to a series

of 1D problems, and as such is far faster than SOR. The method for calculating our

‘outflow fields’ (Chapter 2) uses this approach. Setting the outflow velocity to zero

in this case recovers a PFSS field. This approach for solving PFSS on a staggered

grid was described by [32].

In arbitrary coordinates an alternative approach is to solve Equation 1.75 (or

equivalent) directly by treating it as a matrix equation that can be solved using

standard methods. This is in fact the approach used to calculate initial PFSS fields

for the axisymmetric polar simulations in Chapter 3. We illustrate this process here.

Initially, we need to find a matrix M which is equivalent to taking the Laplacian of

Φ, in arbitrary coordinates:

∆Φ = MΦ + a = 0, (1.77)

where (simplistically) the matrix M represents the Laplacian operator, and the

vector a contains the boundary condition information. To express the system as

such, and if working in greater than one dimension, Φ must be ‘flattened’ into a

1D array. If Φ has n elements (the total number of grid cells), then the matrix M

32



is an n × n matrix. In simple cases the components of M can be determined by

inspection, but this is not always possible. The code used in our simulations instead

calculates the Laplacian of each array with a single non-zero element of Φ in turn:

M




1

0
...

0

0




= ∆




1

0
...

0

0




− a

and so forth for all the possible elements in Φ, whereupon the rows of M can be

read off directly. The vector a contains the lower boundary condition information

and can be obtained simply by application of the numerical Laplacian function to

the zero vector, essentially equivalent to:

a = ∆




0

0
...

0

0




.

We then solve ∆Φ = 0 by inverting M :

Φ = −M−1a. (1.78)

The matrix M is sparse and so this inversion is reasonably fast providing an efficient

algorithm is used. For the uses in this thesis the scipy sparse matrix solver will prove

sufficient. For successive potential field calculations on the same grid (with varying

boundary conditions) the matrix M needs only be calculated once, further speeding

up the process.
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1.4.3 Other force-free models

In addition to the models described above, which are directly relevant to the work

in this thesis, there exist many other approaches to modelling the coronal magnetic

field. The most commonly used of these are force-free models, whereby the Lorentz

force j × B vanishes everywhere. This is a weaker assumption than required for

potential fields (where j = 0), allowing for a vast array of possible solutions in

contrast to the unique solution for a potential field.

Magnetic fields in the corona can be generally considered to be approximately

force-free, which is key to the assumptions founding the magnetofrictional model.

It may also be assumed that the magnetic pressure in the corona dominates over

the gas pressure at most locations in the corona ([57, 58]), and so in a steady state

there should in theory exist a force-free field that represents the magnetic field

configuration very well. Finding such a field is far from trivial, however.

The magnetofrictional model will relax to a force-free state in the absence of

dynamic boundary conditions, and as such suitable fields can be obtained using

magnetofriction in combination with suitable boundary driving (this is the principle

behind many of the works referenced in Section 1.4.1). However, such evolution

is time consuming and it is often advantageous to be able to construct a series of

force-free fields directly from boundary data. Such a magnetic field B must satisfy:

∇×B = αB, (1.79)

and

B · ∇α = 0, (1.80)

where α is a ‘force-free parameter’. The first equation here ensures that the current

is parallel to the magnetic field, and the second constrains α to be constant along

each individual field line.

If we assume α is constant everywhere, this is referred to as a linear force-free

field (LFFF). If α is allowed to vary throughout the domain then this is a non-linear

force-free field (NLFFF). In the former case (LFFF) the equation for B reduces to
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the Helmholtz equation

∇2B = −α2B, (1.81)

solutions to which can be obtained in a similar fashion to a potential field. In this

simple case an optimum value for α can either be obtained by comparison with

the horizontal magnetic field at the photosphere (eg. [59, 60]) or by qualitative

comparison (the position of coronal loops etc.) with features higher in the corona

(eg. [61]). However, although these models are an improvement upon potential

fields, the optimum value for α has been shown ([62]) to vary considerably across

different field lines, and as such their value is limited.

Thus NLFFF fields have the scope to be far more useful than linear fields, al-

though this depends on the ability to deduce suitable values for α on each individual

field line. It is possible to find semi-analytic solutions of this form, notably that of

Low and Lou ([63]) and Titov and Démoulin ([64]). The latter of these is particu-

larly noteworthy as it represents a twisted flux tube in the shape of a torus, with

the upper region emerging from the surface, as shown in Figure 1.9.

Figure 1.9: The equilibrium solution of [64] (Figure 2 from that paper), modelling a
force-free flux tube in the shape of a ring. There exist point charges at the positions
marked q, with a line current (I0) passing through the centre of the ring. Only the
region above the photosphere has physical meaning.

However, these analytic approaches are naturally limited by their inability to

be combined with observations of the magnetic field on the photosphere, and their

use mainly lies either in testing the stability of NLFFF codes or for initialising
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simulations (much as we do with potential fields for our models). There has been

considerable research and progress into finding reliable processes to create NLFFF

models which correspond accurately to observations of the field configuration in the

corona. The paper [63] provides an introduction to these problems, with the recent

review [65] discussing the challenges and various new approaches to overcome them.

Despite much progress, these fields are still in general very sensitive – slight dif-

ferences in methodology or boundary data can produce very different magnetic field

structures. One promising avenue of research is the use of machine learning to com-

pare these fields to a wide array of coronal observations (eg. [66]), the combination

of which it is hoped will constrain the solution sufficiently to be reasonably certain

of the overall topology of the magnetic field, at very least.

1.5 Flux Rope Instabilities and Analytic Results

1.5.1 The Basic Line Current Model

Analytic two-dimensional models of flux rope behaviour date back to [67] and [68],

who modelled a horizontal line current and its interaction with a specified back-

ground magnetic field. In the later work they deduced that for such a configuration

to be horizontally stable the line current must exist in conjunction with an equal

and opposite current embedded within the photosphere, essentially completing the

circuit. This setup is shown in Figure 1.10.

In their paper, [67] assumed that the background magnetic field is in the hor-

izontal direction and depends on the height above the photosphere: Bx(h). This

background field interacts with the line current itself to produce a Lorentz force

(−IBx(h)) directly proportional to the current I, in the downward direction. There

also exists the Lorentz force (I2/h) due to interaction with the magnetic field gen-

erated by the line current embedded in the photosphere. The final force considered

is the effect of gravity on the ‘mass’ of the line current. The total forces vertically

on a line current element are then

F =
I2

h
− IBx(h)−mg. (1.82)
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h

Photosphere

Figure 1.10: The model of [67], in which a line current (marked with the ‘+’) is
opposed by a identical current below the photopshere, of equal magnitude and in
the opposite direction. The curved lines (solid and dashed) represent the magnetic
field lines of the field generated by the currents. Recreated from Figure 2 from that
paper.

The conditions for stability clearly depend on the nature of the profile of the back-

ground field strength. In the absence of a background field a stable equilibrium

position exists at height

h =
I2

mg
. (1.83)

Any assumptions made regarding the nature of the background field strength are

dubious at best – not least because such a field would not be purely horizontal

in reality – but in general if the background field strength decreases rapidly with

increasing height it is possible for an eruption to occur, providing the current is high

enough at low altitudes.

1.5.2 The Kink and Torus Instability

The models in Chapter 3 focus on flux ropes, whereby the magnetic field is twisted

around a line current. This is as opposed to the magnetic field being limited to the

invariant plane as in the above model. Flux tubes can become laterally unstable if
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they become twisted beyond a critical value ([69, 70]), equal to

Φc =
lBϕ(r)

rBz(r)
, (1.84)

where Bz and Bϕ are the axial and azimuthal magnetic fields, r is the radial coor-

dinate and l is the length of the flux tube. This is known as the ‘kink instability’.

Although the flux tubes in our 2.5D models are infinitely long and so this analytic

result can not be directly compared, the presence of a critical out-of-plane magnetic

field strength at which instabilities occur is also clear in our results.

Further analytic approaches have introduced the torus instability (e.g [71, 72])

by modelling the current as a ring rather than an infintely-long line, in a manner

qualitatively similar to the setup in Figure 1.9. As for the line current model de-

scribed above, the forces on an infinitesimal portion of the flux tube are considered,

but now the background magnetic field is assumed to be in the poloidal direction,

and is a function of the distance from the centre of the ring, rather than altitude. It

was found (similarly to the line current model, but not precisely) that if the back-

ground field decays sufficiently quickly with increasing distance from the current,

then an instability will form – named the ‘torus instability’. The condition for this

instability can in fact be stated reasonably simply in the limit that the radius of the

flux tube itself is sufficiently small relative to the size of the overall loop ([73]):

−R
d

dR
ln(Bex(R)) >

3

2
, (1.85)

where R is the major radius of the loop, and Bex the magnititude of the external

poloidal field. This instability is essentially the same as the lateral kink instability,

distributed around the entire ring. A more complex condition on instability was

obtained by [72], whereby the minor radius of the flux tube is permitted to be

significant relative to its overall size. The condition for the torus instability then

becomes

−R
d

dR
ln(Bex(R)) >

3

2
− µ0R

4L
, (1.86)

where L is the inductance of the plasma in the torus. They concluded that such
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an instability is a possible, and indeed likely, mechanism for CMEs. Although our

models (Chapter 3) are only 2.5D and as such have no curvature in the out-of-plane

direction, this can in essence be regarded as a small section of a very large torus,

and as such these results could be considered not entirely irrelevant to our research.

In fact, it has since been shown that the conditions for both the kink and torus

instabilities are essentially the same, and they are just two special cases of a con-

tinuous theory of more general current paths [74]. In that work it is also postulated

that ‘catastrophe’ – an alternative eruptive mechanism wherein a flux rope exists

in a quasi-equilibrium state for some time, before this is no longer an option and it

rapidly becomes unstable – is in fact the same as the torus instability, with identical

conditions for eruption. Although these works provide useful theoretical background

as to the nature of flux rope behaviour, they are difficult to relate to physical ropes

as these tend to lack the necessary symmetries in their structure to allow for this

kind of analysis.

All of the analytical approaches introduced so far rely on the assumption of an

external magnetic field which decays with distance from the line current/flux rope.

There are indeed conflicting explanations for flux rope instability, such as that of

[75], who propose that eruptions can occur even if the conditions for the torus

instability are not met. They propose that fast magnetic reconnection can occur

below a flux rope – known as ‘tether cutting’, irrespective of the magnetic field

above. Such tether cutting reconnection models were made popular by [76], and

have been shown to be consistent with some observations and numerical modelling

(eg. [77,78]).

It is likely, however, that the torus instability/catastrophe explanation for erup-

tions is more relevant to our research, as in our models the instability and certainty

of eruption sets in before such a ‘tether’ has formed under the flux rope. Although

the nature of our models means that calculating conditions on these instabilities

directly is not possible, these analytic approaches have provided valuable guidance

on which quantities it may be useful to measure, such as the current in the rope,

the twist of the magnetic field, or the significance of the background field strength

relative to the magnetic field of the rope itself.
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1.6 Magnetic Helicity

The helicity of a magnetic field is defined in a volume as

H =

∫
A ·B dV, (1.87)

whereB is the magnetic field andA its corresponding vector potential such thatB =

∇×A. The vector potential A is not unique, as any alternative A∗ = A+∇ϕ will

also be a suitable vector potential for the same magnetic field. For a closed system

– one in which there are no magnetic field lines passing through the boundary, this

choice of A (changing the ‘gauge’) will not affect the overall helicity, but otherwise

it will in general make a difference (see Section 1.6.1). As such the helicity H is not

‘gauge-invariant’.

The helicity is notable in that under the evolution of ideal MHD (no coronal

diffusion η, in our case), the overall magnetic helicity within a volume is conserved

([79]), providing again that the volume of integration is a closed system. The proof

of this is quite neat, and is as follows:

dH

dt
=

∫
∂A

∂t
·B dV +

∫
A · ∂B

∂t
dV. (1.88)

Substitute the ideal MHD induction equation (1.42)

∂B

∂t
= ∇× (v×B),

∂A

∂t
= v×B+∇ϕ (1.89)

into the first term to obtain

dH

dt
=

∫
(v×B+∇ϕ) ·B dV +

∫
A · ∂B

∂t
dV (1.90)

dH

dt
=

∫
∇ϕ ·B dV +

∫
A · ∂B

∂t
dV (1.91)

dH

dt
=

∮
ϕB · n dS +

∫
A · ∂B

∂t
dV (1.92)

dH

dt
=

∫
A · ∂B

∂t
dV (1.93)

where the first term vanishes as we have assumed a closed system and so B · n = 0.
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The remaining term can be integrated by parts:

dH

dt
=

∫
A ·
(
∇× ∂A

∂t

)
dV =

∫
∇ ·
(
A× ∂A

∂t

)
dV −

∫
∂A

∂t
· (∇×A) dV

(1.94)

=

∮ (
A× ∂A

∂t

)
· n dS −

∫
(v×B) ·B dV, (1.95)

=

∮
(A× (v×B+∇ϕ)) · n dS (1.96)

=

∮
[(A ·B)v− (A · v)B+∇× (Aϕ)− ϕB] · n dS (1.97)

=

∮
(A ·B)(v · n) dS (1.98)

where we have again used B ·n = 0 on the boundaries and various vector identities.

The ∇× (Aϕ) term disappears due to Stokes’ theorem, providing Aϕ is continuous

on the boundaries. As we assume a closed system we find that the remaining term

also disappears, given there is no flow through the boundaries (v · n = 0). Hence

dH

dt
= 0. (1.99)

Although this result is not valid in non-ideal MHD, it has been shown (eg. [80]) that

provided the diffusion η is not particularly high (as is the case in the corona), the

magnetic helicity remains reasonably well conserved as the magnetic field evolves.

This result has been repeatedly confirmed in both numerical and physical experi-

ments of laboratory plasmas (eg. [81]).

Alternatively to the integral formulation, the helicity can be expressed in terms

of the average linking of the magnetic field lines, weighted by the magnitude of the

field strength ([82]). To see this, providing the vector potential is in the Couloumb

Gauge (∇ ·A = 0) it can be written in the form

A(x) =
1

4π

∫
B(y)× r

|r|3 dy, (1.100)

where r is the vector x−y ([83]). This equation follows from the Biot-Savart formula.
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The helicity then can be expressed with the double integral ([84])

H =
1

4π

∫∫
B(x) · B(y)× r

|r|3 dxdy. (1.101)

Instead of considering this a normal volume integral, we can instead think of it as a

double integral along each magnetic field line. In combination with the formula for

the Gauss linking number of two closed field lines:

L(x,y) =
1

4π

∮

field line 1

∮

field line 2

dx

ds′
dy

ds
× r

|r3| dsds
′, (1.102)

we see that the helicity is sum of the total linking number of each field line, weighted

by the average magnetic field strength at each point. Providing all field lines are

closed loops and magnetic reconnection is not permitted (ideal MHD) this provides

an intuitive explanation for the conservation result.

Unfortunately, in the context of astrophysical magnetic fields, the assumption of

a closed magnetic field is not at all reasonable. Certainly in the corona a significant

amount of the magnetic field lines are open, and as such there is no possible domain

over which the helicity could be meaningfully integrated. To deal with this problem

we require the construction of alternative quantities.

1.6.1 Relative Helicity and Open Magnetic Fields

The ‘relative helicity’, or HR, was introduced by [85] and provides an alternative

measure of helicity that is gauge-invariant even when the magnetic field is not closed.

This requires the construction of a reference magnetic field BP , with corresponding

vector potential AP , to which the original magnetic field is compared. Such a

reference magnetic field must match the normal component of the original magnetic

field on the integration domain boundaries, and is usually chosen to be a potential

field (see Section 1.4.2). A potential field is the minimum energy state possible

with such boundary conditions, and also in general will have a low linking number.

Alternatives to potential fields can also be used, such as the twisted fields discussed

in [84], but this is rare.
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Subtracting the helicity of this reference field from the original yields the formula

HR =

∫
A ·B−AP ·BP dV. (1.103)

This can be manipulated into a more useful form as follows ([86]):

HR =

∫
(A+AP ) · (B−BP ) dV +

∫
A ·BP −AP ·B dV (1.104)

=

∫
(A+AP ) · (B−BP ) dV +

∫
A · (∇×AP )−AP ·B dV (1.105)

=

∫
(A+AP ) · (B−BP ) dV +

∫
∇ · (A×AP ) +AP · (∇×A)−AP ·B dV

(1.106)

=

∫
(A+AP ) · (B−BP ) dV +

∫
(A×AP ) · n dS (1.107)

=

∫
(A+AP ) · (B−BP ) dV, (1.108)

where we have used integration by parts and the divergence theorem to remove the

additional terms, requiring additionally that (A×AP ) ·n vanishes on the boundary.

This is always possible due to the condition that B · n = BP · n.
We can show that the relative helicity (defined using Equation 1.108) is invariant

with respect to the gauge of A or AP by adding an arbitrary gradient term ∇Φ to

the vector potential:

H ′
R =

∫
(A+AP +∇Φ) · (B−BP ) dV (1.109)

= HR +

∫
∇Φ · (B−BP ) dV (1.110)

= HR +

∫
∇ · ((B−BP )Φ) dV −

∫
Φ∇ · (B−BP ) dV (1.111)

= HR +

∫
(B · n−BP · n)Φ dS −

∫
Φ∇ · (B−BP ) dV (1.112)

= HR, (1.113)

where the first term disappears as the normal components of the two magnetic fields

match on the boundary, and the second vanishes due to the solenoidal condition.

Note that this is not true when HR is defined in the original form (Equation 1.103)
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and so we henceforth use the definition in Equation 1.108.

The relative helicity is used extensively in our work on flux rope eruptions (see

Chapter 3) as a suitable scalar property of the magnetic field. In 3D the reference

potential field BP is well defined, but the correct definition in 2.5D is a little more

ambiguous, due to a lack of a boundary in the out-of-plane direction. Our approach

to solving this problem is described in detail in Chapter 3.

The relative helicity is by no means unique as a potentially useful quantity

measuring the topology of the magnetic field. It can in fact be decomposed as

follows ([87]):

HR = HJ + 2HPJ , (1.114)

where HJ is the ‘current-carrying helicity’

HJ =

∫
(A−AP ) · (B−BP ) dV, (1.115)

essentially the helicity of the field B−BP (the current-carrying field), and HPJ

HPJ =

∫
AP · (B−BP ) dV, (1.116)

is the ‘mutual helicity’ between the current-carrying field and the potential reference

field. These new quantities are also clearly gauge-invariant.

As stated previously, for open fields (those with magnetic field lines passing

through a boundary) the helicity is not conserved under ideal MHD due to the

presence of the boundary term. Considering H rather than HR for simplicity, from

Equation 1.95 we have that its rate of change is

dH

dt
=

∫
(A× ∂A

∂t
) · n dS −

∫
(v×B) ·B dV (1.117)

= −
∫

(A× E) · n dS (1.118)

=

∫
(A× (v×B)) · n dS (1.119)

=

∫
−(A · v)(B · n) + (A ·B)(v · n) dS (1.120)
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where E is the electric field strength on the boundary, and v is the velocity on the

boundary. The first term here represents the injection of helicity due to the effects

of tangential motion on the surface shearing and twisting the magnetic field. The

second term represents motions normal to the surface, as helicity emerges/submerges

through the boundary [88]. Similar formulae exist for the other quantities listed

above.

The first of these terms can be estimated relatively easily from successive mag-

netogram observations tracking features on the solar surface. The second term can

be estimated using knowledge of motions normal to the surface, which can be de-

duced using red/blue shift of spectral lines ([89]). Thus it is theoretically possible

to calculate the change in magnetic helicity in the corona using only data from the

lower boundary of the corona, and avoiding the need to reconstruct the magnetic

field in three dimensions.

All of these quantities naturally depend significantly on the choice of integration

domain V , and it is often unclear from which part of the magnetic field the con-

tributions to the overall helicity originate. This is not helped by the fact that the

relative helicity is not additive – when an integration domain is split into smaller

parts the respective helicities of these parts will not add to the overall value, as the

reference field BP will be different for each subdomain unless the subdomains are

separated by magnetic surfaces through which field lines do not pass ([90]).

This is not particularly problematic for our simulations, where the flux rope

makes up a significant part of the overall domain, but in general it is useful to

identify which parts of the magnetic field contribute the most to the total helicity,

or to find the helicity of an arbitrary subregion within a large domain, such as for

an individual active region.

1.6.2 Field-Line Helicity

One solution to this problem is to use the so-called ‘field-line helicity’. This was

first proposed by [91], and decomposes the overall helicity integral H into the con-

tributions from each individual magnetic field line. The basic idea is to decompose

the domain into infinitesimally small flux tubes surrounding each field line. Along
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each field line, the magnetic field has no normal component to itself and so these

domains can be regarded as closed, satisfying the requirements for a meaningful

helicity measurement.

Explicitly, for a domain Di surrounding a magnetic field line (labelled i), the

helicity in that domain is

h(Di) =

∫

Di

A ·B dV. (1.121)

We can choose such a domain to be Vϵ(x), the flux tube of radius ϵ surrounding an

individual field line with path L(x), where x is the one of the points at which the

field line meets the outer boundary. By taking the infinitesimal limit of such a flux

tube, and weighting by the magnetic flux in the tube Φϵ (constant along its length)

we obtain

h(x) = lim
ϵ→0

h(Vϵ(x))

Φϵ

, (1.122)

which tends to a well-defined limit, which is in fact equal to ([92])

h(x) =

∫

L(x)

A · dl, (1.123)

the line integral of the vector potential along the field line with endpoint x. This

quantity is invariant under ideal MHD if the magnetic field at the boundaries is

fixed. The original volume integral definition of the helicity can be recovered by

adding together the field-line helicity of every field line in the domain, weighted by

the normal magnetic flux on the boundary:

H =
1

2

∫
h(x)|B(x) · n| dS, (1.124)

where the integral is over the boundary, x is the endpoint of each field line and the

factor of 1/2 is due to each field line meeting the boundary at each end and hence

being counted twice. Field lines that do not intersect the boundaries will not be

counted, however, and as such this this is only true for fields with no closed (ergodic)

field lines.

Using the relative helicity HR relaxes the assumptions of gauge-invariance, al-

lowing this quantity to become truly meaningful. It has in fact been shown by [92]
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that it is possible to select an appropriate gauge of A in the calculation of h(x) such

that

HR =
1

2

∫
h(x)|B(x) · n| dS. (1.125)

This is the so-called ‘relative field-line helicity’. In the case where the reference

magnetic field BP is a potential field, this can be achieved merely by using a vector

potential AP such that ∫
AP ·BP dV = 0, (1.126)

and ensuring that (A×AP ) ·n = 0 on the boundaries. Analysis of a magnetic field

using this approach can provide much insight as to its overall structure.

1.6.3 The ‘Eruptivity Index’

The approach we take in Chapter 3, in which we seek scalar quantities that could be

used as an indicator that a flux rope eruption is imminent, is motivated in part by

the work of [93]. In that work, they analysed the MHD simulations of [24,25], which

consist of seven flux rope configurations, some of which are eruptive and others

stable.

Most scalar measurements of the system were shown not to have any strong

correlation to eruptivity, including the relative helicity. However, they propose a

quantity that has become known (perhaps presumptuously) as the ‘eruptivity index’.

This is the ratio ∣∣∣∣
HJ

HR

∣∣∣∣ , (1.127)

with HJ and HR the current-carrying and relative helicities defined in Section 1.6.1.

This ratio was significant in that it exhibited a large peak in those simulations where

the flux rope later erupted. We have proposed (see Section 3.4.2) an explanation for

why this may be the case which contradicts their conclusions to a degree, finding

that the large peak could be caused entirely due to the orientation of the background

magnetic field during the rope formation. However, the eruptivity index has since

been focused on by several authors as a good candidate for a scalar predictor.

These include the work of [26, 94], who also use a small number of MHD simu-
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lations and observe a consistent threshold in the eruptivity index above which the

simulations become unstable. This result is notable as the evolution of the rela-

tive helicity (HR) itself differs significantly from the simulations of [24], whereas the

eruptivity index behaves similarly in both studies.

The eruptivity index has also been estimated during eruptive events with differ-

ent topologies, such as in [95], which analysed a coronal jet. In that case the driven

boundary conditions were applied for differing lengths of time in order to produce

eruptions at different times. This study also found an increase in the eruptivity in-

dex prior to an eruption, although it is acknowledged that a larger parameter study

is necessary to determine if there is a consistent threshold above which the system

becomes unstable.

Motivated by these results, the eruptivity index has been estimated prior to the

eruption of several structures in the real corona (eg. [96]), and found to be consis-

tently high prior to eruptive events. Estimates of the index using observational data

must necessarily extrapolate the coronal magnetic field from photospheric measure-

ments, which adds a degree of uncertainty. Some of the methods for such extrapo-

lations were discussed in Section 1.4.

Despite such relative fervour, to our knowledge there has not been proposed

any physical mechanism for why the eruptivity index in particular would behave

remarkably compared to any other similarly-constructed ratio. Chapter 3 seeks to

expand on the works mentioned above by expanding the size of the parameter study

considerably, allowing for a statistical analysis of any instability threshold that may

exist. We also discuss variations on the eruptivity index that may be more promising

than its established form.

Like the relative helicity, the eruptivity index naturally is very much dependent

on the size of the integration domain. The application of the ‘field-line’ processes

described in Section 1.6.2 to the eruptivity index may well be necessary to apply

such an approach to real-world scenarios. To our knowledge, this has not yet been

achieved.
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CHAPTER 2

Global Coronal Equilibria With Solar Wind Outflow

In this chapter we discuss the work published in our first paper ([6]), in which

we present a new method for calculating steady-state equilibrium solutions for the

magnetic field in the corona, taking into account an imposed solar wind velocity

term. The motivation for this work was seeking to improve on the initial conditions

used in the magnetofrictional models. The default initial conditions for these models

are usually potential fields, in particular PFSS (potential field source-surface) fields,

in which the magnetic field lines are constrained to be radial at an arbitrary upper

boundary.

These potential fields are not steady-state solutions of the MF equations when

the effect of the solar wind is included. The solar wind introduces a radial velocity

outwards in the upper corona ([13]), which moves the magnetic field lines outwards

and causes them to become more radial. This is consistent with the radial upper

boundary condition of PFSS fields, but in reality there is no set altitude at which

this occurs, and the field lines become radial at differing heights. The imposition of

such a fixed boundary height to PFSS fields results in magnetic field extrapolations

that can depend heavily on this (sometimes arbitrary) assumption, which is clearly

undesirable.
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Our ‘outflow fields’ are constructed in a similar manner to PFSS fields, and as

such take a comparable time to compute. We find that by introducing the extra

outflow velocity term the magnetic field lines tend to naturally become more ra-

dial at lower altitudes, which is more consistent with the streamer shapes observed

during solar eclipses. The opening-out of the magnetic field also increases the open

flux through the top boundary (and hence by extension further into space), which

goes some way to solve the ‘open flux problem’ ([54]) – that observed magnetic flux

measurements at 1AU are considerably higher than would be expected if the solar

corona were entirely current-free. As the field lines are radial for physical reasons

rather than just due to the boundary condition, the outflow fields are more indepen-

dent of the arbitrary location of the upper boundary, and instead primarily depend

on the chosen solar wind profile.

We will discuss the approach in an arbitrary coordinate system, before detail-

ing the specific solution techniques in both 2D Cartesian and 3D spherical polar

coordinates, which are designed to be compatible with the grid used in existing

magnetofrictional codes (eg. [39]). We then discuss the precise numerical imple-

mentation on this grid, and finally compare these new ‘outflow fields’ to traditional

PFSS equivalents, in particular focusing on the difference in streamer shapes and

the open flux at high altitudes.

2.1 Motivation and Calculation of Outflow Fields

In magnetohydrodynamic models, the velocity field is determined by the momentum

equation

ρ
Dv

Dt
=

1

µ0

(∇×B)×B−∇p− ρ∇Ψ, (2.1)

coupled to the ideal induction equation

∂B

∂t
= ∇× (v ×B), (2.2)

along with additional fluid equations to close the system. In the magneto-frictional

method, pressure gradients and gravity are neglected, and instead a frictional ve-
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locity is imposed as

v = ν0
(∇×B)×B

B2
, (2.3)

so that the induction equation leads to monotonic relaxation towards a stationary

force-free field with (∇ × B) × B = 0. The denominator is proportional to the

magnetic field strength squared so that the overall evolution is independent of the

magnitude of B and relaxation is not unduly slow near to magnetic null points ([29]).

In the magnetofrictional codes described elsewhere in this thesis this denominator

takes an alternative ‘softened’ form with some minimum value δ, which prevents

numerical problems at magnetic null points (see Chapter 3). This is not a consid-

eration for our semi-analytic outflow solutions, as at a null point the numerator is

also necessarily precisely zero.

In the outer corona, the solar wind outflow prevents the magnetic field from

being force-free, but this effect can be approximated in the magneto-frictional model

by relaxing towards an equilibrium with a specified outflow vout, thus choosing v

according to

v = ν0
(∇×B)×B

B2
+ vout (2.4)

This ad hoc approach was introduced by [33], and has subsequently been used

in global magneto-frictional models of solar and stellar coronae (e.g. [39, 97–99]).

When a potential field is chosen to initialise the model, there is an initial period

of up to a few days’ evolution during which the system adjusts itself into the new

equilibrium state. Here we propose to solve directly for equilibria of this model,

avoiding this initial unphysical period of adjustment.

It is critical to note that the equilibria are not given by v = 0 but rather by

v×B = 0, thanks to the form of the induction equation. Thus to calculate such an

equilibrium directly, the equation we need to solve is

(
ν0
(∇×B)×B

B2
+ vout

)
×B = 0, (2.5)

for specified vout. For simplicity, we will assume that the outflow velocity is purely

radial, depends only on radius, and is constant in time, so vout = vout(r)er. In reality

the solar wind speed does vary with latitude – it may be possible to generalise our
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method to take this into account in future. We choose the wind speed in general

to match Parker’s solar wind solution ([13]), which for altitudes below the critical

radius rc (around 10R⊙ for typical coronal temperatures) is approximately

vout(r) = v1
r21e

−2rc/r

r2e−2rc/r1
, (2.6)

as derived in Section 1.3.2. Here r1 is the upper limit of the domain. This approxi-

mation matches the exact solution of the implicit equation very closely throughout

the domain if r1 = 2.5R⊙, but not at altitudes significantly higher than this. Thus

in order to calculate accurate fields higher in the corona a more realistic solar wind

approximation would be needed.

The shape of a solution to Equation (2.5) is determined by the ratio ν0/v1, such

that altering the value of ν0 is equivalent to scaling the outflow velocity function

by a constant. Any dependence of ν0 on the radius (which is often the case, such

as in [14]) can also be incorporated into the outflow function. We can estimate the

flow speed v1 from the Parker solution, which for an isothermal corona at 2MK

gives v1 ≈ 157 km s−1 at r1 = 2.5R⊙. However, it is difficult to determine an a

priori value for the constant ν0, as it does not directly correspond to a physical

quantity. Previous magneto-frictional simulations of the global corona have used ν0

values of the order ν0 ∼ 1.75× 1016 cm2/s ([14]), so we will adopt this value for our

computations in this chapter. In future it may be possible to refine the ideal value

for this constant based on comparison of outflow fields to observations.

2.1.1 Solution Technique

Since our imposed vout depends only on the radial coordinate r (or in Cartesian

coordinates y – which can be regarded as equivalent for now), the basic idea is to

look for solutions to (2.5) of the form

B = f(r)∇φ, (2.7)
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where f(r) and φ(r, θ, ϕ) are functions to be determined. A potential field would

correspond to the special case of constant f . The current j = ∇×B can be expressed

as

∇×B = ∇× (f(r)∇φ) = ∇f(r)×∇φ+ f(r)∇×∇φ (2.8)

by the chain rule. The second term on the right is zero, so using this and the vector

triple product:

(∇×B)×B = (∇f(r)×∇φ)×B = (B · ∇f(r))∇φ− (B · ∇φ)∇f(r). (2.9)

Taking the cross product of this with another B and the first term here will disap-

pear, as ∇φ×∇φ = 0:

[(∇×B)×B]×B = −[(B · ∇φ)∇f(r)]×B, (2.10)

which simplifies to

[(∇×B)×B]×B = −|B|2f ′

f
er ×B. (2.11)

Substituting this into the equilibrium equation (2.5) with vout = vout(r)er re-

duces to the ordinary differential equation

ν0f
′(r) = vout(r)f(r). (2.12)

(In the spherical coordinate scheme, this equation will be slightly modified to ac-

count for the stretched radial coordinate, as described in Section 2.1.4 below.) Notice

that, in the absence of outflow (vout = 0), Equation (2.12) gives f = constant, cor-

responding to a potential field. The function φ is then determined by the solenoidal

condition ∇ ·B = 0, which gives the partial differential equation

f∆φ+∇f · ∇φ = 0. (2.13)

Again, when f is constant, this reduces to the usual Laplace equation ∆φ = 0 for a
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potential field. Eliminating f with (2.12) gives

ν0∆φ+ vout · ∇φ = 0. (2.14)

We now discuss the solutions of this equation in both Cartesian and spherical coor-

dinates, and the numerical implementations of such solutions in both cases.

2.1.2 Solution in Cartesian Coordinates

We consider a Cartesian domain with coordinate directions x, y, z. The y coordinate

is chosen to be ‘vertical’ and so is treated differently to x and z. In this case Equation

2.12 becomes

ν0f
′(y) = vout(y)f(y). (2.15)

Solutions to Equation 2.14 can be found in a similar manner to solutions to Laplace’s

equation. These can generally be obtained by using an eigenfunction decomposition

of the function φ(x, y, z), which we assume can be expressed as follows:

φ(x, y, z) =
∑

l,m

kl,mXm(x)Yl,m(y)Zl(z). (2.16)

Taking the Laplacian of this gives

∆φ(x, y, z) =
∑

l,m

kl,m

(
∂2

∂x2
Xm(x)Yl,m(y)Zl(z)+

Xm(x)Yl,m(y)
∂2

∂z2
Zl(z) +Xm(x)

∂2

∂y2
Yl,m(y)Zl(z)

)
. (2.17)

For a potential field this Laplacian is zero. If this is the case, assuming boundary

conditions that result in trigonometric functions in the x and z directions we can

then obtain the three eigenfunction equations

X ′′
m(x) = −m2Xm(x) (2.18)

Y ′′
l,m(y) = (l2 +m2)Yl,m(y) (2.19)

Z ′′
l (z) = −l2Zl(z). (2.20)
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The eigenfunctions in the x and z directions are trigonometric and the eigenfunction

in the y direction is hyperbolic in this potential field case. The normalisation on

the lower boundary and the condition that the magnetic field B = ∇φ on the upper

boundary is radial will determine the precise nature of these eigenfunctions.

To modify this process for an outflow field, we note that

vout · ∇φ = vout
∂φ

∂y
, (2.21)

which results in a modification to the vertical eigenfunction Y (y) only, as follows:

X ′′
m(x) = −m2Xm(x) (2.22)

ν0Y
′′
l,m(y) + vout(y)Y

′
l,m(y) = ν0(l

2 +m2)Yl,m(y) (2.23)

Z ′′
l (z) = −l2Zl(z). (2.24)

It is clear that this eigenfunction is no longer purely hyperbolic, although where the

outflow speed is low (near the lower boundary) it will be almost identical. These

eigenfunctions need to be solved numerically, but as a one-dimensional problem this

is not a severe inconvenience.

To see the effect this modification has on the solutions, we focus on the two-

dimensional case, where the z coordinate is chosen to be invariant. The domain

configuration is similar to that used in the Cartesian magnetofrictional simulations

to be described in Chapter 3. The magnetic fields in that chapter are 2.5D – the z

direction (out of plane) is invariant but the field can have a component out of the

plane. In order to keep the coefficients l,m as integers (just for neatness) we will

place the side boundaries at x = ±π/2, and set the arbitrary upper boundary at

y1 = π/2. The lower boundary condition is assumed to be

B · ey(x, 0) =
∂φ

∂y
= − sin(x). (2.25)

As all partial derivatives in the z direction disappear, we can assume the modes in

that direction are unity (Zl = 1). The lower boundary condition is then equivalent
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to
∂φ

∂y
(x, 0) =

∑

m

k0,mXm(x)
∂

∂y
Y0,m(y)|y=0 = − sin(x). (2.26)

We clearly only require one mode in the expansion here, corresponding to m = 1 and

the eigenfunction X1(x) = sin(x). Then k0,1 = −1 is the only nonzero coefficient

and the lower boundary condition on the vertical eigenfunction is

∂

∂y
Y0,1(y)|y=0 = 1, (2.27)

with the the radial condition on the top boundary equivalent to

Y0,1(y1) = 0. (2.28)

Using Equation 2.23, we then have a well-posed ODE for the function Y0,1(y):

ν0Y
′′
0,1(y) + vout(y)Y

′
0,1(y) = ν0Y0,1(y). (2.29)

Note that in the absence of any outflow the solution to this equation is hyperbolic:

Y0,1(y) =
1

cosh(y1)
sinh(y − y1), (2.30)

and so the full potential magnetic field with no outflow is simply

B(x, y) =
1

cosh(y1)
(cos(x) sinh(y − y1),− sin(x) cosh(y − y1), 0) . (2.31)

For a typical outflow profile in this domain (as used in the Cartesian simulations in

Chapter 2) of

vout(y) = v1

(
y

y1

)10

(2.32)

for some constant v1, the effect on the vertical eigenfunction is plotted in Figure 2.1.

We observe that the effect of increased outflow is to cause the eigenfunction to flatten

out in the upper region of the domain, becoming closer to zero (the imposed top

boundary condition). Physically, this results in the ‘opening-out’ of the magnetic

field lines, becoming more radial near the upper boundary.
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Figure 2.1: Plot of the vertical eigenfunctions Y0,1(y) for varying outflow speeds v1.
The function with no outflow is merely the hyperbolic function sinh(y− y1) (scaled
appropriately). We observe that the functions flatten out near the upper boundary
when the outflow velocity increases. Here ν0 = 1.0.

The full magnetic field for these four outflow velocities is shown in Figure 2.2,

where the fields have been calculated using the numerical method described in the

next section. We clearly see the differences between the potential field with no

outflow (top left) and the fields that are in equilibrium with a nonzero solar wind.

We observe that the magnetic field lines become more radial near the top boundary

(with this effect reaching further into the domain for higher speeds) and the current

(plotted as the heatmap) that is induced as a result. Note that the fastest outflow

speeds plotted here are far higher than reality - this is just to show more clearly the

limiting case as the imposed velocity increases.

We note that current sheets do not form in this model, whereas in full MHD

it would be possible to form them with a suitable lower boundary condition. As

the horizontal component of the magnetic field is sinusoidal when only one mode is

considered (irrespective of the outflow velocity) in our model the magnetic field will

always be smooth.

2.1.3 Numerical Implementation in 2D Cartesian Coordi-

nates

In this section we will outline the numerical implementation of the above method,

in the 2D Cartesian case. The implementation for the full spherical 3D fields is
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v1 = 0 v1 = 10

v1 = 100 v1 = 1000

Figure 2.2: The equilibrium outflow fields for four different outflow velocities. The
magnetic field lines are drawn in black and the current (in the out-of-plane direction)
is plotted as the heatmap (with the same scale in all four plots). Here we have
assumed ν0 = 1.0. A velocity of v1 = 1000 is far higher than would be used in
reality, and is plotted only to illustrate the limiting case as the velocity increases.

similar, but considerably more complex. Thus it is hoped that this implementation

in Cartesian coordinates (which is more intuitive and far easier to explain) can be

used as motivation for the full 3D case.

We first describe the grid on which the magnetic field components are stored.

The approach, as with all the models in this Thesis, is to use a ‘staggered grid’

([46]), such that ∇ · B = 0 to machine precision. The two components of B are

stored on the grid in the same position as the magnetic flux through each of the

sides of the grid cell. We will number the cells with i, j indices for the x and y

directions respectively, with the indices taking integer values at the grid points and

half integers at the grid faces. The grid points are equally spaced in both the x and

y directions.

Unfortunately, evaluating the solution to Equation 2.12 is numerically very diffi-

cult for significant outflow speeds, as the function f(y) will become extremely large

near the upper boundary. Although analytically this is not a problem, as it will

always be multiplied by another function which is very small, it does present nu-

merical challenges. To solve this problem we can instead define two new functions
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with vertical dependence:

G(y) = f(y)Y (y) (2.33)

H(y) = f(y)Y ′(y), (2.34)

and solve directly for these instead.

The magnetic field then becomes

B(x, y) =
∑

m

km(X
′
m(x)Gm(y)ex +Xm(x)Hm(y)ey), (2.35)

or numerically, for an individual mode m:

Bi,j+1/2
x =

1

δx
Gj+1/2(X i+1/2 −X i−1/2) (2.36)

Bi+1/2,j
y = X i+1/2Hj, (2.37)

where δx is the grid step in the x direction.

The solenoidal condition ensures the sum of the magnetic fluxes through each

face of each cell is precisely zero. This will provide us with the numerical scheme

used to calculate the functions G and H. The sum of the magnetic fluxes through

the (i+ 1/2, j + 1/2) cell is

δy

δx
Gj+1/2(X i+3/2 − 2X i+1/2 +X i−1/2) + δxX i+1/2(Hj+1 −Hj) = 0. (2.38)

Given the side boundary conditions, the functionX must be sinusoidal and hence

obeys the equation

X ′′
m(x) = −m2Xm(x), (2.39)

for some eigenvalue m. Numerically this is approximated using central differences:

(X i+3/2 − 2X i+1/2 +X i−1/2) = −m2δx2X i+1/2. (2.40)

To obtain an ODE for the Y modes we can substitute Equation 2.39 into the original
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equation for φ (Equation 2.14):

Y ′′
m(y) = −vout(y)

ν0
Y ′
m(y) +m2Ym(y). (2.41)

From this we then need to derive alternative ODEs for Gm(y) and Hm(y), which

unlike Ym(y) can be solved numerically without problems at the upper boundary.

We begin with

G = fY (2.42)

f ′ = vf, (2.43)

where all functions have implied y dependence and we have defined v(y) = v =

vout/ν0. Using the chain rule, we then have

G′ = f ′Y + Y ′f (2.44)

G′′ = f ′′Y + 2f ′Y ′ + fY ′′. (2.45)

We then use ODEs for f and Y to eliminate the second derivatives on the right

hand side of Equation 2.45:

G′′ = f ′vY + fv′Y + 2f ′Y ′ + f(m2Y − Y ′f
′

f
) (2.46)

= f ′vY + fv′Y + f ′Y ′ + fm2Y (2.47)

= (f ′Y + fY ′)v + fY (v′ +m2) (2.48)

= vG′ +G(v′ +m2). (2.49)

This is a suitable ODE for G, with boundary conditions G′(0) = 1, G(y1) = 0 (this

lower boundary condition will be justified shortly). Once G has been determined,
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H follows with relative ease:

H ′ = f ′Y ′ + fY ′′ (2.50)

= f ′Y ′ + f(m2Y − Y ′f
′

f
) (2.51)

= m2fY (2.52)

= m2G. (2.53)

Substituting Equation 2.40 into Equation 2.38 gives the system of equations

(X i+3/2 − 2X i+1/2 +X i−1/2) = −m2δx2X i+1/2 (2.54)

(Hj+1 −Hj) = m2δyGj+1/2. (2.55)

where the second of these nicely approximates Equation 2.53. There is flexibility in

the numerical scheme used to calculate the function G(y) = G
j+1/2
m from Equation

2.49. Once G has been calculated, the values for Hj
m can be obtained by direct

integration using 2.55. Providing this numerical system is satisfied the magnetic

field will obey the solenoidal condition to machine precision.

We now outline the procedure behind the calculation in detail. We begin by

calculating the eigenfunctions Xm(x) and their respective eigenvalues m. This is

achieved by solving the system in Equation 2.54, which can be expressed as a matrix

equation

AX = λX = −m2δx2X, (2.56)

where A is a tridiagonal matrix with on-diagonal elements −2 and off-diagonal

elements 1:




−1 1 0 0 0

1 2 1 0 0
. . .

0 0 1 2 1

0 0 0 1 −1







X0
m

X1
m

...

Xnx−2
m

Xnx−1
m




= −m2δx2




X0
m

X1
m

...

Xnx−2
m

Xnx−1
m



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The side boundary conditions are implemented here, namely that X ′(x) = 0. This

sets the values in the corners of the matrix to −1. This tridiagonal matrix is solved

using a built-in python solver.

With these boundary conditions the numerical eigenfunctions X i
m roughly ap-

proximate the sinusoidal functions cos(m(x + π/2)), for eigenvalues m that are in-

tegers in the infinite-resolution limit but are not necessarily so for our finite resolu-

tions. The eigenvalues m for increasing numbers of grid cells n (in the x direction)

are plotted in Figure 2.3.

0 5 10 15 20 25 30 35 40

n

0

2

4

6

8

m

Figure 2.3: The first 10 eigenvalues of Equation 2.56, as a function of the number of
grid cells n. The eigenvalues are plotted in red, and the integer values they converge
to as the horizontal black lines.

We observe that the eigenvalues m do indeed converge to integer values as the

grid resolution increases, but for lower resolutions they are generally less than their

true analytical value. We can examine the limiting case analytically: as the grid

resolution increases the tridiagonal matrix can be reasonably approximated by a

tridiagonal Toeplitz matrix, where the corner values are also 2.

The eigenvalues of such a matrix can actually be calculated directly:

mk =
n

π

√
2− 2 cos

(
kπ

n+ 1

)
. (2.57)

As the number of cells n increases relative to the eigenvalue number k, we can
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approximate the cosine function with the second-order Taylor expansion:

mk =
n

π

√
2− 2 +

(
kπ

n+ 1

)2

, (2.58)

mk =
n

π

kπ

n+ 1
, (2.59)

so clearly mk → k as n → ∞, as expected. The value of the first occurrence of

each eigenvalue can also be calculated in the limit. Taking n → ∞ and k = n gives

mk = 2k/π, which is roughly the gradient of the leftmost ends of the red eigenvalue

lines in Figure 2.3.

We have now obtained the vectors X i
m for each mode m. It remains to calculate

the vertical functions Gi
m and H i

m, which must obey Equation 2.55 exactly and

approximate Equation 2.49. The upper boundary condition is that the magnetic

field lines are vertical, which can be implemented by setting Gm(y1) = 0. On the

lower boundary we set G′
m(0) = 1, which ensures Hm(0) = 1 given G′ = vG + H

and v(0) = 0.

These boundary conditions are such that we can use a ‘linear shooting method’.

The upper boundary condition is initially implemented as G
nx+1/2
m = −G

nx−1/2
m =

1.0, and then the remaining values are calculated by direct integration, moving

downwards to the lower boundary. The entire solution is then scaled to ensure that

G
1/2
m − G

−1/2
m = δy. This procedure is repeated for all the modes m, if necessary.

The other vertical function Hm is then obtained using Equation 2.55, with H0
m = 1

on the lower boundary.

Finally, the coefficients in the Fourier expansion km are then calculated using

the boundary condition on the vertical magnetic field. We require

∂

∂y
φ(x, 0) =

∑

m

kmXm(x)Hm(0) = By(x), (2.60)
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numerically equivalent to

1

δy
(φi+1/2,1/2 − φi+1/2,−1/2) =

∑

m

kmX
i+1/2
m (2.61)

= Bi+1/2
y . (2.62)

We can then use the orthogonality of the eigenvectors X
i+1/2
m to calculate the coef-

ficients km:

km =

∑
i X

i+1/2
m B

i+1/2
y∑

i X
i+1/2
m X

i+1/2
m

, (2.63)

providing the full solution. This is the technique used to produce the fields in Figure

2.2.

The extension of this process to full 3D in Cartesian coordinates should be rela-

tively clear. Calculation in spherical coordinates introduces various extra challenges,

however, which shall be discussed in the next section.

2.1.4 Solution in Spherical Coordinates

We now describe the procedure for finding outflow field solutions in full spherical ge-

ometry. These solutions are the main focus of our paper [6]. They are designed to be

suitable for initialising magnetofrictional simulations using existing codes (eg. [40]),

and as such the coordinate systems are identical, including the use of a stretched

radial coordinate.

Similarly to the Cartesian case, since equation (2.14) is linear we seek to write

X in terms of eigenmodes. Here we use a grid equally spaced in stretched spherical

coordinates (ρ, s, ϕ) satisfying

ρ = ln(r), s = cos θ, ϕ = ϕ, (2.64)

rather than normal spherical coordinates (r, θ, ϕ). Due to this scaling, we now need

to introduce coordinate scale factors:

hρ = r = eρ, hs =
r

sin θ
=

eρ√
1− s2

, hϕ = r sin θ = eρ
√
1− s2. (2.65)
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As for the Cartesian case, we begin by writing the unknown magnetic potential as

an eigenfunction expansion

φ(ρ, s, ϕ) =
∑

l,m

Cl,mRl(ρ)Ql,m(s)Φm(ϕ). (2.66)

This is substituted into (2.14) to obtain the three eigenfunction equations

ν0R
′′
l + (ν0 + eρvout)R

′
l = ν0l(l + 1)Rl, (2.67)

(1− s2)Q′′
l,m − 2sQ′

l,m + l(l + 1)Ql,m =
m2

1− s2
Ql,m, (2.68)

Φ′′
m = −m2Φm, (2.69)

where l and m are integers with −l ≤ m ≤ l. The latitudinal and azimuthal equa-

tions are the same as for the Laplace equation ∆X = 0, yielding the associated

Legendre polynomials Ql,m and trigonometric functions Φm that are familiar from

the potential field model. However, as for the Cartesian case the radial eigenfunc-

tions differ from a potential field due to the presence of the vout term, and we must

additionally solve for the function f(ρ), using the equation

f ′(ρ) = eρ
vout(ρ)

ν0
f(ρ). (2.70)

Notice that this differs to (2.12) as the coordinate in the radial direction has been

stretched.

In the potential field case where vout = 0, equation (2.67) has the exact general

solution

Rl(ρ) = Aelρ +Be(−l−1)ρ, (2.71)

but in the presence of outflow, the equation must be solved numerically. In practice,

we find that although we can solve (2.67) for Rl without issue, calculating the

function f is not possible as near the upper boundary it becomes far too large to

be handled numerically – similarly to the Cartesian case but even more problematic

due to the presence of the exponential factors. The solution to this problem is to
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solve for the re-scaled eigenfunctions

Hl(ρ) = e−ρf(ρ)Rl(ρ) (2.72)

instead.

In terms of the eigenfunctions, B has the form

B =
∑

l,m

Cl,m

[
fR′

l

eρ
Ql,mΦmeρ +

fRl

eρ

√
1− s2Q′

l,mΦmes +
fRl

eρ
Ql,m√
1− s2

Φ′
meϕ

]

(2.73)

=
∑

l,m

Cl,m

[
GlQl,mΦmeρ +Hl

√
1− s2Q′

l,mΦmes +Hl
Ql,m√
1− s2

Φ′
meϕ

]
, (2.74)

where Hl are the rescaled eigenfunctions in (2.72) and we also define the function

Gl(ρ) = e−ρf(ρ)R′
l(ρ). (2.75)

We require an equation for the eigenfunctions Hl(ρ). This can be obtained by using

Equations 2.72 and 2.67, in rather a long-winded derivation. For clarity, we drop

the mode subscript l, the dependence on ρ and define v(ρ) = v = vout(ρ)/ν0.

The relevant equations then become

Heρ = fR (2.76)

R′′ + (1 + eρv)R′ = l(l + 1)R. (2.77)

Differentiating the first of these twice gives

H ′′eρ + 2H ′eρ +Heρ = R′′f + 2R′f ′ +Rf ′′. (2.78)

Using the differential equation 2.77 to eliminate R′′:

H ′′eρ + 2H ′eρ +Heρ = −fR′(1 + veρ) +Rl(l + 1)f + 2R′f ′ +Rf ′′. (2.79)
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Now f and its derivatives can then be eliminated using

f ′ = eρfv (2.80)

f ′′ = eρ(fv + f ′v + fv′) (2.81)

to give

H ′′eρ+2H ′eρ+Heρ = −fR′(1+ veρ)+Rl(l+1)f +2R′eρfv+Reρ(fv+ f ′v+ fv′).

(2.82)

Grouping like terms on the right-hand side:

H ′′eρ + 2H ′eρ +Heρ = fR(l(l + 1) + veρ + v2e2ρ + v′eρ) + fR′(eρv − 1), (2.83)

then essentially integrating by parts to get rid of the R′f term gives

H ′′eρ+2H ′eρ+Heρ = fR(l(l+1)+veρ+v2e2ρ+v′eρ)+(H ′eρ+Heρ−f ′R)(eρv−1).

(2.84)

This has caused an extra derivative f ′ to appear, which we can remove as before:

H ′′eρ+2H ′eρ+Heρ = fR(l(l+1)+veρ+v2e2ρ+v′eρ)+(H ′eρ+Heρ−eρfvR)(eρv−1),

(2.85)

and grouping terms once more

H ′′eρ + 2H ′eρ +Heρ = fR(l(l + 1) + 2eρv + v′eρ) + (H ′eρ +Heρ)(eρv − 1). (2.86)

Continuing in this fashion:

H ′′eρ + 2H ′eρ +Heρ = Heρ(l(l + 1) + 2eρv + v′eρ) + (H ′eρ +Heρ)(eρv − 1).

(2.87)

H ′′ + 2H ′ +H = H(l(l + 1) + 2eρv + v′eρ) + (H ′ +H)(eρv − 1). (2.88)

0 = H ′′ +H ′(3− eρv) +H(2− l(l + 1)− 3veρ − v′eρ). (2.89)
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Reinstating the dropped notation gives us the final ODE for Hl:

ν0H
′′
l + (3ν0 − eρvout)H

′
l −
[
ν0(l(l + 1)− 2) + 3eρvout + eρv′out

]
Hl = 0. (2.90)

Thus B may be calculated in a similar manner to the classical potential field, by

solving the eigenfunction equations (2.68), (2.69) and (2.90). As in the potential field

model, the coefficients Cl,m are determined by matching the observed radial field

distribution Bρ(ρ0, s, ϕ) on the lower boundary ρ = ρ0. The corresponding lower

boundary condition for Hl is determined by choosing Gl(ρ0) = 1. In combination

with the physical requirement that vout(ρ0) = 0, by differentiating Equation 2.76 it

follows that this is equivalent to

(Hl(ρ)e
ρ)′|ρ0 = eρ0 . (2.91)

A numerical approximation of this is used in the code.

As the required second boundary condition for Hl, we set Hl(ρ1) = 0 at some

outer boundary ρ = ρ1, so that B is purely radial there. Provided ρ1 is high enough,

this condition does not have a significant influence on the shape of the magnetic

field, since the field lines tend to be radial already in the upper part of the domain

when outflow is present. This is in contrast to the potential field where the radial

field condition at the source surface has a significant effect on the shape of the field

– a phenomenon that will be discussed later in this chapter.

2.1.5 Numerical Implementation in Spherical Coordinates

We now describe the numerical procedure for calculating these solutions in spherical

coordinates. The code based on this approach provided the main results for our

paper [6]. The Python code is open source and freely available at https://github.

com/oekrice/outflow. Much as for the Cartesian case, our approach is to calculate

B on a staggered grid ([46]), such that ∇·B = 0 to machine precision in a particular

discretization. Imposing the discrete solenoidal condition on a finite grid leads to

discrete eigenfunctions Hl, Ql,m and Φm that are only approximations to the exact
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analytical eigenfunctions, and to eigenvalues m and l that are no longer necessarily

integers. A similar approach was used by [32] for potential fields, and implemented

in the Python potential field solver of [100] that uses the same (ρ, s, ϕ) grid as in

this paper.

The spherical coordinate code uses a staggered grid, similarly to the Cartesian

case. We number the cells with i, j, k indices for the ρ, s, ϕ directions respectively.

The indices take integer values at the grid points, which are equally spaced in the

(ρ, s, ϕ) coordinates and given by

ρi = ρ0 + iδρ, δρ = (ρ1 − ρ0)/nρ, (2.92)

sj = −1 + jδs, δs = 2/ns, (2.93)

ϕk = kδϕ, δϕ = 2π/nϕ. (2.94)

At each cell face, two of the i, j, k indices take half-integer values. The cell face areas

may be calculated from the coordinate transform by integration of the coordinate

scale factors (2.65). This gives

S
i,j+ 1

2
,k+ 1

2
ρ = e2ρ

i

δsδϕ (2.95)

S
i+ 1

2
,j,k+ 1

2
s =

1

2
(e2ρ

i+1 − e2ρ
i

)σjδϕ (2.96)

S
i+ 1

2
,j+ 1

2
,k

ϕ =
1

2
(e2ρ

i+1 − e2ρ
j

)(arcsin(sj+1)− arcsin(sj)), (2.97)

where σj =
√
1− (sj)2 is a quantity that appears frequently. The magnetic field

components are defined on the corresponding faces and denotedB
i,j+ 1

2
,k+ 1

2
ρ , B

i+ 1
2
,j,k+ 1

2
s ,

B
i+ 1

2
,j+ 1

2
,k

ϕ .

The magnetic field is expanded in a finite series of discrete eigenfunctions, so

69



that analogously to (2.74) we have

B
i,j+ 1

2
,k+ 1

2
ρ =

∑

l,m

Cl,mG
i
lQ

j+ 1
2

l,m Φ
k+ 1

2
m , (2.98)

B
i+ 1

2
,j,k+ 1

2
s =

∑

l,m

Cl,mH
i+ 1

2
l σj(Q′

l,m)
jΦ

k+ 1
2

m , (2.99)

B
i+ 1

2
,j+ 1

2
,k

ϕ =
∑

l,m

Cl,mH
i+ 1

2
l

1

σj+ 1
2

Q
j+ 1

2
l,m (Φ′

m)
k. (2.100)

To determine the correct numerical scheme, we impose the solenoidal condition

in integral form at each grid cell, which requires

B
i+1,j+ 1

2
,k+ 1

2
ρ S

i+1,j+ 1
2
,k+ 1

2
ρ −B

i,j+ 1
2
,k+ 1

2
ρ S

i,j+ 1
2
,k+ 1

2
ρ +

B
i+ 1

2
,j+1,k+ 1

2
s S

i+ 1
2
,j+1,k+ 1

2
s −B

i+ 1
2
,j,k+ 1

2
s S

i+ 1
2
,j,k+ 1

2
s +

B
i+ 1

2
,j+ 1

2
,k+1

ϕ S
i+ 1

2
,j+ 1

2
,k+1

ϕ −B
i+ 1

2
,j+ 1

2
,k

ϕ S
i+ 1

2
,j+ 1

2
,k

ϕ = 0. (2.101)

This translates into equations for Gi
l, Q

j+ 1
2

l,m and Φ
k+ 1

2
m , as follows. Substituting the

discrete expansions (2.98), (2.99), (2.100) into this condition leads – for a single

mode l, m – to the equation

(Gi+1
l e2ρ

i+1 −Gi
le

2ρi)Q
j+ 1

2
l,m Φ

k+ 1
2

m δsδϕ+

1

2
(e2ρ

i+1 − e2ρ
i

)H
i+ 1

2
l Φ

k+ 1
2

m δϕ[(Q′
l,m)

j+1(σj+1)2 − (Q′
l,m)

j(σj)2]+

1

2σj+ 1
2

H
i+ 1

2
l Q

j+ 1
2

l,m (e2ρ
i+1 − e2ρ

i

)[arcsin(sj+1)− arcsin(sj)][(Φ′
m)

k+1 − (Φ′
m)

k] = 0.

(2.102)

Since the (Φm)
k+ 1

2 approximate trigonometric functions, we assume the discrete

approximation

(Φ′k+1
m )− (Φ′k

m) = −m2Φ
k+ 1

2
m δϕ (2.103)

for some m that would be an integer in the limit δϕ → 0 but not necessarily so

at our finite resolution. This removes the azimuthal dependence from (2.102) and
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reduces it to the separable form

2

H
i+ 1

2
l

Gi+1
l e2ρ

i+1 −Gi
le

2ρi

e2ρi+1 − e2ρi
+

1

Q
j+ 1

2
l,m δs

{(Q′
l,m)

j+1(σj+1)2−(Q′
l,m)

j(σj)2− m2

σj+ 1
2

Q
j+ 1

2
l,m [arcsin(sj+1)−arcsin(sj)]} = 0.

(2.104)

In order that Ql,m approximate the analytical associated Legendre polynomials, we

choose a separation constant of the form l(l+1) so that we obtain the radial equation

2

H
i+ 1

2
l

Gi+1
l e2ρ

i+1 −Gi
le

2ρi

e2ρi+1 − e2ρi
= l(l + 1) (2.105)

and the latitudinal equation

(Q′
l,m)

j+1(σj+1)2 − (Q′
l,m)

j(σj)2 − m2

σj+ 1
2

Q
j+ 1

2
l,m [arcsin(sj+1)− arcsin(sj)] =

− l(l + 1)Q
j+ 1

2
l,m δs. (2.106)

Similarly to the azimuthal eigenvalues, on our finite resolution grid the l will no

longer be precisely integers.

We also calculate the eigenvalues m as for the Cartesian case, by solving a tridi-

agonal linear system. Approximating (Φ′
m)

k by central differences reduces (2.103)

to the tridiagonal eigenvalue problem

−Φ
k+ 3

2
m + 2Φ

k+ 1
2

m − Φ
k− 1

2
m = λmΦ

k+ 1
2

m , (2.107)

which determines both the eigenfunctions and the values of m, from the eigenvalues

λm = m2δϕ2. The boundary conditions differ from the Cartesian case, however, as

they are periodic in the azimuthal direction. To implement this, we need to ensure

that the eigenfunctions approximate cosine or sine functions with integer coefficients.

The boundary conditions for cosine functions are Φ
− 1

2
m = Φ

1
2
m and Φ

nϕ+
1
2

m = Φ
nϕ− 1

2
m .

The boundary conditions for sine functions are Φ
− 1

2
m = −Φ

1
2
m and Φ

nϕ+
1
2

m = −Φ
nϕ− 1

2
m .

By avoiding implementing the periodic boundary conditions directly, we retain a
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tridiagonal eigenvalue problem that is efficiently solved with a standard solver.

We take this approach as we need to have some flexibility in the numerical

scheme for the radial eigenfunctions. These radial functions then specify exactly the

necessary schemes used in other directions so as to preserve (2.101). In contrast, in

most PFSS (potential field) codes (e.g. [32, 101]) the azimuthal eigenfunctions are

calculated using a Fourier Transform and the numerical schemes in the radial and

latitudinal directions follow from this.

Once the azimuthal eigenfunctions have been calculated, we can proceed with the

other dimensions. The eigenfunctions Q
j+ 1

2
l,m and possible values of l are determined

by (2.106), which is a discrete approximation to the associated Legendre equation

(2.68). To see this, observe that

(Q′
l,m)

j+1(σj+1)2 − (Q′
l,m)

j(σj)2

δs
≈ d

ds
[Q′

l,m(1− s2)], (2.108)

and that

m2

σj+ 1
2

Q
j+ 1

2
l,m

arcsin(sj+1)− arcsin(sj)

δs
≈ m2Ql,m√

1− s2
d

ds
arcsin(s) =

m2Ql,m

1− s2
. (2.109)

Approximating the derivatives (Q′
l,m)

j by central differences (Q′
l,m)

j = (Q
j+ 1

2
l,m −

Q
j− 1

2
l,m )/δs reduces (2.106) to a tridiagonal eigenvalue problem for each m ([32]).

Specifically,

Q
j+ 3

2
l,m (σj+1)2 −Q

j+ 1
2

l,m

[
(σj+1)2 + (σj)2 + δs

m2

σj+ 1
2

[arcsin(sj+1)− arcsin(sj)]

]
+

Q
j− 1

2
l,m (σj)2 = µl,mQ

j+ 1
2

l,m , (2.110)

where µl,m = −l(l+1)δs2. The eigenvalues l are different for each eigenvalue m, and

like m they are approximately integers for small l, converging to integers for larger

and larger l as δs → 0. In this limit the discrete eigenfunctions Q
j+ 1

2
l,m converge to

the associated Legendre polynomials.

Having determined the values of l, we calculate H
i+ 1

2
l on the cell faces ρi+

1
2 , by

numerical integration of equation (2.90), subject to the boundary conditions, which
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numerically are

Hρ1/2eρ1/2 −Hρ−1/2eρ−1/2 = δseρ0 (2.111)

H
nρ−1/2

l +H
nρ+1/2

l = 0. (2.112)

The exact scheme used to solve this ordinary differential equation is not impor-

tant, but a second-order stencil using central differences together with an analytical

derivative of vout appears to be adequate. The integration is carried out downward

starting from the upper boundary where Hl = 0, then the whole function is scaled

to satisfy the lower boundary condition.

For a given l, equation (2.105) then gives us a simple iterative scheme to deter-

mine Gi
l from H

i+ 1
2

l , using the initial value G0
l = 1. We observe that this scheme is

a discrete approximation of the differential equation

∂

∂ρ
(Gle

2ρ) =
1

2
l(l + 1)

∂

∂ρ
(e2ρ)Hl, (2.113)

using central differences to approximate the derivatives. This equation in turn fol-

lows directly from taking the divergence of (2.74) for an individual mode.

The final step is to calculate the expansion coefficients Cl,m in (2.98)-(2.100),

by matching B0,j,k
ρ to an imposed distribution Br(s, ϕ) on the lower boundary. The

orthogonality of eigenvectors gives

Cl,m =

∑
j,k Q

j+ 1
2

l,m Φ
k+ 1

2
m B

j+ 1
2
,k+ 1

2
r

∑
j,k

(
Q

j+ 1
2

l,m Φ
k+ 1

2
m

)2 . (2.114)

Care must be taken to ensure that the input data B
j+ 1

2
,k+ 1

2
r are flux-balanced, so

they are adjusted to have zero sum over the surface.
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2.2 Comparison Between Potential and Outflow

Fields

2.2.1 Comparison of Streamer Shapes and Magnetic Field

Topology

v1 = 0 km/s v1 = 50 km/s

v1 = 100 km/s v1 = 150 km/s

Figure 2.4: Comparison of the magnetic fields for varying outflow velocity v1. The
lower boundary data use an HMI synoptic map for Carrington Rotation 2130 so the
topology of the corona can be compared to the solar eclipse of the 9th March 2016.
We see a large difference between the potential field (top left) and the outflow fields,
illustrated for solar wind speeds up to 150 km s−1.

In this section we discuss the differences between potential fields and the equiva-
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Figure 2.5: A composite of 24 processed eclipse images taken from Tidore, Indonesia
on 9th March 2016 (courtesy of C. Emmanoulidis and M. Druckmüller, http://www.
zam.fme.vutbr.cz/druck/eclipse/Ecl2016i/Tidore/0-info.htm).

lent outflow fields calculated using the spherical coordinate method described earlier

in this chapter. All of the examples in this paper use lower boundary data from the

Solar Dynamics Observatory’s Helioseismic and Magnetic Imager instrument ([102]).

We use the radial component, pole-filled maps in the hmi.synoptic mr polfil 720s

series ([103]).

Figure 2.2 illustrates the difference in streamer shapes between a potential field

and three outflow fields with increasing wind speeds, on the same computational

domain with r1 = 2.5R⊙. For all outflow computations henceforth, we fix the

constant friction coefficient ν0 = 1.75 × 1016 cm2 s−1, following [14] (in that paper

the friction coefficient ν0 varies with altitude and latitude, so we take a rough average

value for our constant equivalent).

For qualitative comparison, we compare the outflow fields shown in Figure 2.2

with Figure 2.5, which is an observed image of the solar corona taken during the

eclipse of the 9th March 2016. We observe that close to the solar surface the potential

and outflow fields are very similar, but at higher altitudes the solar wind causes quite

significant topological changes. In a potential field, the streamers are petal shaped

with a clear boundary layer near r = r1, and all reach exactly to this source surface

height. When the solar wind is imposed, it influences the height and shape of the
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streamers, which begin to change shape at speeds of around 50 km s−1. At 150 km s−1

the field lines become radial at a significantly lower altitude than the potential field

solution, and there is no boundary layer near r = r1 where the field lines are sharply

kinked. The presence of outflow means that closed field lines extend to different

heights in different streamers, dependent on the local magnetic field strength. This

agrees with coronal observations discussed in [104], namely that the coronal field does

not become radial at a consistent height and that deviation from the radial direction

depends heavily on latitude and the overall activity of the Sun. It is interesting to

note in Figure 2.2 that the West limb streamers in the outflow fields match more

closely than those in the potential field to the eclipse image. At the East limb, the

agreement is poorer (for both potential and outflow fields), but direct comparison

at this limb is difficult because of the use of a synoptic map for the lower boundary

data; longitudes to the east of Central Meridian include ‘future’ observations taken

after the time of the eclipse – this explains the differences in the overall topology of

the coronal magnetic field here.

With outflow, the magnetic field is stretched outwards, leading to more open

magnetic flux and correspondingly fewer closed field lines within each streamer. The

additional open flux is evident in Figure 2.6, which compares the radial magnetic

field for potential and outflow fields with the same top boundary height, r1 = 2.5R⊙.

The pattern of positive/negative field polarity at r = r1 is broadly similar in each

case and depends only on the magnetic field distribution low in the corona. But,

in general, the magnetic field strength high in the corona is larger in the outflow

field than in the potential field with the same lower boundary data. Since more of

the magnetic flux is open, the closed-field arcades in the outflow field are smaller

than if the solar wind is disregarded – this is clearly seen in Figure 2.7, where we

compare the effect of imposed outflow at two stages of the solar cycle, corresponding

roughly to solar minimum and maximum. The large closed field regions evident in

the potential fields are much smaller in the corresponding outflow solutions, while

the magnetic field structure close to the solar surface is little affected.

A significant difference between the potential and outflow fields is the effect of

varying the upper boundary height, r1. For the potential field, increasing r1 will
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Figure 2.6: The radial magnetic field at the lower and upper boundaries of the
domain, using magnetogram data taken from Carrington Rotation 2165.
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Active Sun, Potential Field Active Sun, Outflow Field

Quiet Sun, Potential Field Quiet Sun, Outflow Field

Figure 2.7: Qualitative comparison of potential and outflow fields with v1 =
150km s−1. The upper figures show the magnetic field extrapolated from data from
Carrington Rotation 2165, when the Sun was relatively active. The lower figures
represent a quieter Sun, during Carrington Rotation 2222.

increase the height of the closed field streamers. But in the outflow fields, this height

is determined by the outflow velocity rather than the imposed condition of a purely

radial magnetic field on r = r1, at least providing that r1 is sufficiently large. With

the solar wind model that we have chosen (see Section 1.3.2), most streamers extend

to less than 2.5R⊙, but some extend further.

To illustrate the behaviour of the outflow fields near to the upper boundary, Fig-

ure 2.8 shows the open magnetic flux in the outflow field as a function of altitude, for
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Figure 2.8: Unsigned open flux as a function of radius for different outflow speeds,
for Carrington Rotation 2165.

solar wind speeds up to 1000 km s−1 (which is unrealistically fast for these altitudes

and is plotted only to illustrate the general effect). The open magnetic flux decreases

rapidly as we move away from the solar surface, as some of the magnetic field lines

curve back towards the sun. The outflow fields exhibit higher flux at larger radii as

more of the magnetic field is stretched out by the solar wind and fewer of the field

lines turn around.

We observe that for fast wind speeds, the open flux is approximately constant

above a radius of 2R⊙. This is consistent with the observation that the field is

roughly radial above this altitude and there are very few closed field lines. It also

indicates that the solution is not sensitive to the chosen location of the outer bound-

ary.

Finally, we note that the magnetic field at r = r1 is clearly dominated by low-

order modes in the azimuthal and latitudinal directions. Thus – as for the potential

field – it is possible to obtain a close approximation to the true magnetic field at

high altitudes while only needing to calculate a relatively small number of modes.

This is illustrated in Figure 2.9. The total number of modes (indexed by l and

m) at this resolution (180 x 360) is 64800, but we see that the flux measurement

converges at all heights within 4000 modes. Away from the surface, this convergence

is even faster – within 1000 modes. Thus if the region of interest is sufficiently high
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Figure 2.9: Convergence of the unsigned open flux at different heights, for Carring-
ton Rotation 2165. The top panel shows the computed open flux as more modes
are included. The lower-order modes (small l and m) are calculated first as in gen-
eral these contribute more than higher-order modes. The bottom panel shows the
corresponding percentage error in the open flux as the number of calculated modes
increases. To match the lower boundary to machine precision, a total of 64,800
modes would be required.

in the corona, we need only calculate several hundred modes in order to model the

magnetic field sufficiently accurately, rather than thousands. For purposes such as

space weather predictions, where the precise magnetic field in the lower corona is

unimportant, this saving of computational cost could be useful.

Computation of all modes is not particularly fast in python, but this can be

improved upon considerably by using Fortran 90. In that case the outflow fields

can be calculated completely (using all modes) in less than a minute on a desktop

computer.
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2.2.2 The Effect of Outflow Velocity on the Open Flux

We now compare the open flux measurements predicted by our outflow model to

measurements of the magnetic field at 1 AU extracted from NASA/GSFC’s OMNI

data set through OMNIWeb. We assume that the total amount of radial magnetic

flux at 1 AU is the same as the upper corona and scale the magnetic field strength

correspondingly, based on the area of a sphere at each given altitude. The data are

averaged as in [105] – namely, an initial daily average of the signed data to smooth

out local small-scale fluctuations, then a 27-day running average of the unsigned

data for comparison to the global open flux ([106]). A similar comparison of PFSS

extrapolations with these data (up to 2015) is undertaken by [107], where we note

that the definition of open flux in their paper is half the quantity used here.

Figure 2.10 plots the OMNI data against the flux predicted by our model for

various solar wind speeds, including the potential field case (v1 = 0km/s). We ob-

serve that throughout Solar Cycle 24 the flux predicted by our potential field model

with r1 = 2.5R⊙ is consistently an underestimate, as noted in the introduction. The

potential field usually underestimates the measured open flux by a factor of more

than two, but there is still a strong correlation between the potential field flux and

the observations, notably at the large increase around Carrington Rotation 2160.

In the study [107], it is shown that the PFSS open flux can be made to match the

observational curve by lowering the source surface height to r1 ≈ 2R⊙, although

the morphology of the streamers is likely then even more unrealistic. Those au-

thors also show that a reasonable match to the observed open flux may be obtained

with a ‘horizontal-current current-sheet source-surface’ (HCCSSS) model. As in our

outflow model, the HCCSSS open flux is inflated by the presence of horizontal cur-

rents, although unlike in the outflow model the currents flow in the lower part of the

domain, and take an arbitrary form that is not directly motivated by observations.

Figure 2.10 shows that the open flux predicted by our outflow fields also correlates

strongly with the OMNI measurements. As discussed in Section 2.2, the outflow

fields have a greater open flux and as such they predict values that more closely

match the collected data. With a reasonable outflow of v1 = 150 km s−1, about

30−40% of the discrepancy in open flux is accounted for. Although either increasing
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Figure 2.10: Variation of the open magnetic flux at r1 = 2.5R⊙ during Solar Cycle
24. The black curve represents OMNI measurements of the magnetic field at 1
AU (smoothed as described in the text), while the dashed, dotted, and dot-dashed
curves show predictions from outflow solutions with different speeds. The lowest
curve (red) shows the result from an equivalent potential field calculated using our
model with v1 = 0km s−1. In all cases, the unsigned open flux is shown on the left
axis, while the equivalent field strength at 1 AU (assuming a uniform distribution)
is shown on the right axis.

the imposed velocity or decreasing the magnetofrictional relaxation rate ν0 could

further reduce this discrepancy, this would likely lead to unrealistic streamer shapes

and nonphysical behaviour, and would not be consistent with full magnetofrictional

simulations.

It is more likely that the remainder must be explained through alternative means.

These likely include both steady enhancement from additional low-coronal currents

not included here, as well as episodic enhancement from eruptions and coronal mass

ejections ([105, 108]). An important further possibility is that the 1 AU data may

be overestimating the open flux at 2.5R⊙ due to the presence of switchbacks: where

some magnetic field lines double back on themselves in the heliosphere ([56]).
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2.3 Discussion

In this chapter we have described a new method for modelling the global mag-

netic field in the solar corona. The numerical method is based roughly on existing

PFSS models, and in a similar manner requires radial magnetogram data as a lower

boundary condition, or indeed a specified analytical field as for the 2.5D simulations

described in Chapter 3.

The model seeks to improve upon PFSS models by taking into account the

effect of the solar wind, which is achieved by seeking equilibrium solutions of the

magneto-frictional model, where a radial solar wind outflow function is assumed

and specified. Computation times are comparable to PFSS codes, with the only

fundamental difference here being that we are unable to use a Fast Fourier Transform

to calculate the eigenmode coefficients.

The solutions we find appear more realistic than equivalent potential fields, ex-

hibiting more realistic streamer shapes, reducing the dependence on an arbitrary

source-surface height, and increasing the predicted open flux to be closer to OMNI

magnetic field measurements throughout Solar Cycle 24.

Compared to full MHD simulations, our model has the limitation that the solar

wind velocity is imposed in a purely phenomenological manner, rather than deter-

mined self-consistently as an equilibrium of the full MHD equations. In particular,

our method has to rely on several assumptions – namely that the solar wind velocity

is purely radial and only has radial dependence. This is certainly preferable to as-

suming there is no outflow velocity whatsoever but is still quite a severe limitation.

In future, it may be possible to remove these limitations by generalising our method.

Being purely magnetic, however, our method is computationally much less ex-

pensive and only requires line-of-sight magnetogram data, as opposed to full vector

data and initial conditions for density and pressure/temperature. It thus represents

a practical alternative that improves on the commonly-used PFSS model at little

extra cost.

For a chosen radial wind speed profile, our solution has a single free parameter:

the assumed relaxation rate ν0. The value for this constant has been determined from

experience using the magneto-frictional model but it cannot be calculated directly.
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Therefore there remains some uncertainly with regards to the most appropriate

outflow solution for a given solar wind speed. In future it may be possible to

determine ν0 empirically using the model we have proposed, by comparing streamer

shapes to physical observations. In turn, this would then be informative for other

magneto-frictional modelling.

In this chapter we have discussed the calculation of a magnetic field based upon

a Cartesian coordinate system, and a stretched spherical coordinate system. The

method could be generalised to work in other schemes as desired (most obviously

a non-stretched spherical system), providing there is a grid on the lower boundary

that permits an eigenvalue decomposition such as the ones we have described.

PFSS fields have been established as a very useful way to model the corona. The

ubiquitous use of these fields indicates that computational simplicity is a priority,

and the methods we present aim to preserve this simplicity. At high altitudes, to

ensure radial magnetic field lines and a more even distribution of the radial magnetic

field strength, potential field models are often coupled with current-sheet extension

models to approximate the upper corona (e.g. [38]). Using outflow fields should

reduce the need for such extensions, provided accurate functions describing the solar

wind velocity at high altitudes are used. This would also remove any dependence

on the somewhat arbitrary source-surface height.
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CHAPTER 3

Eruptivity Criteria for Magnetic Flux Ropes

In this chapter we discuss the work in our papers [7] and [8]. Using two simplified

MF models and one full MHD model (see the introduction for a description and the

history of the use of these models) we have undertaken a very large parameter study

of magnetic flux rope behaviour. The goal is to seek scalar proxies for eruptivity:

quantities that could be theoretically calculated from a static extrapolation of the

coronal magnetic field and used to predict an imminent flux rope eruption.

Initially this study focused on a 2.5D magnetofrictional model in Cartesian coor-

dinates. The original purpose of this was to gain some familiarity with the method

and the construction of the code. Ultimately, the large parameter space available

meant that the results from this were more notable than originally anticipated, and

were written up in [7]. This paper introduced a new definition for the relative helic-

ity in 2.5D, and introduced the statistical methods used to evaluate which diagnostic

quantities could be good predictors.

The second paper ([8]) expanded on this study considerably, by introducing two

new models: a new magnetofrictional model in axisymmetric polar coordinates and a

full MHD model using the existing LARE2D code ([21]). The polar coordinate code

provided justification that the qualitative behaviour of the flux ropes was similar

85



enough in either coordinate system that Cartesian models could be used to deduce

meaningful results. Repeating the study in full MHD was more significant, as this

model is a better approximation to reality than magnetofriction. By keeping the

domain size and initial conditions identical to the MF study, direct comparisons of

the diagnostic quantities could be made. Ultimately, this has led to our conclusion

that magnetofriction could indeed be used to evaluate predictive quantities. As full

MHD models of the entire corona are far too costly, this is an important step towards

being able to use real observational data to make predictions of coronal magnetic

field behaviour.

Despite using existing code for the MHD simulations, a considerable amount of

time was spent determining appropriate numerical boundary conditions in order to

properly emulate those in the existing magnetofriction codes (both my own 2.5D

Cartesian model and existing codes – see Section 1.4.1). These modifications to the

boundary conditions permitted steady-state solutions of the solar wind outflow, and

the implementation of supergranular diffusion in the solar photosphere, allowing for

flux cancellation and the formation of flux ropes. It is my hope that this approach

can be extended to full 3D to verify further the results from our work.

The models described in this chapter are all invariant in one coordinate direction.

Magnetic fluxes and currents in the invariant direction are permitted, however, and

as such these models can be described as 2.5-dimensional (2.5D). This simplification

clearly provides a significant saving in computing time, with a typical simulation

run taking only minutes on a desktop computer compared to days or months for a

full 3D equivalent.

The main disadvantage of this approach is that realistic flux rope geometries

can not be properly represented. The flux ropes are either infinitely long in the

invariant coordinate direction, or wrap completely around the sun in the case of the

polar model. It remains to be seen whether this is a fundamental problem with our

research thus far.

To our knowledge, a parameter study of flux rope behaviour on this scale has not

yet been undertaken, but our approach is similar to that of [93]. In that work, a series

of 7 full 3D MHD flux ropes ([24], [25]) was studied. In some of those simulations
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the flux ropes were unstable and erupted, and in others the ropes appeared to be

stable for all time. Several diagnostic quantities were identified which appear to

correlate to an eruption at a later time, notably the so-called ‘eruptivity index’ (see

Section 1.6.3), to be discussed further in this chapter.

In our models, usually at least one flux rope eruption is observed in each sim-

ulation run, providing there is sufficient photopsheric diffusion. Thus rather than

merely making a prediction as to whether the rope will erupt at any later time we

seek to find scalar quantities that exhibit a threshold above which the rope becomes

unstable and erupts. The advantage of this is that if the state of the magnetic field is

known, a probability of an eruption within a certain time can be calculated without

the costly need to run a time-dependent simulation.

3.1 The Magnetofrictional Models

In the parameter study we use two magnetofrictional (MF) models, one in Cartesian

coordinates and another in axisymmetric polar coordinates. The Cartesian model

represents a section of the solar corona of around 35°of latitude, with a vertical

domain height half of the width. The polar model represents a longitudinal slice of

the entire corona, extending to 2.5 solar radii.

Both models use the magnetofrictional equations discussed in Section 1.4.1.

These are:

∂B

∂t
= −∇× E (3.1)

E = ηj− v ×B (3.2)

µ0j = ∇×B (3.3)

v = ν0
j×B

B2 +B2
0δe

− B2

δB2
0

+ vout(y)ey, (3.4)

whereB,E, j and v are the (variable) magnetic, electric, current density and velocity

fields respectively. The constant η is the coronal diffusivity, equal to η = 1/(µ0σ0),

where µ0 is the permittivity of free space and σ0 is the electrical conductivity of the

plasma. µ0 is henceforth set to unity without loss of generality. This diffusion term
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represents an effect that is much slower than the dynamics on the timescales of inter-

est, and as such is set to be small. If this term were not included, numerical diffusion

would occur with much the same effect, but would depend on the grid resolution. By

imposing it directly we remove this dependence. The magnetofrictional relaxation

rate ν0 determines the time taken for the system to relax to a force-free state. The

ideal value of this constant can not easily be determined, as the magnetofrictional

velocity is itself fictitious. Thus ν0 is varied considerably in the parameter study to

ensure any eruptivity criteria are independent of its value. The constant δ = 0.01

is used in the denominator of the relaxation term to ensure stability at magnetic

null points (there is some discussion on the ideal value for δ in Chapter 4) with an

additional constant factor B0 roughly equal to the average magnetic field strength.

The vout term models the effect of the solar wind ([13]), resulting in an additional

upward velocity.

In Cartesian coordinates this outflow speed is taken to be

vout(y) = v1y
10ey, (3.5)

in line with previous magnetofrictional simulations, and in polar coordinates we use

a more realistic approximation to the Parker solar wind solution, as discussed in

Section 1.3.2.

vout(r) = v1
r21e

−2rc/r

r2e−2rc/r1
er, (3.6)

where the critical radius rc is 10 solar radii, r1 = 2.5 solar radii is the upper extent

of the domain and v1 is a constant wind speed factor, chosen to be 50 times the

maximum shearing velocity. A realistic value is likely higher than this, but this

compromise is made as the resultant high velocities at the top of the domain in-

crease computational times significantly. The only significant effect of increasing the

outflow velocity further is a slight increase in the frequency of arcade eruptions.

In the Cartesian model the domain is a square box with coordinates −1 < x < 1,

0 < y < 1 and z the invariant direction, with equally-spaced grid cells. Given the

width of the domain, this is intended to model up to an equivalent of around 2.5 solar

radii, although the differing geometries make this comparison imprecise. The polar
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simulations model an entire hemisphere of the corona, with coordinates 0 < θ < π

and 1 < r < 2.5, and ϕ the invariant longitudinal direction. The grid cells here are

evenly spaced in s = cos θ and ρ = log r ([39]), which increases the resolution in the

areas of interest.

In our magnetofrictional code we ensure the solenoidal condition (∇ ·B = 0) to

machine precision by describing the system in terms of a vector potential A, such

that

B = ∇×A. (3.7)

As the magnetofrictional velocity field is calculated explicitly from the magnetic

field, by extension the entire state of the system can be described using only this

vector potential.

Numerically, in our magnetofrictional models the differential operators are cal-

culated using Gauss’ or Stokes’ theorem as appropriate, and the variable fields are

stored on a staggered grid ([46]). In Cartesian coordinates this is equivalent to using

a central-difference scheme. The numerical schemes used here were discussed briefly

in Section 1.4.1. The Cartesian simulations are initialised with Python and run

using Fortran 90, with a grid resolution of 256 x 128 cells. The axisymmetric polar

simulations are run using Python with a grid resolution of 180 x 60 cells.

We adopt dimensionless units throughout. In the axisymmetric polar model one

distance unit is taken to be 1 solar radius. In the Cartesian models one distance

unit is around the width of the magnetic arcade, which varies considerably but

is assumed to be around 35◦ on the solar surface (or 0.44 solar radii), based on

arcades observed in the axisymmetric simulations. Using the photospheric shearing

rates (discussed in Section 3.1.2) the time units can then be set as 27.4 days in

the Cartesian simulations and 19.5 days in the axisymmetric simulations. However,

the significant differences in the two coordinate systems mean this should only be

regarded as the correct order of magnitude and as such the timescales discussed

later in this chapter should only be treated as indicative.
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Figure 3.1: Initial magnetic fields for the Cartesian simulations (left) and the ax-
isymmetric simulations (right), with magnetic field lines in black. These are PFSS
fields with the lower radial boundary conditions as in Equations (3.8) and (3.9). In
the axisymmetric simulations, the computational domain only covers one longitudi-
nal plane. Another plane on the opposite side is plotted here only for illustrative
purposes.

3.1.1 Initial Conditions

The initial magnetic fields are plotted in Figure 3.1. In both Cartesian and polar

coordinates, the simulations are initialised with a PFSS (Potential Field Source-

Surface) field, in which the magnetic field is radial at the upper boundary and there

is no electric current throughout the domain. PFSS is chosen for consistency with

the MHD simulations, which necessarily model the initial relaxation due to the solar

wind. For a standalone magnetofrictional study, it would be preferable to use an

‘outflow field’, the merits of which are discussed in Chapter 2.

In polar coordinates, we choose the radial magnetic field strength on the lower

boundary to fit the following analytic function:

Br(1, θ) = s7 + 5de−10d2 , (3.8)

where s = cos(θ) and d = s − cos(0.35π). The first term (s7) approximates the

magnetic field at solar minimum reasonably well (e.g. [109, 110]), and the second

term ensures there is a clear polarity inversion line at a latitude where the differential
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rotation of the surface will result in a considerable shearing rate. In the axisymmetric

simulations we observe the arcade (the region with the closed field lines) between

around 20 and 70 degrees from the north pole. A symmetric field around the equator

would not be suitable as the differential rotation is symmetric between the northern

and southern hemispheres, and such an arcade would merely be dragged around the

equator without being sheared. The potential fields for the axisymmetric simulations

are calculated using a bespoke potential field solver.

The Cartesian simulations are initialised with the lower boundary condition

By(x, 0) = −B0 sin
(π
2
x
)
, (3.9)

for some constant B0 of order unity. In this simple case the initial condition of the

vector potential can be specified analytically:

Az(x, y) =
2

π cosh
(
π
2

)B0 cos
(π
2
x
)
cosh

(π
2
(y − 1)

)
. (3.10)

The resulting magnetic fields are then

Bx(x, y) =
B0

π cosh
(
π
2

) cos
(π
2
x
)
sinh

(π
2
(y − 1)

)
, (3.11)

By(x, y) = − B0

π cosh
(
π
2

) sin
(π
2
x
)
cosh

(π
2
(y − 1)

)
, (3.12)

Bz(x, y) = 0. (3.13)

satisfying the lower boundary condition and Bx = 0 on the upper and side bound-

aries.

The initial magnetic field completely specifies the magnetofrictional system.

3.1.2 Boundary Conditions

On the magnetic field, we impose that there is zero perpendicular current on the up-

per and lower boundaries of the domain. This ensures that under magnetofrictional

relaxation (in the absence of additional boundary conditions) there is no magnetic

energy flux through the boundaries. We also require that the field is entirely verti-
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cal/radial at the side boundaries (or the poles in the axisymmetric simulations). The

dynamic behaviour of the MF system is almost entirely determined by the driven

boundary conditions on the lower boundary.
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Figure 3.2: Photospheric shearing rates varying with latitude (measured from the
north pole). The angular velocity (solid line) is then shifted into the correct reference
frame and to code units (dashed line). It is then multiplied by sin θ to give a linear
velocity on the solar surface (dotted line) before being added to the velocity field.

These boundary conditions represent photospheric shearing and supergranular

diffusion. In the magnetofrictional simulations the shearing velocity is added di-

rectly to the fictitious velocity field v on the lower boundary. In the axisymmetric

simulations we use a realistic profile for the differential rotation rate. As a function

of latitude, this is approximately [9]

V (θ) = 0.18− 2.396 cos2 θ − 1.787 cos4(θ) degrees/day. (3.14)

It is common to use the Carrington frame as a reference rotation frame – rotating at

13.2 degrees/day [33]. Analytically, altering the reference frame by a constant linear

velocity should not make any difference to the dynamics, providing the boundary

conditions are treated with care. However, the centrifugal and Coriolis forces in

a rotating frame do in general have an effect. These forces are proportional to

the density of the fluid, which in the corona is small compared to the forces on

the magnetic field. In both the magnetofrictional and MHD models we neglect

these effects, and indeed it is unclear how they would be properly implemented in a

magnetofrictional model in the absence of a true fluid.

In the polar model we have chosen the reference frame such that the maximum
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angular velocity in either direction is unity, as illustrated in Figure 3.2. This is for

consistency with the Cartesian simulations where the imposed shearing velocity is

simply

Vshear(x) = V0 sin(πx). (3.15)

The constant V0 is chosen to be unity. This choice determines the time units used

in the code, but otherwise makes no difference to the dynamics.

We also impose an additional magnetic diffusion term on the lower boundary,

modelling the effect of unresolved supergranular flows on the photosphere. This

diffusion rate (η0) is in general much larger than the diffusion rate in the corona

(η), and one of its effects is to bring the footpoints of the magnetic arcade closer

together, eventually forming a twisted magnetic flux rope ([19]).

This diffusion is added as a boundary condition to the electric field E:

E(x, 0) = η0
∂By(x, 0)

∂x
ez, (3.16)

or

E(1, θ) = η0
1

r

∂Br(1, θ)

∂θ
eϕ, (3.17)

in Cartesian and polar coordinates, respectively. As the change in the magnetic field

is proportional to the curl of the electric field, in the absence of any other effects

this boundary condition is in essence equivalent to the 2D heat equation acting on

the radial/vertical component of the magnetic field.

3.2 The Magnetohydrodynamic Model

The third of the models we use is a full MHD model, using the LARE2D code

[21]. The domain size and configuration are set to be the same as the Cartesian

magnetofrictional model, so as to allow direct comparisions of the system behaviour.

Unlike in magnetofriction, in MHD the fluid flow is accurately modelled, and as such

we couple Faraday’s law, Ohm’s law and Ampère’s law to the fluid equations.

In dimensionless form, the MHD equations used in the LARE2D code are as
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follows:

∂B

∂t
= −∇× E (3.18)

E = ηj− v ×B (3.19)

µ0j = ∇×B (3.20)

∂ρ

∂t
= −∇ · (ρv) (3.21)

Dv

Dt
=

1

ρ
j×B− 1

ρ
∇P + g (3.22)

Dϵ

Dt
= −P

ρ
∇ · v +

η

ρ
j2 (3.23)

ϵ =
P

ρ(γ − 1)
, (3.24)

where the variable quantities (in addition to those introduced in the magnetofric-

tional equations) are the plasma pressure P , the plasma density ρ and the internal

energy density ϵ. The ratio of specific heats is taken to be γ = 5/3. We choose the

gravitational field to be g = −ey/(y + 1)2. As with magnetofriction, the constant η

represents the coronal magnetic diffusivity. For consistency between the three model

setups we set this as η = 5×10−4 throughout. There is considerable variation in the

literature as to this value (e.g. [33, 111]), so we choose it to be as small as possible

whilst still being able to resolve current sheets at our chosen grid resolution. No

explicit viscosity is used.

The LARE2D code does not employ a vector potential but instead ensures the

solenoidal condition using the constrained transport method of [112], which is quite

complex for the velocity field but for the magnetic field is roughly equivalent to the

approach we take in the MF models, albeit with a more sophisticated scheme for

averaging to the grid points/faces. Unlike in the MF models, we do not need to

impose an outflow velocity. Instead, due to the boundary conditions chosen and the

presence of the gravitational field, the plasma velocity in the MHD model naturally

reaches a dynamic equilibrium with an upwards velocity. This can be seen clearly

when the system is allowed to relax in the absence of a magnetic field. The relaxation

to such an equilibrium is shown in Figure 3.3, where the profile of the plasma density

and vertical velocity are shown.
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Figure 3.3: Illustration of the relaxation of the fluid in the absence of a magnetic
field, showing the vertical fluid velocity and the density, both the initial condition
and the fluid state after relaxation. We observe the initial quadratic profile of the
velocity and the constant initial density, and the sharp jump in the velocity at the
top of the domain due to the boundary condition.

3.2.1 Initial Conditions

The initial magnetic field configuration for the MHD simulations is identical to that

in the Cartesian magnetofrictional simulations. This consistency is important for

the validity of the comparisons between the two models.

In MHD we additionally require initial conditions for the fluid. The initial density

is chosen to be constant throughout the domain, as is the initial internal energy. The

initial fluid velocity is required to be positive in the y direction in order to accurately

emulate the solar wind – otherwise it is possible for the fluid to be in equilibrium

with a negative vertical velocity. The initial velocity profile chosen is Vout(y) = v1y
2

for some constant v1, as shown in Figure 3.3 – although it must be noted that the

boundary conditions initially cause discontinuities at the upper and lower boundaries

(to be discussed in the next Section).

This initial state is far from a steady-state equilibrium, but it does relax to one

very quickly relative to the timescale of the magnetic field evolution. The initial

conditions and boundary conditions on the velocity (discussed in Section 3.2.2)

enable the solar wind to be represented self-consistently, as the equilibrium state of

the system will naturally have a non-zero vertical fluid velocity, as in Figure 3.3. The

presence of a magnetic field does affect this relaxation – the effect of the solar wind

on the magnetic field is shown in Figure 3.4 which illustrates the initial condition for

the MHD simulations (top row) along with the equilibrium state the system reaches
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Figure 3.4: Illustration of the initial condition and relaxed ‘outflow field’ state of
the MHD simulations. Such an outflow field is obtained in the absence of driven
boundary conditions or supergranular diffusion, where the system evolves due to the
effect of the solar wind alone. The colourmaps show the vertical velocity, out-of-
plane magnetic field (zero, in this case) and the fluid density.

in the absence of driven boundary conditions or supergranular diffusion (bottom

row).

As with magnetofriction, as the system relaxes to this ‘outflow field’ state the

magnetic field lines at the top of the domain become more radial, with fewer of

them connecting back to the surface. Outside the arcade, the vertical fluid velocity

is significant and roughly constant. Inside the arcade the plasma is essentially

constrained to the magnetic field lines and as such the fluid velocity is comparatively

small. During this relaxation period the fluid density within the arcade remains

roughly constant, whereas in the region affected by the solar wind the density falls

to around a quarter of its initial value, becoming slightly less dense with increasing

height. As the system relaxes to this state soon after the simulations are initialised,

this relaxed state can be essentially regarded as the initial condition. A similar

process occurs to the magnetic field in the magnetofrictional simulations, although

this is due to an imposed solar wind velocity term and the fluid itself is not modelled.
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3.2.2 Boundary Conditions

The boundary conditions on the magnetic field in the MHD simulations are identical

to those in the Cartesian magnetofrictional simulations – namely zero perpendicular

current on the domain boundaries. However, we now additionally require boundary

conditions on the fluid density, temperature and velocity.

We impose that the internal energy (proportional to the temperature) has zero

gradient over the boundary (Neumann boundary conditions), allowing it to evolve to

a state almost entirely independent of its initial value. The fluid density also uses this

condition on three of the boundaries, but the density on the lower boundary is held

at a fixed value ρ0, imposed at one cell within the domain. This ensures the density

does not fall to zero as the solar wind carries the plasma out the top of the domain.

One side effect of this condition is that the fluid velocity rises quickly just above

the lower boundary, accompanied by a similar fall in density. As the photosphere

is considerably more dense than the corona, this seems to be a reasonably realistic

result.

The boundary conditions for the fluid velocity itself are more complex. On the

sides of the domain the horizontal (vx) velocity is set to zero, preventing flow through

the boundaries. The out-of-plane (vz) velocities are also set to zero here. On the

sides boundaries there are Neumann boundary conditions on the vertical velocity

vy, allowing for upward flow. Directly on the lower boundary we impose that the

vertical velocity is zero, which prevents numerical instabilities. This is only possible

as the density is held constant at a point slightly within the domain – otherwise all

the fluid would be sucked through the top boundary and the system would become

progressively less dense. On the top boundary the condition on the vertical fluid

velocity is

vy(x, 1.0) = max{kvy(x, 1.0−∆y), 0.0}, (3.25)

where 1.0 − ∆y is the height of the first cell fully within the domain and k =

1.25 is a constant that encourages the fluid to accelerate upwards through the top

boundary. This results in the sharp increase in velocity at the upper boundary seen

in Figure 3.3. Physically, the fluid would not accelerate particularly significantly
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at this specific altitude, and so although it results in desirable behaviour elsewhere

this boundary condition is not itself physically realistic. During arcade eruptions

the fluid occasionally changes direction to flow downwards and attempts to suck

in material from above the top boundary, which would be numerically problematic.

This boundary condition ensures the vertical fluid velocity on the boundary remains

non-negative but still allows for these eruptions to occur realistically.

Similarly to magnetofriction, the shearing velocity can be added directly to the

fluid velocity on the lower boundary, using the shearing profile in Equation 3.15. The

method for imposing the supergranular diffusion differs from magnetofriction as the

LARE code does not employ an explicit electric field E. In the magnetofrictional

model this lower boundary condition on the electric field is

E(x, 0) = η0
∂By(x, 0)

∂x
ez. (3.26)

If we define a diffusive electric field similarly as

Ediff(x, 0) = η0
∂By(x, 0)

∂x
ez, (3.27)

Ediff(x, y > 0) = 0.0, (3.28)

then we can directly add the effect of this diffusion onto the magnetic field using

the evolution equation
∂B

∂t
= −∇× E. (3.29)

The components of the change of the magnetic field are then explicitly

Bxdiff
= −η0

∂2

∂x∂y
By(x, 0), (3.30)

Bydiff = η0
∂2

∂x2
By(x, 0). (3.31)
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This can then be added on to the already-calculated magnetic field at each timestep:

Bx = Bx − η0
∆t

∆y

∂

∂x
By(x, 0) (3.32)

By = By + η0∆t
∂2

∂x2
By(x, 0), (3.33)

where ∆t is the timestep and ∆y is the grid resolution in the y direction. This

results in very similar behaviour to the magnetofrictional equivalent of the lower

boundary condition, but is not directly comparable as we have assumed that the

diffusive electric field is zero everywhere away from the boundary – this assumption

is not necessary in magnetofriction.

3.3 Our 2.5D Parameter Studies

By limiting ourselves to 2.5D rather than 3D, each simulation can be run in a

matter of minutes or hours, rather than days or even months. This has allowed

for a very large parameter study using both the two magnetofrictional models and

the MHD model. The aim is to produce a large range of flux ropes, with differing

sizes, shapes, and stabilities. The parameter that has the most effect on behaviour

is the photospheric diffusion η0, as this is directly related to the speed at which the

ropes form and erupt. We also vary the magnetofrictional relaxation rate ν0 and

the initial density ρ0 in the MF and MHD simulations respectively. This produces

additional variation in behaviour and also removes any need to assume values for

these constants.

Section 3.3.1 will discuss the diagnostic measures used, followed in Section 3.3.2

by an aside on the preferred definitions of the helicity with the definition and moti-

vation behind our new 2.5D variant of the relative helicity. In Section 3.3.3 onwards

we will then cover the model behaviour, including the two types of eruptions ob-

served and the dependence on the model parameters. In Section 3.4 we describe the

methodology and results for the selection of potential candidates for useful indicators

of eruptivity.
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3.3.1 Diagnostics

In this section we describe the diagnostic measures used to identify eruptive events

and ultimately to make predictions of future behaviour. We require diagnostics that

have a single scalar value which represents the state of the entire system. For the

magnetofrictional simulations the diagnostic values will depend only on the strength

and configuration of the magnetic field. The raw diagnostics we calculate are as

follows:

• Open Flux, defined as the sum of the unsigned radial magnetic flux through

the upper boundary. An increase in the open flux indicates that fewer magnetic

field lines connect back to the surface, and the coronal arcades are stretched

upwards, becoming more ‘open’. We use changes in the open flux to identify

arcade eruptions in the magnetofrictional models.

• Magnetic Energy, defined as EM =
∫
V

1
2
B2 dV . For given boundary con-

ditions, the initial potential field has minimal magnetic energy. The energy

increases significantly as the field evolves and flux ropes form. There is usually

a large decrease in magnetic energy after eruptions. For eruptivity predictions

we favour the ‘Free Magnetic Energy’ (see below) rather than the magnetic

energy itself.

• Axial Rope Current Ia, defined as the surface integral of the current j

within the rope, in the direction of the rope axis (the z direction in Cartesian

coordinates or the ϕ direction in spherical polar coordinates). In our 2.5D

models the ‘rope’ is defined as the region with infinitely-long magnetic field

lines that never reach either the photospheric or outer boundaries.

• Poloidal Rope Flux Φp – a measure of the magnetic flux contained within

the rope in the poloidal (in-plane) direction. This is simple to calculate in

2.5D, as it can be defined simply as the flux intersecting a chord between the

centre of the rope (where the out-of-plane component of the vector potential

A attains its maximum value) and the edge of the domain.
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• Axial Rope Flux Φa, defined as the integral of the magnetic flux in the rope,

along the axis (out-of-plane) direction.

For the full MHD simulations we can also measure properties of the fluid. Al-

though ultimately these quantities do not seem to be good predictors of eruptivity,

their behaviour can be used to identify activity in the system – for instance, the in-

ternal energy peaks during arcade eruptions are more pronounced than any variation

in the magnetic field.

• Internal Energy ϵ, which is here proportional to the temperature of the

system, related to the fluid pressure and density by Equation 3.24. As a

diagnostic we use an integral of this quantity over the entire domain.

In addition to the above, further measurements are obtained by using comparison

to a reference potential magnetic field. The potential field BP is defined such that

(B−BP )·n = 0 on the domain boundaries, andBP = ∇Φ for some scalar function Φ.

This configuration has the lowest-possible magnetic energy for the given boundary

conditions.

In a fully 3D domain the potential field is well-defined, but the definition is less

clear for our 2.5D simulations as there is no boundary in the third (z/ϕ) dimension.

Originally, we proposed a definition for a reference field in 2.5D space whereby the

out-of-plane component of the reference field is a uniform (harmonic) field whose

magnetic flux matches the out-of-plane flux of the original magnetic field. This

definition has the advantage that an equivalent 3D reference field will converge to

it in the limiting case that the domain becomes infinitely long in the out-of-plane

dimension (see Section 3.3.2 for a full discussion of this).

In spherical coordinates, we could define the out-of-plane component of the po-

tential field identically to the Cartesian case, as the constant average value

B̃Pϕ
(r, θ) =

1

A

∫
Bϕ(r, θ)r dr dθ, (3.34)

where A is the cross-sectional area of a hemisphere, equal to π
2
(r21−r20). This is simple

to calculate and exhibits behaviour similar to the Cartesian equivalent. However, if

101



such a field is extended to full 3D there would necessarily be a discontinuity at the

north and south poles if the average value in each hemisphere is nonzero. Naturally

this solution is not as neat as the Cartesian equivalent, but it is no harder to calculate

and so we do not disregard it.

A second approach is to regard the potential field as an axisymmetric field in

full 3D. In this case there is no out-of-plane (ϕ) component at all:

BPϕ
(r, θ) = 0. (3.35)

The r and θ components of these potential fields BP and B̃P are identical for both

definitions, and are calculated independently of the out-of-plane magnetic field.

Quantities using both of these definitions and their equivalent vector potentials AP

and ÃP (calculated by direct integration) are calculated for all three of the models.

These ‘reference-based quantities’ are:

• Relative Helicity HR

As introduced in Sections 1.6 and 1.6.1, the helicity within a volume V would

be defined as h(V ) =
∫
V
A · B dV, where A is the vector potential of B.

This quantity is dependent in general on the gauge of A, and so we use the

alternative relative helicity [85], which is gauge independent:

HR =

∫

V

(A+AP ) · (B−BP ) dV. (3.36)

In 2.5D the definition of the potential field BP is subtle, and will be discussed

further in the next Section.

• Current-Carrying Helicity HJ

Similarly to the relative helicity, this is defined as

HJ =

∫

V

(A−AP ) · (B−BP ) dV, (3.37)

which is also gauge-independent.

• Free Magnetic Energy EF
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The free magnetic energy is defined as the magnetic energy of the magnetic

field minus the magnetic energy of the reference potential field BP ,

EF =

∫

V

(
1

2
B2 − 1

2
B2

P

)
dV, (3.38)

which is a good indicator of the ‘excess’ energy in the system, as the potential

field is the minimum energy state for the given boundary conditions.

Each of these three quantities requires construction of a potential field BP , which

can be calculated using either of the definitions described above. We thus denote

quantities calculated using the potential field with no out-of plane component (BP )

without a tilde (e.g., HR), and those with an out-of-plane component (B̃P ) with a

tilde (e.g., ẼF ).

Due to the variation in the size and strength of the flux ropes, no single diagnostic

can be a good predictor of eruptivity. We instead focus on ratios between them (e.g.,

|I2a/EF |, |H̃J/EF |), chosen with factors such that the ratios are independent of the

overall magnetic field strength.

It must be noted that all of these diagnostic quantities and ratios between them

will depend significantly on the size and configuration of the domain, and they

are not in general dimensionless. This could be addressed by introducing various

distance scale factors, but instead in this work we will only directly compare diag-

nostics which are measured over identical domain sizes and configurations, avoiding

the problem.

3.3.2 Discussion on the Definitions of Relative Helicity

The classical helicity within a volume V would be defined as h(V ) =
∫
V
A · B dV,

where A is the vector potential of B (see Section 1.6). This quantity is dependent

in general on the gauge of A, and so we use the alternative relative helicity instead

[85] to provide meaningful results. In a 3D domain, this would be calculated by

finding a potential field BP matching the original magnetic field on the boundary,
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and a corresponding vector potential, AP . The relative helicity would then be

HR =

∫

V

(A+AP ) · (B−BP ) dV. (3.39)

Care is required to define the relative helicity for 2.5D fields. A two-dimensional

helicity measure h(V ) has been proposed before [113], but we are not aware of a

previously published two-dimensional analogue for the relative helicity.

We start by considering the Cartesian case, and the 3D formula (Equation 3.39)

on a finite volume Vz1 , where −1 < x < 1, 0 < y < 1 and −z1 < z < z1. Although

B(x, y) in our 2.5D field is independent of z, the corresponding potential reference

field BP will, in general, vary in the z direction. This arises from the fact that it

is potential, coupled with the need to match BPz(x, y,±z1) = Bz(x, y) on z = ±z1.

We define the relative helicity per unit length to be

H̃R = lim
z1→∞

1

2z1

∫

Vz1

(A+AP ) · (B−BP ) dV, (3.40)

where BP and its vector potential AP are calculated on Vz1 . However, a physically

meaningful helicity measure for our 2.5D field cannot possibly require integration in

z. We will show that H̃R not only converges as z1 → ∞ but can indeed be calculated

with a two-dimensional integral in x and y.

To do this, we decompose BP into three components,

BP = B0 +B1 +B2 = ∇ϕ0(z) +∇ϕ1(x, y) +∇ϕ2(x, y, z) (3.41)

where the first component is a uniform field accounting for the net flux in the out-

of-plane direction,

ϕ0 = Φ0z, Φ0 =
1

2

∫ 1

0

∫ 1

−1

Bz(x, y) dxdy, (3.42)

and the other two components are both potential fields satisfying ∆ϕ1 = ∆ϕ2 = 0,
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with corresponding boundary conditions

∂ϕ1

∂x
(±1, y) = 0, (3.43)

∂ϕ1

∂y
(x, 0) = By(x, 0),

∂ϕ1

∂y
(x, 1) = By(x, 1), (3.44)

∂ϕ2

∂x
(±1, y, z) =

∂ϕ2

∂y
(x, 0, z) =

∂ϕ2

∂y
(x, 1, z) = 0, (3.45)

∂ϕ2

∂z
(x,±z1, 0) = Bz(x, y)− Φ0. (3.46)

Notice that ∇ϕ0 and ∇ϕ1 are independent of both z and z1. The z dependence is

concentrated only in ∇ϕ2.
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Figure 3.5: Plot of the function f(a) = cosh(kπaz1)
cosh(kπz1)

for k = 1 and various values of z1.

The potential ϕ2 has the important property that, as z1 increases, it becomes

more and more concentrated near to the end boundaries z = ±z1, irrespective of

Bz(x, y). To see this, note that in the Cartesian domain Vz1 , the solution for ϕ2 may

be written as a Fourier series

ϕ2(x, y, z) =
∑

m,n ̸=0

cm,n cos

(
mπ(x+ 1)

2

)
cos (nπy) sinh(kπz), (3.47)

where m, n are integers, k2 = (m/2)2 + n2, and the sum includes all terms except

m = n = 0 (which has been essentially separated as the ϕ0 component). The
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components of the field B2 = ∇ϕ2 are then explicitly

B2x = −
∑

m,n ̸=0

mπ

2
cm,n sin

(
mπ(x+ 1)

2

)
cos (nπy) sinh(kπz) (3.48)

B2y = −
∑

m,n ̸=0

nπcm,n cos

(
mπ(x+ 1)

2

)
sin (nπy) sinh(kπz) (3.49)

B2z =
∑

m,n ̸=0

kπcm,n cos

(
mπ(x+ 1)

2

)
cos (nπy) cosh(kπz). (3.50)

The coefficients cm,n are then determined by the boundary condition

∂ϕ2

∂z
(x,±z1, 0) = B2z(x,±z1, 0) = Bz(x, y)− Φ0, (3.51)

which gives

cm,n =
2

kπ cosh(kπz1)

∫ 1

0

∫ 1

−1

Bz(x, y) cos

(
mπ(x+ 1)

2

)
cos (nπy) dxdy. (3.52)

The Φ0 is taken care of in the B0 part of the magnetic field. Now consider the value

of ϕ2(x, y, az1) for some fixed fraction |a| < 1. Then

ϕ2(x, y, az1) =
∑

m,n

2 sinh(kπaz1)

kπ cosh(kπz1)
F (x, y), (3.53)

where F (x, y) contains the x and y dependence from (3.47) and (3.52). We wish to

examine the behaviour of this term for a fixed a in the range −1 < a < 1 as the

domain length z1 increases.

The limit of the hyperbolic functions in this case is merely the exponential func-

tion (taking care with the sign of a):

lim
z1→∞

sinh(kπaz1)

cosh(kπz1)
= sgn(a) lim

z1→∞
exp(kπ|a|z1)
exp(kπz1)

= sgn(a) lim
z1→∞

exp(kπ(|a| − 1)z1).

(3.54)

As (|a|−1) has a magnitude less than 1, this exponential function converges to zero.

A similar result holds for the cosh equivalent, so

lim
z1→∞

sinh(kπaz1)

cosh(kπz1)
= lim

z1→∞
cosh(kπaz1)

cosh(kπz1)
= 0, (3.55)
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and we see that the non-zero part of ∇ϕ2 becomes an increasingly smaller fraction

of the domain length as z1 → ∞. This is illustrated in Figure 3.5. It follows that

the contribution from ∇ϕ2 to H̃R in equation (3.40) vanishes in this limit, so that

this definition of the relative helicity can be written simply as

H̃R =

∫ 1

0

∫ 1

−1

(A+ ÃP ) · (B− B̃P ) dxdy, (3.56)

where B̃P (x, y) = ∇ϕ1(x, y) + Φ0ez. The gauge of ÃP does not affect the integral

(as usual for HR), so one is free to choose an ÃP that is independent of z and hence

evaluate H̃R with a purely 2D integral.

Although this is a neat result for the 2.5D Cartesian system, the ideal definition

for the axisymmetric polar model is less clear-cut. As such we also consider the

alternative (classic) definition for the reference potential field, with no out-of-plane

component. The two definitions can be mixed in the diagnostic ratios, and indeed

doing this has shown to make a significant difference to the ratios‘ predictive abilities.

It remains to be seen whether this modification to the reference field definition

can be translated into full 3D. Although in 3D the definition of a potential field is

well-defined, we have shown (in Section 3.4) that the alternative 2.5D definitions

behave very differently from one another. Thus it may be the case that in 3D

a relative helicity definition using a modified reference field (and diagnostic ratios

deriving from it) may well be a better predictor than when using a standard potential

field.

3.3.3 Model Behaviour

We observe similar behaviour in all three sets of simulations. Figure 3.6 plots selected

diagnostics from a single run from each set for comparison. Over the first 10-20 days,

the solar wind opens out the magnetic arcade, increasing the magnetic flux through

the upper boundary and resulting in a smaller arcade as fewer magnetic field lines

loop back to the surface. In the absence of the dynamic lower boundary conditions,

the system would remain in equilibrium in this state. Such an ‘outflow field’ is shown

in the lower row of Figure 3.4. During this initial phase we also observe significant
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Figure 3.6: Selected diagnostics from a representative run from each of the three
simulation sets, in dimensionless units. These units are the same in the two Cartesian
setups but not in the polar coordinate simulations, due to the differing length scales.
Arcade eruptions are represented with blue circles, and flux rope eruptions with red
circles. Note that internal energy is plotted for the MHD simulation, whereas free
magnetic energy is plotted for the magnetofrictional simulations. The time at which
an arcade eruption occurs is given by the time of maximum decrease in either open
flux or internal energy, and the time of a flux rope eruption is the point immediately
before the poloidal rope flux falls to zero. Values are in general smaller in the
axisymmetric case due to the smaller size of the rope compared to the distance unit.
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increases in relative helicity and free energy as the magnetic field evolves further

from a potential field. During this period a current sheet develops at the top of

the domain (in the out-of-plane direction), forming a helmet streamer [114]. Such

current sheets are visible in the top snapshots of Figure 3.7 as the arcade opens out.

t = 0 days t = 49 days t = 120 days

t = 121 days t = 122 days t = 123 days

t = 125 days t = 129 days t = 139 days

Figure 3.7: Snapshots from an axisymmetric polar magnetofrictional simulation with
no photospheric diffusion (η0 = 0, ν0 = 2.0), showing the shearing of the arcade and
formation of a helmet streamer (top panes), followed by an arcade eruption starting
at around 120 days. The heatmap represents the out-of-plane current density, and
the black lines are the magnetic field lines projected into the plane.

The differential rotation on the solar surface then causes the magnetic field to

become sheared in the out-of-plane direction. Open field lines outside the arcade

become sheared near the surface, but as they are not fixed at the top boundary they

are free to relax and undo the shear. In the arcade itself the shearing becomes more

pronounced, opening out the arcade even further than caused by the effect of the

solar wind alone. The free magnetic energy continues to increase during this period,

as does the intensity of the current sheet above the arcade.

After around 50-100 days the energy concentrated in the current sheet becomes

too great and there is a rapid loss of equilibrium. There is fast magnetic reconnection

at the top of the domain and the arcade quickly moves downwards. We refer to

this as an ‘arcade eruption’ [108, 114], indicated by blue circles in Figure 3.6. The
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sequence of such an eruption in an axisymmetric magnetofrictional simulation is

shown in Figure 3.7. In MHD, matter is ejected out of the top of the domain

during these eruptions, leading to a noticable decrease in the internal energy of the

system. During these eruptions there are also decreases in open flux (most clearly

visible here in the axisymmetric simulations) and free magnetic energy as the system

relaxes to a state more closely resembling a potential field. It is possible that these

represent streamer blowouts or even ‘stealth CMEs’, as coined by [115], since they are

characterised by the lack of a detectable signature on the solar surface. The nature

and period of these eruptions (around every 25-30 days) matches well between our

2.5D model, global magneto-frictional simulations and observations [108].

When supergranular diffusion (the parameter η0) is significant, we observe the

formation and eruption of magnetic flux ropes. The diffusion on the surface causes

the magnetic footpoints of the arcade to be brought together at the polarity inver-

sion line, forming twisted bundles of magnetic flux that no longer connect to the

solar surface. Although in reality such a rope would be attached to the surface at

either end, this is not the case in our 2.5D domains. In the Cartesian simulations

these ropes are essentially infinitely long in the out-of-plane direction, and in the

axisymmetric simulations the ropes wrap entirely around the Sun.

The presence of the rope in Figure 3.6 is indicated by nonzero poloidal and axial

rope fluxes. In all three sets of simulations the poloidal flux steadily increases until

the rope erupts, and is not usually affected by arcade eruptions. The axial flux is

affected by arcade eruptions to a greater degree: in the magnetofrictional simulations

we observe it steadily increasing, whereas in the MHD simulations it tends to reach

an upper limit or even decreases as the rope evolves. This appears to be the main

difference in the dynamics between the two models, and has a significant effect on

some of the diagnostic ratios. We are unsure as to the precise reason for this, but it

is perhaps due to diffusive effects in the out-of-plane direction being more prevalent

in the MHD model and reducing the out-of-plane magnetic field component more

rapidly than the MF equivalent.

In most of the simulations, a flux rope forms and remains in a semi-equilibrium

state for some time. This can be up to several hundred days, but the average time
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is around 50-100 days after formation. During this period arcade eruptions above

the rope can continue to take place. The presence of the rope alters the size and

timing of these eruptions, but the qualitative behaviour is the same. The rope itself

moves downwards during arcade eruptions, and in the MHD simulations this is often

followed by a period of damped oscillation as the rope returns to a stable state. Such

‘kink oscillations’ have been observed in the corona, as discussed in [116], where the

flux rope fails to erupt in a similar scenario to our ‘arcade eruptions’, although the

period of the oscillations in our model is of the order 10, 000 seconds - significantly

longer than the observed oscillations.

3.3.4 Typical Flux Rope Structure

Vertical Fluid Velocity

Magnetic Energy Perpendicular CurrentMagnetic Field

DensityInternal Energy

Figure 3.8: A snapshot of a flux rope from one of the Cartesian MHD simulations
with η0 = 0.029 and ρ0 = 1.0, showing heatmaps of various diagnostic quantities to
illustrate its structure. The black lines in the magnetic field plot are the field lines
projected onto the plane, and the heatmap represents the out-of-plane component
of the field. All quantities except the fluid velocity are strictly positive, increasing
from zero (white) to their maximum value (red) on the colourmap. The vertical
fluid velocity can take negative values within the rope, which are shown in blue.

The structure of a flux rope in full MHD is displayed in Figure 3.8. As expected,

we observe that the magnetic field in the rope itself is twisted, with a maximum out-

of-plane component of roughly equal magnitude to the radial magnetic field strength

through the lower boundary. As there is comparatively very little magnetic diffusion

in the solar corona, the plasma fluid is essentially constrained to move along magnetic

field lines (Alfvén’s Theorem). We can see evidence of this in the plot of the vertical

111



Magnetic Field Magnetic Energy Perpendicular Current

Figure 3.9: A snapshot of a flux rope in one of the Cartesian magnetofrictional
simulations with η0 = 0.005 and ν0 = 1.0, showing colourmaps of various diagnostic
quantities to illustrate its structure. The black lines in the magnetic field plot are
the field lines projected onto the plane, and the heatmap represents the out-of-plane
component of the field.

fluid velocity, which is significant in the region with open magnetic field lines, due to

the effect of the solar wind. In the flux rope itself the fluid velocity is comparatively

small (less than a quarter of the velocity outside) or even negative as the fluid must

remain within the area of the rope.

The inner ‘core’ of the rope is where the magnetic field is most sheared. In this

region the internal energy is relatively low and the fluid density relatively high. The

core is surrounded by a region with a considerably lower fluid density (less than

10% of the core) and much higher temperature, around 5 times that in the core.

This region also has a high out-of-plane current as the magnetic field becomes less

twisted. This non-uniform shearing at different layers of the flux rope has been noted

in both observations and models (eg. [117]). One explanation for this is that layers

of flux are added sequentially as the rope forms, and are relatively undisturbed after

formation (eg. [118]). This appears to be the process that we observe here.

Further out from the centre of the rope there is a region with higher density,

similar to that in the core, where the magnetic field itself is not so significantly

sheared. Here there is very little perpendicular current, with less than 5% of the

maximum attained closer to the centre of the rope. Such a boundary between

twisted and untwisted fields has been observed in both analytical models ([119])

and MHD simulations ([120]). There is finally a thin current sheet surrounding the

whole structure, marking the boundary at which the fluid velocity due to the solar

wind becomes significant. We also observe a current sheet above the arcade, as in

the cases without photospheric diffusion.

The flux ropes in the magnetofrictional simulations do not have such a complex
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structure. Such a rope in Cartesian coordinates is illustrated for comparison in

Figure 3.9. Although the overall configuration of the magnetic field is very similar

to MHD, the distribution of the current differs in that the current sheet at the top

of the domain does not extend down to near the photosphere. This is because the

vertical solar wind velocity is applied uniformly across the width of the domain,

so there is no shear layer between the open and closed field regions. There is no

equivalent of the fluid density or internal energy in magnetofriction, and so these

quantities are not comparable.

t = 0 days t = 40 days t = 100 days

t = 240 days t = 282 days t = 285 days

t = 286 days t = 290 days t = 350 days

Figure 3.10: Formation and eruption of a flux rope. This is a Cartesian MHD
simulation with coronal diffusion η0 = 0.01. The heatmaps represent the out-of-
plane current density, and the black lines are the magnetic field lines projected into
the plane. The rope erupts at around t = 285 days, after which it reforms. The
process would then in general repeat.

In most simulations with a flux rope present we observe a catastrophic loss of

equilibrium with rapid magnetic reconnection below the rope. The rope itself moves

very quickly upward out of the top of the domain – we call this a ‘flux rope eruption’,

indicated by red circles in Figure 3.6. The timing of these eruptions is related to

the photopsheric diffusion rate and varies massively depending on the choice of the

system parameters. During a flux rope eruption there is a significant decrease in

all diagnostic quantities, and in the MHD case a large amount of mass is ejected
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from the domain. The full sequence of flux rope formation and eruption is shown

in Figure 3.10, where both the in-plane magnetic field lines and the out-of-plane

current are plotted.

In most cases, after a flux rope eruption the system still has sufficient energy

to continue evolving. If so, after a short period a magnetic arcade reforms and the

process restarts. However, the energy in the system is lessened with each eruption

and subsequent flux ropes thus have smaller poloidal and axial magnetic fluxes. In

general these ropes do not last as long before erupting as those that form initially.

This describes the fundamental processes observed in the simulations. We next

discuss the variation in the system behaviour based on the system parameters, as

well as the differences between Cartesian and polar coordinates and between mag-

netofriction and full MHD.

3.3.5 Dependence on Model Parameters

To produce a wide array of flux rope behaviours, with differing rope strengths and

sizes, we have undertaken a large parameter study within each of the three models.

We fix three of the parameters throughout: the outflow velocity factor v1 (set at

50 times the maximum shearing rate), the coronal diffusion η (= 5× 10−4) and the

photospheric shearing rate (V0), discussed in Section 3.1.2 and 3.2.2.

There are two variable parameters. The most notable is the supergranular dif-

fusion rate η0, which is directly related to the rate at which the flux ropes form

and erupt. In the magnetofrictional simulations we also vary the magnetofrictional

relaxation rate ν0, whereas in the MHD simulations we vary the initial density ρ0.

For each of the three simulation setups we ran 320 simulations in subsets of 64

runs, keeping ν0 or ρ0 fixed within each subset and varying η0. The simulations ran

for 500 days, allowing for the formation and eruption of multiple flux ropes in some

cases.

The parameter ranges varied based on the simulation setup. For the Cartesian

magnetofrictional simulations, 10−3 < η0 < 10−1 and 0.5 < ν0 < 2. For the axisym-

metric magnetofrictional simulations 2 × 10−4 < η0 < 2 × 10−1 and 2 < ν0 < 10.

The difference in these ranges is accounted for by the differing unit length scales
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between the two grid systems. Smaller ν0 values did not produce realistic behaviour

as the system takes too long to relax to a force-free state, and for values higher than

this the simulations became too computationally intensive (as smaller timesteps are

necessary to prevent numerical instability).

In the MHD simulations 2.5 × 10−3 < η0 < 10−1 (although this is not directly

equivalent to the magnetofrictional η0 as discussed in Section 3.2.2), with the initial

density (and the fixed density boundary condition on the lower boundary) in the

range 0.5 < ρ0 < 2.0. Varying the initial density changes the plasma beta – the

ratio of plasma pressure to magnetic pressure. The plasma beta is generally of the

order of magnitude β ≈ 1 × 10−2 throughout most of the domain, but it varies

considerably in space and is generally much higher in the rope itself. Varying the

initial density does not greatly alter the behaviour of the system, but allows us to

ensure any eruptivity criteria we later find are independent of the plasma beta.

Figure 3.11 presents an overview of 64 of the simulations from each of the three

models, varying the photospheric diffusion η0 on the x axis. The overall pattern is

similar in each case. We observe periodic arcade eruptions (the blue circles on the

plot) for low η0, where there is no (or a very small) flux rope present. For higher

values of the photospheric diffusion flux ropes form, indicated by the vertical red

lines. Arcade eruptions can still occur when a flux rope is present, but when the

photospheric diffusion is too high the ropes themselves erupt too quickly to allow for

this. The general trend is that for higher η0 the ropes form and erupt more quickly.

In general ropes reform after erupting, but for very high diffusion rates the system

loses enough energy that they do not.

Although the overall pattern between the three setups is similar, there are some

notable differences. The range of η0 at which certain behaviour occurs is similar

between the two Cartesian simulations, but in general ropes form and erupt with

smaller η0 in the axisymmetric polar simulations, hence the variation in the pa-

rameter ranges chosen (the x axes of Figure 3.11 are adjusted to reflect this). For

low η0 we observe regular arcade eruptions, but the frequencies are not equivalent

in each model – they are notably less frequent in the Cartesian magnetofrictional

simulations. The pattern is less regular in the axisymmetric simulations, which is to
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Figure 3.11: Overview of 64 runs from each of the three sets of simulations – Carte-
sian magnetofriction (top), axisymmetric polar magnetofriction (middle) and Carte-
sian MHD (bottom), varying η0 on the horizontal axis. Each simulation corresponds
to a vertical line on the plot. The poloidal magnetic flux in the flux rope is repre-
sented by the thickness of the red lines. The times of arcade eruptions are repre-
sented by blue circles and flux rope eruptions by red squares, respectively. The size
of the red squares is proportional to the decrease in poloidal magnetic flux during
an eruption, and the size of the blue circles is proportional to the decrease in open
flux (magnetofriction) or internal energy (MHD) during each arcade eruption.

be expected as the shearing rate is more complex and the domain is larger, allowing

the arcade more freedom to move and become asymmetrical (as observed in Figure

3.7). This freedom also enables the pattern of flux rope eruptions to become less
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regular than in the Cartesian simulations.

It was initially unclear whether there is a minimum (nonzero) η0 below which

a flux rope will never erupt. However, we observe for very low η0 in Cartesian

MHD the poloidal rope flux does not necessarily increase monotonically, and indeed

in this case the rope will likely slowly diffuse away and not erupt. This diffusion

is also observed in some of the cases on the right of Figure 3.11, for ropes that

have already erupted and reformed. In the axisymmetric simulations ropes do not

necessarily form at all for low η0, perhaps due to numerical diffusive effects being

more prevalent compared to the Cartesian simulations, which have a higher grid

resolution and represent a smaller region of the corona.

A large arcade eruption can prematurely trigger a full flux rope eruption. This

phenomenon is clearly observed in the top pane of Figure 3.11 (the Cartesian mag-

netofrictional simulations). As η0 increases, arcade eruptions become larger (indi-

cated by larger blue circles) until they cause the eruption of the rope itself. As

the arcade eruptions have very regular frequency, this has resulted in the stepped

pattern in the time of first flux rope eruption. Such a pattern is also visible in

the Cartesian MHD simulations to a lesser extent, but as the arcade eruptions are

relatively more frequent it is less clear.

Ultimately, we observe very similar dynamics in all three models, verifying that

magnetofriction can indeed accurately represent the qualitative behaviour of mag-

netic flux ropes. We also observe similar behaviour between the Cartesian and ax-

isymmetric polar simulations, indicating that using Cartesian coordinates to model

the local dynamics of the corona qualitatively is a valid approach. It remains to

discuss the conditions of flux rope instability in each of the models.

3.4 Comparison of Potential Eruptivity Indica-

tors

In this section we discuss the possibility of finding one or more scalar quantities

derived from the system diagnostics that can be used to predict an imminent (later)

flux rope eruption. We expect that a single diagnostic value, such as the rope
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current or open flux, cannot itself be a good predictor of eruptivity due to the large

variation in the size and strength of the flux ropes. Instead, we seek ratios between

such quantities, normalised such that they are independent of the overall magnetic

field strength. As the dynamics of magnetofrictional simulations are independent of

the overall field strength, this is an essential requirement.

The diagnostic ratios fall into two categories. The first are ratios of the rope

current or flux squared divided by a reference-based quantity (e.g. |Φ2
a/ẼF |). The

second are ratios between two reference-based quantities (e.g. |HJ/H̃R|). We also

consider the alternative definitions for the reference-based quantities discussed in

Section 3.3.1, and as such there are now four variants of each ratio.

The initial motivation for considering ratios in this manner came from regarding

scatter plots as in Figure 3.12, where the numerator is plotted on the y axis and

the denominator on the x axis. For any snapshot where a flux rope is present, we

check whether an eruption will occur within a given time – 15 days in the case of

this figure but this time cutoff will later be allowed to vary. Those points which do

precede an eruption within the given time are coloured red, and those that do not

are coloured blue.

If there is a clear correlation between the red points on the scatter plots and a

weaker one between the blue points, then this ratio has the potential to be a good

predictor. All of the scatter plots in Figure 3.12 are correlated to some degree, but

it is clear that (for instance) the ratio |HJ/H̃R| (top right) clearly has a threshold

of around 0.6 units at which an eruption will be likely.

We aim to consider all ratios, regardless of physical motivation. However, those

that can be theoretically infinite can be disregarded, such as those which have a

denominator wholly dependent on the presence of a flux rope (eg. Φp) and a nu-

merator that is not (eg. HR). This still leaves several hundred combinations, which

would be difficult to objectively compare by hand. Thus we have an automated

process for identifying which of them are superior, as follows.

For each diagnostic snapshot where a rope exists, the ratio values are sorted

according to whether or not they precede a flux rope eruption within a certain

time cutoff t (between 10 and 50 days), as in Figure 3.12. For each ratio, two
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Figure 3.12: Pairwise scatter plots of the selected diagnostic values from the Carte-
sian magnetofrictional simulations. If a flux rope eruption will take place within 15
days, a point is coloured red. If there is no eruption within this time frame, the
point will be coloured blue. Note that both axes are weighted to be proportional to
the magnetic field strength squared.

histograms are then produced: one for points preceding an eruption and one for

points not preceding an eruption. Figure 3.13 shows these histograms in red and blue

respectively, for three of the diagnostic ratios. The histograms are normalised to have

the same area, resulting in distribution curves R(x, t) and B(x, t) for eruptive and

non-eruptive points respectively. This normalization effectively assumes an equal

weighting of eruptive and non-eruptive ropes – this could be improved with prior

knowledge of the overall probability of a rope erupting. For instance, regarding the
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Figure 3.13: Distribution of eruptive and non-eruptive values and the respective
distribution curves R(x, t) (red) and B(x, t) (blue) for a flux rope eruption within
t = 10 days. The three diagnostic ratios plotted are axial current squared over
relative helicity, poloidal flux squared over relative helicity and the current-carrying
helicity over relative helicity. Note that the poloidal flux ratio plotted here uses the
3D definition of the relative helicity (not including the out-of-plane magnetic flux),
whereas the others use the 2.5D definition. Eruptive points are coloured red and non-
eruptive points coloured blue. The relative heights of each curve give an indication
of the likelihood of an eruption occurring within 10 days for a given measured value
on the x axis. The histograms with little red/blue overlap are better predictors.

ratio |HJ/H̃R| at the bottom right of Figure 3.13, the peak at around 0.6 indicates

that if the diagnostics have this value then a flux rope eruption within 10 days is

very likely – as seen in the respective scatter plot. Good diagnostic predictors will

have little overlap between the blue and red regions while bad predictors have a

significant overlap.
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Figure 3.14: The skill scores for selected diagnostic ratios, varying with the time
cutoff between a prediction and the flux rope eruption. Axial rope current and
flux are denoted Ia and Φa respectively, poloidal rope flux is denoted Φp and the
reference-based quantities are as defined in Section 3.3.1. The particular diagnostic
ratios in black are selected as they perform well in at least one of the simulation
sets.

We then define a proxy for the probability of an eruption within time t given a

diagnostic ratio value x as

Pe(x, t) = 1−
(
1− R(x, t)

R(x, t) +B(x, t)

)2

, (3.57)
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where the squaring in general slightly increases the predictive ability. This is a

simplistic approach, based on the assumption that if a good predictor exists then its

value before eruptions from our existing data will correlate well to its value before

any future eruptions. This is justified to a degree by calculating the accuracy of

these ‘probabilities’ by then comparing back against the data, using a ‘skill score’:

E(t) =
ΣErupt x Pe(x, t) + ΣNo Erupt x (1− Pe(x, t))

Total Number of Values
. (3.58)

If a diagnostic ratio can predict eruptions within a time t perfectly, then it would

have skill score E(t) = 1 (but this would require complete certainty for each value).

If the ratio is no better than random chance than it will have skill score E = 0.5.

The skill scores E(t) for 16 selected diagnostic ratios are shown in Figure 3.14, for

each of the three models. Ratios between reference-based quantities (such as the

eruptivity index) are coloured black, and the other ratios are coloured based on the

numerator.

We find that in the Cartesian magnetofrictional simulations (top) ratios of the ax-

ial current squared (red) to the relative helicity or free energy are the best predictors

back to around t = 30 days before an eruption. In the Cartesian magnetofrictional

simulations these ratios have skill scores up to E = 0.968. These ratios also perform

well in the MHD simulations, with skill scores around E = 0.9. The histograms

for one of these ratios (|I2a/H̃R|) are plotted on the left of Figure 3.13. We observe

that in both of the Cartesian simulations (magnetofriction and MHD) the eruptive

distribution curve R(x, 10) peaks at a value around 15 units, indicating that this

threshold for eruptivity is consistent between magnetofriction and MHD.

Ratios with the poloidal rope flux (green) as numerator consistently performed

the best in the MHD simulations, with skill scores up to E = 0.911, although not

notably more so than the equivalent ratios with axial current. The ratios using the

axial rope flux (blue) as numerator did not perform as well in either of the Cartesian

scenarios.

As may be expected, predictions of eruptions are more accurate closer to the

time of the eruption itself, as seen in the variation in the skill scores plotted in
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Figure 3.14. However, the decreased ability to predict eruptions far into the future

is counteracted by the general increase in likelihood of an eruption within a larger

time frame, explaining why the skill scores do not fall to E = 0.5 particularly quickly.

The predictive ability of the ratios between two reference-based quantities (such

the eruptivity index |HJ/HR|) varies greatly among the three models. The four

of these ratios plotted in Figure 3.14 (in black) are chosen as they are each good

predictors in at least one of the models. As we found previously, the eruptivity

index calculated using the 2.5D definition |H̃J/H̃R| (solid black) is not at all a good

predictor in the Cartesian magnetofrictional simulations. We find it is slightly better

in MHD, but has a maximum skill score of only around 0.75, far less than ratios

involving the axial current or poloidal flux.

However, an alternative definition of the eruptivity index – using a mixture

of the two reference potential field definitions – performs very well in both of the

Cartesian models. This ratio |HJ/H̃R| is plotted as a dot-dashed black line in Figure

3.14, and we observe maximum skill scores of E = 0.928 in the magnetofrictional

simulations and E = 0.910 in the MHD simulations. This good predictive ability

is also evidenced by the sharp peak at around 0.6 in the upper and lower right

histograms of Figure 3.13.

Predictive abilities for all diagnostics are notably lower in the axisymmetric

model than the Cartesian models. The most intuitive explanation for this is that all

the diagnostic quantities are calculated as integrals over the whole Sun rather than

the region immediately surrounding the rope, and so are influenced more heavily by

dynamics away from the rope itself. For this reason we suggest that diagnostic mea-

surements calculated by integrating over smaller domains containing just the active

region in question are likely to be better predictors than those integrated over the

entire corona. Ratios with the axial rope flux as numerator (blue) did not perform

well in the Cartesian simulations, but were (by a small degree) the best predictors

in the polar simulations with skill scores of up E = 0.84.

In the axisymmetric simulations, ratios between reference-based quantities do

not in general perform well, although the variations on the eruptivity index (dot-

dashed, solid and dotted lines in Figure 3.14) do become better at short timescales,
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with skill scores up to E = 0.758 for the ratio |HJ/H̃R|. Even so, this value is

not high enough that it could be reliably used to predict eruptions. This relatively

poor performance is likely due not to the different coordinate systems but to the

size of the integration domain relative to the rope, and the fact that in this case

the current-carrying helicity is capturing irrelevant dynamics from elsewhere in the

system. This exemplifies the need for great care when integrating over different

domain sizes (or indeed the corona) and making predictions based on conclusions

such as these. The best approach when regarding data for the entire corona is most

probably to integrate over a smaller domain, just surrounding the region of interest.

It may also be possible to alter the definitions of the reference-based quanitities to

only include the rope itself, by using the field-line helicity ([92]).

3.4.1 Consistency Between MHD and Magnetofriction

We have shown that certain ratios can perform well as predictors of eruptivity in

both magnetofriction and MHD individually, but have not yet considered the ratio

values themselves at which an eruption is likely to occur. The domain size, initial

conditions and flux rope behaviour are directly comparable between our Cartesian

MHD and Cartesian magnetofriction models, and so we should ideally expect similar

peak values for the eruptive histograms in either case.

Table 3.1 lists the performance of all diagnostic ratios with skill score greater

than 0.8 in either of the Cartesian models, using a time cutoff of 10 days. The peak

eruptive value (in the first two columns) is the diagnostic value for which an eruption

is most likely. Ideally this value would be similar for both the magnetofrictional and

MHD simulations. This is true for most of the ratios, especially for those between

two reference-based quantities (such as the eruptivity index). The only ratios with

large discrepancies (greater than 20%) are those with the free energy (EF or ẼF ) as

denominator.

The fact that these discrepancies exist are an indication that the pre-eruption

magnetic fields are not identical in the two models, which is perhaps to be expected.

However, the fact that most of the ratios have similar peak eruptive values indicates

that magnetofriction could indeed be used as a predictive method for flux rope
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Peak Eruptive Value Skill Score E
Diagnostic Ratio MF MHD Percentage Difference MF MHD

|Φ2
p/H̃R| 0.079 0.065 22.85% 0.900 0.893

|Φ2
p/ẼF | 0.058 0.040 45.32% 0.873 0.917

|Φ2
p/HR| 0.025 0.025 0.589% 0.876 0.905

|Φ2
p/EF | 0.039 0.036 9.168% 0.873 0.915

|Φ2
a/H̃R| 0.162 0.143 13.06% 0.825 0.830

|Φ2
a/HR| 0.048 0.058 18.59% 0.800 0.803

|I2a/H̃R| 13.95 14.46 3.634% 0.968 0.892

|I2a/ẼF | 10.06 14.26 41.79% 0.940 0.900
|I2a/HR| 5.562 6.442 15.80% 0.949 0.893
|I2a/EF | 8.589 12.64 47.22% 0.952 0.897

|H̃J/H̃R| 0.261 0.278 6.266% 0.746 0.810

|H̃R/ẼF | 0.673 0.714 5.975% 0.910 0.808

|H̃R/EF | 0.581 0.644 10.82% 0.758 0.817

|HJ/H̃R| 0.617 0.585 5.414% 0.928 0.908
|HJ/HR| 0.224 0.240 7.258% 0.804 0.839

|HR/ẼF | 1.825 1.696 7.586% 0.834 0.844
|HR/EF | 1.723 1.535 12.29% 0.885 0.856

Table 3.1: Table comparing the peak eruptive value and skill scores at time cutoff
t = 10 days for a variety of diagnostic ratios, using data from the Cartesian mag-
netofrictional and MHD simulations. All ratios with skill scores greater than 0.8 in
either simulation set are included. Ratios that perform well in a certain aspect are
in bold font.

eruptions of this nature, providing that relying upon certain quantities (such as the

free energy) is avoided.

Although all of the ratios in Table 3.1 with the axial current as numerator had

relatively high skill scores in both the magnetofrictional and MHD simulations, only

|I2a/H̃R| has very similar peak eruptive values in both cases – at around 14 units.

This ratio also has the highest skill score in the magnetofrictional simulations. The

equivalent ratio for poloidal flux, but using the other relative helicity definition

|Φ2
p/HR| also performs well in both models, with values around 0.025 units indicating

an eruption is very likely.

The ratios between reference-based quantities (black in Figure 3.14) are in gen-

eral more consistent between magnetofriction and MHD. This is encouraging, but

the skill scores for these ratios are not particularly high compared to those cal-

culated using the rope current or flux. The notable exception to this is the ratio
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|HJ/H̃R|, which has an excellent skill score in both the MHD and magnetofrictional

simulations, and peaks at around 0.6 in both cases.

If the instabilities causing the eruptions were fundamentally different in mag-

netofriction and MHD, we would not expect to see any particular similarities be-

tween the peak eruptive values, and yet the majority of the ratios in the table are

have less than 10% difference between the models. This is unlikely to be mere

chance, and shows that an unstable magnetic field configuration in full MHD is also

likely to be unstable in magnetofriction.

The main consistent difference in the evolution of the magnetic fields (as dis-

cussed in Section 3.3.3), is that using magnetofriction the axial rope flux tends

to increase monotonically as the rope forms (if arcade eruptions are disregarded),

whereas using MHD this flux is more likely to reach a limit and stop increasing long

before the rope becomes unstable. Thus at the point of instability, the diagnostic

quantities which depend heavily on the axial flux will differ more between the two

models.

3.4.2 The Effect of the Orientation of the Background Mag-

netic Field on the Eruptivity Index

We now propose a straightforward explanation for why [93] observed a sharp peak in

the eruptivity index during the formation of flux ropes that later become unstable.

We assert that this is due to the direction of the overlying magnetic field, which

in those simulations is in the opposite direction in their unstable simulations. In

all our simulations the background field has the same orientation, so this is not a

consideration and any increase in eruptivity index is due to other processes.

We will consider a simple analytical model, which shows that the eruptivity index

will naturally be higher when the background/overlying horizontal field direction is

opposite to that of the arcade.

Two magnetic field configurations are presented in Figure 3.15. The left pane

shows a configuration similar to the fields we generate naturally by shearing a po-

tential field, where the background magnetic field is orientated in the same direction

as the arcade. The right pane has the background field in the opposite direction,
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B0 = 0.5 B0 = −0.5

Figure 3.15: Comparison between two magnetic arcades with overlying magnetic
fields in opposite directions. The black lines represent the magnetic field projected
into the (x, z) plane and the heatmap represents the magnetic field strength out of
this plane.

leading to a magnetic null point above the arcade. When flux ropes emerge into

the second type of field, they are more likely to erupt. This was shown clearly by

[93], who compared simulations with both orientations of the overlying field. We

endeavour to show here that the right-hand field configuration fundamentally results

in a higher eruptivity index, for a given sheared field component. By contrast, our

simulations correspond to the left-hand field configuration, so even though they do

erupt, this is not accompanied by sharp increase in the eruptivity index.

The model magnetic field plotted in Figure 3.15 comes from the analytical ex-

pression B = B̃+B0ex, where

B̃x = 4ye−ξ (3.59)

B̃y = −4ye−ξ (3.60)

B̃z = 2(1− ξ)e−2ξ, (3.61)

with ξ = 4(x2+y2). The sheared, out-of-plane component, Bz, is fixed, and the only

parameter is the strength of the background magnetic field, given by the (constant)

parameter B0. The left pane in Figure 3.15 has B0 = 0.5, the right B0 = −0.5. We

proceed to observe the dependence of H̃R and H̃J on B0, as defined in Section 3.3.2,

and the resultant effect on the eruptivity index |H̃J/H̃R|.
Following Section 3.3.2, in order to calculate the relative helicity we choose a

vector potential A = Ã(x, y) + B0yez, where ∇ × Ã = B̃ and Ã is independent
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of B0. Since the B0ex component of B is a potential field, we can similarly choose

ÃP = ÃP (x, y)−B0yez. It follows that for these fields, the ‘current-carrying’ helicity

H̃J =

∫∫
(A− ÃP ) · (B− B̃P ) dx dy (3.62)

has no dependence on the background field B0, because the B0 terms from A and

ÃP will cancel. For the relative helicity, however,

H̃R =

∫∫
(A+ ÃP ) · (B− B̃P ) dx dy, (3.63)

so the two terms add together and it will depend on B0. Thus we can write

H̃R = H̃0 −B0

∫∫
(2yez) · (B− B̃P ) dxdy, (3.64)

where H̃0 is the relative helicity with B0 = 0. Since H̃0 and H̃J have no dependence

on B0, the eruptivity index can simply be expressed as

|H̃J/H̃R| =
∣∣∣∣∣

H̃J

H̃0 −B0

∫∫
(2yez) · (B− B̃P ) dxdy

∣∣∣∣∣ . (3.65)

For a sheared field with Bz non-zero (and non-uniform), we can clearly see that

there will be a particular background field strength B0 where the eruptivity index

will become infinite as the denominator vanishes. For the magnetic field specified

in Equations (3.59) to (3.61) the constants take the values

H̃J ≈ 0.0109 (3.66)

H̃0 ≈ −0.0307 (3.67)
∫

V

(2yez) · (B− B̃P ) dV ≈ −0.2026, (3.68)

which results in a peak in the eruptivity index at B0 ≈ −0.15, when in particular

the overlying magnetic field is oppositely directed to the magnetic field in the upper

part of the arcade (as in the right pane of Figure 3.15). By contrast, if the overlying

magnetic field has the same direction as that in the arcade (B0 > 0, as in the left
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pane of Figure 3.15), then the denominator of (3.65) will not be particularly small

and thus the eruptivity index will not be particularly large.

In all of our simulations – where the flux rope is formed by shearing of a pre-

existing potential arcade – the background field has the same direction as that of

the arcade, whether or not the flux rope erupts. Generalising from the analytical

model with B0 > 0, this explains why our eruptions are not preceded by a high

eruptivity index. Furthermore, for the relevant case of B0 > 0 in the analytical

model, Equation 3.65 shows that smaller B0 will lead to a larger denominator and

hence smaller eruptivity index. Since smaller B0 indicates weaker overlying field and

hence easier eruption, this explains why the eruptivity index is on average smaller

in our eruptive simulations than our non-eruptive simulations, as observed in Figure

3.14.

The simulations of [93], which were driven by flux emergence, included cases

with both directions of background field. The eruptivity index behaved as predicted

by the simple model in this section, but in that case only the cases with oppositely-

directed field (and high eruptivity index) erupted. Our work shows that there is a

whole class of eruptions that will not necessarily exhibit such a peak in the eruptivity

index during the rope formation.

3.5 Discussion

We have used three independent models (Cartesian and polar magnetofriction, and

Cartesian MHD) to evaluate the ability of a variety of scalar diagnostic quantities

to predict the eruption of magnetic flux ropes. We have determined that ratios of

the axial rope current squared divided by the relative helicity or free energy are

in general the best predictors, but the only one of these ratios that was consistent

between magnetofriction and MHD was |I2a/H̃R|, with a peak eruptive value of

around 14 units.

Ratios of the poloidal flux squared divided by the relative helicity are also good

predictors, but again the only ratio consistent between the two models was |Φ2
p/HR|,

with a peak eruptive value of around 0.025 units. Note that the ratios between the
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relative helicity and current-carrying helicity are dimensionless, but the other ratios

are not necessarily so and will depend on the chosen length units. At this point

in the study, we do not attempt to correlate these thresholds to any meaningful

measurable quantity in the real corona.

Ratios with the free energy (defined using either type of reference field) as de-

nominator have peak eruptive values that differ significantly between MHD and

magnetofriction. This does not necessarily indicate that these ratios cannot be

good predictors, but any errors in the extrapolation of the magnetic field may be

more likely to alter the respective predictive thresholds. The relative helicity, also

defined in either manner, performs better as a denominator and does not have this

problem, with (in general) similar peak eruptive values. There has also been ex-

tensive work in the estimation of these helicity values using only the helicity flux

through the lower boundary of the domain – where in general the magnetic field can

be determined from observations with much more certainty.

It is reasonably likely that there exist alternative ratios similar to those studied

here that would also perform very well, where the numerator increases steadily as the

rope forms and the denimonator remains roughly constant. In future, when it may

be possible to use full 3D simulations in this manner, these alternative ratios can be

explored further. In that case, there will be additional difficulties/possibilities in the

variation of the definitions of the ratios, such as determining which magnetic field

lines are actually in the rope, which will provide considerable additional interest.

The alternative class of ratios (black in Figure 3.14) – those between the relative

helicity, current-carrying helicity and free energy – were in general more consistent

between magnetofriction and MHD. This is likely due to these quantities being

affected less by the out-of-plane component of the magnetic field in the rope, and

the definition of the area of the rope itself. However, although there does tend to be

a ratio threshold at which all eruptions occur, not all ropes that reach this threshold

will erupt. In contrast, when the axial current is the ratio numerator there instead

tends to be a specific threshold above which ropes are very likely to erupt.

We have presented two ways to define HR, HJ and EF , which each have their

merits depending on the coordinate system. Of note, the eruptivity index |HJ/HR|
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is not a good predictor of eruptions except when defined as |HJ/H̃R| – where the

out-of-plane component of the reference potential field is included in the relative

helicity H̃R but not in the current-carrying helicity HJ . Almost all eruptions in

either the Cartesian MHD or Cartesian magnetofriction simulations occurred when

this index had a value around 0.6 units.

An explanation for the predictive ability of this particular form of the ratio

is that the out-of-plane flux in the rope has more of an effect on the 3D helicity

definition (HR) than the 2.5D definition (H̃R). When using the 2.5D definition the

out-of-plane component of the magnetic field B is counteracted somewhat by the

nonzero component in the potential field BP . Thus the presence and strength of

the rope, with its highly out-of-plane magnetic structure, is best quantified using a

numerator with the 3D definition (e.g. HJ). In general the ratios with denominators

using the 2.5D definition (e.g. H̃R) performed better, perhaps as these diagnostics

are less affected by the presence of the rope, instead being better indicators of the

state of the background magnetic field.

We note that the actual value of any of these ratios will depend significantly on

the size and configuration of the domain (as evidenced by the large difference in these

values between the Cartesian and axisymmetric simulations), which is why it was

important for the model comparisons that the initial condition and domain setup

were identical. It remains to find a method for establishing the eruptive thresholds

for an arbitrarily-sized (or shaped) domain. A simple scaling law is most probably

not sufficient as the rope itself will in general vary in size relative to the domain

volume, so additional corrections would be required. The area of the rope itself is

well defined in 2.5D as the region with infinitely-long field lines, but it is hard to

quantify in 3D. An approach using the field-line helicity is likely to be helpful in

this regard.

Magnetofriction could be a useful tool for predicting the eruptions of ideally

unstable 2.5D flux ropes, as we have shown that there exist several diagnostic ratios

that have consistent thresholds for eruptivity in both magnetofriction and MHD.

However, there are many processes in full MHD such as breakout ([17]) or tether

cutting ([76]) that can be responsible for flux rope eruptions, and differ from the
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instabilities responsible for the eruptions in our models. It remains to be shown

whether similar results to ours can be obtained for these cases. It must be noted that

several of our diagnostic ratios did not show consistency between the two models,

and so these comparisons must be tested further in 3D before any predictions of

eruptivity are made solely using magnetofrictional methods.

We note that the qualitative behaviour of the flux rope system is very similar

in either Cartesian or polar coordinates, but the diagnostic values behave very dif-

ferently when the integration domain extends far beyond the influence of the rope.

When calculating integrals of helicity in the real corona it would thus be necessary

to integrate over a smaller domain just surrounding the rope itself, although in that

case care must be taken to choose the location of the boundary of such a domain.

Despite this, even when using the entire corona as the integration domain in this

study (in the spherical polar simulations) several diagnostic ratios did exhibit consis-

tent eruptivity thresholds, albeit with lower predictive ability than in the Cartesian

simulations.

We have shown that the ratio of axial current squared to relative helicity exhibits

a threshold above which eruptions are likely. However, in 3D the rope is less well-

defined, and as such the axial current itself would likely be more problematic to

measure than the helicity – not least that the area of the rope itself is not clear-cut.

Thus, when using real observed data it is likely that some of the ratios here that

did not perform quite as well would in fact be more useful. Due to the possibility of

measuring helicity flux through the lower boundary, the eruptivity index |HJ/H̃R|,
appropriately defined, may well provide the most accurate indication of an imminent

flux rope eruption. The challenge in that case will be to modify the definition of the

2.5D helicity to account for the out-of-plane flux in the rope in 3D, which will in

general vary along the length of the rope. A mixed approach using relative field-line

helicity will likely be necessary.
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CHAPTER 4

A New Icosahedral Magnetofrictional Code

Chapter 3 described how simple 2.5D models can be used to seek scalar quantities

which could theoretically be used to predict magnetic flux rope behaviour. Removing

the third dimension allows us to run far more simulations (as an individual run is

far faster) than for a full 3D model, forming the basis for the statistical analysis

used to come to our conclusions. However, although reasonably compelling, we do

ultimately need to confirm that these results are valid for configurations that are

not symmetric in the third dimension.

This could be achieved using existing magnetofrictional (or even MHD) codes

(see Section 1.4). These models are far more computationally expensive than our

2.5D versions, but would still hopefully be adequate for a small-scale parameter

study of flux rope behaviour. However, as a first step towards future 3D analysis

we have instead developed a brand-new magnetofrictional code based an icosahedral

grid. This approach has both advantages and disadvantages over existing equivalents

using regular spherical coordinates.

In this chapter we first discuss the motivation for choosing this approach. We

then describe the implementation of differential operators on such an irregular stag-

gered grid, and the methods for optimising the grid to improve their accuracy by
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moving the individual grid points relative to one another (known as ‘tweaking’). We

then discuss the calculation of potential (PFSS) fields using the multigrid method,

building on the theoretical approach described in Section 1.4.2, and compare these

to the potential fields plotted for reference in Chapter 2. We then evaluate the

options for interpolating the magnetic field and current density – a necessary step

for field line tracing and the calculation of the magnetofrictional velocity.

We finish with some initial results using the code. We initially test the code

with an imposed solar wind and no dynamic lower boundary conditions, comparing

these equilibrium solutions to the outflow fields of Chapter 2. Adding in the lower

boundary effects of differential rotation and supergranular diffusion, we then test the

differences between simulations with a constant magnetofrictional relaxation rate –

made possible with the new code – and those where the relaxation rate decreases near

the poles, as is the case in some existing models using regular spherical coordinate

grids.

4.1 Motivation for the Icosahedral Grid

When using the magnetofrictional (MF) model, the major limitation on the com-

puting time is the need to satisfy the Courant–Friedrichs–Lewy (CFL) condition on

the numerical timestep ([121]). When applied to parabolic PDEs such as the MF

model this is essentially a constraint on the timestep, ensuring it is less than the

time taken for information to diffuse across one grid cell. For hyperbolic PDEs the

limiting timestep is usually related to the time taken for waves to travel across one

grid cell. If the CFL condition is not satisfied, numerical instabilities will develop

and the solution will generally blow up rapidly.

In the context of the MF equations (see Section 1.4.1), this restriction on the
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timestep ∆t for a grid resolution ∆x can be written as

∆t ≤ C
∆x2

ν0
(4.1)

∆t ≤ C
∆x2

η
(4.2)

∆t ≤ C
∆x

max(vout)
, (4.3)

where these restrictions correspond to magnetofrictional relaxation, diffusion and

the imposed outflow velocity (which is hyperbolic) respectively. The constant C

depends on factors such as the precise numerical scheme and the shape of the grid

cells, and must be in the range 0 < C < 1. For a regular Cartesian grid C is

often chosen to be around 0.1− 0.2, values which also appear to be sufficient for the

icosahedral code. For our purposes the first of these conditions, which corresponds

to the magnetofrictional relaxation speed, will usually be the most restrictive.

Figure 4.1: Comparison of base points of the spherical polar grid used by an existing
magnetofrictional code (eg. [14], left) , which is equally spaced in ϕ and cos(θ), and
the ‘untweaked’ icosahedral grid (right) with G = 4 recursions. The poles are
identified in green, there being two in spherical polar coordinates and twelve on the
icosahedron.

We can clearly see that the smaller the grid resolution, the smaller the timestep

must be – and it decreases quadratically with the dimensions of the grid cells. The

existing code which we shall frequently use as a reference ([14]) uses a spherical polar
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coordinate system (the left pane of Figure 4.1) to model the corona. This naturally

leads to the grid mesh becoming finer closer to the poles, and a heavier restriction on

the timestep than strictly necessary. This can be overcome by introducing a spacial

dependence to the MF relaxation rate, such that this rate is slower near the poles,

i.e.

ν(θ) = ν0 sin
2(θ), (4.4)

where θ here is the angular distance from the north pole (eg. [14]). Although this

does not affect the accuracy of these simulations too greatly, as the areas of interest

are generally close to the equator, it does introduce an undesirable unrealistic factor

– it would be preferable to have a constant relaxation rate throughout the domain,

or to have it vary spatially based on physical motivations instead.

The optimum scenario is thus to use a grid which covers the spherical geometry

of the corona with grid cells which have both similar area/volume and shape over the

entire domain. The icosahedral grid that we describe in this chapter achieves this

by covering the sphere in triangles. These triangles are extended into 3D simply by

connecting concentric spheres – so each 3D grid cell is in fact a stretched trapezium.

The grid is constructed by recursively subdividing the faces of an icosahedron (a

platonic solid with 12 vertices and 20 triangular faces) and then ‘inflating’ each

point so that it lies on the unit sphere. The right pane of Figure 4.1 shows such

a grid after G = 4 recursions. Each of the original icosahedron faces is coloured

differently, and is composed of (24)2 = 256 small triangular grid cells.

This approach is not particularly novel. The advantages of an icosahedral grid

over standard spherical coordinates apply to a variety of other fields, and such grids

are commonly used for large scale fluid simulations such as modelling the weather

in the Earth’s atmosphere. In this field the use of non-regular grids in fact dates

back to the late 1960s and was first proposed by [122] and [123], and a significant

proportion of global models used by national weather services now use this approach

(eg. [124], [125]).

These grids have also been used to model magnetic fields. Significantly, [126]

provided a detailed framework for modelling full MHD processes in the context of

astrophysical plasma flows. This approach was expanded upon by [127], although
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it appears that to date there has been little research using such large-scale MHD

models, with most still employing a standard spherical coordinate system. Despite

their advantages, by their very nature such grids will be more difficult to imple-

ment in most scenarios and this is likely the limiting factor in the rate of their

adoption. Alternative grids to the icosahedral/triangular approach also exist, such

as the cubed-sphere model (also proposed by [122]), the Ying-Yang grid ([128]), in

which the sphere is wrapped in two distorted rectangular sections similarly to a

tennis ball (with some areas covered twice) and the icosahedral/hexagonal model

([129]), wherein the raw grid cells are hexagons and pentagons rather than triangles.

The former has particular advantages with regard to the numbering of grid cells,

but the lack of a staggered grid makes magnetic flux conservation more difficult.

The latter is essentially equivalent to our approach, as we shall see in Section 4.2.2.

It appears that ours is the first attempt to use the magnetofrictional model on

a non-regular grid to model the solar corona. With current computational limi-

tations this could arguably be more useful than MHD equivalents, which are still

prohibitively slow when modelling the entire corona.

4.2 Grid Setup and Differential Operators

4.2.1 Grid Geometry

The basic procedure for generating the icosahedral grid is shown in Figure 4.2. The

base icosahedron, with 20 triangular faces and 12 poles, is shown in the top left pane.

To increase the grid resolution each of these triangular faces is equally divided into

four smaller triangles. The vertices of these triangles are then inflated to lie on

the unit sphere. This process then repeats iteratively, quadrupling the number of

triangles with each subdivision. We assign each stage resolution a number G, where

G = 0 is the base icosahedron, G = 1 is one subdivision, and so forth.

This produces the ‘raw grid’, as it will henceforth be known. The ‘raw grid cells’

are the triangles, and the ‘grid points’ are the vertices of these triangles. The total

number of grid cells is 20×(2G)2, and the total number of grid points is 2+10×4G. To

achieve a resolution similar to existing magnetofrictional codes (around one degree
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Figure 4.2: An illustration of the recursive segmentation of the grid, ranging from the
original icosahedron (top left, corresponding to G = 0), to grid scale G = 5 (bottom
right). At this resolution there are a total of 20480 grid cells on the surface. The
original 12 poles of the icosahedron are identified in green.

in latitude and longitude) requires G = 6 subdivisions, corresponding to 81290 cells

on the surface. This particular approach appears to be the most common in existing

literature, although it must be noted that directly projecting an already-subdivided

flat grid (such as in Figure 4.3) onto the sphere results in an alternative that in

fact performs rather better than the recursive approach (although not as good as a

‘tweaked grid’, discussed in the Section 4.3).

We also require the construction of a ‘dual grid’, to allow for the calculation of

differential operators. This follows from the raw grid by regarding the centre of each

raw grid cell (the ‘grid centres’) as the vertices of the ‘dual grid cells’, which are

all hexagons apart from the 12 that lie directly on the original icosahedron poles,

which are pentagons. We choose the centre of each triangle to be the circumcentre,

defined as

c =
(p1 − p0)× (p2 − p0)

|(p1 − p0)× (p2 − p0)|
, (4.5)

where pi are the vertices of the triangle. The normal vector through the circumcentre

is perpendicular to the three sides of the triangle. Figure 4.3 illustrates the raw

and dual grids for one of the 20 base ‘segments’ (flattened into two dimensions for

illustrative purposes), at grid scale G = 2.
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Figure 4.3: Diagram of the raw (left) and dual (right) grids for a single icosahedral
segment. This is grid resolution level G = 2, corresponding to n = 2G = 4 cells on
each side of the face, with n2 = 16 triangular grid cells (excluding the ghost cells) and
1
2
(n+1)(n+2) = 15 grid points – which are the centres of the hexagons/pentagons

on the dual grid. The cells that lie outside the boundaries of the segment (in red)
are ghost cells.

The grid cells which lie within the base triangle are numbered in a pattern that

should be clear from Figure 4.3. We also require ghost cells, to allow the exchange of

information from neighbouring segments. These are numbered anticlockwise around

the edge of the segment. The grid points (and hence dual grid cells) are numbered

in a similar manner, although the dual grid ghost cells are not shown in the figure.

By redefining the raw grid as the dual grid and vice versa we recover the alterna-

tive icosahedral/hexagonal model. Numerically the two approaches are identical,

although deciding that the raw grid is the triangular cells (as we do) makes the

implementation of differential operators a little easier.

The grid is extended into 3D relatively simply. In the radial direction the raw

grid is equally spaced in ρ = ln r, where r is the radius. The lower boundary of

the domain (the solar surface) is set to be r = 1. This is in line with existing

magnetofrictional codes and serves to increase the resolution lower in the corona,

which is generally of more interest. Thus the raw grid cells in 3D are stretched

trapezia, slightly larger at the top than the bottom. The dual grid is extended in a

similar manner, although radially the cell boundaries lie halfway between those of

the raw grid.
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4.2.2 Differential Operators

The code uses the ‘staggered’ approach as detailed in Section 1.4.1, suitably mod-

ified to work on the new grid. As for the other geometries, it is essential that we

maintain the solenoidal condition ∇ · B = 0 to machine precision. Numerically,

this corresponds to the net magnetic flux through the surfaces of every raw grid cell

being precisely zero.

We now introduce some notation. The grid cells are numbered by the index k

in the plane (‘horizontally’), and j in the radial direction. Each side of a cell is

identified by the index i, where i = 0, 1, 2 for the triangles on the raw grid and

i = 0, 1, 2, 3, 4, 5 for the hexagons on the dual grid. Extreme care is taken in the

code as to the consistency of the numbering of each side. The pentagons at the

segment corners will henceforth be ignored – the procedure for them is identical to

the hexagons apart from summing over 5 sides instead of 6. The length of raw grid

cell sides (at r = 1) are denoted by lk,i and the length of dual grid sides as dk∗,i∗ .

The numbering systems of the raw and dual grids are necessarily different, hence

the indices relating to the dual grid have asterisks.

The areas of each raw grid cell at r = 1 can be calculated by the formula ([130])

RH
k,0 = 2arctan

( |p0 · (p1 × p2)|
1 + p0 · p1 + p0 · p2 + p1 · p2

)
, (4.6)

where pi are again the vectors corresponding to the vertices of cell k. The super-

script H indicates this is a ‘horizontal’ area (in the plane of the spherical surface).

Extending into 3D these areas are

RH
k,j = r2jR

H
k,0. (4.7)

The areas of the ‘vertical’ surfaces on the side of each trapezoidal grid cell are

RV
k,j+1/2,i =

1

2
(r2j+1 − r2j )lk,i, (4.8)
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and the volume of the cell is

Vk,j+1/2 =
1

3
(r3j+1 − r3j )R

H
k,0. (4.9)

Similar expressions can be calculated for the dual grid cells, accounting for the offset

in the radial direction due to the staggering.

The Solenoidal Condition

The magnetic field B is stored as magnetic fluxes through each of the grid cell faces,

divided by the area of the respective face. The solenoidal condition can then be

expressed as

∇ ·Bk,j+1/2 =
1

Vk,j+1/2

∑

i=0,1,2

(RV
k,j+1/2,iB

h
k,j+1/2,i) +RH

k,j+1B
r
k,j+1 −RH

k,jB
r
k,j (4.10)

= 0, (4.11)

where the magnetic field strength has radial components Br and horizontal compo-

nents Bh.

The Curl Operator

As for the codes used in Chapter 3, we express the magnetic field B in terms of a

vector potential:

B = ∇×A. (4.12)

On the raw grid, the A field is stored as line integrals along the edges of the raw

grid cells. The horizonal components are orientated anticlockwise. The magnetic

field can then be calculated from the vector potential using Stokes’ Theorem:

∫

S

B · dS =

∮

C

A · dl, (4.13)
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where S is a surface with boundary C. Naming the horizontal and radial components

of A by Ah
k,j,i, A

r
k,j+1/2,i respectively, this corresponds numerically to

Br
k,j =

1

RH
k,j

∑

i=0,1,2

Ah
k,j,ilk,irj (4.14)

Bh
k,j+1/2,i =

1

RV
k,j+1/2,i

(Ah
k,j,ilk,irj − Ah

k,j+1,ilk,irj+1+

(rj+1 − rj)(A
r
k,j+1/2,i+1 − Ar

k,j+1/2,i)). (4.15)

The electric current field j = ∇ × B is calculated similarly, but on the dual grid.

This is possible as the position of fluxes through cell walls on the raw grid is the

same as the position of line integrals on the edges of dual grid cells, and vice versa.

We name the dual grid cell face areas as SH
k,j+1/2 and SV

k,j,i respectively (noting the

position in the radial direction differs to the raw grid). The expression for this curl

operator would be difficult to write explicitly as we need to sum the line integrals of

the magnetic field around the edge of each hexagon, which are numbered differently

to the raw grid cells. Hence to avoid unnecessary detail we just assume the correct

k, i on the raw grid are chosen for a given dual grid cell k∗ and side i∗:

jrk∗,j+1/2,i∗ =
1

SH
k∗,j+1/2

∑

hexagon sides

Bh
k,j+1/2,idk,irj (4.16)

jhk∗,j,i∗ =
1

SV
k∗,j,i∗

(Bh
k,j−1/2,idk,irj −Bh

k,j+1/2,idk,irj+1+

(rj+1/2 − rj−1/2)(B
r
k,j,i+1 −Br

k,j,i)). (4.17)

The Laplacian Operator

The initial condition we choose to initialise the code with is a PFSS model of the

magnetic field (see Section 1.4 for a discussion of this model). This is primarily

due to its relative simplicity, and the advantages of generating test cases for the

magnetic field that have zero (or numerically very small) current. Such fields should

be in equilibrium in the absence of dynamic boundary conditions and as such can

be used to check the stability of numerical schemes.

On the interior of the domain, the magnetic field takes the form of a gradient of
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a scalar variable φ:

B = ∇φ. (4.18)

Numerically, this corresponds to

Br
k,j =

1

rj+1/2 − rj−1/2

(φk,j+1/2 − φk,j−1/2) (4.19)

Bh
k,j+1/2,i =

1

rj+1/2dk,i
(φk′i,j+1/2 − φk,j+1/2), (4.20)

where k′
i is the raw cell adjoining side i of cell k, and dk,i (with raw numbering) is

the distance between the centres of the two cells at r = 1.

We can then substitute these formulae into Equation 4.11 to obtain

∆φk,j+1/2 =
1

Vk,j+1/2

∑

i=0,1,2

(RV
k,j+1/2,i

1

rj+1/2dk,i
(φk′i,j+1/2 − φk,j+1/2))

+
RH

k,j+1

Vk,j+1/2

1

rj+3/2 − rj+1/2

(φk,j+3/2 − φk,j+1/2)

−
RH

k,j

Vk,j+1/2

1

rj+1/2 − rj−1/2

(φk,j+1/2 − φk,j−1/2) = 0, (4.21)

which can be simplified a little by using the expressions for the areas and volume

(Equations 4.7, 4.8 and 4.9):

∆φk,j+1/2 =
3(r2j+1 − r2j )

2(r3j+1 − r3j )R
H
k,0

∑

i=0,1,2

(
1

rj+1/2

lk,i
dk,i

(φk′i,j+1/2 − φk,j+1/2)

)

+
3

(r3j+1 − r3j )

(
r2j+1

rj+3/2 − rj+1/2

(φk,j+3/2 − φk,j+1/2)−

r2j
rj+1/2 − rj−1/2

(φk,j+1/2 − φk,j−1/2)

)
= 0. (4.22)

Finding a suitable PFSS field requires this complicated linear system to be solved.

We achieve this using a ‘multigrid method’, which will be discussed in detail in

Section 4.4.

The Laplacian in two dimensions (constrained to the spherical surface) can be

found by neglecting variation in the radial direction, setting rj+1/2 = 1 and taking
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the limits rj → rj+1/2, rj+1 → rj+1/2:

∆φ
(2D)
k =

1

RH
k,0

∑

i=0,1,2

(
lk,i
dk,i

(φk′i
− φk)

)
. (4.23)

4.3 Optimising the Grid

On a Cartesian grid, differential operators constructed in this manner will be in

general second-order accurate, as they equate to a central differences scheme. It can

also be shown that this is true on a grid composed of equilateral triangles on a flat

surface (as in Figure 4.3), but when the grid is projected onto the spherical surface

this ceases to be the case as the cells are no longer precisely equilateral.

To improve the accuracy, the grid can be ‘tweaked’ – moving the grid points

such that the error in the operators is minimised. This process was introduced by

[131], [132] in the context of modelling the shallow water equations and atmospheric

weather prediction. There are several other approaches to this problem, the most

common alternative being the ‘spring’ model of [133], but these are seemingly more

difficult to implement.

The process for tweaking the grid is laid out nicely in [134], although in that

paper they seek to minimise the error in the Laplacian when calculated at the grid

centres of the dual grid (the hexagons) rather than the centres of the raw grid as we

do in Equation 4.22. They propose that the error in the Laplacian can be minimised

by reducing the average distance λ between the midpoints of the lines connecting

the grid points (triangle vertices) and grid cell centres, as shown in Figure 4.4. This

approach follows from the analysis of [132]. The aim is then to alter the position of

the grid points such that this error is minimised over the entire surface. The overall

‘minimiser’ function is chosen to be

fminimiser(x) =
all cells∑

k

all edges∑

i

(
λk,i

dk,i

)4

, (4.24)

where the exponent increases the influence of particularly problematic cells and

makes the minimiser function more convex, which generally will make it easier to

find minima. The minimiser function depends on the locations of the grid points
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l/2 l/2

λ

d
d/2

Figure 4.4: Diagram showing the geometry of two dual grid cells, with distance be-
tween the raw grid points (triangle sides) l and distance between raw grid centres d.
The distance λ is used in the minimiser function used to ‘tweak’ the grid. The ideal
positions for the raw grid points are the grey circles. The use of the circumcentres
as the dual grid points means that the line between two raw grid centres will always
be bisected by the line between two raw grid points. Reproduced from [134].

(here written as x), and it must be noted that every time a grid point moves the

centres of the six cells surrounding it must also move, which will influence the overall

minimiser.

The function fminimiser(x) is minimised using the ‘Bounded Limited-memory Roy-

den – Fletcher – Goldfarb – Shanno’ method (or ‘L-BFGS-B’ method) [135], a quasi-

newtonian minimisation method. In our code the method is implemented using the

built-in solver scipy.optimize. This simplifies matters, but difficulty here lies

with the calculation of the gradient function required for such a method within a

reasonable timeframe.

Theoretically, each grid point on the surface could have two degrees of freedom,

leading to a vector x of dimension 2+ 10× 4G. For high G this is clearly enormous.

However, we note that the solution must be symmetrical both between each of the

20 segments (such that the 12 base icosahedron vertices remain stationary). We

also have a six-fold symmetry within each segment, reducing the overall degrees of

freedom to an upper bound of roughly 1
24

× 4G. Additional constrains, such as the
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Figure 4.5: Comparison of the minimiser function on the untweaked (left) and
tweaked(right) grids at grid scale G = 7. The colormap corresponds to the func-
tion log|∑i=0,1,2 λk,i/dk,i| for each of the raw grid cells. A logarithmic scale is used
for illustration here as the minimisation function on the untweaked grid varies over
several orders of magnitude, and it reveals a nice pattern.

fact that points lying on segment boundaries must stay there, mean that the actual

number is slightly less than this, depending on the resolution. Once the tweaked

point positions have been obtained for this small region, the points on the rest of

the global surface can be obtained through reflections and rotations.

The gradient vector ∇fminimiser(x) is calculated by central differences, moving

each point in turn in two linearly-independent directions on the surface and noting

the effect on the global minimiser. Only the contribution to the minimiser from cells

in the immediate vicinity of the moving cell is accounted for, reducing the order of a

single gradient evaluation from O(24G) to O(22G). Extra care must be taken around

the edges of the segment as the location of ghost points will also be affected.

The order of the L-BFGS-B method is itself O(24G), so this is by no means a

fast process for high resolutions, but the tweaked grid theoretically only needs to

be computed once. We find that a significant improvement to the convergence time

can be obtained by subdividing an already-tweaked grid rather than starting with

the raw icosahedron. This is the approach that our code uses.

We have computed tweaked grids up to a grid scale of G = 7. Beyond this the

convergence to an optimal solution becomes very slow and numerically problematic
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Figure 4.6: Plots of the error in the numerical approximation to the 2D Laplacian
for the test function φ(θ, ϕ) = sin3(θ) cos(3ϕ), for the untweaked (left) and tweaked
(right) grids at resolution G = 7, evaluated at grid centres as in Equation 4.23. Note
the different scales of the colorbars.

due to the need to calculate distances between points very close together on the

surface. For our purposes, such high resolutions will not be required in practice and

so this is not an issue. Figure 4.5 shows the effect of the tweaking process on the

minimisation function. The plot takes the logarithm of this for illustrative purposes

as the function itself varies over several orders of magnitude on the untweaked grid.

We observe that after tweaking the error function is much more uniform over the

entire surface, and at this resolution its maximum value is a tiny fraction of the

untweaked equivalent. Although the error in the Laplacian is not necessarily directly

proportional to the error in the other operators, it serves as a reasonable proxy as

errors in other operators will also increase with larger values of the distance λ, which

we have sought to minimise. The exact weighting of the minimiser function could

alternatively be altered to suit a different operator, if desired.

To test the result that such an optimised grid should provide a more accurate

approximation to the Laplacian ([132]), we use a test function

φ(θ, ϕ) = sin3(θ) cos(3ϕ), (4.25)
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which has Laplacian

∆φ(θ, ϕ) = cos(3ϕ)[9 sin(θ) cos2(θ)− 3 sin3(θ)− 9 sin(θ)]. (4.26)

This is then compared against the numerical result for the 2D Laplacian (∆ϕapprox),

calculated using Equation 4.23. Figure 4.6 compares this error on the untweaked

and tweaked grids at grid scale G = 7. We observe a marked improvement after

tweaking, with the error generally being far lower and more evenly spread out across

the surface. In contrast, on the untweaked grid the error is concentrated along

certain lines (with a similar pattern to the minimisation function shown in Figure

4.5, and in some places is larger than the magnitude of the test function itself.
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Figure 4.7: Plots illustrating the convergence of the numerical approximation to the
Laplacian of the test function φ(θ, ϕ) = sin3(θ) cos(3ϕ) as the grid scale G increases.
The plots compare the norms of the error ∆φ − ∆φapprox on the untweaked and
tweaked grids.

To quantify this improvement, we take the norms of the absolute error across

the entire surface and observe the convergence as the grid resolution increases. We

define the L∞ and L2 norms as:

L∞ = max
k

|∆φ−∆φapprox| (4.27)

L2 =

(
1∑

k R
H
k,0

∑

k

RH
k,0(∆φ−∆φapprox)

2

)1/2

, (4.28)

where ∆φapprox is the numerical approximation to the Laplacian and RH
k,0 are the

areas of the raw grid cells at r = 1.
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Figure 4.7 compares the convergence of the two norms with increasing grid scale

G. The most notable difference between the untweaked and tweaked grids is that the

L∞ norm does not converge at all on the untweaked grid – even at G = 7 we see large

absolute errors in the Laplacian. These errors are confined to relatively small areas,

however, and as such the L2 norm does converge on the untweaked grid, although

not particularly quickly. Convergence on the tweaked grid using either norm is at

least linear.

This result confirms the conclusions of [134], and also shows convergence when

the Laplacian is evaluated at raw grid centres in addition to the grid points. This

provides justification that our numerical schemes are consistent in combination with

the use of the tweaked grid.

4.4 Calculation of Potential Fields - The Multi-

grid Method

To initialise the magnetofrictional simulations we intend to run on the icosahedral

grid, we require a suitable initial condition. We choose this condition to be a po-

tential field, specifically the PFSS model (see Section 1.4.2). Although this model

does have its disadvantages, potential fields are relatively simple to calculate and

have the advantage that they are stable solutions of the magnetofrictional equations,

given the current density j vanishes everywhere.

We have previously discussed several approaches to numerically calculating PFSS

fields. On a regular grid, such as those used in Chapters 2 and 3, it is possible to

construct a solution from a series of Fourier (or Legendre in the spherical case)

modes. In combination with a Fast Fourier Transform algorithm, this approach is

unmatched for speed.

However, on an irregular grid such as ours such a mode decomposition is not

possible. Instead, we use a ‘multigrid method’. The multigrid process was first

conceptualised in the 1970s by [136] and later formalised by [137] and [138]. The

principle is relatively simple: basic relaxation techniques such as Gauss-Seidel (GS)

or successive-over-relaxation (SOR, see Section 1.4.2) will converge to the true so-
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lution in a number of steps related to the number of grid cells. Multigrid methods

apply the same approach as those methods, but on multiple scales. The grid is first

reduced in resolution down to a certain coarseness at which a solution can be found

quickly. It is then interpolated onto a finer-scale grid. At this point the solution is

already reasonably accurate, except for detail only visible at fine scales. This error

can then be smoothed out using SOR or equivalent, which can deal with fine detail

relatively quickly. The process then repeats on finer and finer grids until the desired

resolution is attained.

The construction of our icosahedral mesh lends itself to this approach quite

naturally, as with each successive subdivision of the mesh (as in Figure 4.2) the

number of grid cells doubles in each dimension. For simplicity of calculation we

choose the number of grid cells in the radial direction to be the same as the number

of cells along the side of each of the 20 segments: 2G. This also has the nice property

that with an upper boundary of r = 2.5 each grid cell has sides of roughly equal

length both radially and otherwise.

The system we need to solve to obtain a PFSS field is simply the 3D Lapla-

cian, which numerically on our mesh is Equation 4.21. We require two boundary

conditions, both on the radial magnetic field strength on the lower boundary r = 1

and the upper boundary r = 2.5. The upper boundary condition is that the mag-

netic field lines are radial. Numerically this condition corresponds to the horizontal

magnetic flux averaged to the upper boundary being zero:

1

2
(Bh

k,nr−1/2,i +Bh
k,nr+1/2,i) =

=
1

rnr−1/2dk,i
(φk′i,nr−1/2 − φk,nr−1/2) +

1

rnr+1/2dk,i
(φk′i,nr+1/2 − φk,nr+1/2) = 0,

(4.29)

which can be satisfied by setting

φk,nr+1/2 = −rnr+1/2

rnr−1/2

φk,nr−1/2 (4.30)

for all cells k. The lower boundary condition prescribes the radial magnetic field

150



strength, which can be obtained from measurements of the solar surface for sim-

ulations, or as an analytic test function. Denoting this boundary field as B̃r
k the

condition is then

B̃r
k =

1

r1/2 − r−1/2

(φk,1/2 − φk,−1/2) (4.31)

φk,−1/2 = φk,1/2 − B̃r
k(r1/2 − r−1/2). (4.32)

These boundary conditions, along with Equation 4.21, can be interpreted as a linear

system

∆φ = Aφ− b = 0, (4.33)

where b is a vector with the same dimensions as φ, and A is a matrix such that this

matrix multiplication is equivalent to taking the Laplacian with zero lower boundary

condition. The vector b is obtained by taking the Laplacian of the zero vector, as

described in Section 1.4.2.

Once expressed as such, we can treat this as a generic (but very large!) linear

system and apply the multigrid method. The code we have developed uses repeated

‘V-cycles’, whereby the grid scale is repeatedly coarsened and refined. At the end

of each V-cycle the system then solves for the remaining error. The code converges

(to a given L2 norm of the Laplacian) in time of order O(n3), where n = 2G. One

cannot hope for any better than this as a single iteration of SOR is also O(n3). The

use of more complex algorithms (such as ‘F-cycles’) did not appear to provide any

significant improvement to the convergence rate.

The process behind a single V-cycle is illustrated in Figure 4.8. To explain this

in detail we discuss the simplest V-cycle, merely using grid scales G = 1 and G = 2.

The system we wish to solve is

AxG=2 = bG=2, (4.34)

where bG=2 is known and xG=2 is to be determined. The matrix A is calculated

analytically from the grid operators at the appropriate resolution.

Roughly, the process is as follows:
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G = 3

G = 2

G = 1

Restriction

Restriction Interpolation

Interpolation

Exact Solution

Smoothing Smoothing

SmoothingSmoothing

Figure 4.8: Illustration of a multigrid V-cycle up to grid scale G = 3. At each
grid resolution G the solution φ is ‘smoothed’, using a few iterations of SOR. The
grid is then restricted to a coarser resolution. The process repeats until the grid is
coarse enough that an exact solution can be found. This is G = 1 on our grids, with
reducing to G = 0 providing no particular benefit. The process then moves back up
the cycle, interpolating the lower-resolution solutions and smoothing further until
the original resolution is attained.

• The first step is to use an initial guess for the vector xG=2. The zero vector is

as good as any without prior knowledge and so this is what the code uses.

• We then apply several iterations of SOR to this vector, which reduces some

high-frequency errors – this is known as ‘smoothing’. The number of iterations

used here does affect the convergence rate. In general around ten iterations

at low resolutions reducing to one or two at higher resolutions appears to be

optimal. Let this new smoothed vector be xG=2
1 .

• Calculate the residual rG=2 = bG=2 − AxG=2
1 .

• Restrict the residual to the coarser grid G = 1. Taking a simple average of the

8 cells that make up a single coarser cell is sufficient. This coarsened remainder

vector is rG=1.

• On this coarser grid, solve for the system AeG=1 = rG=1. For G = 1 this

is solved exactly using SOR, but at higher resolutions one applies the entire

152



V-cycle process again, regarding this new system as if it were the original. The

V-cycle function in the code calls itself at this point, leading to ‘nested’ cycles.

• Interpolate the coarse solution eG=1 back up to the higher grid resolution.

Usually linear interpolation is used, but in our code not interpolating at all

and merely setting each of the finer cells with the value of their corresponding

coarse cell does not impact convergence speed – with the smoothing in the

final step seemingly rendering any more complex alternatives unnecessary.

• Combine this with the initial smoothed solution to obtain xG=2
2 = xG=2

1 +eG=2.

If no information were lost at the restriction/interpolation stage then we would

have obtained the exact solution xG=2 at this point, but naturally this is not

generally the case.

• Apply smoothing yet again to this new vector to obtain an even better ap-

proximation AxG=2
3 .

Successive V-cycles can be joined together to improve this approximation further.

Each new cycle solves for the remainder left from the previous one, with the error

generally decreasing in a geometric series with successive cycles. The process then

repeats until the overall error is below a desired limit.

The multigrid code is currently written in python, as the use of different grid

geometries over multiple scales makes writing the code in Fortran prohibitively dif-

ficult. Nevertheless, running on a single core on a desktop computer a PFSS field

can be calculated in around 10 minutes at scale G = 5 or around 90 minutes at scale

G = 6. While not as fast as methods for calculating PFSS on regular grids, this is

adequate for the purposes of using these fields as initial conditions. Unfortunately,

the SOR algorithm does not lend itself to parallelisation, although conversion of the

code to Fortran would potentially speed up the process by an order of magnitude.

Examples of two PFSS fields on the icosahedral grid are shown in Figure 4.9.

Tracing the magnetic field lines for these plots requires use of the interpolation

method detailed in the next Section.
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Figure 4.9: PFSS fields on the icosahedral grid at scale G = 6. The field left pane
uses boundary data from the HMI synoptic map during Carrington rotation 2165,
when the sun was relatively active, and the right pane uses data from Carrington
rotation 2222 when it was relatively quiet. Magnetic field lines are shown in white,
and the heatmap on the surface represents the radial magnetic field on the lower
boundary.

4.5 Interpolation of Variable Fields

As described in Section 4.2.2, when using the ‘staggered’ approach the magnetic

field B is stored on the grid in the same position as magnetic fluxes through each

of the raw grid faces. On a regular Cartesian or standard spherical coordinate grid,

finding the magnetic field strength and direction at an arbitrary point in space is

a simple matter, obtained by suitably interpolating B in each of the three linearly

independent coordinate vectors. On our icosahedral grid the direction of the non-

radial field vectors are not linearly independent and as such a more complex approach

is necessary. The current density j has the same problem, being stored in the same

position as line integrals along each of the raw grid cell edges.

The magnetofrictional equations require the calculation of the cross product

j × B. As these two fields are stored in different positions to each other, some

interpolation (either to grid faces or grid points) is unavoidable. Moreover, tracing

magnetic field lines such as in Figure 4.9 requires the calculation of the magnetic

field vector at arbitrary points. There are several ways to achieve this, and we
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outline two of them here.

4.5.1 Raviart-Thomas Basis Reconstruction

We first describe the reconstruction of the magnetic field using Raviart-Thomas

basis functions ([139]) for a prismatic cell. These basis functions are the simplest

vector basis functions, and are commonly used in finite element methods. There are

several approaches to constructing these functions. Here we follow that used in the

Appendix of [140], modified slightly for our purposes and for clarity.

In the radial direction a standard approach to averaging the field can be used as

the grid cells are regularly spaced. Thus we can limit this discussion to the plane of

a single triangular grid face in two dimensions. Such a triangle is set up as shown

in Figure 4.10. We first focus on the reconstruction of the magnetic field, for which

the magnetic flux through each side of the triangle is known.

The triangle is set up as shown, with points given the names p0, p1 and p2.

The triangle unit normal vectors are named na, nb and nc. The tangent vectors are

similarly ta, tb and tc and are perpendicular to the normal vectors. These are also

normalised. Let the average magnetic flux through each side of the triangle (facing

outwards) be denoted Ba, Bb and Bc, and the field we wish to construct be B̃(x, y, z)

at an arbitrary point within the triangle.

We redefine this point as,

x = αp0 + βp1 + γp2 = (α, β, γ) (4.35)

where the coefficients can be determined by solving an appropriate linear system.

Note that if the coefficients satisfy

0 ≤ α, β, γ ≤ 1 (4.36)

then point x lies within the triangle. If the inequalities are strict the point will be in

the interior of the triangle (rather than on one of the edges). To project this point
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Figure 4.10: Illustration of the example triangular cell referred to in this section,
showing the normal and tangent vectors on each side. The black arrows show the
direction of the basis function B̃a(α, β), which is always perpendicular to both sides
b and c. The other two basis functions are similar but rotated to be perpendicular
to the other pairs of sides.

onto the spherical surface it is then necessary to scale the coefficients such that

α + β + γ = 1. (4.37)

The problem then becomes two-dimensional as we only need the coefficients α and

β. The three triangle points are

p0 = (1, 0), p1 = (0, 1), p2 = (0, 0) (4.38)

in the α, β coordinate space.
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The reconstructed field must satisfy the following line integrals:

∫

side a

B̃(x, y) · na dl = Bala, (4.39)
∫

side b

B̃(x, y) · nb dl = Bblb, (4.40)
∫

side c

B̃(x, y) · nc dl = Bclc, (4.41)

where la, lb, lc etc. are the respective lengths of the triangle sides.

The basis functions are zero at one of the triangle vertices, and are parallel to

two of the sides, so that there is only flux through one of the sides for each basis

function. Up to a normalising constant, these basis functions are

B̃a(α, β, γ) ∝ αlctc − βlbtb (4.42)

B̃b(α, β, γ) ∝ βlata − γlctc (4.43)

B̃c(α, β, γ) ∝ γlbtb − αlata. (4.44)

The interpolated magnetic field is then expressed as

B̃(α, β, γ) = kaB̃a(α, β, γ) + kbB̃b(α, β, γ) + kcB̃c(α, β, γ), (4.45)

with the constants k determined using the respective flux through each side of the

triangle.

Parameterising the first of the line integrals (Equation 4.39) with α = s, β = 1−s

gives

∫ 1

0

laB̃(s, 1− s) · nads = Bala (4.46)

ka

∫ 1

0

B̃a(s, 1− s) · nads = Ba (4.47)

ka

∫ 1

0

(slctc − (1− s)lbtb) · nads = Ba (4.48)

ka(−lbtb · na) = Ba (4.49)

ka = − Ba

lbtb · na

, (4.50)
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using that lctc+lbtb = −lata and ta·na = 0. The other components can be calculated

similarly, giving

kb = − Bb

lctc · nb

, kc = − Bc

lata · nc

. (4.51)

The overall magnetic field is then given by the sum of the basis functions

B̃(α, β, γ) = − Ba

lbtb · na

(αlctc − βlbtb)−
Bb

lctc · nb

(βlata − γlctc)−
Bc

lata · nc

(γlbtb − αlata), (4.52)

or alternatively

B̃(α, β, γ) =
Ba

lctc · na

(αlctc − βlbtb) +
Bb

lata · nb

(βlata − γlctc)+

Bc

lbtb · nc

(γlbtb − αlata). (4.53)

For the purpose of tracing field lines, the components α, β, γ must be calculated at

every step. However, when averaging to the same points repeatedly (such as to the

cell centres) this only needs to be performed once, and as such this process is not

too computationally expensive.

The process for calculating the current field is similar, and differs only as the

current field is stored in the direction of the triangle side tangents rather than the

normals. The above derivations are almost identical in this case, albeit with the

vector directions swapped around. The complete reconstructed current field can

then be expressed as

j̃(α, β, γ) =
ja

lcnc · ta
(αlcnc − βlbnb) +

jb
lana · tb

(βlana − γlcnc)+

Bc

lbnb · tc
(γlbnb − αlana). (4.54)

Interpolation of the fields using these basis functions converges linearly with in-

creasing grid resolution in both the L2 and L∞ norms. The reconstruction produces

a smooth field in the interior of a cell, although there will in general be discontinu-

ities in the reconstructed field when passing from one grid cell to another. To negate
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this problem somewhat one could also include the influence of the fluxes through

the sides of the neighbouring cells. For instance, when averaging to the midpoint of

a triangle side one can merely take the average magnetic field reconstructions from

the two cells sharing that side. This seems to do little to reduce the overall error,

however.
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Figure 4.11: Plots to illustrate the accuracy of the magnetic field interpolation
methods on an icosahedral grid. The plots compare both the Raviart-Thomas basis
method (4.5.1) and the averaging to gridpoints method (4.5.2) to linear interpolation
on a Cartesian grid. We plot the root mean square error in interpolating the test
magnetic field B(x, y) = (2π/y1 sin(4πx) cos(2πy/y1),−4π/ cos(4πx) sin(2πy/y1))
on a rectangular domain with dimensions 0 < x < 1, 0 < y < y1 =

√
3/2. ∆x

is the length of the sides of the grid cells.

4.5.2 Averaging to Grid Points

An alternative to the use of the Raviart-Thomas reconstruction is to first average

the field strength to the raw grid points (the vertices of the raw cells) with its

components in Cartesian coordinates. Once this averaging has taken place over

the entire grid, the magnetic field can be interpolated at any arbitrary point by

calculating the coefficients α, β, γ as in Equation 4.35 and combining the averaged

field from each of three nearest grid points.

Averaging to grid points requires the minimisation of an overdetermined system.

Considering the magnetic field (rather than the current density, which follows a

similar process), each grid point is roughly equidistant from 12 non-radial magnetic

fluxes and 6 radial magnetic field fluxes, one from each of the 6 raw cells surrounding

each point and all through planes in differing directions. There are twice as many
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non-radial vectors as the grid is staggered in the radial direction and the in-plane

magnetic field is stored at the centre of the face of a grid cell.

We wish to find a magnetic field B̃ that minimises the error

r =
∑

j

(B̃ · nj −Bj)
2, (4.55)

for the 18 un-averaged field vectors Bj, each stored on raw faces with normal vector

nj. For a constant field we can interpolate precisely and the error will be zero,

but in general this cannot be the case. By re-expressing this as a standard linear

system we can calculate precisely the field B̃ which minimises r, using the method

of ordinary least squares.

Explicitly, if the interpolated magnetic field has Cartesian components B̃i and

the jth normal vector has components nj,i then we wish to minimise

r =
∑

j

( ∑

i=0,1,2

B̃inj,i −Bj

)2

. (4.56)

The optimal field components B̃i are then the solution to the linear system

∑

k=0,1,2

(∑

j

nj,inj,k

)
B̃k =

∑

j

nj,iBj, (4.57)

which is three-dimensional and is solved in the code using Gauss-Jordan elimination.

The components on the left-hand side are intrinsic to the grid and independent of the

magnetic field, so these only need to be calculated once, when the code is initialised.

To compare the effectiveness of the two methods (Raviart-Thomas and gridpoint

averaging), we regard a test field on a 2D grid. This test grid is chosen to be roughly

rectangular overall (within the limitations imposed by covering it in triangular cells)

to allow for sensible periodic boundary conditions. The chosen test field is

B(x, y) = (2π/y1 sin(4πx) cos(2πy/y1),−4π/ cos(4πx) sin(2πy/y1)) (4.58)

on a domain with dimensions 0 < x < 1, 0 < y < y1 =
√
3/2. The grid cells are
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all equilateral triangles with side length ∆x. The test field is first converted into

fluxes through the cell sides, and then is interpolated using the above approaches

and compared to the true value. Figure 4.11 shows our results, which also includes

a comparison to linear interpolation on an equivalent staggered Cartesian grid. We

observe convergence in both L2 and L∞ norms using either interpolation method,

although the grid point averaging approach converges at a significantly faster rate

than the Raviart-Thomas approach. This convergence rate is comparable to the

Cartesian equivalent.

Hence in the magnetofrictional code we average the B and j fields to the raw

grid points using the gridpoint averaging approach. This allows for the calculation

of the product j×B. We have shown that this field converges sufficiently quickly to

the true solution as the grid resolution increases, and have also shown (in Section

4.3) that the differential operators will also converge to the correct solution at least

linearly when using an optimised grid.

4.6 Equilibrium Solutions with Solar Wind Out-

flow

As a first test of the stability and accuracy of the icosahedral code, we can find

equilibrium solutions of the new code with an imposed solar wind velocity. The

imposed solar wind (vout) will increase the open flux (the net unsigned magnetic

flux through the upper boundary) compared to the initial PFSS field, and will

eventually reach an equilibrium where the magnetofrictional velocity balances the

outflow velocity exactly. These equilibrium solutions should be equivalent to the

semi-analytic outflow fields described in Chapter 2.

These tests are performed on the tweaked grid at resolution G = 6. The mag-

netofrictional equations are discretised using the differential operators described in

Section 4.2.2 and averaged to grid points using the RMS method in Section 4.5.2.
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Figure 4.12: Comparison between the open flux predicted by outflow fields (de-
scribed in Chapter 2) and the relaxation of the new icosahedral code with an im-
posed solar wind velocity. The outflow field predictions for each vout velocity are
shown as dotted lines, and the open flux in the icosahedral grid simulations are
shown as solid lines in the same colours.

The magnetofrictional velocity

v = ν0
j×B

B2 +B2
0δe

−B2

δB2
0

(4.59)

is also calculated at the raw grid points. The electric field E is then finally calculated

as line integrals at the appropriate places on the staggered grid. The outflow term

vout(r)er (4.60)

is not averaged to grid points. Instead the cross product is taken using the magnetic

field half a cell below, which is then integrated and added directly to the electric

field line integrals. This upwinding is necessary for the stability of the solution when

the coronal diffusion rate is low.

The equilibrium icosahedral outflow solutions do depend on the value of the

softening parameter δ, with high δ increasing the measured open flux. This is

consistent with the behaviour of existing magnetofrictional codes using regular co-
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ordinates [141]. For comparison with the reference outflow fields (where essentially

δ = 0) we set δ = 1 × 10−6, below which there is no distinguishable difference in

equilbirum open flux. These test simulations are initialised with a PFSS field with

the specified lower boundary condition as in the 2.5D axisymmetric simulations in

Chapter 3:

Br(1, θ) = s7 + 5de−10d2 (4.61)

where s = cos(θ) and d = s− cos(0.35π) (such a field is plotted in the right pane of

Figure 3.1).

Figure 4.12 shows the results, for ν0 = 1 and varying outflow speeds (in code

units). Some coronal diffusion is necessary for the stability of the code (discussed in

Section 4.7), which is set as η = 5× 10−3 for these tests. We note that the potential

field case, with zero outflow and shown in black, agrees almost perfectly calculated

either using the spectral decomposition of Chapter 3 or the multigrid method on the

new grid described in Section 4.4. With nonzero outflow, as the simulations relax

the open flux increases, at first rapidly and then levelling out to a constant value

as expected. We see that the open flux reached by the test code is slightly higher

than the outflow field ‘ground truth’ in all cases, although the difference in open flux

increase from the base potential field case is less than 10% in all cases and falls to

2% for the larger outflow speeds. This difference is likely just due to the differences

in the numerical schemes at this finite resolution.

This test indicates that the new magnetofrictional code is performing as expected

in the absence of dynamic lower boundary conditions.

4.7 Dynamic Simulations

Although we have not had time to fully test and apply the new code, we have

incorporated the dynamic lower boundary conditions used in the magnetofrictional

simulations in Chapter 3: differential rotation of the solar surface and supergranular

diffusion. These effects allow for the formation and eruption of magnetic flux ropes.

We do not attempt a particularly objective comparison at this stage, but we will

roughly compare our new simulations against those described in [14]. That paper
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Figure 4.13: Snapshots from simulation A, with initial lower boundary condition
given by Equation 4.62. The heatmap on the solar surface represents the radial
magnetic field strength, and magnetic field lines are shown in white. After 20 days
a flux rope has formed (some field lines stretch completely around the sun), which
begins to erupt shortly after 50 days. At this point two further flux ropes have
formed, which will erupt in due course.

also describes magnetofrictional simulations (on a regular spherical coordinate grid)

running for some time with no flux emergence through the photosphere. As usual,

the simulations are initialised using a PFSS field. In this section we refer to two

simulation setups, the first (simulation A) being axisymmetric with lower boundary
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data specified analytically as

Br(1, θ) = s7 + 100d1e
−100d21 + 100d2e

−100d22 , (4.62)

with s = cos(θ), d1 = s− cos(0.3π) and d1 = s− cos(0.55π). This is a quadrupolar

field, which allows for the formation of obvious large flux ropes.

The second run (simulation B) uses boundary data from Carrington rotation

2160, from the HMI instrument on SDO and processed in the same manner as in

Chapter 2. As the flux ropes in this setup do not stretch around the entire Sun they

are more difficult to identify than the axisymmetric case, as are their eruptions.

Further work will hopefully introduce methods to address this problem.

An outstanding problem with the numerical scheme used for the magnetofric-

tional velocity is that it is unstable in the absence of any coronal diffusion. This is

due to the method used for the averaging of the magnetic field to grid points – it

is hoped that this method can be improved upon to reduce this restriction. As it

stands, to ensure stability we roughly require

η

ν
> 1× 103. (4.63)

Note that throughout this section we use ‘code units’ for the parameters, namely a

time unit of days and a distance unit of one solar radius. For physically meaningful

solar-like behaviour, the coronal diffusion must be sufficiently small relative to the

supergranular diffusion term η0. In their simulations, [14] use a value of η0 ≈ 1×104,

and a coronal diffusion rate η which varies but is around an order of magnitude

smaller. Assuming this is the case, the restriction of 4.63 puts a functional upper

bound on the magnetofrictional relaxation rate of approximately

ν < 1× 10−2. (4.64)

Existing codes are able to use values higher than this, and as such it would be ideal

to relax this limitation by modification of the numerical scheme. However, even for

these low relaxation rates the system behaviour appears realistic. Given that ideal

165



values for ν are essentially determined by comparison with observed behaviour, we

do not see this as fundamentally problematic.

Figure 4.13 shows four snapshots from simulation A (the axisymmetric run). In

this case we choose the parameters to be ν = ν0 = 8 × 10−3, η = 4 × 10−5 and

η0 = 4 × 10−4. The new icosahedral grid allows us to set a constant value for ν

throughout the domain, rather than necessarily decreasing near the poles, which

when using standard spherical coordinates is required to avoid excessive restrictions

on the timestep. We impose an outflow velocity of vout = 6.9 (roughly 50km/s),

with the outflow velocity profile used in Section 2 (Equation 1.26).

In Simulation A we first observe the effect of the solar wind, opening out the

field lines and causing them to become more radial. This effectively partitions the

magnetic field into three separate arcades. These arcades then become sheared due

to the differential rotation of the surface. The northern-most arcade is sheared

the most as this effect is more pronounced at this latitude. The supergranuular

diffusion then brings the magnetic field lines together to form flux ropes. A small

flux rope is visible under the northern-most arcade after 20 days. By 50 days this

rope has become much larger, and ropes have also formed under the other two

arcades. The first rope then begins to erupt at around 54 days. This behaviour

is very similar to that observed both in our 2.5D simulations in Chapter 3, and

in the equivalent simulation of [14]. In that paper the eruption occurs later, at

around 70 days, and the flux ropes do not form as quickly. This is likely due to our

magnetofrictional relaxation rate being necessarily smaller, and our more realistic

outflow profile encouraging the eruption to occur more quickly.

Figure 4.14 shows snapshots from simulation B, with the initial condition using

realistic boundary data from Carrington Rotation 2160 (around February 2015). In

reality, over this timescale the emergence of magnetic flux emergence through the

photosphere (which we do not model here) would alter the evolution of the magnetic

field considerably. Despite this, we still observe the formation and eruption of several

small flux ropes. The parameters used here are identical to those in the axisymmetric

run. By 20 days the initial potential field has been modified considerably, with the

arcades opening out and becoming smaller as expected. The supergranular diffusion
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Figure 4.14: Snapshots from simulation B, initialised using initial data from Car-
rington Rotation 2160 (February 2015).

removes the fine structures in the radial magnetic field on the surface, which becomes

more uniform as the simulation progresses.

The differential rotation profile drags the magnetic field around as expected,

causing it to become twisted. In particular, flux ropes tend to form along the

polarity inversion lines and become more significant as the overall structure of the

magnetic field becomes more simple. After 60 days we can see a large flux rope

forming on the lower left side of the diagram, and the structure in the upper corona

on the left of the figure (circled) is in fact a small flux rope eruption in progress,

although this is difficult to appreciate with a static image.
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These initial test runs have shown that the new icosahedral code is capable

of modelling behaviour similarly to existing magnetofriction codes, including the

formation and eruption of magnetic flux ropes. The new code also allows for a

constant magnetofrictional relaxation rate throughout the corona, unlike existing

codes using regular spherical coordinates.

4.7.1 The Effect of Relaxation Rate Variation
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Figure 4.15: The open flux and average current density (using the L2 norm, similarly
to Equation 4.28) from the two simulation setups, with simulation A on the left and
simulation B on the right. The original simulations with constant relaxation ν0
are in black, and are compared to equivalents with ν0 varying with latitude and
altitude, given by Equation 4.65. We clearly observe the flux rope eruption at
around t = 60 days in both Simulations A.

As discussed, one of the main advantages of our new code is the ability to remove

the need for the magnetofrictional relaxation rate ν to decrease near the poles. This

is necessary in existing codes as the grid cells are necessarily smaller far from the

equator and the CFL condition is correspondingly more restrictive.

As a preliminary test of the difference between constant ν = ν0 and non-constant

ν0, we make a direct comparison between the simulations described in Section 4.7
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(which have constant ν = ν0) to simulations which are identically set up other than

the relaxation rate, which is taken to be

ν = ν0r
2 cos2(θ), (4.65)

where r is the radius (in solar radii) and θ is the latitude, measured from the equator.

This is the profile used in [14].

Figure 4.15 compares diagnostics from the two regimes, with simulations A on

the left and simulations B on the right. The simulations with constant ν are shown

in black (these are the simulations plotted in Figures 4.13 and 4.14). Those with

non-constant ν are plotted in blue. The open flux and current density are similar

in both cases, although there are some notable differences.

Of particular note is that during the initial relaxation due to the solar wind, the

current density increase is almost identical. However, the open flux increases more

when ν0 is constant (black). This is likely due to the higher relaxation rate in the

upper corona in the non-constant case, which reduces the effect of the solar wind on

the magnetic field. Other than in this initial period, the open flux tends to behave

similarly in both cases, although it fluctuates more in the non-constant relaxation

case.

The first flux rope eruption in simulation A (which is shown in the snapshots in

Figure 4.13) is marked by the rapid decrease in open flux at around t = 60 days.

This eruption occurs at almost exactly the same time in both regimes, which is to be

expected as the flux rope is relatively close to the equator. The subsequent behaviour

of this simulation (when the other flux ropes erupt) does differ significantly, however.

The major difference between the two regimes is that after the initial relaxation

period the diagnostics are far more smooth in the cases with constant friction (black)

than those with the profile in Equation 4.65 (blue). The constant friction cases

appear qualitatively more similar to the 2.5D simulations in Chapter 3, which also

use a constant friction term. The fluctuations visible in the blue curves are similar

to those measured in the simulations of [14], particularly in Simulation B.

It is likely that simulations with constant relaxation rates (which our new code
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allows) are more representative of realistic behaviour. However, this test indicates

that existing approaches with non-constant relaxation rate are not significantly er-

roneous, evidenced most clearly by the almost identical timing of the flux rope

eruption in simulation A.

4.8 Discussion

In this chapter we have introduced a new magnetofrictional code, used to model the

global solar corona. The code is based on an icosahedral grid rather than the more

usual regular spherical coordinates, which has proven challenging to develop but has

several advantages. Although we have not yet used the code to its full capabilities,

initial tests have indicated that it could be used for its intended purpose of modelling

magnetic flux rope formation and eruption, among others.

We have described the construction of the new grid, and the numerical schemes

used to calculate differential operators required for the magnetofrictional method.

These schemes are chosen such that the net magnetic flux through each of the grid

cells is zero to machine precision – an essential requirement. We also describe the

‘tweaking’ process, by which the individual grid points are moved slightly to reduce

the error in differential operators. We confirm the conclusions of [134], finding that

the convergence rate of the Laplacian (tested against an analytical solution) on the

icosahedral grid is comparable to the equivalent on a regular spherical coordinate

grid.

The code is initialised with a PFSS (Potential Field, Source Surface) field. Pre-

vious chapters in this thesis have introduced these fields and described methods for

their calculation on regular grids. In this chapter we have introduced the ‘multigrid’

method, which can be used to solve such linear systems on an irregular grid. We find

that potential fields calculated on our new grid are functionally identical to those

calculated using the spectral decomposition method of Chapter 2, and are useful

test cases as they are current-free to arbitrary precision.

A significant difficulty in the development of the new code is the necessity of

finding the magnetic field vector at an arbitrary point in space. This is essential for
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both field line tracing and the calculation of the cross products in the magnetofric-

tional velocity term. To our knowledge, magnetofriction on an icosahedral grid has

not been previously attempted and so there are no precedents for this problem. We

tested two approaches: Raviart-Thomas basis reconstruction and a new Root-Mean-

Square (RMS) averaging to gridpoints method. We found, using a 2D test case, that

the latter approach converges to the true magnetic field vector at an arbitrary point

far more quickly and so choose this RMS method in the code.

We find that equilibrium solutions of the code with an imposed solar wind outflow

term match closely to the ‘ground-truth’ outflow fields described in Chapter 3. These

solutions are stable given the coronal diffusion η is sufficiently high relative to the

magnetofrictional relaxation rate ν0 – it would be ideal to relax this limitation further

by appropriate modification of the averaging to gridpoints method. The limitation

on the coronal diffusion essentially limits how high ν0 can be. Although undesirable,

we do not regard this as being fundamentally problematic as the chosen values for ν0

in existing codes are not particularly physically motivated – they are usually chosen

merely based on whether the given behaviour looks realistic.

We finish by briefly testing the behaviour of the code with dynamic lower bound-

ary conditions, representing the differential rotation of the solar surface and the effect

of supergranular diffusion. This allows for the recreation of the asymmetric 2.5D

model used in Chapter 3, including the formation and eruption of magnetic flux

ropes. We compare our new code against simulations from [14], which use an exist-

ing magnetofrictional code in regular spherical coordinates. We find the behaviour

to be similar in both an axisymmetric case and when initialised using realistic lower

boundary data.

The major advantage of our new code over existing equivalents is that our grid

cell size is independent of latitude, as opposed to the cells being smaller near the

poles as on a regular spherical grid. This allows for a constant rate of magnetofric-

tional relaxation ν throughout the corona, compared to codes on regular grids which

require the relaxation rate to decrease near the poles. Our new code allows us to run

simulations in both cases, and so we directly compare them. We find that although

the overall system behaviour is similar in either case, the open flux and current
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density fluctuate far less when ν is constant. This behaviour is more similar to the

2.5D simulations in Chapter 3 and is likely more physically accurate.

It is hoped that the new code can be used in combination with the methods of

Chapter 3 to further research into the prediction of magnetic flux rope eruptions.

Although this research could be accomplished using existing codes, the ability to

remove the non-physical spatial dependence of ν will improve the accuracy and

physical motivation of this approach.
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CHAPTER 5

Conclusions and Further Work

The focus of this thesis has been numerical modelling of the magnetic fields in the

solar corona. In Chapter 2 we described a new model for calculating equilibrium

solutions of the global coronal magnetic field, taking into account the effect of the

solar wind. The development of this model was motivated in part by the need to

produce initial conditions for the simulations in Chapter 3. Chapter 3 describes the

bulk of my PhD work, which concerns magnetic flux rope eruptions – one of the

mechanisms behind large coronal mass ejections. Using both magnetofriction and

MHD, in simplified 2.5D models we have undertaken a large parameter study to

examine which measurable quantities could theoretically be used to indicate that

an eruption is likely. We found several such quantities that perform very well in

2.5D. This work must ultimately be extended to 3D to combine with real data

and make predictions in reality, and to that end we have developed a new global

magnetofrictional code on an icosahedral grid. Chapter 4 is a a description of

the development of this code and some initial results. The new code potentially

has several advantages over existing codes, but unfortunately time constraints have

meant that we have not yet been able to use it to its full potential.
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5.1 Chapter 2

We have developed a new model for steady-state equilibrium solutions of the coro-

nal magnetic field, including the effect of the solar wind. Our model is computed

similarly to existing PFSS models, which due to their simplicity and ease of use

have become ubiquitous as a first approximation to the coronal magnetic field. We

find that our ‘outflow fields’ have several advantages over PFSS. Our model goes

some way to address the ‘open flux problem’, which simply put is that measured

values of the open flux are significantly higher than those predicted by PFSS. This

discrepancy is reduced considerably in our outflow fields as the magnetic arcades are

stretched outwards by the effect of the solar wind. We also observe more accurate

streamer shapes when compared to observations of the corona during solar eclipses,

with the magnetic field lines becoming radial lower in the corona. There is also a

reduced dependence of the solution on the arbitrary location of the upper boundary

of the computational domain, with magnetic field lines becoming open due to the

solar wind rather than an unrealistic radial condition at a prescribed altitude, as is

the case for PFSS.

5.2 Chapter 3

With the ultimate aim in mind of providing reliable predictions for the timing (and

perhaps magnitude) of imminent magnetic flux rope eruptions, we have developed

simplified (2.5D) magnetofrictional and MHD models to model flux rope behaviour.

The simplicity of these models has allowed us to run many hundreds of simulations,

varying the assumed parameters over orders of magnitude. This has resulted in a

wealth of data, with each flux rope simulation potentially containing several flux

rope eruptions. We found that the higher the photospheric diffusion rate (due to

the motion of supergranules on the solar surface) the more quickly flux ropes would

form and the more likely they were to erupt.

We used three models: magnetofrictional (MF) models in both Cartesian and

spherical polar coordinates, and an MHD model (using the existing LARE ([21])

code) in Cartesian coordinates. We used three separate models to address some
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concerns with our first study, which used only a Cartesian MF model. The polar co-

ordinate simulations showed that a using Cartesian coordinate system is adequate

for purposes such as ours, as the qualitative flux rope behaviour is very similar.

The comparison between MF and MHD is more significant, as the equations behind

both models are fundamentally different. We find that with the boundary conditions

implemented in a suitable manner the flux rope behaviour in both models is func-

tionally the same, with the exception of oscillations in MHD that are supercritically

damped in MF, and a more complex flux rope structure in MHD.

The simplicity of the models and the large amount of simulation runs allowed

us to compare the state of the magnetic field prior to eruptions against flux ropes

that did not erupt within a given time. This required the definition of a number of

scalar diagnostic quantities. Some of these are simple to calculate, such as the open

flux or the magnetic energy. Others require the construction of a reference magnetic

field, such as the relative helicity or free magnetic energy. The definition of such a

reference field is not clear in 2.5 dimensions, due to the lack of a definitive boundary

in the out-of-plane direction. We thus introduced a variation on the usual reference

field in addition to the standard definition, resulting in two definitions for each the

reference-based quantities.

We proposed that given the MF model evolves independently of the overall mag-

netic field strength, any diagnostic quantities must be normalised such that they

are themselves independent of the magnetic field strength. Hence we primarily con-

sider suitably-weighted ratios between the diagnostic quantities. This is motivated

in part by the work of [93], who propose an ‘eruptivity index’: the ratio between

the current-carrying helicity and the relative helicity.

To quantitatively compare the predictive ability of the diagnostic ratios we in-

troduce a procedure whereby each ratio is assigned a ‘skill score’: a skill score of

1 indicating a perfect predictor and a skill score of 0.5 being no better than ran-

dom chance. We find that the eruptivity index defined in the standard way is not

a particularly good predictor. However, we find that mixing the definitions of the

reference magnetic field in the numerator and denominator of the ratio increases

the skill score of the eruptivity index considerably, indicating that it could indeed
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be a useful indicator in 3D if suitably modified. We also propose that the peak in

the eruptivity index observed by [93] may be entirely due to the orientation of the

background magnetic field into which their flux rope emerges. In our simulations the

background field is always in the same direction and so this is not a consideration.

We find that several diagnostic ratios are very good predictors of imminent erup-

tions, and (perhaps more notably) find that the threshold in these ratios above which

an eruption is likely is similar in both magnetofriction and MHD. This provides

some justification for the use of magnetofriction in place of MHD when studying

such magnetic field instabilities. Objectively, the best-performing diagnostic ratio

is the axial rope current squared, normalised by the relative helicity (with the refer-

ence field defined using our new definition). The skill score for this ratio was 0.968

in magnetofriction and 0.892 in MHD, with values around 14 units (in either case)

indicating an eruption is likely. However, in 3D the axial rope current would be

problematic to define, and so a variation on the eruptivity index (with the definition

of the reference magnetic fields suitably modified) may be more useful, given addi-

tionally that the relative and current-carrying helicity can theoretically be estimated

from the magnetic field on the lower boundary alone.

5.3 Chapter 4

To run the sheer number of simulations required for the approach used in Chapter

3, simple 2.5D models are required. This approach has proven to be informative,

but ultimately the results will need to be verified in three dimensions. This could

be achieved using existing MF codes, but we have instead chosen to develop a new

MF code on a icosahedral grid. The motivation behind this is to remove problems

caused by the singularities at the poles in standard spherical coordinates. This will

allow for constant magnetofrictional relaxation rates throughout the corona, rather

than the relaxation rate necessarily (and unrealistically) decreasing near the poles

as in existing models.

We have described the construction of the grid and the optimisation of the lo-

cation of the grid points to reduce error in differential operators, using the method
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and verifying the results of [134]. We also outline the numerical procedure for the

construction of PFSS fields on an irregular grid such as ours, using the ‘multigrid’

method. These fields are used as initial conditions and test cases and are consistent

with those produced using the spectral decomposition method of Chapter 2.

On an irregular grid it is not trivial to find the magnetic field vector at an ar-

bitrary point, which is necessary both for the magnetofrictional velocity calculation

and field line tracing. We examine two approaches to averaging the magnetic field

to grid points, using both Raviart-Thomas bases and a new root-mean square min-

imisation approach, and find that the latter converges to a test field at the same

rate as linear interpolation on a regular grid.

We finish by examining some test cases for the new code, finding that equilib-

rium outflow solutions (in the absence of dynamic lower boundary conditions) are

consistent with the outflow fields of Chapter 2. We also compare against the sim-

ulations of [14], finding our new model to exhibit similar behaviour including flux

rope formation and eruptions. Simulations using the non-constant relaxation rate

used in existing magnetofrictional codes are compared against the constant rate now

possible using our new code. We find that the overall behaviour of the simulations is

similar in either case, although the diagnostic values fluctuate far more if the relax-

ation rate depends on latitude. This fluctuation is likely not physically motivated,

and as such the use of a constant relaxation rate (using our new code) is preferable.

The code is still limited by the need to have an ohmic diffusion term η that is

non-negligible relative to the relaxation rate ν0. For smaller values of η numerical

instabilities are likely (if not certain) to form. This limiting diffusion rate is likely

larger than an ideal physical value, and limits the parameter space to relaxation rates

that are relatively low compared to precedents set in existing work. It is ultimately

hoped that modifications to the numerical scheme used may reduce this limitation,

perhaps by the use of an implicit method.
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5.4 Potential Further Work

The results of Chapter 3 – namely that in our simple models there exist diagnostic

ratios which can be used to predict the eruption of magnetic flux ropes – are reason-

ably significant, but there is a considerable amount of work to be done before such

information can be used to predict eruptions in reality, which is the ultimate aim.

The first step towards this is to verify our results in 3D, with flux ropes that are

not invariant in one dimension. 3D magnetofrictional models which exhibit suitable

flux rope behaviour already exist, in conjunction with boundary data motivated by

spacecraft observations. Although computationally more expensive than our simple

models, it would be possible to build a catalogue of such eruptions and compare

diagnostic ratios for both eruptive and stable ropes as we have already done.

The main difficulty with simply applying our existing approach to the entire

corona is that in our 2.5D models the ropes occupy a significant proportion of the

domain, and as such the scalar diagnostics are very clearly influenced by the presence

and behaviour of the rope. In reality a flux rope will be smaller relative to the size

of the entire corona, and as such the diagnostics will be less sensitive to eruptions.

Thus the definitions of the diagnostic quantities must be modified somewhat to

negate this problem. There are two possible approaches here: either use a smaller

integration area surrounding just the rope itself or construct diagnostic quantities

that are derived from integration along certain relevant magnetic field lines, similarly

to the field-line helicity.

The former option would perhaps be easier to implement, but the choice of an

integration area will naturally be somewhat arbitrary and have a large effect on the

diagnostic values, making comparison between flux ropes of differing sizes difficult.

In addition, the definitions of the reference magnetic field required for the ‘reference-

based’ quantities such as the relative helicity would also need to be modified for use

in 3D, as the new definition we use requires one of the coordinate dimensions to be

invariant. Such modifications would likely require the use of field line tracing in a

manner similar to field line helicity in any case.

The latter option would be a neater approach, using only diagnostic quantities

which derive from integration along field lines. This would also allow for the cal-
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culation of quantities proportional to the size of the rope itself, such as the axial

rope flux and rope current. These are trivial to calculate in 2.5D but are somewhat

subjective for a real 3D field as the size of the flux rope itself is only loosely defined.

Indeed, it may not even be possible to reliably evaluate some (or all) of these quan-

tities in 3D, especially considering the imperfect nature of observations. In addition,

the role of the background field in the contribution to the relative helicity/current-

carrying helicity in our existing models is not entirely clear, and so this must also

be investigated if these quantities are to be used.

Once eruptivity criteria can be reliably determined in 3D (similarly to what

we have achieved in 2.5D), it still remains to construct sufficiently accurate real-

time reconstructions of the coronal magnetic field, based on observations alone.

Once this is achieved then finding the probability of an imminent eruption would

be relatively quick and easy, as no forward modelling is required. Such magnetic

field extrapolations are a large and active area of research, particularly into the

construction of non-linear force-free fields which match a variety of observations.

It is hoped that pairing any eruptivity criteria to a number of these models would

result in consistent and accurate predictions, which would improve as the available

data becomes more comprehensive.

An alternative approach avoids the need to construct a 3D magnetic field entirely.

The rate of the injection of certain quantities, such as the magnetic helicity, can be

estimated entirely using photospheric boundary data. However, once this helicity

has been injected into the corona, without construction of a magnetic field it is a

mystery as to its distribution and indeed how much has been already lost to eruptions

or diffusion. Thus it is reasonably certain that the construction of a global magnetic

field would be required at some point.

The ‘outflow fields’ discussed in Chapter 2 can already be used in place of PFSS

fields in a variety of situations. Indeed they are already being used as initial con-

ditions for magnetofrictional codes, removing the need to begin simulations with a

period of unrealistic initial relaxation due to the solar wind. Although in our work

we have assumed magnetofrictional relaxation rates based on existing literature,

these are not particularly grounded in reality and have been instead determined
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mainly through trial-and-error. Providing the solar wind speed is known (or can

be well estimated), comparison of outflow fields to observations such as the shapes

of coronal streamers during solar eclipses or in-situ open flux measurements could

theoretically provide good physical motivation for the chosen relaxation rate. This

can in turn be used to improve the accuracy of magnetofrictional models in gen-

eral, including for the forward modelling required for evaluating flux rope eruptivity

criteria.

The new icosahedral code discussed in Chapter 4, once sufficiently tested and

optimised, could be used in place of existing global magnetofrictional codes. The

main advantage this would have is to allow for constant magnetofrictional relaxation

rates throughout the corona, which is not possible in standard spherical coordinates.

In particular, the new code could be used to model flux ropes and their eruptions

in a global context, allowing for the analysis required to determine useful eruptivity

criteria. This could be accomplished using existing codes, but our new code would

allow for a more physically-motivated parameter space and reduce the need for

assumptions based on numerical convenience.

I hope that the results and models described in this thesis can be of some use

to the solar physics community, and some day provide tangible benefit to humanity

by being part of reliable and useful models for space weather prediction.
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