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Abstract

This thesis provides an exploration of the interplay between resurgence analysis and modular
invariance in the context of string theory. We focus on two particular applications. Firstly, we
analyse a class of modular invariant functions called generalised Eisenstein series that play an
important rôle in string perturbation theory at genus-one, as well as in the low energy effective
action for Type IIB supergravity. By extending this space of functions to a broader family,
we show how a subtle asymptotic analysis via Cheshire-cat resurgence allows us to recover
from perturbative data interesting non-perturbative corrections, which can be interpreted as
D-D̄-brane instantons. These results are based on papers [1,2]. Secondly, we consider a related
problem in the study of N = 4 maximally supersymmetric SU(N) Yang-Mills theory. By
studying certain integrated four-point correlation functions, we show how the large-N expansion
at fixed gauge coupling, τ , of such physical quantities yields modular invariant transseries, and
we demonstrate the necessity of including non-perturbative, exponentially suppressed terms
at large-N , which holographically originate from (p, q)-string world-sheet instantons. These
results are based on paper [3]. The thesis furthermore includes a short overview of resurgence
analysis, as well as some relevant aspects of the theory of modular functions such as their
representation in terms of Poincaré series and SL(2,Z) spectral theory.
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CHAPTER 1

Introduction

There is a long history for the presence of the infinite in physical theories. The Greek philoso-

pher Zeno was fascinated by the question of how motion is possible at all - if an arrow is to

travel between a marksman and a target, at some point it must reach the middle point between

the two. But after that has happened, it must once again reach the middle between the previ-

ous point of reference and the target and so on indefinitely, leading to an infinite regression of

motions that the arrow must execute. Of course, this paradox was resolved by the introduction

of convergent series - a sum of an infinite number of ever decreasing terms can lead to a finite

answer. Unfortunately, not all infinities that have appeared in theories of nature since have

been so innocuous. There is a hint already in the work of Newton for the complexities that

were to come; a point particle is an inherently singular object - its density is infinite and the

force of gravitation diverges as two such particles come together. Nevertheless, this posed no

problem in the theory of Newton, since it was always assumed that a point particle is a kind

of Platonic abstraction, something that should not be taken too seriously in the limit where

calculations produce unbounded results.

The paradigm that the singularities produced by mathematical models of physical systems

can simply be ignored suffered a massive blow with the advent of quantum field theory. A

great deal of confusion was generated once physicists realized that quantum corrections produce
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seemingly infinite corrections to classical results - a clearly ridiculous conclusion that by then

already contradicted a large swathe of experiments. The following decades lead to the theory

of renormalization, which at a fundamental level turned out to be an admission of facts very

similar to the ones that point particles in classical mechanics already forced us towards. The

theory we are working with breaks down at small distances, hence we must impose some cutoff

and simply admit we do not know how nature behaves on smaller scales (historically the hard

part was showing that all observables can be expressed in terms of a finite number of variables

characterizing low energy experiments and the specific value of where you put the cutoff is

irrelevant).

Time and time again we see that infinities in physical theories are nothing to be feared

of and instead provide valuable information about the range of applicability for the theory.

This dissertation looks at the interplay of two ideas - resurgence and modularity - each of

which plays an interesting rôle in characterizing infinities present in candidates for fundamental

theories of nature (and far beyond)! Resurgence is deeply linked with perturbation theory -

the most standard tool for the working physicist that is nearly always the first line of attack

when a new problem emerges. Just like the arrow of Zeno, perturbation theory replaces the

observable of interest with an infinite series, but, unlike in the thought experiment of the Greek

philosopher, the series is actually divergent. So how should we understand this divergence?

Is it telling us something about the range of applicability for the theory we are using, like

renormalization in quantum field theory or the singularity theorems of Penrose and Hawking in

general relativity? The answer turns out to be no - instead the series diverges because we are

missing non-perturbative information; because perturbation theory is too crude a method. If

you only ever calculate Feynman diagrams in quantum chromodynamics, you will miss the fact

that the quarks and gluons that make up the edges of those graphs are actually not present

in the world described by the theory and instead become confined. If you only analyse small

waves on top of a laminar flow of water, you necessarily miss the fact that once those waves

become large enough turbulence kicks in. The divergence of perturbative series is not a fault of

any particular physical theory, instead it’s a fault of the mathematical methods used to study

those theories. Resurgence is a framework that turns this seeming weakness into a strength - in

a wide range of situations it turns out that an analysis of the specific way how the perturbative

series diverges actually contains information about the non-perturbative effects. Not only can
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one cure the infinities plaguing perturbation theory, but insight about physics far beyond is

revealed in the process. Those tiny waves on top of a calm stream did always know about

turbulence!

Modularity is a significantly more abstract idea. It finds its origins in number theory and

seems to produce a never ending list of connections between areas of pure mathematics. The rôle

it plays in physics is still not fully clear, but models that enjoy it as a symmetry have desirable

properties and give us significantly more tools to solve for observables in them exactly. This is

a symmetry that is present in many string theories as well as some particularly nice quantum

field theories (for example, N = 4 supersymmetric Yang-Mills theory in 4 dimensions). The

function of modularity in string theory relates particularly well to the story about the presence

of infinities in theories of nature. In quantum field theories there were degrees of freedom

present on very small distance scales whose contribution forced many quantities to diverge.

Modularity (among other dualities) in string theory identifies different parts of the moduli space

and provides a natural cutoff in this way leading to a UV-finite theory - no renormalization

required.

In this thesis we explore how modularity and resurgence interact with each other within a

string theory context. They both describe intricate interrelations between perturbative and non-

perturbative phenomena and therefore provide stringent constraints on observables of interest.

In chapters 2 and 3 we introduce respectively the mathematics of resurgence and modularity.

In chapter 4, based on [1], we discuss generalised Eisenstein series in string perturbation theory

and apply Cheshire cat resurgence to their Fourier zero-modes. In chapter 5, based on [2],

we continue our analysis of generalised Eisenstein series, but now in the context of higher

derivative corrections to type IIB supergravity; we use Poincaré series and spectral methods

to derive non-perturbative information about them. Finally, in chapter 6, based on [3], we

discuss integrated correlators in N = 4 supersymmetric Yang-Mills and formulate a modular

invariant version of transseries and resummation, demonstrating the need to include a novel,

non-perturbative modular completion.
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CHAPTER 2

Theory of resurgence

The modern theory of resurgence finds its origins within the work of Écalle who developed

the framework within the context of differential, difference and functional equations [4]. More

modern introductions focusing on the physical side include [5–7] and a more mathematical

perspective can be found in [8]. In this section we introduce the basic terminology needed

for an understanding of resummation and resurgence, but don’t touch upon the mathematical

details and the more algebraic aspects of the theory.

As was already mentioned in the introduction, most problems in physics are too complicated

to be solved exactly and we need to instead rely on a method of approximation - perturbation

theory. In order to make use of this, one must start by identifying a small (in some appropriate

sense) parameter x that observables in our theory depend upon and expand them in a power

series

ΦP (x) =
∞∑
k=0

akx
k. (2.1)

In this equation ΦP (x) describes the perturbative part of an observable of our interest O(x) and

is merely a formal expression, since generically the coefficients have factorial growth ak ∼ k! and

the series diverges for any non-zero value of x. Such divergent series were studied by Euler and

other famous mathematicians, but their meaning was somewhat unclear and a general sense

of distrust about their properties was common. Finally, a definition in terms of asymptotics
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Figure 2.1: A graph showing the relative error in the Stirling approximation if the first k terms
are added from the bracket in equation (2.2) for n = 3. We see that for this choice of n optimal
truncation happens for k = 19.

was given by Poincaré who understood that the divergent series really encode the best possible

approximation to the function of interest at a fixed order in the parameter x. A classic example

is the Stirling approximation for the factorial function, which states

n! ∼ nne−n
√
2πn

(
1 +

1

12n
+

1

288n2
+ ...

)
for n≫ 1. (2.2)

As can be seen, the coefficients in the series initially get smaller, but this pattern does not

hold. In fact, it can be shown that for large values of the parameter the growth is factorial and

the series diverges. Nevertheless, if the series is truncated at a finite order (the precise point

of optimal truncation depends on the value of n), it gives a very accurate numerical estimate

for the factorial. From figure 2.1 we see that even for the small value of n = 3 the agreement

is exceptional. Applying this reasoning to the observable from before, we say that O(x) is

asymptotic to ΦP (x) and write

O(x) ∼ ΦP (x) =
∞∑
k=0

akx
k ⇐⇒ lim

x→0+
x−n
∣∣∣O(x)−

n∑
k=0

akx
k
∣∣∣ = 0 ∀n ∈ {0, 1, 2, ...}, (2.3)

which is exactly the notion that Poincaré devised. While asymptotic series are in some ways
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different to their convergent counterparts, they also share a plethora of properties: one may

add them, multiply them or take their derivatives and under these operations the asymptotic

relationship will be preserved. So we have found that the asymptotic series form a ring with a

derivation

ΦP (x) ∈ C[[x]] :=
{ ∞∑

k=0

akx
k|ak ∈ C

}
and

d

dx

∞∑
k=0

akx
k =

∞∑
k=0

(k + 1)ak+1x
k, (2.4)

where addition and multiplication of formal series is defined in the obvious way. Clearly we

have made some progress in understanding the nature of perturbation theory - starting with

an observable O(x) we generate a perturbative asymptotic series, which after truncation at a

finite order gives us an approximate value for the exact observable. But this answer feels deeply

unsatisfactory - had we put in the effort to calculate additional coefficients after the point of

optimal truncation, adding them to our original observable would only make the answer worse.

Could it really be that perturbation theory generates an infinite tail of meaningless information?

Thankfully the answer is a resounding no, but we need to make some additional restrictions on

the form of the asymptotic series. While in nearly all instances of physical relevance the series

will be divergent, the rate at which the coefficients ak grow is still bounded, and consequently

the theory of resummation that we describe is also restricted to asymptotic series of a particular

type. We say that a series
∑∞

k=0 akx
k has Gevrey order-1 and belongs to C[[x]]1 ⊂ C[[x]] if the

coefficients have at most factorial growth, more precisely

C[[x]]1 :=
{ ∞∑

k=0

akx
k
∣∣|ak| < BCkk!

}
, (2.5)

where B,C > 0 are fixed numbers and the inequality holds for all k.

With this restriction in mind, we may define a map that takes a formal Gevrey-1 series and

returns a function that is holomorphic in the vicinity of the origin. This map is called the Borel

transform and its purpose is, of course, to encode all that additional information which was

hiding in the large order behaviour of the coefficients ak. Throughout this thesis we will meet

a variety of definitions for the Borel transform and the particular choice is really dictated by

6



the application in mind, but for the simplest instance we use

B : C[[x]]1 → C{t} with B
[ ∞∑

k=0

akx
k
]
(t) :=

∞∑
k=0

ak+1

Γ(k + 1)
tk, (2.6)

where C{t} is the set of holomorphic germs around the point t = 0 (these are simply all power

series that converge in some open disc around the origin). Notice that the Borel transformation

loses information about the constant coefficient a0, but we can easily add it back in at a later

step of the analysis. Since the original coefficients had a factorial growth and Borel transforming

involved a division by Γ(k+1), the new power series in t is indeed guaranteed to have a positive

radius of convergence. The complex t-plane is often called the Borel plane and the function

B[ΦP ](t) will have singularities - poles and branch cuts - throughout it. Finally, we are at a

stage where we can address our initial goal, the resumming of the asymptotic series ΦP (x). We

assume that B[ΦP ](t) has no natural boundaries and can be endlessly continued along any curve

that avoids a discrete set of singularities, in which case we may choose an angle θ = arg (t) such

that the Borel transform is regular in this direction. Then we define the directional resummation

of the asymptotic series as

Sθ[ΦP ](x) := a0 +

∫ eiθ∞

0

B[ΦP ](t)e
− t

xdt, (2.7)

which we easily recognise as a Laplace transform along the specified ray. Just to reiterate what

we have done: we started with a formal power series ΦP (x) that described the asymptotics of a

function O(x) that we were interested in, then we performed a Borel transformation B[ΦP ](t),

which originally converged in a disc, but was assumed to have a nice analytic continuation and

finally we constructed the resummation Sθ[ΦP ](x), which is an analytic function in the variable

x defined on a half-plane |θ − arg (x)| < π
2
. Furthermore, one can easily show the asymptotic

relation

Sθ[ΦP ](x) ∼ ΦP (x) (2.8)

holds for any allowed value of θ. It is clearly tempting to identify O(x) with the resummation

Sθ[ΦP ](x), but there is a problem - different choices of θ generically give different functions.

Whenever there is a singularity along arg (t) = θ, the two lateral resummations Sθ+ above the

singular direction and Sθ− below it will differ, therefore we have traded an originally divergent

7



Re(t)

Im(t)

t = ω

Sθ+ [ΦP ]

Sθ− [ΦP ]

Figure 2.2: There are two possible lateral resummations around a singularity ω in the Borel
plane and the discontinuity introduces an exponentially suppressed contribution.

answer ΦP (x) for a new one that is ambiguous 1. Clearly the singular directions are particularly

important and deserve a name of their own, they are called Stokes rays after G. Stokes who was

the first to observe this type of phenomenon in his study of the Airy function (to be discussed

in 2.2).

In order to satisfy our desire for an unambiguous resummation scheme, we must analyse the

singularity structure of the Borel transformation in more detail. We make a further assumption

that the only singularities that appear are simple poles or logarithmic branch cuts so that if

t = ω is a singular point we have the following expansion around it

B[ΦP ](t) =
b0

2π(t− ω)
+

log (t− ω)

2π
B[ΦNP ](t− ω) + reg(t− ω). (2.9)

In this formula b0 in an arbitrary number while B[ΦNP ](t−ω) and reg(t−ω) are are functions

holomorphic in a neighborhood of t = ω. With some hindsight, we have decided to write one of

the functions as a Borel transformation of some other asymptotic series ΦNP (x) =
∑∞

k=0 bkx
k.

If arg (ω) = θ and ω is the only singularity on the ray arg (t) = θ, we may calculate the

1It is quite amusing to observe the similarity with renormalization, where originally divergent integrals were
traded for ones that depend on an arbitrary cut-off, although the analogy does not seem to extend further.
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discontinuity in the resummation as we move across it

(Sθ+ − Sθ−)[ΦP ](x) = −ie−
ω
x

(
b0 +

∫ eiθ∞

0

B[ΦNP ](t)e
− t

xdt
)
= −ie−

ω
xSθ[ΦNP ](x). (2.10)

We assumed that B[ΦNP ](t) has no singularities along arg (t) = θ so that the resummation Sθ

would be defined. The content of equation (2.10) is fairly clear - the discontinuity as we cross

a Stokes ray can be captured by the resummation of another asymptotic series, although mul-

tiplied by the function e−
ω
x . It is worthwhile to notice that this exponential prefactor vanishes

perturbatively, since in the limit x → 0+ it decays faster than any polynomial, hence the re-

summation procedure has produced a term that was previously invisible! This motivates us to

consider a larger space of formal power series that also includes terms which are exponentially

suppressed in 1
x
; these are called transseries and capture aspects of asymptotics that go beyond

a standard analysis. The original definition of asymptotic series (2.3) can be generalised to

terms like e−
ω
xΦNP (x), which encode corrections smaller than any power of x. In fact, if we

construct the right kind of transseries, the problem of the resummation having an ambiguous

value goes away. To see this, consider the one-parameter transseries defined by

Φ(x;σ) = ΦP (x) + σe−
ω
xΦNP (x), (2.11)

where σ ∈ C is for now arbitrary. Since the Borel transform B[ΦP ](t) has singularities on

the Stokes ray arg (t) = θ, we still suffer from all of the previously identified problems, but

notice that a simultaneous shift σ → σ + i as we go from below to above the cut cancels the

discontinuity in (2.10) and makes the resummation continuous. So we learn that if we think

of the parameter σ as piecewise constant on sectors separated by Stokes rays, but allowed

to jump as a discontinuity is encountered, the resummation function can be arranged to give

an unambiguous answer. We now give two examples that illustrate this idea and show how

solutions to differential equations may be found by starting with asymptotic series.
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2.1 Euler’s equation

The first example is very simple yet captures some of the core ideas of resurgence. Consider

the differential equation

x2
dy

dx
= x− y, (2.12)

which was first studied by Euler. Since this is a first order linear equation, its solution can be

found by standard methods (like multiplying by the integrating factor), but we imagine that

we are ignorant of the basic theory of differential equations and seek a solution in the form of

a formal power series. A simple exercise establishes that

yP (x) =
∞∑
k=0

(−1)kk!xk+1 (2.13)

solves (2.12) and shows the expected Gevrey-1 behaviour, establishing that the series diverges

for any non-zero x. Of course, this is not a solution in the form of a function y : R → R, but we

shall find the coefficients encode valuable information that allows us to reconstruct the actual

solution to the differential equation. We start by computing the Borel transformation given by

B[yP ](t) =
∞∑
k=0

(−1)ktk =
1

1 + t
, (2.14)

which initially converged for |t| < 1, but has a natural extension to C\{−1}. It is clear that

the only singularity is a simple pole at t = −1, so we may study the resurgent properties of the

series by use of standard tools. Next we consider the resummation

Sθ[yP ](x) =

∫ eiθ∞

0

e−
t
x

1 + t
dt, (2.15)

valid for any θ ̸= π, which is an analytic function of x in the half-plane |θ − arg (x)| < π
2
. As

we vary the angle θ, we obtain a function on the whole of C\(−∞, 0], and a simple calculation

by differentiating under the integral sign shows that for x /∈ R≤0 the function Sarg (x)[yP ](x)

solves the differential equation (2.12). Through an analysis of the divergent power series we

have found a particular solution to the differential equation! But it is too early to celebrate, we

are still missing the one dimensional vector space spanned by the solution to the homogeneous

part e
1
x . From the discussion of resurgence in the first part of this chapter, we know that a

10



transseries should be constructed in order to extract all of the information that the original

asymptotic expansion contained. Since the singularity structure of B[yP ](t) is so simple, the

corresponding non-perturbative completion just picks the residue at t = −1 of (2.15) and gives

y(x;σ) = yP (x) + σe
1
x . (2.16)

The homogeneous solution has been recovered and the full solution to Euler’s equation is finally

given by Sθ[y](x;σ). In this solution the transseries parameter σ plays a a double rôle: the

expected free parameter describing the initial condition for a first order differential equation

and also a counter to the discontinuity as we cross the Stokes line at θ = π (we need to shift

σ → σ − 2πi, if we cross the line anti-clockwise). We see that all of the analytic structure of

the solution was encoded in the original series (2.13) and we have ended up with an infinitely-

sheeted Riemann surface.

2.2 Airy equation

We now look at another classic although slightly more advanced application of resurgence

theory. Indeed, many of the ideas that are central to the resurgence program (like the Stokes

phenomenon) were first found through an exploration of the Airy function. Initially introduced

by the physicist G.B. Airy who was studying the behaviour of wave optics, the function solves

the differential equation
d2y

dx2
= xy. (2.17)

We see that compared to Euler’s equation (2.12) the order of the equation has increased to two,

but it is still linear. Unlike in the case of the Euler equation, the point x = 0 is regular and the

solution can be extended to an entire function on the whole of C, therefore it is impossible to

apply resurgent methods to a series expansion as x→ 0. Nevertheless, we proceed by expanding

the function around the essential singularity at x = ∞, which leads to exactly two possible

formal solutions

y±(x) = x
5
4 e±

2
3
x3/2

Φ±(x
− 3

2 ) with Φ±(z) =
∞∑
k=1

Γ(k − 1
6
)Γ(k − 5

6
)

Γ(k)

(
± 3

4
z
)k
. (2.18)
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Once again we find that a factorially divergent piece Φ±(x
− 3

2 ) is present, hence we will need to

define a resummation. In contrast to the Euler equation, both solutions have an exponential

prefactor e±
2
3
x3/2

that multiplies the asymptotic part, so there is actually no perturbative sector.

Nevertheless, the two terms may be assembled into a formal transseries solution to (2.17) as

y(x;σ+, σ−) = σ+y+(x) + σ−y−(x). (2.19)

Here the transseries parameters σ+ and σ− play the rôle of the expected two initial conditions

to a second order differential equation. We next compute the Borel transform of the formal

series, which is given by a hypergeometric function

B[Φ±](t) = ±3π

2
2F1

(1
6
,
5

6
; 1
∣∣± 3t

4

)
. (2.20)

It is a well-known fact that the function 2F1(a, b; c|z) has a branch cut starting at z = 1, hence

we conclude that B[Φ±](t) have branch cuts starting respectively at t = ±4
3
and consequently

the directions θ = 0, π are Stokes rays. From equation (2.18) we see that the constant term is

missing, hence the directional resummation has the simple form

Sθ[Φ±](x) =

∫ eiθ∞

0

B[Φ±](t)e
−tx3/2

dt θ ̸= 0, π;
∣∣θ + 3

2
arg(x)

∣∣ < π

2
. (2.21)

Since in this example we have concrete expressions for the Borel transformations, we may

explicitly calculate the discontinuity as one moves across a Stokes ray. From standard properties

of the hypergeometric function (such as equation (4.43)), we find the connection formulae

(S0+ − S0−)[y+](x) = −iS0[y−](x) ,

(Sπ+ − Sπ−)[y−](x) = iSπ[y+](x) . (2.22)

We see that all of the analytic information that was encoded in the singularity structure of

the Borel transformations (2.20) has been transformed into a set of algebraic equations (2.22)

that are closed among themselves (since no other formal solutions are generated in addition to

the y+(x) and y−(x) we began with). As in the case of the Euler equation, it is possible to

check that Sθ[y(σ+, σ−)](x) does in fact solve the Airy equation as long as the angle θ satisfies

12



Figure 2.3: A plot of the Airy function clearly demonstrating the oscillatory behavior for x < 0
and exponential decay for x > 0. Both σ+ and σ− are turned on for negative values of x, while
only σ− plays a rôle in the asymptotics for positive x.

the constraint in (2.21) and additionally one shifts σ− → σ− + iσ+ whenever the Stokes ray

along θ = 0 is crossed and σ+ → σ+ − iσ− whenever the Stokes ray at θ = π is crossed (in

both cases anti-clockwise). This tells us that the appropriate asymptotics for the Airy function,

which are encoded in the transseries ansatz, change as we vary the phase of the function arg(x)

and additionally explains how a single analytic function can be oscillatory in one region of the

complex plane, while exponentially decaying in another. The perplexing asymptotic behaviour,

originally explained by Stokes using an early version of Picard-Lefschetz theory, can be seen

in figure 2.3. Additionally, one may check that performing a full rotation on the resummation

in the original x-plane via x → e2πix has trivial monodromy, if the transseries parameters are

shifted appropriately (note that a 2π rotation in x will correspond to a 3π rotation in t). This

is a manifestation of the fact that the Airy function is entire.
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CHAPTER 3

The modular group

The modular group SL(2,Z) has played a very prominent rôle in mathematics since the 19th

century, rearing its head in areas as disparate as number theory, complex analysis, finite group

theory and representation theory. There are many classic texts to get acquainted with the

theory from a mathematical side [9–11], but a recent set of lecture notes emphasizing the

physics has also become available [12]. The purpose of this section is to give an overview

of the theory of modular forms and functions in order to highlight the parts relevant for an

understanding of the physics in this thesis.

The modular group consists of 2× 2 matrices with integer entries and unit determinant

SL(2,Z) :=


a b

c d

∣∣∣(a, b, c, d) ∈ Z4, ad− bc = 1

 . (3.1)

While the group has infinite order, it is generated by just two elements

SL(2,Z) = ⟨S, T |S2 = (ST )3 = −1⟩ with S =

0 −1

1 0

 , T =

1 1

0 1

 . (3.2)

By this we simply mean that any γ ∈ SL(2,Z) can be written as γ = ±T a1ST a2S...ST an for

some integral coefficients ai ∈ Z and any three consecutive ST or TS may be omitted.
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The most important observation about the modular group, from which nearly all of its

applications arise, is that it possesses an action on the upper complex half-plane (also called

the Poincaré plane). It is useful to start by observing that SL(2,Z) is a discrete subgroup of the

Lie group SL(2,R), which has an action on the upper half-plane via Möbius transformations

H := {τ ∈ C|Im(τ) > 0} = U(1)\SL(2,R), γ =

a b

c d

 ∈ SL(2,R), γ · τ =
aτ + b

cτ + d
. (3.3)

It is easy to show that the action is transitive and every point has stabilizer U(1), hence the

first identity follows from the orbit-stabilizer theorem. This way of characterising the upper

half-plane has a natural extension to other Lie groups leading to the theory of automorphic

forms, which have also found applications in physics [13] and play a central rôle in the famous

Langlands program. Of course the modular group also inherits an action on H from (3.3), which

has the effect of tessellating the plane into a multitude of pieces - each serving as a fundamental

domain of the action. To get a better understanding of how this comes about, we note the

action of the two generators S · τ = − 1
τ
and T · τ = τ + 1. Clearly the T generator is just

implementing discrete translations along the real axis, but the action of S is more intricate.

Irrespective of this, it is easy to find the fundamental domain F - the action of T allows us to

restrict it to the strip −1
2
≤ Re(τ) ≤ 1

2
and the action of S exchanges the interior and exterior

of the unit circle, therefore we may pick

F := SL(2,Z)\H =
{
τ ∈ H

∣∣− 1

2
< Re(τ) ≤ 1

2
, |τ | ≥ 1

}
∪ {τ ∈ H

∣∣|τ | = 1, 0 ≤ Re(τ) ≤ 1

2
}.

(3.4)

A depiction of F can be seen in Figure 3.1. It is easy to convince oneself that topologically F

is a sphere with a missing point - the asymptotic point at i∞ (in the literature often called the

cusp).

Up until now we have focused on H as a topological space, but it actually possesses a natural

geometry described by an SL(2,R)-invariant metric. If we parametrise τ = τ1+ iτ2 with τ2 > 0,

we may write this metric as ds2 = τ−2
2 (dτ 21 + dτ 22 ). This is actually the oldest non-Euclidean

geometry - the hyperbolic plane, first described by Lobachevsky and Bolyai as a counterexample

to the parallel postulate of Euclid’s Elements. The metric establishes that the geodesics are

either straight lines parallel to the imaginary axis or circles whose center lies on the real axis
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Figure 3.1: The fundamental domain F and some of its SL(2,Z) translates.

(observe that the boundary of F consists entirely of geodesics). One may also measure areas

with respect to this metric and, while the fundamental domain is unbounded, it actually has a

finite volume given by Vol(F) = π
3
. It is also useful to introduce the Laplace-Beltrami operator

∆ = τ 22 (∂
2
τ1
+ ∂2τ2), (3.5)

which plays a major rôle in the study of modular functions and spectral theory - topics we

describe later.

3.1 Modular functions and forms

We found that there is an action SL(2,Z) : H → H, so one naturally wonders what type

of functions have nice transformation properties under it? While it might seem simplest to

consider function invariant under the action (and these will play a major rôle in what follows),

it turns out to be useful to retain an automorphy factor and define a transformation property

as follows

f(γ · τ) = (cτ + d)kf(τ) for γ =

a b

c d

 ∈ SL(2,Z), (3.6)

where the integer k ∈ Z is called the weight. If we choose γ = −12, we instantly establish that

a non-zero function requires k to be even. Similarly, by choosing the generator of translations
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γ = T and substituting into equation (3.6), we find that all functions of this type must be

periodic f(T · τ) = f(τ + 1) = f(τ). This implies that they must have a Fourier expansion

f(τ) =
∑
n∈Z

an(τ2)q
n with q = e2πiτ , (3.7)

where the variable q is constrained to live in the interior of the unit circle. We did not assume

that the function f : H → C is holomorphic, which is reflected in the coefficients an(τ2)

depending on the imaginary part. Had we assumed holomorphicity, they would have to be

constants. The coefficient functions an(τ2) will generically have polynomial growth at infinity

with subleading exponentially suppressed corrections. We are usually interested in functions

that have controlled growth at the cusp τ → i∞, which corresponds to the limit q → 0,

therefore we introduce the terminology

• f is a modular function if only a finite number of coefficients an(τ2) with n < 0 are non-

zero. If the function is holomorphic, this means that in the q-plane the function has a

finite order pole at the origin;

• f is a modular form if all coefficients an(τ2) vanish for n < 0. This means that the

function approaches the coefficient a0(τ2) as τ → i∞, which is independent of τ1;

• f is a cusp form if it is a modular form and a0(τ2) = 0, therefore cusp forms go to 0 at

the cusp.

While it is possible to consider even more general modular objects, we shall find that for the

topics covered in this thesis the definition given suffice.

3.1.1 Holomorphic modular forms

The simplest examples of modular forms are holomorphic ones at positive weight k > 0. A

complete classification of such forms is known and is fully described by a class of functions

called holomorphic Eisenstein series. For k > 2 they are defined by the sum

Gk(τ) =
∑

(m,n)̸=(0,0)

1

(m+ nτ)k
, (3.8)
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which is a modular form of weight k and vanishes for k odd (as was expected, since there

are no forms of odd weight). In the case k = 2 the sum is conditionally convergent and can

be used to define a holomorphic function, but it is not a modular form (although it still has

calculable transformation properties under modular transformations). The Eisenstein series

have a well-known Fourier expansion given by

Gk(τ) = 2ζ(k) + 2
(2πi)k

Γ(k)

∞∑
n=1

σk−1(n)q
n, (3.9)

where σα(n) =
∑

d|n d
α is a divisor-sum function. We have now found an example of a modular

form of every even weight k > 2, but are there any more? Notice that if we define Mk to be the

space of holomorphic modular forms of weight k, then the space of all forms M =
⊕∞

k=0Mk

has a ring structure with MkMl ⊂ Mk+l. Division in this space is not generically allowed,

since if one divides by a cusp form the result will not be holomorphic at i∞. For example,

at weight 8 we find two modular forms G4(τ)
2 and G8(τ), but they turn out to be constant

multiples of each other and dim(M8) = 1. In fact, it is possible to prove that the whole ring

of holomorphic modular forms is freely generated by the Eisenstein series of weight 4 and 6 so

that

M ∼= C[G4, G6]. (3.10)

By this we simply mean that every modular form can be written as a sum of terms G4(τ)
aG6(τ)

b

and dim(Mk) equals the number of distinct ways one can write k = 4a + 6b for non-negative

integers a and b. This is a very powerful result, since, in particular, it implies dim(Mk) < ∞

for any k. In turn that establishes we can prove that two modular forms are the same by

simply checking a finite number of coefficients in their Fourier expansion. A comparison of the

constant Fourier coefficient in (3.9) gives us the identity G8(τ) =
3
7
G4(τ)

2, while equating all

of the other Fourier modes then gives the non-trivial arithmetic formula

σ7(n) = σ3(n) + 120
n−1∑
m=1

σ3(n−m)σ3(m). (3.11)

We find that the constraints coming from modularity are so restrictive that surprising results

are naturally derived through a simple paucity of the allowed objects. This is a theme that will

be seen many more times throughout this thesis.
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3.1.2 Maass forms

In the previous section we gave a complete classification of holomorphic modular forms and

showed that the defining transformation property (3.6) is very restrictive. We now turn our

attention to non-holomorphic functions f : H → C, but impose additional constraints. Remem-

ber that the hyperbolic plane admits a natural Laplace operator ∆ = τ 22 (∂
2
τ1
+ ∂2τ2), which in

particular preserves the modular invariance property (such that if f(τ) satisfies the functional

equation f(γ · τ) = f(τ) then so will ∆f(τ)). This motivates us to define a Maass form f(τ)

as a modular-invariant function that additionally is an eigenvector of the Laplacian

∆f(τ) = s(s− 1)f(τ). (3.12)

Here s ∈ C is arbitrary and we also require that the function has at most polynomial growth

at the cusp. The choice to label the eigenvalue as s(s − 1) might initially seem a little odd,

but is standard in the literature. Clearly equation (3.12) is left invariant by the involution

s → 1− s, therefore there is some ambiguity in the value of s and, if one wishes, it is possible

to restrict to the range Re(s) ≥ 1
2
. Much like in the case of holomorphic forms, a lot is known

about the space of allowed Maass forms through an analysis of the modular transformation

property. The simplest examples are once again called Eisenstein series, but this time they are

non-holomorphic functions that are modular invariant

E∗(s; τ) =
1

2
Γ(s)

∑
(m,n)̸=(0,0)

(τ2/π)
s

|m+ nτ |2s
. (3.13)

This definition converges absolutely for Re(s) > 1, but a meromorphic continuation exists on

the whole C. To see this, we note the formula for the Fourier expansion of the non-holomorphic

Eisenstein series

E∗(s; τ) = ξ(2s)τ s2 + ξ(2s− 1)τ 1−s
2 + 4

∞∑
k=1

cos (2πkτ1)
σ2s−1(k)

ks−
1
2

√
τ2Ks− 1

2
(2πkτ2), (3.14)

where ξ(s) = π− s
2Γ( s

2
)ζ(s) = ξ(1 − s) is the completed zeta function and Ks(z) is a modified

Bessel function of the second kind. The Fourier series converges for any s ̸= 0, 1 and satisfies the

reflection formula E∗(s; τ) = E∗(1−s; τ). Furthermore, the poles at the points s = 0, 1 have τ -
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independent residues given by ress=1E
∗(s; τ) = −ress=0E

∗(s; τ) = 1
2
. Of course, as required by

the definition of a Maass form, the Eisenstein series also satisfy a Laplace eigenvalue equation

∆E∗(s; τ) = s(s− 1)E∗(s; τ). (3.15)

If we denote the space of Maass forms with eigenvalue s(s − 1) by N (s) = N (1 − s), we

have found an element in this space for every s: when s ̸= 0, 1 these are simply the Eisenstein

series E∗(s; τ), while for the special values s = 0, 1 the eigenvalue vanishes and the constant

functions satisfy the equation. It is natural to ask if the space really is 1-dimensional for

every s, or have we missed some functions? At generic values of s there are indeed no more

modular invariant solutions, but for Re(s) = 1
2
there exists a discrete set of points for which

N (s) = CE∗(s; τ)
⊕

S(s) with S(s) the space of non-holomorphic cusp forms. These are quite

different beasts to their Eisenstein series cousins - similarly to them they satisfy an eigenvalue

equation

∆ϕn(τ) = µnϕn(τ), where µn = −
(1
4
+ t2n

)
, 0 < t1 < t2 < ... , (3.16)

with the spectral parameters tn, specifying the eigenvalue µn, forming an infinite and unbounded

set of sporadic positive numbers. Although, as the name indicates, they have a vanishing Fourier

zero-mode and admit the series expansion

ϕn(τ) =
∑
k ̸=0

h
(n)
k τ

1
2
2 Kitn(2π|k|τ2)e2πikτ1 , (3.17)

with the Fourier coefficients h
(n)
k once more a set of sporadic real numbers. Given the outer

automorphism of order two τ → −τ̄ , we can divide the cusp forms into even ones, i.e. ϕn(τ) =

ϕn(−τ̄), and odd ones, i.e. ϕn(τ) = −ϕn(−τ̄). These objects are quite mysterious and have

links with quantum chaos [14]. While it is known that an infinite number of cusp forms exist

(by using the Selberg trace formula), their exact distribution and other properties are currently

unknown. Nevertheless, the interested reader can find both spectral parameters and Fourier

coefficients for various even/odd Maass cusp forms on the L-functions and modular forms

database (LMFDB) [15]. This concludes our discussion about the classification of Maass forms

and we once again see how the modular group severely restricts the allowed space of functions.
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3.2 Poincaré series representation

Now that we have given some examples of modular functions and forms, we turn to a more

systematic analysis of their representations. If we wish to produce a function that is invariant

under the action of some group, a simple method is to sum over the images of said action (for

example,
∑

n∈Z f(x+ n) has period 1 if the sum converges absolutely, i.e. it is invariant under

the additive group Z). In the case of the modular group and its action on H this method is

called constructing a Poincaré series and is very useful for calculations. We start by defining the

Borel subgroup, which stabilises the cusp B(Z) = stab(i∞) and has the explicit representation

B(Z) =

±

1 n

0 1

∣∣∣∣∣∣n ∈ Z

 ⊂ SL(2,Z). (3.18)

Next we choose a periodic function (usually called the seed function) g : H → C such that

g(τ) = g(τ + 1), therefore one has a well-defined action of the coset B(Z)\SL(2,Z) on it.

Finally, we may construct a function by summing over the orbit of that coset

f(τ) =
∑

γ∈B(Z)\SL(2,Z)

g(γ · τ), (3.19)

which will have our desired modular invariance property as long as the sum converges absolutely.

Poincaré series make modular properties manifest, but they also have drawbacks, for example,

the Fourier series are usually quite hard to extract. Another benefit is that the seed function

is usually simpler than the full modular function, for example, the non-holomorphic Eisenstein

series have the fairly elementary Poincaré series

E(s; τ) =
E∗(s; τ)

ξ(2s)
=

∑
γ∈B(Z)\SL(2,Z)

Im(γ · τ)s, Re(s) > 1, (3.20)

where a new normalization for the Eisenstein series was introduced for later convenience. We

see that in this case the seed function is simply the imaginary part of the modular parameter,

which, as expected, is invariant under τ → τ + 1. It is important to observe that the seed

function is not unique - obviously one could shift it by the action of any element γ ∈ SL(2,Z)

or even take an infinite sum
∑∞

k=0 akg(γk · τ) with γk different matrices in the modular group
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and
∑∞

k=0 ak = 1. The final function might look nothing like the seed we began with even

though the Poincaré series are identical.

To illustrate this, we note that yet another Poincaré seed for E(s; τ) was given in [16,

Eq. (3.10)]:

∑
γ∈B(Z)\SL(2,Z)

[√
|k|τ2Ks− 1

2
(2π|k|τ2)e2πikτ1

]
γ
=

π2s+1/2σ2s−1(k)E(s; τ)

2|k|s−1 cos(πs)Γ(s+1/2)ζ(2s− 1)
, (3.21)

where the notation [· · · ]γ means that γ acts on all occurrences of τ (and τ̄) inside the bracket

using the fractional linear action (3.3). As we can easily see from (3.14), the seed appearing

in the Poincaré sum is given by the generic Fourier non-zero mode of E(s; τ) and is therefore

expected again to be proportional to E(s; τ).

Finally, we also observe that the method can be applied to modular forms of weight k (i.e.

functions that are not quite invariant under modular transformations). If we are given fk(τ), a

modular form of weight k, we may construct a meromorphic differential form fk(τ) = fk(τ)(dτ)
k
2

that is modular-invariant. To connect this with the example of holomorphic Eisenstein series

we saw before, define the differential k-form g2k(τ) = G2k(τ)(dτ)
k, which admits the simple

Poincaré series

g2k = 2ζ(2k)
∑

γ∈B(Z)\SL(2,Z)

d(γ · τ)k. (3.22)

3.3 Spectral theory

If we are interested in studying functions f : H → C that are modular-invariant, a very powerful

tool of analysis is spectral theory. The key idea behind spectral theory is to decompose any

modular invariant function as a linear combination of “good” basis elements, i.e. normalisable

eigenfunctions of the hyperbolic Laplace operator. Since the functions are invariant under mod-

ular transformations, we can really think of them as being defined on the fundamental domain

F . Of course, the fundamental domain inherits its geometry from that of H and furthermore

we may consider the Hilbert space of square-integrable functions L2(F) with respect to the

Petersson inner product

(f, g) =

∫
F
f(τ) g(τ)dµ, (3.23)

where the invariant Haar measure is dµ = τ−2
2 dτ1dτ2.
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Note that for a function f to be an element of L2(F), its growth at the cusp τ2 ≫ 1 must

be at most |f(τ)| = O(τ
1
2
2 ). In applications of our interest, we will often encounter modular

invariant functions f violating such bound, i.e. non-L2(F) normalisable functions. Although

this growth condition seems quite restrictive, spectral analysis methods can be extended from

square-integrable functions to a broader class of functions that have moderate growth at the

cusp. If a function f has cuspidal growth |f(τ)| = O(τα2 ) with Re(α) > 1
2
, we can find a

coefficient β such that the new modular invariant combination f(τ) − βE(α; τ) has a tamer

growth at the cusp. More generally, we will be discussing modular invariant functions whose

asymptotic expansion at the cusp is controlled by finitely many non-integrable power-like terms

ταi
2 with Re(αi) >

1
2
. Although such functions f(τ) are not elements of L2(F), we can find

coefficients βi for which the linear combination

fnew(τ) = f(τ)−
∑
i

βiE(αi; τ) ∈ L2(F) , (3.24)

is L2-normalisable.

Modulo the caveat just mentioned, we now consider in more detail the Hilbert space L2(F)

with inner product (3.23). One of the main benefits of working with a vector space is that we

can always express a generic element in terms of a basis. Furthermore, since the space has a

geometric structure and an associated Laplace-Beltrami operator ∆ : L2(F) → L2(F), which

is in particular self-adjoint with respect to the inner product (3.23), it is natural to use the

Laplace eigenfunctions as a basis for L2(F).

The spectrum of the hyperbolic Laplacian is closely related to Maass forms discussed in

3.1.2 and decomposes into three distinct eigenspaces (we refer to [9, 10] for details):

• The constant function f(τ) = 1 is clearly an eigenfunction of ∆ with eigenvalue 0, and

it is an element of L2(F), since (1, 1) = Vol(F) = π
3
is the volume of the fundamental

domain;

• The continuous part of the spectrum is spanned by E(t; τ) with Re(t) = 1
2
and eigenvalue

t(t− 1) given (3.15);

• The discrete part of the spectrum is spanned by the Maass cusp forms, ϕn(τ), with

n ∈ N>0 and eigenvalue µn = −
(
1
4
+ t2n

)
given (3.16).
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Once the basis of eigenfunctions for the Laplacian is understood, we are naturally led to

consider the Roelcke-Selberg spectral decomposition:

f(τ) = ⟨f⟩+
∫
Re(t)= 1

2

(f,Et)E(t; τ)
dt

4πi
+

∞∑
n=1

(f, ϕn)ϕn(τ) , (3.25)

for a generic f ∈ L2(F) (inside the inner product we use the short-hand notation Et := E(t; τ)).

The first term is simply ⟨f⟩ =
∫
F f(τ) dµ, which can be understood as the average of

the function over the fundamental domain, or equivalently as the spectral overlap with the

constant function ⟨f⟩ = (f, 1). The remaining part of the decomposition can be understood

as a “linear” combination of orthonormal basis elements whose coefficients are simply given by

the inner product of the function f(τ) under consideration and the respective basis element.

In the case of a Poincaré series representation, an extraction of the Fourier zero-mode was

an involved process, in contrast spectral representation gives easy access to this information.

Notice that if we Fourier decompose f ∈ L2(F) as

f(τ) =
∑
k∈Z

fk(τ2)e
2πikτ1 ,

the spectral decomposition (3.25) immediately provides for a nice contour integral representa-

tion for the Fourier zero-mode f0(τ2). Since from (3.17) we know that the Maass cusp forms

have vanishing Fourier zero-mode, we conclude that only the Eisenstein series can contribute.

Furthermore, from the Fourier decomposition (3.14) for E(t; τ), we know that the zero-mode

of the Eisenstein series contains only two power-behaved terms, τ t2 and τ 1−t
2 . We can however

combine the reflection property ξ(2t)E(t; τ) = ξ(2− 2t)E(1− t; τ), with a change of variables

t→ 1− t to show that both terms τ t2 and τ 1−t
2 give an equal contribution, arriving at

f0(τ2) = ⟨f⟩+
∫
Re(t)= 1

2

(f,Et) τ
t
2

dt

2πi
. (3.26)

This formula may appear rather useless since to extract the Fourier zero-mode f0(τ2) it

would seem necessary to already know the full modular function f(τ) in order to compute its

spectral overlap (f,Et). However the use of Poincaré series leads to a neat idea called the

unfolding trick, which sometimes makes the calculation possible. The trick has many guises

(some of which we also describe later in the thesis), but here we look at a simple application
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that shows the overlap with Eisenstein series on the critical line Re(t) = 1
2
is given by the

Mellin transform of the Fourier zero-mode

(f,Et) =

∫
F
f(τ)E(t; τ)dµ =

∫
F
f(τ)

∑
γ∈B(Z)\SL(2,Z)

Im(γ · τ)t̄dµ =

∫
B(Z)\H

f(τ)τ 1−t
2 dµ

=

∫ ∞

0

f0(τ2)τ
−1−t
2 dτ2 = M[f0](−t). (3.27)

In the calculation we used the fact that on the critical line we have the identity t̄ = 1− t and

in the third equality we exchanged the sum and the integral, while simultaneously making a

change of variable τ → γ · τ , which has the effect of moving the fundamental domain around

in such a way that it tessellates the cylinder

B(Z)\H =

{
τ1 + iτ2 ∈ H : |τ1| ≤

1

2
, τ2 > 0

}
. (3.28)

The integral over τ1 can then be trivially calculated and the final answer projects on the the

zero-mode of the function. It is expressed using the Mellin transform, which for a function

g : [0,∞) → C is defined by M[g](t) :=
∫∞
0
g(x)xt−1dx. Formula (3.26) is then recognised as

nothing more than the Mellin inversion formula.

Finally, we notice that once the spectral overlap (f,Et) is known, the integral representation

(3.26) enables us to explore both the large τ2 → ∞ asymptotics as well as the small τ2 → 0

asymptotics by a suitable choice on how we close the t-contour of integration at infinity.
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Applications to physics

Now that we have introduced the relevant mathematical techniques, we look at 3 applications

to physics. While in each case the analysis concerns a particular space of functions that arises in

the relevant physical context, the methods and ideas developed may be applied more generally.

All of the examples are related to string theory, which is a framework to describe quantum

gravity where particles are replaced by extended 1-dimensional strings. In this thesis we don’t

provide an introduction to string theory, but standard texts are [17–20]. Nevertheless, before

we discuss the specifics, it’s good to give a general overview of how modular symmetry appears

in string theory. Broadly there are two different sources for the appearance of SL(2,Z): it

serves as the mapping class of a torus and also as the S-duality group of type IIB string theory.

String perturbation theory involves a sum over all Riemann surfaces in order to calculate

the scattering amplitude of oscillating strings (identified with particles) and the torus plays a

particularly important rôle as the first quantum correction to the tree-level answer. By the

mapping class of a surface, in this case the torus, we simply mean the group that describes

large diffeomorphisms (those which are not connected to the identity), therefore in this case

invariance under modular transformations simply comes about because our choice of coordinates

on a torus should not matter.

The second occurrence of modular symmetry is somewhat more mysterious and traces its

origin back to an observation of Montonen and Olive [21] in gauge theory. They found that

the spectrum of the theory remains invariant if the coupling constant is inverted while si-
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multaneously fundamental fields are exchanged with solitons. Even though the duality did

not work out in the Georgi-Glashow model they had considered originally, it was established

to be correct in the maximally supersymmetric N = 4 Yang-Mills [22]. In supersymmetric

theories the coupling constant g2
YM

and theta angle θ naturally combine into a complex param-

eter τ = θ/(2π) + 4πi/g2
YM

∈ H. In this case the periodicity of the angle is implemented by

T : τ → τ + 1, while the Montonen-Olive duality is given by S : τ → − 1
τ
, thereby enhancing

the symmetry to the full SL(2,Z). Since N = 4 SYM is a conformal theory and the coupling in

it does not run, different choices of τ may be seen as parametrizing inequivalent theories, and,

due to the duality discussed, the correct conformal manifold is the fundamental domain F .

Another way how to view this duality is from a holographic perspective via the AdS/CFT

correspondence. In an iconic paper [23] Maldacena proposed that a string theory in a nega-

tively curved spacetime (one that asymptotically approaches the AdS solution) could be iden-

tified with a conformal field theory that lives on the boundary of that spacetime. With this

correspondence a theory of quantum gravity is shown to be equivalent to another theory with

no gravity at all! In the first and most widely studied implementation of the correspondence

Type IIB string theory on a background AdS5×S5 in the presence of N D3-branes ought to be

identified with N = 4 SYM theory in 4 dimensional flat spacetime with gauge group SU(N).

By then it was already known that in Type IIB string theory one may also define a modular

parameter τs = χ + i/gs, where χ is the expectation value of the RR 0-form field (often also

called the axion), while gs = eΦ is the string coupling (related to the expectation value of the

dilaton field). The string theory was conjectured to be invariant under SL(2,Z) transformations

on the parameter τs (with appropriate action on the other string and brane degrees of freedom

as well), and this powerful non-perturbative invariance was called S-duality. Under AdS/CFT

the two modular parameters are identified τ = τs and the Montonen-Olive duality of gauge

theory is revealed to be the same as S-duality of string theory.
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CHAPTER 4

Superstring perturbation theory and modular graph functions

Identically to quantum field theory, the calculation of scattering amplitudes plays a major

rôle in string theory. Indeed, a formulation for an all-order perturbative S-matrix of graviton

scattering was one of the major early successes of string theory. In QFT perturbation theory

is organised by the number of loops in the associated Feynman graph, while in string theory

this notion is replaced by inequivalent Riemann surfaces (with genus of the surface playing the

rôle of loops). Restricting our attention to the scattering of 4 gravitons in Type II theories for

the moment, string theory gives us an asymptotic expansion in the string coupling gs

A(ki, ϵi) ∼ κ210R4

∞∑
h=0

g2h−2
s A(h)(sij). (4.1)

In this formula κ10 is related to the 10 dimensional Newton’s constant, R4 is a linearised

contraction of 4 Riemann tensors that is constructed out of the graviton polarisation tensors ϵi

and sij = −α′

4
ki·kj are Mandelstam invariants constructed from the momenta of the gravitons ki.

The form of the series (4.1) is severely constrained by N = 2 supersymmetry in 10 dimensions

so that only a single contraction of the polarisation tensors is allowed to appear (this also has

implications for the low-energy effective action discussed later). The series is also known to be

divergent [24] with the coefficient functions A(h) ∼ h!, furthermore the Borel transformation of
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the series has singularities on the positive real axis indicating the presence of non-perturbative

effects (which include D-instantons at order ∼ e−1/gs and gravitational instantons at order

∼ e−1/g2s ). The genus-h amplitude A(h) is given by an integral over the moduli space of genus-h

Riemann surfaces of the expectation value of a product of 4 graviton vertex operators. For

h = 0 the answer is easily calculable and reproduces the Virasoro-Shapiro amplitude, while the

cases h ≥ 2 are generically intractable using current techniques. In this chapter we focus on

the sweet spot h = 1 corresponding to a toroidal worldsheet.

For closed-string amplitudes (describing gravitational interactions) at genus one the world-

sheet is a torus T = C/(Z+ τZ) with complex modular parameter lying in the upper complex

half-plane τ = τ1 + iτ2 ∈ H. In order to calculate the amplitude of a scattering process, one

introduces punctures zj ∈ T and integrates them over all inequivalent configurations. The

amplitude for the 4 graviton case may then be written as

A(1)(sij) =
π

16

∫
F

|dτ |2

τ 22
M(1)

4 (sij|τ), (4.2)

with the fundamental domain F serving as the moduli-space of inequivalent tori. For further

discussion it is useful to introduce a slightly generalised version of the integrand, which happens

to be relevant for n graviton scattering and is given by

M(1)
n (sij|τ) =

( n∏
j=2

∫
T

d2zj
τ2

)
exp

( n∑
1≤i<j

sijG(zi−zj, τ)
)
, (4.3)

where translational invariance can be used to set z1 to an arbitrary value. In this expression

the Mandelstam invariants sij ∈ C are taken to be independent complex numbers, and G(z, τ)

is the Green function on a torus given by

G(z, τ) =
τ2
π

∑
(m,n)̸=(0,0)

e2πi(mv−nu)

|mτ+n|2
, (4.4)

where z = uτ+v with u, v ∈ [0, 1). This sum is only conditionally convergent and is understood

using the Eisenstein summation convention [11].

When one Taylor expands the exponential of (4.3) in the sij, they are naturally led to a

graphical scheme for organising the terms that emerge - these objects are called modular graph

functions (MGFs) and were introduced in [25]. In order to construct a graph out of the terms in
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the series, we associate a vertex with each of the punctures z1, z2, ..., zn and an edge connecting

vertices i and j with each occurrence of the propagator G(zi − zj, τ). In turn, every vacuum

graph produced from a scalar field theory defined on a torus will also be associated to a modular

graph function. We define the weight of an MGF as the number of edges in the corresponding

graph (which is also the number of Green functions in the chosen monomial). It is important

to note that weight as defined here is distinct from modular weight, which is vanishing for all

MGFs.

In order to understand the structure of MGFs a little better, it is useful to parameterise

the punctures as zj = ujτ + vj with uj, vj ∈ [0, 1) and
d2zj
τ2

= duj dvj. In this case we use

the lattice-sum representation of the Green function (4.4) to observe that each integral over

a puncture simply enforces momentum conservation at the associated vertex. Since the torus

is a compact space, the momenta are discrete and form a two-dimensional lattice (with origin

removed)

p = mτ + n ∈ Λ′ , Λ′ = (Z+ τZ) \ {0}. (4.5)

We are thus guaranteed that every one-particle reducible graph vanishes, since the momen-

tum flowing through the reducible edge must be 0. As a result, the simplest non-trivial MGFs

appear at one loop and are non-holomorphic Eisenstein series of weight w > 1

Ew(τ) =
(
τ2
π

)w∑
p∈Λ′

1

|p|2w
. (4.6)

Here we introduced a third normalisation for this function (this is important to make some of

their algebraic and transcendentality properties manifest). At two loops, every MGF associated

to a connected graph can be expressed as a function Ca,b,c of weight w = a+b+c:

Ca,b,c(τ) =

(
τ2
π

)a+b+c ∑
p1,p2,p3∈Λ′

δ(p1+p2+p3)

|p1|2a|p2|2b|p3|2c
. (4.7)

The graphs corresponding to the MGFs Ew and Ca,b,c are depicted in figure 4.1. There are

obvious ways how one may construct MGFs at higher loop order [25] or even generalise to

objects that carry non-zero modular weight, so called modular graph forms [26], but in this

chapter we only analyse the two-loop, modular-invariant case.

MGFs have a variety of interesting connections to number theory. For example, when
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Figure 4.1: The graphs corresponding to the one-loop and two-loop modular graph functions
Ew and Ca,b,c, where a link with a boxed number w indicates w concatenated Green functions.

computing the asymptotic expansion near the cusp τ → i∞ of MGFs it is natural to encounter

multiple zeta values (MZVs), i.e. generalisations of the Riemann zeta function defined by

iterated (conical) sums. The weight of an MGF can be identified with the transcendental

weight of the corresponding MZV1 [27] appearing in the expansion at the cusp, however in

general the loop order of an MGF is only an upper bound on the maximal depth of its possible

MZVs.

Furthermore, one finds that there exists an intricate web of connections between differ-

ent MGFs and Q-linear combinations of multiple zeta values. Some easy examples were first

discussed in [28]:

C1,1,1(τ) = E3(τ) + ζ3 , C2,2,1(τ) =
2

5
E5(τ) +

ζ5
30
. (4.8)

Observe that both sides of equations (4.8) are consistent with the defined weight assignments

if furthermore the Riemann zeta2 ζw is assigned weight w. This is a generic feature: algebraic

relations between MGFs respect the weight grading but mix different loop orders (i.e. the loop

order is only a filtration). In section 4.1 we introduce the notion of depth as a more useful

alternative to loop order, at least for classifying algebraic relations.

Additionally to the algebraic relations discussed before, there are also differential equations

relating different MGFs. Since they are modular functions, the equations they satisfy are with

1Although not of crucial importance here, MZVs are defined by the conical sum ζn1,n2,...,nr
=∑

0<k1<k2<...<kr
k−n1
1 k−n2

2 . . . k−nr
r with ni ∈ N and nr ≥ 2. The transcendental weight of a MZV is given

by w =
∑

1≤i≤r ni while its depth by r.
2Throughout this chapter, we shall write the Riemann zeta function either as ζ(s) or as ζs depending

respectively on whether s is generic or fixed to some specific integer value.
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respect to the SL(2,R) invariant Laplacian ∆ defined before (3.5). At two loops it can be

shown [28] that

∆Ca,b,c = (a(a− 1) + b(b− 1) + c(c− 1))Ca,b,c (4.9)

+ ab(Ca−1,b+1,c + Ca+1,b−1,c + Ca+1,b+1,c−2 − 2Ca,b+1,c−1 − 2Ca+1,b,c−1)

+ bc(Ca,b−1,c+1 + Ca,b+1,c−1 + Ca−2,b+1,c+1 − 2Ca−1,b,c+1 − 2Ca−1,b+1,c)

+ ca(Ca+1,b,c−1 + Ca−1,b,c+1 + Ca+1,b−2,c+1 − 2Ca+1,b−1,c − 2Ca,b−1,c+1),

where one of the indices on the right hand side might get reduced to 0 or −1, in which case the

two-loop function is replaced by

Cw−ℓ,ℓ,0 = EℓEw−ℓ − Ew , Cw+1−ℓ,ℓ,−1 = EℓEw−ℓ + Eℓ−1Ew−ℓ+1. (4.10)

Formally in this procedure the divergent non-holomorphic Eisenstein series E1 can appear,

but it always cancels out of the final answer. It was shown in [28] that the system of linear

equations (4.9) can be diagonalised by the introduction of eigenfunctions Cw;m;p, which are

linear combinations of different Ca,b,c with a fixed weight w = a + b + c. These eigenfunctions

then satisfy a significantly more manageable differential equation

(∆− (w − 2m)(w − 2m− 1))Cw;m;p = t(0)w;m;pEw +

[w/2]∑
ℓ=2

t(ℓ)w;m;pEℓEw−ℓ, (4.11)

where t
(0)
w;m;p and t

(ℓ)
w;m;p are constants, m is a label for the eigenvalue of the differential equation,

and p labels the degeneracy of the fixed eigenspace. The explicit coefficients connecting the

two bases Ca,b,c and Cw;m;p can be found in [29].

While the representation in terms of lattice sums is convenient for a graphical interpretation

and establishing connections to MZVs, the sums are hard to manipulate and many identities

are hidden. Moreover, we will be interested in finding the asymptotic behaviour of MGFs as

τ → i∞, which is a task of considerable difficulty from the perspective of lattice sums. Instead

it is much more convenient to use the differential equations satisfied by MGFs such as (4.9)

and (4.11) and solve them using a Poincaré series ansatz. We shall discuss said method in the

following sections.
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Due to the SL(2,Z) invariance all modular graph functions have period one and hence may

be Fourier expanded in τ1. This expansion contains a lot of information about the behaviour of

the function as the modular parameter approaches the cusp τ → i∞. To proceed, we introduce

the following variables

y = πτ2 , q = e2πiτ , q̄ = e−2πiτ̄ , (4.12)

in which the non-holomorphic Eisenstein series (4.6) for positive integer weight w > 1 can be

written as the Fourier series

Ew(τ) = (−1)w−1 B2w

(2w)!
(4y)w +

4(2w−3)!ζ2w−1

(w−2)!(w−1)!
(4y)1−w (4.13)

+
2

Γ(w)

∞∑
n=1

nw−1σ1−2w(n)

[
w−1∑
a=0

(4ny)−a Γ(w+a)

a! Γ(w−a)

]
(qn + q̄n),

where σs(n) is a divisor sum and we have introduced the Bernoulli numbers B2w that are

rational numbers related to even Riemann zeta values by

2ζ2w = (−1)w+1 (2π)
2w

(2w)!
B2w , w = 1, 2, 3, . . . . (4.14)

The general Fourier expansion for a modular graph function is quite similar to equation

(4.13) - one can show that MGFs grow at most polynomially at the cusp, and the expansion

must be of the form
∑∞

M,N=0 LM,N(y)q
M q̄N with LM,N(y) a Laurent polynomial [25]. The

dominant behaviour at the cusp clearly comes from L0,0. Some examples at two-loop level are

as follows [28,30]

C2,1,1(τ) =
2y4

14175
+
ζ3y

45
+

5ζ5
12y

− ζ23
4y2

+
9ζ7
16y3

+O(q, q̄) , (4.15)

C2,2,2(τ) =
38y6

91216125
+

ζ7
24y

− 7ζ9
16y3

+
15ζ25
16y4

− 81ζ11
128y5

+O(q, q̄) .

Notice the recurrent appearance of odd zeta values in the expansion, as well as uniform

transcendental weight w = a+ b+ c for each term once an assignment of weight 1 is given to

y = πτ2. Unlike the case of Eisenstein series, the zero Fourier mode gets additional, exponen-

tially suppressed contributions from the terms LN,N(qq̄)
N with N > 0.
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The focus of this chapter of the thesis is precisely to reconstruct the (qq̄)N non-perturbative

terms to the zero Fourier mode from the purely perturbative Laurent polynomials, or rather

a suitable deformation thereof, using resurgent analysis following similar methods to the ones

developed in [31,32]. The structure of the differential equation (4.11) fixes the functional form

of these exponentially suppressed terms (see [33, Thm. 1.3]) in terms of incomplete Gamma

functions and Laurent polynomials. We shall not rely on these results and arrive at fully explicit

expression from resurgent analysis.

4.1 Depth-two Laplace systems

One of the key results of [34, 35] was to show that all two-loop modular graph functions can

be written as rational linear combinations of modular invariant functions called generalised

Eisenstein series, which are labelled by three parameters: s1, s2 called the weights (and closely

related to the weight of the MGF) and λ characterising the eigenvalue. Generalised Eisenstein

series are defined by the differential equation

[∆− λ(λ− 1)] E
(
λ; s1, s2

∣∣τ) = Es1(τ)Es2(τ) (4.16)

subject to the boundary condition that the term of order yλ in the Laurent polynomial around

the cusp y ≫ 1 has vanishing coefficient. This boundary condition uniquely fixes the modular-

invariant solution, since the ordinary Eisenstein series is the only modular-invariant solution

with polynomial growth at the cusp to the corresponding homogeneous equation (3.15). The

weights and the eigenvalue of the generalised Eisenstein series are fixed by the weight of the

corresponding MGF. Indeed, every connected two-loop modular graph function Ca,b,c(τ) can be

expressed as a rational linear sum of E
(
s;m, k

∣∣τ) with w = k +m = a + b + c together with

lower-depth objects (like non-holomorphic Eisenstein series and zeta values). The eigenvalue is

additionally constrained to lie in the spectrum

s ∈ Spec1(k,m) := {|k−m|+2, |k−m|+4, ... , k+m−2} , k,m ∈ N≥2 . (4.17)
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4.2 Poincaré series approach

We already discussed the Poincaré series representation of a modular invariant function in

section 3.2. Remember that the idea is to use a sum over SL(2,Z) images of a simpler (modular

non-invariant) seed function to reconstruct the modular function of our interest. In this case we

want to represent the generalised Eisenstein series E
(
s;m, k

∣∣τ) as a sum over images of some

seed function e
(
s;m, k

∣∣τ). In this sum it is more convenient to choose the seed function to be

periodic in the real direction and quotient out by the Borel subgroup. As a result we can write

E
(
s;m, k

∣∣τ) = ∑
γ∈B(Z)\SL(2,Z)

e
(
s;m, k

∣∣γ · τ
)
, (4.18)

where e
(
s;m, k

∣∣τ + 1
)
= e
(
s;m, k

∣∣τ). The advantage of choosing the seed to be periodic comes

from observing that it can then be Fourier decomposed as

e
(
s;m, k

∣∣τ) =∑
n∈Z

cn(y)e
2πinτ1 , (4.19)

for real coefficient functions that satisfy cn(y) = c−n(y), since we want a real-analytic function

that is even under the involution τ → −τ̄ .

Upon substitution of (4.19) into (4.16) we can “fold” Ek, i.e. use its known Poincaré sum

representation (3.20), to arrive at a simpler equation for the seed function

(∆− s(s− 1))e
(
s;m, k

∣∣τ) = (−1)k−1 B2k

(2k)!
(4y)kEm(τ) . (4.20)

From the known Fourier series of Em we can find an expression for the Fourier coefficients

cn(y) that were defined in (4.19). These are Laurent polynomials in y and matching corre-

sponding powers on both sides of equation (4.20) gives an expression for cn(y). In [34, 35], it

was shown that the solution to this Laplace equation is given by

c0(y) = (−1)k+m B2kB2m(4y)
k+m

(2k)!(2m)!(µk+m − µs)
− (−1)k

4B2k(2m− 3)!ζ2m−1(4y)
k+1−m

(2k)!(m− 2)!(m− 1)!(µk−m+1 − µs)
,

cn(y) = (−1)k
2B2k

(2k)!Γ(m)
σ1−2m(|n|)|n|m−k−1

k−1∑
ℓ=k−m+1

g+m,k,ℓ,s(4|n|y)
ℓe−2|n|y n ̸= 0,

(4.21)
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where µs = s(s− 1) and g+m,k,ℓ,s are the rational coefficients

g+m,k,ℓ,s =
Γ(ℓ)

Γ(ℓ+ s)

k−1∑
i=ℓ

(ℓ+ 1− s)i−ℓΓ(s+ i)Γ(m+ k − i− 1)

Γ(k − i)Γ(i+ 1)Γ(m− k + i+ 1)
, (4.22)

with (a)n = Γ(a+n)
Γ(a)

the (ascending) Pochhammer symbol.

Equation (4.21) can be rewritten in a more suggestive way if we introduce one of the many

flavours of iterated integrals at depth one:

E0(k, 0p; τ) =
(2πi)p+1−k

p!

∫ i∞

τ

(τ−τ1)pG0
k(τ1)dτ1 , (4.23)

with even k > 2 and the notation 0p is a short-hand of p successive zeros. Higher-depth versions,

where the iterated integral structure becomes more evident, can be found in [36,37].

The symbol G0
k appearing in the integrand denotes the cuspidal part of the standard holo-

morphic Eisenstein series, Gk(τ), introduced in section 3.1.1:

Gk(τ) =
∑
p∈Λ′

1

pk
= 2ζk +

2(2πi)k

(k−1)!

∑
n>0

σk−1(n)q
n , k ∈ {4, 6, 8, ...} , (4.24)

G0
k(τ) = Gk(τ)− 2ζk

and it is convenient to define G0
0 = −1.

The integral in (4.23) converges for p ≥ 0 and from the q-expansion of (4.24) one can easily

obtain [32,36]

E0(k, 0p; τ) = − 2

(k−1)!

∞∑
m,n=1

mk−1

(mn)p+1
qmn = − 2

(k−1)!

∞∑
m=1

mk−p−2σ1−k(m)qm (4.25)

= − 2

(k−1)!

∞∑
m=1

m−p−1σk−1(m)qm ,

which can also be considered formally for arbitrary k, p ∈ C, providing an analytic continuation

of this function in these parameters.

Going back to the Fourier modes (4.21) for the seed function e
(
s;m, k

∣∣τ), we see that the
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general seed for all depth-two modular invariant functions can be written as

e
(
s;m, k

∣∣τ) = c0(y)− (−1)k
2B2kΓ(2m)

(2k)!Γ(m)

k−1∑
ℓ=k−m+1

g+m,k,ℓ,s(4y)
ℓRe[E0(2m, 0k+m−ℓ−1)]. (4.26)

Noticeably, the use of Poincaré series has reduced the depth of the objects under consider-

ation by one unit, thus making the problem more tractable. Furthermore, when k > m, the

Poincaré seed just obtained gives rise to a convergent Poincaré sum.

Once the Poincaré seeds for the E
(
s;m, k

∣∣τ) are known, we are also able to derive similar

expressions for all two-loop MGFs, for example [31],

C2,1,1(τ) =
∑

γ∈B(Z)\SL(2,Z)

[
2y4

14175
+
yζ(3)

90
+

y

90

∞∑
m=0

σ−3(m)(qm + q̄m)

]
γ

. (4.27)

Again we note that a perk of using such a Poincaré series representation is that the depth of

the MGF was reduced by one, since the sum in the brackets is related to the depth-1 object E2
through its Fourier series (4.13). Since lower depth objects are easier to study, equations like

(4.27) open up new avenues of analysis.

4.3 Resurgent analysis for Poincaré series

The task at hand is now to start from the Poincaré-series representation (4.18) in terms of seed

functions and extract the asymptotic expansion at the cusp of the modular-invariant function

E
(
s;m, k

∣∣τ).
We can consider again the Eisenstein series as a warm-up exercise, and very standard

results [9,13] tell us how to obtain the asymptotic expansion at the cusp (4.13) from its Poincaré

sum representation (3.20). For more general Poincaré series the analysis is more involved, but

in principle it is possible to rewrite each Fourier coefficient of a modular invariant function in

terms of some convoluted integral transform of the Fourier coefficients of its seed function as well

as involving complicated Kloosterman sums. We review this general procedure in appendix A.

In the present case we can see that the non-zero Fourier mode of the general seed (4.21) is
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of the form

cn(y) =
k−1∑

ℓ=k−m+1

[
(−1)k

B2k

(2k)!Γ(m)
g+m,k,ℓ,s

]
σ2m−1(|n|)|n|ℓ−k−m(4y)ℓe−2|n|y , (4.28)

hence a finite and rational linear combination of seeds of the type

σa(n)|n|byre−2|n|y . (4.29)

Seeds of precisely this form were studied in [31,38], where it was shown how to use the pro-

cedure outlined in Appendix A to compute the Laurent polynomial of the associated Poincaré

sum. To summarise the result, we consider the Poincaré sum

Φ(τ) =
∑
ℓ∈Z

aℓ(y)e
2πiℓτ1 =

∑
γ∈B(Z)\SL(2,Z)

φ(γ · τ) , (4.30)

with seed function given by terms of the form (4.29)

φ(τ) =
∑

n∈Z\{0}

cn(y)e
2πinτ1 , (4.31)

cn(y) = σa(n)|n|byre−2|n|y .

Then the Laurent polynomial part of the asymptotic expansion at the cusp y → ∞, for the

zero-mode coefficient a0(y) is given by

a0(y) ∼ I(a, b, r|y) = 23−2ry1+b−r

Γ(r)π2b−2r

[
y

π2

Γ(b+1)Γ(2r−b−2)

Γ(r−b−1)

ζ(2r−a−2b−2)ζ(1−a)
ζ(2r−a−2b−1)

+
( y
π2

)a+1 Γ(a+b+1)Γ(2r−a−b−2)

Γ(r−a−b−1)

ζ(2r−a−2b−2)ζ(a+1)

ζ(2r−a−2b−1)

+

(
π2

y

)b∑
n≥0

(
−π2

y

)n
Γ(2r+n−1)

n! · Γ(r+n)
(4.32)

× ζ(−b−n)ζ(−a−b−n)ζ(2r−a−b+n−1)ζ(2r−b+n−1)

ζ(2r+2n)ζ(2r−a−2b−1)

]
.
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Using Ramanujan’s identity

∞∑
n=1

σa(n)σb(n)

ns
=
ζ(s)ζ(s−a)ζ(s−b)ζ(s−a−b)

ζ(2s−a−b)
, (4.33)

the last term can be rewritten in Dirichlet series form

ζ(−b− n)ζ(−a− b− n)ζ(2r − a− b+ n− 1)ζ(2r − b+ n− 1)

ζ(2r + 2n)

= 4 sin

(
π(b+n)

2

)
sin

(
π(a+b+n)

2

)
Γ(1 + b+ n)Γ(1 + a+ b+ n)

(2π)a+2b+2n+2

∑
m>0

σa(m)σa+2b+2−2r(m)

ma+b+n+1
.

(4.34)

A few comments regarding the general expression (4.32) are in order.

• For generic a, b, r this asymptotic series is a Gevrey-1, factorially divergent formal power

series. Shortly we will use Borel resummation in order to reconstruct the non-perturbative

properties of a0(y) at the cusp y → ∞. As usual, ambiguities in prescribing a unique

resummation procedure will allow us to obtain the exponentially suppressed contributions,

(qq̄)n, which are hidden in the purely perturbative asymptotic result (4.32).

• For a, b integers with a odd (as for the case under consideration (4.28)), the series in (4.32)

terminates after a finite number of terms. This can be easily understood by noticing

that for n large enough either ζ(−b − n) or ζ(−a − b − n) will be a zeta value at a

negative even integer, hence vanishing, while all other factors will be regular. For a, b

integers with a odd we then have that the series in (4.32) does terminate for n > nmax =

max(−b,−a− b)+1. In particular for our choice of seeds (4.28), we have a = 2m− 1 ≥ 0

while −b ∈ {m + 1,m + 2, ..., 2m, 2m + 1}, hence for the case of interest (4.32) always

truncates for n > −b+ 1.

• The parameter b serves the purpose of a regulator. When b is arbitrary our expression

(4.32) is a formal asymptotic power series for which we can make use of resurgent analysis

to reconstruct the exponentially suppressed terms in the zero-mode. At the end of the

day, when we set b to its physical values appearing in (4.28), the asymptotic power series

will truncate to the expected finite Laurent polynomial, while the non-perturbative terms

will survive. This is an instance of Cheshire cat resurgence.
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In [34] it was indeed shown that if we use the general expression (4.32) specialised to the

seed e
(
s;m, k

∣∣τ) from (4.26) then we obtain a truncating Laurent polynomial for the modular

invariant functions E
(
s;m, k

∣∣τ):
E
(
s;m, k

∣∣τ) = P
(s)
m,k(y) +O(q, q̄) ,

where the Laurent polynomial P
(s)
m,k(y) is given by

P
(s)
m,k(y) =

(−4)k+mB2mB2k

(k+m−s)(k+m+s−1)(2m)!(2k)!
yk+m − 2(−1)m41+m−kB2mΓ(2k−1)ζ2k−1

Γ(k)Γ(k)(m−k+s)(m−k−s+1)(2m)!
y1+m−k

− 2(−1)k41+k−mB2kΓ(2m−1)ζ2m−1

Γ(m)Γ(m)(k−m+s)(k−m−s+1)(2k)!
y1+k−m (4.35)

+
43−m−kΓ(2m−1)Γ(2k−1)ζ2m−1ζ2k−1

[Γ(m)Γ(k)]2(k+m−s−1)(k+m+s−2)
y2−k−m + c

(s)
m,kζk+m+s−1y

1−s ,

with the rational coefficient

c
(s)
m,k =

42−s(−1)m+s+1Bs+m−kBk+m−sBk+s−m(2s)!

(s+m−k)Γ(m)Γ(s)B2s(k+m−s)!(k+s−m)!

min(k−1,s)∑
ℓ=k−m+1

(−1)ℓg+m,k,ℓ,s

Γ(ℓ+s−1)

Γ(ℓ)(s−ℓ)!
, (4.36)

expressed in terms of the rational numbers g+m,k,ℓ,s defined in (4.22).

The last term in (4.35) satisfies the homogeneous Laplace equation (4.16) and its coefficient

can also be rewritten [39]3 as

c
(s)
m,k = −4π

s−m−k−1
2

Γ
(

m+k+s−1
2

)
ξ(s+ 1−m− k)ξ(m+ s− k)ξ(k + s−m)

(2s− 1)Γ(m)Γ(k) ξ(2s)
. (4.37)

4.4 Resumming an evanescent tail

Since we are interested in exploiting the asymptotic nature of the general expression (4.32), we

can simply focus on its last term which, for generic a, b, r, does indeed produce the factorially

3We also obtain this form for the coefficient directly from spectral theory in the next chapter, where it is
given in equation (5.72)
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divergent asymptotic tail

Iasy(a, b, r|y) =
(4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b− 1)

∑
n>0

σa(n)σa+2b+2−2r(n) (4.38)

∑
m≥0

Γ(m+ a+ b+ 1)

(4ny)m+a+b+1

Γ(2r +m− 1)Γ(1 + b+m)

Γ(m+ r)Γ(m+ 1)

[
(−1)m cos

(aπ
2

)
− cos

((a+ 2b)π

2

)]
,

after making use of Ramanujan’s identity as discussed above. We note that Iasy(a, b, r|y) should

be understood only as a formal power series in y−1 with zero radius of convergence.

The next step is to perform a standard Borel resummation for (4.38). Rewriting the integral

representation of the gamma function as

Γ(m+ a+ b+ 1)

(4ny)m+a+b+1
=

∫ ∞

0

e−4nyttm+a+bdt , (4.39)

we can then define the directional Borel resummation (see chapter 2 for an overview) of the

formal power series Iasy(a, b, r|y) as

Sθ

[
Iasy(a, b, r)

]
(y) = (4.40)

(4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b− 1)

Γ(2r − 1)Γ(1 + b)

Γ(r)

∑
n>0

σa(n)σa+2b+2−2r(n)

∫ eiθ∞

0

e−4nytB(t)dt ,

where the Borel transform in the case at hand is given by

B(t) =
∑
n≥0

ta+b+n (2r − 1)n(1 + b)n
(r)nn!

[
(−1)n cos

(aπ
2

)
− cos

((a+ 2b)π

2

)]
(4.41)

= ta+b
[
2F1(2r − 1, 1 + b; r| − t) cos

(aπ
2

)
− 2F1(2r − 1, 1 + b; r|t) cos

((a+ 2b)π

2

)]
,

with 2F1(a, b; c|z) denoting a standard hypergeometric function.

We see that for θ ∈ (0, π/2), the directional Borel resummation Sθ

[
Iasy(a, b, r)

]
(y) does

indeed define an analytic function in the complex wedge −π/2 − θ < arg(y) < π/2 − θ whose

asymptotic expansion near y → ∞ is precisely given by (4.38). Furthermore, if we take two

different directions θ1, θ2 ∈ (0, π/2), with θ1 < θ2, it is simple to see that Sθ1

[
Iasy(a, b, r)

]
(y)

and Sθ2

[
Iasy(a, b, r)

]
(y) are analytic continuations of one another since the integrand is regular

in the complex wedge θ1 ≤ arg(t) ≤ θ2.
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A similar story can be repeated for θ ∈ (−π/2, 0), however if we define the lateral Borel

resummation as

S±

[
Iasy(a, b, r)

]
(y) = lim

θ→0±
Sθ

[
Iasy(a, b, r)

]
(y) , (4.42)

we see that the two continuations S±
[
Iasy(a, b, r)

]
(y), belonging to the same germ of analytic

functions, differ on the common domain of analyticity, since the integrand, and in particular

2F1(2r − 1, 1 + b; r|t), has a branch-cut singularity precisely along the direction arg(t) = 0,

which is a Stokes direction. Thus we have obtained two distinct continuations of the same

formal power series (4.38) that differ precisely on the direction of interest, namely y > 0.

This is generically a signal that we have to include non-perturbative, exponentially suppressed

corrections [6].

From the properties of the hypergeometric series we can easily compute its discontinuity

across the branch cut t ∈ [1,∞):

Disc0

[
2F1(a, b; c|t)

]
= lim

ϵ→0+

[
2F1(a, b; c|t+ iϵ)− 2F1(a, b; c|t− iϵ)

]
=

2πiΓ(c)

Γ(a)Γ(b)Γ(c− a− b+ 1)
(t− 1)c−a−b

2F1(c− a, c− b; c− a− b+ 1|1− t) , (4.43)

valid for t > 1. We can then compute the difference between the two lateral resummations,

related to the Stokes automorphism, and find

(S+ − S−)
[
Iasy(a, b, r)

]
(y) (4.44)

=
(4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b− 1)

Γ(2r − 1)Γ(1 + b)

Γ(r)

∑
n>0

σa(n)σa+2b+2−2r(n)

∫ ∞

0

e−4nytDisc0B(t)dt

= − (4y)2+a+b−rπ2r−a−2b−2

2a+2bΓ(r)ζ(2r − a− 2b− 1)

∑
n>0

σa(n)σa+2b+2−2r(n)2πi cos
((a+ 2b)π

2

)
e−4ny

×
∫ ∞

0

e−4nyt (t+ 1)a+bt−r−b

Γ(1− r − b)
2F1(1− r, r − b− 1; 1− r − b| − t)dt ,

where in the last step we substituted the discontinuity (4.43) and shifted the integration variable

t→ t+ 1.

Notice that this discontinuity in resummation is purely non-perturbative in nature due to

the presence of the exponentially suppressed term (qq̄)n = e−4ny. The present discussion is very

similar to [31,32,40]: the starting asymptotic series (4.32) cannot be easily Borel resummed as

42



it is, however by realising that the factorially growing coefficients are “dressed” by a suitable

Dirichlet series we obtain (4.38), amenable to standard Borel resummation. The infinitely many

exponentially suppressed corrections (qq̄)n = e−4ny can be seen as arising from the unfolding of

the Dirichlet series (4.34) combined with the shift y → 4ny.

We can now define the median resummation of the asymptotic formal power series Iasy(a, b, r|y),

Smed

[
Iasy(a, b, r)

]
(y) = S±

[
Iasy(a, b, r)

]
(y)∓ i Im[σ(a, b)] NP(a, b, r|y) , (4.45)

which is independent of our choice of sign, i.e. of direction of resummation, having defined the

imaginary part of the transseries parameter

Im [σ(a, b)] = cos
((a+ 2b)π

2

)
, (4.46)

and the non-perturbative part NP(a, b, r|y) is given

NP(a, b, r|y) = − (4y)2+a+b−rπ2r−a−2b−1

2a+2bΓ(r)ζ(2r − a− 2b− 1)

∑
n>0

σa(n)σa+2b+2−2r(n)e
−4ny (4.47)

×
∫ ∞

0

e−4nyt(t+ 1)a+bt−r−b
2F̃1(1− r, r − b− 1; 1− r − b| − t)dt ,

where 2F̃1(a, b; c|z) = 2F1(a, b; c|z)/Γ(c) denotes the regularised hypergeometric function. In

this context by a transseries we simply mean an expression that includes the perturbative series

as well as all the exponentially suppressed non-perturbative terms.

We notice that the discontinuity (4.44) and in particular the Stokes constant cos[(a+2b)π/2],

only fixes the imaginary part of the transseries parameter σ(a, b), i.e. the overall piecewise

constant (jumping only at Stokes directions) in front of the non-perturbative terms. Following

[31, 32], we will make the assumption that the complete transseries parameter does in fact

depend analytically on (a + 2b), and the “minimal analytic completion” with non-trivial real

part is simply

σ±(a, b) = exp
(
± iπ

a+ 2b− 1

2

)
= sin

((a+ 2b)π

2

)
∓ i cos

((a+ 2b)π

2

)
(4.48)

where once more we stress that the sign ± is correlated with the choice of resummation as in

(4.45).
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Figure 4.2: On the left diagram we show the two different lateral Borel resummations. On the
right diagram, the difference between the two lateral Borel resummations is represented as an
Hankel integral contour, used to evaluate the Stokes automorphism.

Usually when we look for transseries solutions to say non-linear ODEs, the imaginary part

of the transseries parameter is fixed by the Stokes discontinuity, while its real part is determined

via some initial condition. At the present time we do not have such an ODE construction for

our problem and we are in a certain sense trying to bootstrap the full transseries entirely out

of the perturbative data generated by the Poincaré sum of our seed (4.31) for a, b ∈ C generic,

without having at our disposal any ODE or functional equation to guide us.

One of the key features of what is generally called ”Cheshire cat resurgence” [41–44] is

precisely that the Stokes constant vanishes for special values of the deformation parameter

(a + 2b in the present case or a supersymmetry breaking deformation in the aforementioned

references) while non-perturbative corrections are expected to be present for all values of the

deformation. This implies that the transseries parameter must have a non-vanishing real part

as well. Our hypothesis (4.48) provides the minimal analytic completion to achieve this, and,

as we will see later on, will produce the correct non-perturbative terms.

We then conclude that the non-perturbative resummation of (4.38) is given by

Smed

[
Iasy(a, b, r)

]
(y) = S±

[
Iasy(a, b, r)

]
(y) + σ±(a, b)NP(a, b, r|y) . (4.49)

Thanks to the discontinuity equation (4.44), we can easily see that the this is a well-defined

analytic function providing a non-perturbative and unambiguous resummation for the formal

asymptotic power series (4.38) which is also real (as one would have expected) for y > 0 with

a, b ∈ R and continuous as arg(y) → 0.
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4.5 Non-perturbative completion

We can now specialise the results of the previous section for the generic seed (4.31) to the case of

interest for the seed functions e(s;m, k) relevant for all two-loop MGFs. We can rewrite (4.26)

as

e
(
s;m, k

∣∣τ) = c0(y)+(−1)k
2B2k

(2k)!Γ(m)

∑
n̸=0

k−1∑
ℓ=k−m+1

g+m,k,ℓ,s(4y)
ℓ|n|ℓ−k−mσ2m−1(|n|)e−2|n|ye2πinτ1 ,

(4.50)

such that, manifestly, each seed is a finite combination of building blocks (4.31) with a = 2m−1,

b = ℓ− k −m, r = ℓ just analysed.

We start by decomposing E(s;m, k) in Fourier modes for τ1 = Re(τ)

E
(
s;m, k

∣∣τ) =∑
n∈Z

an(s;m, k|y)e2πinτ1 , (4.51)

and focus on the asymptotic expansion for y → ∞ of the zero-mode a0(s;m, k|y) .

From the seed mode expansion (4.50) we can use the results of Appendix A to arrive at the

Laurent polynomial part

a0(s;m, k|y) ∼

(−1)k+mB2kB2m4
k+mI0(k +m|y)

(2k)!(2m)!(µk+m − µs)
− (−1)k

4B2k(2m− 3)!ζ2m−1I0(k + 1−m|y)
(2k)!(m− 2)!(m− 1)!(µk−m+1 − µs)

+ (−1)k
2B2k

(2k)!Γ(m)

k−1∑
ℓ=k−m+1

g+m,k,ℓ,s4
ℓI(2m− 1, ℓ− k −m, ℓ|y) , (4.52)

where I0(r|y), defined in (A.8a), comes from the Poincaré sum of the seed function zero-mode

c0(y) (4.21), while I(a, b, r|y) (4.32) comes from the Poincaré sum of the non-zero modes.

As explained in [31, 34, 35], there are a few instances where the above expression has to be

regulated. For example, it is fairly easy to see from (A.8a) that whenever k = m the second

contribution, naively proportional to I0(1|y), is divergent. The correct way to proceed is to

regulate this expression by shifting k → k + ϵ, where the expression becomes regular for all

m, k ≥ 2. To render the whole expression regular, it is actually enough to consider the regulator

I0(k+1−m|y) → I0(k+ϵ+1−m|y) and I(2m−1, ℓ−k−m, ℓ|y) → I(2m−1, ℓ−k−ϵ−m, ℓ|y).
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The I(a, b, r|y) contribution, coming from the Poincaré sum of all the non-zero Fourier modes

of the seed function, gets specialised to the particular values I(2m−1, ℓ−k−m, ℓ|y), hence the

regulator k → k + ϵ amounts to considering an analytic continuation in the b parameter, thus

introducing an asymptotic tail of factorially growing terms just as discussed in the previous

section.

As we send ϵ → 0 this tail will disappear and the precise combination of I0(r|y) and

I(a, b, r|y) contributions will give rise to the finite Laurent polynomial (4.35). However as

argued above, the non-perturbative terms needed to provide an unambiguous resummation

of the formal power series for ϵ ̸= 0 will survive in this limit, thus giving us the full, non-

perturbative zero-mode contribution a0(s;m, k|y) to E
(
s;m, k

∣∣τ).
In more detail, we can consider the non-perturbative resummation (4.49) for the formal

power series Iasy(a, b, r) and specialise it to the current case (4.52) arriving at:

a0(s;m, k|y) = P
(s)
m,k(y)+ (4.53)

lim
ϵ→0

{
(−1)k

2B2k

(2k)!Γ(m)

k−1∑
ℓ=k−m+1

g+m,k,ℓ,s4
lS±
[
Iasy(2m− 1, ℓ− k − ϵ−m, ℓ|y)

]
+NPϵ

±(s;m, k|y)
}
,

where we collected in P
(s)
m,k(y) all the regular and finitely many perturbative terms arising from

the limit for ϵ→ 0 of (4.52) and which reproduce the Laurent polynomial (4.35). When ϵ is sent

to zero we know, from our discussion above, that the resummation of the asymptotic tail Iasy

vanishes identically, i.e. there is no asymptotic tail when ϵ = 0. Finally the non-perturbative

terms, which will survive in the ϵ→ 0 limit, are given by

NPϵ
±(s;m, k|y) = (4.54)

2× 42+m−kym+1−k

Γ(m)

∑
n>0

σ1−2k(n)σ2m−1(n)e
−4ny

k−1∑
ℓ=k−m+1

g+m,k,ℓ,se
±iπ(ℓ−k−ϵ)

Γ(ℓ)

×
∫ ∞

0

e−4nyt(t+ 1)ℓ+m−k−1 tk+m+ϵ−2ℓ
2F̃1(1− ℓ, k +m− 1; k +m+ 1 + ϵ− 2ℓ| − t)dt ,

The suffix ± is a reminder that we have already specialised the transseries parameter σ±(a, b)

from (4.48) to the present case a = 2m− 1, b = ℓ− k −m− ϵ:

σ±(2m− 1, ℓ− k −m− ϵ) = e±iπ(ℓ−k−ϵ−1) ϵ→0−→ (−1)ℓ+k+1 . (4.55)
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The main result of this chapter is given by equation (4.54), which contains all the expo-

nentially suppressed (qq̄)n = e−4ny terms in the zero-mode sector of all depth-two modular

invariant functions E(s;m, k).

The key rôle of the parameter ϵ is to regulate the Borel transform integrand in equation

(4.54). To make things clearer, let us analyse the various terms appearing in the integrand and

see what the regulator ϵ does.

Firstly, we see from (4.55) that the transseries parameter is perfectly regular in this limit

and it reduces to (−1)ℓ+k+1. Secondly, for the range of parameters considered here, the term

(t + 1)ℓ+m−k−1 is simply a polynomial in t of degree at most m− 2. Similarly, the regularised

hypergeometric function 2F̃1(1− ℓ, k +m− 1; k +m+ 1+ ϵ− 2ℓ| − t) is also a polynomial in t

of degree ℓ− 1, since its first entry is a non-positive integer while the third entry is generic due

to the presence of the regulator ϵ.

Hence we arrive at the conclusion that the integrand can be written as a polynomial in t

multiplied by tk+m+ϵ−2ℓ, a non-integer power of t, and the usual exponential damping factor. For

generic ϵ, each monomial in t can be easily integrated to produce a gamma function multiplied

by a power of (4ny), i.e.

∫ ∞

0

e−4nyttk+m+ϵ−2ℓtndt =
Γ(k +m+ n+ 1 + ϵ− 2ℓ)

(4ny)k+m+n+1+ϵ−2ℓ
. (4.56)

We need to distinguish two cases now:

• When 2ℓ ≤ k+m, the regulating factor tk+m+ϵ−2ℓ is a positive power of t and the integral

is regular in the limit ϵ→ 0, hence we can directly compute:

∫ ∞

0

e−4nyt(t+ 1)ℓ+m−k−1 tk+m−2ℓ
2F̃1(1− ℓ, k +m− 1; k +m+ 1− 2ℓ| − t)dt , (4.57)

which is a polynomial of degree 2m− 1 in (4ny)−1.

• When 2ℓ ≥ k + m + 1, the regulating factor tk+m+ϵ−2ℓ is a negative power of t making

the integral ill-defined in the strict ϵ = 0 limit. However, in this case, the regularised

hypergeometric series 2F̃1(1− ℓ, k +m− 1; k +m+ 1 + ϵ− 2ℓ| − t) has a negative third
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entry. If we write the hypergeometric in terms of Gauss’ series

2F̃1(1− ℓ, k +m− 1; k +m+ 1 + ϵ− 2ℓ| − t) =
∞∑
n=0

(1− ℓ)n(k +m− 1)n
Γ(k +m+ 1 + ϵ+ n− 2ℓ)

(−t)n

n!
,

it is now manifest that for 0 ≤ n ≤ 2ℓ − k − m the coefficient of tn vanishes in the

ϵ→ 0 limit, being proportional to Γ(k+m+1+ ϵ+ n− 2ℓ)−1. This vanishing behaviour

exactly cancels the divergence that would originate from integrating, as in (4.56), any

negative power of t generated from the factor tk+m+ϵ−2ℓ term. We find that again there

is a well-defined limit ϵ→ 0, that has to be taken after having performed the t-integral:

lim
ϵ→0

[ ∫ ∞

0

e−4nyt(t+ 1)ℓ+m−k−1 tk+m+ϵ−2ℓ
2F̃1(1− ℓ, k +m− 1; k +m+ 1+ ϵ− 2ℓ| − t)dt

]
,

which is again a polynomial of degree 2m− 1 in (4ny)−1.

This concludes the proof that equation (4.54) is regular as ϵ → 0. This limit is interpreted

as describing the non-perturbative corrections to the Fourier zero mode of E(s;m, k) through

resurgent analysis and we have recovered the exact behaviour of the zero-mode at the cusp.

4.6 Some Examples

We list some of the results for the zero-mode a0(s;m, k|y) that follow from the previously

derived calculations for a few small values of m, k, s.

In the (2, k) sector, where there is a single eigenvalue s = k, we have:

a0(2; 2, 2|y) =
y4

20250
− yζ3

45
− 5ζ5

12y
+

ζ23
4y2

+
∞∑
n=1

e−4nyσ−3(n)
2

2y2
, (4.58)

a0(3; 2, 3|y) =
y5

297675
− y2ζ3

1890
− ζ5

360
− 7ζ7

64y2
+
ζ3ζ5
8y3

+
∞∑
n=1

e−4nyσ−5(n)σ−3(n)
[ 1

4y3
+

n

4y2

]
,

(4.59)

a0(4; 2, 4|y) =
y6

3827250
− y3ζ3

28350
− ζ7

720y
− 25ζ9

432y3
+

5ζ3ζ7
64y4

+
∞∑
n=1

e−4nyσ−7(n)σ−3(n)
[ 5

32y4
+

5n

24y3
+

n2

12y2

]
. (4.60)

Equation (4.58) is identical to the result of [33] for the exponentially suppressed terms of the
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MGF C2,1,1 once we use the fact that E(2; 2, 2) = −C2,1,1 +
9
10
E4.

In the (3, k) sector, with k ≥ 3, we encounter two choices of eigenvalues s ∈ {k − 1, k + 1}:

a0(2; 3, 3|y) =
y6

6251175
− yζ5

630
− 5ζ7

288y
+

ζ25
32y4

+
∞∑
n=1

e−4nyσ−5(n)
2
[ 1

16y4
+

n

4y3
+

n2

8y2

]
, (4.61)

a0(4; 3, 3|y) =
2y6

8037225
− yζ5

3780
− 35ζ9

1152y3
+

9ζ25
128y4

+
∞∑
n=1

e−4nyσ−5(n)
2
[ 9

64y4
+

n

4y3
+

n2

8y2

]
,

(4.62)

a0(3; 3, 4|y) =
y7

80372250
− y2ζ5

25200
− ζ7

4536
− 49ζ9

11520y2
+

5ζ5ζ7
256y5

+
∞∑
n=1

e−4nyσ−7(n)σ−5(n)
[ 5

128y5
+

5n

32y4
+

7n2

48y3
+

n3

24y2

]
, (4.63)

a0(5; 3, 4|y) =
y7

49116375
− y2ζ5

113400
− ζ7

15120
− 77ζ11

4608y4
+

3ζ5ζ7
64y5

+
∞∑
n=1

e−4nyσ−7(n)σ−5(n)
[ 3

32y5
+

37n

192y4
+

7n2

48y3
+

n3

24y2

]
. (4.64)

As a last example, in the (4, k) sector with k ≥ 4 and eigenvalues s ∈ {k−2, k, k+2}, we have:

a0(2; 4, 4|y) =
y8

1205583750
− yζ7

7560
− 5ζ9

3888y
+

5ζ27
512y6

+
∞∑
n=1

e−4nyσ−7(n)
2
[ 5

256y6
+

5n

64y5
+

35n2

288y4
+

5n3

72y3
+

n4

72y2

]
, (4.65)

a0(4; 4, 4|y) =
y8

982327500
− yζ7

45360
− 7ζ11

6912y3
+

5ζ27
384y6

+
∞∑
n=1

e−4nyσ−7(n)
2
[ 5

192y6
+

5n

48y5
+

25n2

192y4
+

5n3

72y3
+

n4

72y2

]
, (4.66)

a0(6; 4, 4|y) =
y8

580466250
− yζ7

113400
− 5055ζ13

530688y5
+

25ζ27
768y6

+
∞∑
n=1

e−4nyσ−7(n)
2
[ 25

384y6
+

29n

192y5
+

7n2

48y4
+

5n3

72y3
+

n4

72y2

]
. (4.67)

One can check that these results are in agreement with the differential equation (4.16).
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4.7 Exact results

From the general results derived previously, we know that the zero-mode (4.53) for the modular

invariant function E (s;m, k) is given by

a0(s;m, k|y) = P
(s)
m,k(y) + NP

(s)
m,k(y) , (4.68)

with the perturbative terms given by the Laurent polynomials (4.35) and the non-perturbative

terms

NP
(s)
m,k(y) = lim

ϵ→0
NPϵ

±(s;m, k|y) ,

simply obtained from (4.54) by sending ϵ→ 0.

We can use the general result (4.54) to write the non-perturbative terms as

NP
(s)
m,k(y) =

∑
n>0

e−4nyn
k+m−2σ1−2m(n)σ1−2k(n)

Γ(m)Γ(k)
ϕ
(s)
m,k(4ny) , (4.69)

where we used the divisor sum identity σs(n) = nsσ−s(n), and defined ϕ
(s)
m,k(y) by

ϕ
(s)
m,k(y) = lim

ϵ→0

[
8Γ(k)y1+m−k

k−1∑
ℓ=k−m+1

g+m,k,ℓ,s(−1)ℓ+k

Γ(ℓ)
(4.70)

×
∫ ∞

0

e−yt(t+ 1)m+ℓ−k−1 tk+m+ϵ−2ℓ
2F̃1(1− ℓ, k +m− 1; k +m+ 1 + ϵ− 2ℓ| − t) dt

]
.

The non-perturbative terms in the zero Fourier mode could have also been obtained by using

the ansatz (4.69) and substituting it into the inhomogeneous Laplace equation (4.16) satisfied by

the E (s;m, k). From the Fourier mode expansion for the Eisenstein series (4.13) we can readily

isolate the (qq̄)n contribution of the source term EmEk. This results in a second-order differential

equation for ϕ
(s)
m,k(y) that could be solved using a Laurent series ansatz. The solution found

in this way can be checked to agree with the results presently obtained via resurgent analysis.

Additionally, in section 5.6 we obtain the same result from a spectral theory perspective, which

also shows that the formula is not restricted to integer weights and eigenvalue (see eqn. (5.77)).

From the discussion below (4.56), we have that ϕ
(s)
m,k(y) is a polynomial of degree k+m− 2
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in y−1 with rational coefficients. We will now prove that

ϕ
(s)
m,k(y) = (4.71)

8

y2
+

8[m(m− 1) + k(k − 1)− 4]

y3
+ 4

{
[m(m− 1) + k(k − 1)− 7]2 + 2s(s− 1)− 13

}
y4

+O(y−5).

Note that the coefficients of higher corrections in y−1 will in general have a dependence on the

eigenvalue s.

By using the integral transform (4.56), we observe that the leading contribution to ϕ
(s)
m,k(y)

as y → ∞ comes from the lowest power of t in the integrand of equation (4.70). To isolate this

monomial, we start by noting that the lowest exponent for the factor tk+m+ϵ−2ℓ is clearly given

by the highest value of the parameter ℓ = ℓmax = k − 1. In this case we have a simplification

for the coefficients (4.22) g+m,k,ℓ,s appearing in (4.70), in that g+m,k,k−1,s =
1

k−1
is independent of

the eigenvalue s.

To obtain the lowest power of t in the integrand of (4.70), we similarly have to choose the

constant term for both the hypergeometric series as well as the binomial when ℓ = k − 1:

2F̃1(2− k, k +m− 1;m+ 3 + ϵ− k| − t) =
1

Γ(m+ 3 + ϵ− k)
+

(k − 2)(k +m− 1)

Γ(m+ 4 + ϵ− k)
t+O

(
t2
)
,

(t+ 1)m−2 = 1 + (m− 2)t+O(t2) . (4.72)

We then arrive at the leading, large-y asymptotic for (4.70) given by

ϕ
(s)
m,k(y) ∼ lim

ϵ→0

[
8Γ(k)y1+m−k

g+m,k,k−1,s

Γ(k − 1)

∫ ∞

0

e−yt tm+2+ϵ−k

Γ(m+ 3 + ϵ− k)
dt
]
∼ 8

y2
+ . . . , (4.73)

where we used the standard integral (4.56) and reproduced the leading order in (4.71).

For the sub-leading correction in (4.71) we need to investigate higher powers of t in the

integrand of (4.70). Firstly we observe that decreasing ℓ → ℓmax − 1 = k − 2 increases the

power of t by 2 for the tk+m+ϵ−2ℓ term in the integrand. Hence we deduce that the next sub-

leading correction comes again from ℓ = ℓmax = k−1 where we consider instead the linear terms

in t for the hypergeometric function and the binomial (4.72). As a result, since the coefficient

g+m,k,k−1,s = 1
k−1

does not depend on the eigenvalue s, we have that, just like for the leading

term, the 1
y3

coefficient must once more be eigenvalue independent.
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The calculation is very similar to the one presented above

ϕ
(s)
m,k(y) ∼

8

y2
+ lim

ϵ→0

[
8 y1+m−k

∫ ∞

0

e−yt tm+3+ϵ−k

Γ(m+ 3 + ϵ− k)

[
(m− 2) +

(k − 2)(k +m− 1)

m+ 3 + ϵ− k

]
dt
]

∼ 8

y2
+

8[m(m− 1) + k(k − 1)− 4]

y3
+ . . . , (4.74)

and we reproduce, as anticipated, the sub-leading term of equation (4.71).

Getting analytic expressions for higher-order terms becomes slightly more complicated, since

multiple values of ℓ in (4.70) start contributing and the coefficients g+m,k,ℓ,s, see (4.22), are in

general eigenvalue dependent, thus higher-order terms do depend on the eigenvalue s as well.

For example, we can repeat a very similar discussion to the one above above for the O(y−4)

term, which receives two different contributions - one from ℓ = k − 1 and a second one from

ℓ = k − 2. By using (4.22) to obtain the coefficient g+m,k,k−2,s

g+m,k,k−2,s =
m(m− 1)

(k − 2)
+

(k − s− 1)(k + s− 2)

(k − 1)(k − 2)
, (4.75)

and then collect the appropriate powers of t in the integrand, we arrive at

ϕ
(s)
m,k(y) ∼ (4.76)

8

y2
+

8[m(m− 1) + k(k − 1)− 4]

y3
+ 4

{
[m(m− 1) + k(k − 1)− 7]2 + 2s(s− 1)− 13

}
y4

+ . . . .

All of the results here discussed can be checked for comparison with the examples given in

section 4.6 and are consistent with the Laplace equation (4.16). In the next chapter we obtain

another representation for the function ϕ
(s)
m,k(y) from the perspective of spectral theory and

show that the large y asymptotics obtained here is more general and also works for non-integer

m, k, s (see equation (5.78)).

4.8 Modularity and recovering the small-y behaviour

Up until now we have used the asymptotic nature of the large-y perturbative expansion to recon-

struct the non-perturbative, exponentially suppressed (qq̄)n corrections via resurgent analysis.

Now we want to understand a similar, yet conceptually different problem, namely is it possible
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to reconstruct the perturbative data, i.e. the Laurent polynomials (4.35), from the small-y

expansion of the (qq̄)n terms? We will see that, complementary to resurgence, modularity will

play a crucial rôle.

First of all, we recall here an important lemma proved in [45].

Lemma. If F(τ) is an SL(2,Z) invariant function on the upper half-plane such that at the

cusp y → ∞, with y = πτ2 = π Im(τ), it satisfies the growth condition F(τ) = O(ys) with

s > 1, then each of its Fourier modes Fn(y) =
∫ 1

0
F(τ1 + iy/π)e−2πinτ1dτ1 satisfies the bound

Fn(y) = O(y1−s) in the limit y → 0.

Very roughly, the key idea behind this lemma is that a cuspidal growth of order ys suggests

that the modular invariant function F(τ) must be bounded by Es(τ) on the whole upper half-

plane and since for small y we have Es(τ) = O(y1−s), then the same bound must hold for F(τ).

Let us apply this lemma to our modular invariant functions E (s;m, k) and in particular let us

try and understand the small-y behaviour of its zero-mode (4.68).

From the explicit Laurent polynomial (4.35) it is clear that E
(
s;m, k

∣∣τ) = O(yk+m) as

τ → i∞, hence from the lemma we deduce that for small y each Fourier mode of E (s;m, k)

cannot be more singular than O(y1−k−m). We can easily see from (4.35) that, for the spectrum

of eigenvalues considered here, none of the perturbative terms is more singular than y1−k−m

and we conclude that the (qq̄)n terms (4.69), which were exponentially suppressed for large y,

can at most diverge as y1−k−m as y → 0.

We can run a more refined argument to analytically obtain part of the small-y limit of the

(qq̄)n terms. To this end we can consider the modular invariant linear combination

F(τ) = E
(
s;m, k

∣∣τ)+ α Em+k(τ) , (4.77)

where the constant α, given by

α =
B2mB2k(2m+ 2k)!

B2m+2k(k+m−s)(k+m+s−1)(2m)!(2k)!
, (4.78)

is chosen in a such a way (see (4.13) and (4.35)) that the coefficient of the leading term yk+m

of (4.77) is vanishing.

If we assume that k > m, we have thus obtained a new auxiliary modular invariant function

F(τ) with the tamer growth at the cusp F(τ) = O(y1+k−m). Note that we have excluded the
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diagonal case, k = m, since F (τ) would grow at the cusp linearly as O(y1), hence the Lemma

cannot be applied directly; we will however show a diagonal example where the results are

consistent with the non-diagonal expectations and we can view the diagonal case as the limit

k → m.

By applying the lemma to F(τ) we deduce that its small-y limit cannot be more singular than

O(ym−k). However, if we inspect all the powers appearing in the perturbative expansion (4.13)

and (4.35) of the zero-mode, we find that the terms y1−s, y2−k−m, coming from E
(
s;m, k

∣∣τ),
and the term y1−k−m, coming from α Ek+m(τ), all violate the bound. Since the addition of

αEk+m(τ) does not modify the (qq̄)n sector, we must conclude that the small-y limit of the

(qq̄)n terms (5.77) must exactly cancel against these singular terms. The small-y expansion of

the (qq̄)n must then take the form:

NP
(s)
m,k(y) = −c(s)m,kζk+m+s−1y

1−s − 43−m−kΓ(2m−1)Γ(2k−1)ζ2m−1ζ2k−1

[Γ(m)Γ(k)]2(k+m−s−1)(k+m+s−2)
y2−k−m

− α
4(2m+ 2k−3)!ζ2m+2k−1

(m+ k−2)!(m+ k−1)!
(4y)1−m−k +O(ym−k) . (4.79)

Obtaining this expression directly from the small-y limit of (5.77) is not straightforward. A

somewhat naive way to proceed is to expand the exponential factor (qq̄)n = e−4ny for small-y

and compute the sum over n term by term via its analytic continuation as a Dirichlet series

using Ramanujan’s identity (4.33).

To illustrate this, we first repeat the calculation, discussed in the previous section, to obtain

the most singular term at small-y for ϕ
(s)
m,k(y)

ϕ
(s)
m,k(y) =

8Γ(2m− 1)Γ(2k − 1)

(k +m− s− 1)(k +m+ s− 2)Γ(m)Γ(k)
y2−k−m +O(y3−k−m) . (4.80)
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We can now consider its contribution in the small-y limit to NP
(s)
m,k(y) given by:

NP
(s)
m,k(y) =

∑
n>0

e−4nyn
k+m−2σ1−2m(n)σ1−2k(n)

Γ(m)Γ(k)
(4.81)

×
[ 8Γ(2m− 1)Γ(2k − 1)

(k +m− s− 1)(k +m+ s− 2)Γ(m)Γ(k)
(4ny)2−k−m +O(y3−k−m)

]
∼ 8Γ(2m− 1)Γ(2k − 1)

(k +m− s− 1)(k +m+ s− 2)[Γ(m)Γ(k)]2
(4y)2−k−m

∑
n>0

σ1−2m(n)σ1−2k(n) +O(y3−k−m)

∼ − 43−m−kΓ(2m−1)Γ(2k−1)ζ2m−1ζ2k−1

[Γ(m)Γ(k)]2(k+m−s−1)(k+m+s−2)
y2−k−m +O(y3−k−m) ,

where we expanded the exponential term e−4ny = 1+O(y) to leading order at small-y and used

the analytic continuation at s = 0 of Ramanujan’s identity to resum

∑
n>0

σ1−2m(n)σ1−2k(n)“ = ”ζ(0)ζ(2m− 1)ζ(2k − 1) . (4.82)

This calculation reproduces precisely the expected y2−k−m term in equation (4.79) .

Using the explicit examples (4.58), (4.61) and (4.65) presented before, it is possible to

perform a similar argument to compute also the sub-leading corrections (4.79) by means of

analytically continuing the sum over n as a Dirichlet series. We notice, however, that the

most singular term in (4.79) is of order y1−m−k and cannot possibly be obtained via this näıve

analysis.

A more careful analysis of the small-y expansion of (5.77) can be derived from a Mellin

transform argument. From the generic expression (5.77), it is easy to see that NP
(s)
m,k(y) is

given by a finite linear combination of functions defined by

Da,b;c(y) =
∞∑
n=1

σa(n)σb(n)

nc
e−ny, (4.83)

with a = 1− 2m, b = 1− 2k and c ∈ Z≤0.

In appendix B we derive the small-y behaviour (B.5) of the function Da,b;c(y) with a, b, c ∈ C

generic. Using Mellin inversion formula, the asymptotic expansion at y → 0 of Da,b;c(y) is

related to the poles and residues of its Mellin transform Ma,b;c(y).

We refer to appendix B for the general discussion and present here a few concrete examples.

Let us consider the non-perturbative terms NP
(3)
2,3(y) for the zero Fourier mode of the depth-2
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modular function E (3; 2, 3), which are given by (4.59)

NP
(3)
2,3(y) =

1

4

∞∑
n=1

σ−5(n)σ−3(n)e
−4ny

[ 1
y3

+
n

y2

]
=

1

4y3
D−5,−3;0(4y) +

1

4y2
D−5,−3;−1(4y).

The relevant Mellin transforms, see (B.3), are

M−5,−3;0(t) =

∫ ∞

0

D−5,−3;0(y) y
t−1dy =

Γ(t)ζ(t)ζ(3 + t)ζ(5 + t)ζ(8 + t)

ζ(8 + 2t)
, (4.84)

M−5,−3;−1(t) =

∫ ∞

0

D−5,−3;−1(y) y
t−1dy =

Γ(t)ζ(−1 + t)ζ(2 + t)ζ(4 + t)ζ(7 + t)

ζ(6 + 2t)
, (4.85)

from which it is easy to see that M−5,−3;0(t) has simple poles at t ∈ Z in the range −8 ≤ t ≤ 1,

while M−5,−3;−1(t) has simple poles at t ∈ Z in the range −7 ≤ t ≤ 2, excluding t = 1. Both

of the transforms also have poles coming from the zeta function in the denominator that are

associated with non-trivial zeros of the Riemann zeta.

Referring to appendix B for the details, we can use the Mellin inversion formula (B.4)

and, after the little exercise of computing the residues at these poles, we arrive at the small-y

expansion for NP
(3)
2,3(y):

NP
(3)
2,3(y) ∼

11ζ9
128y4

− ζ3ζ5
8y3

+
7ζ7
64y2

− ζ23
42y

+
ζ5
360

+
ζ3y

2

1890
− ζ7y

3

3240ζ5
+

ζ3ζ5y
4

23625ζ7
− y5

297675

+
∑
ρn

41−t(1 + t)Γ(t− 3)ζ(t− 3)ζ(t)ζ(t+ 2)ζ(t+ 5)

2ζ ′(1
2
+ iρn)

y−t
∣∣∣
t=− 3

4
+ iρn

2

, (4.86)

where the sum in the second line is over the non-trivial zeros of the zeta function 1
2
+ iρn. A

comparison with (4.59) reveals that the small-y limit of the non-perturbative terms not only

matches perfectly the expected behaviour (4.79) but it actually cancels exactly the full Laurent

polynomial part:

NP
(3)
2,3(y) ∼

11ζ9
128y4

− P
(3)
2,3 (y)−

ζ23
42y

− ζ7y
3

3240ζ5
+

ζ3ζ5y
4

23625ζ7
+
∑
ρn

#y
3
4
+ iρn

2 , (4.87)

with the sum over ρn having the same coefficients as in (4.86). The difference between the

small-y limit of the non-perturbative sector and the Laurent series is given by the expected
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y1−k−m monomial of (4.79) and terms sub-leading as y → 0. Although the polynomial piece

presents novel types of coefficients, in the form of ratios of zeta values, they do respect uniform

transcendentality with standard weight assignment. It is not clear what weight assignment (if

any) should be given to the sum over the non-trivial zeros of the zeta function.

As a second example, we can analyse the small-y limit of the non-perturbative terms

NP
(s)
m,k(y) in the diagonal sector k = m. For simplicity let us consider the non-perturbative

terms NP
(2)
2,2(y) of the modular function E (2; 2, 2) that are given by (4.58)

NP
(2)
2,2(y) =

∞∑
n=1

e−4nyσ−3(n)
2

2y2
=

1

2y2
D−3,−3;0(4y). (4.88)

The corresponding Mellin transform is given by

M−3,−3;0(t) =

∫ ∞

0

D−3,−3;0(y) y
t−1dy =

Γ(t)ζ(t)ζ(3 + t)2ζ(6 + t)

ζ(6 + 2t)
, (4.89)

which has poles at t ∈ Z in the range −6 ≤ t ≤ 1. The key difference between the diagonal

sector and the previous, non-diagonal example is the appearance of a double pole at t = −2,

while all others are simple poles. Referring again to appendix B for all the details, in this case

we have that a second order pole in the Mellin transform signals the presence of logarithmic

corrections, log y, in the asymptotic expansion as y → 0 of NP
(2)
2,2(y).

The asymptotic expansion as y → 0 of NP
(2)
2,2(y) is given by

NP
(2)
2,2(y) ∼

7ζ7
48y3

− ζ23
4y2

+
5ζ5
12y

+
ζ3
15

[
log
(8πy
A24

)
+
ζ ′3
ζ3

− ζ ′4
ζ4

]
+
ζ3y

45
− ζ5y

2

108ζ3
+

2ζ23y
3

2835ζ5
− y4

20250

+
∑
ρn

22−2tΓ(t− 2)ζ(t− 2)ζ(t+ 1)2ζ(t+ 4)

ζ ′(1
2
+ iρn)

y−t
∣∣∣
t=− 3

4
+i ρn

2

(4.90)

∼ 7ζ7
48y3

− P
(2)
2,2 (y) +

ζ3
15

[
log
(8πy
A24

)
+
ζ ′3
ζ3

− ζ ′4
ζ4

]
− ζ5y

2

108ζ3
+

2ζ23y
3

2835ζ5
+
∑
ρn

#y
3
4
+ iρn

2 ,

where A is the Glaisher–Kinkelin constant, logA = 1
12

− ζ ′(−1). If we assign transcenden-

tal weight 1 to log (8πy/A24) + ζ ′3/ζ3 − ζ ′4/ζ4, then the polynomial/logarithmic piece respects

uniform transcendentality. This appears to be a variant of the transcendentality assignments

in [46]. Note that again we reproduce the expected behaviour (4.79), furthermore, after com-

parison with the Laurent polynomial P
(2)
2,2 (y) (4.58), we have the stronger statement that the
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non-perturbative terms cancel exactly the perturbative ones as for the previous non-diagonal

example.

For the general small-y expansion of NP
(s)
m,k(y), we see that (5.77) can be expressed as a finite

linear combination of building blocks Da,b;c(y), defined in (4.83), with a = 1 − 2m, b = 1 − 2k

and c ∈ Z≤0. For this range of parameters, it is easy to see from the general formula (B.5),

derived in appendix B, that the coefficients appearing in the polynomial piece of NP
(s)
m,k(y) in

the small-y limit can be at most ratios of bilinears in odd zetas divided by a single odd zeta, or

in the diagonal case m = k contain at most one derivative of a Riemann zeta in the logarithmic

part. Of course, one always has in addition the infinite sum over the non-trivial zeros of the

zeta function.

Although quite different in spirit to the main message of this chapter, the small-y be-

haviour can also be retrieved by exploiting the spectral decomposition of the modular func-

tions E (s;m, k) in terms of L2-normalisable eigenfunctions of the SL(2,R) invariant Laplacian

∆ = 4Im(τ)2∂τ∂τ̄ . This interesting interplay between resurgence and spectral theory, gen-

eralising the results of this chapter, is analysed in chapter 5 of the thesis. See also [47, 48]

for the spectral decomposition of E (s;m, k) with s,m, k ∈ C. In particular, amongst the

L2-normalisable eigenfunctions of the Laplacian, non-holomorphic cusp forms should play a

special rôle in reconstructing the “instanton” sector, i.e. qn terms in the Fourier decomposi-

tion of the modular functions E (s;m, k). Previous works [35] have shown from the different

point of iterated integrals that holomorphic cusp forms do also play a rôle in the instantonic

sector, however there is no obvious or straightforward connection between the holomorphic and

non-holomorphic cusp functions.

As a concluding remark for this chapter we want to stress that if resurgent analysis allows

us to retrieve the exponentially suppressed and non-perturbative corrections at large-y from the

perturbative data, modularity dramatically intertwines the two and permits us to reconstruct

the Laurent polynomial from the small-y behaviour of the infinite tower of (qq̄)n terms, no

longer exponentially suppressed.
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CHAPTER 5

S-duality in Type IIB string theory and generalised Eisenstein series

When discussing the low-energy expansion of type IIB superstring theory, the group SL(2,Z)

is interpreted as the non-perturbative U-duality group of ten-dimensional type IIB string the-

ory [49]. In the classical theory the vacuum expectation value of the axio-dilaton scalar field is

given by

τ = χ+
i

gs
= Re(τ) + i Im(τ) ,

with gs the string coupling constant, and parametrises the coset space H = SL(2,R)/U(1),

which is the upper half-plane that we are quite familiar with by now. However, quantum cor-

rections [50] generate an anomaly in the U(1) R-symmetry thus breaking SL(2,R) to SL(2,Z).

This U-duality symmetry group, SL(2,Z), acts on the axio-dilaton in the standard way

γ =

a b

c d

 ∈ SL(2,Z) , γ · τ :=
aτ + b

cτ + d
. (5.1)

Note that although the transformation property is identical to the one is section 4, the physical

interpretation is radically different. While in the case of string perturbation theory the param-

eter τ was identified as a modulus of a torus, now we instead think of it as a dynamical field

in the theory. Since the axio-dilaton includes the string coupling, gs, U-duality is an extremely

powerful and non-perturbative symmetry, relating perturbative and non-perturbative effects.
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The low-energy expansion of type IIB superstring theory is therefore expected to be invariant

(or covariant) under SL(2,Z), where τ parameterises a fundamental domain that can be chosen

to be the standard F defined in (3.4).

At low energy type IIB supergravity receives corrections coming from excited string states,

which can be neatly assembled in an effective Lagrangian. Focusing for simplicity only on

four-graviton interactions, we expect to find an effective Lagrangian containing the standard

Einstein-Hilbert term, as well as an infinite tower of higher-derivative corrections schematically

of the form d2nR4, where R4 is a certain contraction of Riemann tensors and d is the covariant

derivative. For n ≤ 3 these terms are fixed by supersymmetry to be of the form (in the string

frame)

Leff = (α′)−4g−2
s R+(α′)−1g

− 1
2

s π
3
2E 3

2
(τ)R4+α′g

1
2
s π

5
2E 5

2
(τ)d4R4− (α′)2gsπ

3E
(
4; 3

2
, 3

2

∣∣τ) d6R4+ ... ,

(5.2)

where α′ = ℓ2s is the square of the string length scale.

As expected, the leading term when α′ → 0 is simply given by the Einstein-Hilbert term

(where R is the Ricci scalar). Although we only wrote the bosonic part, this term comes with

its supersymmetric completion, involving other bosonic as well as fermionic fields, reproducing

the type IIB supergravity lagrangian in ten dimensions.

For the higher-derivative corrections here reviewed, we have that maximal supersymmetry

uniquely fixes the Lorentz contractions of the tensor indices and forbids the presence of R2 and

R3 interactions. The first correction is proportional to R4 [51,52] which is a 1/2-BPS operator,

i.e. it preserves only 16 of the 32 supersymmetries associated with ten-dimensional maximal

supersymmetry. Similarly, the higher-derivative term d4R4 is 1/4-BPS while d6R4 is 1/8-BPS

and it is the last term to be protected by supersymmetry.

The ellipsis in (5.2) represents various supersymmetric completions, as well as higher-order

terms and terms contributing to higher-point amplitudes. A particular class of interesting

higher-point BPS amplitudes involve the scattering of four gravitons with certain massless fields

of type IIB supergravity carrying specific U(1) charges [53, 54] and transforming covariantly

under U-duality. The modular properties of these amplitudes have been analysed in [55], while

their connection with the holographic dual picture of integrated correlators in N = 4 SYM is

presented in [56,57]. We will not be discussing these corrections here.
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Interestingly, the coefficients of the higher-derivative and BPS protected corrections dis-

played in (5.2) can be computed exactly and are expressible in terms of special modular in-

variant functions. In particular, we see that the coefficient of the R4 [58–60] and the d4R4 [61]

interactions involve non-holomorphic Eisenstein series, already introduced in (4.13) for integer

weight, but which have the more general representation:

Es(τ) :=
∑

(m,n) ̸=(0,0)

(τ2/π)
s

|m+ nτ |2s
(5.3)

=
2ζ(2s)

πs
τ s2 +

2ξ(2s− 1)

Γ(s)
τ 1−s
2 +

4

Γ(s)

∑
k ̸=0

|k|s−
1
2σ1−2s(k)τ

1
2
2 Ks− 1

2
(2π|k|τ2)e2πikτ1

with τ = τ1 + iτ2 ∈ H and Re(s) > 1 for now. In this chapter another convention for the

Eisenstein series, given in equation (3.20), will be useful, since it naturally appears when spec-

tral theory is considered. As was mentioned before already, the Eisenstein series also satisfy

reflection formulas that we note here for later convenience

Γ(s)Es(τ) = Γ(1− s)E1−s(τ) , (5.4)

ξ(2s)E(s; τ) = ξ(2− 2s)E(1− s; τ) . (5.5)

We have already met the coefficient of d6R4 [62] as well, it is the generalised non-holomorphic

Eisenstein series, defined in (4.16) via the differential equation

[∆− λ(λ− 1)] E
(
λ; s1, s2

∣∣τ) = Es1(τ)Es2(τ), (5.6)

where as before we call the coefficients s1, s2 the weights. In chapter 4 we analysed the special

case of integral weights and eigenvalue by using the fact that for these values Bessel functions

may be expanded in terms of a finite sum of exponentials. The purpose of this chapter is to

extend these methods to apply to the more general case relevant for corrections to Type IIB

supergravity.

Beyond d6R4, higher derivative corrections are not supersymmetrically protected any longer,

hence the same methods leading to the exact results presented above cannot be applied. How-

ever, novel results have been obtained by considering the holographic dual of type IIB super-

string theory on AdS5 × S5, famously given by N = 4 SYM theory with gauge group SU(N).
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Thanks to supersymmetric localisation [63], we can obtain various specific N = 4 four-point in-

tegrated correlators of superconformal primaries of the stress-energy tensor multiplet by taking

different combinations of four derivatives of the partition function for theN = 2∗ theory (a mas-

sive deformation of N = 4) on a squashed S4 with respect to different parameters (squashing,

mass and complexified coupling).

In [64, 65] the authors exploited these supersymmetric localisation results to compute the

large-N expansion of such integrated correlators while keeping fixed the modular parameter, τ ,

now denoting the Yang-Mills complexified coupling τ = θ/2π + 4πi/g2
Y M

. Using the AdS/CFT

dictionary, we identify g2
YM

= 4πgs and (g2
YM
N)

1
2 = L2/α′, where gs is the string coupling

constant and L is the scale of AdS5×S5. Hence the large-N limit of such integrated correlators

can help us in understanding higher derivative corrections in type IIB superstring theory on

AdS5×S5 beyond d6R4 [64,65] as well as non-perturbative effects in α′ [66,67]. These correlators

and their resurgent properties are discussed in much more detail in chapter 6.

As a consequence of N = 4 Montonen–Olive duality (also known as S-duality), order by

order at large-N we must have an expansion with coefficients that are non-holomorphic modular

invariant functions of τ . From [64,65] we know that half-integer orders in 1/N produce only non-

holomorphic Eisenstein series. However, for integer orders in 1/N this expansion is conjectured

[68] to involve an infinite class of generalised Eisenstein series, E
(
λ; s1, s2

∣∣τ), with half-integer

indices s1, s2 and spectrum of eigenvalues λ ∈ Spec2(s1, s2) constrained by

λ ∈ Spec2(s1, s2) := {s1+s2+1, s1+s2+3, s1+s2+5, ...} , s1, s2 ∈ N+
1

2
. (5.7)

Remember that a first class of generalised Eisenstein series having spectrum Spec1(s1, s2)

was defined in (4.17) and it was relevant for the study of MGFs. Similarly, here we find

that the coefficient of the d6R4 higher-derivative correction, E
(
4; 3

2
, 3

2

∣∣τ), in (5.2) is simply the

first instance of generalised Eisenstein series belonging to this second spectrum of functions

(5.7). For future reference, we notice that within this second flavour of generalised Eisenstein

series, E
(
λ; s1, s2

∣∣τ), relevant for higher derivative corrections and the large-N expansion of

integrated correlators, the eigenvalue λ has always opposite even/odd parity when compared

to the “weight” w = s1 + s2.

As a final comment, we stress again that from the gauge theory side we obtain exact ex-
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pressions for four-point correlators which are integrated against different measures over the four

insertion points. A difficult open problem is how to reconstruct from the dual IIB superstring

side which higher-derivative corrections are responsible for a given generalised Eisenstein series

in the large-N expansion. However, in [64, 65] the authors used the gauge theory results to

reproduce exactly the known BPS corrections to the low-energy expansion of the four-graviton

amplitude (5.2) in type IIB superstring theory in ten-dimensional flat-space. We expect the gen-

eralised Eisenstein series (5.7) to have important implications in our understanding of flat-space

higher derivative corrections as well as for the structure of a similar expansion in AdS5 × S5.

5.1 A new Niebur-Poincaré series

One way of constructing a Poincaré series representation for the generalised Eisenstein series,

E
(
λ; s1, s2

∣∣τ) = ∑
γ∈B(Z)\SL(2,Z)

e
(
λ; s1, s2

∣∣γ · τ
)
, (5.8)

relies on rewriting the Laplace equation (5.6) after having replaced one of the Eisenstein series in

the source term, say Es1(τ), by its Poincaré series (5.3), usually dubbed as folding Es1(τ). This

leads us to consider an auxiliary Laplace equation for the candidate seed function e
(
λ; s1, s2

∣∣τ):
[∆− λ(λ− 1)] e

(
λ; s1, s2

∣∣τ) = 2ζ(2s1)

πs1
τ s12 Es2(τ) . (5.9)

We can first rewrite the source term as a Fourier series (5.3) with respect to τ1 = Re(τ),

and then find a particular solution for this Laplace equation mode by mode. For the Fourier

zero-mode sector there is no issue in finding such a particular solution. However, for a Fourier

non-zero mode it is rather difficult to find a particular solution to (5.9) which is expressible in

terms of simple building-block seed functions for generic values of s1, s2 and λ .

In chapter 4 it was discussed how all two-loop MGFs, or more broadly all generalised

Eisenstein series with spectrum given by (4.17), can be written as Poincaré series of finite

linear combinations of the building-block seed functions introduced in [31]

φ(a, b, r|τ) =
∑
m̸=0

σa(m)(4π|m|)bτ r2 e−2π|m|τ2e2πimτ1 , (5.10)
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for different values of the parameters (a, b, r). It was nonetheless noticed in [31] that such

seeds are rather ill-suited to describe generalised Eisenstein series relevant for higher-derivative

corrections and integrated correlators, where the spectrum is (5.7). For these generalised Eisen-

stein series it is still possible to write a seed function in terms of building-blocks (5.10), but

one requires an infinite sum over such simple seeds, thus making it quite hard to extract the

asymptotic expansion at the cusp or other analytic properties from the corresponding Poincaré

series. Other types of Poincaré series have been proposed in the literature [45,69] for the diag-

onal elements, i.e. s1 = s2, in the first family (5.7), while in [70] other examples in this class

are analysed directly from the differential equation point of view.

To construct a class of Poincaré seeds suited for discussing both (4.17)-(5.7) in a uniform

manner, we have to re-examine the Laplace equation (5.9). From the Fourier decomposition

of the Eisenstein series (5.3), we notice that the mth Fourier mode, with m ̸= 0, of the source

term is schematically of the form

σa(m)|m|b−
1
2 τ

r+ 1
2

2 Ks− 1
2
(2π|m|τ2)e2πimτ1 ,

for some specific values of the parameters (a, b, r, s). Thanks to the recurrence relations satisfied

by the modified Bessel function Ks(y), for both spectra (4.17)-(5.7) it is always possible to find

a finite linear combination over different values of the parameters1 (a, b, r, s) of terms as above

which is a solution to (5.9) in the mth Fourier mode sector.

With this fact at hand, we can now introduce a novel space of Poincaré seeds and associated

Poincaré series which is both general enough, in that every string theory generalised Eisenstein

series (4.17)-(5.7) can be written as a Poincaré series of finite linear combinations of these novel

seeds, and simple enough so that we can easily extract asymptotic data both at the cusp τ2 ≫ 1

and at the origin τ2 → 0.

1In this context the parameter a is rather special, since it is the index of the divisor sum function σa(m).
From the Laplace equation (5.9) and the Fourier mode decomposition (5.3) it is easy to see that a = 1 − 2s2
for the present discussion.
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We define the seed function

υ (a, b, r, s|τ) =
∑
m̸=0

υm(a, b, r, s|τ2)e2πimτ1

:=
∑
m̸=0

σa(m)|m|b−
1
2 τ

r+ 1
2

2 Ks− 1
2
(2π|m|τ2)e2πimτ1 , (5.11)

which depends on four complex parameters (a, b, r, s). Given that the Bessel function Ks(y) is

exponentially suppressed for large values of its argument, we immediately have that the sum

over the Fourier mode, m, is absolutely convergent for any values of the parameters (a, b, r, s).

This property of the Bessel function implies as well that the seed function is exponentially

suppressed for τ2 ≫ 1, however, the limit τ2 → 0 is more delicate to analyse.

Under the assumption that the Poincaré series of such a class of seed functions is well-

defined, we can introduce a novel class of modular invariant functions which we denote by

Υ (a, b, r, s|τ) :=
∑

γ∈B(Z)\SL(2,Z)

υ (a, b, r, s|γ · τ) . (5.12)

The convergence of this Poincaré series is studied in appendix C, where we prove that absolute

convergence is guaranteed when

min
(
Re(r + 1− s), Re(r + s), Re(r − b), Re(r − a− b)

)
> 1 . (5.13)

In what follows, we can relax the requirement of absolute convergence and consider if necessary

the Poincaré series (5.12) in terms of its analytic continuation in some of its complex parameters

(a, b, r, s), in direct analogy with the discussion below (3.21).

The keen-eyed reader will notice that the new seeds (5.11) are very reminiscent of the rather

unconventional Poincaré series representation (3.21) for Es(τ). The reason is that, very much

like (3.21), our expression (5.11) can be obtained as an infinite sum over all Fourier non-zero

modes, m ̸= 0, of the difference between two Niebur–Poincaré series [71, 72]. We will shortly

prove that both string theory generalised Eisenstein series (4.17)-(5.7) can be obtained from

finite linear combinations of these new Niebur–Poincaré series (5.12).

As already stressed, one of the perks of a Poincaré series representation is that in general

it simplifies the complexity of the objects under consideration. In particular, from the seed

65



function definition (5.11) we can already deduce various algebraic and differential identities

satisfied by the modular objects Υ (a, b, r, s|τ). Firstly, we note that the seed functions (5.11)

are invariant under the reflection s→ 1− s,

υ (a, b, r, 1− s|τ) =
∑
m ̸=0

σa(m)|m|b−
1
2 τ

r+ 1
2

2 K 1
2
−s(2π|m|τ2)e2πimτ1 = υ (a, b, r, s|τ) , (5.14)

due to the Bessel function identity Ks(y) = K−s(y). Similarly, we have invariance under the

transformation (a, b) → (−a, b+ a),

υ (−a, a+ b, r, s|τ) =
∑
m̸=0

σ−a(m)|m|a+b− 1
2 τ

r+ 1
2

2 Ks− 1
2
(2π|m|τ2)e2πimτ1 = υ (a, b, r, s|τ) , (5.15)

a straightforward consequence of the identity σ−a(m) = |m|−aσa(m). From these two observa-

tions we deduce that the modular functions must also inherit these symmetries,

Υ (a, b, r, s|τ) = Υ (a, b, r, 1− s|τ) , (5.16)

Υ (a, b, r, s|τ) = Υ (−a, b+ a, r, s|τ) . (5.17)

More interestingly, given the well-known Bessel function recurrence relation

Ks+1(y)−Ks−1(y) =
2s

y
Ks(y) , (5.18)

we can immediately derive the three-term recursion

Υ (a, b, r, s+ 1|τ)−Υ(a, b, r, s− 1|τ) = 2s− 1

2π
Υ(a, b− 1, r − 1, s|τ) . (5.19)

Note that even if we consider a seed function whose parameters (a, b, r, s) satisfy the conditions

(5.13) for absolute convergence of the Poincaré series, repeated applications of this recursion

formula (5.19) will inevitably bring us outside of the domain (5.13) where the analytic contin-

uation of (5.12) has to be discussed carefully.

Finally, given that our discussion started from the inhomogeneous Laplace equation (5.6),

it is natural to consider the action of the Laplace operator on (5.12). By simply applying the
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Laplacian to (5.11) and using the known identity for the derivative of the Bessel function,

K ′
s(y) = −s

y
Ks(y)−Ks−1(y) , (5.20)

we arrive at

[
∆− (r + 1− s)(r − s)

]
Υ(a, b, r, s|τ) = −4πrΥ(a, b+ 1, r + 1, s− 1|τ) , (5.21)

or equivalently making use of (5.19):

[
∆− (r + s)(r + s− 1)

]
Υ(a, b, r, s|τ) = −4πrΥ(a, b+ 1, r + 1, s+ 1|τ) . (5.22)

We have thus obtained that the functions Υ (a, b, r, s|τ) satisfy a closed system of inhomogeneous

Laplace eigenvalue equations where the source term is given by yet another function of the same

type, but different parameters (a, b, r, s).

Both Laplace equations (5.21)-(5.22) simplify dramatically for r = 0, where they reduce to

[
∆− s(s− 1)

]
Υ(a, b, 0, s|τ) = 0 , (5.23)

and since the function Υ (a, b, 0, s|τ) is manifestly a modular invariant eigenfunction of ∆ with

eigenvalue s(s− 1) it must be proportional to Es(τ).

We will shortly prove that Υ (a, b, r, s|τ) has polynomial growth at the cusp and compute

explicitly its asymptotic expansion using the integral representation (3.26), thus easily fixing

the coefficient of proportionality between Υ (a, b, 0, s|τ) and Es(τ). Alternatively, we can see

from (5.11) that each summand with Fourier mode m = k in the seed function υ (a, b, 0, s|z) is

proportional to the Poincaré seed (3.21) for Es(τ). The only difference with (3.21), is that the

sum over m in (5.11) will simply produce a particular Dirichlet series which will contribute to

the proportionality factor between Υ (a, b, 0, s|τ) and Es(τ).

As already mentioned, the novel seeds (5.11) are constructed precisely to provide for a broad

enough basis of solutions to (5.9). Correspondingly, we will show that it is possible to produce

finite linear combinations of Υ (a, b, r, s|τ) which are solutions to the generalised Eisenstein

series differential equation (5.6) relevant for string theory. A central part of this analysis is the
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observation that the space of functions Υ (a, b, r, s|τ) contains all products of two Eisenstein

series, i.e. all possible source terms of (5.6). The proof of this statement is very simple. If

we consider the bilinear Es1(τ)Es2(τ), we first fold Es1(τ) and then re-express Es2(τ) in Fourier

modes arriving at

Es1(τ)Es2(τ) =
8ξ(2s1)

Γ(s1)Γ(s2)
Υ (1− 2s2, s2, s1, s2|τ) (5.24)

+
2Γ(s1 + s2)ξ(2s1)ξ(2s2)

Γ(s1)Γ(s2)ξ(2(s1 + s2))
Es1+s2(τ) +

2Γ(s1 + 1− s2)ξ(2s1)ξ(2s2 − 1)

Γ(s1)Γ(s2)ξ(2(s1 + 1− s2))
Es1+1−s2(τ) .

Alternatively we can use the reflection formula (5.5), combined with (5.16)-(5.17), to derive

Es1(τ)Es2(τ) =
8ξ(2s2 − 1)

Γ(s1)Γ(s2)
Υ (1− 2s1, s1, 1− s2, 1− s1|τ) (5.25)

+
2Γ(s1+s2−1)ξ(2s1−1)ξ(2s2−1)

Γ(s1)Γ(s2)ξ(2(s1 + s2)−3)
Es1+s2−1(τ) +

2Γ(s1+1−s2)ξ(2s1)ξ(2s2−1)

Γ(s1)Γ(s2)ξ(2(s1−s2)+2)
Es1+1−s2(τ) .

Note that by folding Es1(τ) we break the symmetry between s1 ↔ s2. This comes at a notable

price in the diagonal case s1 = s2 where (5.24)-(5.25) have to be regulated. For s1 = s2, the

right-hand side of both equations contains the divergent Eisenstein series E1(τ). However, since

the bilinear Es1(τ)2 is perfectly regular for s1 ̸= 1, this implies that the modular functions

Υ (1− 2s1, s1, s1, s1) and Υ (1− 2s1, s1, 1− s1, 1− s1) must diverge as well. A regularised ver-

sions of (5.24)-(5.25) for the case s1 = s2 is easily obtained by considering the continuous limit

away from the diagonal s1 = s2 case:

Es1(τ)2 = lim
ϵ→0

[
Es1+ϵ(τ) Es1(τ)

]
. (5.26)

When ϵ ̸= 0 we can safely write the right-hand side using (5.24)-(5.25). As ϵ → 0 our formu-

lae (5.24)-(5.25) produce a divergent contribution coming from E1+ϵ(τ) which cancels against

the similarly singular Υ thus leaving us with a regular expression. The need for a regularisation

of the diagonal case s1 = s2 is an ubiquitous phenomenon [31, 38] and it is independent from

the particular seeds considered in the present work.
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5.2 Asymptotic expansion at the cusp

Let us now derive the asymptotic expansion near the cusp τ → i∞ for the modular invariant

functions Υ (a, b, r, s|τ). Firstly we perform a Fourier mode decomposition,

Υ (a, b, r, s|τ) =
∑
k∈Z

Υk(a, b, r, s|τ2)e2πikτ1 , (5.27)

and focus on deriving the asymptotic expansion for large τ2 of the Fourier zero-mode Υ0(a, b, r, s|τ2).

In the previous chapter we have already reviewed how to retrieve the Fourier modes of a

Poincaré series from an integral transform (A.3) of the Fourier modes for the corresponding

seed function. In particular, if we focus on the Fourier zero-mode sector (A.5) for the specific

seeds (5.11) under consideration, we have to compute:

Υ0(a, b, r, s|τ2) (5.28)

=
∞∑
d=1

∑
m ̸=0

S(m, 0; d)

∫
R
e
−2πim ω

d2(ω2+τ22 )σa(m)|m|b−
1
2

( τ2
d2(ω2 + τ 22 )

)r+ 1
2
Ks− 1

2

( 2π|m|τ2
d2(ω2 + τ 22 )

)
dω.

In appendix D we show how the above integral transform can be rewritten as a nicer Mellin-

Barnes type of contour integral, thus making the task of extracting the asymptotic expansion

at the cusp much more manageable.

Relegating the more technical details to the appendix, we present here the key result of our

analysis: the integral representation (5.28) can be rewritten as the Mellin-Barnes integral

Υ0(a, b, r, s|τ2) =
∫ 1

2
+i∞

1
2
−i∞

U(a, b, r, s|t) τ t2
dt

2πi
, (5.29)

where we define

U(a, b, r, s|t) :=
Γ
(
r+1−s−t

2

)
Γ
(
r+s−t

2

)
Γ
(
t+r−s

2

)
Γ
(
t+r+s−1

2

)
2πr Γ(r)ξ(2− 2t)

× ζ(r + 1− b− t)ζ(r + 1− a− b− t)ζ(t+ r − b)ζ(t+ r − a− b)

ζ(2r + 1− a− 2b)
. (5.30)

For this section, unless otherwise specified, we restrict ourselves to the range of parame-

ters (5.13) for which the Poincaré series is absolutely convergent. However, at the end of ap-
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Figure 5.1: Schematic pole structure of U(a, b, r, s|t). The infinite family of poles from the
gamma functions is given in purple while the four poles from the zeta functions are given in
green. In black, we have an infinite family of poles with Re(t) = 3

4
(if Riemann hypothesis is

correct) coming from the non-trivial zeroes of the Riemann zeta. The contour of integration,
Re(t) = 1

2
, is indicated in red.

pendix D we explain that for parameters, (a, b, r, s), which do not produce convergent Poincaré

series, the Mellin-Barnes representation (5.29) is still perfectly valid provided the contour of

integration is modified from the straight line Re(t) = 1
2
to a contour separating the two families

of poles we are about to discuss.

It is now fairly straightforward to extract from the Mellin-Barnes integral (5.30) the asymp-

totic expansion of Υ0(a, b, r, s|τ2) as τ2 ≫ 1 by closing the contour of integration at negative

infinity on the left semi-half plane Re(t) < 1
2
and collecting residues from the different singular

terms in (5.30). As we can see in Figure 5.1, when the parameters (a, b, r, s) define an absolutely

convergent Poincaré series, i.e. when they satisfy (5.13), closing the contour at negative infinity

in the half-plane Re(t) < 1
2
selects two different types of poles:

• From the zeta functions ζ(t + r − b) and ζ(t + r − a − b) we have two poles located

respectively at t = b+ 1− r and t = a+ b+ 1− r;

• From the gamma functions Γ
(
t+r−s

2

)
and Γ

(
t+r+s−1

2

)
we have two infinite families of poles

located respectively at t = s− r − 2n and t = 1− s− r − 2n with n ∈ N.

It is easy to see that under the assumption (5.13) of an absolutely convergent Poincaré series,

the above poles are all located in the half-plane Re(t) < 1
2
, while all remaining poles in (5.30)
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are located in the half-plane Re(t) > 1
2
.

Computing the residues at said poles and summing over all of them produces the wanted

asymptotic expansion for large-τ2 of the Fourier zero-mode,

Υ0(a, b, r, s|τ2) ∼
ζ(2r − a− 2b)

2Γ(r)ζ(2r − a− 2b+ 1)

[
c(1)(a, b, r, s)τ b+19r

2 +c(1)(9a, a+b, r, s)τa+b+19r
2

]
+

∞∑
n=0

τ−r−2n
2

[
τ s2 c

(2)
n (a, b, r, s)+τ 1−s

2 c(2)n (a, b, r, 19s)
]
, (5.31)

where for convenience of presentation we defined the coefficients

c(1)(a, b, r, s) =
Γ
(
b+1−s

2

)
Γ
(
2r−b−s

2

)
Γ
(
b+s
2

)
Γ
(
2r+s−b−1

2

)
ζ(1− a)

πb Γ(r − b)
, (5.32)

c(2)n (a, b, r, s) =
(−1)nπ2n+1−sΓ (n+ r) Γ

(
s− n− 1

2

)
Γ
(
n+ r − s+ 1

2

)
n!Γ (r) Γ(2n+ r + 1− s)

× ζ(s− b− 2n)ζ(s− a− b− 2n)ζ(2n+ 2r + 1− b− s)ζ(2n+ 2r + 1− a− b− s)

ζ(2r − a− 2b+ 1)ζ(4n+ 2r + 2− 2s)
. (5.33)

Besides the first two terms τ b+19r
2 and τa+b+19r

2 , coming from the isolated poles of the two

Riemann zeta functions, the remaining perturbative series is, for general parameters, (a, b, r, s),

an asymptotic factorially divergent power series. From (5.33), the growth of the perturbative

coefficients is c
(2)
n (a, b, r, s) = O((2n)!) which combined with the power-like growth (4πτ2)

−2n

immediately suggests the presence of exponentially suppressed corrections (qq̄) = e−4πτ2 .

While the modular functions Υ (a, b, r, s|τ) provide for a natural extension of the generalised

Eisenstein series, unlike the generalised Eisenstein series they have, for non-specific values of

the parameters, non-terminating and factorially divergent formal power series expansions at

the cusp τ2 ≫ 1. Crucially, at non-generic and physically relevant points in parameter space,

i.e. for special values of a, b, r, s corresponding to generalised Eisenstein series, the asymptotic

tail of Υ (a, b, r, s|τ) vanishes and (5.31) reduces to a sum of finitely many terms. In the next

section, we show that this happens for a ∈ Z and (b, r, s) either all integers or all half-integers.

This dramatic change of the asymptotic series (5.31) from a factorially divergent formal

power series to a finite sum can be understood quite easily from the contour integral represen-

tation given in (5.29). From the definition (5.30) of the function U(a, b, r, s|t) we notice that

the gamma functions generate two infinite families of poles in t on both side of the integration

contour Re(t) = 1
2
. At the same time, the four Riemann zeta functions present two pairs of
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identically spaced, infinite families of (trivial-)zeros in t again on both side of the integration

contour Re(t) = 1
2
. The truncation of the asymptotic series (5.31) to a finite sum happens

precisely for special values of a, b, r, s for which these families of poles and zeroes start overlap-

ping at some point. As we will show in the next section, the case of interest - the generalised

Eisenstein series - neatly falls into this category.

The analytic continuation in (a, b, r, s) is crucial for fixing the exponentially suppressed (qq̄)-

terms from the formal and factorially divergent perturbative expansion at the cusp, since for

generic (a, b, r, s) the requirement of a well-defined Borel-Ecalle resummation of (5.31) allows

for calculation of all (qq̄)-terms, similar to [31] and chapter 4.

Surprisingly, even when at special values of the parameters (a, b, r, s) the series (5.31) be-

comes a finite sum, such non-perturbative resurgent corrections do survive. This is the previ-

ously mentioned notion of Cheshire Cat resurgence [41–43] from the eponymous feline of Alice

in Wonderland with a disappearing body but a lingering enigmatic grin. Since such a resur-

gence analysis is akin to the one carried out in chapter 4 for a different general class of seed

functions (5.10), we will not repeat this calculation here. Later in the present chapter we will

however revisit the calculation of exponentially suppressed terms from the spectral analysis

point of view.

We conclude this section with a simpler “special” example, namely the case of the standard

Eisenstein series. As previously remarked, since Υ (a, b, r = 0, s|τ) is a modular solution to

the Laplace equation (5.23) it must proportional to E(s; τ). Given the generic asymptotic

expansion (5.31), we can now fix the constant of proportionality.

Firstly, it is a well-known result (5.3) that the asymptotic expansion at the cusp for E(s; τ)

has only two power-behaved terms: τ s2 and τ 1−s
2 . These two terms are easily recognisable in

(5.31) as regulated versions of the n = 0 terms τ s−r
2 c0(a, b, r, s)+τ

1−s−r
2 c0(a, b, r, 9s), while all

other terms vanish. More precisely, from the definition (5.30) we notice in the denominator the

factor Γ(r) is singular for r = 0, but easily regulated by considering r = ϵ and taking the limit

ϵ → 0 at the very end. Only the poles of (5.30) located at t = s + ϵ and t = 1 − s − ϵ have

a non-vanishing residue in the limit ϵ → 0 and produce precisely a multiple of the expected

Eisenstein series Laurent polynomial (5.3). This allows us to fix the proportionality factor
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between Υ (a, b, r = 0, s|τ) and E(s; τ) as such

Υ (a, b, 0, s|τ) = 2 tan(πs)Γ(s)ζ(1− b− s)ζ(1− a− b− s)ζ(s− b)ζ(s− a− b)

(2s− 1)πs−1 ζ(1− a− 2b)ζ(2− 2s)
E(s; τ) .

(5.34)

We stress again that we could have reached the same result from a direct comparison between

each Fourier mode of the Poincaré seed (5.11) and the unusual Poincaré series (3.21) for E(s; τ).

Applying (3.21) to each Fourier mode in (5.11), leaves us with a particular Dirichlet sum over

the Fourier non-zero modes m ∈ Z \ {0} which, once evaluated, brings us back (5.34).

Lastly, an easy application of the recursion formula (5.19) shows that all of Υ (a, b,−n, s|τ),

with n ∈ N, are also finite sums of Eisenstein series,

Υ (a, b,−n, s|τ) = πnn!
n∑

k=0

(91)k+1(s+ n−2k − 1
2
)Γ(s−k − 1

2
)

k!Γ(n−k + 1)Γ(n+ s−k + 1
2
)

γ(a, b+n, s+n−2k)E(s+n92k; τ) ,

(5.35)

where the coefficient γ(a, b, s) is the proportionality constant appearing in (5.34), i.e.

γ(a, b, s) =
2 tan(πs)Γ(s)ζ(1− b− s)ζ(1− a− b− s)ζ(s− b)ζ(s− a− b)

(2s− 1)πs−1 ζ(1− a− 2b)ζ(2− 2s)
. (5.36)

5.3 A ladder of inhomogeneous Laplace equations

We have just seen that this newly defined space (5.12) of modular invariant functions contains

both single Eisenstein series (5.34) and products of two Eisenstein series (5.24)-(5.25). We now

show that the functions Υ (a, b, r, s|τ) are also closed under the action of the Laplace operator

in τ . In particular, we describe a method of generating solutions to an infinite ladder of Laplace

equations where the source term is a fixed function Υ (a, b, r, s|z) and the eigenvalues lie in the

spectrum

Spec(r+s) = {r+s−2, r+s−4, r+s−6, ...} , (5.37)

i.e. they take the form

λn(r + s) := r + s− 2(n+ 1) , (5.38)

with n ∈ N. Once the source term Υ (a, b, r, s|τ) is properly chosen, this spectrum reduces to

the string theory spectra (4.17)-(5.7) and the constructed solution produces precisely a given

generalised Eisenstein series expressed as a finite linear combination of novel Poincaré series
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(5.12). Not to clutter the notation, in this section we will suppress the explicit τ -dependence.

The starting point of our analysis is the differential equation (5.22), rewritten here in a

more convenient form

[
∆− λ0(r + s)(λ0(r + s)− 1)

]Υ(a, b− 1, r − 1, s− 1)

4π(1− r)
= Υ (a, b, r, s) . (5.39)

To construct this ladder of Laplace equations, we view this equation as the top element in a

tower of similar equations with decreasing eigenvalues. We now look for linear combinations,

Yn(a, b, r, s), of functions Υ (a′, b′, r′, s′) with different parameters (a′, b′, r′, s′) and solutions to

[
∆− λn(r + s)(λn(r + s)− 1)

]
Yn(a, b, r, s) = Υ (a, b, r, s) . (5.40)

The starting Laplace equation (5.39) gives us the initial condition

Y0(a, b, r, s) =
Υ (a, b− 1, r − 1, s− 1)

4π(1− r)
, (5.41)

while the rest of the ladder is generated from here by exploiting the crucial recursion relation

(5.19) as we now show.

To simplify the discussion, we introduce a linear operator D that acts on the space of

modular functions (5.12) as

DΥ(a, b, r, s) := Υ (a, b, r, s− 2) +
2s− 3

2π
Υ(a, b− 1, r − 1, s− 1) , (5.42)

for which the recursion relation (5.19) can then be written in the compact form

DΥ(a, b, r, s) = Υ (a, b, r, s) .

One can easily check by induction that an n-fold application of this operator produces a sum

of n+ 1 modular functions given by

DnΥ(a, b, r, s) =
n∑

k=0

(
n

k

)( k−1∏
i=0

2(s+ i− n)− 1

2π

)
Υ(a, b− k, r − k, s+ k − 2n) . (5.43)

While it is not immediately obvious how to use the Laplace equation (5.22) to invert (5.40)
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and find Yn(a, b, r, s), we can use the recursion relation to rewrite (5.40) as

[
∆− λ0(r + s− 2n)(λ0(r + s− 2n)− 1)

]
Yn(a, b, r, s) = Υ (a, b, r, s)

= DnΥ(a, b, r, s) =
n∑

k=0

(
n

k

)( k−1∏
i=0

2(s+ i− n)− 1

2π

)
Υ(a, b− k, r − k, s+ k − 2n) . (5.44)

Although DnΥ(a, b, r, s) is a linear combination of modular functions Υ (a, b′, r′, s′) with dif-

ferent parameters (a, b′, r′, s′), we notice that the action of Dn produces a uniform shift on

r + s, i.e. for every term in this linear combination we have r′+s′ = r+s−2n. This means

that if we consider the left-hand side of (5.44) term by term, we have reduced the problem to

a collection of equations (5.39) for different values of parameters (a, b′, r′, s′) but all satisfying

r′+s′ = r+s−2n. We can then use the inversion of the Laplacian (5.41) term by term to arrive

at

Yn(a, b, r, s) =
n∑

k=0

(
n

k

)( k−1∏
i=0

2(s+ i− n)− 1

2π

)Υ(a, b− k − 1, r − k − 1, s+ k − 2n− 1)

4π(k + 1− r)
,

(5.45)

which is the sought-after solution to the ladder of Laplace equations (5.40) with eigenvalue

λn(r + s) = r+s−2(n+ 1) and source Υ (a, b, r, s).

Note that while in general this ladder does not terminate, whenever the parameter r is a

strictly positive integer, which will be the relevant case for the MGFs spectrum (4.17), the

ladder does in fact terminate after finitely many steps. This is easy to see from (5.45), let

us assume that r = n + 1 with n ∈ N for which (5.45) becomes ill-defined. In (5.45) the

would-be k = n term reduces to Υ (a, b− n− 1, 0, s− n− 1) and according to the differential

equation (5.44) the action of the Laplace eigenvalue operator on such a factor should produce

the corresponding source proportional to Υ (a, b− n, 1, s− n). However, this is not possible

since Υ (a, b− n− 1, 0, s− n− 1) is proportional (5.34) to the Eisenstein series E(s−n−1; τ),

which is annihilated by (5.40) in the case r = n + 1. We will come back to this point when

discussing the ladder of equations for the first spectrum of generalised Eisenstein series.

In the current context, we are particularly interested in generating solutions to Laplace

eigenvalue equations with sources given by products of two Eisenstein series. One of the perks

of our approach is that the ladder of Laplace equations (5.40) just found precisely reduces to
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the desired inhomogeneous Laplace eigevalue equations when the source term Υ (a, b, r, s|τ) is

suitably chosen to reproduce the wanted bilinear in Eisenstein series as given in (5.24)-(5.25).

The first flavour of generalised Eisenstein series

Let us now use the ladder (5.40) just discussed to reconstruct the first string theory flavour

of generalised Eisenstein series relevant for the study of two-loop MGFs. We consider integer

indices s1, s2 ≥ 2 and without loss of generality assume s1 ≥ s2. We want to use the ladder

equation to reproduce the finite spectrum of eigenvalues from (4.17)

Spec1(s1, s2) = {|s1−s2|+2, |s1−s2|+4, ... , s1+s2−2} .

Consequently, we specialise the ladder (5.40) to the case for which the source term Υ (a, b, r, s|τ)

produces the first representation we found for the product of two Eisenstein series (5.24), i.e.

we specialise our ladder to

(a, b, r, s) =
(
1− 2s2, s2, s1, s2

)
. (5.46)

With this choice of parameters the ladder equation (5.40) reduces to

[
∆− λ(1)n (λ(1)n − 1)

] 8ξ(2s1)

Γ(s1)Γ(s2)
Yn(1− 2s2, s2, s1, s2|τ) = Es1(τ)Es2(τ) (5.47)

− 2Γ(s1 + s2)ξ(2s1)ξ(2s2)

Γ(s1)Γ(s2)ξ(2(s1 + s2))
Es1+s2(τ)−

2Γ(s1 + 1− s2)ξ(2s1)ξ(2s2 − 1)

Γ(s1)Γ(s2)ξ(2(s1 + 1− s2))
Es1+1−s2(τ) ,

and the ladder eigenvalues, λ
(1)
n = s1 + s2 − 2(n + 1), reproduce immediately the desired

spectrum.

In this setup there is no issue with the large-τ2 asymptotic behaviour for the solution Yn(1−

2s2, s2, s1, s2|τ): using the general expression (5.31) we can confirm that our ladder solution

satisfies the desired boundary condition for which the coefficient of the homogeneous solution

yλ
(1)
n vanishes. This means that for the specific parameters (5.46) the ladder solution (5.45)

must reproduce (modulo single Eisenstein terms) the first flavour of generalised Eisenstein

series, E(λ(1)n ; s1, s2|τ). Proceeding as we did before, we use (3.15) to invert the single Eisenstein
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source terms in (5.47) and arrive at

E
(
λ(1)n ; s1, s2

∣∣τ) = 8ξ(2s1)

Γ(s1)Γ(s2)
Yn(1− 2s2, s2, s1, s2|τ)

+
2Γ(s1 + s2)ξ(2s1)ξ(2s2)

Γ(s1)Γ(s2)ξ(2(s1 + s2))µ(s1 + s2, λ
(1)
n )

Es1+s2(τ) (5.48)

+
2Γ(s1 + 1− s2)ξ(2s1)ξ(2s2 − 1)

Γ(s1)Γ(s2)ξ(2(s1 + 1− s2))µ(s2 − s1, λ
(1)
n )

Es1+1−s2(τ),

where we defined µ(s, λ) := s(s − 1) − λ(λ − 1). Unlike what happens in the case of the

second spectrum, when the sources have integer indices, s1, s2, we notice that the spectrum

of eigenvalues is bounded both from above and below. There is a maximal eigenvalue in the

ladder which is given by λ
(1)
0 =s1+s2−2 and agrees with the maximal eigenvalue obtained in

the study of MGFs in the first spectrum (4.17). However the minimal eigenvalue in the ladder

does not quite reproduce the minimal eigenvalue expected from (4.17).

As discussed below equation (5.45), in the case when the parameter r = ñ+ 1, with ñ ∈ N,

the ladder terminates after ñ steps. In the present case (5.48), the parameter r = s1 has precisely

this property, hence the ladder terminates after ñ = s1 − 1 steps, i.e. we have constructed

generalised Eisenstein solutions (5.48) for n = 0, ..., s1 − 2 and fixed sources. The minimal

eigenvalue we obtain is then λ
(1)
s1−2=s2−s1+2, in general lower than the minimal eigenvalue

expected from the spectrum (4.17). These ladder solutions (5.48) with eigenvalues lower than

the MGFs spectrum (4.17) correspond precisely to the modular objects discussed in section 7.3

of [35] and constructed from certain “overly-integrated seed functions”.

The second flavour of generalised Eisenstein series

Now we repeat the analysis for the second flavour of generalised Eisenstein series (5.7)

relevant for correction terms to type IIB supergravity. We hence consider half-integer indices

s1, s2 ∈ N+ 1
2
and want to reproduce the non-terminating spectrum of eigenvalues

Spec2(s1, s2) = {s1+s2+1, s1+s2+3, s1+s2+5, ...} .

To this end, we specialise the ladder (5.40) to the case for which the source term Υ (a, b, r, s|τ)

produces the second representation we found for the product of two Eisenstein series (5.25),
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i.e. we specialise our ladder to

(a, b, r, s) =
(
1− 2s1, s1, 1− s2, 1− s1

)
, (5.49)

and assume that s1, s2 are fixed half-integers, in which case (5.40) can be reduced to

[
∆− λ(2)n (λ(2)n − 1)

] 8ξ(2s2−1)

Γ(s1)Γ(s2)
Yn(1− 2s1, s1, 1− s2, 1− s1|τ) = Es1(τ)Es2(τ) (5.50)

−2Γ(s1+s2 − 1)ξ(2s1−1)ξ(2s2−1)

Γ(s1)Γ(s2)ξ(2(s1+s2)−3)
Es1+s2−1(τ)−

2Γ(s1+1−s2)ξ(2s1)ξ(2s2−1)

Γ(s1)Γ(s2)ξ(2(s1+1−s2))
Es1+1−s2(τ) .

If we apply directly the ladder procedure with fixed parameters (5.49), we find that the ladder

eigenvalues (dropping their explicit dependence from the fixed source indices s1, s2) are now

λ̃
(2)
n = −s1− s2−2n, however, the exchange λ̃

(2)
n → λ

(2)
n = 1− λ̃

(2)
n leaves the equation invariant

and produces the expected spectrum of eigenvalues

λ(2)n = s1+s2+2n+1 .

This change is not without consequences: the constructed modular invariant solution, Yn,

does not quite land (modulo the previously discussed Eisenstein terms) on E(λ(2)n ; s1, s2|τ), the

generalised Eisenstein series we are interested in, but rather on the reflected E(1−λ(2)n ; s1, s2|τ).

We can use the general expression (5.31) to compute the asymptotic expansion of

Yn(1−2s1, s1, 1−s2, 1−s1|τ) at large-τ2 and confirm that the homogeneous solution τ 1−λ
(2)
n

2 has

vanishing coefficient, i.e. we land exactly on the opposite boundary condition compared to the

wanted generalised Eisenstein series E(λ(2)n ; s1, s2|τ). This can be fixed by adding a suitable

multiple of the modular invariant homogeneous solution, E
λ
(2)
n
(τ), such that the new solution

satisfies the desired boundary condition of a vanishing coefficient for the homogeneous solution

τλ
(2)
n

2 .

Lastly, with the help of the differential equation (3.15) we can easily invert the single

Eisenstein source terms in (5.50). With all these considerations in mind, we arrive at the final

expression
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E
(
λ(2)n ; s1, s2

∣∣τ) = 8ξ(2s2 − 1)

Γ(s1)Γ(s2)
Yn(1− 2s1, s1, 1− s2, 1− s1|τ)

− 2Γ(λ
(2)
n )ξ(2n+2)ξ(2s1+2n+1)ξ(2s2+2n+1)ξ(2(s1+s2+n))

(2λ
(2)
n − 1)Γ(s1)Γ(s2)ξ(2λ

(2)
n − 1)ξ(2λ

(2)
n )

E
λ
(2)
n
(τ)

+
2Γ(s1 + s2 − 1)ξ(2s1 − 1)ξ(2s2 − 1)

Γ(s1)Γ(s2)ξ(2(s1 + s2)− 3)µ(s1 + s2 − 1, λ
(2)
n )

Es1+s2−1(τ) (5.51)

+
2Γ(s1 + 1− s2)ξ(2s1)ξ(2s2 − 1)

Γ(s1)Γ(s2)ξ(2(s1 + 1− s2))µ(s1 + 1− s2, λ
(2)
n )

Es1+1−s2(τ) .

In summary, the ladder of Laplace equations (5.40) includes in a natural and uniform way

the two string theory flavours of generalised Eisenstein series (4.17)-(5.7). In both cases (5.48)-

(5.51), we expressed these generalised Eisenstein series as linear combination of finitely many

novel Poincaré series (5.12). We now discuss some concrete examples for both flavours.

5.4 Examples

In this section we present some concrete and string theory relevant examples of our general

construction. We begin with the generalised Eisenstein series E
(
4; 3

2
, 3

2

∣∣τ), coefficient of the

higher derivative correction d6R4 in the effective low-energy action of type IIB superstring

theory (5.2). For the given indices, s1 = s2 = 3
2
, the eigenvalue is λ = λ

(2)
0 = s1 + s2 + 1 = 4,

hence E
(
4; 3

2
, 3

2

∣∣τ) is the function with smallest eigenvalue in the spectrum (5.7) for these

sources.

Since this is a diagonal example where the indices s1 and s2 coincide, we need to use the

regularisation scheme described in (5.26). Substituting the regularised parameters s1 = 3
2
+ ϵ,

s2 = 3
2
and λ

(2)
0 = 4 + ϵ in the general expression (5.51) we derive

E
(
4; 3

2
, 3

2

∣∣τ) = lim
ϵ→0

[ 4

9
√
π Γ(3

2
+ ϵ)

Υ (92(1 + ϵ), 1
2
+ ϵ, 9 3

2
, 9 3

2
9 ϵ|τ)− ζ(3 + 2ϵ)

9(2 + ϵ)ζ(2 + 2ϵ)
E1+ϵ(τ)

]
− 32π6

127 575ζ(7)
E4(τ)−

2π2

45ζ(3)
E2(τ) . (5.52)

As previously stated, each term inside the limit is separately singular at ϵ = 0, however, this

combination is such that the divergences in 1/ϵ cancel out and produce a finite expression for
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ϵ = 0. We can substitute this regulated expression into the general formula (5.31) to recover

the well-known asymptotic expansion [45] of the d6R4 correction

E
(
4; 3

2
, 3

2

∣∣τ) ∼ −2ζ(3)2τ 32
3π3

− 2ζ(3)τ2
9π

− 2π

45τ2
− 4π3

25 515τ 32
as τ2 ≫ 1 . (5.53)

A second related example is the modular invariant function E
(
7; 5

2
, 3

2

∣∣τ) which arises at

order O(N 92) in the large-N expansion of the particular N = 4 SYM integrated correlator

discussed in [65]. This case falls again into the spectrum (5.7), the indices are s1 = 5
2
, s2 = 3

2

while the eigenvalue is λ = λ
(2)
1 = s1+ s2+3 = 7 hence one step above the lowest eigenvalue in

our Laplace tower (5.51). If we substitute these specific values for s1, s2 and λ
(2)
1 in (5.51) we

obtain the Poincaré series representation

E
(
7; 5

2
, 3

2

∣∣τ) =− 16

15π2
Υ(−4, 1

2
,− 5

2
,− 7

2
|τ) + 16

27π
Υ(−4, 3

2
,− 3

2
,− 9

2
|τ) (5.54)

− 4096π12

46 414 974 375ζ(13)
E7(τ)−

8π4

10 935ζ(5)
E3(τ)−

3ζ(5)

2π4
E2(τ) .

Substituting this expression in the general formula (5.31) we obtain the asymptotic expansion

E
(
7; 3

2
, 5

2

∣∣τ) ∼ −2ζ(3)ζ(5)τ 42
15π4

− ζ(5)τ
2
2

30π2
−4ζ(3)

2835
− 2π2

3645τ 22
− 8π6

200 930 625τ 62
as τ2 ≫ 1. (5.55)

Finally, we discuss an example of generalised Eisenstein series belonging to the first spectrum

(4.17). We consider the function E
(
3; 3, 2

∣∣τ) which captures the genuine depth-two part of the

two-loop MGF C3,1,1(τ) defined in (4.7),

C3,1,1(τ) = −4 E
(
3; 3, 2

∣∣τ)+ 43

35
E5(τ)−

ζ5
60
. (5.56)

The indices are s1 = 3, s2 = 2 while the eigenvalue is λ = λ
(1)
0 = s1+s2−2 = 3 hence E

(
3; 3, 2

∣∣τ)
is the function with largest eigenvalue in the first spectrum (4.17) for these sources. Substituting

the specific values for s1, s2 and λ
(1)
0 in the general solution (5.48) we obtain

E
(
3; 3, 2

∣∣τ) = − π2

945
Υ (−3, 1, 2, 1|τ) + 11

70
E5(τ)−

ζ(3)

42
E2(τ) . (5.57)

It is interesting to compare the present Poincaré series representation (5.57) with a different
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one (finely tuned to represent all two-loop MGFs) considered in [31] for which we have

E
(
3; 3, 2

∣∣τ) = ∑
γ∈B(Z)\SL(2,Z)

[
(πτ2)

5

297 675
− (πτ2)

2ζ(3)

1890
− (πτ2)

2

1890

∞∑
m=1

σ−3(m)(qm + q̄m)

]
γ

. (5.58)

Again thanks to the general expression (5.31), starting from (5.57) we can retrieve the known

asymptotic expansion (see equation (4.59) derived before)

E
(
3; 3, 2

∣∣τ) ∼ π5τ 52
297 675

− ζ(3)π2τ 22
1890

− ζ(5)

360
− 7ζ(7)

64π2τ 22
+
ζ(3)ζ(5)

8π3τ 32
as τ2 ≫ 1. (5.59)

Compared to previous results in the literature, one novelty of the Poincaré series (5.12) is

that all the examples here considered, and more broadly all generalised Eisenstein with spectra

(4.17)-(5.7) can be expressed as linear combinations of finitely many Υ (a, b, r, s|τ).

5.5 Spectral analysis point of view

The central ideas relating to spectral theory on L2(F) were already introduced in section 3.3;

here we apply them to study generalised Eisenstein series. Let us briefly review how one can

exploit the differential equation (5.6) to compute the spectral decomposition of the generalised

Eisenstein series and in particular obtain a useful integral representation (3.26) for its Fourier

zero-mode. Since the generalised Eisenstein series, E
(
λ; s1, s2

∣∣τ), is not an element of L2(F),

one has to be a little careful in defining a proper regularised version for the spectral overlaps

when dealing with functions not of rapid decay. This problem was addressed in a beautiful and

classic paper by Don Zagier [73] from which we present a few key details; we also refer to [47]

and appendix B of [48] for more details on the generalised Eisenstein series.

Firstly we want to understand the behaviour at the cusp τ2 ≫ 1 of the generalised Eisenstein

series by exploiting its differential equation (5.6), repeated here for convenience

[∆− λ(λ− 1)]E
(
λ; s1, s2

∣∣τ) = Es1(τ)Es2(τ).

As usual we perform the Fourier decomposition in τ1 = Re(τ),

E
(
λ; s1, s2

∣∣τ) =∑
k∈Z

ak(λ; s1, s2|τ2)e2πikτ1 , (5.60)
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and thanks to linearity, we can solve the inhomogeneous Laplace equation mode by mode.

From (5.3) we easily extract the Fourier zero-mode contribution to the bilinear source term

Es1(τ)Es2(τ), comprised of power-behaved terms and exponentially suppressed terms e−4πτ2 .

Thus we find a solution to the differential equation for the Fourier zero-mode a0(s1, s2;λ|τ2):

a0(λ; s1, s2|τ2) =
4π−s1−s2ζ(2s1)ζ(2s2)

(s1 + s2 − λ)(s1 + s2 + λ− 1)
τ s1+s2
2 (5.61)

+
4π−s1ξ(2s2 − 1)ζ(2s1)

(s1 + 1− s2 − λ)(s1 − s2 + λ)Γ(s2)
τ s1+1−s2
2 +

4π−s2ξ(2s1 − 1)ζ(2s2)

(s2 + 1− s1 − λ)(s2 − s1 + λ)Γ(s1)
τ s2+1−s1
2

+
4ξ(2s1 − 1)ξ(2s2 − 1)

(s1 + s2 − λ− 1)(s1 + s2 + λ− 2)Γ(s1)Γ(s2)
τ 2−s1−s2
2 + α(λ; s1, s2)τ

1−λ
2 +O(e−4πτ2) .

The constant α(λ; s1, s2) parametrises the homogeneous solution, τ 1−λ
2 , and can not be de-

termined by solely analysing the differential equation. However, the coefficient α(λ; s1, s2) will

be promptly fixed by requiring modular invariance for the solution. Furthermore, since we are

dealing with a second-order differential equation, we must have two linearly independent ho-

mogeneous solutions, which in the Fourier zero-mode sector are τ 1−λ
2 and τλ2 . It is conventional

to choose a vanishing coefficient for the second homogeneous solution, τλ2 . Once the modular

invariant solution, E
(
λ; s1, s2

∣∣τ), subject to this boundary condition has been found, we can

always consider E
(
λ; s1, s2

∣∣τ) + a Eλ(τ), with a ̸= 0, which is a different modular invariant

solution to the same Laplace system, but this time with a non-vanishing coefficient for τλ2 .

As anticipated, from the Fourier zero-mode analysis (5.61) we immediately deduce that the

generalised Eisenstein series is not an element of L2(F). To simplify the discussion, we can

assume that the eigenvalue λ is such that Re(λ) > 1
2
, a condition that is satisfied by both

spectra (4.17) and (5.7). With this assumption, from (5.61) we have full control over all power-

behaved terms that might grow faster than τ
1
2
2 at the cusp, and subsequently we can subtract

suitable Eisenstein series in order to cancel all non-integrable terms thus obtaining a modular

invariant and square-integrable function.

We are then led to consider the “regularised” linear combination

Ẽ(λ; s1, s2|τ) = E
(
λ; s1, s2

∣∣τ)−∑
I

βIEI(τ), (5.62)

where I ∈ {s1 + s2, s1 + 1− s2, s2 + 1− s1, 2− s1 − s2} and βI are chosen such that the term

of order τ I2 in Ẽ(λ; s1, s2|τ) has a vanishing coefficient if Re(I) > 1
2
and βI = 0 otherwise. By
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construction, we clearly have Ẽ(λ; s1, s2) ∈ L2(F), hence its Fourier zero-mode can be given in

terms of the contour integral representation (3.26).

Now that we have modified the generalised Eisenstein series to obtain a nice and square-

integrable function, Ẽ(λ; s1, s2|τ), we can combine the spectral methods described in the pre-

vious section with the Laplace equation (5.6). It is fairly easy to see from our definition (5.62)

that the inhomogeneous Laplacian equation is modified to

[∆− λ(λ− 1)]Ẽ(λ; s1, s2|τ) = Es1(τ)Es2(τ) +
∑
I

[
λ(λ− 1)− I(I − 1)

]
βIEI(τ) . (5.63)

Since both sides of this equation are in L2(F), we can now take the Petersson inner product

against the constant function, the continuous part and the discrete part of the spectrum on

both sides of (5.63) to obtain the spectral overlaps previously discussed. A slight complication

arises from the fact that, although both sides of (5.63) are square-integrable, the source term

is made of non-square integrable objects, hence a suitable regularisation is required to discuss

the Petersson inner product for functions not of rapid decay.

To this end, we follow [73] and introduce a specific regularisation for the divergent integral

I(s) =
∫ ∞

0

ysdy =

∫ 1

0

ysdy +

∫ ∞

1

ysdy = I1(s) + I2(s) . (5.64)

Clearly the starting integral does not converge for any s ∈ C, but the two parts it splits into

do converge on disjoint regions. Namely for Re(s) > −1 the integral I1(s) is well-defined and

we have I1(s) =
1

s+1
, while similarly for Re(s) < −1 the second integral is well-defined and we

have I2(s) = − 1
s+1

. Since both integrals admit an analytic continuation in s ∈ C \ {−1}, we

may define I(s) = I1(s) + I2(s) = 0.

As a direct application of this formula, we compute the average ⟨Er⟩ = (Er, 1), i.e. the

spectral overlap of an Eisenstein series with the constant function, as well as the spectral

overlap (Er,Et) for r ̸= t:

⟨Er⟩ =
∫
F

[ ∑
γ∈B(Z)\SL(2,Z)

Im(γ · τ)r
]
dµ =

∫
B(Z)\H

τ r2
dτ1 dτ2
τ 22

=

∫ ∞

0

τ r−2
2 dτ2 = 0 , (5.65)
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(Er,Et) =

∫
F
E(r; τ)

[ ∑
γ∈B(Z)\SL(2,Z)

Im(γ · τ)t̄
]
dµ =

∫
B(Z)\H

E(r; τ)τ t̄2
dτ1 dτ2
τ 22

=

∫ ∞

0

(
τ t̄+r−2
2 +

ξ(2r − 1)πr

Γ(r)ζ(2r)
τ t̄−r−1
2

)
dτ2 = 0 (5.66)

In both calculations we make crucial use of the unfolding trick, which is described in section

3.3. Note that all of the above integrals are ill-defined and need to be regularised in the same

way as the original integral I(s). We will shortly see more interesting examples where the

unfolding procedure produces convergent integrals, which can nevertheless be treated via the

same type of analytic continuation.

In particular, we can use the differential equation (5.63) to show the vanishing of the spectral

overlap of Ẽ(s1, s2;λ|τ) with the constant function,

⟨Ẽ(λ; s1, s2)⟩ =
∫
F
Ẽ(λ; s1, s2|τ) dµ

=
1

λ(λ− 1)

∫
F

{
∆Ẽ(λ; s1, s2|τ)− Es1(τ)Es2(τ) +

∑
I

[
I(I − 1)− λ(λ− 1)

]
βIEI(τ)

}
dµ = 0 .

(5.67)

The first term vanishes since it is an integral of a total derivative over a closed surface, while

the second and third term vanish due to the previously derived identities (5.65)-(5.66).

As a result, to derive a useful expression for the Fourier zero-mode integral representation

(3.26) of Ẽ(λ; s1, s2|τ), we only need considering the spectral overlap with the Eisenstein series

E(t; τ) with Re(t) = 1
2
:

(Ẽ(λ; s1, s2),Et) =

∫
F
Ẽ(λ; s1, s2|τ)E(1− t; τ)dµ =

∫
F
Ẽ(λ; s1, s2|τ)

∆E(1− t; τ)

t(t− 1)
dµ (5.68)

=

∫
F

{
Es1(τ)Es2(τ) + λ(λ− 1)Ẽ(λ; s1, s2|τ) +

∑
I

[λ(λ− 1)− I(I − 1)]βIEI(τ)
}E(1− t; τ)

t(t− 1)
dµ ,

where in the Petersson inner product we used the fact that E(t; τ) = E(t; τ) = E(1− t; τ) on

the critical line Re(t) = 1
2
for which t = 1− t.

In the first line of (5.68) we used the differential equation satisfied by the Eisenstein series

(3.15), while in the second line we integrated by parts and then used the inhomogeneous Laplace

equation (5.63). Since we have already shown that the integral over the fundamental domain
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F of a product of two Eisenstein series vanishes (5.66), the overlap (Ẽ(λ; s1, s2),Et) can be

expressed simply as an integral of a triple product of Eisenstein series.

Once again this integral can be evaluated [73] via the unfolding trick by rewriting one of

the Eisenstein series as a Poincaré series and then using the sum over images to unfold the

fundamental domain F onto the strip B(Z)\H:

(Ẽ(λ; s1, s2),Et) =
1

(t− λ)(t+ λ− 1)

∫
F
Es1(τ)Es2(τ)E(1− t; τ)dµ

=
4ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(t− λ)(t+ λ− 1)Γ(s1)Γ(s2)ξ(2t− 1)
.

(5.69)

We can then write the spectral decomposition (3.25) for the generalised Eisenstein series

E
(
λ; s1, s2

∣∣τ) =∫
Re(t)= 1

2

4ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(t− λ)(t+ λ− 1)Γ(s1)Γ(s2)ξ(2t− 1)
E(t; τ)

dt

4πi

+
∑
I

βIEI(τ) +
∞∑
n=1

(Ẽ(λ; s1, s2), ϕn)ϕn(τ), (5.70)

where the spectral overlap with the Maass cusp forms can be made more explicit, but it is of

little concrete use given the poor analytic control over these objects.

We are now in the position of specialising the integral representation (3.26) to the case of

E(s1, s2;λ) thus arriving at the useful expression for its Fourier zero-mode

a0(λ; s1, s2|τ2) =
∑
I

βI

[2ζ(2I)
πI

τ I2 +
2ξ(2I − 1)

Γ(I)
τ 1−I
2

]
(5.71)

+

∫
Re(t)= 1

2

4ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(t− λ)(t+ λ− 1)Γ(s1)Γ(s2)ξ(2t− 1)
τ t2

dt

2πi
,

where again I ∈ {s1 + s2, s1 + 1− s2, s2 + 1− s1, 2− s1 − s2} and βI was defined in (5.62).

The integrand of (5.71) is a meromorphic function of t for which it is rather easy to un-

derstand the structure of singularities. Firstly, we note that the completed Riemann function

ξ(s) = π− s
2Γ( s

2
)ζ(s) is meromorphic with simple poles at s = 0 and s = 1, while it vanishes

only at the non-trivial zeros of the Riemann zeta function, which, from the conjectural Riemann

hypothesis, are of the form s = 1
2
+ iρn with ρn real. We then deduce that the integrand of

(5.71) has poles located at:
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• t = 1−I, I with I ∈ {s1+s2, s1+1−s2, s2+1−s1, 2−s1−s2}, for which one the completed

Riemann zeta functions in the numerator has argument equal to 0 or 1 respectively;

• t = λ, 1− λ, coming from the two rational terms [(t− λ)(t+ λ− 1)]−1;

• t = 3
4
+ iρn

2
, coming from the non-trivial zeroes of ξ(2t− 1) present in the denominator.

We can now use (5.71) to distinguish between the different contributions arising in the

asymptotic expansions of the Fourier zero-mode a0(λ; s1, s2|τ2) as τ2 ≫ 1 or as τ2 → 0. Focusing

for the present time on the asymptotic expansion at the cusp τ2 ≫ 1, we see that the integral

contour in (5.71) can be closed in the left half-plane Re(t) < 0. In doing so, we pick up the

residues for the poles located at Re(t) < 1
2
, which are:

(i) t = I for I ∈ {s1 + s2, s1 + 1− s2, s2 + 1− s1, 2− s1 − s2} with Re(I) < 1
2
;

(ii) t = 1− I for I ∈ {s1 + s2, s1 + 1− s2, s2 + 1− s1, 2− s1 − s2} with Re(I) > 1
2
;

(iii) t = 1− λ under the original assumption Re(λ) > 1
2
.

The end result can be made more concrete by considering the case relevant for our spectra

(4.17)-(5.7), where s1, s2 ≥ 3
2
and without loss of generality s1 ≥ s2. Under these conditions

and considering the non-diagonal case where s1 − s2 ≥ 1, we simply collect the residues from

the poles at t ∈ {s2 + 1− s1, s2 − s1, 2− s1 − s2, 1− s1 − s2} and t = 1− λ.

Note that, for this range of parameters, the square-integrable function Ẽ(λ; s1, s1) in (5.62)

is obtained by removing suitable multiples of the Eisenstein series EI(τ) with I ∈ {s1 + s2, s1 +

1 − s2}. From the Fourier zero-mode (5.61), we see that this subtraction indeed removes

the non-square integrable powers τ s1+s2
2 and τ s1+1−s2

2 . However, since at the cusp EI(τ) ∼

#τ I2 +#τ 1−I
2 , we also introduce “unwanted” reflected powers τ 1−s1−s2

2 and τ
1−(s1+1−s2)
2 = τ s2−s1

2 .

These unwanted terms are exactly cancelled by the residues coming from the above-mentioned

poles located at t ∈ {s2 − s1, 1− s1 − s2}. The remaining poles at t ∈ {s2 +1− s1, 2− s1 − s2}

produce the remaining powers for the particular solution (5.61), while the pole at t = 1 − λ

produces the homogeneous solution term.

The diagonal case, s1 = s2, requires some extra care since to define the square-integrable

function Ẽ(λ; s1, s1) in (5.62) we need to subtract a regularised version for the divergent Eisen-

stein series E1(τ), see e.g. appendix B of [48]. At the same time, we see that the spectral

overlap (5.69) develops a double pole at t = 0 and t = 1 precisely for s1 = s2. To avoid these

complications, we can obtain the diagonal case as the off-diagonal limit s2 = s1− ϵ with ϵ→ 0.
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We can directly use (5.71) to determine the previously unknown coefficient α(λ; s1, s2) mul-

tiplying the homogeneous solution τ 1−λ
2 . This coefficient was first computed in [39] with a

similar method, and can now be calculated by simply picking up the pole of (5.71) at t = 1−λ,

giving us

α(λ; s1, s2) = −4ξ(s1 + s2 − λ)ξ(s1 − s2 + λ)ξ(s2 − s1 + λ)ξ(s1 + s2 + λ− 1)

(2λ− 1)Γ(s1)Γ(s2)ξ(2λ)
. (5.72)

In the next section, we discuss the asymptotic expansion of (5.71) as τ2 → 0, where the

contour of integration has to be closed instead in the right half-plane Re(t) > 0. This will

select the “complementary” poles to the ones just discussed, and a new infinite family of poles

coming from the non-trivial zeros of the Riemann zeta function will also play an essential rôle.

We conclude this section by analysing the spectral decomposition for the novel functions

Υ (a, b, r, s|τ). Firstly, from the previously determined asymptotic expansion at the cusp (5.31),

we see that all Υ (a, b, r, s|τ) are directly square integrable functions in the region of parameters

a, b, r, s where the Poincaré series converges (5.13), i.e. we have immediately Υ (a, b, r, s) ∈

L2(F) when (5.13) is satisfied.

As a consequence, we can directly compute the spectral overlaps without any need for

subtracting Eisenstein series. We start by observing that the spectral overlap with the constant

function vanishes

⟨Υ(a, b, r, s)⟩ =
∫
F
Υ(a, b, r, s|τ) dµ = 0 ,

since we can use the Poincaré series representation (5.12) for Υ (a, b, r, s|τ) to unfold the integral

from the fundamental domain F to the strip B(Z)\H, and we conclude that the integral over

x vanishes since the seed function υ (a, b, r, s|τ) does not have a Fourier zero-mode.

We proceed by computing the spectral overlap with the Eisenstein series. A calculation

very similar to (5.69) yields

(Υ (a, b, r, s) ,Et) =

∫
F
Υ(a, b, r, s|τ)E(1− t; τ)dµ =

∫
B(Z)\H

υ (a, b, r, s|τ)E(1− t; τ)
dτ1 dτ2
τ 22

=
Γ
(
r+1−s−t

2

)
Γ
(
r+s−t

2

)
Γ
(
t+r−s

2

)
Γ
(
t+r+s−1

2

)
2πr Γ(r)ξ(2− 2t)

(5.73)

× ζ(r + 1− b− t)ζ(r + 1− a− b− t)ζ(t+ r − b)ζ(t+ r − a− b)

ζ(2r + 1− a− 2b)
.

87



The keen-eyed reader will notice that if we now plug the spectral overlap just derived into

the integral representation formula for the Fourier zero-mode (3.26), we obtain exactly the

same expression (5.29) previously derived from the Poincaré series representation. This is

a significantly simpler derivation of (5.29) when compared to the Mellin-Barnes discussion

presented in appendix D. However, we need to stress that without having already obtained the

result (5.31), we could have not inferred immediately that the functions Υ (a, b, r, s|τ) are in

L2(F).

5.6 Non-perturbative terms and small-τ2 behaviour

So far our analysis of the Fourier zero-mode (5.71) was only concerned with the power-behaved

terms at the cusp τ2 ≫ 1. In this section we show how the exponentially suppressed corrections

e−4πτ2 are encoded in (5.71) and clarify how the resurgent analysis carried out in chapter 4 nicely

connects with the present discussion. In the limit τ2 → 0, the non-perturbative terms stop being

exponentially suppressed and instead produce an infinite sum of perturbative corrections related

to the non-trivial zeros of the Riemann zeta function.

As discussed in the previous section, we can easily evaluate the perturbative expansion

for the Fourier zero-mode integral representation (5.71) as τ2 ≫ 1 by closing the contour of

integration in the left half-plane Re(t) < 0. Picking up various residues allows us to reproduce

all power-behaved terms present in (5.61), however, the integral does not vanish when we

push the contour of integration to infinity, but rather it produces the remaining exponentially

suppressed corrections in the Fourier zero-mode sector.

We follow this procedure and push the contour of integration to the left half-plane Re(t) < 0,

while collecting the residues to arrive at

a0(λ; s1, s2|τ2) =
4π−s1−s2ζ(2s1)ζ(2s2)

(s1 + s2 − λ)(s1 + s2 + λ− 1)
τ s1+s2
2 (5.74)

+
4π−s1ξ(2s2 − 1)ζ(2s1)

(s1 + 1− s2 − λ)(s1 − s2 + λ)Γ(s2)
τ s1+1−s2
2 +

4π−s2ξ(2s1 − 1)ζ(2s2)

(s2 + 1− s1 − λ)(s2 − s1 + λ)Γ(s1)
τ s2+1−s1
2

+
4ξ(2s1 − 1)ξ(2s2 − 1)

(s1 + s2 − λ− 1)(s1 + s2 + λ− 2)Γ(s1)Γ(s2)
τ 2−s1−s2
2 + α(λ; s1, s2)τ

1−λ
2

+

∫
Re(t)=γ̃

4ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(t− λ)(t+ λ− 1)Γ(s1)Γ(s2)ξ(2t− 1)
τ t2

dt

2πi
,
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where γ̃ < min
(
Re(I),Re(1 − I),Re(λ),Re(1 − λ)

)
. The integrand in (5.74) is manifestly

analytic for t in the half-plane Re(t) ≤ γ̃ and we claim that the corresponding integral is

exponentially suppressed at the cusp τ2 ≫ 1 thus containing all of the non-perturbative, e−4πτ2 ,

terms.

For aesthetic reasons we perform the change of variables t → 1 − t and use the reflection

identity ξ(s) = ξ(1− s) to rewrite the above integral as

NP(λ)
s1,s2

(τ2) :=

∫
Re(t)=γ

4ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(t− λ)(t+ λ− 1)Γ(s1)Γ(s2)ξ(2t)
τ 1−t
2

dt

2πi
,

(5.75)

where γ > max
(
Re(I),Re(1−I),Re(λ),Re(1−λ)

)
is arbitrary as long as it lies to the right of all

the poles location. We can expand all the completed Riemann functions as ξ(s) = π− s
2Γ( s

2
)ζ(s)

and use Ramanujan identity (D.12) in reverse to rewrite the particular combination of Riemann

zeta functions appearing in (5.75) as a Dirichlet series for the product of two divisor functions,

arriving at

NP(λ)
s1,s2

(τ2) =
∞∑
n=1

4σ1−2s1(n)σ1−2s2(n)n
s1+s2−1τ2

Γ(s1)Γ(s2)

×
∫
Re(t)=γ

Γ( t+s1+s2−1
2

)Γ( t+s1−s2
2

)Γ( t+s2−s1
2

)Γ( t+1−s1−s2
2

)

(t− λ)(t+ λ− 1)Γ(t)
(πnτ2)

−t dt

2πi
.

(5.76)

We have not managed to evaluate (5.76) in closed form, however, its asymptotic expansion

as τ2 ≫ 1 can be obtained via saddle point approximation. To proceed, we can use the Stirling

approximation for the gamma functions to confirm that the integrand has a stationary point

at t = 4πnτ2. Hence a simple steepest descent calculation produces the required asymptotic

expansion,

NP(λ)
s1,s2

(τ2) =
∞∑
n=1

σ1−2s1(n)σ1−2s2(n)n
s1+s2−2

Γ (s1) Γ (s2)
e−4πnτ2ϕ(λ)

s1,s2
(4πnτ2) , (5.77)

where the first few perturbative corrections are given by (compare with (4.76))

ϕ(λ)
s1,s2

(y) = (5.78)

8

y2
+

8[s1(s1 − 1)+s2(s2 − 1)−4]

y3
+ 4

{
[s1(s1 − 1)+s2(s2 − 1)−7]2+2λ(λ− 1)−13

}
y4

+O(y−5) .
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A few comments are in order. Firstly, although for general values of the parameters s1, s2

and λ the function ϕ
(λ)
s1,s2(y) contains infinitely many perturbative terms, we find that for some

special cases, this series has only a finite number of terms. For example, if we fix s1 = 3, s2 = 2

and λ = 2, corresponding to the modular invariant function (5.57) belonging to the spectrum

(4.17), the non-perturbative sector (5.76) simplifies to

NP
(3)
3,2(τ2) =

∞∑
n=1

16πτ2 σ−3(n)σ−5(n)n
4

∫
Re(t)=5

tΓ(t− 4) (4πnτ2)
−t dt

2πi

=
∞∑
n=1

σ−3(n)σ−5(n)n
3

2
e−4πnτ2

[ 8

(4πnτ2)2
+

32

(4πnτ2)3

]
, (5.79)

a result that was obtained using completely different techniques in (4.59).

Although we have not proven that for generic values of s1, s2 and λ the perturbative series

ϕ
(λ)
s1,s2(y) contains infinitely many terms, it is easy to see that for the case associated with

the spectrum (4.17) (corresponding to depth-two modular graph functions) the series ϕ
(λ)
s1,s2(y)

is always a polynomial. This is expected from the Laplace equation (5.6) given that for the

spectrum (4.17) the Eisenstein series appearing in the source term have integer index, hence the

corresponding Bessel functions, which appear in the Fourier decomposition (5.3) and which are

responsible for the non-perturbative terms, have half-integer index thus producing only finitely

many perturbative terms in the non-perturbative sector.

A second comment we want to stress is that our expression (5.76) can be shown to be the

exact solution to the Laplace equation (5.6) for the non-perturbative part of the Fourier zero-

mode sector. Given the Laplace equation (5.6) and the Fourier decomposition (5.3) we must

have

[τ 22∂
2
τ2
−λ(λ− 1)]NP(λ)

s1,s2
(τ2) =

∞∑
n=1

32ns1+s2−1σ1−2s1(n)σ1−2s2(n)

Γ(s1)Γ(s2)
τ2Ks1− 1

2
(2πnτ2)Ks2− 1

2
(2πnτ2) .

(5.80)

If we rewrite the source term using the Mellin-Barnes type integral representation for the

product of two Bessel function

y Ks1− 1
2
(2y)Ks2− 1

2
(2y) =

∫
Re(t)=γ

Γ( t+s1+s2−1
2

)Γ( t+s1−s2
2

)Γ( t+s2−s1
2

)Γ( t+1−s1−s2
2

)

Γ(t)
y1−t dt

16πi
,

(5.81)

where γ > max
(
Re(I),Re(1−I)

)
, and then simply solve the differential equation for NP(λ)

s1,s2
(τ2)
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by inverting the differential operator as

1

[τ 22∂
2
τ2
− λ(λ− 1)]

τ 1−t
2 =

τ 1−t
2

(t− λ)(t+ λ− 1)
,

we find the exact integral representation (5.76).

Furthermore, we note that the formula for the perturbative series expansion (5.78) in the

non-perturbative sector reproduces exactly the results obtained in chapter 4 for the modular

invariant functions associated with the spectrum (4.17). We stress that in that case we started

from the seed functions (5.10) and obtained the non-perturbative sector for the generalised

Eisenstein series with spectrum (4.17) from a careful resummation of an evanescent, yet facto-

rially divergent formal perturbative expansion in an example of Cheshire cat resurgence, very

similar to our discussion below (5.33). We have now established that the results are actually

more general than originally thought, and in particular (5.78) appears to be valid for all values

of s1, s2 and λ and not just for the spectrum (4.17).

Finally, as discussed in chapter 4, it is easy to see that while for τ2 ≫ 1 the Fourier zero-

mode contribution (5.75) is non-perturbative and exponentially suppressed, its nature changes

dramatically when τ2 → 0. Rather than splitting the complete Fourier zero-mode a0(λ; s1, s2|τ2)

in perturbative plus non-perturbative terms as in (5.71), we can analyse directly the integral

representation (5.71) in the limit τ2 → 0.

As previously anticipated just below (5.71), in the limit τ2 → 0 we can close the contour

of integration to the right half-plane Re(t) > 0 and collect the residues from the various

“complementary” poles plus the infinite set of completely novel poles located at t = 3
4
+ iρn

2

and coming from the non-trivial zeroes of ξ(2t−1) present in the denominator of the integrand

in (5.71). Once again, after we have pushed the contour of integration past all the poles, the

remaining integral captures all exponentially suppressed contributions now of the form e
− 4π

τ2

(similar behaviour was observed in [74] for the spectral decomposition of the partition function

in certain 2-d conformal field theories). The asymptotic expansion of (5.71) as τ2 → 0 is simply

given by the sum over the residues of all the poles located at Re(t) > 1
2
plus a remaining contour
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integral,

a0(λ; s1, s2|τ2) ∼
4ξ(2s1 − 1)ξ(2s2 − 1)ξ(2s1 + 2s2 − 2)

(s1 + s2 − λ− 1)(s1 + s2 + λ− 2)Γ(s1)Γ(s2)ξ(2s1 + 2s2 − 3)
τ s1+s2−1
2

+
4ξ(1− 2s1)ξ(2s2 − 1)ξ(2s2 − 2s1)

(s1 + 1− s2 − λ)(s1 − s2 + λ)Γ(s1)Γ(s2)ξ(2s2 − 2s1 − 1)
τ s2−s1
2

+
4ξ(1− 2s2)ξ(2s1 − 1)ξ(2s1 − 2s2)

(s2 + 1− s1 − λ)(s2 − s1 + λ)Γ(s1)Γ(s2)ξ(2s1 − 2s2 − 1)
τ s1−s2
2 (5.82)

+
4ξ(1− 2s1)ξ(1− 2s2)ξ(2− 2s1 − 2s2)

(s1 + s2 − λ)(s1 + s2 + λ− 1)Γ(s1)Γ(s2)ξ(1− 2s1 − 2s2)
τ 1−s1−s2
2

− α(1− λ; s1, s2)τ
λ
2

+
∑
ρn

2ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(1− t− λ)(t− λ)Γ(s1)Γ(s2)π
1
2
−tΓ(t− 1

2
)ζ ′(2t− 1)

τ t2

∣∣∣∣
t= 3

4
+i ρn

2

+ ÑP
(λ)

s1,s2
(τ2) ,

where the coefficient α(λ; s1, s2) is given in (5.72).

Similar to our large-τ2 discussion, at small-τ2 the non-perturbative terms, ÑP
(λ)

s1,s2
(τ2), come

from having pushed the contour of integration past all the poles on the right t-half-plane,

ÑP
(λ)

s1,s2
(τ2) :=

∫
Re(t)=γ

4ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(t− λ)(t+ λ− 1)Γ(s1)Γ(s2)ξ(2t− 1)
τ t2

dt

2πi
,

(5.83)

where γ > max
(
Re(I),Re(1− I),Re(λ),Re(1− λ)

)
. We proceed as before and expand all the

completed Riemann functions as ξ(s) = π− s
2Γ( s

2
)ζ(s), however, we notice that this time the

ratio of Riemann zeta functions we obtain,

ζ(t+ s1 + s2 − 1)ζ(t+ s1 − s2)ζ(t+ s2 − s1)ζ(t+ 1− s1 − s2)

ζ(2t− 1)
,

cannot be written immediately as a Dirichlet series using Ramanujan identity (D.12). However,

the present discussion is very similar to the spectral decomposition analysis considered in [74]

for the study of certain partition functions in 2d CFTs. Building on [74], we can combine

(D.12) with

ζ(2t)

ζ(2t− 1)
=

∞∑
n=1

φ91(n)

n2t
, (5.84)
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where φ91(n) denotes the Dirichlet inverse2 of Euler totient function, φ(n), so that (5.83) can

be rewritten in terms of a double Dirichlet series and an easier contour integral,

ÑP
(λ)

s1,s2
(τ2) =

∞∑
m=1

∞∑
n=1

4σ1−2s1(m)σ1−2s2(m)ms1+s2−1φ91(n)√
πΓ(s1)Γ(s2)

(5.85)

×
∫
Re(t)=γ

Γ( t+s1+s2−1
2

)Γ( t+s1−s2
2

)Γ( t+s2−s1
2

)Γ( t+1−s1−s2
2

)

(t− λ)(t+ λ− 1)Γ(t− 1
2
)

( τ2
πmn2

)t dt
2πi

.

We can now evaluate the asymptotic expansion as τ2 → 0 of (5.85) via saddle point ap-

proximation. The integrand has a stationary point at t = 4πmn2

τ2
and a simple steepest descent

calculation yields the required asymptotic expansion,

ÑP
(λ)

s1,s2
(τ2) =

∞∑
m=1

∞∑
n=1

σ1−2s1(m)σ1−2s2(m)ms1+s2− 3
2φ91(n)

Γ(s1)Γ(s2)n

√
4τ2 e

− 4πmn2

τ2 ϕ̃(λ)
s1,s2

( τ2
4πmn2

)
, (5.86)

where the first few perturbative corrections are given by

ϕ̃(λ)
s1,s2

(y) = (5.87)

8y2 + 8
[
s1(s1 − 1)+s2(s2 − 1)−11

4

]
y3 + 4

{[
s1(s1 − 1)+s2(s2 − 1)−42

8

]2
+2λ(λ− 1)−31

4

}
y4 +O(y5) .

We note the striking similarity between the small-τ2 exponentially suppressed terms (5.86)-

(5.87) and the parallel large-τ2 expressions (5.77)-(5.78). Equation (5.87) is directly analogous

to the crossing equation (3.22) derived in [74].

Going back to the perturbative terms in (5.82), we see that the infinite series over ρn comes

precisely from having collected the residues from the poles of 1/ξ(2t− 1) in (5.71). Under the

assumption that Riemann hypothesis is correct, these poles are associated with all non-trivial

zeros of the Riemann zeta function ζ(s) located at s=1
2
+ iρn and ρn ∈ R. Hence in the small-τ2

limit, the last line in equation (5.82) behaves as the power τ
3
4
2 modulated by oscillatory terms

in τ2 with frequencies determined by the ρn. A similar behaviour was already observed in [73]

for the modular-invariant function f(τ) = τ 122 |∆(τ)|2 with ∆(τ) Ramanujan discriminant cusp

2The Dirichlet inverse, f91, of an arithmetic function, f , is defined such that the Dirichlet convolution of
f with its inverse produces the multiplicative identity, i.e.

∑
d|n f(d)f

91(n/d) = δn,1. The Dirichlet series

L(f ; s) :=
∑∞

n=1
f(n)
ns has the property that L(f91; s) = (L(f ; s))−1. The Dirichlet inverse, φ91, of Euler totient

function, φ, is given by φ91(n) =
∑

d|n dµ(d) where µ is Möbius function.
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Figure 5.2: Comparison between the numerical evaluation of (5.71) and the small-τ2 expansion
(5.82). On the left, we plot a0(4;

3
2
, 3
2
) after having subtracted all the terms in (5.82) but the

Riemann zeta contributions. On the right, we plot the difference between the left data set and
the predicted series of contributions in (5.82) from the first 10 non-trivial zeros of the Riemann
zeta.

form. Similarly, in a different string theory context [75] and from a two-dimensional CFT

context [74], the non-trivial zeros of the Riemann zeta function do appear from the asymptotic

expansion for the spectral decomposition of different physical quantities.

In figure 5.2, we present numerical evidences for the small-τ2 expansion (5.71) of the d6R4

case, a0(4;
3
2
, 3
2
|τ2). We have numerically evaluated to high precision the integral representation

(5.71) for a0(4;
3
2
, 3
2
|τ2) at small τ2 and subtracted from it all the terms in (5.82) but the

Riemann zeta contributions. In figure 5.2 we first plot this quantity and then subtract from it

the predicted series of contributions from the first 10 non-trivial zeros (5.82) of the Riemann

zeta and plot this difference. As the second plot shows, our formula (5.82) is consistent with

the numerical data within a 10−19 error over the whole range of τ2 considered.

Although from a physical point of view, the limit τ2 → 0 for the MGFs spectrum (4.17)

corresponds simply to a particular degeneration limit of the worldsheet torus, for the generalised

Eisenstein series associated with the spectrum (5.7), and in particular for the coefficient of the

d6R4 in the low-energy expansion of type IIB superstring theory, this limit corresponds to the

strong coupling regime gs → ∞. It would be extremely interesting, and equally difficult, to

understand the string theory origins at strong coupling for the appearance of the non-trivial

zeroes of the Riemann zeta.
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5.7 The instanton sectors

So far we have focused our attention entirely on the Fourier zero-mode sector, while the spectral

decomposition (3.25) in principle allows us to reconstruct all of the Fourier modes, in particular

the Fourier non-zero modes which we will refer to as instanton sectors.

Given (5.70), we can extract the k-instanton sector ak(λ; s1, s2|τ2), i.e. the Fourier mode

e2πikτ1 , for the generalised Eisenstein series E
(
λ; s1, s2

∣∣τ):
ak(λ; s1, s2|τ2) =

∑
I

βI
4

Γ(I)
|k|I−

1
2σ1−2I(k)τ

1
2
2 KI− 1

2
(2π|k|τ2) (5.88)

+

∫
Re(t)= 1

2

[4ξ(t+ s1 + s2 − 1)ξ(t+ s1 − s2)ξ(t+ s2 − s1)ξ(t+ 1− s1 − s2)

(t− λ)(t+ λ− 1)Γ(s1)Γ(s2)ξ(2t− 1)

4|k|t− 1
2σ1−2t(k)

Γ(t)

× τ
1
2
2 Kt− 1

2
(2π|k|τ2)

dt

4πi

]
+

∞∑
n=1

(Ẽ(λ; s1, s2), ϕn)h
(n)
k τ

1
2
2 Kitn(2π|k|τ2) ,

where the coefficients h
(n)
k , associated with the Fourier expansion of Maass cusp forms, were

defined in (3.17).

Although a complete analysis of the instanton sector is beyond the scope of this thesis,

we note that a naive attempt at extracting the large-τ2 behaviour of (5.88) would produce an

incorrect result. At first glance we may try and expand directly the different Bessel functions

for large argument, thus immediately obtaining the expected exponential suppression factor

e−2π|k|τ2 , hallmark of the k-instanton sector. However, by doing so the perturbative expansion

on top of the instanton factor qk, for k > 0 with q = e2πiτ , or anti-instanton factor q̄k, for k < 0,

would start at order τ 02 with sub-leading corrections O(τ−1
2 ), which turns out to be incorrect

when compared with known results. Very likely a more careful analysis will show that the

critical line integral is only conditionally convergent. This would explain why an expansion at

large-τ2 before having performed the integral would result in the wrong asymptotic behaviour.

In [34, 35], a representation for all generalised Eisenstein series with spectrum (4.17) was

provided in terms of iterated integrals of holomorphic Eisenstein series. This representation

is extremely convenient for extracting all of the instanton expansions and, by comparing with

the examples discussed in [34, 35], we can clearly see that the above naive argument cannot

possibly provide the correct answer for the generalised Eisenstein series with spectrum (4.17).

Furthermore, in the same references, the authors discovered that amongst the coefficients
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of the perturbative expansion in the instanton sector, ak(λ; s1, s2|τ2), besides rational numbers

and odd-zeta values, a new class of numbers appears whenever the eigenvalue λ is such that the

the vector space of holomorphic cusp forms of modular weight w = 2λ has non-zero dimension.

For these special eigenvalues the perturbative expansion at large-τ2 of ak(λ; s1, s2|τ2) contains

non-critical completed L-values of holomorphic cusp forms. Recently in [68, 76] a very similar

(albeit so far completely different in nature) phenomenon was discovered for the generalised

Eisenstein series with spectrum (5.7) for exactly the same eigenvalues.

It would be extremely interesting to extract the asymptotic expansion as τ2 ≫ 1 of the k-

instanton sector (5.88) and understand the origin of these completed L-values for holomorphic

cusp forms from the spectral decomposition point of view (5.88). In particular, it is tantalising

to conjecture some interplay between the non-holomorphic cusp forms and the appearance of

holomorphic cusp forms.
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CHAPTER 6

Integrated correlators in N = 4 supersymmetric Yang-Mills theory

We now switch gears and discuss a different, albeit related application of resurgence to the

study of modular functions. SL(2,Z) plays a rôle not only in string theory and relatedly 2

dimensional CFT, but also in quantum field theories in higher dimensions. Here it usually

serves as a duality group mapping the QFT to either itself or possibly a different theory,

while simultanesouly inverting the coupling. In this section we study how different dualities

(holographic and modular) interact to tell a beautiful story of interrelations between string

theory and quantum fields.

Perhaps one of the most intriguing quantum field theories in four space-time dimensions

is N = 4 supersymmetric Yang-Mills theory (SYM) with gauge group SU(N). Amongst

the many reasons for its undeniable appeal is that it provides for a moduli space of non-

trivial superconformal theories parameterised by the Yang–Mills coupling g
YM

and theta angle

θ, conveniently packaged in the complex coupling τ := θ/(2π) + 4πi/g2
YM

, upon which the

Montonen–Olive [21] duality group SL(2,Z) acts.

Another important reason for our interest in N = 4 SYM is that it provides a non-

perturbative description of type IIB string theory in an AdS5 × S5 background [23]. The

gauge theory coupling τ is identified holographically with the type IIB string theory coupling

τs := χ + i/gs, i.e. τ = τs, while the string length scale ℓs is related to the number of colours
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N of the dual SU(N) gauge theory side by (L/ℓs)
4 = g2

YM
N , with L the length scale of the

AdS5 × S5 background.

Thus, the string theory effective gravitational description at small ℓs corresponds on the

gauge side to a large-N and finite τ regime. Although in this limit the bulk is weakly curved,

as a consequence of ℓs/L→ 0, the string theory remains strongly coupled due to τs being finite.

Super-graviton scattering amplitudes on AdS5 × S5 are consequently related to correlation

functions of the stress tensor multiplet in N = 4 SYM. Despite offering a non-perturbative

definition of string theory through a well-defined CFT, practical applications of this duality

aimed at exploring string theory in the gravity regime remain challenging since the CFT is

still strongly coupled at large N . To advance our understanding of quantum gravity through

AdS/CFT it is therefore necessary to analyse N = 4 SYM non-perturbatively.

An extremely powerful method to extract non-perturbative properties of N = 4 SYM for

arbitrary coupling τ and number of colours N , is the use of supersymmetric localisation. It

is precisely thanks to this tool that it was recently understood [63, 77] how to obtain certain

integrals of the correlator of four superconformal primary operators, usually denoted1 by O2(x),

in the N = 4 stress tensor multiplet.

The particular integrated correlators of interest for the present chapter have been introduced

in [63,77] and are computed from derivatives of the S4 partition function ZN(m, τ) for N = 2∗

SYM obtained by Pestun [78] in terms of an SU(N) matrix model integral:

CN(τ) :=
1

4
∆τ∂

2
m logZN(m, τ)

∣∣
m=0

, HN(τ) := ∂4m logZN(m, τ)
∣∣
m=0

, (6.1)

where ∆ = 4τ 22∂τ∂τ̄ is the standard hyperbolic Laplacian and the complexified coupling constant

τ = τ1 + iτ2 ∈ H parametrises the upper-half plane with the identification τ1 = θ/(2π) and

τ2 = 4π/g2
Y M

.

When the mass parameter m is set to zero N = 2∗ SYM reduces to N = 4, hence the

expressions just defined correspond to N = 4 observables. More precisely, the quantities CN(τ)

and HN(τ) are identified with integrals over the insertion points of four superconformal primary

1For simplicity we suppress R-symmetry indices.
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operators of the form,

CN(τ) =
∫

⟨O2(x1) · · · O2(x4)⟩ dµ({xi}) , HN(τ) =

∫
⟨O2(x1) · · · O2(x4)⟩ dµ̃({xi}) . (6.2)

We refer to [63,77] for the precise relation between the supersymmetric localisation definitions

(6.1) and the exact forms of the integrated correlators (6.2), and in particular for details on

the integration measures dµ({xi}) and dµ̃({xi}) distinguishing CN(τ) and HN(τ).

Thanks to these results, it has finally become possible to perform holographic “precision-

tests” [63–65,77,79], and reconstruct from the large-N expansion of the integrated correlators

(6.1), the first few low-energy string theory corrections to the tree-level supergravity contribu-

tion to four-graviton scattering in AdS5 × S5 as well as in flat-space.

Surprisingly, in a series of papers [80–82] an exact and modular covariant expression for finite

τ was proven for a generalisation of the first integrated correlator CN(τ) to arbitrary classical

gauge group, then extended to exceptional gauge groups in [83]. A key rôle in determining

these astonishing results is played by the action of the Montonen–Olive duality group SL(2,Z)

on the complex coupling τ , strongly constraining the space of modular invariant objects at play.

This led to a flourishing of exact results for other integrated correlators in N = 4 SYM such

as higher-point maximal U(1)Y -violating correlators [56, 57], four-point functions of higher

conformal dimensions operators [84–87] and giant gravitons [88], as well as integrated two-

point functions of two superconformal primary operators in the presence of a half-BPS line

defect [89, 90]. More recently these methods have also been applied to integrated correlators

in less supersymmetric theories such as N = 2 SYM [91–93]. We stress that these finite-N ,

finite-coupling results provide important data for numerical bootstrap studies, see e.g. [94,95].

While novel studies [68] have shown intriguing conjectural relations between the two in-

tegrated correlators in (6.1), particularly in the large-N fixed-τ limit, we still lack an exact

modular invariant expression for the second integrated correlator HN(τ) valid for arbitrary

N and fixed τ . On the contrary, thanks to the pivotal results of [80, 81] we have an almost

complete control over the first integrated correlator CN(τ). In particular, we know that for all

N the quantity CN(τ) can be represented as a simple lattice sum integral whose systematic

large-N expansion can be computed [82] starting from a lattice sum generating series over the

number of colours N .
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From the analysis of [82] it follows that the large-N , fixed-τ expansion of CN(τ) is an

asymptotic factorially divergent formal series, which has to be completed by an infinite tower

of modular invariant, non-perturbative exponentially suppressed terms at large-N , thus con-

firming the earlier impressive numerical studies of [66]. These non-perturbative corrections are

extremely important and have the holographic interpretation of contributions from coincident

(p, q)-string world-sheet instantons.

In this chapter we provide a resurgence analysis approach to the resummation of modular

invariant large-N perturbative expansions akin to that for CN(τ). We show that it is possible

to define a modified Borel resummation kernel with manifest modular invariance. By applying

this resummation procedure to the formal perturbative large-N expansion of the integrated

correlator CN(τ), we retrieve its complete exact transseries expansion previously only found

via generating series methods. The modular invariant non-perturbative sectors of CN(τ) are

amazingly encoded in its perturbative part. We also show that our approach is extremely useful

in deriving novel non-perturbative results for a particular sector of the large-N expansion for the

second integrated correlator HN(τ). The proposed modular invariant resurgent resummation is

furthermore perfectly suited to perform a large-N ’t Hooft limit expansion at large λ := Ng2
YM

,

thus recovering the non-perturbative worldsheet instanton completions first obtained using

resurgence analysis order by order in the genus expansion [66,81].

The second goal we achieve is understanding how the large-N exact transseries expansion

of the integrated correlator CN(τ) is encoded in an alternative and equivalent representation

nicely found in [48] via SL(2,Z) spectral theory. The key ideas behind spectral representation

are discussed in section 3.3 and we refer to it for further mathematical detail. We show that the

large-N expansion of this spectral decomposition yields precisely the spectral decomposition of

the large-N transseries expansion obtained via resurgence analysis.

From here we proceed by stating and deriving some results relating to the integrated cor-

relator CN(τ). In particular, we present two equivalent representations valid for all complex

coupling τ ∈ H and arbitrary number of colours N . Firstly, in section 6.1 we discuss the original

exact expression for CN(τ) found in [80,81] in terms of a lattice sum combined with a Borel-like

integral transform. In section 6.2 we review how to construct from the lattice-sum represen-

tation a generating series over N and with it compute the exact large-N modular invariant

transseries [67].
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Secondly, in section 6.3 we discuss an equivalent expression for the integrated correlator,

first presented in [48] and then extended in [86], in terms of an extremely simple spectral rep-

resentation with respect to L2-normalisable functions on the fundamental domain of SL(2,Z).

From here we proceed and in section 6.4 formulate a method of resummation for modular invari-

ant transseries and demonstrate the necessity of introducing a novel class of modular functions

serving as a non-perturbative completion. Then in section 6.5 we apply these methods to the

integrated correlators and demonstrate how resurgence recovers non-perturbative terms at large

N . Finally, in section 6.8 we demonstrate that median resummation gives the exact answer for

the observable of our interest starting from a spectral theory expression for the correlator.

6.1 Lattice sum representation

Even though the integrated correlator CN(τ) is defined in (6.1) by taking a suitable combination

of derivatives of the S4 partition function in the N = 2∗ mass deformed supersymmetric Yang–

Mills theory, it was proven in [80,81] that this integrated correlator has the far more convenient

lattice sum representation,

CN(τ) =
1

2

∑
(m,n)∈Z2

∫ ∞

0

e−t Ymn(τ)BN(t) dt , (6.3)

where we define the ubiquitous “lattice-sum coupling”,

Ymn(τ) := π
|nτ +m|2

τ2
. (6.4)

This extremely simple formula can be seen as a combination of the lattice sum over (m,n) ∈ Z2

and a Laplace integral of a “Borel transform” function BN(t), which is a rational function of t

given by

BN(t) :=
QN(t)

(t+ 1)2N+1
. (6.5)

The function QN(t) is a polynomial in the variable t of degree 2N − 1, which can be written

for all N ∈ N as
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QN(t) := −1

2
N(N − 1)(1− t)N−1(1 + t)N+1 (6.6){

[3 + (3t+ 8N − 6)t]P
(1,−2)
N

(1 + t2

1− t2

)
+

1

1 + t
(3t2 − 8Nt− 3)P

(1,−1)
N

(1 + t2

1− t2

)}
,

where P
(a,b)
n (x) are Jacobi polynomials. We note that for any N the function BN(t) satisfies

the inversion identity

t−1BN(t
−1) = BN(t) . (6.7)

The form of the function BN(t) given in (6.5) and (6.6) was conjectured in [81, 82] and then

proved in [67] using matrix model methods.

Interestingly, in [82] it was shown that a more general version of the lattice sum expression

(6.3), yields the integrated correlator of four superconformal primary operators (6.2) for N = 4

SYM with arbitrary classical gauge group G = SO(N), USp(2N), then completed in [83] to

the case of exceptional gauge groups. Goddard-Nuyts-Olive [96] electro-magnetic duality plays

a fundamental rôle in dictating the particular lattice sum expressions appearing for different

gauge groups. In this thesis, we focus our attention to the original discussion (6.3) of the

integrated correlator in the SU(N) theory.

As already noted, compared to the original expression (6.1), it is much easier to analyse the

dependence of the integrated correlator from the parameters τ and N starting from the lattice

sum expression (6.3). However, while the τ dependence has been basically trivialised, the de-

pendence of (6.5) on the number of colours N is absolutely not transparent. This shortcoming

was remedied in [67] where a generating function for the N -dependence was derived start-

ing from (6.3), thus allowing for a direct calculation of the exact large-N , fixed-τ transseries

expansion.

This generating series is defined as

CSU(z; τ) :=
∞∑

N=1

CN(τ) zN , (6.8)
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with z an auxiliary complex variable. We can then invert (6.8) via

CN(τ) =
∮
γ

CSU(z; τ)
zN+1

dz

2πi
, (6.9)

where γ denotes a counter-clockwise contour circling the pole at z = 0 of radius strictly less than

one in order to avoid other singularities. From (6.3) we can equivalently define the generating

series for the rational functions BN(t) which can be computed directly from (6.5):

BSU(z; t) :=
∞∑

N=1

BSU(N)(t)z
N =

3tz2 [(t− 3)(3t− 1)(t+ 1)2 − z(t+ 3)(3t+ 1)(t− 1)2]

(1− z)
3
2 [(t+ 1)2 − (t− 1)2z]

7
2

,

(6.10)

leading to

CSU(z; τ) :=
1

2

∑
(m,n)∈Z2

∫ ∞

0

e−t Ymn(τ)BSU(z; t) dt . (6.11)

This generating function satisfies several properties of note,

BSU(z; t) = t−1BSU(z; t
−1) , BSU(z; t) = −BSU(z

−1;−t) ,

as well as the integral identities,

∫ ∞

0

BSU(z; t)√
t

dt = 0 ,

∫ ∞

0

BSU(z; t) dt =
∞∑

N=1

N(N − 1)

4
zN . (6.12)

The first of these equations, directly related to (6.7), is an inversion relation that follows

automatically from the lattice sum definition of the integrated correlator (6.3), as was pointed

out in [48] where the lattice sum is re-expressed in terms of a modular invariant spectral

representation which will shortly be reviewed. The second equation in (6.12) is an inversion

relation in the variable z, which relates the SU(N) correlator with coupling g2
YM

to the SU(−N)

correlator with coupling −g2
YM

, as previously discussed in [82].

6.2 Modular invariant large-N transseries

One of the main advantages of introducing a generating series such as CSU(z; τ) is that it has

a much simpler form than CN(τ). This makes CSU(z; τ) extremely convenient for analysing the
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large-N properties of the integrated correlators. In particular, starting from (6.11) a key result

of [67] was the derivation of the exact large-N transseries expansion for CN(τ) at fixed τ , which

takes the form

CN(τ) = CP (N ; τ) + σ CNP (N ; τ) . (6.13)

In this expression CP (N ; τ) contains the formal asymptotic perturbative expansion in 1/N for

the integrated correlator CN(τ) given by

CP (N ; τ) =
N2

4
+

∞∑
ℓ=0

N
1
2
−ℓ

⌊ℓ/2⌋∑
m=0

b̃ℓ,mE
∗(3

2
+ δℓ + 2m; τ) , (6.14)

where δℓ = ℓ (mod 2) and we denote with ⌊x⌋ the floor of x. As discussed in [67], the constant

coefficients b̃ℓ,m can be easily computed starting from the generating series (6.11), but otherwise

are not known in closed form for arbitrary ℓ and m. The first few coefficients b̃ℓ,m for ℓ ≤ 4

where already computed in [64], while expressions for general ℓ and fixedm can be found in [81].

We stress that although this power-series in 1/N does not converge for any value of τ , it

is nonetheless manifestly a modular invariant function of τ order by order in 1/N . The only

τ dependence in (6.14) appears through the non-holomorphic Eisenstein series, which have

already appeared in this thesis multiple times and for this particular application are defined as

E∗(s; τ) :=
Γ(s)

2

∑
(m,n) ̸=(0,0)

Ymn(τ)
−s =

1

2

∑
(m,n)̸=(0,0)

∫ ∞

0

e−t Ymn(τ) ts−1 dt (6.15)

= ξ(2s)τ s2 + ξ(2s− 1) τ 1−s
2 +

∑
k ̸=0

e2πikτ12
√
τ2 |k|s−

1
2σ1−2s(k)Ks− 1

2
(2π|k|τ2) .

We additionally note that for this convention of normalisation the non-holomorphic Eisenstein

series satisfy a particularly simple reflection formula E∗(s; τ) = E∗(1− s; τ).

For the perturbative sector (6.14), the coefficient of each order in 1/N is given by a finite sum

of non-holomorphic Eisenstein series, E∗(s; τ), of half-integer index s ranging from a maximal

value s = 3
2
+ ℓ to a minimal value s = 3

2
. From CP (N ; τ) we can recover higher derivative

corrections to the flat space-limit in the type IIB S-matrix of four gravitons at finite string

coupling τ via the holographic dictionary [64]. Some of these terms were already mentioned

in chapter 5 as corrections that are exactly derivable by use of S-duality in Type IIB string

theory.
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Importantly, the transseries expansion (6.13) of the full integrated correlator CN(τ) does also

contain non-perturbative, exponentially suppressed terms at large-N , captured by CNP (N ; τ)

and given by the formal series

CNP (N ; τ) =
∞∑
ℓ=0

N2− ℓ
2

ℓ∑
m=0

d̃ℓ,mDN

(
ℓ
2
− 2m; τ

)
, (6.16)

where the novel modular invariant function DN(s; τ) is defined as2

DN (s; τ) :=
∑

(m,n) ̸=(0,0)

exp
(
− 4
√
NYmn(τ)

)(
16Ymn(τ)

)−s
. (6.17)

Via the holographic dictionary, it was conjectured in [67] that these non-perturbative corrections

capture the contribution of ℓ coincident (p, q)-string Euclidean world-sheet instantons wrapping

a great two-sphere, S2, on the equator of the five-sphere, S5.

Finally, it was also argued that there is an ambiguity in resumming the large-N asymptotic

perturbative expansion (6.14), which has to be compensated by a change in the non-perturbative

sector captured by CNP (N ; τ). This amounts to a jump in the transseries parameter σ, which

is a piece-wise constant function of arg(N), taking values σ = ± i according to arg(N) > 0 or

< 0 respectively. In section 6.4, we show that the non-perturbative corrections (6.16), as well

as the transseries parameter σ, can be fixed completely from a proper resurgence analysis of

a modified modular invariant Borel resummation of the purely perturbative data (6.14). This

explains the resurgent origins of the transseries (6.13), originally found solely via generating

series methods.

6.3 Spectral representation

An alternative and equivalent representation to the lattice-sum integral expression (6.3) is ob-

tained via SL(2,Z) spectral theory, a method of decomposing any (suitable) modular invariant

function as a linear combination of “good” basis elements, i.e. L2-normalisable eigenfunctions

of the hyperbolic Laplace operator ∆.

2Note that compared to [67], where this class of functions was first introduced, we here use a slightly
different and more convenient normalisation Dthere

N (s; τ) = 24sDhere
N (s; τ), which for the expansion (6.16), where

a different indexing is implemented, in turns implies dthereℓ,m = 26ℓ−8md̃ℓ,ℓ−m.

105



For the present discussion we only highlight the fact that this integrated correlator possesses

an astonishingly simple spectral representation, which only involves an integral over special

normalisable eigenfunctions: the non-holomorphic Eisenstein series E∗(s; τ) with Re(s) = 1
2
.

This spectral approach to the integrated correlator (6.1) was introduced in [48], where the

spectral overlap with Eisenstein series was first derived and it was also demonstrated that

non-holomorphic cusp forms play no rôle for this observable.

Here we rederive the spectral representation for CN(τ) starting directly from the lattice-sum

integral representation (6.3). We begin by considering the lattice sum in (6.3) and splitting it

into the sum of the (m,n) = (0, 0) contribution and terms with (m,n) ̸= (0, 0),

CN(τ) =
1

2

∫ ∞

0

BN(t) dt+
1

2

∑
(m,n)̸=(0,0)

∫ ∞

0

e−t Ymn(τ)BN(t) dt . (6.18)

We now rewrite the second term in this expression in terms of the Mellin transform, MN(s),

of the function BN(t) defined as

MN(s) :=

∫ ∞

0

ts−1BN(t) dt . (6.19)

Given the expression (6.5) for BN(t), this Mellin integral can be shown to converge in the strip

−1 < Re(s) < 2 and has an analytic continuation to a meromorphic function of s ∈ C. This

transform can be inverted via Mellin inversion formula,

BN(t) =

∫
Re(s)=α

t−sMN(s)
ds

2πi
, (6.20)

where the constant α ∈ R is chosen in such a way that the original Mellin integral (6.19)

converges for Re(s) = α. Crucially, we notice that the functional equation (6.7) translates

immediately to the reflection formula,

MN(1− s) =MN(s) . (6.21)

We now substitute Mellin inversion formula in (6.18) and perform a reflection s → 1 − s
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while using (6.21) to arrive at,

CN(τ) =
1

2

∫ ∞

0

BN(t) dt+

∫
Re(s)=1+ϵ

MN(s)

1

2

∑
(m,n)̸=(0,0)

∫ ∞

0

e−t Ymn(τ)ts−1dt

 ds

2πi
. (6.22)

The s-contour of integration has been shifted to Re(s) = 1 + ϵ, with ϵ > 0 sufficiently small,

so that the t-integral and the lattice-sum are both convergent and we are allowed to use the

integral representation (6.15) for the non-holomorphic Eisenstein series, thus arriving at the

sought-after spectral representation for the integrated correlator

CN(τ) = ⟨CN⟩+
∫
Re(s)= 1

2

MN(s)E
∗(s; τ)

ds

2πi
, (6.23)

⟨CN⟩ :=
∫ ∞

0

BN(t) dt = lim
s→1

MN(s) , (6.24)

where the additional factor 1/2 for the constant term originates from having moved the contour

of integration back to Re(s) = 1
2
combined with the fact that ress=1E

∗(s; τ) = 1
2
.

While in the lattice-sum representation the N dependence is encoded entirely in the rational

functions BN(t) given in (6.5), here this information is captured by the spectral overlap function,

i.e. the Mellin transform MN(s). The function MN(s) can be obtained by exploiting an

intriguing Laplace-difference equation found in [81] and satisfied by the integrated correlator:

∆CN(τ)−(N2 − 1)
(
CN+1(τ)− 2CN(τ) + CN−1(τ)

)
− (N + 1)CN−1(τ) + (N − 1)CN+1(τ) = 0, (6.25)

which fixes CN(τ) in terms of the initial data C2(τ) and C1(τ) = 0.

By specialising (6.5) to the SU(2) theory, i.e. by setting N = 2, we obtain the initial

condition,

B2(t) =
9t− 30t2 + 9t3

(t+ 1)5
, (6.26)

from which it is immediate to derive its Mellin transform,

M2(s) =
πs(1− s)(2s− 1)2

2 sin (πs)
. (6.27)
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We can then combine (6.23) with (6.25) and the known Laplace equation

∆E∗(s; τ) = s(s− 1)E∗(s; τ) , (6.28)

to find a recurrence relation satisfied by the spectral overlaps, namely

N(N − 1)MN+1(s) = [s(s− 1) + 2(N2 − 1)]MN(s)−N(N + 1)MN−1(s) . (6.29)

As show in [86], this recursion is solved by

MN(s) =
N(N − 1)

4

πs(1− s)(2s− 1)2

sin (πs)
3F2(2−N, s, 1− s; 3, 2|1) , (6.30)

thus implying from (6.24) that ⟨CN⟩ = N(N − 1)/4. The hypergeometric function in this

equation is somewhat misleading, since the parameter 2−N is a non-positive integer for N ≥ 2

and as a consequence, the hypergeometric function always reduces to a polynomial in s(1− s)

of degree N − 2. In appendix E we find a more convenient expression given by

MN(s) =
2−2s(2s− 1)Γ

(
3
2
− s
)

√
π Γ(−s)

∫ 1

0

xs−3(1− x)N 2F1(s− 1, s; 2s|x)dx+ (s↔ 1− s) , (6.31)

where a certain regularisation is required when treating the x-integral near x = 0, see in

particular equation (E.10) and the detailed analysis presented in appendix E.

While at finite N it is straightforward to evaluate the Mellin transform (6.30) and obtain

the spectral representation for the integrated correlator (6.23), it is absolutely not obvious

how to deduce its large-N expansion. In section 6.8 we begin with the spectral overlap (6.31)

and manifest how the resurgent structure of the integrated correlator is beautifully encoded

in the spectral representation (6.23), recovering the entire modular transseries (6.13) from this

perspective.

6.4 Resurgence of modular invariant transseries

In this section we want to show how the exact large-N transseries expansion at fixed τ for CN(τ)

displayed in (6.13), so far only analysed numerically in [66] and derived in [67] via generating

series methods, can be derived using resurgence analysis. In particular, we prove that it is
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possible to reconstruct the non-perturbative and modular invariant contributions (6.16) from a

suitable resummation of the large-N formal, yet modular invariant perturbative sector (6.14).

We start by focusing our attention on the purely perturbative expansion of the integrated

correlator (6.1), which at large-N and fixed τ has the formal asymptotic perturbative expansion

(6.14), here rewritten for convenience

CN(τ) ∼ CP (N ; τ) =
N2

4
+

∞∑
ℓ=0

N
1
2
−ℓ

⌊ℓ/2⌋∑
m=0

b̃ℓ,mE
∗(3

2
+ δℓ + 2m; τ) , (6.32)

with δℓ = 0 for even ℓ and δℓ = 1 for odd ℓ.

As already noted previously, in the perturbative sector the coefficient of each order in 1/N

is given by a finite sum of non-holomorphic Eisenstein series, E∗(s; τ), of half-integer index

s ranging from the maximal value s = 3
2
+ ℓ to the minimal one s = 3

2
. Following [68], we

reorganise this formal power series in 1/N as

CP (N ; τ) =
N2

4
+

∞∑
r=0

N2−2rC(r)
P (N ; τ) , (6.33)

having defined

C(r)
P (N ; τ) :=

∞∑
k=0

br,kN
− 3

2
−kE∗(3

2
+ k; τ) . (6.34)

Here we made the change of summation variables ℓ = 2r+ k and m = ⌊k
2
⌋ and correspondingly

denoted the rearranged coefficients by br,k = b̃ℓ,m. For fixed r, the formal power-series C(r)
P (N ; τ)

can be understood as collecting, order by order in 1/N , the contributions to (6.32) coming

from the “r-subleading index” non-holomorphic Eisenstein series, i.e. all E∗(s; τ) with index

s = 3
2
+ ℓ− 2r.

For example, we can focus on the contribution to (6.32) coming only from grouping all

“leading-index” non-holomorphic Eisenstein series, i.e. all terms in (6.32) with m = ⌊ℓ/2⌋ or

equivalently specialising (6.34) to k = ℓ and r = 0:

C(0)
P (N ; τ) =

∞∑
k=0

b0,kN
− 3

2
−kE∗(3

2
+ k; τ) , (6.35)
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where the coefficients b0,k = b̃k,⌊k/2⌋ have been computed in [81] and are given by

b0,k :=
(k + 1)Γ(k − 1

2
)Γ(k + 5

2
)

22k+1 π3/2 Γ(k + 1)
. (6.36)

As manifest from this particular example (and other cases presented in [67, 81]), we notice

that the coefficients br,k appearing in the series (6.34) grow factorially with k for fixed r, i.e.

br,k ∼ k!, so that C(r)
P (N ; τ) can be thought of as a formal asymptotic series with coefficients

given by rational multiples of half-integer non-holomorphic Eisenstein series. This simple ob-

servation suggests immediately that a proper Borel-like resummation of the formal perturbative

expansion (6.34), and hence of the whole perturbative sector (6.33), should by consistency re-

quire the introduction of the anticipated non-perturbative terms CNP (N ; τ) presented in (6.16)

and here rewritten for convenience,

CNP (N ; τ) =
∞∑
ℓ=0

N2− ℓ
2

ℓ∑
m=0

d̃ℓ,mDN

(
ℓ
2
− 2m; τ

)
. (6.37)

We stress once more that in [67] these terms have been recovered starting from the generating

series (6.10), while presently we are in the process of describing how to retrieve them from a

resurgence analysis approach to the resummation of the perturbative sector (6.34).

To this end, we proceed just like we did in the perturbative sector starting from (6.32) to

arrive at (6.33), and rearrange the non-perturbative terms (6.37) as

CNP (N ; τ) =
∞∑
r=0

N2−2rC(r)
NP (N ; τ) , (6.38)

C(r)
NP (N ; τ) =

∞∑
k=−3r−1

dr,kN
− k+1

2 DN

(
k+1
2
; τ
)
, (6.39)

where we made the change of summation variables ℓ = 4r + k + 1 and m = r and correspond-

ingly denoted dr,k = d̃ℓ,m. Although using the methods of [67]3 it is possible to compute the

coefficients dr,k for different values of r and k, no analytic expression similar to (6.36) has been

found prior to this work. Using resurgence analysis we show how to derive the coefficients dr,k

3We note again that, due to the change in normalisation (6.17) and in summation variables, to compare the
non-perturbative coefficients dr,k with the results of [67] we must use dtherer,k = 26r−8kdr−k,4k−3r−1.

110



from the perturbative coefficients br,k and manifest that at fixed value of r the numbers dr,k are

once again factorially divergent as k → ∞.

In what follows, we show that the large-N transseries representation (6.13) for the integrated

correlator (6.1) can be recovered from the Borel-Écalle median resummation of the perturbative

sectors (6.34), i.e.

CN(τ) =
N2

4
+

∞∑
r=0

N2−2rC(r)(N ; τ) , (6.40)

C(r)(N ; τ) = C(r)
P (N ; τ) + σ C(r)

NP (N ; τ) . (6.41)

As already mentioned previously, the median resummation contains the additional parame-

ter called the transseries parameter σ = σ(arg(N)), which is a piecewise constant function of

arg(N). We will show that for the median resummation here considered the transseries pa-

rameter takes values σ = ± i according to whether arg(N) > 0 or < 0, this will in turn be

correlated with the how we perform the resummation of the perturbative sector C(r)
P (N ; τ).

Thanks to our modular invariant resurgence analysis approach we find that:

(i) From the “r-subleading index” non-holomorphic Eisenstein series E∗(s; τ) with index

s = 3
2
+ ℓ − 2r, grouped in C(r)

P (N ; τ), we can retrieve all of the “r-subleading index”

non-perturbative terms DN (s; τ) with s = ℓ
2
− 2r, grouped in C(r)

NP (N ; τ), see section 6.6;

(ii) As a consequence of modularity, in the ’t Hooft limit where λ =
√
4πN/τ2 is kept fixed,

the function C(r)(N ; τ) reduces to the transseries expansion of the genus-r contribution to

the integrated correlator, as well as the transseries expansion of the “dual ’t Hooft-limit”

genus-r contribution where λ̃ := (4πN)2/λ is kept fixed, see section 6.7;

(iii) The sum over r in (6.40) is actually Borel summable and does not introduce any additional

non-perturbative corrections. Furthermore, the large-N expansion of the spectral repre-

sentation (6.23) leads directly to the spectral representation of C(r)(N ; τ) whose spectral

overlap encodes quite naturally both the perturbative, C(r)
P (N ; τ), and non-perturbative,

C(r)
NP (N ; τ), sectors, see section 6.8.
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6.5 Modular invariant resummation at large-N

Motivated from the case of present interest, namely the formal perturbative series (6.34), the

main goal of this section is to define a modular invariant resummation for the formal but

modular invariant series,

ΦP (N ; τ) :=
∞∑
k=0

bkN
− 3

2
−kE∗(3

2
+ k; τ) , (6.42)

where the coefficients bk diverge factorially fast, i.e. bk ∼ k!.

Inspired by the particular exponential structure of the candidate non-perturbative terms,

DN (s; τ), defined in (6.17), we introduce a somewhat non-standard integral representation for

the non-holomorphic Eisenstein series

N−sE∗(s; τ) =

∫ ∞

0

E(
√
Nt; τ)

2Γ(s)

Γ(2s)
(4t)2s−1dt , (6.43)

where we have defined a modular invariant modified Borel kernel

E(t; τ) := Dt2(0; τ) =
∑

(m,n)̸=(0,0)

e−4t
√

Ymn(τ) , (6.44)

which converges absolutely for all τ in the upper-half plane when Re(t) > 0. Some of the

properties of E(t; τ) are presented in appendix F, in particular from (F.4) we see that (6.43) is

convergent for Re(s) > 1.

We are now in a position to define the Borel transform of the formal series (6.42) as

B[ΦP ](t) :=
∞∑
k=0

bk
2Γ(k + 3

2
)

Γ(2k + 3)
(4t)2k+2 , (6.45)

which has a positive radius of convergence in the complex Borel t-plane under the assumption

that bk ∼ k!, thus defining a germ of analytic functions at the origin.

Following standard resurgence analysis arguments, see chapter 2 for more information, we

combine (6.45) with the integral representation (6.43) specialised to s = k + 3
2
, and define the
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directional Borel resummation of the original formal series (6.42) as

Sθ[ΦP ](N ; τ) :=

∫ eiθ∞

0

E(
√
Nt; τ)B[ΦP ](t)dt . (6.46)

If the direction of integration −π < θ ≤ π is such that the Borel transform B[ΦP ](t) has

no singularities, i.e. if arg(t) = θ is not a Stokes direction, we have that the directional

Borel resummation (6.46) is well-defined (under a moderate growth condition for the Borel

transform) and it defines a modular invariant function of τ , which is analytic in N in the wedge

Re(
√
Neiθ) > 0 of the complex N -plane. From equation (6.43), we see that the asymptotic

expansion of (6.46) at large-N reproduces the formal expansion (6.42) we started with, i.e. we

have resummed (6.42) in a modular invariant way.

Furthermore, given two directions θ1 and θ2 with θ1 < θ2 such that B[ΦP ](t) is regular

in the wedge θ1 ≤ arg(t) ≤ θ2, we find that Sθ1 [ΦP ](N ; τ) = Sθ2 [ΦP ](N ; τ) on the common

domain of analyticity. Hence Sθ2 [ΦP ](N ; τ) defines an analytic continuation of Sθ1 [ΦP ](N ; τ) to

a wider wedge of the complex N -plane. However, if the direction θ = θ⋆ is a singular direction

for B[ΦP ](t), usually called a Stokes direction, we find instead that the analytic functions

Sθ⋆−ϵ[ΦP ](N ; τ) and Sθ⋆+ϵ[ΦP ](N ; τ), with ϵ → 0+, do not coincide on the common domain of

analyticity and they crucially differ by non-perturbative terms. Near a Stokes direction θ⋆, we

are then naturally led to consider the lateral Borel resummations defined as

Sθ±⋆
[ΦP ](N ; τ) := lim

ϵ→0+
Sθ⋆±ϵ[ΦP ](N ; τ) . (6.47)

In the case where N denotes the number of colours, we obviously want to define a resum-

mation of (6.42) which is analytic in a neighbourhood of the positive real axis arg(N) = 0.

However, we will shortly see that for the cases of interest the direction θ = 0 happens to be a

Stokes ray. In particular, we need to consider the case where the Borel transform B[ΦP ](t) has

polar singularities at t = 1 plus a branch cut starting at t = 1 with an expansion of the form

B[ΦP ](t) ∼ − 1

π

M∑
k=1

d−k(k − 1)!

(1− t)k
+
( ∞∑

k=0

dk(t− 1)k

k!

) log (1− t)

π
+ reg(t− 1), (6.48)

withM a positive integer specifying the maximal order of the pole, while reg(t−1) denotes the

analytic part at t = 1. Besides the polar part, we also have a logarithmic singularity multiplied
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by a new germ of analytic functions at the origin, which is specified by a series of factorially

divergent coefficients dk.

Starting from (6.48), we easily compute the difference between the two lateral resummations

of the original series (6.42), related to the so-called Stokes automorphism, which takes the form

(
S+ − S−

)
[ΦP ](N ; τ) = −2i

∞∑
k=−M

dkN
− k+1

2 DN

(
1+k
2
; τ
)
, (6.49)

where for ease of notation we write S± := S0± since θ = 0 will be the only Stokes line we

need considering. Notice that since the coefficients dk are in general factorially divergent, as

we show for the integrated correlator, the discontinuity equation (6.49) defines once again a

formal series, which is however modular invariant and whose coefficients are no longer given by

non-holormorphic Eisenstein series but rather they belong to the class of functions defined in

(6.17).

We stress how general this result is: given a formal series of the form (6.42) whose Borel

transform, B[ΦP ](t), defines a germ of analytic function at the origin with a singular structure

akin to (6.48), along any Stokes direction we must have a non-perturbative and modular invari-

ant discontinuity in lateral resummations captured by an infinite sum of DN(s; τ) functions.

To finally construct a complete modular invariant transseries starting from the purely per-

turbative sector (6.42), we additionally need to understand how to modify the lateral resum-

mations S± to take into account their discontinuity (6.49). Proceeding as we just did for the

perturbative sector, we start from the non-perturbative modular invariant series in (6.49)

ΦNP (N ; τ) :=
∞∑

k=−M

dkN
− k+1

2 DN

(
1+k
2
; τ
)
, (6.50)

and consider the integral representation

N− k+1
2 DN

(
k+1
2
; τ
)
=

∫ ∞

0

E(
√
N(t+ 1); τ)

tk

Γ(k + 1)
dt , (6.51)

with k ≥ 0. Just like the integral representation (6.43) leads to the perturbative Borel transform

(6.45), we now use (6.51) to define the directional Borel resummation of the non-perturbative
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sector (6.50),

B̃[ΦNP ](t) :=
∞∑
k=0

dk
Γ(k + 1)

tk, (6.52)

Sθ[ΦNP ](N ; τ) :=
−1∑

k=−M

dkN
− k+1

2 DN

(
1+k
2
; τ
)
+

∫ eiθ∞

0

E(
√
N(t+ 1); τ) B̃[ΦNP ](t) dt . (6.53)

Note that the finitely many terms in (6.53) with a positive power of N have to be treated

separately since they cannot be represented via (6.51), these terms correspond to the polar

part of the singular behaviour of the Borel transform (6.48).

In standard applications of resurgence theory the Borel kernel is given by the usual Laplace

measure e−
√
Ntdt. In this case it is well appreciated that under a shift of integration variable

t → t + 1, the measure naturally factors into the same integration kernel multiplied by the

expected exponential suppression factor −
√
N which characterises the non-perturbative sectors.

Due to the lattice sum nature (6.44) of the present modular invariant Borel integration kernel

E(
√
Nt; τ), we do not have such property, i.e.

E(
√
N(t+ 1); τ)dt ̸= E(

√
N ; τ) E(

√
Nt; τ)dt .

This explains why we have to define a second Borel transform B̃[ΦNP ](t) in (6.53): while the

building blocks of the perturbative sector are given by non-holomorphic Eisenstein series, they

differ from those of the non-perturbative part, i.e. the functions DN (s; τ). However, our

modular invariant Borel kernel contains both objects:

N−sE∗(s; τ) =

∫ ∞

0

E(
√
Nt; τ)

2Γ(s)

Γ(2s)
(4t)2s−1dt ,

N−sDN (s; τ) =

∫ ∞

0

E(
√
N(t+ 1); τ)

t2s−1

Γ(2s)
dt . (6.54)

Given the discontinuity (6.49), it is now manifest that for the physically relevant domain

N > 0, the two resummations S±[ΦP ](N ; τ) do differ and we have an ambiguity in how we

resum the purely perturbative formal power series (6.42). Furthermore, while the original

formal power series (6.42) is manifestly real for N > 0 and τ ∈ H, neither of the two lateral

resummations S±[ΦP ](N ; τ) is. To obtain a real and unambiguous resummation for N > 0,
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we have to consider an average between the two lateral resummations S±[ΦP ](N ; τ), usually

referred to as median resummation [97],

Φ(N ; τ) = ΦP (N ; τ) + σΦNP (N ; τ) . (6.55)

The additional parameter σ, called the transseries parameter, is the piecewise constant function

of arg(N) given by σ = ±i according to arg(N)≷0, which in turn is correlated with the choice

of lateral resummation

Smed[ΦP ](N ; τ) :=

S+[ΦP ](N ; τ) + iS0[ΦNP ](N ; τ) , arg(N) > 0 ,

S−[ΦP ](N ; τ)− iS0[ΦNP ](N ; τ) , arg(N) < 0 .
(6.56)

We shortly show that the equality between the two seemingly different expressions comes from

the discontinuity equation (6.49) combined with the fact that for the integrated correlator

arg(N) = 0 is not a Stokes direction for ΦNP (N ; τ), which can then be resummed via (6.53)

along θ = 0, i.e. by considering S0[ΦNP ](N ; τ).

The median resummation produces an unambiguous resummation of (6.42) in a wedge of

the complex-N plane which contains the physical domain N > 0. In particular, it is easy to

show that (6.56) is real-analytic for N > 0 and τ ∈ H, since it can be rewritten as

Smed[ΦP ](N ; τ) =
1

2
(S+ + S−)[ΦP ](N ; τ) =

∫
M

E(
√
Nt; τ)B[ΦP ](t)dt , (6.57)

=

∫ ∞

0

E(
√
Nt; τ)Re

(
B[ΦP ](t)

)
dt .

Here we have defined for later convenience the notation for the median integration

∫
M

:=
1

2

(∫ ∞+iϵ

0

+

∫ ∞−iϵ

0

)
, (6.58)

in the limit ϵ → 0+. The particular integral representation (6.57) for the non-perturbative

integrated correlator will be obtained directly from spectral theory in section 6.8.
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6.6 Resurgence of the integrated correlators

Thanks to the analysis of the previous section, we have thus constructed an unambiguous

resummation for a formal perturbative series in non-holomorphic Eisenstein series E∗(s; τ),

schematically presented in (6.42), and have shown that it generically requires exponentially

suppressed terms which involve the modular invariant function DN (s; τ).

In this section we show how an application of this resummation method to the two integrated

correlators (6.1) yields the complete large-N expansion of the first integrated correlator CN(τ),

as well as a particular non-perturbative sector of the second integrated correlator HN(τ). This

explains the appearance of such non-perturbative terms in the full transseries representation

(6.40) of the integrated correlator CN(τ) and our analysis establishes a connection between the

perturbative coefficients b̃ℓ,m in (6.32), or alternatively the coefficients br,k in (6.34), and the

non-perturbative coefficients d̃ℓ,m in (6.37), or alternatively the coefficients dr,k presented in

(6.39), as we now show in more detail.

First integrated correlator

For concreteness we discuss the cases r = 0 and r = 1, although our analysis can be extended

straightforwardly to arbitrary r. We begin by deriving the non-perturbative resummation

of C(0)
P (N ; τ) presented in (6.35), which contains all large-N perturbative contributions origi-

nating from non-holomorphic Eisenstein series with leading index.

Given the definition (6.45) we compute the associated Borel transform of this series, which

takes the form

B[C(0)
P ](t) =

4

π

∞∑
k=0

Γ(k − 1
2
)Γ(k + 5

2
)

Γ(k + 1)2
t2k+2 = −6t22F1(−1

2
, 5
2
; 1|t2). (6.59)

As anticipated, we see that the Borel transform has two Stokes directions: one for θ = 0 and

the other for θ = π, both with logarithmic branch cuts starting respectively at t = ±1 due

to the hypergeometric function 2F1. Since we are interested in obtaining a non-perturbative

resummation for arg(N) = 0, we have to compute the singular behaviour of the Borel transform

(6.59) near the point t = 1. This can be obtained from the integral representation of the
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hypergeometric function thanks to which we find

B[C(0)
P ](t) ∼ − (−2)

π(1− t)
− 9 t22F1(−1

2
, 5
2
; 2|1− t2)

log (1− t)

π
+ reg(t− 1) , (6.60)

where again reg(t− 1) denotes the analytic part at t = 1.

This structure is precisely of the form (6.48) previously analysed and, as a consequence, we

have that the two lateral resummations of (6.59) do not coincide on the common domain of

analyticity. We can compute the difference in lateral resummations (6.49) directly from the

singular behaviour (6.60),

(S+ − S−)[C(0)
P ](N ; τ) = −2iS0[C(0)

NP ](N ; τ) (6.61)

= 4iDN (0; τ) + 18i

∫ ∞

0

E(
√
N(t+ 1); τ) (1 + t)22F1(−1

2
, 5
2
; 2| − t(2 + t))dt .

Following our general discussion, we use this discontinuity and (6.53) to define the resum-

mation of the non-perturbative sector which is then given by

S0[C(0)
NP ](N ; τ) (6.62)

= −2DN (0; τ)− 9

∫ ∞

0

E(
√
N(t+ 1); τ)(1 + t)22F1(−1

2
, 5
2
; 2| − t(2 + t))dt .

As already mentioned, the Borel transform of the non-perturbative sector is regular along the

direction arg(t) = 0, hence (6.62) is precisely the Borel resummation of the formal series of

non-perturbative corrections

C(0)
NP (N ; τ) =

∞∑
k=−1

d0,kN
− k+1

2 DN

(
k+1
2
; τ
)

(6.63)

= −2DN (0; τ)− 9N− 1
2DN

(
1
2
; τ
)
− 117

4
N−1DN (1; τ) + ... ,

with the coefficients d0,k given by

d0,−1 = −2 , B̃[C(0)
NP ](t) = −9(1 + t)22F1(−1

2
, 5
2
; 2| − t(2 + t)) =

∞∑
k=0

d0,k
k!
tk , (6.64)

matching and extending the results of [67] (modulo the trivial change in normalisation in
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footnote 3) for the coefficients of the leading index non-perturbative terms, i.e. all DN (s; τ)

terms in (6.16) with m = ℓ, presented in equation (3.26) of the same reference.

We can then construct the median resummation (6.56) and express it via the transseries

C(0)(N ; τ) = C(0)
P (N ; τ) + σ C(0)

NP (N ; τ) , (6.65)

where the associated transseries parameter σ has value σ = ±i according to arg(N)≷0, precisely

matching the transseries (6.41) found in [67] by use of generating series methods. Furthermore,

the median resummation of said transseries can be written as the average of the two lateral

resummations presented in (6.57), taking the form

C(0)(N ; τ) = Smed[C(0)
P ](N ; τ) =

∫
M

E(
√
Nt; τ)

[
− 6t22F1(−1

2
, 5
2
; 1|t2)

]
dt

=

∫ ∞

0

E(
√
Nt; τ)Re

(
− 6t22F1(−1

2
, 5
2
; 1|t2)

)
dt , (6.66)

which will be retrieved from spectral methods later in section 6.8, see (6.134).

We can repeat this analysis for the contribution to (6.32) coming from all “sub-leading-

index” non-holomorphic Eisenstein series, i.e. all terms in (6.32) with m = ⌊ℓ/2⌋ − 1 or

equivalently consider (6.34) with r = 1:

C(1)
P (N, τ) =

∞∑
k=0

b1,kN
−k− 3

2E∗(3
2
+ k; τ) , (6.67)

where the coefficients b1,k = b̃k+2,⌊k/2⌋ have been computed in [81] and are given by

b1,k := −
(k + 1)2(2k + 13)Γ(k + 5

2
)2

22k+6 3π
3
2Γ(k + 3)

. (6.68)

The associated Borel transform (6.45) is then given by

B[C(1)
P ](t) = − 1

24π

∞∑
k=0

(k + 1)(2k + 13)Γ(k + 5
2
)2

Γ(k + 1)Γ(k + 3)
t2k+2 (6.69)

= − t2

8192

[
1248 2F1(

5
2
, 5
2
; 3|t2) + 3400 t2 2F1(

7
2
, 7
2
; 4|t2) + 1225 t4 2F1(

9
2
, 9
2
; 5|t2)

]
,

where again, due to the presence of these particular hypergeometric functions, we find the two
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Stokes directions arg(t) = 0 and arg(t) = π with corresponding logarithmic branch cuts starting

at t = ±1. The singularity structure of B[C(1)
P ](t) near t = 1 is given by

B[C(1)
P ](t) ∼− 1

32π(1− t)4
− 3

64π(1− t)3
− (−77)

512π(1− t)2
− 127

1024π(1− t)

+ B̃[C(1)
NP ](t− 1)

log (1− t)

π
+ reg(t− 1) , (6.70)

where, following the discussion around (6.49), we have already interpreted the germ of analytic

functions multiplying the logarithm as the Borel resummation of the non-perturbative sector

given by

B̃[C(1)
NP ](t) = (6.71)

−
14[60t(t+ 2) + 47] 2F1

(
1
2
, 1
2
; 5;−t(t+ 2)

)
+ [113t(t+ 2) + 269] 2F1

(
1
2
, 3
2
; 5;−t(t+ 2)

)
8192(t+ 1)4

.

We observe that, when compared to the Borel transform (6.60) for the case r = 0, the order

of the pole at t = 1 has now increased to a fourth-order pole. Similarly to (6.62), from (6.71)

we can now obtain the formal expansion of the sub-leading index non-perturbative sector

C(1)
NP (N ; τ) =

∞∑
k=−3

d1,kN
− k+1

2 DN

(
k+1
2
; τ
)
, (6.72)

with coefficients

d1,−4 =
1

192
, d1,−3 =

3

128
, d1,−2 = − 77

512
, d1,−1 =

127

1024
, (6.73)

B̃[C(1)
NP ](t) =

∞∑
k=0

d1,k
k!
tk = − 927

8192
+

3897

16384
t− 47217

65536

t2

2!
+O(t3) . (6.74)

Once again these results extend those found in [67] for the sub-leading diagonal of non-

perturbative terms presented in equation (3.26) of that reference, i.e. all DN (s; τ) terms in

(6.16) with m = ℓ− 1.

In general, to reconstruct the non-perturbative completion of C(r)
P (N ; τ), i.e. the non-

perturbative sector completing the formal asymptotic expansion of “r-subleading index” non-

holomorphic Eisenstein series (6.34), we start from the singular behaviour near t = 1 of the
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corresponding Borel transform

B[C(r)
P ](t) ∼− 1

π

3r+1∑
k=1

dr,−k(k − 1)!

(1− t)k
+ B̃[C(r)

NP ](t− 1)
log (1− t)

π
+ reg(t− 1) , (6.75)

with

B̃[C(r)
NP ](t) =

∞∑
k=0

dr,k
k!
tk . (6.76)

Equation (6.75) yields a difference in lateral Borel resummation of the form

(S+ − S−)[C(r)
P ](N ; τ) = −2iS0[C(r)

NP ](N ; τ) . (6.77)

The coefficients dr,k of the non-perturbative sector are then entirely encoded in the discontinuity

equation (6.77) of the Borel transform B[C(r)
P ](t) along the Stokes line t > 0, i.e.

S0[C(r)
NP ](N ; τ) ∼ C(r)

NP (N ; τ) =
∞∑

k=−3r−1

dr,kN
− k+1

2 DN

(
k+1
2
; τ
)
. (6.78)

Arguing as above, we must add to the lateral Borel resummation of the perturbative sector

a suitable multiple of these non-perturbative terms to finally arrive at the modular invariant

and unambiguous median transseries (6.41)

C(r)(N ; τ) = C(r)
P (N ; τ) + σ C(r)

NP (N ; τ) = Smed[C(r)
P ](N ; τ)

=

∫
M

E(
√
Nt; τ)B[C(r)

P ](t)dt =

∫ ∞

0

E(
√
Nt; τ)Re

(
B[C(r)

P ](t)
)
dt , (6.79)

where again the transseries parameter σ = ±i according to arg(N) > 0 or < 0.

Second integrated correlator

We now apply the same resummation method to analyse a particular sector of the second

integrated correlator HN(τ) presented in (6.1). The large-N expansion of HN(τ) was initiated

in [65] and then conjectured in [68] to have the asymptotic perturbative form

HN(τ) ∼ 6N2 +Hh
N(τ) +Hi

N(τ) , (6.80)
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where the two different perturbative sectors Hh
N(τ) and Hi

N(τ) are formal modular invariant

power series in respectively half-integer powers and integer powers in 1/N . In particular, the

large-N expansion of Hh
N(τ) is of the same form (6.33) for CP (N ; τ) and only contains non-

holomorphic Eisenstein series,

Hh
N(τ) =

∞∑
r=0

N2−2rH(r)
h (N ; τ) , (6.81)

H(r)
h (N ; τ) :=

∞∑
k=0

ar,kN
− 3

2
−kE∗(3

2
+ k; τ) . (6.82)

For fixed value of r, the perturbative coefficients ar,k have been found in [68] exploiting an

intriguing inhomogeneous Laplace difference equation relating this second integrated correlator

HN(τ) to CN(τ). In particular, for the leading-index non-holomorphic Eisenstein series we have

a0,k := −
(k + 1)(k + 3)Γ

(
k − 1

2

)
Γ
(
k + 3

2

)
22k−3π3/2Γ(k + 1)

. (6.83)

Focusing for concreteness on the r = 0 case, it is then straightforward to compute the

corresponding Borel transform (6.45),

B[H(0)
h ](t) = 192 t22F1

(
−1

2
, 3
2
; 1|t2

)
− 48 t42F1

(
1
2
, 5
2
; 2|t2

)
(6.84)

from which we obtain the singular behaviour along the Stokes direction arg(t) = 0:

B[H(0)
h ](t) ∼− 32

π(1− t)
+ B̃[H(0)

h,NP ](t− 1)
log (1− t)

π
+ reg(t− 1) , (6.85)

and interpret the germ of analytic functions multiplying the logarithm as the Borel resummation

of the non-perturbative sector given by

B̃[H(0)
h,NP ](t) = 48(t+ 1)2

[
4 2F1

(
−1

2
, 3
2
; 1| − t(t+ 2)

)
+ 2F1

(
−1

2
, 3
2
; 2| − t(t+ 2)

)]
. (6.86)

Following the same process as before, we extract from the singular behaviour (6.85) a novel
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formal series of non-perturbative corrections

H(0)
h,NP (N ; τ) =

∞∑
k=−1

h0,kN
− k+1

2 DN

(
k+1
2
; τ
)

(6.87)

= 32DN (0; τ) + 240N− 1
2DN

(
1
2
; τ
)
+ 804N−1DN (1; τ) + ... ,

with the coefficients h0,k given by

h0,−1 = 32 , B̃[H(0)
h,NP ](t) =

∞∑
k=0

h0,k
k!

tk = 240 + 804t+
855

2

t2

2!
+O(t3) . (6.88)

A similar analysis can be carried out for higher values of r > 0 to obtain the non-perturbative

completion of the formal power series (6.81). However, we stress that this process does not define

the full non-perturbative completion for the second integrated correlatorHN(τ). The procedure

here discussed can only resum the formal power series in half-integer powers of 1/N contained

in (6.81). As discussed in [68], besides the sector just mentioned, the large-N expansion of the

second integrated correlator (6.80) contains the formal modular invariant power series H(i)
N (τ)

in integer powers of 1/N .

Order by order in 1/N , the coefficients of H(i)
N (τ) are given by finite linear combinations of a

different class of modular functions - generalised Eisenstein series. They have already appeared

in this thesis and were analysed extensively in chapter 5. Of course, they are also relevant

for other string theory contexts, see e.g. [1, 31, 34], and display a more complicated structure

of perturbative and non-perturbative corrections [2, 35, 76, 98]. In particular, we easily see

that our resummation methods starting from the formal perturbative expansion (6.42) cannot

be exploited to extract the non-perturbative completion to the sector H(i)
N (τ) of the second

integrated correlator.

6.7 Large-N ’t Hooft expansions

In this section we consider the standard large-N ’t Hooft limit, where λ := 4πN/τ2 = Ng2
YM

is

kept fixed as N → ∞, starting from the transseries expansion (6.40). We show that in this limit

the non-perturbative resummation C(r)(N ; τ) naturally encodes the strong coupling genus-r ’t

Hooft transseries contribution, which includes an infinite tower of non-perturbative corrections
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of the form e−2ℓ
√
λ with ℓ ∈ N, which can be interpreted as fundamental string world-sheet

instantons. However, as a consequence of modularity we see that each C(r)(N ; τ) also contains

the strong coupling non-perturbative resummation of the “dual” genus-r ’t Hooft expansion,

where the dual ’t Hooft coupling λ̃ = (4πN)2/λ is kept fixed as N → ∞. This resummation

contains an infinite tower of non-perturbative corrections of the form e−2ℓ
√

λ̃ with ℓ ∈ N, which

can be interpreted as an averaging of all dyonic-string world-sheet instantons.

Since in the ’t Hooft limit we keep fixed λ = 4πN/τ2 = Ng2
YM

as we send N → ∞, we

have that contributions from Yang-Mills instantons, of order e−8π2N |k|/λ with instanton number

k ̸= 0, are exponentially suppressed. In the Fourier mode expansion of C(r)(N ; τ) with respect

to τ1 = θ/(2π), such contributions can be idenfitied with the kth Fourier mode. Hence in the

’t Hooft limit we can restrict our attention to the analysis for the zero-mode sector of (6.79),

which is obtained from

I(r)(N ;λ) :=

∫ 1
2

− 1
2

C(r)(N ; τ) dτ1 =

∫
M

[ ∫ 1
2

− 1
2

E(
√
Nt; τ) dτ1

]
B[C(r)

P ](t) dt . (6.89)

To extract the ’t Hooft expansion of this expression, we need to compute the zero Fourier

mode of the modular invariant modified Borel kernel E(
√
Nt; τ). This calculation is presented

in appendix F, where we derive an explicit formula in (F.8), here rewritten for convenience:

∫ 1
2

− 1
2

E(
√
Nt; τ)dτ1 =

2

e4t
√

Nπ/τ2 − 1
+ U(

√
Nt; τ2) . (6.90)

The function U(t; τ2) is given by either the contour integral representation (F.7) or as an infinite

sum over Bessel functions (F.9)-(F.10). Substituting this expression for the zero-mode in (6.89)

we arrive at

I(r)(N ;λ) = I(r)(λ) +N−1 Ĩ(r)(λ̃) , (6.91)

I(r)(λ) :=

∫
M

2

e2t
√
λ − 1

B[C(r)
P ](t) dt , (6.92)

Ĩ(r)(λ̃) :=

∫
M

U
(
t;
λ̃

4π

)
B[C(r)

P ](t) dt . (6.93)

Here we have introduced the dual ’t Hooft coupling λ̃ = (4πN)2/λ, and we have used the

identity U(
√
Nt; 4πN

λ
) = N−1U(t; λ̃

4π
), which follows easily from (F.7).
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Figure 6.1: Hankel contour γ in the complex t-plane circling around the branch-cut singularity
starting at t = 1.

If we plug this expression back into the full transseries representation (6.39), we obtain the

complete ’t Hooft limit expansion of the integrated correlator CN(τ):

I(N ;λ) :=

∫ 1
2

− 1
2

CN(τ) dτ1 =
∞∑
r=0

N2−2rI(r)(N ;λ) (6.94)

=
∞∑
r=0

N2−2r

∫
M

2

e2t
√
λ − 1

B[C(r)
P ](t) dt+

∞∑
r=0

N1−2r

∫
M

U
(
t;
λ̃

4π

)
B[C(r)

P ](t) dt .

We stress that thanks to our careful rewriting of the complete transseries (6.40), the N -

dependence has now been trivialised. Furthermore, as we will shortly demonstrate, the modular

invariant median resummation (6.57) naturally leads to the median resummation of the genus-r

large ’t Hooft coupling expansion, given by the contribution I(r)(λ) in (6.91), plus the median

resummation of the genus-r dual ’t Hooft coupling expansion, encoded in the second term

Ĩ(r)(λ̃) in (6.91). As already appreciated in [67], we note that modular invariance unifies in the

single expression (6.79), the seemingly different median ’t Hooft-limit and dual ’t Hooft-limit

resummations studied in [81] and [66].

To clarify these statements, let us separately consider the two terms in (6.91). Starting with

the analysis for I(r)(λ), we first rewrite the median resummation making use of (6.56),

I(r)(λ) =

∫ ∞±iϵ

0

2

e2t
√
λ − 1

B[C(r)
P ](t) dt ∓ 1

2

∫
γ

2

e2t
√
λ − 1

B[C(r)
P ](t) dt , (6.95)

where the Hankel contour γ is given in figure 6.1.

The first term in this expression can be easily computed by expanding the Borel transform

125



B[C(r)
P ](t) using the definition (6.45) and then integrating term by term using the identity

∫ ∞

0

2

e2t
√
λ − 1

tkdt = 2−kλ−
k
2
− 1

2Γ(k + 1)ζ(k + 1) , (6.96)

valid for k ≥ 0. In this way we arrive at the formal asymptotic power series expansion

∫ ∞±iϵ

0

2

e2t
√
λ − 1

B[C(r)
P ](t) dt ∼

∞∑
k=0

br,k ξ(2k + 3)
( λ
4π

)−k− 3
2
, (6.97)

where ξ(s) = π−s/2Γ(s/2)ζ(s) = ξ(1 − s) is the completed zeta function as before. For exam-

ple, substituting the r = 0 coefficients (6.36) or the r = 1 coefficients (6.68), one can check

that (6.97) reduces respectively to the standard genus-0 and genus-1 large ’t Hooft coupling

expansion of the integrated correlator presented in [81], cf. equations (5.26) and (5.28) of the

reference.

Alternatively, we note that

d

dt

[
2

e2t
√
λ − 1

]
= − 4

√
λ

4 sinh2(t
√
λ)
, (6.98)

hence we can integrate (6.97) by parts4 as

∫ ∞±iϵ

0

2

e2t
√
λ − 1

B[C(r)
P ](t) dt =

√
λ

∫ ∞±iϵ

0

1

4 sinh2(t
√
λ)

(
− 4

d

dt
B[C(r)

P ](t)
)
dt . (6.99)

Again, substituting the Borel transform (6.59) for r = 0 or the r = 1 counterpart (6.69),

it is easy to see that this expression reduces precisely to the corresponding modified Borel

resummation for the ’t Hooft genus expansion considered in [81].

An important difference between the current analysis and the complete genus-r large ’t

Hooft expansion is the absence in (6.97) of finitely many positive powers of λ which appear at

any fixed genus. These powers will be retrieved by analysing the large-λ perturbative expansion

of the “dual” ’t Hooft contribution (6.93).

The second term in (6.95) can again be computed from our general analysis, starting from

the singular behaviour (6.48) of the Borel transform B[C(r)
P ](t), along the Stokes direction t > 0.

4It is easy to check from (6.59) and (6.69) that integration by parts does not produce any boundary contri-
butions.
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To compute the contribution coming from the polar part of B[C(r)
P ](t), we simply need the

polylogarithm, Lik(x), identity

∮
|t|=1

2

e2t
√
λ − 1

1

(1− t)k
dt

2πi
= −2

(4λ)
k−1
2 Li1−k(e

−2
√
λ)

Γ(k)
, (6.100)

valid for k ∈ N, while to evaluate the contribution coming from the discontinuity of the loga-

rithmic singularity we first shift the contour of integration t→ t+ 1 and then use

∫ ∞

0

2

e2
√
λ(t+1) − 1

tk dt = 2(4λ)−
k+1
2 k!Lik+1(e

−2
√
λ) , (6.101)

valid for Re(k) > 0.

We then express the second term in (6.95) as

∓ 1

2

∫
γ

2

e2t
√
λ − 1

B[C(r)
P ](t) dt = ±i

∞∑
k=−3r−1

dr,k(4λ)
− k+1

2 Lik+1(e
−2

√
λ) , (6.102)

which, as anticipated, encodes all non-perturbative contributions from worldsheet instantons.

It is easy to check that if we plug in the above expression the r = 0 non-perturbative coef-

ficients (6.88), or similarly for the r = 1 (6.73), we retrieve the necessary non-perturbative

completions to the formal large-λ perturbative expansion (6.97), which had been obtained

previously in [66,81] via resurgence analysis applied directly to (6.97).

An analogous analysis can be carried out for the second contribution Ĩ(r)(λ̃). We again use

the decomposition (6.56) to rewrite equation (6.93) as

Ĩ(r)(λ) =

∫ ∞±iϵ

0

U
(
t;
λ̃

4π

)
B[C(r)

P ](t) dt∓ 1

2

∫
γ

U
(
t;
λ̃

4π

)
B[C(r)

P ](t) dt , (6.103)

with the same Hankel contour γ as shown in figure 6.1.

As before, the perturbative expansion at large-λ̃ is obtained from the first term in the above

equation. Similarly to the analysis of (6.97), we expand the Borel transform B[C(r)
P ](t) for t

small and integrate order by order using

∫ ∞

0

U
(
t;
λ̃

4π

)
tk dt =

Γ
(

k
2
+ 1
)
Γ
(

k
2

)
ζ(k)

4π
λ̃

1−k
2 , (6.104)
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valid for Re(k) > 1 and proven in appendix F. Given the above identity and the definition

(6.45) for the Borel transform, we arrive at the formal asymptotic power series expansion valid

for large-λ̃: ∫ ∞±iϵ

0

U
(
t;
λ̃

4π

)
B[C(r)

P ](t) dt ∼
∞∑
k=0

br,k ξ(2k + 2)
( λ̃
4π

)−k− 1
2
. (6.105)

Using (F.10), we rewrite (6.105) as a Borel resummation of a modified Borel transform

∫ ∞±iϵ

0

U
(
t;
λ̃

4π

)
B[C(r)

P ](t) dt =
∞∑
n=1

λ̃

π

∫ ∞±iϵ

0

n e−2nx
√

λ̃ B̂[C(r)
P ](x) dx , (6.106)

B̂[C(r)
P ](x) :=

∫ x

0

x

t
√
x2 − t2

B[C(r)
P ](t) dt . (6.107)

Substituting the r = 0 coefficients (6.36) or the r = 1 coefficients (6.68), one can check

that (6.105) reduces respectively to the dual ’t Hooft expansion at genus-0 or genus-1 of the

integrated correlator presented in [48, 66]. In particular, the integral representation (6.106) in

terms of a modified Borel transform5 (6.107) of the original B[C(r)
P ](t) is identical (modulo some

integration by parts) to the Borel integral-representation presented in [66] for the dual ’t Hooft

genus expansion.

As in the previous decomposition (6.95), we find that second term in (6.103) encodes non-

perturbative effects at large λ̃ and can be computed from our general analysis of the singular

behaviour (6.48) of the Borel transform B[C(r)
P ](t), along the Stokes direction t > 0. The polar

and logarithmic parts can be rewritten as

∓ 1

2

∫
γ

U
(
t;
λ̃

4π

)
B[C(r)

P ](t) dt

= ∓i
3r+1∑
k=1

dr,−k(k − 1)!

∮
|t|=1

U
(
t;
λ̃

4π

) 1

(1− t)k
dt

2πi
± i

∞∑
k=0

dr,k
k!

∫ ∞

0

U
(
t+ 1;

λ̃

4π

)
tk dt ,

(6.108)

with γ the same Hankel contour in figure 6.1. While it is easy to compute the polar part

directly from (F.9) or (F.10), we have not been able to find closed-form expressions akin to the

’t Hooft limit analogues (6.100) and (6.101).

5We note that the net effect of this modified Borel transform is to simply multiply the Taylor coefficients of

the Borel transform by a ratio of gamma functions, i.e.
∫ x

0
x

t
√
x2−t2

t2k+2 dt =
√
πΓ(k+1)

2Γ(k+ 3
2 )

x2k+2.
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However, it is a straightforward task to plug in the above expression the genus-0 non-

perturbative coefficients (6.88), or similarly for genus-1 (6.73), and upon expanding at large-

λ̃ retrieve the necessary non-perturbative completions to the formal perturbative expansion

(6.97), obtained in [48,66] via resurgence analysis applied directly to (6.105). This is expected

given that (6.106) relates the integral transform with kernel U(t;x) to a more standard Borel

resummation for the modified Borel transform B̂[C(r)
P ](x) given in (6.107). The non-perturbative

terms in the dual ’t Hooft genus expansion which are encoded in (6.108) can then be recovered

directly from the directional Borel resummation (6.106), precisely as discussed in [66].

As previously stated, our analysis shows that the modular invariant median resummation

(6.79) of the “r-subleading”-index non-holomorphic Eisenstein series (6.34), nicely encodes the

median resummation of the genus-r large ’t Hooft expansion and dual large ’t Hooft expansion.

As a last comment, we notice that when we substitute the dual ’t Hooft perturbative

expansion (6.105) in the complete correlator I(λ), given in (6.94), this can rewritten as a series

in positive powers of λ of the form:

∞∑
r′=0

N1−2r′
∞∑
k=0

br′,k ξ(2k + 2)
( λ̃
4π

)−k− 1
2
=

∞∑
r=0

N2−2r

r−1∑
k=0

br−k−1,k ξ(2k + 2)
( λ
4π

)k+ 1
2
, (6.109)

where we changed the summation variable r′ = r− k− 1, thus retrieving the “missing” powers

of λ from the complete perturbative genus-r contribution in the ’t Hooft limit, i.e. we have

recovered the known perturbative genus expansion:

I(N ;λ) ∼
∞∑
r=0

N2−2rT (r)
P (λ) , (6.110)

T (r)
P (λ) :=

r−1∑
k=0

br−k−1,k ξ(2k + 2)
( λ
4π

)k+ 1
2
+

∞∑
k=0

br,k ξ(2k + 3)
( λ
4π

)−k− 3
2
. (6.111)

This particular combination of positive and negative powers of λ is a direct consequence of

having rearranged the perturbative large-N expansion (6.32), where each non-holomorphic

Eisenstein series (6.15) at large τ2 contributes E∗(s; τ) ∼ ξ(2s)τ s2 + ξ(2s− 1) τ 1−s
2 .
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If we extend the definition of br,k for r ∈ N to negative values of k as

b̂r,k :=


br+k+1,−k−2 , k ∈ Z , k ≤ −2 ,

0 , k = −1 ,

br,k , k ∈ N ,

(6.112)

and make use of the functional equation ξ(s) = ξ(1− s), we can rewrite (6.111) in the uniform

manner

T (r)
P (λ) =

∞∑
k=−r−1

b̂r,k ξ(2k + 3)
( λ
4π

)−k−3
2
. (6.113)

Note that the would-be singular term ξ(1) does not appear in the above expression since it

multiplies b̂r,−1 = 0. Interestingly, the coefficients b̂r,k are in fact identical to the continuation

of br,k to negative values of k.

The first non-trivial example of this fact appears at genus r = 2 for which the coefficients

b2,k have been computed in [81] and are given by

b2,k =
(k + 1)2(20k2 + 208k + 219)Γ(k + 5

2
)Γ(k + 11

2
)

22k+12 45π
3
2Γ(k + 4)

. (6.114)

Given the definition (6.112) and the explicit genus-0 and genus-1 coefficients (6.36)-(6.68) we

obtain directly

b̂2,−1 = 0 , b̂2,−2 = b1,0 = − 39

2048
√
π
, b̂2,−3 = b0,1 =

15

32
√
π
, (6.115)

while all other b̂2,k = bk+3,−k−2 = 0 for k ≤ −4 since br,k with r < 0 vanishes. Surprisingly,

if we substitute in (6.114) negative values of k we find precisely these numbers, i.e. we have

b̂2,k = b2,k. We have confirmed that the equality b̂r,k = br,k for all k ∈ Z, in particular for k < 0,

seems to persist at higher genus r ≥ 3, however we do not have a proof of this statement, nor

we understand the reasons behind it.

Since the analysis for the large-N ’t Hooft expansion of the sector Hh
N(τ) for the second

integrated correlator is pretty much identical to the above discussion, we will not repeat it here.

However, we want to highlight that the same analytic continuation to negative k of the per-

turbative coefficients ar,k for the “r-subleading index” non-Holomorphic Eisenstein series sector

H(r)
h (N ; τ) still seems to hold. That is if we take the analytic expressions for the coefficients
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ar,k, which following [68] can be computed recursively in r from the br,k, and continue them

to negative values of k exactly as in (6.112), i.e. for all the values of r studied we find that

ar,−1 = 0 and ar,k = ar+k+1,−k−2 for k ∈ Z , k ≤ −2 where again ar,k = 0 for r < 0.

6.8 Transseries from spectral representation

In this section we show that the transseries (6.13) can also be neatly derived starting from the

spectral representation (6.23) given in terms of the spectral overlap,MN(s), presented in (6.31).

Firstly we show that the large-N expansion of (6.23) naturally leads to a Borel resummed ver-

sion of (6.40), thus demonstrating that the series over r ∈ N of all sectors N2−2rC(r)(N ; τ) is

indeed Borel summable as previously stated. From here we derive the spectral representation of

C(r)(N ; τ) for arbitrary r, thus reinterpreting the perturbative piece (6.34) as the polar contri-

butions to the spectral integral, while the non-perturbative terms (6.37) arise as contributions

from infinity. In this way, we produce a beautiful spectral-integral representation for the full

transseries (6.40).

6.8.1 Spectral representation at large-N

We start by analysing the large-N expansion of the spectral representation (6.23) for the in-

tegrated correlator CN(τ). Given the functional identity E∗(s; τ) = E∗(1 − s; τ) of the non-

holomorphic Eisenstein series (6.15) and the symmetry MN(s) = MN(1 − s) of the spectral

overlap (6.31), at the price of losing manifest symmetry under s↔ 1− s we simply write

CN(τ) =
N(N − 1)

4
+

∫
Re(s)= 1

2

M̃N(s)E
∗(s; τ)

ds

2πi
, (6.116)

M̃N(s) :=
21−2s(2s− 1)Γ

(
3
2
− s
)

√
π Γ(−s)

∫ 1

0

xs−3(1− x)N 2F1(s− 1, s; 2s|x)dx , (6.117)

where MN(s) =
1
2
(M̃N(s) + M̃N(1− s)).

By changing integration variable in (6.117) to x = 1 − e−µ with µ ∈ [0,∞), the spectral

overlap M̃N(s) takes immediately the form of a standard Borel resummation in N ,

M̃N(s) =
21−2s(2s− 1)Γ

(
3
2
− s
)

√
π Γ(−s)

∫ ∞

0

e−µNµsB(s;µ) dµ , (6.118)
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B(s;µ) := µ−3e−µ

(
1− e−µ

µ

)s−3

2F1

(
s− 1, s; 2s|1− e−µ

)
, (6.119)

where we notice for future reference that arg(µ) = 0 is not a Stokes direction for B(s;µ) and

that B(s;µ) = −B(s;−µ) as a consequence of the hypergometric function identity:

2F1(a, b; c|x) = (1− x)−a
2F1(a, c− b; c

∣∣ x

x− 1
) . (6.120)

As one can see by direct calculation, the simple expression (6.118) solves identically the Laplace

difference equation (6.29) after some integrations by parts.

The Borel transform B(s;µ) has an expansion for small µ of the form

B(s;µ) = µ−3 − s(s+ 5)

24(2s+ 1)
µ−1 +

(s+ 2)(s+ 3) (5s2 + 37s− 12)

5760(2s+ 1)(2s+ 3)
µ+O(µ3) . (6.121)

In particular, we notice the potentially singular behaviour of µs−3 at the origin of the Borel

µ-plane in (6.118). However, it is easy to check that the regularisation procedure discussed in

(E.10), amounts to regarding the term µs in (6.118) as a regulator to perform the Borel integral

term by term and only after integration taking s to lie on critical strip Re(s) = 1/2.

We then compute the µ-integral in (5.7) by expanding the Borel transform for small µ and

then integrate term by term arriving at the formal power series expansion

M̃N(s) =
2−2r∑
r=0

N2−2r−sM(r)(s) , (6.122)

where for the first two orders we have

M(0)(s) =
2−2s(2s− 1)2Γ(s)Γ(s+ 1)

√
πΓ
(
s+ 1

2

) tan(πs)

(s− 1)(s− 2)
, (6.123)

M(1)(s) = −2−2s−1s(s+ 5)(2s− 1)2Γ(s)Γ(s+ 1)

24
√
πΓ
(
s+ 3

2

) tan(πs) , (6.124)

while for r ≥ 2 we find the general form

M(r)(s) =
2−2s−4r(2s− 1)2Γ(s+ 2r)Γ(s+ 1)

√
π Γ
(
s+ r + 1

2

) P (r)(s) tan(πs) , (6.125)
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for some polynomials P (r)(s) of degree 2r − 2. For example we find

P (2)(s) =
5s2 + 37s− 12

90
, P (3)(s) = −35s4 + 462s3 + 1153s2 + 750s− 720

5670
,

P (4)(s) =
175s6 + 3745s5 + 24579s4 + 71327s3 + 84086s2 + 12648s− 60480

340200
. (6.126)

A key observation about the functions M(r)(s) is that they are all analytic functions in the

strip 1/2 < Re(s) < 3/2 and they all have a simple zero at s = 1, apart from the case r = 0

for which we have

lim
s→1

M(0)(s) = −1

2
. (6.127)

This means that if we substitute the large-N expansion for the spectral overlap (6.122) in the

integral representation (5.7), we can push the contour of integration to Re(s) = 1 + ϵ with

0 < ϵ < 1
2
.

Only for the case r = 0 we have to be careful, since by doing so we pick up the residue at

s = 1 coming from the non-zero limit lims→1M(0)(s) = −1
2
multiplying the simple pole of the

non-holomorphic Eisenstein series (6.15), which in our normalisation has residue

ress=1E
∗(s; τ) =

1

2
. (6.128)

This residue at s = 1, coming from the case r = 0, combines with the constant term N(N−1)/4

so that (5.7) can be rewritten as

CN(τ) =
N2

4
+

∞∑
r=0

N2−2r

∫
Re(s)=1+ϵ

M(r)(s)N−sE∗(s; τ)
ds

2πi
, (6.129)

with 0 < ϵ < 1
2
.

Few comments are in order at this point:

(i) The expansion in even powers of N (modulo the Mellin-like term N−s) is a direct con-

sequence of the previously noted fact that the Borel transform is an odd function of the

Borel variable µ;

(ii) By comparing the expansion (6.129) with (6.40) it appears manifest, and it is proven in

the next section, that M(r)(s)N−s must be the spectral overlap of C(r)(N ; τ);
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(iii) Once we identify (6.40) with the spectral representation for (6.129), we deduce, as pre-

viously stated, that the sum over r in (6.40) is Borel summable: the resummation over

r ∈ N of the asymptotic series of spectral overlaps (6.122) is understood via the standard

Borel transform (6.118).

We now move to show that (6.129) in fact provides the spectral representation of the modular

invariant transseries (6.40).

6.8.2 Large-N transseries from a spectral perspective

By comparing the large-N spectral representation (6.129) with the previously analysed modular

invariant transseries representation (6.40), we immediately see that the spectral representation

for each C(r)(N ; τ) must take the form

C(r)(N ; τ) =

∫
Re(s)=1+ϵ

M(r)(s)N−sE∗(s; τ)
ds

2πi
, (6.130)

where the spectral overlaps, M(r)(s), are precisely the ones we obtained from the large-N

expansion (6.122).

To prove that (6.130) is in fact correct, we relate this expression directly with the median

resummation formula (6.79), for example we show that when r = 0 the expression (6.130)

reduces identically to (6.66). To this end we make use of the integral representation (6.43) for

N−sE∗(s; τ), presently appropriate since Re(s) = 1 + ϵ, and we rewrite (6.130) as to obtain

C(r)(N ; τ) =

∫ ∞

0

E(
√
Nt; τ)

[ ∫
Re(s)=1+ϵ

(4t)2s−12Γ(s)M(r)(s)

Γ(2s)

ds

2πi

]
dt . (6.131)

By comparing this expression with the median resummation formula (6.79), we conclude that

for t > 0 we must have

Re
(
B[C(r)

P ](t)
)
=

∫
Re(s)=1+ϵ

(4t)2s−12Γ(s)M(r)(s)

Γ(2s)

ds

2πi
, (6.132)

i.e. the Borel transform for the median resummation is related to the inverse Mellin transform

of the spectral overlap M(r)(s).

For concreteness, let us consider the explicit cases r = 0 presented in (6.123), for r > 0 the
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story is identical with just slightly different expressions (6.124)-(6.125). Starting from (6.123),

we need to compute:

∫
Re(s)=1+ϵ

(4t)2s−12Γ(s)M(0)(s)

Γ(2s)

ds

2πi
=

∫
Re(s)=1+ϵ

t2s−14Γ(s− 2)Γ(s+ 1)

Γ
(
s− 1

2

)2 tan(πs)
ds

2πi
. (6.133)

These integrals can be understood as inverse Mellin transforms in the s variable and can be

evaluated by closing the contour of integration in a suitable manner. For 0 < t < 1 we must

close the contour of integration to the right half-plane Re(s) > 1, hence picking up the simple

poles coming from tan(πs) and located at s = n + 1/2 with n ∈ N>0. Similarly, for t > 1 the

contour of integration must be closed in the left half-plane Re(s) < 0. The poles from tan(πs)

are now compensated by the gamma functions at denominator, and we are left with the simple

poles located at s = −n with n ∈ N>0 coming from the double poles of the gamma functions

at numerator combined with the simple zeroes of tan(πs). In both cases it is possible to show

that the contribution at infinity vanishes.

Proceeding as just described, we see that (6.133) is given by

∫
Re(s)=1+ϵ

(4t)2s−12Γ(s)M(0)(s)

Γ(2s)

ds

2πi
=

−6t2 2F1

(
−1

2
, 5
2
; 1| t2

)
, 0 < t < 1 ,

− 3
8t3 2F1

(
5
2
, 5
2
; 4 | t−2

)
, t ≥ 1 .

(6.134)

Since we want to show that the spectral representation (6.131) coincides with the median

transseries resummation, then for r = 0 we must have that (6.134) equals (6.66). In particular,

we see that (6.134) is identical to the Borel transform B[C(0)](t) given in (6.59) for 0 < t < 1.

Furthermore, as already discussed in detail we know that B[C(0)](t) has a branch-cut singularity

starting at t = 1 with a discontinuity (6.60) which is purely imaginary for t > 1. From the

integral representation for the hypergeometric function we can then derive that for t ∈ [0,∞)

we have

Re
(
B[C(0)](t)

)
=

1

2
(−6t2) lim

ϵ→0+

[
2F1

(
−1

2
,
5

2
; 1|(t+ iϵ)2

)
+ 2F1

(
−1

2
,
5

2
; 1|(t− iϵ)2

)]
=

 −6t2 2F1

(
−1

2
, 5
2
; 1| t2

)
, 0 < t < 1 ,

− 3

8t3
2F1

(
5
2
, 5
2
; 4 | t−2

)
, t ≥ 1 ,

(6.135)
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hence we conclude that indeed (6.134) is identical to Re
(
B[C(0)](t)

)
. For higher values of

r > 0, we have checked that indeed the spectral representation (6.130) coincides precisely with

the modular invariant median resummation (6.79) for C(r)(N ; τ).

Before concluding, we also want to clarify how to extract directly from the spectral rep-

resentation (6.130) the formal transseries expansion (6.41) in terms of the perturbative, non-

holomorphic Eisenstein series part (6.34) and the non-perturbative sector (6.39). We again

focus concretely on the case r = 0, although everything we say can be applied to arbitrary r.

Substituting the expression (6.123) for M(0)(s) in (6.130) and massaging some of the gamma

functions we arrive at

C(0)(N ; τ)=

∫
Re(s)=1+ϵ

22−4sΓ(2s)

Γ(s)

2Γ(s− 2)Γ(s+ 1)

Γ
(
s− 1

2

)2 tan(πs)N−sE∗(s; τ)
ds

2πi
. (6.136)

The perturbative part (6.35) is clearly obtained by formally closing the contour of integration

to the right half-plane, Re(s) > 1, and summing over minus (due to the orientation of the

integration contour) the residues from the poles coming from tan(πs) and located at s = k+3/2

with k ∈ N. A simple residue calculation immediately shows

−ress=k+ 3
2

[22−4sΓ(2s)

Γ(s)

2Γ(s− 2)Γ(s+ 1)

Γ
(
s− 1

2

)2 tan(πs)N−sE∗(s; τ)
]
=b0,kN

− 3
2
−kE∗(k + 3

2
; τ),

(6.137)

for k ∈ N and where the coefficients b0,k are exactly the ones given in (6.36).

While the formal sum over all residues on the positive real s-axis reproduces the perturbative

series C(0)
P (N ; τ) in (6.35), the non-perturbative sector C(0)

NP (N ; τ) in (6.87) is encoded in the

formal contribution at infinity. This can be made explicit by first substituting in (6.136) the

lattice sum representation (6.15) for the non-holomorphic Eisenstein series E∗(s; τ), and then

evaluating the s-integral via a saddle-point analysis. One can easily see that at large-N the

spectral representation (6.136) behaves as

22−4sΓ(2s)Γ(s− 2)Γ(s+ 1)

Γ
(
s− 1

2

)2 (NYmn(τ))
−s

∼ exp
[
2s
(
log s− log(2

√
NYmn(τ))− 1

)]4√π√
s

(
1 +

55

24s
+O(s−2)

)
. (6.138)
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In the limit N ≫ 1, the argument of the exponential function has a saddle point located at

s = s⋆ with |s⋆| ≫ 1:

s⋆ := 2
√
NYmn(τ) . (6.139)

By evaluating (6.138) at the saddle point s = s⋆, we find that the leading growth is given by

exp(−4
√
NYmn(τ)), i.e. precisely the exponential suppression factor of the non-perturbativeDN(s; τ)

modular functions (6.17).

We notice furthermore, that the term tan(πs) in (6.136) is the realisation of the transseries

parameter σ in (6.65). If we evaluate this factor at the saddle location (6.139), we see that it

reduces to

tan(πs⋆)
|N |≫1−→

+i , arg(N) > 0 ,

−i , arg(N) < 0 .
(6.140)

It is straightforward to expand around the saddle point by changing integration variables

to

s = s⋆ + i (NYmn)
1
4 δs , (6.141)

so that the integral representation (6.136) reduces at large-N to a gaussian integral in the

fluctuations δs timed by an infinite formal series of perturbative corrections, which can be

evaluated to arbitrary high order in (NYmn)
−1 thus recovering the non-perturbative sector

C(0)
NP (N ; τ) previously obtained in (6.87) via resurgent analysis arguments.

We conclude with a quicker and suggestive, albeit not completely rigorous way of showing

that the non-perturbative coefficients dr,k of the non-perturbative sector (6.78) are encoded

directly at the level of spectral overlap M(r)(s). Focusing again on the showcase example

where r = 0, we analyse the integrand of the spectral decomposition (6.136) and we expand it

at large-s in the following manner,

22−4sΓ(2s)

Γ(s)

2Γ(s− 2)Γ(s+ 1)

Γ
(
s− 1

2

)2 =
22−4sΓ(2s)

Γ(s)

(
∞∑
ℓ=0

δℓ (2s)
−ℓ

)
, (6.142)

where the first few δℓ coefficients are given by

δ0 = 2 , δ1 = 9 , δ2 =
153

4
. (6.143)

We find that the non-perturbative coefficients d0,k presented in (6.87) are in fact encoded
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entirely in the above expression via

d0,k =
k+1∑
ℓ=0

S
(ℓ)
k+1 δℓ , (6.144)

where S
(ℓ)
k denotes the Stirling number of the first kind. This identity follows from the properties

of the Stirling numbers: the particular linear combination of the coefficients δℓ defined in (6.144)

allows us to rewrite (6.142) in the alternative large-s expansion

22−4sΓ(2s)

Γ(s)

(
∞∑
ℓ=0

δℓ (2s)
−ℓ

)
=

22−4sΓ(2s)

Γ(s)

(
∞∑

k=−1

d0,k

k+1∏
i=1

(2s− i)−1

)

=
∞∑

k=−1

d0,k
22−4sΓ(2s− k − 1)

Γ(s)
. (6.145)

As a last step, we notice that the particular factor in the summand,

22−4sΓ(2s− k − 1)

Γ(s)
,

is precisely the spectral overlap with the non-holomorphic Eisenstein series of the modular

invariant function N− k+1
2 DN(

k+1
2
; τ), computed in [86] and for general index given by

DN(p; τ) = ⟨DN(p)⟩+
∫
Re(s)= 1

2
+ϵ

22−4sΓ(2s− 2p)

Γ(s)
Np−sE∗(s; τ)

ds

2πi
. (6.146)

A similar analysis can be carried out starting from M(r)(s) with r ≥ 1 to retrieve the non-

perturbative coefficients dr,k. While the expansion (6.145) is rather suggestive, we stress that

this result does not quite show how to rigorously obtain the non-perturbative sector (6.78) from

the spectral representation (6.136), unlike the previous two arguments exploiting either median

resummation (6.132) or saddle point analysis.

We find it rather beautiful how the simple spectral representation (6.130) encodes in these

various interesting ways the perturbative non-holomorphic Eisenstein series part (6.34), the non-

perturbative DN(p; τ) sector (6.39) and, as a matter of fact, the complete median resummation

transseries representation (6.41).
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CHAPTER 7

Conclusions

In this thesis we have discussed the interplay between modularity and resurgence within a string

theory context. We have seen how the two ideas are complementary and provide information

about non-perturbative physics in distinct yet interrelated ways. In chapters 2 and 3 we supplied

the mathematical background needed to understand the thesis. The framework behind the

resurgence program was introduced and elementary results from the theory of modular functions

and forms were discussed.

In chapter 4 we discussed Modular Graph Functions and how a subclass of them could be

expressed in terms of generalised Eisenstein series with integer weights. We applied Cheshire-

cat resurgence to the Fourier zero-mode of this subclass of generalised Eisenstein series and

demonstrated that median resummation gives the correct answer. Non-trivial cancellations in

the limit y → 0 were also observed - a clear manifestation of the modular origin for the function

under study.

In chapter 5 we discussed generalised Eisenstein series in a more universal way that also

includes applications to the low energy effective action of Type IIB string theory. We showed

that the spectra relevant for both MGFs and also higher-derivative corrections may be embed-

ded in the same space of modular functions, and additionally rederived many results from the

perspective of SL(2,Z) spectral theory.
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Finally, in chapter 6 we described a modular invariant construction of transseries relevant to

a large N study of integrated correlators in N = 4 SYM. The resummation in this framework

introduces a novel class of modular functions that serve the rôle of non-perturbative completion

- their exact form fixed by the divergence of the perturbative piece. This method also gives

elementary access to the ’t Hooft limit, of particular relevance to holographic applications.

Both modularity and resurgence are likely to continue playing an important rôle in high

energy theory, since they allow us to see beyond the limitation of perturbation theory. Although

we have not developed a general theory linking the the two ideas, this thesis provides ample

evidence they are connected and a unified approach gives powerful tools to study systems of

physical interest.
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APPENDIX A

Fourier expansions of Poincaré series

Here, we collect some standard results (see e.g. [9]) on relating the Fourier series of a Poincaré

series to that of its seed, following the notation of [31,34]. We start from the relation

Φ(τ) =
∑

γ∈B(Z)\SL(2,Z)

φ(γ · τ) , (A.1)

between the Poincaré series Φ(τ) and its seed φ(τ) that have the respective Fourier series

Φ(τ) =
∑
ℓ∈Z

aℓ(τ2)e
2πiℓτ1 , φ(τ) =

∑
ℓ∈Z

cℓ(τ2)e
2πiℓτ1 , (A.2)

with τ1 = Re(τ) and τ2 = Im(τ) as usual. The relation between the Fourier coefficients aℓ(τ2)

and cℓ(τ2) is given by [9, 13]:

aℓ(τ2) = cℓ(τ2) +
∞∑
d=1

∑
n∈Z

S(n, ℓ; d)

∫
R
e
−2πiℓω−2πin ω

d2(τ22+ω2) cn

( τ2
d2(τ 22 + ω2)

)
dω . (A.3)

In the above formula, S(n, ℓ; d) denotes the Kloosterman sum

S(n, ℓ; d) =
∑

r∈(Z/dZ)×
e2πi(nr+ℓr−1)/d , (A.4)
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where r ∈ (Z/dZ)× denotes the finite sum over all 0 ≤ r < d that are coprime with d. If r is

coprime with d it has a multiplicative inverse, denoted by r−1, in (Z/dZ)×.

The main focus for us is the Fourier zero mode a0(τ2) for which (A.3) specialises to

a0(τ2) = c0(τ2) +
∞∑
d=1

∑
n∈Z

∑
r∈(Z/dZ)×

e2πinr/d
∫
R
e
−2πin ω

d2(τ22+ω2) cn

( τ2
d2(τ 22 + ω2)

)
dω

= I0(τ2) + I(τ2) . (A.5)

As indicated in the second line it is useful to separate the contributions of c0 from those of the

cn with n ̸= 0, where we defined (changing also variables according to ω = τ2 t)

I0(τ2) = c0(τ2) + τ2

∞∑
d=1

∑
r∈(Z/dZ)×

∫
R
c0

( 1

τ2d2(1 + t2)

)
dt ,

I(τ2) = τ2

∞∑
d=1

∑
n ̸=0

∑
r∈(Z/dZ)×

e2πinr/d
∫
R
e
−2πn it

τ2d
2(1+t2) cn

( 1

τ2d2(1 + t2)

)
dt . (A.6)

In this appendix we only consider Poincaré seeds of a restricted functional form. More

precisely, all seeds relevant for MGFs at two-loop order are given by (finite) linear combination

of the basic objects

c0(y) = (πτ2)
r = yr , (A.7a)

cℓ(y) = σa(|ℓ|)(4π|ℓ|)bτ r2 e−2π|ℓ|τ2 = σa(|ℓ|)(4π|ℓ|)b(y/π)re−2|ℓ|y , (A.7b)

with a, b, r ∈ C and y = πτ2. Their contributions to the Laurent polynomial in a0(τ) were

found in [31] to be

I0(r|y) = yr +
(−16)1−r(2r)!(2r−3)!

B2r(r−2)!(r−1)!
ζ(2r−1)y1−r , (A.8a)
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I(a, b, r|y) = 23−2r+2bπ

Γ(r)

(y
π

)1+b−r
[
y

π2

Γ(b+1)Γ(2r−b−2)

Γ(r−b−1)

ζ(2r−a−2b−2)ζ(1−a)
ζ(2r−a−2b−1)

+
( y
π2

)a+1 Γ(a+b+1)Γ(2r−a−b−2)

Γ(r−a−b−1)

ζ(2r−a−2b−2)ζ(a+1)

ζ(2r−a−2b−1)

+

(
π2

y

)b∑
n≥0

(
−π2

y

)n
Γ(2r+n−1)

n! · Γ(r+n)
(A.8b)

× ζ(−b−n)ζ(−a−b−n)ζ(2r−a−b+n−1)ζ(2r−b+n−1)

ζ(2r+2n)ζ(2r−a−2b−1)

]
,

In view of (3.20), the result I0 for a seed c0(y) = yr is proportional to that of the standard

non-holomorphic Eisenstein series Er.

The above results (A.8) were obtained originally in the range of parameters where the

integrals and series converge. Nevertheless, we shall also require their values at analytically

continued parameter values and refer the reader to [31,34] for details on these analytic contin-

uations.
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APPENDIX B

A Mellin transform Lemma

In this appendix we will derive the asymptotic expansion near y → 0 of the series:

Da,b;c(y) =
∞∑
n=1

σa(n)σb(n)

nc
e−ny, (B.1)

with a, b, c ∈ C while y > 0. Notice that this series is absolutely convergent for any y > 0 since

|σa(n)σb(n)n−c| ≤ n2+|a|+|b|+|c|. Furthermore, using σa(n) = naσ−a(n) we have

Da,b;c(y) = D−a,b;c−a(y) = Da,−b;c−b(y) = D−a,−b;c−a−b(y) .

To proceed, we wish to evaluate the Mellin transform

Ma,b;c(t) := M[Da,b;c](t) =

∫ ∞

0

Da,b;c(y)y
t−1dy. (B.2)

Since the series (B.1) is exponentially suppressed as y → ∞, we conclude that for sufficiently

large Re(t) > t0 the integral converges absolutely. Hence, when Re(t) > t0, we can commute

the sum with the integral and integrate term by term. After using the standard Ramanujan
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Figure B.1: Deformed t-integration contour for (B.4) and pole structure for the Mellin transform
Ma,b;c(t). For a, b, c ∈ C generic, there are three infinite families of poles: t = −n , n ∈ Z≥0, in
purple, t = −n− c+ a+b

2
, n ∈ Z>0, in green and t = 1

4
− c+ a+b

2
+ iρn

2
in black, as well as four

isolated poles for t ∈ {1− c, 1 + a− c, 1 + b− c, 1 + a+ b− c} in blue.

identity (4.33) we obtain

Ma,b;c(t) =
Γ(t)ζ(t+ c)ζ(t+ c− a)ζ(t+ c− b)ζ(t+ c− a− b)

ζ(2t+ 2c− a− b)
. (B.3)

Although we derived this equation working in the wedge Re(t) > t0, we have that (B.3) is

actually the unique meromorphic extension of Ma,b;c(t) to the whole complex plane t ∈ C.

The asymptotic expansion as y → 0 of Da,b;c(y) is uniquely fixed by the singularities in t of

its Mellin transform Ma,b;c(t). To make this more precise we consider Mellin inversion formula

Da,b;c(y) = M−1[Ma,b;c](y) =
1

2πi

∫ t1+i∞

t1−i∞
Ma,b;c(t)y

−tdt, (B.4)

where t1 > t0 is arbitrary. The asymptotic expansion as y → 0 of (B.4) can now be computed

by closing the contour into a loop with Re(t) < 0, as depicted in figure B.1, and evaluating it

using Cauchy’s residue theorem (and discarding exponentially suppressed corrections e−4π2/y).

Note that the Mellin transform (B.3) is a meromorphic function with an infinite number

of poles for generic values of a, b, c. Hence from (B.4), we expect the expansion for y → 0
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of Da,b;c(y) to be a non-truncating asymptotic expansion. It is easy to see that for generic

a, b, c ∈ C the Mellin transform (B.3) has only simple poles at locations:

• t = −n , n ∈ Z≥0, from the gamma function in the numerator;

• t ∈ {1− c, 1 + a− c, 1 + b− c, 1 + a+ b− c}, from the zeta functions in the numerator;

• t = −n− c+ a+b
2
, n ∈ Z>0, from the trivial zeros of the zeta function in the denominator.

• t = 1
4
− c+ a+b

2
+ iρn

2
, from the non-trivial zeros of the zeta function in the denominator

(the Riemann zeta function ζ(s) has non-trivial zeros at s = 1
2
+ iρn with ρn ∈ R if the

Riemann hypothesis is correct).

Nevertheless, for non-generic values of the parameters a, b, c, we can have that zeros at

negative even integers of the zeta functions in the numerator, or the pole at one of the zeta

function in the denominator, can cancel against the poles listed above thus leaving a smaller

number of perturbative terms. Note that for non-generic values of a, b, c it is also possible

to generate higher order poles, thus leading to logarithmic terms, log y, in the asymptotic

expansion as y → 0 of Da,b;c(y).

Assuming generic a, b, c ∈ C, we can compute (B.4) via residues calculus deforming the

contour of integration as depicted in Figure B.1 and derive the asymptotic expansion as y → 0

of Da,b;c(y) given by:

Da,b;c(y) ∼ (B.5)

yc−1Γ(1− c)ζ(1− a)ζ(1− b)ζ(1− a− b)

ζ(2− a− b)
+ yc−a−1Γ(1 + a− c)ζ(1 + a)ζ(1− b)ζ(1 + a− b)

ζ(2 + a− b)

+ yc−b−1Γ(1 + b− c)ζ(1− a)ζ(1 + b)ζ(1− a+ b)

ζ(2− a+ b)

+ yc−a−b−1Γ(1 + a+ b− c)ζ(1 + a)ζ(1 + b)ζ(1 + a+ b)

ζ(2 + a+ b)

+
∑
ρn

Γ(t)ζ(t+ c)ζ(t+ c− a)ζ(t+ c− b)ζ(t+ c− a− b)

2ζ ′(1
2
+ iρn)

y−t
∣∣∣
t= 1

4
−c+a+b

2
+ iρn

2

+
∞∑
n=0

(−y)n ζ(c− n)ζ(c− a− n)ζ(c− b− n)ζ(c− a− b− n)

n!ζ(2c− 2n− a− b)

+
∞∑
n=1

yc−
a+b
2 (−4π2y)n

Γ(a+b
2

− c− n)ζ(a+b
2

− n)ζ( b−a
2

− n)ζ(a−b
2

− n)ζ(−a+b
2

− n)

(2n)!ζ(2n+ 1)
.
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This result is closely related to the small-τ2 asymptotics of the Fourier zero-mode of the gener-

alised Eisenstein series, shown in (5.82) yet derived using quite a different approach. Note that

for generic a, b, c ∈ C, the final two sums over n are asymptotic, factorially growing series. An

interesting exercise would be to use resurgent analysis to derive the exponentially suppressed

corrections e−4π2k/y, with k ∈ Z>0, from a median resummation of such series. As a consistent,

full-circle analysis the large-y expansion of such small-y non-perturbative corrections must re-

produce back the starting large-y exponentially suppressed series (B.1). The presence of these

terms was established using saddle point methods in chapter 5.
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APPENDIX C

Convergence of the Poincaré series for Υ (a, b, r, s)

In this appendix we discuss the region in parameter space, (a, b, r, s), for which the Poincaré

series (5.12) converges absolutely. This will be achieved by constructing an auxiliary Poincaré

series which has the same domain of absolute convergence but it is easier to analyse.

We start by observing that under a modular transformation γ ∈ SL(2,Z) the magnitude of

the seed functions υ (a, b, r, s|τ) is bounded from above by an x-independent function

|υ (a, b, r, s|γ · τ) | ≤
∑
m ̸=0

∣∣∣[σa(m)|m|b−
1
2 τ

r+ 1
2

2 Ks− 1
2
(2π|m|τ2)

]
γ

∣∣∣ ,
simple consequence of triangle inequality combined with

∣∣∣[e2πiτ1]
γ

∣∣∣ = 1 .

Motivated by this observation, we define the auxiliary Poincaré series

ψ(a, b, r, s|τ2) :=
∞∑

m=1

σa(m)mb− 1
2 τ

r+ 1
2

2 Ks− 1
2
(2πmτ2) , (C.1)

Ψ(a, b, r, s|τ) :=
∑

γ∈B(Z)\SL(2,Z)

[
ψ(a, b, r, s|τ2)

]
γ
, (C.2)
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and notice that the auxiliary Poincaré series (C.2) converges absolutely if and only if the

original Poincaré series (5.12) does.

We continue by showing that (C.2) can be written in terms of a contour integral thus

manifesting the convergence properties of the Poincaré series. Given a function f(τ2) we define

its Mellin transform as

M[f ](t) :=

∫ ∞

0

f(τ2) τ
t
2

dτ2
τ2

, (C.3)

and proceed to compute the Mellin transform of our new seed function

ψ̃(a, b, r, s|t) := M[ψ(a, b, r, s)](t) =

∫ ∞

0

ψ(a, b, r, s|τ2) τ t2
dτ2
τ2

(C.4)

=
1

4πt+r+ 1
2

Γ
(t+ r + 1− s

2

)
Γ
(t+ r + s

2

)
ζ(t+ r + 1− b)ζ(t+ r + 1− a− b) ,

using the identities

∫ ∞

0

Ks(y)y
bdy = 2b−1Γ

(b+ 1− s

2

)
Γ
(b+ s+ 1

2

)
, (C.5)

∞∑
m=1

σa(m)mb = ζ(−a− b)ζ(−b) . (C.6)

The Mellin transform (C.4) is well-defined in the strip

Re(t) > α = max
(
Re(s− r − 1),Re(−s− r),Re(b− r),Re(a+ b− r)

)
. (C.7)

We can now apply Mellin inversion formula to obtain the integral representation

ψ(a, b, r, s|τ2) = M−1[ψ̃(a, b, r, s)](τ2) =

∫ β+i∞

β−i∞
ψ̃(a, b, r, s|t) τ−t

2

dt

2πi
, (C.8)

where β is an arbitrary constant such that β > α. The reason to derive (C.8) is that all of

the explicit τ2 dependence has now been reduced to the simple term τ−t
2 . At this point we can

easily perform the Poincaré series (C.2) arriving at

Ψ(a, b, r, s|τ) =
∫ β+i∞

β−i∞
ψ̃(a, b, r, s|t)E(−t; τ) dt

2πi
. (C.9)

The absolute convergence of the auxiliary Poincaré series (C.2), and hence of the original
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Poincaré series (5.12), is then equivalent to understanding the conditions for which the Poincaré

series of the integral representation (C.8) is absolutely convergent. This question is much easier

to answer: with (C.8) the problem has been reduced to the convergence of the Poincaré series

for Eisenstein series (3.20). We conclude that absolute convergence of (C.2) and (5.12) is

guaranteed whenever

Re(−t) = −β > 1 ⇒ α < β < −1 ,

which, upon use of the condition (C.7) for a well-defined Mellin transform, reproduces precisely

the domain in parameters space (5.13) stated in the main text

min
(
Re(r + 1− s),Re(r + s),Re(r − b),Re(r − a− b)

)
> 1 .

It is interesting to note that the integral representation (C.9) implies that the spectral

overlap (Ψ(a, b, r, s), ϕn) vanishes for all Maass cusp forms ϕn(z); such a result is not expected

to hold for the more complicated Υ (a, b, r, s).
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APPENDIX D

Mellin-Barnes representation

In this appendix we derive a Mellin-Barnes representation for the Fourier zero-mode Υ0(a, b, r, s|y),

starting from the general integral representation (A.5) specialised to the seed function (5.11)

under consideration. Hence we start by considering

Υ0(a, b, r, s|τ2) (D.1)

=
∞∑
d=1

∑
m ̸=0

S(m, 0; d)

∫
R
e
−2πim ω

d2(ω2+τ22 )σa(m)|m|b−
1
2

( τ2
d2(ω2 + τ 22 )

)r+ 1
2
Ks− 1

2

( 2π|m|τ2
d2(ω2 + τ 22 )

)
dω.

The Bessel function can now be substituted by its Mellin-Barnes integral representation

Ks(y) =
(y
2

)s ∫ α+i∞

α−i∞
Γ(t)Γ(t− s)

(y
2

)−2t dt

4πi
, (D.2)

where α is a real parameter such that α > max
(
Re(s), 0

)
. To perform the integral over ω we

furthermore expand the exponential as

e
−2πim ω

d2(ω2+τ22 ) =
∞∑
k=0

1

k!

( −2πimω

d2(ω2 + τ 22 )

)k
. (D.3)

Substituting both the Mellin-Barnes representation for the Bessel function and the above
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convergent expansion in (D.1), we obtain

Υ0(a, b, r, s|τ2) =
∞∑
d=1

∑
m ̸=0

∞∑
k=0

∫
R

∫ α+i∞

α−i∞
S(m, 0; d)σa(m)|m|b−

1
2

( τ2
d2(ω2 + τ 22 )

)r+ 1
2

( −2πimω

d2(ω2 + τ 22 )

)k( π|m|τ2
d2(ω2 + τ 22 )

)s−2t− 1
2 Γ(t)Γ(t− s+ 1

2
)

k!

dt dω

4πi
. (D.4)

The integral over ω can be performed

∫
R

ωk

(ω2 + τ 22 )
k+r+s−2t

dω =
[1 + (−1)k]τ 4t+1−k−2r−2s

2 Γ(k+1
2
)Γ(k−1

2
+ r + s− 2t)

2Γ(k + r + s− 2t)
, (D.5)

provided that the integrand falls-off sufficiently fast as ω → ±∞, which in turns requires the

parameter α to be bounded from above by 4α < k + 2Re(r + s)− 2.

Under the conditions (5.13) for absolute convergence of the Poincaré series, we can easily

see that for all k ∈ N the constraints on the parameter α:

max
(
Re(s), 0

)
< α <

k + 2Re(r + s)− 1

4
,

always admit a non-vanishing strip of allowed integration contours in t.

At this point, we focus on the series in m, d and k. Firstly, given the explicit expression

(A.4) for the Kloosterman sum S(m, 0; d) we use that r ∈ (Z/dZ)× implies −r ∈ (Z/dZ)× to

derive S(m, 0; d) = S(−m, 0; d). We can then replace the sum over all non-zero integers m by

twice the sum over the positive integers m > 0. Secondly, it is possible to evaluate explicitly

the sum over d, which takes the form of a well-known Dirichlet series for the Ramanujan sum

S(m, 0; d),
∞∑
d=1

S(m, 0; d)

ds̃
=
σ1−s̃(m)

ζ(s̃)
, (D.6)

specialised to s̃ = 2r+2k+2s−4t. Finally, we note that the term [1+(−1)k] in the numerator

of (D.5) restricts the sum over k to only run over even integers 2k.

When the dust settles and after performing the change of variables t→ t+r+s−1
2

, we are left

with the expression
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Υ0(a, b, r, s|τ2) (D.7)

=
∞∑

m=1

∞∑
k=0

∫ 1
2
+i∞

1
2
−i∞

σa(m)σ2t−4k−1(m)

mt+r−2k−b

(91)kπ2k+1−r−tΓ(k+ 1
2
−t)Γ

(
t+r−s

2

)
Γ
(
t+r+s−1

2

)
Γ(2k + 1− t)ζ(4k + 2− 2t)k!

τ t−2k
2

dt

4πi
.

The next sum to evaluate is that over k. To this end, we begin by making the change of

variable t→ t′ = t−2k, thus shifting the contour of integration from Re(t) = 1
2
to Re(t′) = 1

2
−2k

and, after having changed the integration variable back to t, we are left with

Υ0(a, b, r, s|τ2) (D.8)

=
∞∑

m=1

∞∑
k=0

∫ 1
2
−2k+i∞

1
2
−2k−i∞

σa(m)σ2t−1(m)

mt+r−b

(91)kπ19t9rΓ(1
2
−k−t)Γ( t+2k+r−s

2
)Γ( t+2k+r+s−1

2
)

Γ(1− t)ζ(2− 2t)k!
τ t2

dt

4πi
.

We would like to translate the shifted integration contour back to its original position at

Re(t) = 1
2
, however, additional poles originating from Γ(1

2
− k − t) appear at t = 1

2
− ℓ, with

ℓ ∈ N and 0 < ℓ ≤ k. Although the shifted contour cannot be moved back immediately to its

initial place, we can nevertheless rewrite it as a sum of two different contours: the original one

along Re(t) = 1
2
and a new contour encircling these new poles along the negative t-axis. As

depicted in figure D.1, these two contours can be connected at infinity to form a single auxiliary

contour of integration C which is independent from the summation variable k. We exchange

the sum over k with the integral over C and perform the sum over k

∞∑
k=0

(−1)kΓ(1
2
− k − t)Γ(2k+r+t−s

2
)Γ(2k+r+s+t−1

2
)

k!
(D.9)

=
sin [π(r − t)] + sin (πs)

2 sin(πr) cos(πt)

Γ
(
r+1−s−t

2

)
Γ
(
r+s−t

2

)
Γ
(
t+r−s

2

)
Γ
(
t+r+s−1

2

)
Γ(r)

.

We are then left with the expression

Υ0(a, b, r, s|τ2) =
∑
m>0

∫
C

(sin [π(r − t)] + sin (πs)

2 sin(πr) cos(πt)

)(σa(m)σ2t−1(m)

mt+r−b

)
(D.10)

×
Γ
(
r+1−s−t

2

)
Γ
(
r+s−t

2

)
Γ
(
t+r−s

2

)
Γ
(
t+r+s−1

2

)
πrΓ(r)ξ(2− 2t)

τ t2
dt

4πi
.
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Figure D.1: On the left we show the auxiliary integration contour C and on the right the
deformed contour. The poles from the gamma functions are depicted in purple, from the zeta
functions in green and from the trigonometric functions in black.

Since the integration contour C is closed, the integral is uniquely fixed by the residues at

the poles in the interior of C. The only poles situated in the interior of the contour C are

located at t = −2n + s − r and t = −2n + 1 − s − r for n ∈ N and come from the last two

gamma functions at numerator in the above integrand. Furthermore, we notice that at these

pole locations the ratio of trigonometric factors in (D.10) always evaluates to 1. We conclude

that this ratio of trigonometric terms can be dropped from the contour integral (D.10) without

changing the result

Υ0(a, b, r, s|τ2) =
∑
m>0

∫
C

(σa(m)σ2t−1(m)

mt+r−b

)Γ( r+1−s−t
2

)
Γ
(
r+s−t

2

)
Γ
(
t+r−s

2

)
Γ
(
t+r+s−1

2

)
πrΓ(r)ξ(2− 2t)

τ t2
dt

4πi
.

(D.11)

Since the trigonometric factors have been removed, we have that the previously mentioned

poles which were located on the negative t-axis at t = 1
2
− ℓ, with ℓ ∈ N are no longer present in

(D.11). As depicted in figure D.1, we are now free to deform the auxiliary contour of integration

C to an infinite semi-circle. The contribution from the circle at infinity vanishes and the only

non-trivial contribution to the integral comes from the line Re(t) = 1
2
, hence we have managed

to restore the original contour of integration.

Finally, we turn to the sum over m. We notice that at large-m the summand is bounded by

∣∣∣σa(m)σ2t−1(m)

mt+r−b

∣∣∣ = O
(
m−[Re(r−b)−max(Re(a),0)]

)
,
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and, thanks to the conditions (5.13) for the absolute convergence of the Poincaré series, we can

easily see that Re(r−b)−max
(
Re(a), 0

)
> 1 for the range of parameters considered, hence this

sum converges absolutely (note that for the convergence of this sum it is crucial we managed to

reduce the contour C back to just the line Re(t) = 1
2
). We can then use a well-known identity

due to Ramanujan,

∑
m>0

σa(m)σb(m)

ms
=
ζ(s)ζ(s− a)ζ(s− b)ζ(s− a− b)

ζ(2s− a− b)
, (D.12)

specialised to the case b = 2t− 1 , s = r + t− b and substitute it back in equation (D.10).

Our final result is the Mellin-Barnes integral representation for the Fourier zero-mode,

Υ0(a, b, r, s|τ2) =
∫ 1

2
+i∞

1
2
−i∞

U(a, b, r, s|t) τ t2
dt

2πi
, (D.13)

where we define

U(a, b, r, s|t) :=
Γ
(
r+1−s−t

2

)
Γ
(
r+s−t

2

)
Γ
(
t+r−s

2

)
Γ
(
t+r+s−1

2

)
2πr Γ(r)ξ(2− 2t)

× ζ(r + 1− b− t)ζ(r + 1− a− b− t)ζ(t+ r − b)ζ(t+ r − a− b)

ζ(2r + 1− a− 2b)
. (D.14)

The Mellin-Barnes integral representation (D.13) can be analytically continued to values

of parameters, (a, b, r, s), for which the Poincaré series (5.12) is not absolutely convergent. In

general, rather than the vertical line Re(t) = 1
2
, the integration contour, γ, in (D.13) has to be

chosen such that it separates two sets of poles of (D.14). The contour γ is such that the poles

coming from

Γ
(t+ r − s

2

)
Γ
(t+ r + s− 1

2

)
ζ(t+ r − b)ζ(t+ r − a− b) ,

are located to the left of γ, while the remaining poles coming from

Γ
(
r+1−s−t

2

)
Γ
(
r+s−t

2

)
ζ(r + 1− b− t)ζ(r + 1− a− b− t)

ξ(2− 2t)
,

are located to the right of γ.
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APPENDIX E

An alternative spectral overlap

In this appendix we derive an alternative expression for the spectral overlap (6.30) that will

be fundamental in computing the large-N transseries expansion of the integrated correlator,

CN(τ), starting from its spectral representation (6.23). Throughout this derivation we assume

for simplicity that N ≥ 2 is an integer (which is also the case of physical interest) and that the

spectral parameter s lies on the critical line Re(s) = 1
2
. Despite these assumptions, the regime

of validity for the final result (E.5) will be more general and in particular it will provide an

analytic continuation valid for N ∈ C with Re(N) > 0.

We begin by rewriting the hypergeometric function appearing in the spectral overlap (6.30)

via the integral representation,

3F2(2−N, s, 1− s; 3, 2|1)

=
2(−1)NΓ(N − 1)

Γ(1− s)Γ(s)

∮
γ1

Γ(x+N − s− 1)Γ(x+N + s− 2)Γ(x)

Γ(x+N − 1)Γ(x+N)Γ(x+N + 1)

dx

2πi
, (E.1)

where γ1 is a contour around the poles coming from Γ(x)/Γ(x + N − 1) and located at x ∈

{0,−1, ...,−(N−2)}. It is convenient to make a change of integration variables x→ x′ = x+N

which we then rename x again and, after using the reflection formula for the gamma functions,
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Figure E.1: The contour of integration γ2 circles around the poles in the complex x-plane
located at x ∈ {2, 3, ..., N} while avoiding other singularities.

we reduce the integral to

3F2(2−N, s, 1− s; 3, 2|1)

= 2Γ(N − 1) sin (πs)

∮
γ2

Γ(x− s− 1)Γ(x+ s− 2)

sin (πx)Γ(N + 1− x)Γ(x− 1)Γ(x)Γ(x+ 1)

dx

2πi
, (E.2)

where γ2 is a contour around the poles at x ∈ {2, 3, ..., N} presented in figure E.1.

We now exploit the known asymptotic expansion of the gamma functions to find that the

integrand of (E.2) behaves as |Im(x)|−3−N as |Im(x)| → ∞. Since this bound is uniform

throughout the x-plane, we have that the integrals coming from the horizontal contributions

to γ2 located at |Im(x)| = M vanish when we send M → ∞. The non-vanishing contributions

to the contour integral (E.2) can then be rewritten as

∮
γ2

= −
∫
Re(x)=2−ϵ

+

∫
Re(x)=N+ϵ

, (E.3)

with ϵ > 0 small enough.

Furthermore, given that the integrand of (E.2) does not have any poles in the domain

Re(x) > N + ϵ, we can push the second contour of integration towards Re(x) = +∞ and show

that it vanishes given the bound on the integrand discussed above. We then deduce that the

original contour integral (E.2) reduces simply to an integral over Re(x) = 2− ϵ,

157



3F2(2−N, s, 1− s; 3, 2|1)

= −2Γ(N − 1) sin (πs)

∫
Re(x)=2−ϵ

Γ(x− s− 1)Γ(x+ s− 2)

sin (πx)Γ(N + 1− x)Γ(x− 1)Γ(x)Γ(x+ 1)

dx

2πi
. (E.4)

We now push the contour of integration towards Re(x) → −∞ and collect the residues

from the poles originating from the two gamma functions at numerator, which are located at

x = −k+1+ s and x = −k+2− s for k ∈ N, while the contribution at infinity vanishes thanks

to a similar argument as above. Picking up these residues we arrive at the identity

3F2(2−N, s, 1− s; 3, 2|1) = 2Γ(N − 1)× (E.5)[Γ(1−2s)3F2(s−2, s−1, s; 2s,N+s−1|1)
Γ(s+N − 1)Γ(1− s)Γ(2− s)Γ(3− s)

+
Γ(2s−1)3F2(−s−1,−s, 1−s; 2−2s,N−s|1)

Γ(N − s)Γ(s)Γ(s+ 1)Γ(s+ 2)

]
,

where we notice that the two factors in this expression are related by the transformation

s→ 1− s, as expected given that the equation we started with (E.1) had this symmetry.

Substituting (E.5) back in the spectral overlap (6.30), we derive the the symmetric expres-

sion

MN(s) = (E.6)

2−2s
√
π(2s− 1)Γ(1 +N)Γ(3

2
− s)3F2(s− 2, s− 1, s; 2s,N + s− 1|1)

sin (πs)Γ(3− s)Γ(−s)Γ(N + s− 1)
+ (s↔ 1− s) .

The above equation can be simplified even further by using the Euler-like integral representation

3F2(s−2, s−1, s; 2s,N+s−1|1)= Γ(N+s−1)

Γ(s)Γ(N−1)

∫ 1

0

(1−x)N−2xs−1
2F1(s−2, s−1; 2s|x)dx . (E.7)

Combining (E.6) with (E.7), we conclude that

MN(s) =
2−2s(2s− 1)Γ

(
3
2
− s
)

√
π Γ(−s)

IN(s) + (s↔ 1− s) , (E.8)

IN(s) :=
N(N − 1)

(s− 1)(s− 2)

∫ 1

0

(1− x)N−2xs−1
2F1(s− 2, s− 1; 2s|x)dx . (E.9)
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Finally, we rewrite the expression for IN(s) by noticing that

d2

dx2
(1− x)N = N(N − 1)(1− x)N−2 ,

which can be substituted in (E.9) to perform twice an integration by parts. However, we need

to be careful in doing so since the boundary terms diverge as x→ 0+ and we must introduce a

regulator as to cancel the singular terms. The end result is a formula for the spectral overlap

(E.8) which is valid for Re(s) = 1
2
and N ∈ C with Re(N) > 0

IN(s)= lim
ϵ→0+

[
ϵs−2

s− 2
+

(s− 2N − 1)ϵs−1

2(s− 1)
+

∫ 1

ϵ

(1− x)Nxs−3
2F1(s− 1, s; 2s|x)dx

]
. (E.10)
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APPENDIX F

Properties of a modular invariant Borel kernel

In this appendix we review some known properties for the modular invariant Borel kernel E(t; τ)

as well as derive novel expressions which are of use in the main body of this work.

The family of modular invariant functions DN(s; τ) defined in (6.17) was first introduced

in [67], while a generalisation has also recently appeared in the study of torodial Casimir energy

in 3-dimensional conformal field theories [99]. In this appendix we focus our attention to the

special element (6.44) in this family, namely E(t; τ) = Dt2(0; τ), which plays the rôle of a

modular invariant kernel for our modified Borel resummation.

The Fourier mode decomposition of the lattice sum (6.44) can be analysed straightforwardly

[67] starting from an integral representation valid for Re(t2) > 0

E(t; τ) =
∑

(m,n) ̸=(0,0)

∫ ∞

0

e−xYmn(τ)− 4t2

x
2t√
πx3/2

dx . (F.1)

In particular, for our analysis of the large-N ’t Hooft limit of section 6.7 we need an expression

for the zero-mode sector of E(t; τ), which can be easily extracted from (F.1) via standard

Poisson resummation methods thus yielding

∫ 1
2

− 1
2

E(t; τ)dτ1 =
2

e4t
√

π/τ2 − 1
+

∞∑
n=1

4nτ2K1(4nt
√
πτ2) . (F.2)
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Alternatively, the lattice sum representation (6.44) can be written as a Poincaré series,

E(t; τ) = 2
∑

γ∈B(Z)\SL(2,Z)

Li0

(
e−4t

√
π/τ2
)
= 2

∑
γ∈B(Z)\SL(2,Z)

[
1

exp (4t
√
π/τ2)− 1

]
γ

. (F.3)

As shown in [86], the spectral representation of E(t; τ) can be obtained directly from the

Poincaré series representation (F.3) and takes the form

E(t; τ) = 1

8t2
+ 4

∫
Re(s)= 1

2

(4t)−2sΓ(2s)

Γ(s)
E∗(s; τ)

ds

2πi
. (F.4)

From the spectral representation we may also obtain a different expression for the Fourier

zero-mode (F.2). We start by substituting in (F.4) the Fourier zero-mode (6.15) of the non-

holomorphic Eisenstein series,

∫ 1
2

− 1
2

E∗(s; τ)dτ1 = ξ(2s)τ s2 + ξ(2s− 1)τ 1−s
2 . (F.5)

To evaluate (F.4) we focus separately on the contribution coming from either of the two terms

ξ(2s)τ s2 and ξ(2s− 1)τ 1−s
2 in the above expression.

Starting with the term ξ(2s)τ s2 , we rewrite the completed Riemann zeta using the Dirichlet

series representation of the zeta function ζ(2s) =
∑

k≥1 k
−2s valid for Re(s) > 1/2

4

∫
Re(s)= 1

2
+ϵ

(4t)−2sΓ(2s)

Γ(s)
ξ(2s)τ s2

ds

2πi
=

∞∑
k=1

4

∫
Re(s)= 1

2
+ϵ

Γ(2s)
(4t√π

√
τ2
k
)−2s ds

2πi

=
2

e4t
√

π/τ2 − 1
, (F.6)

where we simply evaluate the sum over all the residues coming from the poles of Γ(2s) and

subsequently perform the sum over k. Note that in doing so we have to shift the contour of

integration to the right by an infinitesimal quantity, ϵ > 0, since ξ(2s) has a pole at s = 1/2.

The contribution from this pole is cancelled by an equal and opposite pole coming from the

second zero-mode term ξ(2s− 1)τ 1−s
2 , since the complete non-holomorphic Eisenstein E∗(s; τ)

is perfectly regular for s = 1
2
and the integral expression (F.4) is unchanged if we move the

contour of integration to Re(s) = 1/2 + ϵ.

The remaining zero-mode contribution to E(t; τ) comes from the leftover 1/(8t2) term in
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(F.4) and the non-holomorphic Eisenstein series factor ξ(2s− 1)τ 1−s
2 which can be combined as

U(t; τ2) :=
1

8t2
+

∫
Re(s)= 1

2
+ϵ

4(4t)−2sΓ(2s)

Γ(s)
ξ(2s− 1)τ 1−s

2

ds

2πi

=

∫
Re(s)=1+ϵ

Γ
(
s− 1

2

)
Γ
(
s+ 1

2

)
ζ(2s− 1)

2πt2
(2t

√
πτ2)

2−2s ds

2πi
. (F.7)

We then conclude that the Fourier zero-mode of E(t; τ) can also be expressed as

∫ 1
2

− 1
2

E(t; τ) dτ1 =
2

e4t
√

π/τ2 − 1
+ U(t; τ2) , (F.8)

where it is worth noting that for large values of t both terms are exponentially suppressed.

Comparing with (F.2), we see that U(t; τ2) has the alternative representation

U(t; τ2) =
∞∑
n=1

4nτ2K1(4nt
√
πτ2) . (F.9)

Unfortunately U(t; τ2) does not seem to have a simpler expression in terms of elementary

functions, however we can use the integral representation for the Bessel function to rewrite

(F.9) in the useful Borel-like form

U(t; τ2) =
∞∑
n=1

∫ ∞

t

(4nτ2)e
−4nx

√
πτ2

x

t
√
x2 − t2

dx . (F.10)

To discuss the ’t Hooft large-N limit in section 6.7, we need certain integrals involving the

Fourier zero-mode just discussed. In particular, we need a formula for the moments tα with

respect to the measure U(t; τ2)dt. From the definition (F.7), we see that the t-dependence of

such integrals is simply of the form tα−2s, we then consider the analytic continuations

∫ 1

0

tα−2s dt =
1

α− 2s+ 1
, Re(s) <

α + 1

2
, (F.11)∫ ∞

1

tα−2s dt = − 1

α− 2s+ 1
, Re(s) >

α + 1

2
. (F.12)

After having performed the integral over t, we notice that the integrand of (F.7) acquires a

single simple pole located at s = α+1
2
. Closing the contour of integration to the right half-plane
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Re(s) > 1 picks up the residue at this pole without any boundary contribution, thus giving us

∫ ∞

0

U(t; τ2) tα dt =
Γ
(

α
2
+ 1
)
Γ
(

α
2

)
ζ(α)

4π
(2
√
πτ2)

1−α . (F.13)

Alternatively, we may start from the expression in terms of Bessel functions (F.9) and

compute ∫ ∞

0

4nτ2K1(4nt
√
πτ2) t

α dt =
Γ
(

α
2
+ 1
)
Γ
(

α
2

)
4π

n−α (2
√
πτ2)

1−α , (F.14)

valid for Re(α) > 0, which can then be easily summed over n to reproduce (F.13).

In section 6.7 we also discuss the non-perturbative terms in the dual ’t Hooft limit which

require finding an expression for the moments tα with respect to the measure U(t+1; τ2)dt. To

this end, we start with the identity

∫ ∞

0

tα

(t+ 1)2s
dt =

Γ(1 + α)Γ(2s− 1− α)

Γ(2s)
, (F.15)

which we then substitute in the defining formula (F.7) to derive

∫ ∞

0

U(t+ 1; τ2) t
α dt = Γ(1 + α)

∫
Re(s)= 1+α

2
+ϵ

Γ(s− 1
2
)Γ(2s− 1− α)ζ(2s− 1)

4
√
πΓ(s)(4

√
πτ2)2s−2

ds

2πi
. (F.16)

Although this expression does not quite yield a closed form such that (F.13), it still suffices for

the discussion of section 6.7.
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