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Abstract

A pivotal aspect of studying systems involves diagnosing its failures, referred to in

this thesis as identifying the components or types of components associated with

system failure. System failure diagnosis serves various purposes, including facilitat-

ing maintenance activities and informing system design. This thesis delves into the

study of system failure from two distinct perspectives: determining which types of

components are most likely to lead to system failure and estimating the numbers

of failed components of each type at the time of system failure. While Barlow and

Proschan [7] introduced an importance measure that determines the probability of

a component causing system failure based on the structure function, the complexity

associated with the structure function may pose challenges in applying it to real com-

plex systems. Therefore, for a general system structure containing multiple types

of components, we use the concept of the survival signature introduced by Coolen

and Coolen-Maturi [15] to derive the probability of a component of a specific type

failing at the system failure time, ultimately leading to system failure.

Additionally, we derive probabilities of three events related to the number of

failed components of multiple types at a future moment when the system fails, based

on the survival signature. First, we determine the probability of the number of failed

components at system failure, given that the system will fail at a specific time t and

conditioning on the number of failed components prior to system failure. Second,

the probability of the number of failed components at an unknown system failure,

assuming the system is functioning at a certain time, is derived. We also consider
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the probability of the number of failed components at system failure, assuming the

system will fail in a specific future time interval. The results of the probabilities

depend only on the distributions of failure times of component types and the survival

signature of the system.

The results of these events are applied to various scenarios of the Repair Kit

Problem (RKP). In particular, the probability of the number of failed components

when the system fails is utilised to quantify the expected cost of a Return to Fit

(RTF) visit, where a penalty cost is incurred if a repair kit cannot complete the

intended job. The aim here is to determine the optimal repair kit under the cost

model, that is, the repair kit with the minimum total expected cost, including

holding cost and RTF cost. Three distinct scenarios for the RKP are considered.

The first scenario involves determining an optimal repair kit intended to be provided

with the system at the time of purchase, aiming to replace all failed components

when the system fails. Second, an optimal repair kit designed to replace all failed

components in preparation for a specific future time interval during which the system

may fail is considered. The third scenario proposes an optimal minimal repair kit,

which does not necessarily aim to replace all failed components at system failure,

but rather to replace specific failed components that can restore the system to a

functional status.

In cases where the distributions of failure times for some component types are un-

known, we utilise the posterior predictive distribution for the probabilities of events

related to the number of failed components and for the probability of a component

of a specific type causing system failure. Based on these updated probabilities, the

optimal repair kits are determined and compared to the scenario where the distri-

butions of failure times for component types are assumed to be fully known.
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Chapter 1

Introduction

1.1 Overview

One of the key aspects in the field of reliability is diagnosing system failures, which

is valuable for various purposes, including maintenance activities and system design.

Diagnosing system failures involves identifying the components or types of compo-

nents most likely to lead to system failure and determining the numbers of failed

components at the moment of system failure. This thesis concerns the derivation of

probability distributions for these events. Having insight into these probabilities can

serve different purposes. For example, components of the type with a higher proba-

bility of causing system failure can receive top priority for maintenance, inspection,

and monitoring. Additionally, the probability distribution of the number of failed

components offers various practical applications, such as optimising spare parts in-

ventory by prioritising combinations of components with higher probabilities while

minimising stock for those with lower probabilities, thereby preventing overstocking

and reducing costs.

The literature offers various methods regarding these problems. Barlow and

Proschan [7] developed an importance measure that determines the probability of

a component causing system failure, primarily relying on the structure function. In

terms of the numbers of failed components at system failure, various approaches

are proposed in the literature to derive the probability distribution of the number

1
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of failed components based on different settings. Among these developments is the

contribution by Eryilmaz [22], which derived the probability of the number of failed

components at system failure for a system with exchangeable component failure

times, utilising the system signature. Additionally, derivations for the same event

were conducted for a k-out-of-m system [23] and for a series-parallel system [25],

both composed of multiple types of components.

These studies have some limitations, including a primary dependency on the

structure function, as for the Barlow and Proschan importance measure [7], and the

assumption of the distribution of components failure times being identical, which

can be informally regarded as components of a single type as in Eryilmaz [22]. If

the latter assumption is relaxed, and components of multiple types are allowed,

the investigation is often limited to specific system structures (e.g. [23], [25]). To

address these challenges, we use the survival signature introduced by Coolen and

Coolen-Maturi [15]. The survival signature does not allow individual components to

be identified, so instead of finding the probability that a specific component caused

system failure, we obtain an expression for the probability that system failure was

caused by failure of a given component type. Indeed, this provides a new component

type based importance measure which can be used in system design and deployment

planning. Furthermore, the survival signature is used to derive the probability of

various events related to the number of failed components of multiple types at system

failure, considering different conditions, for a general system structure. These are

regarded as the core contributions of this thesis.

1.2 Outline of thesis

The structure of the thesis is as follows. Chapter 2 provides an overview of the key

reliability concepts discussed in the literature relevant to the thesis. This involves

a review of main system structures and the definition of the concept of a coherent

system. The chapter also explores various methods related to quantifying system

reliability, such as structure function and path and cut sets. The chapter reviews

the concept of the survival signature and how it is used to derive the reliability
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of a system with multiple types of components. Different methods for calculating

or approximating the survival signature for complex systems, introduced in the

literature, are outlined in this chapter.

In Chapter 3, the probabilities for events of interest related to the diagnosis of

system failure in a general system with multiple types of components are derived

using the survival signature. First, the chapter derives the probability of a com-

ponent of a specific type failing at a certain time, given that the system fails at

that time, indicating the contribution of a specific component type to system fail-

ure. We also derive probabilities for various events related to the numbers of failed

components at the moment of system failure under different conditions. Initially,

we derive the probability assuming system failure at a specific time t, while con-

sidering the number of failed components of each type prior to system failure. The

probability of the numbers of failed components at system failure is also derived

under two conditions: first, assuming that the system was functioning at a certain

time t, and second, considering system failure at a specific future time interval.

These probabilities have practical relevance, which will be further highlighted in

this chapter. One notable application is the Repair Kit Problem (RKP), which will

be thoroughly examined in Chapter 4. Some of the results from Chapter 3 were

presented at the International Conference on Modelling in Industrial Maintenance

and Reliability (held in July 2021) and at the International Workshop on Reliability

Engineering and Computational Intelligence in the Netherlands (held in November

2022). Results of this chapter were also presented at a seminar held at Eindhoven

University of Technology in February 2023.

In Chapter 4, we apply the probabilities derived in Chapter 3 to formulate the

RKP under specific settings. The objective is to determine an optimal repair kit

capable of completing a repair job under the cost model, that is to minimise the

total expected cost. Three distinct scenarios for a repair kit, each motivated by

specific needs, are formulated. First, we consider a repair kit provided with the

system at the time of purchase, aiming to replace all failed components at system

failure. We also consider a repair kit intended to replace all failed components in

the event of a system failure at a specific future time interval. Finally, a minimal
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repair kit is introduced, which does not necessarily aim to replace all failures but

rather to replace specific failures, aiming to restore the system to a functional status.

Two closely related greedy heuristics are introduced to determine the optimal repair

kit. Some results of this chapter were presented at the International Conference on

Modelling in Industrial Maintenance and Reliability in July 2023.

Chapter 5 examines the probabilities introduced in Chapter 3 and the repair

kits discussed in Chapter 4 from a Bayesian perspective. Specifically, posterior

predictive distributions are employed for new failure times of certain component

types when their failure time distributions are not fully known. Based on these

predictive distributions, optimal repair kits are determined and compared to the

scenarios where the distributions of component failure times are fully known.

Chapter 6 concludes this thesis by summarising the main contributions and of-

fering some conclusions. In the final sections of Chapters 3, 4, and 5, interesting

ideas for future research are suggested. Calculations in this thesis were conducted

using the statistical software program R version 4.0.4. [52].



Chapter 2

Reliability theory foundation

2.1 Introduction

In this thesis, a system is defined as a set of linked components that performs

a specific function. The term component describes any entity that is considered

indivisible in the context of analysis, implying that the individual elements of the

entity are not directly represented, only the complete entity is considered. For

example, an automobile is a system and its constituent parts, such as its engine and

gearbox, are its components. We should note that a component might be physically

complicated. For instance, the engine itself can sometimes be a separate system. A

system’s reliability at a particular time point can be described as the probability

that the system functions at that point in time.

This chapter provides an overview of some main reliability concepts. It covers

the definition of state vector, structure function, path sets, and cut sets. By utilising

these methods, one can determine the reliability of a system. However, the use of

these methods may be limited when dealing with complex systems.

To overcome the problems associated with the use of these tools for complex

systems and networks, the system signature [15] has been developed as an alterna-

tive method to quantify their reliability. However, the system signature requires all

components to be of the same type, meaning that the components’ failure time are

exchangeable random quantities. Due to this strong assumption, the system signa-

5
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ture approach is not feasible in the majority of real-world systems. Recently, the

survival signature has been developed [15] to address this limitation when analysing

the reliability of systems that contain multiple types of components. A brief overview

of these methods is provided in this chapter.

2.2 System reliability

The reliability of a component can be interpreted in various ways. Generally speak-

ing, it relates to its ability to accomplish a specified function correctly. As mentioned

earlier, a system is made up of several components linked together to perform a spe-

cific function. Hence, the reliability of the system depends on the reliability of its

components. To explain how a system and its components are related, we review

the concepts of component state vector and structure function.

2.2.1 Structure function

For a system with m components, the state vector is a vector x “ px1, ..., xmq P

t0, 1um, representing the state of each component in the system, such that

xi “

$

’

&

’

%

1, if the ith component is functioning

0, if the ith component is not functioning.

The component labelling is arbitrary but must be fixed to define x. Thus, the state

of a system can be determined by its state vector through a mathematical model

[73]. A common approach in the literature to determine a system’s state is based

on the use of the structure function.

Definition 2.2.1 For a system with m components, let x be any possible state

vector. The structure function is a map φpxq : t0, 1um Ñ t0, 1u that relates the

vectors in which the system works with a value of 1 and the vectors in which the

system fails with a value of 0.

Calculating the structure function of a system requires an understanding of how

it is structured (designed). A system’s structure illustrates the interconnections
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1 2 m

Figure 2.1: Series system with m components.

between its components. The way that the components are connected reveals how

the condition of the components affects the condition of the system. Below are some

examples of commonly known structure functions.

Example 2.2.1 (Series system) A series system refers to a system whose con-

stituent components are linked to one another in series. Every component of a

series system must function in order for the system to function as a whole. Fig-

ure 2.1 illustrates an m-component series system, and its structure function can be

expressed using the equivalent expressions below,

φpxq “

$

’

&

’

%

1, if xi “ 1 for all i

0, if xi “ 0 for any i

“

m
ź

i“1

xi

“ minpx1, ..., xmq.

Example 2.2.2 (Parallel system) Parallel systems are systems in which individ-

ual components are interconnected in parallel. It is necessary that at least one

component of a parallel system functions in order for the system to function. Figure

2.2 shows a parallel system composed of m components, and the following equivalent

expressions define the structure function of the system,

φpxq “

$

’

&

’

%

1, if xi “ 1 for any i

0, if xi “ 0 for all i

“ 1 ´

m
ź

i“1

p1 ´ xiq

“ maxpx1, ..., xmq.
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1

2

m

Figure 2.2: Parallel system with m components.

2

1

3

Figure 2.3: Series-parallel system of 3 components.

Example 2.2.3 (Hybrid system) A mixed system structure consists of two or

more recognised sub-systems arranged in a series or parallel configuration to form

an entire system. Figure 2.3 illustrates a hybrid system in which a series and parallel

system are combined together. This system’s structure function can be expressed

as follows.

φpxq “ x1 p1 ´ p1 ´ x2qp1 ´ x3qq

“ x1px3 ` x2 ´ x2x3q.

Example 2.2.4 (k-out-of-m system) A system of m components functions (or

is “good”) if at least k of them function is known as a k-out-of-m:G system. A

system of m components that fails if at least k of them fail is known as a k-out-

of-m:F system. In general, the term k-out-of-m system refers to either a G or an

F system [47]. It should be noted that series and parallel systems are equivalent

to m-out-of-m:G (or 1-out-of-m:F) and 1-out-of-m:G (or m-out-of-m:F) systems,

respectively. Figure 2.4 represents a k-out-of-m:G system with k “ 2, m “ 3. It
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1 21 2

2 3

1 31

Figure 2.4: 2-out-of-3 system.

should be noted that when a component labeled i for i P t1, 2, 3u, all components

labeled i fail at once. So, the labels identify the physical components, not the types.

The structure function for a k-out-of-m:G system can be given by the following

equivalent formulas,

φpxq “

$

’

’

&

’

’

%

1, if
m
ř

i“1

xi ě k

0, if
m
ř

i“1

xi ă k

“
ÿ

j

p
ź

iPBj

xiqrp
ź

iPBc
j

1 ´ xiqs.

where Bj is any subset of t1, 2, ...,mu with at least k elements, and the sum is taken

over all the subsets. For example, for the 2-out-of-3:G, the structure function is

φpxq “ x1x2r1 ´ x3s ` x1x3r1 ´ x2s ` x2x3r1 ´ x1s ` x1x2x3

“ x1x2 ` x1x3 ` x2x3 ´ 2x1x2x3.

Using the definitions of a k-out-of-m:G system and a k-out-of-m:F system, a k-out-

of-m:G system is essentially identical to a (m ´ k ` 1)-out-of-m:F system. Accord-

ingly, the structure function of a k-out-of-m:F can be expressed as follows.

φpxq “

$

’

’

&

’

’

%

1, if
m
ř

i“1

xi ě m ´ k ` 1

0, if
m
ř

i“1

xi ă m ´ k ` 1.
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2.2.2 Path and cut sets

It is often difficult or impossible to determine the structure functions of complex

systems. The use of so-called path and cut sets can simplify derivation of structure

functions. This subsection introduces the definition of these concepts followed by a

useful theorem for extracting the structure function.

Definition 2.2.2 A set of system components, P , is called a path set if the system

functions correctly whenever all components in P function. In particular, P is called

a minimal path set if there is no proper subset of P that is a path set.

Definition 2.2.3 A set of system components, C, is called a cut set if the system

fails whenever all components in C fail. Most importantly, C is called a minimal

cut set if it does not contain a proper subset that is a cut set.

The following Theorem shows that either a minimal path or a minimal cut set can

be used to represent the structure function [8].

Theorem 2.2.4 Consider a system with all minimal path sets P1, P2, ..., Pk and all

minimal cut sets C1, C2, ..., Cl. Then, the structure function of the system can be

formulated in terms of the minimal path sets as

φpxq “ 1 ´

k
ź

j“1

¨

˝1 ´
ź

iPPj

xi

˛

‚

or, in terms of the minimal cut sets as

φpxq “

l
ź

j“1

¨

˝1 ´
ź

iPCj

p1 ´ xiq

˛

‚.

Example 2.2.5 (Bridge system) Consider the bridge system illustrated in Fig-

ure 2.5. There are four minimal path sets and four minimal cut sets in the sys-

tem. The minimal path sets are P1 “ t1, 4u, P2 “ t2, 5u, P3 “ t1, 3, 5u, and

P4 “ t2, 3, 4u, while the minimal cut sets are C1 “ t1, 2u, C2 “ t4, 5u, C3 “ t1, 3, 5u,

and C4 “ t2, 3, 4u. Using the minimal path sets, the structure function can be
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1

2

4

5

3

Figure 2.5: Bridge system with five components.

represented as follows.

φpxq “ 1 ´ p1 ´ x1x4q p1 ´ x2x5qp1 ´ x1x3x5qp1 ´ x2x3x4q

“ x1x4 ` x2x5 ` x1x3x5 ` x2x3x4 ´ x1x3x4x5 ´ x1x2x3x5 ´ x1x2x3x4

´ x2x3x4x5 ´ x1x2x4x5 ` 2x1x2x3x4x5

Similarly, the structure function can be represented by the minimal cut sets.

φpxq “ p1 ´ p1 ´ x1qp1 ´ x2qq p1 ´ p1 ´ x4qp1 ´ x5qq

p1 ´ p1 ´ x1qp1 ´ x3qp1 ´ x5qq p1 ´ p1 ´ x2qp1 ´ x3qp1 ´ x4qq .

Both equations lead to the same structure function, and interested readers can verify

the result.

2.2.3 Coherent systems

When designing a system, there are two fundamental prerequisites that one would

naturally assume for a sensible system design. First, each component of a system

must play a role in determining its functionality. Secondly, when the state of a

component changes from 0 to 1, the system state should not be adversely affected.

This implies that this change in the state of a component should not result in the

system slipping from a functioning state to a failing state. This characteristic is

called monotonicity. Mathematically, these two properties are described by the

following two definitions.

Definition 2.2.5 Suppose that we have a system with m components such that

x “ px1, ..., xi´1, xi, xi`1, ..., xmq is a state vector of the system. Then, the component
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xi is called irrelevant if

φpx1, ..., xi´1, 0, xi`1, ..., xmq “ φpx1, ..., xi´1, 1, xi`1, ..., xmq

for all possible state vectors px1, ..., xi´1, xi`1, ..., xmq P t0, 1um´1.

Definition 2.2.6 A system with m components is considered to be a monotone

system if x ď y ùñ φpxq ď φpyq where x,y P t0, 1um and x ď y is taken

element-wise.

These two inherent properties result in the concept of coherent systems, a class of

systems that are often investigated in the reliability literature. The definition of a

coherent system is as follows.

Definition 2.2.7 A coherent system is one in which all its constituent components

are relevant and its structure function is monotone [60].

These conditions imply that a coherent system functions if all the components are

functioning and fails if none of them are functioning. This thesis assumes that all

the systems being discussed are coherent systems.

2.3 System reliability computation

Consider a system with m independent components, and let Xi be a Bernoulli

random variable representing the status of the ith component at some fixed time

such that

Xi “

$

’

&

’

%

1, if the ith component is functioning

0, if the ith component is not functioning.

Let pi “ P pXi “ 1q denote the probability of the event that component i functions

and p “ pp1, ..., pmq. Using the structure function, the system reliability, denoted

by S, can be computed based on the component reliability as follows [47].

S “ P pφpxq “ 1q “ φppq.

In the examples below, we illustrate how the structure function can be used to

determine the reliability of some systems.
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Example 2.3.1 (Series and parallel systems) In order for a series system to

function, all components must function. Therefore, if we assume that the random

quantities Xi are independent, the reliability of a series system can be determined

as follows.

φppq “ P pφpxq “ 1q “ P

˜

m
ź

i“1

xi “ 1

¸

“

m
ź

i“1

P pxi “ 1q “

m
ź

i“1

pi.

Similarly, the reliability of a parallel system is found to be as:

φppq “ 1 ´

m
ź

i“1

p1 ´ piq .

Example 2.3.2 (k-out-of-m system:G) If we assume that the random quantities

Xi are independent and identical, then the reliability of the k-out-of-m:G system is

equal to the probability that the number of functioning components is greater or

equal to k. Consequently, the reliability of this system can be expressed by [47].

φppq “

m
ÿ

i“k

ˆ

m

i

˙

ppq
i
p1 ´ pq

m´i.

where p is the reliability of a system component, which is the same for all components

due to the iid assumption.

The earlier reliability calculations for the previous systems did not take into

account time specifications and were treated as implicit. However, in numerous real-

world situations, a specific time is often not predetermined or specified in advance.

Therefore, a natural extension of the random variable Xi, the state of component i,

is

Xiptq “

$

’

&

’

%

1, if the ith component is functioning at time t

0, if the ith component is not functioning at time t.

When a component functions at r0, tq and fails at rt,8q, then t is the component’s

failure time (also referred to as lifetime). Failure time can be considered to be a

non negative real valued random variable, which will be denoted by T and can be

described through probability distributions [17]. These distributions are generally
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known as lifetime distributions, and the most common include Exponential, Weibull,

Gamma, Lognormal distributions.

Consider a system with m components and let Ti ě 0 be the random failure time

of component i. The cumulative distribution function (CDF) of Ti at time t, FTi
ptq,

represents the probability that component i fails before or at time t,

FTi
ptq “ P pTi ď tq.

In a reliability framework, the focus is on the reliability function (also known as

the survival function). The reliability of component i at time t is the probability

that component i is functioning at time t, STi
ptq “ P pTi ą tq. The reliability of

component i at time t is

P pXiptq “ 1q “ P pTi ą tq “ 1 ´ FTi
ptq.

2.4 Survival signature

Traditionally, system reliability quantification has relied on the structure function

[2]. Samaniego [60] introduced the system signature as a tool for reliability assess-

ment in systems composed of components with exchangeable failure time distribu-

tions, informally described as a single type of component. Samaniego’s signature

can be considered a summary representation of the structure function, sufficient for

deriving the system reliability function when the failure times of all system compo-

nents are exchangeable (i.e. when all components are of the same type). Due to the

strong assumption of the components to be of a single type, the system signature

approach might not be feasible in the majority of real-world systems. Coolen and

Coolen-Maturi [15] introduced the survival signature as a method for quantifying

system reliability for large systems with multiple types of components.

For a system consisting of m components of K types, let mk be the components

of type k, where k P t1, ..., Ku, such that
řK

k“1mk “ m, and assume that the

failure times of components with the same type are independent and identical (iid)

with full independence for failure times of components of different types. Let xk “

pxk
1, ..., x

k
mk

q P t0, 1umk be the state vector of components with type k, then, the state
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vector for the whole system would be x “ px1, ...,xKq P t0, 1um. The definition of

the survival signature is as follows.

Definition 2.4.1 The survival signature for a system composed of m components

of K types is denoted by Φpl1, ..., lKq, and it is defined as the probability that the

system functions given that precisely lk of its components of type k function for

lk “ 0, 1, ...,mk for each k P t1, 2, ...., Ku.

In such a system, there are
`

mk

lk

˘

state vectors, xk, with precisely lk components

in each vector, xk
i “ 1, such that

řmk

i“1 x
k
i “ lk. Let Sk

l be the set of all these state

vectors of components of type k. Moreover, let Sl1,...,lK be the set of all state vectors

for the whole system where
řmk

i“1 x
k
i “ lk for k “ 1, ..., K. Since it is assumed that

the failure times ofmk components are iid, all state vectors xk P Sk
l are equally likely

to occur. The survival signature of a system with multiple types of components can

be calculated as

Φpl1, ..., lKq “

«

K
ź

k“1

ˆ

mk

lk

˙´1
ff

ˆ
ÿ

xPSl1,...,lK

φpxq.

To derive the reliability of a multi-type system using the survival signature, let

Ck
t denote the number of components of type k in the system that function at t ą 0,

and assuming independence between components of different types, then

P pTs ą tq “

m1
ÿ

l1“0

...
mK
ÿ

lK“0

«

Φpl1, ..., lKq

K
ź

k“1

P pCk
t “ lkq

ff

.

Besides exchangeability of failure times of components of the same type, if we as-

sume that they are independent and identically distributed with CDF Fkptq, for

components of type k, we get

P pTs ą tq “

m1
ÿ

l1“0

...
mK
ÿ

lK“0

«

Φpl1, ..., lKq

K
ź

k“1

ˆˆ

mk

lk

˙

rFkptqs
mk´lkr1 ´ Fkptqs

lk

˙

ff

,

(2.4.1)

The survival signature has the main advantage of separating system structure

from information about the components’ failure times. When there exists only one

type of component, so K “ 1, the survival signature is equivalent to Samaniego’s

system signature [59][60]. Below, an example illustrating the calculation of the
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1
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6

Figure 2.6: Bridge system with six components, numbered in red, of two types

indicated in black.

survival signature is presented, followed by a brief overview of recent developments

based on this concept.

Example 2.4.1 We demonstrate how the survival signature is calculated for the

bridge system shown in Figure 2.6. In this system, there are two types of compo-

nents: type 1 and type 2, as numbered within each component, with m1 “ m2 “ 3

being the number of components for both types. The survival signature must be

identified for all l1, l2 P t0, 1, 2, 3u, and this is shown in Table 2.1. In order to

demonstrate how the survival signature is calculated, we will use the survival sig-

nature at l1 “ 1 and l2 “ 2, that is Φp1, 2q. The state vector for this system is

x “ px1
1, x

1
2, x

1
3, x

2
4, x

2
5, x

2
6q. Φp1, 2q, is the probability that the system functions given

precisely 1 component of type 1 functions and 2 components of type 2 function,

so we consider all vectors x with x1
1 ` x1

2 ` x1
3 “ 1 and x2

4 ` x2
5 ` x2

6 “ 2. There

are
`

3
1

˘`

3
2

˘

“ 9 such vectors, but for only one of them the system functions, that

is x “ p1, 0, 0, 1, 0, 1q. Given the assumption that the failure times of components

of the same type are iid, and independence is also assumed for the failure times

of components of different types, all the nine vectors have an equal probability of

occurring. Therefore, Φp1, 2q “ 1{9.

2.4.1 Developments based on survival signature

The emergence of survival signature has contributed to various facets of reliability

analysis, including those involving relatively complex systems. In this subsection,

we briefly highlight some of these developments. Coolen et al. [16] developed a non
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l1 l2 Φpl1, l2q l1 l2 Φpl1, l2q

0 0 0 2 0 0

0 1 0 2 1 0

0 2 0 2 2 4/9

0 3 0 2 3 6/9

1 0 0 3 0 1

1 1 0 3 1 1

1 2 1/9 3 2 1

1 3 3/9 3 3 1

Table 2.1: Survival signature for bridge system shown in Figure 2.6.

parameteric predictive inference framework for system reliability based on survival

signature. Patelli et al. [45][46] presented efficient simulation methods that relied

on the survival signature to analyse the reliability of a large system. Feng et al. [26]

presented a method based on the survival signature for coping with imprecision in

the system resulting in upper and lower limits for its reliability function, and they

also developed a new importance measure using the survival signature. Eryilmaz

et al. [24] presented marginal and joint reliability importance measures for coher-

ent systems with dependent and multiple component types, based on the survival

signature.

From a Bayesian perspective, some studies have been developed that utilise the

survival signature. Aslett et al. [6] demonstrate how knowledge and uncertainty

regarding the reliability of components can be propagated to the system level. They

assume that failure time data are available for tested components, possibly with

right-censored data. The analysis encompasses both parametric and non-parametric

approaches. Walter et al. [67] introduced a non parametric Bayesian approach that

utilises sets of priors to analyse system reliability containing multiple types of com-

ponents.

In Qin et al. [51] the reliability function is derived for multi-state systems with

multi-binary-state components. Tavangar and Hashemi [64] employed the survival

signature concept to evaluate the reliability of systems exposed to random external
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shocks. Additionally, they introduced maintenance policies for these systems based

on representations of reliability derived from the survival signature. In recent stud-

ies, Hamdan et al. [31] have obtained the survival signature for a weighted k-out-of

m system with multiple types of components and derived the system reliability

function from this, and Zheng and Zhang [75] develop an analytical solution for the

reliability of systems with dependent components based on the survival signature

and copula theory.

2.4.2 Survival signature computation techniques

The survival signature offers a mechanism that aids in analysing relatively complex

systems. Nonetheless, as with other classical approaches, the survival signature

is highly influenced by the curse of dimensionality as the number of components

and types increases. A number of efforts have been made in the literature with

the aim of computing or approximating the survival signature of large systems.

Aslett [5] [4] developed an R function that simplifies the calculation of the survival

signature for systems with multiple component types. However, as the number of

components in the system grows, the computational cost becomes more expensive.

Reed [53] introduced an efficient method for exact computation of survival signature

that is based on converting the fault tree diagram system into a binary decision

diagram. The method performs well, as long as the system fault tree is already

known. However, the challenge becomes more pronounced in the case of exceedingly

large systems, necessitating the computation of the reliability structure. Xu et al.

[70] proposed a new method for calculating the exact survival signature based on

the extended universal generating function.

Several studies have also been conducted to approximate the survival signature.

Behrensdorf et al. [9] propose a method for estimating the survival signature that

relies on percolation theory and Monte Carlo simulation. The developed method is

applied to a system containing 245 components of one type and 61 components of

a different type. Di Maio et al. [20] proposed an approach to estimate the survival

signature of complex infrastructures using entropy-based techniques within Monte

Carlo simulations. Di Maioa et al. [21] address the problem of approximating the
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survival signature by framing it as a missing data problem. Their approach involves

training an ensemble of Artificial Neural Networks (ANNs) using a dataset of survival

signatures generated through Monte Carlo Simulation. Subsequently, this ensemble

of trained ANNs is utilized to estimate the missing values of the survival signature.

2.5 Summary

This chapter reviewed some of the main reliability concepts introduced in the lit-

erature. It encompasses the definition of a state vector, structure function, path

sets, and cut sets. Using these methods, the reliability of some simple systems was

calculated. However, these methods may not be applicable when scaling up to large

systems. The survival signature, introduced as an alternative method to address

systems with multiple types of components, was also reviewed. Some methods for

computing or approximating the survival signature, as well as developments using

this signature, were also highlighted.



Chapter 3

Composition of component types

at system failure

3.1 Introduction

A key aspect of studying systems is the diagnosis of the causes of system failure.

We will refer to this as determining the components or types of components that are

associated with system failure. System failure diagnosis is useful for several purposes,

including maintenance activities and the design of a system. The purpose of this

chapter is to examine system failure from two different viewpoints: determining

which types of components are most likely to lead to system failure, and estimating

the number of failed components of each type at the time of system failure.

To determine the components that cause system failure, some component impor-

tance measures have been discussed in the literature (e.g. [7], [38], [27]). However,

these measures primarily depend on the structure function, which can be challeng-

ing for complex systems as seen in Chapter 2. Therefore, we devise a component

probability for a component type leading to system failure at a particular time based

on survival signature.

To determine the numbers of failed components at the moment of a system fail-

ure, a quantity particularly valuable for spare parts planning, only a few studies

investigate such an event (e.g. [22], [23]). However, these studies have only consid-

20
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ered systems with a single type of component. When systems with multiple types of

components are considered, the investigations are limited to specific system struc-

tures. Moreover, the period of time during which the system was functioning prior

to its failure, which affects the numbers of failed components at system failure, was

not clearly considered. Therefore, for a general system, we derive probability distri-

butions for the number of failed components of multiple types at the system failure

time under different cases.

This chapter is organised as follows. Section 3.2 briefly reviews previous works

introduced in the literature regarding components contributing to system failure

and the numbers of failed components at system failure. A new measure of a com-

ponent type causing system failure is developed in Section 3.3 based on the survival

signature. Following that, three probability distributions are derived for the num-

bers of failed components of multiple types at the moment of system failure, each

based on different conditions. Section 3.4 derives the distribution given exact sys-

tem failure time and conditioning on the numbers of failed components of multiple

types prior to system failure. The probability distribution of the number of failed

components of multiple types at system failure, assuming the failure time is un-

known, is derived in Section 3.5, taking into consideration the duration for which

the system was functional. Section 3.6 derives the probability distribution of the

number of failed components of multiple types at system failure, assuming system

failure within a future time interval. Finally, Section 3.7 summarises key findings

and suggests potential directions for future research.

3.2 Literature review

Determining the component or set of components related to the cause of system fail-

ure is not a new concept and has been studied in the literature. They are typically

introduced as importance measures. The concept of importance measures was first

introduced by Birnbaum in the 1960s [12] and defined as the probability that the

functioning and failure of a specific component coincide with the system’s function-

ing and failure, respectively. Since the introduction of Birnbaum’s measure, various
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importance measures related to components causing system failure have been pro-

posed.

Among these measures is the criticality importance measure for system failure,

developed by Lambert in 1975 [38]. The measure is defined as the probability that

a component is critical for the system at time t and fails by time t, assuming that

the system has failed by time t. The definition of a critical component is as follows.

Definition 3.2.1 A component i is considered critical if its failure and func-

tioning coincide with system failure and functioning, that is φpx1, ..., xi´1, xi “

1, xi`1, ..., xmq “ 1 and φpx1, ..., xi´1, xi “ 0, xi`1, ..., xmq “ 0 [36] [37].

Another importance measure introduced in the literature is the Fussell-Vesely

importance measure, developed by Fussell [27] and Vesely [66]. The measure com-

prises two types: the c-type, which evaluates whether a component participates in

system failure through cut sets, and the p-type, which assesses whether a compo-

nent contributes to system functioning through path sets. The c-type Fussell-Vesely

measure for component i is defined as the probability that at least one minimal cut

set containing component i fails by time t. The measure considers the possibility

that a component i could play a role in system failure, when the component is not

critical for the system.

One important measure closely related to a component being responsible for

system failure is the Barlow and Proschan measure [7].

Definition 3.2.2 For a component i, Barlow and Proschan measure is defined as

the probability that component i fails at time t given that the system fails at time

t.

The measure depends primarily on the structure function of the system. Therefore,

the use of this measure may be challenging with complex structural systems that

are composed of a large number of components, as previously indicated in Chapter

2. For further details about these measures, the reader is referred to [36] and [69].

Besides finding the components or types of components that are most likely to

trigger system failure, investigating the number of failed components in a broken

(or functioning) system has recently received increased attention (e.g. [34], [25],
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[18]). Understanding how this quantity is distributed can prove useful in many

different applications. Implementing this event can assist systems administrators in

decreasing expenses and increasing profits, and to utilise resources more effectively.

In the context of spare parts planning, one can avoid unnecessary stocking of certain

system components and keep the most critical ones.

Researchers have examined the distribution of the number failed components

in a system that is still functioning. Asadi and Berred [3] considered the number

of failed components in an operating (m ´ k ` 1)-out-of-m system assuming that

the failure times of all its components are independent and identically distributed,

and they extended their results to any coherent system via system signature. For a

k-out-of-m system that consists of multiple types of components, the distribution of

the number of failed components is obtained by Eryilmaz [23] and used to find the

optimal number of components of each type and optimal replacement time. Based

on minimal path sets, Jasiński [34] has obtained the distribution for the number of

failures for a general coherent system of multiple types of components.

The number of failed components at the moment of system failure has also been

examined under a variety of conditions. For a coherent system that has exchange-

able components’ failure times having an absolutely continuous joint distribution,

Eryilmaz [22] studied the distribution of the number of failed components when

the system fails and concluded that it is equivalent to the system signature. Based

on the same assumptions, the author also derived an expression for the number of

failures that can occur after a certain point in time where the system was function-

ing until it fails, which he argued would be useful when calculating an extended

warranty price.

When a system comprises multiple types of components, various studies have

investigated the distribution of the number of failed components when the system

fails. The distribution of the number of broken components of a specific component

type in a failed k-out-of-m system constructed of different components types with

its mean is considered by Eryilmaz [23]. For a series-parallel system when each

subsystem has a specific type of distribution, Eryilmaz et al. [25] studied the joint

distribution of the number of failures at the moment of system failure. The distribu-
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tion of the same event has been considered by Eryilmaz et al. [19] for a series-parallel

system consisting of multiple types of discrete failure time components. When the

failure times of components are discretely distributed, Dembińska and Davies [18]

obtained the distribution of failures when the system fails for a k-out-of-m system,

with possibility of dependency between components and having multiple types of

components. They considered the conditional distribution when the system fails at

a specific point in time and also when the system was known to function at a certain

time.

As noticed, the results of the discussed studies on the number of failed compo-

nents when the system fails are limited to certain conditions. Among these limi-

tations is the fact that some of the results were derived based on the concept of

system signature, and hence are only applicable to systems with all components

have exchangeable failure times. Another limitation arises when a system comprises

multiple types of components, as the results are constrained to specific system struc-

tures, such as k-out-of-m or series-parallel configurations.

In the following sections, we first introduce a measure that utilises the survival

signature in order to investigate the cause of the failure of the system. Then, we

investigate the number of failed components in a coherent system composed of mul-

tiple types of components when it fails. Using the notion of survival signature, our

objective is to determine the joint distribution of the numbers of failed components

of each type upon system failure. The corresponding event is examined in three

different settings. First, we consider the number of failed components of multiple

types at a future moment at which the system fails, given the specific future failure

time and the number of failed components of each type that occur prior to system

failure. Secondly, this quantity is also studied when the system’s failure time is

unknown, assuming the system was functioning at some point in time. Thirdly, the

number of failed components at the system failure time is considered assuming that

the system will fail in a specific future time interval.

Throughout derivation of the probabilities of these events, we assume that the

failure times of components of the same type are iid and independence is assumed

for failure times of different types. Moreover, we assume that failure times of com-
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ponents are absolutely continuously distributed, that is, simultaneous failure of two

or more components has probability zero.

3.3 Probability that a component type causes

system failure

As explained in Section 3.2, Barlow and Proschan introduced a measure that finds

the probability of a component causing system failure based on the structure func-

tion. In this section, we propose an alternative measure that is based on the survival

signature. However, the survival signature does not allow individual components to

be identified, so instead of finding the probability that a specific component caused

system failure, we obtain an expression for the probability that system failure was

caused by failure of a component of a specific type. As an illustration, having in-

sight into this probability assists in arranging maintenance tasks. Components of

the type with a high probability of causing system failure can receive top priority

for maintenance, inspection, and monitoring.

Before proceeding to derive the probability of the event of interest, we introduce

two lemmas that are helpful in this derivation.

Lemma 3.3.1 Consider a system with K types of components and mk components

of type k, where k P t1, ..., Ku. Let Ts denote the system failure time and T k denote

the failure time of a component of type k assuming it has an absolutely continuous

distribution. Additionally, let Lkptq
`

Lkpt´q
˘

represent the number of functioning

components of type k at time t
`

at the time just before t
˘

. Then the probability of

having lk functioning components by time t´ given that a component of type k fails

exactly at t is

P pLkpt´
q “ lk | T k

“ tq “
lkhkptqP pLkpt´q “ lkq

mkfkptq
,

where hkptq and fkptq denote the hazard rate and the probability density function

of the failure time of components of type k at time t.
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Proof : Let T k
i denote the failure time of component i of type k and Q1, ..., Qa

are all possible subsets of t1, ...,mku of size lk, then

P pLkpt´
q “ lk | T k

“ tq

“ P

¨

˝

a
ď

j“1

¨

˝t
č

iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u

˛

‚| T k
“ t

˛

‚

“

a
ÿ

j“1

P

¨

˝t
č

iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u | T k
“ t

˛

‚

“

a
ÿ

j“1

P

¨

˝T k
“ t | t

č

iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u

˛

‚

ˆ P

¨
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iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u

˛

‚rP pT k
“ tqs

´1

“

a
ÿ

j“1

¨

˝

ÿ

iPQj

P
`

T k
i “ t | T k

i ą t´
˘

˛

‚

ˆ P

¨

˝t
č

iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u

˛

‚rP pT k
“ tqs

´1

«

a
ÿ

j“1

¨

˝

ÿ

iPQj

P
`

t ă T k
i ď t ` ϵ | T k

i ą t´
˘

˛

‚

ˆ P

¨

˝t
č

iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u

˛

‚rP pt ă T k
ď t ` ϵqs

´1 for small ϵ ą 0.

Multiplying the numerator and denominator by 1
ϵ
and taking the limit when ϵ Ñ 0,

P pLkpt´
q “ lk | T k

“ tq

“

a
ÿ

j“1

¨

˝

ÿ

iPQj

hk
i ptq

˛

‚P

¨

˝t
č

iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u

˛

‚rmkfkptqs
´1

“ lkhkptq

»

–

a
ÿ

j“1

P

¨

˝t
č

iPQj

T k
i ą t´

u X t
č

iRQj

T k
i ď t´

u

˛

‚

fi

fl rmkfkptqs
´1

“ lkhkptq

ˆ

mk

lk

˙

r1 ´ Fkpt´
qs

lkrFkpt´
qs

mk´lkrmkfkptqs
´1

“ lkhkptqP pLkpt´
q “ lkqrmkfkptqs

´1.

l
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Lemma 3.3.2 Consider a system with K types of components and mk components

of type k, where k P t1, ..., Ku. Let Ts denote the system failure time and T k denote

the failure time of a component of type k. Additionally, let Lkptq represent the

number of functioning components of type k at time t. Assuming that the failure

times of component types are absolutely continuously distributed, then

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

“ Φpl1, . . . , lk´1, lk, lk`1, . . . , lKq ´ Φpl1, . . . , lk´1, lk ´ 1, lk`1, . . . , lKq

Proof :

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

“ P pTs “ t | Lkptq “ lk ´ 1, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq.

Since it is assumed that simultaneous failures of two or more components cannot

occur, the number of functioning components not of type k at time t´ are the same

as time t. Then,

P pTs “ t | Lkptq “ lk ´ 1, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

“ P pTs “ t | Lkptq “ lk ´ 1, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , L1pt
´

q “ l1, . . . , LKpt´
q “ lKq.

The probability of a system failing at time t given the number of the functioning

components at times t´ and t equals the difference between the probability of the

system functioning at time t´ given the number of functioning components at t´ and

the probability of the system functioning at time t given the number of functioning

components at t. That is the difference between the survival signatures at times t´

and t:

Φpl1, . . . , lk´1, lk, lk`1, . . . , lKq ´ Φpl1, . . . , lk´1, lk ´ 1, lk`1, . . . , lKq.

l
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Definition 3.3.3 We define the following shorthand notation as this quantity will

appear frequently in deriving the events of interest:

Φ1
kpl1, . . . , lKq :“ Φpl1, . . . , lk´1, lk, lk`1, . . . , lKq ´ Φpl1, . . . , lk´1, lk ´ 1, lk`1, . . . , lKq

.

In the following, we consider the derivation of the probability of a component of

a specific type causing system failure, followed by two examples. For a system com-

prisingK types of components andmk components of type k, where k P t1, 2, ..., Ku,

we present the following theorem.

Theorem 3.3.4 Let Ts denote the system failure time and let T k represent the fail-

ure time of a component of type k P t1, 2, . . . , Ku, where the failure times of com-

ponents are absolutely continuous distributed. We assume that the failure times

of components of the same type are independent and identically distributed, and

that the failure times of components of different types are independent. Denote by

Lkptq the number of components of type k functioning at time t, and by Lkpt´q the

number of components of type k functioning just before time t. If the probability

distributions of failure times for all types of components are known, then the proba-

bility that a component of type k fails at time t, given that the system fails at time

t,

P pT k
“ t | Ts “ tq

“

m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0

«

mk
ÿ

lk“1

Φ1
kpl1, . . . , lKqlkhkptqP pLkpt´

q “ lkq

ff

ˆ P

¨

˚

˝

K
č

i“1
i‰k

Lkptq “ lk

˛

‹

‚

ˆ

˜

K
ÿ

k“1

" m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0

«

mk
ÿ

lk“1

Φ1
kpl1, . . . , lKqlkhkptqP pLkpt´

q “ lkq

ff

ˆ P

¨

˚

˝

K
č

i“1
i‰k

Lkptq “ lk

˛

‹

‚

*

¸´1

, (3.3.1)
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where hkptq denotes the hazard rate of the failure time of a component of type k,

and P pLkptq “ lkq is the probability of having lk functioning components of type k

at time t, which can be computed using the binomial distribution.

Proof :

P pT k
“ t | Ts “ tq “

P pTs “ t | T k “ tqP pT k “ tq
K
ÿ

k“1

P pTs “ t | T k
“ tqP pT k

“ tq

,

where,

P pTs “ t | T k
“ tq

“

m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lKq

ˆ P pL1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lK | T k
“ tq

“

m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lKq

ˆ P pL1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lKq

(since all components not of type k are independent of type k components)

now,

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lKq

“

mk
ÿ

lk“0

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

ˆ P pLkpt´
q “ lk | T k

“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lKq
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“

mk
ÿ

lk“0

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkqP pLkpt´

q “ lk | T k
“ tq

“

mk
ÿ

lk“0

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

ˆ
lkhkptqP pLkpt´q “ lkq

mkfkptq
(using Lemma 3.3.1),

thus,

P pTs “ t | T k
“ tq

“

m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0
«

mk
ÿ

lk“0

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

ˆ
lkhkptqP pLkpt´q “ lkq

mkfkptq

ff

ˆ P pL1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lKq.

If lk “ 0, then

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

becomes zero since there are no functioning components of type k cannot fail at

t ą t´, therefore,
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P pTs “ t | T k
“ tq

“

m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0
«

mk
ÿ

lk“1

P pTs “ t | T k
“ t, L1ptq “ l1, . . . , Lk´1ptq “ lk´1,

Lk`1ptq “ lk`1, . . . , LKptq “ lK , Lkpt´
q “ lkq

ˆ
lkhkptqP pLkpt´q “ lkq

mkfkptq

ff

ˆ P pL1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lKq.

The first part can now be expressed using the survival signature as in Lemma 3.3.2,

as follows

P pTs “ t | T k
“ tq

“

m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0

«

mk
ÿ

lk“1

Φ1
kpl1, . . . , lKq

lkhkptqP pLkpt´q “ lkq

mkfkptq

ff

ˆ P pL1ptq “ l1, . . . , Lk´1ptq “ lk´1, Lk`1ptq “ lk`1, . . . , LKptq “ lKq.

Then,

P pT k
“ t | Ts “ tq

“

m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0

«

mk
ÿ

lk“1

Φ1
kpl1, . . . , lKqlkhkptqP pLkpt´

q “ lkq

ff

ˆ P

¨

˚

˝

K
č

i“1
i‰k

Lkptq “ lk

˛

‹

‚

ˆ

˜

K
ÿ

k“1

" m1
ÿ

l1“0

. . .

mk´1
ÿ

lk´1“0

mk`1
ÿ

lk`1“0

. . .
mK
ÿ

lK“0

«

mk
ÿ

lk“1

Φ1
kpl1, . . . , lKqlkhkptqP pLkpt´

q “ lkq

ff

ˆ P

¨

˚

˝

K
č

i“1
i‰k

Lkptq “ lk

˛

‹

‚

*

¸´1

.

l

The primary difference between this measure and the Barlow-Proschan measure

is that the former is concerned with a specific component, whereas the latter is
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concerned with a component of a certain type (i.e. the derived measure represents

the sum of the probability of the same type). This measure will be utilised in

Chapter 4 to formulate a minimal repair kit. To provide insight into the derived

probability, we consider two systems that contain multiple types of components.

Example 3.3.1 (Series-parallel system) The first system, illustrated in Figure

3.1, consists of four components of two types, type 1 and type 2, as indicated within

the components. The system functions if at least one component in each subsystem

functions. This system’s survival signature is presented in Table 3.1. We assume

that all failure times of the components are Exponentially distributed with a failure

rate of 0.025 for components of type 1 and 0.05 for components of type 2. Based on

the failure time distributions assumed, components of type 1 will tend to fail after

type 2 components fail. Therefore, we would expect for type 1 components to be

more likely to trigger system failure as shown in Figure 3.2. The yellow line indicates

the probability that the system will function at time t. Accordingly, it appears that

the most relevant period to examine for determining the cause of system failure is

before approximately t “ 75. This is because there is a very small probability that

the system will fail at any point after this time.

1

2

1

2

Figure 3.1: Series-parallel system with two types of components.

Example 3.3.2 (Hydro power plant system) This example illustrates how our

measure is applied to a real-world hydro power plant system that consists of twelve

components of six types. Figure 3.3 depicts the graphic design of the system. This

system will be frequently used throughout the thesis, and in the following, we provide

a description of its components. The first component in the system is the control

gate (CG) situated within the dam, which manages the release and flow of water
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l1 l2 Φpl1, l2q l1 l2 Φpl1, l2q

0 0 0 2 1 1

1 0 0 0 2 1

2 0 1 1 2 1

0 1 0 2 2 1

1 1 1/2

Table 3.1: Survival signature of system in Figure 3.1
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Figure 3.2: Probability of component types causing system failure for the system in

Figure 3.1, with the yellow line indicating the probability of system failure exceeding

time t.

from the reservoir. This water passes through two butterfly valves (BV1, BV2) that

regulate its movement before reaching two turbines (T1, T2). These turbines, in

turn, harness the kinetic energy of the flowing water, converting it into mechanical

energy. To safeguard the system, three circuit breakers (CB1, CB2, CB3) are strate-

gically placed to protect against electrical faults. The mechanical energy produced

by the turbines is then converted into electrical energy by two generators (G1, G2),

which produce alternating current. Finally, two transformers (TX1, TX2) within

the powerhouse elevate the voltage of the alternating current for efficient transmis-

sion. The equivalent reliability diagram of the system is shown in Figure 3.5, where
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components are numbered according to type.

To apply the derived probability distribution, we assume that the failure times of all

types of components follow a Weibull distribution, which has the following probabil-

ity density function (PDF), with scale parameter α and shape parameter β, where

where α, β ą 0

fptq “
β

α

ˆ

t

α

˙β´1

e´p t
αq

β

. @t ě 0, 0 otherwise.

We assume that the distributions of failure times of all types of components have

the same scale α “ 20. However, each type has a different shape parameter β: 1.5

for type 1, 1.7 for type 2, 1.45 for type 3, 1.55 for type 4, 1.3 for type 5, and 1.6 for

type 6. The system survival signature is presented in Table 3.2. Figure 3.4 shows

the probability of each type triggering system failure at time t. The yellow line

represents the probability that the system will function at time t, indicating that it

will be unlikely to function after t “ 15. The period up to t “ 15 is, therefore, of

most interest and should receive more attention when identifying the type that leads

to system failure. If the system fails during this interval, it is highly probable that

a type 5 component is the cause. This is likely because there are three components

of type 5, and it has the lowest shape parameter, indicating a moderate decrease

in the failure rate compared to the other types. Type 5 components are expected

to fail last, making them the most likely responsible for causing the system failure.

The component of type 1 is the second most likely to be the cause of system failure,

with types 2, 3, and 4 having nearly identical probabilities of being the cause. Type

6, on the other hand, is the least likely to cause system failure.

3.4 Number of failed components given

preceding failures

In this section, the number of failed components of multiple types at a future sys-

tem failure time is considered, given that this time is assumed to be known. This

event is also conditioned on the number of failures of different component types

at various times before system failure. This probability distribution holds signifi-
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l1 l2 l3 l4 l5 l6 Φpl1, l2, l3, l4, l5, l6q

1 1 1 1 2 [1,2] 1/12

1 1 1 2 2 [1,2] 1/6

1 1 2 1 2 [1,2] 1/6

1 2 1 1 2 [1,2] 1/6

1 1 1 1 3 [1,2] 1/4

1 1 2 2 2 [1,2] 1/3

1 2 1 2 2 [1,2] 1/3

1 2 2 1 2 [1,2] 1/3

1 1 1 2 3 [1,2] 1/2

1 1 2 1 3 [1,2] 1/2

1 2 1 1 3 [1,2] 1/2

1 2 2 2 2 [1,2] 2/3

1 1 2 2 3 [1,2] 1

1 2 1 2 3 [1,2] 1

1 2 2 [1,2] 3 [1,2] 1

Table 3.2: Survival signature of system in Figure 3.5 where Φpl1, l2, l3, l4, l5, l6q “ 0

are excluded [26].
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Figure 3.3: A graphic representation of the hydro power system [26].
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Figure 3.4: Probability of types leading to failure of the system shown in Figure 3.3,

with the yellow line indicating the probability of system failure exceeding time t.

cant importance and offers various practical applications. It can aid in optimising

spare parts inventory by prioritising combinations of components of multiple types

with higher probabilities, while minimising stock for those with lower probabilities.

This approach prevents overstocking and costs reduction. The specific information

regarding the number of failures that occur before system failure is critical in deter-

mining if certain failure events tend to trigger subsequent failures.

For simplicity, we first consider a system containing two types of components

and determine the probability distribution for the number of failed components of

one type at the moment of system failure, given that there were some observed
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1

CG CB3

BV1

BV2

T1

T2 G2

G1 CB1 TX1

TX2CB2

2

2

3

3

4

4

5

5

5

6

6

Figure 3.5: Hydro power plant system with 6 component types, indicated in red.

failed components of that type before system failure, and assuming system failure

at a future time. The result can then be generalised to systems with multiple

types of components. For a system that contains two types of components, with

m1 components of type 1 and m2 components of type 2, respectively, the following

theorem provides the distribution result along with its proof.

Theorem 3.4.1 Let T k represent the failure time of a component of type k P t1, 2u,

where the failure times of components are absolutely continuous distributed. We

assume that the failure times of components of the same type are independent and

identically distributed, and that the failure times of components of different types

are independent. We denote Ts as the random variable representing the system

failure time, and Xkptq as the random variable representing the number of failed

components of type k at time t. If we assume that the system will fail at a future

time t‹ and there were c1 failed components of type 1 at time t1 before system failure,

then for t‹ ą t1 and x1 ě c1, the probability of the event X1pt
‹q “ x1 | X1pt1q “ c1,
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Ts ą t‹´, Ts “ t‹, where t‹´ is the time just before time t‹, is given by

P pX1pt
‹
q “ x1 | X1pt1q “ c1, Ts ą t‹´, Ts “ t‹

q

“

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qspm1 ´ x1 ` 1qh1pt
‹
q

ˆ P pX1pt‹´
q “ x1 ´ 1qrP pX1pt

‹
q “ x1qs

´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qspm2 ´ x2 ` 1qh2pt
‹
q

ˆ P pX2pt‹´
q “ x2 ´ 1qrP pX2pt

‹
q “ x2qs

´1
‰

P pX2pt‹
q “ x2q

ı

ˆ P pX1pt‹
q “ x1, X1pt1q “ c1q

ˆ

„ m1
ÿ

x1“c1

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qspm1 ´ x1 ` 1q

ˆ h1pt‹
qP pX1pt‹´

q “ x1 ´ 1qrP pX1pt
‹
q “ x1qs

´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qspm2 ´ x2 ` 1qh2pt
‹
q

ˆ P pX2pt‹´
q “ x2 ´ 1qrP pX2pt

‹
q “ x2qs

´1
‰

P pX2pt‹
q “ x2q

ı

ˆ P pX1pt‹
q “ x1, X1pt1q “ c1q

ȷ´1

, (3.4.2)

where hkpt‹q denotes the hazard rate of the failure time of a component of type k,

and P pXkpt‹q “ xkq is the probability of the number of failed components of type k

at time t‹, which can be computed using the binomial distribution.

Proof :

P pX1pt‹
q “ x1 | X1pt1q “ c1, Ts ą t‹´, Ts “ t‹

q

“ P pTs “ t‹, X1pt‹
q “ x1, X1pt1q “ c1, Ts ą t‹´

q
`

P pX1pt1q “ c1, Ts ą t‹´, Ts “ t‹
q
˘´1

“
`

P pTs “ t‹
| X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´

q

ˆ P pX1pt
‹
q “ x1, X1pt1q “ c1, Ts ą t‹´

q
˘ `

P pX1pt1q “ c1, Ts ą t‹´, Ts “ t‹
q
˘´1

“
`

P pTs “ t‹
| X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´

q

ˆP pTs ą t‹´
| X1pt

‹
q “ x1, X1pt1q “ c1qP pX1pt

‹
q “ x1, X1pt1q “ c1q

˘

ˆ
`

P pX1pt1q “ c1, Ts ą t‹´, Ts “ t‹
q
˘´1

. (3.4.3)
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To determine the first probability in the numerator on the right hand side of Equa-

tion (3.4.3), we condition on all possible numbers of failed components of type 2,

since they affect the probability of the system failing at time t‹,

P pTs “ t‹
| X1pt‹

q “ x1, X1pt1q “ c1, Ts ą t‹´
q

“

m2
ÿ

x2“0

P pTs “ t‹
| X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q (3.4.4)

ˆ P pX2pt
‹
q “ x2 | X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´

q.

Due to the assumption that two or more components, of the same or different types,

fail simultaneously with probability zero, only the failure of one component coincides

with system failure. System failure at time t‹ can be due to failure of a component

of type 1 or of type 2 at time t‹. We derive the first term of (3.4.4) as follows.

P pTs “ t‹
| X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt‹

q “ x2q

“ P pTs “ t‹
| X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2, T

1
“ t‹

q

ˆ P pT 1
“ t‹

| X1pt‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt‹

q “ x2q

` P pTs “ t‹
| X1pt‹

q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt‹
q “ x2, T

2
“ t‹

q

ˆ P pT 2
“ t‹

| X1pt‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt‹

q “ x2q

“ P pTs “ t‹
| X1pt

‹
q “ x1, Ts ą t‹´, X2pt‹

q “ x2, T
1

“ t‹
q

ˆ P pT 1
“ t‹

| X1pt‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt‹

q “ x2q

` P pTs “ t‹
| X1pt‹

q “ x1, Ts ą t‹´, X2pt
‹
q “ x2, T

2
“ t‹

q

ˆ P pT 2
“ t‹

| X1pt‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt‹

q “ x2q

“
P pTs “ t‹ | X1pt

‹q “ x1, X2pt‹q “ x2, T
1 “ t‹q

P pTs ą t‹´ | X1pt‹q “ x1, X2pt‹q “ x2, T 1 “ t‹q

ˆ P pT 1
“ t‹

| X1pt
‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q

`
P pTs “ t‹ | X1pt

‹q “ x1, X2pt
‹q “ x2, T

2 “ t‹q

P pTs ą t‹´ | X1pt‹q “ x1, X2pt‹q “ x2, T 2 “ t‹q

ˆ P pT 2
“ t‹

| X1pt
‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q.
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Using Lemma 3.3.2,

P pTs “ t‹
| X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q

“
rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qs

Φpm1 ´ x1 ` 1,m2 ´ x2q

ˆ P pT 1
“ t‹

| X1pt
‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q

`
rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qs

Φpm1 ´ x1,m2 ´ x2 ` 1q

ˆ P pT 2
“ t‹

| X1pt
‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q (3.4.5)

where,

P pT 1
“ t‹

| X1pt
‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q

“ P pTs ą t‹´
| T 1

“ t‹, X1pt
‹
q “ x1, X1pt1q “ c1, X2pt

‹
q “ x2q

ˆ P pT 1
“ t‹

| X1pt
‹
q “ x1, X1pt1q “ c1, X2pt‹

q “ x2q

ˆ
`

P pTs ą t‹´
| X1pt

‹
q “ x1, X1pt1q “ c1, X2pt

‹
q “ x2q

˘´1
.

(3.4.6)

Now, X2pt
‹q “ x2 in the second probability of the numerator of Equation (3.4.6) is

omitted because we assume independence between failure times of components of

type 1 and type 2. Thus,

P pT 1
“ t‹

| X1pt‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q

“
Φpm1 ´ x1 ` 1,m2 ´ x2qP pT 1 “ t‹ | X1pt‹q “ x1, X1pt1q “ c1q

P pTs ą t‹´ | X1pt‹q “ x1, X1pt1q “ c1, X2pt‹q “ x2q

“
Φpm1 ´ x1 ` 1,m2 ´ x2qP pT 1 “ t‹ | X1pt‹q “ x1q

P pTs ą t‹´ | X1pt‹q “ x1, X1pt1q “ c1, X2pt‹q “ x2q
.

(3.4.7)

Similar to the derivation of Equation (3.4.7),

P pT 2
“ t‹

| X1pt‹
q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt

‹
q “ x2q

“
Φpm1 ´ x1,m2 ´ x2 ` 1qP pT 2 “ t‹ | X2pt

‹q “ x2q

P pTs ą t‹´ | X1pt‹q “ x1, X1pt1q “ c1, X2pt‹q “ x2q
.

(3.4.8)
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Substituting the results of Equations (3.4.7) and (3.4.8) into Equation (3.4.5), we

get

P pTs “ t‹
| X1pt‹

q “ x1, X1pt1q “ c1, Ts ą t‹´, X2pt
‹
q “ x2q

“
`

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ t‹

| X1pt
‹
q “ x1q

`rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ t‹

| X2pt
‹
q “ x2q

˘

ˆ
`

P pTs ą t‹´
| X1pt

‹
q “ x1, X1pt1q “ c1, X2pt‹

q “ x2q
˘´1

.

The second term of Equation (3.4.4) is calculated as

P pX2pt
‹
q “ x2 | X1pt

‹
q “ x1, X1pt1q “ c1, Ts ą t‹´

q

“ P pTs ą t‹´
| X2pt‹

q “ x2, X1pt‹
q “ x1, X1pt1q “ c1q

ˆ P pX2pt
‹
q “ x2, X1pt

‹
q “ x1, X1pt1q “ c1q

ˆ
`

P pTs ą t‹´
| X1pt

‹
q “ x1, X1pt1q “ c1qP pX1pt

‹
q “ x1, X1pt1q “ c1q

˘´1

“ P pTs ą t‹´
| X2pt‹

q “ x2, X1pt‹
q “ x1, X1pt1q “ c1q

ˆ P pX2pt
‹
q “ x2 | X1pt‹

q “ x1, X1pt1q “ c1qP pX1pt‹
q “ x1, X1pt1q “ c1q

ˆ
`

P pTs ą t‹´
| X1pt

‹
q “ x1, X1pt1q “ c1qP pX1pt

‹
q “ x1, X1pt1q “ c1q

˘´1

“ P pTs ą t‹´
| X2pt‹

q “ x2, X1pt‹
q “ x1, X1pt1q “ c1qP pX2pt

‹
q “ x2q

ˆ
`

P pTs ą t‹´
| X1pt

‹
q “ x1, X1pt1q “ c1q

˘´1
.

Then, substituting these expressions into Equation (3.4.4) we find,

P pTs “ t‹
| X1pt‹

q “ x1, X1pt1q “ c1, Ts ą t‹´
q

“

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ t‹

| X1pt
‹
q “ x1q

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ t‹

| X2pt
‹
q “ x2q

‰

ˆ P pX2pt‹
q “ x2qrP pTs ą t‹´

| X1pt
‹
q “ x1, X1pt1q “ c1qs

´1.
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Substituting this into Equation (3.4.3),

P pX1pt
‹
q “ x1 | X1pt1q “ c1, Ts ą t‹´, Ts “ t‹

q

“

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ t‹

| X1pt
‹
q “ x1q

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ t‹

| X2pt
‹
q “ x2q

‰

ˆ P pX2pt‹
q “ x2q

ı

P pX1pt‹
q “ x1, X1pt1q “ c1q

ˆ rP pX1pt1q “ c1, Ts ą t‹´, Ts “ t‹
qs

´1

“

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ t‹

| X1pt
‹
q “ x1q

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ t‹

| X2pt
‹
q “ x2q

‰

ˆ P pX2pt‹
q “ x2q

ı

P pX1pt
‹
q “ x1, X1pt1q “ c1q

ˆ

„ m1
ÿ

x1“c1

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ P pT 1
“ t‹

| X1pt
‹
q “ x1q

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ P pT 2
“ t‹

| X2pt
‹
q “ x2q

‰

P pX2pt
‹
q “ x2q

ı

P pX1pt
‹
q “ x1, X1pt1q “ c1q

ȷ´1
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“

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ t‹

q

ˆ P pX1pt‹
q “ x1 | T 1

“ t‹
qrP pX1pt‹

q “ x1qs
´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ t‹

q

ˆ P pX2pt‹
q “ x2 | T 2

“ t‹
qrP pX2pt‹

q “ x2qs
´1
‰

ˆ P pX2pt‹
q “ x2q

ı

P pX1pt
‹
q “ x1, X1pt1q “ c1q

ˆ

„ m1
ÿ

x1“c1

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ t‹

q

ˆ P pX1pt‹
q “ x1 | T 1

“ t‹
qrP pX1pt‹

q “ x1qs
´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ t‹

q

ˆ P pX2pt‹
q “ x2 | T 2

“ t‹
qrP pX2pt‹

q “ x2qs
´1
‰

ˆ P pX2pt‹
q “ x2q

ı

P pX1pt
‹
q “ x1, X1pt1q “ c1q

ȷ´1

.
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We consider the probability of a component failure time of type k being precisely

equal to t‹ as being negligible since, for continuous random variables, the probability

of an exact value is zero. Instead, we approximate this probability by considering

the component falling within a small interval around t‹, denoted as pt‹, t‹ ` ϵs. The

same applies for the probability of the system failure time being equal to t‹. Then,

P pX1pt‹
q “ x1 | X1pt1q “ c1, Ts ą t‹´, Ts “ t‹

q

«

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pt‹
ă T 1

ď t‹
` ϵq

ˆ P pX1pt‹
q “ x1 | T 1

“ t‹
qrP pX1pt‹

q “ x1qs
´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pt‹
ă T 2

ď t‹
` ϵq

ˆ P pX2pt‹
q “ x2 | T 2

“ t‹
qrP pX2pt‹

q “ x2qs
´1
‰

P pX2pt
‹
q “ x2q

ı

ˆ P pX1pt‹
q “ x1, X1pt1q “ c1q

ˆ

„ m1
ÿ

x1“c1

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ P pt‹
ă T 1

ď t‹
` ϵqP pX1pt

‹
q “ x1 | T 1

“ t‹
qrP pX1pt

‹
q “ x1qs

´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pt‹
ă T 2

ď t‹
` ϵq

ˆ P pX2pt‹
q “ x2 | T 2

“ t‹
qrP pX2pt‹

q “ x2qs
´1
‰

P pX2pt
‹
q “ x2q

ı

ˆ P pX1pt‹
q “ x1, X1pt1q “ c1q

ȷ´1

for small ϵ ą 0.
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Multiplying by 1
ϵ
then taking the limit when ϵ Ñ 0, P pt‹ ă T k ď t‹ ` ϵq will result

in mkfkpt‹q because there are mk components of type k, then

P pX1pt
‹
q “ x1 | X1pt1q “ c1, Ts ą t‹´, Ts “ t‹

q

“

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsm1f1pt
‹
q

ˆ P pX1pt‹
q “ x1 | T 1

“ t‹
qrP pX1pt‹

q “ x1qs
´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsm2f2pt
‹
q

ˆ P pX2pt‹
q “ x2 | T 2

“ t‹
qrP pX2pt‹

q “ x2qs
´1
‰

ˆ P pX2pt‹
q “ x2q

ı

P pX1pt
‹
q “ x1, X1pt1q “ c1q

ˆ

„ m1
ÿ

x1“c1

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsm1f1pt
‹
q

ˆ P pX1pt‹
q “ x1 | T 1

“ t‹
qrP pX1pt‹

q “ x1qs
´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsm2f2pt
‹
q

ˆ P pX2pt‹
q “ x2 | T 2

“ t‹
qrP pX2pt‹

q “ x2qs
´1
‰

ˆ P pX2pt‹
q “ x2q

ı

P pX1pt
‹
q “ x1, X1pt1q “ c1q

ȷ´1

.

Using Lemma (3.3.1),

P pXkpt‹
q “ xk | T k

“ t‹
q

“ P pXkpt‹´
q “ xk ´ 1 | T k

“ t‹
q “

pmk ´ xk ` 1qhkpt‹qP pXkpt‹´q “ xk ´ 1q

mkfkpt‹q
.
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Then,

P pX1pt‹
q “ x1 | X1pt1q “ c1, Ts ą t‹´, Ts “ t‹

q

“

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qspm1 ´ x1 ` 1qh1pt
‹
q

ˆ P pX1pt‹´
q “ x1 ´ 1qrP pX1pt

‹
q “ x1qs

´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qspm2 ´ x2 ` 1qh2pt
‹
q

ˆ P pX2pt‹´
q “ x2 ´ 1qrP pX2pt

‹
q “ x2qs

´1
‰

P pX2pt‹
q “ x2q

ı

ˆ P pX1pt‹
q “ x1, X1pt1q “ c1q

ˆ

„ m1
ÿ

x1“c1

”

m2
ÿ

x2“0

“

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qspm1 ´ x1 ` 1q

ˆ h1pt‹
qP pX1pt‹´

q “ x1 ´ 1qrP pX1pt
‹
q “ x1qs

´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qspm2 ´ x2 ` 1qh2pt
‹
q

ˆ P pX2pt‹´
q “ x2 ´ 1qrP pX2pt

‹
q “ x2qs

´1
‰

P pX2pt‹
q “ x2q

ı

ˆ P pX1pt‹
q “ x1, X1pt1q “ c1q

ȷ´1

.

l

This provides an expression for the probability of the number of failed compo-

nents of one type for a system composed of two types of components. In the next

subsection, we generalise the result to find the probability of the number of failed

components of multiple types at system failure time for a system containing multiple

types of components.

3.4.1 Case of multiple types of components

The probability distribution of the number of failed components at system failure,

given the exact time of the failure and the number of failed components that

occur prior to system failure, can be extended to systems with multiple types of

components. For a system comprising K types of components and mk components

of type k, where k P t1, 2, ..., Ku, the following theorem provides the distribution

result along with its proof.
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Theorem 3.4.2 Let T k denote the failure time of a component of type

k P t1, ..., Ku, where the failure times of components are assumed to be ab-

solutely continuous distributed. Further, assume that the failure times of

components of the same type are independent and identically distributed, and that

the failure times of components of different types are independent. Denote Ts as

the random variable representing the system failure time, and Xkptq as the random

variable representing the number of failed components of type k at time t. Suppose

the system fails at a future time t‹, and there were ck failed components of type

k at time tk, for k P t1, ..., Ku, before system failure. Then, for t‹ ą t1, t2, ..., tK ,

x1 ě c1, x2 ě c2, ..., xK ě cK , and c1, c2, ..., cK ‰ x1, x2, ..., xK , the probability of the

event
ŞK

k“1Xk pt‹q “ xk |
ŞK

k“1Xk ptkq “ ck, Ts ą t‹´, Ts “ t‹ is given by

P

˜

K
č

k“1

Xk pt‹
q “ xk |

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´, Ts “ t‹

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ pmk ´ xk ` 1qhkpt‹
qP pXkpt‹´

q “ xk ´ 1qrP pXkpt‹
q “ xkqs

´1

ˆ

K
ź

k“1

P pXk pt‹
q “ xk, Xk ptkq “ ckq

ˆ

«

m1
ÿ

x1“c1

. . .
mK
ÿ

xK“cK

„ K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ pmk ´ xk ` 1qhkpt‹
qP pXkpt‹´

q “ xk ´ 1qrP pXkpt‹
q “ xkqs

´1

ˆ

K
ź

k“1

P pXk pt‹
q “ xk, Xk ptkq “ ckq

ȷ

ff´1

, (3.4.9)

where, hkpt‹q represents the hazard rate of component type k at time t‹, while

P pXkpt‹q “ xkq denotes the probability of xk failed components of type k at time

t‹, calculated through the binomial distribution.
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Proof :

P

˜

K
č

k“1

Xk pt‹
q “ xk |

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´, Ts “ t‹

¸

“ P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´

¸

ˆ P

˜

Ts ą t‹´
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck

¸

ˆ P

˜

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck

¸

ˆ

˜

P

˜

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´, Ts “ t‹

¸¸´1

. (3.4.10)

The first probability in the numerator of Equation 3.4.10 is calculated as

P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´

¸

“

K
ÿ

k“1

P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´, T k
“ t‹

¸

ˆ P

˜

T k
“ t‹

|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´

¸

“

K
ÿ

k“1

P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk, Ts ą t‹´, T k

“ t‹

¸

ˆ P

˜

T k
“ t‹

|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´

¸

.

The first probability in the summation is determined as

P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk, Ts ą t‹´, T k

“ t‹

¸

“

P
´

Ts “ t‹ |
ŞK

k“1Xk pt‹q “ xk, T
k “ t‹

¯

P
´

Ts ą t‹´ |
ŞK

k“1Xk pt‹q “ xk, T k “ t‹

¯ .
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Using Lemma 3.3.2 with some modifications to express it in terms of the number of

failed components instead of functioning components,

P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk, T

k
“ t‹

¸

“ rΦpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq

´ Φpm1 ´ x1, . . . ,mK ´ xKqs

“ Φ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq.

Thus,

P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk, Ts ą t‹´, T k

“ t‹

¸

“
Φ1

kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq

Φpm1 ´ x1, . . . ,mk´1 ´ xk´1, . . . ,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq
.

The second probability in the summation is calculated as

P

˜

T k
“ t‹

|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´

¸

“ P

˜

Ts ą t‹´
| T k

“ t‹,
K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck

¸

ˆ P
`

T k
“ t‹

| Xk pt‹
q “ xk

˘

ˆ

˜

P

˜

Ts ą t‹´
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck

¸¸´1

“ Φpm1 ´ x1, . . . ,mk´1 ´ xk´1, . . . ,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq

ˆ P
`

T k
“ t‹

| Xk pt‹
q “ xk

˘

ˆ

˜

P

˜

Ts ą t‹´
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck

¸¸´1

.
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Substituting the results of these two probabilities back into the summation, we

obtain

P

˜

Ts “ t‹
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ P
`

T k
“ t‹

| Xk pt‹
q “ xk

˘

ˆ

˜

P

˜

Ts ą t‹´
|

K
č

k“1

Xk pt‹
q “ xk,

K
č

k“1

Xk ptkq “ ck

¸¸´1

.

Substituting back into Equation 3.4.10, we get

P

˜

K
č

k“1

Xk pt‹
q “ xk |

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´, Ts “ t‹

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ P
`

T k
“ t‹

| Xk pt‹
q “ xk

˘

K
ź

k“1

P pXk pt‹
q “ xk, Xk ptkq “ ckq

ˆ

«

m1
ÿ

x1“c1

. . .
mK
ÿ

xK“cK

„ K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ P
`

T k
“ t‹

| Xk pt‹
q “ xk

˘

K
ź

k“1

P pXk pt‹
q “ xk, Xk ptkq “ ckq

ȷ

ff´1

.
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To find P
`

T k “ t‹ | Xk pt‹q “ xk

˘

, we use Lemma 3.3.1, so,

P

˜

K
č

k“1

Xk pt‹
q “ xk |

K
č

k“1

Xk ptkq “ ck, Ts ą t‹´, Ts “ t‹

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ pmk ´ xk ` 1qhkpt‹
qP pXkpt‹´

q “ xk ´ 1qrP pXkpt‹
q “ xkqs

´1

ˆ

K
ź

k“1

P pXk pt‹
q “ xk, Xk ptkq “ ckq

ˆ

«

m1
ÿ

x1“c1

. . .
mK
ÿ

xK“cK

„ K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ pmk ´ xk ` 1qhkpt‹
qP pXkpt‹´

q “ xk ´ 1qrP pXkpt‹
q “ xkqs

´1

ˆ

K
ź

k“1

P pXk pt‹
q “ xk, Xk ptkq “ ckq

ȷ

ff´1

.

l

Remark 3.4.1 Note that if Xkpt‹q denotes the numbers of failed components of

type k at time t‹ with a CDF Fkpt‹q for the failure time of components of type k,

then for xk P t0, . . . ,mku,

P pXkpt‹
q “ xkq “

ˆ

mk

mk ´ xk

˙

rFkpt‹
qs

xkr1 ´ Fkpt‹
qs

mk´xk .

Also note that the probability P pXkpt‹q “ xk, Xkptkq “ ckq can be calculated using

a Multinomial distribution with ck events P r0, tks, xk ´ ck P rtk, t
‹s, and mk ´ xk P

rt‹,8s, that is

P
´

Xkpt‹
q “ xk, Xkptkq “ ck

¯

“

ˆ

mk

ck, xk ´ ck,mk ´ xk

˙

rFkptkqs
ckrFkpt‹

q ´ Fkptkqs
xk´ckr1 ´ Fkpt‹

qs
mk´xk .
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Example 3.4.1 (Series-parallel system) We show the probability of the number

of failed components of multiple types with a simple example based on the system

shown in Figure 3.6, which has two types of components. For both types, we assume

that failure times are Exponentially distributed with a failure rate of 0.4 for type

1 and 0.2 for type 2. Figure 3.7 illustrates the probability of the number of failed

components of type 1 and type 2 at different times of system failure, assuming one

failure of type 1 occurred at time t1 “ 10 and one failure of type 2 at t2 “ 5 (Figure

3.7a), one failure of type 1 occurred at time t1 “ 10 and one failure of type 2 at

t2 “ 2 (Figure 3.7b), and one failure of type 1 occurred at time t1 “ 10 and one

failure of type 2 at t2 “ 10 (Figure 3.7c). The figure only includes the possible

events of the number of failed components at the time of system failure, namely

X1pt
˚q “ 2, X2pt

˚q “ 1 and X1pt
˚q “ 1, X2pt˚q “ 2. In general, it appears that

having two malfunctioning components of type 1 and one malfunctioning component

of type 2 at the time of system failure is more likely to occur. If the failure of type 2

occurs before the failure of type 1, there is a higher probability of having two type 2

failures and one type 1 failure when the system fails early as shown in the first two

figures. Figure 3.7b, with t1 “ 10 and t2 “ 2, shows that when the failure of type 2

happens very early compared to Figure 3.7a (t2 “ 5), the probability of having two

type 2 failures and one type 1 failure increases for early system failures.

Figure 3.8 illustrates the probability of type 1 and type 2 component failures

at the system failure time, assuming there were no prior failures of either type at

different moments. Here, there are three possible combinations of the number of

failed components of the two types at system failure. It is generally most likely to

have two failures of type 1 and one failure of type 2 due to the high failure rate of

type 1 components. If the zero failures of type 2 observed at earlier times than the

zero failures of type 1, as shown in Figure 3.8a and 3.8b, the most likely scenario is

to have two failures of type 2 and one failure of type 1 when the system fails early.

Figure 3.8c illustrates that when the zero failures of the two types are observed at

the same time (t1 “ t2 “ 10), and the system subsequently fails quickly, say at

t˚ “ 11, it is most likely to have one failure of type 1 and one failure of type 2.
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1
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Figure 3.6: Series-parallel system with two types of components.

Example 3.4.2 (Hydro power system) The second example we present is based

on the hydro power system, which consists of six different types of components,

as illustrated in Figure 3.5. Figure 3.9 shows the probability of the number of

failed components at system failure time, given that zero failures of type 1 and one

failure of the types 2, 3, 4, 5, and 6 occurred prior to system failure at different

moments. We assume that the failure times of components of types 1, 2, 3, 4, 5,

and 6 have Exponential distributions with failure rates of 0.2, 0.5, 0.4, 0.3, 0.6,

and 0.7, respectively. In this system, and given the earlier failures that occurred

before system failure, there are only six possible combinations of failed components

of multiple types at the time of system failure. Figure 3.9a shows the probability

of the number of failures when the system fails, assuming that the previous failures

that occurred before system failure were observed at the same time, with t1 “ t2 “

t3 “ t4 “ t5 “ t6 “ 3. In this scenario, it is most likely that an extra failure of

type 5 will occur at the system failure moment. This may be attributed to both the

high failure rate of type 5 components and their specific location within the system.

Figure 3.9b illustrates a scenario where the failure of type 4, which occurred before

system failure, was observed at t4 “ 1, while the failures of the other types were

observed at t1 “ t2 “ t3 “ t5 “ t6 “ 3. Under this setting, it is highly probable to

experience an additional failure of type 4 when the system fails. If we assume that

the failure of type 2 occurred by t2 “ 2 instead of t2 “ 3, then the chance of having

two failures of type 2 at system failure is increased as shown in Figure 3.9c.

Figure 3.10 displays the probability distribution of the number of failed compo-

nents at system failure. This distribution is conditioned on zero failures of type 1
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Figure 3.7: Probability of the number of failed components at system failure time

for the System in Figure 3.6, considering one failure of type 1 and one failure of type

2 occurred before system failure at different times t1, t2.

and type 4 components, and one failure each of types 2, 3, 5, and 6 occurring prior to

the system failure. Generally, it is observed that when assuming no failures of type

4 components occurred prior to system failure, the probability of the combination,

which includes zero failures of type 1, one failure of types 2, 3, 5, and 6, and two

failures of type 4, is less likely compared to the probability of the same combination

when one failure of type 4 was observed at an earlier time before system failure, as

shown in Figure 3.9.

These two examples show that the number of failed components that observed

prior to system failure and, moreover, the timing of these failures affect the number

of failed components at the moment of system failure.
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(c) X1p10q “ 0, X2p10q “ 0

Figure 3.8: Probability of the number of failed components at system failure time

for the System in Figure 3.6, considering zero failures of type 1 and zero failures of

type 2 occurred before system failure at different times t1, t2.

3.5 Number of failed components at system

failure given system age

In this section, we examine the numbers of failed components of multiple types at a

future unknown moment at which the system fails, given that the system was func-

tioning at some point in time. The length of time the system was operational, which

affects the probability of the number of failed components at the time of failure, is

taken into account. Understanding the probability distribution of this event holds

significant importance in various aspects. From a spare parts inventory perspective,

this probability can mitigate the risk of parts unavailability and overstocking, which

can be adjusted according to the system’s operational period. This distribution

can also be valuable for the warranty and insurance sector. Insurers can use the
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(c) X1p3q “ 0, X2p2q “ 1, X3p3q “

1, X4p1q “ 1, X5p3q “ 1, X6p3q “ 1

Figure 3.9: Probability of the number of failed components at system failure for the

System in Figure 3.6, assuming zero failures of type 1 and one failure of the other

types occurred before system failure at different times t1, . . . , t6.

probability of the number of failed components, based on the system’s age, to set

insurance premiums based on expected failures and related costs.

First, we consider a system composed of two types of components, and then the

results are generalised to multiple types of components. For a system with two types

of components, let X1pTsq and X2pTsq denote the number of failed components,

respectively, of types 1 and 2, at time Ts of system failure. Our objective is to

determine the probability of the event X1pTsq “ x1, X2pTsq “ x2 | Ts ą t. The

following theorem presents the probability distribution of the event, along with its

proof.
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(c) X1p3q “ 0, X2p2q “ 1, X3p3q “
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Figure 3.10: Probability of the number of failed components at system failure for

the System in Figure 3.6, assuming zero failures of types 1 and 4, and one failure of

types 2, 3, 5, and 6, occurred before system failure at different times t1, . . . , t6.

Theorem 3.5.1 Let T k denote the failure time of a component of type k P t1, 2u,

where the failure times of components are assumed to be absolutely continuous

distributed. Further, assume that the failure times of components of the same type

are independent and identically distributed, and that the failure times of components

of different types are independent. Let Ts represent the random variable denoting

the system failure time. If the probability distributions of the failure times of the

component types are known, then the probability distribution of the event X1pTsq “
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x1, X2pTsq “ x2 | Ts ą t can be expressed as

P pX1pTsq “ x1, X2pTsq “ x2 | Ts ą tq

“
1

1 ´ FTsptq

ż 8

t

”

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ pm1 ´ x1 ` 1qh1puqP pX1pu´
q “ x1 ´ 1qrP pX2puq “ x2qs

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ pm2 ´ x2 ` 1qh2puqP pX2pu´
q “ x2 ´ 1qrP pX1puq “ x1qs

ı

du, (3.5.11)

where, FTsptq denotes the cumulative distribution function of the system failure time

Ts, while hkpuq represents the hazard rate of component type k at time u. The term

P pXkpuq “ xkq represents the probability of xk failed components of type k at time

u, calculated through the binomial distribution, as noted in Remark 3.4.1.

Proof :

P pX1pTsq “ x1, X2pTsq “ x2 | Ts ą tq

“

ż 8

t

P pX1pTsq “ x1, X2pTsq “ x2 | Ts “ uqfTspu | Ts ą tq du

“
1

1 ´ FTsptq

ż 8

t

P pX1pTsq “ x1, X2pTsq “ x2 | Ts “ uq fTspuq du. (3.5.12)

For the first formula in the integral, the system failure time is now set at u, so

P pX1pTsq “ x1, X2pTsq “ x2 | Ts “ uq “ P pX1puq “ x1, X2puq “ x2 | Ts “ uq

“
P pX1puq “ x1, X2puq “ x2qP pTs “ u | X1puq “ x1, X2puq “ x2q

P pTs “ uq

“
P pX1puq “ x1qP pX2puq “ x2qP pTs “ u | X1puq “ x1, X2puq “ x2q

P pTs “ uq
. (3.5.13)

As we assume that two components cannot fail simultaneously, the system failure is

either due to a failure of a component of type 1 or type 2. Thus,

P pTs “ u | X1puq “ x1, X2puq “ x2q

“ P pTs “ u | X1puq “ x1, X2puq “ x2, T
1

“ uqP pT 1
“ u | X1puq “ x1q

` P pTs “ u | X1puq “ x1, X2puq “ x2, T
2

“ uqP pT 2
“ u | X2puq “ x2q.



3.5. Number of failed components at system failure given system age 59

If there are x1 failures of components of type 1 by time u and one of these components

fails exactly at u, then at the time just before u, u´, we had x1 ´ 1 failures. This

means that by time u´ we would have x1 ´ 1 failures of type 1 and x2 failures of

type 2, and by time u there will be x1 failures of type 1 (increased by one) and x2

failures of type 2 (as at time u´ since two failures cannot occur simultaneously).

The same applies when we have x2 failures of components of type 2 by time u and

one of these fails exactly at u. Then,

P pTs “ u | X1puq “ x1, X2puq “ x2q

“ P pTs “ u | X1pu´
q “ x1 ´ 1, X2pu´

q “ x2, X1puq “ x1, X2puq “ x2q

ˆ P pT 1
“ u | X1puq “ x1q

` P pTs “ u | X1pu
´

q “ x1, X2pu´
q “ x2 ´ 1, X1puq “ x1, X2puq “ x2q

ˆ P pT 2
“ u | X2puq “ x2q

“ rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ P pT 1
“ uqP pX1puq “ x1 | T 1

“ uqrP pX1puq “ x1qs
´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ P pT 2
“ uqP pX2puq “ x2 | T 2

“ uqrP pX2puq “ x2qs
´1.

Using Lemma 3.3.1 for P pXkpuq “ xk | T k “ uq,

P pTs “ u | X1puq “ x1, X2puq “ x2q

“ rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ uq

ˆ
pm1 ´ x1 ` 1qh1puqP pX1pu

´q “ x1 ´ 1q

m1f1puq
rP pX1puq “ x1qs

´1

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ uq

ˆ
pm2 ´ x2 ` 1qh2puqP pX2pu´q “ x2 ´ 1q

m2f2puq
rP pX2puq “ x2qs

´1. (3.5.14)
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By substituting the result of the probability P pTs “ u | X1puq “ x1, X2puq “ x2q,

Equation (3.5.14), back into Equation (3.5.13), we obtain

P pX1puq “ x1, X2puq “ x2 | Ts “ uq

“

”

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 1
“ uq

ˆ
pm1 ´ x1 ` 1qh1puqP pX1pu´q “ x1 ´ 1q

m1f1puq
rP pX2puq “ x2qs

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pT 2
“ uq

ˆ
pm2 ´ x2 ` 1qh2puqP pX2pu´q “ x2 ´ 1q

m2f2puq
rP pX1puq “ x1qs

ı

ˆ

”

P pTs “ uq

ı´1

.

«

”

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsP pu ă T 1
ď u ` ϵq

ˆ
pm1 ´ x1 ` 1qh1puqP pX1pu

´q “ x1 ´ 1q

m1f1puq
rP pX2puq “ x2qs

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsP pu ă T 2
ď u ` ϵq

ˆ
pm2 ´ x2 ` 1qh2puqP pX2pu

´q “ x2 ´ 1q

m2f2puq
rP pX1puq “ x1qs

ı

ˆ

”

P pu ă Ts ď u ` ϵq
ı´1

, for small ϵ ą 0.

Multiplying by 1
ϵ
, then taking the limit when ϵ Ñ 0,

P pX1puq “ x1, X2puq “ x2 | Ts “ uq

“

”

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qsm1f1puq

ˆ
pm1 ´ x1 ` 1qh1puqP pX1pu

´q “ x1 ´ 1q

m1f1puq
rP pX2puq “ x2qs

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qsm2f2puq

ˆ
pm2 ´ x2 ` 1qh2puqP pX2pu

´q “ x2 ´ 1q

m2f2puq
rP pX1puq “ x1qs

ı”

fTspuq

ı´1

“

”

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ pm1 ´ x1 ` 1qh1puqP pX1pu
´

q “ x1 ´ 1qrP pX2puq “ x2qs

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ pm2 ´ x2 ` 1qh2puqP pX2pu
´

q “ x2 ´ 1qrP pX1puq “ x1qs

ı”

fTspuq

ı´1

. (3.5.15)
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Substituting the result of the probability P pX1puq “ x1, X2puq “ x2 | Ts “ uq,

Equation 3.5.15, into Equation 3.5.12,

P pX1 “ x1, X2 “ x2 | Ts ą tq

“
1

1 ´ FTsptq

ż 8

t

”

rΦpm1 ´ x1 ` 1,m2 ´ x2q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ pm1 ´ x1 ` 1qh1puqP pX1pu
´

q “ x1 ´ 1qrP pX2puq “ x2qs

` rΦpm1 ´ x1,m2 ´ x2 ` 1q ´ Φpm1 ´ x1,m2 ´ x2qs

ˆ pm2 ´ x2 ` 1qh2puqP pX2pu
´

q “ x2 ´ 1qrP pX1puq “ x1qs

ı

du,

l

This expression calculates the probability of the number of failed components of

two types at the moment of system failure, assuming that the system was functioning

at some point in time. The resulting expression depends solely on the failure time

distributions of component types and the survival signature of the system. Moreover,

the expression does not rely on the system failure time Ts where the fTs term is

canceled in the derivation. The system reliability term outside the integral can be

determined using the survival signature, as demonstrated in Chapter 2. The next

subsection considers the case of multiple types of components.

3.5.1 Case of multiple types of components

The probability distribution of the numbers of failed components at system failure

when it is assumed to be unknown, given that the system was functioning at some

point in time, can be extended to multiple types of components. Consider a system

with K types of components and mk components of type k, for k P t1, 2, ..., Ku.

The following theorem provides the probability distribution of the number of failed

components of multiple types at the moment of system failure, assuming system

functioning at time t, along with its proof.

Theorem 3.5.2 Let T k denote the failure time of a component of type

k P t1, ..., Ku, where the failure times of components are assumed to be ab-

solutely continuous distributed. Additionally, suppose that the failure times of

components of the same type are independent and identically distributed, and
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that the failure times of components of different types are independent. Let Ts

represent the random variable denoting the system failure time. If the probability

distributions of the failure times of the component types are known, then the

probability distribution of the event
ŞK

k“1 tXkpTsq “ xku | Ts ą t can be expressed

as

P

˜

K
č

k“1

tXkpTsq “ xku | Ts ą t

¸

“
1

1 ´ FTsptq

ż 8

t

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ pmk ´ xk ` 1qhk puqP
`

Xk

`

u´
˘

“ xk ´ 1
˘

¨

˚

˝

K
ź

i“1
i‰k

P pXi puq “ xiq

˛

‹

‚

du,

(3.5.16)

where, FTsptq denotes the cumulative distribution function of the system failure

time Ts, and hkpuq represents the hazard rate of component type k at time u. The

probability P pXkpuq “ xkq indicates the probability of xk failed components of type

k at time u, determined using the binomial distribution, as referenced in Remark

3.4.1

Proof :

P

˜

K
č

k“1

tXkpTsq “ xku | Ts ą t

¸

“

ż 8

t

P

˜

K
č

k“1

tXk pTsq “ xku | Ts “ u

¸

fTs pu | Ts ą tq du

“
1

1 ´ FTsptq

ż 8

t

P

˜

K
č

k“1

tXk pTsq “ xku | Ts “ u

¸

fTs puq du. (3.5.17)
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For the first formula in the integral, the system failure time is now known at u, so

P

˜

K
č

k“1

tXk pTsq “ xku | Ts “ u

¸

“ P

˜

K
č

k“1

tXk puq “ xku | Ts “ u

¸

“

P
´

ŞK
k“1 tXk puq “ xku

¯

P
´

Ts “ u |
ŞK

k“1 tXk puq “ xku

¯

P pTs “ uq

“

”

śK
k“1 P pXk puq “ xkq

ı

P
´

Ts “ u |
ŞK

k“1 tXk puq “ xku

¯

P pTs “ uq
.

(3.5.18)

As we assume that two or more components cannot fail simultaneously, the system

failure time is due to only one type. Thus,

P

˜

Ts “ u |

K
č

k“1

tXk puq “ xku

¸

“

K
ÿ

k“1

P

˜

Ts “ u |

K
č

i“1

tXi puq “ xiu , T
k

“ u

¸

P
`

T k
“ u | Xk puq “ xk

˘

“

K
ÿ

k“1

P

¨

˚

˝

Ts “ u |

K
č

i“1

tXi puq “ xiu ,
K
č

i“1
i‰k

␣

Xi

`

u´
˘

“ xi

(

, Xk

`

u´
˘

“ xk ´ 1

˛

‹

‚

ˆ P
`

T k
“ u | Xk puq “ xk

˘

(3.5.19)

Using Lemma 3.3.2 for the first term in Equation (3.5.19),

P

¨

˚

˝

Ts “ u |

K
č

i“1

tXi puq “ xiu ,
K
č

i“1
i‰k

␣

Xi

`

u´
˘

“ xi

(

, Xk

`

u´
˘

“ xk ´ 1

˛

‹

‚

“ rΦpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq

´ Φpm1 ´ x1, . . . ,mK ´ xKqs

“ Φ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq.

Thus,

P

˜

Ts “ u |

K
č

k“1

tXk puq “ xku

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ P
`

T k
“ u

˘

P
`

T k
“ u | Xk puq “ xk

˘

rP pXk puq “ xkqs
´1 .
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Using Lemma 3.3.1 for P
`

T k “ u | Xk puq “ xk

˘

,

P

˜

Ts “ u |

K
č

k“1

tXk puq “ xku

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ P
`

T k
“ u

˘ pmk ´ xk ` 1qhk puqP pXk pu´q “ xk ´ 1q

mkfk puq
rP pXk puq “ xkqs

´1 .

By substituting the result of the probability P
´

Ts “ u |
ŞK

k“1 tXk puq “ xku

¯

into

Equation 3.5.18,

P

˜

K
č

k“1

tXk puq “ xku | Ts “ u

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ P
`

T k
“ u

˘ pmk ´ xk ` 1qhk puqP pXk pu´q “ xk ´ 1q

mkfk puq

ˆ

¨

˚

˝

K
ź

i“1
i‰k

P pXi puq “ xiq

˛

‹

‚

rP pTs “ uqs
´1

«

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ P
`

u ă T k
ď u ` ϵ

˘ pmk ´ xk ` 1qhk puqP pXk pu´q “ xk ´ 1q

mkfk puq

ˆ

¨

˚

˝

K
ź

i“1
i‰k

P pXi puq “ xiq

˛

‹

‚

rP pu ă Ts ď u ` ϵqs
´1 .

Multiplying by 1
ϵ
, then taking the limit when ϵ Ñ 0,

P

˜

K
č

k“1

tXk puq “ xku | Ts “ u

¸

“

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ mkfk puq
pmk ´ xk ` 1qhk puqP pXk pu´q “ xk ´ 1q

mkfk puq

ˆ

¨

˚

˝

K
ź

i“1
i‰k

P pXi puq “ xiq

˛

‹

‚

rfTs puqs
´1 .
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Substituting the result of probability P
´

ŞK
k“1 tXk puq “ xku | Ts “ u

¯

into Equa-

tion 3.5.17,

P

˜

K
č

k“1

tXkpTsq “ xku | Ts ą t

¸

“
1

1 ´ FTsptq

ż 8

t

K
ÿ

k“1

rΦ1
kpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKqs

ˆ pmk ´ xk ` 1qhk puqP
`

Xk

`

u´
˘

“ xk ´ 1
˘

¨

˚

˝

K
ź

i“1
i‰k

P pXi puq “ xiq

˛

‹

‚

du.

l

Example 3.5.1 (Series-parallel system) We illustrate our results on the prob-

ability of the number of failed components at system failure time, given that the

system was functioning at time t, using a simple series-parallel system depicted in

Figure 3.6. This system is composed of two types of components. For this system,

there are only three different scenarios for the system to fail. In Figure 3.11, we

show the probability of failures for both types, assuming they follow Exponential

distributions, with the system functioning at time t. Figure 3.11a represents the

scenario where both types have the same failure rate of 0.2. In Figure 3.11b, we

depict the probability of failures when the failure rate of type 1 components is 0.2,

and the failure rate of type 2 components is 0.4. Figure 3.11c illustrates a situation

in which the failure rate of type 1 components is 0.4, while the failure rate of type

2 components is 0.2. The orange line in the figures indicates the probability of the

system functioning at time t. Therefore, the time period that should receive more

attention is the period before time t “ 10. In the case where both types have the

same failure rate, the probability of having two failures of type 1 and one failure of

type 2, as well as having one failure of type 1 and two failures of type 2, is the same

and is the most likely. Conversely, the probability of having one failure for both

types is less likely. For the other two scenarios, the probability of failures depends

on the failure rate of each type. When type 2 has a rate of 0.4, it is most likely to



3.5. Number of failed components at system failure given system age 66

have two failures of type 2 and one failure of type 1. Conversely, when type 1 has a

rate of 0.4, it is most likely to have two failures of type 1 and one failure of type 2.
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(b) T 1 „ Expp0.2q, T 2 „ Expp0.4q
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(c) T 1 „ Expp0.4q, T 2 „ Expp0.2q

Figure 3.11: Probability of the number of failed components at system failure time

for System in Figure 3.6 given that the system was functioning at time t. Note that

the blue and red lines are overlapped in Figure 3.11a.

Example 3.5.2 (Hydro power system) In this example, we present our findings

using the hydro power system illustrated in Figure 3.5, which comprises six types

of components. Given the assumption that two or more components cannot fail

simultaneously, there are a total of 136 potential combinations of failures for these

six types that can occur at the moment of system failure. Figure 3.12 illustrates the

probabilities associated with some of the most likely specific combinations of failed

components at the time of system failure, assuming the system was in operation at

time t, under various scenarios. In the first figure, we illustrate the probability of

combinations of failures when the failure times of components follow the distribu-

tions outlined in Table 3.3. Based on these distributions, the most likely combination
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when the system fails, assuming the system was last known to be functioning at a

very early time, is two failures of type 2 and no failures of the other types. When

the system is still functioning at, say, time t “ 25, then the combination of zero

failures of types 1 and 3, and one failure for types 4, 5, and 6, and two failures

for type 2 is the most likely one to occur when the system fails. If the system has

been operational for an extended period, it is most likely to experience two failures

of type 2, zero failures of type 1, and one failure of the other types at the time of

failure.

When the shape parameters of components for type 1 and type 2 were adjusted to

1.1 and 0.8, respectively, the probabilities of most of these combinations significantly

decreased, as depicted in Figure 3.12b. The only exception is in the probability of

having one failed component of type 1 and one failed component of type 2, with

no failures for the other types (green combination), which increased when assuming

that the system was last known to function at earlier times. Under these modified

parameters, Figure 3.12c illustrates some of the most likely combinations of failed

components at the moment of system failure. In this scenario, when the system was

last known to be functioning during its early stages, the most likely combination

upon failure is having one failed component of type 1 and no failures of the other

types. When the system continues to function at t “ 25, then having one failed

component of types 1, 2, 4, 5, and 6, with no failure of type 3, is most likely to

occur, followed by the combination of having one failed component of types 1, 2,

5, and 6, with no failures for types 3 and 4. As the system continues to function,

it becomes increasingly likely to experience an additional failed component at the

time of system failure, ultimately resulting in one failure for each type.

As shown in these two examples, the probability of the numbers of failed components

is highly affected by the period during which the system was in operation. This

aspect was not clearly considered in similar events discussed in the literature.
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Component type Distribution Parameters

1 Weibull α1 = 1, β1 = 0.5

2 Weibull α2 = 2.5, β2 = 2

3 Exponential failure rate = 0.02

4 Exponential failure rate = 0.03

5 Exponential failure rate = 0.06

6 Exponential failure rate = 0.05

Table 3.3: Failure times distribution of the types of system components.

3.6 Number of failed components given system

failure within a future time interval

This section studies the probability of the number of failures at the moment of system

failure, given that the time of the system failure will occur within a future time

interval. An event of this nature may be useful for on-site maintenance operations,

for example, during periods when emergency supplies of spare parts are not available,

such as on support vessels for wind farms [43]. This event is a natural extension of

the event introduced in Section 3.5. If we assume that the system will fail within a

future time interval rt‹
1, t

‹
2s, then the probability distribution of the number of failed

components of each type within a given system at the moment of failure can be

calculated as follows.

P

˜

K
č

k“1

Xk pTsq “ xk | Ts P rt‹
1, t

‹
2s

¸

“

ż t‹
2

t‹
1

P

˜

K
č

k“1

Xk pTsq “ xk | Ts “ u

¸

fTs pu | Ts P rt‹
1, t

‹
2sq du

“

ż t‹
2

t‹
1

P

˜

K
č

k“1

Xkpuq “ xk | Ts “ u

¸

fTspuq

FTspt‹
2q ´ FTspt‹

1q
du

“
1

FTspt‹
2q ´ FTspt‹

1q

ż t‹
2

t‹
1

P p

K
č

k“1

Xkpuq “ xk | Ts “ uqfTspuq du.
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(a) Probability of failures when distribu-

tions according to Table 3.3
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(b) Probability of same combinations in

3.12a when β1 = 1.1 and β2 = 0.8
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(c) Probability of some of most likely

failures combinations when β1 = 1.1 and

β2 = 0.8

Figure 3.12: Probability of the number of failed components at system failure time

for System in Figure 3.5 given that the system was functioning at time t.

The probability and density in the integration can be treated as in Subsection 3.5.1,

thus,

P

˜

K
č

k“1

Xk pTsq “ xk | Ts P rt‹
1, t

‹
2s

¸

“
1

FTspt‹
2q ´ FTspt‹

1q

ż t‹
2

t‹
1

K
ÿ

k“1

rΦpm1 ´ x1, . . . ,mk´1 ´ xk´1,mk ´ xk ` 1,mk`1 ´ xk`1, . . . ,mK ´ xKq

´ Φpm1 ´ x1, . . . ,mK ´ xKqs pmk ´ xk ` 1qhk puqP
`

Xk

`

u´
˘

“ xk ´ 1
˘

ˆ

¨

˚

˝

K
ź

i“1
i‰k

P pXi puq “ xiq

˛

‹

‚

du.

(3.6.20)
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Example 3.6.1 (Series-parallel system) In this example, we calculate the prob-

ability of the number of failed components at the moment of system failure, con-

sidering that the system will fail within a future time interval. This calculation is

performed for the system illustrated in Figure 3.6. The system’s two types are as-

sumed to follow Exponential distribution, with a failure rate of 0.4 for type 1 and 0.2

for type 2. Figure 3.13 shows the probability of failures for the two types when the

system fails under various scenarios. In these scenarios, the most probable situation

at the moment of system failure is having two failed components of type 1 and one

failure of type 2. Figure 3.13a illustrates the probability of the number of failures if

the system were to fail at different specified intervals. It shows that the most likely

outcome, particularly when the system fails at a very early interval, is to have two

failures of type 1, one failure of type 2, followed by, one failure of both types. Figure

3.13b illustrates the scenario where time t‹
1 approaches t‹

2 (so, Ts P rt‹
2 ´ ϵ, t‹

2s, for

small ϵ). This scenario corresponds to a case introduced in Section 3.4, where the

system failure time is assumed to be known, but no prior knowledge about earlier

failures is available. The probabilities in this figure can be compared to the proba-

bilities in Figure 3.8, where differences become evident. This comparison confirms

that having information about earlier failures affects the probability of failures at

the moment of system failure. In Figure 3.13c, the probability of failures at system

failure is presented when t‹
2 approaches infinity leading to Ts ě t‹

1, which can be

seen as the probability of the event introduced in Section 3.5. Therefore, this figure

presents the same probabilities shown in Figure 3.11c.

Example 3.6.2 (Hydro power system) Consider the hydro power system de-

picted in Figure 3.5. Let’s assume that this system will fail within a future interval

rt‹
1, t

‹
2s, and the failure times of its components follow the distributions outlined in

Table 3.3. In Figure 3.14, we present the probability of failures for some of the most

likely combinations at the moment of system failure under various scenarios. Figure

3.14a illustrates these probabilities with the component failure time distributions as

per Table 3.3. From the figure, we observe that if the system is assumed to fail at

very early times, such as within the interval r1, 5s, then the most likely scenario at

the moment of system failure is having two failed components of type 2 and zero
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(a) Probability of failures given system

failure at rt‹
1, t

‹
2s.
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(b) Probability of failures at rt‹
1, t

‹
2s when

t‹
1 approaches to t‹

2.

(c) Probability of failures at rt‹
1, t

‹
2s when

t‹
2 approaches to infinity.

Figure 3.13: Probability of the number of failed components at system failure time

for System in Figure 3.6 given system failure within time interval rt‹
1, t

‹
2s. Note that

the dashed line is used to connect the points and does not represent a probability.

failed components of the other types. The second most likely combination of failed

components is having one failed component each of types 1 and 2, with zero fail-

ures for the other types (green combination). Following this, the third most likely

combination is having two failed components of type 2 and one failed component of

type 6, with zero failures for the other types (red combination). The probabilities of

other combinations of the number of failed components are similar when the system

fails at very early moments.

If the system is assumed to fail within the time interval r5, 10s, then the proba-

bilities for some of these combinations change. For example, the probability of the

green combination clearly decreases, while the probability of the red combination

increases. However, if we assume that the system will still be functioning and fail
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at a later time interval, t “ r25, 30s, then the most likely scenario to occur when

the system fails is having two failed components of type 2, one failed component of

types 5 and 5, and zero failed components of the other types (orange combination).

If we adjust the shapes of components of types 1 and 2 to 1.1 and 0.8, respectively,

the probabilities change significantly, as depicted in Figure 3.14b. These changes are

particularly noticeable. Figure 3.14c provides further insights into the probabilities

of some of the most likely combinations of failed components under these updated

parameter values.
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1, t

‹
2s when β1 “ 1.1
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failures combinations given system fail-

ure at rt‹
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‹
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0.8.

Figure 3.14: Probability of the number of failed components at system failure time

for System in Figure 3.5 given system failure within time interval rt‹
1, t

‹
2s. Note that

the dashed line is used to connect the points and does not represent a probability.
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3.7 Conclusions and future work

This chapter introduced a probability expression based on the survival signature

that determines the probability of a specific component type failing simultaneously

with the system, essentially identifying the probability of a component type causing

the system failure. This probability provides valuable insights in various ways.

Components with a high probability of causing system failure can be prioritised for

maintenance, inspection, and monitoring. In Chapter 4, this probability will be

utilised to determine the optimal minimal repair kit capable of restoring the system

to a functional state without replacing all failed components.

The joint probability distribution for the numbers of failed components of mul-

tiple types at the moment of system failure was considered and derived using the

survival signature under three different settings. Each scenario has its own potential

applications. In the first scenario, we derive the probability of the number of failed

components at the time of system failure, conditioning on both the exact system

failure time and the number of failed components of each type that occurred before

system failure, considering that these failures can occur at different times before

system failure. This probability distribution has substantial relevance and can be

applied in various practical situations. It can assist in optimising spare parts inven-

tory planning by giving priority to combinations of components from different types

with higher probabilities, while reducing the stock for those with lower probabilities.

Secondly, the probability distribution of the number of failed components of

multiple types at system failure time is derived given that the system was functioning

at some point in time, assuming that the system failure time is not known. This

probability distribution has valuable applications in different domains. For instance,

it can be employed in the insurance and warranty sector. Insurers can utilise the

probability of component failures, taking into account the system’s age, to determine

insurance premiums based on probable failures and associated expenses.

Thirdly, the probability of the number of failed components of multiple types at

system failure time is obtained assuming that the system will fail within a future time

interval. Such an event could prove beneficial for on-site maintenance procedures,
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especially in situations where there is a lack of immediate access to emergency

spare parts, as for example with the case of support vessels for wind farms [43]. In

Chapter 4, these distributions of the number of failed components at the time of

system failure will be used to determine the optimal repair kit for replacing all failed

components when a system failure occurs, considering cost factors.

The derivation of the aforementioned probabilities was based on the assumption

that two or more components cannot fail simultaneously. However, some system

failure modes produce simultaneous failures of multiple components. An example

of this is the Fukushima Daiichi nuclear disaster [72], caused by the loss of power,

which specifically resulted from the simultaneous failures of emergency diesel gen-

erators, failing to provide backup power to the system. Therefore, it is important

to derive the probabilities of the relevant events when system components can fail

simultaneously.

For further future research, determining the optimal number of components of

multiple types during the system design phase, aiming to minimise the expected

cost of system failure, using the event derived in Section 3.5 for the number of failed

components of multiple types at system failure, could be of significant interest.



Chapter 4

Repair kit problem

4.1 Introduction

In the highly competitive market, after-sales service has become an increasingly

important factor for manufacturers and represents a strategic opportunity for fi-

nancial gain. According to Amini et al. [1], 40 ´ 50% of a manufacturer’s profit is

derived from complementary services they offer. Gebaue et al. [28] noted that manu-

facturers make a considerable investment in their after-sales services, including field

service teams and parts inventories. Caterpillar is an example of a manufacturer that

provides significant after-sales services. Some of their well-known services include

guaranteed parts delivery and planned maintenance kits. The PC sector, includ-

ing companies such as Dell Computer, is also well-known for its after-sales services,

particularly rapid repair services, as noted by Cohen and Whang [14]. Medical prod-

ucts are another category of products that have a significant demand for after-sale

services, particularly repair services. Cohen and Whang [14] pointed to an analysis

by Blumberg [13] that has shown that the segment with the highest annual growth

rate in demand for repair services is medical electronics/diagnostics, with a growth

rate of 23.2%.

A key after-sales service offered by manufacturers is repair services at the cus-

tomer’s location. Blumberg [13] indicates that repair services are highly demanded

in the US and Europe. Local repair services involve contacting the manufacturer

75
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or service provider when equipment malfunctions, and they, in turn, dispatch spe-

cialised engineers based on their experience and technical skills to diagnose and

repair the problem. These engineers receive work assignments specifying the loca-

tions they need to visit, and they travel to these locations to perform the necessary

repairs. When receiving their tasks, engineers must decide which spare parts to

bring and in which quantities. This collection of spare parts is referred to as a

repair kit. The successful completion of any repair job hinges on having all the

necessary replacement parts available in the repair kit. Failure to bring the required

parts may result in a return visit for replenishing the repair kit, known as a return

to fit (RTF) visit. Manufacturers face a logistical decision regarding the contents of

the repair kit to avoid the need for additional visits. This type of decision problem

is known as the repair kit problem (RKP). It’s important to note that second visits

are not considered RKPs since the required parts are already known during the first

visit.

As stated by Bijvank et al. [11], manufacturers usually decide which repair kit

they will put in their technicians’ vehicles based on their experience and limitations.

These restrictions may pertain to the amount of space available in the vehicle or the

availability of certain parts. It is therefore necessary to establish a mechanism for

determining the parts of the repair kit that engineers should carry in their vehicles.

This mechanism may be based on costs or on a promise of a specific level of service

to the client.

Two types of models for the RKP are introduced in the literature; the cost model

introduced by Smith et al. [62] and the service model introduced by Graves [29]. The

objective of the cost model is to obtain a repair kit that minimises the total expected

cost of the repair kit, which is usually comprised of both the holding cost and the

cost of a possible RTF visit. This means that a trade-off must be made between the

holding cost of the repair kit and the cost of a RTF visit. The service model aims

to find the appropriate repair kit that minimises the holding cost based on a certain

level of service, typically agreed with the customer. In general, the holding cost

refers to the cost of each spare part included in the kit, while the RTF cost refers to

the costs incurred when the job cannot be completed on the first attempt. This cost
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may include a loss of goodwill in addition to other costs such as staffing and labour

costs. The RTF visit cost is commonly expressed in terms of some penalty costs.

The service model is commonly preferred in practice over the cost model because, in

the service model, customers can specify a minimum level of service [11]. The main

challenge is quantifying the probability of an RTF visit occurring. In other words,

it represents the probability that there are not enough spare parts available in the

repair kit to complete the repair.

The so-called job fill rate, or job completion rate, is one of the most commonly

used measures in the literature for formulating the RKP [50]. It is defined as the

probability of no failures among components not currently stocked [29], or simply,

the probability of no shortage in the repair kit. In the cost model, it is utilised

to estimate the cost of the RTF visit, and in the service model, it serves as a

constraint for successfully completing the job with the minimum holding cost. The

specific derivation of the job fill rate depends on the settings and assumptions of

the problem, such as whether it involves a single job or multiple jobs, the number

of components needed per type (single or multiple), etc.

Since the RKP pertains to determining the number of spare parts needed to

replace failed components, the probability of events related to the number of failed

components at system failure and the component type that causes system failure,

as introduced in Chapter 3, is well-suited for this context. Therefore, depending on

the scenario, the probability of these events can serve as a measure for the service

level required by the customer in the service model, while in the cost model, it can

be used to quantify the cost of the RTF visit, which includes penalty costs.

The remainder of this chapter is organised as follows. An overview of previous

work on the RKP is provided in Section 4.2. Section 4.3 demonstrates how to

select an optimal repair kit that could be provided with the system at its purchase

time, which aims to replace all failed components when the system fails. Using

the probability derived in Section 3.5, various scenarios for calculating the RTF

visit cost are considered to determine the optimal repair kit in this section. This

section introduces two greedy algorithms which aim to identify the optimal repair

kit. Section 4.5 provides a repair kit intended to replace all failed components
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when the system fails within a specific future time interval. Section 4.6 proposes an

optimal repair kit that does not necessarily replace all failed components but instead

aims to replace specific components, bringing the system back to a functional state.

Finally, Section 4.7 concludes the chapter and provides interesting topics for future

research.

4.2 Literature review

The most notable results for the RKP were observed during the 1980s and 90s. Only

a few papers addressed the problem in the 00s, but it seems to have received more

attention afterwards. Smith et al. [62] was the first known work to study the RKP.

They sought to determine the optimal repair kit that minimises the expected total

costs of the kit holdings and the penalties incurred due to incomplete jobs caused

by insufficient parts. Graves [29] addresses the same problem and determines the

optimal repair kit that guarantees a specified job fill rate with the minimum holding

cost, and transformed the problem into binary Knapsack problem [58]. Both studies

assume that components fail independently and at most one component of each

type can be used for a repair job. Mamer and Smith [40] relax the independence

assumption and allows more than one component of any type to be used. In all of

these studies, the repair kit is assumed to be refilled after each job. In some cases,

this assumption may be appropriate, particularly when dealing with complex repairs

that require a prolonged period of time. In the literature, this is usually referred to

as a single repair job.

As for repairs that do not require extensive time, such as office equipment or

household appliances, the engineer usually visits multiple sites without restocking

the repair kit. This general setting of visiting multiple jobs without restocking the

kit was first considered by Heeremans and Gelders [33] and is referred to as a tour

of repairs. They utilise tour fill rate (the proportion of tours without an RTF visit)

in their formulation instead of job fill rate. Teunter [65] discussed a multiple-job

RKP, which permits the use of multiple components per type in a job. In the

context of multiple jobs, Teunter [65] was the first to introduce dependency between
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failures. The author also assumed that the required spare parts will be left at the

client location, even if the job is not completed. As noted by Bijvank et al. [11],

this assumption is inconsistent with practice as these spares can be used in the

next job of the tour. Consequently, they examined the RKP for multiple jobs with

multiple spares of the same type that can be used on a job, assuming that spares are

only taken out of the repair kit if the job can be completed. The only assumption

they make is that they assume that failures of components of different types are

independent. It should be noted that in the literature of the RKP, the term “type”

refers to a category of items that share similar physical characteristics. Therefore,

in these discussed works, parts of the same type do not necessarily mean they have

exchangeable failure times as assumed in Chapter 3.

In recent literature, various factors have been considered when formulating RKP

models. Saccani et al. [57] examine the cost model for a tour RKP, in which multiple

spares of the same type can be utilised on a single job. They consider two aspects:

a financial constraint on the repair kit in which it does not exceed a specific value

and the costs associated with replenishing the repair kit. Implementing a financial

constraint on the repair kit can be beneficial, particularly in reducing losses related

to theft. A case study by Bijvank et al. [11] showed that the solution they proposed

to the company did not meet the criteria, as the company aimed to reduce the value

of the kit due to theft concerns.

In the RKP literature, most works assume zero lead times for all spare parts.

A lead time represents the time lag between the start and finish of a procedure. A

zero lead time means that all parts required for the kit are always available prior

to the start of the job(s), including high-value and heavy parts. This may not be

the case in practice, as for instance for daily tours when restocking of the kit takes

place overnight, some parts may have to be delivered from central warehouses to

the engineering field site. Prak et al. [50] propose a multi-job multi-part service

model with a positive lead time for all spare parts. A further factor that contributes

to the development of the RKP is the use of information about the condition of

the failed system before to the initial visit to the customer. Rippe and Kiesmüller

[55] investigate a tour RKP and use the failure codes generated by sensors fitted in
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modern appliances as imperfect advance demand information for spare parts.

In an attempt to solve the RKP and obtain the optimal solution, several methods

have been proposed in the literature. Teunter [65] introduced a greedy heuristic that

starts with an empty repair kit and adds one component at each iteration until a full

repair kit is achieved. The heuristic selects the repair kit with the minimum total

expected cost. Similar to Teunter [65], Bijvank et al. [11] introduced a heuristic

for selecting the optimal repair kit in which it can add more than one component

of the same type at a time to fulfill multiple-component jobs. Saccani et al. [57]

solve an integer linear model to determine the optimal repair kit given historical

demand data and evaluate performance through simulation. Rippe and Kiesmüller

[55] introduced two heuristics to address the RKP: a greedy heuristic treating the

problem as a single job problem, and a part heuristic that decomposes the original

Markov decision process into significantly smaller ones for each part.

In previous works discussed in the literature, the formulation of the RKP in

both models was based on the job or tour fill rate. The calculation of the job or

tour fill rate depends on the specific problem’s settings. However, to the best of

our knowledge, the derivation of these measures does not consider important factors

such as the system’s structure, system failure time, and component failure time.

This crucial information, as demonstrated in Chapter 3, could significantly impact

the determination of the number of failed components at system failure. Therefore,

it is anticipated that the optimal repair kit may vary depending on this information.

In this chapter, we utilise the probabilities derived in Chapter 3, which are based

on the system and component failure times, and take into account the system’s

structure via the survival signature. These probabilities are used to estimate the cost

of RTF visits. The chapter focuses on the cost model, aiming to obtain optimal repair

kits that minimise the expected total cost under different scenarios. The service

model is left for future works. The setting of the RKP discussed in this chapter

involves a single repair job that allows for the inclusion of multiple components of

different types in the repair kit.
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4.3 Repair kit for a new system

In a situation where a client or company has local technicians capable of replacing

failed components, providing a kit of spare parts at the time of system purchase

may be beneficial. Having a repair kit available on-site can help reduce system

downtime and save costs associated with transporting the repair kit and personnel

to the system site, in which they can be in a more complex job. This section aims

to determine the optimal repair kit that is provided with the system so that it will

be able to repair all of the failed parts, regardless of whether the system might

function with some failed components after maintenance action. We determine the

optimal repair kit in the cost model, that is the repair kit with the minimum total

expected cost, which comprises the holding cost and the RTF visit cost. We assume

that multiple parts of the same type may be required to complete the repair (i.e. a

multi-part job). Let S “ pr1, ..., rKq denote a repair kit with rk spare parts of type

k, for k P t1, ..., Ku. The holding cost of the kit S is denoted by ChpSq and given

by ChpSq “
řK

k“1 rkck, where ck represents the cost of a part of type k. We denote

the total cost of the repair kit S by CtpSq and it is formulated as

CtpSq “ CRTF pSq ` ChpSq, (4.3.1)

where CRTF pSq denotes the cost of a return-to-fit visit.

In this section, we present multiple scenarios in which the cost of the RTF visit

is quantified. The first scenario involves a fixed penalty cost for not having sufficient

spare parts to replace all failures. This penalty cost remains the same regardless of

whether there is a shortage of one or more spares of any type.

The second scenario considers a penalty cost that varies from type to type and

depends on the number of shortages for each type. The third scenario involves a

penalty cost that varies depending on the type, regardless of the number of shortages

of that type. This scenario can be seen as a special case of scenario two.

The last scenario is a general one, where there is a penalty cost depending on the

type and the number of shortages of that type. Additionally, there is a fixed penalty
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if the job cannot be completed due to a shortage. This case combines elements of

scenarios one and two.

4.3.1 Fixed penalty cost

This subsection quantifies the RTF visit cost, assuming there is a fixed penalty cost

if one or more failed components cannot be replaced due to a shortage in the repair

kit. Let Cp represent the penalty cost that must be paid in the event that the repair

kit is lacking either one or more spares. Using the probability that the number of

spare parts in the kit is greater than the number of failures when the system fails,

the RTF cost under this scenario, denoted as CRTFN1
pSq, can be calculated as follows

CRTFN1
pSq “ p1 ´ P pX1pTsq ď r1, ..., XKpTsq ď rK | Ts ą 0qqCp, (4.3.2)

where XkpTsq represents the number of failures of type k at the system failure time

Ts.

The probability in Equation (4.3.2) represents the probability that the number of

failed components of each type in the system at the time of system failure is less

than or equal to the number of spare parts in the repair kit. The condition on the

system functioning at time 0 is intended to indicate that the system is new, as we

plan to provide a kit at the time of purchase. The derivation of this probability was

given in Section 3.5.1, leading to Equation 3.5.16. By substituting this expected

RTF cost into CRTF pSq in Equation (4.3.1), we obtain the total expected cost of

the repair kit. To illustrate the selection of the optimal repair kit, we provide an

example of the hydro power plant system.

Example 4.3.1 (Hydro power system) Suppose that we have the system shown

in Figure 4.1 that is composed of 12 components of 6 types. The distribution of

failure times for components of each type is given in Table 4.1. The probability

density function (PDF) and reliability function for component’s failure time that is

Weibull distributed with scale parameter α and shape parameter β, where α, β ą 0,
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are

fptq “
β

α

ˆ

t

α

˙β´1

exp´

ˆ

t

α

˙β

Rptq “ exp´

ˆ

t

α

˙β

.

For a component’s failure time that is Exponentially distributed with failure rate

parameter λ ą 0, the PDF and reliability function are

fptq “ λ exp p´λtq

Rptq “ exp p´λtq.

The aim is to find the optimal repair kit in order to replace all failed components

when the system fails. For this system, there are
ś6

k“1mk`1 “ 648 combinations of

repair kits including an empty kit and a full kit. Table 4.2 illustrates different opti-

mal repair kits based on various holding costs for parts and fixed penalty costs which

apply if not all failed components can be replaced. For holding costs p4, 3, 2, 2, 1, 4q

and p8, 6, 4, 4, 2, 8q, we observe that the total number of spare components in the

optimal kits increases as the penalty cost increases, which is understandable given

that the holding costs are relatively low. In contrast, in the last case, where holding

costs are high compared to penalty costs, optimal kits tend to have only one spare

component.

1 5

2

2

3

3

4

4

5

5

6

6

Figure 4.1: Hydro power plant system with 6 types of components, indicated in red.

If the shape parameters of distributions of failure times of components of types 1

and 2 change to β1 “ 1.1 and β2 “ 0.8, some of the optimal repair kits are adjusted

accordingly. Table 4.3 presents the updated optimal repair kits under these new

shape parameters. These adjustments arise from the change in the probability of

the number of failed components being less than or equal to the number of spare
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Component type Distribution Parameters

1 Weibull α1 = 1, β1 = 0.5

2 Weibull α2 = 2.5, β2 = 2

3 Exponential λ3 = 0.02

4 Exponential λ4 = 0.03

5 Exponential λ5 = 0.06

6 Exponential λ6 = 0.05

Table 4.1: Failure times distribution of the types of system components.

components in the repair kit, which in turn influences the RTF visit cost and,

therefore, the total expected cost. For example, for the first optimal repair kit,

S “ p1, 1, 0, 0, 1, 0q, the probability P pX1pTsq ď 1, X2pTsq ď 1, X3pTsq ď 0, X4pTsq ď

0, X5pTsq ď 1, X6pTsq ď 0 | Ts ą 0q is 0.75 with a total expected cost of 12.954,

while for the kit, S “ p1, 0, 0, 0, 1, 0q, which was optimal under the same holding and

penalty cost when β1 = 0.5 and β2 = 2, the probability P pX1pTsq ď 1, X2pTsq ď

0, X3pTsq ď 0, X4pTsq ď 0, X5pTsq ď 1, X6pTsq ď 0 | Ts ą 0q is 0.45 with a total

expected cost of 16.009.

4.3.2 Penalty cost based on type and number of shortages

In this subsection, we quantify the RTF visit cost assuming that the penalty cost of

shortages in the kit is different from one component type to another, and depends

on the number of shortages for each type. This is particularly useful in situations

where accessing a specific type is challenging, leading to a higher penalty cost, while

others could be easily available, resulting in a lower penalty cost. Let Ck
p denote

the penalty cost of a shortage of a component of type k, then the RTF cost of the

repair kit S under this scenario, denoted as CRTFN2
pSq, is given by

CRTFN2
pSq “

m1
ÿ

x1“0

...
mK
ÿ

xK“0

"

P pX1 pTsq “ x1, ..., XK pTsq “ xK | Ts ą 0q

ˆ

˜

K
ÿ

k“1

max pxk ´ rk, 0qCk
p

¸

*

. (4.3.3)
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Penalty cost
Cp

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

20 S “ p1, 0, 0, 0, 1, 0q

40 p4, 3, 2, 2, 1, 4q S “ p1, 2, 0, 0, 1, 0q

60 S “ p1, 2, 0, 1, 1, 1q

20 S “ p1, 0, 0, 0, 0, 0q

40 p8, 6, 4, 4, 2, 8q S “ p1, 0, 0, 0, 1, 0q

60 S “ p1, 1, 0, 0, 1, 0q

20 S “ p0, 0, 0, 0, 1, 0q

40 p16, 12, 8, 8, 4, 16q S “ p1, 0, 0, 0, 0, 0q

60 S “ p1, 0, 0, 0, 0, 0q

Table 4.2: Optimal repair kits for the hydro power system under different fixed

penalty costs and component holding costs.

The calculation of the RTF visit cost relies on the probability of the number of failed

components at system failure, as derived in Section 3.5.1. For each combination of

the number of failed components of multiple types, the probability that it is occurred

is multiplied by the number of shortages for each component type, determined by

the spare components in the repair kit S (if any), or by zero, and then by the penalty

cost associated with that type.

Example 4.3.2 Based on the same system shown in Figure 4.1 and the failure time

distributions in Table 4.1, Table 4.4 presents the optimal repair kits under different

holding costs when the penalty costs of shortages differ for components of various

types. When the penalty costs are high and the holding costs are low, the optimal

repair kit contains a higher number of parts. For example, with penalty costs of

p50, 60, 70, 80, 90, 100q and holding costs of p4, 3, 2, 2, 1, 4q, the optimal repair kit has

the highest number of parts compared to the other kits. When the penalty cost

is low and the holding cost is relatively expensive, the optimal kit has fewer spare

components. Type 5 is always included in all optimal repair kits since it has a

relatively high probability of having failed when the system fails, as well as a high

penalty cost in addition to having the lowest holding cost.
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Penalty cost
Cp

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

20 S “ p1, 1, 0, 0, 1, 0q

40 p4, 3, 2, 2, 1, 4q S “ p1, 2, 0, 0, 1, 0q

60 S “ p1, 2, 0, 1, 1, 0q

20 S “ p1, 0, 0, 0, 0, 0q

40 p8, 6, 4, 4, 2, 8q S “ p1, 1, 0, 0, 1, 0q

60 S “ p1, 2, 0, 0, 1, 0q

20 S “ p0, 0, 0, 0, 1, 0q

40 p16, 12, 8, 8, 4, 16q S “ p1, 0, 0, 0, 0, 0q

60 S “ p1, 1, 0, 0, 1, 0q

Table 4.3: Optimal repair kits for the hydro power system under different fixed

penalty costs when β1 “ 1.1 and β2 “ 0.8.

If only the failure rate of components of type 6 changes to 0.7, all optimal repair

kits change, as shown in Table 4.5. This change occurs due to the increase in the

failure rate from 0.05 to a higher rate of 0.7, making it more likely to have two failures

of components of type 6 when the system fails. This change is also influenced by

the fact that type 6 components have the highest penalty cost.

4.3.3 Penalty cost based only on component type

In certain cases, a repair person may be faced with shortages of parts, in which

case the penalty will be determined based on the type of part only, regardless of the

number of shortages of that type. Therefore, if one part of type k is missing, the

penalty is the same as if there were more parts of type k missing, but the penalty

costs are assumed to differ per type. An instance of this might occur if some parts

of a particular type could be obtained at short notice, so the cost would not be as

high, but when parts of other types are not available, the system could be out of

commission for a considerable period of time leading to a high cost. The formulation
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Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p1, 1, 0, 0, 1, 1q

p20, 30, 40, 50, 60, 70q p4, 3, 2, 2, 1, 4q S “ p1, 2, 0, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 1, 1, 1, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 0, 0, 0, 1, 0q

p20, 30, 40, 50, 60, 70q p8, 6, 4, 4, 2, 8q S “ p1, 1, 0, 0, 1, 0q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 0, 0, 1, 0q

p10, 20, 30, 40, 50, 60q S “ p0, 0, 0, 0, 1, 0q

p20, 30, 40, 50, 60, 70q p16, 12, 8, 8, 4, 16q S “ p0, 0, 0, 0, 1, 0q

p50, 60, 70, 80, 90, 100q S “ p1, 1, 0, 0, 1, 0q

Table 4.4: Optimal repair kits for the hydro power system under different penalty

costs per type and component holding costs.

of the cost of a RTF visit in this setting, denoted as CRTFN3
pSq, is given as follows.

CRTFN3
pSq “

m1
ÿ

x1“0

...
mK
ÿ

xK“0

K
ÿ

k“1

P pX1pTsq “ x1, ..., XKpTsq “ xK | Ts ą 0q

ˆ
“

Itxk ą rkuC̃k
p

‰

, (4.3.4)

where C̃k
p represents the penalty cost if there is a shortage of a component of type

k.

Example 4.3.3 For this type of RTF visit cost, Table 4.6 provides the optimal

repair kits for the system in Figure 4.1 based on different penalty and holding costs,

where the failure times of parts types are distributed as shown in Table 4.1. The

optimal repair kits in this example are the same as when the RTF visit cost is also

influenced by the number of shortages per type (Table 4.4), except for two repair

kits. In the first kit, the penalty is p20, 30, 40, 50, 60, 70q and the holding cost is

p8, 6, 4, 4, 2, 8q which results in the optimal kit of S “ p1, 0, 0, 0, 1, 0q, whereas if the

number of shortages are taken into account, it is S “ p1, 1, 0, 0, 1, 0q. The second kit

is when the penalty cost per type is p50, 60, 70, 80, 90, 100q and the holding cost is
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Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p1, 1, 0, 0, 1, 2q

p20, 30, 40, 50, 60, 70q p4, 3, 2, 2, 1, 4q S “ p1, 1, 0, 0, 1, 2q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 0, 1, 1, 2q

p10, 20, 30, 40, 50, 60q S “ p0, 0, 0, 0, 1, 2q

p20, 30, 40, 50, 60, 70q p8, 6, 4, 4, 2, 8q S “ p1, 0, 0, 0, 1, 2q

p50, 60, 70, 80, 90, 100q S “ p1, 1, 0, 0, 1, 2q

p10, 20, 30, 40, 50, 60q S “ p0, 0, 0, 0, 1, 1q

p20, 30, 40, 50, 60, 70q p16, 12, 8, 8, 4, 16q S “ p0, 0, 0, 0, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 0, 0, 0, 1, 2q

Table 4.5: Optimal repair kits for the hydro power system under different penalty

costs per type and component holding costs when λ6 “ 0.7.

p16, 12, 8, 8, 4, 16q which results in the optimal kit of S “ p1, 0, 0, 0, 1, 0q where it was

S “ p1, 1, 0, 0, 1, 0q if the number of shortages were taken into account. This due

to the fact that the penalty cost of missing a component of type 2 is relatively low

compared to the other types. Additionally, adding one component of type 2 will not

result in a considerable increase in the probability of that combination, especially

considering that type 2 has a high holding cost.

Table 4.7 presents the optimal repair kits when the failure rate of components

of type 5 decreases from 0.06 to 0.01. Comparing to the optimal repair kits in

Table 4.6, when λ5 “ 0.06, all repair kits changed except for two repair kits (the

second and third kit). Due to the significant decrease in the failure rate of type 5

components, it is noticeable that some of the optimal repair kits no longer include

any components of type 5, whereas it was always present in the optimal repair kits

when the failure rate was 0.06. This change occurred despite the high penalty cost

associated with missing a component (or more) of type 5.
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Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p1, 1, 0, 0, 1, 1q

p20, 30, 40, 50, 60, 70q p4, 3, 2, 2, 1, 4q S “ p1, 2, 0, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 1, 1, 1, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 0, 0, 0, 1, 0q

p20, 30, 40, 50, 60, 70q p8, 6, 4, 4, 2, 8q S “ p1, 0, 0, 0, 1, 0q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 0, 0, 1, 0q

p10, 20, 30, 40, 50, 60q S “ p0, 0, 0, 0, 1, 0q

p20, 30, 40, 50, 60, 70q p16, 12, 8, 8, 4, 16q S “ p0, 0, 0, 0, 1, 0q

p50, 60, 70, 80, 90, 100q S “ p1, 0, 0, 0, 1, 0q

Table 4.6: Optimal repair kits for the hydro power system under different penalty

costs per component type for any missing component, regardless of the number of

missing components, and based on different component holding costs.

4.3.4 Penalty cost based on component type and fixed

costs

In this subsection, the cost of a RTF visit is described in a more general context,

where the total cost of RTF includes two related costs. The first cost quantifies the

cost per component short, where each component type has its own penalty cost,

while the second cost is an additional fixed cost if one or more components of any

type cannot be replaced. The latter refers to the costs associated with the second

visit, such as labour, fuel, or other expenses, and the former refers to the cost per

part. The expected RTF visit cost in this setting is

CRTFN4
pSq “

m1
ÿ

x1“0

...
mK
ÿ

xK“0

t P pX1 pTsq “ x1, ..., XK pTsq “ xK | Ts ą 0q

ˆ

˜

K
ÿ

k“1

max pxk ´ rk, 0qCk
p

¸

u

` p1 ´ P pX1 pTsq ď r1, ..., XK pTsq ď rK | Ts ą 0qqCp. (4.3.5)
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Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p1, 2, 0, 1, 1, 1q

p20, 30, 40, 50, 60, 70q p4, 3, 2, 2, 1, 4q S “ p1, 2, 0, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 1, 1, 1, 1q

p10, 20, 30, 40, 50, 60q S “ p1, 0, 0, 0, 0, 0q

p20, 30, 40, 50, 60, 70q p8, 6, 4, 4, 2, 8q S “ p1, 0, 0, 0, 0, 0q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 0, 1, 1, 0q

p10, 20, 30, 40, 50, 60q S “ p0, 0, 0, 0, 1, 0q

p20, 30, 40, 50, 60, 70q p16, 12, 8, 8, 4, 16q S “ p1, 0, 0, 0, 0, 0q

p50, 60, 70, 80, 90, 100q S “ p1, 0, 0, 0, 0, 0q

Table 4.7: Optimal repair kits for the hydro power system under different penalty

costs per component type for any missing component, regardless of the number of

missing components, and based on different component holding costs when λ5 “

0.01.

It should be noted that the cost of the RTF visit here combines the costs defined in

Subsection 4.3.1 and 4.3.2.

Example 4.3.4 Table 4.8 presents the optimal repair kit for the system in Figure

4.1 based on various penalty costs per component type, an additional fixed penalty

for missing one or more components, and holding costs. The distribution of failure

times of the components are shown in Table 4.1. The number of parts in the optimal

repair kit appears to be high when holding costs are low, and decreases when holding

costs increase, when the penalty costs are fixed. Furthermore, we observe that type

1 always appears in the optimal repair kit despite having the highest holding cost.

This is due to both its critical location and relatively high failure rate compared to

other types. The same applies to type 5, where there is always a part of this type

in optimal repair kit. Despite type 5’s low failure rate, this occurs due to its low

holding costs and location.
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Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Penalty cost
Cp

Holding cost
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p1, 2, 1, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 40 p4, 3, 2, 2, 1, 4q S “ p1, 2, 1, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 1, 1, 2, 1q

p10, 20, 30, 40, 50, 60q S “ p1, 2, 0, 0, 1, 0q

p20, 30, 40, 50, 60, 70q 40 p8, 6, 4, 4, 2, 8q S “ p1, 2, 0, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 0, 1, 1, 1q

p10, 20, 30, 40, 50, 60q S “ p1, 0, 0, 0, 1, 0q

p20, 30, 40, 50, 60, 70q 40 p16, 12, 8, 8, 4, 16q S “ p1, 1, 0, 0, 1, 0q

p50, 60, 70, 80, 90, 100q S “ p1, 1, 0, 0, 1, 0q

Table 4.8: Optimal repair kits for the hydro power system taking into account

different penalty costs per type, fixed penalty costs if a job is unsuccessful, and

holding costs.

4.4 Algorithms for determining optimal kit

In the previous examples, we were able to obtain the best repair kits in all cases

of quantifying RTF costs using a full search approach. Clearly, the repair kit must

contain at least zero spare parts and at most
řK

k“1mk. The total number of possible

repair kit combinations is
śK

k“1pmk ` 1q. Typically, real-world systems consist of

hundreds of components of multiple types. Consequently, it is infeasible to achieve

an optimal repair kit through a full search approach in such cases. It is therefore nec-

essary to employ a heuristic process in order to determine the exact or approximate

optimal kit.

In this section, we introduce two algorithms that add one spare part to the repair

kit or remove one spare part from the kit, depending on its impact on the total cost

of the kit. The first algorithm begins with an empty kit. In Step 2, a part of

type k is added to the kit, and the difference in total cost between the two kits is

calculated. This difference, denoted as Dk, is computed for all types k P t1, ..., Ku.

Step 3 selects the kit with the type that yields the lowest difference Dk when one
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part of that type is added to the kit, resulting in an updated kit. If the full kit is

not achieved yet, the algorithm returns to Step 2 and add another part of type k,

then calculate the difference in total cost between the updated repair kit and the

previous one for all k P t1, ..., Ku. When the full repair kit is achieved, the algorithm

ends with Step 5, where the optimal repair kit with the lowest expected total cost is

selected. The mathematical explanation of the algorithm is provided in Algorithm

1.

Algorithm 1: Greedy Algorithm for selecting the optimal repair kit

Step 1:

i :“ 0 (first kit).

Si :“ pr1, ..., rKq “ p0, ..., 0q (empty kit).

CtpSiq :“ 0 ` CRTF pSiq.

Step 2:

For all k P t1, 2, ..., Ku for which rk ă mk,

Dk :“ Ctpr1, ..., rk´1, rk ` 1, rk`1, ..., rKq ´ Ctpr1, ..., rKq

(increase in the total cost if one part of type k is added to the kit).

Step 3:

k1 :“ argmink Dk (part type with the lowest Dk).

i Ð i ` 1 (next kit).

rk1 Ð rk1 ` 1 (add one part of type k1).

Si :“ pr1, ..., rKq (updated kit).

CtpSiq :“ ChpSiq ` CRTF pSiq.

Step 4:

If rk “ mk for all types k, go to step 5. If not, proceed to Step 2.

Step 5:

Sopt :“ argminSi
pCtpSiqq.

Example 4.4.1 Using the algorithm on the hydro power system example, we obtain

the same optimal repair kits for two scenarios of penalty types as in full search. Table

4.9 and 4.10 show the repair kits generated by the algorithm for the fixed penalty

cost (Table 4.2) and the type-based penalty cost (Table 4.4), respectively. Note that
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Table 4.9 is for the case of the fixed penalty cost when it is 60 and the holding cost

is p4, 3, 2, 2, 1, 4q, while Table 4.10 is for the case of part type-based penalty cost

when it is p20, 30, 40, 50, 60, 70q and the holding cost is p8, 6, 4, 4, 2, 8q. From Table

4.10, repair kit number 3 is the optimal repair kit, which is the same one that is

produced in a full search as shown in Table 4.4. Similarly, for the fixed penalty type,

the optimal repair kit generated by the algorithm is repair kit number 6 as shown

in Table 4.9, which matches the one found by full search.

i Si ChpSiq CtpSiq k1

0 r0, 0, 0, 0, 0, 0s 0 60.00000 1

1 r1, 0, 0, 0, 0, 0s 16 27.98705 5

2 r1, 0, 0, 0, 1, 0s 20 25.76644 2

3 r1, 1, 0, 0, 1, 0s 32 22.74279 2

4 r1, 2, 0, 0, 1, 0s 44 20.11330 4

5 r1, 2, 0, 1, 1, 0s 52 19.78003 6

6 r1, 2, 0, 1, 1, 1s 68 19.70060 3

7 r1, 2, 1, 1, 1, 1s 76 19.76410 5

8 r1, 2, 1, 1, 2, 1s 80 20.26718 5

9 r1, 2, 1, 1, 3, 1s 84 21.26718 4

10 r1, 2, 1, 2, 3, 1s 92 23.19720 3

11 r1, 2, 2, 2, 3, 1s 100 25.16872 6

11 r1, 2, 2, 2, 3, 2s 116 28.94147 6

Table 4.9: Repair kits generated by the algorithm when the fixed penalty cost is 60

and the holding cost per part type is p4, 3, 2, 2, 1, 4q.

In Example 4.4.1, the algorithm successfully detects the optimal repair kit. How-

ever, due to the myopic nature of the algorithm, there may be instances in which

it fails to locate the optimal repair kit. An example of this occurs when a system

is highly likely to fail if two components of type k fail, but if a single component of

that type fails, it has no effect. Therefore, adding one part of type k does not affect

the total expected cost compared to adding two parts of that type. Consequently,
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i Si ChpSiq CtpSiq k1

0 r0, 0, 0, 0, 0, 0s 0 46.12582 1

1 r1, 0, 0, 0, 0, 0s 8 39.10526 5

2 r1, 0, 0, 0, 1, 0s 10 32.63642 2

3 r1, 1, 0, 0, 1, 0s 16 30.02443 4

4 r1, 1, 0, 1, 1, 0s 20 31.52581 5

5 r1, 1, 0, 1, 2, 0s 22 33.02889 5

6 r1, 1, 0, 1, 3, 0s 24 35.02889 2

7 r1, 2, 0, 1, 3, 0s 30 37.11722 6

8 r1, 2, 0, 1, 3, 1s 38 39.67055 3

9 r1, 2, 1, 1, 3, 1s 42 42.34243 4

10 r1, 2, 1, 2, 3, 1s 46 46.28411 3

11 r1, 2, 2, 2, 3, 1s 50 50.26513 6

12 r1, 2, 2, 2, 3, 2s 58 58.00000 6

Table 4.10: Repair kits generated by the algorithm when the penalty cost per type

is p20, 30, 40, 50, 60, 70q and the holding cost per part type is p8, 6, 4, 4, 2, 8q.

it is highly likely that the myopic algorithm will not select Dk as the lowest in Step

3 and will choose another type. The following example illustrates the disadvantages

of the algorithm.

Example 4.4.2 (Complex system) Consider the system depicted in Figure 4.2,

which consists of 14 components of 6 types. The aim is to find the optimal repair

kit to replace all failed components when the system fails. Assume that the failure

times of the system components follow Exponential distributions with failure rates:

λ1 “ 0.3 for type 1, λ2 “ 0.7 for type 2, λ3 “ 0.02 for type 3, λ4 “ 0.03 for type 4,

λ5 “ 0.06 for type 5, and λ6 “ 0.05 for type 6. Let the penalty cost of a shortage

of one or more components be Cp “ 200, and the holding cost of each component

per type be C1 “ 25, C2 “ 20, C3 “ 8, C4 “ 8, C5 “ 8, C6 “ 2. Upon calculating the

total expected cost of the all 720 repair kits, we determine that S “ p2, 4, 0, 0, 1, 1q

is the optimal kit with the lowest total expected cost of 174.8914. The algorithm,
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however, was not able to obtain the optimal repair kit when applied to this example.

Table 4.11 presents the list of repair kits generated by the algorithm. Based on the

algorithm, the best repair kit generated is S “ p2, 4, 2, 1, 1, 1q, which has a total

expected cost of 185.8811, 10.9897 more than the one obtained through the full

search.

1

1

1

2

2

2

2

1

1

3

3

4

5

6

Figure 4.2: Reliability block diagram of the complex system.

This issue led us to consider a second algorithm that is actually similar to the

previous one. Instead of starting with an empty kit, the updated algorithm starts

with a kit containing the same number of components of each type as the system

contains. Next, the part whose removal from the repair kit will result in the greatest

reduction in the total expected cost of the repair kit is eliminated. The process is

repeated until the repair kit becomes empty, and the repair kit with the lowest

total expected cost is selected as the optimal kit. The algorithm’s mathematical

description is presented below in Algorithm 2. Using this algorithm on the complex

system, the optimal kit S “ p2, 4, 0, 0, 1, 1q is now detected, which was not the

case when applying Algorithm 1. A list of the repair kits that are generated by

Algorithm 2 is presented in Table 4.12. These two algorithms provide a way to

select the optimal repair kit, at least when a full search is not feasible. It should

be noted that these algorithms parallel the greedy forward and backward step-wise

search, a strategy commonly employed in other contexts such as variable selection.
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Algorithm 2: Updated algorithm for selecting the optimal repair kit

Step 1:

i :“ 0 (first kit).

Si :“ pr1, ..., rKq “ pm1, ...,mKq (full kit).

CtpSiq :“ ChpSiq ` CRTF pSiq.

Step 2:

For all k P t1, 2, ..., Ku for which rk ą 0,

Dk :“ Ctpr1, ..., rKq ´ Ctpr1, ..., rk´1, rk ´ 1, rk`1, ..., rKq

(decrease in the total cost if one part of type k is removed from the kit).

Step 3:

k1 :“ argmaxk Dk (part type with the largest Dk).

i Ð i ´ 1 (next kit).

rk1 Ð rk1 ´ 1 (add one part of type k1).

Si :“ pr1, ..., rKq (updated kit).

CtpSiq :“ ChpSiq ` CRTF pSiq.

Step 4:

If rk “ 0 for all types k, go to Step 5. If not, proceed to Step 2.

Step 5:

Sopt :“ argminSi
pCtpSiqq.
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i Si ChpSiq CtpSiq k1

0 r0, 0, 0, 0, 0, 0s 0 200.0000 6

1 r0, 0, 0, 0, 0, 1s 2 202.0000 5

2 r0, 0, 0, 0, 1, 1s 10 209.9395 3

3 r0, 0, 1, 0, 1, 1s 18 217.9384 4

4 r0, 0, 1, 1, 1, 1s 26 225.9375 3

5 r0, 0, 2, 1, 1, 1s 34 233.9375 1

6 r1, 0, 2, 1, 1, 1s 59 244.5603 2

7 r1, 1, 2, 1, 1, 1s 79 252.3695 2

8 r1, 2, 2, 1, 1, 1s 99 248.7742 1

9 r2, 2, 2, 1, 1, 1s 124 226.1510 2

10 r2, 3, 2, 1, 1, 1s 144 192.5679 2

11 r2, 4, 2, 1, 1, 1s 164 185.8811 1

12 r3, 4, 2, 1, 1, 1s 189 189.0000 1

13 r4, 4, 2, 1, 1, 1s 214 214.0000 1

14 r5, 4, 2, 1, 1, 1s 239 239.0000 1

Table 4.11: Repair kits generated by Algorithm 1 for Example 4.4.2.

4.5 Repair kit for a system failure at a future

time interval

The preceding section discussed a repair kit that is provided with a system upon

purchase for use when the system fails. There is, however, a possibility that the

optimal repair kit may vary depending on the time or length of a period during

which the system may fail. In this section, we examine the optimal repair kit if it

is assumed that the system fails within a certain period of time. In this context,

such a repair kit can serve various purposes. As an example, when service operation

vessels remain offshore for a period of time, usually 2 to 3 weeks [43], it is critical to

determine in advance which repair kit is most suitable for that period during which

problems may occur with, e.g., the turbine. Similar to the previous general kit, this
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i Si ChpSiq CtpSiq k1

0 r5, 4, 2, 1, 1, 1s 239 239.0000 1

1 r4, 4, 2, 1, 1, 1s 214 214.0000 1

2 r3, 4, 2, 1, 1, 1s 189 189.0000 3

3 r3, 4, 1, 1, 1, 1s 181 181.1491 1

4 r2, 4, 1, 1, 1, 1s 156 178.0179 4

5 r2, 4, 1, 0, 1, 1s 148 175.7883 3

6 r2, 4, 0, 0, 1, 1s 140 174.8914 5

7 r2, 4, 0, 0, 0, 1s 132 178.3849 2

8 r2, 3, 0, 0, 0, 1s 112 181.2534 6

9 r2, 3, 0, 0, 0, 0s 110 185.2563 2

10 r2, 2, 0, 0, 0, 0s 90 207.3233 1

11 r1, 2, 0, 0, 0, 0s 65 222.8129 2

12 r1, 1, 0, 0, 0, 0s 45 221.6865 2

13 r1, 0, 0, 0, 0, 0s 25 211.6071 1

14 r0, 0, 0, 0, 0, 0s 0 200.0000

Table 4.12: Repair kits generated by Algorithm 2 for Example 4.4.2.

setting is viewed from a cost perspective, considering different costs contributions

to the total RTF expected cost.

The expected cost of a RTF visit for a repair kit that will be used in the event

that a system fails in a future time interval is denoted by CRTFI
pSq and quantified

using the probability 3.6.20 derived in Section 3.6, such that

CRTFI
pSq “

m1
ÿ

x1“0

...
mK
ÿ

xK“0

"

P pX1 pTsq “ x1, ..., XK pTsq “ xK | Ts P rt‹
1, t

‹
2sq

ˆ

˜

K
ÿ

k“1

max pxk ´ rk, 0qCk
p

¸

*

` p1 ´ P pX1 pTsq ď r1, ..., XK pTsq ď rK | Ts P rt‹
1, t

‹
2sqqCp.

We provide some examples of optimal repair kits when a system fails in rt‹
1, t

‹
2s

based on the different cases of quantifying RTF visit cost that were discussed in

Section 4.3. The examples are based on the system illustrated in Figure 4.1 where
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the distribution of the failure times of the components is shown in Table 4.1. Table

4.13 presents an optimal repair kit assuming that the system will fail at some point

within the period [5,10], considering different penalty and holding costs per type,

assuming no additional costs will be incurred during the second visit (i.e., we set

Cp to zero). Table 4.14 presents the optimal repair kits for various time intervals

during which the system may fail.

Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Extra cost
Cp

Holding cost
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p0, 2, 1, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p4, 3, 2, 2, 1, 4q S “ p0, 2, 1, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 1, 1, 2, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 2, 0, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p8, 6, 4, 4, 2, 8q S “ p0, 2, 1, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p0, 2, 1, 1, 1, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 2, 0, 0, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p16, 12, 8, 8, 4, 16q S “ p0, 2, 0, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p0, 2, 0, 1, 1, 1q

Table 4.13: Optimal repair kits when the system fails in r5, 10s, when there is a

penalty cost per part type and no additional cost.

4.6 Minimal repair kit

There are instances where the focus is only on restoring the system to functional

status regardless of whether some components remain unrepaired. A situation such

as this may arise when there are some restrictions on the repair kit, such as its

capacity, availability of some parts, or related expenses. Consequently, the purpose

of this section is to determine the ideal minimal repair kit to be used in the event

of a system failure. We define a minimal repair kit as a kit containing the least

amount of spare parts that can be used to bring back a system to a functioning

state with a degree of confidence. Taking into account that a system’s failure is
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Time interval
rt‹

1, t
‹
2]

Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Holding cost
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

r0, 5s p10, 20, 30, 40, 50, 60q
p4, 3, 2, 2, 1, 4q S “ p1, 1, 0, 0, 1, 1q

p16, 12, 8, 8, 4, 16q S “ p0, 0, 0, 0, 1, 0q

r5, 10s p10, 20, 30, 40, 50, 60q
p4, 3, 2, 2, 1, 4q S “ p0, 2, 1, 1, 1, 1q

p16, 12, 8, 8, 4, 16q S “ p0, 2, 0, 0, 1, 1q

r10, 15s p10, 20, 30, 40, 50, 60q
p4, 3, 2, 2, 1, 4q S “ p0, 2, 1, 1, 1, 1q

p16, 12, 8, 8, 4, 16q S “ p0, 2, 0, 1, 1, 1q

r15, 20s p10, 20, 30, 40, 50, 60q
p4, 3, 2, 2, 1, 4q S “ p0, 2, 1, 1, 1, 1q

p16, 12, 8, 8, 4, 16q S “ p0, 2, 1, 1, 1, 1q

Table 4.14: Optimal repair kits for different time intervals rt‹
1, t

‹
2s, with penalty costs

per part type and no additional costs.

due to a failure of only a single component, a kit containing one part of each type

would be sufficient to restore the system. Another possibility for a minimal kit that

guarantees system functionality is if it can be determined from the system structure

in advance that providing some parts of the same type or different types will enable

the system to be repaired. However, if only a few types are allowed to be carried

in a repair kit due to certain limitations, a decision should be made based on which

types of components are more likely to cause system failure. Thus, identifying the

ideal minimal repair kit will require the use of the measure introduced in Section

3.3, i.e., the probability that a component of a particular type will result in the

failure of the system. The selection of the optimal minimal repair kit will take into

account both the holding cost and the return to fit cost as in the previous sections.

To quantify the RTF visit cost of a minimal repair kit, let Sm “ p11, 12, ..., 1Kq

denote a minimal repair kit, with 1k denoting a component of type k. Based on the

probability P pT k “ t | Ts “ tq, given in Equation 3.3.1, where T k represents the

failure time of a component of type k, the RTF cost of the minimal repair kit Sm
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can be expressed as follows.

CRTFM
pSmq “

ÿ

@kPS1
m

P
`

T k
“ t | Ts “ t

˘

Ck
p

`
ÿ

@kPSm

`

1 ´ P
`

T k
“ t | Ts “ t

˘˘

Cp. (4.6.6)

The first part relates to the penalty cost associated with not having a part of type k

included in the kit, while the second part relates closely to the general penalty cost

associated with the second visit.

Example 4.6.1 Suppose that the system in Figure 4.1 fails at time t “ 10, and the

repair person is only permitted to have one part of only three types in the repair kit,

owing to some limitations. Thus, we aim to determine the optimal minimal repair

kit consisting of only three types that makes the trade-off between the types most

likely to result in system failure and the associated penalties. At time t “ 10, the

probability of type 1 through type 6 causing system failure is 0.044, 0.900, 0.006,

0.008, 0.034, and 0.008 respectively. In Table 4.15, the optimal minimal repair

kit is shown under varying penalty costs Cp and Ck
p assuming the failure times of

components are distributed as shown in Table 4.1.

Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Extra cost
Cp

Holding cost
pc1, c2, c3, c4, c5, c6q

Optimal minimal kit
S

p10, 20, 30, 40, 50, 60q Sm “ p12, 14, 15q

p20, 30, 40, 50, 60, 70q 45 p4, 3, 2, 2, 1, 4q Sm “ p11, 12, 15q

p50, 60, 70, 80, 90, 100q Sm “ p11, 12, 15q

p10, 20, 30, 40, 50, 60q Sm “ p12, 14, 15q

p20, 30, 40, 50, 60, 70q 45 p8, 6, 4, 4, 2, 8q Sm “ p12, 14, 15q

p50, 60, 70, 80, 90, 100q Sm “ p12, 14, 15q

p10, 20, 30, 40, 50, 60q Sm “ p12, 14, 15q

p20, 30, 40, 50, 60, 70q 45 p16, 12, 8, 8, 4, 16q Sm “ p12, 14, 15q

p50, 60, 70, 80, 90, 100q Sm “ p12, 14, 15q

Table 4.15: Optimal minimal repair kits for system failure at t “ 10 under varying

penalty costs per type, fixed penalty costs, and holding costs.
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4.7 Conclusions and future work

This chapter discussed the repair kit problem (RKP), taking into account factors

that have not received much attention in the literature, namely, system structure,

system failure time and components lifetime. The chapter introduced three different

scenarios for the RKP. Using the probabilities of events introduced in Chapter 3,

the total expected cost of a repair kit is calculated under these scenarios.

The first scenario involves finding an optimal repair kit that could be provided

with the system at the time of purchase that aims to replace all failed components

when the system fails. Providing a repair kit upfront may contribute to minimising

system downtime and reducing the associated costs of transporting personnel and

equipment to the site. Under this scenario, the expected cost of the return to fit

(RTF) visit, a second visit if a job cannot be completed successfully, is quantified

from different perspectives, depending on the penalty cost that should be paid if a

job cannot be completed. First, the expected RTF visit cost was quantified based

on a fixed penalty cost if one or more components cannot be replaced. We also

considered the case where the penalty cost depends solely on the component type,

regardless of the number of shortages, and when the penalty depends on both the

component type and the number of shortages. The expected cost of the RTF visit

was also examined in a more general setting, where the penalty cost consists of

both a fixed cost and a cost associated with the component type and the number of

shortages of that type.

To determine the optimal repair kit for this scenario of the RKP, two closely

related forward and backward greedy heuristics were introduced, aligning with those

presented by Teunter [65] and Bijvank et al. [11]. For the hydro power example, the

first heuristic was able to identify the optimal repair kit, which was the same as when

a full search was applied. However, the heuristic failed to identify the optimal repair

kit in another system. The total expected cost of the optimal repair kit selected by

the algorithm was 6.28% higher compared to the total expected cost of the optimal

repair kit detected in the full search. For this system, the second algorithm was able

to identify the same optimal repair kit as the full search approach. Therefore, for
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other systems where conducting a full search is not possible, one might apply the

two heuristics and select the optimal repair kit with the lowest total expected cost.

The second scenario of the RKP, considered in this chapter, focuses on determin-

ing an optimal repair kit that aims to replace all failed components when the system

fails, assuming that system failure will occur within a specific future time interval.

This scenario is motivated by the service operation vessels case study, where vessels

remain offshore for a period of time [43]. Therefore, it is critical to determine in

advance which repair kit is most suitable for that period. The probability of the

number of failed components of multiple types at system failure, derived in Section

3.6 under the assumption that the failure will occur at a future time interval, is used

to quantify the RTF visit cost.

The third scenario we considered in the RKP does not necessarily aim to replace

all failures, as in the previous two scenarios, but rather focuses on finding the optimal

repair kit that aims to restore the system to a functional status. Such a repair kit

could be useful when there are restrictions on the repair kit, such as its capacity [57],

the availability of certain components, or associated expenses [11]. The probability

of a component of a specific type causing system failure, which is derived in Section

3.3, is used to quantify the expected cost of an RTF visit.

The minimal repair kit introduced in Section 4.6 does not necessarily replace

all failures but aims to replace specific failures that can restore the system to a

functional status. The minimal repair kit was introduced without considering the

system’s remaining functional time after repair. One potential avenue for further

research involves expanding this minimal repair kit into a comprehensive solution

that ensures system functionality with a high probability for a specific period of

time. This extension could facilitate the preparation of major maintenance actions.

The identification of the optimal repair kit was based on a full search approach

and on two closely related myopic algorithms. However, such algorithms do not con-

sider the long-term consequences of adding or removing multiple components on the

total expected cost of a repair kit. Therefore, exploring alternative computational

algorithm methods for the discussed scenarios of the RKP becomes an interesting

avenue.
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This chapter focused on identifying the optimal repair kit within the cost model.

Additionally, exploring similar scenarios for the RKP under the service model could

be of interest, where customers can predefine a specific probability for job comple-

tion. The objective is to find a repair kit that fulfills this requirement with the

minimum holding cost.



Chapter 5

Repair kit with Bayesian inference

on component failure time

5.1 Introduction

The literature related to the investigation of components most likely to cause system

failure or the determination of how many components fail at system failure time

often assumes that components failure time distributions are fully known (e.g. [25],

[7]). This assumption has also been applied in our work on these events in Chapter

3. Information of this nature, however, may not be directly available and may be

difficult to obtain. Therefore, it is crucial to make inferences about the failure time

of components.

Inferring component reliability poses significant challenges due to various com-

plexities, such as censoring and a lack of data. Consider a scenario where we have

a sample of systems that are observed until they experience failure. Following this,

for each system, one of its components produces its failure time, while the failure

times of the remaining components are censored. For instance, in the case of a

series system failure, only one component will have a failure time that is directly

observed, while the failure times of the remaining components are right-censored.

Similarly, in a parallel system, one component’s failure time is uncensored, whereas

the failure times of the remaining components are left-censored. Moreover, life tests

105
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on the components of a system are often conducted during its initial development.

However, once the system becomes operational, the available failure time data may

only be accessible at the system level rather than for individual components [42].

Additionally, it is possible that, after deployment, the reliability characteristics of

the components might change due to the working atmosphere of the system, where

the focus is on reliability characteristics in the field [74]. Given the complexities

mentioned, it is of interest to infer the distributions of component failure times.

The remainder of the chapter is outlined as follows. Section 5.2 provides a

brief overview of some relevant literature on inferring component failure times from

a Bayesian perspective. In Section 5.3, the posterior predictive distributions for

new component failure times with Exponential or Weibull distributions are derived.

The probabilities of the different events developed in Chapter 3 are then inferred

based on these predictive distributions. Additionally, they are used to find optimal

repair kits for some cases that were discussed in Chapter 4. A comparison is then

made between these optimal repair kits and those produced when the distributions

of component failure times are assumed to be known. In Section 5.4, we use a

Markov Chain Monte Carlo method to generate posterior samples for the unknown

parameters of the distributions of component failure times in situations where an

analytical solution is not feasible. The generated samples are then used to estimate

the posterior predictive distributions for new component failure times, which are

subsequently used to find the optimal repair kits. Section 5.5 concludes the main

ideas of the chapter and provides directions for future research.

5.2 Literature review

The literature on estimating reliability functions of system components is exten-

sive, and various approaches have been proposed. Based on system failure time

data, several studies have explored statistical inference techniques to make inference

about component reliability. Bhattacharya and Samaniego [10] develop a non para-

metric maximum likelihood estimator for estimating component reliability. They

utilise system signature and domination theory, assuming that component failure
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times are independent and identically distributed. Their study assumes that system

failure times are based on a fixed system design. The study conducted by Ng et

al. [44] explores the statistical inference of component failure time distribution by

utilising failure time data of systems with identical structures, where the system

signature is known. They make the assumption that component failure time distri-

butions adhere to a general proportional hazard rate model and they estimate the

proportionality parameter through the use of various estimation methods. Hall et

al. [30] generalise Bhattacharya and Samaniego [10], by developing a non paramet-

ric estimator of component reliability based on system failure times with possibly

different system structures. In Jin et al. [35], the same problem is addressed and

non parametric estimation is developed when the sample of system failure times is

obtained from arbitrary unknown designs. Based on complete and censored sys-

tem failure times, Yang et al. [71] propose a stochastic expectation-maximization

algorithm for determining the maximum likelihood estimates of model parameters.

Based on progressive type-II censored failure times of systems and using system

signature, Tavangar and Asadi [63] propose different methods for estimating com-

ponent reliability.

Numerous contributions have also been made to infer about component failure

time distributions from a Bayesian perspective. Using masked data (i.e. a component

that caused system failure or the status of components at the time of system failure

is unknown), Sarhan [61] obtained Bayesian estimates for component reliability for

a series system, with components’ failure times assumed to be independent and

Exponentially distributed, with prior distributions belonging to a piecewise linear

family. In Polpo et al. [48], a parametric Weibull model was used for failure time

estimation of series and parallel systems. They chose Jeffrey’s non informative

prior distribution and utilised the Metropolis-Hasting simulation method to obtain

the posterior distribution. In Polpo [49], non parametric Bayesian inference with

the Dirichlet multivariate process as prior distribution is used to determine the

reliability of components in series-parallel and parallel-series systems. Rodrigues et

al. [56] consider Bayesian estimation for component reliability in coherent systems

and assume a 3-parameter Weibull distribution for component failure times without
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requiring them to be identical. Their approach is not restricted to the common

assumption that two or more components cannot fail at the same time. Their

approach also considers left, right, and interval censored component failure times.

5.3 Bayesian inference with conjugate prior

The purpose of this section is to infer the failure time distributions of system com-

ponents. Here, we assume that the failure times of some types of components follow

Exponential distributions with unknown rates, while the failure times of components

of other types are assumed to follow Weibull distributions with known shapes but

unknown scales. For Exponential failure rates, we assume conjugate priors follow-

ing the Gamma distribution. In the case of the Weibull scale, we adopt an Inverse

Gamma prior distribution. These distributions were selected for their flexibility in

describing a wide range of failure time data. Lawless [39] and Rinne [54] provide

examples of various physical phenomena where the Weibull distribution is a suitable

choice for modeling failure times.

To demonstrate the derivation of the posterior predictive distribution for the

Weibull case, suppose that we have nk test observations
`

tk1, ..., t
k
nk

˘

for failure times

of a component of type k. By denoting the unknown parameter (scale) as θk, the

known shape parameter as βk, and the Inverse Gamma prior parameters as ak and

bk for shape and scale respectively, the posterior predictive distribution is given as

follows.

fTk
nk`1

pt |
`

tk1, ..., t
k
nk

˘

q “

ż 8

0

f pt | θkqπ
`

θk |
`

tk1, ..., t
k
nk

˘˘

dθk

“

ż 8

0

βk

θk
tβk´1 exp

ˆ

´
tβk

θk

˙

ˆ Inverse Gamma

˜

ak ` nk, bk `

nk
ÿ

i“1

`

tki
˘βk

¸

dθk

“ βkt
βk´1

pak ` nkq

˜

bk `

nk
ÿ

i“1

`

tki
˘βk

¸pak`nkq

ˆ

˜

tβk ` bk `

nk
ÿ

i“1

`

tki
˘βk

¸´pak`nk`1q

. (5.3.1)
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The posterior predictive reliability function is

P
`

T k
nk`1 ą t |

`

tk1, ..., t
k
nk

˘˘

“

˜

bk `
řnk

i“1

`

tki
˘βk

tβk ` bk `
řnk

i“1

`

tki
˘βk

¸ak`nk

. (5.3.2)

In the following subsections, we use posterior predictive distributions for the

probability that a component type will lead to system failure, and the probabilities

of events related to the number of failed components at the time of system failure.

Using these results, the optimal repair kit is determined under various scenarios and

compared to the case in which the component failure times distribution is assumed

to be fully known.

5.3.1 Optimal repair kits using predictive distributions

In this subsection, we examine the optimal repair kit for different scenarios of quanti-

fying the expected RTF costs, introduced in Chapter 4, based on posterior predictive

distributions. This investigation focuses on the hydropower system, which includes

six types of components as shown in Figure 3.5. First, we assume that the dis-

tributions of failure times for components of types 1 and 2 are fully known and

follow Weibull distributions with a shape parameter of 0.5 and a scale of 1, and a

shape parameter of 2 and a scale of 2.5, respectively. For components of types 3,

4, 5, and 6, we assume Exponential distributions with unknown failure rates θk for

k P t3, 4, 5, 6u. The failure rate θk are assumed to have prior information repre-

sented by the following Gamma distribution with a shape parameter βk ą 0 and a

rate parameter αk ą 0:

fpθk; βk, αkq “
αβk

k

Γpβkq
θβk´1
k e´αkθk .
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The posterior predictive distribution for a new data T k
nk`1 is given as follows.

fTk
nk`1

pt |
`

tk1, ..., t
k
nk

˘

q “

ż 8

0

f pt | θkq π
`
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`
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k
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dθk
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ż 8

0
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`
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i“1 t
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`
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k
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ˆ

ż 8

0
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i

˘βk`nk

Γpβk ` nkq

ˆ
Γpβk ` nk ` 1q

`

αk `
řnk

i“1 t
k
i ` t

˘βk`nk`1
.

We assume that the shape parameter βk “ 1 for all k P t3, 4, 5, 6u, while for rate

parameters, we take a rate of α3 “ 0.15 for type 3, and α4 “ α5 “ α6 “ 0.09 for

types 4, 5, and 6.

Example 5.3.1 Assuming we have 20 observations as test data for types 3, 4, 5,

and 6, we compute the posterior predictive distributions and use them to estimate

the number of components of the six types that failed at the time of system failure

given that the system was functioning at a certain point in time. The optimal repair

kit is then determined based on these estimations. Using predictive distributions

of types 3, 4, 5, and 6, Figure 5.1 shows the probability of different combinations

for the numbers of failed components at the moment of system failure given that

the system was functioning at time t. It should be noted that given the period of

time during which the system has operated, the plotted combinations are generally

the most likely to occur when the system fails. Table 5.1 shows different optimal

repair kits for different holding and penalty costs when the RTF costs are computed

according to Equation(4.3.2) where the probability term is based on the predictive

distributions. We also take into account the uncertainty about the failure times of

components when estimating the number of failures at the moment of system failure

given that it fails at a future time interval rt‹
1, t

‹
2s. Figure 5.2 presents the probability

of the number of failed components of the six types when the system fails based on
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Figure 5.1: Probability of the number of failures at system failure time given system

functioning at t, based on predictive distributions of types 3, 4, 5, and 6.

the predictive distributions of types 3, 4, 5, and 6, given the same assumptions as

in the previous case regarding component failure times (i.e. distribution type, prior,

size of test data, etc). For selecting the optimal repair kit, we consider the case

in which the system fails at r5, 10s. Table 5.2 displays different optimal repair kits

based on different penalties per part type shortage and assuming no extra penalty for

the second visit. This calculation of the cost of the RTF visit is based on Equation

(4.3.5), but with the condition 5 ď Ts ď 10 instead of Ts ą 0 and the second term

is set to zero.

Secondly, we consider uncertainty about type 1 component, which are assumed

to have a Weibull distribution with a known shape of 0.5 and an unknown scale in

addition to uncertainty about types 3, 4, 5, and 6. This leaves type 2 as the only

fully known type. As for the Weibull scale parameter, we assume a conjugate Inverse

Gamma prior where the shape parameter and the scale parameter are both equal to

2. Equations (5.3.1) and (5.3.2) provide the posterior predictive probability density

function and corresponding predictive reliability for a new failure time of type 1.

Example 5.3.2 Based on a set of 20 failure times as test data for type 1 compo-

nents, the related posterior predictive distributions are calculated and applied to

find the optimal repair kits. Using the predictive distributions for types 1, 3, 4,
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Penalty cost
Cp

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

20 S “ p1, 0, 0, 0, 0, 0q

40 p4, 3, 2, 2, 1, 4q S “ p1, 2, 0, 1, 1, 0q

60 S “ p1, 2, 1, 1, 1, 1q

20 S “ p1, 0, 0, 0, 0, 0q

40 p8, 6, 4, 4, 2, 8q S “ p1, 0, 0, 0, 0, 0q

60 S “ p1, 0, 0, 0, 1, 0q

20 S “ p0, 0, 0, 0, 0, 0q

40 p16, 12, 8, 8, 4, 16q S “ p1, 0, 0, 0, 0, 0q

60 S “ p1, 0, 0, 0, 0, 0q

Table 5.1: Optimal repair kits for the hydro power system using predictive distri-

butions of types 3, 4, 5, and 6.

5, and 6, Figure 5.3 illustrates the probability of the number of failed components

when the system fails. Table 5.3 displays optimal repair kits using the predictive

distributions for a new failure time for types 1, 3, 4, 5 and 6. In addition, we take

into consideration uncertainty about the failure time of the component of type 1, as

well as the components of types 3, 4, 5, and 6, and use predictive distributions for

those types to determine the probability of the number of failed components when

the system fails at a future time interval when the system fails at rt‹
1, t

‹
2s. Figure 5.4

illustrates the probability of failures at system failure time when the system fails

at rt‹
1, t

‹
2s using predictive distributions of types 1, 3, 4, 5, and 6. In Table 5.4, we

present optimal repair kits based on these predictive distributions if the system fails

given that it failed at [1, 5].

Using predictive distributions, we also determine the optimal minimal repair

kit that does not necessarily replace all failures, but aims to replace parts that

restore the system to a functioning state. As discussed in Chapter 4 determining

the minimal repair kit is related to the event of a component type causing system

failures, that was addressed in Chapter 3. Assuming that the system will fail at

a given time t, Figure 5.5 shows the probability of a component of a specific type
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Figure 5.2: Probability of failures at system failure time given its failure at rt‹
1, t

‹
2s

based on predictive distributions of types 3, 4, 5, and 6.

triggering a system failure. If we assume that the system will fail at t “ 10, Table

5.5 presents different optimal minimal repair kits based on different parts holding

costs and the given that only three parts are permitted.

5.3.2 Comparisons of repair kits under real and posterior

predictive distributions

The previous subsection presented various scenarios for optimal repair kits and the

associated probability events that are related to quantifying the expected cost of

RTF visit for these repair kits based on predictive distributions. This was under-

taken in two cases. In the first case, it is assumed that the probability distributions

of the failure times of components of types 1 and 2 are known, while the predictive

distribution is used for components of other types. In the second case, the assump-

tion is made that only the probability distribution of failure times of components

of type 2 is known. This subsection compares optimal repair kits when component

failure times are assumed to be fully known versus when predictive distributions are

used in both cases.

The first focus is on comparing between the optimal repair kits when assuming

that the failure times of all component types are fully known and when only one of
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Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Extra cost
Cp

Holding cost
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p0, 2, 1, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p4, 3, 2, 2, 1, 4q S “ p0, 2, 1, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 1, 1, 2, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 2, 0, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p8, 6, 4, 4, 2, 8q S “ p0, 2, 1, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p0, 2, 1, 1, 1, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 2, 0, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p16, 12, 8, 8, 4, 16q S “ p0, 2, 0, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p0, 2, 1, 1, 1, 1q

Table 5.2: Optimal repair kits based on posterior predictive distributions of types

3, 4, 5, and 6, when the system fails at r5, 10s, when there is a penalty cost per part

type shortage only.

them is known (type 2 which has Weibull distribution, as described earlier), while

predictive distributions are used for the other types. For the repair kit which is

intended to be placed nearby the system, as introduced in Section 4.3, Figures 3.12a

and 5.3 present the probability of the number of failed components at system failure

time when component failure times are all known as per Table 3.3, and when the

distributions of failure times of components of types 1, 3, 4, 5, and 6 are not fully

known. The settings for inferring about these types are the same as described in

the Subsection 5.3.1. As regards this probability, we observe that there are some

differences among the probabilities for different times when the system was last

known to operate. The general probability pattern of the different combinations

is, however, almost the same. In terms of optimal repair kits, we observe some

differences between those developed using original component failure times (Table

4.2) and those developed using predictive distributions of types 1, 3, 4, 5, and 6

(Table 5.3). For example, in the case where the holding cost is (4, 3, 2, 2, 1, 4), all

optimal kits have differed depending on the penalty cost. When the holding cost is

(8, 6, 4, 4, 2, 8), only one kit remains the same, namely when the penalty cost is 20.
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Figure 5.3: Probability of failures at the moment of system failure based on predic-

tive distributions for components of types 1, 3, 4, 5, and 6.

The use of predictive distributions suggests that an empty kit is an optimal repair

kit, when the holding cost is (16, 12, 8, 8, 4, 16) and the penalty is 20, whereas it

is suggested to have one component of type 5 when real lifetime distributions are

used. Moreover, in addition to type 2, if type 1 is also assumed to be known and

has a Weibull distribution, and predictive distributions are used for types 3, 4, 5,

and 6, then the optimal repair kits as shown in Table 5.1 do not improve to be the

same or near when all types are known.

Considering optimal repair kits that aim at replacing all failures at a future

time interval when the system fails, we also observe some differences between the

optimal kits when the true component failure time are used and when predictive

distributions are used. Figures 3.14a and 5.4 illustrate the probability of different

combinations of failed components when the system fails, assuming the system will

fail at rt‹
1, t

‹
2s, based on known failure times distributions and based on predictive

distributions of types 1, 3, 4, 5, and 6, respectively. For instance, if the system

fails at a point in r15, 20s, then having two failures of type 2, one of types 5 and

6, and no failures of the other types (orange combination) is most likely with an

approximate probability of 0.2, when using the true failure time distributions. When

posterior predictive distributions are considered, having two failures of type 2, one

failure of type 4, 5, and 6, and no failures of the other types is most likely (black
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Penalty cost
Cp

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

20 S “ p1, 0, 0, 0, 0, 0q

40 p4, 3, 2, 2, 1, 4q S “ p1, 1, 0, 0, 1, 0q

60 S “ p1, 2, 0, 1, 1, 0q

20 S “ p1, 0, 0, 0, 0, 0q

40 p8, 6, 4, 4, 2, 8q S “ p1, 0, 0, 0, 0, 0q

60 S “ p1, 0, 0, 0, 1, 0q

20 S “ p0, 0, 0, 0, 0, 0q

40 p16, 12, 8, 8, 4, 16q S “ p1, 0, 0, 0, 0, 0q

60 S “ p1, 0, 0, 0, 0, 0q

Table 5.3: Optimal repair kits for the hydro power system using predictive distri-

butions of types 1, 3, 4, 5, and 6.

combination) with a probability of about 0.15. For comparison of optimal repair

kits during system failure at rt‹
1, t

‹
2s, we focus on the comparisons when the system

fails at [5, 10]. We can see that there are some differences between optimal kits

as determined by real failure time distributions (Table 4.13) and as determined by

predictive distributions of types 1, 3, 4, 5, and 6 (Table 5.4). For kits resulting

from real distributions, the optimal kit is S “ p0, 2, 0, 0, 1, 1q when the penalty cost

per short type is p10, 20, 30, 40, 50, 60q, while when predictive distributions are used,

the optimal kit includes one component of type 5. Similarly, when the penalty cost

is p50, 60, 70, 80, 90, 100q, the optimal kit is S “ p0, 2, 0, 1, 1, 1q, but it contains a

component of type 3 when using predictive distributions. As for the other optimal

kits, they remain the same. Furthermore, when the type 1 component is known as

well as the components of type 2, the optimal repair kits at system failure time,

when the system fails at [5, 10], are the same as the ones when the failure time of

the type 1 component is unknown (not shown here).

For the optimal minimal repair kits, Figures 5.6 and 5.5 show the probability of

a component of a specific type leading to system failure, based on true failure time

distributions and predictive distributions of types 1, 3, 4, 5, and 6, respectively.
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Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Extra cost
Cp

Holding cost
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

p10, 20, 30, 40, 50, 60q S “ p0, 2, 1, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p4, 3, 2, 2, 1, 4q S “ p0, 2, 1, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p1, 2, 1, 1, 2, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 2, 0, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p8, 6, 4, 4, 2, 8q S “ p0, 2, 1, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p0, 2, 1, 1, 1, 1q

p10, 20, 30, 40, 50, 60q S “ p0, 2, 0, 1, 1, 1q

p20, 30, 40, 50, 60, 70q 0 p16, 12, 8, 8, 4, 16q S “ p0, 2, 0, 1, 1, 1q

p50, 60, 70, 80, 90, 100q S “ p0, 2, 1, 1, 1, 1q

Table 5.4: Optimal repair kits based on posterior predictive distributions of types

1, 3, 4, 5, and 6, when the system fails at r5, 10s, when there is a penalty cost per

part type shortage only.

Penalty cost per type
pC1

p , C
2
p , C

3
p , C

4
p , C

5
p , C

6
pq

Extra cost
Cp

Holding cost
pc1, c2, c3, c4, c5, c6q

Optimal minimal kit
S

p10, 20, 30, 40, 50, 60q Sm “ p12, 14, 15q

p20, 30, 40, 50, 60, 70q 45 p4, 3, 2, 2, 1, 4q Sm “ p12, 14, 15q

p50, 60, 70, 80, 90, 100q Sm “ p11, 12, 15q

p10, 20, 30, 40, 50, 60q Sm “ p12, 14, 15q

p20, 30, 40, 50, 60, 70q 45 p8, 6, 4, 4, 2, 8q Sm “ p12, 14, 15q

p50, 60, 70, 80, 90, 100q Sm “ p12, 14, 15q

p10, 20, 30, 40, 50, 60q Sm “ p12, 14, 15q

p20, 30, 40, 50, 60, 70q 45 p16, 12, 8, 8, 4, 16q Sm “ p12, 14, 15q

p50, 60, 70, 80, 90, 100q Sm “ p12, 14, 15q

Table 5.5: Optimal minimal repair kits when the system fails at t “ 10 using

predictive distributions of types 1, 3, 4, 5, and 6.
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Figure 5.4: Probability of failures using predictive distributions of types 1, 3, 4, 5,

and 6.

When the system fails at t “ 10, most optimal minimal repair kits are the same,

regardless of whether all failure time types are known or only type 2. The exception

is the second optimal minimal repair kit, which is shown in Tables 4.15 and 5.5.

When the failure time of the type 1 component is also known, then all optimal

minimal repair kits become the same.

5.4 Bayesian inference with non-conjugate prior

There are certain cases where it is generally impossible to integrate out the pa-

rameters from a posterior distribution or determine the normalising constant of the

posterior distribution. Such situations can occur when the prior knowledge about

the parameters does not give rise to a conjugate posterior. With the development

of Markov Chain Monte Carlo (MCMC) methods [41], this situation changed. The

primary goal of these methods is to generate samples from the posterior distribution

which are then used to make inferences about the likely values of the parameters.

This section considers one of the most popular MCMC methods for drawing

samples from the posterior distribution, namely the Metropolis-Hastings (MH) al-

gorithm [32]. Specifically, the algorithm will be used to generate samples from the

posterior distribution of some unknown parameters related to the distribution of
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Figure 5.5: Probability of a component type causing system failure based on pre-

dictive distributions of types 1, 3, 4, 5, and 6.
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Figure 5.6: Probability of a component type causing system failure based on true

lifetime distributions.
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Figure 5.7: Probability of a component type causing system failure based on pre-

dictive distributions of types 3, 4, 5, and 6.

component failure times. These samples are then used to estimate the posterior

predictive distribution of new component failure times, which will subsequently be

used to determine the probability of events required to find the optimal repair kit.

The basic steps of the Metropolis-Hastings algorithm for sampling from an ob-

jective (target) distribution πpθ | pt1, . . . , tnqq are as follows. It begins by choosing

an initial value for the unknown parameter θp0q and setting the number of iterations.

At each iteration, a new candidate value θ1 is generated from a proposal distribution

qpθ1 | θq. An acceptance probability is then calculated which ensures exactly the

correct proportion of samples are retained to ensure that the accepted samples are

distributed according to the posterior. This process is repeated for the specified

number of iterations, producing a sequence of values that represent samples from

the posterior distribution. The mathematical steps of the algorithm are provided

below in Algorithm 3.

In the following subsection, we provide some details on applying the algorithm to

generate samples for the unknown rate parameter of the Exponential distribution,

assuming the rate parameter has a prior represented by a uniform distribution.

Based on the posterior samples, the optimal repair kits are determined for the hydro

power system and compared to the case when the true distributions are fully known.
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Algorithm 3: Metropolis-Hastings algorithm

Step 1: Initialize θp0q.

Step 2: Repeat until the number of iterations is achieved:

1. Generate a uniform random number u „ Unifp0, 1q.

2. Generate a candidate sample θ1 „ qpθ1 | θpiqq.

3. Calculate the acceptance probability:

α “ min

ˆ

1,
πpθ1 | t1, . . . , tnq qpθpiq | θ1q

πpθpiq | t1, . . . , tnq qpθ1 | θpiqq

˙

.

4. If u ď α, set θpi`1q “ θ1; otherwise, set θpi`1q “ θpiq.

5.4.1 Optimal repair kit using Metropolis–Hastings

algorithm

In this subsection, we examine the optimal repair kit for a new system, as discussed

in Section 4.3, and the related probability distribution developed in Section 3.5,

where the posterior distributions of unknown parameters for some components’ fail-

ure time distributions are obtained using the Metropolis-Hastings algorithm. The

investigation is carried out for the hydro power system that consists of six types

of components (Example 3.3.2). We assume that there are available data for some

component types ptk1, . . . , t
k
nk

q, which are assumed to be Exponentially distributed

with unknown parameters θk. We further assume that these unknown parameters

have uniform distributions with constants ak and bk. The posterior distribution of

the unknown parameter θk is proportional to the product of the likelihood and the

prior:

πpθk | ptk1, . . . , t
k
nk

qq9θnk
k e´θk

řnk
i“1 t

k
i ¨

1

bk ´ ak
for ak ď θk ď bk.

To generate samples from the posterior distribution using the Metropolis-

Hastings algorithm, we apply the following steps. First, an initial value θ
p0q

k , a

number of iteration N , and a proposal distribution qpθ1
k | θkq are determined. A

common choice for the proposal distribution which will be used here is a normal
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distribution centered at the current value, qpθ1
k | θkq “ N pθk, σ

2
kq. For each iteration

i “ 1, . . . , N , a candidate value θ1
k is generated from the proposal distribution

qpθ1
k | θ

piq
k q. Then, the following acceptance probability α is calculated.

α “ min

˜

1,
πpθ1

k | tk1, . . . , t
k
nk

q qpθpiq | θ1
kq

πpθpiq | tk1, . . . , t
k
nk

q qpθ1
k | θpiqq

¸

.

Since qpθpiq | θ1
kq and qpθ1

k | θpiqq are symmetric, the acceptance probability is short-

ened to

α “ min

ˆ

1,
πpθ1

k | tk1, . . . , t
k
nk

q

πpθpiq | tk1, . . . , t
k
nk

q

˙

.

To accept or reject α, a uniform random number u ∼ Unif p0, 1q is drawn. If u ă α

set θ
pi`1q

k “ θ1
k, otherwise, set θ

pi`1q

k “ θ
piq
k . The sequence of θ

pNq

k values generated

through this process will approximate the posterior distribution. In the following, we

present an example of the probability distribution developed in Section 3.5, which

is then used to obtain the optimal repair kit for a new system, with the posterior

distributions determined based on the Metropolis-Hastings algorithm.

Example 5.4.1 For the hydro power system composed of six types of components,

as shown in Figure 4.1, we assume that the distribution of the failure times for

some component types are fully known, while others are not. It is assumed that

the distribution of the failure times for components of types 1 and 2 are known and

follow a Weibull distribution, with type 1 having a shape parameter of 0.5 and a

scale parameter of 1, and type 2 having a shape parameter of 2 and a scale parameter

of 2.5. For the components of types 3, 4, 5, and 6, it is assumed that there are some

available data (nk “ 20) that are Exponentially distributed with unknown rates θk

for k P t3, 4, 5, 6u. We further assume that the parameters θk have uniform prior

distributions with the hyperparameters a3 “ 0.017, b3 “ 0.2, a4 “ 0.01, b4 “ 0.15,

a5 “ 0.01, b5 “ 0.1, a6 “ 0.01, and b6 “ 0.83.

To generate samples from the posterior distributions for θk for k P t3, 4, 5, 6u

using the Metropolis-Hastings algorithm, we set the initial value θ
p0q

k “
ak`bk

2
and

define the number of iterations N “ 10,000. For the proposal distributions, we

choose normal distribution Npθ
piq
k , σ2

kq to achieve an acceptable acceptance rate. We

use variances σ2
3 “ 0.001, σ2

4 “ 0.002, σ2
5 “ 0.0015, and σ2

6 “ 0.005. After applying
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the steps of the algorithm described earlier, the first 1,000 samples of the generated

samples for each type k P t3, 4, 5, 6u are discarded as burn-in. This ensures that

the remaining samples are representative of the posterior distribution and are not

influenced by the initial values. Figure 5.8 presents the trace plots of the sampled

values of the parameters of the failure time distributions for components of types 3,

4, 5, and 6, with an acceptance rate of around 0.3 for all four types. Then, these

samples are utilised to compute the posterior predictive values, which are used for

the determination of optimal repair kits.
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Figure 5.8: Trace plots of the sampled values of the parameters of failure time

distributions for components of types 3, 4, 5, and 6.

Figure 5.9 presents the probability of the number of failed components of the six

types when the system fails, given that the system is functioning at time t. If the

system was last known to function at early times (e.g., from t “ 0 to t “ 5), the most
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Figure 5.9: Probability of the number of failed components for the hydro power

system at system failure using the MH algorithm for unknown parameters of com-

ponents of types 3, 4, 5, and 6.

likely scenario is having two failed components of type 2 and zero failed components

of the other types (blue combination). If the system continues to function between

t “ 10 and t “ 15, the most likely scenario changes to having two failed components

of type 2, zero failed components of types 1 and 3, and one failed component of

the other types (black combination). When the system is still functioning at later

stages, the most likely scenario becomes having two failed components of type 2, zero

failed components of type 1, and one failed component of the other types (purple

combination). Note that the plotted probabilities are for only the six most likely

combinations. The probabilities of the remaining 642 combinations are not shown

here.

Based on this probability distribution, Table 5.6 presents different optimal repair

kits that are prepared for a new system, which can be used to replace all failed

components when the system fails, given varying penalty costs and holding costs.

For example, if the penalty cost for not completing the repair successfully is Cp “ 60

and the holding cost per component type is p4, 3, 2, 2, 1, 4q, then the optimal repair

kit is S “ p1, 2, 1, 1, 2, 1q. If the holding cost increased to p8, 6, 4, 4, 2, 8q, the optimal

repair kit would contain fewer spare parts: S “ p1, 0, 0, 0, 1, 0q.
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Penalty cost
Cp

Holding cost per part type
pc1, c2, c3, c4, c5, c6q

Optimal kit
S

20 S “ p1, 0, 0, 0, 1, 0q

40 p4, 3, 2, 2, 1, 4q S “ p1, 1, 0, 1, 1, 0q

60 S “ p1, 2, 1, 1, 2, 1q

20 S “ p1, 0, 0, 0, 0, 0q

40 p8, 6, 4, 4, 2, 8q S “ p1, 0, 0, 0, 1, 0q

60 S “ p1, 0, 0, 0, 1, 0q

20 S “ p0, 0, 0, 0, 0, 0q

40 p16, 12, 8, 8, 4, 16q S “ p1, 0, 0, 0, 0, 0q

60 S “ p1, 0, 0, 0, 1, 0q

Table 5.6: Optimal repair kits for the hydro power system at system failure using

the MH algorithm for unknown parameters of components of types 3, 4, 5, and 6.

When comparing these optimal repair kits, which are based on posterior samples

generated using the MH algorithm, there are some differences when assuming the

true failure time distributions of all component types are fully known (Table 4.2).

For example, when the penalty cost is Cp “ 40 and the holding cost is p4, 3, 2, 2, 1, 4q,

the optimal repair kit is S “ p1, 2, 0, 0, 1, 0q when all failure time distributions are

known, while it is S “ p1, 1, 0, 1, 1, 0q when the MH algorithm is used for posterior

samples for component types 3, 4, 5, and 6. Similarly, when the penalty cost is

Cp “ 60 and the holding cost is p16, 12, 8, 8, 4, 16q, the optimal repair kit is S “

p1, 0, 0, 0, 0, 0q when all distributions are known, while it is S “ p1, 0, 0, 0, 1, 0q when

the MH algorithm is used for types 3, 4, 5, and 6.

5.5 Conclusions and future work

The chapter examined the probability of a component of a specific type causing sys-

tem failure and the probabilities of events related to the numbers of failed compo-

nents of multiple types at system failure from a Bayesian perspective. The posterior

predictive distributions for new failure times of certain component types are com-
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puted and used in calculating these probabilities. Optimal repair kits for various

scenarios were determined based on these probabilities.

For the optimal repair kits intended to be provided with the system at its pur-

chase time, differences are observed in the resulting optimal repair kits when assum-

ing that the distributions of failure times for all component types are fully known

versus assuming only one type has a fully known distribution for its failure time,

while posterior predictive distributions are used for the other types. Additionally,

when assuming that the failure times of two component types are fully known, the

optimal repair kits do not improve to match those obtained when assuming the

failure times of all component types are fully known.

When considering repair kits for a system that may fail within a specific time

interval, differences are observed among the resulting optimal repair kits when as-

suming fully known failure times for all component types compared to when only

the failure time distribution of one type is assumed to be fully known, with posterior

predictive distributions used for the other types. Assuming that the distributions

of the failure times for two types of components are fully known, did not yield any

improvements. In fact, it resulted in the same optimal repair kits as when only one

type distribution is known.

For the minimal repair kits, which are not necessarily aimed at replacing all

failures but instead at restoring the system to a functional status, it is observed that

the optimal minimal repair kits are identical when all distributions of all component

types are fully known and when only the distribution of the failure time of one type

is fully known, except for one minimal optimal repair kit. This particular repair kit

became the same when assuming that the distribution of failure times of two types

are known.

As for future research, it is of interest to further update the results regarding the

probability of a component of a specific type leading to system failure and the prob-

abilities related to the number of failed components at system failure using available

information at the current time, as in Walter and Flapper [68]. Investigating how

current information affects the results of optimal repair kits could provide valuable

insights. Another direction for future research is to employ the joint posterior pre-
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dictive density for the future failure times of components of the same type, given

the data. This approach differs from using the marginal posterior predictive, as the

future failure times will not be independent given the data, and the joint posterior

predictive accounts for these dependencies. Another direction is to study a real-

world system and including elicitation of expert judgements, especially in situations

where data is limited or unavailable. It is also advantageous to use non-conjugate

priors and modern Markov Chain Monte Carlo (MCMC) methods for computation.

This approach allows for the implementation of more flexible model formulations.



Chapter 6

Conclusions

This thesis contributed novel methodology for system failure diagnosis. System

failure was investigated from two perspectives. First, we introduced an importance

component-type-based measure that calculated the probability of a component type

failing at the moment of system failure, causing system failure. Secondly, three

events related to the numbers of failed components of multiple types at system

failure were derived under different conditions. First, the probability of the numbers

of failed components of multiple types at system failure, given the exact failure time

and conditioned on the numbers of failed components of multiple types that occur

prior to system failure, was derived. Secondly, we derived the probability of the

numbers of failed components of multiple types at system failure, assuming that the

system was functioning at a certain point in time. The probability of the numbers

of failed components of multiple types at the moment of system failure, assuming

failure will occur within a future time interval, was also derived. The derivations of

the probabilities for all these events were based on the use of the survival signature.

These probabilities can provide insights into several practical situations, includ-

ing the Repair Kit Problem (RKP). The probabilities of some of these events were

then utilised to formulate the RKP, specifically to calculate the expected cost of a

possible Return to Fit (RTF) visit if a repair job cannot be completed successfully.

We considered determining an optimal repair kit with the minimum total expected

cost, comprising holding and RTF visit costs, under various scenarios. Initially, we
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examined a repair kit provided with a new system, aiming to replace all failed com-

ponents in the event of a system failure. Two closely related heuristic approaches

were proposed to determine the optimal repair kit. Another repair kit that was stud-

ied is prepared for a system failure within a future time interval, aiming to replace

all failed components. Additionally, if the repair kit is restricted to a very limited

number of components due to constraints such as space, we proposed a repair kit

that does not necessarily aim to replace all failures but rather to restore the system

to a functional status.

The determination of the probabilities of the numbers of failed components at

system failure and the optimal repair kits was based on the assumption that all

distributions of component failure times are fully known. Instead of making that

assumption, we considered the situation in which some of the distributions may

not be fully known. In this case, we derived posterior predictive distributions and

applied them to the probability of the numbers of failed components at system

failure, which is then used in determining the optimal repair kit. The optimal repair

kits resulting from the use of posterior predictive distributions were then compared

to those determined under the assumption of fully known distributions. The results

indicated differences in all optimal repair kits when posterior predictive distributions

were used compared to the case where all distributions of component failure times

were assumed to be fully known. The only exception is for the optimal minimal

repair kit, which suggests similar repair kits in both cases.

At the end of Chapters 3, 4, and 5, several ideas were provided for future re-

search. In addition to these, we suggest another extension related to the repair kit

problem. The repair kit problem discussed in this thesis was based on the assump-

tion that the repair kit is determined to repair only one system (i.e. a single job).

However, there are scenarios where the objective is to complete repairs for multiple

systems at one or different locations (i.e. a tour job) (e.g. [65], [11]). Therefore,

it is important to consider such scenarios, taking into account system structure,

system and component failure times. This will require studying different events of

interest, opening an interesting direction for further research. Another important

future research is that all developments in this thesis focused on binary state systems
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(perfect functioning and complete failure). However, modern engineering systems

often include systems and components with multiple states. Therefore, an obvious

next step is to extend the probabilities for the numbers of failed components of

multiple types at the moment of system failure and the RKP studied in the thesis

to such systems. Qin and Coolen [51] introduced the survival signature for a multi-

state system with multi-state components, which could provide a valuable basis for

important generalisations.
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