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Diffuse Interface Modelling of Wetting on Complex Structured Surfaces

Fandi Oktasendra

Abstract

Wetting on solid surfaces textured with geometries from simple to highly complex structures
is of interest from fundamental physics perspective and for potential applications. From the
physics point of view, interesting phenomena can be observed, such as hemiwicking, when
perfectly wetting liquids propagate through the corrugation of these structured surfaces, and
wetting transition, when liquids initially in a suspended state (Cassie-Baxter state) transition
to a collapsed state (Wenzel state). In addition, on a microscopic scale where the wettability
is dictated by the intermolecular interactions, distinct wetting phenomena can be observed,
such as liquid filling and emptying. From the application perspective, wetting on structured
surfaces is key to a broad range of technological and industrial applications, from coating and
microfluidic to liquid hydrocarbon recovery.

In this thesis, we employ dynamical and quasi-static numerical methods based on diffuse
interface model for studying wetting phenomena on structured surfaces. First, we use the
Lattice Boltzmann method, which is powerful for studying liquid dynamics. Second, we employ
the phase-field energy minimisation method by incorporating distance-dependent solid-liquid
interactions to obtain the equilibrium state of the system. Third, we develop a new method
based on the phase-field model in the energy minimisation framework, the frozen fluid method,
for constructing highly complex geometry structures.

We develop a fully analytical model to predict the propagation coefficients for liquids hemi-
wicking through square and face-centre/hexagonal arrays of micropillars. This is done by
balancing the capillary driving force and a viscous resistive force and solving the Navier-Stokes
equation for representative channels. The theoretical predictions for the square array case
exhibit excellent agreement with the simulation results for a wide range of geometries and im-
proved accuracy compared to previously proposed models. Furthermore, we demonstrate the
applicability of the hydraulic-electric circuit analogy approach in approximating the equivalent
channel for face-centred/hexagonal arrays of micropillars.

In the study of liquid filling and emptying on grooved surfaces, we consider short-range and
long-range liquid-solid interactions, with the latter including purely attractive and repulsive
interactions and those with short-range attraction and long-range repulsion. Comparing the
filling and emptying transitions for complete, partial, and pseudo-partial wetting states, we
find that the filling and emptying transitions are reversible for the complete wetting case,
while significant hysteresis is observed for the partial and pseudo-partial cases. In agreement
with previous studies, we show that the critical pressure for the filling transition follows the
Kelvin equation for the complete and partial wetting cases. For the pseudo-partial wetting case,
we find that the filling transition can display a number of distinct morphological pathways.

Finally, we validate the frozen fluid method through several benchmarking tests, demon-
strating its applicability across various solid geometries, including those with flat, curved, and
corner features. Subsequently, we utilize the method to investigate the critical pressure of a
liquid on superhydrophobic surfaces textured with cylindrical and truncated cone pillars, and
mesh geometry. By analyzing the impact of texture parameters, we can optimize superhy-
drophobic surfaces to enhance their wetting stability.
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Chapter 1

Motivation

Nature stores numerous amazing features of surfaces which exhibit intriguing phenomena when

in contact with liquid such as water. After millions of years of evolution, organisms have evolved

specific surface structures and chemistry that allow them to adapt to their surroundings. For

example, the leaves of the Lotus (Nelumbo nucifera L.) plant exhibit water-repellent properties,

which keep the leaves dry when rainwater falls onto them. The water droplets that fall on the

leaves form spherical beads and roll off while collecting and removing dust and other contam-

inants from the surface. This self-cleaning property of Lotus leaves is known as the "Lotus

effect" [1, 2]. A closer look at the leaf reveals that the leaf has a multi-scale rough structure

covered with cuticular wax crystals, as shown in Fig. 1.1 (a). This structure has inspired many

attempts to reproduce similar surfaces to get this superhydrophobic (i.e. repellent to water)

effect.

Furthermore, some natural surfaces were discovered to be repellant to not only water but

also oil (superamphiphobic) or even to all types of liquids (superomniphobic) [3]. The Spring-

tails, for example, live in a humid environment and have a strong ability to avoid being wet

by either water or other liquids with low surface tension (e.g. more oils) [4]. The cuticle of a

springtail has a re-entrant micro/nanostructure composed of the densely-distributed hexagon

or rhombus nanoarrays [5], as shown in Fig. 1.1 (c). This structure can keep an air layer

in place to prevent wetting by aqueous or oil-based liquids, which is why it is repellent [5].

Because of their unique hierarchical surface structures, several plants and animals have ex-

traordinary water transport properties. Spider silk, for example, with periodic spindle-knots

and joints, can transport water (with velocity ∼ 30µms−1) [6], and cactus spine can transport

water (with velocity ∼ 12µms−1) due to gradient grooves on the surface [7, 8, 9]. Recently,

2
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one type of insect-trap plant, Sarracenia, has been found to have ultrafast water transport

properties (with a velocity of about three orders magnitudes faster than that on cactus spine)

due to its unique hierarchical surface structure characteristic at its trichome [10], as shown

in Fig. 1.1 (c). Scanning electron microscope scan reveals that its surface structure has hier-

archically structured ribs perfectly aligned along the trichome to form approximately parallel

hierarchical microchannels and two neighbouring high ribs to form a large channel. This struc-

ture allows water to move unidirectionally along the microchannel driven by capillary action.

These ultrafast water transport properties demonstrate the potential of hierarchical design in

microfluidic applications.

  

(a) Lotus plant

(c) Sarracenia plant

(b) Springtail
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Figure 1.1: Examples of wetting phenomena in nature. (a) Macroscale (left) and microscale
(right) views of a water-repellent lotus leaf [1]. (b) Image of the springtail (left) with micro-
scopic (middle) and SEM (right) images of the textured skin [5]. (c) The Sarracenia plant (left)
with a microscopic image of the trichome surface (middle) and a table of transport velocity for
different objects (right) [10].

Besides organisms (plants and animals), wetting phenomena are also important in numerous

aspects of human life and the environment. As an example, water vapour is created when we

take a shower, with hot water condenses on the window glass in the bathroom. This will



4

create separate water droplets if the cohesion force of water molecules is stronger than the

adhesion force between liquid and glass. In contrast, if the adhesion force is stronger than the

cohesive force, a liquid thin film will be formed. Interestingly, the same physics is relevant

for phase-change heat transfer mechanisms exploited in a number of engineering applications

[11, 12, 13].

Such intriguing and extraordinary surface structures of organisms in nature have inspired

scientists and engineers to fabricate synthetic surfaces mimicking similar wetting properties of

natural surfaces. These bio-inspired surfaces have become a subject of interest for decades due

to the broad spectrum of industrial applications involving wetting phenomena. For example,

consider water-repellent surfaces. These superhydrophobic surfaces are attributed to the trap-

ping of air pockets in the rough or porous surface, causing a liquid droplet to be suspended

on top of the micron- and nano-scale surface corrugations [14]. This allows superhydrophobic

surfaces to have small contact angle hysteresis and large drag reduction (thus, liquid droplets

move easily on the surface), and large contact angle (thus, liquid droplets form a spherical

shape on the surface). All these make them attractive for a number of applications, such as

in textile, architecture, automotive, military and biomedical devices. However, these surfaces

suffer multiple weaknesses, such as repellency only towards liquids with high surface tension,

low mechanical stability, low transparency, weak pressure stability, and short-term underwater

stability [15]. Superoleophobic surfaces have repellency towards low surface tension liquids,

but they share all other weaknesses with superhydrophobic surfaces [16].

One alternative for replacing the superhydrophobic surfaces is called bio-inspired liquid

infused surfaces or lubricant impregnated surfaces (LIS), which offer better features combin-

ing the mechanical stability of a solid substrate with the liquid-like properties and molecular

smoothness of the lubricant interface [17, 18, 19]. A typical scenario concerning the study

of wetting on LIS involves three fluids: a lubricant (typically an oil) infused in between the

surface texture, a droplet of liquid (such as a water droplet), and the gas environment [20].

LIS has been shown to exhibit many superior wetting properties compared to superhydropho-

bic surfaces, including lower contact angle hysteresis [20], self-cleaning [21], anti-bioadhesion

[22], anti-corrosion [23], drag reduction [24], anti-icing [25]. LIS also demonstrate excellent

repellency and drop mobility to a broad range of liquids, including low surface tension and

complex fluids such as blood or cell medium. This is manifested due to the mobility of the

lubricant trapped inside the surface structures. Moreover, LIS are robust against pressure-
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induced instabilities and failure, which makes them favourable for applications to a wide range

of problems, ranging from marine fouling and product packaging to heat exchanger and medical

devices [17, 26, 27]. However, despite its advantageous features, LIS also suffers from certain

weaknesses, in particular the loss of lubricant, which may occur due to a variety of reasons,

including evaporation, shear instability and droplet-induced depletion [28, 29, 30, 31].

Controlling the mobility of liquids (droplets or thin films) along surfaces is crucial for many

applications ranging from microfluidics to liquid hydrocarbon recovery. The surfaces used

in such applications are usually fabricated using nano-/micropatterning technologies (such

as lithography) to create textures with tunable wettability and transport properties. These

textured surfaces affect the wettability of solid, inducing interesting wetting behaviours such

as superphilicity, as well as interesting liquid transport mechanisms such as hemiwicking (i.e.

spontaneous flow of liquid through an enclosed porous medium driven by capillary action)

[32]. The applications involving hemiwicking include thermal management [33], liquid-infused

surfaces [34], energy harvesting [35], and lab-on-a-chip devices [36].

These applications require a fundamental understanding of wetting and its properties, as

well as the interplay between surface textures and liquids. Many of these applications employ

a complex surface geometry. Hence, understanding the role of this complexity is key to further

utilization and development.

Since the early studies of wetting dating back to the eighteenth century by Young and

Laplace [37, 38], a number of theoretical models have been proposed to describe both static

and dynamics wetting properties. Some of the fundamental theories include the contact angle,

contact angle hysteresis, contact line dynamics and bulk liquid hydrodynamics. While many

of the theoretical predictions can be confirmed by experimental evidence, experimentalists face

significant constraints in terms of what can be measured, what time and length scales can be

studied, and which parameters can be controlled. Moreover, the experimental study could be

limited by resources and tools when the case of the study involves high complexity in geometry

and structure.

Computer simulations, on the other hand, are extremely versatile in terms of the degree

to which parameters can be controlled and useful information extracted. This is supported

by increasingly powerful hardware and algorithms being developed which extend the limits of

length and time scales. As a result, this type of simulation can be used in a growing number

of applications to bridge the gap between theory and experiment in the pursuit of a deeper
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understanding of fundamental wetting physics.

There are many simulation methods available used to study fluid dynamics, commonly

referred to as computational fluid dynamics (CFD). In this thesis, we choose the Lattice Boltz-

mann method (LBM) [39] for its computational efficiency and simplicity in handling complex

geometry. The LBM is a particle-based method that tracks the distribution of particles. This

contrasts with other popular particle-based methods, such as Molecular Dynamics (MD) [40],

which track individual atoms or molecules. Therefore, while capable of providing atomistic

details, MD is often deemed too computationally expensive for simulating liquid dynamics at

macroscopic scales.

We also adopt a diffuse interface model [41, 42] over the sharp interface model, as we apply it

in the LBM and phase field methods. There are several advantages to using the diffuse interface

model. While sharp interface models often struggle to capture interface motion when interfaces

break up or merge, diffuse interface models handle such phenomena seamlessly due to their

continuous interface representation. Moreover, diffuse interface models often exhibit greater

numerical stability than sharp interface models, especially in simulations involving dynamic

wetting processes. Therefore, diffuse interface models are more suitable for the problems of

interest in this thesis.



Chapter 2

Literature Review

2.1 Wetting on Flat Surfaces

When a liquid droplet is put in contact with a solid surface, two extreme conditions might

happen: 1) the liquid droplet will spread over the surface (complete wetting), or 2) the liquid

droplet remains spherical without developing any contact with the surface, leaving the surface

dry (complete non-wetting) [43]. What parameters determine which condition is favourable? To

answer this question, let us start by looking into wetting on a flat and chemically homogeneous

solid surface (an ideal solid). Thomas Young and Pierre-Simon Laplace proposed that surfaces

carry a specific energy that reflects the cohesion of the underlying condensed phase (solid or

liquid) [37, 38]. This quantity is called surface tension, denoted as γij for an interface between

phases i and j (indices i and j are s, l, and g for solid, liquid, and gas, respectively). It has the

dimension of energy per unit area or, alternatively, a force per unit length. This force applies

along the ij surface to minimise the corresponding surface energy. The competition between

three surface tensions, γgs, γls, and γlg, determines the wetting behaviour and is represented

by the spreading parameter S, defined as

S = γgs − (γls + γlg), (2.1)

which measures the difference between the surface energy (per unit area) of the surface when

dry and wet [43, 44]. For complete wetting condition, γgs is larger than or equal to the sum of

liquid-solid and liquid-gas surface tensions, γls + γlg, because liquid spreading expands the two

corresponding surface areas. Its spreading parameter is larger than or equal to zero (S ≥ 0).

7



2.1 Wetting on Flat Surfaces 8

For partial wetting condition, the spreading parameter is negative (S < 0). Since the sum of

the liquid-solid and liquid-gas surface tensions is larger than the gas-solid surface tension, it is

not advantageous to completely replace the gas-solid interface with the two others. Different

surface tensions acting on the contact line provide the equilibrium condition of the drop. The

balance can be written as

γgs = γls + γlg cos θ, (2.2)

which is known as the Young equation [37]. The contact angle θ is called the Young’s contact

angle. This relation is schematically depicted in Fig. 2.1. The contact angle decreases when a

liquid droplet spreads further on a solid surface. Hence, the contact angle provides a measure

of the degree of wetting. The contact angle is measured at the three-phase contact line, defined

as the point at which the liquid, solid and surrounding gas phases meet.

Figure 2.1: Droplet on a flat surface with contact angle θ. Liquid-solid, gas-solid and liquid-gas
surface tensions, γls, γgs and γlg, respectively, are balanced at the three-phase contact line.

When γls < γgs, the tendency of a solid surface to create an interface with the liquid

droplet increases. As a result, the contact angle decreases (usually less than 90◦, referred to

as hydrophilic). On the contrary, when γls > γgs, the liquid droplet tends to avoid making

contact with the solid surface, allowing the contact angle to increase (usually larger than 90◦,

referred to as hydrophobic). These two conditions correspond to the partial wetting regime.

Another important concept related to the surface tension is called the Laplace pressure.

The surface tension is at the origin of the overpressure existing in the interior of a liquid

droplet [45]. This pressure difference is responsible for the phenomenon of capillary adhesion,

for instance, in a capillary tube induced by a capillary bridge. The pressure difference, ∆p, that

occurs upon traversing the boundary between two fluids (say liquid and gas) is proportional

to the surface tension γlg and the curvature of the interface, C. Mathematically, this theorem

can be written as

∆p = γlgC. (2.3)
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For a water droplet suspended in a gas, the curvature is given by C =
(

1
R1

+ 1
R2

)
, where R1

and R2 are the principal radii of curvature. Since the droplet adopts a spherical shape in order

to minimise its surface energy, the curvature is only determined by the droplet radius R. The

Laplace pressure is then given by ∆p =
2γlg
R . In an equilibrium condition, the mean curvature

between two fluid phases, hence the Laplace pressure, is constant.

2.2 Wetting on Structured Surfaces

The texture of the solid surface is another important factor in determining the wetting be-

haviour. In fact, most of the surfaces in nature are rough and chemically inhomogeneous, with

scales ranging from nano to micrometres. In the process of fabrication, such as lamination or

coating, rough surfaces may result from a defect or undesired materials trapped on the sur-

face. To understand the wetting behaviour on rough surfaces, let us consider a liquid droplet

deposited on a periodically textured surface, as shown in Fig. 2.2.

When a droplet is placed on a rough surface, two possible mechanisms can occur at equi-

librium. First, the liquid droplet fills the roughness, enlarging the contact area between the

liquid and solid phases. This state is called the Wenzel state, as illustrated in Fig. 2.2 (a). The

apparent contact angle may be different from the Young’s contact angle in Eq. (2.2). It was

first demonstrated by Wenzel [46], and using a geometrical argument, the apparent contact

angle, θW , is given by

cos θW = r cos θ, (2.4)

where r is the roughness factor defined as the ratio between the actual surface area and the

apparent or projected surface area, whose values are always larger than unity. From the Wenzel

relation in Eq. (2.4) we can see that roughness enhances wettability. Since r > 1, a hydrophilic

surface becomes more hydrophilic when rough (θW < θ) and a hydrophobic surface becomes

more hydrophobic (θW > θ).

The second possible state is the Cassie-Baxter state [47], as illustrated in Fig. 2.2 (b).

Instead of filling the surface roughness, the liquid droplet can sit on top of the surface roughness,

leaving the surface a composite of solid and air below the droplet. As a consequence, only a

fraction of the solid is in contact with the liquid. If φs is defined as the contact area of the

droplet divided by the area of solid under the drop projected on the plane of the surface, the
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contact angle θCB is therefore given by

cos θCB = φs cos θ − (1− φs). (2.5)

In the Cassie-Baxter state, surface roughness reduces the effective solid-gas and solid-liquid

surface area. Therefore, the apparent contact angle appears to be larger, thus enhancing the

surface hydrophobicity. From Eq. (2.5), we can see that the contact angles can be as large as

180◦. Typically, a surface with θCB > 150◦ is termed a superhydrophobic surface.

Figure 2.2: Illustration of two possible states due to the surface roughness: (a) Wenzel state
and (b) Cassie-Baxter state with their corresponding apparent contact angles.

The roughness of the surface can also cause a contact angle hysteresis (CAH). It is defined

as the difference between the advancing, θA, and receding, θR, angles,

CAH = θA − θR. (2.6)

The illustration for the CAH is shown in Fig. 2.3. This image shows a practical way of measuring

the CAH by means of varying the volume of the droplet. When the droplet volume slowly

increases, the contact angle increases until it reaches its maximum value, and then it remains

constant. This maximum angle is referred to as the advancing contact angle, θA (Fig. 2.3 (a)).

Conversely, by slowly reducing the droplet volume, the contact angle will decrease until it

reaches a minimum angle. This minimum angle is referred to as the receding contact angle, θR

(Fig. 2.3 (b)). The CAH occurs because, when increasing or decreasing the droplet volume, the
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contact line is pinned to the surface (usually occurs at the corner of the texture). This creates

an asymmetry between θA and θR. For the Wenzel state, the CAH is generally large, caused

by a large pinning force due to the high liquid-solid contact area. For the Cassie-Baxter state,

on the contrary, the CAH value is low because of the low liquid-solid contact area.

Figure 2.3: Illustration of the contact angle hysteresis on a structured surface showing (a)
advancing contact angle θA and (b) receding contact angle θR [48].

The condition for the liquid-gas interface to be pinned on a solid corner can be described by

the Gibbs pinning criterion [49]. For an illustration, let us consider the contact line pinning at

a φ = 90◦ corner, as illustrated in Fig. 2.4. Here, the measured contact angle can be between

β = θ and β = θ + φ. The liquid-gas interface will spontaneously depin from the edge and

slide to the left when β < θ or downwards when β > θ + φ [50].

Figure 2.4: Illustration of contact line pinning at the 90◦ corner of surface roughness. At the
corner, the contact angle can take any value between β = θ and β = θ + φ. The sketch is
adapted from [50].
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2.3 Superhydrophobicity: Cassie-Baxter to Wenzel States Tran-

sition

Increasing the roughness of a hydrophobic surface is one way of achieving superhydrophobicity.

The superhydrophobic surfaces are characterised by the high contact angle (typically larger

than 150◦) and low CAH (typically less than 20◦) [51]. These properties can be achieved if

the liquid droplet is in the Cassie-Baxter state, in which it will form a near-spherical droplet

and roll on the surface when slightly inclined. However, a droplet on the Cassie-Baxter state is

susceptible to transition to a Wenzel state, which leads to the loss of the advantageous surface

properties.

This Cassie-Baxter to Wenzel transition can occur due to a variety of perturbations suffi-

cient enough to deform the liquid-gas interface. These include pressure, vibration, evaporation-

condensation, droplet impact, flow, or changes to electric or magnetic fields. In real-world

applications, the wetting transition may be initiated by several perturbations simultaneously

instead of a single perturbation.

Numerous studies have been devoted to understanding the theoretical explanation behind

this wetting transition [52, 53]. For instance, Lafuma et al [52] derived the condition for

the transition to occur from the Cassie-Baxter and Wenzel models and proposed that the

transition occurs at a critical contact angle, θc. If the contact angle θ is larger than θc, the

droplet will remain in the Cassie-Baxter state. However, for 90◦ < θ < θc, the two states might

coexist, showing the metastability of this regime. This metastable region has been validated

by experiment and simulation results [54, 55].

The explanation of the mechanism and criteria for the Cassie-Baxter/Wenzel transition

can be divided into two groups: thermodynamic analysis and force-based analysis [56]. The

thermodynamic analysis associates the wetting transition with minimising the Gibbs energy

of the system [57, 58]. When the Cassie-Baxter state has higher energy than the Wenzel

state, as the droplet penetrates the gap between pillars, the system reduces the Gibbs energy

by replacing the solid-gas interface with the solid-liquid interface and changing the liquid-

gas interfacial area. Patankar et al. [57] showed that, although the Cassie-Baxter/Wenzel

is energetically favourable, there is an energy barrier between the two states, necessitating

additional work to induce the transition.

The force-based analysis elucidates the balance of the capillary force in the proximity of
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the three-phase contact line [59, 60]. For example, Zheng et al. [60] argued that the wetting

transition process is driven by a hydraulic pressure, which may be generated by the liquid-gas

interfacial tension of the droplet or external forces such as gravity, drop impact, etc. This

model also suggests that there is a critical pressure, which is the maximum pressure that the

Cassie-Baxter state can sustain.

2.4 Complex Geometry Surfaces

Conventional superhydrophobic surfaces are textured with arrays of micropillars. This simple

pillar texture is prone to wetting transition when wetted by liquid droplets like water. Even

more, when a liquid with a lower contact angle (such as oil) wets the surface, the Cassie-Baxter

state normally breaks down. Therefore, the design of superhydrophobic surfaces has evolved

to become more complex. In an attempt to make the superhydrophobic surfaces resistant

against many different types of liquid, new textured surfaces emerge: superoleophobic surfaces,

describing a surface that is resistant to wetting by oil; superamphiphobic surfaces, describing

a surface that is resistant to wetting by both oil and water; and superomniphobic surfaces,

describing a surface that is resistance against wetting by all liquids.

Figure 2.5: Surfaces textured with (a) simple pillar, (b) reentrant and (c) doubly-reentrant
geometries.

The reentrant and doubly reentrant geometries are two promising textures that enable

these super-repellant properties (Fig. 2.5). The reentrant geometry features an overhanging cap

structure, while the doubly reentrant geometry builds upon this by incorporating a lip structure

onto the cap. The reentrant geometry can effectively trap air pockets beneath the cap structure,

preventing the penetration of low surface tension liquids (e.g. oil). Therefore, this structure is

often referred to as a superamphiphobic surface. On the doubly reentrant geometry, the liquid-

gas interface may wet the inner cap lip while getting pinned at the bottom of the cap lip. This

allows perfectly wetting liquids to be in the Cassie-Baxter state, achieving superomniphobicity
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performance. More detail of the geometrical influence of the surface structure on the wetting

states and the wetting transition is given in Refs [61, 62].

2.5 Wetting on Micro- to Nanoscale: the Long-range Interac-

tions

When a spreading liquid completely wets a solid surface, a thin layer of liquid film will be

formed whose thickness could be in the mesoscopic range (a few angstroms to a micrometer).

In such a range of length scale, the wetting behaviour is determined by a competition between

the cohesive interactions of the liquid molecules and the adhesive interaction between the liquid

and solid [63]. These molecular interactions are often described in terms of the repulsive (short-

range) and attractive (long-range) potentials, for which the Lennard-Jones form of potential

has been widely used due to its simplicity [64]:

VLJ (r) = 4ϵ

[(σ
r

)12
−
(σ
r

)6]
. (2.7)

The repulsive term occurs at the very short range (in order of the molecular magnitude or less)

and plays a role in determining intrinsic properties of liquid, such as the order of molecular

structure and the density. On the other hand, the long-range attraction component is mainly

responsible for the wetting properties. This long-range potential could be a result of the van der

Waals force toward the solid and other types of interactions, especially when the film thickness

is very small, such as dipole-dipole, hydrogen bonds and various effects due to different densities

of the liquid near the solid surface [65].

These molecular interactions determining the wetting behavior of liquid thin film are often

quantified in terms of the free energy (per unit area) of a film of thickness e. One can consider

a liquid thin film of thickness of e on a solid surface. If the liquid-solid interactions are strong,

the system can lower its free energy by increasing the distance between the two surfaces. This

results in a net repulsive force per unit area between the liquid-solid and liquid-gas interfaces,

called the disjoining pressure, Π(e) [63]. The excess free energy (per unit area) is then given

by [45, 65]

F (e) = γls + γlg + P (e) , (2.8)

where P (e) is called the effective interface potential, from which the disjoining pressure is
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defined: Π(e) = −dP (e)/de. When the film is considerably thick (larger than 100 nm), P (e) →

0 and its free energy is contributed by the surface energy at the two interfaces. When the film

becomes very thin (e→ 0), its free energy must be equal to the energy of the dry solid (γgs), and

hence P (e) acts as the spreading parameter (S ), S ≡ γgs−γls−γlg. At the intermediate range,

the long-range interaction contributes to the variation of P (e). If the potential is controlled by

the long-range van der Waals interaction between the molecules, which varies with the inverse

sixth power of the distance (1/r6), the effective interface potential can be modelled as

P (e) =
A

12πe2
, (2.9)

where A is the Hamaker constant (whose value can be negative or positive), which describes

the molecular characteristics of the solid and liquid molecules.

Figure 2.6: Different possible shapes of the effective interface potential, P (e) for different
wetting states: complete wetting (S > 0, A > 0) with (a) P (e) decreases monotonically and
(b) P (e) has a maximum, partial wetting with (c) S < 0, A > 0 and (d) S < 0, A < 0 and
pseudo-partial wetting with (e) S > 0, A < 0 and (f) S < 0, A < 0. The dashed lines show
P (e) modelled in Eq. (2.9). Sketches are adapted from [65].

Different possible shapes of the effective interface potential P (e) are shown in Fig. 2.6 [45,

65]. For complete wetting situations, S > 0 and A > 0, and the functional dependency of P (e)
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can be a decreasing function (Fig. 2.6 (a)) or have a maximum at e = em (Fig. 2.6 (b)). For

partial wetting situations, S < 0, and the Hamaker constant, A, can be positive or negative.

For the former, the functional dependency of P (e) has the shape illustrated in Fig. 2.6 (c). The

droplet profile near the three-phase contact line would be hyperbolic and curved downward

(see inset). For the latter, P (e) increases monotonously and has no minimum (see Fig. 2.6 (d)).

The droplet profile near the three-phase contact line would be hyperbolic and curved upward

(see inset) [65].

Interestingly, another wetting state can be obtained due to these intermolecular liquid-solid

interactions, termed pseudo-partial wetting [65]. In this wetting state, a droplet coexists with

a thin film surrounding it. The functional dependency of P (e) has a minimum at e = em

corresponding to the thin film thickness, as illustrated in Fig. 2.6 (e,f). The Hamaker constant,

A, is negative, but the spreading parameter, S, can be positive or negative. For the former,

the droplet has a finite contact angle, and the solid is completely coated with a thin film of

thickness em, while for the latter, the droplet still has a finite contact angle, and the thin film

has a finite contact area [65]. Several experiments [66, 67, 68, 69] have observed the existence

of the pseudo-partial wetting state on a number of systems, such as brine-AOT/alkane/air,

water/PDMS/air and water/alkane/air.

2.6 Capillary Imbibition and Hemiwicking

From the Wenzel state model discussed earlier, we can see that the surface roughness can

enhance hydrophilicity. Patterning on a hydrophilic surface at a scale much smaller than the

capillary length can induce superhydrophilicity. Another important consequence of surface

roughness on a hydrophilic surface is wicking, the spontaneous liquid flow on textured surfaces

driven by capillary action. The wicking dynamics depend strongly on the texturing of the

surface. A special case of wicking is called hemiwicking, defined as the spreading of a liquid

on a textured surface where the wetting of dry regions is accompanied by increased liquid-gas

interfacial area.

Let us consider a solid surface textured with micropillars as illustrated in Fig. 2.7. Such

a surface can be characterized by its pillar density φs (number of the pillars on a projected

plane) and roughness factor r. For a liquid to imbibe the textured surface, the solid must lower

its energy by being wet, such that γls < γgs. The surface area of the solid that is coated by



2.6 Capillary Imbibition and Hemiwicking 17

Figure 2.7: Illustration of the hemiwicking process through an array of micropillars with pillar
diameter (side) a, spacing b and height h. Liquid driven by a force per unit length, Fd, imbibes
the micropillar array by a distance dx.

liquid is proportional to r−φs, whereas the liquid-gas interface area is proportional to 1−φs.

As the liquid imbibes the surface by a distance dx, the change of surface energy per unit length

can be written as

dE = {(γls − γgs) (r − φs) + γlg(1− φs)} dx. (2.10)

The force per unit length that drives the hemiwicking can be derived from Eq. (2.10),

Fd = −dE
dx

= γlg(r − φs)(cos θ − cos θc). (2.11)

Hence, imbibition is favourable when the Young contact angle is smaller than the critical value,

θc, which depends only on the geometry of the surface:

cos θc =
1− φs

r − φs
, (2.12)

which is called the wicking criterion [70]. The force in Eq. (2.11) is typically balanced by the

viscous force due to the small scale of the textures. The viscous dissipation force is proportional

to the average velocity of the propagation, viscosity, and propagation distance, Fv ∼ µνx.

The classical analysis of capillary imbibition was initially done by Lucas [71] and Washburn

[72]. Consider a liquid flowing in a cylindrical hydrophilic tube in contact with an infinite

liquid reservoir with dynamic viscosity η at one end. The rate of capillary imbibition is then

determined by the balance between the driving capillary forces and the resisting viscous forces.

Following a simplified scaling law approach by Ishino et al. [73], the capillary force can be

scaled as γlgL where L is a length scale that produces the capillary effect (can be assumed as
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Table 2.1: Theoretical models of propagation coefficient suggested in previous studies. Here,
the geometrical parameters are a = pillar diameter, h = pillar height, and b = pillar spacing.

Reference Propagation coefficient, D Condition

Bico et al. [70] γlgh
η

(
πah
b2

1−π(a/b)2/4

)
-

Ishino et al. [73] γlgb
η

(
h
b

)2 b ≫ h

γlgb
η

(
ln
(
2b
a

)
− 1.31

)
b ≪ h

Srivastava et al. [76] γlg
η

(
a0.5h0.17(b−a)1.33

b(1−π(a/b)2/4)

)
-

Kim et al. [77] γlgh
η

(
πah
b2

1+πah
b2

)
-

Kim et al. [75] γlgh
η

(
πah
b2

1+h
b

(
1+πah

b2

)
)

-

the tube radius) and the viscous force is scaled as ηxυ where x is the imbibed length from the

reservoir and υ = dx/dt is the mean velocity of the liquid. Balancing these forces results in

the famous Washburn’s law for x, which states that the length of imbibition increases as the

square root of time:

x = (Dt)1/2, (2.13)

where D ∼ 2γlgL/η is the propagation coefficient in the capillary imbibition (not to be confused

with the spreading parameter, S) [74, 75].

The coefficient D derived above can only be valid for capillary imbibition in a cylindrical

tube of smooth surfaces where D is determined by a single geometrical parameter, L. However,

for capillary imbibition on structured surfaces, pillar dimensions and arrangements need to be

taken into consideration [70, 73, 75, 76, 77]. Several theoretical models have been suggested

to obtain a functional form of D by incorporating these geometrical parameters as tabulated

in Table. 2.1.

An example of the applications of the hemiwicking is the flow of a fluid in microfluidics

[78]. Microscopic flows the likes of in microfluidics usually occur in low Reynolds number

(Re = nνR/η, where n, ν, R, and η are the density, typical velocity, length-scale, and viscosity

of the system, respectively) and hence inertia can be neglected. In addition, the Bond numbers

(Bo = nh2g/γlg, where g is the acceleration due to the gravity and h is the pillar height)
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are also small so that the gravitational force can be ignored [79]. The effect of the channel

geometry is significant as, for a given pressure drop, the flow rate through a capillary changes

with the fourth power of the radius in laminar flow [80]. This has been explored previously

where the geometrical patterning is used to control the flow in the channels. For example,

Zao et al. used hydrophilic stripes to confine the fluid flows [81]. Stroock et al. used oriented

grooves to enhance mixing [82]. Kusumaatmaja et al. used a one-sided patterned wall with

posts and ridges to show that the fluid flow is not only dependent on the geometry but also

the spacing of the posts [74]. Blow et al. used triangular post shapes to show the anisotropic

spreading occurs due to the pinning-depinning process [83].



Chapter 3

Objectives and Thesis Structures

3.1 Objectives

As a computational contribution to the study of wetting, we perform dynamic simulations of

liquid on structured surfaces textured with arrays of various pillar geometries using state-of-

the-art simulation methodologies developed in-house, namely the Lattice Boltzmann method.

In addition, we also exploit the phase-field-based free energy minimisation simulation to study

the static equilibrium properties of wetting on textured surfaces in nano- to micrometre scales.

Furthermore, we develop a new ternary-based phase-field model, the Frozen Fluid Method,

and implement it in the free energy minimisation simulation to enable us to study wetting

phenomena on highly complex geometry surfaces.

The purpose of this thesis is to exploit these methods to understand some fundamental

concepts of wetting on structured surfaces. In particular, we demonstrate and quantify several

important aspects. As discussed in Chapter 2, previous studies have proposed theoretical pre-

dictions for the hemiwicking coefficient of liquid propagating on structured surfaces. However,

they are only accurate under limited conditions. Furthermore, the breadth of applicability of

certain models is restricted by the semianalytical or empirical nature of their approach. Let

us take, for example, the models by Ishino et al. [73] and Srivastava et al. [76]. Ishino et al.

identified two structural regimes in which dissimilar scaling behaviours were observed owing to

different dominant dissipative phenomena. For short and long pillar heights, h, relative to the

pitch, p, viscous friction was shown to be dominated by either the bottom surface (h ≪ p) or

the pillars (h ≫ p) themselves, respectively. However, the boundaries between these regimes

were not clarified, and a model describing the behaviour in the broad h ≈ p regime was lacking.

20
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Srivastava et al. developed a semianalytical scaling model that used dimensional analysis and

finite element (FE) simulations to estimate the viscous resistance around a single cylindrical

pillar. While this approach is fruitful, the presented model is only valid for a specific pillar

geometry and in the design space where multipillar effects are negligible. Therefore, in this

thesis, we aim to build a predictive model that is simple and broadly applicable to textured

surfaces that contain various pillar geometries, patterns and a relative dimension scale.

Computational study on wetting phenomena at the micro- to nanoscale is mostly done using

atomistic simulations such as Molecular Dynamics and Density Functional Theory. Here, to

the best of our knowledge, for the first time, the phase-field simulation will be used to study

liquid filling and emptying on structured surfaces with the incorporation of short-range and

long-range interactions. This is distinct from previous phase-field simulations, which typically

treat wetting as a boundary condition at a solid surface and neglect long-range forces. We aim

to explore the mechanism and behaviour of liquid filling and emptying on grooved surfaces and

contrast them for complete, partial, and pseudo-partial wetting cases.

Finally, our last objective in this thesis is to study the wetting phenomena on highly com-

plex geometries. To achieve this aim, we will develop a new method that enables us to construct

highly complex geometry surfaces in the framework of the phase field simulation. This the-

sis then explores some fundamental aspects of the wetting phenomena, such as the wetting

transition in superhydrophobic surfaces.

3.2 Thesis Structure

This thesis is organised as follows. Following the Introduction, Part II is devoted to discussing

the hemiwicking on regularly and non-regularly patterned surfaces. It begins with a discussion

of the computational method used in this work, the Lattice Boltzmann method, in Chapter 4,

followed by presenting simulation results in Chapter 5. Here, theoretical models for predicting

the propagation coefficient for both patterned surfaces are presented and validated.

Part III discusses the filling transition of thin liquid films on nano- and micro-structured

surfaces. In Chapter 6, the energy minimisation method used to investigate the static equilib-

rium properties upon the variation in the pressure difference between the liquid and gas phases

is discussed. In Chapter 7, the effects of the long-range potential on the liquid-solid interaction

will be explored, in addition to the effects of the surface geometry on the filling transition.
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Part IV discusses the wetting study of complex geometry surfaces using the frozen fluid

method. In Chapter 8, the phase-field model for the frozen fluid method is discussed. This

includes the formulation of the free energy functional and the implementation of the confining

potentials. In Chapter 9, the parameterisation in the confining potential is verified, and the

frozen fluid method is validated using several benchmarking tests. Several applications of the

frozen fluid method are presented.

Finally, in Part V, we draw some conclusions in Chapter 10 and highlight avenues for future

works in Chapter 11.



Part II

Hemiwicking Propagation on Textured

Surfaces

23
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Wicking is the spontaneous flow of liquid through an enclosed porous medium driven by

capillary action [84]. It is an important surface science phenomenon critical to applications

ranging from inkjet printing [85] to liquid hydrocarbon recovery [86]. While wicking broadly

describes liquid propagation through a three-dimensional (3D) porous medium, hemiwicking is

the spreading of a liquid on a textured surface where the wetting of dry regions is accompanied

by the increase of the liquid air interfacial area [87, 88]. Interest in hemiwicking was kindled by

early studies showing that the addition of texture to smooth substrates significantly enhanced

the propagation rates of liquids [89, 90].

Recent advancements in nano-/micropatterning technology have enabled the fabrication

of textures with tunable wettability and transport properties. These developments have en-

abled applications exploiting hemiwicking in thermal management [33], liquid-infused sur-

faces [19, 34], energy harvesting [91], and lab-on-a-chip devices [92, 93]. The patterned tex-

tures have also allowed the investigation of interesting flow behaviour such as zipping [94],

anisotropic/polygonal spreading [95, 96], and large rise heights [97]. However, further utiliza-

tion of fast hemiwicking dynamics in commercial applications requires a quantitative under-

standing of the role of complex liquid-solid interactions that dictate liquid propagation and

wetting.

It is now well known that the flow through porous media follows the diffusive scaling

law (Washburn’s law), x = (Dt)1/2, where x is the wicked distance, t is the time, and D

is a propagation coefficient [72]. For flow through a cylindrical tube, D is a function of the

diameter, a, given by D = γlga cos θ/4η, where γlg is the liquid-gas surface energy, θ is the

equilibrium contact angle of the liquid on a smooth surface made from the same solid, and η

is the liquid viscosity. However, for hemiwicking through a texture, D must be described by a

more complex function involving at least three geometrical parameters (pitch, cross-sectional

size, height).

There have been several efforts (Table. 2.1) to arrive at a functional form of D for hemiwick-

ing by incorporating the geometric parameters of textured surfaces into models for capillary

pressure and viscous resistance. Ishino et al. identified two structural regimes in which dissim-

ilar scaling behaviours were observed owing to different dominant dissipative phenomena [73].

For short and long pillar heights, h, relative to the pitch, p, viscous friction was shown to be

dominated by either the bottom surface (h≪ p) or the pillars (h≫ p) themselves, respectively.

However, the boundaries between these regimes were not clarified, and a model describing the
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behaviour in the broad h ≈ p regime was lacking. Srivastava et al. developed a semianalytical

scaling model that used dimensional analysis and finite element (FE) simulations to estimate

the viscous resistance around a single cylindrical pillar [76]. While this approach is fruitful,

the presented model is only valid for a specific pillar geometry and in the design space where

multipillar effects are negligible. Kim et al. have demonstrated models that capture the veloc-

ity scaling appropriately, but their models are found to require a fitting factor to match the

measured D values [75]. While other hemiwicking models have been suggested, Kim et al. have

demonstrated that these other models do not capture the scaling behaviour correctly [75]. In

summary, previously suggested forms of the hemiwicking coefficient are only accurate under

limited conditions. Additionally, the breadth of applicability of certain models is restricted

by the semianalytical or empirical nature of their approach. A universal analytical model to

accurately predict liquid propagation rates on patterned surfaces is thus far absent.

In this work, we seek to build a predictive model that is simple and broadly applicable

to textured surfaces that contain various pillar geometries, patterns, and a relative dimension

scale. Our model balances the capillary pressure, described previously by Quéré et al. [88],

with the viscous resistance estimated by solving the Navier-Stokes equation for a rectangular

channel. The size of the channel is appropriately selected to capture the frictional contribution

of the array geometry. Our model provides an analytical expression that predicts the hemi-

wicking coefficient for a wide range of textured geometries generated by micropillars. The final

expression is validated using Lattice Boltzmann (LB) simulations to show that the present

model is applicable over a much broader range of micropillar geometries compared to previ-

ously published models, albeit a completely general model is still absent for highly complex

pillar arrangements.



Chapter 4

Method

A single-phase Lattice Boltzmann (LB) simulation is used to study the dynamic of hemiwicking

of liquid on micropillar arrays. In order to predict the hemiwicking coefficient D, we do not

explicitly simulate the hemiwicking dynamics but solve the flow profile for a unit cell of the

micropillar arrays while implementing the appropriate boundary conditions. In this approach,

we assume a flat meniscus and coplanarity between the meniscus and the tops of the micropillar.

Moreover, in the long timescale limit (large liquid column), the wicking front meniscus can be

ignored.

4.1 Fluid Hydrodynamics and the Boltzmann Equation

The hemiwicking dynamics can be described by relevant equations of motion, including the

continuity equation (Eq. (4.1)), for mass conservation, and Navier-Stokes equation (Eq. (4.2)),

for momentum conservation, [39]

∂tρ+ ∂β (ρuβ) = 0, (4.1)

∂t (ρuα) + ∂β (ρuαuβ) = −∂αp+ ∂β [η (∂βuα + ∂αuβ)] + Fα. (4.2)

In these equations, ρ is the fluid density, u is the fluid velocity, η is the dynamic viscosity,

p is the pressure, and Fα is the body force. The subscripts α and β denote the spacial indices,

e.g. {x, y, z} for the cartesian coordinates. The pressure term in the Navier-Stokes equation

can be expressed in different forms depending on the choice of the equation of state (EOS) of

the system and fluid-fluid interactions. In this work, we choose the equation of state for an

26
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isothermal gas ideal, p = ρRT , which is suitable for a single-phase system. The temperature

in our system is assumed to be constant, T ≈ T0, and together with the specific gas constant,

R, we can relate the pressure to the speed of sound, c2s =
√
RT0, to obtain p = c2sρ. The force

term Fα in the Navier-Stokes equation comes from external forces, which can be in the forms

of gravitational force, fluid-solid interaction or pressure difference, among others.

We solve these equations using an approach based on the Boltzmann equation, whereby

we attribute the macroscopic fluid quantities to a set of distribution functions of position x,

velocity c, and time t: f(x,c, t). The distribution function f(x,c, t) represents the mass density

in both three-dimensional physical and three-dimensional velocity space at time t. Therefore,

the fluid density at position x and time t, as in the continuity equation, can be expressed as

the integral of the distribution function over the velocity space

ρ(x, t) =

∫
f(x, c, t)d3c. (4.3)

Similarly, we can also express the momentum density in terms of the distribution function as

ρ(x, t)u(x, t) =
∫

cf(x, c, t)d3c. (4.4)

Notice that we differentiate the microscopic velocity c from the macroscopic fluid velocity u.

The evolution of the distribution function f(x,c, t) is governed by the Boltzmann equation,

which is given by
df

dt
=
∂f

∂t
+ c · ∇f +

F
ρ
· ∂f
∂c

= Ω(f). (4.5)

The right-hand side of the Boltzmann equation is called the collision operator or the source term

Ω(f), which describes changes to the local distribution of f due to collisions. This operator is

a crucial term in the Boltzmann equation, as it informs the rate at which collisions redistribute

particles between velocities in the distribution function. The choice of the collision operator

must conserve mass and momentum during the collision. We shall discuss in more detail about

this operation in the next section.

We can recover the continuity and Navier-Stokes equations from the Boltzmann equation.

For instance, if we integrate the Boltzmann equation over the velocity space, we will recover
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the continuity equation, as the following

∂

∂t

∫
fd3c+∇ ·

∫
cfd3c+

F
ρ
·
∫
∂f

∂c
d3c =

∫
Ω(f)d3c (4.6a)

∂ρ

∂t
+∇ · (ρu) = 0. (4.6b)

Here, the last term on the left-hand side and the term on the right-hand side in Eq. (4.6a) vanish

due to mass conservation. Although the continuum Boltzmann equation can directly describe

the continuity equation, solving it analytically coupled with the Navier-Stokes equation is only

possible for simple cases. Therefore, we use a numerical method that discretizes the Boltzmann

equation into lattice nodes called the Lattice Boltzmann (LB) method.

4.2 Lattice Boltzmann Method

The LB method discretizes the space, time and velocity into a square (or cubic) lattice in

2-dimensional (or 3-dimensional) computational domain. The Boltzmann equation can be

written as
df

dt
= Ω(f) → fi(x+ ci∆t, t+∆t)− fi(x, t)

∆t
= Ω(x, t). (4.7)

The time and space steps are usually taken as ∆t = 1 and ∆x = 1 in lattice units, respectively.

The velocity vector ci consists of discrete velocities whose values depend on the choice of

lattice domain. In the LB method, a lattice domain is usually denoted as DdQq, where d

is the number of dimensions and q is the number of discretised velocities ci coupled with the

weight wi. In this work, we use D3Q19 lattice domain. The set of velocities ci is illustrated

in Fig. 4.1, and their magnitudes are given by

c0 = 0 |c1−6| = 1 |c7−18| =
√
2. (4.8)

The collision factor Ω(x, t) can take different forms. The simplest form is the so-called

Bhatngar-Gross-Krook (BGK) operator, named after its inventors. The BGK operator is writ-

ten as

Ωi(f) = −1

τ
(fi − f eq

i ), (4.9)

where τ is the relaxation time and f eq
i is the equilibrium distribution function. The collision
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Figure 4.1: Directions of the lattice velocity vectors in D3Q19 model.

factor is essentially used to relax the distribution function fi to an equilibrium value f eq
i at

relaxation time τ . The equilibrium functions f eq
i must be chosen appropriately so that the

system’s mass and momentum are conserved. In this work, we use an equilibrium function as

a power series in the fluid and lattice velocities, written as [39]

f eq
i = wiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
, (4.10)

for i ̸= 0, and

f eq
0 = ρ−

∑
i ̸=0

f eq
i , (4.11)

for i = 0. Here, cs is the speed of sound, which takes the value of 1/
√
3 in lattice units. The

weights wi are associated with the vector velocities. Their values are then dependent on the

lattice domain. In the D3Q19 lattice domain, the values of wi are

w0 =
1

3
w1−6 =

1

18
w7−18 =

1

36
, (4.12)

where the indices correspond to the vector velocity indices. Using this BGK operator, the

Boltzmann equation can be rewritten as

fi(x+ ci∆t, t+∆t)− fi(x, t) = −∆t

τ
(fi − f eq

i ). (4.13)
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Next, we also need to describe the macroscopic quantities, such as density, velocity and

force, in terms of the distribution functions. Writing down the density and velocity is rather

straightforward as they are directly related to the distribution functions as in Eq. (4.3) and in

Eq. (4.4), respectively. They can then be discretised as

ρ =
∑
i

fi, (4.14)

u =
1

ρ

∑
i

cifi. (4.15)

The forcing term Fα, however, is treated differently as it does not appear as an isolated

term in Eq. (4.5). It has to be discretised as a full term F
ρ · ∂f

∂c . There are several methods,

usually called forcing schemes, to incorporate the force term Fα in the LB method. We use

the so-called Guo forcing scheme, which discretises the force term in velocity and space-time.

Using this method, the Boltzmann equation is rewritten as

fi(x+ ci∆t, t+∆t)− fi(x, t) = −∆t

τ
(fi − f eq

i ) + (1− ∆t

2τ
)Fi∆t, (4.16)

where

Fi = wi

(
ci − u

c2s
+

(u · ci)ci
c4s

)
· F. (4.17)

It is worth noting that the forcing term should not add the mass density but instead contribute

to the momentum. Therefore, the velocity has to be redefined as

u =
1

ρ

∑
i

cifi +
F∆t

2ρ
. (4.18)

Another macroscopic quantity that also appears in the Navier-Stokes equation is the dy-

namic viscosity η. This quantity can be related to the Boltzmann equation through the BGK

operator. The dynamic viscosity is given by

η = ρc2s(
τ

∆t
− 1

2
), (4.19)

where ρc2s is the gas ideal pressure. It is worth noting that the gradient of the ideal gas pressure

also appears in the Navier-Stokes equation in Eq. (4.2). This suggests that the fluid in the LB

method is compressible.
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4.2.1 Lattice Boltzmann Method Implementation

The LB method calculates the evolution of the distribution function through the Boltzmann

equation. At each time step, the evolution is decomposed into two steps: a collision step and

a streaming step. This can numerically be expressed as

Collision :f∗i (x, t) = fi(x, t)−
∆t

τ
(fi − f eq

i ) + (1− ∆t

2τ
)Fi∆t, (4.20)

Streaming :fi(x+ ci∆t, t+∆t) = f∗i (x, t). (4.21)

The collision step evolves the distribution functions fi into a new distribution function after

collision f∗i using the BGK collision operator and the forcing term. The resulting post-collision

distribution function f∗i is then streamed to the neighbouring lattice point in the streaming

step. The illustration of these steps is shown in Fig. 4.2.

Figure 4.2: An illustration of the collision and streaming steps for a 2-dimensional lattice. Each
arrow with different colours indicates fi. At time t, fi is streamed to a central node and is
used to compute f eq

i and f∗i at the collision step. The new values of f∗i are then streamed to
the neighbouring nodes at the next streaming step at t+∆t.

In general, the LB algorithm is as follows.

1. Determine the force density F for each time step.

2. Compute the fluid density (Eq. (4.14)) and velocity (Eq. (4.18)).

3. Compute the equilibrium distribution function f eq
i .

4. If desired, output the macroscopic quantities such as ρ and u.

5. Compute the forcing term (1− ∆t
2τ )Fi∆t.

6. Apply the collision and forcing term to find the post-collision distribution function f∗i .

7. Stream f∗i .

8. Increment the time step and return to step 1.
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4.2.2 Boundary Conditions

So far, we have laid down the foundation of the LB simulation. Another ingredient to solving

the equations of motion is to apply proper boundary conditions. There are several boundary

conditions applied in our simulations. One part is related to the presence of the solid (or wall),

and another is related to the treatment at the inlet (one end of the simulation window where

the liquid enters the system) and the outlet (another end of the simulation window where the

liquid leaves the system).

4.2.2.1 Wall Boundary Conditions: No-Slip and Free-Slip

No-slip boundary condition. It assumes that the fluid velocity at the solid boundary is the same

as the velocity at the solid boundary. It means that for a resting wall, the fluid velocity at

the solid boundary is zero. We implement this condition using the half-way bounce-back (BB)

method. The idea behind this method is that distribution functions streaming toward a solid

node meet the solid boundary midway between lattice nodes and are swapped to the original

node, as demonstrated in Fig. 4.3. For these distribution functions, the standard streaming

step is replaced by

fī(x, t+∆t) = f∗i (x, t), (4.22)

where ī denotes the opposite direction of i.

Figure 4.3: An illustration of half-way bounce back method for a 2-dimensional (D2Q9) lattice
domain. Solid and boundary nodes are coloured black and white, respectively. The arrows
show the directions of the distribution functions.

Free-slip boundary condition. It enforces a zero normal fluid velocity, un = 0, but does not

restrict the tangential fluid velocity. It means that the distribution function pointing toward

the normal direction of the wall is reflected as in the bounce-back rule, whereas the others are

reflected specularly, resulting in the distribution functions being streamed to their neighbours,

as illustrated in Fig. 4.4. For these distribution functions, the standard streaming step is
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Figure 4.4: An illustration of the free-slip boundary condition for a 2-dimensional (D2Q9)
lattice domain. Solid and boundary nodes are coloured black and white, respectively. The
arrows show the directions of the distribution functions.

replaced by

fj(x+ cj,t∆t, t+∆t) = f∗i (x, t), (4.23)

where the cj,t = ci,t is the tangential velocity of the distribution functions, equalling ci and cj

with their normal velocity set to zero.

4.2.2.2 Inlet-outlet Boundary Conditions

It is sometimes desirable to simulate just a portion of the system to reduce the size of a

simulation. For this purpose, the system’s boundary conditions must be chosen carefully to

satisfy the original system intended to simulate. The most common boundary condition used in

LB simulations is the periodic boundary condition. In this method, the distribution functions

leaving the simulation domain during the streaming step will re-enter the simulation domain

from the opposite side. This boundary condition is suitable when simulating a repeating flow

pattern in the system. In this work, we use the periodic boundary condition when the flow is

driven by a body force.

The implementation of periodic boundary conditions in the LB method is straightfor-

ward [39]. During the streaming step, the unknown incoming distribution functions, f∗ on

one side are given by those leaving the domain at the opposite site:

f∗i (x, t) = f∗i (x+ L, t), (4.24)

where the vector L is the periodicity direction and length of the flow pattern. The illustration

of the periodic boundary condition for the 2D flow is shown in Fig. 4.5. At the inlet, the

missing distribution functions are f∗1 , f∗5 and f∗8 , whereas at the outlet f∗3 , f∗6 and f∗7 . the
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Figure 4.5: Illustration of the periodic boundary condition at the inlet and outlet for a 2-
dimensional (D2Q9) lattice domain. Layers of "virtual" nodes are added before and after the
periodic boundaries, i.e. at x0 = x1 − ∆x and xN+1 = xN + ∆x, respectively. The dashed
arrows show the missing distribution functions after the streaming step.

periodic condition along the x -axis becomes

f∗i (x, t) = f∗i (x+ L, t) ⇒



f∗1 (x0, t) = f∗1 (xN , t)

f∗5 (x0, t) = f∗5 (xN , t)

f∗8 (x0, t) = f∗8 (xN , t)

(4.25)

f∗i (x+ L, t) = f∗i (x, t) ⇒



f∗3 (xN+1, t) = f∗3 (x1, t)

f∗6 (xN+1, t) = f∗6 (x1, t)

f∗7 (xN+1, t) = f∗7 (x1, t)

(4.26)

It is worth noticing here that we have added an additional layer of "virtual" nodes before

and after the periodic boundaries at x0 = x1 − ∆x and xN+1 = xN + ∆x, respectively, for

computational convenience rather than being part of the simulated physical system.

Another inlet-outlet boundary condition that we also consider in this work is the pressure

boundary condition. This is one type of open boundary condition in which a specific pressure

(density) value is imposed at the inlet and outlet to give a pressure difference along the flow. We

use this boundary condition for cases where the flow is driven by a constant pressure gradient.

The pressure boundary conditions can be implemented by prescribing the density as a

specific value at the inlet and assigning the density using average-velocity convective boundary

conditions at the outlet [98, 99]. The schematic of the pressure boundary condition is illustrated

in Fig. 4.6. The distribution functions pointing into the fluid will be missing after the streaming
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Figure 4.6: Illustration of the boundary condition at the outlet for D2Q9 lattice domain.
Dashed arrows denote the missing distribution functions after the streaming step.

step. We follow the method introduced by Zou-He [100] for the computation of the missing

distribution functions, fi and the fluid velocity at the boundary.

Let the pressure (density) and the transverse velocity at the outlet be specified (e.g. ρ = ρout

and uy = 0). After the streaming, f1, f2, f4, f5, f8 are known and f3, f6, f7 are missing. From

the expressions of density and velocity in Eq. (4.14) and Eq. (4.15), we can calculate the velocity

in terms of the known values:

ux = 1− f0 + f2 + f4 + 2(f1 + f5 + f8)

ρout
. (4.27)

We then assume the bounce-back rule applies for the non-equilibrium part of the distribution

functions normal to the outlet to find f3 − f eq
3 = f1 − f eq

1 . We can then find the missing

distribution functions:

f3 = f1 − f eq
1 + f eq

3 , (4.28)

f6 = f5 −
1

2
(f2 − f4 + f eq

1 − f eq
3 − ρoutux), (4.29)

f7 = f8 −
1

2
(f4 − f2 + f eq

3 − f eq
1 − ρoutux). (4.30)

Having the missing distribution functions found, the usual collision step should then be applied.

4.3 Benchmarking

To validate the Lattice Boltzmann method, we simulate a steady fluid flow (a Poiseuille flow)

in a 2-dimensional domain of Nx × Ny, with Nx = Ny = 102 in simulation units (s.u.). The

fluid propagates in the x -direction between two parallel plates separated by h along the y-axis,



4.3 Benchmarking 36

as illustrated in Fig. 4.7 (a). As for the driving force for the fluid flow, we compare two cases:

1) an external body force, Fx, and 2) a constant pressure gradient, ∂p
∂x . Both driving forces are

applied in the x -direction.

Assuming the flow only has an x component (i.e. uz = 0), the equation of motion of the

Poiseuille flow is described by the Navier-Stokes equation:

−Fx

η
=
∂2ux
∂y2

, (4.31)

for the external body force-driven flow, and

−∂p
∂x

1

η
=
∂2ux
∂y2

, (4.32)

for the constant pressure gradient-driven flow. Here, η is the fluid dynamic viscosity. Based

on the system criteria given in Fig. 4.7 (a), the equation must satisfy two boundary conditions:

Dirichlet (no slip velocity) condition at the bottom wall, ux(y = 0) = 0 and a Neumann (free-

slip velocity) condition at the top wall, ∂ux
∂y

∣∣∣
y=h

= 0. Applying these boundary conditions to

Eqs. (4.31) and (4.32) leads to

ux(y) = −Fx

2η
y(y − 2h), (4.33)

ux(y) = − 1

2η

∆p

xout − xin
y(y − 2h), (4.34)

for the external force and constant pressure gradient-driven flows, respectively. From these

expressions, we can relate the body force to pressure difference by the relation: ∆p = Fx(xout−

xin). Here, xout − xin = Nx − 1 is the distance between the inlet and outlet.

In the LB simulations, a free-slip boundary condition is applied on the top wall, allowing

the fluid to flow at the top wall, whereas a no-slip boundary condition is applied on the

bottom wall, making the fluid have zero velocity at the bottom wall. For the case where the

flow is driven by an external body force, periodic boundary conditions are applied in the x -

direction. Here, we use a gravitational force, Fx = ρg, where ρ is the fluid density and g is the

gravitational acceleration. When the flow is driven by a constant pressure gradient, pressure

boundary conditions are employed. This is done by setting the fluid densities at the inlet and

outlet using ρin = ρ0 +
∆ρ
2 and ρout = ρ0 − ∆ρ

2 , respectively. The fluid density difference, ∆ρ,

is related to the pressure difference through ∆ρ = ∆p/c2s and can be calculated from the body



4.3 Benchmarking 37

Figure 4.7: (a) Schematic diagram of a 2-dimensional Poiseuille flow between two parallel plates.
(b) Contour plot of the simulated liquid velocity profile obtained for both external force and
pressure gradient cases. (c) Contour plot of the simulated fluid density profile obtained for
the pressure gradient case. (d) Comparison between liquid velocity in the x -direction along
the y-axis obtained from simulations using external force and constant pressure gradient and
predicted by Eq. (4.33). (e) Plot of the simulated density profile along the x-direction for the
simulation using the constant pressure gradient.
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force via ∆ρ = Fx(xout − xin)/c
2
s. We use these parameters in the simulations for both cases

(otherwise stated): c2s = 1/3, τ = 1, η = 1/6, Fx = 1.32 × 10−10 (for the external force case

and used in the constant pressure gradient case for calculating ∆ρ), ρ0 = 1 (for the constant

pressure gradient case). All values are given in simulation units.

It should be noted here that we use a link-wise boundary mode where, at the liquid-

solid boundaries, the physical boundary lies between the fluid nodes and the solid nodes.

In Fig. 4.7 (a), we illustrate this condition by assigning the first node (y = 0) and the last node

(y = Ny − 1) in the y-direction as solid. Therefore, the physical liquid-solid boundaries are at

y = 0.5 and y = Ny − 1.5 at the bottom and top walls, respectively.

The simulated velocity profile of liquid obtained by using either the external force or the

constant pressure gradient is shown in Fig. 4.7 (b). The velocity is constant in the x -direction,

but its value increases in the y-direction. The increasing of the velocity as a function of the

fluid position in the y-direction is plotted in Fig. 4.7 (d). We show that our simulation results,

either using the external force or the constant pressure gradient, are in excellent agreement

with the analytical solution giving evidence for the accuracy of our simulation. Furthermore,

we plot the density profile of the liquid when using the constant pressure gradient and its

variation along the x -direction at y = 50, in Fig. 4.7 (c) and (e), respectively. We can clearly

see that ρ varies linearly along x -direction, proving that the pressure gradient is constant.

4.4 Simulation Setup

In this work, we simulate fluid flow profiles in 3-dimensional unit cells of square and face-

centred/hexagonal micropillar arrays. The geometries of a unit cell of these arrays are illus-

trated in Fig. 4.8 (a). The micropillars have a diameter a, height h, and pitch length, which is

the side length of the unit cell, b. The boundary conditions used in the simulations are shown

in Fig. 4.8 (b). In the flow direction, we apply inlet-outlet boundary conditions. Periodic

boundary conditions are applied on the sides of the unit cell. A no-slip boundary condition

is applied at the liquid-solid interface using a bounce-back boundary condition. A free-slip

boundary condition is employed to represent the liquid-gas interface at the upper boundary of

the unit cell. We should note here that the geometries used in the simulation are constructed

using a staircase approximation. This may affect the accuracy of the simulated area and volume

compared to the expected values, particularly for the cylindrical pillars.
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Figure 4.8: (a) Geometrical illustration of a unit cell of square and face-centred micropillar
arrays. (b) Boundary conditions of the simulation: inlet-outlet in the x -direction, periodic in
the y-direction, no-slip at the bottom and free slip at the top. The blue arrow indicates the
flow direction.

The physical value of the parameters used in the simulations is tabulated in Table. 4.1.

Here, we use different liquids with a wide range of viscosity and surface tension. For example,

in our list of liquids, the least viscous liquid is water (γ = 72 mN/m and η = 1 mPa.s), and

the most viscous one is silicone oil (γ = 33.99 mN/m and η = 39.4 mPa.s). This will ensure

that our study applies to a wide range of liquids. We also use different sizes of micropillars and

unit cells to see whether our study is valid for a wide range of micropillar dimensions. Note

that we also use one square array of square micropillars. In this case, the diameter refers to

the side of the square. These physical values are then converted into simulation units.
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Table 4.1: Parameter values used in the study for square array cases.

Pillar Contact Angle Height Diameter Pitch Viscosity Surface Tension

Shape (◦) (µm) (µm) (µm) (mPa s) (mN/m)

1 Cylinder 18 0.75 0.275 1 39.4 33.99

2 Cylinder 18 2 0.3 1 39.4 33.99

3 Cylinder 0 14 2.6 10 97 20

4 Cylinder 0 10 2.6 10 9.5 20

5 Cylinder 0 6 2.6 10 9.5 20

6 Cylinder 0 10 2.6 10 19 20

7 Cylinder 0 26 2.6 10 19 20

8 Cylinder 0 26 2.6 10 9.5 20

9 Cylinder 0 26 2.6 10 97 20

10 Cylinder 0 14 2.6 10 19 20

11 Cylinder 0 14 2.6 10 4.6 20

12 Cylinder 0 8.3 2.82 8.1 1 72

13 Cylinder 38 8.3 2.9 5.5 1 72

14 Cylinder 10 17 5 20 1 72

15 Cylinder 25.6 26 10 40 18 48

16 Cylinder 0 26 10 40 1.3 72.8

17 Square 5 7 10 20 3 26.6

18 Cylinder 0 26 10 40 18 48



Chapter 5

Results

5.1 Hemiwicking Propagation on Square Arrays of Micropillars

5.1.1 Model Development

We begin by developing a theoretical model to predict the dynamics of hemiwicking of liquid

into an array of micropillars through the propagation coefficient, D. The model was originally

developed by Natarajan, et al. in Ref. [32], where the model was used to predict the hemi-

wicking of liquid in square arrays of micropillar. I contributed to this work by benchmarking

the model against the Lattice Boltzmann simulations. We further develop this model to be

applied in face-centred/hexagonal arrays.

Let us consider a square array with cylindrical micropillars having diameter a, height h, and

pitch length b as illustrated in Fig. 5.1 (a). We can define some textured surface parameters,

such as the roughness r, which is the ratio of the actual surface area to the projected 2-

dimensional area, and the dry fraction φs, defined as the ratio of the top surface of the pillar

to the projected area. For a cylindrical micropillar on a square unit cell, these parameters are

given as

r =
Ar

Ap
=

(b2 + πah)

b2
, (5.1)

φs =
At

Ap
=
πa2

4b2
, (5.2)

where Ar is the actual surface area, Ap is the projected 2-dimensional area, and At is the

surface area of the top of the pillar. By definition, the top of the pillars remains dry in the

41
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purely imbibed state. When such an array is brought into contact with a liquid reservoir, the

imbibition of liquid is energetically favourable when the wetting energy of the dry part of the

array is greater than the wetted part. This can be mathematically formulated in terms of the

interfacial energy change of the propagation of liquid by a distance dx

dE = Ewet − Edry (5.3)

= (γls − γgs)(r − φs)dx+ γlg(1− φs)dx, (5.4)

where γls, γgs, and γlg are the liquid-solid, gas-solid and liquid-gas interfacial energies, respec-

tively. For the imbibition to occur, dE ≤ 0. Using Young’s equation, this leads to a criterion

which allows the imbibition to occur, known as the wicking criterion [101]

cos θ ≥ cos θc =
1− φs

r − φs
, (5.5)

where θ is the equilibrium contact angle of the liquid on a smooth surface and θc is the critical

contact angle, which is defined by the texture geometry. Hemiwicking is favoured for all

inherent contact angles smaller than θc. It is worth noting that our model assumes a flat liquid

meniscus and coplanarity between the meniscus and the top of the pillar. For superhydrophilic

substrates (θ = 0◦), the liquid will wet the top of the pillars at equilibrium. However, the

velocity of the wicking front far exceeds the rate of spreading of a liquid film on the tops of the

pillars. Therefore, we can consider the tops of the pillars as being dry in our calculations. For

any surface with texture, r > 1 and φs < 1. Thus, θc is between 0◦ (i.e. the critical contact

angle for spreading on a flat plane, r → 1) and 90◦ (i.e. the critical contact angle for wicking

in porous media, r → ∞).

In hemiwicking, the Reynolds and Bond numbers are small, hence the inertial effects and

gravitational forces can be ignored. Therefore, when the wicking criterion in Eq. (5.5) is

satisfied, the rate of imbibition of liquid into the array is given by the balance between the

driving capillary pressure (∆pL) and a resisting viscous force per unit area (∆pV ). The capillary

pressure is the change of energy per unit volume of liquid imbibed and is given by [70]

∆pL =
γlg

h

(
cos θ − cos θc

cos θc

)
. (5.6)

It can be seen here that the capillary pressure is only positive when θ ≤ θc, which is in agreement
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Figure 5.1: (a) Illustration of a square array of cylindrical micropillars with diameter a, pitch b
and height h showing a unit cell (indicated by dashed red lines) used in our simulation and its
equivalent unit cell of a microchannel. The channel width (w) is modified to ensure that the
volume of liquid containing the unit cell areas is identical. (b) Side view of the approximated
unit cell showing a schematic of the coordinate system that is used to derive the flow profile.

with the wicking criterion. The viscous dissipation force per unit area can be estimated from

a modification to the classical Poiseuille flow for a liquid film of thickness, h, flowing on a flat

surface, given by [70]

∆pV =
3ηux

h2
β, (5.7)

where u is the average velocity of propagation (dx/dt), η is the viscosity of the liquid, and β is

a correction factor due to the surface roughness. Here, h is the same as the pillar height and

the top of the liquid volume is pinned to the top edge of the pillar during hemiwicking. It is

well known that the displacement of the wicking front with time follows Washburn’s law

x = (Dt)1/2, (5.8)

where x is the displacement of wicking front, t is the time of the wicking process, and D is the

hemiwicking coefficient that is independent of x and t. Balancing Eq. (5.6) and Eq. (5.7) leads

to

u =
γlgh

3ηx

(
cos θ − cos θc

cos θc

)
1

β
. (5.9)

Since u = dx/dt, we can extract the expression of x by integrating Eq. (5.9) and comparing
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the result to Eq. (5.8). We get the coefficient D to be

D =
2γlgh

3η

(
cos θ − cos θc

cos θc

)
1

β
. (5.10)

The values of γlg, η, and θ may be readily available for a given liquid and substrate, while h

and θc are the topographical parameters of the micropillar array. Therefore, the only unknown

parameter is β. In order to determine the value of β, we approximate the flow of liquid through

the micropillar array as flow through an equivalent microchannel, taking inspiration from the

works of Hay et al. [102] and Mai et al. [103].

Figure 5.1 (a) illustrates the approximation of an array of micropillars in a unit cell by an

equivalent microchannel of the same height and unit cell size. The width of the channel, w,

however, has to be modified for the viscous dissipation between systems to become equivalent.

This can be achieved by equating the volume available for the flow between the two systems.

We shall explain the rationale behind this approximation below.

We start with Darcy’s law, which relates the volume flux in a porous medium to the pressure

gradient, given by,

Q =
kA

η

dp
dx
, (5.11)

where Q is the volume flow per time, A is the cross-sectional area of the material, k is the

permeability and dp
dx is the pressure gradient. The term kA

η is called hydraulic conductivity

or 1
kA/η being the hydraulic resistance; hence the flux and pressure gradient in Eq. (5.11) are

equivalent to current and voltage in Ohm’s law: I = V
R , respectively. For two systems to

be equivalent, they must have the same velocity Q/A. Since the driving force for imbibition

is the capillary pressure, the pressure between the systems is set to be identical. Thus, for

equivalence, our approximation needs to ensure that the permeability between the systems is

also identical.

Now, let’s consider a porous medium of a cross-sectional area A, consisting of N parallel

pipes of radius r, whose axes are misaligned with the length direction, making the flow path

through this medium, Le, larger than the length L, as shown in Fig. 5.2. The flux through this

medium is given by,

Q =
Nπr4∆p

8ηLe
, (5.12)

where ∆p is the pressure gradient. We utilize the terms tortuosity, τ , and porosity, Φ, defined
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Figure 5.2: (a) Illustration of the porous system employed to derive the relationship between
permeability and pore geometry. (b) A cross-section plane showing the difference between the
flow path through pipelines, Le and the medium length, L that is used to define the tortuosity.

as Le/L and Nπr2Le
AL , respectively, to obtain

Q =
Ar2Φ∆p

8ητ2L
=
Ar2Φdp

8ητ2dx
. (5.13)

Comparing Eqs. (5.11) and (5.14), we find

k ∝ r2Φ

τ2
. (5.14)

We then introduce a new term called the hydraulic radius, Rh, which is defined as the ratio

between the pore volume, Vp and the liquid-solid interaction area during the flow, Als,

Rh =
Vp
Als

=
πr2Le

2πrLe
=
r

2
. (5.15)

Substituting Eq. (5.15) into Eq. (5.14), we get

k ∝
R2

hΦ

4τ2
. (5.16)

Therefore, for the two systems to have the same permeability, they need to have identical R2
hΦ

τ2

values. We can further relate the porosity and tortuosity through Archie’s law [104], given as

τ ∝ Φ−m, (5.17)
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where m is a real number with values usually greater than 1. From Eq. (5.16) and Eq. (5.17),

we find

k ∝ R2
hΦ

2m+1. (5.18)

Since Rh = Vp/Als and the porosity is the pore volume over the total volume (Vt), we can

re-write Eq. (5.18) as

k ∝
V 2m+3
p

A2
ls

1

V 2m+1
t

. (5.19)

In the approximated microchannel (Fig. 5.1 (a)), the total volume of the unit cell is set to be

identical by setting the same unit cell size and height between the microchannel and the array.

Thus, for equivalence, the necessary condition is

V 2m+3
p,ch

A2
ls,ch

=
V 2m+3
p,array

A2
ls,array

, (5.20)

where the subscripts ch and array denote for microchannel and array, respectively. In this

relation, the equivalence criterion is more strongly reliant on the volume of the channel than

the liquid-solid interaction area due to a higher power in the volume term. Hence, it is possible

to approximate the equivalent microchannel by forcing the system to have identical volumes.

For instance, we approximate a cylindrical micropillar array by an equivalent microchannel

patterned with grooves with the same height h and unit cell size of side length b (See Fig. 5.1 (a))

such that the total volume of the fluid in the grooved microchannel is the same as that in the

micropillar array. For these two systems, we have

Vp,array = (b2 − πa2/4)h, (5.21)

Vp,ch = wbh, (5.22)

where w is the width of the microchannel. Using the volume equivalence approximation, we

can calculate the width of the microchannel w, given by

wcyl =
b2 − πa2/4

b
. (5.23)

Using the same method, we can also approximate a square array with square pillars of height

h, side length a and pitch length b by an equivalent microchannel with grooves with the same
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height and pitch length to obtain

Vp,array = (b2 − a2)h, (5.24)

Vp,ch = wbh, (5.25)

and the width of the microchannel,

wsq =
b2 − a2

b
. (5.26)

To demonstrate the approximation quantitatively, we calculate the width of the microchan-

nel, w (Eq. (5.20)) for various values ofm, and plot them against w calculated using the identical

volume approximation (Eqs. (5.23) and (5.26)) in Fig. 5.3. We find the slope ∼ 1, validating

the approximation.

Figure 5.3: Plot of w calculated for m = 1.2 and m = 2 versus w calculated using the identical
volume for (a) cylindrical and (b) square micropillars as in Eqs. (5.23) and (5.26), respectively.

Having the equivalence established, the velocity of the fluid can be calculated by solving

the Navier-Stoke equation for a steady-state, incompressible, and parallel flow

∆pL
ηx

=
∂2U

∂y2
+
∂2U

∂z2
, (5.27)

where U(y, z) is the velocity profile in the microchannel in the x-direction (See Fig. 5.1 (b)).

We assume no-slip and free-slip boundary conditions at the bottom and top walls of the mi-

crochannel, respectively. This equation can be solved by implementing boundary conditions:
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U(y,−h) = 0, U(−w/2, z) = U(w/2, z) = 0, and ∂U
∂z (y, 0) = 0, giving us the velocity

U(y, z) =
16∆pLh

2

ηπ3x

∞∑
n=0

(−1)n

(2n+ 1)3

1−
cosh

[
(2n+1)πy

2h

]
cosh

[
(2n+1)πw

4h

]
 cos

[
(2n+ 1)πz

2h

]
. (5.28)

Averaging U(y, z) over the cross-section area in the channel (w × h) to find the mean velocity

Umean, we obtain

Umean =
1

wh

∫ w/2

−w/2

∫ 0

−h
U (y, z) dydz

=
32∆pLh

2

ηπ4x

∞∑
n=0

1

(2n+ 1)4

(
1− 4h

(2n+ 1)πw
tanh

[
(2n+ 1)πw

4h

])
.

(5.29)

The expression of Umean can be simplified further by evaluating the contribution of each

n term in the summation series. Due to the 1
(2n+1)4

dependence, the value of the terms in

the summation becomes negligibly small for n ≥ 1. Therefore, the mean velocity can be

approximated as

Umean ≈ Un=0
meanC = C

32∆pLh
2

ηxπ4

(
1− 4h

πw
tanh

[πw
4h

])
, (5.30)

where C is a correction factor to account for the contributions from n > 0 terms. We can

obtain the value of C by comparing the mean velocity obtained here for w → ∞ with the

Poiseuille flow velocity over a flat plane. We find that the value of C is slightly larger than

1, indicating that the contribution from the n > 0 terms is very small. Therefore, the mean

velocity Umean is then given by

Umean =
∆pLh

2

3ηx

(
1− 4h

πw
tanh

[πw
4h

])
. (5.31)

Substituting ∆pL from Eq. (5.6), we find

Umean =
γlgh

3ηx

(
cos θ − cos θc

cos θc

)(
1− 4h

πw
tanh

[πw
4h

])
. (5.32)

Comparing Eq. (5.32) to Eq. (5.9), we get

β =
1

1− 4h
πw tanh

[
πw
4h

] . (5.33)
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Therefore, the hemiwicking coefficient D is given by

D =
2γlgh

3η

(
cos θ − cos θc

cos θc

)(
1− 4h

πw
tanh

[πw
4h

])
. (5.34)

If the coefficient D is expressed in terms of Umean, substituting Eq. (5.32) into Eq. (5.34), we

find

D =
2γlg
h

(
cos θ − cos θc

cos θc

)
Umean

∆pL/x
. (5.35)

5.1.2 Model Validation Using Lattice Boltzmann Simulations

In this section, we show Lattice Boltzmann (LB) simulation results to validate our model.

Unless stated otherwise, we simulate a unit cell of a square array of micropillars in the domain

of Nx × Ny × Nz (all in simulation units, s.u.), with Nx = Ny = 50 s.u. and Nz is varied

between 8 and 100 s.u.. The pillar diameter b is also varied between 8 and 40 s.u. We apply a

body force in the x -direction, Fx = ρg = −∆pL/x, to the fluid to mimic the capillary pressure.

A no-slip boundary condition for the liquid-solid interface is implemented using a bounce-back

boundary condition. At the upper boundary of the unit cell, a free slip boundary condition

is employed to represent the liquid-gas interface. Periodic boundary conditions are applied on

the sides of the unit cell and at the inlet and outlet. The simulated D values are computed

from the average fluid velocity in the unit cell, Umean, as in Eq. (5.35), or in terms of the body

force,

D = −
2γlg
h

(
cos θ − cos θc

cos θc

)
Umean

Fx
. (5.36)

The simulated Umean is computed by averaging the fluid velocity of all fluid nodes across a

yz -plane sliced at a position in the x -direction. Since the applied Fx is constant, the simulated

Umean is the same along the x -direction. The physical parameters of the array geometry and

the liquids are given in Table. 4.1.

We start by comparing the typical velocity profile through a rectangular channel of dimen-

sion (w × h) to confirm the expression of U(y, z) in Eq. (5.28). The comparison with the LB

simulation is shown in Fig. 5.4 A. From this, we can see a close similarity of the velocity profile.

Furthermore, we will confirm that Eq. (5.32) represents the appropriate equation for mean ve-

locity through a rectangular channel. We perform LB simulations of flow through rectangular

channels of various geometries (varying channel width w and post height h) and compare the

simulated D against those predicted by Eq. (5.32). The agreement between the simulated and
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predicted values, shown in Fig. 5.4 B, validates the expression in Eq. (5.32). The theoretical

prediction is valid for a wide range of D values, exhibiting a broad-range applicability of the

formula.

Next, we validate the volume equivalent approximation by performing LB simulations of

flow through the array of micropillars of various geometries and the equivalent rectangular

channels. We use the liquid and geometrical parameters tabulated in Table. 4.1 for these

simulations and compare the results with the experimental data. These geometries span from

sparse (b/a≫ 1) to dense (b/a ∼ 1) arrays and also from short (b/h≫ 1) to tall (b/h≪ 1) pillar

heights. We compare the simulated D values between the arrays and channels, as well as those

measured experimentally, as shown in Fig. 5.5. The proximity of our simulation data to the

slope of 1 in Fig. 5.5 (a,b) demonstrates the accuracy of the volume equivalent approximation

and the ability of Eq. (5.34) to accurately determine the experimentally obtained hemiwicking

coefficients over a wide range of values. It is worth noticing that in our model development, we

do not consider the effect of pinning/depinning phenomena as we are primarily focused on low,

equilibrium contact angle systems that favour rapid liquid transport. This is reflected in our

simulations, where we only use a single-phase flow without worrying about the front liquid-gas

interface dynamics and assume a contact angle of 0◦ in the definition of the capillary pressure.

The volume equivalent approximation relies upon the liquid-solid interaction area and the

volume of the array. These two parameters are determined by the geometrical parameters of

the pillars. To further understand the effect of the geometrical parameters, we systematically

investigate the validity of the model through the D values upon variations of the height (h)

and diameter (a) of the pillars as well as the pitch length (b). We performed extensive LB

simulations for microarrays with cylindrical pillar geometries with b/h values from 0.5 to 10 and

b/a values between 1.25 and 6.25. The D values measured from these simulations were then

compared against those predicted by the analytical expression in Eq. (5.34), and the absolute

error percentage is plotted as a function of geometry in Fig. 5.6 (a). We note that over a broad

range of geometries, the absolute error is within 30%. This represents a reasonable error value,

allowing for uncertainties in measuring the viscosity, surface tension, geometry, hemiwicking

rate, and inter- and intrasample nonuniformities.

Our model appears to deviate from the predicted values in the region where the pitch is

comparable to the diameter, i.e. in very dense arrays. In this regime, the deviation is due to the

confinement of the flow primarily within the narrow gap between the pillars. Hence, the effective
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Figure 5.4: A. Contour plots of typical velocity profiles in a vertical plane of a rectangular
channel obtained from the analytical prediction of U(y, z) as in Eq. (5.28) (i) and an LB
simulation (ii). B. Plot of the hemiwicking coefficient D for rectangular channels calculated
using the analytical expression in Eq. (5.35) versus those calculated from LB simulations for
small D values (i) and extended to higher values (ii).
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Figure 5.5: Plot of the natural logarithm of the simulated hemiwicking coefficient through the
array of micropillars of various geometries, Dsim, array, versus (a) the equivalent rectangular
channels, Dsim, channel, and (b) the experimentally measured D reported in the literature.

width, w, becomes smaller than our current assumption for the equivalent microchannel. That

said, the highly dense arrays do not represent practically useful geometries as available flow

through the narrow spaces is much reduced.

Having demonstrated the prediction accuracy of D values for a wide range of geometries, we

now discuss how the limitation of prior models was addressed. We limit our discussion to models

that present an expression for D [73, 75, 76]. Ishino models [73] assume drag to arise from only

the pillar sidewalls. This assumption results in the overprediction of D as the viscous losses are

underestimated. While such exclusive contributions to viscous dissipation are likely in extreme

scenarios where b ≪ h or b ≫ h, in all intermediate situations, combined contributions from

the base and pillars need to be accounted for. In our model, by approximating the array to a

channel, we explicitly consider frictional contribution for both the walls and the base, resulting

in closer predictions. From Fig. 5.6 (b), it can be seen that the Ishino models appear to predict

well in a band of intermediate b/h and b/a, which is mainly within our domain of accuracy,

as well as when b/h and b/a are very small. These extremes are where the assumptions in the

Ishino model are appropriate.

Other models are limited by how they reduce the texture into very simplistic representative

elements. Srivastava et al. [76] presented a semianalytical model where the viscous dissipation

was estimated using finite element (FE) modelling of flow around a single pillar. This results

in overestimated values of D and requires a fitting parameter. The mismatch in predicted
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Figure 5.6: Contour plot of error ( % ) as a function of pitch/diameter and pitch/height for
the model developed in this work (a), the Ishino model [73] (b), the Srivastava model [76] (c)
and the Kim model [75] (d).

and simulated values of D is likely attributed to the exclusion of multi-pillar effects in their

single-pillar FE simulations. From Fig. 5.6 (c), we can see the Srivastava model predicts well for

tall pillars with b/a > 2, where drag from sidewalls dominates the dissipation and multi-pillar

effects are diminished.

More recent models have considered the arrays in their full complexity (Kim et al. [75]) and

have further argued for the explicit consideration of the extension length of the wicking front

(Krishnan et al. [105]). These models predict scaling correctly for a broad range of geometries.

However, they require empirically determined correction factors to predict the velocity accu-

rately and are applicable only in the superhydrophobic limit (θ = 0◦). The empirical nature

of these recent models limits their universality. In contrast, our model demonstrates the ca-

pability to predict the absolute value of the hemiwicking coefficient in an ab- initio fashion.

That said, from Fig. 5.6 (d), we observe that the Kim model can predict well in a good range
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of geometries (after applying a fitting factor of ∼ 0.24) extending to the regime where b/a is

small and b/h is large.

5.2 Hemiwicking Propagation on Face-centred/Hexagonal Ar-

rays of Micropillars

Figure 5.7: (a) Schematic of hemiwicking of liquid into a face-centred/hexagonal array of
micropillars. The inset shows a unit cell of the face-centred square array with pillar diameter,
a, and pillar separation (pitch length), b, as well as the typical fluid velocity profile across an
xy-plane. The square dashed line shows the unit cell used in simulations. (b) and (c) Unit
cells and typical fluid velocity profiles of the asymmetric face-centred square arrays where the
mid-pillar is moved towards the sides of the unit cell perpendicular to and in line with the fluid
propagation direction, respectively.

Having successfully predicted the dynamics of hemiwicking of liquid on square arrays of

micropillars using Darcy’s law-based volume equivalence model, we will extend our investi-

gation of hemiwicking of liquid to more complex arrangements of micropillars, namely face-

centred/hexagonal arrays of micropillars. The schematic of hemiwicking and pillar arrange-

ments is shown in Fig. 5.7. Here, we consider a face-centred square array with cylindrical pillars

having pillar diameter of a and pillar spacing (pitch length) of b, as pictured in Fig. 5.7 (a). A

unit cell and the typical liquid velocity profile are shown in the inset of Fig. 5.7 (a). A hexag-

onal array of micropillars would have a similar arrangement of unit cells to the face-centred

square array, except that the unit cell will be rectangular rather than square. However, the

liquid velocity profile of both arrays will be identical. In order to broaden the field of our
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investigation, we also consider asymmetric face-centred arrays where the mid-pillar is moved

towards the sides of the unit cell perpendicular to (which we shall call A1b array) and in-line

with (which we shall call A1c array) the fluid propagations creating non-uniform pillar spac-

ings between side pillars and mid-pillar, as illustrated in Fig. 5.7 (b,c), respectively. This allows

us to investigate the hemiwicking of liquid through an irregular array.

As shown in Fig. 5.7, putting a pillar in the middle of a unit cell of a square array results in a

change in liquid velocity profile compared to the square array. The yellow colour in the contour

plot of the velocity profile shows the area where the liquid has high velocities in the unit cell.

It suggests the liquid branches out the flow in two directions when passing through the mid-

pillar. When the mid-pillar is moved toward the side of the unit cell perpendicular to the fluid

propagation direction (A1b array), the velocity profile becomes non-uniform, in which the area

with larger pillar spacing between the side pillars and the mid-pillar (top part of Fig. 5.7 (b))

has higher local velocities than the rest of the unit cell (bottom part of Fig. 5.7 (b)). When

the mid-pillar is moved toward the side of the unit cell in line with the fluid propagation

direction (or toward the inlet) (A1c array), however, the higher local velocity occurs at the

narrow region between the side and mid-pillars (left part off Fig. 5.7 (b)). In any case, since

the body force driving the liquid is applied at a constant value, the average velocity across a

plane perpendicular to the flow along the flow direction is still the same. Our main question

is, can we use the volume equivalence method to predict the hemiwicking coefficient?

5.2.1 Model Development

5.2.1.1 Equivalent Microchannel Approximation

Let us consider unit cells of cylindrical pillars with a diameter of a, height of h and pitch length

of b as illustrated in Fig. 5.7. The flow of liquid through these face-centred arrays can be

approximated as a flow through an equivalent groove microchannel with the same pillar height

and unit cell size. The remaining task is determining an appropriate width of the microchannel

to satisfy the equivalence criterion. In this model, we consider three approaches in determining

the width of the microchannel: (1) Volume Equivalence (VE), (2) Volume-Area Equivalence

(VAE) and (3) Pillar Face-Face Spacing (FF). We shall detail these three approaches in the

following section.

Volume Equivalence (VE ) Approach
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Let us recall the equivalence criterion in Eq. (5.20). In this approach, we assume the array

to have an identical volume with the equivalent microchannel due to the higher contribution

of the volume term compared to the liquid-solid interaction area, Als. In a face-centred array,

the volume of the array is given by,

Vp,array = (b2 − πa2/2)h. (5.37)

Meanwhile, the volume equivalence of the microchannel is identical to that of the square array,

Vp,ch = wbh. Thus, using the volume equivalence, balancing Vp,array and Vp,ch gives us the

width of the channel

wVE =
b2 − πa2/2

b
. (5.38)

It is worth noticing here that for asymmetric face-centred arrays (A1b and A1c), the position

of the mid-pillar does not affect the volume of the array; hence, the width of the channel will

always be the same.

Volume-Area Equivalence (VAE ) Approach

In this approach, we appreciate the effect of the mid-pillar on the volume and the liquid-

solid interaction area in the array. Compared to a square array, it is clear that adding a

mid-pillar in the face-centred array reduces the pore volume (Vp) of the array and, at the same

time, increases the liquid-solid interface area (Als). This makes the contribution of Als in the

equivalent criterion in Eq. (5.20) to be more significant in contrast to the square array case.

When the array is approximated by the equivalence microchannel, the two systems are forced to

have not only an identical volume but also an identical liquid-solid interaction area. Therefore,

the width of the equivalence channel, wVAE is determined by solving Eq. (5.20), which, for a

face-centred array with cylindrical micropillars, is given by

(b2− 1

2
πa2+2πah)bm+1.5wm+1.5

VAE − b(b2− 1

2
πa2)m+1.5wVAE−2bh(b2− 1

2
πa2)m+1.5 = 0. (5.39)

It is worth noticing here that wVAE may depend on m whose value is larger than 1. In addition,

the effect of pillar height, h, is also not neglected. However, similar to VE approach, the mid-

pillar position does not affect the volume of the array and the width of the channel.
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Pillar Face-to-Face Spacing (FF ) Approach

The last approach we use to determine the width of the channel in approximating a face-

centred array to an equivalence microchannel is by taking the pillar spacing between the sides

and middle pillars. We base this approach on looking at the velocity profile of liquid in a unit

cell of the face-centred array where the majority of the flow occurs in the area between the sides

and middle pillars. In addition, the effect of moving the mid-pillar in asymmetric face-centred

arrays (A1b and A1c) is considered, unlike the two aforementioned approaches.

Using this approach, we consider the width of the channel, wFF, as the pillar spacing where

the majority of flow occurs, given by

wFF =
b
√
2

2
− a, (5.40)

for a symmetric face-centred array, and

wFF =
b

2

√√√√2

[
1− 2

∆x

b
+ 2

(
∆x

b

)2
]
− a, (5.41)

for an asymmetric face-centred array, where ∆x is the displacement of the mid-pillar from the

centre of the array towards the sides (inlet for A1b array and side for A1c array).

Figure 5.8 shows the comparison of w calculated using the three approaches for variation of

pillar diameter and height relative to the pitch length in symmetric face-centred arrays. The

effect of m in the VAE approach is also shown. It can be seen that the VE approach deviates

from the VAE approach for very sparse arrays (low a/b) and very dense arrays (large a/b)

(Fig. 5.8 (a)). Moreover, the effect of pillar height is not present in the VE and FF approaches

but can be seen in the VAE approach (Fig. 5.8 (b)).

5.2.1.2 Hydraulic-electric Circuit Analogy

It is intuitive to consider the flow of liquid similar to the flow of current in electrical wires: the

liquid molecules in a hydraulic circuit behave much like the electrons in an electrical circuit. As

we have mentioned earlier, the flux (Q) and pressure gradient ( dp
dx) in Darcy’s law in Eq. (5.11)

are equivalent to current (I ) and voltage (V ) in Ohm’s law, respectively, whereas the hydraulic

resistance η
kA is equivalent to the electrical resistance, R. As the the liquid flows into a face-

centred array of micropillars, the flow path passing through a unit cell of the array can be
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Figure 5.8: Comparison of w calculated using VE, VAE, and FF approaches for variation of
pillar diameter to pitch length ratio, a/b (a) and pillar height to pitch length ratio h/b (b) in
symmetric face-centred arrays. Here, we use m = 1.5 and m = 2.5 in the VAE approach.

considered a sub-unit cell representing an electrical circuit. We attempt to employ this analogy

to prescribe the permeability of liquid, k of each of the sub-unit cells. In this approach, we will

consider parallel and series circuits and use Kirchhoff’s rules to find the effective permeability

of liquid, keff of the unit cell. Furthermore, to predict the flow in each of the sub-unit cells, we

will approximate the sub-unit cell by the equivalent microchannel and use VE, FF and VAE

approximations to estimate the effective width of the channel.

From Darcy’s law, the flow velocity, UDarcy can be defined as the flux divided by the cross-

sectional area of the system, or UDarcy = Q/A = k∆pc
ηL , where ∆pc is the pressure difference

across the circuit. Recognizing that UDarcy = dL
dt , we can calculate the hemiwicking coefficient

from UDarcy to get

D = 2ki
∆pc
η
, (5.42)

where, ki is the permeability of liquid in a sub-unit cell. Comparing the hemiwicking coefficient

in Eq. (5.42) to Eq. (5.34), we can get ki for an equivalent rectangular microchannel

ki =
γlgh

3

(
1− 4h

πwi
tanh

[πwi

4h

])
, (5.43)

where wi is the channel width of a sub-unit cell. To obtain the hemiwicking coefficient of a unit

cell, we can replace ki, by the effective permeability of the circuit, keff which will be determined

based on the type of the circuits in the unit cell. In the following sections, we shall discuss how
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Figure 5.9: Schematics of hydraulic-electric circuit analogy for (a) parallel, (b) series and (c)
parallel-series circuits. Black arrow denotes the flow direction.

to calculate keff for different circuits.

Parallel Cells

A parallel network of a unit cell of face-centred arrays and its parallel circuit analogue is

shown in Fig. 5.9 (a). Here, a unit cell with a pillar diameter of a and pitch length of b is

divided into two sub-unit cells, c1 and c2, with widths of b1 and b2 parallel to the fluid flow.

The hydraulic resistances of these sub-unit cells are analogous to R1 and R2 in the equivalence

electrical circuit. The pressure gradient, analogous to the voltage, is the same across the unit

cell. Therefore, this circuit is applicable for symmetric and A1b arrays.

Applying Kirchhoff’s rule to calculate the effective permeability of the circuit, keff, we find

Qtotal = Q1 +Q2,

keffA

η

∆pc
L

=
k1A1

η

∆pc
L

+
k2A2

η

∆pc
L

,

keffA = k1A1 + k2A2, (5.44)

where A1 and A2 are the cross-sectional area of the sub-unit cells c1 and c2, respectively.

Notice here that the last line in Eq. (5.44) is equivalent to 1/Reff = 1/R1 + 1/R2 in the

analogue electrical circuit given that R = η/kA. Since A1 = b1h, A2 = b2h and A = (b1+ b2)h,
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keff is then given by

keff =
k1b1 + k2b2
b1 + b2

, (5.45)

where b = b1+b2. k1 and k2 are given by Eq. (5.43) with w1 and w2 the effective channel width

of sub-unit cells c1 and c2, respectively. For a symmetric array, b1 = b2 = b/2 and k1 = k2,

hence keff = k1 = k2.

Series Cells

A series network of a unit cell of face-centred arrays and its series circuit analogue is shown

in Fig. 5.9 (b). The flux of flow in sub-unit cell c1 is the same as in sub-unit cell c2, and

the effective hydraulic resistance equals the total hydraulic resistance of both sub-unit cells,

Reff = R1 + R2. The pressure gradient in each of the unit cells may differ depending on the

position of the mid-pillar. Therefore, we apply this approach to symmetric and A1c arrays.

Since the cross-sectional area of the unit cell equals the cross-sectional area in sub-unit cells c1

and c2, the effective permeability, keff for a series cell, is given by

keff =
k1k2

(k1 + k2)
. (5.46)

For a symmetric face-centred array of micropillars, both sub-unit cells c1 and c2 are identi-

cal, giving the same permeability on both sub-unit cells, k1 = k2. Therefore, the effective

permeability of the unit cell equals half of the permeability of a sub-unit cell, keff = k1/2.

Parallel-Series Cells

The last hydraulic-electric circuit analogy that we look at is the combination of parallel

and series networks, which is shown in Fig. 5.9 (c). Here, a unit cell is divided into four sub-

unit cells denoted as ci with i = {1, 2, 3, 4}, in which c1 and c3 are in series with c2 and c4,

respectively, and one pair of the series cells is in parallel to the other. The effective hydraulic

resistance is then given by

Reff =
(R1 +R2)(R3 +R4)

R1 +R2 +R3 +R4
. (5.47)

For the symmetric face-centred array, all sub-unit cells are identical (c1 = c2 = c3 = c4),

resulting in the same hydraulic resistances in each of the sub-unit cells (R1 = R2 = R3 = R4).

This makes the effective hydraulic resistance of the circuit equal to the hydraulic resistance of
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a sub-unit cell,

Reff = Ri. (5.48)

Consequently, since the cross-sectional area of the sub-unit cell equals half of the cross-sectional

area of the unit cell, Ai = A/2, the effective permeability is given by

keff =
ki
2
. (5.49)

For asymmetric arrays, we have to divide our calculations for A1b and A1c arrays as the

mid-pillar position and the propagation direction give different effective hydraulic resistance

and permeability. For the A1b array, as the mid-pillar position is moved towards the side

perpendicular to the propagation direction, we have c1 = c2 and c3 = c4, hence R1 = R2

and R3 = R4. The cross-sectional area of the sub-unit cells is given by A1 = A2 = b1h and

A3 = A4 = b2h. We can calculate Reff and keff, given by

Reff =
2R1R3

(R1 +R3)
, (5.50)

keff =
k1b1 + k3b2
2(b1 + b2)

. (5.51)

For A1c array, on the other hand, as the mid-pillar position is moved towards the side in-line

the propagation direction (or towards the inlet) we have c1 = c3 and c2 = c4. The cross

sectional area of the sub-unit cells are given by A1 = A2 = A3 = A4 = A/2 = 1
2bh. Therefore,

Reff =
(R1 +R2)

2
, (5.52)

keff =
k1k2

(k1 + k2)
. (5.53)

To determine the effective channel of sub-unit cells in parallel, series and parallel-series

cells, we use the three aforementioned approaches: volume equivalence (VE), volume-area

equivalence (VAE) and pillar face-to-face spacing (FF). In summary, the expression of keff and

wi for the symmetric and asymmetric face-centred array is tabulated in Table. 5.1.
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Table 5.1: The width of the equivalent channel calculated using VE, FF and VAE approaches.
Subscript i denotes the sub-unit cells 1 and 2 in the corresponding circuits.

Cell Types VE FF VAE

Symmetry array

Parallel
bbi − πa2/4

b

√
(b/2)2 + b2i − a

(bbi − πa2/4)hm+1.5

bbi − πa2/4 + πah
=
bwih

m+1.5

bwi + 2bh

Series
bbi − πa2/4

bi
2
(√

(b/2)2 + b2i − a
) (bbi − πa2/4)hm+1.5

bbi − πa2/4 + πah
=
bwih

m+1.5

bwi + 2bh

Parallel-Series
bbi − πa2/4

bi

√
(b/2)2 + b2i − a

(bbi/2− πa2/8)hm+1.5

bbi/2− πa2/8 + πah
=
bwih

m+1.5

bwi + 2bh

Asymmetry A1b array

Parallel
bbi − πa2/4

b

√
(b/2)2 + b2i − a

(bbi − πa2/4)hm+1.5

bbi − πa2/4 + πah
=
bwih

m+1.5

bwi + 2bh

Parallel-Series
bbi − πa2/4

b

√
(b/2)2 + b2i − a

(bbi/2− πa2/8)hm+1.5

bbi/2− πa2/8 + πah
=
bwih

m+1.5

bwi + 2bh

Asymmetry A1c array

Series
bbi − πa2/4

bi

√
(b/2)2 + b2i − a

(bbi − πa2/4)hm+1.5

bbi − πa2/4 + πah
=
bwih

m+1.5

bwi + 2bh

Parallel-Series
bbi − πa2/4

2bi

√
(b/2)2 + b2i − a

(bbi/2− πa2/8)hm+1.5

bbi/2− πa2/8 + πah
=
bwih

m+1.5

bwi + 2bh

5.2.2 Model Validation Using Lattice Boltzmann Simulations

In this section, we show LB simulation results of liquid propagating through face-centred arrays

of cylindrical micropillars to validate our model. Firstly, we will try to validate the equivalent

microchannel approximation of the full arrays, i.e., approximating a unit cell of the face-

centred array of cylindrical micropillars by the equivalent microchannel and using VE, VAE,

and FF approaches to calculate the width of the channel. Secondly, we will try to validate the

hydraulic-electric circuit analogy model.

In the LB simulations, we consider ethylene glycol 99 wt% liquid with properties taken from

Ref. [75] including viscosity η = 18 mPa.s, surface tension γ = 48 mN/m, density ρ = 1140

kg/m3 and equilibrium contact angle θ = 0◦. The unit cell of the face-centred array has a

pitch length of b = 40 µm and consists of cylindrical pillar geometries with variations of pillar

density (via diameter-to-pitch length ratio, a/b) and pillar height (via height-to-pitch length

ratio, h/b). All of these parameters are then converted into simulation units (s.u.).

In our simulations, we use pressure boundary conditions along the propagation direction,

in which a constant density (or pressure) is applied at the inlet and outlet of the system, and

the pressure gradient is set to be constant along the propagation direction. We derive the value

of the pressure gradient, ∆pc/L, from the body force whose values depend on the density and

gravitational force, ρg. To obtain the values of the fluid density at the inlet and outlet, we
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use the relation ∆pc/L = ρg and ∆pc = c2s∆ρ. Since c2s = 1
3 , we get the density difference

∆ρ = 3ρgL, where L is the length of the system. We set the density at the inlet ρin = ρo +
∆ρ
2

and at the outlet ρout = ρo − ∆ρ
2 , where ρo = 1 is the density at the center of the system. This

scheme is favourable compared to applying a constant body force because it is more useful in

the hydraulic-electric circuit analogy.

5.2.2.1 Symmmetric Face-centred Arrays

We begin by investigating the hemiwicking of liquid on symmetric face-centred arrays using

microchannel approximation of a full array. In Fig. 5.10 (a), we show a plot of the hemiwicking

coefficient versus a/b ratio for a symmetric face-centred array of micropillar with height h = 52

s.u. (h/b = 0.65), which corresponds to h = 26 µm in physical unit. From the simulation

results, we can see that the hemiwicking coefficient increases with increasing a/b ratio and

reaches a peak value before decreasing for high a/b values. This trend can be explained by

analyzing the multiplication of the average velocity, Umean, and the term (cos θ−cos θc)
cos θc

which

appears in Eq. (5.35) that is used in computing the hemiwicking coefficient. The average

velocity decreases with increasing a/b (Fig. 5.10 (c)), whereas the term (cos θ−cos θc)
cos θc

increases

with increasing a/b. The increasing of the hemiwicking coefficient for low a/b values can be

attributed to the stronger growth of term (cos θ−cos θc)
cos θc

compared to the decreasing of the average

velocity. For high a/b values, the average velocity becomes very small because the pillar spacing

becomes very narrow for the liquid flow. In this case, the effect of the decreasing of the average

velocity is more dominant. We can also rationalise the reduction of the hemiwicking coefficient

after a peak a/b as a result of the viscous resistance that grows more strongly than the capillary

driving force due to the addition of more texture in the unit cell.

The trend of the hemiwicking coefficient computed from simulation results is in qualitative

agreement with our models using VE, FF and VAE approaches. With VE and VAE approaches,

the value of the hemiwicking coefficient overestimates the simulation results, particularly for

moderate and high a/b. In addition, the hemiwicking coefficient reaches the peak value at

higher a/b than the simulation results. A better agreement is obtained for the FF approach,

where the hemiwicking coefficient less deviates from the simulation results and reaches the

peak at closely the same a/b.

In Fig. 5.10 (b), we show the dependency of the hemiwicking coefficient on pillar height by

plotting D as a function of h/b ratio. Here, we use micropillars with diameter a = 20 s.u.
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Figure 5.10: Comparison between the hemiwicking coefficient, D, of liquid propagating on
symmetric face-centred arrays with cylindrical micropillars calculated from LB simulations
and predicted from microchannel approximation model for a full array using volume equivalent
(VE), pillar face-to-face spacing (FF) and volume-area equivalent (VAE) models with m = 1
and m = 2 approaches. (a) D plotted against pillar diameter to pitch length (a/b) ratio for
h/b = 0.65. (b) D plotted against pillar height to pitch lenght (h/b) ratio for a/b = 0.25. The
inset shows liquid velocity profiles across the xy-plane of several unit cells with different a/b
values as denoted in panel (a). (c) and (d) Average liquid velocity, Umean, plotted against a/b
and h/b, respectively. All values are given in simulation units (s.u.).

(a/b = 0.25), which corresponds to a = 10 µm in physical unit. The hemiwicking coefficient

calculated from simulation results increases with increasing h/b ratio following the trend of

the average velocity, as shown in Fig. 5.10 (d). This is because the term (cos θ−cos θc)
cos θc

increases

linearly with increasing h/b. We also notice that the hemiwicking coefficient increases steeply



5.2 Hemiwicking Propagation on Face-centred/Hexagonal Arrays of Micropillars 65

with height for small h/b values and reaches a saturation value as h ∼ b. This suggests minimal

dependency on height for h≫ b.

Comparing the simulation results with our models shows that all approaches in our model

are in qualitative agreement with simulation results. However, the VE and VAE approaches

seem to overestimate the simulation results, whereas the FF approach agrees better.

Figure 5.11: The effective channel width and hemiwicking coefficient of symmetric face-centred
arrays predicted using a parallel cell analogy with VE, FF and VAE (m = 1.5 and m = 2.5)
approaches. (a) and (b) Effective channel width plotted as a function of a/b and h/b ratios,
respectively. (c) and (d) Hemiwicking coefficients plotted as a function of a/b and h/b ratios,
respectively, and their comparison with the simulation. The simulation data in (c) and (d) are
the same as in Fig. 5.10 (a) and (b), employing h/b = 0.65 and a/b = 0.25 in (c) and (d),
respectively.
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Now, we want to investigate the hydraulic-electric circuit analogy approach on the sym-

metric face-centred array. We compare the analytical prediction with the simulation results

in Fig. 5.10. Here, we apply a parallel circuit to the unit cell and predict the effective width,

w, of the equivalent microchannel of the sub-unit cells using VE, FF, and VAE with m = 1.5

and m = 2.5 approaches. The plots of w calculated with these approaches in a parallel circuit

of the array against a/b and h/b ratios are shown in Fig. 5.11 (a,b), respectively. We notice

in Fig. 5.11 (a) that w predicted using VE and VAE approaches coincide for high a/b values and

deviates for low a/b values. Moreover, the parallel circuit analogy brings w values predicted

using VE and VAE much closer to w values predicted using FF approaches, which has shown

a better agreement to simulation results for a full array approximation. The closer w values

calculated using VE and VAE approaches to the FF approach can also be seen with a variation

of h/b, as shown in Fig. 5.11 (b). It is worth noticing here that w values predicted using the

FF approach in parallel circuit analogy are still the same as those in full array approximation.

The comparison of the hemiwicking coefficient between simulations and prediction for a

variation of a/b values is shown in Fig. 5.11 (c). Here, we still use the same parameters as

in Fig. 5.10. Compared to the full array approximation, we notice an improved agreement for

VE and VAE approaches with the simulation results. In particular, a good agreement with

simulations can be seen for low a/b values, although overestimated values are still found for

high a/b values. The parallel circuit analogy also brings the peak of D predicted using VE and

VAE approaches to occur at a closer value of a/b with the simulation.

The comparison of the hemiwicking coefficient between simulations and prediction for a

variation of h/b values is shown in Fig. 5.11 (d). We notice an improved agreement between

VE and VAE approaches and simulations compared to results in Fig. 5.11 (b). The VAE

approach with m = 2.5, which shows a good agreement for a/b = 0.25 in Fig. 5.11 (c), is able

to capture variation in h/b. All approaches appear to work well for low h/b. This suggests the

hydraulic-electric circuit analogy approach is applicable to a certain geometry.

To further probe the breadth of applicability of this model, we expand our investigation

to a broader range of geometries varying a/b and h/b. We simulate symmetric face-centred

arrays of cylindrical pillar geometries with a/b values from 0.05 to 0.65 and h/b from 0.1 to

3. The D values measured from these simulations are then compared against those predicted

by our models. In addition to parallel cells, we also employ series and parallel-series cells to

predict the effective permeability of the circuits. We then plot the absolute error percentage
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Figure 5.12: Contour plot of error (%) as a function of diameter/pitch and height/pitch for the
models developed in this work for parallel (first column), series (second column) and parallel-
series cells (third column) of symmetric face-centred unit cells. The equivalent channel width
of the sub-unit cells is calculated using VE (panels a,b,c), FF (d,e,f), VAE with m = 1.5 (g,h,i)
and VAE with m = 2.5 (j,k,l). The iso-percentage error lines are indicated in the plots. The
error is the difference between the simulated and model-predicted values over the simulated
value, expressed in percentages.
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as a function of geometry as shown in Fig. 5.12. Here, we show that the model agrees well

with simulations when the error is in the range of 30%. From these plots, we observe that the

parallel cells predict the hemiwicking coefficient accurately for moderate a/b values, whereas

the series and parallel-series cells are in good agreement with the simulations for low and high

a/b values, respectively. This trend seems to apply to all channel approximation models (VE,

FF and VAE) and the variation of h/b, with the exception of small h/b values (h/b < 0.5).

Looking at the variation of h/b, we can see that the models will agree if the values of a/b are

in the range the models predict well. For instance, for the parallel cell model using the VAE

(m = 2.5) approach, if 0.1 < a/b < 0.3, the model will predict well with the variation of h/b.

This confirms the results shown in Fig. 5.11 (d), where the parallel cells model with the VAE

approach is in good agreement with the simulation with the variation of h/b.

5.2.2.2 Asymmmetric Face-centred Arrays

Now, we want to investigate the hemiwicking of liquid on asymmetric face-centred arrays, A1b

and A1c arrays. Similarly to the symmetric face-centred arrays, we will employ a microchannel

approximation of full array and hydraulic-electric circuit in computing the hydrodynamic co-

efficient, D, and use FF, VE, and VAE approaches in determining the width of the equivalent

channel.

Figure 5.13 (a) shows the plot of the hemiwicking coefficient as a function of the mid-pillar

displacement, ∆x, from the centre towards a side perpendicular to the propagation direction

for A1b array, or towards the inlet for A1c array. The velocity profiles across xy-plane for

A1b and A1c arrays with different ∆x are shown in Fig. 5.13 (b,c), respectively. Here, we

use a moderately dense array geometry with a = 10 µm, h = 26 µm and b = 40 µm. The

displacement of mid-pillar does not alter the geometrical properties of the array, i.e. the

roughness factor r and the solid fraction φs, hence the term (cos θ−cos θc)
cos θc

for all geometries, but

does change the average velocity Umean due to the change of the pillar spacing. Therefore, the

main contribution of D measured from the simulation is through Umean. In Fig. 5.13 (a), the

simulation results show that D increases as the mid-pillar gets closer to the side of the array

in A1b array but decreases as the mid-pillar gets closer to the inlet in A1c array. The rise of

D in the A1b array is because more and more spacing for the fluid flow is created when the

mid-pillar is moved away from the centre, resulting in an increase of the average velocity. On

the contrary, the reduction of D in the A1c array is because the closer the mid-pillar is to the
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Figure 5.13: Comparison between the hemiwicking coefficient, D, of liquid propagating on
asymmetric face-centred arrays with cylindrical micropillars calculated from LB simulations
and predicted from microchannel approximation model for a full array using volume equivalent
(VE), pillar face-to-face spacing (FF) and volume-area equivalent (VAE) withm = 1 andm = 2
approaches. (a) D plotted as a function of the mid-pillar displacement, ∆x, from the centre
of the array (∆x = 0) towards the sides perpendicular to (black circles) and inline with (red
circles) the liquid propagation direction. (b) and (c) Liquid velocity profiles across xy-plane
of several unit cells with different ∆x values as denoted in panel (a). All values are given in
simulation units (s.u.).

inlet, the less spacing is created for the fluid flow.

When we compare the simulation result to our model, it is clear that the FF approach gives

a better agreement than others. This is because, in the FF approach, the movement of the

mid-pillar is taken into account when calculating the effective width channel, whereas other

approaches do not consider this movement, resulting in a constant value of D for all ∆x. When

we compare the A1b and A1c arrays, it appears that the FF approach works better for the A1b

array. It might be related to the pressure distribution across the system. For the A1b array,

since the mid-pillar is moved to the side, the pressure gradient at the area on the left-hand

side of the mid-pillar (closer to the inlet) and on the right-hand side of the mid-pillar (closer

to the outlet) is always the same. For the A1c array, on the other hand, the movement of the

mid-pillar creates an unbalanced pressure gradient between the area closer to the inlet and the

outlet.

Now, we apply the hydraulic-electric circuit analogy to predict the hemiwicking coefficient

in the A1b and A1c arrays. Due to the effect of the mid-pillar displacement, we apply parallel

and series cells for A1b and A1c, respectively. In Fig. 5.14 (a), it is shown that the D values
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Figure 5.14: Hemiwicking coefficient, D, calculated using a parallel cell analogy for A1b array
(a) and using a series cell analogy for A1c array (b) compared to simulation results. In both
panels, D is plotted as a function of the mid-pillar displacement, ∆x, from the centre of
the array (∆x = 0) towards the sides perpendicular to (a) and in line with (b) the liquid
propagation direction. The channel width of the sub-unit cells is calculated using FF, VE and
VAE with m = 1.5 and m = 2.5 approaches.

calculated from a parallel cell in the A1b array are in much better agreement with the simulation

results compared to those calculated from the full array approximation shown in Fig. 5.13 (a).

Particularly for VE and VAE approaches, since the microchannel approximation is taken for

sub-unit cells, the effect of mid-pillar displacement now appears in the calculation, which

results in D values being dependent on ∆x. The D values predicted by these approaches are

also found to be closer to those measured from simulations. A similar result can also be seen

for the A1c array (Fig. 5.14 (b)), where the VE and VAE approaches show an improvement

in D. The D values are in qualitative agreement with simulations, although they are slightly

underestimated.

To probe the breadth of applicability of hydraulic-circuit analogy on asymmetric face-

centred A1b and A1c arrays, we extend our simulations over an extensive range of geometries,

as illustrated in Fig. 5.15. The geometrical parameters used in these simulations are tabulated

in Table. 5.2. The geometries we choose encompass low to high density arrays and short to tall

micropillars. In each of the geometries, we vary the position of the mid-pillar from the centre

of the array toward the side and inlet for the A1b and A1c arrays, respectively. We also apply

parallel-series cells for both A1b and A1c arrays in addition to the parallel and series cells.

Figure 5.16 compares the hemiwicking coefficient predicted by our models and measured
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Figure 5.15: Geometries a/b and h/b used for hydraulic-electric circuit analogy for asymmetric
face-centred A1b and A1c arrays. The values of a, h and b are given in Table. 5.2.

Table 5.2: Geometrical parameters for hydraulic-electric circuit analogy for asymmetric face-
centred A1b and A1c arrays. The data points are denoted in Fig. 5.15.

Data point Pitch (µm) Diameter (µm) Height (µm)

1 40 8 10

2 40 14 10

3 40 20 10

4 40 8 40

5 40 14 40

6 40 20 40

7 40 8 80

8 40 14 80

9 40 20 80

from simulations for A1b arrays. The value of D, in general, increases as the position of the

mid-pillar gets closer to the side of the array, as we have seen in Fig. 5.13. Here, we show that

our models, either using parallel cells or parallel-series cells, can capture this trend as denoted

by a linear slope of each data point. For the parallel cell approximation, we notice that some

approaches overestimate the measured values of D from simulation, particularly for parallel

cells, when estimating the equivalent channel width using VE and VAE approaches. However,

we observe the FF approach is in qualitative agreement with the simulation results. Moreover,

all approaches appear to work better for low-density arrays with short pillars. When the pillar

density gets higher and the pillar height gets taller, we observe that the implementation of

parallel-series cells improves the accuracy of our models, particularly for the VE and VAE
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Figure 5.16: Hemiwicking coefficient, D, values measured from simulations plotted against
those predicted by parallel cell (top row) and parallel-series cells (bottom row) models using
VE (left column) and FF (right column) approaches for the A1b array. Symbols in data points
refer to those depicted in Fig. 5.15. The dashed line denotes the slope = 1. All values are given
in simulation units (s.u.)

Figure 5.17: Hemiwicking coefficient, D, values measured from simulations plotted against
those predicted by series cell (top row) and parallel-series cells (bottom row) models using VE
(left column) and FF (right column) approaches for the A1c array. Symbols in data points
refer to those depicted in Fig. 5.15. The dashed line denotes the slope = 1. All values are given
in simulation units (s.u.)

approaches. However, this does not seem to work for the FF approach, particularly for tall

pillar geometries where the predicted D values underestimate the simulated ones.

The comparison between predicted and simulated D values for the A1c arrays is shown

in Fig. 5.17. The value of D, in general, decreases as the mid-pillar gets closer to the inlet. Our

models capture this trend when the mid-pillar is away from the inlet but fail as the mid-pillar
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gets closer to the inlet. We notice that the series cells approximation using any approaches

overestimates the simulation results for almost all geometries except for data point 1 geometry

(a/b = 0.2 and h/b = 0.25). For this data point, due to low pillar density and short pillar height,

the mid-pillar displacement does not significantly change the fluid flow, resulting in a constant

hemiwicking coefficient, which is also captured by our models. Our prediction improves when

we approximate the array using parallel-series cells. We observe that our models agree with

simulation for high-density arrays (data points 3, 6 and 10). For such arrays, we also observe

the VAE approach improves the estimation of the channel width as the liquid-solid interaction

area becomes more significant. For low-density arrays, however, our models underestimate the

simulation results.

5.3 Discussion

In summary, we have proposed analytical models that are able to predict, in a number of cases,

the hemiwicking coefficient for macroscale liquid transport on textured surfaces with regular

and irregular pillar arrays. We have performed extensive Lattice Boltzmann simulations to

validate the models. Our models do not require explicit consideration of microscale wicking

phenomena such as zipping or meniscus extension. This makes our simulations much simpler,

as we are only required to simulate the liquid velocity across a unit cell of the pillar arrays.

The effects of pinning were also not considered in this work, as the systems studied here are

highly wetting (in favour of rapid wicking), and the equilibrium contact angles are well below

the lower bound of depinning critical angles.

The derived expression is demonstrated to be flexible as one can adjust it to meet the

properties of the geometries. We have shown that our model, originally developed for a square

array, can be expanded to other types of geometry, such as face-centred or hexagonal arrays.

Furthermore, we have also shown that we can adopt other approaches (e.g. hydraulic-electric

circuit analogy) and implement them in our model.

For square arrays, our model has shown its capability to accurately predict the hemiwicking

coefficient over a broad range of textural densities for cylindrical and square pillars. However,

the model is observed to break down in some cases, particularly in the extreme case, where

drag (neglected here) plays an enhanced role, and in the case where the flow is confined in the

narrow gap between the pillars.
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For face-centred arrays, the original model using the volume equivalent approach appears

to deviate from the simulation. However, with the implementation of the hydraulic-electric

circuit analogy approach, our models are able to predict the hemiwicking coefficient accurately

for symmetric and asymmetric arrays of micropillar for a certain range of textural densities,

depending on the type of cells used. For the symmetric face-centred arrays, the parallel cell ap-

proach predicts the hemiwicking coefficient for moderately dense arrays (moderate a/b values),

whereas the series and the combination of parallel and series cells approaches are applicable for

low and high arrays (low and high a/b values), respectively. For the asymmetric face-centred

arrays, we show that the parallel cell approach using the face-to-face spacing approximation is

applicable for the case where the mid-pillar is moved sideways. When the mid-pillar is moved

towards the direction of the propagation, the model presented here can capture the qualitative

trend, but the quantitative agreement is generally poor.

We acknowledge that the models presented here are not able to accurately predict all

geometries universally. However, with the flexibility to adjust the expression of the hemiwicking

coefficient in our model in many cases, one can choose the best expression, which results in the

best agreement with simulations. We believe that our model can be extended further to other

pillar shapes as long as the contact angles remain low, and it will be interesting to verify this

in the future. Hopefully, this work sheds light on complex interfacial interactions that dictate

the spreading behaviour in practically useful textured surfaces.



Part III

Liquid Filling on Grooved Surfaces
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Wetting of solid surfaces by liquids is ubiquitous in nature and critically important for

many technological and industrial applications ranging from printing, coating, microfluidics to

oil recovery and carbon capture [63, 106, 107, 108]. Given the importance of surface wettability,

along with rapid advances in surface engineering techniques, such as lithography, 3D printing,

and surface self-assembly [109, 110, 111], understanding the roles of surface topography on the

wetting behaviour of liquids has emerged as a prominent area of research.

Numerous works to date have investigated how surface structures can give rise to advan-

tageous surface wettability [112, 113, 114, 115], including superhydrophobicity, self-cleaning,

drag reduction, and directional spreading. However, the majority of these studies take a macro-

scopic view of wetting phenomena where the liquid-solid-gas interactions are represented by a

single parameter describing the contact angle. At the same time, it is well established in the

literature that the intermolecular interactions between the liquid and solid molecules can be

highly complex [63, 64, 116].

Such intermolecular interactions include hydrogen bonds, van der Waals, dipole-dipole in-

teractions, and others [65]. However, their effect on wetting can be understood by looking at a

thin liquid film of thickness e on a solid substrate, from which all intermolecular interactions

can be incorporated in terms of an effective interface potential. This is defined as the cost

of energy per unit area to maintain the thin film at a given thickness [116]. From this effec-

tive interface potential, one can derive the effective repulsive force per unit area between the

solid-liquid and liquid-gas interfaces, known as the disjoining pressure [63].

When considering phenomena at length scales smaller or comparable to the range of the

effective interface potential (typically, of the order of hundreds of nanometres [116, 117]), a con-

tact angle description of the three-phase interaction in itself is not adequate. It is important

to consider the distance-dependent interactions from the solid surface. Indeed, depending on

the disjoining pressure profiles (which capture the aforementioned distance-dependent interac-

tions), different wetting states can arise [65, 118]: complete wetting, where liquid fully spreads

on the solid surface; partial wetting, where a finite contact angle is formed at the three-phase

solid-liquid-gas contact line; and pseudo-partial wetting, where the macroscopic liquid domain

(i.e. droplet) is surrounded by a thin liquid film.

Previous approaches to computationally study nanoscale fluid phenomena incorporate atom-

istic details, such as using Molecular Dynamics (MD) [119] and Density Functional Theory

(DFT) [120, 121, 122, 123, 124]. Here, we show how a mesoscale model, the phase field model,
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can be augmented to enable a wide variety of short and long-range solid-fluid interactions de-

scribed above. This is distinct from previous phase field wetting simulations, which typically

treat wetting as a boundary condition at a solid surface [125, 126], and neglect long-range

forces. Since we are interested in static and quasi-static phenomena in this paper, we will

directly minimize the free energy of the phase field models.

As phase-field models are computationally less demanding than traditional nanoscale meth-

ods, the incorporation of long-range interactions should allow highly complicated structures to

be studied. This is relevant not only because smaller and more complex features can be reli-

ably manufactured [127]; but also because they are key for the emergence of interfacial phase

transitions, such as liquid adsorption and liquid filling [122, 128, 129, 130], which start at the

smallest surface features. Such phase transitions are important for many applications, such as

thin film condensation and evaporation [131, 132], and heat transfer [133].

To demonstrate the versatility of the phase field method, we apply it to study liquid filling

and emptying on grooved surfaces as the liquid pressure is varied [120, 134, 135]. We will com-

pare the results for short-range and long-range liquid-solid interactions. We will also contrast

them for complete, partial, and pseudo-partial wetting scenarios. To the best of our knowledge,

this is the first systematic liquid filling transition study for the pseudo-partial wetting case.

Due to the competition between short-range attraction and long-range repulsion, it leads to

several possible pathways and critical pressure dependence on geometry that are distinct from

the complete and partial wetting cases.



Chapter 6

Method

6.1 Free Energy Functional

In this chapter, we employ the phase field (PF) method to capture the equilibrium properties of

wetting by minimizing the free energy functional using the limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm. The free energy function describes the coexistence of

the fluid phases in the system, the interfacial tension between the fluids, and the fluid-solid

interactions which determine the wetting state. Our system of interest consists of two immis-

cible different fluids and solid surfaces. The interface between the two fluids is modelled using

a diffuse interface model, which describes a multi-phase system through an order parameter

which varies continuously across an interface.

The free energy of a binary fluid system in contact with solid surfaces is given by [61, 136]

Ψ = Ψb +Ψs +Ψc. (6.1)

Here, the free energy is contributed by the sum of fluid bulk and interface term Ψb, fluid-solid

interaction Ψs, and constraining potential Ψc. We shall discuss each of the terms separately.

The scalar order parameter ϕ(r) is used to represent the local composition of the fluid.
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6.1.1 Bulk and Interfacial Energies

Ψb is the free energy contribution arising from a binary fluid system describing the homogeneous

bulk and fluid-fluid interface, given by [39]

Ψb =

∫
V

[
A

4

(
ϕ2 − 1

)2
+
κ

2
|∇ϕ|2

]
dV , (6.2)

where the coefficient A, with the dimension of energy per unit volume, determines the property

of the bulk phase, and the coefficient κ, with the dimension of energy per unit length, controls

the surface tension between the two fluids. The free energy densities are integrated over the

volume of the system V . The first term of the integrand is the Landau-type energy density

which describes the free energy contribution due to the local composition of the two fluids. The

function forms a quartic double-well potential with two minima occurring at ϕ = 1 and ϕ = −1.

Throughout this thesis, we shall refer to ϕ = 1 as the pure liquid phase and ϕ = −1 as the pure

gas phase. The square gradient term is associated with the interfacial energy contribution.

This term is responsible for penalizing the formation of fluid-fluid interfaces and is essential for

ensuring the interface between the two fluids has a diffuse rather than a step-like transition.

The variation of the order parameter across the interface can be determined by analysing the

chemical potential, defined as the change of bulk and interfacial energy densities over the order

parameter. In equilibrium, the chemical potential is given by

µ ≡ dΨb(ϕ)

dϕ
= A(ϕ3 − ϕ)− κ

d2ϕ

dϕ2
= 0. (6.3)

Assuming the interface between the two fluids is flat and located at x = 0 and we have the

bulk fluid behaviour at x = ±∞, the solution of this equation leads to the interfacial profile,

ϕ(x) = tanh
x√
2ϵ
, (6.4)

where ϵ =
√
κ/A defines the width of the diffuse interface. Here, we take κ = 1/A, which leads

to ϵ = κ. Higher values of ϵ correspond to stronger interface penalties, resulting in narrower

diffuse interfaces, while lower values lead to wider interfaces. Using the tanh profile of the

order parameter in Eq. (6.4), we can calculate the surface tension between fluids 1 (liquid) and
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2 (gas) by integrating the free energy densities across the interface leading to

γlg =

√
8

9
. (6.5)

6.1.2 Fluid-solid Interaction Energies

The second contribution in the free energy function comes from the surface energy, Ψs, as

a result of interactions between fluid and solid. Here, we explore describing the fluid-solid

interactions in two ways: via (1) long-range interactions and (2) short-range interactions,

which shall soon be discussed separately.

6.1.2.1 Long-range Interactions

When considering wetting phenomena at microscales, the surface energy is determined by

complex intermolecular interactions between liquid and solid. We employ distance-dependent

long-range solid-liquid interactions to mimic such complexity of intermolecular interactions.

The energy contribution can be written as

Ψs =

∫
V
Fs(r)f(ϕ)dV . (6.6)

Fs(r) is the long-range interaction potential between liquid and solid separated by a distance

r. We are free to choose any Fs(r) we desire, but for this work we choose

Fs(r) =
∫
Vs

ulr(r)dVs, (6.7)

where ulr(r), namely the effective interaction, is integrated over the volume of solid, Vs. The

effective interactions ulr(r) can take one of the following forms

u1lr (r) =
α

(β + |r − rs|)6
, (6.8)

or

u2lr(r) =


−uo , |r− rs| < σ,

up

(
σ

|r−rs|

)6
, |r− rs| ≥ σ,

(6.9)
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in which α, β, σ, uo and up are parameters in the models and rs is the coordinate position

in the solid. The effective interaction u1lr can be either attractive or repulsive depending on

the sign of α. The parameter β, which is taken to be positive, is used to avoid u1lr going to

infinity for |r − rs| = 0 and to control the width of the decaying interaction u1lr. The form

of u2lr is designed to have an attractive interaction near the surface with a finite value of −uo

and a repulsive interaction far from the surface with a maximum value of up at |r − rs| = σ.

The effective interaction u2lr is chosen so that, when integrated, the long-range liquid-solid

interaction is repulsive close to the solid surface and attractive far from the surface.

To ensure this interaction energy density is only contributed by the interaction between

liquid and solid, it must be modulated by the local fluid composition, such that the liquid

phase should experience the full Fs(r), and the gas phase should not experience Fs(r). For

this purpose, we use f(ϕ), which is a fourth order polynomial that switches Fs(r) between the

liquid and gas phases, given by

f(ϕ) =
3

4
ϕ− 1

3
t(r)ϕ2 − 1

4
ϕ3 +

1

6
t(r)ϕ4 +

1

6
(t(r) + 3), (6.10)

with t(r) = −sign(Fs(r)). We choose the form in Eq. (6.10) because it prevents the enrichment

of one of the phases at the surface owing to the following features: (i) dΨs
dϕ = 0 at the bulk

equilibrium values of ϕ = ±1, (ii) Ψs increases monotonically with |ϕ| for |ϕ| > 1 which gives

an energy penalty to the total free energy, and (iii) Ψs is globally minimized at ϕ = +1 (i.e.

the liquid phase) for Fs(r) < 0 and at ϕ = −1 (i.e. the gas phase) for Fs(r) > 0. Without

the enrichment at the surface, we are able to maintain the simulation stability as well as

approximate the fluid incompressibility.

6.1.2.2 Short-range Interactions

The second way to introduce the liquid-solid interaction, following Cahn [125], is to use a

short-range interaction between liquid and solid at the surface, which can be approximated by

an integral over the solid surface area A,

Ψs =

∫
A
Fs(rs)f(ϕs)dA, (6.11)
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where we recall that f(ϕs) is the polynomial form in Eq. (6.10) for ϕ = ϕs, where ϕs is the

value of ϕ at the solid surface. To calculate the liquid-solid energy density at the surface,

Fs(rs), we relate its value to the gas-solid, liquid-solid, and liquid-gas surface tensions, γgs, γls

and γlg respectively, via the spreading parameter S, where S = γgs − γls − γlg. The surface

energy density must be equal to the gas-solid surface tension when the surface is completely dry

(Fs(rs)f(ϕs = −1) = γgs), and be equal to the liquid-solid surface tension when the surface is

completely wet (Fs(rs)f(ϕs = +1) = γls). Therefore, from Eq. (6.10) we can have the relation

γgs − γls = −Fs(rs), independent of the value of t(r) leading to

Fs(rs) = −S − γlg. (6.12)

For partial wetting (S < 0), we can also relate Fs(rs) to the contact angle θ via Young equation,

γlg cos θ = γgs − γls, yielding

Fs(rs) = −
√
8/9 cos θ, (6.13)

where we have substituted γlg =
√
8/9 from Eq. (6.5).

6.1.3 Constraining Potential

The last term in the free energy in Eq. (6.1), Ψext, reflects the constraint applied to the

system, which can be chosen to either define the pressure difference between the liquid and

gas, or constrain the volume of the liquid phase. In the first case, the pressure difference across

the liquid-gas interface, ∆p, can be imposed through the term

Ψc = −∆pVl, (6.14)

where ∆p = pl − pg, with pl and pg as the liquid and gas pressures, respectively [61]. In

this approach, the liquid volume can vary until the system reaches equilibrium in the grand

canonical ensemble. In the second case, we can instead constrain the liquid volume through

the soft constraint

Ψc =
1

2
k (Vl − V0)

2 , (6.15)

where k > 0 is a constant and V0 is the target volume [136]. Here, the liquid volume is

maintained as approximately the same amount as the target volume, i.e., we are in the canonical
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ensemble. In either approach, Vl is the actual liquid volume present in the simulation, given

by

Vl =

∫
V

ϕ+ 1

2
dV , (6.16)

where V is the volume of the simulation domain.

6.2 Simulation Implementation

6.2.1 Discretization

To implement the energy minimization of the free energy functional for a general fluid configu-

ration and solid boundary conditions, the computational domain is discretized intoNx×Ny×Nz

cubic lattice of points, which we call nodes. Each node is associated with a value of ϕijk, where

i, j, k ∈ {1,··· , N} indicate the spatial dimension in the x-, y-, and z-directions, respectively.

The spatial dimension between adjacent points is labelled as G. Each of the nodes is labelled

according to whether it is within the bulk of the system (bulk nodes), within the solid (solid

nodes), or at the surface of the solid boundary (surface nodes). At initialization, each node

in the computational domain is assigned to an initial ϕ. However, the solid nodes do not

contribute to the total free energy and the free energy gradients of the system, hence are not

updated in the energy minimization. The illustration of node arrangement and assignment is

shown in Fig. 6.1.

Figure 6.1: Illustration of the arrangement and assignment of the nodes in a 2D slice through
3D simulation domain. The shaded gray box shows a post on a flat solid surface.

The total free energy in Eq. (6.1) is discretized as follows. The bulk and interfacial energies
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in Eq. (6.2) can be written as

Ψb =
N∑
ijk

[
A

4

(
ϕ4ijk − 2ϕ2ijk + 1

)
+
κ

2

((
∂ϕijk
∂x

)2

+

(
∂ϕijk
∂y

)2

+

(
∂ϕijk
∂z

)2
)]

WijkG
3.

(6.17)

The volume weights Wijk denote the volume fraction associated with each node that lies

outside the solid surface. For bulk nodes, Wijk = 1, but for surface nodes, Wijk < 1, depending

on the local surface structure. The spatial derivatives are approximated using the Taylor series

expansion to a second-order accuracy in G to avoid the checkerboard instability [136]. This is

given by (
∂ϕijk
∂x

)2

=
1

2G2

[(
ϕ(i+1)jk − ϕijk

)2
+
(
ϕ(i−1)jk − ϕijk

)2]
, (6.18)

and similarly for the derivatives in y and z directions.

The long-range fluid-solid interaction energy contribution in Eq. (6.6) is written as

Ψs =

N∑
ijk

[
Fs(r)

(
3

4
ϕijk +

1

3
t(r)ϕ2ijk −

1

4
ϕ3ijk +

1

6
t(r)ϕ4ijk +

1

6
(t(r) + 3)

)]
WijkG

3, (6.19)

whereas the short-range interaction energy in Eq. (6.11) is written as

Ψs =
Surface∑
ijk

[
Fs(rs)

(
3

4
ϕijk +

1

3
t(r)ϕ2ijk −

1

4
ϕ3ijk +

1

6
t(r)ϕ4ijk +

1

6
(t(r) + 3)

)]
SijkG

2, (6.20)

where the surface weights Sijk, in unit of G, describe the surface area associated with each node.

Similar to Wijk, the values of Sijk also depend on the local surface structure. The liquid-solid

interaction potentials Fs(rs), as given in Eq. (6.12) and Eq. (6.13), are independent of ϕ, hence,

do not require to be discretized. However, the long-range interaction potentials, Fs(r), depend

on ϕ due to distance-dependent interaction between liquid and solid nodes. The discretization

of Fs(r) shall be discussed in the next section.

The constraining energy contribution is discretized as

Ψc = −∆p
N∑
ijk

(
ϕijk + 1

2

)
WijkG

3, (6.21)
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for the pressure constraint, and

Ψc =
1

2
k

N∑
ijk

(
ϕijk + 1

2
− V0

)2

WijkG
3, (6.22)

for the volume constraint.

Periodic boundary conditions are employed in the x and y directions if solid surfaces do

not cap the simulation boundaries. In the z -direction, perpendicular to the texture plane, the

z -gradient at k = Nz is fixed at zero in order to enforce bulk fluid behaviour at the top of the

system.

In the minimization routine, the value of ϕijk of each node needs to be updated in order

to achieve the minimum total energy configuration. To do this, the gradient of the total free

energy with respect to ϕijk has to be computed to determine the direction of the update, either

to increase or decrease the value of ϕijk. In general, the gradient can be calculated as

∂Ψ

∂ϕijk
=

∂Ψb

∂ϕijk
+

∂Ψc

∂ϕijk
+

∂Ψs

∂ϕijk
, (6.23)

where the derivative in each term can be obtained by differentiating the discretized equations

in Eq.(6.17 - 6.22).

6.2.2 Grid Refinement and Surface Images

When we compute the numerical integration of interaction energy density Fs(r) as in Eq. (6.24),

all effective liquid-solid interactions are taken into account. These include contributions from

bulk fluid-solid, bulk fluid-surface, surface-solid, and surface-surface nodes interactions. A

schematic of these interactions is illustrated in Fig. 6.2 (a). Here, three types of nodes are

shown: bulk fluid nodes, solid nodes, and surface nodes at the fluid-solid interface containing

part fluid and part solid. Each node is represented by a cube with a side length of G (which also

corresponds to a lattice spacing) for the fluid nodes. Typically, we use G = 0.02 in simulation

units. The interface width is set such that ϵ = 2G. For the solid and surface nodes, we may

use grid refinement, see Fig. 6.2 (b). This leads to a smaller cube of side length is G/(2gres−1)

for the solid nodes, with gres = 1, 2, 3, ..., n . For the surface nodes, we only refine the solid

fraction.

In addition to grid refinement, we also employ several periodic images of the solid domain
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Figure 6.2: (a) Schematic of lattice nodes configuration with a flat solid surface showing
fluid-solid interactions, including between bulk fluid-solid, bulk fluid-surface, surface-solid and
surface-surface nodes. (b) Lattice nodes containing solid can be refined with a grid resolution
of gres. Here we illustrate the grid refinement on a 2D xz plane of the surface and solid nodes
with gres = 2. For the surface nodes, only the solid fraction is refined. (c) Reduced interaction
energy density Fs/(γlg/G) as a function of fluid node position in the z -direction (z = 0 is taken
at the surface node). Here, we use u1lr(r) with a = 6.0 × 10−4 and b = 0.5. We compare the
results from the numerical calculation (blue dot) and the analytical solution (black solid line).

to ensure the long-range interactions are sufficiently accounted. To determine the number of

images needed, we calculate a cutoff point of Fs(r) such that beyond which its contribution

to the integration is considerably small. The solid images are added outside the simulation

domain in the x - and y-directions, as well as below the bottom surface (see Fig. 6.2 (a)).

As discussed above, the calculation of Fs(r) takes into account fluid-solid interactions that

are contributed by bulk fluid-solid, bulk fluid-surface, surface-solid, and surface-surface nodes

interactions. For a bulk fluid-solid nodes interaction, a fluid node is considered to interact with

a unit volume of a cubic solid node that has a distance of |r−rs| from the fluid node. The same

scheme applies to the interaction of the surface-solid nodes, although we must account that

only a fraction of the surface node is fluid. For bulk fluid-surface interactions, the interaction

only occurs with the solid fraction. We use a solid weight Ws which describes the volume

fraction of solid associated with each node that lies inside the solid surface. For solid nodes,

Ws = 1, but for surface nodes Ws < 1, depending on the local surface structure. Finally, for

the interactions between two surface nodes, we must carefully account for the fractions of fluid

and solid in respective nodes. Note that the solid parts are centered at their center of mass,

while the fluid part is centered at the original node position at the fluid-solid interface.
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The numerical computation of Fs(r) is done using the middle Riemann sum approach,

taking the nodes as the midpoints of the sub-interval of the integration, given by

Fs(r) =
∫
Vs

ulr(r)dVs →
Ns∑
s=1

ulr(|r − rs|)Ws(G/(2gres − 1))3, (6.24)

where |r − rs| =
√
|x − xs|2 + |y − ys|2 + |z − zs|2, with {x,y,z} as the fluid position and

{xs,ys, zs} as the solid position. Ns is the total of solid and surface nodes. The comparison

with the analytical solution for a flat solid surface is shown in Fig. 6.2 (c). A good agreement

is obtained between the simulation and analytical solution. Since effective interaction ulr(r)

decays quickly, the nodes far away from the surface have minimal contributions to the total

liquid-solid interaction energy. Although the interaction energy density calculation is compu-

tationally expensive, particularly for a large domain and a high solid node resolution, it is only

calculated once at the start of the simulation.

Upon the energy minimization routine, the discretized order parameter in the bulk fluid and

surface nodes will evolve towards the minimum energy configurations. We employ the L-BFGS

algorithm due to its efficiency for problems with a large number of degrees of freedom. For

details on the energy minimization routine, see Refs. [61, 136].



Chapter 7

Results

7.1 Wetting on a Flat Surface

7.1.1 Long-range Interactions
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Figure 7.1: Plots of the reduced effective interface potential P (e)/γlg of a thin liquid film versus
thickness e (in lattice unit G) for different wetting states: (a,b) complete wetting, (c,d) partial
wetting, and (e,f) pseudo-partial wetting. Insets show the equilibrium state of a droplet on
a flat surface. Here, for u1lr we use (in simulation unit) β = 0.5 and α of −8 × 10−4,−4 ×
10−4,−3.2× 10−4 and 1× 104 for (a-d), respectively. For u2lr, we choose σ = 3 and (uo, up) of
(2.4× 10−6, 1× 10−8), (1.12× 10−7, 1× 10−8), (1× 10−7, 1× 10−8), (1.0× 10−6, 1.0× 10−6),
(2× 10−6, 1× 10−6) and (2× 10−6, 1.4× 10−6) for (a-f), respectively.

To evaluate the effect of the long-range liquid-solid interactions, it is convenient to look at

88
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Figure 7.2: Disjoining pressure Π(e) (scaled by γlgG) plotted as a function of film thickness
e (in lattice unit G) for complete (a,b), partial (c,d) and pseudo-partial (e,f) cases. Π(e) is
obtained from the first derivative of P (e)/γlg curve with respect to e in the corresponding
panels of Fig. 7.1

the free energy per unit area of a thin film with a given thickness of e, given by [45, 65]

F (e) = γlg + γls + P (e) . (7.1)

Here, P (e), called the effective interface potential [63], is related to the disjoining pressure

Π(e) in the thin film due to liquid-solid interactions, which vanishes when the thin film is

sufficiently thick (e→ ∞) and acts as the spreading parameter, S = P (0), as the film becomes

infinitesimally thin (e→ 0). The disjoining pressure is defined as Π(e) = −dP (e)
de .

In our model, γlg =
√
8/9, and γls can be calculated when the film thickness is sufficiently

thick such that γls = F (e → ∞) − γlg. P (e) can then be determined by evaluating F (e)

at varying film thickness. To get the variation of P (e), we simulate a liquid film with small

interfacial area on a flat surface to avoid the coexistence between a liquid film and a dry solid.

For convenience, here we employ the volume constraint as given in Eq. (6.15), and vary the

film thickness by adjusting the target volume V0 in the simulation. Different variations of

P (e) representative of different wetting states are shown in Fig. 7.1. These capture the profiles

previously proposed in the literature, such as by Brochard, et al. [65]. In the insets, we show
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an equilibrium state of a sessile droplet placed on a flat surface under the respective wetting

states. We can also show the corresponding disjoining pressure Π(e) profiles of these wetting

states, as shown in Fig. 7.2.

Figure 7.1 (a,b) show the complete wetting case indicated by the positive value of P (0)

(S > 0) and the formation of a liquid thin film (insets). In panel (a), we use a large negative

α in the effective interaction u1lr. Here, the functional P (e) decreases as the film thickness

increases, which results in positive Π(e) and S. In panel (b), the value of α is less negative

than that in panel (a). This makes P (e) non-monotonic leading to negative Π(e) at small e.

The resulting value of S is also smaller but remains positive. A similar profile of P (e) can

be seen when using the effective interaction u2lr. Here, | − uo| ≫ |up| is used to give a strong

attractive interaction near the solid surface to allow the droplet to spread across the surface.

Figure 7.1 (c,d) show the partial wetting case indicated by the negative value of P (0)

(S < 0) and droplets with finite contact angles (θ < 90◦ for panel (c) and θ > 90◦ for panel

(d)), as depicted in the inset of the figures. In panel (c), we still use a negative α in effective

interaction u1lr but the value is smaller than that in the complete wetting case. As a result,

the liquid-solid interaction is weaker. Similar to Fig. 7.1 (b), P (e) is increasing at small e but

decreasing at large e. However, the resulting spreading parameter S is negative. If we now

switch to positive α, P (e) is monotonically increasing with a larger negative S, as shown in

panel (d). For α = 0, θ = 90◦ and S < 0. We can also show the partial wetting case using

effective interaction u2lr, as depicted in Fig. 7.1 (c,d), where up is increased to make a stronger

repulsive interaction preventing the droplet from completely spreading.

If we tune the variable parameters in u2lr such that the short-range attractive interaction is

strong enough to allow the liquid spreading and the long-range repulsive interaction is sufficient

to stabilize a droplet, we will obtain a pseudo-partial wetting case, where a droplet is surrounded

by a thin liquid film wetting the solid surface, as shown in the insets of Fig. 7.1 (e,f). The

spreading parameter S can be negative or positive [65, 137], and the P (e) profile is characterized

by a minimum at a certain e. In panel (e), the attractive term is quite strong at short ranges

(due to large | − uo| ) that P (e) is decreasing. Since S > 0, the thin film extends indefinitely.

At long ranges, the repulsive term becomes more dominant (due to moderate value of |up|) to

change the direction of P (e) to be increasing. The droplet formed in this condition has a lower

contact angle, as seen in the inset. When the strength of repulsive terms is increased, but the

attractive term is kept unchanged, the decreasing trend of P (e) at short ranges reduces, and
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the increasing trend of P (e) at long ranges increases, as shown in panel (f). As can be seen,

the contact angle of the droplet is larger (see inset). Moreover, since S < 0, the thin film does

not extend indefinitely, as illustrated in the inset. The pseudo-partial wetting case cannot be

obtained with effective interaction u1lr.

7.1.2 Short-range Interactions
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Figure 7.3: (a) Comparison of the input (θtheory) and the measured (θsim) contact angles when
the short-range interaction is used in the surface energy density. (b) Absolute error of the
measured contact angle. Excellent agreement is obtained with an error of < 1◦. (c) Absolute
error of the measured contact angle for different forms of f(ϕs): linear, cubic and quartic
functions. Inset shows the comparison of absolute error in the measured contact angle between
cubic and quartic functions.

When considering large-scale wetting phenomena, the long-range liquid-solid interactions

discussed in the preceding sub-section are often not directly relevant, as they occur at much

smaller length scales. The short-range surface energy density implemented in the free energy

is directly related to the contact angle at the surface via Eq. (6.13). Similar short-range energy

densities have previously been demonstrated in the literature [62]. Here, the main difference

is the quartic form of f(ϕs). In Fig. 7.3 (a), we compare the measured contact angle of a

sessile 2D drop from the simulation, labelled θsim, with the input contact angle, θtheory. To

measure the contact angle, we fit a circular arc to the drop profile. We found an excellent

accuracy of the contact angle with the error of < 1◦ (Fig. 7.3 (b)). Such accuracy is superior
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Table 7.1: Forms of f(ϕs) for linear, cubic and quartic functions.

Function name f(ϕs) Remark

Linear [138] hϕs h = sign(π/2− θ)
√

2 cos(α/3)(1− cos(α/3))

and α = arccos(sin θ)

Cubic [138] −
√
2 cos(θ)(−ϕ3s/6 + ϕs/2 + 1/3) -

Quartic 3
4ϕs − 1

3 t(r)ϕ
2
s − 1

4ϕ
3
s +

1
6 t(r)ϕ

4
s +

1
6(t(r) + 3) Used in this chapter

compared to a range of frequently used forms of f(ϕs) [138] including linear and cubic models.

The comparisons between the different forms of f(ϕs) are shown in Fig. 7.3 (c), which shows

a comparison of the absolute error of the measured contact angle (θsim − θtheory) obtained for

different forms of f(ϕs), as tabulated in Table. 7.1.

7.2 Wetting on Grooved Surfaces

Our next investigation is the wetting behaviour of liquid on a structured surface. In this

context, we consider a long periodic grooved surface with a groove width of d, depth h, and

wall barrier width w, as shown in Fig. 7.4 (a). To reduce the simulation cost, it is only necessary

to simulate a single groove unit cell with periodic boundary conditions being applied in the x

and y directions to capture the periodicity of the grooves. In this work, the simulation domain

size is chosen to be Nx = w + d, Ny = 6G and Nz = h+ 50G. The groove dimension is taken

as w = h = 50G and d = 20G, unless stated otherwise. The typical liquid-solid interaction

energy densities due to long-range interactions across the system are shown in Fig. 7.4 (b) for

the effective interactions u1lr and u2lr. Here, the energy density is scaled by γlg/G. For u1lr,

the parameter α is taken as a negative value; hence, liquid and solid experience an attractive

interaction which is higher at the surface and decays towards zero farther from the surface.

This is depicted in Fig. 7.4 (c) for complete and partial wetting cases at x = 0 and varying z.

The decay rate of u1lr depends on the parameter β. The higher β, the slower the decay and

the longer the interaction tail. For u2lr, the attractive interaction only occurs near the surface,

and the interaction becomes repulsive in the bulk of the liquid, as depicted in Fig. 7.4 (c) for

the pseudo-partial wetting case. It is also worth noting that for both effective interactions, the

liquid-solid interaction is stronger at the bottom corners and weaker at the top corners of the

barrier wall, consistent with observations from MD [139] and DFT [121, 122] simulations.
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Figure 7.4: (a) (left) 3D sketch of the groove patterned surface and (right) a 2D slice of a
unit cell of the surface. (b) Contour plots of the typical profile of reduced interaction energy
density Fs/(γlg/G) due to effective interactions u1lr (left) and u2lr (right) for a 2D slice of the
system. Color bars show the value of the energy density. (c) Reduced interaction energy density
Fs/(γlg/G) plotted as a function of position in the z direction taken at x = 0 for the complete
and partial wetting cases using u1lr and the pseudo-partial wetting case using u2lr.

7.2.1 Complete Wetting

Figure 7.5 (a,b,c) shows the filling and emptying transition as the pressure ∆p is varied, for the

case of complete wetting. Here, we use u1lr for the long-range interaction with α = −8× 10−4
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Figure 7.5: Liquid filling processes on the grooved surface for complete (a, b, c), partial (d, e,
f) and pseudo-partial wetting (g, h, i) cases. Here, d/h = 0.4. Each contour line in panels (a,
d, g) corresponds to the liquid-gas interface (ϕ = 0) at an increasing ∆p. Panels (b, e, h) show
the plot of reduced liquid film thickness measured at the middle of the gap ẽg against reduced
pressure difference ∆p/(γlg/hG). In panel (b) we show the complete wetting case when using
Fs(r) with u1lr and Fs(rs). In panel (e) we show the partial wetting case for two contact angles,
θ = 30◦ and θ = 50◦. (i-iii) denote the liquid filling stages with increasing ∆p: (i) pre-filling,
(ii) capillary filling and (iii) post-filling. The filling transition occuring at ∆pc is indicated
in the figures. Panels (c, f, i) are the plots of reduced liquid-gas interface area Ãlg against
∆p/(γlg/hG). Right and left arrows indicate the liquid filling path and liquid emptying path
for increasing and decreasing ∆p/(γlg/hG), respectively. The solid line is to guide the eyes.

and β = 0.5. Similar results are obtained when u2lr is used. Upon increasing the liquid pressure,

the liquid begins to fill the grooved surface, as shown in Fig. 7.5 (a). We can categorize the

liquid filling process into three stages [140], namely (i) pre-filling, (ii) capillary filling, and (iii)

post-filling, which occur after one and the other with increasing liquid pressure.

The pre-filling stage occurs at large negative ∆p, which means the pressure in the liquid is

much lower than in the gas phase. Here, the liquid forms a thin film that follows the shape

of the groove structure. The thickness of the film depends on the strength of the interaction

(parameter α in u1lr) and increases as the liquid pressure is increased. The dependency is well
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approximated by e ∝ (2α/∆p)−1/3 at the bottom, top and sides of the barrier wall, where

α can be associated with the Hamaker constant [141, 142]. Assuming the grooves have the

dimension of the order of hundreds nm, the values of α in our simulation translate 10−20 to

10−19 J, which are the typical values of the Hamaker constant [64].

The key to understanding the capillary filling stage lies in changes to the film thickness in

the bottom corners of the groove. As the menisci in the corners grow and approach d/2 in size,

liquid from either side merges and rapidly fills the gap. The liquid interface then rises up from

the bottom of the groove. This can be seen from the sudden increase in liquid film thickness as

calculated at the middle gap, ẽg (Fig. 7.5 (b)) and from the sudden decrease of the liquid-gas

interfacial area, Ãg (Fig. 7.5 (c)). We define the critical pressure ∆pc as the pressure value

with the largest gradient in the ẽg and Ãg plots. At this capillary filling stage, the growth of

thin film at the side walls and top of the barrier wall still follows e ∝ (1/∆p)−1/3.

The liquid, however, does not immediately fill the whole gap of the groove. In the post-

filling stage, with increasing pressure, the liquid-gas interface between the barrier walls starts

to smooth out until it becomes flat. The thin film thickness at the top of the barrier wall also

increases more rapidly compared to the pre-filling and capillary filling stages. This occurs when

∆p has small negative values, which means pl → pg. As pl > pg, the film thickness increases

to infinity as liquid fills up the whole domain.

If ∆p is reversed from positive to large negative values, the liquid will be emptied from

the grooved surface. Upon decreasing ∆p, the liquid-gas interface follows the reverse path as

the liquid fills the groove surface (Fig. 7.5 (c)). Therefore, the liquid filling does not exhibit

hysteresis behaviour for the complete wetting case. Recently, filling transitions have been

investigated via DFT [122]. It was also observed that the filling transition is mediated by the

growth of the menisci in the bottom corners of the groove. However here, we are also able to

show the contribution of the films on the sidewalls and top of the barrier wall.

Next, we want to compare the effect of long-range and short-range liquid-solid interactions

on the liquid filling transition. In this case, we use the effective interaction u1lr in the interaction

energy density Fs(r) for the former and Fs(rs) as in Eq. (6.12) for the latter. Although the

filling behaviour for both interactions is qualitatively the same, the filling transition occurs at

different critical pressures (Fig. 7.5 (b)). This is because the liquid film thickness at the wall

is different, which changes the effective separation between the walls. The critical pressure

dependency can be inferred from the Kelvin equation, in which ∆pc is expected to be inversely
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proportional to the effective wall separation.

The liquid film formed due to long-range interactions is thicker than that due to short-range

interactions. For the former, the contribution of the liquid-solid interaction is determined by

how long the tail of the decaying interaction is until it becomes essentially zero. This is

controlled by the parameter β. The higher β, the longer the tail. As a result, the interaction

with higher β forms a thicker liquid film at the wall. For the short-range interaction, the

liquid-solid interaction is assumed to occur only at the surface of the solid. Therefore, there

is no liquid-solid interaction contribution farther from the surface. Hence, the liquid film is

thinner, and the filling transition occurs for larger ∆p.

7.2.2 Partial Wetting

We now turn our attention to the partial wetting case (θ > 0◦). The results presented here

employ the short-range interaction. Equivalent results are obtained for the long-range interac-

tions once the contact angles are mapped. The liquid filling behaviour for the partial wetting

case is illustrated in Fig. 7.5 (d,e,f). In the same manner as the complete wetting case, we can

also group the filling process into (i) pre-filling, (ii) capillary filling and (iii) post-filling stages.

The capillary filling stage is also marked by a critical pressure at ∆pc. Here, we have to divide

our discussion into two scenarios [120], which are for θ < 45◦ and for θ > 45◦ .

For θ < 45◦, in the pre-filling stage, liquid condensation could be nucleated at the corner

of the groove forming menisci at a large negative ∆p (Fig. 7.5 (d)). In this case, the corner

menisci grow as the liquid pressure increases until they merge as a single meniscus. Once this

has happened, we enter the capillary filling stage, in which the liquid starts filling the gap

while maintaining the shape of the meniscus. In sharp interface models, at a certain ∆pc, the

filling transition occurs as signified by an abrupt increase in ẽg. ∆pc can be predicted using

the Kelvin equation, as will be discussed in Section 7.2.4. Using the diffuse interface model in

the present study results in a rounding of this first-order phase transition. However, this effect

is marginal if there is a suitable separation of length scales (at least a factor of 10) between

the diffuse interface width and the wall height. Thus, as is shown in Fig. 7.5 (e), the partial

wetting filling transition is still sharp compared to the complete wetting case. After the filling

transition occurs, the liquid again does not completely fill the gap, as in the complete wetting

case, but both ends of the liquid-gas interface are pinned in the top edge of the wall. In the

post-filling stage, the meniscus starts to flatten as pl → pg. When ∆p turns positive, the
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curvature of the meniscus also turns sign from negative to positive. As the liquid manages to

overcome the contact line pinning, it fills up all the gas phase.

For θ > 45◦, the pre-filling stage is marked by a gas-like phase with a completely dry solid

(Fig. 7.5 (e)). The corner menisci do not form, and the filling transition immediately occurs

when the pressure has reached ∆pc. The liquid will then be pinned at the top edge of the

groove with smaller curvature due to higher θ. The post-filling stage is then similar to that for

θ < 45◦ except that the positive curvature at positive ∆p could grow larger in size before it

overcomes the contact line pinning and fills all of the gas phase. This means that ∆p at which

the liquid fills the gas phase occurs at a larger value than that for θ < 45◦.

Figure 7.5 (f) shows liquid filling and emptying paths for increasing and decreasing ∆p. The

hysteresis behaviour is clearly pronounced. Due to contact line pinning at the top corner of the

walls, during the filling process, the meniscus curvature changes from negative to positive as

∆p increases. During the emptying process, however, upon decreasing ∆p the liquid continues

to wet all of the surface and maintains a flat liquid-gas interface until a significantly lower

pressure difference. Once the top of the wall is fully dewetted, the liquid gets pinned at the

top corners with negative curvature. The liquid emptying path then follows along the same

path as the liquid filling. This can be seen in the snapshots of configuration during the filling

and emptying processes, as shown in Fig. 7.6 (top row). This hysteresis behaviour in partial

wetting case has also been reported elsewhere [134, 143].

7.2.3 Pseudo-partial Wetting

Figure 7.5 (g,h,i) show the liquid filling behaviour on a grooved surface for the pseudo-partial

wetting case. The effective interaction u2lr is used in the interaction energy density Fs(r). The

magnitude of parameter −uo controls the strength of the attractive interaction. To obtain

a pseudo-partial wetting state, a large enough −uo is employed to get a liquid film near the

surface. The parameter σ controls the thickness of the liquid film. Here, we use σ = 3 and

uo = −5× 10−7 and up = 2× 10−7.

In the pre-filling stage (at large negative ∆p), in contrast to the partial wetting case at the

same ∆p, the liquid wets the bottom surface of the groove and the side walls forming a liquid

film but leaves the top of the barrier wall dry as the liquid film is pinned at the top edges of

the wall. At the bottom corners of the groove, the meniscus of liquid condensation is not as

pronounced as it is for the full and partial wetting case. This is because the interaction at the
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Figure 7.6: Snapshots of liquid-gas interface configurations during filling (black solid line) and
emptying (red dashed line) processes at different ∆p for partial (top row) and pseudo-partial
(bottom row) wetting showing hysteresis behaviours. For the partial wetting at ∆p = 1.5, the
liquid fills up the whole simulation domain during the emptying process; hence, the liquid-gas
interface does not appear in the image. At ∆p = −2.2, the filling and emptying processes
have the same liquid-gas interface configuration. Similarly, for the pseudo-partial wetting at
∆p = 2.7, the liquid-gas interfaces of the filling and emptying processes are on top of each
other.

surface near the corner slightly reduces due to the effect of the repulsive term in the effective

interaction u2lr. As the liquid pressure increases the liquid overcomes the contact line pinning

at the top edges and covers the top of the wall. This is shown in Fig. 7.5 (i) (right-pointing

triangle), in which the liquid-gas interface area increases abruptly at ∆p/(γlg/hG) ≈ 0.3. The

bottom corner menisci only slightly grow with increasing pressure, unlike for the complete and

partial wetting cases where they grow and merge as their size approaches d/2.

In the capillary filling stage, the critical pressure for the filling transition occurs sharply

at positive ∆pc (indicated in Fig. 7.5 (h)). The sharp transition applies for narrow and wide

groove widths. Compared to the negative ∆pc observed for complete and partial wetting cases,

this suggests the filling transition is more energetically expensive for the pseudo-partial wetting

case. At the critical pressure ∆pc, liquid fills the gap, and it forms a droplet in the middle of

the gap coexisting with the liquid film on top of the barrier wall (Fig. 7.5 (g)). Such coexistence

is reminiscent of the morphology observed on a flat surface. However, the range of stability

of the droplet is limited. With increasing pressure in the post-filling stage (with positive ∆p),
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the droplet becomes unstable and the liquid fills the simulation domain.

The hysteresis behaviour is also clearly observed in the pseudo-partial wetting case, as

shown in Fig. 7.5 (i) (See Fig. 7.6 (bottom row) for snapshots of configuration during the filling

and emptying processes). During the filling process, the contact line pinning at the top corners

of the walls allows the liquid to form a droplet bulge in the middle of the gap as ∆p increases.

Upon decreasing ∆p, however, the droplet bulge slowly flattens until the liquid filling the gap

abruptly drains, leaving a liquid film that follows the shape of the groove structure. The top

of the wall remains covered by a liquid film; hence, we find higher Ãlg than in the liquid filling

path.

7.2.4 Critical Pressure Scaling with Groove Width

In this section, we will now consider how the critical pressure for the filling transition depends

on the groove width, d. We will begin by considering the partial wetting case. To describe

the critical pressure quantitatively, we can use the following argument. During the transition,

the groove will experience a change of liquid volume ∆V , accompanied by a change of liquid

height in the groove by h. As such, the change in the total free energy is given by

∆E = −∆p∆V + γlg∆Alg + γls∆Als + γgs∆Ags, (7.2)

where ∆Alg, ∆Als and ∆Ags are the changes in liquid-gas, liquid-solid and gas-solid interface

areas, respectively. During the filling transition, the liquid-gas interface remains nearly con-

stant, hence ∆Alg ≈ 0. ∆V , ∆Als and ∆Ags can be approximated by d2h, 2dh and −2dh,

respectively. Using Young’s equation, we can rearrange Eq. (7.2) to obtain

∆E = −∆pd2h− 2γlg cos θdh. (7.3)

The critical pressure corresponds to the case where ∆E = 0, leading to a relation

∆pc = −
2γlg cos θ

d
. (7.4)

This equation has the same form as the Kelvin equation and, as shown in Fig. 7.7, it captures

the critical pressure obtained in the simulation accurately.

A similar argument can be applied for the complete wetting case with θ = 0. However, to
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and Eq. (7.5), respectively. (i-v) denote specific d/h at which different scenarios of the filling
transition occur for the pseudo-partial wetting case (see text and Fig. 7.8).

account for the effect of the liquid film at the wall, a correction term of 3ew, where ew is the

film thickness at the wall, needs to be added because the effective wall separation is not equal

to d, as proposed by Derjaguin [129]. Therefore, the critical pressure becomes [144]

∆pc = −
2γlg

d− 3ew
, (7.5)

where ew depends on ∆p through the relation ew ∝ (1/∆p)−1/3. The comparison of the critical

pressure between simulation and theoretical predictions for complete wetting case is also shown

in Fig. 7.7. It shows a good agreement to a very narrow gap although there is a slight deviation

for d/h = 0.2 because the interface width of our diffuse liquid-gas interface becomes comparable

to d.

The pseudo-partial wetting case, however, cannot be captured by a relation akin to Eq. (7.4)

or Eq. (7.5). We argue that this is because the corner menisci are not so apparent during the

capillary filling stage and do not merge into a single meniscus before the filling transition

occurs. Therefore, d does not affect ∆pc. This can be observed for d/h > 0.6 in Fig. 7.7. In

this scenario, the liquid fills up the simulation when the filling transition occurs, as illustrated in

Fig. 7.8 (v). When d is very small (d/h < 0.6), however, ∆pc starts to be dependent on d, but
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Figure 7.8: Liquid filling states at different groove widths for the pseudo-partial wetting case.
Panels (i-v) correspond to different scenarios as indicated in Fig. 7.7 and explained in the
main text. In panel (v), the liquid fills up the whole simulation domain when the liquid filling
transition occurs; hence the liquid-gas interface at ∆pc lies at the top of the domain.

it still does not obey Eq. (7.4). Instead, we find this variation is accompanied by non-trivial

changes in the morphological pathway during the filling transition. With increasing groove

width, five distinct pathways are identified, illustrated in Fig. 7.8, and indicated in Fig. 7.7: (i)

liquid fills the gap forming a liquid-gas interface with a negative curvature while keeping the

top of the wall dry, (ii) the same as scenario (i) except that top of the wall is covered by a liquid

film, (iii) the same as scenario (ii) but the liquid film at the top of the wall is formed before

the capillary filling stage, (iv) the same as scenario (iii) but the liquid-gas interface curvature

is positive, and (v) liquid fills the system at the critical pressure.

7.3 Discussion

In this part of the thesis, we have presented systematic numerical studies of liquid filling on

grooved surfaces using a phase field method. We consider both short-range and long-range

liquid-solid interactions. The latter include purely repulsive and attractive interactions, and

more complex interactions with short-range attraction and long-range repulsion. To the best

of our knowledge, such versatility allows us to capture complex disjoining pressure profiles

for the first time in a phase field approach, in agreement with previous works using atomistic
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modelling [119, 124] and analytical theory [65, 137], which in turn give rise to complete, partial,

and pseudo-partial wetting states. In this work, we have also introduced a quartic polynomial

to switch the interaction energy density between the liquid and gas phases (f(ϕ) in Eq. (6.10)).

This polynomial prevents enrichment of the liquid and/or gas phases on the solid surface, and

it leads to more accurate contact angle calculations compared to the linear and cubic forms

previously used in the literature.

We rationalize the liquid filling process on grooved surfaces into three stages: (i) pre-

filling, corresponding to the growth of the thin film around the structure (for complete or

pseudo-partial wetting), or liquid menisci in the bottom corners of the groove (for partial

wetting); (ii) capillary filling, where there is a rapid increase of liquid volume in the groove

marked by a critical pressure; and (iii) post-filling, typically signified by the flattening of the

liquid-gas interface before liquid completely fills the whole domain. Comparing the results

for complete, partial, and pseudo-partial wetting, we find there is no contact line pinning for

the complete wetting case and the liquid filling and emptying trajectories are reversible. In

contrast, we observe clear hysteretic behaviour for partial and pseudo-partial wetting, caused

by the coexistence of two metastable states over a pressure range. In the partial wetting case,

late in the filling transition, pinning of the interface on the top corner of the wall leads to

a state that remains metastable over a range of positive pressures. Coexisting with this is

the unpinned state, which, at positive pressures, sees liquid completely fill the system. In the

pseudo-partial wetting case, the origin of metastability is different. Here, repulsive interactions

in the centre of the groove energetically penalise partial filling of the groove. Instead, either

the groove remains almost empty, or the groove is full.

Considering the critical pressure, although the diffuse interface marginally rounds the first-

order transitions, both the complete and partial wetting cases follow a Kelvin-like equation for

its dependence on the groove width: large and negative at small widths, and plateaus to zero

for large widths. The pseudo-partial wetting case, however, is different. At large widths, the

critical pressure is positive and constant. We find the critical pressure does depend on groove

width for smaller widths, and interestingly, this is accompanied by morphological changes in

the trajectories of the liquid filling process.

There are a number of exciting avenues for future work. Here, we have considered grooved

surfaces. It is straightforward to extend the study to other, more complex surface geometries

such as re-entrant geometries, seesaws, hierarchical posts, or even non-symmetric structures
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which have extensively been harnessed in wetting applications. Another possible direction is to

consider the liquid dynamics, beyond the quasi-static results presented here. There are some

limitations, however, of the phase field method used in this study. The present method does not

include the interfacial fluctuation effects, which have been shown to occur at nanoscale [145]

and captured by atomistic simulations [146]. To capture these phenomena, one possible route

is to couple the phase field model here with fluctuating hydrodynamics methods [147, 148].

Finally, we hope the simulation results will inspire experimental studies to verify our theoretical

predictions.



Part IV

Wetting on Complex Geometries:

Frozen Fluid Method
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Chapter 8

Method

8.1 Phase Field Model for the Frozen Fluid Method

The frozen fluid method is based on a phase field model for three-component immiscible fluids

in which the local composition of each component is represented by an order parameter Cn,

where n = {1, 2, 3}. In general, the order parameter Cn describes fluid phases within the

ternary system. However, in this context, we designate one component, C1, as a solid phase

and the rest, C2 and C3, as liquid and gas phases, respectively.

The ternary model used in this work is based on Ref. [149], in which the thermodynamics of

the system are described by a free-energy functional of the fluids that captures the immiscibility

of the fluid components and the surface tensions between different fluids. The phase interface is

modelled using a diffuse interface with a finite thickness model, which yields a smooth transition

region between two different phases. Since we are interested in the equilibrium state of the

system, the total free energy is minimized using the L-BFGS algorithm.

The total free energy of the system is given by

Ψ(Cn) =

∫
V
(Ψb +Ψi +Ψc +Ψcf)dV, (8.1)

where all of the energy densities are integrated over the system’s volume, V . The bulk energy

density of the phases, Ψb, is modelled using a double well potential

Ψb =
3∑

n=1

κn
2
C2
n(1− Cn)

2. (8.2)

Here, the κn’s are tunable parameters related to the interfacial tension between different fluids.
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The form of potentials chosen in this model has two minima at Cn = 0 and 1. We then

relate Cn = 0 to indicate the absence of component n and Cn = 1 to indicate pure component

n. We also normalise the total composition to unity so that C1 + C2 + C3 = 1 to obtain

C3 = 1−C1 −C2, which reduces the number of the order parameter in the system that needs

to be optimised. It is worth noting that this constraint allows C1 and C2, in principle, to have

any value.

Ψi is referred to as the gradient energy density, which accounts for the energy penalty for

having interfaces. The gradient term takes the form

Ψb =
3∑

n=1

κ′n
2
(▽Cn)

2, (8.3)

where κ′n’s are also tunable parameters whose values determine the contribution of the gradient

terms to the total free energy. By relating the bulk and gradient energy densities to the

chemical potential, we can calculate the interfacial profile of Cn and the interfacial tension

between phases n and m, given by

Cn(x) =
1

2
+

1

2
tanh

x/2√
(κ′n + κ′m)/(κn + κm)

, (8.4)

and

γnm =
α

6
(κn + κm), (8.5)

where α =
√
(κ′n + κ′m)/(κn + κm) denotes the interface width. Here, the value of Cn varies

between 0 and 1 at an interface, and we take the value of Cn = 0.5 as the interfacial boundary

between the two phases. We can further use the definition of α to simplify the simulation

variables by relating κ′{n,m} and κ{n,m} via (κ′n + κ′m) = α2(κn + κm). In this work, we take

κ′n = α2κn and use α = 1. While we will call α as the interface width, for α = 1, the transition

between Cn = 0 and Cn = 1 occurs over 4-5 the units of α (see Fig. 8.1). From Eq. (8.5), we

can calculate the values of κn as input parameters given that the surface tensions are known,

κ1 =
3

α
(γ12 + γ13 − γ23),

κ2 =
3

α
(γ12 − γ13 + γ23),

κ3 =
3

α
(−γ12 + γ13 + γ23).

(8.6)
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Figure 8.1: Illustration of the solid boundaries and interface width. Black and blue solid
lines are the solid component C1 profiles in the x -direction across the gas-solid boundary
obtained after applying the confining potentials using Approaches 1 and 2, respectively (see
Section 8.2.2 for details of these approaches). Dash lines show the simulated solid boundaries
for both approaches.

In the ternary fluid system, the balance of forces of the three fluids must satisfy Neumann’s

angles at equilibrium. These angles are influenced by the interfacial tensions of the three fluids

which satisfy this relation: γ23/ sin θ1 = γ13/ sin θ2 = γ23/ sin θ3. Depending on the magnitude

of the interfacial tensions, a liquid droplet will form a liquid lens, as illustrated in Fig. 8.2. In

the frozen fluid method, however, since one of the fluids is treated as a solid, the interfacial

tension-contact angle relation is simplified to the Young’s equation: γ23 cos θ = γ13 − γ12.

Figure 8.2: Illustration of the interfacial tensions in the ternary fluid system (left) and in the
frozen fluid method (right).

Ψc is the constraining energy density that allows the system to preserve either the pressure

difference between liquid and gas phases, ∆p, or the volume of the liquid phase, Vl, during the

minimisation. When the former is desired, the constraining potential takes the form,

Ψc = −∆pVl, (8.7)
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whereas for the latter,

Ψc =
1

2
k(Vl − V0)

2. (8.8)

Here, k > 0 is a constant, and V0 is the target volume. The volume of the liquid phase, Vl can

be calculated as

Vl =

∫
V
C2dV. (8.9)

The last component in the total energy is the confining energy density, Ψcf, for the frozen

fluid given by

Ψcf =

∫
V
ψcfdV, (8.10)

where ψcf is the confining potential. This energy term is solely used to relax the solid component

to create a smooth and diffuse interface. We shall discuss this term in more detail in the next

section.

8.2 Simulation Implementation

8.2.1 Discretisation and Energy Minimisation

In the simulation, we employ a similar procedure outlined in Chapter 6 (see Section 6.2.1)

to minimise the total free energy numerically. In summary, we discretize Ψ in Eq. (8.1) into

Nx × Ny × Nz cubic lattice points (called nodes), in which each node is associated with a

value of ϕijk, where i, j, k ∈ {1,··· , N} indicate the spacial dimension in the x-, y-, and z-

directions. The grid spacing, G, is set to be equal to the interface width α, which is taken to

be 1. Depending on the case being investigated, we employ two types of boundary conditions:

the periodic and mirror boundary conditions. The energy minimisation is then carried out

using the computationally efficient L-BFGS algorithm, optimized for both memory usage and

processing speed. During the minimisation routine, the value of ϕijk of each node is updated

in order to achieve the minimum total energy configuration.

The implementation of the frozen fluid method during the energy minimisation process in

the simulation is carried out in two stages. In the first stage, energy minimisation is performed

to create a solid geometry with a smooth and diffuse solid interface [150]. The solid is initialised

as component 1 (C1) within the desired geometry. The remaining system is filled with pure gas

(C3), and the liquid phase (C2) is fixed at 0. The total free energy is subsequently minimised
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using the L-BFGS algorithm. During this stage, the energy minimisation process is truncated

at a specific number of iterations to allow the 1-3 diffuse interface to form without strongly

perturbing the intended solid geometry’s shape.

Once this stage is complete, the liquid phase (C2) is initialised in the system according to a

predefined configuration. The solid phase (C1) is now fixed, while the liquid (C2) and gas (C3)

phases are allowed to vary. The total free energy is now minimised under these constraints.

Convergence of the minimization process is determined based on an rms gradient condition:

convergence is achieved when |▽Ψ| < 10−5.

8.2.2 Confining Potentials

In the first stage of energy minimization, we initialise the solid component in a specific shape

of geometry by assigning C1 = 1 and fill the rest of the system with a gas phase. The liquid

component is set to be fixed at C2 = 0. During the minimization, we allow the solid component

to relax to form a smooth and diffuse interface but truncate it when the desired solid geometry

is achieved. To accommodate this process, a confining energy term in Eq. (8.10) is applied to

the system to ensure that the resulting solid shape remains close to the intended one.

The confining potential ψcf should meet two main criteria: (i) the potential does not ar-

tificially alter the interfacial profile or interfacial tensions with the solid phase, and (ii) the

interfacial tension must be uniform at every point in the solid surface regardless of the feature

of the solid interface. The truncation of the number of iterations should also be properly con-

sidered in order to ensure the confining potential meets those criteria in addition to getting the

desired solid geometry.

There are multiple ways of carrying this out. Here, we consider two approaches, namely

Approach 1 and Approach 2, with different potential forms and implementations. For illustra-

tion, the comparison between solid interface boundaries obtained from applying Approach 1

and Approach 2 for a rectangular solid shape is shown in Fig. 8.1.

8.2.2.1 Approach 1

In the first approach (Approach 1), we employ a fourth-order polynomial of C1 in the confining

energy term,

ψcf = β(3C4
1 − 4C3

1 ), (8.11)
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where β > 0 controls the strength of the potential. This potential is globally minimized at

C1 = 1 and monotonically increases with |C1| for |C1| > 1, which gives an energy penalty to the

total free energy. In addition, its gradient is zero at the bulk equilibrium values of C1 = 0, 1.

These features ensure that the initialised solid component values remain equal to 1 in the bulk.

At the diffuse interface, the solid component with values 0.5 < C1 < 1 will be taken as part

of the solid phase, whereas 0 < C1 < 0.5 as the gas phase. As a result, the simulated solid

interface boundary is shifted from the intended one, making the solid size larger than it should

be (see Fig. 8.1).

This effect can be controlled by tuning the potential strength variable β. We can think of

β as the parameter to control an artificially-applied pressure between the solid and gas phases.

When β is small, the potential is weak, and the pressure given by the gas phase to the solid

interface is also weak, resulting in a larger shifting of the gas-solid interface boundary. On

the contrary, a larger β (i.e. stronger confining potential) gives a higher pressure to the solid

phase, making the extra solid component at the interface smaller.

8.2.2.2 Approach 2

In the second approach (Approach 2), we apply a polynomial function of C1 with a minimum

at C1 = 0.5 when the value of C1 < 0.5 within the solid nodes, or when C1 > 0.5 within the

fluid (gas) nodes. This ensures the solid components that enter the gas phase are minimised

at C1 = 0.5, centring the interface at the boundary between the solid and fluid nodes. Using

this approach, the size of the solid will be similar to the initialised one, with some fraction of

the solid taken up as the diffuse interface. This prevents the solid size from becoming larger

than the intended one. Since we use the interface width ϵ = 1, the diffuse interface will take

up about 4-5 lattice units in the simulation (see Fig. 8.1).

We can choose any polynomial function if it is globally minimized at C1 = 0.5. Here,

we compare three different polynomial functions, namely Quadratic, Quartic 1 and Quartic 2,

given by

ψquadratic = β(C1 − 0.5)2, (8.12)

ψquartic1 = β(C1 − 0.5)4, (8.13)

ψquartic2 = β(3C4
1 − 2C3

1 ), (8.14)



8.2 Simulation Implementation 111

where β is a positive value.

The caveat of this approach is, however, that the initialised solid shape is limited to a

specific size to ensure the bulk solid is still maintained as part of the solid phase. Below such a

limit, the solid component will only consist of the diffuse interface and is prone to annihilation

during the minimization.

It is worth noting that the choice of β and the number of iterations during minimization

are critical, as they will control the smoothness of the solid interface and maintain the solid

shape and size. A large value of β will generally result in a less smooth interface, particularly

for a curved interface, and maintain the solid shape and size, whereas a small value of β, on the

other hand, will create a smoother interface but is prone to altering the intended solid shape

and size. Depending on the shape of the solid, a high number of iterations in the minimization

process will easily alter the shape and size as the shape gets closer to an equilibrium state,

particularly for weaker potentials (small β). In contrast, a low number of iterations tends to

be able to maintain the shape and size of the solid from its initialised state.

8.2.2.3 Objective Function

To determine the effective value of β and the number of iterations, we perform an optimisation

algorithm based on several criteria: the size of the solid, the closeness of the shape to the

intended one, the smoothness of the interface, and the fitness of the tanh profile of the solid

component across a gas-solid interface to the analytical solution. These criteria are chosen to

ensure the resulting solid geometry has a smooth interface and maintains the intended shape

and size. These criteria are then translated into an objective function that measures the square

of the relative error of each criterion, given by

O = w1(∆V )2 + w2(∆RC)
2 + w3(∆RS)

2 + w4(∆C1)
2. (8.15)

The variable ∆V (or ∆A in 2D), which determines the solid size criterion, is the difference in the

volume (or area) between the simulated and expected solid shape in 3D (or 2D). ∆RC , defined

as the difference between the radius of the simulated and expected points at the interface of the

solid, and ∆RS , defined as the difference between the radius of the simulated and fitted points

at the solid interface, are used to determine the closeness and smoothness criteria, respectively.

Finally, ∆C1 is used to determine the tanh profile fitness of the solid interface, which is defined



8.2 Simulation Implementation 112

as the difference between the simulated and analytical tanh profile of the solid component across

a gas-solid interface. The coefficients w1, w2, w3 and w4 weigh the corresponding variables to

ensure that each criterion is equally favourable. This objective function is then minimised

against several solid geometries for all confining potentials as in Eq. (8.11) and Eqs. (8.12 -

8.14).



Chapter 9

Results

9.1 Determining the Confining Potential Parameters

In the Method section, we have elucidated two approaches in applying the confining poten-

tials to obtain the desired solid shape, referred to as Approach 1 and Approach 2. In both

approaches, two parameters need to be assigned correctly: the potential strength β and the

number of iterations. To determine the appropriate values for each approach, we will perform

simulations against several solid geometries that account for different surface features, includ-

ing flat, curved, and corner features. We will then decide the optimised parameters based on

the criteria of an objective function that we have discussed in the Method section.

Firstly, we consider Approach 1. We perform simulations against a simple 2D flat solid

surface with a simulation domain of Nx × Ny = 60 × 60. The solid component C1 = 1

is set at 0 ≤ y ≤ 10, and the rest of the system is filled by the gas component C3. The

liquid component C2 is fixed at zero during the minimisation. We use three different values

of β, β = 1, 10, 50. We allow the minimisation steps up to 100 iterations and truncated the

iteration when the desired solid shape is obtained. The typical solid surface obtained after the

minimisation is shown in Fig. 9.1 (a), in which the solid phase (blue region) and the gas phase

(grey region) are separated by a smooth diffuse interface. The diffuse interface of the solid can

be demonstrated by plotting the tanh profile of C1 across a gas-solid interface cross-section, as

shown in Fig. 9.1 (b). Here, the minimisation steps are truncated at 30, 30, and 80 iterations

for β = 1, 10 and 50, respectively. It can be noticed that the simulated interface boundary is

shifted from the initialised one towards the gas phase. However, the tanh profile of the solid

component across the interface boundary for each value of β is in agreement with the analytical
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Figure 9.1: (a) Typical solid geometry obtained after the energy minimisation simulation using
Approach 1. Solid and gas phases are denoted by blue and grey regions, respectively, whereas
the black solid line indicates the gas-solid interface boundary. (b) Tanh profiles of C1 for
β = 1, 10, 50 after number of iterations = 30, 30, 80, respectively, across the A-A’ cross-section
as indicated in (a). The solid line is the analytical solution from Eq. (8.4). The red vertical
dashed line indicates the initialised interface boundary. (c) and (d) Root Mean Square Error
(RMSE) of the tanh profile of C1 and gas-solid interface boundary are plotted against the
number of iterations, respectively, for β = 1, 10, 50.

prediction (solid line) in Eq. (8.4), indicating that the confining potential does not alter the

interfacial tension at the gas-solid interface.

To evaluate further the effect of β and the number of iterations, we employ an optimisation

algorithm based on an objective function. Since the solid interface is flat, the smoothness

and closeness criteria are not critical in the objective function. The determining criteria are

the fitness of the tanh profile (∆C1) and the size of the solid (∆A). The effect of β and the

number of iterations on the fitness of the tanh profile can be demonstrated in terms of the

root mean square error (RMSE) against the analytical solution of C1, as shown in Fig. 9.1 (c).

For all values of β, the deviation is large for a small number of iterations and gets smaller as

the number of iterations increases until it saturates at RMSE = 0.03. This is achieved at the
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Figure 9.2: (a) Typical solid geometry obtained after the energy minimisation simulation using
Approach 2. Solid and gas phases are denoted by blue and grey regions, respectively, whereas
the black solid line indicates the gas-solid interface boundary. (b) Tanh profiles of C1 for
β = 1 and 10 after number of iterations = 10 across the A-A’ cross-section as indicated in (a).
The solid line is the analytical solution from Eq. (8.4). Red vertical dashed line indicates the
initialised interface boundary.

number of iterations = 30, 30 and 80 for β = 1, 10 and 50, respectively. The effects of varying

the number of iterations can also be seen in the size criterion, as shown in Fig. 9.1 (d). Here,

instead of measuring the area of the solid, we measure the position of the interface boundary. It

can be seen that the interface boundary shifts from the initialised boundary position (y = 10)

and reaches an effective interface boundary at y = 15. From these results, we can conclude

that small values of β allow the solid to create a smooth, flat interface and desired shape faster

than higher β. The implementation of Approach 1 to other solid shapes, such as the curve and

corner features, results in a similar fashion compared to the flat surface. A sphere geometry

(or circular in 2D), for instance, will become effectively larger.

Now we will consider Approach 2 with three different polynomial functions as given in

Eqs. (8.12 - 8.14). We begin by performing simulations against a 2D flat solid interface

with a similar setup as in Approach 1 in order to compare the results between these two

approaches. Here, we use a Quadratic polynomial as the confining potential with β = 1 and

10. The simulated solid interface and its tanh profile after 10 iterations are shown in Fig. 9.2.

From Fig. 9.2 (b), it can be seen that the simulated solid boundary is not shifted from the

initialised position. In addition, the tanh profile of the solid component is in good agreement

with the analytical prediction, indicating that the interfacial tension is not altered.

Next, we apply Approach 2 on solid shapes with curve and corner features. For the curve

feature, we use a sphere geometry with a radius of 30 s.u.. The sphere is initialised using a
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Figure 9.3: 2D cross-section of the gas-solid interface of a sphere obtained after different
numbers of iterations using Approach 2 with β = 1 (top row) and β = 10 (bottom row).
Panels (a-b), (c-d) and (e-f) show the results when using the Quadratic, Quartic 1 and Quartic
2 polynomial functions, respectively.

Figure 9.4: The objective function (O) and its components (∆V , ∆RC , ∆RS , and ∆C1)
squared plotted against the number of iterations for β = 1 (top row) and β = 10 (bottom
row) for a sphere geometry. All values have been normalised such that they range from 0 to 1.
Panels (a,b), (c,d) and (e,f) show the results when using the Quadratic, Quartic 1 and Quartic
2 polynomial functions, respectively.
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staircase approximation due to the square lattice used in the simulation. We use two values of

β, β = 1 and 10, to account for weak and strong confining potentials. The effect of confining

potential with these values of β for the Quadratic, Quartic 1 and Quartic 2 polynomial functions

on the gas-solid interface of the sphere is shown in Fig. 9.3. Here, we show 2D cross-sections of

the gas-solid interface across the middle of the sphere when the energy minimisation process

has been iterated after 5, 10, 20, 30, 40 and 50 steps. For the Quadratic potential, we notice

insignificant changes in the sphere volume for both β = 1 and 10. In addition, the solid size

and the gas-solid interface boundary are identical to the initialised ones. For the Quartic 1 and

Quartic 2 potentials, on the other hand, the solid size shrinks by a significant amount when

the number of iterations is increased for β = 1. In contrast, for β = 10, the system is able to

maintain the solid size. When we look at the smoothness of the gas-solid interface, in general,

it gets smoother as the number of iterations increases for β = 1, but remains jagged for β = 10

although the staircase approximation from the initialisation has vanished.

These effects can be evaluated further in more detail from the objective function analysis, as

shown in Fig. 9.4. Here, all variables in the objective function have been normalised such that

the values range from 0 to 1 to ensure that each variable contributes similarly to the overall

objective function. For the Quadratic potential, as shown in Fig. 9.4 (a,b), the deviation of the

volume ∆V and radius ∆RC of the sphere from its initialised values increases with the number

of iterations and they reach saturated values after 20 iterations. These changes are caused by

a small shrinking of the sphere size. The RS variable, which measures the smoothness of the

interface, decreases with the number of iterations for β = 1, indicating a smoother interface,

but increases for β = 10. If we look at the tanh profile variable ∆C1, the deviation drops

drastically after 10 iterations for β = 1 but slightly increases for β = 10. However, both tanh

profiles are still in good agreement with the prediction. If we combine all variables into the

total objective function, O, we can see that the minimum deviation of all variables is obtained

at 10 iterations for both values of β, which indicates the optimum solid geometry. This also

applies to the Quartic 1 and Quartic 2 potentials (see Fig. 9.4 (c-f)), although the trend of each

variable may be different.

The effect of implementing Approach 2 on solid geometries with a corner feature is shown

in Fig. 9.5 and Fig. 9.6 for the cone and cube geometries, respectively. For both geometries,

we notice similar effects for all confining potentials: for β = 1, the corner experiences widen-

ing/rounding as the number of iterations increases and shrinks in size, deviating from the
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Figure 9.5: 2D cross-section of the gas-solid interface of a cone obtained after different numbers
of iterations using Approach 2 with β = 1 (top row) and β = 10 (bottom row). Panels (a,b),
(c,d) and (e,f) show the results when using the Quadratic, Quartic 1 and Quartic 2 polynomial
functions, respectively.

initialised geometry, while for β = 10, the distortion from the initialised geometry is not sig-

nificant except for Quartic 1 and Quartic 2 potentials. These effects are also reflected in the

objective function, similar to what we see for the spherical geometry. Therefore, to minimise

the shrinking in size and widening of the corner, a large β and a small number of iterations are

preferable; in this case, we found the optimum values at β = 10 and a number of iterations =

10.

Based on these results, we find that the Quadratic potential with β = 10 and the number of

iterations = 10 will result in an optimum solid geometry, particularly for the geometry with a

curve or corner feature. For a flat solid surface, both β = 1 and 10 would give a similar result.

9.2 Model Benchmarkings

So far, we have shown how our model is able to produce solid shapes as desired, thanks to the

confining potential that is incorporated in the free energy function and implemented in the first

stage of the energy minimisation procedures. During this stage, we have not yet introduced

the liquid phase in the system. As explained in the Method section, the liquid phase is put

in the system after the solid shape is formed. At this stage, the liquid phase is initialised as



9.2 Model Benchmarkings 119

Figure 9.6: 2D cross-section of the gas-solid interface of a cube obtained after different numbers
of iterations using Approach 2 with β = 1 (top row) and β = 10 (bottom row). Panels (a,b),
(c,d) and (e,f) show the results when using the Quadratic, Quartic 1 and Quartic 2 polynomial
functions, respectively.

desired, and during the minimisation routine, the solid phase is fixed, and only the liquid and

gas components are allowed to evolve until the equilibrium is reached. In this section, we will

present several benchmarking tests to validate our model of simulating wetting phenomena

using the frozen fluid method.

9.2.1 Contact Angle Test

In this benchmarking test, we perform simulations of a liquid droplet wetting on solid surfaces

and measure the contact angle. We start with a simple case where a droplet of radius 30 s.u.

is placed on an ideal flat surface in the 2D domain of Nx ×Ny = 300× 100 s.u.. The periodic

boundary condition is applied at the left and right boundaries, while the mirror boundary

condition is imposed at the top and bottom boundaries. We set γ23 =
√
8/9, γ12 = 1 and γ13

following the Young equation. To form the flat solid, we use both Approach 1 and Approach 2

during the first stage of the minimisation. In Approach 1, we set the values of β = 1 and the

number of iterations to 30 steps. In Approach 2, we use the Quadratic polynomial function

as the confining potential and set β = 10 and the number of iterations 10 steps. The droplet

is initialised on top of the solid surface using a staircase approximation of a half circle with
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Table 9.1: Measured contact angles from simulations of a droplet on an ideal flat surface. The
absolute error percentage of the measurement is shown in parentheses.

Input contact angle 10◦ 30◦ 60◦ 90◦ 120◦ 150◦

Approach 1 9.4612 (5.38) 29.4780 (1.73) 59.7615 (0.39) 90.0709 (0.07) 119.9254 (0.06) 148.0855 (1.27)

Approach 2 (Quadratic) 9.9874 (0.12) 29.7678 (0.77) 60.2928 (0.48) 90.7793 (0.86) 120.3557 (0.29) 149.1951 (0.53)

a sharp interface. The typical equilibrium shape of the droplet on an ideal flat surface for

contact angles θ < 90◦ is shown in Fig. 9.7 (a). The solid lines in the figure show the interface

boundary between two fluids, Ci = Cj = 0.5, with i and j the two fluid components on either

side of the interface. It should be noted that the distortion of the interface boundary at the

three-phase contact line is due to the diffuse interface used in this method and will be avoided

when measuring the contact angle. We also show the spatial profile of each fluid component,

C1, C2 and C3, in the direction perpendicular to the solid surface in Fig. 9.7 (b). We note here

that the liquid phase, C2, also follows the tanh profile as expected.

Figure 9.7: (a) Equilibrium shape of the droplet on an ideal flat surface with a contact angle
of θ = 60◦. (b) Plots of fluid components C1, C2 and C3 along y position of a cross-section of
the system in panel (a) at x = Nx/2.

The measurement of the contact angle is done by fitting the liquid-gas interface line to a

circle. The comparison between the measured and the input contact angles for Approach 1 and

Approach 2 is listed in Table. 9.1. We note that both approaches result in a good agreement

with the analytical prediction for a wide range of contact angles with an absolute error less

than 2% except for the contact angle of θ = 10◦ using Approach 1. We suspect this is because

of the shifting of the solid interface boundary towards the gas phase, which affects the accuracy

of the contact angle measurement.

Next, we will investigate the wetting of a liquid droplet on a curved solid surface. Here, we
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Table 9.2: Measured contact angles from simulations of a flat liquid-gas interface on a circle
(2D) and a sphere (3D). The absolute error percentage of the measurement is shown in paren-
theses.

Input contact angle 10◦ 30◦ 60◦ 90◦ 120◦ 150◦

Circle (2D) 10.6188 (6.18) 29.8890 (0.37) 60.1791 (0.37) 90.0434 (0.048) 119.8375 (0.13) 150.1364 (0.09)

Sphere (3D) 13.1874 (31.8) 31.5318 (5.10) 60.9134 (1.52) 89.5949 (0.45) 119.1576 (0.70) 147.0104 (1.99)

place 2D and 3D spherical particles with a radius of 30 s.u. at the liquid-gas interface in the

computational domain of Nx×Ny = 100× 100 s.u. and Nx×Ny ×Nz = 60× 60× 100 s.u. for

the 2D and 3D cases, respectively. For the 3D spherical particle, we only simulate a quarter of

the sphere to reduce the computational cost and apply mirror boundary conditions on the left

and right boundaries and periodic boundary conditions at the bottom and top boundaries. For

the 2D case, we apply periodic boundary conditions at all simulation boundaries. We employ

Approach 2 with the quadratic polynomial function as the confining potential to create the

solid particle. We set the parameters β = 10 and the number of iterations to 10 steps. The

solid particle is initialised using a staircase approximation of a sphere with a sharp interface,

and the liquid phase is initialised after forming the solid particle.

Figure 9.8: Equilibrium shape of liquid wetting a circle (a) and sphere (b) solid particle with
a contact angle of θ = 60◦. In panel (b), only a quarter of the sphere is simulated with mirror
boundary conditions applied on the x and y directions.

The typical equilibrium shape of the liquid-gas interface for the 2D and 3D cases is shown

in Fig. 9.8, and the measured contact angles are tabulated in Table 9.2. The position of the

three-phase contact line at the solid particle depends on the contact angle. It is in the northern

hemisphere for θ < 90◦ and in the southern hemisphere for θ > 90◦. For θ = 10◦, the three-

phase contact line meets at nearly the pole of the sphere, and due to the diffuse interface, the
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Table 9.3: Comparison between the measured and the theory of the liquid-gas interfacial energy.
All values are given in the simulation unit.

Nx Ny Nz γlg Esim Etheory Error (%)

60 60 60 0.9428 3364.7700 3394.1125 0.86

40 60 40 0.9428 1495.4533 1508.4944 0.86

30 60 30 0.9428 841.1925 848.5281 0.86

Figure 9.9: Simulation setups for (a) liquid-gas, (b) liquid-solid, (c) gas-solid and (d) liquid-
solid liquid-gas interfacial energy tests.

accuracy of the contact angle measurement reduces, yielding a relatively large error, as can be

seen in the table.

9.2.2 Interfacial Energy Test

In this test, we will evaluate the interfacial energy of liquid-gas, liquid-solid, and gas-solid

interfaces. Theoretically, the interfacial energy between two fluids per unit length is given

by the surface tension (γmn) multiplied by the interfacial area (Amn), Emn = γmnAmn, where

subscripts m,n denote for fluid 1 and 2. Remember that we represent the solid as a fluid that

is ’frozen’ and unable to evolve. The simulation setup for each test is shown in Fig. 9.9. All

simulations in this test use mirror boundary conditions at all simulation boundaries. For the

liquid-gas interfacial energy test, one-half of the simulation domain is filled with liquid and the

other half is filled with gas (Fig. 9.9 (a)). No solid is used in the simulation. We use γlg =
√
8/9

and vary the area of the liquid-gas interface by varying the simulation domain. The interfacial

energy measured at the equilibrium is given by the energy of the bulk and squared gradient
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terms as in the free energy functional in Eq. (8.1). The results for different simulation domains

are listed in Table. 9.3. The measured liquid-gas interfacial energies are in good agreement

with the theoretical prediction.

For the liquid-solid and gas-solid interfacial energies, the simulation is set by initialising

the solid slab with a flat interface at the bottom wall (see Fig. 9.9 (b,c)). We then apply

Approach 2 using quadratic confining potential with β = 10 and the number of iterations =

10 steps in the first stage of the minimisation to create the solid wall with a diffuse interface.

For the liquid-solid interfacial energy test, the rest of the simulation domain is then filled with

liquid phase after the desired solid surface is created, and the system is then minimised until

equilibrium. For the gas-solid interfacial energy test, the equilibrium is reached after the first

stage of the minimisation because the simulation domain has already been filled with the gas

phase. Here, we vary the interfacial area, interfacial tension and contact angle. The results are

tabulated in Table. 9.4 and Table. 9.5 for the liquid-solid and gas-solid interfacial energy tests,

respectively.

Table 9.4: Comparison between the measured and theoretical values of the liquid-solid inter-
facial energy. All values are given in the simulation unit.

Nx Ny Nz θ γlg γls γgs Esim Etheory Error (%)

60 60 60 90◦ 0.9428 1.0000 1.0000 3620.3827 3600.0000 0.56

60 60 60 60◦ 0.9428 1.0000 1.4714 3620.3827 3600.0000 0.56

60 60 60 30◦ 0.9428 1.0000 1.8164 3620.6089 3600.0000 0.57

60 60 60 30◦ 0.9428 0.5000 1.3164 1838.15805 1800.0000 2.11

100 100 60 90◦ 0.9428 1.0000 1.0000 10056.5417 10000.0000 0.56

Table 9.5: Comparison between the measured and theoretical values of the gas-solid interfacial
energy. All values are given in the simulation unit.

Nx Ny Nz θ γlg γls γgs Esim Etheory Error (%)

60 60 60 90◦ 0.9428 0.5000 0.5000 1834.3022 1800.0000 1.90

60 60 60 150◦ 0.9428 1.5000 0.6835 2490.0572 2460.6123 1.19

60 60 60 60◦ 0.9428 0.5000 0.9714 3517.3286 3497.0562 0.57

60 60 60 30◦ 0.9428 0.5000 1.3164 4752.4404 4739.3876 0.27

60 60 60 30◦ 0.9428 1.0000 1.8164 6534.2116 6539.3876 0.07

We also test the combination of liquid-solid and liquid-gas interfacial energies. The simula-
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tion procedure in this test follows a similar manner as in the liquid-solid interfacial energy test,

except that only a part of the simulation domain is filled with the liquid phase, whereas the

rest is filled with the gas phase (see Fig. 9.9 (d)). The interfacial area of the liquid-solid and

liquid-gas interfaces is equal. We also vary the interfacial area, interfacial tension and contact

angle. The measured interfacial energies are tabulated in Table. 9.6. We also notice a good

agreement with the theoretical prediction confirming the validity of our model.

Table 9.6: Comparison between the measured and theoretical values of the gas-solid and liquid
gas interfacial energies. All values are given in the simulation unit.

Nx Ny Nz θ γlg γls γgs Esim Etheory Error (%)

60 60 60 90◦ 0.9428 1.0000 1.0000 6985.1511 6994.1125 0.12

60 60 60 60◦ 0.9428 1.0000 1.4714 6985.2004 6994.1125 0.12

60 60 60 30◦ 0.9428 1.0000 1.8164 6985.3788 6994.1125 0.12

60 60 60 30◦ 0.9428 0.5000 1.3164 5202.9277 5194.1125 0.17

60 60 60 30◦ 0.9428 1.5000 2.3164 8770.1817 8794.1125 0.27

9.2.3 Capillary Rise

We next study the problem of capillary rise of a liquid in an ideal smooth cylindrical tube.

Capillary rise is a fundamental wetting phenomenon and has been studied for decades [37, 43,

45]. The rise of liquid in a capillary tube is a result of the change in the total energy due to

interfacial tension and gravity,

∆E = ∆Algγlg +∆Alsγls +∆Agsγgs +∆Eg. (9.1)

Here, ∆Alg, ∆Als and ∆Ags are the changes in the liquid-gas, liquid-solid and gas-solid inter-

facial area between the initial and final states, respectively. ∆Eg is the change in gravitational

potential energy associated with the difference in liquid centre of mass height between the two

states. If we assume a dry capillary tube as an initial state, then we have ∆Ags = −∆Als.

According the geometry given in Fig. 9.10 (a), the changes of the interfacial area are given

by ∆Alg = π(r2c + h2m), ∆Als = 2πrchc and ∆Ags = −2πrchc. The change in gravitational

potential energy is given by ∆Eg = 1
2ρπr

2
ch

2
cg. Using Young’s equation to relate the interfa-

cial tensions with the wetting contact angle, the change in total energy in Eq. (9.1) can be
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Figure 9.10: (a) Capillary rise configuration to derive the rise height. (b) Typical simulated
rise height in a smooth cylindrical tube.

rewritten,

∆E = (π(r2c + h2m)− 2πrchc cos θ)γlg +
1

2
ρπr2ch

2
cg. (9.2)

Here, rc, hm, hc, ρ, and g are the tube radius, meniscus height, rise height, liquid density, and

gravitational acceleration, respectively. We will refer to the first term in Eq. (9.2) as the change

in the surface energy, ∆Esurface. The meniscus height, hm, can be calculated using the circular

arc approximation, yielding hm = rc(1 − sin θ)/ cos θ [150]. When the equilibrium is reached,

the liquid stops rising, and the change in the total energy goes to zero. The rise height, hc,

can be derived by minimising the change of the total energy with respect to hc, to obtain the

well-known Jurin’s Law,

hc =
2γlg cos θ

ρgrc
. (9.3)

In our simulations, we initialise a cylindrical tube with an inner radius of rc using a staircase

approximation of a hollow cylinder with a sharp interface. We then apply Approach 2 with

the Quadratic confining potential in the first stage of minimisation to obtain a smooth and

diffuse solid interface. We use β = 10 and set the number of iterations = 10 steps. After the

desired cylindrical tube is formed, we measure the interfacial energy of the systems to be used

as the interfacial energy of the initial state. We then initialise the liquid and allow the second

stage of minimisation to run until the equilibrium is reached. The interfacial energy of the

system is then measured again as the interfacial energy of the final state. In this simulation,

the gravitational force is given as a body force, Fb = ρg, and applied in the vertical direction
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Figure 9.11: (a) and (b) Comparison between simulated and analytical rise heights plotted
against contact angle and inner tube radius, respectively. The analytical prediction is taken
from Eq. (9.3). (c) and (d) The changes in the surface energy ∆Esurface and gravitational
potential energy ∆Eg obtained from simulation and calculated from Eq. (9.2) plotted against
contact angle, respectively.

after the liquid phase is initialised in the system. This gravitational force enters the total free

energy functional as an additional external energy term

Ψg =

∫
V
(fgC2z) dV, (9.4)

where fg is the gravitational force density. We use water as the rising liquid with properties:

ρ = 1000 kg m−3 and γlg = 0.0728 N m−1. The gravitational acceleration is g = 9.81 m s−2.

All of these physical parameters are then converted into simulation units via the gravitational

force density: fg = ρgγ′lgP
2/(γlgP

′2), where P and P ′ are the length scale of the capillary

tube in physical and simulation units, respectively, and γlg and γ′lg are the liquid-gas interfacial

tensions in physical and simulation units, respectively. We use these values in simulations:
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γ′lg =
√

8/9 s.u., P ′ = 100 s.u. and P = 10 mm. To reduce the computational cost, we only

simulate half of the cylinder and apply mirror boundary conditions. The typical simulated

capillary rise in a smooth cylinder tube is shown in Fig. 9.10 (b).

Figure 9.11 (a,b) show the measured rise height of liquid in a smooth cylinder tube for

different wetting contact angles and tube radii. The dependency of the rise height on θ and rc

is captured well by simulations, as shown by a good agreement with the analytical prediction

in Eq. (9.3). Furthermore, we also show the change in the surface energy, ∆Esurface, and

gravitational potential energy, ∆Eg, obtained from simulations for different contact angles and

compare them with the analytical prediction in Eq. (9.2), as shown in Fig. 9.11 (c,d). Our

energy calculations are in good agreement with the predictions. It should be noted here that

the simulated surface energies change are measured from the bulk and squared gradient terms as

in the free energy model, while the simulated gravitational potential energy change is obtained

from the gravitational force term in Eq. (9.4).

9.3 Applications

In this section, we will apply the frozen fluid method to more challenging cases, particularly

cases involving complex surface geometries. We will study the wetting of a liquid droplet on

superhydrophobic surfaces with different surface geometries.

Superhydrophobic surfaces are ubiquitous in nature and critical for many applications, as

reviewed in the Introduction part. The main feature of superhydrophobic surfaces is the rough-

ness of the surface, which can be in the form of nanostructure, microstructure or hierarchical

structures. These structured surfaces allow the liquid droplet to minimise contact with the

surface, resulting in the liquid droplet hanging on top of the surface roughness with air pock-

ets trapped underneath the droplet (see Fig. 9.12). This wetting condition is also known as

the suspended or Cassie-Baxter state. These structure surfaces lead to advantageous surface

properties, including high contact angle [151], low contact angle hysteresis [152] and low rolling

angle [153]. In some other cases, the liquid drop can penetrate the gap between the structures

resulting in a complete wetting, which is known as the Wenzel state. However, a large energy

barrier may prevent the liquid drop from penetrating and allow the droplet to stay in the

Cassie-Baxter state. The transition from the Cassie-Baxter to Wenzel states is a key factor for

some applications, such as coating and spraying processes, microfluidic devices and for protect-
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Figure 9.12: Schematic of a droplet undergoing a transition from a Cassie-Baxter state (left) to
Wenzel (right) on a 2-dimensional periodically patterned surface with a rectangular micropillar
geometry having width a, pillar spacing s, pillar height h and periodicity b. θCB and θW are the
apparent contact angle of the droplet on the structured structured surface at Cassie-Baxter and
Wenzel states, respectively, while and θ is the equilibrium contact angle on the corresponding
a flat surface. pl and pg are the pressure in the liquid and gas (surrounding air), respectively.
The enlarged view shows the liquid-gas interface underneath the droplet hanging between two
adjacent pillars in a Cassie-Baxter state and is used as the system setup in simulations.

ing electronic devices underwater, in which the design of the superhydrophobic surfaces should

be able to maintain the stability of the suspended state from transitioning to the Wenzel state

under an external force such as the liquid pressure [154, 155]. This will be our focus in this

study.

9.3.1 Droplet on 2-dimensional Micropillar-structured Surfaces

We start by studying a simple case of liquid drop deposited on a structured surface patterned

periodically with 2-dimensional cylindrical micropillars having pillar’s width (diameter) a, wall-

to-wall spacing s, height h and distance (pitch length) b (see Fig. 9.12). In this case, the wetting

transition can occur if the pressure difference is larger than the critical pressure that exists

across the liquid-air interface in the gap between any two adjacent pillars [154]. Mathematically,

the transition conditions in terms of the liquid pressure can be expressed as [58, 53]

∆p > ∆pc = −
2γlg cos θ

s
, (9.5)

where ∆p = pl − pg is the pressure difference between the liquid pressure pl and the gas

(surrounding air) pressure pg; γlg is the liquid-gas surface tension; θ is the equilibrium contact

angle of the droplet on the corresponding flat surface, and s = b− a is the wall-to-wall spacing

between two adjacent pillars. When this condition is satisfied, the droplet will transition to

a Wenzel state, otherwise, it will be in a Cassie-Baxter state. We define the critical pressure,

∆pc, as the pressure above which the wetting transition occurs.
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Figure 9.13: (a) and (c) Plots of critical pressure of a liquid deposited on top of 2-dimensional
cylindrical pillars as a function of contact angle and pillar’s wall-to-wall spacing, s, respectively.
The solid line is the analytical prediction in Eq. (9.5). (b) The snapshots of the equilibrium
shape of liquid-gas interface hanging in the gap between two cylindrical pillars at the critical
pressure ∆pc for θ = 60◦ (top) and θ = 112◦ (bottom).

We simulate a liquid layer deposited on top of two pillars separated by a gap s instead

of simulating a whole droplet on a patterned surface (see inset in Fig. 9.12). We make this

approximation assuming that the droplet size is much larger than the pillar size and spacing.

In our simulations, we apply Approach 2 using Quadratic confining potential with β = 10 and

the number of iteration = 10 steps to create the solid geometry as in the inset in Fig. 9.12.

The pillar width is set to be 40 s.u. and the pillar height is set to be tall enough so that the

hanging liquid-gas interface does not touch the bottom wall at the critical pressure. A liquid

with a flat liquid-gas interface is initialised on top of the pillars with a thickness of 20 s.u.. The

system is fitted into a simulation box of Nx ×Ny = 160× 200 s.u..

We incorporate pressure in the system by applying a pressure difference between the liquid

and gas phase, ∆p, in the free energy functional in Eq. (8.7). ∆p is varied with a small increment

for every simulation until it exceeds a critical pressure. In order to obtain an accurate critical

pressure, we apply a binary algorithm around the critical pressure value with a tolerance level

of 10−4.

Figure 9.13 (a) shows the critical pressure dependency on the equilibrium contact angle θ.

As predicted by Eq. (9.5), the critical pressure is linearly dependent on cos θ. For θ < 90◦,

the critical pressure is negative, indicating that the energy barrier is low and the transition to

the Wenzel state is energetically favourable. On the contrary, the positive critical pressures for

θ > 90◦ suggest the system has a higher energy barrier, making the transition not energetically

favourable to occur unless some external perturbations from the liquid pressure are added to the
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system. The latter condition is more suitable for the design of superhydrophobic surfaces. The

equilibrium shapes of the liquid-gas interface for θ = 60◦ and θ = 112◦ at the critical pressure

are shown in Fig. 9.13 (b), in which concave and convex meniscii occur due to the liquid-solid

surface tension, respectively. At the transition (∆p > ∆pc), the hanging liquid-gas interface

drops immediately to the bottom of the surface, filling the whole gap between the pillars. We

notice that this Wenzel state applies for all simulated θ. We also show the dependency of the

critical pressure on the pillar spacing in Fig. 9.13 (c). As the separation increases, the critical

pressure reduces making it more favorable for the liquid to transition to a Wenzel state. The

simulated critical pressure is in good agreement with the prediction.

We now look at the case of a droplet deposited on a structured surface patterned periodically

with 2-dimensional truncated cone micropillars with pillar’s top diameter and height, a and h,

respectively, periodicity b and tilt angle α (see Fig. 9.14 (a)). Here, unlike the 2-dimensional

cylindrical pillar, the vertical solid walls are tilted by an angle of α with α < 90◦ making

the pillar wall-to-wall spacing s depends on the height of the hanging liquid-gas interface, hi.

Geometrically, the pillar wall-to-wall spacing is given by s = b − a − 2(h−hi)
tanα . Since s varies

with hi, this suggests that the transition from a Cassie-Baxter to a Wenzel state does not

occur abruptly as in the 2-dimensional cylindrical pillar case. At the top of the gap between

the pillars, the required pressure for the interface to slide is the smallest due to the largest

wall-to-wall spacing. As it is closer to the bottom, the wall-to-wall spacing decreases and the

required overpressure increases. It means that the pressure needs to be increased in order for

the transition to occur. The pressure difference in the gap between 2-dimensional truncated

cone micropillars can be expressed mathematically as

∆p = −
γlg sin (θ + α)

s
. (9.6)

From Eq. (9.6), one can observe that, for the tilt angle α < 90◦, ∆p is negative for θ < 90◦

and positive for θ > 90◦. However, when the truncated cone is inverted (α > 90◦) resembling

a reentrant geometry, ∆p is positive for not only θ < 180◦ but also for θ < 90◦. This allows

such geometry to maintain a Cassie-Baxter state for lower contact angles.

We perform the simulations in this case in a similar manner to that in the 2-dimensional

cylindrical pillar case. We show the evolution of the liquid-gas interface at the gap between

the pillars at an increasing ∆p for α = 80◦ and θ = 112◦ in Fig. 9.14 (b). Here, we observe
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Figure 9.14: (a) Illustration of the liquid interface in between two truncated triangular pillars.
(b) Snapshots of the liquid-gas interface at increasing pressure difference ∆p. (b) Plot of the
hanging liquid-gas interface height, hi, as a function of ∆p. The solid line is the analytical
prediction.

the pinning of the liquid-gas interface at the top edge of the pillars at small ∆p. As ∆p is

increased, the liquid-gas interface starts depinning and drops gradually. The transition to a

Wenzel state occurs very close to the bottom of the gap. We then measure the heights of the

hanging liquid-gas interface for every increment of ∆p and plot them in Fig. 9.14 (c). We find

a good agreement with the theoretical prediction in Eq. (9.6). It should be noted here that,

because of the pinning, the heights of the hanging liquid-gas interface at small ∆p are omitted

from the plot.

9.3.2 Droplet on 3-dimensional Micropillar-structured Surfaces

Having the simulation and theoretical prediction in 2D established, we now extend our investi-

gation to 3-dimensional cases. We consider 3D structured surfaces patterned with a hexagonal

array of cylindrical or truncated cone micropillars with pillar’s top diameter a, height h and

distance (pitch length) b, as shown in Fig. 9.15 (a). Due to its periodicity, we can consider a

unit cell of the hexagonal array that can be taken as a rectangular array with a central pillar

having the same adjacent pillar spacing. In our simulation, we reduce this unit cell further

by considering half of the unit cell and applying mirror boundary conditions at all simulation

boundaries to reduce the simulation cost. We follow similar procedures to create the solid

structure and use the same simulation parameters as in the 2-dimensional cases.

Figure 9.15 (b,c) show the snapshots of the equilibrium shape of the liquid-gas interface

at the critical pressure for θ = 110◦ in a 3D unit cell of cylindrical and truncated pillars,

respectively. For the truncated cone pillar, we set the tilt angle of the pillar’s side wall to
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Figure 9.15: (a) SEM image of a 3-dimensional structured surface patterned with a hexagonal
array of cylindrical or truncated cone micropillars with pillar’s top diameter a, height h and
distance (pitch length) b. The enlarged view shows a unit cell of the array viewed from the top
and a portion of the array used in the simulation (dashed line). (b) and (c) Snapshots of the
equilibrium shape of the liquid-gas interface at the critical pressure for θ = 110◦ in a 3D unit
cell of cylindrical and truncated pillars, respectively. The enlarged views show the 2D cross-
sections of the liquid-gas interface of the corresponding unit cells. (d) and (e) Contour plots
of the reduced critical pressure measured from simulations, ∆prc, against variations of contact
angle θ and pitch/diameter ratio b/a for cylindrical and truncated pillars, respectively. (f) and
(g) Measured critical pressure in a 3D unit cell compared with the critical pressure predicted
using a 2D model plotted as a function of 1/s, where s is the pillar spacing for cylindrical and
truncated pillars, respectively.
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be α = 80◦. Similar to the 2-dimensional case, we observe an abrupt transition of the liquid

from the suspended (Cassie-Baxter) to the Wenzel state for the cylindrical pillar structure

when the pressure difference ∆p surpasses the critical pressure. For the truncated cone pillar

structure, a gradual transition is observed in which the liquid-gas interface gradually descends

as ∆p increases until it collapses to let the liquid fill the whole gap between the pillars when

∆p > ∆pc. As we define the critical pressure before which the liquid-gas interface collapses, the

diffuse interface width may influence the exact value of the critical pressure. In Fig. 9.15 (b,c),

we also show 2D cross sections of the liquid-gas interface of the corresponding unit cells between

two adjacent pillars. It can be seen that for the truncated cone pillar structure, the liquid-gas

interface at the critical pressure is very close to the bottom of the gap.

The effect of the contact angle θ and pitch length to diameter (b/a) ratio on the critical

pressure of the liquid on these structures is shown in Fig. 9.15 (d,e). Here, the critical pressure

∆pc is divided by (γlg/b) to make ∆prc dimensionless. We choose the b/a ratio to describe the

effect of the pillar wall-to-wall spacing on the critical pressure. Low b/a means small pillar

wall-to-wall spacing, and vice versa. In our simulations, we keep the value of the pitch length

constant and vary the pillar’s top diameter. From the figures, we observe the similarity in the

trend of the critical pressure for both geometries: high critical pressures are obtained for high

θ and low b/a, while low critical pressures for low θ and high b/a. For a given θ, the critical

pressure decreases as b/a increases. For a given b/a value, the critical pressure increases as θ

increases.

The dependency of the critical pressure on the contact angle and pillar’s wall-to-wall spac-

ing (via b/a) can be inferred from the 2-dimensional prediction. While the contact angle in the

3D case is the same as in the 2D case, determining the effective pillar wall-to-wall spacing in

3D is not as straightforward as in 2D. Since the unit cell of the hexagonal array is composed

of a rectangular array, two adjacent pillars along the width side have different spacing from

those along the length side. These two spacing length scales contribute equally to the effective

wall-to-wall spacing. To obtain the effect of the wall-to-wall spacing quantitatively, we com-

pare the measured critical pressure from simulations in the 3D unit cell with the analytical

prediction using 2D models as in Eq. (9.5) and Eq. (9.6) for cylindrical and truncated cone

pillar geometries, respectively. We then plot ∆pc/(−2γlg cos θ) and ∆pc/(−γlg sin(θ+ α)) as a

function of 1/s for different contact angles in Fig. 9.15 (f,g), respectively. Here, s is the pillar

wall-to-wall spacing along the width side of the rectangular unit cell, or s = b− a. We observe
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Figure 9.16: (a) Schematic of a liquid drop on top of mesh structure viewed from the top.
The enlarged view shows a unit cell of the mesh with a grid size (pitch length) b, width a
and thickness h. The bottom right figure shows a 2-dimensional cross-section of the unit cell
used as a simulation setup with a layer of liquid placed on top of the grid. Nx and Nz are the
simulation domain sizes in the x- and z-directions, respectively. pl and pg are the pressures
in the liquid and gas phases, respectively. (b) A snapshot of the typical equilibrium shape of
the liquid-gas interface in a mesh structure under the critical pressure, ∆pc (here, we show for
θ = 120◦).

that, for both geometries, all y-axis values for all θ collapse into a single curve. A polynomial

fitting of these data shows that the critical pressure in 3D case deviates slightly from the 2D

case. For the cylindrical pillar structure, we find ∆p3Dc /∆p2Dc ≈ 1.04 − 6.19/s, while for the

truncated cone pillar structure, we find ∆p3Dc /∆p2Dc ≈ 0.91− 2.97/s. These relations allow us

to predict the critical pressure on such geometries for any b/a ratio.

9.3.3 Droplet on Mesh Structures

The final case we consider for the frozen fluid application is a liquid droplet on a mesh structure.

Here, the mesh structure is formed by a 3-dimensional flat surface patterned with an array of

square holes, as shown in Fig. 9.16 (a). The array is characterised by the grid size (pitch length)

b, width d and thickness h. In the computational domain, a unit cell of the mesh is used in

the simulation and a layer of liquid is placed on top of the mesh rather than a droplet. The

periodic boundary condition is applied in the x- and y-directions, whereas the mirror boundary

condition is imposed in the top and bottom boundaries. We follow a similar method and use

the same simulation parameters in applying the confining potential to create the solid structure

as in the previous section.

A typical equilibrium shape of the liquid-gas interface on a unit cell of the mesh under a

critical pressure is shown in Fig. 9.16 (b), for θ = 120◦. Here, the critical pressure is defined

as the pressure above which the liquid penetrates the hole of the mesh completely. From the
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Figure 9.17: Snapshots of the equilibrium shape of the liquid-gas R at a 2-dimensional cross-
section of the mesh under different pressures ∆p showing a Cassie-Baxter to Wenzel state
transition. The top row is for θ = 60◦, while the bottom row is for θ = 120◦.

figure, it can be seen that the liquid-gas interface slightly slides to the bottom side of the grid

and forms a large bulge before the transition to a collapsed state. A more detailed transition

mechanism can be seen in Fig. 9.17, where we compare the evolution of the liquid-gas interface

at an increasing ∆p for θ = 60◦ (top row) and θ = 120◦ (bottom row).

Let us focus on a low contact angle, θ = 60◦. For a micropillar-structured surface, the

critical pressure for θ = 60◦ will be a negative value as predicted by Eq. (9.5). At this critical

pressure, the liquid-gas interface will have a negative curvature (see Fig. 9.13 (b)). When the

pressure is greater than the critical pressure, the liquid will overcome the energy barrier in

the gap between the pillars to make the transition to a collapsed state, filling the whole gap

between the pillars. Similarly, in the mesh structure, the liquid fills the gap between the grid

of the mesh at ∆p < 0. However, a large gas phase underneath the mesh creates another

energy barrier for the liquid, causing the liquid-gas interface to be pinned at the bottom edge

of the grid. At ∆p = 0, due to the pressure balance between the liquid and gas phases, the

interface curvature becomes zero. As ∆p increases, the liquid-gas interface sags at the bottom

sides of the grid. This is accompanied by an increase in the liquid-gas interface curvature until

∆p reaches a critical value at ∆pc. Above ∆pc, the energy barrier is overcome, and the liquid

makes the transition to a completely collapsed state, allowing the sagging liquid-gas interface

to collapse. At this point, the liquid penetrates the hole of the mesh completely.

For a large contact angle, in this case θ = 120◦, the liquid-gas interface is pinned at the top

edge of the grid with a zero curvature at ∆p = 0. As seen for the micropillar-structured surface,
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Figure 9.18: (a) Contour plot of the dimensionless critical pressure, ∆prc as a function of the
grid size-to-width ratio, b/a, and the contact angle θ. (b) The critical pressure is plotted
against 1/s for different θ and compared with the analytical model in Eq. (9.7).

the critical pressure for θ = 120◦ would be at a positive value, and, at this point, the liquid-gas

interface would be around the top of the pillar. As ∆p increases, the first depinning mechanism

starts to occur, in which the liquid-gas interface depins from the top edge of the grid, slides to

the bottom of the grid, and gets pinned again at the bottom edge of the grid. At this point,

the liquid has overcome the energy barrier in the gap between the grid but cannot pass through

due to the energy barrier created by the gas underneath the structure. As ∆p keeps increasing,

the three-phase contact line eventually slides around the edge because the liquid-gas interface

curvature starts to increase. Once the pressure difference exceeds the critical pressure, the

liquid penetrates through the mesh completely, and the liquid-gas interface collapses.

Finally, we investigate the effect of the grid geometrical parameters through the grid size-

to-width ratio, b/a, on the critical pressure for different contact angles, as shown in Fig. 9.18.

To vary b/a, we vary the width a and keep the grid size p constant. In Fig. 9.18 (a), the critical

pressure is presented as a dimensionless reduced critical pressure ∆prc (∆prc = ∆pc/(γlg/p)).

From the contour plot, it can be seen that the critical pressure reduces as b/a increases (the

hole size increases) and increases with the contact angle. To predict the dependency of the

critical pressure on the hole size (via the gap distance s = b− a) and the contact angle, we use

the Laplace pressure equation, ∆p = γlg/R, where R is the radius of the liquid-gas interface

curvature. By relating R to the gap distance s, the critical pressure for the droplet to penetrate
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the mesh can be approximated by

∆pc =
2γlg cos (90

◦ − θ)

s
. (9.7)

where the contact angle θ is measured against the horizontal plane of the bottom grid. The

comparison between the simulation and the analytical prediction using this model is shown

in Fig. 9.18 (b). We note here that the analytical predictions plotted in this figure use some

fitting parameters due to the square geometry of the hole. It can be seen that the critical

pressure is linearly dependent on 1/s.

9.4 Discussion

In this part of the thesis, we proposed a new method to study wetting phenomena on com-

plex geometry surfaces using a reduced ternary phase-field-based model called the frozen fluid

method. In this model, one of the fluid components is treated as a solid phase and the rest as

liquid and gas phases. The main advantage of using this model is that it allows us to construct

highly complex surface structures with a smooth and diffuse interface.

We began by elaborating on the free energy function for the ternary fluids and elucidating

the confining potentials applied to create a desired solid geometry. In order to obtain a smooth

solid interface with a desired interface profile, we carefully tuned the coefficient β in the con-

fining potential term and truncated the number of iterations during the energy minimisation

routine. These two parameter criteria were carefully examined through an objective function

against geometries with different features to find their optimum values.

In order to validate the present method, we considered several benchmark problems, includ-

ing the contact angle test for a flat and curved solid interface, the interfacial energy test and

the capillary rise problem. The numerical results are in good agreement with the analytical

solutions. We finally applied the frozen fluid method to more challenging complex geometries

where we studied wetting transition in different superhydrophobic surfaces.

In addition to enabling us to construct highly complex surface structures, the frozen fluid

method also has some other advantages. It is easy to implement in the phase-field model and

eliminates the complexity of the wetting condition on the solid surface because one only needs

to assign a proper surface tension between the fluid phases. Moreover, the diffuse interface

of the solid has its own advantage − enabling facile interactions between fluids and complex
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surface topographies [150]. Although not discussed in the applications, the frozen fluid method

also allows us to adjust the chemical properties of the solid easily. This is useful if we want to

study the effect of chemical patterning on the wetting of complex geometry surfaces.

There are some limitations of this method. As we have seen earlier in this chapter, the

effect of the confining potential on the corner feature of the solid makes the sharp corner to be

widening/rounding. In addition, due to the diffuse interface used in this model, a solid geometry

has to be large enough to accommodate the bulk and interface regions of the solid, which, in

turn, makes the simulation domain necessarily large. Furthermore, the model developed in this

chapter is limited to the study of quasi-static problems.

In the future, it is interesting to extend the application of this frozen method to investigate

the wetting phenomena in many more complex geometry surfaces, such as porous media [156,

157], bio-inspired structured surfacecs [158, 159], etc. In addition, the extension of this model

to quarternary fluids will allow us to study the wetting phenomena of ternary fluid on complex

geometry surfaces. Furthermore, it will be interesting to couple this model with a dynamic

method such as the Lattice Boltzmann method to enable the study of liquid dynamics on

complex geometry surfaces.



Part V

Conclusions and Outlook
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Chapter 10

Conclusions

In this thesis, we studied different wetting phenomena in structured surfaces using Lattice

Boltzmann and phase-field-based energy minimization methods. For the latter, we extended the

method by incorporating effective long-range interactions, which allowed us to model pseudo-

partial wetting scenarios; and by developing the frozen fluid method, which allowed us to

simulate wetting phenomena on highly complex geometry surfaces.

In Part II, we studied the dynamics of hemiwicking of liquid into structured surfaces pat-

terned with square and face-centred/hexagonal arrays of micropillars using the Lattice Boltz-

mann method. A detailed presentation of the single-phase Lattice Boltzmann method was

done in Chapter 4. We have validated our method by performing a simple Poiseuille flow

test of liquid flowing between two parallel horizontal flat walls under a constant body force

and pressure gradient. In Chapter 5, we developed an analytical model to predict the hemi-

wicking coefficient by balancing the capillary driving force and a viscous force and solving the

Navier-Stokes equation for representative channels. We discussed different ways of approxi-

mating the representative channel for square and face-centre/hexagonal arrays, from which the

equivalent channel width is derived, including volume equivalent, volume-area equivalent and

pillar face-to-face spacing approximations. In addition, we proposed a hydraulic-electric circuit

analogy to approximate the representative channel for face-center/hexagonal arrays. We have

demonstrated that the theoretical predictions for square arrays of micropillars using the volume

equivalence approximation showed an excellent agreement with the simulation results and im-

proved accuracy compared to previously proposed models. However, the model was observed to

break down for extreme cases where the array is too dense or sparse. Moving on, we have also

shown the applicability of the hydraulic-electric circuit analogy approach in approximating the
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equivalent channel for symmetric and asymmetric face-centre/hexagonal array cases. For the

former, implementing this approach using a parallel cell was found to show a good agreement

with simulation results for moderately dense arrays, whereas using series and a combination of

parallel and series cells showed a good agreement for low- and high-dense arrays, respectively.

For the latter, the parallel cell approach was found to be applicable for the case where the mid-

pillar is moved sideways if the unit cell is approximated by the face-to-face approach. When

the mid-pillar is displaced towards the propagation direction, we found a good agreement for

the parallel-series approximation, particularly for high-density arrays.

In Part III, we presented systematic numerical studies of liquid filling in grooved surfaces

using a phase-field-based energy minimization method. We detailed the formulation of the

method and its implementation in Chapter 6. In particular, our model includes short-range and

long-range (attractive and repulsive) interactions. We have also introduced a new polynomial

function in the interaction energy density, which improved the accuracy of the simulation. In

Chapter 7, we first showed the effect of long-range interactions on a liquid thin film on a flat

surface, which leads to three different wetting conditions: complete, partial and pseudo-partial

wetting conditions. We then showed how the liquid filling occurs on groove surfaces for those

wetting conditions over a pressure range. We have demonstrated that, while for all cases, the

liquid filling process occurs over three stages, namely pre-filling, capillary filling, and post-

filling, the liquid filling behaviour of each wetting condition is different. The complete wetting

case is characterised by the absence of contact line pinning and hysteresis, whereas in the partial

and pseudo-partial wetting cases, the hysteresis behaviour is prominent due to the coexistence of

two metastable states over a pressure range. Furthermore, we have also demonstrated that the

critical pressure of liquid filling depends on the groove width, in agreement with the theoretical

predictions for both partial and complete wetting cases. For the pseudo-partial wetting case,

we found that the filling transition can display a number of distinct morphological pathways.

We then turned our interest to the study of the wetting of liquid on complex geometry

surfaces in Part IV. To begin with, we introduced a new ternary-fluid-based phase-field model

in the energy minimization method, namely the frozen fluid method, in Chapter 8. Unlike the

traditional phase field model, the frozen fluid method treats one of the fluid phases as a solid

phase, while maintaining the thermodynamics of the three fluid phases. We also proposed two

approaches to construct any solid geometry as desired with a smooth and diffuse interface,

any of which, if implemented with the suitable parameters, would result in the expected solid
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interface. To validate this new method, we performed several benchmarking tests and compared

the results with analytical predictions, as detailed in Chapter 9. Our results showed that

the frozen fluid method is applicable to different types of solid geometry, including surfaces

textured with cylindrical and truncated cone pillars and mesh geometry. We then applied this

new methodology to more challenging complex geometries, where we investigated the wetting

transition in different superhydrophobic surfaces.



Chapter 11

Future Outlook

In this chapter, I will highlight some potential directions for future works building on from this

thesis.

11.1 Dynamics of Liquid Filling on Structured Surfaces

In Part III, we have demonstrated the numerical study of liquid filling on a structured surface

by taking into account the solid-liquid intermolecular interactions. The method used in this

study only captures the quasi-static morphology of the liquid-gas interface on such surfaces

upon a variation of pressure difference. While it gives an insightful understanding of the liquid

filling behaviour, the dynamics of liquid under non-equilibrium conditions are still lacking.

The understanding of how liquid dynamics on structured surfaces is important for various

applications, such as self-assembly, coating and microfluidic devices [160]. In addition, it could

also give insights into understanding the hydrodynamics in microscopic scales, such as the

hydrodynamic slip [161]. Therefore, it is interesting to extend the phase-field model presented

in this work into a dynamics method, such as the Lattice Boltzmann method.

The Lattice Boltzmann method is proposed because it can accommodate the free energy

functional model used in the phase-field energy minimisation method. This makes it easy

to incorporate the contribution of the solid-liquid interactions (either short-range or long-

range interactions) in the method. One way to do this is by employing the so-called Guo

forcing method [162], in which the solid-liquid interaction contributions enter the dynamic

equation (via the lattice Boltzmann equation) through an external force. Once the solid-liquid

interaction potential is formulated, it will be used to derive the chemical potential, which will
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Figure 11.1: Lattice Boltzmann simulation results with the long-range solid-liquid interactions.
(a) Liquid filling states on a grooved surface for pseudo-partial wetting case. (b) Droplet in
clamshell (left column) and barrel (right column) morphologies. Adapted from [163].

enter the Guo forcing term.

An example is done by Ref [163], in which the long-range potential is implemented in the

Lattice Boltzmann method to study the dynamics of a pseudo-partial wetting droplet on a fibre.

In this work, the author first shows the morphology of liquid filling on a grooved surface in the

pseudo-partial wetting state, as shown in Fig. 11.1 (a). This figure demonstrates the similarity

with the one captured by our method in Chapter 7. The author then shows a droplet in

clamshell and barrel morphologies sitting on a fibre in pseudo-partial wetting (Fig. 11.1 (b)).

11.2 Liquid Wetting and Dynamics on Bio-inspired Structures

In Part IV, we have applied the frozen fluid method to explore superhydrophobic surfaces

with different pillar geometries and patterns and investigated the wetting transition across

these geometries. Such surfaces hold significant promise for various applications due to their

relatively simple fabrication process. However, natural superhydrophobic surfaces exhibit far

more complexity, offering intriguing properties as a result. Take, for example, a Salvinia

plant whose leaf surfaces have eggbeater-like hydrophobic microhairs topped with hydrophilic
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Figure 11.2: (a). Salvinia plant and its eggbreaker-like structured surfaces. Adapted from [164].
(b) Frozen fluid method simulation on a Salvinia-inspired structure.

tips (Fig. 11.2 (a)) [164]. This combination of hydrophobic and hydrophilic surfaces offers

superhydrophobicity alongside strong adhesion to water [165], presenting great potential for

applications such as water collection in the desert, lossless micro-liquid manipulation, and ship

drag-reduction, among others [158, 166, 167].

The frozen fluid method could be a great tool for this application. Not only does it allow

us to create such complex geometry in simulations, but it also enables precise control over

the chemical properties of the surface, allowing for the coexistence of superhydrophobic and

hydrophilic properties (Fig. 11.2 (b)). Using this method, we can study the behaviour of

liquids (or droplets) deposited on this structure and the chemical durability of the structure

underwater.

Furthermore, another interesting application of the frozen fluid method is the study of

directional liquid transport on leaf-like structured surfaces, inspired by the leaf structure of

Araucaria plant. The Araucaria leaf consists of 3-dimensional ratchets with transverse and

longitudinal reentrant curvatures (Fig. 11.3 (a) (top)). Recently in [159], it was reported that

this structure allows low-surface-tension liquids to spread in a pathway along the ratchet-

tilting direction (forwards spreading), whereas high-surface-tension liquids flow in the opposite

direction (backwards spreading) (Fig. 11.3 (a) (bottom right)). This unique behaviour has

inspired researchers to create the so-called Araucaria leaf-inspired surface (ALIS) to understand

the mechanisms behind these liquid transport properties and their applications. By varying

the tilting angle of the leaf structure α and the liquid contact angle θ, it was shown that the
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Figure 11.3: (a). Top: Araucaria leaf and its structural characteristic of the ratchet arrays.
Bottom right: Forward (left) and backward (right) spreadings of liquids with different contact
angles. Bottom left: Phase diagram for the directional steering of liquid transport. Adapted
from [159]. (b) Frozen fluid method simulations for the liquid spreading on leaf-structured
surfaces.

liquid can exhibit forward, backward and bidirectional spreadings depending on α and θ, as

shown in the phase diagram in Fig. 11.3 (a) (bottom left).

We have carried out some preliminary investigation on this study by performing simulations

on liquid propagation in similar leaf-structured surfaces (Fig. 11.3 (b) (top)). While the frozen

fluid method only captures the quasi-static behaviour of the liquid, we can also get an insightful

understanding of the mechanisms of the liquid propagation by slowly increasing the liquid

volume. This enables us to reproduce the forward, backward and bidirectional spreadings of

liquid with variations of α and θ. In Fig. 11.3 (b) (bottom), we show snapshots of the forward

spreading of liquid in leaf-structured surfaces at a variation of liquid volumes for α = 45◦

and θ = 60◦. For future work, it is interesting to study the effect of structure geometrical

parameters on liquid transport in order to get a full understanding of the liquid transport

mechanisms and also to optimise the ALIS design.

In order to get full dynamics of liquid spreading on leaf-like structured surfaces, it is also

interesting to combine the frozen fluid method into a dynamic method like the Lattice Boltz-

mann method. Of course, the Lattice Boltzmann suitable for this purpose is a ternary fluid

Lattice Boltzmann method. While the main ingredient in the frozen fluid method is the same

as in the Boltzmann method (which is the free energy functional), we still need to consider how
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to "freeze" one of the phases as a solid and solve the appropriate equations of motion (such as

Cahn-Hilliard and Navier-Stokes equations). A similar method has been recently reported in

literature [168].
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