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Towards precision measurement with trapped hydrogen atoms
Joseph P. Scott

Abstract

The hydrogen atom (H) is the most theoretically well-understood atomic system of all;

boasting analytic solutions to both the Schrödinger and Dirac equations, and calculable

QED corrections. As such, precision spectroscopy of H promises to be an excellent probe

of fundamental physics, particularly for low-energy tests of QED and fifth force searches.

Currently, the H spectral data-set is plagued by internal tension, expressed in the proton

charge radius puzzle. There is significant evidence to suggest that this tension is at least

partly a result of systematic differences between measurements. Optical trapping has led

to significant advances in measurements of other atoms, particularly with the development

of optical lattice clocks, where systematics related to atomic motion are tightly controlled.

This thesis is concerned with the potential application of optical trapping to precision H

spectroscopy towards a resolution of the proton charge radius puzzle. In service of this, it

considers the effects of an off-resonant field upon a spectroscopic measurement — taking a

potential 1S–2S lattice clock as an example — and whether the proven route to BEC can

lead to a Mott insulator (MI) of H that is suitable for spectroscopy. This thesis describes

new software for calculating atomic polarisability and atom-photon scattering rates of H S-

states; reports new limits on the operation of a H lattice clock, dominated by multi-photon

ionisation of the 2S state; and, for the first time, derives the conditions for producing a

unitary filling MI of H.

Supervisors: Dr. David Carty and Prof. Matthew P. A. Jones
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NOMENCLATURE

Mathematical notation

Lb
a(x) — Associated Laguerre polynomial, given in the Rodriguez representation [3]:

Lb
a(x) =

a∑
m=0

(−1)m

 a+ c

a−m

 xm

m! . (1)

Ya,b(θ, ϕ) — Spherical harmonics. As is usual in atomic physics, I follow the Condon and

Shortley phase convention, specifically:

Y1,±1(θ, ϕ) = ∓
√

3
8π sin θe±iϕ, and Y1,0(θ, ϕ) =

√
3

4π cos θ. (2)

Unit vectors are denoted with a “hat” and quantum mechanical operators in Fraktur script:

e.g. ĝ is a unit vector, while g would be a vector operator.

Units

There are two main system of units which will be relevant for this thesis:

The S.I. system of units. Most reported values in this document are given in S.I.

units [4] (with the notable exception of atomic polarisability) and are always reported

with the appropriate unit labelled.

Atomic units It is often convenient to work within a system of units which are natural

atomic scales. Throughout this thesis, I make significant use of the atomic units system

(see [5, 6]): particularly in chapters 2, 3 and the start of chapter 4, where it is used

for all mathematical expressions unless otherwise stated. It should be noted that these

units result in the suppression of factors of ℏ, e, and me as well as giving the relations

αFS × c = 1 and 4πϵ0 = 1. The energy scale is given by the Hartree, Eh.
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D deuterium
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FWHM full width half maximum
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H̄ anti-hydrogen

MI Mott insulator
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Chapter 1

INTRODUCTION

The theoretical structure of hydrogen (H) is the most well understood of any atom [7,8]. As a

two-body system, it permits exact treatment in both non-relativistic and relativistic quantum

mechanics with analytic solutions of the Schrödinger [9] and Dirac [10] equations, respectively.

Furthermore, corrections from quantum electrodynamics (QED) are calculable to arbitrary

order. As such, the Standard model (SM) structure of H can be expressed in a single (mostly

analytic) function of the quantum numbers, dimensionless fundamental constants (such as the

fine structure constant αFS etc.), and two parameters: the proton charge radius rp and the

Rydberg constant R∞ [8, 11–13]:

En,l,j,F = fn,l,j,F (rp, R∞, αFS...). (1.1)

The advent of high precision laser spectroscopy has allowed this structure to be probed to finer

resolutions than ever before [14,15]; enabling spectroscopic tests of bound state QED [16,17] and

the possible observation of low energy SM effects such as the Neutrino force [18,19]. The 1S–2S

transition has famously been measured with a fractional uncertainty of just 4.2 × 10−15 [20],

and the complete H data-set includes a number of gross state frequency intervals that have been

measured to experimental uncertainties < 10 kHz [21–34]. This high-precision spectral data-set

is an essential component in the the CODATA recommendations of both rp and R∞ [11–13].

As it stands, the current H spectral data-set is in serious tension, both internally [13, 34] and

with the results of muonic H [35] spectroscopy and electron scattering experiments [36]. This

is often discussed in terms of the so-called “proton charge radius puzzle” [37], but it equally

concerns an inconsistency in the value of the Rydberg constant. There is mounting evidence

to suggest that this tension may relate, at least in part, to the effects of physics beyond the

SM [38–40]. An important class of new physics theories permit the (effective) exchange of

hidden sector Bosons between the electron and the proton: so-called “fifth-force” theories [41].

The resultant energy shifts can be observed in precision spectroscopy, allowing for powerful

bounds of the fifth-force parameter space [17,18,38–40,42–44]. Recent global fits of the spectral

1



1. Introduction

data-set demonstrate that internal tension can be eased, but not completely resolved, by the

introduction of such fifth forces [33,39].

New physics theories cannot account for the disagreement between measurements of the same

frequency interval. The most prominent example of this is the disagreement between two recent

measurements of the 1S–3S transition [30,32]. These discrepancies must be a result of uniden-

tified and uncontrolled systematic differences between experiments. Modern H spectroscopy

experiments use cryogenic atomic beams, where systematic uncertainty is dominated by the

effects of atomic motion (e.g. the second order Doppler (SOD) shift) and complex line-shape

analysis is always needed to extract the transition frequency (see, e.g. supplementary inform-

ation of [33]). It is unclear how pervasive such systematic differences are in the data-set and

how much they contribute to the proton charge radius puzzle.

In recent years, frequency measurements in heavier atoms have been revolutionised by the use of

ultra-cold, optically trapped samples. At the epicentre of this revolution is the optical lattice

clock (OLC) [45–49], which can now operate with precision surpassing that inherent in the

definition of the SI section [50]. Here, atoms are tightly confined in magic wavelength optical

lattices, and motional effects are resolved into independent side-band signals [45]. Mimicking

this controlled atomic motion in H is essential for identifying systematic contributions to the

proton charge radius puzzle and paving the way to more useful bounds on new physics.

An OLC has already been proposed for improved 1S–2S spectroscopy in anti-hydrogen (H̄) [51],

which is currently conducted in a large, flat-bottomed magnetic trap with low anti-atom num-

bers [52,53]. Direct comparison between the spectra of H and H̄ offers a powerful test of CPT

symmetry [52–55], but would benefit from measurements in the common environment provided

by optical trapping1. An optical lattice (or optical tweezer array) is particularly advantageous

for measuring frequency intervals that involve high-lying Rydberg states, as it provides tight

control over dipole-dipole interaction systematics. Such intervals offer a measurement of the

Rydberg constant that is effectively free from the proton charge radius [27,34], and are critical

to spectroscopic fifth force searches [38].

In this thesis, I consider the potential use of optical trapping for improved spectroscopy of
1The interaction of anti-atoms with light are the same as those of atoms with light. Further, it is mostly

isotope independent.

2



1. Introduction

H. In service of this, I follow two distinct (yet connected) strands of investigation. The first

concerns the suitability of an optical potential as an environment for precision spectroscopy.

I study atomic recoil in a tightly confining optical potential, and combine it with numerical

calculations of the 2S trap lifetime to assess the broadening inherent in optical trapping. The

results of this strand include three new magic wavelengths for the 1S–2S transition; new bounds

on the achievable line-width in a potential H/H̄ lattice clock; and a discussion on the control of

motional systematics. These results are reported in publication (a.), on which some of chapter

3 and much of chapter 4 are based. This strand also involved the production of new software

for calculating polarisability and atom-scattering rates in S-state H. This software is described

in (b.) and is publicly available [2].

The second strand is concerned with methods of cooling and trapping H to produce a sample for

measurement. Optical trapping of H is a major outstanding problem, and, at time of writing,

has never been reported. Over the past 20 years, a variety of methods for cooling/trapping

H have been proposed. Most are ultimately limited by a lack of laser power, the slow re-

pump rate of the 1S–2S transition, or similar effects. However, there are a few that show

significant promise, such as the threshold dissociation of laser cool-able H diatomics [56]. I

focus my attention on the experimentally proven cryogenic/evaporative cooling that led to a

Bose Einstein Condensate (BEC) in the late 90’s [57], and consider how it could be applied

to filling an ultra-cold lattice. In particular, I look into the possibility of driving the super

fluid (SF)–Mott insulator (MI) transition. This strand culminates in chapter 5, which reports

the conditions for achieving a unitary filling MI of H for the first time, and discusses the

suitability of these systems for precision spectroscopy under these conditions.

Both strands are supported by a detailed overview the spectrum of H in chapter 2, including the

complete SM structure of H and discussion of the current spectral data-set. Three appendices

(A, B, and C) to this work contain additional analytic detail and tables of data. I conclude

this thesis with a discussion of these results and an outlook on the future of optically trapped

H in chapter 6.

3



Chapter 2

THE SPECTRUM OF ATOMIC HYDROGEN

It is an elementary result of quantum mechanics, that electrons occupy discrete energy states

within the atom. These energy states E relate to stationary eigenstates Ψ of the atomic

Hamiltonian H0 and solve the time independent Schrödinger equation, H0Ψ = EΨ. It is equally

well known that induced (and spontaneous) transitions between these states produce a spectra

with clear absorption/emission lines at frequencies defined by the states’ energy interval. Early

observations of the Balmer series in H were foundational to the early development of quantum

mechanics and atomic theory. Now, the advent of precision laser spectroscopy [15] allows us

to probe deeper into the structure of the atom than ever before. The spectrum of H is unique

amongst all atomic species due to its well-studied theoretical structure and the availability of

analytic solutions.

2.1 Briefly: Spectral lines

The theory of spectral lines is very well established and does not bear unnecessary repetition.

However, a general overview of the mechanisms that produce these lines and their shapes

will be highly useful in later discussion (particularly chapters 3 and 4). For a full accounting

of spectral lines, one should look to authoritative sources on atom-light interactions in the

semi-classical [9, 58] and fully quantised [58,59] regimes.

Consider the interaction of an atom with a monochromatic radiation field of angular frequency

ω. Working in the electric dipole approximation (EDA), which assumes that the spatial vari-

ation of field strength across the atom is negligible, one obtains the interaction Hamiltonian:

Hint(t) = E(t) · r = εεε · rE0e
iωt + c.c. (2.1)

Where, r is the position operator (equivalent to the electric dipole operator in atomic units),

E0 is the electric field amplitude, and εεε is the polarisation vector. Limit consideration to
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only two atomic eigenstates: a and b, where Eb > Ea and b spontaneously decays to a with

rate Γ. In the near resonance case — when the detuning ∆ = Eb − Ea − ω is small — one

can apply the rotating wave approximation (RWA). This approximation neglects the rapidly

oscillating counter-rotating terms (∼ ei(Eb−Ea+ω)t) in favour of the slowly varying co-rotating

terms (∼ ei∆t).

The time evolution of this system is well described in the density matrix formulation of quantum

mechanics by the optical Bloch equations (OBEs) [9,58]. Consider initial populations in a and

b of ρaa(0) = 1 and ρbb(0) = 0. Over short times, one regains the famous Rabi oscillations,

where population oscillates between a and b at the Rabi frequency [9, 58],

Ω = E0εεε · rba = E0εεε ·
∫
dr3Ψ∗

arΨb, (2.2)

where the dipole matrix element rba is implicitly defined. These oscillations are damped by

spontaneous decay and the system settles into steady state solutions over timescales longer

than the characteristic lifetime of the decay, 1/Γ. The steady state population of state b is

given [9],

ρbb = Ω2/4
∆2 + Ω2/2 + Γ2/4 . (2.3)

This population has a Lorentzian profile in angular frequency space, centred on the resonance

condition at ∆ = 0 and with full width half maximum (FWHM) ∆ωFWHM =
√

2Ω2 + Γ2,

see figure 2.1. The rate of absorption at a given detuning is related to this steady state

population [9] and absorption lines inherit the same Lorentzian profile in a space of angular

frequency1 [9, 58].

At its core, this line-shape is fundamental result of how a damped oscillator absorbs from a

space of angular frequency (see [9] or [58] for an alternative derivation in terms of the absorption

coefficient/linear susceptibility via analogy to a classical oscillator.). The natural lifetime of

the transition sets an ultimate limit on the FWHM of the line: ∆νFWHM ≥ Γ/2π (most

spectroscopic measurements are reported for the space of frequency ν rather than angular

frequency ω).
1Note that the theory for emission lines is more complicated than this, see [58].
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b

a

Figure 2.1: Schematic plot showing the Lorentzian profile of ρbb across the detuning (in units
of the spontaneous decay rate Γ). Two lines are shown: the blue line for when Ω = Γ/2 and
the red line for Ω = 2Γ. Each line is labelled with its FWHM. Also shown is a simple energy
level diagram for the transition between a and b which shows what the physical origin of each
listed variable.

2.2 Structure of atomic hydrogen

The spectrum of H reveals its internal structure, and understanding this internal structure is

essential to interpreting the spectrum. Luckily, the electronic structure of the H atom is very

well understood theoretically — better than any other element. The key to this theoretical

success is the simplicity of the system, which allows for analytic solutions of the Schrödinger

and Dirac equations. Whilst the non-relativistic structure is reviewed in any undergraduate

text on Quantum Mechanics, the true power of the H lies in a well developed SM theory. The

more detailed theory does not displace the old however, and critical context is contained within

the Quantum Mechanical models. As such, an essential overview of the H structure follows, a

full review of the known H structure can be found in the CODATA reviews (e.g. [11–13]) and

in the energy level tabulations [7, 8].
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Figure 2.2: Energy level diagram showing the non-relativistic structure of atomic hydrogen
(section 2.2.1). Detailed structure is shown for the n = 1 and 2 states including the Dirac
fine structure (section 2.2.3), leading-order QED corrections (section 2.2.4), and hyperfine
structure. Levels in the detailed structure were calculated to leading order in αFS and agree
with the tabulations of [8].

2.2.1 Non-relativistic quantum mechanics

The hydrogen atom consists of a single proton and a single electron coupled by the Coulomb

interaction. The related Hamiltonian is written in spherical coordinates as [7, 9, 60],

H0 = − 1
2µH

∇2 − 1
r

= − 1
µHr2

∂

∂r

(
r2 ∂

∂r

)
− l(θ, ϕ)2

2µHr2 − 1
r
, (2.4)

where,

l(θ, ϕ)2 = −
(

1
sin θ

∂

∂θ

(
sin θ ∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

)
. (2.5)

Stationary states can be found by solving the associated time-independent Schrödigner equation

H0Ψ(r) = EΨ(r). It is well-known that this can be done exactly by separation into radial and
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2.2.1. Non-relativistic quantum mechanics

angular parts, and the calculation can be found in any good textbook on quantum mechanics

or atomic physics (see e.g. [9]).

Solutions are given as the product of a purely radial function and a purely angular one:

Ψnlm(r) = Rnl(r)Ylm(θ, ϕ). Angular functions Ylm are exactly the spherical harmonics, whilst

radial functions are given [60],

Rnl(r) = Nnl
2µH
n
sle−s/2L2l+1

n−l−1(s), (2.6)

in terms of the associated Laguerre polynomials, with s = 2µHr/n and N a normalising

constant such that
∫∞

0 drRn′lr
2Rnl = δn′n. These wave-functions are indexed by three quantum

numbers: the principle quantum number n ∈ N; the orbital angular momentum number l ∈

N < n; and the magnetic number m ∈ Z0. As a projection of l onto an axis of quantisation, m

is further constrained to |m| ≤ l. Together, these three numbers completely define any unique

non-relativistic H bound states.

In the absence of an external field states are degenerate in m. Further, the spherical symmetry

of the system ensures a degeneracy in l. What results is a discrete spectrum of bound states

with energy depending only upon n (see figure 2.2) [7–9]:

Enlm = En = − µH
2n2 . (2.7)

The reduced mass µH includes information about the nuclear mass of the hydrogen atom. The

nucleus of the most common isotope of hydrogen is a single proton, and provides the reduced

mass µH = 0.99946. The next most common isotope of hydrogen, deuterium (D)1, has both a

proton and a neutron in its nucleus. The resultant change in the reduced mass to µD = 0.99973

alters the energy levels compared to H,

En,D = µD
µH

En = 1.00027 × En, (2.8)

in what is called the isotope shift. The large relative differences between the nuclear masses of

H and D ( a factor of ∼ 2) makes this one of the most significant isotope shifts of any atomic

species.
1The third hydrogen isotope, tritium (T) is radioactive and highly desirable for nuclear fusion research.

Therefore, its use is controlled within the United Kingdom, making it unsuited to any lab-scale spectroscopy
experiment. As such, I will neglect further discussion of it in favour of more experimentally suitable isotopes.
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In addition to these bound states, there is a continuum of unbound states which relate to free

electrons moving in the Coulomb potential. The energy of these states is not quantised, but

given by the kinetic energy of the free election: E = k2/2 (in atomic units). As the symmetry of

the system is unchanged, the angular wave-functions are still given by the spherical harmonics

Yl,m(θ, ϕ). The free particle wave-function is modified by the central potential in the radial

Coulomb functions [61]:

Rk,l = Ckle
ikrrl

1F1

[
− i

k
+ l + 1; 2l + 2; −2ikr

]
, (2.9)

where 1F1 is a confluent hypergeometeric function and the constant Ckl is chosen such that∫
r2drRk′lRkl = δk−k′/k2. Whilst spectroscopy is generally limited to the discrete part of the

spectrum (since excitation to unbound states — ionisation — is naturally destructive) the

existence of the continuum has important implications for later discussion.

2.2.2 Finite nuclear size

Whilst the finite nuclear mass is already considered in section 2.2.1, it still treats the nucleus as

a point particle. In reality the nucleus has a finite size, relating to some distribution of charge

that shifts the atomic state energies — particularly for S-states (l = 0) which significantly

overlap the nucleus. In the non-relativistic theory (and assuming a spherically symmetric

charge distribution), this shift is given for H as [11],

ENS = 2µ3
Hα

2
FS

3n3λ̄C
r2

pδl0, (2.10)

where λ̄C is the reduced Compton wavelength of the electron and rp is the root mean square

of the proton charge radius. Of course, for deuterium the proton charge radius rp is replaced

with the charge radius of the deuteron rD. Differences between the charge distributions in the

proton and the deuteron only appear in higher order corrections, see [11,62,63].

2.2.3 Relativistic quantum mechanics

So far, the hydrogen atom has been treated in the context of non-relativistic quantum mech-

anics. To extend beyond this regime to relativistic quantum mechanics one must solve a Dirac
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equation instead of a Schrödinger equation. This solution is also well established (see e.g. [10])

and, in the limit of infinite nuclear mass, returns bound state energies [10,64,65],

EDirac = α−2
FS

1 + α2
FS

(n− κ+ (
√
κ2 − α2

FS)2

−1/2

= α−2
FS − 1

2n2 − α2
FS

2n3

(1
κ

− 3
4n

)
+O(α4

FS),

(2.11)

that are dependent upon the electron angular momentum quantum number j (the electron has

spin 1/2, so j takes the values l ± 1/2) as κ = j + 1/2. This j-dependence splits states with

a shared n into distinguishable levels, adding an additional layer of structure to the spectrum

— the “fine structure” which can be seen in figure 2.2.

The first term of 2.11 is the rest mass energy and the second term regains the non-relativistic

results of equation 2.7 (in the limit of infinite nuclear mass, µH → 1). The third term contains

the first order relativistic corrections to the state energies. This result can be amended for a

finite nuclear mass as in [64] or [65]. This amendment is not trivial and contains a number

of many-body terms that are hard to evaluate. On the simplest level, this corrects the rest

mass energy to be that of the entire system (mN + 1)/α2
FS (where mN is the nuclear mass) and

includes the reduced mass in the non-relativistic energy term.

2.2.4 The QED structure

A complete treatment of the Coulomb interaction between the electron and proton must be

given in terms of QED. Unlike in the application of quantum mechanics, one does not solve a

single governing equation like the Schrodinger or Dirac equations and produce the bound state

energies. Instead, the picture must be built up from individual n photon processes and their

contributing diagrams, building up complexity as we go. For example, the leading order QED

corrections come from 2nd order (one photon) processes and include both self-energy [66] and

vacuum polarisability terms. Expanding these terms up to the zeroth power of αFS leaves a

correction to a given n, l state [11–13],

E(2) = 4α3
FS

3πn3

(
δl0
(
ln(α−2

FS) + 10/9
)

− 4
3 ln(k0(n, l))

)
. (2.12)

The first term only applies to S-states and is the dominant source of the Lamb shift which breaks

the l degeneracy of the j = 1/2 states predicted by the fine structure (as shown in figure 2.2).
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2.2.4. The QED structure

The second term is much smaller and depends on the Bethe logarithms k0(n, l) [67]. QED

corrections are well studied, and the full set of known corrections extends well beyond one

photon processes: e.g. relativistic recoil [68] and nuclear polarisation terms [12] to name a few.

There is no fundamental barrier to calculating these corrections to arbitrary order in QED;

however, they rapidly become smaller whilst the complexity of calculation increases. Currently,

corrections are well known up to 6th order (three photon processes) [8, 13].

The energy of a given n, l, j state of H is then given by the expression [8, 29,32],

Enlj = −1
2

(
µH

n2 + f

(
αFS,

1
mp

, . . .

)
+ ENS

)
. (2.13)

Where f is a mostly analytic function that includes all of the relativistic and QED corrections

to the non-relativistic structure of the first term at a desired order. f depends only on dimen-

sionless fundamental constants (e.g. the fine structure constant and the electron-proton mass

ratio) which can be measured very accurately in other experiments (see e.g. [13, 69]).

In theory, H energy levels can be calculated to any desired order from first principles, using only

measured values of the dimensionless fundamental constants. This is a highly desirable trait

for a frequency standard, which could be exactly related to fundamental principles rather than

defined by an artefact1 [70]. In reality, there are two parameters in equation 2.13 which cannot

be set with sufficient precision by other experiments: the proton charge radius rp, which cannot

yet be calculated from quantum chromodynamics (QCD) [71], and the Rydberg constant2 R∞.

Any spectroscopic measurement of H must fix a value of one of these parameters to act as a

measurement of the other.

The n, l, j states are further shifted by the interaction between the total electron angular mo-

mentum j with the nuclear spin I (see e.g. [9]). States with total angular momentum F = j+I

and are split according to the associated quantum number F into the hyperfine structure (see

figure 2.2). This structure is generally inconsequential to the optical/UV spectroscopy dis-

cussed in this thesis, as these are measurements of the hyperfine centroid — which can be

extracted from comparative measurements between different pairs of F states (see supplement-

ary information of [29]).
1Whilst the energy levels of caesium will be ultimately dependent upon these fundamental principles, the

complexity of the atom prohibits their ab-initio calculation. As such, the transition that defines the SI section
is ultimately a measured quantity and the definition is necessarily defined relative to this physical artefact.

2This is a conversion term which connects the internal scales of the atom with the SI system of units, here
it has been subsumed into the definition of atomic units.
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2.2.5 Effects of new physics

While the SM theory of H is well established, its simple nature makes it possible to compute

the effects of theorised extensions to the SM. A particularly interesting category of theories

that go beyond the SM with clear implications for H are so-called “fifth force” theories. The

connection to the four fundamental forces is clear in the name, but, while it does include theories

of new gauge Bosons (such as the B-L gauge boson [72,73]), it covers any force arising from the

exchange of any hidden-sector Boson(s) [74] (such as in the well motivated Higgs-portal [75]

and dark photon [76] models).

Many of these theories include non-trivial coupling to both the electron and the proton. The

resultant force perturbs the established QED structure of the H atom, resulting in an energy

shift,

Enlj → Enlj + δENP, (2.14)

that is heavily model dependent. Of particular interest is the Yukawa-type interaction which

arises from a long-range treatment of various short-range interactions. This is an “effective”

theory which describes the exchange of the new Boson as a single force between the nucleus

and the electron and applies to a wide range of different models (see [38] for a discussion of

this). Under this interaction, the shift is bounded [38],

|δENP| < −2|gegN |En

αFS4π , (2.15)

where En is the non-relativistic energy1 and ge and gN are the electron and nuclear couplings.

These shifts can, in principle, be observed in high-precision spectroscopy experiments.

In H, a direct comparison between the measured frequency interval and that predicted by the

QED structure (equation 2.13) is possible; resulting in a measured value of δENP which can be

used to bound the new physics parameter space in the low energy regime [17,18,38–40,42–44].

For light force mediators (mass < 1 MeV), spectroscopic bounds are expected to be stronger

than any other lab-based search, even out performing high-energy particle colliders [17,42,77].

While this part of parameter space is well constrained by astrophysical observations (e.g. see

[78]), they are insensitive to so-called Chameleon fields — whose mass depends upon the local
1It is a bound state energy, hence the negative sign above.
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energy density [79,80]. The variation of energy density across an atom is not sufficient to shield

a Chameleon from detection in lab-based spectroscopy [81]. Further discussion of these shifts

in the context of the current H spectral data-set is reserved for section 2.3.2

2.3 Modern hydrogen spectroscopy

2.3.1 The 1S–2S transition

The greatest success of modern H spectroscopy is the measurement of the 1S–2S transition

frequency to a relative uncertainty of 4.2×10−15 [20]. This transition involves the simultaneous

absorption or stimulated emission of two photons and can be described by a second-order

perturbative expansion of Hint. It can be treated as an effective first order (1-photon as in

section 2.1) with Rabi frequency [58]:

Ω(2)
ba = E0

∑
k

εεε · rbkεεε · rka

Ek − Ea − ω
, (2.16)

and two-photon detuning ∆(2) = ω0 −2ω, which dictates the new resonance condition ω0 = 2ω.

The expression sums over all atomic states k that are dipole coupled to both a and b. The

related absorption/emission lines can be shown to have the same Lorentzian shape as is seen for

the first-order processes (figure 2.1) [58]. Spectroscopy of two-photon transitions is particularly

powerful as it can be performed in a Doppler-free manner [9, 20].

This frequency interval was measured by two-photon spectroscopy in a cryogenic (5.8 K) atomic

beam of H, where the atoms are necessarily moving. Even with the elimination of the Doppler

effect, the atoms are still subject to the SOD effect1, which shifts the incident frequency2

according to the velocity v [20],

δω

ω
= −1

2 |v|2α2
FS. (2.17)

This is a relativistic effect, arising from time-dilation between the stationary lab frame and the

moving atom frame. Despite the slow (in comparison to the speed of light) atoms, this effect

becomes a dominating source of systematic uncertainty in the 1S–2S measurement. The SOD
1As well as a number of residual higher-order Doppler effects that arise from wavefront curvature etc.
2Recalling that c = 1/αFS in atomic units.
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effect introduces a velocity-dependent shift to the transition frequency that asymmetrically

distorts the line-shape according to the velocity distribution. It can be mitigated somewhat

by addressing only a narrow velocity class at the tail end of the velocity distribution, reducing

both the total shift and the variation over all atoms. This comes at the expense of statistical

power as there are fewer atoms in this slow velocity class and the uncertainty budget must

balance this with the systematics related to the SOD.

In the end, the 1S–2S transition was measured with an experimental error of 10.4 Hz and an

observed line-width of ∆νFWHM = 2 kHz. The uncertainty budget was dominated by statistics

(6.3 Hz), SOD effect (5.1 Hz) and the line-shape model (5.0 Hz). This measurement was re-

peated two years later by with a similar set up, but with a fibre-link directly to the Cs fountain

clock at Physikalisch-Technische Bundesanstalt [28]. The experiment benefited from improved

statistics (3.3 Hz) but suffered from larger SOD systematics (8.0 Hz). Ultimately, it confirmed

the previous measurement, but with a slightly higher experimental error of 10.8 Hz

2.3.2 The hydrogen spectral data-set

The 1S–2S transition is central to the CODATA recommended value of the Rydberg constant

[11–13]. In previous recommendations, it was combined with only a handful of frequency

intervals known to experimental errors of ≤ 10 kHz from thermal beam measurements in the

late 90’s [21–26]. In the past 6 years, the H dataset has been expanded with a series of

measurements at the sub 10 kHz level from cryogenic beam experiments, including: the 2S-

2P [31]; 2S-4P [29]; 2S–8D [33]; and 1S–3S [30, 32] intervals. Many of which were included in

the most recent CODATA recommendation [13]. It is worth noting that in the 11 years since

the last measurement of the 1S–2S transition [28], no H frequency interval has been measured

to a comparable precision. The only H frequency intervals known to the same 10 Hz level as

the 1S–2S (apart from the 1S and 2S hyperfine intervals [82–86] which are not directly relevant

to the Rydberg constant) are the intervals between circular Rydberg states of n from 27 to 30

(unpublished, [27]) which do not contribute to the CODATA recommendations. Very recently,

the sub-10 kHz data set has been supplemented by new measurements of the interval from 2S to

the circular Rydberg states with n=20 and n=24 [34]. The full spectral dataset often includes

a number of measurements with experimental errors greater than 10 kHz [87–90].
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All of these high-precision measurements come from atomic beam experiments similar to the

1S–2S setup. As such, line-shifts and broadening due to atomic motion are significant sources of

experimental uncertainty [20,31,33]. As in the 1S–2S measurement, this impact can be reduced

with careful velocity filtering at the expense of statistical power, and the drive towards cryogenic

beams in recent years is partly fueled by the desire for improved statistics at low velocities.

Regardless, these effects always result in complex line-shapes, and detailed analysis is required

to extract a precise value of the transition frequency (e.g. see the supplementary information

of [33]). Systematic concerns within these line-shape models are also leading contributors to the

uncertainty budget. Measurements in Rydberg intervals are further limited by strong dipole-

dipole interactions, scaling as n4 for circular states [91]. These interactions were a dominating

source of systematic uncertainty in the early measurements due to the ill-defined inter-atomic

spacing in a thermal (80 K) beam [27]. This is accounted for in the modern experiment by a

very low probability of Rydberg excitation, only 1 per each 3 runs of the experiment [34]. Of

course, this also comes at the cost of statistical power.

As discussed in section 2.2.5, comparison between theory and measurement can be used to

bound the fifth force parameter space. Previously, the H dataset has been used in combination

with data from other sources (including H-like exotic atoms and measurements of the electron

anomolous magnetic moment) to test or constrain fundamental physics [17,42]. More recently,

Jones et. al. used such a global fit of only H spectral data to constrain the parameters of a

Yukawa type fifth force (equation 2.15), bounding |gegP | < O(10−11) for boson masses ranging

from 10 eV to 1 keV [38]. These bounds can be vastly improved for theories with non-uniform

coupling to the proton and deuteron by fitting over the combined H and D datasets [40]. This

idea has recently been extended by Delaunay et. al. to simultaneously extract both SM and

new physics parameters from a global fit assuming certain new physics models [39]. Their

results are in broad agreement with the previous bounds when comparisons are possible.

Counter-intuitively, these global fits turn out to be dependent upon the exact composition of

the data-set used [38–40]. In particular, bounds are highly sensitive to the inclusion or exclusion

of the Rydberg intervals [38], and a direct comparison of the 1S–2S transition in H and D is

more tightly constraining than global comparison [40]. This is a result of serious tension in the

H (and D) spectral dataset — known as the proton charge radius puzzle.
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Muonic (2013)

2S1/2-2P1/2 (2019)

2S-4P (2017)

2S1/2-8D5/2 (2021)

1S-3S(2020) 1S-3S (2018)

CODATA (2014)

rp [fm]
Figure 2.3: Values of the root mean square proton charge radius extracted from H spectroscopy.
H measurements from before 2014 are incorporated into the CODATA recommended value of
rp [12]. H measurements since then are individually labelled and are colour coded: blue for
measurements in cryogenic beams [29, 31–33], red for measurements in thermal beams [30].
Also included is the value extracted from a measurements in muonic H [35] in black.

2.3.3 The proton charge radius puzzle

In section 2.2.4, I stated that the energy levels of H depend upon both R∞ and rp which act

as free parameters and must be measured spectroscopically. A value of either parameter can

be extracted from a spectroscopic measurement by “fixing” the other with another, known

transition frequency. As the 1S–2S transition is known to the highest precision, it is usually

chosen to fix a value of R∞ and extract measurements of rp from other measured frequency

intervals. Unfortunately, the complete set of rp extracted in this way is inconsistent; both

internally [12, 13, 34, 37] and with the results of muonic H [35] (see figure 2.3). This is the

famous proton charge radius puzzle1 [37] and points to deeper disagreement in the H spectral

world-dataset that affect the new physics bounds discussed above. The recent CODATA re-

commendation [13] of both rp and R∞ favours the muonic values over the previous values [12],

but it does not alleviate the tension in the H dataset.
1This could equally be constructed in terms of a Rydberg constant puzzle, as rP and R∞ are correlated to

98.9% [92].
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Measurements of the intervals between Rydberg states should offer a value of R∞ that is

effectively free of rp, but even these measurements are in tension. Early measurements of the

intervals between circular Rydberg states of n=27 to 30 by De Vries produced a value of R∞

that was consistent with almost the entire existing spectral data-set [27,34,91] (partly due to a

relatively large final error). The Rydberg constant obtained by the more recent measurements

of Scheidegger and Merkt, however, does not conform with either the 2014 or the 2018 CODATA

recommendations of the Rydberg constant [34]. Not only is it in tension with most of the H

spectral data, but it has only a very narrow overlap with the results of De Vries [34].

The source of this puzzle is still an open question, but there are two lines of thought:

1. New physics shifts: This inconsistency could be the result of some state dependent new

physics shift, like those described in section 2.2.5. It has been noted that the introduction

of a long-range Yukawa-type potential goes some way to relieving this tension [33]. This

view is bolstered by a recent work that uses a global fit to simultaneously extract both

the fundamental physical constants and new physics parameters from the H spectral

dataset [39]. It showed that this tension can be alleviated by contributions from a light

scalar boson with non-universal coupling. Whilst these are promising results, neither

shows a complete resolution of the proton charge radius problems, only reducing the

inconsistency. Recent results of Rydberg spectroscopy may support an n dependent

effect, but the effect of incorporating them into the full H-dataset is not yet clear.

2. Systematic error: As discussed in section 2.3.1, beam measurements rely on complex

line-shape analysis to extract the transition frequency. It is feasible that this inconsist-

ency is due to unknown systematic considerations that vary between experiments. This

view is strengthened by observations about the nature of the H spectral world data and

comparisons between “hot” and “cold” measurements. The 2014 CODATA value was

constructed from measurements in thermal atomic beams [12], whereas, more modern

measurements with cryogenic beams tend to align with results of muonic H (see figure

2.3). This difference is a first indication of a velocity dependent systematic that has

not been accounted for. Further support can be found in the disagreement between two

recent measurements of the 1S–3S transition [30] and [32], which must be explained in
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2.4. Towards new experiments

terms of experimental differences1 — unless the H atoms in France are different to those

in Germany.

Overall, it is still unclear how much, if any, of the proton charge radius puzzle can be put down

to the effects of new physics. Regardless, new physics shifts cannot completely resolve this

puzzle or adequately explain the disagreement between measurements of the same transition. It

is clear that there is at least some contribution from systematic variation between experiments.

These systematics must be identified as a matter of urgency.

2.4 Towards new experiments

It is clear that H spectroscopy is in need of an experimental step-change. The beam measure-

ments that have dominated the field for almost 30 years are approaching a fundamental limit

to their precision, enforced by the competing effects of atomic motion and statistical pressure.

Not only this, but there is strong evidence of unknown systematic errors — likely related to

atomic motion in some way — that tension the spectral dataset. This tension is complicated

by possible contributions of new physics; since the new physics parameter space is so large (and

there is no shortage of potential models) it is impossible to tell how much each effect contributes

to the proton charge radius puzzle. Further, almost all spectroscopic values of rp rely on the

Parthey et. al. measurement of the 1S–2S transition to set the Rydberg constant. This value

is also used to extract Scheidegger and Merkts’ measurement of the Rydberg constant [34]. As

a community, we are in the position where all these measurements depend upon effectively a

single measurement of the 1S–2S transition frequency. Even the other 1S–2S measurements

that appear in the H spectral dataset [28, 89], were performed with essentially the same ex-

perimental set-up by many of the same people. This makes the entire H dataset vulnerable to

potential systematic uncertainties in the 1S–2S measurement. A new form of experiment, with

a completely different set of systematic errors is essential to resolving this and proceeding with

new physics searches.
1Whilst it is clear that there is a discrepancy, it is worth noting that there is no reason to favour the cryogenic

measurement over the thermal measurement. Neither group has been able to point out the error in the others
experiment.
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2.4. Towards new experiments

In the same time period, the precision spectroscopy of heavier atoms has been completely

revolutionised by the application of optical trapping and ultra-cold samples [93]. The greatest

success of this has been in OLCs [45–49], which operate at precisions of ∼ 10−18, surpassing

that of the SI second [50]. The evolution of atomic clocks from fountain clocks to OLCs is a

clear, motivating analogy for the evolution of precision H spectroscopy: from atomic beams

to optical trap1. Beyond long interrogation times and the improved precision implied by this

analogy, there are a number of clear advantages to H spectroscopy in a tightly confining optical

lattice or tweezer array:

• New dominating systematics: The effects of atomic motion can be effectively elim-

inated in an optical lattice/tweezer array by operating in the tight-confining or “Lamb-

Dicke” regime [45]. The uncertainty is instead dominated by statistics, and systematics

related the long term beam stability and off-resonant atom-photon interactions.

• Well defined inter-atomic spacing: When occupation is restricted to one atom per

lattice site/tweezer, the inter-atomic spacing is well defined (even controllable in a tweezer

array) and stable. This enables control over systematics related to dipole-dipole interac-

tions without sacrificing excitation probabilities and greatly benefits potential Rydberg

spectroscopy.

• Isotope-independent interactions: The interactions of H with an optical field is

necessarily isotope independent (up to small variations due to mass difference). As such,

these optical traps are ideal the comparative measurements between H and D that are

key to improved bounds on fifth force theories with non-universal coupling [40]. For

similar reasons, the system is also ideal for direct tests of CPT symmetry through the

comparison of H and H̄ [52–55]. An H̄ lattice clock, operating on the 1S–2S transition

has already been proposed [51].

At the time of writing, optically trapped H has never been realised — not in a lattice, or

tweezers, or any sort of optical dipole trap. The natural first step is to consider the properties

of optically trapped H.

1An OLC of H̄ has already been proposed as a route to improved spectroscopy of the 1S–2S transition [51].
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Chapter 3

HYDROGEN IN OFF-RESONANT OPTICAL FIELDS

In section 2.1, I outlined how dipole allowed transitions between atomic states can be driven

by optical fields close to resonance. This was further extended in section 2.3.1 to second-order

transitions at two-photon resonances. It is now time to drop the resonant condition all-together

and consider the effects of off-resonant fields upon atoms in bound atomic states. Such processes

are foundational to the optical trapping posited in section 2.4. The following discussion draws

from work that has been previously published, appearing in both (b.) and the appendices of

(a.).

3.1 Off-resonant effects

Far from resonance, it is no longer appropriate to model the atom as the two level system

found in section 2.1, since one can no longer neglect coupling to other atomic states. To be

off-resonant here requires that the radiation field is far detuned from any atomic resonance,

effectively guaranteeing that for any pair of atomic states Ω ≪ ∆. As a result, the RWA does

not hold, so both co- and counter-rotating terms must be considered going forwards. Further,

we consider the case where Hint (equation 2.1) is a small perturbation to H0 (when the combined

eigenstates are close to the atomic eigenstates).

3.1.1 The light shift

Despite the absence of any significant driving, an off-resonant field still shifts the eigenstates

of the combined atomic and interaction Hamiltonian away from the pure atomic states. The

resultant “dressed” states can be associated with particular atomic states in the perturbative

limit, but are altered by the mixing in of character from other states (see [9] for a simple

overview). The resultant shift in energy levels is called the light shift.
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3.1.2. Off-resonant scattering

This shift can be calculated for a many-level atom interacting with a classical field1 by an

application of time-dependent perturbation theory [94]. There is no contribution at first order

since dipole selection rules forbid the state from coupling to itself at this order (i.e. raa = 0).

The leading term in the light shift of atomic state a is therefore second order and is given [94,95]:

δEa =
∑

k

(
E2

0 |εεε · rka|2

Eka − ω
+ E2

0 |εεε · rka|2

Eka + ω

)
, (3.1)

where k indexes all atomic states that are dipole coupled to a and Eka = Ek −Ea is the energy

difference between states a and k.

The light shift is usually expressed in terms of field intensity instead of amplitude:

δEa = 2παFSαa(ω)I, (3.2)

where,

αa(ω) =
∑

k

(
|εεε · rka|2

Eka − ω
+ |εεε · rka|2

Eka + ω

)
, (3.3)

is known as the atomic polarisability. Writing the shift in this way draws a clear comparison

with the dipole potential formed by the interaction of a neutral particle with a classical radiation

field [93]. Here the atomic polarisability can be identified with the real component of the

complex polarisability.

3.1.2 Off-resonant scattering

Following the analogy with the model in [93], there must also be a term corresponding to

dissipation of energy from the field — scattering in an atomic system. In the perturbative

picture that has been constructed so far, this dissipation comes from processes which change

the atomic state and/or the state of the atomic field. The differential cross section for scattering

from initial state a is given by the Kramers-Heisenberg formula [58,59]:

dσ
dΩ =

Eba<ω∑
b

ωω3
sα

4
FS ×

∣∣∣∣∣∑
k

(
εεε∗

s · rbkεεε · rka

Eka ∓ ω
+ εεε · rbkεεε

∗
s · rka

Ekb ± ω

)∣∣∣∣∣
2

, (3.4)

where ωs is the frequency of the scattered photon. Upper signs relate to Raman scattering pro-

ceeding via the absorption of a field photon and emission of a scattered photon with frequency
1Equivalently, both perturbative [94] and non-perturbative [59] calculations are possible for the fully quant-

ised field. The results conform with those of a classical field in the limit of large photon numbers.
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3.1.2. Off-resonant scattering

ωs = −Eba + ω. This process is referred to as Stokes or anti-Stokes for Eb > Ea and Ea > Eb

respectively. Lower signs relate to singly stimulated two photon emission (SSTPE) which in-

volves the double emission of a field frequency photon and a scattered photon ωs = −Eba − ω.

singly stimulated two photon emission (SSTPE) is energetically forbidden unless Eb < Ea and

Eab > ω.

The scattered photon is emitted with direction defined by the co-latitude angle ϑ and azimuthal

angle φ. The polarisation of the scattered photon εεεs can take any orientation in any direction

that is normal to this direction of emission. To account for all possible orientations of εεεs, it is

necessary to sum across two orthogonal vectors which span the space of polarisation states for

the scattered photon: εεε1 and εεε2. The polar angles of these vectors are denoted as ϑ1 and φ1

for εεε1, and ϑ2 and φ2 for εεε2; we choose:

ϑ1 = ϑ− π

2 , φ1 = φ, (3.5)

ϑ2 = π

2 , φ2 = φ− π

2 . (3.6)

The total atom-photon scattering rate is then given,

R =
∫

dΩ
∑
εεεs

dσ
dΩ

I

ω
, (3.7)

where
∫
dΩ indicates integration across the solid angle of scattered photon directions. This is

conveniently expressed as R = ∑Eba<ω
b Rba, where Rba is the rate of scattering to particular

final state b,

Rba = ω3
sα

4
FS

∫
dΩ

∑
s=1,2

∣∣∣∣∣∑
k

(εεε∗
s · rbk)(εεε · rka)
Eka ∓ ω

+ (εεε · rbk)(εεε∗
s · rka)

Ekb ± ω

∣∣∣∣∣
2

I. (3.8)

It is phenomenologically useful to think of elastic and inelastic scattering processes separately.

Inelastic scattering is the more general of the two and relates to a change in atomic state b ̸= a.

Elastic scattering preserves the atomic state b = a, and as a special case of Raman scattering

(SSTPE is forbidden for Ea = Eb) it is called Rayleigh scattering. It should be immediate from

equation 3.8 that Rayleigh scattering is closely related to the atomic polarisability of equation

3.3. The difference is, that Rayleigh scattering does not emit a photon back into the original

field mode, but with arbitrary direction (see e.g. [58, 59]).
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3.2. Calculating two-photon matrix elements

3.2 Calculating two-photon matrix elements

The atomic polarisability and atom-photon scattering rates depend upon two-photon matrix

elements of the form:

M(2)
ba =

∑
k

(εεε∗
I · rbk)(εεεII · rka)
Eka ∓ ω

+ (εεεII · rbk)(εεε∗
I · rka)

Ekb ± ω
, (3.9)

where k indexes all states that are dipole coupled to both the initial state a and the final state b.

To keep it general, the photons are distinguished by the subscript I or II on the polarisation

vector. In principle, this includes summation over an infinite number of bound states, and

integration over a continuum of unbound states. For calculations in alkali atoms, the continuum

contributions are small enough to be neglected and the sum rapidly converges over a small

number of bound states. Therefore, it is usual to compute these sums by explicitly summing

across a few dominating states, taking empirical parameters (e.g. see the work in [95, 96] or

similar). However, the continuum cannot be neglected in calculations with H. Attempts to

explicitly perform this integral using the analytic wave-functions (equations 2.6 and 2.9) quickly

stall against successive integration of hypergeometric functions.

Luckily, it is possible to calculate this matrix element including both bound and unbound states

without explicitly computing an integral over continuum by one of two distinct methods. The

first is an analytical approach involving the computation of Greens functions (see [60, 97, 98]

for details). This allows for polarisability and scattering rates to be written analytically in

terms of hypergeometric functions (e.g. [99–101]). Such calculations are technically complex,

highly involved, and the formulae are not general — relating to a single process with specific

atomic states a and b. The second is a numerical approach, which was first applied in the

pioneering calculations of Zernik [102] but has seen significant use since then [103–105]. Unlike

the analytic approach, it can be applied to any set of atomic states with minimal variation,

and so is used for calculations in (a) and (b). It proceeds as follows.
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3.2.1. Implicit summation

3.2.1 Implicit summation

For later convenience I will express the matrix element 3.9 as two sums,

M(2)
ba =

∑
k

(εεε∗
I · rbk)(εεεII · rka)
Eka ∓ ω

+
∑

k

(εεεII · rbk)(εεε∗
I · rka)

Ekb ± ω
, (3.10)

labelled (i) and (ii) respectively. Following the example of [104, 105], I apply an implicit

summation method (also called the Dalgarno-Lewis method [106, 107]) to express sum (i) in

closed analytic form,

∑
k

εεε∗
I · rbkεεεII · rka

Ek − Ea ∓ ω
= ⟨b|εεε∗

I · r
∑

k

|k⟩ ⟨k|
Ek − Ea ∓ ω

εεεII · r |a⟩ . (3.11)

It then follows by the spectral theorem that,

∑
k

εεε∗
I · rbkεεεII · rka

Ek − Ea ∓ ω
= ⟨b|εεε∗

I · r 1
H0 − (Ea ± ω)ε

εεII · r |a⟩ . (3.12)

A similar result is also found for sum (ii).

The second order matrix elements can then be written as the sum of two first order matrix

elements,

M(2)
ba = ⟨b|εεε∗

I · r |ψ(i)⟩ + ⟨b|εεεII · r |ψ(ii)⟩ , (3.13)

where the vectors |ψ(i)⟩ and |ψ(ii)⟩ solve the equations

[H0 − (Ea ± ω)] |ψ(i)⟩ = εεεII · r |a⟩ and [H0 − (Eb ∓ ω)] |ψ(ii)⟩ = εεε∗
I · r |a⟩ . (3.14)

In general, the vectors |ψ(i)⟩ and |ψ(ii)⟩ include contributions from both the discrete and con-

tinuous parts of the spectrum and cannot be described with the basis of bound eigenstates.

3.2.2 The Sturmian basis

Following the example of [98, 104, 105, 108], I construct a discrete set of Laguerre functions,

multiplied by the spherical harmonics:

B =
{1
r
S

(ζ)
n,l(r)Ylm(θ, ϕ) : n ∈ N, l ∈ N0, |m| ≤ l

}
, (3.15)

where ζ ∈ R > 0 is a free parameter. The numbers n and l index the Sturmian functions,

S
(ζ)
nl (r) := Nnl(2ζr)l+1e−ζrL2l+1

n−1 (2ζr), (3.16)

24



3.2.3. Solving the Schrödinger equation

where Ly
x(s) are the associated Laguerre polynomials. These functions are normalised Nnl =√

(n − 1)!/(n + 2l)! such that,
∫ ∞

0
r2dr

(1
r
S

(ζ)
n′l

) 1
r

(1
r
S

(ζ)
nl

)
= δn′n. (3.17)

Orthogonality in the indices l and m is assured by the orthonormality of the spherical harmonics

that give the angular components of B. In fact, these angular components are exactly the

angular parts of the hydrogen wave-functions (both bound and unbound) and the indices l

and m can be identified with the orbital angular momentum and magnetic quantum numbers

l and m. Meanwhile, the radial functions of B form a complete set spanning the L2(0,∞)

Hilbert space — that is the space of square integrable functions over the semi-definite interval

(by construction as a set of Laguerre functions, see [109] for proof). Clearly, B forms a complete

set across the Hilbert space relevant to the hydrogen wave-functions1 and any hydrogen wave-

function can be expressed as a linear combination of functions in B:

Rnl(r)Ylm(θ, ϕ) = Ylm(θ, ϕ)
∑
n∈N

Cn,n,l
1
r
S

(ζ)
nl (r), (3.18)

where Cn,n,l are constants which define a vector in B.

3.2.3 Solving the Schrödinger equation

Indeed, any atomic state c is represented in the Sturmian basis by some vector c. These

vectors can be produced by solving the relevant time-independent Schrödinger equation as a

generalised eigenvalue problem,

Hc = EcTc. (3.19)

Here H is the matrix representing the atomic Hamiltonian (equation 2.4) in B and T is the

overlap matrix, which accounts for the non-trivial overlap between the Sturmian functions

(since
∫∞

0 drS
(ζ)
n′,lS

(ζ)
nl ̸= δn′,n by equation 3.17). Both matrices are expressed in terms of the

analytic matrix elements in equation A.3 and A.5. Since the overlap between the angular parts

of B is trivial, T is diagonal in both l and m. This is also true for H since neither the basis B

or H0 include any mixing in l or m.
1In fact, this is true any wave-function in a central potential that is normalised as

∫
dr3|Ψ(r)|2 = 1.
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3.2.4. Full calculations

Any non-relativistic state will have well-defined quantum numbers lc and mc, so the associated

vector c is only non-zero for functions of B with l = lc and m = mc. As such, equation 3.19

can be re-cast as an eigenvalue problem over a radial1 sub-set of B which is only indexed by n:

Hlcc = EcTlcc, (3.20)

where Hlc and Tlc are matrices over n with a single well defined value of l = lc. Such a problem

can be solved very efficiently with numerical methods, but requires a finite basis set. This is

achieved by restricting the index n to some finite set of positive integers: n ∈ N ≤ nmax. Each

state can be identified in a computational spectrum by its eigenvalue Ec which is unique given

l is fixed.

3.2.4 Full calculations

The electric dipole operator, r also needs to be represented as a matrix in B. This operator

always appears in dot product with a photon polarisability εεε, and the matrix elements between

atomic states a and b are separable,

εεε · rba =
∑

q∈{0,±1}
εqAlbmbq,lamarba, (3.21)

where q indexes the polarisation over a basis of spherical unit vectors (εεε = ∑
q∈{0,±1} εqϵ̂q,

see appendix A.2), and the angular Albmbq,lama and radial matrix elements rba are defined in

equationsA.10 and A.8. The angular component can be calculated analytically, and contains

all m dependence. Unlike the Hamiltonian, this operator is not diagonal in l, but couples l

to l ± 1. To account for this, the radial part is represented as the sum of two matrices: R+
l

which couples a given l to l + 1; and R−
l which couples to l − 1 (see appendix A.2 for analytic

expressions of the matrix elements). Each of these is a matrix in B, but extends only over the

index n, it sits in the off diagonal formed by l and l ± 1 for a chosen value l.

I will now limit consideration to cases where the initial state a is an S-state, i.e. la = 0.

This simplifies matters as a now couples only to the l-raising part of the dipole operator and

intermediate states are limited to P-states. Consider computing sum (i): |ψ⟩(i) must have a
1As equation 3.18 indicates that writing an atomic wave unction in the Sturmian basis is a decomposition

over the radial functions only.
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3.3. Numerical Results

well defined l = 1 and so is represented by a single vector over the index n. This vector can be

calculated by solving the matrix equation over the index n,

[Hl=1 − (Ea ± ω)Tl=1]ψ(i) = R+
l=0a. (3.22)

Unlike equation 3.20, this is not strictly within a subset of B defined by a chosen value of l

(since the RHS has l = 0 whilst the LHS has l = 1). However, it can be solved effectively as a

matrix equation over the index n only, as terms with other values of l will ultimately vanish.

The final state b is limited by dipole selection rules to only S-states or D-states, i.e. lb = 0 or

2. If lb = 0 then the radial part of sum (i) can be calculated by computing the inner product,

bTR−
1 ψ(i). (3.23)

Otherwise, if lb = 2, then the relevant inner product is instead,

bTR+
1 ψ(i). (3.24)

Again, this system of matrix equations is best treated numerically over a finite basis size. In

the same way as in section 3.2.3, this is done by restricting n to range up to some defined

maximum1 nmax.

The total value of sum (i) is then obtained by multiplying the radial component by the total

angular contribution, ∑q∈{0,±1} εqAlbqq,10A1q0,00. The same approach can be used to compute

sum (ii) where ψ(ii) solves a similar matrix equation to 3.22, adjusted in line with equation

3.14, and the angular part is ∑q∈{0,±1} εqAlbq0,1qA1qq,00 instead. Their sum gives the final value

of M(2)
ba .

3.3 Numerical Results

The calculations described in the previous section are realised numerically in the software [2]

described in (b.). Extensive use is made of the numPy and sciPy packages to solve both

the Schrödinger equation (3.19) and equations 3.22, 3.23, and 3.24. This code allows for the
1It is worth noting that the computational solution will become exact as nmax → ∞. Such a calculations

can be thought of as ‘numerically exact’ as they can, in principle, be calculated to any desired precision given
sufficient time and resources.
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3.3.1. Polarisability

calculation of polarisability and atom-photon scattering rates for S-states of atomic H, D, and

even T in the presence of a linearly polarised optical field with user-defined frequency. Both

the size of the Sturmian basis (via the maximum value of n — “nmax”) and the value of the free

parameter ζ are user defined for each calculation. In all the calculations that follow, I choose

nmax = 300 and ζ = 0.3 which is sufficient to ensure convergence for low-lying states.

3.3.1 Polarisability

The polarisability is trivially given by the matrix element M(2)
aa as per equation 3.3. It is

straightforward to compute the angular terms under the assumption of linearly polarised light

in the ẑ direction, i.e. q = 0:

A100,00A000,10 = 1√
3

× 1√
3

= 1
3 . (3.25)

Multiplying this by the numerical solutions to the radial part of M(2)
aa as detailed in section

3.2.4 immediately gives the polarisability of a given S-state a.

The polarisability is plotted in figure 3.1 for both the 1S and 2S states of H for wavelengths

ranging from 91 to 800 nm. These results conform very well with the results of an analytic

calculation (see Appendix B) away from resonance. On resonance with bound P-states, the

denominator of sum (i) vanishes and the polarisability diverges, resulting in a series of poles in

figure 3.1. Here Ω > ∆ and the small perturbation assumption does not hold, so interactions

are dominated by the first order resonant transitions of chapter 2.

For wavelengths shorter than the one-photon ionisation threshold (91.3 nm for 1S and 356 nm for

2S) the polarisability is dominated by a forest of poles relating to coupling with the continuum.

As such, the polarisability is not plotted for each state beyond this threshold. On the other

hand, for wavelengths larger than the lowest Lyman/Balmer wavelength, the polarisability

tends asymptotically towards the D.C. polarisability.

Notice that the polarisability of the 1S state is generally much lower than that of the 2S

state at optical wavelengths. This is a result of the tight binding of the spherically symmetric

ground state and the large energy differences between it and higher lying P-states. The poor

polarisability of H in its ground state becomes more clear under comparison with other atomic
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3.3.2. Off-resonant scattering

a)

b) c)

Figure 3.1: The polarisability of both the 1S (blue) and 2S (red) states are shown together
in plot a) from 91 to 800nm. Plots b) and c) show the polarisability of the 1S and 2S states
respectively each in the region closest to the relevant nP resonances. These 1S and 2S–nP
resonances are denoted with black dotted lines up to n=6. The polarisability is not plotted
beyond the ionisation threshold — where a forest of continuum resonances dominate.

species. For example, the polarisability of the strontium ground state at 813 nm is 280 a.u. [110]

— around 60 times larger than for ground state H.

3.3.2 Off-resonant scattering

Computing the scattering rates is more involved than computing the polarisability as one must

integrate over the scattered photon direction. Assuming an initial S-state, la = 0 and linearly

polarised optical field, ε̂εε = ẑ (or q = 0), equation 3.8 can be written as a purely radial sum,

multiplied by a shared angular term Aba (see appendix A.3 for details):

∑
mb

Rba = ω3
sα

4
FSAba

(∑
k

rbkrka

ωka ∓ ω
+ rbkrka

ωkb ± ω

)2

I, (3.26)

where there is an explicit summation over mb. This is done as, in the absence of an external

magnetic field, states with different mb are degenerate for a given pair nb, lb. Note that, since

it is assumed that a is an S-state, there is only one value of ma = 0.

The radial sum can be computed numerically as described in section 3.2.4. The angular term

is common to both sum (i) and (ii) and can be calculated analytically (again, see appendix A.3
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3.3.2. Off-resonant scattering

for details),

Aba = 8π
3

(
(Alb00,10A100,00)2 + 2

(
Alb(±1)(±1),10A100,00

)2
)
. (3.27)

Here the factor of 8π/3 comes from integration of the scattered photon direction and summation

over orthogonal polarisations.

For scattering between S states, only mb = 0 is possible and the overall angular term is given:

Aba = 8π
3

( 1√
3

× 1√
3

)2
+ 0 = 8π

27 . (3.28)

By combining equations 3.26 and 3.28 with the definition of atomic polarisability 3.3, one may

write the Rayleigh scattering rate as,

Raa = ω3α4
FS

8π
3 |αa(ω)|2. (3.29)

Doing so highlights the close relationship between Rayleigh scattering and the light shift1 and

allows for convenient computation if the polarisability is already known.

When b is a D-state, mb is restricted to 0 or ±1 by dipole selection rules and the overall angular

term is now:

Aba = 8π
3

(√ 4
15 ×

√
1
3

)2

+ 2
(√

2
10 ×

√
1
3

)2
 = 16π

27 . (3.30)

Technically, for b to be considered a single atomic state it must have well defined n, l, and m.

By summing over mb, what I am actually considering is the scattering rate from well defined

atomic state a to all final states with nb and lb. Henceforth, when discussing scattering rates,

this sum over mb will be implied and final states will be identified according to their n, l values:

e.g. 3S, or 5D. To obtain the scattering rate for a single value of mb all one needs to do is

to include only the appropriate angular terms; e.g. for scattering to an lb = 2, mb = 1 state,

in an external field that is linearly polarised along the ẑ direction, the angular term is given

Aba = (8π/3) × (
√

1/5 ×
√

1/3)2 = 8π/45.

Both the elastic and total inelastic (summing across Raman scattering and SSTPE processes

for all allowed final states) scattering rates out of the 2S state are presented in figure 3.2 a).
1In the two state model presented by Grimm et. al. [93], the scattering given by the imaginary component

of the complex polarisability is exactly a Rayleigh process, and a similar relation is obtained.
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Figure 3.2: Plots of scattering rates out of the 2S state of H across a range of mostly optical
wavelengths. Plot a) shows the elastic scattering (dashed blue line) and total inelastic scattering
(solid red line) from 410–1000 nm. Plot b) shows the inelastic scattering rate decomposed
according to final n, l states (summing across m and including both Raman scattering and
SSTPE). Solid lines indicate final S-states while dotted lines indicate final D-states. In both
cases, rates are given per second per unit intensity (measured in units of MWcm−2) and black
dashed lines indicate 2S-nP resonances.

Both elastic and inelastic scattering rates diverge at the 2S–nP resonances, as for polarisability.

Further, the elastic scattering rate drops to zero at one point between each pair of resonances:

this relates to a point where the 2S polarisability changes sign. Since Raa ∝ |αa|2 it does not

change sign with αa, but does vanish at the crossing point. In general, it is clear that inelastic

scattering is faster than elastic scattering, particularly in regions that are red-detuned from

2S–nP resonances.

Figure 3.2 b) shows the breakdown of the inelastic scattering rate according to final n, l state.

Again, these results conform well with liturature values (see appendix C). The 1S state is

lower energy than the 2S state and so is accessible via both anti-Stokes Raman scattering and

SSTPE at all wavelengths. Scattering to higher lying states is only possible via Stokes Raman
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3.3.3. Calculation accuracy

scattering when the frequency of the optical field is high enough to allow this transition1.

Scattering to the ground, 1S, state clearly dominates the total inelastic scattering rate at all

wavelengths, with contributions from high-lying states being very small.

3.3.3 Calculation accuracy

The calculations discussed in this chapter, and performed by the software described in (b.),

are done within the non-relativistic theory: the non-relativistic Hamiltonian, equation 2.4, is

used and atomic states are given in terms of quantum numbers n, l, and m. The leading

order corrections to M(2)
ba come from relativistic effects and field configuration terms which are

O(α2
FS) (see e.g. [101, 111]). This is by far the dominating source of theoretical uncertainty in

successive calculations with M(2)
ba and reasonably limits the physical accuracy of polarisability

or scattering rates to four significant figures. Where literature values are available, they agree

with the numerical results to the level of physical significance (see appendix B).

The computational uncertainty is essentially set by the choice of basis parameters nmax and ζ.

The basis must be large enough to ensure proper convergence over the sums, but a larger basis

set is naturally more resource intensive. Larger basis sets are also needed to ensure convergence

for calculations involving high-lying states. Further, larger values of ζ cause results to converge

more slowly and so also require larger basis sets. Since the choice of ζ is arbitrary, it is

convenient to use a small value. Choosing nmax = 300 and ζ = 0.3 results in final values with

an estimated computational uncertainty of less than O(10−9) (measured by small variations

the basis parameters, see (b.)) — far smaller than the physical significance of O(α2
FS).

The only difference between H and D in the the non-relativistic theory is a difference in the

reduced mass O(10−4). The resultant shift between results of M(2)
ba is of a similar order. So one

can expect to see a difference between results for H and D only on the last physically significant

figure. Further, the interactions of H and H̄ with optical fields are necessarily identical (under

conservation of CPT). As such, the results for H also apply to H̄.

These accurate calculations are an essential first step, not only towards optical trapping of H,

but in assessing its suitability for precision spectroscopy. The ability to calculate the polarisab-
1In the non-relativistic theory, nS, nP and nD states are degenerate, so this limit is exactly the 2S-nP

resonance.
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3.3.3. Calculation accuracy

ility at arbitrary wavelengths will be essential to choosing appropriate trapping fields. Further,

the atom-photon scattering rates limit the coherence times of trapped atoms, and will help me

to optimise the trapping fields and experimental setup. Whilst calculations of this sort have

been done before, it is useful to have them unified into a single set of numerical methods that

are extendable to a wide range of states. It is this generalisability that allowed new results of

scattering rates on the 2S–nS/D, for n > 3 to be contributed to the literature.
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Chapter 4

MEASUREMENT IN OPTICAL LATTICES

In chapter 2, I motivate a step change from spectroscopy in atomic beams to spectroscopy in

cold, optically trapped atoms. Chapter 3 then provides tools for discussing optical trapping and

the related effects of scattering. It is time to put these tools to use and assess the suitability

of a sample of cold, trapped H for precision spectroscopy. I will focus my attention on the

prospective 1S–2S lattice clock discussed in (a.), which will act as an example system for further

discussion. Not only is this system the most obvious analogue of the OLC that motivates

the move to trapped atoms, but it holds special significance in the H spectral dataset and

the unusually long lifetime makes it well suited to a trapped atom measurement. The work

presented in this chapter is heavily based upon the declared publication (a.).

4.1 The 1S–2S lattice clock

I will consider the simple 1D lattice clock described in figure 4.1: single H atoms are confined

in a 1D lattice formed by a standing wave with angular frequency ωlatt. The 1S–2S transition

is driven by Doppler-free excitation in a retro-reflected 243 nm beam oriented along the same

axis as the lattice. The anti-nodes of the 243 nm wave do not necessarily coincide with the

lattice sites in this set up. I note that this effect can be overcome by crossing the lattice beams

at a small angle and will not discuss it further.

4.1.1 A magic wavelength lattice

The one dimensional lattice is described by the spatially varying potential (see figure 4.1):

Ulatt(z) = −U0 sin2(klattz), (4.1)
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0

-U0

z

U

alatt

HHH H H

Figure 4.1: Schematic diagram showing the proposed 1D clock. The 1S–2S transition will be
driven by two counter-propagating 243 nm beams (represented in blue) that runs co-parallel
with a 1D lattice (represented in red). Below that is a plot of the lattice potential, with the
lattice constant alatt = λlatt/2 indicated.

where klatt = ωlattαFS is the angular wave-number of the lattice field and the maximum shift

depends upon the peak intensity I0 as,

U0 = −2παFSαa(ωlatt)I0. (4.2)

The depth of the lattice, |U0| best characterised according to the single photon recoil energy1

Erec = ω2α2
FS/2mH, resulting in the dimensionless lattice depth D = |U0|/Erec that is more

suited to comparison between lattice fields.

It is highly desirable to choose a magic wavelength — where the polarisability of both states is

equal. Trapping at a magic wavelength eliminates intensity-dependent shifts to the transition

frequency that arise from a differential light-shift between the two states. These wavelengths

can be estimated by plotting the polarisability of the 1S and 2S states and looking for inter-

sections, as in figure 4.2. To find explicit values for magic wavelengths for the 1S–2S transition

in H, I use a Newton-Raphson approach to numerically solve α2S(ω) − α1S(ω) = 0 in regions

around the intersections [2]. I report four magic wavelengths in the range 395–700 nm: 514.646,

443.212, 414.483 and 399.451 nm. The first magic wavelength is already well known in the lit-
1Again, this is given in atomic units.
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4.1.1. A magic wavelength lattice

a.b.c.d.

Figure 4.2: The polarisability of the 1S (dashed blue line) and 2S (solid red lines) of H over the
wavelength range 395–700 nm. 2S-nP resonances are indicated with dotted black lines. Magic
wavelengths are indicated with green circles and labelled: a) - 514.6 nm, b) - 443.2 nm, c) -
414.5 nm, and d) - 399.5 nm.

erature [101, 111], but the others were first reported in (a.) (and form part of the results of

this thesis).

As discussed in section 3.3.3, values of the atomic polarisability calculated in the non-relativistic

theory are physically meaningful up to 4 significant figures, with leading order relativistic and

field configuration corrections at O(α2
FS). Taking a functional approach to error propagation

[112], I find that these corrections affect the value of the magic wavelength only as O(10−7).

The results of my calculation — both values of the magic wavelength and the associated

polarisability — conform exactly to the analytical results of Adhikari et. al. to this level

(where comparison is applicable, see appendix B).

Whilst reporting calculated values of the magic wavelengths to 6 significant figures is justified,

a more conservative estimate of the physical accuracy is common in the literature. It is usual

to report magic wavelengths to the same level as the polarisability (four significant figures)

but use the more accurate value for following calculations to avoid introducing additional error
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4.1.1. A magic wavelength lattice

Table 4.1: Properties associated with the first four 1S–2S magic wavelengths λm: atomic
polarisability α, the gradient of the differential polarisability (in units of e2a2

0/EH
nm , i.e. atomic

units of polarisability per nm) and the lattice intensity per unit depth.

λm[nm] α[a.u.] (dα/dλ)
[

e2a2
0/EH
nm

]
I/D

[
MWcm−2

]
514.6 4.728 -5.213 3.373
443.2 4.810 -12.90 4.470
414.5 4.857 -24.89 5.062
399.5 4.886 -42.09 5.417

(e.g. see [101,111]). This convention is adopted hence-fourth and illustrated in table 4.1, which

presents the four calculated magic wavelengths, along with the atomic polarisability1 and local

slope in the differential polarisability. This table also shows the peak lattice intensity required

to trap at these wavelengths per unit depth (in recoils). Since the polarisabilty of the 1S state

is so small, these are very large, ∼ O(1)MWcm−2. Such intensities can be achieved with some

effort, particularly at 514.6 nm where significant power is available from frequency doubled

1029 nm radiation (see [51,113]).

There are many more 1S–2S magic wavelengths than are reported here; in fact there are

infinitely many — one in between each pair of 2S–nP resonances (see figure 4.2). Progressing

through the series of magic wavelengths, they rapidly become more unstable as the local slope

in the 2S polarisability becomes larger (again see figure 4.2 for a visual example of this). Since

the interval between successive wavelengths also rapidly decreases, there is not much to be

gained from considering arbitrarily many values. The four most stable wavelengths will suffice

for the following discussions.

The magic wavelengths for the 1S–2S transition in D are very similar, differing in the fourth

significant figure. As such, the discussion in this chapter applies equally well to D as to H with

only small variations between the exact values in each case. Further, the results are entirely

applicable to H̄.
1Note that these differ on the least significant figure from the values reported in [1]. This is because these

values were calculated according to the 1S state, where as those in the paper were calculated according to the
2S state. This difference then arises from calculating using only 6 significant figures in the magic wavelength as
the 2S state has a much larger polarisability gradient to the 1S. Since the remaining results of [1] (and section
4.4) are reported to 3 sig. fig. this discrepancy is not propagated.
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Figure 4.3: Diagram of atomic states a and b at the bottom of a given site in an optical
lattice. The horizontal lines represent vibrational states, separated by the trap frequency ωT
— the same for both a and b at a magic wavelength. The arrows labelled 1, 2, and 3, indicate
transitions between a and b with concurrent changes to the occupied vibrational state of −1, 0,
and +1 respectively. These vibrational state transitions are also indicated in the plots labelled
i)–vi), which show the spectral line associated with the transition for different values of η2 and
Γ.

4.2 Atomic motion in a local trap

Note: henceforth, it is more convenient to work in terms of S.I. units rather than atomic units.

Cold atoms in deep lattices are localised to the bottom of a single lattice site where it experi-

ences an approximately harmonic local potential. In such a harmonic potential, atomic motion

(in the lattice axis z) is restricted to a series of discrete vibrational states, n (see figure 4.3)1,

that are separated by the trap frequency,

ωT = 2πνT =
√
D

2πh
mHλ2 . (4.3)

The low mass of H results in noticeably larger trap frequencies than is usual in other species —

νT ≈
√
D × 2 MHz at optical wavelengths, around 80–90 times larger than for strontium (Sr)

or rubidium (Rb) (equivalent to the mass ratios).

This quantisation of momentum states changes how atomic recoil under photon absorption

must be considered. In free space, when an atomic transition is driven by the absorption of
1Note that this n is different to the principal quantum number defined previously, but context should be

sufficient to differentiate their meaning.
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4.2.1. Recoil in Doppler-free spectroscopy

photon(s) from an external field, this comes with an associated change in linear momentum. In

a trapped atom, momentum changing effects are restricted exciting discrete transitions between

vibrational states, n → n′; coinciding with a shift to the transition frequency of ∆nωT. There

are two regimes that are of particular interest to spectroscopy:

• The Resolved side-band limit: When the separation of vibrational states is much

larger than the line-width, νT ≫ ∆νFWHM, the signal is split into a series of independently

resolvable lines, each relating to a different vibrational transition. This effect can be seen

in the subplots of figure 4.3: as the ratio ∆νFWHM/νT decreases, signals relating to the

three vibrational transition become distinguishable.

• The Lamb-Dicke regime: When the separation of vibrational states is much larger

than the recoil energy, hνT ≫ Eprobe, transitions between vibrational states are sup-

pressed [93]. Often parameterised in terms of the Lamb-Dickie parameter η = Eprobe/hνT ,

this effect can be seen in the subplots of figure 4.3: as η increases the ratio of signal re-

lating to the three vibrational transitions changes.

When operating within these two regimes, all motional effects are resolved into independent

carrier signals that are suppressed by the relatively low energy of the probe beam. This leaves

a symmetric carrier line that is immune to the effects of atomic recoil (see figure 4.3).

4.2.1 Recoil in Doppler-free spectroscopy

Consider the Doppler-free excitation of the two-photon transition a → b. Along with ex-

citing this atomic transition, the transfer of linear momentum to the atom can drive a con-

current change in vibrational state, n → n′. This transition is described by the matrix ele-

ment b ⟨n′| eikprobez + e−ikprobez |n⟩a; where ±kprobez are the momentum kicks from absorption

from each co-propagating beam and the subscripts indicate atomic state. Assuming magic

wavelength trapping, the external potential between states a and b is identical and the sub-

scripts can be dispensed with. The momentum kicks can be expressed in terms of the ladder

operators of the harmonic potential, a† and a, and the Lamb-Dicke parameter. This gives a
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4.2.1. Recoil in Doppler-free spectroscopy

new expression of the Franck-Condon matrix elements,

⟨n′| eiη(a†+a) + e−iη(a†+a) |n⟩ . (4.4)

which can be expanded as a power series in iη as,

⟨n′| 2 + 0 − η2(a† + a)2 + 0 +O(η4) |n⟩ . (4.5)

Assume that η is small, i.e. the Lamb-Dicke condition is fulfilled, then higher order terms are

vanishingly small and, explicitly expanding (a† + a), one finally obtains the Franck-Condon

matrix elements,

(2 − η2(1 − 2n)) ⟨n′|n⟩ − η2(n+ 1)(n+ 2) ⟨n′|n+ 2⟩ + η2n(n− 2) ⟨n′|n− 2⟩ . (4.6)

The first term relates to transitions that do not change the vibrational state of the atom,

these contribute to the central carrier signal and are the only terms that survive in the limit

η → 0. Since odd powers of iη cancel in the power series expansion of 4.4, there are no terms

that contribute to first order sidebands. Instead the leading order n-changing terms relate

to second order sidebands which are detuned from the carrier by ±2ωT. This suppression of

first-order sidebands is equivalent to the elimination of the Doppler shift in free space, whilst

the remaining second-order sidebands relate to residual shifts from wavefront curvature etc.

When normalised, these Frank-Condon matrix elements give the probability amplitudes for

particular vibrational transitions:

Pn→n′ =



1
N η

4(n+ 1)(n+ 2) : n′ = n+ 2

0 : n′ = n+ 1

1
N (2 − η2 − 2nη2)2 : n′ = n

0 : n′ = n− 1

1
N η

4n(n− 1) : n′ = n− 2,

(4.7)

where N is a constant that enforces the normalisation of probabilities, ∑n′ Pn→n′ = 1. The

Lamb-Dicke condition is relaxed from η ≪ 1 for a single photon transition to η2 ≪ 1 as this

mirrors the scaling of the probability amplitudes. The condition on resolved side-bands is also

relaxed, requiring that ∆νFWHM ≪ 2νT since only even order sidebands remain.
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4.2.2. The second order Doppler shift

4.2.2 The second order Doppler shift

In the resolved side-band limit, the carrier line is, in principle, symmetric and completely

immune to the effects of atomic motion. Even the residual shifts from wave-front curvature

etc, that remain in free space are resolved into the side-bands. However, atoms are still in

motion and measurement is subject to the effects of time dilation through the relativistic SOD

shift. Following the arguments of Martinez et. al.1 [114] the expectation of the fractional SOD

shift on an atom in a particular vibrational state, n, is given:
〈
δν

ν

〉
n

= − hνT
4mHc2 (2n+ 1). (4.8)

As in free space, this shift does not depend upon the direction of the probe beam wave vector

k and so is not cancelled in Doppler free spectroscopy.

The analogy between this shift and the free space SOD shift of section 2.3.1 is clear when one

views hνT(2n+1)/m as the expectation of squared velocity operator for an atom in vibrational

state n, ⟨v2⟩n. Atoms in higher vibrational states oscillate at a higher frequency2, relating to a

larger expected value of ⟨v2⟩ and so a larger SOD shift. In principle, this n-dependence splits

the line into a series of sidebands detuned from the transition frequency by (2n+ 1)δν0 (where

δν0 is the shift of the n = 0 state), as can be seen in figure 4.4. In practice, the line-width is too

large to resolve these lines (δν0 ≈ O(10) mHz for the 1S–2S transition in H trapped in a D = 100

magic wavelength lattice, much smaller than the natural line-width ∆νFWHM = 1.27 Hz) and

the SOD effect instead introduces a small asymmetric perturbation to the line-shape.

While pure vibrational occupation across the lattice is possible (see chapter 5), thermal occu-

pation is far more common. The fractional SOD shift for a thermal state at temperature T can

be calculated by replacing the state index in equation 4.8 with the average occupation number,

n̄ = 1
exp

(
hνT
kBT

)
− 1

, (4.9)

where kB is the Boltzmann constant. One can express this occupation entirely in terms of the

trap depth: assume a temperature that is 1/3rd of the trap depth, T = DErec/2kB. Combining
1The case of a harmonic optical trap is actually simpler than that considered in this work, and modification

is straightforward.
2At ωT(n + 1/2) in fact.
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Figure 4.4: Plots of a line-shape showing the influence of the SOD shift assuming thermal
occupation of vibrational states and a lattice depth of D = 100. Lines relating to occupation
of the n=0, 1, 2, and 3 vibration states are indicated with dotted lines.

this with the definition of the trap frequency in equation 4.8, one obtains hνT/kBT = 6/
√
D,

this is used to define the thermal occupation of figure 4.4.

4.3 2S trap lifetimes

In free space, the 2S state is meta-stable, with a lifetime of 125 ms [115]. This state is so long

lived because the only lower lying H state is the absolute ground 1S state, which has the same

parity as the 2S. As such, spontaneous decay of the 2S state is forbidden by dipole selection

rules, and any decay must occur by slower multi-pole interactions1.

Since this meta-stability comes from parity constraints, it is highly sensitive to effects that

mix states of opposite parity. For example, it is well known that the 2S state is susceptible
1In the non-relativistic structure, the 2S1/2 state is higher in energy than the 2P1/2 (due to the Lamb Shift,

see section 2.2.4 and figure 2.2), the small energy difference makes for a very slow decay process.
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4.3.1. Inelastic scattering

to quenching (an accelerated decay to the ground state) in D.C. electric fields which can

significantly shorten its lifetime [116]. The electric field mixes a small amount of P state

character into the 2S state via the D.C. Stark effect, enabling spontaneous decay to the 1S state.

It is well understood that A.C. fields will similarly quench the 2S state of H [1,99,100,102,117]:

mixing between 2S and nP states is the source of the light-shift that is fundamental to optical

trapping. It is therefore, essential to understand how the presence of a trapping field affects

the lifetime of the 2S state to assess how this influences the prospect of precision spectroscopy

in an optical trap.

4.3.1 Inelastic scattering

Quenching in an optical field can be thought of in terms of the off-resonant atom-photon

scattering processes of section 3.1.2 (as in [102]). Clearly, elastic Rayleigh scattering does not

directly affect the lifetime of the 2S state1, so only inelastic scattering will be considered. The

total inelastic scattering rate is reported per unit depth at the magic wavelengths in table 4.2,

along with a breakdown of contributing processes by final nS/D state (calculated according to

the method given in chapter 3). Technically, only scattering directly to the 1S state can be

called “quenching”, as processes with other final states are not enhanced decays to the ground

state. However, the low-lying nS/D states (not including the 2S state) are short lived, decaying

rapidly and preferentially to the 1S state (in cascade) . As such, they can still be thought of

as additional decay channels that limit the lifetime of the 2S state and are included in this

discussion. Further, table 4.2 shows that scattering to the 1S state dominates the total inelastic

scattering rate out of the 2S state. This is a result of the scaling Rin ∼ ω3
s and the large 2S–1S

energy interval compared to other transitions.

Notice that the inelastic scattering rates are particularly high; exceeding the 2S spontaneous

decay rate for depths as low as O(0.1)Erec. Scattering quickly come to dominate the lifetime

of the 2S state, quenching it to O(0.1) ms in a D = 100 magic wavelength lattice (a standard

operating depth in lattice clocks of other species [110]). This is much larger than is expected

for the clock states of other atoms. For example, trap-induced scattering rates are around 105

1Elastic scattering can change the momentum state of a trapped atom however, eventually leading to atom
loss from the potential [93]. This heating is a major concern in other trapped atom experiments, but the low
polarisability of the 1S state makes it less of a concern for H.
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Table 4.2: Break down of contributions to the total inelastic scattering out of the 2S state,
labelled according to final state and given as a percentage of the total rate. The total inelastic
scattering rate for each magic wavelength is also reported per unit depth.

λ[nm] 1S 3S 3D 4S 4D 5S 5D 6S 6D Rin/D
[
s−1]

514.6 93.22 6.250 0.5414 - - - - - - 61.49
443.2 90.55 4.710 0.2681 3.306 1.168 - - - - 69.41
414.5 88.97 4.396 0.2124 2.560 0.7417 1.985 1.135 - - 73.90
399.5 87.95 4.262 0.1892 2.347 0.6038 1.572 0.7956 1.309 0.9716 76.78

times smaller for the clock state of 88Sr than for the 2S state of H [110]. Most of this can be put

down to the poor polarisability of the 1S state (see figure 3.1) at the magic wavelengths, around

60 times smaller than the polarisability of the Sr ground state at the 813m [110]. Combined

with the much larger recoil energy of H, trapping 1S H requires intensities O(104) higher than

those that trap ground state Sr-88 at the same depth. This leads to an equivalent increase in

the inelastic scattering rates as Rin ∼ I0 (see equation 3.8).

The final order of magnitude is hiding in the nature of the clock-state meta-stability. As

discussed, the meta-stability of the 2S state in H is founded in parity constraints and is broken

by parity-mixing effects (figure 4.5 a).). The meta-stability of the Sr-88 clock state is instead

supported by spin constraints and is not sensitive to parity mixing effects (see figure 4.5 b).).

Figure 4.5: Energy level diagrams highlighting the difference between the meta-stability of the
clock state in H (a) and 88Sr (b). The clock transition is indicated with a blue arrow. Green
lines indicate pathways for second order couplings between the clock state and the ground
state.
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As a result, there is a core difference between the quenching processes in H and Sr: inelastic

scattering in H directly takes population from the 2S state to the ground (and other states).

Whereas, in Sr it transfers population between the J states of the 3P manifold which may then

spontaneously decay to the ground state.

4.3.2 Two-photon ionisation

Inelastic scattering is not the only process that limits the 2S lifetime in an off-resonant optical

field. Whilst not a “quenching” process in the sense previously defined, ionisation contributes

a new loss channel and reduces the lifetime of the 2S state. Magic wavelength photons are not

sufficiently energetic to affect single photon ionisation, which requires wavelengths shorter than

365 nm. So, to leading order, ionisation at the magic wavelengths proceeds by the simultaneous

absorption of two field photons— so-called “two-photon ionisation”.

Two-photon ionisation in H has long been a topic of theoretical study [103, 105, 118–121]

and, like inelastic scattering, can be treated analytically through the computation of certain

Schrödinger’s greens functions [60,97,98]. Unlike inelastic scattering, high quality software for

computing multi-photon ionisation rates in H is already freely available in STRFLO [105]. Cal-

culations proceed in a very similar way to those described in chapter 3: via implicit summation

across a basis of (complex) Sturmian functions. The two-photon ionisation rates calculated

with STRFLO are reported in table 4.3 along with the inelastic and elastic scattering rates

(calculated as per chapter 3) for comparison. Since two-photon ionisation involves the absorp-

tion of two photons from the external field, its rate scales as intensity squared1, and so as the

square of the trap depth [105]:

R
(2)
ion ∼ I2

0 ∼ D2. (4.10)

For very shallow lattices, inelastic scattering is the most significant effect, but two-photon

ionisation takes over at depths of around 2Erec. In deep lattices, two-photon ionisation is the

dominant source of decoherence, further reducing the already quenched 2S lifetime to O(1) µs

in a D = 100 magic wavelength lattice. Such high ionisation rates are, again, a result of the
1This scaling holds in the perturbative treatment, at very high intensities this scaling breaks down and the

calculation must be non-perturbative. STRFLO is able to do both of these and shows good agreement between
the values obtained using both methods for the range of intensity covered here.
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Table 4.3: Elastic and inelastic scattering rates per unit depth (D in units of Erec) and the
two-photon ionisation rates per unit depth squared for the four 1S–2S magic wavelengths. Also
reported is the depth at which the rates of inelastic scattering and two photon ionisation are
equal.

λ[nm] Rel/D)
[
s−1] Rin/D

[
s−1] R

(2)
ion/D

2 [s−1] D s.t. Rin = R
(2)
ion

514.6 7.986 × 10−3 61.49 32.19 1.910
443.2 1.716 × 10−2 69.41 30.39 2.292
414.5 2.423 × 10−2 73.90 29.04 2.545
399.5 2.931 × 10−2 76.78 28.33 2.710

high intensities required to trap H at the magic wavelengths. Only this time, the effect is

exacerbated by the quadratic scaling of the ionisation rate. As a naturally destructive process,

ionisation leads to the complete and irrecoverable loss of atoms from the lattice. Mitigating

this loss at the magic wavelengths requires operating in very shallow lattices, but even then,

depths smaller than O(0.1)Erec would be required for both inelastic scattering and ionisation

to be slower than spontaneous decay.

4.3.3 Non-magic trapping

It is sensible to extend consideration to non-magic wavelengths, particularly those above the

two-photon ionisation threshold at 730 nm. Figure 4.6 a) shows the variation of atom-photon

scattering and ionisation rates for wavelengths 395–1000 nm at constant intensity. As expected,

two-photon ionisation dominates the 2S lifetime up to threshold, where inelastic scattering

becomes dominant. Above the two-photon threshold, ionisation must proceed by the absorption

of at least three field photons. Three-photon ionisation rates can also be calculated with

STRFLO and are generally much smaller than the other plotted rates except for very narrow

“2+1” resonances (where two photons drive a resonant transition to another bound state,

whilst the third ionises this bound state.). Three-photon ionisation rates are not plotted below

730 nm where 2-photon ionisation dominates, or between 730 and 800 nm where a forest of 2+1

resonances would obscure the plot.

Non-magic trapping results in a differential light-shift between the two states of interest (ini-

tially considering 1S and 2S, but this does apply generically) as they are not equal in polaris-

ability. Even though atomic motion is well constrained at the bottom of a lattice site, residual

motion remains and the atom experiences a time-dependent external field intensity according
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Figure 4.6: Rates of elastic scattering (dashed blue lines), inelastic scattering (solid red lines),
two-photon ionisation (dash-dot green lines) and three-photon ionisation (dotted green lines)
in the wavelength interval 395–1000 nm. Plot assumes a constant lattice intensity of I =
100 MWcm−2. Two-photon ionisation rates are plotted up to threshold, whilst three-photon
ionisation rates are only plotted for λ > 800 nm. Solid black lines show the 2S–nP resonances
and are labelled according to nP state.

to the occupied momentum state. Combined with a differential light-shift, this introduces new

systematic shifts to the measurement of the transition frequency.

4.4 Measurement limitations

The previous discussion highlights both the strong motivations for a 1S–2S lattice clock, and

some serious departures from existing OLCs. In particular, the lifetime of the clock (2S) state

is severely reduced by effects inherent to the trapping field at the required intensities. It is

essential to understand how these effects limit the measurement potential of the proposed clock

and to compare this to the state of the art beam experiments.

4.4.1 Effective limits on clock line-widths

As seen in section 4.3, the lifetime τ of the atomic transition fundamentally limits the FWHM

of the observed spectral line, ∆νFWHM > 1/(2πτ). Since the 1S state is the absolute ground

state and is therefore stable, the lifetime of the transition is entirely given by the lifetime of the

2S state. As discussed in section 4.3, this is unavoidably reduced in the high intensity external

fields needed to trap in the 1S state. So the minimal line-width is also broadened according to

the trap depth D.
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4.4.1. Effective limits on clock line-widths

Table 4.4: Complete limits on a 1S–2S H lattice clock operating in the Lamb-Dicke regime
according to magic wavelength. The first column gives the trap frequency per unit square root
of the lattice depth. The second column gives the depth DLD that ensures Pn=0→n=0 = 0.9,
equivalent to η2 = 0.381. The next columns give the intensity required to achieve this depth,
the associated minimal 1S–2S line-width, and the ratio νT/∆νFWHM. The final column gives
the expected fractional SOD shift assuming thermal occupation of the vibrational states.

λ[nm] νT/
√
D[MHz] DLD/Erec I[MWcm−2] ∆νFWHM[kHz] νT/∆νFWHM ⟨δν̂/ν⟩SOD

514.6 1.50 34.5 116 6.43 1370 −2.06 × 10−17

443.2 2.02 19.0 84.9 1.95 4520 −1.62 × 10−17

414.5 2.31 14.5 73.3 1.14 7720 −1.48 × 10−17

399.5 2.48 12.5 67.7 0.857 10300 −1.40 × 10−17

To make a quantitative statement on the broadening that could be expected in a practical clock,

I demand that the probability of remaining in the vibrational ground state is at least 90%, i.e.

Pn=0→n=0 ≥ 0.9. This is enforced by requiring the Lamb-Dicke parameter of η2 ≤ 0.381,

which is the case for trap frequencies of νT = 8.79 MHz and above. Table 4.4 reports the

minimal depth that fulfills this condition — the so-called “minimal Lamb Dicke depth” DLD—

at each magic wavelength, along with the intensity required to produce it. Constraining the

lattice depth in this way allows me to obtain a lower bound on the transition line-width,

set by two-photon ionisation and also reported in table 4.4. These values of ∆νFWHM are

much smaller than the trap frequency, indicating side-bands that are detuned from the carrier

by many (O(103–104)) times the line-width (see table 4.4) — deep in the resolved side-band

limit. Finally, the table also provides the expected fractional SOD shift to the 1S–2S transition

frequency, assuming thermal occupation of these lattices. These shifts are very small, O(10−17),

or O(10) mHz, which is well below the current measurement precision.

Narrower lines are possible for shorter wavelengths, e.g. 0.857 kHz at 399.5 nm compared to

6.43 kHz at 514.6 nm. This can be understood through the tighter confinement offered by these

lattices, resulting in larger trap frequencies for a given depth. For example, a 514.6 nm lattice

must be at least 34.5Erec deep to achieve η2 ≤ 0.381, whilst a 399.5 nm lattice only needs to be

deeper than 12.5Erec. A shallower lattice naturally reduces the two-photon ionisation rate and

relives some of the broadening. Additionally, it should be noted that the two-photon ionisation

rate per unit depth squared (as given in table 4.4) also slowly decreases with wavelength, and

this plays a small part in the above observation.

These results clearly show that effective control of velocity dependent systematics (through well
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2 kHz - Parthey et. al.

Figure 4.7: The 1S–2S minimal line-width in each of the four magic wavelengths with the Lamb
Dicke coefficient η2. The top x-axis shows how this relates to the probability of remaining in
the ground vibrational state under 1S–2S excitation. Also shown, with a dotted line, is the
2 kHz level set by the atomic beam measurement [20].

resolved side-bands, operating within the Lamb-Dicke regime, and constraining the SOD shift)

can be achieved in much shallower lattices than is usual in other species, e.g. Sr-88 [45]. This

is a direct result of the low mass of H and correspondingly high trap frequencies. Operating in

shallower traps mitigates the broadening effects of two-photon ionisation and allows for minimal

line-widths O(1) kHz. Even narrower lines can be achieved if one is willing to relax the Lamb-

Dicke condition (see figure 4.7). Provided that the resolved side-band limit is maintained

(which is assured at these depths) being deep in the Lamb-Dicke regime is not essential to a

precision measurement. In practice, minimal line-widths of O(100) Hz are probably the best

that could be expected before lattices become too shallow to offer proper confinement.
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4.4.2 Comparison with beam measurements

It is instructive to compare this clock to the best 1S–2S measurements in cold beams [20, 28].

The uncertainty in these beam measurements is dominated both by statistical uncertainty and

by motional systematics arising from the SOD effect. Careful velocity filtering minimises this

effect to an extent, and results in an asymmetric line-shape that depends heavily upon the

detailed properties of the velocity distribution. Fitting with a complex line-shape model al-

lows for a final measured width of ∼ 2 kHz [20]. In the 1S–2S clock described above, most of

the effects of atomic motion are resolved into identifiable side-band signals, leaving a gener-

ally symmetric carrier signal. Compared to atomic beams, trapped atom experiments benefit

from long measurement times and narrow line-widths. Two-photon ionisation at the magic

wavelengths, however, limits the 2S lifetime and erodes this advantage. While minimal line-

widths of O(100) Hz could be achieved at short magic wavelengths by relaxing the Lamb-Dicke

constraints (see figure 4.7), this is only around one order of magnitude lower than the 2 kHz

width observed in beams.

Longer measurement times come at the cost of reduced statistical power, limited by the slow

repetition rates and low atom numbers associated with cold, trapped samples. In Sr OLCs,

statistical power is improved by driving a fast-cycling transition out of the ground state. The

absorption on this transition provides a long time measurement of the ground state population

with a very high signal to noise ratio [45]. The clock transition is then identified by a drop

in the ground state population, and each measurement of the clock transition is supported by

a large number of observed events [45]. Unfortunately, in H all suitable transitions out of the

ground state lie at Lyman series wavelengths. The lack of laser power in the far-VUV region

of the spectrum [122] makes mimicking this scheme impractical. While trap-induced ionisation

will provide a background-free readout, it is limited to only one event per 1S–2S transition.

It is impossible to begin to estimate the statistical uncertainty associated with a clock without

a complete experimental proposal. This is because the final statistical power of a measurement

will depend critically on technical quantities such as the duty cycle, the final temperature, and

read-out mechanism. Cooling and loading H into optical traps is currently and open problem,

and will be discussed in chapter 5. But, it is clear that optimising the experimental cycle and
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achieving efficient read-out will be crucial to minimising the statistical uncertainty of trapped

atom experiments.

It is clear that this H lattice clock will not be competitive with state of the art atomic/ion

clocks [50, 123, 124] as an absolute frequency reference. However, such a clock offers a new

measurement of the 1S–2S transition in H that is effectively free from the velocity dependent

systematics that may be at the heart of the proton charge radius puzzle (see section 2.3.3).

Comparisons between the well established beam measurement and this new measurement will

act as a litmus test for unidentified systematic shifts. Further, since the 1S–2S transition is so

central to the H dataset, it is highly desirable to repeat this measurement in a new system.

The same results apply to clocks of D and H̄ — in fact, an H̄ 1S–2S lattice clock has already

been proposed for improved precision given the small number of available anti-atoms [51].

Comparative measurements of the 1S–2S transition in H, D and H̄ are critical to modern tests

of fundamental physics (see chapter 2 and [38, 40, 52–55]). These improved systematics seem

to come at the cost of worse statistics, but it remains to be seen whether this can be remedied

by efficient readout and loading schemes.

4.4.3 Implications for other transitions

The implications of these results extend to the potential measurements of other H frequency

intervals; particularly to those involving high-lying Rydberg states, where the positional cer-

tainty provided by a lattice (or ideally tweezer array) is essential to control dipole interaction

systematics. While usable magic wavelengths for these transitions are unlikely, there are a

number of methods that can be employed to counter the effects of non-magic trapping in these

measurements; the most simple of which is to turn off the trap and perform the measurement

in a shorter time at high Rabi frequency [125]. Consider specifically the case of a 2S-Rydberg

transition.

These transitions do not require deep trapping in the 1S state, so one can trap with much lower

intensities by choosing a wavelength with large 2S polarisability (see figure 3.1). Away from the

points where α2S changes sign (and naturally polarisability is very small), there is a significant

decrease in the rates of multi-photon ionisation and inelastic scattering for a given 2S lattice

depth, as plotted in figure 4.8. Note that this range of wavelengths extends over regions of
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Figure 4.8: Rates of elastic scattering (dashed blue lines), inelastic scattering (solid red lines),
two-photon ionisation (dash-dot green lines) and three-photon ionisation (dotted green lines)
in the wavelength interval 395–1000 nm. Plot assumes a constant 2S lattice depth of D = 10.
Two-photon ionisation rates are plotted up to threshold, whilst three-photon ionisation rates
are only plotted for λ > 800 nm. Solid black lines show the 2S–nP resonances and are labelled
according to nP state. 1S–2S magic wavelengths are denoted by vertical lines in purple.

both red and blue detuning for the 2S state, affecting whether the atom will be trapped at the

node or the anti-node of the standing wave respectively. The calculation ignores the sign of

the potential when calculating the depth, so actual loss rates observed in blue detuned traps

may be lower than reported. Regardless, using a non-magic wavelength enables deep trapping

with longer 2S lifetimes.

Even then, the lifetime of the 2S state is unlikely to dominate the line-width of the transition

compared to the shorter lifetimes of the other states. Take a 1000 nm lattice as an example:

the 2S lifetime is dominated by inelastic scattering which only quenches it to ∼ 6 ms at a trap

depth of D = 100. This lifetime is generally larger than the lifetimes of these H Rydberg states:

at n = 30, states with low-l have lifetimes O(10) µs, while states with high-l can have lifetimes

of 100’s µs [126, 127]. In this case the line-width is dominated by the lifetime of the Rydberg

state and the achievable measurement time, quenching only serves to limit the achievable initial

2S population. Ultimately, the main concern for these measurements will be avoiding issues

related to differential light shifts and stray electric fields whilst maintaining tight confinement

and well defined separation.
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Chapter 5

ULTRA-COLD, TRAPPED HYDROGEN

Chapter 4 concerned the spectroscopy of H confined in an optical lattice with no more than

one atom per site in low-lying momentum states, mirroring those of modern OLCs [45]. This

system provides the tight control of motional systematics that are essential to a new 1S–2S

measurement and the well-defined inter-atomic spacing required for precision Rydberg spec-

troscopy. The natural next step is to consider how one might produce such a system. This is a

question both of cooling H and loading it into tightly confining optical traps. As it turns out,

this is not a trivial matter and has been a barrier to progress for some time.

Usually, optical tools such as magneto-optical traps and optical molasses are used to cool atoms

and load optical lattices/tweezers [9, 128]. However, these processes are severely limited for H

by the lack of laser power available for Lyman series wavelengths: continuous wave (CW)

beams at 121 nm are limited to powers of only ∼ 10 nW [129, 130], whilst pulsed lasers suffer

from short pulses and slow repetition rates [122]. Almost 30 years separate the first report

of laser cooled H [131] and the recent laser cooling of H̄ [74], yet little progress in the output

power can be seen2. Attempts to mimic the meta-stable state cooling of helium [132, 133] are

hampered by unfavourable branching ratios and slow re-pumping rates: 30 W of cw 243 nm

light can expect to give a 1S–2S scattering rate of only ∼ 1 kHz [134].

Deprived of the standard techniques, attention has turned to a variety of novel approaches for

producing ultra-cold, trapped H — some more successful than others. Two approaches are

worth special mention: First is the possible threshold dissociation of a laser cooled alkaline-

earth hydride as described in [56]. The group of T. Zelevinksy has already demonstrated laser

cooling of CaH and CaD molecules towards this goal [135,136]. Second, it might be possible to

leverage the induced decay of the 2S state to load an optical dipole trap in the 1S. The group
2Pulsed Lyman-α lasers were used in each case with comparable pulse lengths. Whilst the 2021 laser had

a lower duty cycle, it had on average around 10 to 100 times more photons per pulse and was solid sate rather
than dye based. The much longer cooling times for H̄ vs H can be put down to the very low anti-atom densities
available.
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5.1. A Bose Einstein Condensate of Hydrogen

of T. Udem is currently working on an implementation of this using a velocity selected atomic

beam [70].

Despite this recent progress, there remains only one experimentally proven route to ultra-cold

H: the evaporative cooling approach that led to BEC in 1998 [57].

5.1 A Bose Einstein Condensate of Hydrogen

The BEC of H came only three years after the first observation of BECs in dilute alkali vapors

in 1995 [137–139]. The full details of this experiment can be found in the original report [57]

and associated thesis [140]. However, it is useful to give a brief overview of the procedure here:

• First, cold H atoms are produced by RF dissociation of H2 molecules at ∼ 1 K. These

atoms flow into a cell with a superimposed 550 mK deep Ioffe-Pritchard type magnetic

trap.

• Hot atoms are cooled by contact with the walls of the cell, which are held at 275 mK

by cryogenics. A film of super fluid 4He on the walls reduces contact time and prevents

recombination.

• The gas of H thermalises via inter-atomic collisions, cold atoms may become trapped

whilst hot atoms go on to re-collide with the cold walls. State selective trapping ensures

that the remaining atomic gas is spin polarised.

• The trapped atoms are cooled to 120 µK by evaporation over a saddle-point at one end

of the trap. Ejected atoms are thermally isolated from the trapped atoms by sticky

collisions with the cell walls (now at 150 mK).

• Past 120 µK, atoms settle into the harmonic region of the trap and high energy trajectories

have long escape times. The sample is further cooled by forced evaporation with an RF-

knife, reaching temperatures as low as 20 µK.

The onset of BEC was observed at a temperature of 50 µK for densities of 1.8 × 1014 cm−3.

Ultimately, the experiment produced a condensate of 109 H atoms, with a peak density of 4.8±
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1.1 × 1015 cm−3. The high condensate densities can be understood in light of the anomalously

small S-wave scattering length of H: taken as1 as = 0.721 Å [145].

Despite the unusually high number of condensed atoms, the condensate fraction (the ratio of

atoms in the condensate compared to those available for condensation) is surprisingly small:

estimated as < 7% [57]. The high condensate density drastically increases the rate of dipolar

relaxation (spin relaxation to un-trapped states due to the interaction between atomic mag-

netic dipoles, see [140] for a full discussion), which becomes the dominant loss channel. The

condensate is constantly replenished by cooling in the surrounding thermal cloud, which is

ultimately limited by the slow rate of rethermalising collisions in the gas (since as is so small).

The condensate fraction is a reflection of an equilibrium between these two competing processes

that favours smaller condensates.

Since this experiment, the study of BECs in H has not progressed and the results have never

been replicated. A major reason for this is the technical complexity of the experiment, espe-

cially compared to the requirements of alkali BECs — which have seen continual study and

development. In the past 25 years, there has been significant progress on techniques for pro-

ducing and manipulating alkali BECs which could be applied to improve the situation in H.

For example, a condensate formed in an entirely optical trap (as demonstrated in [146]) in the

absolute ground state is no longer susceptible to dipolar relaxation; and condensation through

the manipulation of trap geometry (see e.g. [147, 148]) may go some way to alleviating the

reliance on a slow evaporation rate. Combined with the rapid advance in cryogenic technology

in recent years (e.g. commercially available dilution refrigerators from companies such as Blue-

Fors and Oxford Instruments) the prospect of a new H BEC experiment becomes all the more

promising. In fact, new cryogenic realisations of ultra-cold H have already been applied to the

study of magnons [149], and the Grassian collaboration is progressing towards a new ultra-cold

H experiment [150].

Clearly, the capacity is there for a modernised experiment, it simply needs sufficiently strong

motivation.
1Specifically the triplet scattering length which dominates over the singlet. The exact value of this scattering

length is dependent upon choice of scattering potential, see [141, 142] and the references therein, but 0.721 Å is
chosen as an accepted middle ground. Also, note that this length is isotope dependent, see [143,144].
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5.1.1 Suitability for spectroscopy

While a BEC is, in many ways, the ultimate limit of an ultra-cold sample, it is not an ap-

propriate sample for precision spectroscopy. Resonances are subject to significant shifts and

broadening due to inter-atomic interactions. Indeed, the major changes to the 1S–2S line un-

der Doppler-free spectroscopy were a key way of experimentally identifying the presence of a

condensate [57,140].

This is not the end of the story, as a BEC is a vital stage in the production of the highly ordered

lattice systems used in quantum gas microscopes [151]. These experiments leverage the many-

body dynamics of an interacting Bose gas in a lattice to drive the transition to a MI phase

— characterised by uniform occupation of highly localised atoms in the ground vibrational

state. MIs of Bosonic alkali atoms are routinely produced [151, 152]. If such a phase could

be produced in H, it would seem ideal for the 1S–2S lattice clock and precision spectroscopy

discussed in chapter 4.

The properties of H are notably different to the heavier alkali atoms, and it is not immediately

clear that a process which is usual in atoms like Rb or caesium will be feasible for H (take laser

cooling for example). It is therefore the goal of this chapter to try to identify a route to H MI,

and to examine its implications for precision spectroscopy.

5.2 The super fluid to Mott insulator transition

I begin with the many body physics of a degenerate Bose gas in an optical lattice. Consider

the simple 3D lattice potential with wave-vector k = kxx̂ + kyŷ + kzẑ, parameterised by the

unit-less depth D,

Vlatt = DErec
(
sin2(kxx) + sin2(kyy) + sin2(kzz)

)
. (5.1)

The spacing between nearest neighbour lattice sites is given by the lattice constant a = λ/2 =

π/|k|.

The solutions to the single particle Schrödinger equation are conveniently given in terms of a
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5.2.1. The Bose Hubbard Model

Figure 5.1: Illustrative plots of the Wannier functions in a 514.6 nm optical lattice along a
single axis. Three functions localised to adjacent sites along x (in units of a) are plotted at
three different lattice depths and are differentiated with colour. These plots were generated
with numerical Wannier functions according to appendix C. The grey line indicates the lattice
potential with no meaning to its height.

set of Wannier functions (see, e.g. [153]),

wn(r −Rj) = 1
V

∫
BZ
dqe−iRj ·qϕn,q(r), (5.2)

where ϕn,q is the n-th band Bloch function with quaismomentum q, Rj is spatial coordinate of

the local minimum in lattice site j, and V is the volume of the first Brillouin zone (BZ). Each

Wannier function is centred on the potential minima of a given lattice site and is local to that

site (see figure 5.1) — as opposed to the delocalised Bloch functions which extend across the

whole lattice. In the case of a degenerate Bose gas, only the lowest Bloch band is relevant. As

such, I take n = 0 and neglect this index going forwards.

5.2.1 The Bose Hubbard Model

One can now begin to think of each lattice site in isolation, with its own local potential and

occupation (number of atoms in the local potential) — given for site j in terms of the number

operator sj (the occupation of site j is the eigenvalue of this operator1, sj). This occupation is

not necessarily static and atoms may tunnel or “hop” from between sites i and j according to

the application of the relevant creation and annihilation operators (a†
j and aj respectively for

site j): −Ja†
jai, where the tunnelling potential2 is given [152,154],

J =
∫
drw∗(r −Rj)

[
−ℏ2

2m ∇2 + Vlatt(r)
]
w(r −Ri). (5.3)

1Usually, nj and nj would denote this operator and the site occupation. In this thesis, n is already used
extensively in other contexts so cannot be used here.

2Here, I call this J in line with [154]. It is worth noting that t is also a common in other works, e.g. [155,156].
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Figure 5.2: A comparison between numerical(red dashed lines) and analytic (blue solid lines)
values of J and U . In both cases, J and U are calculated for varying depths per unit recoil in
a 514.6 nm optical lattice (as in equation 5.1).

In the low energy regime implied by a degenerate Bose gas, it is appropriate to restrict consid-

eration to hopping between pairs of nearest neighbour sites only [154].

Atoms occupying the same lattice site interact according to the potential [152,154],

U = 4πℏ2as

m

∫
dr|w(r)|4, (5.4)

where aS is the S-wave scattering length as discussed above. In principle, these interaction can

be attractive or repulsive. I will consider only the repulsive case which includes H.

The potentials J and U can be computed numerically, as described in appendix C, or by

approximating the Wannier functions as Gaussian (appropriate in sufficiently deep lattices) to

obtain analytic expressions [157]:

J

Erec
≈ 4√

π
D

3
4 exp

(
−2

√
D
)

and U

Erec
≈
√

8
π
kasD

3
4 . (5.5)

A comparison between these two approaches is given in figure 5.2 which shows reasonable

agreement for all but the most shallow lattices. Whilst the numerical approach is generally

favoured in calculations, the scaling laws above are useful for understanding results.

These effects are united in the Bose-Hubbard Hamiltonian [154,157],

HBH = −J
∑
i ̸=j

a†
jai + U

2
∑

i

si(si − 1) − µ
∑

i

si. (5.6)

where the final term ensures conservation of total atom number over the whole lattice via the

chemical potential µ. This Hamiltonian describes the many-body dynamics of a degenerate

Bose gas in the lattice Vlatt(r).
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5.2.2 Bose Hubbard ground states

Ground states of the Bose-Hubbard Hamiltonian (equation 5.6) can be found in two limiting

cases: first, in the limit U/J → 0, hopping dominates the many-body dynamics and atoms

are delocalised across many lattice sites. This is called the SF phase and is characterised by

maximum variance in occupation and minimal variance in quantum phase [154, 157]. In the

opposing limit, J/U → 0, hopping is suppressed and atoms are localised to particular lattice

sites. Minimising energy given the large penalty for multiple occupation enforces a uniform

filling s̄ across the whole lattice. When there are an integer number of atoms per lattice site,

i.e. s̄ ∈ N (commensurate filling) one obtains a MI which shows minimal variance in occupation

and maximum variance in quantum phase [154, 157]. When atom and lattice numbers do not

exactly divide (incommensurate filling), the MI is perturbed by an additional SF phase which

pervades the entire lattice [157].

The ideas of commensurate/incommensurate filling rest on an infinite, uniform lattice potential.

In a real system, the lattice is bounded according to some external potential Vext(r), which

confines the gas to a finite region of space and breaks the homogeneity of the system. The

effect of this potential is accounted for in the Bose-Hubbard model by the introduction of a

local chemical potential (see e.g. [154,157]),

µj = µ− Vext(Rj), (5.7)

which gives a spatially varying phase. In the J/U → 0 limit, the system is divided into regions

of MI phase with a local filling given according to the local chemical potential [154,157],

s̄j = ModN

(
µj

U

)
. (5.8)

Henceforth, I will assume that the external potential is harmonic, with a geometric average

trap frequency ωT. The maximum chemical potential is then given [158],

µ =
(

15
16
a3NUm3/2ω3

T√
2π

)2/5

, (5.9)

in terms of the total atom number N . An external potential of this kind results in the “wedding

cake” structure of MI phases shown in figure 5.3 (a).
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Figure 5.3: The mean field theory phase diagram showing the ground states of the Bose Hub-
bard Hamiltonian. The MI phases are labelled according to filling. The red lines a) and b)
show the range in phase space covered by a harmonically varying local chemical potential with
µ = 2.5U at the centre for two values of J/U . The radial variation of average site filling
is shown by the blue line in the accompanying inserts, while the red line shows the external
potential.

5.2.3 The phase transition

One can pass between the SF and MI phases by smoothly varying the ratio U/J from one

limit to the other. Whilst the phase transition cannot be treated exactly, a mean field theory

treatment can be applied to produce the phase diagram (figure 5.3) and to estimate a critical

point [154,157]:

(
U

J

)
crit

=


5.8z : s̄ = 1

4n̄z : s̄ >> 1.
(5.10)

Here, z denotes the number of nearest neighbours to each lattice site, 6 for Vlatt of equation

5.1.

This transition is central to the production of MIs for use in quantum gas microscopes. The

first step is to produce a BEC of the chosen species and confine it to a shallow lattice. The

degenerate gas naturally occupies the many-body ground state and realises the SF phase [154].

Since U/J ∼ e2
√

D, changing the lattice depth D provides control1 of the all important ratio
1Note that this ratio can also be controlled by varying the scattering length as via Feshbach resonances.
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5.2.3. The phase transition

U/J . By smoothly ramping up the lattice depth, one can (reversibly) drive the transition to

the MI phase (see [152,157,159]).

Driving the SF–MI phase transition requires that the system remains in the ground state

throughout the ramping process — that it is adiabatic. Achieving this in finite time depends

on fulfilling the adiabatic criteria,

ℏ| ˙HBH| << ∆E2. (5.11)

Both U and µ vary slowly with D, so the exponentially varying J comes to dominate the rate

of change of the Hamiltonian. Remaining adiabatic in the SF phase requires that tunnelling is

fast enough for the gas to follow the Thomas Fermi ground state. In this case the energy gap is

given by the tunneling potential, ∆E ≈ J [160]. The adiabatic condition can then be written:

ℏ|J̇ |
J2 << 1, (5.12)

which demonstrates good agreement with experimental results [160]. Working in the Gaussian

approximations of equation 5.5, one can produce a condition on the ramping rate Ḋ:

ℏḊ <<
16D7/4

√
πℏ
∣∣∣3 − 4

√
D
∣∣∣e−2

√
DErec = f(D)Erec, (5.13)

where f(D) is some function that depends entirely upon depth1.

Previous discussions of the MI phase have assumed that all tunnelling between lattice sites

ceases, J → 0. This condition is achieved only when D → ∞, which is physically unreasonable

(and relates to U → ∞). For the finite depths of real experiments, there is some residual

hopping that blurs the boundary between MI states, see figure 5.3 (b). To leading order in

zJ/U , the MI lobe of filling n̄ > 1 is then bounded in phase space by the conditions [155,156]:

µ

U
< s̄

(
1 − zJ

U

)
and µ

U
> (s̄− 1)

(
1 + zJ

U

)
. (5.14)

The s̄ = 1 lobe is bounded above as (1 − zJ/U) and below as zJ/U . These conditions can be

used to predict the phase and filling of any lattice site for a given final depth D.
1This is an approximate condition that will be suitable for my later purposes. A more detailed approach

can be found in [161].
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5.3. Mott insulators of hydrogen

Table 5.1: Critical lattice depths for the SF–MI phase transition in atomic hydrogen at listed
wavelengths. Calculations use the mean-field critical point (equation 5.10) and assume filling
of s̄ = 1. Values reported are numerical with analytic approximations in brackets.

λ[nm] 1064 514.6 443.2 414.5 399.5
Dcrit/Erec 34.2(34.0) 30.1(29.9) 29.3(29.1) 29.0(28.7) 28.8(28.5)

5.3 Mott insulators of hydrogen

It is now time to apply the above understanding specifically to a degenerate gas of H. The first

task is to estimate the lattice depth related to the critical ratio of equation 5.10 at s̄ = 1, call

this Dcrit. This can be done numerically as described in appendix C, or (expecting Dcrit to be

sufficiently large) approximately with the expression:

Dcrit = 1
4

[
ln
(√

2a
πas

(
U

J

)
crit

)]2

. (5.15)

Table 5.1 reports values of Dcrit at each of the H 1S–2S magic wavelengths (see chapter 4) and

1064 nm. Both numerical and approximate values are presented and show good agreement, as

would be expected for deep traps. The variation of this depth with λ can be understood in

the context of equation 5.15, which shows Dcrit ∼ (ln(λ))2. These critical depths are notably

larger than is usual in Rb, which only require depths of around 13Erec [151,152,159]. This can

be put down to the small S-wave scattering length of H which leads to smaller values of U .

Calculating a time-scale for the transition involves enforcing this condition on a known ramping

profile — usually with some “S” shape to prevent sharp changes at the start and end. For now,

it is sufficient to estimate time-scales via comparison with other atoms. Consider Rb; it is

routine to drive the SF–MI transition in a 1064 nm lattice over times O(100) ms [152,158–160].

The recoil energy for H in a 514.6 nm lattice is around 350 times larger than for Rb in the

1064 nm lattice. Since Ḋmax ∼ Erec, the ramping may be around 350 times faster in the H

system than the Rb system whilst still being adiabatic. Even given the larger critical depth,

one can still expect to drive the SF–MI transition in time scales of O(1–10) ms.

5.3.1 Controlling filling fractions

A key requirement for the measurements discussed in chapter 4 is a maximum of one atom

per lattice site only which eliminates uncertainty due to the on-site interaction shift. I have
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5.3.1. Controlling filling fractions

Figure 5.4: The expected ground state phase at the centre of a harmonic external potential
in the parameter space of atom number N and external trap frequency ωT. Plots assume a
degenerate H gas in an optical lattice with specified wavelength and depth. Coloured segments
indicate the phases for finite J , while black lines indicate transitions between MI filling states
in the limit J → 0 (up to the largest filling possible at finite J).

already discussed how one can predict the MI structure in section 5.2.3. It is now desirable to

control the structure instead and ensure unitary filling in all MI regions. Working under the

assumption of a harmonic external potential, it is sufficient to ensure a MI phase at the centre

with unitary filling, i.e. s̄0 = 1. The lattice depth and wavelength can be fixed by measurement

constraints, such as the need to be magic, and the need to pass the critical point. This leaves

the total atom number N and the external trap frequency ωT as the only free parameters in

µ/U .

Figure 5.4 shows the phase at the centre of the external potential in the space of these paramet-

ers. Since µ/U ∼ N2/5 and ∼ ω
6/5
T , increasing either value causes the centre to pass through

MI phases with successive fillings. Since calculation assumes a finite depth D, multiple regions
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5.3.2. The lattice beam profile

of SF phase exist: between the MI phases; for small values of µ/U that are “below” the s̄ = 1

lobe; and “above” the MI bands where U/J is not sufficient to be critical for high filling lobes.

It is clear that higher atom numbers require lower external trap frequencies to achieve the s̄0 = 1

phase. The dependence of this phase upon the wavelength is clear and can be understood in

terms of the scaling µ/U ∼ λ3/5. The dependence upon the lattice depth is far less obvious, as

µ/U ∼ D−9/20 and the range of depths shown in figure 5.4 is not sufficient to see this change

at the given scale.

Take as an example, the magnetically trapped H condensate of [57]. This condensate contained

109 atoms in the harmonic region of the magnetic trap with a geometric average trap frequency

of ωT = 3380 s−1. In a 514.6 nm lattice with D = 34.5, this gives µ/U = 10.6 so1 n̄0 = 11;

whilst in the equivalent 399.5 nm lattice, µ/U = 4.97 so2 s̄0 = 5. To achieve unitary filling

would require a reduction of the trap frequency to 440 s−1 for the 514.6 nm lattice or 840 s−1

in the 399.5 nm lattice. This reduction in external trap frequency relates to a decrease in the

peak condensate density by up to an order of magnitude, which goes some way to alleviating

the issue of dipolar relaxation.

5.3.2 The lattice beam profile

The lattice beams that form the potential Vlatt are not homogeneous in intensity across their

cross section. Instead they have some profile which has intensity peaking at the centre of the

beam and exponentially decaying with increasing distance — a Gaussian beam (see [162]).

Combining the profiles of the three orthogonal beams (assuming them to be identical in every

other respect) gives an approximately spherical intensity profile:

I(r) = I0e
−2r2/w2

, (5.16)

where I0 is the peak intensity that defines the depth of the lattice and w is the waist size of the

beam. For r smaller than w, this variation in intensity provides a harmonic effective external

potential,

Vopt(r) ≈ 1
2mω

2
optr

2, (5.17)

1In actuality, this lobe is not accessible at this depth, so the centre will be in a SF state.
2This time, the lobe is accessible, but centre falls within the SF jacket between the s̄ = 5 and s̄ = 6 lobes.
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5.3.2. The lattice beam profile

[n
m
]

Figure 5.5: Bounds on Gaussian beam waists that will permit a s̄0 = 1 MI for a range of
condensate numbers across three lattice wavelengths. In all three cases, the thick line indicates
the lower bound, dotted lines indicate the upper bound, while the region in between is coloured.
Blue indicates bounds for a lattice of depth D = 34.5 while red indicates bounds for D = 45.0.

with the trap frequency,

ωopt =
√
D

2
h

mHaw
. (5.18)

As in section 4.2, the low mass of H results in generally large trap frequencies that quickly

dominate the external potential: e.g. a 514.6 nm lattice at D = 34.5 formed from Gaussian

beams with 10µm waists will give ωopt = 6.57 × 105 s−1. Not only is this frequency 2 orders of

magnitude larger than the external trap frequency of [57], but it precludes access to the s̄0 = 1

MI for any atom number, see figure 5.4.

The frequency ωopt is heavily dependent upon the properties of the lattice itself, which cannot

be tuned without affecting the entire system. The only parameter that is somewhat decoupled

from the essential lattice properties is the beam waist w. Figure 5.5 shows the range of w

that permit an s̄0 = 1 MI for the same lattices as in figure 5.4. Specific values of these ranges

are reported in Table 5.2. One finds that waists of < 1 mm are only possible for 105 (for the

magic wavelengths, 104 for 1064 nm) atoms or fewer. Even then, waists > 100 µm are almost

universally required.

The need for such large beam waists introduces a serious technical problem: producing a

lattice that can achieve D > 30 for 1S H requires very high beam intensities at any optical

wavelength (see the 1S polarisability in figure 3.1). In a Gaussian beam, the average intensity
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5.4. Potential for modern experiments

Table 5.2: Table showing the range of beam waist sizes that relate to an s̄0 = 1 filling MI state
in two magic wavelength lattices of D = 34.5 at various atom numbers N . Atom numbers are
given in orders of magnitude ranging from 103 to 109. Beam waists are given in mm to two
significant figures.

D = 34.5
log10(N) 3 4 5 6 7 8 9

w range [mm]
λ = 1064 nm 0.47–1.8 1.0–3.9 2.2–8.4 4.7–18 10–39 22–84 47–180

w range [mm]
λ = 514.6 nm 0.15–1.1 0.31–2.4 0.67–5.2 1.5–11 3.1–24 6.7–52 15–110

w range [mm]
λ = 399.5 nm 0.098–0.94 0.21–2.0 0.45–4.4 0.98–9.4 2.1–20 4.5–44 9.8-94

D = 45.0
w range [mm]
λ = 1064 nm 0.37–6.6 0.80–14 1.7–30 3.7–66 8.0–140 17–300 37–660

scales according to power and waist as I ∼ P/w2, so maintaining a given intensity for wider

beams requires quadratically increasing power. Given the high powers that would be required

for narrow beams, the long-term stability of the source power/frequency becomes a serious

concern.

5.4 Potential for modern experiments

As it stands, the conditions for creating a unitary MI from the BEC of Fried et. al. [57,140] are

not ideal. The high number of the atoms in the condensate make it difficult to achieve unitary

filling for external trap frequencies higher than O(100) Hz. Relaxing the external magnetic

trap to reach these trap frequencies is not a big problem, but doing so it in the lattice beam

intensity profile requires waists of 10’s–100’s of mm. Non-Gaussian beam profiles may ease

some of the focus requirements, and the s̄0 = 1 phase can be accessed for larger values of ωT

if N is decreased through natural (or forced) decay. The previous approach cannot be used as

it is, but it may be adjusted into something more feasible using the modern techniques of cold

atom experiments.
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Figure 5.6: Sketch diagram indicating how the existing experimental method could be mod-
ernised for the production of a H MI. Only a simple indication of the existing experiment is
given, with some key features pointed out in grey (a full description can be found in [140]).
The three main changes are highlighted in bold: Optical formation, a separate science cell,
and an optical transport stage.

5.4.1 A sketch proposal

Here, I will present an outline of what could be done to improve the H BEC experiment’s

suitability for producing a s̄0 = 1 MI. This is not an exhaustive evaluation of all possible

improvements, nor is it a proposal for a new experiment. The intention is to highlight areas

that could benefit most obviously from modernisation, and indicate how they could bring the

result in line with a s̄0 = 1 MI. This sketch is outlined in 5.6, with more detailed explanations

appearing in the text below:

1. Optical formation: Dipolar relaxation is the leading limitation on condensate lifetime

in the existing experiment. An optical trap is confining for all magnetic sub-states and

allows formation in the absolute ground state. This enables the effective elimination of

dipolar relaxation from the condensed sample regardless of its density. A new formation

method is an opportunity to achieve the smaller condensates that more easily enter the

s̄0 = 1 phase.

2. Separate science chamber: It is standard practice in modern cold atom experiments,
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5.4.2. Measurement limitations

to cool in one part of the experiment and then transfer to a separate “science chamber”

for measurement. This distances the measurement from the complex field environment of

the dilution fridge and allows for greater systematic control. Further, a separate science

cell can be built with much better optical access than is possible in a dilution fridge,

allowing for more advanced optical design and more advantageous field profiles.

3. Optical transport: Once a separate science cell has been established, it becomes an

essential step to move the BEC from its formation stage to this cell. Since the BEC

should already be optically confined, optical transport becomes the natural next step.

Introducing this stage gives further opportunity for manipulating the properties of the

BEC: e.g. through allowed loss to reduce N or manipulating the shape of the potential.

Put together, these changes allow a significant improvement in the prospects for controlling

the parameters N and (to some extent) ωT at the point of MI formation. Further, they should

allow the H BEC to progress beyond the limitations imposed by dipolar relaxation. However,

this sketch is not an experimental proposal and there are serious uncertainties surrounding a

number of these changes: e.g. whilst optical formation has been posited, it is not immediately

obvious how this will combine with the existing method; and optical transport necessitates an

opening in the side of the cooling stage which will affect the cooling process.

5.4.2 Measurement limitations

It is clear that a unitary filling MI of H is, at least in principle, viable. It must be remembered,

however, that such a MI was in mind explicitly as a suitable system for precision spectroscopy.

Ultimately, this suitability is limited by the atomic properties of H in a way that is not obvious

upon first inspection.

The anomalously small S-wave scattering length of H fundamentally weakens the onsite inter-

action potential U and leads to unusually large critical depths (table 5.1). Since the SF–MI

transition is necessarily reversible, this sets lower bounds on lattice depths which are, mostly,

larger than the minimal Lamb Dicke trap depths listed in table 4.3. While this necessarily puts

the OLCs of chapter 3 deep in the Lamb Dicke regime, it increases the effect of trap-induced

broadening. For example, achieving MI in a 399.5 nm lattice requires depths of at least D = 29,
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5.4.2. Measurement limitations

which is 2.32 times larger than the relevant minimal Lamb Dicke depth of section. At this depth,

two-photon ionisation broadens the 1S–2S line-width of 4.15 kHz, compared to the 0.857 kHz

expected at the minimal Lamb Dicke depth D = 12.5.

It is essential to understand that the SF–MI transition occurs for a condensate in the atomic

ground state and critical depths must be considered in terms of trapping the 1S state. As such,

even measurements in non-magic traps must maintain these high lattice intensities. The key

concern lies in the combination of these intensity requirements and the width requirements of

section 5.3.2: for example, a unitary filling MI in a 1064 nm lattice requires a minimal depth of

28.8Erec, or a peak field intensity of at least 23.6 MWcm−2. In a Gaussian beam, this must be

focused to a waist O(1) mm (depending on the number of atoms in the condensate , figure 5.5)

demanding initial laser powers of at least O(0.1) MW (a similar estimate for a 514.6 nm lattice

indicates powers of at least O(10) kW). Such large laser powers may be possible with some

effort, but stabilising it (both in power and frequency) over the long time scales demanded in

such an experiment imposes significant technical challenges.

Whilst a MI of H with uniform filling s̄ = 1 is certainly possible, its suitability for a precision

spectroscopy experiment is dubious — limited by the atomic properties of H in ways that are

not obvious upon first inspection. The small scattering length and reversible nature of the

phase transition enforce deep traps for the 1S state — and so very high intensities. In itself,

this limits potential 1S–2S OLCs, with minimal line-widths necessarily exceeding 4 kHz. In

combination with the demands of weak external confinement, it begins to limit the experiment

on a technical level. Overall, it is unclear if the promised regularity and ground state occupation

of an s̄0 = 1 MI are worth the necessary deep trapping and long duty cycle.
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Chapter 6

CONCLUSIONS AND OUTLOOK

It is easy to get excited by the potential evidence for new physics in the H spectral data-set,

particularly as it appears to support popular minimal extensions to the SM [39] (e.g. Higgs-

portal models, Dark photons etc.). However, it is impossible to draw meaningful conclusions

regarding fifth forces while the question of unresolved systematics remains unanswered. In this

thesis, I have studied the potential application of optical trapping to the precision spectroscopy

of H, in search of tight control of motional systematics and improved precision.

This thesis reports several important contributions to the field of precision H spectroscopy,

including the development of new, freely-available, software for the calculation of polarisability

and atom-photon scattering rates of S-state H in linearly polarised off-resonant optical fields

— as reported in chapter 3 (and (b.)). This software was put to work in chapter 4, where I

derived new limits on the operation of proposed H/H̄ lattice clocks. I highlighted the previously

overlooked2 effect of trap-induced broadening arising from multi-photon ionisation and inelastic

atom-photon scattering in the 2S state (section 4.3). The high lattice intensities required by

the poor polarisability of the H ground state result in this effect dominating the line-width of

the 1S–2S transition. By combining this with results of atomic motion in a tightly confining

optical trap (section 4.2), I placed reasonable limits on achievable line-widths that maintain

the Lamb-Dickie regime (section 4.4). The large trap frequencies inherent to H mean that

this can be achieved for much shallower lattices than is necessary for heavier atoms. I also

report three new magic wavelengths for the 1S–2S magic wavelengths where narrower lines are

possible (section 4.1.1). These results were also reported in the declared publication (a.) [1].

The lattice clock of chapter 4 (and (a.)) offers a new measurement of the 1S–2S transition

in H, D and H̄ in a common environment that is effectively free from systematics relating

to atomic motion. This improvement in systematic uncertainty comes at an apparent cost

in statistical uncertainty, but more work is needed to be sure. Such a measurement would
2e.g. in the work of Kawasaki [163] or the H̄ clock proposal [51].
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be incredibly useful: for comparison with the current value as a first test of systematic error

within the current spectral data-set; for comparisons between H and D to place bounds on new

physics with non-universal coupling that is independent of current tension in the data-set [40];

and for comparisons between H and H̄ with minimal systematic differences as a direct test of

CPT violation. However, a precise measurement of the 1S–2S transition cannot go very far

in resolving the proton charge radius puzzle or bounding new physics on its own. The ideal

experiment would include trapped measurements of intervals including a range of high-lying

Rydberg states. Intervals between Rydberg states offer a value of the Rydberg constant that

is effectively decoupled from the proton charge radius (as per [27] and [34]). Combining these

intervals with the new measurement of the 1S–2S transition (in a similar system) gives a data-

set which could be used to extract values of rp, R∞ and new physics parameters that are

completely independent of the current H spectral data-set and its internal tensions.

While the 1S–2S measurement has been considered in detail in this thesis, analysis of the

effects of optical trapping on the measurement of Rydberg intervals has been far less in-depth.

Rydberg states are very sensitive to D.C. shifts from external electric fields and have very

complicated Stark maps. As such, control of stray electric fields is essential, and the potential

systematic contribution in an optical trap must be studied. In a similar vein, the trap lifetime of

these Rydberg states must be considered: estimation of ionisation rates could be done with the

STRFLO code, but the large number of possible final states (and a general extension beyond

S-states) means that my approach to atom-photon scattering would need serious amending.

Further, a full measurement protocol, that maximises the advantages of trapped atoms whilst

minimising the effects of non-magic trapping, must be explicitly formulated. Such a formulation

would, naturally, depend heavily upon the specifics of the loading mechanism.

I discussed the issue of cooling/trapping in chapter 5, where I considered the proven cryo-

genic/evaporative route to H BEC. I studied the possibility of driving the SF–MI transition to

produce a low-entropy, ultra-cold lattice of H for spectroscopy (section 5.2). For the first time,

I reported the critical conditions for this transition in H and compared them to Rb (section

5.3). I found that anomalously small S-wave scattering length resulted in large critical depths,

but also allowed rapid adiabatic ramping. I calculated new conditions for achieving unitary

filling (section 5.3.1) and found that the external potential from the lattice beams is a critical
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limiting factor, requiring absurdly large Gaussian waists with high peak intensities (section

5.3.2). While a unitary filling MI is possible, it is clear that it sits within a highly unfavour-

able region of parameter space, both from a technical perspective and as an environment for

precision spectroscopy.

Without a suitable MI in mind, there is little motivation to reproduce a BEC of H from the

perspective of precision spectroscopy. However, the cryogenic/evaporative methods of cooling

H should not be immediately discarded. Prior to condensation, the method reliably produces

ultra-cold (120 µK) gasses of H at high densities by saddle-point evaporation alone [57,140]. It is

perfectly reasonable to consider loading a lattice/tweezer array by superimposing the potential

over the gas. Since Erec ∼ 10′s µK at the magic wavelengths, stochastic loading in this way

might provide a sufficient probability for trapping cold H atoms in suitably shallow traps.

OLCs loaded in this manner could theoretically operate at the minimal line-widths of table

4.3. This should be the topic of further investigation, along with sophisticated methods for

preventing s > 1 on any given site, minimising vibrational state, and maximising the number

of occupied lattice sites.

When I began working on this topic, there was a sense that a step-change in experimental

procedure was needed but no clear paths towards this had yet been formulated. In the past

three and a half years, new global fits [39, 40], additional spectroscopic results [33, 34], and

advances in H̄ physics [74, 164] have enhanced the motivation for change. The core problems

identified at the start of this thesis — tension in the H data-set, uncertain cooling/trapping

prospects etc. — persist, but now there are at least two groups actively working towards

optically trapped H with viable experimental schemes [70,135,136]. To this rapidly developing

field, this thesis has contributed new software for the calculation of essential optical trapping

parameters; new limits on the operation of a 1S–2S lattice clock (and the implications of this

upon other measurements); and an assessment of the feasibility of a unitary filling MI of H —

the ultimate low-entropy lattice system.

It is likely that the groups of T. Zelevinsky and T. Udem will achieve ultra-cold H confined

in tweezer arrays at some point in the near future. This will open the door to precision

spectroscopy of both the 1S–2S transition and high-lying Rydberg states with a completely

new set of dominating systematics. However, the community must not again fall into the trap
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of relying upon a small number of central frequency measurements conducted by a single group

with a single method. The ideal scenario would involve the comparison of multiple, independent

H data-sets produced by different groups. Once all systematic tension has been removed, then

the exciting work of bounding new physics can begin in earnest.
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Appendix A

ANALYTIC DETAILS FOR CHAPTER 3

A.1 Matrices for the Schrödinger equation

Parts of this appendix follow work that can be found in (a.).

The Hamiltonian

The matrix elements of H are given by the integral,

Hn′l′m′,nlm =
∫
dr3 1

r
S

(ζ)
n′l′(r)Ylm(θ, ϕ)H0

1
r
S

(ζ)
n′l′(r)Ylm(θ, ϕ). (A.1)

The Hamiltonian is the same as that given in equation 2.4 and written as the product of radial

and angular components. Since the spherical harmonics are eigenfunctions of the angular part

of H0, it is straightforward to show that this integral reduces to,

Hn′l′m′,nlm = δl′lδm′m

∫ ∞

0
drS

(ζ)
n′l′

[
−1

2

(
d2

dr2 − l′(l′ + 1)
r2

)
− 1
r

]
S

(ζ)
nl . (A.2)

This simplifies matters, as it is only necessary to treat cases where l′ = l. This integral can be

computed analytically using the relations between Laguerre polynomials given in [3] to give,

Hn′l′m′,nlm = δl′lδm′m

[(1
2η(n′ + l) − 1

)
δn′n + 1

4η
√

n′(n′ + 2l + 1)δn′(n−1)

+1
4η
√

(n′ − 1)(n′ + 2l)δn′(n+1)

]
.

(A.3)

This matrix is real, symmetric, tridiagonal in n, and diagonal in l and m.

The overlap matrix

The overlap between pairs of basis functions also forms a matrix in B defined by the matrix

elements,

Tn′l′m′,nlm =
(∫ ∞

0
drS

(k)
n′l′(r)S

(k)
nl (r)

)(∫ π

0
sin θdθ

∫ 2π

0
dϕY ∗

l′m′(θ, ϕ)Ylm(θ, ϕ)
)

= δl′lδm′m

∫ ∞

0
drS

(k)
n′l′(r)S

(k)
nl (r).

(A.4)

74



A.2. The dipole matrix element

The resultant radial integral can be computed analytically in the same way as for the Hamilto-

nian, giving the matrix elements,

Tn′l′m′ = 1
2kδl′lδm′m

(
2(n + l)δn′n −

√
n(n + 2l + 1)δn′(n+1) −

√
(n − 1)(n + 2l)δn′(n−1)

)
.

(A.5)

A.2 The dipole matrix element

I begin by defining a basis of spherical unit vectors for polarisation:

ε̂εε−1 = x̂− iŷ√
2

, ε̂εε0 = ẑ, ε̂εε+1 = − x̂+ iŷ√
2

.

Any polarisation vector may then be written simply in this basis as εεε = ∑
q∈{0,±1} εqε̂εεq. I am

interested in the dipole matrix element between two atomic states a and b:

εεε · rba =
∑

q∈{0,±1}
εq

∫
dr3R∗

nb,lb
(r)Y ∗

lb,mb
(θ, ϕ)ε̂εεq · rRna,la(r)Yla,ma(θ, ϕ) (A.6)

The dipole operator may be written in the spherical unit basis as,

ε̂q · r =
√

4π
3 rY1q(θ, ϕ). (A.7)

and the dipole matrix element may be written as the product of angular and radial components,

εεε · rba = rba

∑
q∈{0,±1}

εqAlbmbq,lama . (A.8)

The radial component is given by the radial matrix element:

rba =
∫ ∞

0
r2drR∗

nb,lb
(r)rRna,la(r). (A.9)

The angular part is given by the matrix elements,

Albmbq,lama =
√

4π
3

∫ π

0
sin θdθ

∫ 2π

0
dϕY ∗

lbmb
(θ, ϕ)Y1q(θ, ϕ)Ylama(θ, ϕ)

= (−1)−(ma+q)
√

(2la + 1)(2lb + 1) ×

lb 1 la

0 0 0


 lb 1 la

−(mb) q ma

 δmb,ma+q.

(A.10)
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A.3. Angular parts for S state scattering

It is necessary to consider the representation of the radial matrix element in B. Luckily, the form

of the angular matrix elements helps simplify matters — A is non-zero only when |l − l′| = 1.

As such, rba can be represented as the sum of two matrices in B:

R+
n′,nla

=
∫ ∞

0
drS

(ζ)
n′(la+1)(r)rS

(ζ)
nla

(r), (A.11)

which couples states of given la to those with lb = la + 1; and

R−
n′,nla

=
∫ ∞

0
drS

(ζ)
n′(la−1)(r)rS

(ζ)
nla

(r), (A.12)

which couples la to la − 1. Just as for H and T, these integrals can be solved to give analytic

formulae for the matrix elements. The computation in this case is far more involved than for H

or T, but is still based upon the applications of relations between Laugerre polynomials found

in [3]. Ultimately one obtains matrix elements:

R+
n′,nla

= 1
4ζ2

[
−
√

(n′ + 2la + 2)(n′ + 2la + 1)(n′ + 2la)(n′ − 1)δn′(n+1)

+2(2n′ + la)
√

(n′ + 2la + 2)(n′ + 2la + 1)δn′n − 6(n′ + la + 1)
√

n′(n′ + 2la + 2)δn′(n−1)

+2(2n′ + 3la + 4)
√

n′(n′ + 1)δn′(n−2) −
√

(n′ + 2la + 3)(n′ + 2)(n′ + 1)n′δn′(n−3)

]
,

(A.13)

for the l-raising matrix, and

R−
n′,nla

= 1
4ζ2

[
−
√

(n + 2la − 2)(n + 2la − 1)(n + 2la)(n − 1)δn′(n−1)

+2(2n + la − 1)
√

(n + 2la)(n + 2la − 1)δn′n − 6(n + la)
√

n(n + 2la)δn′(n+1)

+2(2n + 3la + 1)
√

n(n + 1)δn′(n+2) −
√

(n + 2la + 1)(n + 2)(n + 1)nδn′(n+3)

]
,

(A.14)

for the l-lowering.

A.3 Angular parts for S state scattering

For the calculations considered in section 3.3, the external field is assumed to be linearly

polarised in the ẑ direction. As such, ε0 = 1 while ε±1 = 0 and only terms with q = 0 survive.

The scattered photon however, is not generally limited in is polarisation. Therefore, it has a

polarisation vector,

εεεs =
∑

q∈{−1,0,1}

√
4π
3 Y1q(ϑs, φs)(−1)qε̂−q. (A.15)
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A.3. Angular parts for S state scattering

Calculations are further restricted to initial S-states, la = 0. This restricts k to P states only and

so each sum has a single angular term that is common to all terms in the sum. The angular terms

of the two sums differ only by the terms Albmb−q,1mk
A1mk0,00 for (i) and Albmb0,1mk

A1mk−q,00

for (ii). Albmb−q,1mk
A1mk0,00 and Albmb0,1mk

A1mk−q,00 can be written explicitly using equation

(A.10). Applying the delta functions and ignoring common terms leaves the possible equality:lb 1 1

q −q 0


1 1 0

0 0 0

 != (−1)q

lb 1 1

q 0 −q


1 1 0

q −q 0

 . (A.16)

For lb an even number (assured for an initial S state), symmetries of the Wigner 3-j symbol

mean that the first symbol on the LHS is equal to the first symbol and sign term on the RHS.

One can then check the remaining symbol for each allowed value of q ∈ 0,±1 and see that the

equality holds. One can also check that Albmb1,1mk
= Albmb−1,1mk

. Therefore, all terms in both

sums share a common angular term, and equation (3.8) can be recast as equation (3.26):

Rba = ω3
sα

4
FSAba

(∑
k

rbkrka

Eka ∓ ω
+ rbkrka

Ekb ± ω

)2

I, (A.17)

where the angular term is given by:

Aba =
∫
dΩ

 ∑
s=1,2

∑
q∈{0,±1}

∣∣∣∣∣
√

4π
3 (−1)qY ∗

1q(ϑs, φs)Albmb−q,1mk
A1mk,00

∣∣∣∣∣
2
 . (A.18)

Terms in the integrand are vanishing in all cases except when mk = 0, and mb = mk − q = −q

due to the delta functions present in A.10. As such, for a final state b with well defined mb,

only a single vale of q contributes to the above integral and scattering is allowed for final states

with mb ∈ {0,±1}. Summing over all possible values of mb and applying the definitions of ϑs

and φs in 3.6, one obtains,

∑
mb

Aba =
∫
dΩ

|sin(ϑ)Alb00,10A10,00|2 + 0 +
∣∣∣∣∣−

√
2

2 cos(ϑ)eiφAlb11,10A10,00

∣∣∣∣∣
2

+

∣∣∣∣∣−i
√

2
2 eiφAlb11,10A10,00

∣∣∣∣∣
2

+
∣∣∣∣∣−

√
2

2 cos(ϑ)e−iφAlb−1−1,10A10,00

∣∣∣∣∣
2

+
∣∣∣∣∣i

√
2

2 e−iφAlb−1−1,10A10,00

∣∣∣∣∣
2


=
∫
dΩ
[
sin2(ϑ)(Alb00,10A10,00)2 +

(
cos2(ϑ) + 1

)
(Alb±1±1,10A10,00)2

]
.

(A.19)

Integrating over the direction of the scattered photon yields the final result,

∑
mb

Aba = 8π
3
(
(Alb00,10A10,00)2 + 2(Alb±1±1,10A10,00)2

)
. (A.20)
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Appendix B

COMPARISONS BETWEEN NUMERICAL RESULTS AND

ANALYTIC THEORY

Existing literature values are not available for all results calculated in this thesis. Where they

are, it is instructive to compare between my calculations and those of others.

B.1 Atomic polarisability

Tables of H polarisability do not appear in the literature, so there are no explicit reported

values to compare against. However, Adhikari et. al. do report analytic expressions for the

polarisability of the H 1S and 2S states [111]. Figure B.1 compares these analytic expressions

to the numerical calculations described in chapter 3. Away from the 1/2S – nP resonances

(where I expect the numerical approach to break down), I find that the computational results

agree with the analytic results far beyond the limit of physical significance2 — O(10−4).

B.2 Magic wavelengths

Only one magic wavelength for the 1S–2S transition in H has been reported in the literature:

514.646 nm with associated polarisability 4.72750 a.u. [111]. These values match the results of

numerical calculation with nmax = 300 and ζ = 0.3 to the reported precision.

Beyond this, a number of magic wavelengths for other 1S–nS and 2S–nS transitions have

recently been reported in the analytic calculations of Adhikari et. al. [101]. Table B.1 compares

these magic wavelengths, as well as local polarisability gradient, to the results of calculation

with the software [2]. I find exact agreement (to the reported precision of 10−6) in the values of
2Note that figure B.1 calculates the absolute difference in a.u. For the 2S state, polarisability away from the

zero crossings is generally very large (especially around the resonances).
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B.3. Atom-photon scattering rates

Figure B.1: The between the calculated 1S (a) and 2S (b) polarisability compared to analytic
formulae. Dotted black lines indicate 1/2S–nP resonances. Difference is plotted for the same
range of wavelengths as appears in figure 3.1, given in nm. The colours also match those used
in figure 3.1.

the magic wavelengths. Small discrepancies in the value of χ, can be put down to the inclusion

of the reduced mass into the Bohr radius when Adhikari et. al. define their units.

B.3 Atom-photon scattering rates

Explicit values of atom-photon scattering rates are not common in the literature. However,

values of the scattering cross sections for the 2S–1S (both Raman scattering and SSTPE) are

repoted in works by Klarsfeld [99] and Heno etl. al. [100]. Table B.3 reports these rates along

with a numerical value calculated from the scattering rates of [2] according to equation 3.7:

σ = R
ω

I
. (B.1)

Note that the analytic expressions used by Klarsfeld and Heno scale according to the classical

electron radius re as σ ∼ r2
e . Klarsfeld takes the value re = 2.81777 × 10−15 cm. The modern

CODATA recommended value should read re = 2.81794 × 10−15 cm, which should be further

corrected by the reduced mass to be consistent with the rest of the calculation as re/µH. As

79



B.3. Atom-photon scattering rates

Table B.1: Table of magic wavelengths, and the slope in the differential polarisability at this
wavelength, calculated using this software for a variety of 1S–nS and 2S–nS transitions. Also,
the difference between these values and the values reported by Adhikari et al in [101] Calcu-
lated values are presented to 6 significant figures to match those reported by Adhikari et al.
Deviations are presented to match the number of decimal places of the values they relate to. In
the case when a value is exactly zero, it is written only as 0, i.e. 0 = 0.000. The term e2a2

0/EH
nm

defines the atomic unit of polarisability.

Transition Calculated Deviation from [101]
λ[nm] χ

[
e2a2

0/Eh
nm

]
∆λ[nm] ∆χ

[
e2a2

0/Eh
nm

]
1S–2S 514.646 -5.2129 0 0.0057
1S–3S 1371.85 -10.922 0 0.012
1S–4S 2812.77 -23.064 0 0.025
1S–5S 4938.67 -53.080 0 0.058

1S–6S(I) 6321.10 -27.047 0 0.030
1S–6S(II) 7094.95 49.447 0 -0.054

1S–7S 9255.47 -69.631 0 0.076
1S–8S 13066.4 -113.08 0 0.13
2S–3S 1359.73 -13.325 0 0.015
2S–4S 2807.60 -24.013 0 0.026
2S–5S 4936.47 -53.773 0 0.058

2S–6S(I) 6307.82 -27.573 0 0.030
2S–6S(II) 7097.28 +50.404 0 -0.055

2S–7S 9253.80 -69.985 0 0.077
2S–8S 13065.4 -113.34 0 0.13

such the literature values reported in table B.3 are corrected as σ → σ × 1.00096. Under

this correction, the numerical results show good agreement to the literature values up to the

reported accuracy. Small differences in the last significant figure can be put down to rounding

errors when correcting the literature terms. Larger differences around the 2S–3P resonance at

656.3 nm where perturbation theory becomes inappropriate.

Further comparison can be made to the scattering cross sections for the 2S–3S/D processes as

reported by Heno [100]. These results are reported in table B.2 with the same considerations

as before and show a similar level of agreement up to rounding errors.
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B.3. Atom-photon scattering rates

Table B.2: Table of atom-photon scattering cross sections for the 2S–3S/D processes in H.
There are two columns for each process: “H" which gives the results listed in the work of Heno
et. al. [100]; and “N" which gives the numerical results of calculation with the code described
in chapter 3 [2]. Numerical results are always given to 4 significant figures, while literature
values are given to the reported precision and are corrected as σ → σ× 1.00096. The numbers
in brackets indicate powers of 10: e.g. 4.86(-23) is equivalent to writing 2.86×10−23. All values
are given in units of cm2.

λ[nm] 2S–3S 2S–3D
H N H N

488 4.86(-23) 4.869(-23) 5.36(-24) 5.367(-24)
514.5 4.44(-25) 4.431(-25) 3.83(-26) 3.842(-26)
530 2.41(-25) 2.416(-25) 1.95(-26) 1.952(-26)

647.1 6.13(-27) 6.134(-27) 4.03(-28) 4.036(-28)
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Table B.3: Table of atom-photon scattering cross sections for the 2S–1S Raman scattering, 2S–1S SSTPE and 2S–2S processes in H. There
are three columns for each process: “K" which gives the results listed in the work of Klasfeld [99]; “H" which gives the results listed in the
work of Heno et. al. [100]; and “N" which gives the numerical results of calculation with the code described in chapter 3 [2]. Numerical results
are always given to 4 significant figures, while literature values are given to the reported precision and are corrected as σ → σ× 1.00096. The
numbers in brackets indicate powers of 10: e.g. 1.05(-21) is equivalent to writing 1.05 × 10−21. All values are given in units of cm2.

λ[nm] 2S–1S RS 2S–1S SSTPE 2S–2S
K H N K H N K H N

488 - 1.05(-21) 1.052(-21) - 7.18(-25) 7.176(-25) - 1.28(-22) 1.286(-22)
500 2.253(-23) - 2.252(-23) 7.472(-25) - 7.472(-25) 8.354(-25) - 8.355(-25)

514.5 - 5.84(-24) 5.841(-24) - 7.84(-25) 7.835(-25) - 1.14(-27) 1.235(-27)
530 1.932(-24) 1.93(-24) 1.932(-24) 8.227(-25) 8.23(-25) 8.227(-25) 1.245(-25) 1.24(-25) 1.245(-25)
600 6.988(-24) - 6.988(-24) 1.006(-24) - 1.006(-24) 3.451-24) - 3.452(-24)

647.1 - 9.69(-22) 9.686(-22) - 1.13(-24) 1.134(-24) - 1.51(-22) 1.514(-22)
655 4.563(-20) - 4.561(-20) - - 1.156(-24) 6.266(-21) - 6.264(-21)
657 3.623(-19) - 3.627(-19) - - 1.162(-24) 4.824(-20) - 4.828(-20)

657.5 - 9.65(-20) 9.695(-20) - 1.16(-24) 1.163(-24) - 1.27(-20) 1.281(-20)
693.4 1.285(-22) - 1.285(-22) 1.265(-24) - 1.264(-24) 1.048(-23) - 1.048(-23)
694.3 - 1.24(-22) 1.239(-22) - 1.26(-24) 1.267(-24) - 9.99(-24) 9.995(-24)
800 2.371(-23) - 2.371(-23) 1.574(-24) - 1.574(-24) 7.074(-25) - 7.073(-25)
900 1.568(-23) - 1.568(-23) 1.877(-24) - 1.877(-24) 2.335-25) - 2.335(-25)
1000 1.302(-23) - 1.301(-23) 2.190(-24) - 2.190(-24) 1.089(-25) - 1.089(-25)
1060 1.220(-23) 1.22(-23) 1.220(-23) 2.382(-24) 2.38(-24) 2.381(-24) 7.509(-26) 7.51(-26) 7.509(-26)
10600 - 4.38(-23) 4.379(-23) - 3.81(-23) 3.815(-23) - 3.30(-30) 3.302(-30)
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Appendix C

NUMERICAL CALCULATIONS OF THE WANNIER FUNCTIONS.

We note that for a separable 3D potential like Vlatt, the Bloch functions are also separable

into 3 orthogonal 1D functions: ϕq(r) = ϕqx(x)ϕqy (y)ϕqz (z). We can then write the Wannier

functions w(r −Ri) = ∏
ν w(xν −Xν,i), as the product of 1D functions,

w(xν −Xν,i) =
√

a

2π

∫ π/a

π/a
dqνe

−iXν,iqνϕqν (xν). (C.1)

These 1D Wannier functions are plotted in figure 5.1 and can themselves be computed in terms

of a Fourier transform of the Bloch functions [153]:

w(xν −Xi) =
∫ π/a

−π/a
dqνe

iqν(x−Xi)
∑

j∈{−l,...,l}
c0,q

j ei2klightxνj . (C.2)

Where the complex coefficients c(n,q)
j can be computed by solving the eigenvalue equation

∞∑
j′=−∞

Hjj′c
(n,q)
j′ = Enc

(n,q)
j , (C.3)

with the Hamiltonian (in units of Erec),

Hj′j = ((2jklight + q)2 +D/2)δj′j − (D/4)δj′(j±1). (C.4)

To treat this numerically, j mus be restricted to some finite set of integers, j ∈ {−jmax, ..., jmax}.

For the lowest band one gets goof results by choosing jmax ≈ 10. The 1D function is computed

for specific xν by numerical integration over 100 values of qν distributed evenly from −π/a to

π/a.

The tunneling and interaction potentials J and U are given as integrals of Wannier functions in

chapter 5. Consider the interaction potential first. It is simple to show that U can be written

in terms of the 1D Wannier functions,

U = 4πℏ2as

m

(∫
dx|w(x)|4

)3
. (C.5)

Spatial integration is implemented in the same way as integration over the quasimomentum,

only this time over a 800 values of x distributed evenly from −4a to 4a.
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C. Numerical calculations of the Wannier functions.

Expressing J in terms of the 1D functions requires a little more effort. Start by applying

the definition of the Wannier functions to equation 5.2. Given that the Bloch functions are,

by construction, eigenfunctions of this one particle Hamiltonian −ℏ2/2m + Vlatt(r), J can be

written as:

J = a3

(2π)6

∫
BZ
dqeiq·Ri

∫
BZ
dq′eiq′·RjE0(q)

∫
dr3ϕ∗

0,q(r)ϕ0,q′(r). (C.6)

By applying the orthonormality of the Bloch functions, and definitions of the 3 dimensional

delta function, one eventually obtains:

J =
(
a

2π

)3 ∫
BZ
dqeiq·(Ri−Rj)E0(q), (C.7)

=
(
a

2π

)3 ∫ π/a

−π/a

∫ π/a

−π/a

∫ π/a

−π/a
dqxdqydqze

iqx(Xi−Xj)eiqy(Yi−Yj)eiqz(Zi−Zj) (E0(qx) + E0(qy) + E0(qz)) ,

(C.8)

= a

2π

(
δYi,YjδZi,Zj

∫ π/a

−π/a
dqxe

iqx(Xi−Xj)E0(qx) + δZi,ZjδXi,Xj

∫ π/a

−π/a
dqye

iqy(Yi−Yj)E0(qy)+

δXi,XjδYi,Yj

∫ π/a

−π/a
dqze

iqz(Zi−Zj)E0(qz)
)
.

(C.9)

By the construction of the lattice potential, nearest neighbour pairs lie in the same principle

direction, so we finally get an expression for the tunnelling potential (restricted to nearest

neighbour interactions) in terms of a single 1D integral:

J = a

2π

∫ π/a

−π/a
dqeiq(Xi−Xj)E0(q). (C.10)

This integral can be computed in the same way as the 1D Wannier functions.

Finally, the critical depth Dcrit can be found using the above computations of J and U . One sets

up the calculations of U and J as functions of the depth D, and then uses a Newton-Raphson

approach to solve the equation U(D) − 5.8zJ(D) = 0 for positive values of D.

These methods are realised in Python and are available on GitHub [165].
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