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Abstract

Facial recognition is one of the most academically studied and industrially developed ar-
eas within computer vision, where we readily find associated applications deployed glob-
ally. This widespread adoption has uncovered significant performance variation across
subjects of different racial profiles leading to focused research attention on racial bias
within face recognition spanning both current causation and potential future solutions.
However, still the use of ill-defined racial categorisations, a lack of both consideration of
the broader context of historical and social factors and contemporary evaluation methods
hinder collaborative efforts towards mitigation of racial bias within face recognition. In
support, this thesis firstly provides an extensive taxonomic review of research on racial
bias within face recognition, covering topics from problem definition and racial group-
ing strategies to every aspect and all stages of the face recognition processing pipeline.
Moreover, a comprehensive discussion within the review reveals the potential pitfalls and
limitations of contemporary mitigation strategies that need to be considered within future
research endeavours or commercial applications alike.

Accordingly, the prior literature has identified a need for alternative evaluation method-
ologies, particularly in the context of assessing racial bias. In response to this need, a
phenotype-based racial bias analysis methodology is introduced via the use of a set of
observable characteristics of an individual face where a race-related facial phenotype is
hence specific to the human face and correlated to the racial profile of the subject. Subse-
quently, a commonplace lossy image compression algorithm impact at the initial stage of
face recognition processing pipeline, image and dataset acquisition, concerning the racial
characteristics of the subject, is investigated by adopting the proposed evaluation method-
ology. The results reveal the disparate performance decrease on specific racial phenotype
categories and show improvement of the use of compressed imagery during training and
removing chroma subsampling on the performance of specific racial phenotype categories
more affected by lossy compression. Furthermore, a novel adversarial-derived data aug-
mentation methodology is presented by aiming to enable dataset balance at a per-subject
level via image-to-image transformation for the transfer of sensitive racial characteristic
facial features to improve performance variation among racial and phenotype-based cate-
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gories. The proposed approach decreases the performance variations between four racial
groups by 15.81%.

Consequently, a novel GAN framework to enable fine-grained control over individual
race-related phenotype attributes of the facial images is introduced. The proposed frame-
work achieves both higher image quality and controllability on race-related facial phe-
notype attributes without requiring any synthetic or 3D data. Within the chapter, we in-
troduce the CelebA-HQ-Augmented-Cleaned dataset, which is the first semi-synthesised,
manually-cleaned, high-quality dataset encompassing over 26,500 images with a diverse
distribution. Finally, this thesis concludes with an extensive discussion with insights draw
from the literature, proposed approaches, and experiments presented throughout the thesis
and outlines future directions for addressing racial bias within face recognition.
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CHAPTER 1

Introduction

Numerous machine learning applications utilising facial attributes have proliferated in

recent years as autonomous decision-making processes have become widely adopted by

companies and governments [16]. A growing number of applications based on face recog-

nition for surveillance [17], recruitment [18], and health-care [19] have increasingly be-

come integrated into our daily lives. However, the generalisation of such research and

applications is problematic due to the prevalence of bias within face recognition [20]. The

imbalance in specific demographic groups occurring with varying phenotype attributes,

including race, age or gender, poses a challenge for current causation and future potential

solutions for facial recognition applications.

The most prevalent problem arises from the existence of disparate real-world perfor-

mance on the race and race-related groupings which is referred to as racial bias within face

recognition. This thesis aims to contribute to the racial bias literature by providing the first

literature survey of the field providing an information spectrum from grouping definitions

to their adoption through to the associated processing of racial groupings used in various

literature studies. Accordingly, this thesis proposes a novel racial bias evaluation method-

ology, and two generative adversarial network-based bias mitigation framework which

aim to reduce race-related bias within face recognition. As we show, such bias is often
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inherited across consecutive stages of the face recognition pipeline resulting in increas-

ingly bias decision making as an end result. By enhancing the variety of the face samples

used in training, and considering different racial and race-related facial phenotype, our

methods both improve the overall performance and decrease the performance variation

across racial groups.

1.1 Motivation

Over several decades, the objective of developing face recognition systems has gathered

significant pace across research, and industry alike [21–23]. Companies, nonprofits, and

governments have deployed an increasing number of face recognition systems to make

autonomous decisions for millions of users [24]. Such systems have been used across

various application areas, such as within employment decisions, public security, criminal

justice, law enforcement surveillance, airport passenger screening, and credit reporting

[25–27]. However, such wide-scale adoption within real-world scenarios heightens public

concern about the potential for abuse and the adverse effect face recognition may have

on some individuals due to the presence of bias [28, 29]. The most prevalent problem

pertaining to such bias arises within the race and race-related groupings and is referred to

as racial bias within face recognition [30].

However, the presence of racial bias within face recognition is not a new thing and

is not in itself limited to technological means. Own-race bias has been previously estab-

lished in psychology [31] by showing that humans are less capable of recognising faces

from other races than their own. The prolonged societal experience humans generally

have with their own-race, especially during their formative years with biological family

members, results in biased human perceptual expertise. More specifically, [32] showed

how the use of facial feature descriptors varies across participants from different racial

groupings. For example, the study shows that darker skin tone participants use face out-

line, eye size, eyebrows, chin and ears, while lighter skin tone participants use hair colour,

texture, and eye colour. Overall, it concludes that lighter-skin-toned participants use less

varied descriptors than darker-skin-toned participants [32]. Similar to the own-race bias,

the conversely named other-race effect is also studied by a series of studies in social psy-
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chology [33–35] to establish social implications of biased facial processing and feature

selection in erroneous jury decisions, eyewitness identification.

Accordingly, the first technological study [36] that explores the other-race effect within

the context of face recognition algorithms was developed by East Asian and Western-

based research groups that inherently use datasets gathered locally. The study demon-

strates that algorithms trained on a locally gathered facial datasets from the Western

based group achieve superior performance on Caucasian faces when compared to per-

formance on East Asian faces, and vice versa. Further studies provide extensive evidence

about the influence of demographics, including race, gender and age, on both commercial

and non-commercial face recognition algorithm performance [37, 38]. Subsequently, the

Gender Shades study [39] drew significant attention to gender and skin tone bias within

commercial algorithms for gender classification by revealing a 34% performance discrep-

ancy between darker skin tone female and lighter skin tone male subjects. Consequently,

growing research on faces has emerged to understand and mitigate racial bias within face

recognition [9, 40, 41]. These efforts and associated evidence of bias have forced several

commercial and academical research to withdraw products, algorithms, or datasets due to

the different forms of disparities, distortions or biases [42–44].

However, face recognition remains a long-standing research topic and a common use

case within computer vision that comprises multiple stages of processing, a multitude of

downstream tasks and large-scale facial datasets in order to achieve high accuracy. With

the availability of such large-scale data resources and the advent of Deep Convolutional

Neural Networks (DCNN), the accuracy of face recognition algorithms has now excelled

the perceived accuracy requirements for use by the general populous. However, every

stage of face recognition, from initial face image acquisition to final performance eval-

uation, requires attention and investigation to address racial bias, which may otherwise

result in disparate outcomes across a diverse user population. Unfortunately, despite the

increasing attention to racial bias within face recognition, we are yet to see truly collabo-

rative or tractable solutions emerge from the the global research base [11, 13, 45, 46] that

could readily address these issues in real-world system deployments. Moreover, facial

data itself is a private biometric capable of identifying a given individual based on their

appearance alone, giving rise to obvious operational privacy and ethical concerns in rela-
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tion to its processing [47]. Although previous studies on algorithmic bias and fairness in

machine learning [48–50] and face recognition in computer vision and biometrics [23,24]

exist, many aspects remain under-studied in relation to the specifics of racial bias within

face recognition. Face recognition is a fast emerging field of research and applications

alike that spans multiple more traditional fields, including machine learning, biometrics,

statistics, sociology, psychology and anthropology. Therefore, this thesis aims to ad-

dress the aspects of the racial bias problem definition, in addition to the race conceptu-

alisation and race-related performance evaluation methodologies, and provides different

approaches towards achieving the goal of mitigating racial bias within face recognition

using conventional computer vision techniques.

1.2 Thesis Contribution

The work presented in this thesis contributes an advancement in knowledge in the follow-

ing areas:

• A first comprehensive critical review of prior research on the topic of racial bias within

face recognition. It provides a comprehensive coverage of the racial bias problem with

respect to each and every stage of the face recognition processing pipeline whilst also

highlighting the potential pitfalls and limitations of contemporary mitigation strategies

that need to be considered within future research endeavours or commercial applica-

tions alike (Chapter 2).

• A novel racial bias analysis methodology via facial phenotype attributes for face recog-

nition without reliance upon any potentially protected attributes or ill-defined grouping

strategies (Chapter 3).

• An investigation of the impact of commonplace lossy image compression on face

recognition algorithms with regard to the racial characteristics of the subject and the

specific impact of chroma-subsampling on bias performance by comparing recognition

performance with and without chroma-subsampling within lossy compressed facial im-

agery (Chapter 4).
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• A novel adversarial derived data augmentation methodology that transfers racial at-

tributes of a human face whilst preserving identity features in the face recognition

datasets samples making face recognition algorithms more robust and less race-dependant

(Chapter 5).

• A novel framework that factorises the latent space and explicitly control facial pheno-

type on a given face imagery by using only 2D imagery and related 2D metric-based

parameters during training and only 2D imagery during inference (Chapter 6).

1.3 Publications

The research undertaken as part of this thesis has been published or is under review in the

following peer-reviewed publication venues:

• Seyma Yucer, Amir Atapour, Noura Al Moubayed, and Toby P. Breckon., Disentan-

gling Racial Phenotypes: Fine-Grained Control of Race-related Facial Phenotype Char-

acteristics, The International Joint Conference on Neural Networks, IJCNN, 2024.

• Seyma Yucer, Furkan Tektas, Noura Al Moubayed, and Toby P. Breckon., Racial Bias

within Face Recognition, ACM Computing Surveys, ACM CS, 2024, (Under Review).

• Seyma Yucer, Matthew Poyser, Noura Al Moubayed, and Toby P. Breckon., Does lossy

image compression affect racial bias within face recognition?, IEEE International Joint

Conference on Biometrics, IJCB, pp. 1-10, 2022.

• Seyma Yucer, Furkan Tektas, Noura Al Moubayed, and Toby P. Breckon., Measur-

ing Hidden Bias within Face Recognition via Racial Phenotypes., IEEE/CVF Winter

Conference on Applications of Computer Vision, WACV, pp. 995-1004 2022.

• Seyma Yucer, Samet Akcay, Noura Al Moubayed, and Toby P. Breckon., Exploring

Racial Bias within Face Recognition via per-subject Adversarially-Enabled Data Aug-

mentation., IEEE/CVF Computer Vision and Pattern Recognition Workshops, CVPRW,

pp. 18-19, 2020.
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1.4 Thesis Structure and Scope

We present this thesis based on our work in the field and its contribution to the current

state-of-the-art. Chapter 2 gives an extensive literature review where we formalise the

problem definition with the corresponding evaluation, fairness criteria and discuss stan-

dard race and race-related grouping terminology. The discussion provides an informa-

tion spectrum from grouping definitions to their adoption to the associated processing of

grouping labels used in literature studies. Consequently, we provide a general develop-

ment schema for face recognition systems and summarise the prior work in the field by

aligning it to each development stage.

Chapter 3 introduces an alternative racial bias analysis methodology via facial phe-

notype attributes for face recognition. We define a set of observable characteristics of an

individual face where a race-related facial phenotype is hence specific to the human face

and correlated to the racial profile of the subject. Subsequently, we propose categorical

test cases to investigate the individual influence of those attributes on bias within face

recognition tasks. We compare our phenotype-based grouping methodology with previ-

ous grouping strategies and show that phenotype-based groupings uncover hidden bias

without reliance upon any potentially protected attributes or ill-defined grouping strate-

gies.

Chapter 4 examines the impact of commonplace lossy image compression on face

recognition algorithms with regard to the racial characteristics of the subject. With the

adoption of our racial phenotype-based bias analysis methodology, we measure the effect

of varying levels of lossy compression across racial phenotype categories. Additionally,

we determine the relationship between chroma-subsampling and race-related phenotypes

for recognition performance.

Chapter 5 proposes a novel adversarial derived data augmentation methodology that

aims to enable dataset balance at a per-subject level via the use of image-to-image trans-

formation for the transfer of racial characteristic facial features. The aim is to automati-

cally construct a synthesised dataset by transforming facial images across varying racial

domains, while still preserving identity-related features, such that racially dependant fea-

tures subsequently become irrelevant within the determination of subject identity.

Chapter 6 proposes a novel framework that leverages 2D imagery and related metric-
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based parameters to control race-related facial phenotypes, as proposed in Chapter 3,

including skin colour, hair colour, nose, eye, and shape. The objective of this frame-

work is to enable explicit control of these race-related facial phenotype parameters using

only 2D images. To achieve this, we utilise ConfigNET (Controllable Neural Face Image

Generation) [51] and StyleGAN2 [52] and formalise race-related phenotype attributes us-

ing metric-based evaluations to map them into latent space. Our results demonstrate the

efficacy of this approach in generating synthetic faces that exhibit specific race-related

phenotypes with high fidelity.

Finally, Chapter 7 concludes with a summary of the techniques and their contributions

and limitations within the field, along with the potential directions for future work.

1.5 Ethical Considerations

Intent: This PhD thesis intends to provide a comprehensive coverage of the topic: racial

bias within face recognition. Our proposed novel racial bias analysis methodology, in

Chapter 3, via facial phenotype attributes for face recognition avoids the need for re-

searchers to use potentially protected or ill-defined subject attributes and instead intro-

duces racial phenotype attributes to explore racial bias in face recognition.

Denotation of Facial Phenotypes: We denote race- related phenotype attributes accord-

ing to the studies of [12, 53] to have descriptive naming whilst avoiding causing any

unintended offence to individuals.

Use of Face Recognition Datasets: We conduct our experiments on various face datasets

including VGGFace2 [3], BUPTBalanced [1], RFW [11], CelebA [54], CelebA-HQ [7],

FFHQ [55] which are publicly available for research use only. The reader is directed

to the original source publication in corresponding chapters and the associated research

organisation for access to these datasets. We make available supplementary labels for VG-

GFace2 [3] and RFW [11] datasets in order to facilitate the use of our proposed methods

and evaluation strategy by other researchers, with the aim of furthering our stated intent

above.

Face Editing and Generation: Our main purpose in synthesising face imagery is to

reduce the perpetuation of racial bias caused by imbalanced distributions in face recogni-
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tion datasets. To avoid the potential misuse of the synthesised images, we have decided

not to publicly share the generated data. Instead, we provide pre-trained models that re-

quire users to have access to the datasets (access to which is granted by individual dataset

owners) in order to use pre-trained models.
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CHAPTER 2

Literature Review

This chapter both summarises the current state of the art and gives a comprehensive criti-

cal review of prior research on the topic of racial bias within face recognition. In addition,

this chapter aims to make the reader pertinently aware as to the subtleties, and potential

areas of ambiguity, with regard to how the racial bias problem within face recognition

itself is defined.

Furthermore, we identify which parts of the problem have been studied effectively

to date and which directions remain open for future contributions to mitigate racial bias

within the face recognition domain. In particular, we aim to systematically review each

of the stages that are commonplace within contemporary face recognition processing

pipelines from a perspective of the potential for racial bias impact: image acquisition

(for both dataset collation and deployment), face localisation, face representation, face

verification and identification (final decision-making) (see Figure 2.1, right). On this ba-

sis, we present this chapter based on our taxonomy of prior work in the field and its

contribution to the current state of the art (Figure 2.1). Subsequently, we formalise the

problem definition with the corresponding evaluation and fairness criteria (Section 2.1).

Next, we discuss standard race and race-related grouping terminology under three cate-

gories; race, skin tone and facial phenotypes (Section 2.2). This discussion provides an
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Figure 2.1: Taxonomy of sections of Racial Bias within Face Recognition literature re-
view.

information spectrum from grouping definitions to their adoption to the associated pro-

cessing of racial groupings used in literature studies. Consequently, we provide a general

development schema for face recognition systems and summarise the prior work in the

field by aligning it to each development stage (Section 2.3). Within this section (Sec-

tion 2.3), we firstly give an outline description of the general face recognition processing

pipeline using consistent notions and symbols.

Secondly, we cover image and dataset acquisition processes for face recognition show-

ing the risks and investigations within this stage. Thirdly, we extend our analysis to face

localisation as it is a mandatory stage where the possible biased localisation results prop-

agate within the following face recognition stages. Penultimately, in the face representa-

tion stage, we categorise the proposed racial bias mitigation approaches based on machine

learning techniques. Finally, we cover face identification and verification tasks and show

the impact of the methodological decisions effects on racial bias. Consequently, we sum-

marise the main critical points of the work and highlight the essential steps that need to

be considered within any future research endeavours or commercial applications that aim

to mitigate bias or develop fairer face recognition systems (Section 2.4).

The material presented in this chapter of the thesis has been submitted to the following

peer-reviewed journal publication:

Seyma Yucer, Furkan Tektas, Noura Al Moubayed, Toby P. Breckon., Racial Bias within

Face Recognition: A Survey., ACM Computing Surveys, ACM CS, 2023.
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2.1 Preliminaries

Statistical methods are essential for supervised learning problems, including face recogni-

tion, which concerns generating a representative and distinctive feature embedding vector

z for a subject y given an observed face image x. A mapping function f ∗ is a particular

function among infinite function space Ω (f ∗ ∈ Ω) that provides optimal performance

over a given training dataset Dtrain. Preferring certain functions over others is denoted

as inductive bias in the seminal work by Mitchell [56] and remains a central concept in

statistical learning theory. The expression inductive bias (also known as learning bias)

refers to the optimal selection process of f ∗. Due to its importance for generalisation on

unseen large-scale datasets, inductive bias is essential for any genre of machine learn-

ing approach. On the other hand, the broader societal, historical meaning of the term

bias instead refers to the unfair treatment of a subset of the populous based on their ori-

gins, ethnicity or ideology. While inductive bias is necessary for model generalisation,

societal bias implies negative implications that should ideally be avoided [57]. In order

to avoid the obvious potential for confusion, the prior work of [58] prefers to use fair-

ness instead of bias when referring to aspects of demographic criteria in both statistics

and machine learning. Subsequently, research on algorithmic fairness and statistical bias

has introduced various formal definitions of fairness, and their relationships with each

other [58–60]. Before we fully detail these fairness criteria, we first provide a brief ex-

planation of a generic face representation learning and evaluation pipeline to facilitate the

introduction of the required notation, which we will subsequently use for the remainder

of this review.

A face recognition system comprises a training set Dtrain and a test set Dtest where

any of the datasets can be defined as D = {X, Y } where X = {x1, x2, .., xN} is a set

of face images and Y = {y1, y2, .., yN} is a set of subject identity labels corresponding

the face images where N is the total number of images. The total number of unique sub-

ject identity labels is n such that n <= N . In addition, in order to measure the fairness

of a face recognition system, a set of corresponding race or race-related grouping labels

S is also specified, S = {s1, s2, .., sN}. Therefore any face dataset can be formed as

D = {X, Y, S} where X denotes the set of images, Y denotes the set of subject labels,

and S denotes the set of sensitive race or race-related labels. Furthermore, a mapping
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function f plays a significant role in face recognition systems as it maps any given im-

age x into the feature embedding vector z. f is selected from a function space Ω via a

loss function L which measures the performance of a given training set, Dtrain, for any

of the aforementioned face recognition tasks. Typically, a softmax loss is adopted by

state-of-the-art face recognition methods [4–6,61] in order to disentangle the feature rep-

resentation of individual identities within contemporary training datasets. The inductive

representation learning is hence a minimisation of the loss function Lsoftmax, which can

be formalised as follows:

f ∗ = argmin(Lsoftmax(f)), f ∈ Ω where Lsoftmax = − 1

N

N∑
i=1

log
eW

T
yi
zi+byi∑n

j=1 e
WT
j zi+bj

(2.1)

where zi is the feature representation of the image xi ∈ Ru×v×3, u is the weight and v is

the height of the xi, within Dtrain belonging to subject class yi and the number of samples

is N labelled with n classes. Wj is the jth column of the weights, bj is the jth column of

the bias term, and d is the number of neurons in the last fully-connected layer which is

mostly 512. Weights and bias term dimensions are Wj ∈ Rdxn and bj ∈ Rn, respectively.

Moreover, the selected f ∗ compresses the intra-class distance and expands the inter-class

distance between feature embeddings belonging to the same or different subject identity,

respectively. Generally, f provides superior approximation over the statistically most pre-

dominant population subset within training set, Dtrain, such that Lsoftmax is minimised.

Additionally, evaluation metrics can quantify how well the selected f ∗ performs on

Dtest. The most common evaluation metric in face recognition, accuracy, relates to the

probability of correctly predicting the subject label of a face image as P (yα = ŷα). Ac-

curacy can be defined as follows,

Accuracy =
TP + TN

TP + TN + FP + FN
(2.2)

where true positive (TP) is the number of the f ∗ correctly predicts the positive subject

label and true negative (TN) is the number of the f ∗ correctly predicts the negative sub-

ject label. In contrast, false positive (FP) is the number of the f ∗ incorrectly predicts

the positive subject label, and false negative (FN) is the number of the f ∗ incorrectly
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predicts the negative subject label. Accuracy measures the consistency between predic-

tions and their ground truth values. In a similar vein, the True Match Rate (TMR) esti-

mates the number of correct positive predictions made from all possible positive predic-

tions. For instance, a binary face verification task aims to classify whether an image pair

(xα, xβ) where xα, xβ ∈ Dtest belongs to the same subject label or not. During test-

ing, the selected f ∗ predicts the feature representation vectors zα, zβ for the corresponding

images xα, xβ , respectively. Given images are validated as ”match” if the similarity be-

tween two feature vectors (i.e. cosine similarity, cos(zα, zβ) =
zα·zβ
‖zα‖‖zβ‖

) is greater than

a given threshold parameter threshold, otherwise as ”non-match”. TMR is the ratio of

correctly verified match pairs (two different images from the same subject) over the to-

tal number of match pairs. However, neither Accuracy nor TMR is indicative of failure

samples. To investigate such samples, the False Match Rate (FMR) measures how many

incorrect non-match or negative predictions f ∗ are made via feature representation vec-

tors. Furthermore, the False Non-Match Rate (FNMR) refers to the probability of samples

of the same subject identity is incorrectly matched. All terms, TMR, TNMR, FMR, and

FNMR, can be formalised as follows:

TMR =
TP

TP + FN
, TNMR =

TN

TP + FN
, FMR =

FP

FP + TN
, FNMR =

FN

FP + TN
(2.3)

Another facial recognition metric, the ROC curve, plots TMR against FMR at differ-

ent thresholds. Lowering the threshold verifies more items as matched, resulting in an

increased FMR and TMR. Furthermore, the racial bias literature commonly measures the

variation in performance, indicated by accuracy or FMR, among racial groups to highlight

disparities within each group. However, calculating this deviation varies across studies,

as different definitions of standard deviation are used (i.e. sample, population). In this

study, we utilise the sample standard deviation for further analysis.

To this extent, we briefly described the selection process of f using the loss function

and evaluation metrics of face recognition. Whilst, loss functions help to understand

the behaviour of f on Dtrain, evaluation metrics help to measure how well the selected f ∗

mapsDtest into feature embedding representation space. Consequently, statistical fairness
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criteria can be considered as a formal property of face recognition systems, including

mapping function f ∗, training Dtrain and test datasets Dtest. Accordingly, we give the

four most commonly used fairness definitions from [60] that are commonplace within

racial bias for face recognition.

Definition 1: Fairness Through Unawareness requires that a machine learning algo-

rithm have an independent conditional probability P of the output given X from S (racial

labels). Subsequently, unawareness criteria can be formalised as P (Y |X) = P (Y |X,S).

However, removing dependency is impossible for face recognition algorithms due to the

high mutual information between facial and racial features. Even though racial labels are

not explicitly introduced to the machine learning algorithm, they will implicitly be used

in the face representation (algorithm training) via the facial images.

Definition 2: Individual Fairness refers to treating similar individuals coequally, mean-

ing that an algorithm is fair if it gives similar predictions to similar individuals. In order to

estimate such criteria, two distance metrics are defined by Dwork [59]. These are distance

metrics that measure the degree of similarity between individual subjects and measure the

difference in the associated prediction outcome between those individual subjects. It can

be formalised in face recognition context as if image samples xα and xβ are similar under

a given distance metric d(xα, xβ) depending on sα, sβ then predictions should be similar

ŷα ≈ ŷβ where ŷα and ŷβ are the predicted labels from corresponding images xα, xβ and

sα, sβ are the sensitive race labels respectively. However, [62] discusses how individual

fairness is inadequate for ensuring fairness on the grounds of four differing arguments,

spanning the insufficiency of similar treatment, systematic bias and arbiters, prior moral

judgements, and incommensurability (see [62] for a more detailed discussion).

Definition 3: Group fairness (or Statistical parity / Demographic parity) enforces the

predicted subject labels Ŷ to be independent of S which can be denoted P (Ŷ |S = 0) =

P (Ŷ |S = 1) where r is the number of different sensitive race labels in the set. Racial bias

literature within the face recognition mostly approaches the problem from a supervised

machine learning paradigm by considering it as an group fairness criteria (demographic

parity) [59], which can be satisfied if the race or race-related intersectional groups perform

similarly to each other. Unfortunately, such criteria may not ensure fairness as it heavily

relies on equalising the acceptance match percentages even though there is little or no
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training data available for a given racial grouping category within Dtrain [63].

Definition 4: Equal Opportunity, (or Equalised Odds) is satisfied if an algorithm pre-

dictions Ŷ is independent of S conditioned on Y . If the criteria is defined for binary

categories [63], it can be denoted P (Ŷ = 1|S = 0, Y = y) = P (Ŷ = 1|S = 1, Y =

y), y ∈ {0, 1}. Subsequently, it is adopted by [64] to multiple class labels. More simply,

the constraint requires that any sensitive race label has equal true positive rates and false

positive rates across the other sensitive race labels. It also enforces that the accuracy is

equally high in all sensitive labels, penalising algorithms that perform well solely on the

statistically most predominant such labels. Furthermore, [63] discusses how demographic

parity is crippled in the typical scenario in which the target variable Y is correlated with

only S. On the other hand, equalised odds aims to achieve accurate prediction while

ensuring predictions are fair concerning a specified sensitive labels, S.

As aforementioned, the literature has mainly used statistical parity or group fairness

criteria to minimise the variation of accuracy or FMR across sensitive racial groupings

labels on datasets. However, such an aim brings a high dependence on sensitive attributes

to be used in fairness criteria above, which may actually increase discrimination [60].

Moreover, little attention has been given to how the sensitive attribute labels, S, are as-

signed, with regard to the potential for bias in the assignment (i.e. labelling) process,

and what that potentially means normative ”unbiased” presumptions for face recognition

system design. In the next section, we address these questions by focusing on race and

race-related groupings and their conceptualisation.

2.2 Towards Racial Group Fairness

Most studies on racial bias within face recognition, with a few exceptions [65, 66], use

the criteria of group fairness (demographic parity) to evaluate and mitigate both data and

algorithmic bias. However, group fairness criteria relies on sensitive attribute labels such

as race, ethnicity or skin tone and uses performance evaluation metrics such as accuracy

or FMR. Subsequently, stratification of the complex and multi-faceted concept of race

into abstract race-related categories becomes necessary in order to address racial bias

group fairness as the categories allow us to assess whether the final performance of a
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given face recognition system is fair and satisfies group fairness criteria. Accordingly, the

face recognition literature mainly utilises either race (e.g. African, Asian, etc.) or race-

related grouping categories (e.g. skin tones, facial phenotypes etc.). However, with regard

to racial stratification, this construction of race or race-related groupings also brings with

its and additional set of challenges.

For example, early attempts at the conceptualisation of race itself inherited racial bias,

as the way race is defined and understood is influenced by preexisting prejudices and dis-

criminatory beliefs [67, 68]. As a result, the way race is conceptualised may perpetuate

and reinforce existing forms of racial inequality [68]. Moreover, exposing or using such

racial origin identifies the representation of a particular group and may lead to potential

racial profiling and associated inequality [69]. Additionally, race or skin tone grouping

strategies can limit the scope of any study as they fail to capture the whole aspect of the

racial bias problem within face recognition where it needs to consider both multi-racial

or less stereotypical members of such groupings [39, 70]. Hanna [71] discussed treating

race as an attribute rather than a structural, institutional, and relational phenomenon and

ignoring its multidimensional factors can result in missing important aspects of algorith-

mic fairness. Finally, many researchers do not provide detailed background about their

racial categorisation process [72], which makes such race-related groupings even more

insurmountable in effectively addressing racial bias. Published datasets and related re-

search work rarely contain details about how racial groups are determined or how racial

bias evaluation metrics are designed [72]. In addition to the aforementioned points, many

studies [72–74] highlight the potential risks of omitting the details of the racial categori-

sation strategy along with the appropriate context for use.

In this section, we delve into racial bias within face recognition (i.e. group fairness

criteria). We examine how race and race-related grouping categories are constructed,

the significance of accurately defining these categories and the potential risks and conse-

quences of using and evaluating them in face recognition systems. We classify groupings

under the three most predominantly used categories: race, skin tone, and facial pheno-

type. We discuss the grouping strategies in each category together with their potential

positive and negative impact and describe the details of subcategories where they have

been used. Furthermore, we cover the literature on annotation processes of grouping cat-
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egories and summarise recent literature along with face datasets by organising them under

their grouping strategies in Table 2.1.

2.2.1 Race

Race, as a term for human categorisation based on varying factors, is a controversial

concept related to sociology, psychology, biology, ethnology, and cultural anthropology,

whose definition varies across different fields and throughout history. Within biology, for

example, the race concept has been differentiated into three different kinds: genetic, mor-

phological and psychological, which are all widely disputed [75]. Race was first delin-

eated by European naturalists and anthropologists to establish population-based research

on human diversity [76]. In the seminal early scientific work of 1758, Systema Natu-

rae [77], Carl Linnaeus categorises humans into four different groups: {European white,

Americanus rubescens (American reddish), Asiaticus fuscus (Asian tawny), Africanus

niger (African black)} using a combination of continental (geographic) and observational

(skin tone) terminology. Subsequently, several attempts were made to classify and group

humankind in such a manner in order to use it in societal statistics [68,71,78]. Most of the

work was problematic (by the standards of today) or error-prone (even by the standards of

the day) as it reflected the biased ideologies of researchers, politicians and institutions of

that time [68]. However, such definitions and classifications were adopted by the national

census infrastructure across many jurisdictions [71]. The work of Khalid Muhammad [79]

reveals how anecdotal, hereditarian and pseudo-biological race theories transformed into

statistics and social surveys. Furthermore, Zuberi [68] addresses the complicated history

of racial stratification and its evident impact on social and natural sciences. Consequently,

he defines race as a biological notion of physical difference grounded in an ideology [68].

Within face recognition, subject face images form the primary information source

that encapsulates these race-related biological and physical differences, which are then

combined with additional information, including gender, age, pose, facial expression and

contextual aspects such as scene background, illumination, subject clothing and facial ac-

cessories such as glasses, facial hair, jewellery and makeup. On this basis, it becomes

possible to adopt any such ideology via the use of racial groupings and classifications

that are introduced to face recognition with the aim of quantifying racial bias. However,

17



despite this potential, an increasing number of face recognition studies instead adopt dif-

ferent variations of racial categorisation [30, 80] without any reference to the underlying

critical theory of such categorisation and how they are defined [68, 71, 78]. More worry-

ingly, racial annotation of face imagery has now become the initial step in many proposed

face recognition approaches aiming to address racial bias, but the crucial decision-making

on how and why a given racial categorisation is defined remains subjective, arbitrary and

largely undocumented [81].

Dataset Name Year Grouping Categories Images Source

Race
ColorFERET [82] 1993 White, Asian, Black, Others 14K Participants’ photographs
MORPH [83] 2006 Caucasian, Hispanic, Asian, or African American 55K Public Records
UTK Face [84] 2017 Asian, Black, Indian, White and

Others (Hispanic, Latino, Middle Eastern)
20K MORPH, CACD,

online resources
IJB-C [85] 2018 North American, South America, Western Europe,

South West Africa, East Europe, East Africa-Middle
East, South East Asia, India, China, East Asia

31K Public, law enforcement
databases, social media

RFW [11] 2019 African, Asian, Caucasian, Indian 45K MS-Celeb [86]
DemogPairs [87] 2019 Asian, Black, White 10.8K CWF, VGGFace1-2 [3, 88, 89]
BUPT-Balanced [1] 2020 African, Asian, Caucasian, Indian 1.3M MS-Celeb [86]
VGGFace2 1200 [9] 2020 African, Asian, Caucasian, Indian 1M VGGFace2 [3]
FairFace [40] 2021 Black, East Asian, Indian, Latino, Middle Eastern,

Southeast Asian, and White
108K Flickr, Twitter, newspapers,

online resources
CASIA-Face-Africa [90] 2021 Hause (Sudan, Chad, Binin, Ivory Coast), Non-Hause 38K Subjects from Nigeria
DiveFace [91] 2021 (Japan, China, Korea), (Europe, North America, and Latin

America) (Sub-Saharan Africa, India, Bangladesh, Bhutan)
120K MegaFace [92]

Skin Colour
IJB-B [93] 2017 1-6 skin tones (increasing in darkness) 1K 1M FreeBase Celebrity List
PPB [39] 2018 Light, Dark skin tones (Fitzpatrick I-III,IV-VI) 68K Gov. Official Profiles
Fair Face Challenge [45] 2020 Light, Dark skin tones (Fitzpatrick I-III,IV-VI) 152K Flickr, Twitter, newspapers,

online resources
Casual Conversations [94] 2021 Fitzpatrick Skin Tones 45K* Vendor data
Globalface-8 [95] 2021 ITA base 8 skin tones (Tone I-VIII) 2M 1M FreeBase Celebrity List
Balancedface-8 [95] 2021 ITA base 8 skin tones (Tone I- VIII) 1.3M 1M FreeBase Celebrity List
IDS-8 [95] 2021 ITA base 8 skin tones (Tone I-VIII) 10K 1M FreeBase Celebrity List

Facial Phenotypes
Diversity in Faces [10] 2019 ITA 6 skin tone, Craniofacial distance, area,

ratio, Facial region contrast
0.97M YFCC-100M

VGGFace2 [3] - [13] 2018 Fitzpatrick Skin Tones, Nose Shape,
Eye Shape, Mouth Shape, Hair Type

3.3M Google Image Search

RFW [11] - [13] 2019 Fitzpatrick Skin Tones, Nose Shape,
Eye Shape, Mouth Shape, Hair Type

45K MS-Celeb [86]

Table 2.1: Overview of most prominent face recognition datasets categorised by racial
groupings, including dataset size and image sources.

Previously, racial categories made an initial appearance within automated facial anal-

ysis via the task of race classification. For example, [96] propose feature extraction-based

techniques for race classification using the MORPH [83], and FERET datasets [82] to

predict {Caucasian, South Asian, East Asian, and African} racial classification. Later

studies [83] extend the MORPH dataset for face recognition and analysis tasks (identifi-
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cation, recognition, and verification) by providing additional ground truth labels spanning

age, gender, race, height, weight, and eye position. Subsequently, DCNN-based methods

were introduced for race classification [97–99]. The work of [97] proposes the large-

scale VGGFace2 Mivia Ethnicity Recognition (VMER) dataset, composed of more than

3 million face images annotated with four ethnicity categories, namely {African Ameri-

can, East Asian, Caucasian Latin and Asian Indian}, and provides comprehensive per-

formance analysis for several contemporary deep network architectures, namely VGG-16,

VGG-Face, ResNet-50 and MobileNet v2. Although such race classification techniques

are not necessarily used as a proxy for facial image annotations with regard to the study

of racial bias within face recognition, these public datasets containing race labels and

their associated racial groupings are widely adopted de facto by the face recognition re-

search community. As we illustrate in Table 2.1, the most commonplace face recognition

datasets containing race labels [11, 39] use three grouping strategies, namely race, skin

tone and facial phenotypes. Similar to race classification, broader racial groupings such

as {African, Asian, Indian and Caucasian} or binary racial groupings such as {Black,

White} are also commonly followed by many datasets creators [11, 39].

Recently, the most commonly used face recognition evaluation dataset, a subset of

MS-Celeb-1M [86] released as the RFW dataset [11], was constructed to measure rela-

tive face verification performance across four different racial groupings: {African, Asian,

Indian, Caucasian}. FairFace [40] is another dataset, again drawn as a subset from the

larger YFCC-100M Flickr dataset [100], which supplements this earlier set of four labels

with two additional racial groupings, {Middle East, Latino} to evaluate racial bias more

broadly. In addition, UTKFace [84] is a large-scale face dataset with five different racial

groupings, namely {Asian, Black, Indian, White and Others (like Hispanic, Latino, Mid-

dle Eastern)}, for various tasks spanning face detection, age estimation, and age progres-

sion/regression. This variation in racial groupings, illustrated more extensively in Table

2.1, highlights the ambiguity and uncertainty behind the race concept upon which the ab-

sence or presence of bias is ultimately being evaluated. Consequently, this inconsistency

of racial groupings, its historical and geographic instability within the face recognition

research literature and the commonplace adoption of ill-defined race concepts that are

littered with a problematic history within social statistical science make effective per-
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formance evaluation and quantification very challenging within the racial bias problem

space.

Similarly, Khan [101] identify four specific problems with the racial categories: (1)

the categories are not clearly defined and are often loosely associated with geographic ori-

gin; (2) the categories that are extremely broad, with continent-spanning construction that

results in individuals with vastly different physical appearance and ethnic backgrounds

being grouped incongruously into the same racial category; (3) the categories narrow

down the differences between ethnic groups with distinct languages, cultures, separation

in space and time, and phenotype into the same racial category; (4) assigning a single

racial category to a face example for performance evaluation of any form of automated

analysis, including face recognition, is not an ideal solution as it cannot capture a sub-

stantial proportion of the distribution of diversity and variation within the human race.

In parallel with Khan, Raji [73] discusses three ethical tensions when auditing com-

mercial facial processing systems, where there exists a requirement to annotate face im-

agery with race or race-related categories. Privacy and Representation: Collecting a di-

verse and representative dataset for facial recognition can bring privacy risks for individu-

als included in the dataset. Furthermore, potential consent violations may arise during the

data collection process, for example, for the IBM Diversity in Faces dataset [10], which

was sourced from images on the public image-sharing platform Flickr that were uploaded

under very permissive licensing terms (Creative Commons). However, it later emerged

that the individuals within the photos did not necessarily consent to be included within the

face recognition dataset [102]. Intersectionality and Group-Based Fairness: Intersection-

ality is based on the idea that the experience of an individual cannot be fully understood

by looking at one aspect of their identity. However, when evaluating group fairness in

facial recognition systems, assigning individuals to a racial category and performing dis-

aggregated analysis to account for multiple categories is often necessary. This type of

analysis can help to identify and address potential biases, but it may not fully capture

how varying components of a face recognition processing pipeline interact to recognise

individual features across individuals with multiple marginalised identities. Transparency

and Overexposure: Although sharing details of the dataset development process and pub-

licly disclosing named audit targets can help to clarify the scope of the audit and the
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context in which results should be interpreted. This can also result in targeted over-fitting

(i.e. “cheating”) in order to optimise system performance on the audit. Moreover, this

can also lead to pressure to make the audit more operationally relevant to real-world de-

ployment. For example, some institutions have removed or restricted access to their facial

recognition benchmark assets following their inclusion in audits, which can compromise

the performance validation of future systems and make it more expensive and difficult for

other researchers to evaluate relative performance changes in the field [20].

Finally, although many more studies discuss the possible negative consequences of

using racial categories in face recognition datasets, Table 2.1 proves that such racial cat-

egories have become commonly used and increasingly contributed within the literature.

The lack of work on alternative race-related grouping strategies or fairness criteria that

do not rely on any racial categories forces racial bias studies to address racial bias using

such commonly defined racial categories. Considering the problems that arise with racial

categorisation, the current status of research that uses racial categories (still) does not

paint an optimistic picture of the global face recognition research community collabora-

tively tackling the issue of racial bias. As information of racial or ethnic origin remains

sensitive [103], from these observations across the face recognition field, we agree with

the findings of several major studies [68–70, 73, 74, 79, 104, 105] that already highlight

the adverse effects of the use of racial categories and their suggestion that researchers

should either avoid revealing such sensitive data or provide an appropriate context for

use. Furthermore, transparent provision of the ethical considerations together with any

details of the racial annotation process in use and the intended possible use cases, limita-

tions, and risks of the designed solution, should be made by the originating researchers in

all cases [46].

2.2.2 Skin Tone

Human skin tone ranges can vary from saturated black to off-white pale, representing one

of the key race-characterising traits. Variations in skin tone among humans have been

traditionally used to classify people into race or race-colour identities [106] as skin tone

variation caused by genetic differences (also exposure to the sun). Over the past cen-

turies, methods for categorising skin tone have evolved from verbal race-related descrip-
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Figure 2.2: Four different skin tone scales used for racial bias analysis within the context
of face recognition.

tions (that would potentially be seen as derogatory today) with skin colour categories as

”white”, ”yellow”, ”black”, ”brown”, and ”red” [107], to colour-matching-based meth-

ods. The colour-matching-based methods compare skin colour based on their similarity

to a set of standardised colour samples. The Von Luschan scale, employing 36 coloured

glass tiles for skin color comparison, is one of the most common examples of color-

matching-based methods, widely utilised for racial categorisation of populations until the

mid-20th century [108].

Fitzpatrick Skin Tone Scale

Following the colour-matching methods, the Fitzpatrick Scale, established in 1975, be-

came the most commonly used skin tone scale in dermatology and medicine. The der-

matologist Thomas B. Fitzpatrick developed his Fitzpatrick Skin Tone Scale to assess

the propensity of the skin to burn during photo-therapy (i.e. the treatment of skin condi-

tions using intense ultra-violet light sources). Initially, four different types ranging from

Type I (always burns, does not tan) to Type IV (rarely burns, tans with ease) were released

by [109]. Later, he extended his scale to include a broader range of skin types (Type V and

VI) [110] in order to offer a more granular representation across darker skin tones. The

widespread adoption of this work within medical research studies [111,112] subsequently

influenced early computer vision research studies considering skin tone. Within the racial

bias literature, the Gender Shades study [39] was the first to gather attention around the
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use of the Fitzpatrick Skin Tone Scale within an automated facial image analysis con-

text. Subsequent studies then released varying datasets, all using the Fitzpatrick scale on

this basis [13, 45, 94]. Even recently, the extensive Casual Conversations Dataset [94]

containing 45K videos makes use of Fitzpatrick skin tone labels for its racial grouping

strategy. However, other researchers have raised concerns about using the Fitzpatrick

scale on image-based visual tasks [113]. Primarily, the Fitzpatrick scale was not initially

designed for image-based skin tone estimation; hence, its evaluation methodology relies

on physical skin measurement. As a result, its use can cause inconsistent skin tone assign-

ment when applied on images [114]. Consequently, [113] observes how challenging it is

to robustly assign darker skin tone labels within the Fitzpatrick scale when faced with a

significant imaging variance and suggests avoiding the use of such skin tone assignments

ascertained from images captured under uncontrolled or unknown conditions.

Individual Typology Angle (ITA)

Subsequently, reflectance spectrophotometry and colourimetry methods [115] have be-

come preferential in medical skin tone assessment over earlier methods due to increased

accuracy and consistency. Whilst colourimeters quantify the appearance of a tone on

the skin, a spectrophotometer measures the spectral characteristics of the skin colour.

Such devices convert light reflectance data from the skin into colourimetric values for

estimating chromophores in the skin [116]. Subsequently, Individual Typology Angle

(ITA) [117] has been proposed by Chardon in 1991 to classify human skin colour us-

ing spectrophotometric measurements. This method utilises the reflection of skin light

via spectrophotometers that measure LaB colour values of the skin (L: Lightness. a:

Red/Green Value. b: Blue/Yellow Value) to represent the intensity of pigments such as

carotene, haemoglobins, phaeomelanin, and eumelanin. Accordingly, Chardon proposes

six physiologically skin categories: {very light, light, intermediate, tan, brown, and dark}
estimated via equation of ITA ITA = arctan(L−50

b
)× 180

π
. ITA projects skin colour vol-

ume into LaB colour space, and is used to categorise skin angle via the associated ITA

classification thresholds (see Fig. 2.2) [114]. As the ITA solely relies on precise and

objective skin tone measurements, it is considered more accurate than traditional visual

assessments. Furthermore, it provides a better representation of both the diversity and
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contributory factors associated with skin tone [118,119]. On the other hand, the utilisation

of ITA scores and categories varies in the literature; Wang [95] constructs three large-scale

face recognition datasets containing four or eight different skin tone groupings based on

ITA scores and releases the corresponding skin tone labels for each face image with the

datasets. The Diversity in Faces dataset [10] also adapts ITA (using six categories) as they

find ITA both a more practical and straightforward method for measuring facial skin tone.

However, akin to the earlier aforementioned issues with skin tone estimation from digital

face images, inconsistent and uncontrolled imaging conditions again impact accurate and

reliable ITA assessment [114, 118].

Monk Skin Tone (MST) Scale

Most recently, the work of Ellis Monk [120] produced a new extended skin colour scale

10-shade skin tone scale designed to facilitate the construction of more representative

datasets for the development of on-line consumer services. Although the associated study

discusses the aforementioned limitations of prior work on skin tone groupings such as

the Fitzpatrick Skin Tone Scale [110], it does not provide any detail for the practical

application of the new 10-shade scale or any additional guidance via the provision of an

exemplar dataset [120].

Binary Skin Tone Scale

Lastly, binary skin/racial groupings has been employed in sociological research on race

and race relations [121]. Focusing on white-black race relations in the United States

brings expensive socio-economic data and analysis around such binary groupings [122].

Accordingly, the adaption of binary skin/racial groupings into computer vision tasks such

as skin tone estimation, race classification and racial bias of face analysis systems started

from this simple categorisation viewpoint. In order to model skin colour on imagery,

several studies [123] proposed quantitative colour-space divisors (i.e. a dark-light pixel

colour threshold) and simply grouped skin colours into binary categories. In the racial

bias context, many studies adopt such a darker-lighter skin tone grouping by either nar-

rowing the Fitzpatrick scale or dividing subject skin tone variance into binary categories.

One of the seminal works in the field, Gender Shades [39], uses darker-lighter skin tone
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categories on the Pilot Parliament dataset to demonstrate the algorithmic performance

disparities in both gender classification and face recognition tasks. Another example is

the Fair Face Challenge study [45], which suggested researchers used a requantised (nar-

rower) set of Fitzpatrick skin tone categories as per Gender Shades [39]. Despite binary

skin tone categories are being the most straightforward grouping strategy in terms of au-

tomatic image annotation, in practice, it often obscures the complexity of race concept

and results in the mis-quantification of the racial bias problem across solutions where the

ultimate aim is unbiased performance across any skin tone variant. This is attributable

to imaging effects such as skin reflectance, which was shown by Cook [124] to have a

very significant net effect on the average biometric performance when considered across

three different skin reflectance groupings within face recognition. As such, the use of

simple binary groupings is known to result in erroneous or conflicting group interpreta-

tions, whilst broader groupings such as Fitzpatrick Skin Types claim to be more robust

against this issue [13].

The contrasting examples of these various skin tone scales are illustrated in Fig. 2.2

where we can see a sharp contrast between categorisation in binary, Fitzpatrick, ITA or

MST skin tone groupings. However, skin tone scale grouping strategies alone carry var-

ious concerns for the mitigation of racial bias within face recognition. We discuss these

concerns under three divisions as follows:

Erroneous Skin Tone Annotation: Firstly, most skin tone scales are designed to measure

skin tone on physical human subjects in a medical or dermatological context. By contrast,

face recognition systems instead used such annotations for digitally captured face images

that form part of the training and test data sets. Moreover, such face image samples are

commonly yielded from public domain sources (i.e. internet search engine-based im-

age retrieval - ”in-the-wild”), and as such, this uncontrolled imagery exhibits enormous

variation in both environmental and subject conditions at the point of image capture. Sim-

ilarly, [125] summarises such varying conditions that affect skin-colour detection in the

visible spectrum as scene illumination, camera characteristics, demographic characteris-

tics (race, age, gender), and other factors (make-up, wearing glass, hairstyle, head pose).

Such varying factors make effective skin tone annotation challenging and result in erro-

neous skin tone assignment for given subjects/samples. Furthermore, human annotators
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often bring subjectivity and inconsistency to the resulting annotation labels far more so

than other image labelling tasks (c.f object/scene categorisation), whereas skin tone an-

notation ideally needs to be objective, consistent, and repeatable [81]. Specifically, [114]

highlights the uncertainty within the human-based categorisation of skin tones from dig-

ital image and proposes the use of automated skin tone assignment as a means of po-

tentially achieving speed, scalability and consistency. However, the consistent skin tone

annotation of a given subject under the aforementioned image variations remains a perti-

nent issue with such automated solutions - one that in itself presents a circular occurrence

of bias within facial processing.

Narrow Representation of Scales: Secondly, the most commonly used skin tone scales

used for accessing aspects of racial bias are either too narrow in terms of their discretisa-

tion of the skin tone spectrum (e.g. Binary Skins Groups, Fig. 2.2) to facilitate capture

of the foundational reasons for bias or alternatively offer the less representative capability

for specific groups (e.g. Fitzpatrick Skin Types vs Monk Skin Tone Scale, Fig. 2.2) [113].

Skin Tone as a Single Dimension of Race: Thirdly, race is a multi-faceted concept conflat-

ing other phenotypic facial traits such as lips, eyes, hair and face shape. Solely aligning

racial grouping with skin tone only transforms the racial bias problem into a single-faceted

problem. Moreover, there is no clear evidence that skin tone alone is the primary driver

for disparate false match rates within face recognition performance [105]. Accordingly,

several studies suggest considering other race-related facial attributes, including lips, eye,

and face shape when measuring racial bias in this context [126,127] in order to enable im-

proved interpretation and derivation of bias factors. Accordingly, a consensus is beginning

to emerge on skin tone assignment and the appropriate quantification of skin tone within

digital facial images as used in face recognition research. Various studies [39,45,94] mea-

sure the racial bias in face recognition using either binary skin groupings, the Fitzpatrick

Skin Types [110], or ITA [117] as depicted in Figure 2.2.

Overall, this section provides an overview of skin tone characterisation approaches

and their associated quantification methodologies spanning both digital imagery and phys-

ical dermatological examination. Accordingly, we summarise the most common skin tone

scales and discuss the challenges of applying such estimation approaches to the skin tone

labelling task within face recognition datasets. Furthermore, we outline all of the face
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recognition datasets in the research literature that use varying skin tone scales in Table

2.1. As skin tone-based groupings become widely used for racial bias evaluation stud-

ies, many benchmark datasets are unfortunately annotated with varying skin tone scales

and with varying levels of labelling robustness. Although utilising skin tone scales as

a labelling concept for face recognition datasets avoids otherwise using sensitive or ill-

defined racial categories, the subjectivity of human-based skin tone annotation, the in-

consistency of facial image capture conditions and most pertinently the fact that the skin

tone is only one dimension of race all make it an imperfect mechanism for the quantifica-

tion of racial bias within face recognition. As a result, we suggest developing a broader

strategy based on the use of high-accuracy, consistent and reliable facial phenotypes that

can instead analyse the true relationship between facial features and racial bias. Con-

sequently, we believe such approaches enable investigation across every facial trait and

hence bring greater granularity to the quantification of racial bias within face recognition

whilst avoiding the use of problematic racial categorisation.

2.2.3 Facial Phenotypes

Human phenotypic variation refers to variation over the set of morphological and observ-

able characteristics of an individual, which is the result of both genetic and environmental

factors [128]. Such variation is most observable on faces as the face is identified as a

“biological billboard of our identity” [129]. Subsequently, many studies [130, 131] fo-

cus on the impact of human phenotype characteristics (such as morphological attributes)

on race. For example, the Shades of Race study [12] investigates the marginal effects of

phenotypic characteristics, including skin tone, lips, nose, hair and body type on racial

categorisation. Moreover, Zhuang [132] considers 21 craniofacial measurements such as

face width, length, nose dimensions and eye corner locations in order to show statistically

significant differences in facial measurements between four racial grouping, which are

{Caucasian, Hispanic, African, other (mainly Asian)}. Therefore, a race-related facial

phenotypes can be considered to be specific to such facial characteristic attributes, which

can then also be correlated to race (“Phennotopically similar individuals are expected to

be genetically more similar as well.”, [133]). On the other hand, facial phenotypes such

as skin tone or hair colour do not identify racial categories within themselves, but they
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can combine with other attributes to identify a broader racial grouping [134]. Further-

more, this correlation between such facial phenotypes and racial categories may not be

readily visible or clearly delineated, which is in fact highly desirable when we aim to

curb the continued use of problematic historical racial categorisation approaches and the

disclosure of sensitive racial categories [135] (see Section 2.2.1).

Moreover, Maddox [136] explains racial appearance bias as a negative disposition

toward phenotypic variations in facial appearance. He also discusses how race-conscious

social policies may fail to address racial bias with regards to the societal treatment and so-

cioeconomic outcomes of disadvantaged groups [104]. For example, many studies show

that individuals with more stereotypical racial appearance suffer from poorer socioeco-

nomic outcomes than those with less stereotypical appearance for their race [104, 137,

138]. Additionally, the sole use of race or skin tone categories to quantify racial bias

is limiting as they do not account for multi-racial individuals or those who exhibit less

stereotypical racial traits. Within this context, an improved understanding of the role

of phenotype variation may complement existing solutions that attempt to address racial

bias [136].

Facial Coding Description

Schema 1 [139] Craniofacial Distances
Schema 2 [140] Craniofacial Areas
Schema 3 [141] Craniofacial Ratios
Schema 4 [142] Facial Symmetry
Schema 5 [143] Facial Regions Contrast
Schema 6 [117] ITA-based Skin Tones
Schema 7 [144] Age Prediction
Schema 8 [144] Gender Prediction
Schema 9 [145] Subjective Age

& Gender Annotation
Schema 10 [146] Pose and Resolution

Table 2.2: Summary of facial coding scheme analysis for the DiF dataset [10].

A set of race-related facial phenotype attributes such as skin tone, nose shape, and

lip shape are of primary interest for quantifying and addressing racial bias in face recog-

nition. Furthermore, the recent work of [147] show that non-explicit racial attributes

(accessories, hairstyles or facial anomalies) conflated with explicit racial attributes (skin
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tone, nose shape or eye shape) strongly affect recognition performance. This study dis-

cusses the need to investigate each attribute in order to achieve robust, fair and explainable

face recognition solutions [147]. Such requirements directly contradict the use of more

traditional racial groupings as they remain a high-level, yet impoverished representation

to facilitate elaborate performance interpretation [148]. Subsequently, a plethora of work

highlighting the shortcomings of race and skin tone-based categorisation push the current

direction of research into phenotype-based categories (as discussed in Section 2.2.1 and

2.2.2). One of the example studies, Diversity in Faces [10], provides a new large-scale fa-

cial data that implements annotations across ten facial coding schemes in order to provide

human-interpretable quantitative measures of intrinsic facial features. The study com-

prises an extensive set of facial annotations spanning intrinsic facial features to include

craniofacial distances, areas and ratios, symmetry and contrast, skin tone (ITA), age, gen-

der, subjective annotations, head pose and image resolution that are listed in Table 2.2.

However, despite its potential to date this Diversity in Faces is not publicly available due

to increased sensitivity around subject privacy and consent issues (as discussed in Section

2.2.1).

Compared to the prevalence of race or skin tone categories, phenotype-based group-

ings have received less attention across the racial bias literature to date, as they involve

both skilled attribute labelling for dataset construction and a significantly more complex

evaluation strategy due to the significant number of phenotype categories, and phenotype

combinations present. To these ends, within a phenotype-based grouping strategy the

concept of race is not represented by the difference across a single facial phenotype but

rather a combination of varying phenotypic differences that differentiate facial character-

istics of a given subject from another. As such, subsequently investigating the impact of

such differences on face recognition performance becomes both more complex and time-

consuming despite the improved comprehensiveness and quantification options that such

a phenotype-based approach offers to the evaluation. On the other hand, it is essential

to note when used, the correlation of phenotypical categories with more traditional (i.e.

historically problematic, see Section 2.2.1) racial categories should be avoided in order

to prevent the naturalisation (or popularisation) of such “headline style” summation of

racial bias evaluation results.
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In conclusion, this section presents an alternative methodology for addressing racial

bias (group fairness) within face recognition tasks. Whilst the face naturally conveys

identity-related biometric information, it also inherently reflects a significant genetic and

geographic relationship with race but these secondary relationships with race are not the

primary concern for face recognition tasks. Instead, the group fairness objective within

face recognition tasks is to ultimately ensure that it equity of performance across all sub-

jects, regardless of subject racial grouping or facial phenotype characteristics. To these

ends, it is necessary to avoid the inherited problem of racial and skin tone category usage

within face recognition datasets and processing pipelines (Sec 2.2.1 & Sec 2.2.2), and in-

stead adopt a more general option that facilitates quantifiable performance measurement

without any explicit reference to such problematic concepts. By contrast, the use of facial

phenotypes offers a viable alternative that, whilst not fully independent of earlier racial

categorisation, offers significantly more granular insight within the quantification of racial

bias spanning both skin tone and numerous other facial characteristics.

2.3 Racial Bias within Face Recognition

Contemporary automated facial recognition encompasses a pipeline of multiple stage pro-

cessing; image acquisition (for both dataset collation and deployment), face localisation,

face representation, face verification and identification (final decision-making) [22, 24].

Image Acquisition covers image capture from a wide range of devices such as smart-

phone cameras, webcams, high-end DSLR cameras and CCTV-style video surveillance

cameras varying imaging conditions that span image resolution and compression, facial

occlusion, facial pose, illumination, subject use of make-up/glasses/jewellery and facial

expression. Furthermore it includes all stages of initial image pre-processing and formula-

tion such as the demosaicing conversion to per-pixel RGB colour (from the Bayer pattern

of the camera CMOS/CCD device), automatic colour and contrast correction (including

processes such as automatic exposure control, white balance, automatic focus, brightness

correction), pixel quantisation to a given bit-depth (e.g. RGB 8-bit colour) and compres-

sion. For data set collation, acquisition is complemented by a data curation such that

differing imagery is sampled to select a subset of representative images that are ideally
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Figure 2.3: Overview of the face recognition processing pipeline and bias attribution.

diverse and challenging enough to capture the full range of faces and imaging conditions

that a face recognition system may encounter in real-world (“in-the-wild”) deployment.

These are then used to form the train Itrain and test Itest datasets for system training and

evaluation (as defined in Section 2.1).

Face Localisation consists of two sequential steps to process real-world, in-the-wild im-

ages that are captured under uncontrolled conditions and may hence exhibit variation

across one or more of the aforementioned imaging conditions (typically: face off cen-

tre, rotated and of varying scale relative to the camera). The first step, face detection

aims to identify a set of facial landmark locations (e.g. eye, mouth and nose endpoints,

face boundaries in width and height) whilst the subsequent step of face alignment aims

to correct for positional, rotational and scale variations to obtain a canonical facial image

representation. This facial alignment step facilitates the use of the spatial correlation of

facial features across both varying subjects and dataset image samples within the subse-

quent stage of face representation.
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Face Representation involves optimisation the mapping function f ∗ that projects a given

face image sample into a feature embedding space, where the feature embedding vectors

are both representative and distinctive for each subject. In order to select the optimal

mapping function, f ∗, a training process is performed via a training dataset, Itrain, with

reference to the minimisation of a loss function that incites the use of a distinctive facial

feature mapping (as defined in Section 2.1). Consequently, f ∗ provides mapping for both

the curated training dataset, Itrain, and unseen images in both test dataset, Itest, and any

subsequent deployment.

Face Verification and Identification encompass the two most common decision-making

(i.e. “end goal”) tasks in face recognition. Face verification refers to a one-to-one

matching operation to determine whether two facial images belong to the same individual

(known subject case), and identification refers to a one-to-many matching operation to

conversely identify a given individual against a set of reference images (unknown subject

case). The optimal selection of mapping function, f ∗, via the training process on train-

ing dataset, Itrain, directly impacts the effectiveness of the feature embedding vectors

such that the presence of both improved representational distinctiveness between differ-

ing subjects and also the robust representation of identical subjects under varying imaging

conditions hence leads to improved face verification and identification performance.

With reference to the formal face recognition problem space definitions of Section 2.1,

this four stage conceptual face recognition processing pipeline is illustrated in Figure 2.3

where we additionally highlight the potential sources of bias at each stage. These will be

further explored, with reference to related work in the literature on racial bias within face

recognition, in the remainder of this section.

2.3.1 Image Acquisition

Image acquisition, spanning the imaging aspects of both initial dataset collation and final

real-world deployment. We subdivide this stage into three categories, including facial

imaging, dataset curation, and dataset bias mitigation.
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Facial Imaging

Biometric data refers to distinctive physical characteristics of the human face, fingerprints,

voice, iris, and body. Such biometrics have been used for identification systems for several

decades [149] (e.g. fingerprint matching). Commensurately, facial imagery has become

a key part of modern biometric tasks due to the proliferation of imaging technologies,

which significantly improve facial image quality, accessibility, and quantity. However, the

increased prevalence of facial imagery does not necessarily result in improved biometric

outcomes across all populations. In addition, collating facial images and annotating them

with subject identity or racial category labels at scale have ignited complex discussions

around policy and legality due to economic, privacy and ethical implications [150].

We have previously explored the potential risks associated with racial categorisation

and the annotation of facial images (Section 2.2). Building upon this, here we focus on

the privacy risks and ethical concerns surrounding using facial images as a form of bio-

metric data. Paying attention to such ethical and political considerations on the collation

of biometric face imagery becomes particularly important when the presence of racial

bias therein directly or indirectly impacts societal fairness. Accordingly, [150] presents

a socio-political analysis of face recognition and highlights the distinct challenges and

concerns associated with its development and evaluation. The study categorises such

concerns into four sections: privacy, fairness, freedom and autonomy, and security. Even

though the intention of automatic face recognition is not problematic, in practice, it may

enable morally unacceptable use cases of such technology. Examining the issue of subject

consent, both within dataset collation and in an eventual use-case, is fundamental to that

preserving privacy [150]. For example, government use of such technology for racial pro-

filing and racially-targeted restriction in some jurisdictions has been widely reported and

investigated [151–154]. In parallel to [150], Prabhu [155] discusses the fundamentals of

informed consent, privacy, or agency of the individual in large-scale datasets and shows

the fallacy of the commonplace Creative Commons licensing model [156] as a consent-

included green flag for large scale dataset curation. They suggest the use of dataset au-

dit cards as an approach to publishing the original research goals, curation procedures,

known shortcomings and caveats alongside dataset dissemination [155]. Overall, it must

be noted that any erosion of privacy, moral, ethical, or political values will most likely
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disproportionately impact minority groups, such as those defined along racial lines.

From a technical standpoint, the ISO/IEC 19794-5 [157] standard and ICAO 9303

guidelines [158] propose both image-based (i.e. illumination, occlusion) and subject-

based (i.e. pose, expression, accessories) image quality requirements to ensure facial

image quality. Accordingly, facial images should be stored using lossy image compres-

sion standards such as JPEG [159] or JPEG2000 [160]; and observable in terms of gender,

eye colour, hair colour, expression, properties (i.e. glasses), head pose (yaw, pitch, and

roll), and facial landmark positions. However, commonplace “in-the-wild” face datasets,

that are readily used in face recognition system performance evaluation, do not conform

to such requirements. Subsequently, Vangara [161] compares ICAO compliance between

African and Caucasian groups in MORPH dataset [83] and found that slightly more than

48% of the African-American images were rated as ICAO compliant, while slightly more

than 57% of Caucasian images were rated as ICAO compliant. The most prominent fac-

tor contributing to the variation in image quality between the groups is the difference in

brightness; the distribution of which differs significantly between the African-American

and Caucasian groups. The study argues that the lack of illumination correction with re-

gard to skin tone during image acquisition could be the attributable reason as to why the

African-American image group contains a larger number of poorly illuminated images.

In parallel, [124] points out the significant impact of skin reflectance across demographic

subgroup performance with regard to face recognition and mentions that improved imag-

ing acquisition systems (superior camera specification, lower motion blur, higher image

contrast and stricter pose control) may significantly reduce or eliminate performance dif-

ferences between such subgroups.

Furthermore, prior literature shows that non-ideal imaging conditions, including im-

age blur, noise, distortion, occlusion and lossy compression, all have a considerable im-

pact on the performance of face recognition [162–164]. Recently, [164] examined dis-

torted test imagery impact on gender and skin tone categories (light vs. dark skin tone)

using pre-trained DCNN-based face recognition models. As a result, the study [164] finds

that the regions of interest used in the models shift towards less distinctive regions in the

presence of distortions, resulting in unequal performance degradation among subgroups.

Consequently, we refer to these performance disparity effects within face recognition
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caused by variable imaging conditions as imaging bias as illustrated in Figure 2.3. The

limited literature on imaging bias within face recognition to date makes it harder to iden-

tify the presence of such bias and align it to common underlying factors and conditions.

On the other hand, state-of-the-art techniques for robust face recognition such as [165]

may help to mitigate such imaging bias effects, via the use of a rich set of input varia-

tions aligned to phenotypic characteristics, such as skin colour or other common facial

phenotype variations [166].

Dataset Curation

The following stage of image acquisition pertains to sampling the captured and processed

facial images in order to create representative datasets for face recognition evaluation.

Nevertheless, such a sampling process is often affected by sampling bias (also known as

selection bias or population bias) [167], which significantly impacts racial bias in face

recognition. Sampling bias, referring to non-random selection over a population leading

to a set of samples that do not fairly represent that population statistically, commonly oc-

curs when facial images are curated from public online image resources, where the avail-

able population image distribution may not be representative of the actual societal popu-

lation that the face recognition system will encounter in deployment. This is attributable

to the fact that technology access is not globally or socio-economically homogeneous re-

sulting in a skewed on-line image presence for a subset of the populous. Secondly, the

most common approach for face recognition dataset collation is via targeted per-subject

search for named individuals (commonly celebrity names from the FreeBase database)

using public online image resources [86], which then results in a dataset of millions of

subjects who have/had public attention (see Table 2.1).

Even more concerning is that the subsampling decision from the FreeBase celebrity

list is most often based on ranking all the subjects by their frequency of occurrence in the

media, meaning that celebrities with greater global media coverage are more likely to be

included in the dataset. This results in a biased convergence to a specific celebrity group,

which is dominated by Western, European and American subjects. Moreover, this impact

of sampling bias can be subsequently amplified during the later stage of feature represen-

tation learning due to an increased imbalance of phenotypic features which are themselves
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aligned to the dominant racial or demographic groupings present from the original dataset

curation [57]. For instance, a DCNN-based face recognition model utilising certain fea-

tures, such as hair, to identify face subjects results in a bias towards a particular hairstyle

or hair colour, causing less accurate performance on subjects with different hairstyles,

hair colours, or accessories.

Consequently, contemporary face recognition datasets are largely curated to provide

large-scale coverage of differing face subjects images under a rich variation of “in the

wild” imaging conditions, with little consideration of the racially differentiating pheno-

types of the underlying subject population. The two most widely used training datasets

for face recognition - MS-Celeb-1M [86] and VGGFace2 [3] - contain 10 million and

3.3 million face images respectively, and are curated from the FreeBase celebrity list as

shown in Table 2.1. Similarly, the most common benchmark test sets for face recognition

- LFW (Labeled Faces in the Wild) [15], CASIA-WebFace [88], and MegaFace [92] - are

curated using on-line news (Yahoo), FreeBase celebrity and public on-line photo sharing

resources (Flickr), respectively. Despite efforts to overcome sampling bias within face

recognition datasets such as the release of new datasets like the CASIA-Face-Africa [90],

a large-scale African face image database, or the BUPT-Balanced dataset [1], a large-

scale racially balanced training set, the most prominent face recognition datasets used for

face recognition evaluation still suffer from sampling bias with regard racial phenotypical

population coverage.

Dataset Bias Mitigation

The most common assumption in machine learning is that a training dataset Itrain and

test dataset Itest are identical and independently distributed; P (Itrain) = P (Itest). How-

ever, this assumption is not valid for face recognition systems, and this issue is referred

to as “dataset bias” by [168]. Although face recognition datasets should represent the real

world to enable face recognition systems to work on real-world applications, they have

become closed systems, reflecting the world in a significantly biased way [168]. Accord-

ingly, [168] groups dataset bias under four different types of bias; firstly selection bias

is similar to sampling bias mentioned above. Secondly, capture bias occurs because the

input imagery has the objects (faces) almost always being in the same direction and po-
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sition. Additionally, capture bias can be considered as pose bias within face recognition,

as there is still a poor pose variance in a specified range (i.e. -30 to 30 left-right, -15 and

15 up-down) generating faces) within face recognition datasets. Thirdly, category or la-

bel bias poses the ill-definition or mislabelling of subject identities and racial categories.

Fourthly, negative set bias defines the bias on what the dataset considers to be “the rest of

the world”. If that set is not representative or imbalanced, that could produce recognition

models that are overconfident and misrepresenting. For face recognition, such a set can

be considered within the same dataset (rest of the subjects vs a subject), which already

inherited different types of bias, leading to poor representation of the whole population.

The latest advancements in Generative Adversarial Networks (GAN) [52, 169–171]

have made it possible to generate high-quality face images to mitigate such domain gap

between training and test sets. For example, [172] addresses the pose bias by producing

synthetic data. Another work transfers the facial images of one race to corresponding im-

ages of other races to facilitate data augmentation to balance the ethnic distribution [173].

Moreover, [174] proposes a new data augmentation strategy that imposes the fairness con-

straint to improve the generalisability of fair classifiers. In particular, they highlight that

fairness can be achieved by augmenting interpolated samples between the groups during

training. However, generative models produce samples from an underlying training dis-

tribution as well, meaning that they can be biased too. Accordingly, [171] conducted an

empirical study on the fairness of state-of-the-art pre-trained face synthesis GAN models.

They show that a strong correlation between the imbalance degree in the training data and

the output of the GAN results in consistently more significant imbalanced GAN outputs

meaning that the bias is amplified during GAN training.

This section provides an overview of the issues and bias types that arise in the initial

image acquisition stage of the face recognition preprocessing pipeline. The discussion

encompasses the impact of the privacy risks and ethical concerns associated with biomet-

ric face imagery correlated with racial bias. Additionally, the section addresses various

sources of bias that can affect the accuracy and fairness of face recognition systems, such

as imagery bias, sampling bias, pose (capture) bias, category and label bias, and negative

set bias. To illustrate these bias types, Figure 2.3 depicts the corresponding stages of the

face recognition pipeline where they occur.
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2.3.2 Face Localisation

The face localisation stage of the face recognition pipeline consists of face detection

and alignment, thereby enabling the spatially correlated facial features for the subse-

quent stage of face representation. Prior work has primarily focused on hand-crafted

facial feature extraction and classification for face detection. In a notable milestone,

Viola and Jones proposed a real-time cascade of simple Haar-like feature classifiers at

locally learned image locations [175]. Recently, face detection methods have shifted

towards DCNN-based architectures and are categorised into five sub-genres by [176]:

Cascade-CNN-based, R-CNN and Faster-RCNN-based, Single Shot Detection, Feature

Pyramid Network-based, and other variants. Subsequently, the two most prominent face

detectors, Cascade-CNN-based MTCNN [177] and Feature Pyramid Network-based Reti-

naFace [178], and the face detection benchmark dataset, Wider Face [179], have become

widely adopted for face recognition processing pipelines.

The MTCNN face detector is based on a cascading multi-tasking structure [177] with

three-stage lightweight DCNN where the Proposal Network (P-Net) generates a set of face

regions, or “proposals”, at different scales, the Refinement Network (R-Net) subsequently

refines such regions to better localise the faces and finally the Output Network (O-Net)

performs fine-grained face feature extraction and classification. Subsequently, [178] pro-

poses another multi-level face localisation approach, RetinaFace, encompassing a single-

shot detection network, a multi-task branch network that predicts both facial landmarks

and attributes, and a bounding box regression network refines the position and size of the

detected faces from the facial landmarks and attributes. Both approaches achieve out-

standing performance on several benchmarks, including Wider Face [179], which com-

prises 32,203 images and 393,703 bounding boxes under varying imaging conditions.

Despite the widespread usage of face detectors within the face recognition processing

pipeline, only a few studies have investigated racial bias within face detection. Menezes

[41], analysis the performances of five state-of-the-art face detectors; DSFD [180], Pyra-

mid Box [181], LFD [182], RetinaFace [178], MTCNN [177] on demographic attributes

including age, skin tone, gender. The study randomly samples the Casual Conversation

Video Dataset [94] and obtains 550.000 frames for training. The Casual Conversation

Video Dataset adapts the Fitzpatrick scale and contains an imbalanced skin tone category
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distribution with the percentages of Skin Type 1: 4.0%, Type 2: 28.3%, Type 3: 22.9%,

Type 4: 8.4%, Type 5: 15.8%, Type 6: 20.7%. Although Type 1 skin tone has the lowest

representation in the training data, LFD, DSFD, and it was found that empirically Reti-

naFace detectors are more likely to fail to detect faces with skin Type 4. Moreover, the

study shows that the highest divergence of FNMR occurs within skin tone (being worse

than age and gender grouping) and highlights that three out of five detectors evaluated

have a higher likelihood of incorrect detection (FNMR) for darker skin tones (Type 5 and

6).

Another study [183] investigates the robustness of three commercial on-line face de-

tection capable systems: Amazon Rekognition, Microsoft Azure, and Google CloudPlat-

form and evaluates the impact of 15 types of natural noise corruption on the face detection

performance of different demographic groups. Similarly to the case of face recognition,

they conclude that corrupted data is more likely to cause face detection errors in spe-

cific demographic groups. For example, those with darker skin types, older adults, and

those with masculine presentation all had higher errors ranging from 20-60%. Subse-

quently, they compare the performance and robustness of non-commercial approaches

(TinaFace [184], YOLO5Face [185], MogFace [186]) with commercial ones [187]. They

show that commercial approaches are always as biased or even more biased than non-

commercial models, despite relatively larger development investment and supposed com-

mitment to industry-level fairness commitments. More recently, [188] proposes the Fair

Face Localisation with Attributes (F2LA) dataset with demographic annotations to detect

disparate performance over such demographic groups. The study finds that confounding

factors, including facial orientation, illumination, and resolution, can cause such disparate

performance among demographic groups. Therefore it is important to analyse the perfor-

mance of such detection models holistically and not draw conclusions solely based on

demographic annotations.

Despite ample evidence indicating the existence of racially disparate performance

within face detection, there needs to be further investigation targeting racial bias explo-

ration within face detection. Furthermore, similarly to the image acquisition stage of face

recognition (Section 2.3.1), the presence of imaging, sampling and dataset bias within

these face detection benchmark datasets again translates through the subsequent stages of
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face recognition resulting in skewed overall face recognition pipeline performance.

2.3.3 Face Representation

Facial feature representation has been a prominent area of computer vision research for

many decades and several milestones have substantially improved the performance of face

recognition today [23]. The first well-known method for estimating the probability of dis-

tribution over high-dimensional vector space of face images, Eigenface, was introduced in

the early 1990s [189]. Following that, Gabor [190] and LBP [191] provide robust perfor-

mance by using local filtering to obtain invariant facial features. However, they could not

create handcrafted features that were distinctive and compact enough to fully scale to the

diversity of large-scale benchmark datasets (and hence the global populous). Although

numerous learning-based local descriptors have been developed to tackle various aspects

of face recognition [192, 193], higher similarity for intra-class samples and diversity for

inter-class samples within face datasets remain challenging. Subsequently, the availability

of large-scale dataset resources (2007+) and the proliferation of DCNN (2012+) have now

enabled contemporary face recognition architectures to achieve outstanding verification

and identification accuracy. Accordingly, this stage involves a mapping operation from

face images to face representation vectors which can be performed by a DCNN-based

backbone architecture and a loss function, as discussed in Section2.1.

Backbone Architectures

DCNN are multi-layer processing blocks, including convolutional, pooling and fully con-

nected layers. As a central component of DCNN, the convolutional layers extract fea-

tures from the output of the previous layer, starting from the face image input. Each

layer t consists of K kernels with weights W = W1,W2, ...,WK and added bias filters

B = b1, ..., bK . Subsequently, each layer applies an element-wise nonlinear transform

(i.e. σ ∈ {RELU, tanh, Softmax, . . . } functions) to generate multiple feature map rep-

resentations and passes the result to the next layer xt = σ(Wk · xt−1 + bk). Moreover,

at the end of each layer, a pooling function down-samples the feature maps by taking the

maximum or average value of adjacent pixels (patch). Similarly, a fully connected layer

applies a linear transformation to the input vector through a weights matrix.
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A majority of face recognition methods adopt state-of-the-art DCNN as their backbone ar-

chitectures, such as the VGG-Net [194], the ResNet [14], and the Inception-ResNet [195].

VGG-Net [194] uses a smaller fixed number of convolutional filters compared to the

AlexNet [196] to decrease the total number of trained parameters. On the other hand,

ResNet [14] uses skip connections between two consequent layers to avoid the vanishing

gradient problem (unstable training of deep networks due to ever decreasing gradients

relative to the input). Furthermore, InceptionNet [195] consists of multiple kernels in one

layer to grasp salient features at different levels, including global and distributed features.

Baseline Loss Functions

Contemporary, face recognition literature primarily focuses on designing novel DCNN

loss functions [3–6] to enhance the distinctiveness and separability of features. Mostly,

such loss functions [4–6] operate on the feature embedding vectors of the last fully con-

nected layer of the selected backbone DCNN architecture [14]. Previously, we discussed

Softmax loss Lsoftmax (Eqn. 2.1) which is based on maximising the posterior probabil-

ity of the ground-truth subject class in order to separate features from different classes.

However, a high number of subject identities, n, within training sets increases the size

of the linear transformation matrix in the last layer W ∈ Rd×n leading to high complex-

ity. Moreover, the learned feature embedding vectors of Softmax loss are not distinctive

enough to address the open-set face recognition problem [197]. To address these prob-

lems, CosFace [5] enforces a larger cosine margin m between the features of different

classes and suggests that both norm of the vectors contribute to the posterior probability.

Lcosface = − 1

N

N∑
i=1

log
e‖z‖(cos(θyi,i)−m)

e‖z‖(cos(θyi,i)−m) +
∑n

j 6=yi e
‖z‖ cos(θj,i))

where cos(θj, i) = W T
jzi

(2.4)

where N is the number of training samples, xi is the ith feature vector corresponding to

the ground-truth class of yi, the Wj is the weight matrix of the jth class, and θj is the

angle between Wj and zi. Additionally, the bias term is removed b = 0, and the weights

W and embeddings z are normalised using L2 normalisation.
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An alternative loss function, ArcFace [6] differs from CosFace [5] based on its distinct

marginm. ArcFace has a more accurate geodesic distance because it has a constant linear,

angular margin m penalty throughout the interval, while CosFace has a nonlinear angular

margin. Similarly, it normalises the weights and embeddings and fixes the bias term to

zero. The ArcFace loss function is formalised as follows:

Larcface = − 1

N

N∑
i=1

log
e‖z‖(cos(θyi,i+m))

e‖z‖(cos(θyi,i+m)) +
∑n

j 6=yi e
‖z‖(cos(θj,i))

(2.5)

where all definitions are as per Eqn. 2.4. Overall the key Softmax, CosFace [5], and

ArcFace [6] differences lie in their use of deep face representation, weight vectors and

their margin penalty in the last layer. Consequently, the accuracy of the most popular

LFW benchmark has increased from ∼ 60% (Eigenfaces, [189]; 1991) to above ∼ 99%

(ArcFace [6]; 2019) further encouraging the broader adaption of face recognition into

real-world applications.

The central concept of statistical learning is based on the requirement to choose one

generalisation over another in order to be able to classify instances non-arbitrarily beyond

those in the training set [56]. Moreover, [56] defines unbiased generalisation as one which

makes no prior assumptions about which classes of instances are most likely to occur and

bases all its decisions solely on data observation. However, any face recognition system

already has dataset bias, meaning that any type of generalisation or observation based on

such datasets results in bias. On the other hand, [57] identify two more different type

of bias occurs in this face representation stage. The study, first, mentions DCNN hyper-

parameter bias due to the ubiquitous number of hyper-parameters which are spanning

from the choices of number of hidden nodes and layers to type of activation functions

made by the user [198]. The strong influence of such chosen parameters on DCNN and

their performance makes hyper-parameter bias relevant to racial bias as such in the case

of hyper-parameter bias, certain models may perform better on datasets that are biased

towards certain groups leading to potentially perpetuating racial bias. Hyper-parameter

bias can also be related with aggregation bias (causing selected parameters forming the

mapping function is not optimal for specific groups) defined by [199]. Another type of

bias, denoted as uncertainty bias, is based on the probability values that are often com-
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puted together with each produced DCNN architecture. The probability represents un-

certainty, and typically has to be above a set threshold for face detection, verification or

identification to be performed. For example, a DCNN-based face detection model reports

detection predictions via probability values indicating detection confidence. However,

this manual selection of the probability threshold can itself create a bias when the thresh-

old is set too conservatively such that faces from underrepresented groups are be more

likely to not be detected due to higher uncertainty in the model. Up to this point, we have

described the general processes within the face representation stage of a face recognition

architecture (Fig. 2.3) and the various forms of bias that may exacerbate racial bias within

them. Finally, we complete our discussion of facial representation by exploring current

racial bias mitigation strategies and categorise them into three sub-genres:- mutual in-

formation mitigation (Section 2.3.3), loss function based mitigation (Section 2.3.3), and

domain adaptation based mitigation (Section 2.3.3).

Methods Backbone Dataset African Asian Caucasian Indian Avg STD

Imbalanced Training Sets
ArcFace [6] ResNet-34 MegaFace 85.13 86.27 94.78 90.48 89.17 4.39
IMAN-A [11] ResNet-34 MegaFace 91.42 91.15 94.78 94.15 92.88 1.86
ArcFace [6] ResNet-34 VGGFace2 87.30 85.47 93.50 87.55 88.46 3.49
ARL+C [200] ResNet-34 VGGFace2 88.57 87.65 93.48 89.35 89.76 2.57
ArcFace [6] ResNet-50 BUPT-Global 96.28 96.03 98.22 96.77 96.83 0.98
MV-Softmax [201] ResNet-50 BUPT-Global 95.83 95.66 99.33 95.83 96.66 1.78
DebFace-ID [202] ResNet-50 BUPT-Global 93.67 94.33 95.95 94.78 94.68 0.96
CurricularFace [203] ResNet-50 BUPT-Global 94.93 95.18 97.75 96.07 95.98 1.28
RamFace [204] ResNet-50 BUPT-Global 96.73 96.17 98.28 96.77 96.99 0.90
ArcFace [6] ResNet-101 VGGFace2 89.45 87.61 94.71 91.21 90.75 2.91
ArcFace [6] ResNet-101 BUPT-Global 96.77 96.52 98.55 97.48 97.33 0.91
CurricularFace [203] ResNet-101 BUPT-Global 96.30 95.98 97.83 96.70 96.70 0.81
RamFace [204] ResNet-101 BUPT-Global 97.40 96.93 98.65 97.57 97.64 0.73

Balanced Training Sets
Softmax ResNet-34 BUPT-Balanced 91.42 91.23 94.18 92.82 92.41 1.19
CosFace [5] ResNet-34 BUPT-Balanced 92.98 92.98 95.12 93.93 93.75 1.02
ArcFace [6] ResNet-34 BUPT-Balanced 93.98 93.72 96.18 94.67 94.64 1.10
RL-RBN [1] ResNet-34 BUPT-Balanced 95.00 94.82 96.27 94.68 95.19 0.73
RamFace [204] ResNet-34 BUPT-Balanced 95.28 94.83 97.15 96.08 95.84 1.02
GAC-ArcFace [205] ResNet-34 BUPT-Balanced 94.12 94.10 96.02 94.22 94.62 0.94
Fairness FR [206] ResNet-34 BUPT-Balanced 95.95 95.17 96.78 96.38 96.07 0.69
ArcFace [6] ResNet-50 BUPT-Balanced 96.00 95.45 97.57 96.42 96.36 0.90
CurricularFace [203] ResNet-50 BUPT-Balanced 94.90 94.23 96.38 95.50 95.25 0.91
RamFace [204] ResNet-50 BUPT-Balanced 96.25 95.50 97.40 96.58 96.43 0.79
GAC [205] ResNet-50 BUPT-Balanced 94.65 94.93 96.23 95.12 95.23 0.69
Sensitive Loss [207] ResNet-50 BUPT-Balanced 95.82 96.50 97.23 96.95 96.63 0.62
Fairness FR [206] ResNet-50 BUPT-Balanced 96.47 95.75 97.08 96.77 96.52 0.57

Table 2.3: Performance of state-of-the-art face verification methods on the RFW dataset
[11], with comparison based on sample standard deviation.
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Mutual Information Mitigation

The high mutual information between facial identity and underlying racial features within

face images generally transfer into the learned feature embedding of contemporary DCNN

based techniques and hence results in an unsatisfied fairness through unawareness criteria

(i.e. the constraint of not retaining information related to s when estimating y as the the

formalised problem statement of Section 2.1). A myriad of studies [91, 202, 208–213]

attempt to decrease this mutual information in order to debias the performance of face

recognition approaches. For example, [208] provides a general framework with a regu-

larisation strategy such that a model trained on a dataset that is known to be bias a priori

can be trained in to avoid the selection of biased features therein. The information bottle-

neck in the model distills the biased features (such as texture, background) and correctly

learns to focus on relevant features (such as shape, e.g. within biased MNIST [208]).

Moreover, [209] proposes a Flexibly Fair VAE (FFVAE) algorithm concerning demo-

graphic parity among multiple sensitive attributes. FFVAE learns the encoder distribution

from input and sensitive attributes and disentangles prior structure in latent space by en-

forcing low mutual information. On the other hand, adversarial-debiasing approaches

become applicable in disentangling race-related information on faces within generative

generator-discriminator models such as GAN [202, 213]. For example, the Protected At-

tribute Suppression System (PASS) [213] discourages the generator from encoding in-

formation related with sensitive attributes via discriminator. Furthermore, [210] uses a

feature mapping network to unlearn biased sensitive attributes in order to disentangle the

mutual information between identity and sensitive characteristics. Similarly, [91] sup-

press the presence of sensitive information to enforce the learning of privacy-preserving

embeddings (for any sensitive feature we want to protect) and hence equality across such

sensitive attributes in any subsequent decision-making algorithms based on these embed-

dings. Their results show that it is possible to reduce the performance of gender and

ethnicity detection by 60-80% on a given facial image embedding, while face verification

performance over the same embedding is only impacted by 5% .

Other recent works on mitigating racial bias introduce a knowledge distillation mod-

ule for face recognition [214–216]. Accordingly, [215] observes that the face recognition

networks attend to different spatial regions in faces according to the category of an at-
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tribute label (e.g. light skin vs. dark skin tone). Firstly, in order to eliminate differences

in the representations, they propose a teacher-student network that enforces to student

network to generate teacher-like representations. Whilst the teacher network is trained on

light skin tone images, the student network is trained on dark skin tone images. How-

ever, forcing student networks to attend only teacher networks spatial regions does not

give fairer results than attending both spatial regions. As a result, they achieve less biased

results in face verification and perform better than state-of-the-art adversarial debiasing

approaches. Another study, [216] applies knowledge distillation from teacher to student

to avoid dataset bias which is identified as an imbalance distribution between either class

labels or between easy and hard dataset samples. The imbalance between samples de-

creases the uniformity of the data, which subsequently makes the data distribution far

from uniform. As image datasets are usually collected ad-hoc without any inherent uni-

formity consideration, they propose two different sampling methods, extrinsic sampling

(before training) and intrinsic sampling (during training), to ensure the success of knowl-

edge distillation. On the other hand, some experiments empirically demonstrate that the

use of race related facial feature increases overall face classification performance and

improves extracted feature discriminability [217].

Loss Function Based Mitigation

Another area of study [95, 200, 204] focuses on setting adaptive margins to tackle racial

bias. For previous face recognition baselines [5,6], the margin between classes was set at

a fixed value to maximise accuracy. However, the training distributions of demographic

groups and their feature embedding vectors inherently differ from each other meaning that

a global margin is essentially a best fit to the largest demographic group in the training

dataset. While such a constant global margin may result better performance across one

demographic, that same margin may conversely cause inferior performance for another.

Recently, [204] proposes Race Adaptive Margin (RAM) Loss using a new compact

margin instead of using an ArcFace-style fixed margin, m (Eqn. 2.5), approach. Con-

sequently, they define intra-subject compactness µrintra for each racial group, {African,

Asian, Indian, Caucasian}, in the RFW dataset in order to assign the margin to be an

identity-related parameter. As such, the final RAM Loss (denoted ramface loss, [204]) is;
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Lramface = − 1
N
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i=1 log e
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i=1 cos θr
z
yj
i ,cyj

.

(2.6)

where Br is the number of subject identities in the race group, Myj is the number of

the samples with subject class yj , Zr is the race classification accuracy as the weight

indicator in the adaptive margin loss, and β is the scaling parameter to constrain the upper

bound of mr. As per ArcFace loss, Eqn. 2.5, zi is the feature representation of image xi.

Consequently, they benefit from racially-aware supervision to increase the distinctiveness

of the learned feature representations and simultaneously decrease the potential for racial

bias within that same representation. RamFace Loss achieves both high accuracy on face

verification and appears to successfully mitigate racial bias (see Tab. 2.3).

Another study, [200] proposes an Asymmetric Rejection Loss, which aims to reduce

the racial bias within trained face recognition models by taking advantage of unlabelled

images of under-represented groups. The study utilise unlabelled images collected from

online sources where the number of subject identities present is always much greater

than the average images per subject. Subsequently, they consider each unlabelled image

as a separate class and design an asymmetric learning procedure for those labelled and

unlabelled images. Their proposed Asymmetric Rejection Loss (denoted arl) is defined

as:

Larl = LL + λULU + λCLC where LC =
∑
i,j cos(zi,zj)

2

Nt
, 0 < cos(zi, zj) < t

(2.7)

where t is the upper bound of the penalty interval, and Nt is the number of feature repre-

sentation vectors pairs whose cosine similarity lies within the interval (0, t). LL and LU

are similar to ArcFace loss equation 2.5 operating on labelled and unlabelled images re-

spectively. Simultaneously, λU and λC are two loss weights. Asymmetric Rejection Loss

achieves improved performance on under-represented demographic groups whilst perfor-
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mance on well-represented groups remains unaffected when compared to other state-of-

the-art approaches (Tab. 2.3).

Domain Adaptation Based Mitigation

Following from the discussion of Section 2.3.1 on the out-of-distribution problem, domain

adaptation techniques have recently been introduced as a method to address racial bias is-

sues [11,218–221]. These techniques use multiple labelled source domains with different

distributions to improve generalisation to new target datasets. One of the first examples

of domain adaptation for racial bias, [11] prove the domain gap between racial groupings

and propose a deep information maximisation adaptation network (IMAN) architecture

to address this. Subsequently, [219] propose a novel face recognition methodology via

the use of meta-learning named Meta Face Recognition (MFR). The meta-optimisation

objective of MFR first synthesises the source/target domain. Subsequently, it forces the

model to learn effective representations of both synthesised source and target domains. In

another example in face recognition, [220] introduces Cross-Domain Triplet (CDT) loss

based on the triplet loss [195] and uses similarity metrics from one domain to learn com-

pact feature clusters of identities by incorporating them into another domain. Relative

performance for both CDT and MFR on the RFW dataset are shown in Table 2.3.

This section presents a brief overview of face representation learning, including the po-

tential sources of biases and mitigation studies within this stage of the face recognition

processing pipeline (Fig. 2.3). In support of this review of prior work on racial bias

mitigation a summary table of related work is provided to compare overall relative per-

formance on the RFW dataset [11] (Table 2.3).

2.3.4 Face Verification and Identification

The overarching concept of face recognition, whereby an identity confirmation decision is

made for a given subject based on facial images, can itself be subdivided into two discrete

problems:- Face Verification (i.e. one-to-one facial comparison, Section 2.3.4) and Face

Identification (i.e. one-to-many facial comparison, Section 2.3.4).
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Face Verification

Face Verification refers to one-to-one facial comparison to verify the identity of a subject

by comparing a hitherto unseen facial image against another a priori image of the same

or different subject. This is commonly used in access control systems for both physical

locations (e.g. government sites, border control) and digital assets (e.g. smart phones,

digital banking applications) hence representing the most common occurrence of a face

recognition technology encountered by the general public in contemporary society. Typ-

ically, face verification performance is measured in terms of accuracy (see Eqn. 2.2) and

matching rates (see Eqn. 2.3) over pairs of identical/non-identical subject images in order

to evaluate the number of correct identities matches over all the set of all paired images

presented. In order to confirm a match, the feature embedding vector ztarget from a pre-

sented unseen subject image instance xtarget, and those of a subject image xreference held

on record a priori, zreference, are compared using a distance or similarity score across

the learnt feature embedding space (e.g. cosine similarity). Subsequently, an a priori

threshold is used to make a decision on the similarity of ztarget ≈ zreference such that a

verified identity can be confirmed or not. Several studies demonstrate significant perfor-

mance on face verification on public benchmark datasets [15,85] where the racial diversity

within these datasets is often limited, biased and overlooked [222]. Accordingly, the La-

belled Faces in-the-wild Dataset (LFW) [15] contains 13233 images of 1680 subjects,

and 6000 specific pairs of images of subjects to measure 1:1 verification performance

have become widely adopted. Subsequently, prior work [5, 6] has reached over 99.5 %

verification accuracy on LFW.

Face Identification

Face identification refers to a one-to-many facial comparison to identify an unknown fa-

cial query image by matching it to against a set of known facial images. Prototypically,

law enforcement agencies use it to identify suspects in criminal investigations, track indi-

viduals in public spaces and search for missing persons. The process involves comparing

an obtained query face image xtarget with a large database of reference imagesXenrolment.

Unlike face verification, which is used to verify the identity of a known individual, face

identification is used to identify unknown individuals by matching their facial image to a
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reference image within the enrolment set for which the identity is known a priori. Face

identification tasks can be sub-categorised as either closed-set, when the target is always

in the enrolment set (xtarget ∈ Xenrolment), or open-set, when the target may or may not be

in the enrolment set (xtarget ∈ Xenrolment or xtarget 6∈ Xenrolment). Whilst the closed-set

face identification task is limited to identifying only the subjects in its enrolment set, the

more challenging task of open-set face identification is able to determine unknown faces

that are not in the enrolment set. In order to perform a closed-set face identification task,

a multi-class classifier is used to identify the target image xtarget via the use of feature

embedding vector ztarget over Zenrolment. Furthermore, for an open-set face identification

task an additional threshold becomes necessary in order to ascertain an unknown target

that is not present in the enrolment set. As for face identification, [92] provides two

large-scale face identification benchmark datasets under various imaging conditions.

Furthermore, [199] defines evaluation bias when the benchmark dataset used to post-

training performance evaluation is not accurately representative of the target population

(in deployment). The most common face recognition benchmark datasets [15, 223] il-

lustrate examples of such evaluation bias, encouraging the development of models that

only perform well on the specific racial groupings as the per distribution of the dataset

(see Section 2.3.1). Evaluation bias is also related to the decisions made at this stage

of the face recognition pipeline, including pairing selection, threshold optimisation, dis-

tance and normalisation functions. For example, the selected threshold can vary across

datasets, and final model performance is often susceptible to the changes in these thresh-

olds [224]. Studies have found that a single fixed threshold often causes higher variance

across demographic groups than an adaptive threshold per-group threshold [224]. An-

other example, [225], investigates template-based face verification and identification and

the effects of template size, negative set construction and classifier fusion on performance.

They find that performance is highly dependent on the number of images available in a

template. Subsequently, [105] compares the accuracy for African-Americans and Cau-

casians, in a scenario in which a fixed decision threshold is used for all subjects only to

find that African-Americans have a higher FMR and Caucasians have a higher FNMR.

Accordingly, many studies provide verification protocols and a new set of pairings

based on racial groupings to address racial bias. For example, the study of [11] released
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the RFW dataset with a similar protocol to LFW [15] with the same number (6000) of

pairings for each of the four racial groups {African, Asian, Caucasian, Indian} with sep-

arate thresholds. Moreover, [226] proposes the Adversarial Gender De-biasing algorithm

(AGENDA) to train a shallow network that removes the gender information of the em-

beddings extracted from a pre-trained network. The authors of [213] extend this work

with PASS to deal with any sensitive attribute and proposed a novel discriminator train-

ing strategy. Subsequently, [227] (2020a) proposed the Fair Template Comparison (FTC)

method, which replaces the computation of the cosine similarity score by an additional

shallow neural network trained using cross-entropy loss, with a fairness penalisation and

L2 penalty term to prevent over-fitting. While this method reduces model bias, it results

in an overall decrease in accuracy and requires training and tuning of the shallow neural

network. Another work, [80], proposes a group-specific threshold (GST) in which the

sensitive attributes themselves define its calibration sets. Another study, [228] proposes

the Fair Score Normalisation (FSN) method, which is essentially GST with unsupervised

clusters. FSN normalises the scores by requiring the model FMR across unsupervised

clusters to be the same predefined global FMR. Salvador, [229] proposes a Fairness Cal-

ibration (FairCal) method that applies the K-means algorithm to the image feature rep-

resentation vectors Z and makes partitions of the embedding space into K clusters. For

each set, it calculates separate calibration map scores to cluster-conditional probabilities

of the set. If the pair of images belong to the same subject cluster, the algorithm uses the

score; if not, it uses the weighted average of the calibrated scores in each cluster of cor-

responding image features. Consequently, they achieve better overall accuracy, reducing

the discrepancy in the FMRs while not requiring the use of the sensitive attribute.

Similar to face verification, open-set face identification requires a threshold to report a

match or non-matched decision over test target imagery. Accordingly, [105], highlight the

importance of two types of errors in face identification false-non-matched identification

and false-matched identification together with their dependency on a threshold that defines

the minimum similarity required to report a match. Consequently, there is a need for

the design and application of open-set tests for face identification using more diverse

benchmark datasets and novel evaluation strategies to measure racial bias robustly under

varying conditions.
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Designing an ideal evaluation strategy is yet another crucial step in the face recog-

nition processing pipeline. This step becomes particularly important in order to address

racial bias within face recognition, as every decision made at this stage can have a sig-

nificant impact on the overall performance and performance across different groups. In

each decision, whether related to verification or identification tasks, there is a risk of mis-

guiding the direction of research, particularly with regards to the development of face

representation models, which can result in increased racial bias. Accordingly, we sum-

marise the related literature addressing alternative evaluation methods within this stage

and illustrate the corresponding stage and source of bias in Fig 2.3.

2.4 Summary

This chapter provides a comprehensive critical review of research on racial bias within

face recognition. Firstly, we discuss the racial bias problem definition formalising the

notions of the face recognition evaluation process and elucidate the prominent fairness

criteria associated with face recognition. Subsequently, we highlight the racial group-

ing requirement of current fairness criteria and discuss standard race and race-related

grouping terminology under three categories; race, skin tone and facial phenotypes and

compare the most prominent grouping strategies across face recognition datasets. The

high reliance of prior work on racial categories brings additional challenges as the race

concept is defined and understood via the influence of pre-existing prejudices and dis-

criminatory beliefs. Furthermore, skin tone remains only one trait of a comprehensive

and multi-faceted race concept. Although a broader facial phenotype approach provides a

more objective and granular evaluation strategy, ensuring that racial interpretations are not

reduced to only facial phenotypes whilst also considering the broader context of historical

and social factors, they remain important and under-explored research topics within the

broader goal of achieving more accurate and fairer face recognition performance across

increasingly more diverse populations.

Furthermore, we explore the contemporary automated facial recognition multiple-

stage processing pipeline providing references to related work in the literature. In each

stage, we cover the outline with a related baseline, standard procedures, a potential source
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of bias that can exacerbate racial bias and bias mitigation solutions. Firstly, the Image ac-

quisition stage consists of sources of bias (imagery bias, dataset bias) that can affect the

accuracy and fairness of face recognition systems. Such sources of bias within this initial

stage will be transferred into the following stages and amplify racial bias in the final per-

formance. Secondly, we consider the face localisation stage in terms of racial bias, where

there is little attention indicating the existence of racially disparate performance, but fur-

ther investigation is explicitly needed targeting racial bias within face detection itself.

Thirdly, we review the most fundamental works spanning the central stage of the face

recognition pipeline, face representation, under three sub-genres:- mutual information

mitigation, loss function-based mitigation, and domain adaptation-based mitigation, pro-

viding an extensive supporting performance comparison across the RFW dataset. Finally,

we investigate the final decision-making of the face recognition pipeline, face verification

and identification and reveal the impact of decision-making within this stage on overall

and group-wise face recognition performance.

Overall we observe that racial bias is present at each and every technical stage of the

face recognition pipeline such that the cumulative effect remains under-explored mainly

in the literature. Furthermore, we observe continued bias within the evaluation strategies

employed to measure the presence of this bias themselves that directly contradict the

technological needs of a modern, diverse global society.

Building upon these themes, this thesis addresses racial bias and the underlying reasons

behind the performance disparities observed among different racial groups within the face

recognition processing pipeline. In the next chapter, we introduce a novel methodology

for evaluating racial bias using race-related facial phenotypes, eliminating the need for

explicit racial grouping labels.
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CHAPTER 3

Phenotype-based Racial Bias Analysis Methodology

As discussed in Chapter 2, recent work reports disparate performance for intersectional

racial groups across face recognition tasks: face verification and identification. However,

the definition of those racial groups has a significant impact on the underlying findings

of such racial bias analysis. Previous studies define these groups based on either demo-

graphic information (e.g. African, Asian etc.) or skin tone (e.g. lighter or darker skins).

The use of such sensitive or broad group definitions has disadvantages for bias investiga-

tion and subsequent counter-bias solutions design.

By contrast, this chapter introduces an alternative racial bias analysis methodology via

facial phenotype attributes for face recognition. Subsequently, we use the set of observ-

able characteristics of an individual face where a race-related facial phenotype is hence

specific to the face and correlated to the racial profile of the subject. Finally, we propose

categorical test cases to investigate the individual influence of those attributes on bias

within face recognition tasks. We compare our phenotype-based grouping methodology

with previous grouping strategies and show that phenotype-based groupings uncover hid-

den bias without reliance upon any potentially protected attributes or ill-defined grouping

strategies. Furthermore, we contribute corresponding phenotype attribute category labels

for two dataset: RFW (face verification) and VGGFace2 (test set) (face identification).
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The material presented in this chapter of the thesis has been published in the follow-

ing peer-reviewed publication:

Seyma Yucer, Furkan Tektas, Noura Al Moubayed, and Toby P. Breckon., Measuring Hid-

den Bias within Face Recognition via Racial Phenotypes., IEEE/CVF Winter Conference

on Applications of Computer Vision, WACV, pp. 995-1004 2022.

3.1 Introduction

An increasing number of automated face recognition systems have been deployed by

companies, nonprofits and governments to make autonomous decisions for millions of

users [24]. Such wide-scale adoption within real-world scenarios brings with it valid

concerns on the potential abuse of face recognition due to the presence of data and al-

gorithmic bias [28, 29]. The most common issue pertaining to such bias arises in racial

groups [30]. Subsequently, the research community have been focused on methods that

rely on demographic or skin tone group annotations drawn from public face recognition

benchmark datasets [3, 86]. This provides algorithmic performance on such predefined

groupings to measure bias. However, current grouping annotations and related bias evalu-

ation strategies may lead to unintended negative implications (as it is discussed in Chapter

2). In parallel, this chapter proposes a phenotype-based evaluation strategy for racial bias

within face recognition. We now briefly illustrate our motivation in four key points.

Ambiguous Definition of Race: The historical and biological definitions of race vary and

racial context is not fixed over time [230]. Such ambiguity becomes more problematic for

the face recognition literature, as many researchers do not provide any related background

about the details of their racial categorisation design process [72]. However, racial group-

ings are critical to the effective evolution of face recognition methodologies as they often

represent the all-important means of quantitative evaluation. As in any recognition task,

poorly defined groupings result in skewed mean and standard deviation measures of rela-

tive performance due to the ill-posed boundary conditions on membership of each group

that can cause a given an example to justifiably transit from one group to another.

Privacy of Protected Attributes: Auditing benchmark datasets can cause potential pri-
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vacy and consent violations [73] for dataset subjects. For example, exposing demographic

origin may enhance the representations of a group under threat, leading to the potential

for racial profiling and associated targeting [69]. As information of racial or ethnic origin

is sensitive [103], researchers should either avoid revealing such sensitive data or provide

an appropriate context for use [73].

Confined Groupings: Skin or racial grouping strategies such as binary {light vs. dark;

black vs. white} for evaluating racial bias limits the scope of any study as they fail to

capture the whole aspect of the bias problem where it needs to consider both multi-racial

or less stereotypical members of such groups instead [39, 70] use Fitzpatrick skin tone

groupings to evaluate racial bias, but one such skin-tone based racial grouping contains

multidimensional traits including nose, hair type, eye, and lips [231]. Leveraging all such

traits together instead brings improved interpretations and derivations to address racial

bias.

Racial Appearance Bias: Maddox [136] explains racial appearance bias as a negative

disposition toward phenotypic variations in facial appearance. He also [104] discusses

how race-conscious social policies may fail to address racial biases in the treatment and

outcomes of disadvantaged groups. Many studies show that individuals with more stereo-

typical racial appearance suffer poorer outcomes than those with less stereotypical ap-

pearance for their race [104, 137, 138]. On the other hand, a better understanding of the

role of phenotypic variation complements solutions for both racial bias [136]. By way

of phenotype, we mean the set of observable characteristics of an individual face where

a race-related facial phenotype is hence specific to the human face and correlated to the

racial profile of the subject.

Accordingly, we propose using race-related facial (phenotype) characteristics within

face recognition to investigate racial bias. We categorise representative racial character-

istics on the face and explore the impact of each characteristic phenotype attribute: skin

tones, eyelid type, nose shape, lips shape, hair colour and hair type. We audit these at-

tributes for two different publicly available face datasets: VGGFace2 (test set) and RFW.

We assess the impact of both attribute-based and subgroup-based evaluations on racial

bias of face recognition tasks. We utilise two different training protocols for face ver-

ification to compare performance disparities between imbalance and racially balanced
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training datasets. We compare our phenotype-based evaluation strategy with race or skin

tone based grouping evaluation. We show that our strategy provides a more elaborate

perception of bias without revealing any potentially protected or ill-defined information.

This chapter presents a new evaluation strategy using facial phenotype attributes to inves-

tigate and measure racial bias with greater granularity within face recognition tasks.

Our key contributions are as follows:

• We propose a new evaluation strategy that uses facial phenotype attributes rather than

race labels to measure racial bias within both attribute-based and subgroup-based per-

formance of state-of-the-art face recognition algorithms.

• We contribute additional facial phenotype attribute labelling for the VGGFace2 (face

identification) and RFW (face verification) benchmark face datasets.

• We uncover the potentially hidden source of bias within the evaluation of racial groups,

which is supported by quantitative evidence.

3.2 Racial Phenotypes on Face Images

Quine [75] presents three possible definitions of the race concept: a genetic variation be-

tween humans, morphological attributes, and genetically determined psychological char-

acteristics. These morphological attributes are the primary interest for resolving racial

bias in face recognition. For morphological attributes, studies [130, 131] focus on the

impact of human phenotype characteristics over race estimation. They categorise the at-

tributes by considering biological traits. The study of Shades of Race [12] investigates

the marginal effects of phenotypic characteristics including skin tone, lips, nose, hair and

body type on racial categorisation. Zhuang [132] considers 21 anthropometric measure-

ments such as face width, length, nose breadth and length, eye corner points. He finds sta-

tistically significant differences in facial measurements between four racial/ethnic groups,

which are {Caucasian, Hispanic, African, other (mainly Asian)} as discussed in Section

2.2.

We adopt such groupings and measurements for face recognition by considering two

limitations. Firstly, effectively evaluating face recognition tasks requires tight cropped

(e.g. 112 × 112 px) low-quality images containing occlusion, shadows, and illumination
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variations for both the training and test stages. This makes phenotype attribute detection

on the specific characteristics of face dataset images more difficult when compared to

real-world human faces. Secondly, the broader categorisation increases the number of

potential groupings, making bias evaluation inefficient for face recognition systems. Cor-

respondingly, we decide to use 6 primary attributes that define the phenotype groupings

for our methodology: skin tone, eyelid type, nose shape, lip shape, hair type and hair

colour1. Subsequently, we have 21 different attribute categories under the 6 primary at-

tributes as listed in Table 3.1.

Skin Tone: In chapter 2, we highlight that the use of simplistic binary groupings can

lead to erroneous or conflicting interpretations for racial bias. To address this issue, we

adopt Fitzpatrick Skin Tones for the proposed race-related phenotype grouping strategy

as a more robust alternative skin tone scale. Fitzpatrick Skin Tone Scale [110] provides

six different skin tone categories including {Type 1, Type 2, Type 3, Type 4, Type 5, Type

6}.
Eye Shape: The appearance of the human eye has been grouped by its position, shape

and settings in many cosmetic industry guidelines [232]. However, they have either no

scientific background or solid relation with race. Instead, we look into epicanthal folds

and check eyelid difference as it is a more distinctive attribute for racial bias [233]. We

categorise eye shapes into two categories: {Monolid, Other}, based on whether or not

an individual has a monolid. We acknowledge that a single attribute category can be ob-

served in multiple race groups (i.e. individuals of non-East Asian ancestry can also have

monolid eye shapes.). However, our main concern is identifying the most observable and

convenient race-related phenotype attributes on images to evaluate the bias (see Table

3.1).

Nose Shape: Nasal breadth refers to the distance between the two nasal bones at the

widest point of the nose, usually measured at the base of the nasal bridge. It has been

used as an important anthropometric measurement [132]. Although, there is a relation-

ship between nasal breadth and race, nasal breadth can vary significantly among different

racial and ethnic groups. Nevertheless, studies have shown that individuals of African

1We note that hair information is still present in the tightly cropped images, and it may be helpful for
future automated facial analyses tasks.
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and some Southeast Asian ancestry tend to have wider nasal breadths on average than

individuals of European ancestry [12]. Accordingly, for the appearance of the nose, we

use two categories, {Wide and Narrow}, by examining the nasal breadth [132].

Lip Shape: Studies provide evidence that individuals of African ancestry and indigenous

American ancestry tended to have thicker lips compared to individuals of European and

East Asian ancestry [234]. To capture this phenotypic variation in lip shape, we include

the lip shape attribute with two distinct categories: {Full and Small}.
Hair Type and Colour: Hair texture is labelled into eight categories using the frequency

of twists, waves, and curve diameter metric by [235]. However, we need to narrow cat-

egorisation to make annotation possible for attribute categorisation on low-quality im-

ages. Here we utilise eight categories and group them into three main hair texture types:

{Straight, Wavy, Curly, Bald}. Despite being the most artificially manipulable attribute,

we retain hair colour as it is related to skin tone [236] the categories for hair colour we

use: {Red, Grey, Black, Blonde, Brown} (see Table 3.1).

Phenotype Attributes Categories RFW VGGFace2

Skin Tone Type 1 / 2 / 3 / 4 / 5 / 6 0.71 1.14
Eyelid Type Monolid / Other 0.80 1.09
Nose Shape Wide / Narrow 0.24 0.18
Lip Shape Full / Small 0.28 0.63
Hair Type Straight / Wavy / Curly / Bald 0.70 1.11
Hair Colour Red / Blonde / Brown / Black / Grey 1.23 0.67

Table 3.1: Facial phenotype attributes and their categorisation based on [12] along with
normalised standard deviations σ/µ.

Finally, we present a collection of example images demonstrating the race-related pheno-

type attributes and their corresponding categories in Figure 3.1.

3.3 Annotation of Racial Phenotypes

In order to obtain race-related facial phenotype attribute category labels, we require a

platform that enables annotating facial images from datasets. Although we have made at-

tempts to use 3rd party annotation platforms and companies, a lack of prior knowledge in

the random annotators results in erroneous annotations. Accordingly, we built a platform,
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Figure 3.1: A collection of example images illustrating the race-related phenotype at-
tributes and their corresponding categories.

which is explained in detail in this section, to address this issue.

3.3.1 Annotation Platform

We build a web-based annotation tool platform, Face Dataset Annotator (FDA), that en-

ables annotators to audit multiple facial phenotype attributes on face images from multiple

datasets. The tool is designed to be easy to use via touch screen devices such as tablets

as well as desktop computers. FDA supports simultaneous annotation by multiple ex-

perts, with revision support for both dataset images and annotations. Each image can be

annotated by multiple experts, and annotations can be exported with their timestamped

metadata.
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The platform includes a login page for annotators to securely access the platform.

Once logged in, annotators can view and annotate images from various datasets. More-

over, within the platform, guidance pages are provided for each phenotype attribute to help

annotators identify and classify the attributes accurately. These guidance pages shows ex-

amples and explanations for each phenotype attribute, ensuring that annotators have a

clear understanding of what they are annotating. This helps to ensure consistency in the

annotation process and improves the accuracy of the resulting annotations. We provide an

illustrative set of exemplar screenshots from the user interface of the annotation platform

showing datasets screen, annotation screen and annotation guidance screen (Figure 3.2).

Datasets screen for annotations. List of samples within the selected dataset.

Annotation screen for a sample. Annotation guidance screen for skin tone.

Figure 3.2: Exemplary screens from Face Annotation Platform.

3.3.2 Annotation Process

Previously in Section 3.2, we explain how we define racial phenotype attributes and their

categories. Before the annotation process, we choose the most established face recog-

nition datasets to validate our proposed methodology. For the face verification task, we

choose the RFW dataset [11] as it provides a relatively broader racial distribution of sub-

jects where each subject contains 3-5 images. For face identification, we use the VG-

GFace2 closed-test set [3], which contains at least 300 images per subject. For both
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Figure 3.3: The distribution of facial phenotype attributes of RFW (left) and VGGFace2
Test (right) datasets.

datasets, we design an annotation interface to make the annotation process both user-

friendly and robust. Each subject is presented with attribute category selectors next to a

set of face images within the annotation interface. Subsequently, an experienced annota-

tor who has experience in morphological differences among races annotates each subject

using the interface.

We obtain 11654 subjects annotations from the RFW and VGGFace2 benchmark

datasets. Each annotation took 10-20 seconds, and overall annotation took 12 days (i.e.

annotator working at a maximum of 6 hours per day with regular breaks). The result

of this annotation process, the phenotype attributes distributions for the RFW and VG-

GFace2 benchmark datasets, are shown in Figure 3.3 left/right, respectively. We also

present the normalised standard deviations (Coefficient of Variance), σ/µ, among at-

tribute categories of benchmark datasets to show the level of imbalance within these

categories in Table 3.1. For both datasets, we can observe that the dominant phenotype at-

tribute categories are skin tone 3, Straight Hair, Narrow Nose, Other (non-monolid) Eyes,

Small Lips, which correlates to the dominant presence of Caucasian faces based on the

analysis of Figure 3.3.
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3.4 Results and Discussion

In this section, we analyse the performance of our phenotype-based grouping methodol-

ogy for face recognition tasks. We provide a public reference implementation, dataset

reference links and pre-trained models 2.

3.4.1 Training Protocols

Protocol 1 (Imbalanced Training Data): We train ArcFace [6] with a ResNet100 [14] on

the VGGFace2 benchmark datasets that contains 8631 subjects where subject distribution

is racially imbalanced. Here, our specific choice of VGGFace2 is due to investigate the

impact of imbalanced training data that includes data bias on our proposed evaluation

strategy.

Protocol 2 (Racially Balanced Training Data): We use a ResNet34 [14] backbone ar-

chitecture with the Softmax loss [4] trained on the BUPT-Balanced benchmark dataset [1]

that contains 28000 face subjects. The BUPT-Balanced has racially balanced distributions

among four groups {African, Asian, Indian, Caucasian} with 7000 face subjects each.

The primary purpose of protocol 2 is to assess the impact of a racially balanced train-

ing dataset on results over the bias using our proposed phenotype-based methodology.

We compare how much a racially balanced training dataset improved the performance

difference compared to protocol 1.

3.4.2 Face Verification

Face verification, also known as one-to-one verification, is the task of comparing two

different facial images to estimate whether they belong to the same individual subject.

We follow two pairing strategies to explore the impact of single attribute (attribute-based)

and appearance-based facial groupings (subgroup-based) on the evaluation performance

of face verification.
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Attribute Name Protocol 1
Accuracy %

Protocol 2
Accuracy %

Blonde Hair 97.02 96.63
Red Hair* 96.33 96.83
Type 2 96.22 95.83
Gray Hair 94.85 95.83
Bald 94.75 95.70
Wavy Hair 94.32 95.50
Brown Hair 94.25 94.83
Type 6 93.77 94.77
Narrow Nose 92.92 94.77
Type 5 92.15 94.38
Curly Hair 92.02 93.63
Small Lips 91.92 94.98
Type 3 91.72 93.77
Type 1* 91.31 89.51
Straight Hair 91.25 94.32
Wide Nose 90.68 91.02
Full Lips 89.98 93.23
Type 4 89.90 93.55
Other Eye 89.88 93.75
Black Hair 89.88 91.42
Monolid Eye 88.27 89.73

σ 2.44 2.06
σ∗ 2.39 1.77

Table 3.2: Attribute-based face verification performance of RFW. σ represents the stan-
dard deviation of all attribute category accuracies, whilst including red hair and type 1, σ∗

represents the standard deviation excluding these specific attribute cases.

Attribute-based Face Verification

Firstly, we generate pairs from images containing the same attribute category,for example

of facial images from people who all have monolid eyes. Consequently, we compare

individual attributes performance using both training protocols for face verification.

For attribute-based face verification, we randomly select 20k positive and 20k negative

pairs from all possible pairs of each attribute. We calculate the cosine similarity of feature

encoding of all selected negative and positive pairs to obtain the most challenging pairs.

Subsequently, we select the most similar 3000 pairs from the negative samples and the

2https://github.com/seymayucer/FacialPhenotypes
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least similar 3000 pairs from the positive samples for each attribute category in Table 3.2.

Due to the low statistical occurrences of the Type 1 skin tone and red hair colour such

that we do not have enough samples to generate 6000 pairs, we instead produce 602 pairs

(301 positive, 301 negative) for Type 1, 1200 (600 positives, 600 negative) pairs for red

hair.

In this way, we measure each face attributes accuracy using on face verification perfor-

mance. We use both training protocols to show how much standard deviation (σ) changes

between balanced and imbalanced training data. We present the performance variation

across the attribute-based sample groups in Table 3.2 as a standard deviation of accuracy

both excluding the low sample occurrence attributes of red hair and Type 1 attribute accu-

racy both (σ∗) and including them (σ) . It is clear from Table 3.2 that for both protocol

1 (imbalanced training data) and protocol 2 (racially balanced training data), accuracy is

lower for monolid eyes, black hair, full lips, and wide nose than the other eye, blonde hair,

and small lips, and narrow nose respectively. We also do find a slight correlation between

darker skin tones and higher false matching rates when we pair from the same attribute

categories (Table 3.3). Moreover, although the imbalanced training protocol results a

bigger performance difference ( σ) , the amount of difference between two protocols is

small, meaning that a racially balanced dataset distribution is not sufficient to overcome

performance bias.

Additionally, NIST [30] suggests providing false matching rates of pairing combi-

nations between each grouping in the dataset as it is necessary for real-world scenarios.

Therefore, we pair each attribute category with all other attribute categories to assess

cross-attribute pairing performance. Subsequently, we evaluate false matching rates be-

tween any attribute category pair combination in Figure 3.4. We randomly generate 10000

pairs for each category pairings; in total, we have 441 (21 × 21) pairings. For example,

each cross-attribute pairings means 10000 pairs between blonde hair - monolid eye, type

3 - wide nose or wavy hair - full lips etc. As a result of this, we clearly show that Type

5, Type 6 and monolid eyes pairings have higher false matching rates among all attribute

categories in Figure 3.4 using training protocol 1. Consequently, the impact of the dark

skin tones on performance increases for cross-attribute pairings compared to the attribute-

based pairings.
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Protocol 1 Protocol 2

Attribute Name F1 FNMR FMR F1 FNMR FMR

Blonde Hair 96.85 1.40 3.83 96.04 2.53 3.13
Red Hair 96.60 2.83 4.00 96.48 2.83 2.83
Type 2 95.98 3.10 3.90 95.25 3.77 3.90
Bald 95.32 5.00 5.37 95.44 3.23 4.97
Gray Hair 95.00 3.70 5.87 95.93 2.53 5.13
Brown Hair 94.46 6.40 4.63 94.08 5.43 4.43
Type 6 94.42 4.10 7.30 95.01 5.53 4.67
Wavy Hair 93.96 3.27 7.53 95.42 4.97 3.77
Narrow Nose 93.05 6.77 7.20 94.29 4.40 5.87
Type 5 92.72 4.07 10.33 94.45 5.63 5.47
Curly Hair 92.51 5.47 9.67 93.58 6.87 5.70
Small Lips 92.36 5.80 8.37 94.29 5.03 4.70
Type 1 92.08 5.99 6.45 90.14 6.67 9.41
Type 3 91.80 8.63 7.73 93.59 5.93 6.13
Straight Hair 91.19 9.17 6.87 93.97 4.30 6.53
Other Eye 91.16 7.23 7.27 93.76 7.43 4.47
Wide Nose 90.99 7.23 7.43 89.78 7.10 5.27
Full Lips 90.73 6.60 10.17 93.43 7.13 5.77
Type 4 90.45 8.30 8.53 93.50 5.70 6.93
Black Hair 90.12 7.77 8.73 90.50 6.83 5.83
Monolid Eye 88.84 9.53 13.03 90.62 8.47 6.93

Table 3.3: Attribute-based face verification F1, FNMR, FMR scores of RFW dataset on
both training protocols.

Furthermore, we present attribute-based face verification scores including False Non-

Match Rate (FNMR), False match rate (FMR) and F1 score in the Table 3.3. We use the

same pairings and protocol presented in the Section 3.4.2 for Table 3.2 [15]. Whilst F1

scores are correlated with Table 3.2 accuracies, for the imbalanced training protocol 1, the

false matching ratio is higher on attributes like Monolid Eye, Type 6/5/4/3, Wide Nose,

Full Lips than the different categories under the same attribute. Moreover, we observe

that the balanced training protocol 2 improves the FMR while increasing the FNMR for

the attribute categories with higher accuracies and F1 scores.

Subgroup-based Face Verification

Secondly, we create various subgroups with different phenotypic attribute combinations

in the dataset. For example, one such subgroup consists of subjects with skin tone 3,
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Figure 3.4: False matching rates (FMR) of cross-attribute based pairings for 21 attribute
categories using training protocol 1. Each cell depicts FMR on a logarithmic scale which
is log10(FMR) with lower negative values (close to zero) encoding superior false match
rates.

monolid eyes, straight hair, wide nose, and small lips. Our main purpose of such pairing

is to show the effects of single attribute changes over a given grouping. For instance, what

would change when only skin gets darker, but other attributes remain the same?

Furthermore, we generate all possible subgroups with different phenotypic attribute

category combinations to investigate subgroup-based performances. However, we need

to limit the number of subgroups such that we can present our results efficiently. We first

remove the hair colour attribute as it is the easiest race-relevant attribute that individuals

can readily modify via styling. Consequently, we merge skin tones into three groups and
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{1, 2} Small Other Narrow Straight 3.82 96.53 {3, 4} Full Monolid Wide Straight 1.55 91.63
{3, 4} Small Other Narrow Straight 7.43 96.45 {1, 2} Small Other Narrow Bald 0.28 91.29
{3, 4} Small Other Narrow Wavy 3.67 96.11 {5, 6} Full Other Narrow Curly 1.97 91.23
{1, 2} Small Other Wide Straight 3.03 95.63 {3, 4} Small Other Wide Bald 1.68 91.01
{1, 2} Small Other Narrow Wavy 1.64 95.62 {1, 2} Full Other Narrow Wavy 0.27 90.74
{1, 2} Full Other Narrow Straight 0.70 95.59 {3, 4} Small Monolid Wide Wavy 0.96 90.17
{3, 4} Full Other Narrow Straight 3.59 95.28 {1, 2} Small Other Wide Bald 0.46 89.78
{3, 4} Full Other Wide Straight 4.47 94.98 {5, 6} Small Other Narrow Curly 0.81 89.50
{3, 4} Small Other Wide Wavy 2.95 94.92 {3, 4} Small Monolid Narrow Wavy 1.20 89.35
{3, 4} Small Other Wide Straight 8.83 94.92 {5, 6} Full Other Wide Curly 13.09 89.18
{1, 2} Full Other Wide Straight 0.33 94.87 {3, 4} Full Other Wide Bald 0.80 86.02
{1, 2} Small Other Wide Wavy 0.72 94.56 {5, 6} Small Other Wide Bald 0.99 85.90
{3, 4} Small Other Wide Curly 0.51 93.89 {3, 4} Full Other Wide Curly 0.46 85.38
{3, 4} Full Other Wide Wavy 1.90 93.41 {3, 4} Small Monolid Narrow Bald 0.32 84.10
{3, 4} Full Other Narrrow Wavy 1.94 93.10 {5, 6} Small Other Narrow Bald 0.30 82.81
{3, 4} Small Other Narrow Bald 0.68 92.50 {3, 4} Small Monolid Wide Bald 0.52 82.67
{3, 4} Small Other Narrow Curly 0.31 92.45 {3, 4} Full Monolid Narrow Wavy 0.43 82.04
{5, 6} Small Other Wide Curly 2.81 92.23 {5, 6} Full Other Narrow Bald 0.53 81.24
{3, 4} Small Monolid Wide Straight 6.59 91.93 {1, 2} Small Monolid Narrow Straight 0.47 81.04
{3, 4} Full Monolid Narrow Straight 1.81 91.78 {3, 4} Full Monolid Wide Wavy 0.27 79.47
{5, 6} Full Other Wide Bald 3.62 91.74 {5, 6} Full Other Wide Wavy 0.32 78.94
{3, 4} Small Monolid Narrow Straight 7.95 91.70

σ 5.07

Table 3.4: Subgroup-based face verification performance of RFW using training protocol
1, sorted by descending order of accuracy.

show them as {1,2} for Type 1 and Type 2, {3,4} for Type 3 and Type 4, and {5,6} for

Type 5 and Type 6. Lastly, we remove subgroups with a few or even no samples in the test

set, which comprises 3% of all samples. In Table 3.4, we show the performance of each

subgroup with its proportion in the original test dataset. To evaluate the performance, we

generate 6000 pairs (3k positive and 3k negative) from all possible pairs of subgroups

that have enough samples. For the rest, we generate an equal number of negative and

positive pairs as much as availability facilitates. From our observation of Table 3.4, we

can conclude that groups who have one of the attributes like wide nose, full lips, and

monolid eye type always have less accuracy than the other groups with a narrow nose,

small lips and other eye (when rest of the attributes are same). Furthermore, whilst the

average accuracy of the subgroups with Type {5,6} skin tone is 86.97%, subgroups with

Type {1,2} skin tone is 92.56%, but this notably includes other attribute effects.

Moreover, the number of subgroup variations with darker skin tones are much smaller

than lighter tones which causes many different evaluation and analysis problems. It lacks

sufficient interpretation in the test phase; there are minorities in the global populous with

dark skin and monolid eyes or any other less common variations. Benchmark datasets
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Figure 3.5: Accuracy variations for three grouping strategies. Standard deviation of the
groupings reflects the amount of measured bias. Racial groupings {African, Asian, Cau-
casian, Indian} accuracies are obtained from [1]. Binary skin tones {lighter skin-tone,
darker skin-tone} are the average accuracy of Type 1-3 and Type 4-6 skin tones, respec-
tively.

do not contain enough representation for such minority groups. An improved evaluation

dataset would be one that is able to cover more phenotype combinations such that its

distribution is an unbiased representation of the global populous.

Lastly, we estimate such disparities among different grouping strategies using train-

ing protocol 2. We take racial groupings {African, Asian, Indian, Caucasian} and bi-

nary skin tone groupings {lighter skin-tone, darker skin-tone} as they are very common

grouping strategies in the literature. We compare them with our phenotype-based group-

ing strategy. In Figure 3.5, we show that how accuracy and the standard deviation differs

between sub-groups in three different strategies. Higher variation reveals hidden bias,

which may be missed in narrow, erroneous racial or binary skin tones grouping strategies.

The phenotype-based grouping strategy brings a more granular observation of the vari-

ability in performance (i.e. higher standard deviation) and hence a more resolute measure

of performance bias.
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Attribute Ratio (%) Acc (%) Attribute Ratio (%) Acc (%)

Bald 2.80 97.49 Type 6 1.60 96.25
Grey Hair 12.60 97.47 Wide Nose 43.60 96.19
Red Hair 0.80 97.10 Type 3 42.80 96.13
Type 5 3.60 96.87 Brown Hair 34.20 96.05
Type 4 9.60 96.75 Curly Hair 4.40 95.93
Small Lips 72.60 96.56 Wavy Hair 31.00 95.92
Type 2 39.20 96.43 Monolid Eye 11.00 95.73
Black Hair 29.80 96.43 Blonde Hair 22.60 95.52
Straight Hair 61.80 96.35 Full Lips 27.40 95.36
Other Eye 89.00 96.29 Type 1 3.20 92.90
Narrow Nose 56.40 96.26
σ 0.93

Table 3.5: Face identification performance on VGGFace2 test set using standard linear
SVM and features from training protocol 1, sorted by descending order of accuracy.

3.4.3 Face Identification

Face identification as a one-to-many verification is the task of searching for a face across

a facial database. There are two scenarios for face identification applications based on

whether a queried face is enrolled in a database or not. Open-set identification assumes

the database does not necessarily contain the queried face, while closed-set identification

always looks for a match in the database. In this chapter, we apply closed-set identification

using the test set of the VGGFace2 benchmark dataset on the originally proposed protocol

[3] and we extract the image features using training protocol 1 [6]. We apply a 5-fold train-

test split where we sample 50 images from each subject as the test set and use the rest as

the training set. We train a standard linear SVM on the extracted feature representations

and predict the identities for test samples. Our results are shown in Table 3.5 where

we can observe that the standard deviation (σ) is much smaller when compared to the

earlier attribute-based face verification results of Table 3.2. It shows that the closed-set

face identification does not have the same level of bias correlation as we find for face

verification. However, in this experiment, we are unable to have the same proportion

for each attribute, and we did not measure open-set face identification. As suggested

in [30], future work should design and apply open-set tests for face identification on

better-distributed benchmark datasets to measure bias extensively.
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3.5 Summary

In this chapter, we propose a new evaluation strategy using facial phenotype attributes to

assess racial bias in face recognition tasks. Firstly, we annotate facial phenotype attributes

on the VGGFace2 and RFW datasets according to proposed attribute categories and pro-

vide a public reference implementation, dataset reference links and pre-trained models.

Such grouping strategy and attribute category overview are presented in the last rows

of Table 2.1 within the Facial Phenotype category for comparison with other grouping

strategies.

We elaborate experimental results to show the impact of each phenotype attributes

using two different training protocols, including imbalanced and racially balanced training

sets. We also provide different pairing strategies for face verification to draw attention to

the importance of pairing for comprehensive evaluation.

Furthermore, we reveal apparent performance differences between race-related pheno-

type attribute categories and subgroups for both training protocols. However, we also un-

cover more considerable performance disparities among phenotype attributes than racial

groups. More specifically, the results reported in Table 2.3 show the standard deviation

and average accuracy across racial groups using BUPT-Balanced benchmark dataset [1],

ResNet34 architecture [14], and Softmax loss [4] (std = 1.19, acc = 92.41) align with

Figure 3.5, which visually depicts the accuracy distribution across four racial groups us-

ing the racial grouping strategy. Subsequently, Figure 3.5 shows higher variation reveals

hidden bias, which may be missed in narrow, erroneous racial grouping strategy. Cru-

cially, our phenotype-based evaluation strategy reveals racial bias in facial analysis mod-

els more comprehensively while avoiding exposing potentially protected or ill-defined

racial attributes.
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CHAPTER 4

On the Impact of Lossy Image Compression on Racial

Bias within Face Recognition

This chapter investigates the impact of commonplace lossy image compression on face

recognition algorithms with regard to the racial characteristics of the subject. We adopt

our previously proposed racial phenotype-based bias analysis methodology, from Chapter

3, to measure the effect of varying levels of lossy compression across racial phenotype

categories. Additionally, we determine the relationship between chroma-subsampling

and race-related phenotypes for recognition performance. Prior work investigates the

impact of lossy JPEG compression algorithm on contemporary face recognition perfor-

mance [164, 237]. However, there is a gap in how this impact varies with different race-

related inter-sectional groups and the cause of this impact. Via an extensive experimental

setup, we demonstrate that common lossy image compression approaches have a more

pronounced negative impact on facial recognition performance for specific racial pheno-

type categories such as darker skin tones (up to 34.55%). Furthermore, removing chroma-

subsampling during compression improves the false matching rate (up to 15.95%) across

all phenotype categories affected by the compression, including darker skin tones, wide

noses, big lips, and monolid eye categories. In addition, we outline the characteristics that

may be attributable as the underlying cause of such phenomenon for lossy compression
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algorithms such as JPEG.

The material presented in this chapter of the thesis has been published in the follow-

ing peer-reviewed publication:

Seyma Yucer, Matthew Poyser, Noura Al Moubayed, and Toby P. Breckon., Does lossy

image compression affect racial bias within face recognition?, IEEE International Joint

Conference on Biometrics, IJCB, pp. 1-10, 2022.

4.1 Introduction

Previously, we have discussed that each and every technical stage of the face recogni-

tion pipeline is prone to bias (Chapter 2). However, most research focuses on the latter

aspects of dataset collation and face representation stages to explore and mitigate such

bias [95, 205, 207]. As such, many datasets and annotations have been released [1, 45],

generative adversarial networks have been explored to enrich under-represented groups

during training [9, 238] and regularisation methods have been proposed to minimise per-

formance differences between subgroups [208]. Furthermore specific evaluation method-

ologies have been devised to tackle bias collaboratively [13, 239, 240]. Despite this

plethora of research, no studies examine the potential impact of image acquisition de-

cisions (imaging bias) when addressing racial bias within face recognition. Any source

of bias at this early stage is just propagated and exacerbated within contemporary face

recognition processing stages [49].

On the other hand, existing image acquisition standards for face recognition systems

such as ISO/IEC 19794-5 [157] and ICAO 9303 [158] propose both image-based (i.e.

illumination, occlusion) and subject-based (i.e. pose, expression, accessories) quality

standards to ensure facial image quality. Accordingly, facial images should also be stored

using lossy image compression standards such as JPEG [159] or JPEG2000 [160]; and

identifiable for gender, eye colour, hair colour, expression, facial properties (e.g. wearing

glasses), pose angles (yaw, pitch, and roll), and landmark positions. However, common

face recognition benchmarks do not conform to the ISO/IEC 19794-5 and ICAO 9303

standards. Moreover, in-the-wild samples are often obtained under the varying camera
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and environmental conditions to challenge the proposed solutions. Nevertheless, most

facial image samples within such datasets are compressed via lossy JPEG compression

[159].

Accordingly, some limited previous work [241–243] focuses on the impact of low-

quality, blurred, noisy or distorted imagery on Convolutional Neural Network (CNN)

based image recognition or classification. Dodge and Karam [244] highlight a significant

decrease in contemporary neural network performance, whilst human examiners remain

resilient to such factors. Particularly, Torfason [245] focuses on compression methods

and bypasses the decoding phase of image compression. They point out that encoded

representations are more advantageous than compressed/decoded images for classifica-

tion and semantic segmentation. Poyser [163] evaluates the impact of lossy compression

algorithms on various CNN architectures, in which they measure the robustness and per-

formance impact of compression for various computer vision tasks. They determine that,

in general, CNN architectures can be resilient to the introduction of lossy JPEG compres-

sion artefacts if the initial training regime includes the use of compressed images [163].

These results align with the findings of Zanjani [246], who considers the impact of JPEG

2000 compression [160] on CNN for cancer diagnosis systems. Indeed, retraining the

CNN architecture on lossily compressed images affords a 59% performance increase for

tumour detection within compressed test imagery [246].

Prior literature on image acquisition operations (compression, quality assessment) for

face recognition [237] are limited with regard to racial bias and its race-based phenotypic

influence, which is where this chapter is focused. The most related work to ours, [164]

explores the test image distortion impact on pre-trained face recognition models using

binary gender G1 (Male) and G2 (Female), and race R1 (light skin colour) and R2 (dark

skin colour) subgroups. As a result, they find that the regions of interest used in the

models shift towards less discriminatory regions in the presence of distortions, resulting

in unequal performance degradation among subgroups.

In this chapter, we examine whether lossy image compression adversely impacts

phenotype-based racial performance bias within face recognition during training and test-

ing. We estimate such impact on phenotype attribute categories individually. Further-

more, we also investigate differing chroma-subsampling rates to assess how this common

73



lossy compression colour-related trait directly impacts recognition performance across

varying phenotype-based categories. More precisely, however, we determine the relation-

ship between the level of compression and chroma-subsampling applied and recognition

performance in order to allow us to build a better understanding.

To these ends, we adapt our proposed evaluation methodology [13] that introduces

phenotype-based racial bias measurement for face recognition. Furthermore, we deter-

mine the effect of varying factors, including the compression levels of lossy JPEG [159]

image encoding, chroma-subsampling, and compressed versus non-compressed training

on different race-based phenotype categories in order to evaluate the racial bias across

multiple face recognition datasets.

In this chapter, our key contributions are as follows:

• We evaluate the impact of lossy image compression on CNN-based facial recognition

approaches across different racial characteristics using the phenotype-based methodol-

ogy.

• We compare several variants of training strategies, including lossy compression, within

the balanced/imbalanced training datasets and race-related facial phenotypes.

• We experimentally demonstrate that the use of lossy image compression during infer-

ence adversely affects the performance of contemporary face recognition approaches

[6] on a subset of race-related facial phenotype grouping (i.e. darker skin tones, mono-

lid eye shape) and that its effect is present regardless of whether compressed imagery

is used for model training.

• we investigate the specific impact of chroma-subsampling on bias performance by com-

paring recognition performance with and without chroma-subsampling within lossy

compressed facial imagery.

4.2 Experimental Methodology

In this section, we explain the most widespread lossy image compression process (JPEG,

Section 4.2.1), how we evaluate the influence of chroma subsampling on performance
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(Section 4.2.2), our compression level selection methodology (Section 4.2.3), and the

training strategies used (Section 4.2.4) for the generation of our results (Section 4.3).

4.2.1 Lossy Image Compression

The Joint Photographic Experts Group (JPEG), an international image compression stan-

dard [159] for still images, operates within manageable algorithmic space and time com-

plexity whilst offering good reconstruction image quality. The JPEG standard defines

four operating modes (1: Sequential Lossless Mode, 2: Sequential DCT-based Mode, 3:

Progressive DCT-based Mode, 4: Hierarchical Mode), formed by an encoder and decoder

which follow block-based transform coding. The image encoding strategy includes colour

space transformation (from RGB to YCrCb), chroma channel subsampling, Discrete Co-

sine Transform (DCT), quantisation and entropy coding to compress the image [159].

In this chapter, we use ImageMagick Library (version 7.0.11.13) to perform JPEG

compression (via libjpeg 8). The implementation switches the JPEG operational modes

according to the compression level specified (i.e. quality level q, range: 0 - 100 for

JPEG, higher = better image quality, less information loss + larger file sizes). Similar to

the mode one operation, it does not down-sample the chroma channels if the compression

level is higher than 90 (i.e. there is no colour-based information loss for compression, q =

90). It applies the baseline JPEG algorithm between compression levels 90 and 10, which

is sequential DCT-based Mode (2). For compression levels, (q = 90), lossy compression

is applied to both the luminance channel, Y, and the colour containing chroma channels,

Cr,Cb.

4.2.2 Chroma Subsampling

Standard lossy compression algorithms such as JPEG contain a colour space reduction

step, as the human eye is less sensitive to chromatic (i.e. colour) changes than changes in

illumination (i.e. brightness). In this step, the luminance channel (Y) remains unchanged,

but the image colour space (Cr and Cb) is reduced. Subsequently, by default JPEG algo-

rithm employs 4:2:0 chroma subsampling to reduce the colour information of the original

image. It takes a 2-by-2-pixel block within each block and assigns the same colour (the
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Figure 4.1: Chroma subsampling operation on different rates (4:2:0, 4:2:2, 4:4:4). Each
rate differs according to how many pixels will be the same in the block.

colour of the top-left pixel) while the luminance component varies. Alternatively, for less

colour information reduction, 4:2:2 with half sampling rate horizontally takes 2 pixels

in each row and assigns the same colour. In Figure 4.1, we illustrate the three different

sampling ratios (4:2:0, 4:2:2 and 4:4:4 no subsampling) on image pixels. In this first step

of compression, chroma subsampling converts the image to YCbCr colour space and then

reduces the chroma channels Cb,Cr information by assigning the top-left block pixel

value to other pixels in the block. Block size and how many pixel values remain vary

according to the sampling ratio.

This evaluation investigates the effect of sampling ratio on phenotype-based face

recognition performance. We compare the default 4:2:0 subsampling with the 4:4:4 no

chroma-subsampling factor, which keeps luminance and colour information in its entirety

(i.e. unchanged). The rationale behind this evaluation is that if chroma subsampling has

a profound impact on recognition performance, we can avoid this issue by recommend-

ing the use of 4:4:4 (no chroma-subsampling) with only a small impact on compression
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performance.

4.2.3 Compression Level Selection
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Figure 4.2: PSNR scores of RFW dataset at different compression levels (CL). Relative
score difference shows how much the image quality changes at each level due to lossy
compression.

In order to ascertain the impact of lossy compression on face recognition performance, we

are interested in the resulting reduction in image quality at varying levels of JPEG com-

pression. Consequently, we analyse uniformly distributed compression levels on the RFW

benchmark face recognition dataset [11] using PSNR; Peak signal-to-noise ratio [247].

PSNR score is correlated with the quality of reconstruction of lossy JPEG compression.

In Figure 4.2, we show the relation between the PSNR score versus the JPEG compression

level, q. Firstly, we uniformly select levels q = {5...95} in intervals of 5 and compress the

whole dataset to each of these JPEG compression levels. Secondly, we measure the PSNR

score on all levels and highlight the relative score difference. Based upon this analysis,

we downselect the set of JPEG compression levels (q = {5, 10, 15}), in which quality

decrease is most apparent (PSNR score decreases harshly). In addition, we select q = 95

as it represents the case where there is no chroma down-sampling used within the lossy

compression scheme.
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4.2.4 Training Strategies

We design different test scenarios to measure the impact of image compression on face

verification performance.

Racially Imbalanced Dataset: Firstly, we train ArcFace [6] with ResNet101v2 [14] on

the original aligned VGGFace2 benchmark dataset [3], containing 3.3 million images

with 8631 subjects where subject distribution is racially imbalanced. Subsequently, we

test using the RFW benchmark dataset [11] with the original (aligned) images and com-

pressed images to each of the previously down-selected JPEG compression levels. We

then repeat the training on the VGGFace2 benchmark dataset [3] four times, having first

compressed the entire dataset to each of the down-selected JPEG compression levels. This

results in four ArcFace models, each trained on image samples at a different JPEG com-

pression level. Subsequently, we measure the performance of each of these four trained

ArcFace models using the RFW benchmark dataset [11] that has been compressed to the

corresponding JPEG compression level upon which each of the models was trained.

Racially Balanced Dataset: Similar to the imbalanced train set strategy, we train Arc-

Face [6] with ResNet50 on the original aligned BUPT-Balanced benchmark dataset [1]

that contains 28000 face subjects containing balanced racial distributions among four

groups {African, Asian, Indian, Caucasian} with 7000 subjects each. Subsequently, we

repeat the training on the BUPT-Balanced benchmark dataset [1] four times, having first

compressed the entire dataset to each of the same down-selected JPEG compression lev-

els. This way, another four ArcFace models are trained on image samples at a different

JPEG compression level. Additionally, we replicate non-compressed and compressed

training at level 5 (q = 5) by removing chroma subsampling (4:4:4) to measure the im-

pact of the colour reduction step in lossy compression on face verification performance.

4.3 Results and Discussion

This section provides extensive experimental results to understand the impact of chroma

subsampling and compressed training imagery using two different dataset training datasets

and different compression levels.
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Figure 4.3: BUPT-Balanced non-compressed training set, compressed RFW test set at
level 5 (q=5); FMR performance differences of cross-attribute based pairings. Each cell
depicts FMRoriginal − FMRq.
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Figure 4.4: VGGFace2 non-compressed training set, compressed RFW test set at level
5 (q = 5); FMR performance differences of cross-attribute based pairings. Each cell
depicts FMRoriginal − FMRq.
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Figure 4.5: BUPT-Balanced compressed training set (q = 5), compressed RFW test set
at level 5 (q = 5); FMR performance differences of cross-attribute based pairings. Each
cell depicts FMRoriginal − FMRq.

4.3.1 False Verification Matching Rates

In this section, we present False Matching Rate (FMR) differences for each of the pro-

posed training strategies in Section 4.2.4 and the down-selected compression levels (Fig-

ure 4.2). FMR is a critical metric, such that any change in performance may result in false

facial verification and the associated consequences [248].

Figures 4.3, 4.4, 4.5 show the FMR changes under the varying sampling rates of

lossy image compression and how this varies across the racial phenotype labels asso-

ciated with the dataset. Using the cross attribute pairings provided by [13], we evaluate

FMRoriginal − FMRq where FMRoriginal is FMR of non-compressed training and test

imagery. FMRq is the FMR of compressed or non-compressed training but compressed

test imagery at down-selected level q. Smaller (and negative) values indicate a more con-

siderable decline from the original level of performance.

Compression Levels: We observe that for all down-selected compression levels q =

{5, 10, 15, 95}, the FMR increases when additional lossy compression is applied, demon-

strating that compression level 5 (the highest compression rate) results in the most signifi-

cant decrease in FMR performance, whilst compression level 95 (the lowest compression

rate) does not result in any noticeable FMR performance differences. We compare com-
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pression levels 95, 15, 10 and 5 with baseline results to show how FMR rise at higher

compression levels. For additional performance results on different levels, see Supple-

mentary Materials.

Chroma subsampling vs. No-chroma subsampling: We compress all the imagery in the

BUPT-Balanced training dataset under two different sampling rates, 4:2:0 (JPEG default)

and 4:4:4 on compression level 5 (q = 5). The FMR cross-attribute category results

are compared in Figures 4.3, 4.4, 4.5. For non-compressed and compressed training,

the 4:4:4 sampling rate decreases the FMR for all phenotype categories meaning that

removing chroma sampling within the image encoding strategy of the lossy compression

technique improves the performance difference and reduces the prevalence of the bias.

Accordingly, we evaluate the average FMR for each phenotype category and calculate the

standard deviation across all categories. Indeed, for both training strategies in Figure 4.4

and 4.5, using no chroma-sampling improves FMR variation across all categories. For

VGGFace2 non-compressed training (Figure 4.4), standard deviation drops from 3.91 to

3.28 (15.95% ↓), whilst BUPT compressed training (Figure 4.5) standard deviation drops

from from 0.91 to 0.81 (10.88% ↓).

Non-compressed vs. compressed training sets: When the model is trained on original/

non-compressed training imagery (Figures 4.3 and 4.4), FMR on darker skin tone (Type 5-

6) increases considerably compared to other phenotypes such as lighter skin tones (Types

2-4) with the introduction of lossy compression at test time. At the highest level of com-

pression (q = 5), the increase in FMR is greater when both phenotype categories in the

pair are correlated with the stereotypically African/Afro-Caribbean racial features [132].

For instance, the Full Lips ↔ Type 6 pair has the highest FMR among all other pairs

higher than Type 2↔ Type 6 skin tone pairings. For compressed training imagery (Fig-

ures 4.5 and Supplementary 4.9), we observe improved results for both imbalanced and

balanced dataset training. However, darker skin tone and related categories still maintain

FMR higher than the other phenotype categories.

Racially balanced vs. imbalanced training sets: Using the racially balanced dataset

for training does not ameliorate FMR differences among such pairings. For example, at

the highest level of compression (q = 5), the average performance decrease of all skin

tone Type 5 pairings (Type 5-Bald, Type 5-Black Hair etc.) is 16.06% for imbalanced
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Uncompressed Training Set Compressed Training Set

Attribute Name 95 15 10 5 95 15 10 5 Original

Curly Hair 93.10 82.37 75.80 59.53 92.77 87.20 82.90 73.27 93.15
Full Lips 93.37 83.55 77.03 61.37 92.80 87.97 83.62 75.30 93.38
Monolid Eye 93.25 83.43 77.28 63.18 93.48 87.62 85.10 76.95 93.30
Type 5 94.87 85.98 80.17 60.32 94.53 90.22 87.03 76.97 94.85
Type 6 94.85 86.55 79.35 61.75 94.43 90.02 86.20 77.72 94.82
Black Hair 93.70 85.13 79.97 65.83 93.50 89.55 86.87 77.92 93.73
Wide Nose 93.95 85.53 79.97 63.15 93.42 89.57 86.78 78.33 93.98
Other Eye 94.32 86.65 81.10 65.28 93.70 89.57 87.43 78.55 94.38
Type 4 94.05 87.72 83.47 67.28 93.72 89.67 87.45 79.23 94.07
Type 1 92.86 86.88 84.72 72.43 94.19 89.87 88.21 79.57 92.86
Straight Hair 94.18 86.70 81.98 66.15 93.92 89.43 86.28 79.65 94.12
Narrow Nose 94.35 86.30 80.07 66.73 94.60 89.63 87.20 79.77 94.43
Type 3 94.05 86.07 81.03 67.05 94.32 89.48 86.80 79.93 93.98
Small Lips 94.35 87.28 82.03 67.53 95.00 90.63 87.97 81.22 94.37
Wavy Hair 95.87 89.05 84.63 69.53 95.52 92.17 89.33 82.73 95.83
Brown Hair 95.12 88.40 83.33 67.32 95.23 91.85 89.03 82.80 95.15
Bald Hair 96.55 90.43 85.93 67.62 95.88 93.07 90.37 83.13 96.55
Red Hair 96.91 90.57 84.97 71.20 96.33 92.49 89.98 84.89 96.91
Type 2 96.27 89.98 85.98 68.45 96.57 94.27 91.58 85.93 96.33
Gray Hair 96.53 92.47 88.83 72.60 96.42 94.35 91.93 86.75 96.55
Blonde Hair 97.15 92.50 88.52 71.55 97.15 94.83 93.40 87.85 97.15

Acc 94.74 87.31 82.20 66.47 94.64 90.64 87.88 80.40 94.76

STD 1.31 2.76 3.58 3.85 1.27 2.18 2.61 3.81 1.31

Table 4.1: Verification performance on RFW test set using uncompressed (left) and com-
pressed (right) training imagery. Attribute-based pairings are those from the study of [13].

dataset training (Figure 4.3). At the same time, it is decreases by 17.69% (Figure 4.4)

from balanced dataset training. However, in racially imbalanced training, the FMR re-

sults for pairings with monolid eyes degrade more compared to racially balanced training.

As there are significantly fewer monolid eye face samples than other phenotypes in the

imbalanced VGGFace2 dataset, we assume that their representation degrades more than

other phenotypes as the lossy compression level increases.

4.3.2 Attribute-based Verification vs. Compression Levels

We additionally present attribute-based verification accuracy for the down-selected com-

pression levels applied at training and test time for the BUPT-Balanced benchmark dataset
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Figure 4.6: Mean Accuracy and standard deviation of all attribute categories and their
comparison on different training strategies using compressed (q = 75) RFW test set.

[1]. Moreover, we provide supporting evidence of compressed vs. uncompressed training

set face verification performance in Table 4.1. We use the same 6000 (3000 positive 3000

negatives) attribute-based image pairings provided by [13]. For both non-compressed and

compressed training setups, we show that as the compression increases, the standard devi-

ation across all phenotype categories increases (as a measure of non-uniform performance

and bias). Similarly, accuracy decreases for all phenotype categories. However, using un-

compressed training imagery (Table 2, left) results in a further decline in performance for

darker skin tones Type 5-6, curly hair, full lips and monolid eye, when compared to other

facial phenotypes, as the level of lossy compression within the test set is increased. Skin

Type 5 attribute pairings accuracy drops from 94.87% to 60.32% (34.55% ↓), while Skin

Type 2 attribute accuracy drops from 96.33% to 68.45% (27.88% ↓). Similar to the non-

compressed training set, we do observe non-uniform disparate changes in accuracy when

the model is trained on compressed imagery (Table 4.1, right). Furthermore, the com-

pressed training set produces a smaller standard deviation in accuracy between phenotype

categories.

Lastly, we summarise the relationship between all factors (dataset distribution, com-
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pression, chroma subsampling) in Figure 4.6. We evaluate attribute-based pairings accu-

racy for all phenotype categories and compare different training strategies mean accuracy

and standard deviations. We change one factor during training in each strategy and pro-

vide corresponding performance results. We use a compressed RFW test set in level 75

(q = 75) for all training strategies. Firstly, we show racially imbalanced VGGFace2

datasets training performance, which is lowest in accuracy and highest in standard devia-

tion. A balanced BUPT-Balance dataset provides the most significant improvement in ac-

curacy and standard deviation. Furthermore, while compressed training imagery causes a

minor decrease in standard deviation, no-chroma subsampling improves bias performance

more significantly. Therefore, removing chroma sampling during compression becomes

viable for reducing racial performance bias. We conclude from the aforementioned re-

sults that while compressed imagery or racially balanced training data during training

improves the overall performance for all race-related categories, disparate results remain

for specific phenotype characteristics. Furthermore, we highlight that the reduced reten-

tion of the chroma (colour) information affects, due to the use of chroma subsampling

in lossy JPEG compression, on darker skin tones to a greater degree than on lighter skin

tones. Furthermore, it is likely that the lossy image quantisation disproportionately af-

fects finer image details on the facial region, such as those associated with monolid eye

characteristics.

4.3.3 FMRs on Selected Compression Levels

We provide down-selected compression levels differences (additional compression levels

(q = 10, 15, 95)) for each of the proposed training strategies using cross attribute pairings

provided by [13]. As described in the paper, smaller (and negative) values indicate a

larger decline from the original level of performance. The FMR increases when the lossy

compression increases. In Figure 4.7, 4.8, 4.9 and 4.10, we demonstrate that compression

level 5 (the highest compression rate) results in the most significant decrease in FMR

performance for all different training strategies. In contrast, compression level 95 (the

lowest compression rate) does not result in any noticeable FMR performance differences.
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Figure 4.7: VGGFace2 original/non-compressed training imagery and compressed RFW
test imagery; FMR performance differences of cross-attribute based pairings. Each cell
depicts FMRoriginal − FMRq.
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Figure 4.8: BUPT-Balanced original/non-compressed training imagery and compressed
RFW test imagery FMR performance differences of cross-attribute based pairings. Each
cell depicts FMRoriginal − FMRq.
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Figure 4.9: VGGFace2 compressed training imagery and compressed RFW test im-
agery; FMR performance differences of cross-attribute based pairings. Each cell depicts
FMRoriginal − FMRq.
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Figure 4.10: BUPT-Balanced compressed training imagery and compressed RFW test im-
agery; FMR performance differences of cross-attribute based pairings. Each cell depicts
FMRoriginal − FMRq.
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4.4 Summary

This chapter examines the relationship between face verification performance for a given

race-related phenotypic group under varying levels of lossy compressed sets. Overall, our

evaluation finds that using lossy compressed facial image samples at inference time de-

creases performance more significantly on specific phenotypes, including dark skin tone,

wide nose, curly hair, and monolid eye across all other phenotypic features.

Accordingly, we adopt similar training protocol in the Table 2.3, using BUPT-Balanced

benchmark dataset [1], ResNet50 architecture [14], and ArcFace loss [6] and show it re-

sults in reduced accuracy and higher standard deviation as the test imagery more heavily

compressed in Figure 4.6. However, the use of compressed imagery during training does

make the resulting models more resilient and limits the performance degradation encoun-

tered: lower performance amongst specific racially-aligned subgroups remains. Addi-

tionally, removing chroma subsampling improves FMR for specific phenotype categories

more affected by lossy compression.
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CHAPTER 5

Adversarially-Enabled Data Augmentation for Racial

Bias within Face Recognition

In this chapter, we propose a novel adversarial derived data augmentation methodology

that aims to enable dataset balance at a per-subject level via the use of image-to-image

transformation for the transfer of sensitive racial characteristic facial features. Our aim

is to automatically construct a synthesised dataset by transforming facial images across

varying racial domains, while still preserving identity-related features, such that racially

dependant features subsequently become irrelevant within the determination of subject

identity. We construct our experiments on three significant face recognition variants:

Softmax [4], CosFace [5] and ArcFace [6] loss over a common convolutional neural net-

work backbone. In comparison, we show the positive impact our proposed technique can

have on the recognition performance for racial groups within an originally imbalanced

training dataset by reducing the per-race variance in performance.

The material presented in this chapter of the thesis has been published in the follow-

ing peer-reviewed publication:

Seyma Yucer, Samet Akcay, Noura Al Moubayed, and Toby P. Breckon., Exploring Racial

Bias within Face Recognition via per-subject Adversarially-Enabled Data Augmentation.,
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IEEE/CVF Computer Vision and Pattern Recognition Workshops, CVPRW, pp. 18-19,

2020.

5.1 Introduction

Recent advances in Generative Adversarial Networks (GAN), have led to realistic im-

age generation [55] and even class generation [249]. Such advances in the field have a

promising potential to overcome the bias in face recognition via realistic image genera-

tion as most of the face recognition datasets have a significantly imbalance distribution

on either classes [15] or demographic groups [87].

Accordingly, in this chapter, we address the racial bias of face recognition from an

adversarial augmentation point of view. As most of the datasets [1, 11, 39] consist of four

major racial groups, namely African, Asian, Caucasian and Indian, we seek group-fairness

among these races, in terms of facial recognition performance, by utilising generative

adversarial network (GAN) [250].

Previous work [202,210,251] has established adversarial techniques to minimise mu-

tual information on identity features, which reveal sensitive attributes about race, gender

and age of the subject. However, such approaches [161, 210], have failed to effectively

address the trade-off between suppressing the use of such sensitive attributes and the

loss of key identity-related features which pertain to the overall performance of the facial

recognition approach. Our solution, instead, uses an adversarial image re-synthesise tech-

nique [2], to transform sensitive attributes across a set of synthetic images comprising the

full range of races being considered within the facial recognition problem. By doing so,

we preserve the important identity-related features whilst making the racially dependent

features of the face less prevalent due to the artificially synthesised distribution of these

identity characteristics across the full range of race profiles for any given individual.

Figure 5.1 illustrates how we transform the identity characteristics, and hence fea-

tures, any given individual across multiple racial profiles using a CycleGAN [2]. It pro-

poses transformation across racial domains and reconstruction to produce an identical

image from a transformed image during the cyclic adversarial training. To show its ro-

bustness, we explore the performance of our approach using balanced and imbalanced
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Figure 5.1: Racial transformation example using [2]. We transfer an African image xA to
Asian image yE and obtain sythesised xE in Asian domain and we reconstruct x̂A from xE

image. Asian image yE to African image xA transformation follows the same procedure.

training datasets.

The main contributions of this chapter are as follows:

• We propose an adversarial image-to-image transformation technique to mitigate racial

bias based on the cyclic adversarial training approach of CycleGAN [2].

• We illustrate both quantitative and qualitative performance of our proposed facial data

augmentation techniques over established benchmark datasets within the face recog-

nition domain, establishing a statistical paradigm for the presentation of recognition

results on a per-race basis.

• We adopt our phenotyped-based evaluation methodology in order to show the improve-

ment of our method on phenotype-based cross attribute pairings.

5.2 Methodology

We present our methodology in three parts: we first describe our problem definition in

Section 5.2.1, explain image-to-image transfer method [2] for race transformation to mit-

igate face recognition bias in Section 5.2.2.
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Figure 5.2: Overview of our solution in three phases: (a) describes imbalanced distribu-
tion of VGGFace2 [3] and downsampling it to VGGFace2 1200. (b) illustrates race do-
main transformation schema for a given image xi (c) shows face recognition algorithms
with Softmax [4], CosFace [5] and ArcFace [6] loss functions using VGGFace2 1200
Races.

5.2.1 Problem Definition

Ideally, a machine learning algorithm should require that the conditional probability P of

the output given input x does not depend on any sensitive attributes which is demographic

features in our case. This Fairness Through Unawareness can be formalised as P (y | x) =

P (y | x, s) (see Chapter 2 and Section 2.1 for more details), where x is an input, y is the

corresponding subject label and s is a sensitive attribute that does not alter the outcome.

However, removing dependency is highly challenging for face recognition due to high

mutual information between facial features and sensitive attributes, such as race.

A given face image dataset, D = [x1, x2, x3, . . . , xN ], provides N number of face

images. A feature embedding vector of an image, zi = [f1, f2, . . . , fd], where zi ∈ Rd, is

commonly statistically dependent on sensitive attributes where it causes indirect discrim-

ination for particular demographic groups which potentially form overlapping, subsets of

D. Although the common approach for face recognition bias is to minimise this mutual

information to remove the dependency on sensitive features; it is still an extremely diffi-

cult task using face features without sacrificing any prior information for face recognition
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as shown in [161, 210].

Hence, we approach the problem from a completely different perspective by trans-

ferring sensitive attributes from one domain to another whilst simultaneously preserving

prior information for recognition. On the other hand, we are aware that some features are

more prevalent in some demographic groups than others. The sensitive information, in

this case, may improve the prior information for the recognition task. Lighter skin allows

the model to learn more detailed features given characteristics of modern cameras and

common scene illumination conditions. A novel input mechanism which projects differ-

ent sensitive information for one image to a model makes race modelling irrelevant. As

a result, we ask a question; What if we augment and transfer sensitive information rather

than removing it? To answer this question, we present a new pre-processing based method

requires augmentation of sensitive attributes of an image.

Our new inputs consist of three generated images from different domains for each

image. Given the race domains {A,E,C, I} for {African,Asian, Caucasian, Indian}
respectively, we aim to transform an image xi from one domain as an image xj to another

domain. For instance, we transform given xi inA to another image from different domains

such as E,C, I . If we use different images belonging to these domains to transform, we

can define new generated input dataset as following list x+i =
[
xi, x

E
i , x

C
i , x

I
i

]
where xi is

the original image and x+i is a new input list including the original image.

Transferring sensitive information while keeping prior information of the image is

possible via adversarial methods, as they are capable of generating images from the train-

ing data distribution. To show that, we propose a solution of sensitive attribute transfor-

mation while keeping prior information for face recognition and present a new augmented

dataset, I+image =
[
xi, x

A
i , x

C
i , x

I
i , . . . xi, x

E
i , x

C
i , x

I
i , . . . , xn, x

A
n , x

E
n , x

C
n ,
]
. In the next Sec-

tion 5.2.2 we present our approach to the image synthesise process to obtain D+
image.

5.2.2 Adversarial Image-to-Image Transfer

Our solution transforms these sensitive attributes using a cyclic adversarial domain trans-

fer approach, CycleGAN [2]. We assume that learning a mapping function between two

different race groups domain reduces the dependency on sensitive features.

For example, given an African face image xi ∈ A, and a Caucasian image xj ∈ C,
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we assume that the two different data distributions from these image race groups xi ∼
pdata(xi) and xj ∼ pdata(xj) can be transferable between each other. To map these two

distributions between domainA and C, we introduce two mapping functions F andG, re-

spectively from African to Caucasian domains and from Caucasian to African domains us-

ing CycleGAN [2]. Within a GAN framework, these two directional transformations need

two discriminators DA and DC , to distinguish between xi and F (xj), xj and G(xi), re-

spectively. Moreover, as an additional control on adversarial training, a cycle-consistency

loss is introduced to ensure that the mapping function can transfer an individual input xi

to the desired output xj .

LGAN(G,DC , A, C) = Exj ∼ pd(xj) [logDC(xj)] +Exi ∼ pd(xi) [log(1−DC(G(xi))]

(5.1)

For the first part of race transformation, an adversarial loss is used as defined in Equa-

tion 5.1 whereA andC are the African and Caucasian group domains, respectively. While

the generator G synthesise images using source domain A to associate to target domain

C, discriminator DC distinguishes between the real image and xj from the synthesised

image, G(xi). The same process is applied with generator F and discriminator DA to

transform domains from C to A.

The key premise of CycleGAN [2] is a controlled mechanism of adversarial training

which allows us to synthesise more accurate images from the desired images in the do-

main. To achieve this, cycle consistency loss is introduced as defined in Equation 5.2,

where F (G(xi)) is reconstructed xi from synthesised G(xi) new image. In this case, gen-

erators F and G are able to reconstruct the original images. The L1 norm in this loss

measures the difference between the original image and reconstructed image as follows:

Lcyc(G,F ) = Exi ∼ pd(xi) [‖ F (G(xi))− xi ‖1] (5.2)

+ Exj ∼ pd(xj)
[
‖ G(F (xj))− xj ‖1

]
The overall loss function, as defined in Equation 5.3, consists of two adversarial loss

within the cycle-consistency loss where λ is a term to control the relative importance of
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the cycle-consistency loss.

L(G,F,DA, DC) = LGAN(G,DC , A, C) (5.3)

+ LGAN(F,DA, C, A)

+ λLcyc(G,F )]

Subsequently, overall adversarial training of this objective function aims to solve the fol-

lowing equation:

G∗, F ∗ = argmin
G,F

max
DA,DC

L(G,F,DA, DC). (5.4)

In the intermediate step G(xi) and F (xj), the generator encodes features of inputs xi

and xj and then F (xj) and G(xi) decodes back to obtain original images again. With

reference to this set of transform Equations 5.1-5.4, we can transform both, domain A

into domain C and C into A similarly for other domain pairings.

5.3 Experimental Setup

This section provides overview of our experimental evaluation in terms of the face recog-

nition datasets used, the race classification used for racial annotation and the implemen-

tation details of our proposed approach.

5.3.1 Training Protocols

To validate our approach, we utilise BUPT-Transferface [11] for race transfer and race

classification, VGGFace2 [3] for face recognition training and RFW [11] for face verifi-

cation.

We train a common DCNN, ResNet [14] on proposed augmented datasets; VGGFace

2 1200, VGGFace 2 8631. We utilise ResNet100 explored by [6] with {BatchNorm −
Dropout − FC − BatchNorm} structure to get the final 512-D feature space repre-

sentation after the last convolutional layer. We use same architecture for Softmax [4],
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CosFace [5] and ArcFace [6] loss functions.

5.3.2 Annotation of Race

We obtain racial annotation labels for VGGFace2 [3] dataset using fine-grained classifi-

cation to solely support our development of a technique to mitigate bias.

The work of [252] proposes attention-guided data augmentation to improve the spatial

representation of distinctive image parts using its cropping and dropping mechanism. We

adopt this solution for a race classification problem where distinctive image parts are

facial attributes of eyes, nose, mouth, and forehead. Via this approach [252], we obtain

racial annotations of VGGFace2 [3] and we manually check the least certain subjects

according to the majority of image labels for each subject and additionally exclude some

subjects who are not in the four-race set {Caucasian,African,Asian, Indian}. After

this semi-automatic process, the subject distribution for training and testing sets is shown

in Figure 5.3 whereby the inherent racial and gender imbalance is clearly illustrated.
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Figure 5.3: The distribution of races in the VGGFace2 dataset, both the train and test sets

5.3.3 Race Transfer

Our proposed image-to-image transformation approach creates a new dataset D+
image, to

transfer race attributes from one race group to another. To achieve that, we define separate

mappings for each pair of the four different race groups. The set of 12 mappings are:

{African→ Asian, African→ Caucasian, African→ Indian, Asian→ African, Asian→
Caucasian, Asian→ Indian, Caucasian→ African, Caucasian→ Asian, Caucasian→
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Method Dataset LFW RFW
African Asian Caucasian Indian Acc STD

Softmax VGGFace2 1200 96.13 69.10 73.70 79.25 76.78 74.71 4.37
Softmax VGGFace2 1200 Races 96.27 70.65 75.68 80.27 78.28 76.22 4.16
CosFace VGGFace2 1200 98.16 82.78 82.68 87.53 85.41 84.60 2.33
CosFace VGGFace2 1200 Races 98.65 83.22 83.23 87.95 85.77 85.04 2.28
Arcface VGGFace2 1200 98.16 80.91 81.78 86.86 83.70 83.31 2.64
Arcface VGGFace2 1200 Races 98.63 81.28 82.83 85.95 84.72 83.69 2.06

Table 5.1: Verification performance (%) of Softmax, CosFace, and ArcFace with ResNet-
101 [14] on LFW [15] and RFW [11] when trained on VGGFace2 1200 and proposed
VGGFace2 1200 Races datasets.

Indian, Indian → African, Indian → Asian, Indian → Caucasian}. As our CycleGAN

based approach provides two-way transformations between source and target domains, we

train six models to find these two directional mappings following the approach outlined

in Section 5.2.2.

For training, we generate 25K image pairs using the BUPT-Transfer [11] dataset. All

face images are aligned and have a size of 256×256. To avoid gender domain differences,

we only match images of the same gender as pairs. Using these six CycleGAN models, we

synthesise new images and denote extended dataset as VGGFace2 1200 Races [3] which

contains the original VGGFace2 1200 images and synthesised race images. Each image

has three different transformed images that belong to other race domains in addition to the

original. As a result, we partially absorb the downsampling effect on VGGFace2 1200.

Subsequently, we synthesise all non-Caucasians images on original VGGFace2 and call

the new dataset VGGFace2 8631 Races, D+
image. We do not transform Caucasian images

to other racial domains; they are already dominant in the original dataset.

5.4 Results and Discussion

In this section, we provide both racial grouping strategy and phenotype-based evaluation

methodology results in order to show the improvement of our method. We also illustrate

qualitative result via generated imagery and discuss the results.
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5.4.1 Face Verification on Racial Groupings

To evaluate the performance of the proposed approach, we use LFW face verification

protocol [15], which measures whether two images belong to the same subject or not.

We assess synthesised image quality by feeding them through a race classifier intro-

duced in Section 5.3.2. We show examples of the correctly classified images in Figure

5.5 and the misclassified images in Figure 5.6. Each column of Figure 5.5 and 5.6 show

an image transformation example where the original image is represented with green and

red borders, and synthesised images are laid in the corresponding racial domain label in

the y-axis. As can be seen in the Figure 5.6, image transformation is prone to fail on poor

illumination and pose variations.

For face recognition, we first test our performance on balanced datasets VGGFace2

1200 and VGGFace2 1200 Races. We compare our results on RFW [11] using three

different loss functions; Softmax, CosFace [5] and ArcFace [6] as shown in Table 5.1.

Proposed facial image augmentation approach improves performance in all three methods

by 0.38-1.51 %. As non-Caucasian results are improved, the standard deviation among

groups is decreased. We also share LFW results in Table 5.1 to show the improvement of

our solution on the imbalanced dataset. Second, we use the imbalanced dataset with the

ArcFace as shown in Table 5.2. While LFW verification performance remains the same,

RFW African and Asian performances are improved, and the standard deviation declines

from 2.91 to 2.45.

Racially Balanced and Imbalanced Training Protocols: This study provides experi-

ments on both balanced and imbalanced training datasets. Although imbalanced data may

seem to be the main reason for face recognition bias, when we train algorithms on com-

pletely equally distributed data (equal number of race and gender grouping subjects.), the

results still appear to exhibit performance bias. Another study experiments on a large and

nearly balanced dataset and again differs on Caucasians and non-Caucasians [1]. Subse-

quently, we focus on a novel per-subject racial data balancing approach to understanding

its impact on the face recognition bias.

Synthesised Imagery Representation for Face Recognition Models: We experimented

with different image processing methods to change the input imagery. First, we attempted

averaging the images belong to same subjects, which aimed to reduce translation effects
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but did not yield improved results. Next, we explored concatenating the images along the

y-axis and z-axis. While concatenating along the y-axis resulted in twelve channels, it

significantly increased the input complexity. Ultimately, feeding the images as separate

samples produced the best results.

Impact of Synthesised Imagery Quality and Transformation: We assess the quality

of our synthesised images by testing them using a race classifier (Section 5.3.2). We

would expect the race classifier to recognise them as the correct transformed racial la-

bel. Our overall accuracy is 49% across all transformations, but when we increase this

accuracy using more pairs, and longer training, this results in an overall reduction in face

recognition performance. The trade-off is complex because after transforming the main

racial attributes of the face such as skin colour, eye structure and hair colour, CycleGAN

proceeds to translate all facial features including those which implicitly encode unique

subject identity. Other notable negatives are variations in pose and illumination on the

synthesised images which could alternatively be addressed via [55] in future work.

Method African Asian Caucasion Indian Acc STD

ArcFace [6] 89.45 87.61 94.71 91.21 90.75 2.91
ARL+C [200] 88.57 87.65 93.48 89.35 89.76 2.57
Ours 90.1 87.73 93.72 90.5 90.51 2.45

Table 5.2: RFW [11] Verification performance comparison (%) of methods using ResNet
[14] trained on VGGFace2 [3] and our proposed method is trained on VGGFace2 8631
Races with synthesised images of non-Caucasian subjects on VGGFace2.

5.4.2 Face Verification on Phenotype-based Groupings

Lastly, we apply our previously proposed racial phenotype-based bias analysis methodol-

ogy (Chapter 3) to evaluate the effectiveness of our approach across various racial pheno-

type categories. Similarly to the previous chapter, we utilise the cross-attribute pairings

provided by [13] and calculate the False Match Rate (FMR) between all attribute cate-

gory combinations.

As shown in Figure 5.4, we observe a noticeable improvement in both general and

specific attribute categories, including Type 3 and 4 skin tones, monolid eye, wavy hair,

curly hair, as the FMRs of such categories decrease. Although our proposed method is
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VGGFace 2 1200 Races

Figure 5.4: False matching rates (FMR) of cross-attribute based pairings for 21 attribute
categories using VGGFace 2 1200 and augmented VGGFace 2 1200 Races training set.
Each cell depicts FMR on a logarithmic scale which is log10(FMR) with lower negative
values (close to zero) encoding superior false match rates

built on transferring racial information using racial groupings and synthesising datasets,

we are able to effectively reduce racial bias across various attributes. Moreover, we ob-

serve less of a decrease in FMR when using VGGFace2 Races as the training set.

5.5 Summary

In this chapter, we explore racial bias in face recognition and present a novel adversarial

derived data augmentation methodology. Transferring racial attributes of a human face

whilst preserving identity features in the face recognition datasets makes face recognition

algorithms more robust and less race-dependant. On our manually balanced dataset, we

compare three significant face recognition variants: Softmax [4], CosFace [5] and Arc-

Face [6] loss functions with a common convolutional neural network backbone ResNet-

101 [14].

Subsequently, using the imbalanced VGGFace2 benchmark dataset [3], ResNet-101

architecture [14], and ArcFace loss [6], we demonstrate that our proposed technique de-

creases the performance variations between four racial groups: {African, Asian, Cau-

casian, Indian} by 15.81%. Specifically, as shown in Table 2.3, the standard training
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setup of VGGFace2, ResNet-101, and ArcFace loss results in a standard deviation of 2.91

and accuracy of 90.75% across the four racial groups. Our proposed approach, which in-

volves adversarial subject-level data augmentation, achieves a similar accuracy of 90.51%

but with a lower standard deviation of 2.45 in Table 5.2 across racial groups. This 15.81%

reduction in standard deviation indicates our technique meaningfully reduces variability

in model performance between racial groups. Although illumination, pose, and light chal-

lenge the quality of the image transformation; our technique not only improves the overall

face recognition accuracy but also suppresses inter-group performance variation.
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Figure 5.5: A selection of successful examples of the CycleGAN racial domain trans-
formation of VGGFace2 dataset. Each column contains an original and sythesised face
images of the same subject where the green borders indicate the original image and the
corresponding race labels are laid out on the y-axis.
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Figure 5.6: A selection of failure examples of the CycleGAN racial domain transforma-
tion of VGGFace2 dataset. Each column contains an original and sythesised face images
of the same subject where the red borders indicate the original image and the correspond-
ing race labels are laid out on the y-axis.
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CHAPTER 6

Disentangling Racial Phenotypes: Fine-Grained Control

of Race-related Facial Phenotype Characteristics

Achieving an effective fine-grained appearance variation over 2D facial images, whilst

preserving facial identity, is a challenging task due to the high complexity and entan-

glement of common 2D facial feature encoding spaces. Despite these challenges, such

fine-grained control, by way of disentanglement is a crucial enabler for data-driven racial

bias mitigation strategies across multiple automated facial analysis tasks, as it allows to

analyse, characterise and synthesise human facial diversity. In this chapter, we propose

a novel GAN framework to enable fine-grained control over individual race-related phe-

notype attributes of the facial images. Our framework factors the latent (feature) space

into elements that correspond to race-related facial phenotype representations, thereby

separating phenotype aspects (e.g. skin, hair colour, nose, eye, mouth shapes), which are

notoriously difficult to annotate robustly in real-world facial data. Concurrently, we also

introduce a high quality augmented, diverse 2D face image dataset drawn from CelebA-

HQ for GAN training. Unlike prior work, our framework only relies upon 2D imagery

and related parameters to achieve state-of-the-art individual control over race-related phe-

notype attributes with improved photo-realistic output.
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Figure 6.1: Generated images with controlled race-related phenotypes by our proposed
framework.

The material presented in this chapter of the thesis has been submitted in the follow-

ing peer-reviewed publication:

Yucer, Seyma, Amir Atapour, Noura Al Moubayed, Toby P. Breckon., Disentangling Racial

Phenotypes: Fine-Grained Control of Race-related Facial Phenotype Characteristics,

IEEE/CVF Winter Conference on Applications of Computer Vision, WACV, 2024 (under

review).

6.1 Introduction

Analysing and characterising human facial diversity is crucial for automated facial anal-

ysis tasks, especially as increasing research reveals the presence of racial bias causing

disparate performances for racial groups [28,238]. Moreover, we highlight the advantage

of race-related facial attribute level analysis of racial bias to avoid using ill-defined racial

categories and further specify the race-related facial phenotype attribute categories for

racial bias evaluation in Chapter 2 and 3 respectively.

On the other hand, disentanglement learning, with its primary objective being to cap-

ture independent data variation factors, shows promise for achieving group fairness or

demographic parity [253] for classification tasks and can be particularly relevant in mit-

igating racial bias. Earlier studies [209, 253] discuss how disentangled representation

learning can enhance group fairness by isolating variations into independent components,
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thereby improving interpretability, and simplifying downstream prediction tasks.

Subsequently, the latest advancements in Generative Adversarial Networks (GAN)

[52, 254] not only enable high-quality face image generation but also provide control

and editing capabilities within the image generation process [51, 255]. Existing litera-

ture on controllable GAN is separated into two categories following [256]: relative con-

trol [257–260] and explicit control [51, 255, 256, 261]. Relative control provides basic

manipulations like changing illumination or facial rotation, whilst explicit control enable

precise manipulations, such as setting the illumination to a lighter shade or rotating the

face by exact angles (e.g. 30◦ to the left).

A widely adopted approach for both relative and explicit control of images within

generative process is based on identifying disentanglement properties in the latent space

corresponding to image attributes [51, 255, 256, 261]. Numerous studies [262–264] have

identified such facial attribute properties, such as head pose, lighting, facial expressions,

facial accessories, gender, and age, aiming to effectively disentangle such attributes from

the facial identity. Such facial attributes can be categorised as either identity-relevant

or identity-irrelevant [262]. Identity-relevant attributes, such as racial features such as

nose and eye shapes, define distinctive facial characteristics that remain same under dif-

ferent expressions and poses. Conversely, identity-irrelevant attributes such as smiling

or head pose are non-distinctive, as any alterations to them do not impact the over-

all identity. Consequently, disentangling identity-relevant attributes is more complex

task due to their higher mutual information with facial identity, compared to identity-

irrelevant attributes. Yet, much of the existing disentanglement literature primarily ad-

dresses identity-irrelevant attributes including head pose, expressions, mouth openness,

smiling, and makeup [264–266].

For example, StyleRig [261] provides fine-grained control over facial images gener-

ated by StyleGAN2, integrating an additional layer that captures 3D pose and expres-

sion variations. Another work, MOST-GAN [267] proposes using explicit 3D parameters

extracted by 3D Morphable Models [268], to train StyleGAN2 for expression, lighting

and pose manipulation. More recently, [269] proposes a novel self-supervised disentan-

glement framework to decouple pose and expression without using 3D Morphable Face

Models (3DMM) [270] and paired data. Whilst alternative approaches including domain
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translation [264,271] and latent space interpolation [272,273] offer ways to control facial

attributes, they often lead to entanglement where modifying one attribute can inadver-

tently affect others.

However, despite this progress in GAN, achieving explicit control on identity-relevant

facial attributes over the generative process remains a challenge. Such explicit control

requires not only keeping photo-realism and facial identity but also changing the single

individual attribute in a desired way. Consequently, 3D face representations in generative

models, such as 3DMM or equivalent 3D meshes, provide a deeper level of control in

the latent space [274–276]. While it can facilitate disentanglement by leveraging depth

and shape information, obtaining an accurate and detailed 3D imagery and supervision

(attribute labels and representations) is challenging and furthermore such high-fidelity 3D

imagery makes GAN training even more complex and computationally expensive [276].

Consequently, in this chapter, we aim to explicitly control race-related facial attributes,

setting the foundation for creating controlled face image variations for future potential

solutions to mitigate racial bias within automated facial analysis tasks. Most pertinent

to our research, ConfigNet [51] provides a framework for parametric rendering over 2D

facial images by incorporating 3D parameters from synthetic data. The objective of Con-

figNet [51] is to generate realistic and controllable face images via modelling and gen-

erating of intricate attribute parameters (not present in the 2D dataset) within a 3D syn-

thetic image dataset, bridging the gap between neural rendering and traditional rendering

pipeline. Our aim of is specifically related with its ability to render both complex, multi-

ple identity-relevant and -irrelevant factors into the latent space. Yet, instead of utilising

3D synthetic data, we derive the parameters in a 2D image space, which is significantly

more challenging but yet has greater real-world applicability. We aim to have realistic

image generation with controllable identity-relevant attributes in a factorised latent space.

To this end, inspired by ConfigNet [51] and StyleGAN2 [52], we develop an enhanced

framework, solely grounded on 2D imagery and its metric-based parameters, for control-

ling specific race-related facial phenotypes such as skin and hair colour, and shapes of

nose, eyes, and mouth. Our approach emphasises explicit control over these facial param-

eters, which are delineated and quantified using 2D image evaluations. Initially, we de-

fine these race-related phenotype parameters through 2D metric-based evaluations, subse-
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quently factorised them into the latent space. We then improve the ConfigNet framework

by adopting the generator-discriminator architecture of StyleGAN2, replace the synthetic

data and its 3D parameters in favour of 2D high-resolution training data for which we

curate an augmented, diverse dataset derived from CelebHQ.

In this chapter, our key contributions are as follows:

• We propose a framework that achieves explicit control over identity-relevant race-

related facial phenotypes via a single factorised and disentangled latent space.

• Our framework relies on simple hand-crafted 2D metrics parameters obtained by public

face dataset, eliminating the need for 3D render data or manual auditing.

• We introduce the CelebA-HQ-Augmented-Cleaned dataset, which is the first semi-

synthesised, manually-cleaned, high-quality dataset encompassing over 26,500 images

with an improved racially diverse distribution.

• We demonstrate that our proposed framework achieves both higher image quality and

improved controllability on race-related facial phenotype attributes when compared to

contemporary state of the art approaches [51].

6.2 Methodology

Our method employs two 2D face image datasets: a supervised set IC sampled from

CelebA-HQ [7] and an unsupervised set IF from FFHQ [55]. The primary distinction

between IC and IF is their intended use. IC introduces race-related facial phenotype

attributes into the factorised latent space, while IF is used without any paired supervision

(facial phenotype attribute). Our framework does not require any supervision during the

test phase. We detail the process of acquiring race-related facial phenotype attributes

of IC to factorise in latent space in Section 6.2.1 and further explain our framework in

Section 6.2.2.

6.2.1 Race-related Facial Phenotypes in Factorised Latent Space

Previously we identify a set of observable race-related facial phenotype characteristics

that are specific to face and correlated to the racial profile of the subject. These rep-
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resentative race-related facial attributes encompass skin, hair colour, eye, nose, and lip

shape. We use the same attribute categories within the factorised latent space and denote

each of them with θ corresponding naming as in Table 6.1. As a result, each facial im-

age within the supervised dataset contains various predetermined facial phenotype: skin

colour θskin, hair colour θhair, nose θnose, eye θleft eye and θright eye, and mouth θmouth

features. We derive hand-crafted metric-driven representations for these specific pheno-

type attributes, avoiding subjective annotations. Following this, akin to the methodology

in ConfigNet [51], each phenotype attribute is factorised into k components θ1 to θk, as

follows:

θ ∈ Rm = Rm1 × Rm2 × · · · × Rmk (6.1)

Each θi corresponds to a semantically meaningful facial phenotype attribute to generate

IC . The supervised data encoder EC maps each θi to zi, a part of z, which thus factorises

z into k parts. The factorised latent space enables manipulation of pre-defined attributes

in generated images by swapping specific attributes such as skin colour of the part repre-

sented by zi = ECi(θi). We also present such attributes and descriptions in Table 6.1.

Figure 6.2: Metric-based parameters for race-related facial phenotypes: (a) Top column
images are sourced from CelebA-HQ [7], (b) Mask images provided by MaskGAN [8].
(c) The facial skin area used for skin colour and (d) the hair area used for hair colour.
(e-h) The specific face patch inputs applied for feature extraction.

Skin and Hair Colour: We utilise skin and hair segmentation masks on face images

in order to quantify skin and hair colour. MaskGAN [8] provides hand-annotated mask

images (as shown in the second column (b) of Figure 6.2.) for CelebA-HQ [7] dataset with
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Phenotype Representation Description Input→ Output

Skin Colour θskin = {Vmean, Smean, Crmean} Melanin, Greyness, Redness R3 → R3

Hair Colour θhair = {Vmean, Smean, Crmean} Melanin, Greyness, Redness R3 → R3

Left Eye θlefteye = {q1, q2..., q125} Left eye feature vector R125 → R125

Right Eye θrighteye = {q1, q2..., q125} Right eye feature vector R125 → R125

Nose θnose = {q1, q2..., q128} Nose feature vector R128 → R125

Mouth (Lips) θmouth = {q1, q2..., q128} Mouth feature vector R128 → R125

Table 6.1: Dimensions and descriptions of race-related facial phenotype attributes in fac-
torised latent space.

19 classes including all facial components and accessories. We restrict the skin region on

the skin segments via facial landmark points, considering the potential overlap of beard

and eyeglasses on the face. Subsequently, we measure the melanin, greyness, and redness

values within the selected skin region and the hair region (column (c) for skin and (d) for

hair in Figure 6.2). As a baseline for our work, ConfigNet [51] employs these values for

hair colour analysis using a 3D image rendering software. Instead, we estimate the 2D

colour spaces of the skin and hair regions to capture the melanin, greyness, and redness

values within these regions. Specifically, for the melanin representation, we convert the

skin and hair pixels (separately) from the RGB colour space to the HSV colour space

and measure the mean value of the (V ) channel describing the intensity of the colour.

Increased (V ) corresponds to a lighter skin tone due to decreased melanin levels, with

reverse correlation providing skin colour representation. Similarly, to assess the greyness

representation, we estimate the mean saturation value (S) from the HSV space, which

represent the degree of greyness. Lastly, we convert the RGB colour space to the YCrCb

colour space and extract the (Cr) channel mean value within the selected skin and hair

regions to capture the redness component.

Nose, Lip, Eye Shape Feature: We extract representations of the eyes, nose, and mouth

from images, and produce 64×64 pixel patch images, as shown in Figure 6.2 columns

(e-g) using facial landmarks. For each facial region (left eye, right eye, lips, and mouth),

we train individual MobilenetV2 networks [277] using the original CelebA dataset and

its facial attribute categories excluding CelebA-HQ [7] samples to be later utilised as

IC . Features are then extracted from the final layer of corresponding model. As prior

work [13] also categorises the eyes, nose, and mouth into two groups, we utilise the

ground truth labels from CelebA attributes: “Big Nose” for the nose patch, “Big Lips”
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for the mouth patch, and ‘‘Narrow Eyes” for both left and right eye patch images.

Figure 6.3: ConfigNet employs two encoders EF and EC that encode face images IF and
IC in latent space vectors zF and zC , respectively. These vectors are further transformed
into wF and wC using Emap, which are then fed into the shared decoder G for image
generation. A domain discriminator DDA ensures the similarity of latent distributions
generated by EF and EC .

6.2.2 Proposed Framework

Building on the structure of the baseline [51], our method incorporates a decoder G and

two encoders, EF and EC and a discriminator D as can be seen in Figure 6.3. EF is a

ResNet-50 backbone architecture [14] pre-trained on ImageNet [278]. EC is a set of sep-

arate multi-layer perceptrons (MLPs) ECi for each of the corresponding θi in Table 6.1.

These encodersEC andEF embed both IF and IC into a unified factorised latent space zF

and zC respectively.Unsupervised set IF is provided to its encoder as images from the set

IF , whereas supervised data is represented as vectors θ ∈ Rm, which thoroughly delineate

the content of the associated image in IC (as explained in Section 6.2.1). Subsequently,

both zF and zC are transformed into wF and wC using the StyleGAN2 mapping network

Emap, which comprises eight fully-connected layers. The vector size of zF , zC and w are

all 512.
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Figure 6.4: The impact of one-shot learning through fine-tuning. (a) Original image.
(b) Reconstructed image after second-stage training. (c) Reconstructed image after fine-
tuning.

Whilst the baseline work [51] employs separate discriminator networks, DF and DC ,

for both real and synthetic data to enhance image realism, we implement a shared discrim-

inator D in the second stage, given our sole dependence on 2D image sets, negating the

need to close the realism gap caused by the use of synthetic data in [51]. Similar to [55],

we apply a two-stage training strategy.

In the first stage, we train a shared StyleGAN2 generator G with its mapping encoder

Emap [55], and separate discriminators DF and DC and encoder EC . zF is sampled from

the normal distribution and encoder EF is not included in this stage. With the combined

StyleGAN2 architecture [55], the first stage loss is:

L1 = LGANG(DF , G(wF )) + LGANG(DDA, zC)

+ LGANG(DC , G(wC)) + λpercLperc(G(wC), IC)
(6.2)

where LGANG(D, x) = − log(D(x)). As StyleGAN2 maps the input latent vector z to an

intermediate latent space w, we first map factorised latent space zC to wC and then control

the generator through adaptive instance normalisation (AdaIN) at each convolution layer

of G. We remove eye loss and identity loss as we do not observe any improvement after

adopting StyleGAN2. Following [51], we set the same loss weights as follows: domain

adversarial loss weight λDA = 5, gradient penalty loss weight λR1 = 10, perceptual loss

weight in the first stage λperc = 0.00005. The adversarial losses on the images including

113



the style generator and discriminator losses are equally weighted.

In the second stage, we introduce EF and a single shared discriminator D, where the

pre-trained weights of DF are utilised for training D. The second stage loss is:

L2 = L1 + λpercLperc(G(wF ), IF ) + log (1−DDA(zF )) (6.3)

where the aim of log(1 − DDA(zF )) is to align the output distribution of EF with that

of EC . We set perceptual loss weight λperc = 10 in this stage. In our experiments,

the two-stage training enhanced both controllability and image quality, while attempts to

single-stage training process (training all encoders, the generator, discriminator collec-

tively in one iteration) result in unsatisfactory image generation.

One-shot learning by fine-tuning: Following the approach in [51], we employ a one-shot

learning procedure to reduce the identity gap by fine-tuning the generator using individ-

ual images. This identity gap between the original and reconstructed images as well as

improved reconstruction achieved in this stage are presented in Figure 6.4. In a similar

vein, we fine-tune our generator on IF by minimising the subsequent loss:

Lft = LGANG(D,G(ŵF )) + log (1−DDA(ẑF )) + Lperc(G(ŵF ), IF ) + Lface(G(ŵF ), IF )]

(6.4)

where Lface is a perceptual loss with VGGFace [89] as the pre-trained network. We

optimise over G as well as zF which is initialised with EF (IF ). The addition of a Lface

improves the perceptual quality of the generated face images, whilst it is not noticeable

during the main training phase, since fine-tuning lacks the regularisation achieved through

training on a large number of images.

Fine-grained Phenotype Control: To have fine-grained control over the latent space

generated by EF , we adopt the gradient descent-based minimisation algorithm presented

by [51]. This enables targeted modifications, such as adjusting skin colour or hair colour

darkness level, while ensuring the rest of the facial attributes remain the same (for a

detailed description, see [51]).
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6.3 Experimental Results

In this section, we explain our training setup and experimental results to evaluate photo-

realism and controllibility.

6.3.1 Datasets

We utilise the FFHQ [55] and CelebA-HQ datasets for training of our framework. FFHQ

dataset [55] contains 60,000 high-resolution images of size 1024×1024 pixels. We utilise

50,000 samples from FFHQ for our training set as our primary source of unsupervised im-

ages IF and the same 10,000 samples for the validation set (Itest) for a consistent compar-

ison of results with ConfigNet [51]. CelebA-HQ, a subset of CelebA, offers 30,000 high-

resolution images, each at a resolution of 1024×1024 [7] and is the source of CelebA-

HQ-Clean-Augmented (supervised set, IC).

These datasets consist of an imbalanced racial distribution. For instance, [279] reveals

that the FFHQ dataset consists of 69% White, 4% African, and 27% individuals who are

neither African nor white. Similarly, [280] indicates that CelebA-HQ contains over 70%

White individuals and fewer than 10% of African. To address this, we introduce CelebA-

HQ-Clean-Augmented which is a semi-augmented high-quality image set. We align all

the face images from those datasets to a standard reference frame using landmarks from

OpenFace [281] and reduce the resolution to 256×256 pixels.

Figure 6.5: A selection of images from CelebA-HQ-Clean-Augmented. While some im-
ages are augmented using the method proposed by [9], others, both original and aug-
mented, are removed due to low imaging conditions and pose discrepancies.

CelebA-HQ-Clean-Augmented: To address the lack of diversity within the GAN train-

ing dataset, we apply our previous adversarial data augmentation technique to facilitate

the transfer of race-specific facial features (Chapter 5). From the original 30,000 CelebA-
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HQ images, we augmented another 30,000 images by transferring all the images from the

Caucasian to the African domain (Figure 6.5). However, both the original and synthe-

sised images exhibit poor imaging conditions and not all of the original images actually

belong to Caucasian subjects, which may cause faulty or erroneous parameter estimation.

Moreover, as skin colour estimation relies on colour spaces, we prioritised images without

prominent shading or lighting that may mislead the skin colour evaluation. Accordingly,

we manually clean and select a refined dataset containing 26,513 images; 17,861 original

and 8,652 augmented. Figure 6.5 shows exemplar images from the curated CelebA-HQ-

Clean-Augmented dataset.

6.3.2 Image Quality - Photorealism

In Table 6.2, we measure the photorealism of our generated images using the Frechet In-

ception Distance (FID) [282] and compare our results with ConfigNet [51]. First, we ex-

amine the FID score between the FFHQ and our CelebA-HQ-Clean-Augmented dataset.

Since ConfigNet [51] utilises raw synthetic images, the SynthFace dataset, there is a no-

ticeable feature distance when compared to FFHQ. By replacing SynthFace dataset with

CelebA-HQ-Clean-Augmented face dataset, we not only eliminate the need for synthetic

data but also significantly improve the distribution difference of training sets by lowering

FID score by 12 points (from 52.19 to 40.81 ↓ compared to [51]). In the subsequent eval-

uation, we test the FID performance of the first stage by generating random images from

the first-stage trained generator G. Notably, our framework achieves a lower perceptual

distance score, indicating higher image quality and more realistic image generation (Ta-

ble 6.2). Subsequently, we show our second-stage trained model reconstruction quality

using EF , we re-generate FFHQ evaluation set, Itest, and calculate FID score between

G(Emap(EF (Itest)) and Itest. Our approach consistently produces more realistic images

6.2 compared to [51] as illustarted by the quantitive results of Table 6.2 and the qualitative

results of Figure 6.1 and 6.6.

Additionally, we modify the relevant attribute index location of the latent space vector

zF = EF (Itest) to control the skin and hair colour of the generated image while preserv-

ing the other features. As a result, we present further qualitative results for our generated

images, encompassing both reconstructed and manipulated images with focused attribute
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variations in Figure 6.6.

Figure 6.6: Generated and controlled images from G(Emap(EF (Itest)). From the top
row to the following rows, the sequence respectively shows original and reconstructed
images, followed by generated images with associated attribute changes. We modify the
corresponding index of ztest = (EF (Itest)) to synthesise attribute-modified images.

6.3.3 Controllability

We adopt the ConfigNet controllability experiment to evaluate the effects of modifying

specific attributes, such as skin colour or hair colour. Our generator successfully alters the

hair and skin colour of faces within its latent space, and achieves higher control over hair

colour than [51] on the generated images. Figures 6.1 and 6.6 show the qualitative results

of controllability for these attributes.

Method ConfigNet
[51] Ours

IC 52.19 40.81
G(z), z ≈ N(0, (I)) no 2nd stage 43.05 39.55
G(EF (IF )) 33.41 28.64

Table 6.2: FID score for FFHQ, CelebA-HQ-Clean-Augmented, and images obtained
with our decoder G and latent vectors zF from the real-image encoder EF .
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To quantitatively assess the controllability of our framework, we follow [51] and ran-

domly select 1000 images Itest from the FFHQ validation set, encode them into the latent

space z = EF (Itest), and then exchange the latent factor zi associated with a specific

attribute v (such as hair colour) with a factor obtained from EC . For each attribute v,

we generate two images: I+ where the attribute is set to a value v+ (e.g., blonde hair),

and I− where the attribute takes a semantically opposite value v− (e.g., black hair). This

results in pairs of images (I+, I−) that should be nearly identical except for the selected

attribute v, highlighting the differences. To measure these differences, we employ an

attribute predictor denoted as Cpred. We train a MobileNet v2 architecture on skin and

hair colour, leveraging attribute labels and images from [13], and validate it on Itest. In

an ideal scenario, Cpred(I+) should be 1, Cpred(I−), and the Mean Absolute Difference

(MD) for other facial attributes should converge to 0.

Black
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Blond
Hair

Brown
Hair

Gray
Hair

Type 1
Skin

Type 2
Skin

Type 3
Skin

Type 4
Skin

Type 5
Skin

Type 6
Skin

Mean
0.0

0.2

0.4

0.6

0.8

1.0

Mean prediction for I+ Mean prediction for I- MD of other attribute predictions

Figure 6.7: Evaluation of control and disentanglement ability of our proposed framework.
Blue and orange bars represent attribute values for images with the respective attribute
(I+ for higher values, I− for lower values). Gray bars indicate differences in other
attributes (MD and Cdiff for lower values).

Figure 6.7 illustrates that Cpred(I+) is generally greater than Cpred(I−), while the MD

for other attributes remains near 0. The highest controllability is observed for skin type 5

and blond and brown hair attributes, where Cpred(I+) approximates the ideal value of 1.

In contrast, the lowest level of control is observed for skin type 1 and black hair attributes.

These substantial discrepancies arise from the attribute prediction model capacity on such

attributes, as it is trained on VGGFace2 dataset [3], which contains a notably low count of

Type 1 instances (as indicated by the distribution in Chapter 3). Consequently, we achieve

superior control over hair colour attributes in comparison to [51], the only possible iden-

tical attributes available for comparison.
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Figure 6.8: Inference of our proposed framework

Conversely, our framework encounters challenges in disentangling nose, eye, and

mouth shapes. For instance, interchanging left-right eyes leads to alterations in the shape

of both eyes. Moreover, altering the nose or lips causes changes in the facial pose and

shape. The failure modes of these shape-related attribute changes are presented in Figure

6.9.

6.3.4 Inference

We present the inference pipeline of our framework in Figure 6.8. Importantly, our ap-

proach achieves disentanglement of race-related facial phenotypes without requiring ad-

ditional attribute labels or representations. This is achieved through the training of EF ,

which encodes these phenotypes within a factorised latent vector space utilised by the

Generator G. For any given 2D image Itest, it is encoded by EF and Emap in sequence, and

then reconstructed by G. Simultaneously, the control of the generated image is enabled

by modifying specific components of ztest Figure 6.8.

Furthermore, we present additional results obtained from randomly selected examples

within the FFHQ validation dataset in Figure 6.10. These results demonstrate the effec-

tiveness of our framework in manipulating the pre-defined race-related attributes. While

it excels in generating variations in skin colour and hair colour, it encounters challenges

in controlling nose and lip attributes.

6.3.5 Failure Modes

Figure 6.9 show failure modes of various subjects associated with changes in shape-

related parameters. In the left or right narrow eye control, our framework exhibits two

common issues: firstly, it tends to simultaneously alter both eyes or neither, and secondly,

it misinterprets narrow eyes as closed eyes in some cases, as seen in the middle row of
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Original Image Reconstructed Image Left Narrow Eye Right Narrow Eye Big Lips Big Nose

Figure 6.9: Failure modes. Eye Shape Control: leads to a slight appearance shift, affecting
both eyes simultaneously. Nose and Lips Control: results in change of unrelated attributes
such as pose and mouth openness.

Figure 6.9.

Similarly, for controlling the nose and lips attributes, we observe entanglement with un-

related factors such as pose and mouth openness, as presented in Figure 6.9. We hy-

pothesise that adopting an enhanced feature representation models, such as visual trans-

formers [283] applied to manually generated patch imagery, could lead to substantial

improvements in our ability to disentangle these facial features effectively.

6.3.6 Race-related Facial Phenotypes

We utilise the phenotypes presented in Chapter 3 in two ways: firstly, we use such pheno-

types as parts in our factorised latent space and secondly, to train our attribute prediction

model using VGGFace2 [3] dataset, with skin and hair tone labels. While we attempted

to automatically generate hand-crafted skin tone labels, the change in imaging conditions,

ranging from low to high quality, lightning and shades make automatic skin tone assign-

ment unreliable and as such this was not pursued further.
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6.4 Discussion

Importance of Training Distribution of Generative Models: Race-related phenotype

disentanglement through generative processes can address racial bias and provide deeper

insights into the underlying reasons for disparate performances within racial groupings.

However, GAN [279] reflect the discrepancies of the training data in the synthesised out-

puts. Despite our efforts with the CelebA-HQ-Clean-Augmented dataset to reduce the

influence of imbalanced distribution of training data on GAN, some unintended correla-

tions still appear. Specifically, when our model was fine-tuned to modify skin colour, it

displayed an unintended correlation: associating darker skin tones with eyeglasses (likely

due to numerous eyeglass samples within FFHQ) and blonde hair with femininity (17%

of the CelebHQ samples were women with blonde hair).

Additionally, we noted challenges in controlling darker skin tones compared to lighter

skin tone ones, possibly due to the symmetric algorithmic bias arises when the imbal-

ances in the training data are magnified in the generated data [279].

Comparison of Entanglement for Shape and Colour Parameters: Achieving explicit

control over shape-related parameters is more challenging than colour-related ones. This

difficulty could arise from inadequate representation of shape features or the greater en-

tanglement of shape with identity, or limitations of StyleGAN2 in handling shape infor-

mation. Failure modes of such attribute parameter change are illustrated in the Figure

6.9

6.5 Summary

In this chapter, we introduce a framework, building upon ConfigNet [51], that disentan-

gles race-related facial phenotypes in a latent space. We, first, introduce the CelebA-

HQ-Augmented-Cleaned dataset, which is the first semi-synthesised, manually-cleaned,

high-quality dataset encompassing over 26,500 images with an improved racially diverse

distribution. Furthermore, our approach leverages such 2D publicly available FFHQ

dataset and CelebA-HQ-Augmented-Cleaned dataset and further employs straightforward

2D handcrafted metrics for latent space factorisation. Our 2D handcrafted metrics does

not require manual annotation or 3D rendering.
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Consequently, our approach achieves fine-grained control over racial phenotypes with

improves photorealism and controllability compared to ConfigNet [51] without requiring

any 3D rendered synthetic data. Although the disentanglement of certain identity-relevant

attributes was not entirely controllable, we believe improved and more representative fea-

ture metrics will address this in the future.

To the best of our knowledge, our study is the first to attempt disentangling and exert-

ing explicit control over such crucial race-related facial phenotype, paving new avenues

for evaluating racial bias in automated facial analysis tasks. Unlike prior work [51], our

framework only relies upon 2D imagery and related parameters to achieve both higher

image quality and improved controllability on race-related facial phenotype attributes.
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Figure 6.10: Additional examples from the FFHQ validation set, with both reconstructed
and controlled images with associated attribute change.
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CHAPTER 7

Conclusion

The widespread adoption of face recognition in various real-world applications has brought

a rise in the occurrences of disparate face recognition performance across inter-sectional

racial groupings. Despite the growing interest in the academic research and industrial

endeavours, prior work proposing dataset, and evaluation strategies has raised another set

of concerns regarding the social implications of racial groupings and their definition in

dataset and evaluation. Furthermore, such racial bias mitigation work and their associated

interpretation of racial groupings often remain limited or misguiding against specific face

datasets, their annotations, and proposed methodologies.

Accordingly, this thesis aims to directly address issues of racial bias within face recog-

nition domain and review the literature to cover the broader context of historical and social

factors with the goal of achieving more accurate and fairer face recognition performance

across increasingly more diverse populations. Subsequently, it provides a comprehensive

overview of existing methods while drawing upon a general concept of the face recogni-

tion processing pipeline. Each phase of the processing pipeline is examined in relation

to racial bias to provide a broader and deeper understanding of the current advancements

and challenges within the field.

Consequently, the thesis addresses the ambiguity of racial bias problem definition and
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ill-defined grouping strategies by proposing a new evaluation methodology using facial

phenotype attributes. The thesis introduces a more objective and granular strategy to eval-

uate and ultimately address racial bias within face recognition whilst avoiding exposing

potentially protected or ill-defined attributes (Chapter 2 and 3).

Subsequently, one of the key operations in the initial phase of the face recognition pro-

cessing pipeline, namely lossy image compression, is investigated to uncover its impact

on face recognition performance. The relationship between face verification performance

for a given race-related phenotypic group under varying levels of lossy compressed sets

revealed more significant decrease in performance for specific phenotypic groups. Re-

moving chroma subsampling and the use of compressed imagery during training do make

models more resilient and improves FMR for specific phenotype categories more affected

by lossy compression (Chapter 4).

Moreover, this thesis proposes transferring racial information over the facial subjects

while keeping prior identity information for face recognition. The methodology lies on

augmenting and transferring sensitive racial information rather than removing it to make

racially dependant features subsequently irrelevant within the determination of subject

identity (Chapter 5).

Consequently, this thesis advances the domain transfer concept by addressing race-

related facial phenotypes discussed in the Chapter 5. Our proposed methodology enable

the factorisation of these phenotype attributes within the latent space through a generative

process. This explicit control over facial phenotypes within the latent space not only facil-

itates the modification of specific phenotypes but also enables the analysis of their impact

on face recognition performance. Consequently, we delve into future prospects, exam-

ining potential solutions and limitations in mitigating racial bias within face recognition

(Chapter 6).

7.1 Contributions

We exhaustively trace the evolving field of racial bias within face recognition providing

a thorough examination of both the technical aspects of face recognition, such as algo-

rithmic and dataset biases, and the socio-cultural constructs of race concept that have an
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impact on the field. Our literature review in Chapter 2 establishes a strong foundation

for understanding the complexities surrounding racial bias in face recognition, setting the

stage for further exploration and solutions in subsequent Chapters 3-6. Presenting the

literature on annotation processes for grouping categories and summarising recent works

and face datasets organised by grouping strategies in Table 2.1 reveals a lack of consensus

that significantly hinders collaborative efforts to address bias due to inconsistent problem

definition across the field. As one of the biggest highlights within this work, we address

such the usage of ill-defined racial groupings and introduce of a race-related based fa-

cial phenotypes (Chapter 3). Our phenotype-based grouping methodology uncover more

considerable performance disparities among phenotype attributes than racial groups and

hence a more resolute measure of performance bias.

Furthermore, we contribute to the understanding of face recognition performance via

use of race-related phenotype attributes subjected to varying levels of lossy compression

(Chapter 4). Our evaluation reveals that the utilisation of lossy compressed facial im-

age samples during inference significantly decreases performance, particularly impacting

phenotypic features such as dark skin tone, wide nose, curly hair, and monolid eyes,

while affecting other features to a lesser extent. Interestingly, employing compressed im-

agery during model training increases resilience and decreases performance difference,

yet disparities persist among racially-aligned subgroups. Furthermore, we observe that

the removal of chroma subsampling notably reduces False Match Rates (FMR) for cer-

tain phenotype categories, demonstrating the potential for targeted improvements in the

face verification process (Chapter 4).

Subsequently, we address racial bias in face recognition through the introduction of

an innovative adversarial-derived data augmentation method (Chapter 5). Our approach

focuses on transferring racial attributes within facial images while preserving essential

identity features within face recognition datasets. This methodology enhances the ro-

bustness of face recognition algorithms, reducing their dependency on race as a distin-

guishing factor. Subsequently, our study, has showed measurable improvements in face

recognition performance disparities across racial groups, as detailed in Table 5.1 and 5.2.

Although these improvements may not reach statistical significance (via Statistical Hy-

pothesis Tests), complicating the interpretation of their practical impact, machine learning
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algorithms requires much more complicated evaluations for statistical significance [284].

Moreover, it is crucial to recognise that face recognition systems are frequently deployed

on a large scale. Therefore, even modest improvements can yield significant real-world

effects, enhancing both the performance and fairness of these systems across various ap-

plications. Moreover, the methods by which we measure performance, along with how

we design benchmark test sets and focus on evaluating racial bias, significantly influence

the statistical significance of the results.

Consequently, our results demonstrate a remarkable 15.81% reduction in performance

variations among four distinct racial groups (African, Asian, Caucasian, Indian). Further-

more, we undertake a comprehensive evaluation of our approach using our phenotype-

based evaluation methodology, demonstrating notable improvements in performance. De-

spite challenges posed by illumination, pose, and lighting variations, our technique not

only enhances overall face recognition accuracy but also effectively mitigates inter-group

performance disparities (Chapter 5).

Consequently, we propose a novel framework that extends ConfigNet [51] to disen-

tangle race-related facial phenotypes within a latent space (Chapter 6). Leveraging 2D

datasets and straightforward handcrafted metrics, our approach provides fine-grained con-

trol over race-related phenotypes, enhancing photorealism and controllability without the

need for synthetic data. While some aspects of identity-related attribute disentanglement

present challenges, our work paves the way for future research with the goal of addressing

these issues through improved feature metrics. With our primary future aim of advanc-

ing research on racial bias by facilitating the generation of race-related facial appearance

variations, our proposed method, enabling a disentangled feature space, may open new

avenues for evaluating racial bias in automated facial analysis task (Chapter 4).

7.2 Limitations and Future Work

Given the inherent complexity of computer vision problems, particularly within the con-

text of the socially controversial topic of racial bias, our contributions within this thesis

entail certain limitations that open the way for future research work. In this section, we

discuss these limitations and potential avenues for future work.
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7.2.1 Face Imagery and Face Recognition Datasets

As discussed in Chapter 2, facial imagery represents one of the most distinctive forms

of data within the computer vision, encapsulating not only the biometric characteristics

of human subjects but also other valuable information. However, this significant biomet-

ric data is often not sensitively curated or thoughtfully structured within facial datasets,

despite serving as a foundational component for the evaluation of algorithms and method-

ologies.

Contemporary face recognition datasets [3,15] aim to challenge face recognition mod-

els by introducing challenging imaging conditions while often disregarding demographic

statistics and distributions within such datasets. In Chapters 3 and 5, we address these

imbalances by either proposing a generative model for subject-level augmentation or cu-

rating them to mitigate the skewed distribution that can amplify dataset bias and hence

the results. However, generated imagery can introduce distortions and lower image qual-

ity, potentially exacerbating bias towards certain attributes. While recent facial dataset

efforts including RFW [11], BuptBalanced datasets [1] have aimed to improve data dis-

tribution, they often inherit socially constructed racial groupings, which introduce a new

set of concerns as discussed in Chapters 2 and 3.

Future work, with a focus on acquiring and releasing diverse, ethically sourced, and

challenging datasets, while providing comprehensive details about the data collection pro-

cess, may contribute to standardising benchmarks for evaluation of racial bias within face

recognition.

7.2.2 Dataset Annotation and Grouping Strategies

The issue of racial bias within face recognition is defined as a supervised learning prob-

lem, requiring the race or race-related labels alongside subject identity labels. However,

given the relatively recent emergence of this topic, there is a few limited datasets that pro-

vide such racial labels [1, 11]. Consequently, numerous studies have resorted to different

grouping strategies on contemporary face recognition datasets (already constructed with

racially imbalance distributions) without offering comprehensive explanations for these

grouping decisions or their annotation processes [1, 11, 73]. The diversity and absence of
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a consensus approach to this challenge are discussed in Chapters 2 and 3.

In these chapters, we highlight the importance of reaching a consensus and elucidate

the drawbacks associated with the usage of socially ill-defined racial categories. We also

introduce a novel evaluation methodology that leverages facial phenotypes. However, the

scope of such phenotypes can be extended both in depth by introducing more detailed

categories and in breadth by including additional phenotypes such as face shape and nose

length, as suggested by [130]. Nevertheless, this expansion adds complexity to the eval-

uation process which is already a significantly more complex evaluation strategy due to

the significant number of phenotype categories.

Although race-related facial phenotypes are effective for evaluation of racial bias in

face recognition, it is essential to recognise that the concept of race extends beyond facial

attributes meaning that degrading racial bias to these categories may divert attention from

other aspects of the racial bias issue [71].

Crucially, adopting an unsupervised learning approach for racial bias within face

recognition, rather than overly categorising every attribute of the face, has the potential to

address issues related to group fairness criteria, dataset annotation, and may led the way

for more robust and effective solutions in future research.

7.2.3 Image Generation for Fairness-Racial Bias

Generative neural networks have gained significant pace in computer vision, offering a

different types of utilities for various downstream tasks. More generally, the generative

process enhances our comprehension of data distributions, enables control over data gen-

eration, and facilitates the new data generation (whether random, manipulated, or condi-

tioned) to address imbalanced learning problem.

In Chapters 5 and 6, we leverage these capabilities to mitigate and analyse racial bias

within face recognition. Despite limitations in our generation process, particularly in

challenging imaging conditions including pose and lighting changes, our image-to-image

generation methodology in Chapter 5 have shown significant improvements in mitigating

performance disparities in face recognition. Furthermore, the methodology presented

in Chapter 6 introduces new avenues for examination of racial bias, encompassing both

feature latent space and 2D image space, through its explicit control over race-related
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facial phenotypes (presented in Chapter 3).

The limitations inherent to our methodology in Chapter 6, specifically the inability

to control more intricately entangled features like the nose and mouth, may be mitigated

through the utilisation of enhanced representations beyond those introduced in Chapter 6

or by employing more sophisticated generative models including the integration of diffu-

sion models and transformers [285–287], designed for the precise analysis of racial bias.

Future work in this area will build upon our existing efforts, with a continued focus

on achieving a fully controllable latent space that encompasses race-related facial pheno-

types. This advancement holds significant promise for deepening our understanding of

the attribute-level impact of race-related features on face recognition performance.

It is worth emphasizing that the generative process, while offering great potential, can

introduce various forms of bias. This potential for bias amplification necessitates care-

ful consideration, especially regarding its impact on contemporary face datasets [279].

As their applicability to real-world scenarios continues to expand, future research work

should focus on the assessment of the bias of these models.

Finally, given the limited body of research on the bias of generative networks, we

must remain vigilant about the potential consequences of amplifying specific data as-

pects. These consequences could significantly affect the development and evaluation of

face recognition. The impact of such amplification may not be evenly distributed among

all individuals globally, which raises again another concerns about the exacerbation of

social biases and inequalities, particularly for groups already experiencing disparities and

injustices [68].
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