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Abstract

We study M-Theory solutions with G-flux on the Fermat sextic Calabi-Yau fourfold,
focusing on the relationship between the number of stabilized complex structure
moduli and the tadpole contribution of the flux. We emphasize first the point-of-
view from Hodge theory by using Griffith residues to compute the length of the
flux with respect to the dimension of the Zariski tangent space, and we propose
an alternative approach to check that those are the only results by making use of
elementary number theory.
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CHAPTER 1

Introduction

In string theory, a large class of compactification models come from type IIB or

F-theory [1]. In string compactification, the resulting four dimensional universe

should have no massless scalar fields. Those massless fields come from the Kähler

and complex structure moduli as well as the D-branes moduli, and one way to fix

those complex structure moduli is to turn on appropriately quantized fluxes. A

particularly nice description of those models is to consider the M-theory limit. This

limit allows us to make statements on flux compactifications in a more mathemat-

ically amenable manner. In fact, this will allow us to study the following problem.

Since we require fluxes to fix the various moduli appearing, those fluxes, in turn,

contribute to various brane tadpoles which have to disappear in a compact manifold.

The result is that we have to deal with tadpole cancellation conditions. In the usual

picture, one should expect those conditions to be satisfied easily since there are as

many equations to satisfy as there are moduli, and linear algebra would tell us that

there is always a solution. However, in our case of study, the G4 flux need not take

value in a field, but rather over a half-integers or integers depending on the Calabi-

Yau manifold. Furthermore its length has to be bounded above by some constant.

Thus the usual intuition one has coming from linear algebra does not work and one
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needs to study those types of question more attentively.

This will be our main motivation to study flux compactifications, in particular

the so-called G4 flux in M-theory. On the one hand, flux quantization [2] imposes

that G4 must be integral or half-integral. The set of all G4 fluxes obeying this

condition shall be denoted as:

Λphys :=
{
G ∈ H2,2

prim| G+
c2
2

∈ H4(X,Z)
}
. (1.1)

We will be interested in the case where c2 is odd, which means that despite

appearances, Λphys is not a lattice when taking into consideration this constraint. We

will explore the relationship between this constraint and lattices more thoroughly,

ending up with a parametrization of a lattice resulting in Λphys for X being Fermat’s

sextic fourfold. On the other hand, the tadpole cancellation condition imposes

that the self-intersection of G4 must be below a certain bound. Furthermore, we

require that the resulting physical theory must be supersymmetric Minkowski vacua,

imposing further mathematical constraints on the type of differential form that G4

must be.

We note those conditions by:

G4 ∈ H2,2
prim (1.2)

G4 ·G4 ≤
χ

24
, (1.3)

where χ is the Euler characteristic of the manifold we consider. A priori the bound

is quite tight and we look for obstructions to the existence of solutions G4 satisfying

all conditions above for a smooth manifold. In particular, we need to determine

the length of a given G4 flux and this will be done by using the theory of Griffith

residues and computing their periods.

We explore in this text a set-up where all conditions are readily expressed and

highlight the link between the geometric and arithmetic properties of such fluxes.

The first chapter introduces basic notions that will make sense of the above,

and are used throughout the text. The goal is to provide a minimal introduction

in order to be able to rely as little as possible on conjectures. We largely follow
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the exposition in [3]. The second chapter is devoted to a study of Griffith residues

and their periods to make practical calculations, as well as a mathematical set up

to express all conditions on G4 easily. We finish the second chapter by making

use of simple number theoretic theorems to highlight obstructions to the existence

of solutions and collect evidence for an alternative unifying route to explore this

problem. The third chapter is devoted to applying the second chapter results to the

case of Fermat’s sextic fourfold, and was taken from the work [4]. This will result

in an explicit graph showing the tension between the aforementioned conditions as

well as possible solutions to the problem. Lastly, in the fourth chapter, we highlight

some situations where the previous propositions can be studied thoroughly.

In the first part of the present chapter, we introduce the basics of differential and

algebraic geometry to make sense of the mathematical aspects of the problem and

make sense of the quantization condition, and in the second part we introduce the

problem as it appears in physics, making sense of the tadpole cancellation condition.

1.1 Mathematical setting

We start this section by making the link between algebraic and differential geometry

appear, then introducing some useful tools and concluding with a bit of intersection

theory.

1.1.1 Algebraic varieties

We are first interested in setting the stage of algebraic geometry. We will use this

language heavily throughout the text, but we will make the link with differential

geometry via a key result by Serre.

First let us define complex projective space as follows: CPn, is the space

Cn+1\{0} quotiented by the following equivalence relation:

(z0, ..., zn) ∼ λ(z0, ..., zn), (1.4)

for any non-zero complex λ.
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This means that any points that are linearly related in the complex plane are

identified. All of those descriptions can be found in [3].

In our setting, we will simply understand algebraic varieties as defined as

the zero-locus of some maximal ideal in some polynomial ring CP[x1, ..., xn] over

complex projective space.

However, some further remarks are noteworthy :

1. C is algebraically closed.

2. We work with subvarieties in CPn, the complex projective space.

For example, a particularly interesting class of algebraic varieties are quadrics in

Pn, also known as quadratic forms in n+ 1 variables.

We make the distinction between affine varieties and projective varieties, but

given our context we can simply understand them as being the vanishing locus of a

polynomial or a homogeneous polynomial respectively.

C is algebraically closed but is also of characteristic 0. Furthermore, there is in

principle no obstruction to formally study varieties over some other fields or rings,

at the cost of perhaps introducing abstract varieties or schemes. This is mainly a

first way to point out the fact that we will need to be thorough when tracking over

which ring or field we are working with.

Perhaps more importantly, one has to give those objects some topology in order

to be able to do some kind of geometry on them.

This topology is called the Zariski topology, and it differs from the usual

topology induced by the Euclidean norm in R. It is characterized by its closed sets,

which are defined by the vanishing locus of some polynomial : its roots.

1.1.2 Complex manifolds

In parallel, we can construct complex manifolds, following [5]. One way to under-

stand complex manifolds of complex dimension n is to define them by considering a

real manifold of real dimension 2n and to further add an almost complex structure
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I such that locally:

I
2 = −In, (1.5)

compatible with the metric meaning that for the metric g we have ∀(u, v):

g(Iu, Iv) = g(u, v) (1.6)

We can turn CPn in a complex manifold by picking an appropriate coordinate

system. The coordinate system can be chosen to be the open sets Ui with associated

chart Φi defined by:

Ui := zi ̸= 0 (1.7)

Φi := (z0/zi, . . . , zi−1/zi, zi+1/zi, . . . , zn/zi). (1.8)

The transition functions on the open sets Uij := Ui∩Uj are Φij := Φ−1
i ◦Φj =

zi
zj

which are holomorphic, turning CPn into a complex manifold.

Since this space is a manifold, we have implicitly used the usual Euclidean topol-

ogy in this section. Perhaps noteworthy, the manifold we used in the example is

called complex projective space, clearly a reference to the aforementioned projective

varieties. How are the two constructions related ? The answer is given by Serre

in [6], which relates the two a priori different topologies and constructions on them.

For practical purposes, this means we can essentially use either framework of dif-

ferential or algebraic geometry interchangeably. This is quite powerful since many

results will be easier to state in one language or another.

A particularly important tool that is common to both languages is that of line

bundles. Given a complex manifold X, a line bundle is given by the following data:

• A cover Ui.

• Trivilizations Ui × C.

• Analytical and nowhere zero transition functions.
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In particular, the total space of a line bundle is also a manifold of dimension one

more than the manifold X over which it is defined. Similarly, in algebraic geometry,

one can define locally free invertible sheaves of rank 1, for which the definition

ends up being the same via Serre’s GAGA correspondance between analytic and

algebraic geometry in the complex setting [6]. From this remark, one can see that

hypersurfaces inside complex projective spaces, as manifolds, can be described by

sections of a line bundle.

For notation, we will denote the hyperplane class byH, sections of the hyperplane

line bundle by O(1), and more generally sections of line bundle that are described

by a degree d polynomial by O(d).

1.1.3 Kähler manifolds : a special case

Now that we have introduced an almost complex structure I to our manifold X

with metric g, turning it into a complex manifold, it is also of interest to introduce

a Kähler form J , which is a Hermitian form, meaning it satisfies :

J(x, y) = g(Jx, y). (1.9)

Furthermore we will ask that dJ = 0 so that in fact our manifold X is also a

Kähler manifold. The reason for this will be given after introducing a few more

mathematical notions.

There, the Kähler property plays an interesting role which facilitates the study

of differential forms on complex manifolds immensely. Apart from Poincaré duality,

which is an isomorphism between Hk(X) and Hn−k(X), but another duality of

interest is Hodge duality, which is quite powerful to study Kähler manifolds.

For a manifold X of dimension n, we can define a volume form V ol(X) which

is a nowhere-zero n-form. Then, it is fairly natural to define the Hodge operator

⋆ acting on a differential form P as:

⋆P =< V ol(X), P > (1.10)
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where V ol(X) is the section of Λn(X) the n-th exterior power of the cotangent

bundle of X that is nowhere vanishing, which is the volume form induced by the

metric V ol(X) =
√

det(g)dx0 ∧ . . . ∧ dxn for the metric g, and the inner form <,>

corresponds to the inner form of the exterior algebra of differential forms.

In fact, an interpretation of this formula is the following: it is fairly natural to

ask to ”complete” a k-form into an n-form by appending the ”missing” (n−k)-forms.

In fact, up to a sign due to orientability, taking the bidual recovers the k-form we

started with:

⋆ ⋆ P = (−1)k(n−k)P. (1.11)

Notably, the Hodge ⋆ operator depends on the metric. Furthermore, since we

will work with Kähler manifolds, the volume form defined above is the same as one

that could be built from using the symplectic structure.

Importantly, the example we gave of the complex projective space, and any

submanifold of it, as a complex manifold is also Kähler. It carries a Kähler

metric, known as the Fubini-Study metric. In fact the variety we will work with

is also Kähler. We will make heavy use of the Kähler property and the so-called

Kähler package in the following subsection in order to characterize some important

invariants.

1.1.4 Differential forms of complex manifolds

We have seen that we can use algebraic and differential geometry interchangeably,

and introduced the key example of Kähler manifolds. In this context, we introduce

some key invariants and tools that we will use throughout the text. We assume some

familiarity with Riemannian geometry, which can be found in [7]. The exposition

when specialized to complex manifolds follows [3].

From the point of view of complex manifolds, the almost complex structure I

induces on the (co-)tangent bundles a decomposition in the following way. Com-

plexify the (co-)tangent bundle of the underlying real manifold X by tensoring with

C as TX ⊗ C = TCX. Since I2 = −1 by definition, it has two eigenvalues as ±i.
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This induces a decomposition on the (co-)tangent bundle into a holomorphic (resp.

anti-holomorphic) part, associated to the i (resp. −i) eigenspace which we denote

by T 1,0X (resp. T 0,1X), so that we have: TCX = T 1,0X ⊕ T 0,1X.

In light of this decomposition, we can understand in particular the space of

differential forms. To this end, we note that the cotangent bundle and its exterior

powers must be compatible with the decomposition induced by I. This means that

we have for a given exterior power k:

∧kT ∗
CX =

k⊕
j=0

∧j,k−jX (1.12)

with
∧p,q X =

∧p T 1,0X ⊗
∧q T 0,1X.

Differentials form belonging to
∧p,q are said to be of p-holomorphic parts and

q anti-holormophic parts, denoted as (p, q)-forms. We also need to know the

decomposition of the exterior derivative due to the complex structure. It follows

that:

d = ∂ + ∂̄, (1.13)

where ∂ acts on a (p, q) form to give a (p + 1, q) form, and similarly ∂̄ acts on a

(p, q) form to give a (p, q + 1) form, and, crucially, d2 = 0.

1.1.5 Cohomology theory and Hodge conjecture via Kähler

package

Having introduced those notions, it is natural to introduce the notion of cohomology,

following [5], which is necessary to study the problem of interest. The goal is to study

the behaviour of differential forms under the exterior derivative. Furthermore, we

tie things up by studying the special case of Kähler manifolds at the end.

So let A0, A1, ... be abelian groups forming a cochain complex via homomor-

phisms dn : An → An+1 such that dn+1 ◦ dn = 0.
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We use them to define the cohomology groups Hk as :

Hk =
Ker (dk)

Im (dk−1)
. (1.14)

For our purposes, the cohomology theories to consider are algebraic de Rham

cohomology denoted by an index dR, for which the abelians groups are differential

forms and the homomorphism is the exterior derivative and takes values in the

field you consider your algebraic variety over, and Dolbeault cohomology, where the

groups are given by (p, q) differential forms for a given p and the homomorphism is

∂̄, denoted by an index ∂̄ and takes values in C as such : Hk
∂̄
(X,C).

Note that usual de Rham cohomology for differentiable manifolds has coefficients

in R, but algebraic de Rham cohomology can have coefficients in the field of definition

of the variety we consider.

As an example, we can mention the first non-trivial example which is the circle

S1. For the circle, H0
dR(S

1,R) = R and H0
dR(S

1,R) = R = [ϕ] ·R as well, where ϕ is

the volume form on the circle. The reason it appears is precisely because it is not

globally the differential of a function, meaning there are no functions f such that

ϕ = df on the circle.

Since we are working with groups, it is key to emphasize that we need to pick

coefficient rings over which those groups are defined. A given group Hk of a manifold

X and coefficient ring R, is denoted by Hk(X,R) when necessary to avoid confusion.

We will denote Hp,q instead of Hk in a complex setting.

Furthermore, in the setting we consider, to a cohomology theory Hk(X,R) there

is an associated homology Hk(X,R) theory, and the two are related via Poincaré

duality. This means that if X is of dimension n, we have Hk(X,R) = Hn−k(X,R),

under the condition that X is orientable.

Those two cohomology theories can be used to define some important topological

invariants.

In particular the Betti numbers bi are just the dimensions of H i(X,R), which

can be used to defined the Euler characteristic χ(X) =
∑

i(−1)ibi of X.

In our previous example of the circle, b0 = 1 and b1 = 1 with the higher bi = 0.
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Dolbeault cohomology, which is the analog of de Rham cohomology for complex

manifolds, can be used to define Hodge numbers hp,q = dim(Hp,q(X)).

Those two are the main theories we will be working with, although many exists

and are applicable in different contexts.

We now turn to the special case of Kähler manifolds as a special case where

Dolbeault and de Rham cohomology are particularly well-behaved. The setting is

that of Hodge theory.

Recall that a complex manifold being Kähler implies the following:

• The Laplacians given by either the exterior differential d of de Rham coho-

mology or the one given by ∂̄ of Dolbeault cohomology coincide : ∆d = 2∆∂̄.

• The decomposition of a d-harmonic form in terms of (p, q) holomorphic/anti-

holomorphic forms is again d-harmonic.

• It is also compatible with complex conjugation, meaning that if some (p, q)-

form is d-harmonic, then the conjugate (q, p)-form is d-harmonic as well.

This means that the notion of harmonic forms is quite nice for Kähler manifolds.

In fact this can be understood to be a decomposition of de Rham cohomology in

terms of Dolbeault cohomology, by making use of the fact that de Rham cohomology

classes have a harmonic representation.

Naturally, we are interested in forms lying in H2p whose decomposition lies in

Hp,p, to which we can associate some submanifold in homology. Given that we have

seen that differential geometry and algebraic geometry can be used interchangeably,

and since we study in particular algebraic varieties, are those submanifolds also

subvarieties, meaning they are the vanishing locus of some polynomial as well ?

Note that this conjecture depends on the cohomology group, and hence on the

coefficient ring of said group. For example, in the case of Fermat’s sextic, the

rational Hodge conjecture, meaning with coefficients in Q, is known to be true, but

the integral Hodge conjecture, with coefficients in Z is not known to be true. The

case of interest to us will be the case of the integral Hodge conjecture.

This is the question asked by the Hodge conjecture, and is still open. We

can however notice one thing: if this conjecture holds, it is quite nice for us since
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polynomials are easier to work with than manifolds in general. Note however that

for our purposes, it is neither necessary nor sufficient for the Hodge conjecture to

be true to study the tadpole problem.

1.1.6 Chern classes, Calabi-Yau manifolds and invariants

The last and final tool we will recall is the theory of Chern classes, as well as how to

compute them. Those are characteristic classes, meaning cohomological invariants,

which can be used to tell the differences between vector bundles. The exposition

here follows [3] in order to be able to readily perform computations.

A fairly straightforward way to define them is as follows. For a given curvature

form R of a vector bundle, Chern classes ck are the coefficients of the characteristic

polynomial of said curvature form:

det

(
1 +

iR(t)

2π

)
=
∑
k

ckt
k. (1.15)

Finally, the reason as to why we introduced those tools are the following : if one

wants to have a supersymmetric Minkowski vacua after performing some compacti-

fication, one should use as a compactification space a Calabi-Yau manifold.

The definition of Calabi-Yau manifolds we will use is that they are smooth

compact complex manifolds that have vanishing first Chern class.

Furthermore, we can describe such manifolds as some complex algebraic varieties,

in which case we can use many of the tools we introduced to compute some relevant

geometric properties.

For example, a condition for some N polynomials fj of degree dj in a product

of l projective spaces CP of dimensions ni to form a Calabi-Yau manifold can be

expressed using Chern classes and the adjunction formula [3]:

N∑
a=1

dra = nr + 1 (∀ r = 1, ..., l) . (1.16)

The key observation we make for now is that in general, the degree of the poly-

nomials and the dimensions of the projective spaces are linked via this formula, and
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hence we have a constraint that we will discuss in a later section.

In fact, in the context of algebraic geometry, the adjunction formula can be

understood more generally. Consider the normal bundle short exact sequence for Y

a submanifold of X:

0 −→ TY −→ TX |Y −→ NY/X −→ 0, (1.17)

where TY is the cotangent bundle of Y , TX the cotangent bundle of X and N

designates the normal bundle, which is defined via this short exact sequence. In

particular, for hypersurfaces Y embedded via i in an orientable manifold X, we have

i∗TX = N ⊕ TY .

Furthermore, let KX := det(
∧n T ∗

CX) = det(T ∗
CX) designate the canonical

bundle of X which is an invariant. We can dualize the previous sequence to get :

0 −→ N∗
Y/X −→ TX |∗Y −→ T∗

Y −→ 0. (1.18)

We get :

det(T∗
X |Y ) ≃ det(N∗

Y/X)⊗ det(T∗
Y ) = det(NY/X)

∗ ⊗KY , (1.19)

as well as :

det(TX |∗Y ) ≃ det(T∗
X |Y ) ≃ det(T∗

X)|Y ≃ KX |Y . (1.20)

From which we get the general adjunction formula by tensoring with det(NY/X):

KY ≃ KX |Y ⊗ det(NY/X). (1.21)

The main point to emphasize is that for the specific case of Calabi-Yau manifolds,

we do not know any metric. Thus it is necessary for practical purposes to work

under the assumption of the Hodge conjecture, as this gives a characterization of

the middle cohomology in terms of polynomials, which are easier to compute. In

principle however, this assumption is not needed.
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Furthermore, in order to compute invariants like the Hodge numbers hp,q or the

Euler characteristic χ, we will need a few results from [8] for Calabi-Yau fourfolds.

In particular we need the following :

h2,2 = 2(22 + 2h1,1 + 2h3,1 − h2,1), (1.22)

along with the following arithmetic genus formulas for Calabi-Yau fourfolds with

vanishing first Chern class:

h0,0 − h0,1 + h0,2 − h0,3 + h0,4 =
1

720

∫
(−c4 + 3c22) (1.23)

h1,0 − h1,1 + h1,2 − h1,3 + h1,4 =
1

180

∫
(−31c4 + 3c22) (1.24)

h2,0 − h2,1 + h2,2 − h2,3 + h2,4 =
1

120

∫
(79c4 + 3c22) (1.25)

where on the left hand-side it is the definition of the arithmetic genus for a projective

complex manifold of dimension n, pi, defined as:

pi =
n∑

k=0

(−1)khi,n−k (1.26)

Furthermore, we have the constraint coming from the Euler characteristic χ :

χ(X) =

∫
X

c4(X) =

∫
Pn

c4(X) ∧ dH, (1.27)

where dH is the Poincaré dual of X inside Pn.

So that we can determine the Hodge numbers and the Euler characteristic if we

know Chern classes. We can use the adjunction formula quite easily in the case of

hypersurfaces of degree d in Pn, and the computation of the total Chern class

c(X) is given by the expansion of :

c(X) =
(1 +H)n+1

(1 + dH)
, (1.28)

via the adjunction formula.

This makes the dependence of Hodge numbers and the Euler characteristic with
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respect to the dimension of the underlying projective space and the degree of the

manifold explicit and makes the case of hypersurfaces quite simple because that

dependence is rather straightforward.

Lastly, we need one more result to compute the relevant invariants. This is

based on the observation that the arithmetic genus formula as well as the Euler

characteristic fix only 2 of the remaining 3 Hodge numbers. In some special situation,

we can use the following tool to fix the last one.

To this end, we will need the Lefschetz hyperplane theorem. Let X by an n-

dimensional complex projective variety and Y an hyperplane section such that X\Y

is smooth. The Lefschetz hyperplane theorem states that Hk(X,Z) −→ Hk(Y,Z) is

an isomorphism for k < n− 1 and injective for k = n− 1.

In particular, this allows, along with the Euler characteristic and the arithmetic

genus formula, the determination of the Hodge numbers for hypersurfaces in complex

projective space.

1.1.7 Looking ahead: intersection theory

Since we have introduced many invariants for complex algebraic varieties, the natural

question to ask is to classify possible varieties. For example, we have seen already a

crucial classification problem: the Hodge conjecture.

Following that train of thought, a question that can be asked using the tools we

have introduced is to characterized the subvarieties Y of a given variety X. This

has been of historical importance, for example in the context of classical algebraic

geometry, the classification of conics reduced to asking how many ways can we

intersect a plane and a cone.

Here, we have noted that in any cohomology theory, we can associate a dual in

homology under the condition that X is orientable.

Thus, computing the length of a (real) differential form G :

G ·G :=

∫
X

G ∧G, (1.29)

is the same as computing the intersection number of the dual in homology and we
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formally identify both.

Naturally, this question has particular settings where it is remarkably rigid and

relatively easy, such as the case for curves. Indeed, for curves the definition of inter-

section multiplicity which can be found in [9] fully determines the computation

of intersection numbers.

However, we will be mainly interested in fourfolds. In particular we have seen

that we are mainly interested in H2,2 ∩ H4. In this language, we are interested in

computing intersection numbers of surfaces inside fourfolds.

A result in intersection theory we will use later on is that transverse intersections

between holomorphic submanifolds always have an intersection number of +1.

This question is in general hard to answer, but for special cases we will introduce

tools in chapter 2 which can be used to give answers.

1.2 Physics setting

In this section, we introduce the physical origins of the problem. We will first focus

on some motivation for studying the so-called tadpole problem. We start by stating

the physics setting from the point of view of type IIB string theory, and then

translate everything to the point of view of M-theory which we will use in the rest

of the text.

1.2.1 Type IIB supergravity action

Our starting point is the bosonic part of the low energy effective action of type IIB

strings, which is given by, in the democratic formulation :

SIIB =2π
(∫

d10xe−2ϕ
(√

−gR + 4∂Mϕ∂Mϕ
)
− 1

2
e−2ϕ

∫
H3 ∧ ⋆H3 (1.30)

− 1

4

4∑
p=0

∫
F2p+1 ∧ ⋆F2p+1 −

1

2

∫
C4 ∧H3 ∧ F3

)
,
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following the conventions of [10]. Where we have introduced the following field

strengths :

F1 = dC0 (1.31)

F3 = dC2 − C0dB2 (1.32)

F5 = dC4 −
1

2
C2 ∧ dB2 +

1

2
B2 ∧ dC2 (1.33)

F5 = ⋆F5 (1.34)

F9 = ⋆F1 (1.35)

F7 = − ⋆ F3 (1.36)

H3 = dB2 (1.37)

The condition F5 = ⋆F5 must be supplemented in 1.30. Using this formulation,

we can see that the C act as potential for the field strength F and that type IIB

only has even potentials.

Some interesting objects in string theory are branes. For the particular action

1.30, the main topic of interest will be D7-branes, which are magnetic sources for

the RR axion C0.

1.2.2 D7-branes in type IIB supergravity

We will first explore the behaviour of 7-branes in the context of type IIB in order

to showcase the subtleties that arise in flux compactifications.

In the context of type IIB strings, we can understand p-branes as source terms

in the normal n = 9 − p spatial directions. Typically, source fields can be thought

of as fundamental solutions to Poisson’s equation in n-dimensions :

∆ϕ(x) = δn(x)

As is well known, they behave as :

ϕ(x) ∝ 1

xn−2
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for n > 2. This is the equation of motion for the C fields.

Crucially, this converges (except at 0) precisely in those cases n > 2. However,

they scale logarithmically when n = 2, and the complex logarithm admits a branch-

cut, showing the difficulties in this case. While this is heuristic, it highlights the

main difficult in type IIB compactifications : n = 2 corresponds to p = 7, which

motivates the study of D7 branes.

In the usual language, the field sourced by a 7-brane is denoted as C8, which is

dual to C0. Note that C0 appears in the above action as F1 = dC0. In the language

of differential forms on a complex manifold, we can thus write our Poisson equation

for C8 in the presence of a D7 brane at some point zD7 as :

d ⋆ F9(z) = δ2(z − zD7)

By duality we also have that F9 = ⋆F1 which implies, in integral form :

∫
⋆F9 =

∮
S1

dC0 = 1 (1.38)

in a neighborhood of the brane.

Defining formally for now the axio-dilaton τ as :

τ = C0 + ie−ϕ (1.39)

where < eϕ >= gs
1 with gs the string coupling constant. Importantly, τ is holomor-

phic from the equation of motion.

Paying attention to the axio-dilaton as defined in 1.39 we can write :

τ(z) = τ0 +
1

2πi
ln(z − zD7) + ... (1.40)

Justifying our previous heuristics.

The logarithm branch-cut induces a monodromy τ → τ + 1. Considering mag-

netic dualities between fields, recalling that 7-branes are electric sources for C8 and

1< . > denotes the vacuum expectation value
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thus a magnetic source for the dual C0, we can now see via 1.38 that τ is sourced

by D7-branes.

1.2.3 SL(2,Z) invariance and the axio-dilaton

In light of those results, we have reasons to look for a description of those non-

pertubative effects. In fact, what those heuristics have shown is that the divergence

in the axio-dilaton τ indicates a position of a 7-brane. We expose here some more

properties of τ .

One can observe that the action 1.30 can be written to show manifest SL(2,Z)

invariance in the following manner [11] in the Einstein frame:

S̃IIB = 2π

∫
d10x

√
−g

(
R− ∂µτ∂

µτ̄

2(Im τ)2
1

2

|G3|2

Im τ
− 1

4
|F5|2

)
+

1

4i

∫
1

Im τ
C4 +G3 ∧ Ḡ3,

(1.41)

where we have introduced the G3 field strength :

G3 = F3 − τH3. (1.42)

The main point of the type IIB action written this way is the manifest SL(2,Z)

invariance, given by the following transformations via

M =

a b

c d

 ∈ SL(2,Z)

, as :

τ → aτ + b

cτ + d
(1.43)C2

B2

→ M

C2

B2

 (1.44)

C4 → C4 (1.45)

gµν → gµν . (1.46)

From our previous discussion resulting in 1.40 and showcasing a branch-cut, we
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can identify the presence of a D7 brane on the monodromy τ → τ+1 by interpreting

it as an SL(2,Z) monodromy with :

M[1,0] =

1 1

0 1

 .

This motivates the introduction of a notation to handle the presence of branes

following [12]. Let us note a dyonic state with p and q coprime by (p, q) = Φa,

which naturally couples to the combination pB2+ qC2. We can then form them into

a vector as in 1.43 to form an SL(2,Z) charge vector Qa.

By definition, a (p, q) string ends on a [p, q] 7-brane. Hence, acting on Qa by an

SL(2,Z) matrix g[p,q] such that :

g[p,q] =

 p r

−q s

 , (1.47)

which induces a monodromy on [p, q] 7-brane via :

M[p,q] = g[p,q]M[1,0]g
−1
[p,q]. (1.48)

The main point is the following [13]: we expect stacks of branes to give rise to a

non-abelian gauge group. Usually, we only get SU(N) as a gauge group when we

consider only Chan-Paton factors. However, this dyonic system can admit several

other non-abelian gauge groups, in particular the ADE groups.

In the first instance studying the expansion of the axio-dilaton, we understood

that the divergences indicates the positions of 7-branes, but now we also understand

that the monodromy of the axio-dilaton encodes the types of 7-branes appearing as

well.

Furthermore, since, broadly speaking, branes lead to gauge groups in the com-

pactificatified theory, this motivates the study of F-theory through the lens of this

important SL(2,Z) invariance. In fact, the idea of F-theory is to identify the

SL(2,Z) invariance with the data of an elliptic fibration to keep track of τ .

Lastly, to give some further informal motivation, we recall as stated earlier that
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branes act as sources for some fields. They also are dynamical and hence there is

some back-reaction induced by the presence and position of branes. Hence F-theory

is one way to study those backreactions.

1.2.4 Singularities and gauge groups

The main insight from the SL(2,Z) invariance is that we can study it via elliptic

fibrations as follows, first described in [14]. An introduction of the mathematics

behind elliptic fibrations can be found in [10].

We admit that an elliptically fibred Calabi-Yau fourfold can be described using

a Weierstrass model :

y2 − (x3 + fxz4 + gz6) = 0, (1.49)

where f and g are two polynomials, depending on the base of the fibration.

We can introduce the discriminant of this elliptic fibration ∆:

∆ = 4f 3 + 27g2, (1.50)

if ∆ = 0, the fibre is not smooth. In fact, [15] [16] provide a classification of co-

dimension one singularities.

Furthermore, elliptic fibrations admit an invariant called the j-invariant defined

as follows.

Let E be an elliptic fibration, and j its j-invariant :

j(E) :=
c34(E)

∆
. (1.51)

In the context of F-theory we can rewrite the above formula as :

j(τ) :=
4(24f)3

4f 3 + 27g2
, (1.52)

where τ is the axio-dilaton.

This means that the poles of the j-invariant corresponds to the monodromies,

20



which can be identified with those of the branes, and in turn their location at those

singularities.

This classification associates to each type of singularity an ADE Lie algebra and

appears to be for purely combinatorial reasons from the mathematical point of view.

From the physics perspective, this translates to the gauge group associated with a

stack of 7-branes.

In short, there is a correspondence between the singular locus of the elliptic

fibration and the union of loci of branes. Since loci of branes induce gauge groups

in the compactified theory [17], we have a correspondence between singularities of

the elliptic fibration and gauge groups.

Thus singularities are quite important and this leads to the following interpreta-

tion from physics. Since singularities encode the gauge algebras of the theory, we can

hope that the gauge groups appearing in, for example, the Standard Model single

out the geometry by forcing certain types of singularities. On the other hand, the

appearance of those singularities provide a geometric explanation for the existence

of gauge groups, meaning the choice is no longer arbitrary.

1.2.5 M-theory point-of-view

Due to string dualities, there is yet another point of view to study how elliptic

fibrations arise, which is the point of view of M-theory. In fact, there is a duality

between type IIB compactified on a circle and M-theory compactified on a torus.

We derive this here following [10] and [8], mainly in order to introduce some notation

and the object of interest, the G4 field strength.

Start from the bosonic part of the 11d supergravity action :

S = 2π

(∫
R1,10

√
−gR− 1

2

∫
R1,10

dC3 ∧ ⋆dC3 −
1

6

∫
R1,10

C3 ∧G4 ∧G4 +

∫
R1,10

C3 ∧ I8

)
,

(1.53)

where crucially we have introduced the G4 field strength which is :

G4 = dC3, (1.54)

21



and some topological higher-order curvature term I8, which will be of importance

when discussing G4.

For our purpose, we will skip most of the details, which can be found in [18].

The key result we will use is that M-theory compactified on an elliptically fibred

fourfold X with base B and fiber volume V is dual to the circle reduction of radius

R of type IIB on B via R ∼ 1
V
.

From now on, we will take the point of view of M-theory and study the G4 field

strength introduced above. The main reason is that this point-of-view allows us to

highlight issues with respect to flux compactifications.

Crucially, the G4 field strength backreacts on the metric, but it stays Calabi-

Yau up to warping, motivating further this point-of-view. A priori this is non-trivial

since you expect the Calabi-Yau property to be lost upon backreaction.

To motivate further this perspective and introduce some basic mathematical

tools we will use later on, it is a good exercise to study the G4 field strength from

a physics perspective ( i.e. through string dualities and physical objects ) and a

mathematical one as done in [18].

G4 field strengths are by definition 4-form living on some orientable Calabi-Yau

manifold X of (real) dimension 8, and thus there is a canonical pairing with respect

to pair G4 with a 4-cycle in homology via Poincaré duality.

Since they lie in some cohomology class, to understand them we need to under-

stand the (co-)homology of the underlying manifold.

In the general physics picture, the homology class represents the flux line corre-

sponding to the field strength, which emanates from charged objects. Essentially a

higher-dimensional analog to the usual electromagnetic theory, which is something

we already mentioned in the type IIB picture.

From the M-theory picture over R1,2×X where X is an elliptically fibred fourfold

over a base B, we can supplement 1.53 with M2-brane sources.

In this picture, the equation of motion for G4 are, from this point of view,
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the following :

d ⋆ G4 =
1

2
G4 ∧G4 − I8 +

NM2∑
i=1

[M2]i (1.55)

Where the brackets indicate the positions of the i M2-branes and NM2 the total

charge (total number of branes). We can integrate the I8 term over X to give the

following [18] [19]:

∫
X

I8 =
χ(X)

24
. (1.56)

where I8 is as noted before topological.

Now finally we can arrive at the tadpole cancellation condition in the M-theory

picture as :

NM2 +
1

2

∫
X

G4 ∧G4 =
χ(X)

24
(1.57)

1.2.6 Moduli stabilization and G4

In the bigger physics picture, we need this field strength to give some potential to

the complex structure moduli in the compactified theory, in order to make them

massive which may allow for stabilization. This is a general feature of Kaluza-Klein

theory : compactification induces the creation of moduli, and those moduli need to

be stabilized, which fluxes allow for in the setting of string theory.

Indeed, Kaluza-Klein theories, upon compactification, typically lead to a tower of

massless fields. The goal of turning on fluxes is to act as a potential for those massless

fields and in turn stabilize them. Since we are interested in vacuum expectation

values in quantum field theory, we want to avoid the appearance of such massless

fields. Hence stabilizing really means giving them a mass, and we want to stabilize

all of them.

This stabilization process crucially depends on the Hodge operator as follows.

Let us write the action S of a field strength F in a very formal manner and focus
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on the kinetic part :

S ∝
∫

F ∧ ⋆F.

The key observation here is the presence of the Hodge star operator which ex-

plicitly depends on the metric. In the context of Kaluza-Klein theory, it generically

translates to an effective potential for the related moduli, leading to the idea that

it may stabilize them.

This is the Lagrangian for the G4 flux we are interested in. Furthermore, upon

compactification, we can specify several properties of this G4 depending on the

physics we impose as follows.

Introducing Ω as the holomorphic top-form of our elliptically-fibred Calabi-Yau

fourfold X and J as its Kähler form, we can write the minimas of the Gukov Vafa

Witten superpotential, or GVW superpotential that arises when compactifying

to 3 dimensions from the G4-field strength as [20] [21]:

W =

∫
X

G4 ∧ Ω (1.58)

W̃ =

∫
X

G4 ∧ J ∧ J, (1.59)

where W is the chiral GVW superpotential while W̃ is the real version of this

superpotential [22].

Adding the requirement that the vacua must be supersymmetric and Minkowski

leads to :

DiW = 0 (1.60)

∂kW̃ = 0 (1.61)

W = 0, (1.62)

where i = 1, 2, ..., h1,3, k = 1, ..., h1,1, Di = ∂i+∂iK andK is the Kähler potential.

Since G4 is a 4-form, we can prove some further properties of the G4 flux from

such equations 1.60. Since G4 is real, we can infer from W = 0 =
∫
X
G4∧Ω that its
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component of type (0, 4) (and thus (4, 0) because it is real) vanishes due to

Ω being (4, 0).

Furthermore since DiΩ form a basis of H3,1 forms, the (1, 3) components

vanish and so do the (3, 1) components.

Lastly, expanding J in a basis of H1,1 forms j as J = akj
k, we can also see that :

∂kW̃ = 0 ⇐⇒
∫
X

G4 ∧ J ∧ jk = 0 (1.63)

implies that G4 ∧ J = 0 and thus G4 is a primitive form.

The requirement that it should be harmonic then, assuming the Hodge conjec-

ture, translates to the form being of Hodge type (2, 2).

The reason it is a bit naive is that the general idea that it suffices to count

the number of constraints to be able to tell if a given system admits a solution is

only true over a field in which case systems form vector spaces, as in linear algebra.

However, G4 is crucially part of a Z-module, and not a vector space.

Indeed, if it were in fact a vector space, we could easily normalize such a G4 flux

due to the presence of inverses for scalars. This is not the case here.

We can make a few comments and rewrite the conditions that must be obeyed

by G4 to be easier to manipulate. First of all, the second Chern class of X may not

be divisible by two. In fact, in the example we will study it is not divisible by 2.

However this requirement can also be understood, thanks to Poincaré duality in the

following way:

(
G4 +

c2(X)

2

)
· ω = n ∈ Z, (1.64)

for all ω, where ω ∈ H4(X,Z), and where the dot is just the intersection pairing in

cohomology. This intersection product is Z or Z+ 1
2
valued. From this we distinguish

between two cases : either c2(X) is even in which case there is a priori no problem,

or c2(X) is odd. In the latter, this means that G4 is also in Z+ 1
2
.

We will introduce some notation to make the distinction between integral and

half-integral cases more explicit. Let P be the inner form in H2,2 ∩ H4(X,Z)prim.

We notice first that a half integer cannot be a multiple of two, and that every half
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integer can be written in the form n
2
where n is an odd integer.

We define Q the rescaled inner form as the quadratic form such that, from

the inner form P in H2,2∩H4(X,Z)prim that is typically rational, we get an integral

form, by multiplication of the LCM of the denominators. This is typically needed

in the case where c2 is odd or the integral Hodge conjecture is false. Note that this

a priori only takes care of the length condition, and some further refinement may

be imposed depending on the chosen variety.

Working under the assumptions that there are no anti-M2 branes present and

thus NM2 ≥ 0, the second condition can be put in the form of an inequality :

χ(X)

24
≥ 1

2
G4 ·G4 (1.65)

Coincidentally, the absence of anti-M2 branes corresponds to N = 1 supersymmetric

Minkowski vacua.

In short we have:

G+ c2/2 ∈ H4(X,Z) (1.66)

χ(X)

24
≥ 1

2
G4 ·G4. (1.67)

In mathematical language, it translates to finding a Z-linear combinations of

harmonic forms that are below a certain bound, possibly working with a certain

parametrization that allows only certain Z-linear combinations.

The main thing to note is that in general, meaning without working in a basis

of harmonic forms, and assuming the Hodge conjecture, we can make the argument

those two conditions are non-trivial working over Z a bit more precise as follows :

1. H2,2
prim ∩H4(X,Z) is a Z-module, which admits many bases.

2. The intersection pairing in the middle cohomology of an even dimensional

manifold is a quadratic form.

3. Since the basis of our Z-module may not have any particular property with

respect to the Hodge structure, a generic solution written in this basis needs
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to typically have many non-zero coefficients in its Z-linear combination of

generators, which is a basis-dependent statement.

4. Thus, in terms of intersection pairing, the result can be well below the bound

imposed by physics.

To discuss those points, we will illustrate the tension by studying some G4 field

strength living in Fermat’s sextic fourfold at the Hodge locus from different point

of views. Despite this fourfold not being elliptically fibred, we will showcase some

recent mathematical results that allow some computations to be carried out.

In light of the results we will get, we will discuss some possibilities for solutions

to tadpole issues to be found from different point of views, as well as discuss some

inputs from physics that may prove to be crucial and need to be the object of further

studies.

One can point out that in [23], the authors state some implications of the non-

existence of such fluxes and accordingly provide some examples of fourfolds where

there is no flux satisfying both criterias 1.66.

Our goal here will be to provide another point-of-view on this problem via the

example of the sextic, and state some conjectures and arguments supporting them,

such that one may be able to construct examples of fourfolds which do admit a

solution or some mathematical tension that need to be clarified.

We lastly note we can split the problem of finding G4 fluxes according to those

conditions in the following way. Let us introduce the set of general Hodge cycles,

that respect 1.64 as :

SH(X) := {G4|G4 +
c2
2

∈ H4(X,Z), G4 is primitive of general Hodge type (2,2)},

where a general Hodge cycle here is an H2,2 ∩ H4(X) cycle that stays H2,2 as we

move through moduli space.

This definition of SH(X), using that G4 is of general Hodge type (2, 2), implies

that all moduli are stabilized if appropriately quantized.

Naturally the condition on G4 being general Hodge is quite difficult, and we will

specify a way to check for this condition later on.
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Let us further introduce the set of field strength below the tadpole bound:

S(Q, T ) := {G ∈ Zn | ∃ k ∈ Z, Q(G) = k ≤ T} (1.68)

which is the set of all G, coordinates in a chosen basis of H2,2
prim(X,Z) where Q is the

rescaled inner form of H2,2
prim ∩H4(X,Z) in a chosen basis, such that the associated

G4 flux is below the tadpole bound T with a length of k.

In essence, the conjectures in [23] translates to the following.

We expect that for most smooth Calabi-Yau fourfolds X we have :

SH(X) ∩ S(Q, T ) = ∅ (1.69)

Where we do not exclude potential edge-cases that need to be character-

ized.

This translates to classifying fourfolds according to this physics problems. A

very important remark is that the set of SH(X) can be quite big, and in fact infinite

since any integral multiple of a general Hodge cycle will be again a general Hodge

cycle, whereas the set S(Q, T ) is finite, which suggests an approach we will detail in

the following section. Naturally, the assumption on smoothness is quite strong and

we will discuss this assumption studying the Fermat’s sextic.
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CHAPTER 2

Length and quantization condition : possible approaches

We present here two approaches to the tadpole problem. The aim is to provide a

review of results in as much generality as possible, while providing some references

and commenting the way we will interpret and use those results.

The first section presents some tools in Hodge theory and introduces the relevant

tools to study the tadpole conjecture. It is followed by section two on Fermat

varieties, where we specialize the discussion of section one to Fermat’s varieties which

offer a nice example where the computations are feasible, and allows us to comment

on the various assumptions behind the tadpole conjecture, such as smoothness. This

culminates in stating the general approach we will take for Fermat’s sextic in chapter

3.

The second section presents some tools in lattices-theory and number theory.

The goal is twofold : review the computational tools used in the case of the sextic,

and showcase the underlying arithmetic structure of the problem. We try to provide

some alternative approaches to the one mentioned in section 2.3 at the end of this

chapter.
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2.1 First approach : Hodge theory, residues and

algebraic cycles

As introduced previously, we want to study some self-dual 4-form of Hodge type

(2,2) that obeys 1.66. This requires not only knowing what the cohomology groups

H2,2 and H4 are but also seeing them as modules and finding points inside those

modules.

The modules of interest in this context are finitely generated and possess some

generators. In fact, in parallel with the theory of vector spaces (which are just free

modules but over some field), it has many different bases.

Furthermore, since we do have Poincaré duality, we can study the problem in

terms of homology or in terms of cohomology : because we only care about the mid-

dle cohomology of an even-dimensional manifold of complex dimension 4, Poincaré

duality states that H4 is isomorphic to H4 in that case.

So, we need to provide results that allow us to :

1. Compute a basis of the middle (co-)homology module.

2. Compute elements inside that module.

3. Check that they are Hodge and below the bound 1.66.

We can observe right away that there are in principle many different bases for

a given module. Furthermore, depending on the dimension of the module and the

bound, enumerating all elements that might satisfy 1.66 is computationally intensive.

An important observation is that there is in fact one basis for which the problem

is quite simple. For example, working in homology, the basis of Hodge cycles is

quite appropriate since we can form linear combination of generators, guaranteeing

we are Hodge, and the constraint in that case essentially comes down to finding

short elements.

2.1.1 Algebraic subvarieties and algebraic cycles

Since we now talk about Calabi-Yau varieties, rather than manifolds, it is natural to

ask about subvarities. Indeed, since we are interest in homology and we will make
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heavy use of Poincaré duality, some formalism need to be introduced there.

While the definition of a subvariety follows from the definition of a variety, we

need to introduce the related notion of algebraic cycles.

First of all, we can classify subvarieties by either their dimension, or by their

codimension. Here we will use the dimension.

Then an algebraic cycle C is a formal linear combination of subvarieties S of

some variety V :

C :=
∑
i

aiSi ∈ V (2.1)

For example, if our variety V is not irreducible, then an algebraic cycle of max-

imal dimension is merely a linear combination of irreducible components.

In terms of homology, we can naturally associate a homology class to some cycle

C to the sum of the classes of its components, formally :

[C] :=
∑
i

ai[Si]. (2.2)

For example, quadrics and quadratic forms have a codimension that can vary

widely. If the quadratic form is defined by a matrix A(x) · y for vectors x, y, the

codimension can vary widely depending on the entries of A. If the resulting variety

is for example smooth of dimension 2, an example of algebraic cycle would be formal

linear combination of curves ( dimension 1 subvarieties ) sitting inside the variety

defined by the quadratic form. This is analogous to the historical construction of

conics.

In the set up we will consider in the following, we can make this definition less

abstract and consider algebraic cycles as follows.

A complete intersection algebraic cycle stems from a factorization of the equation

of the variety X. Namely, for polynomials fi of degree di an algebraic cycle of type

(d1, d2, d3) will be those that form factor with the defining equation of X as:

F = f1P1 + f2P2 + f3P3,
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where we only consider those algebraic cycles that are complete intersections defined

by f1 = 0, f2 = 0, f3 = 0.

Naturally, we have to fix some ring R for the homology groups. We are mostly

interested in the case where R = Q or R = Z.

Since we have made some assumption about the varieties we work with, we can

state the Hodge conjecture:

If V is a projective complex manifold, then every Hodge class on V is algebraic.

Naturally we need to emphasize the difference between rational or integral Hodge

conjecture. Note that the ring of definition of the coefficients must be obviously the

same in both cohomology and homology, meaning when we work in some Hodge

cohomology class Hp,p∩H2p(V,R) we also need to have the coefficients of the linear

combination defining [C] to be in R. The current state of this conjecture depends

on the variety studied.

However, we do note that, in the cases where it is not a conjecture, it is quite

a powerful tool since we have an algebraic way to described our basis of choice for

the tadpole problem.

2.1.2 Introducing residues

For now, we will focus on the tools we can use to find generators of those modules.

For our purposes, the most appropriate tool to solve this issue is the usage of the

theory of residues and their periods. In particular, we will restrict ourselves to study

hypersurfaces since in that case, it will be fairly straightforward to showcase some

interesting results and point out the subtleties that arise when studying the tadpole

problem.

As per usual, let X be a smooth algebraic variety of degree d defined by f = 0,

an hypersurface of CPn+1. Furthermore, let us assume the dimension n of X is

even, as is the case in the M-theory picture introduced in the introduction. Let P

be some monomial z0, z1, ..., zn+1 and let us denote by β the tuple of the degree of

each variable such that |β| = (k + 1)d− n− 2 and where k is an integer describing

which part of the cohomology we work with. For example, k = 1 for Fermat’s sextic

fourfold corresponds to h1,3.
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Let us, with that notation, define residues forms ωβ as the following :

ωβ = Res

(
PβΩ

fk+1

)
∈ Hk

dR(X)prim, (2.3)

with β = (β[0], β[1], ...) and Pβ = x
β[0]
0 x

β[1]
1 ... To understand this we need to intro-

duce the residue map. To define this, consider a cycle C ∈ Hn−1(X,C) and take a

tube T (C) around it that lies within the complement of X. Since this is an n-cycle,

we can integrate a rational n-form Q around it to get a number by computing the

integral :

∫
T (C)

Q = a, (2.4)

where a is some number.

The parallel here should be drawn between this formula and Cauchy’s residue

formula. In Cauchy’s case we have :

1

2πi

∫
γ

dz

z
= 1, (2.5)

where γ is a contour encircling the origin, while in this generalization to arbitrary

differential forms α we have:

1

2πi

∫
γ

dz ∧ α

z
= α (2.6)

Due to the duality between homology and cohomology, this also implies a coho-

mology class which is the residue, given by the residue map. In summary this is

a map :

Res : Hn(Pn\X,C) −→ Hn−1(X,C) (2.7)

We will not study this map in great details and mostly use the results in [24]

[25]. The important lesson here is that it allows us to describe the modules we are

interested in by computing integrals. Those integrals can be called periods of the

cycle defined by the domain of integration.
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Furthermore, notice that in general there is no guarantee that the resulting

number is an integer. However, we do know that it is primitive, which was one of

the requirement we needed to study the tadpole problem in the M-theory picture.

Lastly an important comment : residue forms are not necessarily exactly dual

to algebraic cycles. That would be the case if the Hodge conjecture is true, showing

once again the importance of this conjecture, but also that residue forms are a rather

convenient tool regardless of the state of this conjecture.

2.1.3 Vanishing cycles

Now that we have an appropriate tool to make computation we need the right

setting, which is to have some basis of the (co-)homology modules with respect to

integral coefficients.

To this end we need to introduce vanishing cycles, which we denote by δβ′ .

Rather than opting to state the definition in all its abstraction, and since we are

just here stating result that we will use, we will simply mention here that they form

generators of the integral primtive middle homology, and we can compute their

periods.

The main point is that, as we move around in moduli space, we can use them to

describe the middle cohomology of our family of varieties. An example of vanishing

cycle is given in 3.29.

Let us give an example of how vanishing cycles work by considering the example

of projective curves. Let us consider a family of curves Xt degenerating into a

singular curve Xs. By considering a basis αt, βt of H
1(Xt) so that in the limit t → 0

we have β0 ∈ H1(Xs) and αt → 0 as t → 0. This gives a new basis of H1(Xs) that

is related to the old basis via Picard-Lefschetz.

This is equivalent to studying the singular curve at different affine patches and

seeing how they glue together, and noticing that the α are disappearing, hence the

name ”vanishing”.

An important note for the example we study, Fermat’s sextic, is that to have a

proper basis you also need to add a linear algebraic cycle as the vanishing cycles do

not suffice. In general this can be seen from the Leray-Thom-Gysin sequence
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in homology [26, §4.6].

From this result, which is again some number in general, we can infer that by

rescaling the residue forms ωβ we can hope that this number is in fact an integer,

which means we in principle have found a basis over Z of the primitive middle

cohomology in terms of rescaled residue forms.

As with residue forms, we want to highlight that the Hodge conjecture does not

necessarily need to be true for vanishing cycles to exist and be used to study our

problem.

2.1.4 Intersection pairing formula

Lastly, we can also formally compute :

ωβ1 · ωβ2 :=

∫
X

ωβ1 ∧ ωβ2 (2.8)

as well, which essentially means we have in principle ”solved” the issue of computing

the length of the G4 flux, as we have a basis in cohomology, and a way to compute

intersections.

We need an explicit formula for the intersection pairing 2.8. In the context

of smooth hypersurfaces X of degree d, complex even dimension n and defining

equation F = 0, we can compute the intersection pairing using [25] :

∫
X

ωβ1 ∧ ωβ2 =
−(2πi)n

n!
2

· c · (d− 1)n+2d, (2.9)

where c ∈ C is the unique number such that :

Pβ1Pβ2 = c · det(H(F )) mod(J(F )), (2.10)

where J and H are respectively the Hessian of F and the Jacobian ideal of F .

The Jacobian ideal is defined, for R a ring, as :

J(F ) = R[x, y, z, . . .]/(F, ∂xF, ∂yF, . . .) (2.11)
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meaning it’s the ideal generated by partial derivatives of F , while the Hessian here

is the classical Hessian from calculus.

This formula 2.9 contains the parameters you expect it to contain in the form of

the degree d and the dimension of the ambient space n, since it counts intersections.

Furthermore for our purpose of studying Hodge cycles, we notice the importance

of modding out by the Jacobian ideal of F , which in turns determines how we can

pair the polynomials Pβ1, Pβ2.

Of course when computing the constant c, there is an implicit dependence on

the degree of the Fermat variety considered since it will typically be inversely pro-

portional to dn+2(d− 1)n+2.

2.1.5 Hodge locus

This means we now need to know if a given G4 flux in this basis is also of Hodge

type (2,2) or not. To this end we need to define what is a Hodge locus.

Let us then consider degree 2p Hodge classes and consider the subset of Hp,p ∩

H2p(X0) for some variety X0 inside a family of varieties Xs. As s moves, typically

forms in Hp,p ∩H2p(X0) will not be Hp,p anymore. We are here interested in forms

that do stay invariant and if this subset is of maximal dimension, we call it the

Hodge locus.

This means in pratical purposes that if we find a G flux such that it has a Hodge

locus of maximal dimension, then we know that it will be of general Hodge type

(2, 2) (for the case of fourfolds).

Perhaps a few general comments are needed there. First of all, despite the

problem being reduced to some simpler questions, the calculations are still compu-

tationally expensive. Moreover, we do not in general look for integers since c2(X)

might be odd as discussed earlier, and we need to look for half-integers, a condition

which needs to be taken care of when doing any computations.

However the important observation is that the Hodge conjecture is just a tool,

and while the intersection with the tadpole problem is non-zero, it is a priori neither

necessary nor sufficient to solve the Hodge conjecture to understand the tadpole

problem and solve it.
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Furthermore we can now make the arguments introduced in the introduction

more precise : when working with the basis of residues, for G4 to be in the Hodge

locus, it requires in general to have a G4 which has many non-zero coefficients.

In turn, the length of the flux is given by a quadratic form because X is even

dimensional, turning on many non-zero coefficients tends to increase the length.

This is the expected feature of basis that is in fact not Hodge.

2.2 Fermat varieties as an example

Let us in this section emphasize that the tools introduced before are valid regardless

of the fourfold taken. With that in mind, we can still pick a slightly more general

setting that the one imposed by physics to make some observations that are not

otherwise obvious.

In this section we define Fermat varieties X as degree d hypersurfaces of dimen-

sion n in CPn+1:

X :=
n+1∑
i=0

xd
i = 0. (2.12)

2.2.1 Vanishing cycles and Hodge locus for Fermat

We specialize the discussion of the previous section to the case of Fermat varieties.

In this context, the family of varieties to consider will be the affine patches obtained

from setting one coordinate to 1.

For vanishing cycles δβ′ and residue forms ωβ, we have the following formula

from [27]:

∫
δβ′

ωβ =
1

dn+1 n
2
!(2πi)

n+1∏
i=0

(ζ
(βi+1)(β′

i+1)

d − ζ
(βi+1)β′

i
d )Γ(

βi + 1

d
), (2.13)

for primitive h2,2 forms and we have used the following definitions:

• For vanishing cycles, for every β′
i ∈ {0, 1, 2, 3, 4, . . .}n+1 consider the homolog-
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ical cycle

δβ′ :=
∑

a∈{0,1}5
(−1)

∑5
i=1(1−ai)∆β′+a

where ∆β′+a :
[
∆4 := {(t1, t2, t3, t4, t5, . . .) ∈ Rn+1 : ti ≥ 0 ,

∑n+1
i=1 ti = 1}

]
→

U0. An affine patch is given by

∆β′+a(t) :=
(
ζ
2(β′

1+a1)−1
2d t

1
d
1 , ζ

2(β′
2+a2)−1

2d t
1
d
2 , ζ

2(β′
3+a3)−1

2d t
1
d
3 , ζ

2(β′
4+a4)−1

2d t
1
d
4 , ζ

2(β′
5+a5)−1

2d t
1
d
5 , . . .

)
.

• For residue forms, we have :

ωβ := Res

(
xβΩ0

Q(x)k+1

)
,

where

Ω0 =
n+1∑
i=0

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dx5 ∧ . . . ,

where we omit the term dxi and where Ω0 is the standard degree d top form

of Pn+1, xβ is the monomial

xβ = xβ0

0 xβ1

1 xβ2

2 xβ3

3 xβ4

4 xβ5

5 . . . ,

with |β| := 1
d

∑
βi = k ∈ Z, 0 ≤ βi ≤ n, and 0 ≤ k ≤ n determines the Hodge

type:

ωβ ∈ Hn−k,k(X) .

The Hodge locus will be described via a matrix ρIJ defined as

ρIJ = ωβI+βJ
·G4, (2.14)

where |βI | = |βJ | is appropriately chosen, eg 1 for Fermat’s sextic.

A G4 flux will be general Hodge if the associated matrix ρIJ is of maximal rank.

Indeed, denoting the associated square matrix by ρ(G) := ({ρIJ(G)}I,J), it follows
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that, for a family of hypersurfaces T parametrized by t, with special point t0:

rank ρ(G) = Codim(Tt0VG ⊆ Tt0T) , (2.15)

where Tt0 is the Zariski tangent space, and VG is defined by :

VG := {t ∈ (T, t0)|Gt ∈ Hp,p(Xt) ∩H2p(Xt,Z)} . (2.16)

All this is saying is that for a cycle to be Hodge, it must stay in Hp,p ∩H2,p as we

move around in moduli space.

We say that G is a general Hodge cycle if

Codim(VG ⊆ T) = h3,1(X). (2.17)

An alternative way to see the appearance of this matrix from the point of view

of physics is the following. Consider the equation:

W (t) =

∫
Xt

G4 ∧ Ωt, (2.18)

where t parametrizes where we are in moduli space and Ωt is the holomorphic top

form associated to the variety Xt. All we have done so far is rewrite the equation of

the GVW superpotential at a different point in moduli space. Fix t = 0 to be the

point of interest.

Then a flat direction of the potential is given by a curse t(s) such thatDI(W (t(s))) =

0 where the derivative is taken with respect to complex structure moduli. Since

DI(Wt)|t=0 = 0 by our assumptions, a first order expansion leads to:

∂st(0)∂JDIW (0) = 0. (2.19)

But because DI(Wt)|t=0 = 0 this is equal to:

DJDIW (0) = 0, (2.20)
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so that we recover that ρIJ := DIDJW needs to have maximal rank purely from

physical consideration.

2.2.2 A result by Deligne

We have decided to use formula 2.13, as specialized in the case of Fermat varieties,

to be able to perform computations.

At a first glance, it is not clear why this formula is relevant when trying to solve

the problem for Fermat varieties, since the result seems to lie in some Q[ζd] and

has even some transcendental components, far from the goal we have set to get

something in Z.

This fact holds in general as proved by Deligne in [28] : when computing periods

such as this one, the result of the computation will depend on the field of definition

of the variety as well as the one of the relevant algebraic cycles.

When wanting to explore the integral middle cohomology, we need to go from

this field extension Q[ζd] and handle the associated transcendental functions Γ to be

able to recover an integral result. This suggests some further simplification of the

formula and some notation:

∫
δβ′

ωβ =
1

dn+1 n
2
!(2πi)

n+1∏
i=0

(ζ
(βi+1)(β′

i+1)

d − ζ
(βi+1)β′

i
d )Γ(

βi + 1

d
) (2.21)

=
1

dn+1 n
2
!(2πi)

n+1∏
i=0

(ζ
(1+βi)β

′
i

d ) · (ζ1+βi

d − 1) · Γ(βi + 1

d
) (2.22)

= zuzβZ(β, β
′), (2.23)

where we made the identifications:

zu =
1

dn+1 n
2
!(2πi)

(2.24)

zβ =
n+1∏
i=0

(ζ1+βi

d − 1) · Γ(βi + 1

d
) (2.25)

Z(β, β′) =
n+1∏
i=0

ζ
(1+βi)β

′
i

d . (2.26)
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We note that zu is a universal constant, zβ only depends on the residue

form ωβ and is in fact a constant, while Z(β, β′) depends on both ωβ and

the vanishing cycle considered.

We will thus need to normalize with respect to all these terms if we want to find

a suitable G4 flux.

2.2.3 Shioda results for Fermat varieties

While periods can be computed in general under some mild assumptions, they are

a powerful tool when it comes to Fermat varieties.

The starting point is to observe that Fermat varieties of dimension n and degree d

have a large group of automorphisms [29]. This group, which we denote by Aut(X),

is:

Aut(X) = Sn+2 ⋉ (Z/dZ)n+1, (2.27)

where Sn+2 is the group of permutations of n + 2 variables, acting in the obvious

way, while (Z/dZ)n+1 acts on the variables via multiplication by d-roots of unity.

A noteworthy fact is that this doesn’t take into account the C∗ action coming

from working in complex projective space.

However, this automorphism group Aut(X) also induces, in the case of

Fermat variety, a decomposition in H4(X). Indeed consider the character

group A of Aut(X) :

= A := {a = (a[0], a[1], ..., a[n])|ai ∈ Zd and
∑
i

a[i] = 0 mod d}.

The elements of A are maps that associate to an element g of Aut(X) the phase :

a(g) =
∏
i

ζ
a[i]
d .
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Let V (a) denote the subspace of H4(X) such that for a class η ∈ V (a) we have:

g∗η = a(g)η.

From [30] we have the following theorem:

The spaces V (a) and their Hodge type are characterized by

a) dimC(V (a)) = 1 if and only if a[i] ̸= 0 for all i. Otherwise dimC(V (a)) = 0.

b) The hodge type of forms in V (a) are characterized by the a.

This is to be interpreted in the following way : the decomposition on H4(X)

induced by the automorphism group Aut(X) is finer than the Hodge de-

composition, and hence we can use this decomposition to study the Hodge struc-

ture.

2.2.4 Automorphisms, residues and algebraic cycles

From the previous theorem by Shioda, we can look back at our residue forms, and

in particular 2.13, to see what this decomposition implies.

Let us first define some terms related to the decomposition coming from Aut(X).

Recall that we have characterized residues forms by some polynomial Pβ depending

on the tuple β.

We will refer to the tuple a as n-decomposable if it can be written maximally as

a sum of n-pairs a[i] + a[j] = 0 mod(d). That is, we take into account permutations

of i and j.

By considering again V (a), we can use this notion of decomposability again at

the level of residue forms by saying a residue form ωβ is n-decomposable if the tuple

β is n-decomposable in the same sense as a.

Naturally this gives us also another way to understand complete intersection

algebraic cycles as factorizations. We have specialized the formal definition of alge-

braic cycles to the case of hypersurfaces by saying they are just the vanishing locus

of polynomials fi = 0.
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For example, let us consider the case of fi having degree one, the so-called linear

cycles. In the case of Fermat varieties, those linear cycles will take the form :

fi := xj − ζ li2dxk = 0 (2.28)

for some parameter li and for some permutation of the coordinates σ that results in

xj and xk.

Such that each of them can be characterized by the li specifying which ζ2d

we pick, and naturally we write the associated linear cycle by C l0,l1,l2,....

Considering the action of Aut(X) on homology, we can express elements νa of

V (a) in terms of algebraic cycles. For example, for linear algebraic cycles inside a

Fermat variety we have :

νa ∼
∑

l0,l1,l2,...

ζ
a[0]l0+a[1]l1+a[2]l2+...
d C l0,l1,l2,...

σ (2.29)

where we also need σ as well as the li to fully specify the algebraic cycle.

Here the permutations just swap the coordinates. However, when it comes to

picking a basis, permutations do play a role.

2.2.5 Aut(X) and intersection pairing

Let us now focus on computing intersections of two residues forms and specialize to

the case of Fermat varieties in light of the results on Aut(X) and study its impact.

Since we have seen that the result of 2.13 is in particular in Q[ζd] and we want an

integral result for some Z-linear combination of residue forms, we need to understand

how the intersection pairing works for residues.

In particular the intersection will be 0 if the product of the polynomials Pβ1 and

Pβ2 falls in the Jacobian ideal associated with the Fermat variety given by F = 0.

In particular, if F is a polynomial of degree d, then we see that if one of the

β1[i] + β2[i] ≥ 5, then it will result in a 0 intersection. Since furthermore

we are interested in the middle cohomology, this forces the residues form to only

intersect in pairs that are defined only in terms of the associated β tuples. This can
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be seen from the results of Shioda by considering the way Aut(X) acts on elements

of cohomology from the previous section.

Consider the intersection of two residues ωβ1 and ωβ2 and compute the action of

Aut(X) on the result :

∫
X

ωβ1 ∧ ωβ2 −→
∫
X

ωβ1 ∧ ωβ2

∏
i

ζ
a1[i]+a2[i]
d (2.30)

Since this result must be invariant (recall that it is just a number), it automat-

ically results in a1 = −a2 for the integral to be non-zero : residues are compatible

with the decomposition induced by Aut(X).

We will call such a pair a pair of complex conjugate residue forms, or a

self-conjugate residue form if the two elements of the pair are the same.

The justification of this notation can be seen by considering 2.13.

2.2.6 Complex conjugation for Fermat

Indeed, knowing that the residue forms are paired up, and given the constraints

on the tuples β coming from working in middle cohomology which constraint their

length, we can observe the following when we consider a pair of complex conjugate

ωβ and ω̄β.

Set aβ to be the constant of proportionality such that :

ω̄β = aβωβ̄ . (2.31)

This already implies that

ωβ = āβω̄β̄ , (2.32)

so that

aβ̄ =
1

āβ
. (2.33)

This in particular implies that

ω̄β · ω̄β̄ =
aβ
āβ

ωβ · ωβ̄. (2.34)
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Since we need the result to hold for every vanishing cycles δβ′ . As the result

must be integral and in particular real, we have:

∫
δβ′

ω̄β =

∫
δβ′

ωβ . (2.35)

We can then find aβ by computing:

aβ =

∫
δβ′

ωβ∫
δβ′

ωβ

, (2.36)

which must hold for every vanishing cycle.

In particular, this constant of proportionnality only depends on a single

β for every pair of complex conjugates.

2.2.7 Integrality and Z(β, β′)

One more implication is that now that we know that every element in a pair of

complex conjugate residue forms is proportional to the other, we can look back

at 2.13 and handle the cyclotomic part Z(β, β′) which in general depends on the

vanishing cycle. As a reminder, Z(β, β′) is given by:

Z(β, β′) =
n+1∏
i=0

ζ
(1+βi)β

′
i

d . (2.37)

Consider the integrality condition on a sum of pairs of complex conjugate residue

forms ωβ and ω̄β. We have the following simplifcation:

(ωβ + ω̄β) · δβ′ = νβZ(β, β
′) + ν̄βZ̄(β, β

′) ∈ Z ∀β′, (2.38)

where we introduced the normalization we are looking for νβ, which of course de-

pends on the previous results (namely aβ, zu and zβ).

We see from this formula, up to redefinition of νβ by taking the complex conju-
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gate, that the following inner form appears:

< x, y >= xȳ + yx̄. (2.39)

Noticing that the roots of unity ζd form a group isomorphic to Zd, we have

there found a way to make the result integral : we need to pick νβ to be a Z-linear

combination of generators of the dual of the lattice spanned by Z(β, β′).

Crucially, this simple description is specific to Fermat hypersurfaces. In general,

we expect that imposing this integrality condition will be less straightforward.

2.2.8 Linear cycles and c2(X)

The flux quantization condition imposes, for some flux G, to have :

G+
c2(X)

2
∈ H4(X,Z). (2.40)

We will focus on this condition and relate it to the decomposition induced by Aut(X)

and linear algebraic cycles.

In fact, in the case of interest of Fermat’s sextic, a basis for H4(X,Z) is given by

not only appropriate vanishing cycles but also a linear cycle, and c2(X) = 15 which

is odd. Naturally, this implies that G must also belong in Z+ 1
2
.

The way we enforce a flux G to be half-integral is through the linear cycle. Indeed

the condition of half-integrality should be understood as the decomposition between

the primitive part and the non-primitive part of H2,2 ∩H4 : the cohomology class

of c2 has a non-primitive part.

It follows that this non-primitive part intersects with linear cycles, and hence

the constraints for G come from the linear cycle we pick to complete the basis of

H4.

To this end, we use [24] and the following formula for the period of a residue

form along a linear cycle in a Fermat variety of even dimension n and degree d,
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with some linear algebraic cycle specified by a tuple l and a permutation σ :

∫
Cl

σ

ωβ =

sign(σ) (2iπ)n

dn+1 n
2
!
ζ
∑n/2

e=0(β[iσ(2e)]+1)·(1+2l[iσ(2e+1)])

2d if β[iσ(2e)−2] + β[iσ(2e)−1] = d− 2 ∀ e

0 otherwise.

(2.41)

This should be interpreted in the light of Aut(X): the entries of the tuple β need to

have their entries paired up according to the permutation chosen.

In this case thus we not only have a dependence on the Zn+1
d part of the semidirect

product of Aut(X), but also on the permutation part Sn+2.

In particular, since we need this result to be half-integral, we see right away that

any rescaling we want to do to respect 2.13 will be modified and parametrized to

respect the condition of half-integrality.

2.2.9 Quick comment on Calabi-Yau criteria

As discussed before, the result of 2.13 lies in some cyclotomic field Q[ζd]. Further-

more, we can use previous results to highlight the constraint coming from the fact

that we study Calabi-Yau manifolds.

Indeed, let us relax this assumption and focus on a similar problem but for all

Fermat varieties, such that we do not have a relationship between degree and dimen-

sion (via adjunction). Let us fix the dimension n to be 4 such that the dimension

of the ambient projective space is 5, and keep the degree moving. For example, we

can consider the quintic in P5 instead of the sextic in P5.

Now introduce some big O notation this time to refer to asymptotics, since we

notice that typically the norm of terms like zc and Z(β, β′) does not depend on the

degree in the same way za does.

The contribution of normalizing some ω from zu will typically be O(d−(n+1)). So

let us pair two such normalized forms and use formula 2.9 and again focus on the

dependency of the degree. We find that:

ωβ1 · ωβ2 ∝ d−(n+1)(dn+1) · (dn+1) ∝ dn+1. (2.42)
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So that we see the influence of the Calabi-Yau requirement here because at fixed

n, lowering the degree d would give lower intersection numbers with the caveat that

it also modifies h2,2 and h3,1 (and hence the would-be tadpole bound) of course.

This is an illustration of the fact that we have in principle lost some free param-

eters due to working with Calabi-Yau manifolds, and is our first hint to be able to

plan a strategy to study the tadpole problem.

2.2.10 General approach and a potential solution to the dif-

ficulties

From this section and having considered the problem, we can guess a general ap-

proach to study the problem:

• Compute all residues

• Find a basis of the integral middle homology using the Leray-Thom-

Gysin sequence and vanishing cycles

• Compute the periods of the residues along that basis in homology

and normalize the residues

• Find elements of the set S(Q, T )

• Check if those elements also belong to the set SH(ρ,X)

Computationally this can be extremely costly depending on the value of h3,1 and

h2,2. Given that those values are quite high typically, we can restrict ourselves in a

physical manner by limiting ourselves to symmetric forms under the action of

a subgroup of Aut(X).

We have tools in the forms of computation of periods, residue forms and vanishing

cycles that can work given any fourfold and check the list of requirements we have

given in the beginning of the section.

The collection of those tools allow, in principle, practical calculations to be made.

They also show that respecting both conditions imposed by physics for the G4 flux

is a very hard problem to study, because of the aforementioned tension.
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Intuitively, we have two constraints in the form of (in)equations to obey : ρIJ

of maximal rank and small G4 ·G4. The discussion in this section, in particular the

difficulties mentioned, then suggests some heuristics to tackle the problem.

We do expect some tension, as the conjecture is that the intersection of SH(ρ,X)

and S(Q, T ) is empty for most smooth fourfolds. But there is a potential way to cir-

cumvent this tension by taking quotients and thus not working with the assumption

of smoothness, which ties into our seemingly arbitrary way to reduce the dimensions

of the problem.

Indeed, suppose we have found some solutions zi ∈ S(Q, T ) but none of them

belonging in SH(ρ,X) due to the corresponding ρ not being of full rank. Typically

such solutions will have flat directions, meaning some coordinates of the zi being 0

and hence not contributing to the rank of ρ. Then we can hope that there exists a

quotient, resulting in an orbifold, such that those flat directions get removed. This

will result in a different ρ with a lower possible maximal rank, with this condition

on the rank now possibly being satisfied.

We can see now that the case of Fermat varieties is interesting because of the

large group of automorphisms which opens up the way to perform the computation

of the periods, as well as providing a possible solution by taking quotient. Similar

to the Hodge conjecture, this is an assumption that has significant overlap with the

tadpole problem, but in principle is not needed, since most fourfolds don’t enjoy

this same property as Fermat varieties.

Similarly, it is not guaranteed that quotienting always helps with respect to the

tadpole problem. A quotient that both removes all flat directions and results in an

orbifold may not exist in the first place, and even then we still have to check that

the rank is indeed maximal. This suggests fixing a fourfold X, looking at a set of

solutions of given lengths below the tadpole bound, and looking at the symmetries of

those solutions, to which we hope to associate a quotient. Then taking the quotient,

removing more and more flat directions, the expectation is that the dimension of

the Hodge locus gets closer to being maximal.
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2.3 Second approach : using number theory

A first case of interest is, assuming c2 is even, to use the theory of lattices. By a

lattice here we will take the definition to be of a finitely generated free Z-module

over some ring R given a bilinear form ⟨ , ⟩.

We will try to show in this section that while approaching the problem purely in

terms of lattices might seem like a good idea, the tadpole problem is very specific

and we will offer a different point of view. Namely, rather than the usual approach

which is to try to find suitable points satisfying the tadpole conditions, we will show

that it is more convenient to find obstructions to those points existing.

In a sense, the set S(Q, T ) is interesting, but we should rather focus on finding

what should belong there but does not, and why it does not. To this end, the too

general formalism of lattices is not sufficient.

2.3.1 Review of lattices

Working with the above assumptions, we have the following data1 :

1. A lattice Λ, with bilinear form ⟨ , ⟩, which in our case will be a positive definite

inner form.

2. A basis of Λ, ei, with i ranging from 0 to n, where n + 1 is the dimension of

the lattice

3. Given ⟨ , ⟩ and ei, those two elements reduce to computing a Gram matrix

Gij = ⟨ei, ej⟩, with an invariant signature (p,n) denoting the number of positive

and negative eigenvalues respectively

4. The dual of this lattice, Λ∗, given by G∗
ij and dual basis e∗i defined by:

< e∗i , ej >= δij,

where δ is Kronecker’s delta symbol.

1Lattices can be defined more generally : Let R is an integral domain with field of fraction K.
An R-submodule M of a K-vector space V is a lattice if M is finitely generated over R.
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5. An invariant, the covolume of this Gij, defined as coV ol(G) = |det(G)|

6. Elements of Λ will be labelled with vectors ℓ =
∑

i µie
i with µi ∈ Z

Given this formulation, we simply recall that in principle we just need to compute

the inner form ⟨ℓ, ℓ⟩ for any ℓ that is relevant and can potentially lead to a result in

S(Q, T ). Naturally this raises the question of how to find such ℓ.

We recall that since we deal with integers, the set S(Q, T ) is finite, and hence

there are finitely many ℓ to check for. The problem is that the data we have is

typically high dimensional, meaning the n in our data is quite big, and there is some

ambiguity in finding a basis for Λ since it is not unique. Setting those choices is in

general quite difficult and ultimately leads to difficulties finding the candidates for

ℓ.

2.3.2 Finding the short vectors in a lattice

To see the difficulties relevant to our problem we can first find the bounds on the

entries µi of every ℓ that give a norm ⟨ℓ, ℓ⟩ ≤ T below some bound T. We want to

find |µi| such that we are guaranteed to enumerate all ℓ below the bound T, and to

this end we will call the norm of ℓ as the inner form ⟨
∑

i µiei,
∑

i µiei⟩. We can then

compute the following for any ℓ below the bound :

µ2
i = ⟨e∗i , ℓ⟩2, (2.43)

which simply uses duality, and we have squared the usual result in order to simplify

the argument later on.

From there we can work out, since the inner form is positive definite :

µ2
i = ⟨e∗i , ℓ⟩2 ≤ ⟨e∗i , e∗i ⟩ · ⟨ℓ, ℓ⟩ = ⟨e∗i , e∗i ⟩ · T (2.44)

This is just the usual Cauchy-Schwarz inequality but squared, as it is usually stated

using the norm || . || =
√

⟨ , ⟩ associated to the inner form.

For some µi, the result depends on the length of the dual basis e∗i as well as the

bound T, showing the inherent computational complexity as the dimension increases.
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Naturally since we work with Z-modules, we expect e∗i to be rational in general,

unless Λ is self-dual, and thus this inequality may or may not be so bad at first

sight, despite the dependence on T.

However, the main point is that this also implicitly depends on the dimension

of Λ. Even if it turns out that every µi is contained in a short range, say [−2, 2]

for example, the number of points to check will be exponential in the dimension. In

this example, there are 5 integers in [−2, 2], the total amount of points to check will

be 5n+1. For any high enough n+ 1 this quickly becomes out of reach for practical

purposes.

2.3.3 An improvement : basis reduction

We have encountered the first difficulty with using lattices : the computational

complexity. We have seen that it depends on the length of the (dual) basis e∗i .

However there is a priori no obstruction to picking a different basis that will generate

the same (dual) lattice.

In fact, had we worked over a vector space rather than a module, this is what

we do all the time : given a certain matrix, we tend to immediately change basis

to put it in better form, diagonal, triangular, block, etc... This is not possible for a

Z-module. However the idea should stay the same.

The question becomes : can we find some alternative basis that is shorter than

the original e∗i ? The answer in general is yes. In fact, in two dimensions, the

Lagrange-Gauss algorithm provides a definite basis that is the shortest possible

for a given lattice. The result of this algorithm in two dimensions is that the two

resulting vectors will be the shortest linearly independent vectors in the lattice. Let

L be the lattice generated by the following vectors, taken from [31] :

e1 = [66586820, 65354729] (2.45)

e2 = [6513996, 6393464] (2.46)

Those vectors are arbitrarily long, but we can shorten them via the Lagrange-

Gauss algorithm as follows. First notice that ||e2|| ≤ ||e1||, otherwise we should
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swap them. While ||e2|| ≤ ||e1|| :

• Round q := ⌊⟨e1, e2
||e2||⟩⌉ to nearest integer

• r := e1 − q · e2

• e1 := e2

• e2 := r

We can see the similarities between this algorithm and Euclidean division.

Applied on the previous vectors, this leads to a reduced basis of :

r1 = [2280,−1001] (2.47)

r2 = [−1324,−2376] (2.48)

While the norm of the second basis vector has not changed, the norm of the first

one has considerably diminshed, by about 103.

The LLL [32] algorithm can be understood as a generalization of this algorithm

to higher dimensions, or as a way to make the Gram-Schmidt process work over Z

rather than just over fields. This is the main algorithm used when one performs

basis reductions, although several other algorithms exists.

In fact, we can look back at the situation of vector spaces to draw inspiration

from, since this is the ideal -and unachievable- case. In that case, we can understand

the problem of finding short vectors also as being tied to how orthogonal

they are from one another.

Note that the LLL algorithm guarantees some form of optimality of the reduc-

tion in polynomial time, as opposed to most algorithm which are of higher time

complexity. Generally, finding short vectors in a lattice is a difficult problem that is

considered NP-hard.

In the context of lattices, this is quite intuitive : if we have a bunch of points

in a plane, picking any two of them that are non-linearly dependent will lead to a

basis. In particular, we can pick very long. The consequences being of course that

it will also imply they won’t be very orthogonal.
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The reason is that once we have described the lattice in terms of its Gram matrix

G obtained from taking the inner form between the basis vectors ei, any change of

basis is necessarily with integral coefficients and of determinant ±1. This already

can be seen with our invariant the covolume. Let P be a change of basis for G.

Since the covolume is an invariant we have :

coV ol(P t ·G · P ) = |det(P t ·G · P )| = |det(P )2 · det(G)| := coV ol(G) (2.49)

which already imposes det(P ) = ±1.

Thus a hand-wavy argument that can allow us to gauge how reduced our basis is

is to look at the number of 0’s appearing in the Gram matrix, as they reflect orthog-

onal directions. Note that this is very much hand-wavy, and there’s no guarantee of

optimality. In fact, lattice problems such as the shortest vector problems, which is

of course closely related to what we are doing, are NP-hard and no known solution

exists in general.

2.3.4 A finite number of solutions and Fincke-Pohst algo-

rithm

Since we have spent some time introducing the notion of volumes in lattices, as

well as the invariant covolume, we want to show some important observation with

respect to the tadpole problem.

Let G4 be a flux whose self intersection is below some bound T, without specif-

ically requiring this bound to be related to physics, as long as it is a bound. We

essentially have that :

0 ≤ Q(G4) ≤ T (2.50)

This set is closed and has finite volume because Q is positive definite. Since

we are working with a lattice, we can simply rely on the fact that there are finitely

many lattice points inside a finite volume. Recall we have introduced the set S(Q, T )
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in the introduction as :

S(Q, T ) := {G | ∃ k ∈ Z, Q(G) = k ≤ T}. (2.51)

We have simply stated in a lattice theoretic way that this set is finite, and for

every k below T there are finitely many solutions, and hence finitely many G4 fluxes

below the tadpole bound.

Since it is finite, we need to find ways to characterize this set, and for this we will

introduce a different vocabulary, although everything could be rephrased in terms

of lattices up to some minor reformulations.

To make the transition smoother let us furthermore notice an important prop-

erty that stems from noticing that G4 must be positive semi-definite. When we

introduced the LLL basis reduction we noticed the parallel with the Gram-Schmidt

algorithm for vector spaces. Similarly, drawing inspiration from the Cholesky de-

composition of positive definite matrices over some field, the Fincke-Pohst al-

gorithm [33] (implemented in PARI/GP [34] and now used in SAGEMATH [35])

extends this concept over rings.

To illustrate the strength of this algorithm, we use the example of Cholesky

decomposition of a symmetric positive definite matrix. Let A be the following

matrix :

A :=


1 1 1 1

1 5 5 5

1 5 14 14

1 5 14 15

 (2.52)

The algorithm is simply to verify the equality A := LLt, hence to find a square
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root of A in the form of L, via Gaussian reduction. The result in that case is :

L :=


1 0 0 0

1 2 0 0

1 2 3 0

1 2 3 1

 (2.53)

The point is the following : if we are trying to solve x · A · x = n for some

number n, then the search bounds are better by using L than using A since the

norm of the rows/columns of A are longer than those of L. Hence, by using the fact

that we deal with a specific problem with a certain amount of symmetries (here: the

quadratic form is positive definite), we have considerably reduced the computational

complexity.

There are two principal reasons as to why this algorithm is compelling. First of

all, as we have discussed above, there is a priori no hope to achieve diagonalization

of our Gram matrix, although that would make the problem of enumeration consid-

erably easier. Furthermore, if we take a square matrix, it is clear that typically the

number of points to enumerate is extremely large, and often those points are not

very interesting as they are way above the bound we impose.

Thus, reducing the Gram matrix to a product of triangular matrices is a good way

to answer those difficulties, reducing the search bounds and making the enumeration

easier. In a sense, while basis reduction algorithm and in particular LLL allows one

to pick a shorter and more orthogonal basis, the Fincke-Pohst reduces the size of

the box/ellipsoid that contains the interesting points.

2.3.5 Quadratic forms and number theory

Moving away from the vocabulary of lattices, we will talk about quadratic forms,

following Cassels [36], in place of Gram matrices. The main motivation is to clarify

the points laying in S(Q, T ), as it is core to our strategy of enumerating every

possible solution in this set, and of checking if they also lay in SH(ρ,X).

Part of the data included in the set S(Q, T ) is the following:
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• Coefficients aij of the quadratic form Q.

• The numbers k that are integers such that 0 < k ≤ T .

• The finite number of solutions for each and every k, Q(G) = k.

In order to start this section with some fairly easy results from number theory,

we will focus on the coefficients aij and k. First let us comment on the possible

half-integrality condition coming from G4 +
c2
2
∈ H4(X,Z).

On the geometric side of things, for the example we will study, this will be

characterized with respect to linear cycles as we have seen previously. What can be

said about this condition in other set ups? In general this condition translates to G4

being itself half-integral, so that the coefficients of Q are typically not only integers

but also half-integers.

Since a half-integer is written as n
2
with n odd, we might as well multiply the

quadratic form Q by a factor of 2 and look for odd integers solutions. Upon division

by two, we will recover G · G. Here we propose a slightly different point of view of

this operation.

In number theory, the Chinese Remainder theorem ( or fundamental the-

orem of arithmetic ) tells us that every integer can be written uniquely as a

product of powers of primes. In particular that is the case for the coefficients of

our quadratic form as well as the possible solutions. In that sense, we interpret the

condition that G ·G = n
2
by rewriting n

2
as :

n

2
= 2−13a35a5 . . . , (2.54)

where n is odd.

This trivial change of notation is in fact very important for the following reason.

We know that S(Q, T ) is finite and we seek to characterize it. Instead of trying

to find the solutions G corresponding to some flux, we already know that the only

possible integers k appearing are bounded above and below. However we can char-

acterize this set by what is not part of it, rather than what belongs to it. Meaning,

we will try to find the k for which there are no solutions G rather than finding those

that admit solutions.
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The reason is the following. Up to rescaling our quadratic form as before to

make it integral, we know that the result must be an integer. In the language of

quadratic forms, we therefore ask which integers are represented by our quadratic

form Q.

A criteria is thus the following : let us assume the integer k is represented by

Q, meaning we have a non-trivial integer solution G such that Q(G) = k. Then in

particular, we can take the reduction modulo any integer and it should still be true

because reduction modulo n is an equivalence relation.

Since we have seen every integer can be represented uniquely as a product of

prime powers, we arrive at the following well-known result : there is a non-trivial

solution to the representation of an integer by an integral quadratic form

if there are non-trivial solutions modulo every prime-power as well as the

reals.

Thus we are interested in the contrapositive of this proposition : we now know

that if we do not have a solution for the representation of some integer k modulo some

prime power, then we do not have an integral solution. So we have a characterization

of elements of S(Q, T ) that eliminates possible solutions, and very importantly this

does not rely on any conjecture. We thus speak of an obstruction if there are no

solutions modulo pk.

The converse to this equivalence relation, meaning asking to have a solution in

the integers if you have a solution at every prime power is known as the Hasse

principle, or local to global principle.

2.3.6 p-adic numbers and representation of integers

Our previous condition requires the reduction modulo every prime power. For prac-

tical purposes, is every prime appearing relevant ? The answer is no : the possible

primes and prime powers we need to consider is finite since at some point we no

longer perform any reduction, and thus every prime or prime power greater than this

threshold will not induce any possible constraint on the representation of integers.

Naturally, this is at first quite scary since this condition can depend on very

large prime powers, and while Z/(pkZ) always has finitely many element, this at
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first does not seem to help out much when it comes to the computational problems

previously managed in lattice-theoretic terms.

This motivates the introduction of the p-adic numbers. In this context, let us

redefine the integers Z in the following way : we will see the integers Z as a subring

of the ring of rationals Q.

The field Q usually comes equipped with the usual absolute value defined as :

|x| =

−x if x < 0

x if x≥ 0

The completion of Q with respect to this absolute value, meaning we ask for

all Cauchy sequences to converge, leads to the reals R. However, Q can come with

other valuations, the p-adic valuations, denoted as |.|p, defined in two steps. First

introduce the valuation vp(n) for an integer n, as follows:

vp(n) =

max(k) if pk divides n

0 if p does not divide n

Now you can introduce the p-adic valuation for the rationals Q by writing any

rational as n1

n2
with n1, n2 coprime as follows :

vp

(
n1

n2

)
= vp(n1)− vp(n2)

Asking for the completion of Q with respect to this valuation leads to the p-adic

numbers Qp, which we can extract the p-adic integers Zp from.

The point of this construction is to understand the following intuitive fact : if

we ask for a quadratic form to represent an integer, in particular it must represent

this integer in every possible base, not just base 10. This construction is analytic

in nature, and to connect the dots we will expose the algebraic construction of the

p-adics. However do note that the two are equivalent and we can see already a

subtlety with this formalism : the p-adic integers are those p-adics numbers with a

non-negative valuation. In particular, 1
2
is a p-adic integer for every p ̸= 2, which
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indicates to us that not only do we need to care about Z but also its field of fractions

Q to find solutions.

The algebraic construction most relevant to us is to consider the p-adic inte-

gers Zp as the inverse limit of the rings Z/(pnZ) which is defined as the sequences

a0, a1, . . . such that ai ∈ Z/(piZ) and ai = ai+1 mod pi for all i, and Qp is the field

of fractions of this ring. Naturally both constructions are equivalent.

Following the usual conventions, we talk about a place for a given prime p, and

the ” infinity ” place for the real numbers.

However this shows the main motivation behind the p-adics : it is a powerful

tool to keep track of all possible modular reductions to find obstructions using

the fundamental theorem of arithmetic. Thus we can restate the condition for

obstruction as follows :

If there is a non-trivial integral representation z of some number n by an integral

quadratic form Q, such that Q(z) = n, then we have a non-trivial solutions in Zp

for every prime p, including the reals.

2.3.7 Hensel’s lemma and non-obstructions

Since we have a criteria for obstruction, it is good to give a criteria for non-

obstructions.

Suppose we know that there are no obstruction modulo p, how do we know if

there is no k such that there is an obstruction modulo pk ?

The criteria is given by Hensel’s lemma which is the following statement.

Let A be a complete commutative ring with respect to an ideal m2. Let f :=

f1, f2, . . . , fn be a system of polynomials in A[x1, x2, . . . , xn] and let J denote the

Jacobian matrix of this system. Suppose a is a solution :

fi(a) = 0 mod (det(J)2)m (2.55)

then there is some b such that f(b) = 0 in An.

2in this context complete refers to the p-adic valuation
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With one equation, it is quite easy to see what happens and the statement is

simplified greatly.

If f is a multivariate polynomial, and some a ∈ Z/pZ satisfies :

vp(f(a)) < ||(∇f)(a)||2p (2.56)

then there is a solution in the p-adics Zp.

This statement is analogous to Newton algorithm, which relies on the usual

Taylor expansion, but compatible with the p-adic valuation.

In particular, if f = 0 mod p and (∇f)(a) ̸= 0 mod p then the solution is lifted

to a solution in the p-adics.

Thus we have a criteria for a possible lifting of the solutions from modular

arithmetic to the p-adics via an analogue of Newton’s algorithm for approximation

of roots, except replaced with the p-adic valuation instead of the usual Euclidean

norm.

In practice, this means that in principle we have a way to check for finitely many

primes if there are no-obstructions, instead of having to check for all prime powers.

2.3.8 Abstract varieties and related tools

Looking back when we first started looking at characteristics of the problem, we

noted that we essentially were computing intersection numbers for special algebraic

cycles of a fourfold described in complex projective space. From the point of view

of the fundamental theorem of arithmetic, and in order to find obstructions, there

is an alternative route, which is of course related to the p-adic numbers introduced

above.

Indeed, since we are looking for computing some self-intersection over the inte-

gers Z, we can also consider the same fourfold X but defined over the rationals Q.

Naturally, it is typically not algebraic closed, however we can consider extensions

Q̄ of Q which are closed. With this description, we also lose the rather strict and

usual definition of an algebraic variety, and need to work with abstract varieties or

schemes. Furthermore, many notions that made sense in the usual complex ( and
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smooth ) setting do not make much sense over Q.

However, we can repeat the same constructions with the p-adics and ask to

describe the variety over Q, Qp, and define some cohomology theories associated

with it and essentially perform the same computations, albeit with different tools.

The cohomology of interest in this setting is étale cohomology, presented in

[37], notably containing the definitions and the very important comparison theorem

between étale cohomology and the usual complex cohomology.

2.3.9 Relation to the tadpole problem

We have found tools in the previous sections to compute the length of the G4 flux,

as well as the dimension of the Hodge locus to check the type of a G4 flux, and

identified particular situations, such as Fermat varieties, where those tools can be

applied readily. Furthermore, we have determined obstructions to the existence of

such fluxes. For this we have introduced the p-adic numbers as a powerful tool to

keep track of those obstructions, but in what situations can those tools be readily

applied to study the tadpole problem ? And on the mathematical side, what are

the results related to the tadpole problem from this point of view ?

First, in parallel with identifying the Hodge conjecture as having a significant

overlap, but perhaps not complete, with the tadpole problem, we expose two mathe-

matical conjectures related to the point of view taken from the fundamental theorem

of arithmetic. We expect both conjectures to thus have overlap with the tadpole

problem, but neither of them being necessary nor sufficient to fully solve the prob-

lem.

Directly linked with the fundamental theorem of arithmetic is the local to global

principle, or Hasse principle. We have seen that if there is an integer solution to the

problem, then there must be a non-trivial solution at every place Zp as well as the

reals. The Hasse principle asks the converse of this problem : if we have a local

solution at every place p as well as the reals for the representation of some integer

n, do we get an integral, or global, solution ?

This principle is in general of course false. In the particular context of quadratic

forms we have the following results :
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• Over the rationals Q and the corresponding local placesQp this principle holds,

a proof of which can be found in [38].

• Over the integers Z it is known to fail in general, with many counter-examples

being found.

At first, the fact that it does not hold over the integers seems discouraging.

However, recall that our situation is not generic : we typically want to represent

numbers that are quite small -hence the tension in the first place- and our quadratic

form comes from an algebraic variety. So typically the requirements for the Hasse

principle to be interesting with respect to physics are both more specific, and also

quite a bit smaller, since we do not care too much about integers above the tadpole

bound, it would suffice for it to hold below this threshold. Moreover, some obstruc-

tions to the Hasse principle have a topological origin and can be explained ( at

least for certain curves and surfaces ) by using étale cohomology and computing the

Brauer-Manin obstruction, being covered in the lectures [39]. However one should

point out that this obstruction to the Hasse principle is not the only one and does

not account for all obstructions as the famous example of [40] shows.

Furthermore, it is important to keep track of the various spaces we are working

with. We can work at the level of the fourfold X and study its (co-)homology

classes, or once we have determined the quadratic form, we can work with this

quadratic form on its own. For example, we can ask if the fourfold X we study

has obstructions to having rational or integral points, or we can simply ask to find

obstructions to the existence of rational or integral points for quadratic form in

H2,2(X,Q) or H2,2(X,Z).

A less direct link is to look back at the overlap with the Hodge conjecture and

ask if there is an p-adic analog to this conjecture. This analog is known as the Tate

conjecture which we state here.

Let X be a smooth projective variety over a field k of characteristic p, finitely

generated over its prime field ( the unique minimal subfield of k ). Let ks be its

separable closure and G the associated (absolute) Galois group of k, and X̄ be the

variety over this algebraically closed field. Let l ̸= p be a prime, and let algebraic

cycles of codimension r be the elements of the free abelian group Zr(X̄). The Tate
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conjecture states that the cycle class map, which associates an element of the étale

cohomology to every algebraic cycle :

cr : Z
r(X̄)⊗Ql −→ H2r(X̄,Ql(r)) (2.57)

is surjective.

This is the analog of the integral Hodge conjecture, but for l-adic coefficients, and

hence provides a possible framework to rephrase the tadpole conjecture in number-

theoretic terms.

Naturally, one type of fourfold for which studying the number theoretic approach

is particularly nice is the case of modular Calabi-Yau fourfolds. Since we are in-

terested in computing the lack of existence of solutions to the tadpole problem by

using the fundamental theorem of arithmetic, it is natural to consider the primes

appearing, which has led us to consider the above conjectures.

However, for pratical purposes, this is quite difficult in general since there are

possibly many computations to do, one for every prime ( or prime power ). However,

modular fourfolds offer a nice setting to reduce this computational burden because

they offer a global approach to the problem. For example, in the case of modular

elliptic curves, being modular allows to compute their properties upon reduction in

less time than one would by naively reduction modulo every suitable prime power.

Note as well that considering the original physical requirements of an elliptic fibra-

tion, this hints as well to a deep link between modularity and the tadpole conjecture.

From this chapter we have exposed many links between the tadpole conjectures

and various results or conjectures in mathematics. However, the only result that

does not rely on conjectures is that there are typically obstructions to the existence

of points below the tadpole bound. We have showcased different arguments and

possible solutions to the tadpole conjecture by using various (conjectural) results

in mathematics. While there is a clear relationship and overlap with the tadpole

conjecture, it is not clear that they provide any criteria for the existence of solutions

to the tadpole problem, but it is not clear that they are not needed either, as

in principle the tadpole problem can be phrased without resorting to any sort of
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conjecture.

To summarize, from the point-of-view of p-adic numbers, there are two conjec-

tures that are relevant to the tadpole problem.

• The Hasse principle: if you find solution to the quadratic equation modulo

n for every integer n are you, in this context, guaranteed to have an integral

solution ?

• The p-adic analogue of the Hodge conjecture : the Tate conjecture, which in

its integral version, is still open for Fermat’s sextic fourfold. Can we find an

algebraic cycle to each form in H2,2 ∩H4(X,Zp) ?

We expect the Hasse principle to not hold, however, it would be interesting to

see the link between the Tate conjecture and the tadpole problem in greater detail.
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CHAPTER 3

G4 fluxes and Fermat’s sextic fourfold

In this chapter, we detail the various tools and results exposed in the previous

chapter with more rigour and specialize to the case of Fermat’s sextic fourfold. We

begin by recalling a few facts about the sextic, and then move on to showcase some

examples, commenting on possible links with the last chapter as well.

3.1 Mathematical facts about the sextic

3.1.1 Definition and properties of Fermat’s sextic

Fermat’s sextic fourfold is defined as the hypersurface

X ≡ x6
0 + x6

1 + x6
2 + x6

3 + x6
4 + x6

5 = 0 (3.1)

in P5 with homogeneous coordinates [x0 : x1 : x2 : x3 : x4 : x5]. Its large group of

automorphism is given by :

Aut(X) = S6 ⋉ Z5
6

where we identify

Z5
6 ≃ Z6

6/D
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where D is the diagonal

D ≡ Im(a ∈ Z6 7→ (a, a, a, a, a, a) ∈ Z6
6).

• S6 is the group of permutations of six elements, which acts on X by permu-

tation of coordinates

• The group Z6
6/D acts on X as

ℓ : [x0 : x1 : x2 : x3 : x4 : x5] 7→ [ζℓ0x0 : ζ
ℓ1x1 : ζ

ℓ2x2 : ζ
ℓ3x3 : ζ

ℓ4x4 : ζ
ℓ5x5],

with ζ = e
πi
3 the primitive sixth root of unity.

3.1.2 Chern classes, Euler characteristic and Hodge num-

bers

The total Chern class of X is by adjunction for hypersurfaces 1.28

c(X) = (1 +H)6/(1 + 6H) = 1 + 15H2 − 70H3 + 435H4 , (3.2)

where H ∈ H1,1 ∩H2(X,Z) is the hyperplane class.

Notably, the second chern class c2(X) = 15 which means we will have to perform

some rescaling if we want to use some number theory, as discussed previously.

From the adjunction formula, we can compute the Euler characteristic χ :

χ(X) =

∫
X

c4(X) =

∫
P5

c4(X) ∧ dH =

∫
P5

435H4 ∧ 6H = 2610 (3.3)

From the arithmetic genus formula, as well as noting that we can use Lefschetz’s

hyperplane theorem in the case of the sextic which results in h1,1 = 1, we can
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compute the hodge numbers :

h4,0 = h0,4 = 1 (3.4)

h3,1 = h1,3 = 427− 1 = 426 (3.5)

h2,2 = 1752 (3.6)

These numbers, in light of the previous chapter’s discussion on lattices, are way

too big to consider the whole problem and we will restrict our problem.

3.1.3 Jacobian and Hessian

We will make frequent use of the Jacobian ideal and the Hessian for our computa-

tions, and we list them here.

First we compute the Jacobian :

J(X) =
(
6x5

0 6x5
1 6x5

2 6x5
3 6x5

4 6x5
5

)
(3.7)

which has a global factor of 6, with associated Jacobian ideal Jac(X):

Jac(X) =< F, 6x5
0, 6x

5
1, 6x

5
2, 6x

5
3, 6x

5
4, 6x

5
5 > (3.8)

where F is the defining equation of X.

The associated Jacobian ideal is thus spanned by monomials of degree 5, hence

any monomial with a power of 5 or above will automatically lie in the Jacobian

ideal.

As for the Hessian, we can simply compute it by taking another derivative :

H(X) =



30x4
0 0 0 0 0 0

0 30x4
1 0 0 0 0

0 0 30x4
2 0 0 0

0 0 0 30x4
3 0 0

0 0 0 0 30x4
4 0

0 0 0 0 0 30x4
5


(3.9)
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3.1.4 Residues for Fermat’s sextic

Recall that in the case of fourfolds, the primitive part of the middle cohomology is

defined as :

H4(X)prim = {A ∈ H4(X)|A ·H2 = 0} ,

and can be described by the residue map

Res : H5(P5 \X) → H4(X).

The residue mapping is surjective onto the primitive middle cohomology and a basis

of H4(X)prim is given by the forms [41]

ωβ := Res

(
xβΩ0

Q(x)k+1

)

where :

•

Ω0 =
5∑

i=0

(−1)ixidx0 ∧ · · · d̂xi · · · ∧ dx5

is the standard degree 6 top form of P5.

• xβ is the monomial

xβ = xβ0

0 xβ1

1 xβ2

2 xβ3

3 xβ4

4 xβ5

5

with |β| := 1
6

∑
βi = k ∈ Z, 0 ≤ βi ≤ 4, and 0 ≤ k ≤ 4 determines the Hodge

type:

ωβ ∈ H4−k,k(X) .

In our approach we are interested in k = 1, 2 corresponding to H1,3 and H2,2

respectively, meaning we are interested in monomials of degree 6 and 12 respectively.
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3.1.5 Intersection pairing

The inner form between two residues ωP and ωQ can be computed using [26] and

specializing 2.9 to Fermat’s sextic as follows. Let the monomials P and R be of

degrees 6p and 6q such that p+ q = 4 we have :

ωP · ωR =

∫
X

ωP ∧ ωR = c (−1)p+1 (2πi)4

p!q!
566 (3.10)

for c ∈ C the unique number such that

PR ≡ c det(Hess(X)) (mod Jac(X)), (3.11)

For the Fermat sextic the determinant of the Hessian 3.9 is simply

det(Hess(Q)) = 306
∏
i

x4
i , (3.12)

and so for our monomial basis

ωβ · ωβ′ = 0 (3.13)

except when βi = 4− β′
i for all i = 0, 1, 2, 3, 4, 5.

We define the complex conjugate monomial as :

β̄i := 4− βi (3.14)

which implies that

|β̄| = 1
6

5∑
i=0

(4− βi) = 4− |β|. (3.15)

Crucially, for h2,2 forms we have |β̄| = |β| = 2. Furthermore, since xβxβ̄ =
∏

i x
4
i

for the intersection to be non-zero since any monomial with a term of degree di > 4

will lie in the Jacobian ideal 3.7, it follows that c = 30−6 and :

ωβ · ωβ̄ = (−1)|β|+1

(
1

30

)6
(2πi)4

|β|!|β̄|!
56 · 6 = (−1)|β|+1 (2πi)

4

|β|!|β̄|!
1

65
. (3.16)

70



3.2 Algebraic and Hodge cycles

Define classes in H2,2(X) ∩ H4(X,Q) as Hodge cycles, and classes in H2,2(X) ∩

H4(X,Z) integral Hodge cycles. After the work of Shioda [30], we know that the

residue forms generate the space of complexified primitive Hodge cycles

H2,2(X)prim = (H2,2(X)prim ∩H4(X,Z))⊗ C,

.

For |β| = 2, we have that ωβ ∈ H2,2(X)prim. Such a form ωβ will be called:

• 3-decomposable if β = (a, 4− a, b, 4− b, c, 4− c)

• 1-decomposable if β = (a, 4− a, 0, 2, 3, 3)

• indecomposable if β = (0, 0, 3, 3, 3, 3)

up to permutations and for 0 ≤ a, b, c ≤ 4. The 1751 classes in H2,2(X)prim are thus

organized into 1001 3-decomposable, 720 1-decomposable and 30 indecomposable

cycles. Note that 2-decomposable cycles are automatically 3-decomposable from

the constraint |β| = 2.

Over Q the Hodge conjecture is true, as proved in [30]. We introduce the alge-

braic cycles associated with the above residues1 :

• Linear cycles: which can be obtained as the orbit of Aut(X) = S6 ⋉ Z5
6 on

C := {x0 − µx1 = x2 − µx3 = x4 − µx5 = 0} ⊆ X, (3.17)

where µ = e
πi
6 is the primitive 12th root of unity. Given σ ∈ S6 and ℓ ∈

Z6
6/D ≃ Z5

6 we denote by Cℓ
σ the linear cycle given by the equations:

xσ(0) − µ2(ℓ1−ℓ0)+1xσ(1) = xσ(2) − µ2(ℓ3−ℓ2)+1xσ(3) = xσ(4) − µ2(ℓ5−ℓ4)+1xσ(5) = 0.

(3.18)

1Those are the algebraic cycles we can compute the residues of, but in principle residue forms
can be dual to other cycles.
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• Aoki-Shioda cycles: which are obtained as the orbit of Aut(X) on

S := {x2
3 −

3
√
2x0x1 = x3

0 + x3
1 + ix3

2 = x4 − µx5 = 0} ⊆ X. (3.19)

Similarly we denote Sℓ
σ for σ ∈ S6 and ℓ := jklm with j, k ∈ Z/2Z, m ∈ Z/3Z

and l ∈ Z/6Z. They are given by:

Sjklm
σ := {x3

σ(0) + eiπkx3
σ(1) + ieiπjx3

σ(2) = 0

x2
σ(3) − 21/3eiπke

2iπm
3 xσ(0)xσ(1) = 0

xσ(4) − eiπ/6eiπl2/3xσ(5) = 0}

• Type 3 cycles: which are in the orbit of Aut(X) on

T := {x2
0 −

3
√
2x1x2 = x2

3 −
3
√
2x4x5 = x3

1 + x3
2 + ix3

4 + ix3
5 = 0} ⊆ X. (3.20)

We denote them by T ℓ
σ, where σ ∈ S6 and ℓ ∈ Z6

6/D. The explicit equations

of T ℓ
σ are:

ζ2ℓ0x2
σ(0) −

3
√
2ζℓ1+ℓ2xσ(1)xσ(2) = 0,

ζ2ℓ3x2
σ(3) −

3
√
2ζℓ4+ℓ5xσ(4)xσ(5) = 0, (3.21)

(−1)ℓ1x3
σ(1) + (−1)ℓ2x3

σ(2) + i(−1)ℓ4x3
σ(4) + i(−1)ℓ5x3

σ(5) = 0.

From [25] we can compute the periods of any residue forms over such cycles. The

complete labelling of all such algebraic cycles is in the appendix B.1, B.2 and B.3.

For the particular case of linear cycles of the sextic, an explicit formula was

obtained in [24] and is the following:

∫
C ℓ

σ

ωβ =


(2πi)2 sgn(σ)

63·2 µ
∑2

e=0(βσ(2e)+1)(2(ℓ2e+1−ℓ2e)+1) if βσ(2e−2) + βσ(2e−1) = 4

0 otherwise.

(3.22)
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3.2.1 Intersection numbers of complete intersection alge-

braic cycles

The above formula can be used to compute the intersection numbers of linear alge-

braic cycles depending on the parameters l and σ. We provide here an alternative,

which can hold for complete intersection algebraic cycles, and do not rely on periods.

The intersection numbers for the linear cycles are given by :

C2 = 21

C l0l1l2 · C l0l1l′2 = −4

C l0l1l2 · C l0l′1l
′
2 = 1

C l0l1l2 · C l′0l
′
1l

′
2 = 0

Indeed, starting from the observation that :

H2 ·H2 = 6

And noticing, at the level of the factorization, that :

H2 =
5∑

l0=0

C l0l1l2 (3.23)

=⇒ H2 · C l
σ = 1 (3.24)

Which follows by symmetry, and the fact that the intersection is 0 if σ and l differ
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in all three components. Now we compute :

5∑
l′1=0,l′0=0

C l0l1l2 · C l′0l
′
1l

′
2 = 6

=⇒
∑
l′1=0

(C l0l1l2 · C l0l1l′2 + 5C l0l1l2 · C l′0l1l
′
2) = 6

=⇒ C l0l1l2 · C l0l1l′2 + 5C l0l1l2 · C l0l′1l
′
2 + 5(C l0l1l2 · C l′0l1l

′
2 + 5C l′0l1l2 · C l0l′1l

′
2) = 6

=⇒ C l0l1l2 · C l0l1l′2 + 5 + 5 + 25× 0 = 6

=⇒ C l0l1l2 · C l0l1l′2 = −4

Following the same procedure, as a sanity check, we have indeed that :

C2 = 21.

Which corresponds exactly to what we can find with the adjunction formula taking

all di = 1. Alternatively, or to check that those formulas are correct, we can simply

observe that linear cycles are just given by hyperplanes. Thus the intersection of 5

hyperplanes in P5 has intersection 1, while they do not intersect if there are more

of them (6 here).

For Aoki-Shioda and type 3 cycles, one can work-out the self-intersection using

adjunction which results in the self-intersections being :

S2 = 66 (3.25)

T 2 = 120 (3.26)

Thus we can start computing the intersection numbers for Aoki-Shioda cycles at

fixed permutation for example, knowing that again :

H2.H2 = 6

C2 = 66,
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and working backwards. For example, we have

12 =
1∑

k′=0

Cjklm · Cjk′lm

=⇒ 12 = 66 + Cjklm · Cjk′lm

=⇒ Cjklm · Cjk′lm = −54

The 12 coming from the fact that you have a degree two and a degree one in the

factorization, so that you end up, when summing over k, with a term 2H2. We find,

after doing all the possible combinations :

Sjklm · Sk′j′m′l′ = 12 Sjklm · Skj′m′l′ = 0

Sjklm · Sk′jm′l′ = 0 Sjklm · Sk′j′m′l = −24

Sjklm · Sk′j′ml′ = −6 Sjklm · Skj′ml′ = 18

Sjklm · Skj′ml′ = 18 Sjklm · Sk′jml′ = 18

Sjklm · Skj′m′l = 36 Sjklm · Sk′jm′l = 36

Sjklm · Skjm′l′ = 12 Sjklm · Sk′j′ml = 66

Sjklm · Skj′ml = −54 Sjklm · Sk′jml = −54

Sjklm · Skjml′ = −6 Sjklm · Skjm′l = −24

Where a prime indicates a different index than it’s unprimed counterpart. Which,

as a sanity check, leads to C2 = 66 if working forward.

More generally, one can use the results in [27] to compute the homology class of

a given cycle and then the intersection numbers using periods of residue forms.

3.2.2 Dimension of the Hodge locus

In order to know if a flux G is a general Hodge cycle we need to compute the rank

of the matrix ρIJ defined as follows.

ρIJ(G) := ωβI+βJ
·G, (3.27)
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for |βI | = |βJ | = 1.

Since |βI | = |βJ | = 1 corresponds to h3,1 forms, this is a 426× 426 matrix. The

entries are then given by the coordinates of G in the basis of residue forms.

In order to see the relationship with respect to the Aoki-Shioda results, we can

understand it as follows. Let G :=
∑

β αβωβ for some rescaling/constant αβ. Then

ρIJ will be given by :

ρIJ =
∑
|β|=2

αβ
−(2πi)4

2265
ωβI+βJ

· ωβ =
−(2πi)4

2735
αβI+βJ

, (3.28)

with the universal constant −(2πi)4

2735
.

3.2.3 Vanishing cycles

We have seen that vanishing cycles can be used to provide a basis for the middle

homology. Let us specialize the discussion to Fermat’s sextic and provide a proper

definition in this case.

Let us fix the affine patch of the sextic to be :

U0 := {(x1, x2, x3, x4, x5) ∈ C5| 1 + x6
1 + x6

2 + x6
3 + x6

4 + x6
5 = 0} .

where we have fixed x0 = 1.

Vanishing cycles are defined as follows : for every β ∈ {0, 1, 2, 3, 4}5

δβ :=
∑

a∈{0,1}5
(−1)

∑5
i=1(1−ai)∆β+a, (3.29)

where ∆β+a : ∆
4 := {(t1, t2, t3, t4, t5) ∈ R5 : ti ≥ 0 ,

∑5
i=1 ti = 1} → U0 is given by

∆β+a(t) :=
(
ζ
2(β1+a1)−1
12 t

1
6
1 , ζ

2(β2+a2)−1
12 t

1
6
2 , ζ

2(β3+a3)−1
12 t

1
6
3 , ζ

2(β4+a4)−1
12 t

1
6
4 , ζ

2(β5+a5)−1
12 t

1
6
5

)
.

The periods of primitive classes can be explicitly computed [42] as follows:

∫
δβ′

ωβ =
(−1)|β|

65
1

|β|!2πi

5∏
i=0

Γ

(
βi + 1

6

)(
ζ(β

′
i+1)(βi+1) − ζ(β

′
i)(βi+1)

)
, (3.30)
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where β′
0 := 0.

This formula extended to other affine patches by setting xi = 1 resulting in the

same formula with β′
i = 0.

Thus for practical purposes we can simply represent vanishing cycles as tuples

δβ′ = [β′
0, β

′
1, β

′
2, β

′
3, β

′
4, β

′
5],

with each β′ ranging from 0 to 4 with at least one of them being 0.

3.2.4 Basis over Z

We have so far worked implicitly overQ. However, vanishing cycles are not enough to

provide a basis over Z and we need to supplement them with an extra linear algebraic

cycle. This can be seen from the Leray-Thom-Gysin sequence in homology [26, §4.6]

0 → H4(X,Z)prim → H4(X,Z) f−→ H2(X∞,Z) → 0,

where H4(X,Z)prim := Im(H4(U0,Z) → H4(X,Z)), f is the intersection map and

X∞ = X ∩ {x0 = 0} = {x6
1 + x6

2 + x6
3 + x6

4 + x6
5 = 0},

is the Fermat sextic threefold at infinity. Since

H2(X∞,Z) = Z · [L],

for some line L ⊆ X∞, we get the following decomposition

H4(X,Z) = H4(X,Z)prim ⊕ Z · [C], (3.31)

for any linear algebraic cycle C ⊆ X.

Notice that in general the primitive part of an integral cycle is not integral.

However, in our case, the above result means that for Aoki-Shioda and Type 3

cycles (corresponding to 1-decomposable and indecomposable cycles respectively)
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this will result in a 0 intersection with any linear cycles. Thus, this condition on the

basis needs to be studied for the specific case of linear (or 3-decomposable) cycles.

3.2.5 Complex Conjugation

Since G ∈ H4(X), G is in particular real, and we need to study the action of complex

conjugation. Set :

ω̄β = cβωβ̄ . (3.32)

where cβ is a constant of proportionality to be determined.

Pick any vanishing cycle δβ′ and integrate ω̄β + ωβ.

∫
δβ′

ω̄β =

∫
δβ′

ωβ . (3.33)

Using β′ = (06) we find for |β| = 2 that

cβ =

∫
δβ′

ωβ∫
δβ′

ωβ̄

= −
5∏

i=0

Γ
(
βi+1
6

)
Γ
(
5−βi

6

) ζβi+1
6 − 1

ζ5−βi
6 − 1

= −
5∏

i=0

Γ
(
βi+1
6

)
Γ
(
5−βi

6

) . (3.34)

From the n-decomposability of the residues we have the following :

• When β is 3-decomposable we have that (up to permutation) β2i = 4− β2i+1,

so that cβ = −1.

• When β is 1-decomposable we have β = (β0, 4− β0, 0, 2, 3, 3) and hence

cβ = −
Γ
(
1
6

)
Γ
(
1
2

)
Γ
(
2
3

)2
Γ
(
5
6

)
Γ
(
1
2

)
Γ
(
1
3

)2 = −
Γ
(
1
6

)
Γ
(
2
3

)2
Γ
(
5
6

)
Γ
(
1
3

)2 = −
√
π21−1/3Γ

(
1
3

)
Γ
(
2
3

)
Γ
(
1
3

)
Γ
(
2
3

)√
π21−2/3

= −21/3 .

(3.35)

• When β is indecomposable we can set β = (4, 4, 1, 1, 1, 1) and hence

cβ = −
Γ
(
5
6

)2
Γ
(
1
3

)4
Γ
(
1
6

)2
Γ
(
2
3

)4 = −
Γ
(
2
3

)2 (
21−2/3

√
π
)2

2Γ
(
1
3

)2
Γ
(
2
3

)2
(21−2/6

√
π)

2
2Γ
(
1
3

)2 = −22/3

24/3
= −2−2/3 .

(3.36)
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Where we have used the Euler reflection formulas repeatedly:

Γ(z)Γ(1− z) =
π

sin(πz)

Γ(z)Γ(z + 1
2
) = 21−2z

√
π Γ(2z) .

(3.37)

3.2.6 Integrality with respect to vanishing cycles

Let us first fix some notation to study the integrality condition with respect to

vanishing cycles. For some residue form ωβ with |β| = 2 :

∫
δβ′

ωβ =
1

65
1

4πi

∏
i

Γ

(
βi + 1

6

)(
ζ
(β′

i+1)(βi+1)
6 − ζ

(β′
i)(βi+1)

6

)
=

1

65
1

4πi

∏
i

Γ

(
βi + 1

6

)(
ζ
(βi+1)
6 − 1

)
ζ
β′
i(βi+1)

6

= zuzβZ(β, β
′)

(3.38)

with

zu =
1

65
1

4πi
,

zβ =
∏
i

Γ

(
βi + 1

6

)(
ζ
(βi+1)
6 − 1

)
,

Z(β, β′) = ζ
∑

i β
′
i(βi+1)

6 .

(3.39)

Note that zu is a universal constant, zβ depends only on the choice of residue,

whereas Z(β, β′) depends on the vanishing cycles as well as the residue.

From the definition of Z(β, β′) we get :

Z(β̄, β′) = ζ
∑

i β
′
i(β̄i+1)

6 = ζ
∑

i β
′
i(5−βi)

6 = ζ
∑

i β
′
i(βi+1)

6 = Z(β, β′) (3.40)

The ansatz for G is defined as :

G =
∑
β∈I

νβ
zuzβ

ωβ +
ν̄β
z̄uz̄β

ω̄β . (3.41)

Here, I is a subset of βs with |β| = 2 which contains β = (26) and exactly one

member from each pair β, β̄. The only non-trivial data once the ωβ are picked are

the νβ. Importantly the maximally symmetric residue form with β = [2, 2, 2, 2, 2, 2]
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is manifestly real and as such is the only one who doesn’t pair up with another

residue form.

In order to determine the νβ, we can use this ansatz in condition 3.38:

G · δβ′ =
∑
β∈I

νβZ(β, β
′) + ν̄βZ̄(β, β

′) ∈ Z ∀β′ (3.42)

Defining the inner form

⟨a, b⟩ ≡ ab̄+ āb (3.43)

on C, the above relations can now be understood as the condition that the νβ are

contained in the lattice Z∗ dual to the lattice Z spanned by the Z(β, β′).

Since with the above inner form, the sixth roots of unity span the A2 lattice

(or A1 in the case of the [2, 2, 2, 2, 2, 2] form), we have in general that the lattice

spanned by Z(β, β′) is included in the lattice A875
2 ⊕ A1. The inclusion is strict, as

we shall see in the examples.

3.2.7 Physical constraint: integrality with respect to a lin-

ear cycle

To respect the half integrality condition we need to consider integrality with respect

to a linear cycle 3.31. This will single out points in the lattice defined by Z(β, β′),

which are the properly quantized G fluxes. Let us call this set Λphys.

In order to find elements of this set, the following algorithm can be used :

• Quantize some G with respect to the vanishing cycle condition 3.38, resulting

in the lattice of νβ.

• Write a general G ansatz with respect to the above lattice.

• Plug this ansatz in 3.18 for a linear cycle C l
σ.

• Only finitely many 3-decomposable forms will have non-zero intersection with

C l
σ. Impose half-integrality of those intersections.

This will result in some parametric equations determining which integers can be

both in the lattice of νβ and Λphys.
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3.2.8 Checking the normalization

We aime to prove that the normalization in the formula 2.13 is correct.

Since both residues and vanishing cycles form a basis of the same vector space,

we can compute in either one of those basis. Using a basis of H4(X,C)prim composed

of normalized residues ηβ we have

δβ′ =
∑
β

Iβ′βηβ (3.44)

where the sum runs over all β that are needed to generate H4(X,C)prim, i.e.
∑

i βi =

6k for k = 0, 1, 2, 3, 4 and βi ≤ 4. The coefficients in this sum are

Iβ′β = δβ′ · ηβ̄ = cβ cβ′ β, (3.45)

(no summation here) where the cβ′ β are the constant of normalization of the van-

ishing cycles.

Choosing β′ = (06) we find that

2 = δβ′ · δβ′ =

(∑
β

Iβ′βηβ

)
·

(∑
β′′

Iβ′β′′ηβ′′

)
=
∑
β

Iβ′βIβ′β̄

=

(
1

65
1

2πi

)2
(∑

β

1

|β|!(4− |β|)!
cβcβ̄

∏
i

(
ζβi+1 − 1

) (
ζ5−βi − 1

)
Γ

(
βi + 1

6

)
Γ

(
5− βi

6

))
(3.46)

We can simplify this as follows. First note that

(
ζβi+1 − 1

) (
ζ5−βi − 1

)
= 2− 2 cos

(
2π

βi + 1

6

)
= 4 sin2

(
π
βi + 1

6

)
(3.47)

(the same result is in fact found for the corresponding factors for any β′) as well as

the reflection formula

Γ

(
βi + 1

6

)
Γ

(
5− βi

6

)
=

π

sin
(
π βi+1

6

) . (3.48)
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Hence we find

2 =

(
1

65
1

2πi

)2

(4π)6

(∑
β

1

|β|!(4− |β|)!
c2β
∏
i

sin

(
π
βi + 1

6

))

=

(
1

65
1

2πi

)2

(4π)6
65

(2Zi)4

(∑
β

(−1)|β|+1
∏
i

sin

(
π
βi + 1

6

))

=
2

35

∑
β

(−1)|β|
∏
i

sin

(
π
βi + 1

6

) (3.49)

We can work out the sum by brute force on a computer with the result

243 = 35 (3.50)

This confirms that the inner form between vanishing cycles and residue forms is the

correct one.

3.2.9 Restriction to symmetric forms

Since the lattices involved have a high dimension, we need to restrict ourselves to

some symmetric forms to be able to perform computations. Furthermore, restricting

ourselves to such symmetric forms reminds us that quotienting might be a solution

to find suitable G fluxes so there is an additional physical motivation to do so.

We will only consider symmetries with respect to (Z/6Z)5 and work at fixed

permutation S = I6, the identity.

We will consider symmetries that act on the homogeneous coordinates xi as

g : (x0, x1, x2, x3, x4, x5) → (ζg0x0, ζ
g1x1, ζ

g2x2, ζ
g3x3, ζ

g4x4, ζ
g5x5) , (3.51)

with ζ a primitive 6th root of unity and gi ∈ [0, 1, 2, 3, 4, 5].

Note that the homogeneous coordinates are only defined modulo the C∗ action

of P5, so that we can identify

(g0, g1, g2, g3, g4, g5) ≃ (g0 + 1, g1 + 1, g2 + 1, g3 + 1, g4 + 1, g5 + 1) . (3.52)
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Furthermore, we will only consider groups Γ which preserve the holomorphic

top-form Ω, so that we need

∑
i

gi = 0mod 6 ∀ g ∈ Γ . (3.53)

The action of some g ∈ Γ on ωβ is

ωβ → ωβζ
∑

i gi(βi+1) (3.54)

so that the invariant subspace in the middle cohomology is spanned by H2 together

with those residues for which

∑
i

gi(βi + 1) = 0mod 6 ∀ g ∈ Γ (3.55)

3.2.10 Quadratic form

From the vanishing cycle condition, we can build a quadratic form as follows:

• Build the lattice of νβ.

• Write a general ansatz for G with νβ = [n0, n1, . . .] a general lattice point.

• Compute Q(G) formally with the above ansatz. This will result in an homo-

geneous polynomial of degree 2 in the ni.

• Put this polynomial in matrix form and get Q. Only keep the odd integers

represented by Q, corresponding to points in Λphys. Alternatively, build a

parametrization with respect to the linear cycle condition and keep only points

which obey this parametrization.

In this form, this will allow us to perform some number theory and in particular

apply the Fincke-Pohst algorithm for enumeration of all vectors below a certain

length. Then we are simply left to check the rank of ρ corresponding to each of

those vectors.

Crucially, note that the ni corresponds to different rescaling of a single component

of a pair of complex conjugate residues, it does not correspond to residue forms
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themselves. Hence, while it makes computations easier, it also makes the geometric

intuition a bit hidden.

3.3 Examples

3.3.1 Symmetric under (Z/6Z)4

The group (Z/6Z)4 acts on residues as follows :

g0 g1 g2 g3 g4 g5

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 1 −1 0

. (3.56)

For a form ωβ to be invariant we need that βi = βj for all i, j. The only invariant

residues are hence

β |β|

ω(06) (0, 0, 0, 0, 0, 0) 0

ω(16) (1, 1, 1, 1, 1, 1) 1

ω(26) (2, 2, 2, 2, 2, 2) 2

ω(36) (3, 3, 3, 3, 3, 3) 3

ω(46) (4, 4, 4, 4, 4, 4) 4

(3.57)

In particular, there is now only a single term in G (ω(26)) that is non-zero and the

matrix ρ is one-dimensional.

Since ω(26) is the only real residue, which we known from the way complex

conjugation acts, we can impose that G · δβ′ ∈ Z, resulting in ν̄(26) ∈ A∗
1 which

implies that ν(26) =
n
2
for n ∈ Z so that

G = n
ω(26)

zuz(26)
= n

2 · 35 i
π2

ω(26) (3.58)
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Next we impose the linear cycle condition :

G · Cℓ ∈ Z+
1

2
, (3.59)

which for C0,0,0 reads

∫
C0,0,0

id

G = n
2 · 35 i
π2

(2πi)2
1

2 · 63
ζ
∑3

e=1(1+2)1
12 = −n

32

2
∈ Z+

1

2
(3.60)

so that n must be odd, n = 2m+ 1 for m ∈ Z.

We hence find that Λphys is described as

Λphys =

{
Gm = (2m+ 1)

2 · 35 i
π2

ω(26)|m ∈ Z
}

. (3.61)

The shortest choices of G are m = 0 and m = −1 for which

G2
0 = G2

−1 =
35

2
. (3.62)

Furthermore, the matrix ρ is just a number in this case and it is non-zero, i.e.

has full rank, whenever G ̸= 0, which is true for any m.

Note that
χ(X)

24
− 1

2
G2

0 = 48 > 0 , (3.63)

so that this flux is a perfectly viable solution.

However, choosing the next to shortest flux for m = 1 results in

χ(X)

24
− 1

2
G2

1 = −438 < 0, (3.64)

and does hence not give a consistent solution.
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3.3.2 Symmetric under (Z/6Z)3 × (Z/3Z)

Here, the generators of (Z/6Z)3 × (Z/3Z) are acting on residues by :

g0 g1 g2 g3 g4 g5

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 1 −1 0 0

0 0 0 0 2 −2

(3.65)

so that the relevant invariant residue forms are

β |β|

ω(16) (1, 1, 1, 1, 1, 1) 1

ω(0432) (0, 0, 0, 0, 3, 3) 1

ω(26) (2, 2, 2, 2, 2, 2) 2

ω(1442) (1, 1, 1, 1, 4, 4) 2

ω(3402) (3, 3, 3, 3, 0, 0) 2

(3.66)

In this case we have

Z633 = SpanZ
{
Z((1442), β′)⊕ Z((26), β′)

}
(3.67)

By working these out for all β′, one finds that the generators ofZ633 are (1, 0), (ζ
2
6 , 0), (0, 1),

so that Z633 = A2 ⊕ A1 and Z∗
633 = A∗

2 ⊕ A∗
1.

Hence any Z-linear combination of those generators will give an integral result

with respect to vanishing cycles. We furthermore note that ζ26 is the shortest vector

in the A∗
2 lattice.*

We now impose the linear cycle condition using C0,0,0. As C0,0,0 · ω(1442) = 0, as

is expected from the fact that it is not 3-decomposable, this only constrains the A∗
1

summand such that :

∫
C0,0,0

id

G =
2ν(26)
zuz(26)

∫
C0,0,0

id

ω(26) = −32ν(26) ∈ Z+
1

2
. (3.68)
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As for the first example, we hence find

ν(26) = (2n1 + 1)/2, (3.69)

together with ν̄(1442) ∈ A∗
2, i.e

ν̄(1442) = n2 + n3
ζ−1
12√
3
. (3.70)

The matrix ρ̃IJ633 is:

ρ̃IJ633 =

 α(26) α(3402)

α(3402) 0

 (3.71)

The shortest G ∈ Λphys for which ρ has rank one is found for n1 = n2 = n3 = 0

in which case we have
χ(X)

24
− 1

2
G2

0 = 48 > 0 , (3.72)

However, this vector does not correspond to a matrix ρ of full rank since only α(26)

is non-zero in this case.

The shortest G with ρ of full rank is found for n1 = n2 = 0 and n3 = 1, so that

χ(X)

24
− 1

2
G2

0 =
2610

24
− 1

2

(
35

2
+ 3226

)
= −240 < 0, (3.73)

where we have used S(1442) =
32

26
.

Hence, there are no solutions with ρ of maximal rank within the tadpole bound

here.
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3.3.3 Symmetric under (Z/6Z)2 × (Z/3Z)× (Z/2Z)

Here the action of the group (Z/6Z)2 × (Z/3Z)× (Z/2Z) is given by

g0 g1 g2 g3 g4 g5

1 −1 0 0 0 0

0 1 −1 0 0 0

0 0 0 2 −2 0

0 0 0 0 3 −3

(3.74)

and the invariant residue forms are:

β |β|

ω(0432) (0, 0, 0, 0, 3, 3) 1

ω(0323) (0, 0, 0, 2, 2, 2) 1

ω(03412) (0, 0, 0, 4, 1, 1) 1

ω(16) (1, 1, 1, 1, 1, 1) 1

ω(13302) (1, 1, 1, 3, 0, 0) 1

ω(2303) (2, 2, 2, 0, 0, 0) 1

ω(0343) (0, 0, 0, 4, 4, 4) 2

ω(1442) (1, 1, 1, 1, 4, 4) 2

ω(1333) (1, 1, 1, 3, 3, 3) 2

ω(23032) (2, 2, 2, 0, 3, 3) 2

ω(26) (2, 2, 2, 2, 2, 2) 2

ω(23412) (2, 2, 2, 4, 1, 1) 2

ω(3313) (3, 3, 3, 1, 1, 1) 2

ω(3402) (3, 3, 3, 3, 0, 0) 2

ω(4303) (4, 4, 4, 0, 0, 0) 2

(3.75)

The fundamental difference compared to previous examples is that the lattice Z

is not a direct sum of A2 and A1 and the inclusion is strict, meaning :

Z6223 = SpanZ
{
Z(ω(0343), β

′), Z(ω(1442), β
′), Z(ω(1333), β

′), Z(ω(23032), β
′), Z(ω(26), β

′)
}
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is not equal to A1 ⊕ A4
2.

A basis of the dual lattice Z∗
6223 is given in matrix form by :

P6223 =



i
6
√
3

−1
4
+ i

12
√
3

0 0 0 0 0 0 0

0 0 −1
2
+ i

2
√
3

−3
2
+ i

2
√
3

0 0 0 0 0

−3
4
+ i

4
√
3

−1 + i
2
√
3

0 0 eiπ
5
6√
3

−3
2
+ i

2
√
3

0 0 0

0 0 0 0 0 0 eiπ
5
6√
3

−3
2
+ i

2
√
3

0

1
6

1
3

0 0 0 0 0 0 1
2


and we can write a general element of Z∗

6223 as

(ν(0343), ν(1442), ν(1333), ν(23032), ν(26)) = P6223 · µ, (3.76)

with µ ∈ Z9.

The Gram matrix of the lattice Z∗
6223 is given by

G6223 =



987/2 555 0 0 240 672 0 0 81/2

555 1686 0 0 336 912 0 0 81

0 0 576 1440 0 0 0 0 0

0 0 1440 4032 0 0 0 0 0

240 336 0 0 192 480 0 0 0

672 912 0 0 480 1344 0 0 0

0 0 0 0 0 0 216 540 0

0 0 0 0 0 0 540 1512 0

81/2 81 0 0 0 0 0 0 243/2



(3.77)

This is not an integral matrix as Z∗ is not an integral lattice.

Finally, we have to impose G to lie in Λphys, we need to take care of the in-

tersection of G with respect to a linear cycle. An appropriate choice here is again

C0,0,0
id , as before. While we have in total three 3-decomposable residues, namely

ω(0343), ω(1333), ω(26), we have fixed the permutation to be the identity, and thus only

ω(26) has a non-zero period with respect to this linear cycle since it is the only cycle

which is 3-decomposable with respect to the identity permutation in this list.
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Thus, to impose G ∈ Λphys, we are reduced to make sure that the period of the

rescaled ˜ω(26) is half integral with respect to C0,0,0
id . For any given µ, this condition

becomes :

2 · (n1

6
+ n2

3
+ n9

2
)

zuz(26)

∫
C0,0,0

id

ω(26) = −32
(n1

6
+

n2

3
+

n9

2

)
∈ Z+

1

2
. (3.78)

Note that n2 has no impact on this condition, so we can freely choose it. The

resulting constraint on n1 and n9 implies that n1+3n9 is an odd integer, so that we

can write

n1 = 2k + 1− 3n9, (3.79)

for k ∈ Z.

We are now ready to find all flux solutions for this model by generating all vectors

in Z∗
6223 up to some given length by computer using the Fincke-Pohst algorithm, and

then checking for each one if it is contained in Λphys. All lengths below 500 appearing

in Λphys and the associated numbers of solutions are

Length Number of solutions

243/2 2

411/2 4

603/2 4

627/2 12

675/2 12

843/2 24

987/2 8

Table 3.1: Lengths in Λphys below 500.
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Rank Minimum
2 243/2
4 411/2
6 843/2

Table 3.2: Minimum for each rank

We can now work out

ρ̃IJ6223 =



0 0 0 α(3402) 0 α(23412)

0 α(4303) α(23032) α(3313) 0 α(26)

0 α(23032) 0 0 0 0

α(3402) α(3313) 0 0 α(23032) α(1333)

0 0 0 α(23032) 0 α(1442)

α(23412) α(26) 0 α(1333) α(1442) α(0343)


(3.80)

for any of these solutions, and examine the relationship between its rank and G2.

A first observation is that generically the same length can be associated to dif-

ferent ranks. Of course this can happen trivially if we rescale G, but also happens

in a different manner here. For example, the length G ·G = 4083
2

2 can correspond to

ρ̃IJ6223 having rank 4 or rank 6, via for example the following solutions :

µ =
(
−1, −1, −1, 0, 0, 1, 0, 0, 0

)
µ =

(
0, −1, 0, 0, −1, 1, −1, 1, −1

)
.

We have performed a scan over all lengths up to 1500 and computed the associ-

ated rank of ρ for all these solutions. This allows us to find the minimal length of

G for each rank of ρ. The result is shown in Table 3.2 and Figure 3.1.

This is similar to the previous example, where the solutions found were only below

the tadpole if the rank of the matrix was not full. The plot in Figure 3.1 shows the

2We obtained this point by checking for all points with coordinates −1, 0, 1 to check results of
the Fincke-Pohst algorithm
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Figure 3.1: A plot of the minimal lengths found for each rank of ρ. The horizontal
axis shows the rank of ρ and the vertical axis the tadpole contribution of the solu-
tions. The red horizontal line shows the tadpole bound.
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minimum lengths associated to every rank, as well as some further lattice points

corresponding to rank four with non-minimal length. Interpolating the growth of

G2 with the rank of ρ shows that the tadpole bound is crossed well before a maximal

rank of ρ is reached.

All of the solutions shown are quite simple in that at least one solution has

µi ∈ {−1, 0, 1}∀i, except for length 603
2
. This is quite remarkable and indicates

that constructing a basis of integral Hodge cycles using residues appears to be very

efficient, at least when choosing appropriate linear combinations such as the ones in

(3.76).

3.3.4 Quotients by (Z/6Z)4

The approach we have taken in this section naturally lends itself to study flux so-

lutions on quotients of the Fermat sextic by the groups of symmetries considered.

This appears to be a promising avenue to generate general Hodge cycles within the

tadpole bound. On the one hand, the tadpole contribution should be significantly

smaller, as we expect the self-intersection number of a symmetric flux to be divided

by the order of the group for the quotient. On the other hand, the tadpole con-

tribution of the geometry should be equal to the Euler characteristic of a crepant

resolution of the quotient, which is typically of a similar magnitude than the original

fourfold.

Let us exemplify this for the simple case of the Fermat sextic and Γ64 = (Z/6Z)4,

where we can give a description using toric geometry. We first work out the Euler

characteristic of a resolution. The family of sextic Calabi-Yau fourfolds is described

as toric hypersurfaces by a pair of reflexive polytopes ∆,∆∗ with vertices

∆∗ =



1 0 0 0 0 −1

0 1 0 0 0 −1

0 0 1 0 0 −1

0 0 0 1 0 −1

0 0 0 0 1 −1


, ∆ =



−1 −1 −1 −1 −1 5

−1 −1 −1 −1 5 −1

−1 −1 −1 5 −1 −1

−1 −1 5 −1 −1 −1

−1 5 −1 −1 −1 −1


.

(3.81)
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Here ∆∗ is the N-lattice polytope and ∆ is the M-lattice polytope of the sextic

fourfold X, and the mirror X∨ is found by reversing the roles of the two polytopes.

Crucially, X∨ can also be found along the lines of [43] by taking (as resolution of)

the quotient of X/Γ64 , and this is reflected in the face fan of ∆ giving rise to the

toric variety P5/Γ64 . It can be shown that ∆ admits a fine and regular triangulation

resulting in a projective crepant resolution X̃Γ64
of X/Γ64 with

h1,1(X̃Γ64
) = 426 h3,1(X̃Γ64

) = 1 h2,1(X̃Γ64
) = 0 (3.82)

so that χ(X̃Γ64
) = 2610 = χ(X) as expected for a mirror pair of Calabi-Yau fourfolds.

We now work out the fate of the tadpole contribution of the flux. As ω(26) is

invariant under Γ64 we will use the same notation to denote the image of this residue

on the quotient. Following [44], we have that∫
X
ω(26) ∧ ω(26)∫

X/Γ64
ω(26) ∧ ω(26)

=
Vol(∆)

Vol(∆∗)
= 64 . (3.83)

where Vol() is the lattice volume of the respective polytopes. The ratio here follows

from the simple fact that the vertices of ∆∗ span N , whereas the vertices of ∆

span N ′ ⊂ N with N/N ′ = Γ64 . The result above fits with the naive expectation

that integrating an invariant form over a quotient is equal to the integral over the

covering space divided by the order of the group.

Similar results can be obtained for other groups Γ as well. Here, the N -lattice

polytope describing the quotient is given by a polytope which is a simplex with

vertices vi satisfying
∑

vi = 0 such that N/N ′ = Γ, where N ′ is again the sublattice

of the N lattice spanned by the vi. It hence follows from the same argument as

above that the tadpole contribution of the flux is reduced by |Γ|.

Given a flux symmetric under a finite group of symmetries, taking the quotient

hence leads to a significant reduction of the tadpole contribution of the flux. This

comes with another feature, however: the fourfolds X/Γ are singular and the flux

we have constructed is in general only defined on the singular fourfold X/Γ, i.e.

these fluxes do not exist as properly quantized fluxes on a resolution of X/Γ. This

is already indicated by the tadpole contribution of the flux being fractional in a way
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that does not originate from c2/2.

3.3.5 Arithmetic obstructions - (Z/6Z)2 × (Z/3Z)× (Z/2Z)

Given a point in the complex structure moduli space of a Calabi-Yau fourfold X, the

intersection product of primitive Hodge cycles naturally corresponds to an integral

quadratic form Q. The set of Hodge cycles below the tadpole bound is then

S(Q, T ) := {µ | ∃ k ∈ Z, Q(µ) = k ≤ T} ,

with T the associated tadpole bound. While this set finite, performing an enumer-

ation is computationally expensive and conceptually unsatisfactory, and we wish to

find a necessary conditions for S(Q, T ) to be non-empty.

Recall that an integer m is called representable by Q if there exists integers

µ ∈ Zn s.t. Q(µ) = m. For an integer m to be representable, we have to have

corresponding representations of the p-adic reductions mp by Gp and µp for every

prime p:

µ ∈ Zn, m ∈ Z, G(µ) = m =⇒ ∃µp ∈ Zn
p |Gp(µp) = mp ∈ Zp. (3.84)

Let us exemplify this point of view for the problem treated in this work. Let us

study the existence of solutions for the gram matrix Q of residues symmetric under

(Z/6Z)2 × (Z/3Z) × (Z/2Z), (3.77), i.e. the set S(Q, 1500). A direct observation

from the results shown in Table 3.1 is that there are only 7 lengths in Λphys below

500, already well above the tadpole bound, indicating that the majority of integers

below the tadpole bound cannot be represented.

In Table A.1, we have generated a list of all integers up to 1500 representable

by Q which also includes their multiplicity. Note that this does not yet impose the

physical quantization condition related to c2(X)/2.

As we can see right away, there are very few lengths represented by this quadratic

form to begin with. In fact, there are only 108 lengths represented up to 1500.

Furthermore, as the length increases, so does the number of solutions.
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Since it is valued in Z + 1
2
in general, we will multiply everything by a factor

of 2. This allows us to recover the case of an integral quadratic form, and if we

restrict ourselves to solutions that are odd, we recover Λphys for Q. This results in

the following matrix :

Q̃ =



987 1110 0 0 480 1344 0 0 81

1110 3372 0 0 672 1824 0 0 162

0 0 1152 2880 0 0 0 0 0

0 0 2880 8064 0 0 0 0 0

480 672 0 0 384 960 0 0 0

1344 1824 0 0 960 2688 0 0 0

0 0 0 0 0 0 432 1080 0

0 0 0 0 0 0 1080 3024 0

81 162 0 0 0 0 0 0 243


As an example, let us study whether or not 433 is represented by this matrix.

Note that 433 is odd and thus in principle can lie in Λphys. We know that if there

is a solution µ ∈ Z, then there must be solutions in the p-adics µp ∈ Zp for every

prime p. So we can first perform a reduction mod 3 of Q̃, which is identically 0.

Since 433 = 1 (mod 3), we have an obstruction : there is no non-trivial solution in

the 3-adics.

Let us also work out the obstruction modulo 2 to see that it is indeed prime

powers that matter, and not just the primes. For n = 1, the quadratic form Q̃2 is:

Q̃2 = n2
1 + n2

9. (3.85)

Since 433 = 1 (mod 2) there are no obstructions. However, for n = 2, the quadratic

form Q̃22 is :

Q̃22 = 3n2
1 + 2n1 · n9 + 3n2

9. (3.86)

Since 433 = 1 (mod 4) there are in fact obstructions modulo 4, as Q̃22 is always 0 or

3 modulo 4.
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While the existence of obstructions to solutions holds for quadratic forms in gen-

eral, here it is quite important to note the algebro-geometric origin of the quadratic

forms we are considering. From the geometric and physical context, one can hope

to a priori determine the obstructions, which leaves to determine the representation

of integers for which there are no obstructions, thus severely constraining the set of

physical solutions.

In fact one explanation possible for the fact that obstructions stems from the

2-adics and the 3-adics it that the Fermat sextic fourfold is known to be modular.

Hence we expect the primes of bad reduction, the one that may induce obstructions,

to be 2 and 3 as the Jacobian has a global factor of 6 = 2 · 3. Note that a priori

non-trivial, since many coefficients of the quadratic form have prime factors other

than 2 and 3, for example 3372 has prime factorization 22 · 3 · 281.

It would be interesting to combine the observation about quotients made above

with the number theoretic approach outlined here. Dividing a given quadratic form

by prime powers can be described in this language as removing obstructions to the

representation of integers by this quadratic form. It would be very interesting to

systematically investigate this further.
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CHAPTER 4

Conclusions and future research directions

4.1 Observations using Fermat’s sextic

We introduced in chapter 2 various tools to be able to perform computations. Those

were :

• Vanishing cycles

• Residues

• Algebraic cycles

• Quadratic forms

The first 3 lead to the first approach, while all four of them were combined to

confirm the results.

The point-of-view adopted was to focus on forms that were below the tadpole

bound, meaning those that lie in the set S(Q, T ), and then check if they were also

part of the set S(ρ,X).

Regarding the members of those sets we learned, in the cases studied for Fermat’s

sextic, that the set S(Q, T ) was mostly empty to begin with. This was explained
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using p-adic numbers for the quadratic form Q and the fundamental theorem of

arithmetic. We expect the obstruction to come from the modularity of the sextic.

In the general case, we expect modularity to play a role in the tadpole problem, in

that modular varieties can offer models that can be studied analytically.

We have also seen some caveats to the fact that it was mostly empty : the number

of variables of the quadratic forms obtained were not in general very high. With

a higher number of variables, you expect more numbers to be represented, even if

those numbers are, at the end of the day, points on surfaces1. We also have seen

that the point-of-view of arithmetic allows us to apply algorithms that are much

faster than naive enumeration, and it looks as a promising candidate for a unifying

point-of-view on the problem.

Naturally, those observations were put in contrast with elements of the set

S(ρ,X). It turned out that for the most part, elements of S(Q, T ) did not be-

long to S(ρ,X). In the most general case, we have seen the tension between the

Hodge condition and the length condition exemplified by a curve : the minimal

length for a general Hodge cycle of type (2, 2) was above the tadpole bound by a far

margin.

However, we have also seen a possible solution to the tadpole problem thanks

to this. One of the working assumptions in the tadpole conjecture is to work with

smooth fourfolds. However, when taking orbifold quotients, we did find a solution

which coincidentally corresponds to the mirror sextic. This is natural from the point

of view of toric geometry, as we expect the periods computed to depend on the order

of the group of symmetry we quotient by. Then, quotienting just corresponds to

removing flat directions and hence the odds of being general Hodge increase.

Finally, we have seen a major problem that is somewhat unavoidable with the

tools introduced, which is that of computational complexity. Even if our basis

seemed quite good, the Gram matrix having many off diagonal zeroes, and the

algorithm used were fast considering that we were working with a case were said

Gram matrix was positive definite, the computational complexity is still way too

1Note that in the two last cases studied for Fermat’s sextic fourfold, the number of integers
represented below the tadpole bound did not change despite the increase in the number of variables
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high to be able to perform any meaningful computations in general. Indeed, for

a complete intersection Calabi-Yay fourfold, the Hodge number h2,2 is typically of

the order of 100. Smaller than the sextic, but still out of reach as of today. This

is one more argument that goes in the way of looking at this problem from the

point-of-view of the p-adics.

Possible extension of this work involve studying the arithmetic properties and the

interplay between the Hodge and length condition on other examples. In particular

it would be interesting to study the link with mirror symmetry by taking quotients,

as well as study the various arithmetic conjectures ( Hasse principle, Tate conjecture,

and importantly modularity ) in this setting and see how big the overlap with the

tadpole problem is. We hereby review those possible research directions.

4.2 A new perspective on K3×K3

4.2.1 Quotients of K3×K3

As restricting ourselves to symmetric forms on the sextic, it is quite natural to do

the same analysis for product of K3 surfaces.

As a first remainder, let us quickly remember that thanks to Torelli’s theorem

for K3 surfaces, we have a correspondence between the classification problem for

automorphism groups and lattices of K3 surfaces, due to Nikulin [45].

There we need to distinguish between symplectic group actions Gs and non-

symplectic group actions Gn. In terms of taking quotients of K3 surfaces it is

quite important since for a group G acting on K3 we have the following short exact

sequence :

1 → Gs → G → Gn → 1 (4.1)

Of course in this context, this is quite good, notably because the quotient of a

K3 surface by a symplectic group action leads to ADE singularities.

However, this also tells us that we need to pay some attention when taking

quotients. In fact, our desire is that after quotienting, we still get some (smooth
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and rational) K3 surface.

A first result by Nikulin [46], again, gives an answer in the form of the following

result : for a K3 surface with a non-symplectic involution, the result depends on

the fixed points of the involution. If there is no fixed point, the involution will be

an Enriques surface, otherwise (fixed loci) it will be a K3 surface.

As for the non-symplectic part of some group action, [47] gives a proof that if

the non-symplectic part Gn has order at least 3, then the quotient is again rational.

A further desirable property would be to have the same effect as taking orbifold

quotients, meaning we essentially restrict ourselves to some symmetric forms.

An example of this would be in the case of the sextic and its mirror : taking the

quotient has just reduced the dimension of H2,2, so that the associated quadratic

form is lower dimensional, but has not changed the actual value of the coefficients.

Noting furthermore that the intersection matrix for K3 surfaces is well known,

and we can restrict ourselves to the case where the only obstruction comes from the

fact that this is an even lattice and hence no odd integers can be represented, this

offers a nice toy model.

So we understand that the main obstruction to finding suitable fluxes in the

case of K3 × K3 comes from the Hodge condition rather than the representation

of integers, which makes it a good candidate to study the behaviour of this Hodge

condition.

So we get some idea, using those results and the observations made in the case

of the sextic, on how to build some examples of fluxes.

The question is the following :

let us fix some integer n below the tadpole bound for K3×K3. There is a finite

amount of solutions to the representation of n by the intersection matrix in middle

cohomology, due to it being an integral quadratic form. The task is to classify those

solutions.

Pick the solutions with the most non-zero coefficients. As we noted, we want

to ”get rid” of the directions corresponding to zero coefficients in the solutions

by quotienting. Can we build, using the work of Nikulin and Xiao, a quotient of

K3×K3 corresponding to this solution ?
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If the answer is yes, then we have reduced the problem. Then we are left to check

the behaviour of the Hodge condition, and we have a good candidate for doing so,

since we have many non-zero coefficients for our flux.

Perhaps there is still no flux that is Hodge, even if we have guaranteed that it

is below the tadpole bound. However, this set up of K3 × K3 is still interesting

because it allows precisely to know the behaviour of the Hodge condition, which

is very difficult to handle in general even without adding the requirement on the

length of the flux.

Another incentive is of course that the results by Nikulin and Xiao allow the

problem of the Hodge condition in this set up to be readily translated in terms of

group theory ( in particular, automorphism groups of K3 ). Not only is this more

approachable computationally, but one can hope to extend this approach to other

fourfolds if it proves fruitful in either providing some criterias to study the Hodge

condition, or obstructions to this condition in case of a negative result.

To examplify this discussion, we notice we could have done the same analysis

for the Fermat’s sextic fourfold, for which we would have gotten the correspondance

between the rank of the group we quotient by, the rank of ρ and the relative number

of moduli stabilized by a flux below the tadpole bound, respectively as:

order of the group rank of ρ relative percentage of moduli stabilized

64 1 1

63 · 3 1 1
2

62 · 3 · 2 4 2
3

At fixed permutation, there are only finitely many admissible groups, represented

in table C and it would certainly be interesting to confirm that the mirror sextic is

indeed the only possible solution. Note that the above table 4.2.1 is dubious in that

each entry represents the maximal rank of ρ below the tadpole bound, but it is not

at fixed length. Hence the interest to first carry over to K3×K3.

Note that similar results were already performed in [48] and [49] for the special

case of Z2 orbifolds. In particular, the classification of gauge groups obtained was

made. It would be particularly nice to put emphasis on the Hodge condition with

respect to the length by building on those results.
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One possible argument to motivate the study of mirror symmetry with respect

to the tadpole conjecture is the following.

We have seen that the self-intersection depends on the degree in the case of the

sextic, because it is Calabi-Yau, up to some factor. This factor seems to typically

depend on the order of the maximal subgroup of symmetry under which the residue

form is invariant, eg (Z/6Z)4 for the residue form with β = (26).

In the case of hypersurfaces, mirror symmetry is quite powerful since swapping

h3,1 and h1,1 results in a lower dimension mirror ˜h3,1 = h1,1 thus reducing the re-

quirement to find the flux to be general Hodge.

Then typically, since the mirror corresponds to such maximal subgroups, we

expect that mirror symmetry offer solutions to the tadpole problem, at the cost of

smoothness.

4.2.2 p-adics, K3, and the sextic

We have seen that there are typically obstructions to the representation of integers

by quadratic forms. We have however to remember the origin of these integers :

they count integral points on the intersection of surfaces on a Calabi-Yau fourfold.

This is a problem when considering the sextic. As we have seen before, there

seems to be obstructions to the representation of integers in H2,2
prim on the Fermat’s

sextic fourfold. Thus, the analysis for this particular fourfold is quite difficult since

we also have to worry about the Hodge type of a given cycle.

This is however not the case for the K3 lattice, which is K3 = −E8 ⊕ −E8 ⊕

U ⊕ U ⊕ U with E8 the E8 root lattice and U defined as :

U :=

0 1

1 0

 (4.2)

Notably, we know that E8 represents all even integers that are quite small,

especially under 24. So far we have hoped that this would let us get rid of the criteria

on the representation of integers to focus on the Hodge type criteria. However, we

expose here a caveat to this assumption.

We study this via the Hasse principle : if we have a solution in Zp for all primes p,
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then we should have a solution in Z. This is not true in general, and we propose here

to contrast the previous discussion about quotients with a very interesting example

following Hasse’s principle.

Remember that for a product ofK3 surfacesX, the middle cohomologyH4(X,Z)

is determined ( possibly up to torsion ) by the cohomology of the K3 surfaces via

Künneth formula :

Hn(X,Z) ≃
∑
i+j=n

H i(K3,Z)⊗Hj(K̃3,Z). (4.3)

Let us fix for the sake of this argument the case i = j = 2. This will result in

the flux being in both K3 surfaces.

We have seen earlier that generically the representation of integers by the middle

cohomology of aK3 surface may not be an issue. However, there is a very interesting

counter-example to this intuitive statement from [50], coming from the second étale

cohomology group, which is known as the Brauer-Manin obstruction. Note that

the Brauer-Manin obstruction is not a priori the only obstruction that can appear,

however for smooth projective rationally connected varieties it is conjectured to be

so [51].

In this paper, the example of a family of sextic K3 surfaces in P3
[1,1,1,3] for which

there are points in the p-adics Qp for every prime p but no rational points are

exhibited.

There are two comments regarding this result. The first one is that étale coho-

mology plays an important role there, and it does so when computing l-adic coho-

mology as well, especially when considering modularity as in [52]. This reinforce the

importance of p-adic considerations when studying the tadpole problem.

Note that modularity is important when studying representation of integers be-

cause it allows one to make global estimation out of local considerations. For exam-

ple, in the case of elliptic curves, it is easy to determine which primes will pose an

obstruction, and those are exactly the primes of bad reduction for modular elliptic

curves.

Perhaps less obviously, this also ties up into the possibility that quotienting offers
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a solution to the tadpole problem since quotienting might remove the points below

the tadpole bound. We do note however that in general we are interested in points

on the quadratic form defined by the intersection pairing on H2,2
prim, which is different

from simply the obstruction of rational points on a variety a priori. Thus we would

need in principle that the Hasse principle applies in cohomology rather than on the

variety.

Thus while we have seen the relative importance of the Hodge conjecture, we see

here exemplified the importance of the other conjectures mentioned in chapter 2,

namely the Tate conjecture and the Hasse principle. K3×K3 offers some nice toy

models to explore those possibilities. However, we have to highlight the difficulties

that may arise when taking proper fourfolds, as is the case for the sextic.

With that in mind, we make the following statement, up to the sextic obeying

some modularity theorem : the only p-adics of obstruction for the representation of

integers in the sextic fourfold are Z2 and Z3. Assuming some form of modularity

theorem for the sextic, we can simply use Hensel’s lemma to find non-obstructions.

We have seen that the Jacobian of the sextic X is :

J(X) = (6x5
0, 6x

5
1, 6x

5
2, 6x

5
3, 6x

5
4, 6x

5
5). (4.4)

(4.5)

For every p ̸= 2, 3 we can find solutions a such that J(a) ̸= 0 and X(a) = 0.

Indeed, for every prime p not equal to 2,3 we have to find k := (k0, k1, k2, k3, k4, k5) ̸=

(0, 0, 0, 0, 0, 0) and a := (a0, a1, a2, a3, a4, a5):

a60 + a61 + a62 + a63 + a64 + a65 = 0 mod (p) (4.6)

⇐⇒ −(a61 + a62 + a63 + a64 + a65) = a60 mod (p) (4.7)
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and :

vp(6a
5
0) = k0 (4.8)

vp(6a
5
1) = k1 (4.9)

vp(6a
5
2) = k2 (4.10)

vp(6a
5
3) = k3 (4.11)

vp(6a
5
4) = k4 (4.12)

vp(6a
5
5) = k5 (4.13)

6a50 = k0 mod (p) (4.14)

6a51 = k1 mod (p) (4.15)

6a52 = k2 mod (p) (4.16)

6a53 = k3 mod (p) (4.17)

6a54 = k4 mod (p) (4.18)

6a55 = k5 mod (p). (4.19)

This immediately imposes that a ̸= (0, 0, 0, 0, 0, 0). Furthermore, we have :

6a60 = k0a0 mod (p). (4.20)

Continuing the same pattern we have :

k0a0 + a1k1 + a2k2 + a3k3 + a4k4 + a5k5 = 0 mod (p). (4.21)

This is a parametric linear diophantine equation and can be solved for any prime

with all entries non-zero modulo p.

Note that in principle, one can compute any integer n represented by taking

the appropriate cohomology theory. For example, in the case of interest, crystalline

cohomology allows one to compute a basis of de Rham cohomology with p-adic coeffi-

cients to arbitrary precision since it suffices to compute n mod (pk) for a sufficiently
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large k.

However it still leaves the question of obstructions open, and furthermore, to

find an efficient and computationally realistic way to do it. One possible solution

is to extend the results of [53] to other settings and study the properties of those

Calabi-Yau modular forms.

Note that in particular the aforementioned paper relies heavily on mirror sym-

metry to compute the Yukawa coupling. However the hope is that similar methods

can be developed to study the primitive middle cohomology of a fourfold from a

global point of view by using modularity.

4.3 Far-fetched conjecture

We have extensively used the point-of-view of M-theory by using the G4 flux until

now. As mentioned in the introduction, everything can be said in the formalism of

type IIB. In this section, we go back to that point-of-view from the lessons learned

by using M-theory and make some conjectural statement.

Recall that in type IIB there are not only D7 branes, which are the main topic

of study in this thesis, but also D3 branes. From [54], we see that those two types

of branes can couple to form bound states. Furthermore, the number of moduli

stabilized by the D7 branes is limited by the charge induced by the D3 branes, We

have seen that to understand this problem, we really need to understand 4-cycles,

and to that end, we could as well consider D3 branes wrapping around them, in

which case [55] makes sense to consider to have a mapping between a geometric and

number theoretic description.

On the mathematical side of things, this would imply studying the relationship

between periods and L-functions in order to be able to count ( appropriate ) points

on the variety we consider, which is an endeavour that was not explored in this

thesis but is historically important.
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APPENDIX A

Short lattice points for residues symmetric under

Z/6Z2 × Z/3Z× Z/2Z

This is a table of shortest lengths appearing in the lattice Z∗
6232 for the group Γ =

(Z/6Z)2 × (Z/3Z)× (Z/2Z) s discussed in Section 3.3.3.

Table A.1: Lengths below 1500 and number of lattice

points for Z∗
6232.

Length Number of solutions Length Number of solutions

0 1 1971/2 12

243/2 2 990 24

192 6 1995/2 264

411/2 4 1008 36

216 6 2067/2 48

246 4 1038 264

603/2 4 1056 64

627/2 12 1062 24

Continued on next page
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Table A.1 – continued from previous page

Length Number of solutions Length Number of solutions

675/2 12 2139/2 112

342 4 1080 24

408 40 2187/2 146

843/2 24 2211/2 548

462 24 1110 88

486 2 2259/2 36

987/2 8 1134 156

504 4 2283/2 56

1035/2 24 1152 64

1059/2 76 2331/2 112

534 8 2355/2 96

558 24 1182 48

576 12 1200 264

1179/2 6 2403/2 24

624 24 1206 88

1251/2 4 1224 72

630 6 2475/2 42

648 6 1254 84

678 12 1272 112

696 8 2547/2 96

1395/2 24 1278 180

702 12 2571/2 396

1419/2 48 1296 144

720 24 2619/2 12

1491/2 24 2643/2 264

750 48 1326 456

768 42 1344 116

1539/2 12 2691/2 144

Continued on next page
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Table A.1 – continued from previous page

Length Number of solutions Length Number of solutions

1563/2 44 1350 12

792 78 2715/2 248

1611/2 36 1368 328

1635/2 8 2763/2 384

822 44 2787/2 88

840 36 1398 200

1683/2 24 1416 252

846 36 2835/2 144

1707/2 28 1422 384

864 6 2859/2 308

1755/2 24 1440 126

1779/2 84 2907/2 84

894 96 2931/2 168

912 48 1470 768

1827/2 150 1488 384

918 24 2979/2 520

1899/2 28 1494 48
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APPENDIX B

Lists of Linearly Independent Algebraic Cycles

This appendix contains lists of linearly independent algebraic cycles of linear type,

Aoki-Shioda type, and type 3. The tables list the powers of primitive roots of unity

and permutation of homogeneous coordinates for each cycle.
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=
Index (ℓ1, ℓ3, ℓ5) Permutations of linear cycles

1,. . . ,14 (0,0,0) Σ\(0 1 2 3 4 5)
15,. . . ,299 (1,0,0),(2,0,0),(3,0,0),(4,0,0),(0,1,0) Σ

(1,1,0),(2,1,0),(3,1,0),(4,1,0),(0,2,0)
(1,2,0),(2,2,0),(3,2,0),(4,2,0),(0,3,0)
(1,3,0),(2,3,0),(3,3,0),(4,3,0)

300,. . . ,305 (0,4,0) (0 1 2 3 4 5), (0 1 2 4 3 5), (0 3 1 4 2 5), (0 1 2 5 3 4), (0 3 1 5 2 4), (0 4 1 5 2 3)
306,. . . ,308 (1,4,0) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
309,. . . ,311 (2,4,0) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
312,. . . ,314 (3,4,0) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
315,. . . ,317 (4,4,0) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
318,. . . ,617 (0,0,1),(1,0,1),(2,0,1),(3,0,1),(4,0,1) Σ

(0,1,1),(1,1,1),(2,1,1),(3,1,1),(4,1,1)
(0,2,1),(1,2,1),(2,2,1),(3,2,1),(4,2,1)
(0,3,1),(1,3,1),(2,3,1),(3,3,1),(4,3,1)

618,. . . ,623 (0,4,1) (0 1 2 3 4 5), (0 1 2 4 3 5), (0 3 1 4 2 5), (0 1 2 5 3 4), (0 3 1 5 2 4), (0 4 1 5 2 3)
624,. . . ,626 (1,4,1) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
627,. . . ,629 (2,4,1) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
630,. . . ,632 (3,4,1) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
633,. . . ,635 (4,4,1) (0 3 1 4 2 5), (0 3 1 5 2 4), (0 4 1 5 2 3)
636,. . . ,800 (0,0,2),(1,0,2),(2,0,2),(3,0,2),(4,0,2) Σ

(0,1,2),(1,1,2),(2,1,2),(3,1,2),(4,1,2)
(0,2,2)

801,. . . ,814 (1,2,2) Σ\(0 1 2 5 3 4)
815,. . . ,828 (2,2,2) Σ\(0 1 2 5 3 4)
829,. . . ,842 (3,2,2) Σ\(0 1 2 5 3 4)
843,. . . ,856 (4,2,2) Σ\(0 1 2 5 3 4)
857,. . . ,871 (0,3,2) Σ
872,. . . ,886 (1,3,2) Σ
887,. . . ,901 (2,3,2) Σ
902,. . . ,914 (3,3,2) Σ\(0 1 2 4 3 5), (0 4 1 2 3 5)
915,. . . ,927 (4,3,2) Σ\(0 1 2 4 3 5), (0 4 1 2 3 5)
928,. . . ,933 (0,4,2) (0 1 2 3 4 5), (0 1 2 4 3 5), (0 3 1 4 2 5), (0 1 2 5 3 4), (0 3 1 5 2 4), (0 4 1 5 2 3)
934 (1,4,2) (0 3 1 4 2 5)
935 (2,4,2) (0 3 1 4 2 5)
936 (3,4,2) (0 3 1 4 2 5)
937 (4,4,2) (0 3 1 4 2 5)
938,. . . ,948 (0,0,3) (0 1 2 3 4 5), (0 2 1 3 4 5), (0 3 1 2 4 5), (0 1 2 4 3 5), (0 2 1 4 3 5), (0 4 1 2 3 5),

(0 3 1 4 2 5), (0 1 2 5 3 4), (0 2 1 5 3 4), (0 5 1 2 3 4), (0 4 1 5 2 3)
949,. . . ,956 (1,0,3) (0 2 1 3 4 5), (0 3 1 2 4 5), (0 2 1 4 3 5), (0 4 1 2 3 5), (0 3 1 4 2 5), (0 2 1 5 3 4),

(0 5 1 2 3 4), (0 4 1 5 2 3)
957,. . . ,964 (2,0,3) (0 2 1 3 4 5), (0 3 1 2 4 5), (0 2 1 4 3 5), (0 4 1 2 3 5), (0 3 1 4 2 5), (0 2 1 5 3 4),

(0 5 1 2 3 4), (0 4 1 5 2 3)
965,. . . ,970 (3,0,3) (0 2 1 3 4 5), (0 3 1 2 4 5), (0 2 1 4 3 5), (0 3 1 4 2 5), (0 2 1 5 3 4), (0 5 1 2 3 4)
971,. . . ,976 (4,0,3) (0 2 1 3 4 5), (0 3 1 2 4 5), (0 2 1 4 3 5), (0 3 1 4 2 5), (0 2 1 5 3 4), (0 5 1 2 3 4)
977,. . . ,984 (0,1,3) (0 1 2 3 4 5), (0 2 1 3 4 5), (0 3 1 2 4 5), (0 2 1 4 3 5), (0 4 1 2 3 5), (0 3 1 4 2 5),

(0 2 1 5 3 4), (0 5 1 2 3 4)
985,. . . ,989 (1,1,3) (0 2 1 3 4 5), (0 3 1 2 4 5), (0 2 1 4 3 5), (0 4 1 2 3 5), (0 3 1 4 2 5)
990,. . . ,994 (2,1,3) (0 2 1 3 4 5), (0 3 1 2 4 5), (0 2 1 4 3 5), (0 4 1 2 3 5), (0 3 1 4 2 5)
995 (3,1,3) (0 2 1 3 4 5)
996 (4,1,3) (0 2 1 3 4 5)
997,998,999 (0,2,3) (0 1 2 3 4 5) (0 2 1 3 4 5), (0 3 1 4 2 5)
1000,1001 (0,3,3) (0 2 1 3 4 5), (0 3 1 2 4 5)

Table B.1: List of linearly independent linear cycles. Σ refers to the set of permu-
tations.
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Index (ℓ0, ℓ2, ℓ3, ℓ5) Permutations of Aoki-Shioda cycles

1002,. . . ,1337 (0,1,0,0) Σ′\ (5 0 4 1 3 2), (5 1 4 0 3 2), (5 0 4 2 3 1), (5 2 4 0 3 1),
(4 0 3 5 2 1), (5 0 3 4 2 1), (5 0 4 3 2 1), (4 3 5 0 2 1),
(5 3 4 0 2 1), (5 1 4 2 3 0), (5 2 4 1 3 0), (4 1 3 5 2 0),
(5 1 3 4 2 0), (5 1 4 3 2 0), (4 3 5 1 2 0), (5 3 4 1 2 0),
(3 2 4 5 1 0), (4 2 3 5 1 0), (3 2 5 4 1 0), (5 2 3 4 1 0),
(4 2 5 3 1 0), (5 2 4 3 1 0), (4 3 5 2 1 0), (5 3 4 2 1 0 )

1338,. . . ,1593 (1,1,0,0) ( 0 1 2 3 4 5),( 1 0 2 3 4 5),( 2 0 1 3 4 5),( 0 1 3 2 4 5),( 1 0 3 2 4 5),( 3 0 1 2 4 5),
( 0 2 3 1 4 5),( 2 0 3 1 4 5),( 3 0 2 1 4 5),( 1 2 3 0 4 5),( 2 1 3 0 4 5),( 3 1 2 0 4 5),
( 0 1 2 4 3 5),( 1 0 2 4 3 5),( 2 0 1 4 3 5),( 0 1 4 2 3 5),( 1 0 4 2 3 5),( 4 0 1 2 3 5),
( 0 2 4 1 3 5),( 2 0 4 1 3 5),( 4 0 2 1 3 5),( 1 2 4 0 3 5),( 2 1 4 0 3 5),( 4 1 2 0 3 5),
( 0 1 3 4 2 5),( 1 0 3 4 2 5),( 3 0 1 4 2 5),( 0 1 4 3 2 5),( 1 0 4 3 2 5),( 4 0 1 3 2 5),
( 0 3 4 1 2 5),( 3 0 4 1 2 5),( 4 0 3 1 2 5),( 1 3 4 0 2 5),( 3 1 4 0 2 5),( 4 1 3 0 2 5),
( 0 2 3 4 1 5),( 2 0 3 4 1 5),( 3 0 2 4 1 5),( 0 2 4 3 1 5),( 2 0 4 3 1 5),( 4 0 2 3 1 5),
( 0 3 4 2 1 5),( 3 0 4 2 1 5),( 4 0 3 2 1 5),( 2 3 4 0 1 5),( 3 2 4 0 1 5),( 4 2 3 0 1 5),
( 1 2 3 4 0 5),( 2 1 3 4 0 5),( 3 1 2 4 0 5),( 1 2 4 3 0 5),( 2 1 4 3 0 5),( 4 1 2 3 0 5),
( 1 3 4 2 0 5),( 3 1 4 2 0 5),( 4 1 3 2 0 5),( 2 3 4 1 0 5),( 3 2 4 1 0 5),( 4 2 3 1 0 5),
( 0 1 2 3 5 4),( 1 0 2 3 5 4),( 2 0 1 3 5 4),( 0 1 3 2 5 4),( 1 0 3 2 5 4),( 3 0 1 2 5 4),
( 0 2 3 1 5 4),( 2 0 3 1 5 4),( 3 0 2 1 5 4),( 1 2 3 0 5 4),( 2 1 3 0 5 4),( 3 1 2 0 5 4),
( 0 1 2 5 3 4),( 1 0 2 5 3 4),( 2 0 1 5 3 4),( 0 1 5 2 3 4),( 1 0 5 2 3 4),( 5 0 1 2 3 4),
( 0 2 5 1 3 4),( 2 0 5 1 3 4),( 5 0 2 1 3 4),( 1 2 5 0 3 4),( 2 1 5 0 3 4),( 5 1 2 0 3 4),
( 0 1 3 5 2 4),( 1 0 3 5 2 4),( 3 0 1 5 2 4),( 0 1 5 3 2 4),( 1 0 5 3 2 4),( 5 0 1 3 2 4),
( 0 3 5 1 2 4),( 3 0 5 1 2 4),( 5 0 3 1 2 4),( 1 3 5 0 2 4),( 3 1 5 0 2 4),( 5 1 3 0 2 4),
( 0 2 3 5 1 4),( 2 0 3 5 1 4),( 3 0 2 5 1 4),( 0 2 5 3 1 4),( 2 0 5 3 1 4),( 5 0 2 3 1 4),
( 0 3 5 2 1 4),( 3 0 5 2 1 4),( 5 0 3 2 1 4),( 2 3 5 0 1 4),( 3 2 5 0 1 4),( 5 2 3 0 1 4),
( 1 2 3 5 0 4),( 2 1 3 5 0 4),( 3 1 2 5 0 4),( 1 2 5 3 0 4),( 2 1 5 3 0 4),( 5 1 2 3 0 4),
( 1 3 5 2 0 4),( 3 1 5 2 0 4),( 5 1 3 2 0 4),( 2 3 5 1 0 4),( 5 2 3 1 0 4),( 0 1 2 4 5 3),
( 1 0 2 4 5 3),( 2 0 1 4 5 3),( 0 1 4 2 5 3),( 1 0 4 2 5 3),( 4 0 1 2 5 3),( 0 2 4 1 5 3),
( 2 0 4 1 5 3),( 4 0 2 1 5 3),( 1 2 4 0 5 3),( 2 1 4 0 5 3),( 4 1 2 0 5 3),( 0 1 2 5 4 3),
( 1 0 2 5 4 3),( 2 0 1 5 4 3),( 0 1 5 2 4 3),( 1 0 5 2 4 3),( 5 0 1 2 4 3),( 0 2 5 1 4 3),
( 2 0 5 1 4 3),( 1 2 5 0 4 3),( 0 1 4 5 2 3),( 1 0 4 5 2 3),( 4 0 1 5 2 3),( 0 1 5 4 2 3),
( 1 0 5 4 2 3),( 5 0 1 4 2 3),( 0 4 5 1 2 3),( 4 0 5 1 2 3),( 5 0 4 1 2 3),( 1 4 5 0 2 3),
( 4 1 5 0 2 3),( 5 1 4 0 2 3),( 0 2 4 5 1 3),( 2 0 4 5 1 3),( 4 0 2 5 1 3),( 0 2 5 4 1 3),
( 2 0 5 4 1 3),( 5 0 2 4 1 3),( 0 4 5 2 1 3),( 4 0 5 2 1 3),( 2 4 5 0 1 3),( 4 2 5 0 1 3),
( 5 2 4 0 1 3),( 1 2 4 5 0 3),( 2 1 4 5 0 3),( 4 1 2 5 0 3),( 1 2 5 4 0 3),( 5 1 2 4 0 3),
( 1 4 5 2 0 3),( 4 1 5 2 0 3),( 2 4 5 1 0 3),( 0 1 3 4 5 2),( 1 0 3 4 5 2),( 3 0 1 4 5 2),
( 0 1 4 3 5 2),( 1 0 4 3 5 2),( 4 0 1 3 5 2),( 0 3 4 1 5 2),( 3 0 4 1 5 2),( 4 0 3 1 5 2),
( 1 3 4 0 5 2),( 3 1 4 0 5 2),( 4 1 3 0 5 2),( 0 1 3 5 4 2),( 1 0 3 5 4 2),( 3 0 1 5 4 2),
( 0 1 5 3 4 2),( 1 0 5 3 4 2),( 5 0 1 3 4 2),( 0 3 5 1 4 2),( 3 0 5 1 4 2),( 1 3 5 0 4 2),
( 0 1 4 5 3 2),( 1 0 4 5 3 2),( 4 0 1 5 3 2),( 0 1 5 4 3 2),( 4 0 5 1 3 2),( 0 3 4 5 1 2),
( 3 0 4 5 1 2),( 0 3 5 4 1 2),( 3 0 5 4 1 2),( 0 4 5 3 1 2),( 4 0 5 3 1 2),( 3 4 5 0 1 2),
( 4 3 5 0 1 2),( 5 3 4 0 1 2),( 1 3 4 5 0 2),( 3 1 4 5 0 2),( 1 3 5 4 0 2),( 1 4 5 3 0 2),
( 3 4 5 1 0 2),( 0 2 3 4 5 1),( 2 0 3 4 5 1),( 3 0 2 4 5 1),( 0 2 4 3 5 1),( 2 0 4 3 5 1),
( 4 0 2 3 5 1),( 0 3 4 2 5 1),( 3 0 4 2 5 1),( 2 3 4 0 5 1),( 3 2 4 0 5 1),( 4 2 3 0 5 1),
( 0 2 3 5 4 1),( 2 0 3 5 4 1),( 0 2 5 3 4 1),( 2 0 5 3 4 1),( 5 0 2 3 4 1),( 3 0 5 2 4 1),
( 2 3 5 0 4 1),( 0 2 4 5 3 1),( 2 0 4 5 3 1),( 4 0 5 2 3 1),( 0 3 4 5 2 1),( 3 0 4 5 2 1),
( 2 3 4 5 0 1),( 2 3 5 4 0 1),( 2 4 5 3 0 1),( 3 4 5 2 0 1),( 1 2 3 4 5 0),( 2 1 3 4 5 0),
( 3 1 2 4 5 0),( 1 2 4 3 5 0),( 2 1 4 3 5 0),( 4 1 2 3 5 0),( 1 3 4 2 5 0),( 3 1 4 2 5 0),
( 2 3 4 1 5 0),( 1 2 3 5 4 0),( 1 2 5 3 4 0),( 2 1 5 3 4 0),( 5 1 2 3 4 0),( 3 1 5 2 4 0),
( 1 2 4 5 3 0),( 4 1 5 2 3 0),( 1 3 4 5 2 0),( 2 3 4 5 1 0)

1594,. . . ,1645 (0,0,0,1) ( 0 1 2 3 4 5),( 1 0 2 3 4 5),( 0 1 3 2 4 5),( 1 0 3 2 4 5),( 0 2 3 1 4 5),( 2 0 3 1 4 5),
( 1 2 3 0 4 5),( 2 1 3 0 4 5),( 0 1 2 4 3 5),( 1 0 2 4 3 5),( 0 1 4 2 3 5),( 1 0 4 2 3 5),
( 0 2 4 1 3 5),( 2 0 4 1 3 5),( 1 2 4 0 3 5),( 0 1 3 4 2 5),( 1 0 3 4 2 5),( 0 1 4 3 2 5),
( 3 0 4 1 2 5),( 2 0 3 4 1 5),( 0 1 2 3 5 4),( 1 0 2 3 5 4),( 0 1 3 2 5 4),( 1 0 3 2 5 4),
( 2 0 3 1 5 4),( 0 1 2 5 3 4),( 1 0 2 5 3 4),( 0 1 5 2 3 4),( 1 0 5 2 3 4),( 0 2 5 1 3 4),
( 2 0 5 1 3 4),( 1 2 5 0 3 4),( 0 1 3 5 2 4),( 1 0 3 5 2 4),( 0 1 5 3 2 4),( 3 0 5 1 2 4),
( 2 0 3 5 1 4),( 0 1 2 4 5 3),( 1 0 2 4 5 3),( 0 1 4 2 5 3),( 1 0 4 2 5 3),( 2 0 4 1 5 3),
( 0 1 4 5 2 3),( 1 0 4 5 2 3),( 0 1 5 4 2 3),( 4 0 5 1 2 3),( 2 0 4 5 1 3),( 0 1 3 4 5 2),
( 1 0 3 4 5 2),( 3 0 4 1 5 2),( 3 0 4 5 1 2),( 2 0 3 4 5 1)

1646,. . . , 1687 (1,0,0,1) ( 0 1 2 3 4 5),( 1 0 2 3 4 5),( 0 1 3 2 4 5),( 1 0 3 2 4 5),( 0 2 3 1 4 5),( 2 0 3 1 4 5),
( 1 2 3 0 4 5),( 2 1 3 0 4 5),( 0 1 2 4 3 5),( 1 0 2 4 3 5),( 0 1 4 2 3 5),( 1 0 4 2 3 5),
( 0 2 4 1 3 5),( 2 0 4 1 3 5),( 1 2 4 0 3 5),( 0 1 3 4 2 5),( 1 0 3 4 2 5),( 0 1 4 3 2 5),
( 3 0 4 1 2 5),( 2 0 3 4 1 5),( 0 1 2 3 5 4),( 1 0 2 3 5 4),( 0 1 3 2 5 4),( 0 1 2 5 3 4),
( 1 0 2 5 3 4),( 0 1 5 2 3 4),( 1 0 5 2 3 4),( 0 2 5 1 3 4),( 2 0 5 1 3 4),( 1 2 5 0 3 4),
( 0 1 3 5 2 4),( 0 1 5 3 2 4),( 3 0 5 1 2 4),( 0 1 2 4 5 3),( 1 0 2 4 5 3),( 0 1 4 2 5 3),
( 0 1 4 5 2 3),( 0 1 5 4 2 3),( 4 0 5 1 2 3),( 0 1 3 4 5 2),( 1 0 3 4 5 2),( 2 0 3 4 5 1)

1688,. . . ,1703 (0,1,0,1) ( 0 1 2 3 4 5),( 0 1 3 2 4 5),( 0 2 3 1 4 5),( 1 2 3 0 4 5),( 0 1 2 4 3 5),( 0 1 4 2 3 5),
( 0 1 3 4 2 5),( 0 2 3 4 1 5),( 1 2 3 4 0 5),( 0 1 2 3 5 4),( 0 1 2 5 3 4),( 0 1 5 2 3 4),
( 0 1 2 4 5 3),( 0 1 3 4 5 2),( 0 2 3 4 5 1),( 1 2 3 4 5 0)

1704,. . . ,1719 (1,1,0,1) ( 0 1 2 3 4 5),( 0 1 3 2 4 5),( 0 2 3 1 4 5),( 1 2 3 0 4 5),( 0 1 2 4 3 5),( 0 1 4 2 3 5),
( 0 1 3 4 2 5),( 0 2 3 4 1 5),( 1 2 3 4 0 5),( 0 1 2 3 5 4),( 0 1 2 5 3 4),( 0 1 5 2 3 4),
( 0 1 2 4 5 3),( 0 1 3 4 5 2),( 0 2 3 4 5 1),( 1 2 3 4 5 0)

1720 (0,1,0,2) (0,1,2,3,4,5)
1721 (1,1,0,2) (0,1,2,3,4,5)

Table B.2: List of linearly independent Aoki-Shioda cycles. Σ′ refers to the set of
permutations with σ(1) < σ(2).
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Index (ℓ1, ℓ2, ℓ3, ℓ4, ℓ5) Permutations of type 3 cycles

1722,. . . ,1730 (0,0,0,0,0) ( 0 1 2 3 4 5),( 1 0 2 3 4 5),( 0 1 3 2 4 5),( 0 1 2 4 3 5),( 1 0 2 4 3 5),( 0 1 4 2 3 5),
( 0 1 3 4 2 5),( 1 0 3 4 2 5),( 2 0 3 4 1 5)

1731,. . . ,1744 (1,0,0,0,0) ( 0 1 2 3 4 5),( 1 0 2 3 4 5),( 2 0 1 3 4 5),( 0 1 3 2 4 5),( 0 1 2 4 3 5),( 1 0 2 4 3 5),
( 2 0 1 4 3 5),( 0 1 4 2 3 5),( 0 1 3 4 2 5),( 1 0 3 4 2 5),( 3 0 1 4 2 5),( 0 2 3 4 1 5),
( 2 0 3 4 1 5),( 1 2 3 4 0 5)

1745,. . . ,1749 (3,0,0,0,0) ( 0 1 2 3 4 5),( 0 1 2 4 3 5),( 0 1 3 4 2 5),( 0 2 3 4 1 5),( 1 2 3 4 0 5)
1750 (1,0,0,1,0) ( 0 1 2 3 4 5)
1751 (3,0,0,1,0) ( 0 1 2 3 4 5)

Table B.3: List of linearly independent type 3 cycles.
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APPENDIX C

Subgroups of (Z/6Z)4 acting on the Fermat Sextic

Below is a list of the occurring dimensions of invariant subspaces H3,1(X)inv ⊂

H3,1(X) and H2,2(X)inv ⊂ H2,2(X) for all subgroups of (Z/6Z)4. Note that a

single entry potentially corresponds to genuinely different subgroups of (Z/6Z)4, i.e.

subgroups which are not identified by permuting the xi. As can be seen from the

arrangement of the table, there is a matching between cases with |Γ| = k and cases

with |Γ∨| = 64/k, which is a consequence of mirror symmetry.

Table C.1: Orders and dimensions of invariant subspaces

for all subgroups of (Z/6Z)4.

h3,1
inv(X) h2,2

inv(X) |Γ| h3,1
inv(X) h2,2

inv(X) |Γ|

1 426 1751 1296 1 1

2 226 903 648 2 3

3 138 563 432 1 7

3 144 587 432 3 3

3 162 611 432 3 5

4 126 479 324 4 7

6 70 291 216 2 11
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6 72 315 216 4 9

6 74 291 216 4 11

6 76 303 216 5 7

6 84 309 216 6 7

6 86 315 216 6 9

8 76 267 162 8 15

9 48 191 144 3 23

9 52 191 144 5 17

9 62 215 144 7 17

9 66 215 144 9 11

12 36 155 108 4 19

12 36 179 108 6 19

12 38 155 108 6 21

12 40 155 108 6 23

12 40 167 108 8 17

12 42 155 108 8 19

12 42 161 108 8 21

12 46 161 108 10 15

12 48 167 108 10 19

12 60 149 108 12 17

16 51 161 81 16 31

18 24 99 72 6 33

18 24 103 72 6 35

18 26 97 72 7 29

18 28 99 72 8 29

18 30 111 72 8 33

18 30 119 72 10 27

18 32 109 72 10 31

18 34 107 72 11 29

18 34 111 72 12 25
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18 36 95 72 12 27

18 42 99 72 12 31

18 42 103 72 14 29

24 22 87 54 10 35

24 22 99 54 12 43

24 24 87 54 14 35

24 24 93 54 14 37

24 27 87 54 14 43

24 34 81 54 16 35

24 36 87 54 18 39

27 22 67 48 15 53

27 28 75 48 15 59

27 30 83 48 21 47

36 12 53 36 12 53

36 12 57 36 12 55

36 14 51 36 12 57

36 14 63 36 12 59

36 16 57 36 14 51

36 18 49 36 14 55

36 18 55 36 14 63

36 20 51 36 16 55

36 22 49 36 16 57

36 22 53 36 16 61

36 30 41 36 18 49
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