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Abstract 

In the current climate and nature crisis, biodiversity and ecosystems are experiencing 

irreversible losses. In response to these threats, increasingly ambitious targets are being set 

to conserve and protect nature by 2030. Widespread and up-to-date data are required to 

understand the extent of losses and to ensure we are on track to meet these targets for 

nature. Citizen science datasets, based on records of species observations made by 

volunteers, are the primary sources of data at the geographical scale required to analyse 

large-scale trends in species abundances and distributions. Due to the unstructured nature 

of data collection by many individuals, there are concerns around data quality, inaccuracy, 

and bias in these datasets. Verification is an essential process for ensuring data quality but, 

as the volume of data being collected by citizen scientists grows, bottlenecks in data 

processing can arise. This thesis details my research into the verification of ecological citizen 

science data. 

I start by reviewing current approaches to verification within ecological citizen science 

schemes whose data features in scientific literature. The results from this review identify 

three distinct approaches to verification: expert, community consensus and automation. 

This research highlights that expert verification has been the default approach for many 

schemes and proposes that alternative approaches should be considered more widely to 

deal with growing data volumes. Alongside identifying verification approaches, this review 

identifies the information that is used to inform the verification of citizen science data. This 

information typically comprises one or more of three types of data: attributes of the species, 

the environmental context, and attributes of the observer. I then outline an idealised system 

for verification, recommending that all information should be considered when verifying 

citizen science observations and identifying the meta-data that can be used in the 

verification process.  

Informed by the results from the review of citizen science approaches, Chapters 3 and 4 

outline my research into alternative frameworks for verification that use Bayesian 

Classification models that account for contextual information. In the first instance, I include 

the attributes of the species and the environmental context to verify citizen science records 

by using past data to quantify identification mistakes made by citizen scientists and 
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considering when and where a species is more likely to be observed. I apply this approach to 

two contrasting citizen science schemes: MammalWeb, a scheme that uses community 

consensus verification to classify camera trap images; and iRecord, a scheme that uses 

expert verification for ad-hoc opportunistic species observations collected by field-based 

citizen scientists. The results show that for MammalWeb, including contextual information 

improved the accuracy of verification; for iRecord, including attributes of the species 

improved verification, but including contextual information provided little advantage. The 

framework outlined in Chapter 3 assumes all observers have the same expertise; therefore, 

in Chapter 4 I expand on this framework by exploring how observer variability can be 

integrated into approaches to verification. The results show that including observer traits 

makes minimal difference to the accuracy of verification, owing to low contributions by most 

individual observers, making it difficult to quantify observer variability. The results from 

Chapters 3 and 4 also highlight that citizen science identifications pre-verification are 

generally very accurate (90% or higher), bringing into question the need for developing 

highly accurate and intensive verification processes.  

Given the human and technical effort that is channelled into verification, Chapter 5 of this 

thesis presents my research into the extent to which accurate verification matters in a 

conservation policy and management context. I simulate inaccuracies in a citizen science 

dataset of UK butterflies, to explore how data accuracy might impact estimates of the 

coverage provided by protected areas, and the consequences of these estimates for 

decisions that could be made using this analysis. The results show that, for more ubiquitous 

species, errors can be tolerated; however, for species with restricted ranges, inaccurate 

datasets tended to over-estimate the area of occupancy and therefore over- or under-

estimate protected area coverage, depending on whether coverage was actually low or high, 

respectively. The results presented here indicate that, for some species, highly accurate 

verification may not be necessary and, moving forward, citizen science schemes should 

consider whether there is really a need to verify every record.  

As data volumes grow, addressing bottlenecks to ensure that data are up-to-date and 

available for analysis increasingly requires more efficient approaches to verification. The 

results from this thesis explore how verification can evolve to meet the current needs of 

those who run and manage citizen science schemes, as well as end users of the data, 
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without compromising the decisions that are made using citizen science data. By addressing 

issues within this foundational process on which citizen science data is reliant, this thesis 

aims to emphasise the valuable role that citizen science plays in addressing the biodiversity 

crisis and further strengthen its place within ecological research.   

 

 



Table of Contents 
Declaration ................................................................................................................................. i 

Acknowledgements ................................................................................................................... ii 

Abstract..................................................................................................................................... iii 

 

1.  General Introduction ............................................................................................................ 1 

1.1 Introduction...................................................................................................................... 1 

1.2 Citizen science in ecology ................................................................................................. 2 

1.3 Data quality in citizen science .......................................................................................... 3 

1.4 Verification of ecological citizen science data ................................................................. 5 

1.5 Moving towards automated verification ......................................................................... 7 

1.6 Thesis structure and aims................................................................................................. 7 

1.6.1 The verification of ecological citizen science data: current approaches and future 

possibilities ......................................................................................................................... 8 

1.6.2 Verifying citizen science biodiversity data: accounting for contextual information 

within a Bayesian framework ............................................................................................. 9 

1.6.3 Using observer metrics in the verification of ecological citizen science data........... 9 

1.6.4 Does accurate verification of ecological citizen science data matter? The impact of 

data accuracy on protected area coverage for biodiversity indicators  .......................... 10 

1.6.5 General discussion ................................................................................................... 10 

 

2. The Verification of Ecological Citizen Science Data: Current Approaches and Future 

Possibilities  ............................................................................................................................. 12 

2.1 Abstract .......................................................................................................................... 12 

2.2 Introduction.................................................................................................................... 13 

2.3 Systematic review method ............................................................................................. 15 

2.3.1 Literature search ..................................................................................................... 15 

2.3.2 Identifying verification approaches and citizen science scheme attributes ........... 16 

2.3.3 Data analysis  ........................................................................................................... 17 

2.4 Results ............................................................................................................................ 18 

2.4.1 Summary of citizen science recording schemes...................................................... 18 

2.4.2 Approaches to data verification in citizen science schemes ................................... 19 

2.4.3 Citizen science scheme attributes and verification approach ................................ 21 



2.5 Discussion ....................................................................................................................... 22 

2.5.1 Existing patters in verification of citizen science data ............................................ 23 

2.5.2 Recommendations for verification of citizen science data...................................... 26 

2.5.2.1 An idealised system for verification ................................................................. 26 

2.6 Conclusions..................................................................................................................... 30 

 

3. Verifying Citizen Science Biodiversity Data: Accounting for Contextual Information 

Within a Bayesian Framework ................................................................................................ 31 

3.1 Abstract .......................................................................................................................... 31 

3.2 Introduction.................................................................................................................... 32 

3.3 Methods ......................................................................................................................... 35 

3.3.1 Community consensus classification model............................................................ 36 

3.3.1.1 Choice of parameters and prior ....................................................................... 38 

3.3.1.2 Species classification for community consensus model .................................. 40 

3.3.2 Expert behaviour classification model .................................................................... 40 

3.3.2.1 Species classification for expert behaviour model .......................................... 41 

3.3.3 Model selection ....................................................................................................... 42 

3.4 Data ................................................................................................................................ 43 

3.4.1 MammalWeb ........................................................................................................... 44 

3.4.2 iRecord ..................................................................................................................... 45 

3.5 Results ............................................................................................................................ 47 

3.5.1 MammalWeb ........................................................................................................... 47 

3.5.2 iRecord ..................................................................................................................... 50 

3.5.2.1 Coleoptera records .......................................................................................... 50 

3.5.2.2 Diptera records ................................................................................................ 51 

3.6 Discussion ....................................................................................................................... 52 

 

4. Using Observer Metrics in the Verification of Ecological Citizen Science Data ................ 58 

4.1 Abstract .......................................................................................................................... 58 

4.2 Introduction.................................................................................................................... 58 

4.2.1 Current approaches to accounting for observer variability in citizen science 

schemes ............................................................................................................................ 61 

4.3 Methods ......................................................................................................................... 63 

4.3.1 Classification model................................................................................................. 63 



4.3.1.1 Expert behaviour variant of the classification model ...................................... 66 

4.3.2 Data ......................................................................................................................... 66 

4.3.3 Observer metrics ..................................................................................................... 67 

4.3.4 Model selection ....................................................................................................... 69 

4.4 Results ............................................................................................................................ 69 

4.4.1 MammalWeb ........................................................................................................... 69 

4.4.2 iRecord ..................................................................................................................... 73 

4.4.2.1 Coleoptera........................................................................................................ 73 

4.4.2.2 Diptera ............................................................................................................. 76 

4.5 Discussion ....................................................................................................................... 79 

 

5. Does accurate verification of ecological citizen science data matter? The impact of data 

accuracy on protected area coverage for biodiversity indicators ......................................... 82 

5.1 Abstract .......................................................................................................................... 82 

5.2 Introduction.................................................................................................................... 83 

5.3 Methods ......................................................................................................................... 86 

5.3.1 Data ......................................................................................................................... 87 

5.3.2 Simulating inaccuracies ........................................................................................... 87 

5.3.3 Protected area coverage ......................................................................................... 88 

5.3.4 Data analysis ............................................................................................................ 89 

5.4 Results ............................................................................................................................ 90 

5.4.1 Impacts of error on analysis outputs....................................................................... 93 

5.4.2 Species results ......................................................................................................... 94 

5.4.2.1 Thymelicus acteon ........................................................................................... 94 

5.4.2.2 Satyrium pruni.................................................................................................. 96 

5.4.2.3 Ochlodes sylvanus ............................................................................................ 97 

5.4.2.4 Vanessa cardui.................................................................................................. 98 

5.5 Discussion ....................................................................................................................... 99 

 

6.  General Discussion ........................................................................................................... 103 

6.1 Synthesis ....................................................................................................................... 103 

6.2 Confidence in citizen science approaches within ecological research ........................ 105 

6.2.1 Transparency within citizen science data.............................................................. 106 



6.2.2 Dealing with imperfect data .................................................................................. 106 

6.2.2.1 Confidence metrics when using citizen science data..................................... 107 

6.3 Citizen science and targets for nature ......................................................................... 110 

6.4 Conclusions................................................................................................................... 112 

 

Appendices ............................................................................................................................ 114 

Appendix A - Chapter 2 ...................................................................................................... 114 

Appendix B - Chapter 3....................................................................................................... 115 

Appendix C - Chapter 4....................................................................................................... 119 

Appendix D - Chapter 5 ...................................................................................................... 125 

 

Bibliography........................................................................................................................... 146 



1 
 

1. General Introduction   

1.1 Introduction 

Globally, biodiversity and ecosystems are experiencing irreversible losses caused by 

pervasive and ubiquitous anthropogenic threats (Hayhow et al., 2019; IPBES, 2019; WWF, 

2022). Species are being lost at an unprecedented rate, causing degradation to ecosystem 

functioning and services (WWF, 2022). To address these overarching threats to nature, 

ecological research efforts are focused on understanding widespread losses to biodiversity 

and changes in ecosystems (Cooke et al., 2019; Eddy et al., 2021; Soroye et al., 2020; 

Strassburg et al., 2020). Such research can then determine the extent of these impacts and 

inform policy and management responses to instigate action to protect biodiversity, 

conserve species populations (Cazalis et al., 2022a; Chowdhury et al., 2023; Hoveka et al., 

2022), and evaluate future scenarios for nature recovery (Duarte et al., 2020; Nicholson et 

al., 2019; Powers and Jetz, 2019). Addressing these research questions relies on large 

volumes of accurate and up-to-date data covering a wide geographical and temporal scale 

(Groom et al., 2017; Hassani et al., 2021; Hochkirch et al., 2021; Nathan et al., 2022).  

Alongside research, efforts need to be focused on education and outreach, to raise 

awareness for these issues, which in turn can increase bottom-up action and environmental 

stewardship, as well as democratise the fields of ecology and conservation (Davis et al., 

2022; Salomon et al., 2018; Strickland et al., 2021). Citizen Science, which broadly 

encompasses all volunteer contributions to science, is a key tool and research approach for 

gathering the data required to address large-scale research questions, as well as engaging 

the public in environmental issues (Adler et al., 2020; Dickinson et al., 2010, 2012; Fraisl et 

al., 2022; Kobori et al., 2016). The development of citizen science initiatives and the use of 

citizen science data has increased in recent decades (Fraisl et al., 2022; Kobori et al., 2016; 

Pocock et al., 2015; Silvertown, 2009). As more individuals have contributed to citizen-led 

ecological datasets and data volumes have grown, concerns have been expressed within the 

ecological research community around the quality of this data (Johnston et al., 2023; Pocock 

et al., 2017). To ensure data is of a known quality, citizen science records are verified to 

check for correctness (Pocock et al., 2015). With an increase in the volume of ecological 
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data being collected by citizen scientists, verification is becoming an increasingly time-

consuming process (Bonter and Cooper, 2012; Sutherland et al., 2015).  

Here, I chronicle the evolving role of citizen science within the field of ecology. I describe the 

benefits of using citizen science approaches, as well as the concerns that have arisen from 

the wider use of citizen science datasets within ecological research. Detailing issues of data 

quality in citizen science schemes, I then examine the position of verification within citizen 

science datasets and concerns that have been highlighted with the verification process as 

data volumes grow. I then outline how the research described in this thesis informs future 

directions for the verification of ecological citizen science data to address the current issues 

within the verification process. 

1.2 Citizen science in ecology 

Within the field of ecology, volunteers have been contributing to species datasets for 

centuries (Dickinson et al., 2010; Fraisl et al., 2022; Pocock et al., 2015; Silvertown, 2009). 

These volunteer-collected datasets are valuable long-running time-series datasets that allow 

us to understand species abundances, distributions (Dennis et al., 2017; Horns et al., 2018), 

and phenology (Fuccillo et al., 2015; McDonough MacKenzie et al., 2017), and therefore, 

investigate changes in ecological processes in response to anthropogenic drivers (Cooper et 

al., 2014; Crimmins and Crimmins, 2022). Historically, these contributions have come from 

volunteer naturalists recording observations of species (Pocock et al., 2015). More recently, 

these volunteer contributions have been labelled as citizen science and encompass a broad 

range of initiatives and approaches that make use of technological advancements to 

diversify how citizen scientists can contribute (Fraisl et al., 2022; Johnston et al., 2023; 

Pocock et al., 2017). These contributions have now extended beyond collecting species 

observations, with citizen scientists now being involved in classifying images (Hsing et al., 

2022), digitising specimens (Sforzi et al., 2019), and informing the research process and 

project design (Cox et al., 2015). Increased availability of, and access to, technology is 

allowing more people to contribute to these projects than ever before, allowing individuals 

to encounter and learn about species from across the globe (Callaghan et al., 2021; Larson 

et al., 2020).  
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Using citizen science approaches in the ecological research process yields a range of 

benefits. Large-scale citizen science datasets have a spatial coverage that is unmatched by 

traditional data collection methods, making them the primary datasets for modelling large-

scale global trends for species across the globe (Altwegg and Nichols, 2019; Johnston et al., 

2020a). Furthermore, by relying on citizen scientists for data collection and processing, time 

and resources can then be directed to other areas within the research process. Engaging 

citizen scientists can also benefit and progress research, as by engaging individuals with 

regional knowledge and expertise, there is the potential to gain insight into local knowledge 

and value systems (Kimura and Kinchy, 2016). By engaging the public in the research process 

through citizen science, there is potential to create long-term sustained public engagement, 

which is effective in creating behavioural change (NCCPE, 2016).   

Despite the tangible benefits of using citizen science, a range of challenges are faced when 

developing and implementing citizen science initiatives, as well as using the datasets that 

come from citizen science schemes. Although several citizen science schemes are self-

sustaining, many others are constrained by funding and resources and therefore have 

limited capacity to maintain the running of a scheme (Fraisl et al., 2022; Pocock et al., 2014). 

The limitations that many citizen science schemes face can reduce engagement with a 

project (Callaghan et al., 2019; Fraisl et al., 2022; Poisson et al., 2020), reducing the amount 

of data that can be collected by a scheme. Alongside these challenges, a primary concern 

that can limit the use of citizen science data in the field of ecological research is that of data 

quality. Many schemes revolve around unstructured monitoring and are set up without 

specific aims or hypotheses in mind, or with the broad aim to collect more data, which 

presents challenges when analysing large volumes of data (Isaac et al., 2014; Isaac and 

Pocock, 2015). The unstructured nature of data collection and the contributions of many 

non-experts to datasets raises questions about bias and accuracy of these datasets (Crall et 

al., 2011; Cruickshank et al., 2019; Hunter et al., 2013; Kosmala et al., 2016a; Wiggins et al., 

2011). In the following section, I will discuss in more depth the concerns and issues of data 

quality in ecological citizen science datasets.  

1.3 Data quality in citizen science  

Data being collected by volunteers globally is increasing (Johnston et al., 2023). Although 

some schemes may aim to recruit citizen scientists with some expertise in biological 



4 
 

recording (Van Strien et al., 2011), many schemes encourage contributions from as many 

individuals as possible, regardless of their expertise or prior experience with species 

identification (Sutherland et al., 2015). Furthermore, to keep involvement straightforward, 

submitting records often requires minimal effort, with many schemes consisting of ad-hoc 

opportunistic species sightings with limited meta-data (Terry et al., 2020). The unstructured 

nature of data collection can lead to biases in these datasets (Boakes et al., 2016; Callaghan, 

et al., 2021; Johnston et al., 2023), and the variability in experience and expertise of the 

hundreds or thousands of citizen scientists contributing to these datasets raises concerns 

about their accuracy (Feldman et al., 2018; Fuccillo et al., 2015; Gorleri et al., 2022).  

Data collected by citizen scientists can have spatial, temporal, and data content biases 

(August et al., 2020). For example, species observations can be centred around more 

populated areas, or areas that are more accessible to the public, such as public parks, 

gardens, or roads (Geldmann et al., 2016; Mair and Ruete, 2016). Citizen science records are 

also biased towards weekends and summer months, with inconsistent recording through 

time (Bird et al., 2014). These biases generally affect schemes that rely on field-based citizen 

scientists. However, biases that relate to the species that are recorded can affect both field-

based and desk-based citizen science projects. For field-based citizen science schemes, 

records can be biased towards easily recognisable species or species that are less affected 

by human presence (Callaghan, et al., 2021; Farmer et al., 2014). Alternatively, field-based 

citizen scientists that contribute large volumes of species records may choose to submit only 

observations of unusual or rare species (Johnston et al., 2023). For desk-based citizen 

science schemes, where individuals may classify images or species, these observations could 

be biased towards more easily recognisable, charismatic species (Kosmala et al., 2016a). 

Inaccuracies can arise when species are difficult to identify based on visual traits alone 

(Morris, 2019), or when species pairs have similar traits (Hsing et al., 2018). Often, a range 

of factors must be considered when identifying a species, including the habitat or region in 

which it was observed, and the phenology and traits of the species; therefore, recorder 

experience and expertise can also impact the accuracy of observations (Johnston et al., 

2018).   

A range of evidence highlights issues of data quality within citizen science datasets. 

However, in many cases, these datasets are the only available data that has the level of 
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geographical coverage required to investigate large-scale ecological questions. Therefore, it 

is necessary to understand the level of data quality in these datasets and address these 

concerns to strengthen the place of citizen science within ecological research.   

1.4 Verification of ecological citizen science data 

Concerns around data quality within citizen science are addressed by ensuring the data 

undergo a series of checks for data completeness and correctness. These processes can be 

categorised as validation and verification. Validation is the process by which the records are 

checked to ensure the information has been submitted correctly (Tweddle et al., 2012). 

These checks can include identifying incorrectly entered dates, grid references or species 

name spelling. This process can be carried out automatically by setting rules for online data 

entry forms or by tools such as the National Biodiversity Network Record cleaner (Dean, 

2013; Tweddle et al., 2012). Verification is the process by which the species identification is 

checked for correctness based on the information provided with that observation (Tweddle 

et al., 2012). This process is typically carried out by experts with specific taxonomic or 

regional expertise (Pocock et al., 2015; Pocock et al., 2014). If a photo, recording, or 

specimen is provided with an observation, this can be used to confirm the species 

identification. If no evidence is provided, species identify can only be considered correct 

based on the plausibility of the observation given the reported location, date, and observer 

(Baker et al., 2021; Kosmala et al., 2016a; Wiggins et al., 2011). An observation may be 

considered incorrect if an observation is outside of the species spatial or temporal range, if a 

species is typically confused with another species or if the expertise of the observer is 

unknown to the verifier (Baker et al., 2021; Kosmala et al., 2016a; Wiggins et al., 2011). An 

expert may ask for more information or photos to confirm the identification, informing 

whether they accept the observation or provide an alternative species identification. If a 

relevant expert is not available, records can go unchecked and unverified (Bonter and 

Cooper, 2012; Sutherland et al., 2015). There may also be a backlog of records to verify, 

leading to long delays between the submission and verification of a citizen science record 

(Bonter and Cooper, 2012; Pocock et al., 2015). This can exclude large volumes of citizen 

science records from being included in analyses, due to a lack of confidence in the 

observations.  
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Although some citizen science schemes do require photos or specimens to be submitted 

with an observation, the majority of citizen science records require minimal information for 

an observation to be submitted, typically this is: species name, location and date (Baker et 

al., 2021). Many citizen science observations are not accompanied by photos, and even if 

photos are provided, many species cannot be identified from photos alone (Morris, 2019). 

As a result, verification does not guarantee complete accuracy of citizen science data. 

However, it is a necessary process of quality assurance that ensures errors within the data 

are reduced.  

As global connectivity has increased due to advancements in, and increased access to, 

technology and the internet, community-based verification is now being used for some 

citizen science schemes (Hsing et al., 2022; Siddharthan et al. 2016; Swanson et al., 2016). 

This is when individuals submit observations to a website or forum and then other members 

of an online community can verify them. Members of the community may have expert 

status (Silvertown et al., 2015) or verification is based on a consensus identification by 

several individuals (Di Cecco et al., 2021). This approach to crowdsourcing verification draws 

on a larger pool of individuals to confirm observations and can increase the efficiency of 

verification (Hsing et al., 2022). However, a lack of taxonomic or regional expertise can still 

lead to gaps in data, with portions of records remaining unverified (Barbato et al., 2021).  

Having a large proportion of unverified or inaccurate records can impact recorders and end 

users of the data. Failing to provide timely feedback to citizen scientists regarding the 

records they have submitted can impact engagement and reduce the retention of 

volunteers (van der Wal et al., 2016). This reduces the potential positive impact of citizen 

science schemes through outreach and engagement, as well as reducing potential species 

observations that can be collected by citizen scientists in the future. For end users of the 

data, inaccurate species occurrence information can limit the inferences and decisions that 

can be made using citizen science datasets. The large spatial coverage and temporal scale of 

citizen science datasets provide a key resource for a range of ecological research, policy and 

conservation management uses (Powney and Isaac, 2015). Citizen science datasets are often 

used within ecological research to explore trends in species abundance and distributions 

through species distribution or occupancy modelling (Boyd et al., 2023). An incorrect 

observation that was within the known range of species would have minimal impact on 
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modelling outputs, however, incorrect observations outside of the known range could be 

more impactful on the analysis. Inaccurate estimates of species abundances and 

distributions (Sutherland et al., 2015) can have subsequent impacts on conservation 

management and policy (Adler et al., 2020; McKinley et al., 2017; Vann-Sander et al., 2016), 

due to a lack of robust evidence that can be used to inform decision making.  

Verification remains an essential process for the range of scientific applications of citizen 

science data, however as data volumes grow it is becoming an increasing time-consuming 

process that is leading to a lack of up-to-date data. Timely and efficient verification remain a 

challenge for many citizen science schemes.   

1.5 Moving towards automated verification 

As the global community of citizen scientists grows, and the volumes of data being collected 

by citizen scientists increase, there is a focus in the field of ecological research and data 

science on how to manage data effectively and process it efficiently (Fraisl et al., 2022; 

McClure et al., 2020; Wang et al., 2015). In turn, this has prompted exploration of 

approaches to automated verification (Bonter and Cooper, 2012; Kelling et al., 2011; Yu et 

al., 2011). These approaches can include data filters, statistical models, or computer vision 

techniques (McClure et al., 2020; Wang et al., 2015). Chapter 2 of this thesis reviews some 

specific approaches to automated verification for various citizen science schemes. 

Particularly for larger citizen science schemes, relying solely on expert review is no longer 

feasible, compelling a focus on integrating more efficient approaches to verification. 

However, many citizen science schemes lack the time and resources to develop these 

approaches independently. In this thesis, Chapters 3 and 4 present a Bayesian approach to 

verification that uses past data to assess the confidence that we can have in a citizen science 

record based on species confusions, the environmental context of the observation (Chapter 

3), and information about the data recorders (Chapter 4).  

1.6 Thesis structure and aims 

Motivated by the need to increase efficiency in the verification process and understand 

issues of data quality within citizen science, this thesis describes my research into the 

verification of ecological citizen science data. In addition to understanding the process of 

verification within ecological citizen science data and exploring ways in which we can 
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increase the efficiency of the verification, I explore the impacts of inaccurate data in the 

research context. Chapter 2 describes the current approaches to the verification of 

ecological citizen science data and provides guidance on how the process can be improved. 

Chapters 3 and 4 outline frameworks for verification that use the environmental context 

(Chapter 3) of a citizen science record and recorder expertise (Chapter 4) to assess 

confidence in citizen science records using Bayesian classification models, and present how 

this can be integrated into the verification process. Chapter 5 explores the extent to which 

accurate verification matters by using citizen science datasets of different accuracies to 

explore policy and management questions. Finally, Chapter 6 is a general discussion that 

reflects on the future of verification within citizen science and the implications of this 

research.  

1.6.1 The verification of ecological citizen science data: current approaches and future 

possibilities 

Initially, I review ecological citizen science schemes that feature in published research to 

provide an overview of the breadth of verification methods that are currently used. This 

research can then be used as a benchmark for monitoring future progress and the evolution 

of verification methods. Here, I examine approaches to verification, the factors that may 

influence choice of verification approach and the information that is used to verify citizen 

science data. The results from reviewing 259 citizen science schemes found that expert 

verification was used most widely amongst citizen science schemes, followed by community 

consensus and automation. Expert verification, although highly accurate, is time-consuming, 

and can lead to a lag between the submission and verification of an observation. Therefore, 

I propose an idealised system for data verification, that implements a hierarchical approach 

to verification where the bulk of records are verified by automated or community consensus 

approaches, and any flagged records are verified by experts. The results from this review 

also explore the range of information that is used to verify observations, which can be 

categorised under attributes of the species, the environmental context, and the observer. 

The idealised system for verification outlines how each category of information can be 

considered and the associated meta-data that can be used to verify an observation.  
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1.6.2 Verifying citizen science biodiversity data: accounting for contextual information 

within a Bayesian framework 

Informed by the idealised system for verification outlined in Chapter 2, I then present a 

framework for automated verification that, in the first instance, considers attributes of the 

species and the environmental context. Attributes of the species that can be considered in 

the verification process include ease of identification, rarity, or confusion with other species. 

Considerations regarding the environmental context include the known geographical range, 

the phenology, diurnal activity, or habitat preferences of a species. Here I outline how this 

information can be accounted for using a Bayesian Classification Model that makes use of 

the meta-data associated with each record, as well as the historical data submitted to a 

scheme, to estimate the probability of a record being of a given species. This framework 

harnesses the species confusion matrix that quantifies mistakes made by citizen scientists, 

as well as when and where a species is most likely to be observed. I demonstrate how this 

approach can be applied to MammalWeb, a citizen science scheme that crowdsources the 

classification of camera trap images, and iRecord datasets that comprise ad-hoc, 

opportunistic records collected by field-based citizen scientists. For MammalWeb the results 

presented show that models including contextual information improved on the models that 

did not include contextual information, but for iRecord, including context showed little 

improvement in verification accuracy.  

1.6.3 Using observer metrics in the verification of ecological citizen science data 

The framework presented in Chapter 3 assumed that all observers have the same expertise 

and therefore are included in the same confusion matrix. Individuals contributing to citizen 

science schemes vary in terms of their experience with species identification, taxonomic 

expertise and encounters with nature. Considering the variability between observers that 

contribute to citizen science schemes, here I examine how traits of the observer can be 

integrated into verification frameworks and the impact on verification accuracy. I detail how 

the framework outlined in Chapter 3 can be expanded upon and how observer ID can be 

used to inform the probability of a record being correct by assigning a confusion matrix to 

each observer. I then show a variation of this model that uses past data to categorise 

observer traits, which can be used to assess confidence in an observation. This approach 

was applied to MammalWeb and iRecord datasets. The results show that accounting for 
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user accuracy and other observer traits provides minimal improvement when verifying 

citizen science records. For many citizen science schemes, most observers submit very few 

records, and volunteer retention within citizen science schemes is low. This can limit the 

effectiveness of the approach presented here as observer expertise cannot be estimated 

effectively for most citizen scientists. The research conducted here and in Chapter 3 also 

highlights that in the datasets used, accuracy of the citizen science observations is generally 

90% or higher prior to verification.  

1.6.4 Does accurate verification of ecological citizen science data matter? The impact of 

data accuracy on protected area coverage for biodiversity indicators 

Large amounts of time and resources are continuing to be directed to ensuring citizen 

science data is as accurate as possible, through expert verification and the development of 

automated verification approaches. Given the high accuracy that can be observed in citizen 

science datasets, or achieved through automated verification approaches it is timely to 

explore the extent to which accurate verification matters in ecological analysis to examine 

whether there is a need to verify every citizen science record. Here, I investigate this 

question by assessing protected area coverage for UK Butterflies with datasets with 

different levels of simulated inaccuracy (20%, 10%, 5% and 2%). Using these datasets, I 

estimated the area of occupancy and compare percentage overlap with protected areas for 

inaccurate datasets and the original data. The results presented here highlight that for more 

ubiquitous species, the small amounts of error introduced into the data can be tolerated, 

but for species with constricted ranges, the consequences of inaccurate verification are 

greater. Before considering the need for every record to be verified, the costs of inaccurate 

verification should be considered in the context of the end uses of the data. For species 

where pinpointing the exact location is essential, every record should be verified. However, 

for many species where identifying specific occurrences is not necessary, the need for 

verifying every record should be reconsidered to ensure efficient data processing.  

1.6.5 General discussion  

The research conducted in this thesis explores how the verification of ecological citizen 

science data can evolve in response to increased data volumes and the need for up-to-date 

data, to benefit both those who manage citizen science schemes and end users of the data. 
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The rationale for much of this research is based on concerns around data quality in citizen 

science. However, for the datasets used here, the accuracy prior to verification is already 

high. Here, I discuss how, moving forward, confidence in citizen science data can grow 

through increased transparency in verification approaches, as well as through developing 

alternative frameworks for dealing with imperfect data. Furthermore, I outline how the 

posterior probabilities that are calculated using the Bayesian Framework outlined in 

Chapters 3 and 4 could be used as confidence metrics to inform analysis using citizens 

science datasets. I discuss how using confidence metrics can provide an alternative for 

assessing data quality, over simply categorising species observations as correct or incorrect. 

End users of citizen science data can then make informed decisions about how to analyse 

and interpret the results based on confidence within a dataset. Chapter 6 also discusses the 

valuable role that citizen science has to play in our progress towards the global 2030 targets 

for nature, and how engaging citizen scientists across the globe in all aspects of ecological 

conservation can ensure widespread action is taken to protect nature. 
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2. The Verification of Ecological Citizen 

Science Data: Current Approaches and 

Future Possibilities 

2.1 Abstract 

Citizen science schemes enable ecological data collection over very large spatial and 

temporal scales, producing datasets of high value for both pure and applied research. 

However, the accuracy of citizen science data is often questioned, owing to issues 

surrounding data quality and verification, the process by which records are checked after 

submission for correctness. Verification is a critical process for ensuring data quality and 

increasing trust in such datasets but verification approaches vary considerably between 

schemes. Here, we systematically review approaches to verification across ecological citizen 

science schemes that feature in published research, aiming to identify the options available 

for verification, and to examine factors that influence the approaches used. We reviewed 

259 schemes and were able to locate verification information for 142 of those. Expert 

verification was most widely used, especially among longer-running schemes, followed by 

community consensus and automated approaches. Expert verification has been the default 

approach for schemes in the past, but as the volume of data collected through citizen 

science schemes grows and the potential of automated approaches develops, many 

schemes might be able to implement approaches that verify data more efficiently. We 

present an idealised system for data verification, identifying schemes where this system 

could be applied and the requirements for implementation. We propose a hierarchical 

approach, where the bulk of records are verified by automated or community consensus 

approaches, and any flagged records can then undergo additional levels of verification by 

experts.   
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2.2 Introduction  

In the current polarised political and media environment (Iyengar and Massey, 2019), with 

public access to a vast choice of information sources (Huber et al., 2019; Iyengar and 

Massey, 2019), there is an increasing need for effective public engagement and science 

communication. There is, therefore, an argument for the democratisation of science, to 

make information accessible to everyone, to engage the public in scientific issues, and to 

involve them in scientific research endeavours (Mason and Garbarino, 2016; Salomon et al., 

2018). Democratizing science in ecology and conservation has the potential to increase 

understanding of environmental issues and scientific research methods, catalysing bottom-

up action, greater environmental stewardship, and ecological conservation. Furthermore, 

scientists can involve the public in the research process through gaining insight into local 

knowledge and value systems, and through volunteer contributions to data collection and 

interpretation (Kimura and Kinchy, 2016). Involving the public in research can be a highly 

effective means of public engagement and science communication, as it involves sustained, 

longer-term engagements. Also, there is often a two-way dialogue in which both the public 

and researchers can provide input and feedback, consulting and collaborating on the 

research (Pace et al., 2010; NCCPE, 2016). One way that public engagement is increasingly 

embedded in ecological research is through data collection by members of the public.  For 

ecology and conservation, specifically, the public can contribute to species monitoring and 

biological recording, documenting species' occurrences to track species' distribution, 

abundance, and/or phenology (Sutherland et al., 2015). 

Volunteers play a key role in biological recording and have been contributing to ecological 

datasets for centuries (Silvertown, 2009; Dickinson et al., 2010; Miller-Rushing et al., 2012; 

Pocock et al., 2015). This process falls under the overarching term citizen science which 

broadly encompasses any volunteer involvement in science (Roy et al., 2012). The term was 

coined in the 1990s as a strategy for improving public trust and understanding in science 

(Woolley et al., 2016). More recently, the term has been adopted to describe a range of 

initiatives and research endeavours across disciplines (Woolley et al., 2016), with citizen 

science now featuring more in published literature (Kullenberg and Kasperowski, 2016). 

Within the field of ecology, in addition to biological recording, citizen science schemes can 
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also include tasks such as identifying species from photographic records or digitising data 

associated with specimen collections (Roy et al., 2012).  

Citizen science recording schemes have collected some of the longest-running time-series 

datasets of species populations (Devictor et al., 2010). Such datasets play a key role in 

assessments of species' changes in relation to pervasive anthropogenic pressures such as 

climate change, pollution, invasive species, and urbanisation (Sutherland et al., 2015). 

Biological recording benefits from contributions by volunteers because those contributions 

increase the geographical range and temporal span over which species can be recorded, 

providing long-term species-distribution datasets that can be used to assess and compare 

ecological trends (Pocock et al., 2015). These recording schemes typically rely on ad hoc, 

opportunistic records, although there are examples of hypothesis-led citizen science 

schemes, as well as schemes that have set up standardized monitoring protocols (Sewell et 

al., 2010; Flower et al., 2016; Smale et al., 2019).  

Data quality is a concern with citizen science data, as generally unstructured sampling 

protocols can introduce bias and noise (Isaac et al., 2014; Kamp et al., 2016; Pescott et al., 

2015). This can present challenges when analysing citizen science datasets and can limit the 

scientific questions that can be addressed (Isaac et al., 2014). The accuracy of citizen science 

data has also been questioned, owing to issues surrounding validation and verification 

(Kosmala, et al., 2016a). Validation is a process through which records are checked to 

ensure the data have been submitted correctly. Verification is the process of checking 

records for correctness; within ecological citizen science schemes, this generally means 

confirming species identity (Tweddle et al., 2012). Verification is a critical process for 

ensuring data quality of, and trust in, citizen science datasets (Gilfedder et al., 2019), 

enabling those datasets to be used in environmental research, management, and policy 

development (Tweddle, et al. 2012).  

In this review, we initially aim to explore different approaches to verification across citizen 

science schemes whose data feature in published research. We review citizen science 

scheme attributes, as well as verification approaches, and identify the information used to 

verify each record. We use this information to examine the different ways citizen science 

schemes verify data and the citizen science scheme attributes that may influence choice of 

verification approach. We then aim to understand whether citizen science schemes are 
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using the most suitable verification approach to maximise confidence in, and validity of, the 

data, whilst also ensuring efficient verification of records.  

2.3 Systematic Review Method 

2.3.1 Literature search 

To survey the verification approaches across existing citizen science schemes, we conducted 

this review based on the systematic review protocol developed by the Collaboration for 

Environmental Evidence (2018). The search terms we used were replicated from a review of 

the diversity and evolution of citizen science programmes carried out by Pocock et al. 

(2017). These terms were “citizen science,” “take part AND (nature OR environment),” 

“volunteer-based monitoring,” “public participation in scientific research,” and 

“participatory science.” We also used the search term “volunteer.” Searches were carried 

out in October and November 2019 using Web of Science, and were filtered by “ecology,” 

“zoology,” “entomology,” and “ornithology.” To ensure that our keyword searches in Web 

of Science were not missing large components of the literature that might be found 

elsewhere, additional searches for the terms “ecology AND (volunteer OR citizen science)” 

were carried out using Google Scholar, and the first 100 results were reviewed.  

We excluded papers if there were no mentions of a specific citizen science scheme, or if 

volunteers had been recruited to assist with the research but the contributions did not 

continue beyond the study and were not linked to a particular scheme. For example, 

Flaherty and Lawton (2019) requested, using various media outlets, information on grey 

squirrel, red squirrel, and pine marten sightings by the general public; public sightings were 

used alongside hair tube and live trapping surveys to assess species distributions. In another 

example, data were collected from recreational anglers to combine with mark-recapture 

data to estimate populations of fish species (Lyon et al., 2019). These volunteer 

contributions were only for the duration of the study and were not linked to any particular 

scheme. We also excluded review papers, or results that discussed citizen science from a 

theoretical point of view. Finally, we excluded papers if the citizen science scheme focused 

on collecting data solely on the abiotic environment. These schemes included those 

collecting data on water quality (Brooks et al., 2019; Křeček et al., 2019) or on soil quality 

(Bone et al., 2012). Where papers had used data from multiple schemes, we recorded all of 
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the schemes included in the research. Citizen science schemes nested within a larger citizen 

science initiative or repository were considered separately if the paper identified the 

specific scheme. For example, Snapshot Serengeti (Swanson et al., 2015), Penguin Watch 

(Jones et al., 2018), and Season Spotter (Kosmala, et al., 2016b) were referenced 

specifically, even though they all fall under the Zooniverse citizen science community, and 

therefore we recorded them as separate schemes.  By contrast, Torney et al. (2019) 

referenced only the Zooniverse, and therefore the Zooniverse was also recorded. The search 

yielded 434 papers (see Appendix A.1 for full reference list), which drew on 259 citizen 

science schemes (see Appendix A.2 for full list of schemes). 

The search strategy aimed to encompass a broad range of citizen science programmes, 

including recording schemes that do not identify as a citizen science scheme but do fit the 

definition of citizen science. It is, of course, likely that schemes will have been overlooked by 

the searches—most notably, schemes that have not led to published outputs. The term 

citizen science has been widely used only in recent decades, although volunteers have been 

contributing to ecological datasets for centuries (Silvertown, 2009; Dickinson et al., 2010; 

Miller-Rushing et al., 2012; Pocock et al., 2015), and therefore such volunteer contributions 

may not be linked to a specific volunteer recording scheme and are not referenced in 

literature. Furthermore, schemes may not provide information on the citizen science 

scheme attributes or verification approach publicly, and therefore would not be included in 

the results of this literature review. Although these searches did identify some schemes 

from non-English-speaking communities and regions, the search strategy is inherently 

biased towards schemes that operated in English (Pocock et al., 2017). These biases in the 

search methodology should not systematically impact the conclusions of the review.  

2.3.2 Identifying verification approaches and citizen science scheme attributes  

Verification approaches used by citizen science schemes were not always documented in 

the paper itself. Therefore, we carried out searches to obtain information on verification 

approaches and the information used to verify records, as well as citizen science scheme 

attributes, in both academic and non-academic search engines. We obtained this 

information from either the published literature in which the scheme featured or the 

scheme’s public online platform, which may be a website specifically for a scheme, or a web 
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page embedded within a larger website (see Appendix A.2 for full list of schemes, attributes, 

and sources). 

For each citizen science scheme, we identified the following attributes: number of species 

recorded through the scheme, number of occurrence records collected through the scheme, 

data type, number of participants, geographical extent, and duration in years. Data type 

refers the amount of information or evidence needed to submit an occurrence record to a 

scheme. For example, some schemes require photos, recordings, or physical specimens to 

be submitted before an occurrence can be confirmed. Other schemes allow indirect or 

direct sightings to be submitted without further evidence. Indirect sightings include 

observations such as mammal tracks or dung at a given location. Direct sightings refer to a 

species being observed but the minimum information required for an occurrence to be 

submitted is species name, location, and date. 

2.3.3 Data analysis 

We performed simple analyses to investigate two questions. First, we asked what attributes 

of schemes influence whether we were able to find information on their approaches to 

verification. Second, using those schemes for which we were able to find information on 

approaches to verification, we asked which attributes of the schemes influenced the 

approaches that were used. 

Some attribute categories included very few schemes. Therefore, we aggregated some 

categories for our analysis. Specifically, we classified numbers of participants as either  

1,000 or > 1,000; numbers of records as either  1 million or > 1 million; and data type as 

either "No evidence" (for reports of direct or indirect sightings without physical evidence) or 

"Evidence available" (for those data points associated with specimens, photographs, or 

recordings). 

To assess whether scheme attributes influence whether or not we were able to find 

information on verification approaches, we focused on schemes for which all scheme 

attributes were available. Inevitably, this biased the data towards schemes with more 

complete and accessible information. However, this was necessary for a complete 

investigation of which scheme attributes seemed most predictive of whether verification 

information could be identified, and still resulted in reasonable sample sizes of schemes 
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with and without verification information. Using this focused dataset, we ran a binary 

logistic regression including the main effects of geographic scale, participant numbers, 

record numbers, species numbers, data type (all categorical), and scheme duration 

(continuous). To compare models and identify which effects were informative when 

determining whether schemes reported their verification approach or not, we used the 

dredge function from package MuMIn (Barton 2020) for model selection by comparing 

AICc between all subsets of effects within this global model.  

To assess which scheme attributes appear to influence verification approach, we used 

multinomial regression (function multinom from package nnet; Venables and Ripley 2002). 

Specifically, we modelled the probability that expert, automated, community consensus, or 

other verification approaches would be used as a function of the same scheme attributes 

included in the saturated binary logistic regression. Once again, we focused on only those 

schemes for which all attributes were available. Some schemes used more than one 

approach, in which case those schemes appeared in our data set once for each approach 

used. The dredge function was used again for model selection, to determine which 

attributes were most informative in determining which verification approach was used, 

considering main effects only. 

2.4 Results  

2.4.1 Summary of citizen science recording schemes 

Of the 259 citizen science schemes, the focal taxa were birds (N = 97), invertebrates (N = 

67), mammals (N = 24), plants and fungi (N = 17), and amphibians and reptiles (N = 8). As 

well, there were schemes that allowed any taxa to be recorded (N = 27) and schemes that 

focused on marine taxa (N = 9). There were also schemes that recorded invasive species (N = 

6) and schemes that recorded roadkill (N = 4). There was substantial variation in the number 

of species recorded through the schemes. Where this information was available (N = 203), 

68 schemes had recorded 1–10 species, 50 schemes had recorded 11–100 species, 59 had 

recorded 101–1,000 species, 15 had recorded 1,001–10,000 species, and 11 had recorded 

more than 10,000 species.  

Of the schemes for which record number was available (N = 140), 12 schemes had fewer 

than 1,000 records, 95 schemes had between 1,000 and 1 million records and 33 had more 
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than 1 million records. The data type submitted with each record varied across schemes: 18 

allowed indirect sightings to be submitted, 165 required direct sightings to be submitted, 51 

required photo submissions, 10 required recordings, and 15 required specimens to be 

submitted.  

To determine the number of citizen scientists involved in each scheme, we included both 

those who collected data and registered users who may verify data. Of the schemes for 

which this information was available (N = 165), 76 had between 1 and 1,000 participants, 86 

had between 1,000 and 1 million participants, and 3 had more than 1 million participants.   

In terms of geographical extent, 17 schemes collected data at a global, cross-continental 

scale. Across the remaining schemes, 34 operated across multiple countries within the same 

continent, 125 schemes collected data at a country level, and 83 schemes operated at a 

regional level (i.e., the level of a region within a country). There were schemes operating on 

every continent besides Antarctica, with 106 in Europe, 96 in North America, 17 in Oceania, 

10 in Asia, 8 in Africa, and 5 in South America.  

The schemes we reviewed spanned a wide range of ages. Of schemes where duration was 

available (N = 225), 90 schemes had been running for less than 10 years, 64 had been 

running for between 10 and 20 years, 34 had been running between 20 and 30 years, and 37 

schemes had been running for longer than 30 years. 

2.4.2 Approaches to data verification in citizen science schemes 

Across the 259 citizen science schemes, no information was found on verification approach 

for 117 of the schemes. Within the schemes for which verification information was found, 

118 schemes relied on expert verification, 24 verified data through community consensus, 

and 14 used automated approaches, which encompassed algorithmic approaches without 

human classification. Several of the schemes used multiple verification approaches, and all 

of the schemes that used automation to verify data used at least one other method of 

verification on a subset of the data. Most commonly, automation was used alongside expert 

verification. Other verification approaches included using existing independent (West, 2012) 

or expert (Hof and Bright, 2016) datasets to confirm the likely accuracy of citizen-submitted 

records and carrying out follow-up surveys in a subset of locations (Kabat et al., 2012). 
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The information used to verify citizen science data refers to the record-level information 

that is used by citizen science schemes when carrying out data verification of species 

occurrences. This was categorised as species, environmental context, and recorder 

expertise. Species information is based on ease of identification (Pocock et al., 2015), 

confusion with other species (Siddharthan et al., 2016), rarity, and co-occurrence with other 

species. Environmental context takes into account the time, date, and location of the 

observation and, therefore, whether the species' occurrence was likely given the time of 

day, season (Dennis et al., 2016), habitat (Pocock et al., 2015; Sutherland et al., 2015), 

documented range of the species (Terry et al., 2020), and phenology (Chapman et al., 2015; 

Roy and Sparks, 2000).  Attributes of the recorder that are of interest could include the 

experience and expertise of the individual submitting the record. This can be considered 

qualitatively when submitting the record, by asking the recorder to state their confidence in 

identification (Desaegher et al., 2019; Waetjen and Shilling, 2017) or experience with 

biological recording (Bates et al., 2015). Recorder expertise can also be quantified after 

record submission, using metrics such as how long the individual has been participating in 

the scheme, volume of records submitted, and accuracy of previously submitted records (Yu 

et al., 2010; Horns et al., 2018; August et al., 2020). Schemes can also use novel approaches 

to account for recorder expertise. One example of this is iSpot, in which recorders develop a 

taxon-specific reputation via points earned once records they have submitted are verified as 

correct by other participants (Silvertown et al., 2015).  

Schemes were allocated to one or more of these categories based on information provided 

by the scheme on its verification approach. For many schemes, these details were not 

publicly available. Furthermore, individual expert verifiers may take into account all, or a 

combination, of these factors on a record-by-record basis, using their regional and 

taxonomic expertise as well as their personal knowledge of individual contributors’ abilities 

to identify species correctly. Therefore, it is unlikely that we were able to catalogue for our 

analysis all of the information considered by schemes and verifiers. Across the schemes for 

which the required information was available, 105 used information on the species itself, 86 

considered the environmental context, and 13 used information on recorder expertise. The 

majority of schemes used species information and environmental information together.  
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2.4.3 Citizen science scheme attributes and verification approach  

We restricted our analysis to 103 schemes with complete information on scheme attributes. 

As expected, this biased schemes towards those with available verification information (all 

data: schemes with verification information = 142, schemes without = 117; complete 

attribute data: schemes with verification information = 73, schemes without = 30; Fisher's 

test, p = 0.006). Nevertheless, we were still able to model the propensity for verification 

information to be found. The best-performing model (based on Akaike Information 

Criterion) included data type, number of records, and scheme duration (Figure 2.1). Only 

more complex versions of the same model had AICc < 6, and AICc for the null model was > 

8. 

 

Figure 2.1: The probability of verification information being found given the numbers of 

participants (left panel,  1 million [M]; right panel, > 1 million [M]), duration of schemes, 

and data type. Fitted probabilities (lines) and standard errors (filled polygons) are estimated 

using the best-performing binary logistic regression model. 

Using the 73 schemes for which scheme attributes and verification approach were found, 

we modelled the factors that best predicted the verification approaches used. Among the 

schemes we considered, 61 used expert approaches, 7 used automated approaches, 12 

used community consensus approaches, and 8 used other approaches. Given the low 

sample sizes, there was limited evidence of clear predictive effects of scheme attributes. 

Among the models examined, only those including number of participants, data type, or 

both, performed better than the null (AICc for the null model was 1.9). Recognising that 
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these are weakly supported effects, we nonetheless note that a model including both 

number of participants and data type suggests that: (i) automated approaches are used only 

for schemes with more participants and are slightly more common for schemes without 

physical evidence; (ii) community consensus approaches are more common for schemes 

with more participants and for which evidence is available; (iii) expert approaches are more 

common in schemes with fewer participants, but for schemes with more participants, they 

are more common when no physical evidence is available; and (iv) other approaches are 

most common for schemes with a smaller number of participants and for which no tangible 

evidence is available (Figure 2.2). 

 

Figure 2.2: The probability of each verification approach (see panel headings) being used for 

schemes with different numbers of participants and different data types. Fitted probabilities 

(filled columns) are estimated using the best-performing parameters in multinomial 

regressions. 

2.5 Discussion 

With data quality as a key concern across citizen science datasets, there is a need to ensure 

validity and increase trust of these data through verification. This review identifies patterns 

in approaches to data verification among citizen science schemes. By identifying the range 
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of approaches available and by considering scheme attributes that appear to contribute to 

choices in verification approach, we demonstrate the options available to both new and 

existing schemes. Here, we also present an idealised system for data verification, identifying 

where and how such a system could be implemented within citizen science schemes.  

2.5.1 Existing patterns in verification of citizen science data 

No information on data verification was found for over 40% of the schemes we reviewed. 

Our analyses suggest that information on verification was less likely to be found for older 

schemes, schemes with fewer participants, and schemes that do not require the 

contribution of physical evidence (specimens, photos, or recordings). Lack of available 

verification information does not mean that no verification is carried out; for schemes that 

lack a web presence and do not report verification methods in publications, verification 

methods are simply not publicly available or therefore are hard to identify. There may, 

however, be schemes that do not consider verification, trusting the recorders' abilities to 

report species correctly (Wiggins et al., 2011). This may be justifiable if schemes specifically 

recruit knowledgeable volunteers (Gardner, 2019) or provide training to volunteers before 

surveying (Smale et al., 2019). Some citizen science schemes focus recording effort on 

selected days annually (Chase and Levine, 2016). In these cases, volunteers may be joined 

and led by an expert (Chase and Levine 2016) and therefore errors could be identified and 

corrected, in person, during the data collection. Smaller-scale citizen science schemes may 

focus on collaborative, community-based approaches with small numbers of participants 

(Tweddle et al., 2012). In these cases, there may be an established trust amongst members, 

or verification may happen more informally between participants. Acknowledging this, there 

is still an imperative to report on verification methods to increase trust in the dataset and to 

benefit end users of the data. Arguably, this imperative is even more pronounced for those 

schemes that do not require physical evidence, for which verification information is 

currently harder to find. If there is transparency in verification approach, then the data 

quality can be better understood, and potential error or bias can be quantified and 

accounted for in analyses of the data (Pocock et al., 2014; Burgess et al., 2017).   

Where verification information was available, expert verification was the most common 

approach.  Verification by experts, although not flawless (McBride et al., 2012), has a high 

accuracy (Yu et al., 2012), and therefore may be a more suitable approach to obtain the 
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level of data quality required for published research outputs (Bonter and Cooper, 2012; 

Miller-Rushing et al., 2012). Furthermore, schemes that monitor rare (Donnelly et al., 2014) 

or invasive species, for which accuracy of individual records is crucial to guide management 

actions (Crall et al., 2011; Pusceddu et al., 2019), require expert verification to pinpoint 

occurrences and ensure high-quality data. Expert verification can be time consuming for 

large datasets (Kelling et al., 2011; Yu et al., 2012), and schemes that operate at a large 

geographic scale rely on extensive networks of taxonomic and regional experts (Sutherland 

et al., 2015). A lack of verifiers in certain regions or with particular specialisms can lead to 

gaps in verified data (Bonter and Cooper, 2012). As a result, there can be a significant time 

lag between submission and verification of records (Bonter and Cooper, 2012).  

Community consensus was the second most common verification approach. It was more 

common among schemes with a larger number of participants and for schemes that 

required evidence to be submitted with each record. Community consensus may be 

preferable for schemes with sufficient participants, as crowdsourcing the assessment of 

physical evidence spreads the task of verification across a greater number of individuals and 

can be particularly useful when verifying camera trap datasets, which can rapidly grow to 

very large sizes (Hsing et al., 2018; Swanson et al., 2016). Community consensus approaches 

can also be used alongside automated approaches in a hierarchical verification system 

(Green et al. 2020). Once multiple users have classified a record, consensus algorithms can 

be applied to analyse classifications and to categorise confidence in a record (Siddharthan et 

al., 2016; Hsing et al., 2018). Community consensus approaches also have the potential to 

enhance public engagement and community development. Diversifying the tasks in which 

citizen scientists can be involved can make the scheme more accessible to those who do not 

have the access or mobility to go to areas where they can record species (Borden et al., 

2013). When using community consensus approaches, expert verification may still be 

required if datasets contain species that are less straightforward to identify, such as 

commonly confused species pairs (Hsing et al., 2018). This approach relies on a large 

number of citizen scientists investing time in the scheme (Hsing et al., 2018; Swanson et al., 

2016), and therefore may not be suitable for schemes with smaller numbers of users. 

Furthermore, if community consensus approaches are used for schemes that operate on a 

global scale and record many species, the community may not have the local knowledge 
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required to verify records for species that are less straightforward to identify or are less well 

known amongst the general public (Swanson et al., 2015). As a result, the verified data in 

these schemes may be skewed toward widely recognised, charismatic species.  

Perhaps unsurprisingly, owing to their recent emergence, automated approaches were not 

widely used among the subset of citizen science schemes reviewed. Schemes that used 

automation, did so in conjunction with other methods including, most frequently, expert 

verification. Automation is typically the first step in the verification process, with records 

being checked for a range of attributes. These include whether they are in the expected 

geographical and temporal range, if the species is particularly rare, or for schemes that ask 

for the number of individuals of a species recorded, whether that number is unusually high 

(Bonter and Cooper, 2012; Kelling et al., 2011; Pocock et al., 2015; Yu et al., 2012). Any 

records that do not meet set criteria are flagged and then sent to expert verifiers (Bonter 

and Cooper, 2012; Kelling et al., 2011; Yu et al., 2012).  Automation reduces the burden on 

expert verifiers by decreasing the volume of records that require verification. Automated 

approaches are widely applicable across citizen science schemes and can be applied to 

records for a huge diversity of taxa (Pocock et al., 2015). Automation is the most time-

efficient way of verifying citizen science data, allowing data to be reviewed in real time as 

records are submitted, as well as—potentially—providing citizen scientists with immediate 

feedback on their submissions (Bonter and Cooper, 2012; Kelling et al., 2011; van der Wal et 

al., 2016; Yu et al., 2012). From the perspective of participant involvement, having rapid 

feedback on submitted records has the potential to strengthen engagement and to increase 

motivation to continue recording (Rotman et al., 2014). Although automation can reduce 

the number of records that require expert review, careful consideration of the verification 

rules is required to reduce the burden on experts without leading to classification errors (Yu 

et al., 2012).  

With the distributions and abundances of many species changing rapidly in response to 

persistent anthropogenic environmental change, timely and accurate verification is 

important to ensure the availability of up-to-date biodiversity information (Sutherland et al., 

2015). Verification by experts has perhaps been the default approach for citizen science 

schemes in the past (Kosmala et al., 2016a; Silvertown, 2009). With the growing volume of 

citizen science data that has been and will continue to be collected, there is an argument for 



26 
 

schemes to explore and implement other verification approaches that allow large quantities 

of data to be verified more efficiently. The most appropriate verification approach may vary 

from scheme to scheme, and research may be required to assess the risks or rewards of 

alternative approaches. Expert verification is likely always to be required for a subset of the 

data, but given the emergence of community consensus and automated verification in 

recent decades (Newman et al., 2012), these approaches should be carefully considered for 

schemes moving forward. As the position of citizen science in ecological research evolves, 

with new schemes continually being established, verification approaches must evolve to suit 

the needs of schemes whilst also ensuring data quality and accuracy of records. 

2.5.2 Recommendations for verification of citizen science data 

Our review highlights the range of verification methods used by different citizen science 

schemes. In some cases, this variation might reflect deliberate and informed choices based 

on what works best given the attributes of different schemes. In others, it is likely that 

choices reflect historical contingency, or cost and ease of implementation. Some schemes 

may be limited to a certain approach due to available resources, time, or personnel. Others 

may feel bound to a verification approach in order to maintain consistency over time. In 

those situations, retrospective application of new methods, or calibration by running two 

systems in tandem, might provide reassurance to enable the implementation of new 

approaches.  

Whilst a range of factors may influence choice of, or lack of, verification approach, 

transparency of documentation of verification approaches is required to increase 

confidence in citizen science as a means of collecting reliable data. Therefore, we 

recommend that citizen science schemes publicly report their verification approach. 

Schemes that lack a platform on which this information can be made readily available 

should ensure that published research clearly identifies whether and how the data were 

verified.  

2.5.2.1 An idealised system for verification  

Considering the options available for verification and the attributes that may contribute to 

the choice of verification approach, we have outlined a hierarchical system for verification 

(summarised in Figure 2.3). This approach considers the data that can be used to verify 
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records, where automated and community consensus approaches can be implemented, and 

when expert verification may still be required.  

 

Figure 2.3: Summary of recommendations for an idealised system for verification of 

ecological citizen science data. Considerations for verification highlight some of the 

questions that can be answered using the record-level information and secondary 

metadata. If the answer to these questions is yes, then we propose further levels of 

verification may be required. First-level verification indicates the attributes of schemes that 

could use community consensus and automated approaches. Additional verification 

highlights the kinds of records that may be flagged and therefore will need to be reviewed 

by experts.  

When verifying records, schemes should consider the breadth of information available to 

improve verification, making use of all data that accompanies each record (Figure 2.3). 

Ideally, recorders should submit the maximum available evidence with each record, such as 

photos or recordings, assuming the user interface through which volunteers submit records 

is fit for purpose. Submitting photos or other evidence may not be possible for every 

scheme, particularly those centred around annual count events, such as the Batumi Raptor 
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Count (Wehrmann et al., 2019) or Christmas Bird Count (Meehan et al., 2019), where large 

numbers of species are recorded during a constrained period. Furthermore, requiring more 

information to be submitted with every species record may discourage volunteers from 

taking part, creating a trade-off between data completeness and data volume. For many 

schemes, the minimum amount of information required is date, location, and species name. 

For other schemes, indirect sightings can be submitted, particularly those recording 

mammal species, which are often less abundant, frequently nocturnal, and less likely to be 

observed directly. Verification approaches need to be developed and applied in view of the 

minimum amount of information that typically comes with each record. Even with the 

limited record-level information that may accompany each record, verification approaches 

can still take into account information on the species, the environmental context, and the 

recorder (Figure 2.3). This can be done through input from expert verifiers, or by using 

secondary metadata such as historical data recorded through the scheme or external 

datasets. These data can then be used to cross-reference the metadata with each record 

(Terry et al., 2020). If schemes have large volumes of data across many species and records 

with varying amounts of information, a hierarchy of approaches could be implemented. This 

allows the bulk of records to be verified by automated and community approaches, and 

then flagged records undergo additional levels of verification (Figure 2.3).  

Automated verification approaches are flexible and—resources for implementation 

permitting—could be used more widely across citizen science schemes to verify large 

quantities of data efficiently.  Automation can be implemented within schemes that already 

have large quantities of historic data, as these can be used to inform algorithms and develop 

filters for the datasets (Kelling et al., 2011). To account for verification metrics for the 

species, environmental context, and recorder expertise (Figure 2.3), automated approaches 

can incorporate record-level information and secondary metadata (Terry et al., 2020), as 

well as expert knowledge (Kelling et al., 2011). For automated approaches to account for 

environmental factors, location, date, and time are required, as well as prior knowledge of 

the species' geographical and temporal range (Sutherland et al., 2015). Using contextual 

information is most useful for schemes that focus on monitoring species' phenology, or 

when there are no photos or recordings submitted with a record. However, it is associated 

with the risk that sightings could be rejected if the species displays novel activity patterns or 
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range shifts. To account for recorder expertise, individual recorders require a unique ID. It is 

important to consider that as individuals submit more records, their accuracy when 

identifying species may improve. When accounting for environmental context or recorder 

expertise in automated verification approaches, it is essential to retain flexibility, with rules 

being dynamically updated as unexpected sightings accumulate or as recorder expertise 

improves. 

Another approach that can be used as the first level of verification is community consensus 

(Figure 2.3). This approach is less widely applicable than automated verification and typically 

requires an online platform that connects recorders and verifiers, and large enough 

numbers of volunteers to verify the volume of records  (Hsing et al., 2018; Siddharthan et 

al., 2016; Silvertown et al., 2015; Swanson et al., 2016). Community consensus approaches 

are more suitable for species that are more widely recognised by the public and where there 

is photographic evidence with each record (Swanson et al., 2016), as this means that the 

record can be verified based on visual attributes of the species, and no prior knowledge of 

the environmental context is required.  

If automated and community approaches cannot verify records with an appropriate level of 

certainty, experts can provide additional levels of verification (Figure 2.3). It is important, 

therefore, for schemes to decide on their required level of certainty, which may vary 

depending on the species and the purpose for which the data will be used. For most 

schemes, a proportion of the data will ultimately need to be referred to experts for 

verification. A key aim of automated approaches is to minimise the proportion of the data 

that require expert verification. This additional verification is likely to be required for species 

that have not been recorded before through the scheme, for rarer species, for invasive 

species for which pinpointing the exact location of individuals is necessary (Lagoze, 2014), 

and for species that are recorded beyond their typical range or habitat. If a scheme is 

focusing exclusively on these kinds of species, expert verification may be the most 

appropriate approach. Expert insight can also be used to inform automated verification 

approaches, by providing information on the species and environmental context that can be 

accounted for in data filters. Furthermore, if a scheme is considering recorder expertise 

when verifying data, expert insight could also be beneficial to identify trusted recorders, 
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allowing their submissions to be used in place of a gold standard when verifying and 

analysing data.  

2.6 Conclusions 

We reviewed approaches to data verification across ecological citizen science datasets, and 

assessed factors that appear to influence the choice of verification approach. Alongside this, 

we highlighted that the verification approaches of many citizen science schemes are not 

readily available to the public. We recommend how citizen science schemes can approach 

verification and make appropriate choices to ensure data quality. Citizen science plays an 

important role in data collection at a geographical and temporal scale unmatched by other 

data collection methods and is a valuable means of engaging the public in scientific 

endeavours. By developing improved verification approaches and using the full range of 

information available, issues of data quality within citizen science datasets can be 

addressed, thereby increasing trust in citizen science approaches, and strengthening the 

place of citizen science within ecological research. 
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3. Verifying Citizen Science Biodiversity Data: 

Accounting for Contextual Information 

Within a Bayesian Framework 

3.1 Abstract 

Citizen science schemes are continuing to grow in scope and scale, as the volume of data 

collected by citizen scientists increases. To ensure citizen science records are of a known 

quality, they need to be verified. Currently, verification is predominantly carried out by 

experts, but automated approaches are continuing to emerge, allowing for more efficient 

data processing and a reduced burden on expert verifiers. Here, we show how readily-

available contextual information can be harnessed in a generalised Bayesian framework for 

verifying ecological citizen science data. We demonstrate how this approach can be applied 

to both crowdsourced classifications of camera trap images, and ad-hoc, opportunistic 

records collected by field-based citizen scientists. We present classification models which 

make use of the meta-data associated with each record, as well as the historical data 

submitted to a scheme, to incorporate information on the species and the environmental 

context into the probability of a record being of a given species. We present two variations 

of model, a species-only model that uses the species confusion matrix to quantify 

identification mistakes made by citizen scientists and an environmental context model that 

uses a contextual matrix that quantifies when and where species are observed. We then 

present a cross-validation approach to model selection, formalising the process of 

determining which contextual variables help to verify the record. For the crowdsourcing 

example, the environmental context model improved accuracy of species classification 

compared with the species-only model; by contrast, contextual information did not improve 

the accuracy of inference from ad-hoc records. We then present how setting probability 

thresholds for acceptance can improve the accuracy of verification models and outline how 

the approaches applied here can be incorporated into the verification process to reduce the 

burden on expert verifiers.  
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3.2 Introduction 

Volunteer contributions have underpinned ecological research endeavours for centuries, 

with many long-term species occurrence datasets being collected by non-professional 

scientists (Miller-Rushing et al., 2012; Pocock et al., 2015, 2017). More recently, these 

volunteer efforts have been defined as ‘citizen science’, encompassing a range of initiatives 

in which volunteers contribute to, and collaborate on, research into a vast array of 

ecological questions (Kullenberg and Kasperowski, 2016; Miller-Rushing et al., 2012). 

Computing and technological advances mean that contributing to citizen science schemes 

has become increasingly straightforward (Di Cecco et al., 2021; Luna et al., 2018; Newman 

et al., 2012), allowing projects to grow in scope and scale (Pocock et al., 2017). The volume 

of data being collected by these schemes is continuing to increase (Di Cecco et al., 2021), 

and the tasks in which citizen scientists can be involved are diversifying. Some schemes now 

involve citizen scientists in data processing tasks or data analysis (Brown and Williams, 2019; 

Graham and Smith, 2021; Haklay, 2013; Pocock et al., 2017), whilst other schemes 

collaborate and co-create projects with volunteers (Wiggins and Crowston, 2011). 

Citizen science datasets that consist of species occurrence records can span large spatial and 

temporal scales, making them a key resource in advancing our understanding of changes in 

species distributions, abundances, and phenology in response to pervasive anthropogenic 

threats (Sutherland et al., 2015). Citizen science is also a valuable tool in outreach, providing 

opportunities to engage the public in the research process, and raise awareness of 

ecological issues (Dickinson et al., 2012). To encourage as many individuals as possible to 

participate, as well as to collect large volumes of data, citizen science schemes often aim to 

keep involvement straightforward, allowing ad-hoc, opportunistic records to be submitted 

with minimal information (Baker et al., 2021). This can lead to citizen science data being 

spatially (Geldmann et al., 2016) and temporally (Knape et al., 2022) biased, favouring more 

common, widely recognised species (Boakes et al., 2016; Isaac and Pocock, 2015; Robinson 

et al., 2018). The biases that arise from data collection by citizen scientists, and the lack of 

meta-data associated with each species record, can lead to questions and concerns around 

data quality (Kosmala et al., 2016). This can also limit the research questions that can be 

explored using citizen science datasets (Brown and Williams, 2019; Clare et al., 2019; Isaac 
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et al., 2014), because modelling large-scale ecological trends relies on accurate and high-

quality data (Clare et al., 2019; Isaac et al., 2014).  

Verification is an essential process for ensuring that citizen science records are as accurate 

as possible (Baker et al., 2021; Tweddle, et al., 2012). Currently, the majority of citizen 

science schemes rely on experts to verify species records (Baker et al., 2021). This can be 

problematic, particularly when every record must be checked by experts, potentially 

creating bottlenecks in data processing. Furthermore, for schemes that collect data at a 

large geographic scale, a greater number of experts is required to ensure there is sufficient 

taxonomic and regional expertise to verify the range of submitted records. As a result, a 

large proportion of records can remain unverified for long periods (Bonter and Cooper, 

2012; Sutherland et al., 2015). More recently, alternatives to expert verification have been 

developed. Examples include community consensus, where records are classified by citizen 

scientists and then verified based on majority classification (Hsing et al., 2018; Swanson et 

al., 2015), and automation (Bonter and Cooper, 2012; Kelling et al., 2011; Yu et al., 2012). As 

the volume of data being collected by citizen scientists increases, automated verification 

becomes particularly attractive, allowing more efficient data processing and reducing the 

burden on expert verifiers (Baker et al., 2021). In turn, this ensures species datasets are up-

to-date and available rapidly for research and analysis. Automated verification has been 

approached in several ways by different citizen science schemes (Baker et al., 2021). Some 

schemes pass records through a series of data filters and set rules that flag unusual 

observations for that species, given the location and date (Bonter and Cooper, 2012; Kelling 

et al., 2011; Yu et al., 2012). For schemes that have large volumes of photographic 

observations, artificial intelligence algorithms, neural networks and computer vision tools 

can be used for automated image recognition and classification (Gomez Villa et al., 2017; 

Green et al., 2020; Norouzzadeh et al., 2018; Terry et al., 2020; Willi et al., 2019). 

Community consensus verification approaches can be used alongside novel statistical 

approaches that quantify confidence and certainty in classifications, which can then be 

integrated into classification algorithms for verification (Mugford et al., 2021; Siddharthan 

et al., 2016; Swanson et al., 2016).  

A range of information can be used to verify a citizen scientist’s species record. The 

information available will depend on the meta-data associated with each record (Baker et 
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al., 2021; Terry et al., 2020). For many schemes, the minimum amount of information 

required to submit a species record is species name, date, and location, with other fields 

such as habitat and time being optional (Baker et al., 2021). Submitting evidence such as 

photos, videos or recordings with records is also often optional (Baker et al., 2021). 

Therefore, those verifying records will rely on the contextual information of the observation, 

such as the observer who submitted the record, the environmental context of the 

observation and the attributes of the species itself (Terry et al., 2020). Various modelling 

approaches for assessing observer expertise and verifying citizen science data have been 

developed. For example Santos-Fernandez and Mengersen (2021) used Bayesian item 

response models to quantify citizen scientists’ ability based on task difficulty for Snapshot 

Serengeti data; De Lellis et al. (2019) used a Bayesian classification algorithm that accounts 

for citizen scientist demographics; Saoud et al. (2020) incorporated user features into 

machine learning approaches to detect misidentifications; and Mugford et al. (2021), 

applied a modified version of Kim and Ghahramani’s (2012) Independent Bayesian Classifier 

Combination Model (IBCC) to classify observations based on user accuracy in the iNaturalist 

New Zealand dataset.   

Incorporating attributes of the species itself is valuable, particularly for species that are hard 

to identify (Falk et al., 2019; Gorleri et al., 2022) or often confused with similar species 

(Hsing et al., 2018). Accounting for contextual environmental information may be important 

in determining the accuracy of species records, as many species have specific habitat 

associations (Oliver et al., 2009), and are more active during certain seasons (Dennis et al., 

2016; Roy and Sparks, 2000) or at certain times of day (Refinetti, 2008). Accounting for 

these environmental factors becomes particularly important where records lack 

photographic evidence, for rarer species or for species that are often misidentified 

(Siddharthan et al., 2016). Consequently, it is important to ensure that verification 

approaches make use of the meta-data provided and account for when and where a species 

is observed. Previous approaches that have used species attributes include: Swanson et al. 

(2016), who used a plurality algorithm that incorporated species false-positive and false 

negative error rates to calculate measures of confidence for each observation in the 

Snapshot Serengeti dataset, achieving a 97.9% accuracy overall; Siddharthan et al. (2016), 

who presented an incremental Bayesian model for classifying observations for BeeWatch 
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data, accounting for ease of species identification and user ability, delivering 91% accuracy 

on unseen data, outperforming majority vote; and Hsing et al. (2018), who evaluated 

consensus classifications for MammalWeb data by calculating probabilities of user 

classifications being correct for each species.  

Here, in the first instance, we will look at attributes of the species itself and the 

environment, by using past data from citizen science schemes to examine the mistakes that 

are made when identifying, and the context in which species observations occur, to inform 

the confidence we can have in a citizen science observation. We present how this 

information on the species itself and the context of an observation can be harnessed in a 

simple, generalised Bayesian framework for verifying ecological citizen science data, which 

can be applied both to schemes that crowdsource the classification of species records, and 

schemes that comprise ad-hoc, opportunistic records. We present two variations of this 

framework. The first is applied and used for community consensus classifications by using 

the species confusion matrix to quantify how frequently the species is correctly identified, 

and an environmental context matrix that quantifies where and when it is most frequently 

observed. The second variation of the framework is used for expert-verified observations by 

evaluating how likely an expert is to accept or reject a record based on the species and the 

context. We then present a k-fold cross validation approach to model selection, where we 

apply the model to 100 iterations of randomly selected training and test data; formalising 

the process of determining which contextual variables help to verify the record. The 

approach outlined here can assess and quantify accuracy for large volumes of records, 

streamlining and increasing efficiency within the verification process, by directing resources 

and expertise towards records having a greater level of uncertainty. Our approach has the 

potential to address issues of data quality within citizen science schemes and allow data to 

be available for use more rapidly.  

3.3 Methods 

This framework applies an adapted version of Kim and Ghahramani’s (2012) Independent 

Bayesian Classifier Combination Model (IBCC). We present two separate adaptations of the 

model. The first model we present is a community consensus classification model, that can 

be applied to citizen science schemes that use community consensus verification. For 

schemes that use community consensus verification, a citizen science record consists of one 
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or more species classifications by citizen scientists. We apply this model to MammalWeb 

data, a citizen science scheme that monitors mammals using camera traps. The second 

model we present is an expert behaviour model for expert verified citizen science schemes, 

where a citizen science record consists of a single species identification from a field-based 

citizen scientist that is either verified as correct by an expert or redetermined to another 

species. We apply the expert behaviour model to iRecord Coleoptera and Diptera data, 

where ad-hoc opportunistic species observations are submitted by citizen scientists through 

an online platform or app. Within each framework we have two types of models, a species-

only model, that uses the species confusion matrix to quantify how frequently a species is 

correctly identified by citizen scientists; and an environmental-context model that 

incorporates contextual meta-data using a matrix quantifying how frequently a species was 

observed in each environmental context. These models output a probability for every 

species that could be observed within the dataset. This set of probabilities is then used to 

inform the classification of that observation as a given species. We then detail how cross-

validation across 100 iterations of randomly split training and test data and model 

performance metrics can be used to compare models to determine which contextual 

environmental variables are most useful in identifying the correct species within each citizen 

science dataset.  

3.3.1 Community consensus classification model 

In the community consensus model, a citizen science record consists of an observation with 

species classifications by one or more citizen scientists, with the observation process being 

independent of the classification process. For each citizen science record, hereafter an 

instance, we calculate a vector of probabilities, each one relating to a species that could be 

observed within the model. This set of probabilities is then used to classify the instance as a 

particular species. Each probability calculated can be represented as 𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾), 

which denotes the probability of an instance being species 𝑆, given: the set of (one or more) 

reported species that arises from citizen scientist classifications, 𝑅; the environmental 

context (hereafter, context) of the instance, 𝐻; the previous data 𝐷; and other prior 

knowledge 𝐾. The environmental context relates to categorical variables where the instance 

was observed, i.e., habitat, season, and time. Here, the previous data is referring to the 

confusion matrix, such that 𝐷 = {(𝑟𝑖, ℎ𝑖, 𝑠𝑖)}, with 𝑖 ∈ [1. . 𝑛] indexing the previous instances 
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in the data where true species 𝑠𝑖, was classified by citizen scientists as reported species 𝑟𝑖 

and observed in environmental context ℎ𝑖. 

We introduce parameters 𝜋 that capture the relevant information in the data 𝐷, such that: 

𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾) ∝ ∫ 𝑑𝜋 𝑃(𝑅 ∣ 𝑆, 𝐻, 𝜋1) 𝑃(𝑆 ∣ 𝐻, 𝜋2) 𝑃(𝜋 ∣ 𝐷, 𝐾)                      (1)  

where we have split 𝜋 = (𝜋1, 𝜋2) into two components that represent different processes 

that influence 𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾). The first factor, 𝑃(𝑅 ∣ 𝑆, 𝐻, 𝜋1), relates to the species 

classification process, denoting the probability that an instance will be classified as a 

particular species given the true species and the context. This is the theoretical counterpart 

of the empirical confusion matrix that quantifies the number of instances where a true 

species has been identified correctly, or as another species in each environmental context. 

The second factor, 𝑃(𝑆 ∣ 𝐻, 𝜋2), describes the observation process, denoting the probability 

of the true species given the environmental context. This is the theoretical counterpart to a 

second matrix, hereafter referred to as the context matrix, that quantifies the frequency 

with which the true species appear in each context. The final factor, 𝑃(𝜋 ∣ 𝐷, 𝐾), describes 

what the previous data tell us about the parameters. Thus, Equation (1) describes how prior 

information from the past data 𝐷 propagates via 𝜋 to tell us about a new instance, where 

we integrate over possible values of the parameters, weighted by the evidence for each 

value from the previous data captured by the species confusion matrix and the context 

matrix.  

Here, we apply two versions of the model to calculate 𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾). Firstly, a species-

only model that uses the species confusion matrix to calculate the first factor, 

𝑃(𝑅 ∣ 𝑆, 𝐻, 𝜋1).  The species-only model assumes that all species are equally likely to be 

observed in each context, and therefore excludes the context matrix, making the second 

and third factors constants. The second model type is the environmental context model, 

where we calculate the second factor using the context matrix that quantifies the number of 

previous instances where the true species has been observed in each context. The null 

model here is the species with the highest number of classifications, i.e., the modal species.  
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3.3.1.1 Choice of parameters and prior 

To integrate prior knowledge from the confusion and context matrices into Equation (1), we 

use Bayes’ theorem to invert the final factor in the equation, such that the information 

regarding previous instances described by 𝐷 is integrated into the first and second factors. 

In doing so, we introduce prior probabilities for 𝜋. As citizen scientists are unable to see 

reports made by other citizen scientists for any instance, we can assume that identifications 

made by citizen scientists are independent of each other, given the true species and 

environmental context and 𝜋1. Knowledge of 𝜋2 renders true species in different instances 

independent, given the environmental context. The result from integrating previous 

instances data is that: 

𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾) ∝ ∫ 𝑑𝜋 ∏ 𝑃𝑛
𝑖=0 (𝑟𝑖 ∣ 𝑠𝑖 , ℎ𝑖, 𝜋1) 𝑃(𝑠𝑖 ∣ ℎ𝑖, 𝜋2) 𝑃(𝜋 ∣ 𝐾)                 (2) 

where: 

• 𝑃(𝑟𝑖 ∣ 𝑠𝑖 , ℎ𝑖, 𝜋1) describes the probability of reported species 𝑟 for instance 𝑖, given 

the true species 𝑠, the environmental context ℎ from the previous instances and any 

other information we might have, 𝜋; 

•  𝑃(𝑠𝑖 ∣ ℎ𝑖 , 𝜋2) describes the probability of true species 𝑠 for instance 𝑖 given the 

environmental context ℎ from the previous instances and any other information we 

might have, 𝜋; 

• 𝑃(𝜋 ∣ 𝐾) describes any additional information regarding the instance. 

The final factor represents additional information that we might have regarding the types of 

errors that may arise and the distribution of prior data across species and environmental 

context types. Here, we assume that in the absence of previous data, all possible 

combinations of reported species, true species, and environmental contexts are equally 

likely and therefore the third factor is a constant within the model.  

We take 𝜋1 = {𝜋1,𝑟𝑠ℎ}, where 𝑟 represents citizen science species classifications, 𝑠 is the 

true species, and ℎ is the contextual environmental variables in the previous instances; and 

𝜋2 = {𝜋2,𝑠ℎ}, which represents the true species 𝑠 and the contextual environmental 

variables ℎ in the previous instances; and set 𝑃(𝑟 ∣ 𝑠, ℎ, 𝜋1) = 𝜋1,𝑟𝑠ℎ and 𝑃(𝑠 ∣ ℎ, 𝜋2) =
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𝜋2,𝑠ℎ . Therefore, the probabilities are calculated using the corresponding values from the 

matrix that relates to each factor, with 𝜋1,𝑟𝑠ℎ relating to the species confusion matrix and 

𝜋2,𝑠ℎ  relating to the context matrix.  

The task of defining a prior then depends only on the restrictions we place on these 

matrices. The context variable, ℎ, consists of a combination of context types, such as 

habitat, season, and time of day. The prior can restrict the dependence of 𝜋1 and 𝜋2 on ℎ to 

subsets of these context types (including all or none of them), which may be applicable if 

there are combinations of context types that are implausible. Here, we are assuming that all 

context types are equally likely, and therefore we do not place any restrictions on the 

matrices, meaning that the confusion matrix includes all combinations of reported species, 

true species, and context types, and the context matrix includes all combinations of true 

species and context types. The only constraint we then impose on the probabilities is that 

they sum to one, which requires normalisation. Thus, given 𝑝 context types, the choice of 

prior above generates 2𝑝 × 2𝑝 = 22𝑝 possible models, consisting of the choices of 

dependence on all possible subsets of the context types in 𝜋1 and 𝜋2. Once these 

constraints are specified, we simply place constant (i.e., Dirichlet with all parameters equal 

to 1) priors on each independent 𝜋1,⋅𝑠ℎ and 𝜋2,⋅ℎ.  

Once the prior is specified, we can perform the integration above (Equation 2). The result is 

that: 

𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾) ∝
𝐵({𝑛𝑟+𝑛𝑟𝑆𝐻+1}𝑟∈𝒮)

𝐵({𝑛𝑟𝑆𝐻+1})
 𝐵({𝑛𝑆𝐻 + 2, {𝑛𝑠𝐻 + 1}𝑠≠𝑆})                 (3) 

where: 

• 𝑛𝑟  is the number of reports of species 𝑟 for the current instance; 

• 𝑛𝑟𝑠ℎ is the total number, across all instances in the training data, of reports of 

species 𝑟 when the true species is 𝑠 and the context is ℎ; 

• 𝑛𝑠ℎ is the number of instances in the training data which the true species is 𝑠 in 

context ℎ; 

• 𝐵 is the beta function, defined for integer arguments as: 

𝐵({𝑧𝑖}) =
∏ (𝑧𝑎−1)𝑎∈𝐴 !

∑ (𝑧𝑎−1)𝑎 !
                                                               (4) 
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3.3.1.2 Species classification for community consensus model 

The expression for 𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾) in Equation (3) gives a vector of probabilities for each 

possible species (i.e. the species in the previous data) being the true species. These 

probabilities can be used to inform the classification of an instance as a certain species. This 

classification could be dependent on the probabilities assigned to each species or prior 

knowledge of the species. For example, classification rules can be set, such that an instance 

is only classified as a species if the probability exceeds a given confidence threshold. Higher 

thresholds can be set for specific species that are known to be rare or frequently 

misidentified.  

Classification is a decision problem and, as such, needs a loss function that encodes the 

‘cost’ associated with classifying as species 𝑠 when the true species is species 𝑠′ (which may 

or may not be equal to 𝑠); minimising the expected loss provides the optimal classification 

according to this loss function. The choice of loss function will depend on the level of error 

that is acceptable and the risks of misidentifications within the model. Specific ecological 

scenarios might justify particular choices of loss function. For more common species, a 

misclassified citizen science record may have little impact on the citizen science data. 

However, if a rare species is misclassified and the record flows to a database, this could 

impact interpretation of the data held for that species. In the examples shown here, we 

initially use a simple correct/incorrect loss function, where each citizen science record is 

classified as the species with the highest probability. We then explore the impacts on model 

accuracy of setting probability thresholds.  

3.3.2 Expert behaviour classification model  

For datasets that are verified by experts, the probability of true species 𝑠 might depend on 

factors that differ from those that matter for community consensus verified data. When an 

expert makes a decision about whether the reported species is correct or not, they are likely 

to couple their knowledge of the reported species with the environmental context of the 

instance. Therefore, we present a variation of this Bayesian framework that can be applied 

to expert verified data. In this variation of the framework, instead of calculating 

𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾) using two probabilities dependent on the confusion and context matrices, 

we model 𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾) directly based on a single confusion matrix that 𝑛𝑠𝑘, which 
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quantifies from the past data 𝐷, all possible combinations of true species 𝑠 and context 𝑘, 

that includes both the environmental context ℎ and reported species, 𝑟. The confusion 

matrix 𝑛𝑠𝑘 is quantified using past instances in the dataset. We can then calculate the 

probability that the expert classifies true species, 𝑠̃,  using the following:  

𝑃(𝑠̃|𝑘̃, 𝐷) =  
𝑛𝑠̃𝑘̃+1

𝑛𝑘̃+|𝑆|
                                                                 (5) 

where: 

• 𝑛𝑠̃𝑘̃ is the number of instances in the training data with true species 𝑠̃ and context 

𝑘̃ = (𝑟̃, ℎ̃), where 𝑟̃ is the reported species in that instance and ℎ̃ is the 

environmental context, 

•  𝑛𝑘̃ is the number of instances in the training data with context 𝑘̃, which is equal to 

the sum over the true species 𝑠̃ in the 𝑛𝑠̃𝑘̃ matrix, 

• |𝑆| is the total number of species. 

In this classification model, the prior is the mean value of the probability parameters for 

each expert classified species; i.e., 𝜋𝑠𝑘 for each 𝑘, are all 
1

|𝑆|
 where |𝑆| is the number of 

species. As a result, when |𝑆| > 2, there is more prior probability on the rest of the expert 

classified species than on the one reported; thus, in the absence of data, the probability of a 

species identification being changed from the reported species to another species by an 

expert is higher than the probability of the reported species being accepted by the expert. 

Note that the effect of the number of species is only important when the number of species 

and number of data points are of the same order. Here, the null model is accepting the 

initial species observation as correct.  

3.3.2.1 Species classification for expert behaviour model 

Equation 5 provides a probability for every species that could be observed in the model. 

When evaluating these probabilities for expert verified datasets, we can classify instances in 

two ways. Firstly, as we have described for the community consensus classification model, 

we can classify the expert-predicted true species by selecting the species that has the 

highest posterior probability. Secondly (and alternatively), we can use the probability of the 
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reported species to classify whether a record is accepted as correct, or redetermined (i.e., 

the reported species is considered incorrect, and the record should be changed to another 

species).  

If choosing the latter classification method, the probability of the reported species being 

redetermined to another species is expressed as the following: 

𝑃(𝑐̃ = 1|𝑘̃, 𝐷) =  
(𝑛𝑘̃−𝑛𝑟̃𝑘̃)+|𝑆|−1

𝑛𝑘̃+|𝑆|
                                                 (6) 

 

𝑃(𝑐̃ = 0|𝑘̃, 𝐷) =  
𝑛𝑘̃+|𝑆|−1

𝑛𝑘̃+|𝑆|
                                                       (7) 

 

where:  

• 𝑐̃ is a binary variable that describes whether the reported species is accepted (𝑐̃ =

1) or redetermined (𝑐̃ = 0), 

• 𝑘̃ is the environmental context, including single reported species 𝑟̃ and environment 

ℎ̃, 

• 𝐷 is the previous data. 

These expressions give us two probabilities. We can then set a threshold for whether the 

instance can be accepted as correct or redetermined. If the probability of the reported 

species (calculated in Equation 6) does not meet the threshold value and is redetermined, it 

can then undergo additional levels of expert verification to determine the true species. The 

threshold set will depend on the species and the costs of incorrectly classifying a species. 

However, here to ensure consistency with comparing approaches, we apply the same 

approach as the community consensus classification model and classify the instance as the 

species with the highest posterior probability. 

3.3.3 Model selection 

When applying these frameworks to citizen science data, k-fold cross-validation can be used 

to select between models and determine which context types are most effective at 
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estimating the true species (Gelman et al., 2014; Hooten et al., 2015; Link and Sauer, 2015). 

To apply cross-validation we use data for which there are expert assessments of the species 

in each instance, as proxies for the 'truth'. This expert assessed data is used to validate the 

model species classifications and calculate the accuracy of each of the models that are being 

compared.  

The data for which we have expert assessments is divided randomly, using an 80/20 

partition, into training and test data. From the training data, we obtain the 𝑛𝑟𝑠ℎ and 𝑛𝑠ℎ 

matrices for the community consensus classification model, and the 𝑛𝑠𝑘 matrix for the 

expert behaviour classification model. The classification methods for each model are then 

applied to the test data to classify the true species for each instance in the test data. The 

resulting classifications are then validated against the expert assessments of the true 

species using several metrics, as follows. Using the validated classifications, we calculate 

several metrics to compare and assess model performance. For both the community 

consensus classification model and the expert behaviour model, we calculate: the (negative) 

log likelihood across instances; the proportion of instances for which the classification is 

correct; and the squared error (where the error is the difference between the probability 

assigned to a species and 1, if it is the correct species, or zero, otherwise). This process is 

repeated for 100 random splits and the mean of each metric is taken across repeats. 

Proportion of correct instances is perhaps the most important metric for model selection for 

these classification models because, when verifying instances using these models, the aim is 

to maximise the number of correct instances to ensure accurate verification of the true 

species by the model. However, additional metrics were calculated to evaluate how well the 

model fits the data and to quantify the overall level of error in the model predictions. 

Including these additional metrics may be most useful when comparing models in which the 

proportion correct is similar.   

3.4 Data 

To demonstrate how these frameworks can assist in the verification process we applied the 

classification models to two types of citizen science datasets focused on different taxa and 

representing contrasting approaches to data collection and verification. For the community 

consensus classification model, we used data collected through MammalWeb, a citizen 
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science project that monitors mammals using camera traps, and in which citizen scientists 

classify what they believe to be in the photos or videos on the MammalWeb online platform 

(Hsing et al., 2022; Hsing et al., 2018). For the expert behaviour classification model, we 

used Diptera and Coleoptera reports collected through iRecord. These data comprise ad 

hoc, opportunistic observations collected by citizen scientists, held by the Biological Records 

Centre (BRC), and published through the National Biodiversity Network (NBN) Atlas. These 

data, which may optionally include photographic evidence, are submitted to iRecord by 

individual citizen scientists, or through the national, volunteer-led recording schemes; they 

are verified by experts (Pocock et al., 2015).  

3.4.1 MammalWeb 

The data, collected between April 2015 and May 2021, consist of species observation 

instances and citizen scientist classification reports from the MammalWeb citizen science 

project (Hsing et al., 2022). Although MammalWeb has collected 630,644 (as of February 

2022) sequences of photos through the project, we only used sequences that had been 

checked by experts. MammalWeb allows users to set up their own projects to investigate 

specific hypotheses and questions (Hsing et al., 2022); therefore, we limited the data to 

include only observations collected for MammalWeb Britain, a project with the broad aim of 

cataloguing mammalian biodiversity in Britain. 

Observations of humans were removed from the dataset and, for our purposes, small 

rodents and birds were grouped and categorised as ‘Other’. The resulting dataset consisted 

of 66,635 classifications of 24,850 sequences, comprising 25 true species. This included 

‘Don’t Know’ reports, in which the species could not be identified from the camera trap 

image, as well as ‘Nothing’ reports, where the camera had been triggered without 

vertebrate wildlife being pictured in the resultant footage.  

The contextual environmental variables that we included in the model were habitat, season, 

and time (of day). These variables were categorised based on the time and date in the 

photographs’ EXIF data, and habitat information provided by the individual deploying the 

camera trap. The dataset included 13 habitat categories, including null, which arose when 

habitat was not reported. Season was categorised using the dates submitted with the 

records, the cut-off for the seasons being the winter and summer solstices, and the spring 
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and summer equinox for the year of the report. Time was categorised into ‘day’ or ‘night’ 

based on the time the photo was taken and using the Suncal package (Thieurmel and 

Elmarhraoui, 2019) to get the sunrise and sunset times for the location and date of each 

sequence. We have three context types, and saturated 𝜋1,𝑜𝑠ℎ and  𝜋2,𝑠ℎ , modelling 

dependence on all combinations of habitat, season, and time for both probability 

parameters. For the species-only model we include all combinations of habitat, season, and 

time, as well as a model that excludes all contextual variables from the species confusion 

matrix. Therefore, species-only scenarios tested 8 possible models. For the environmental 

context model, we tested against all possible combinations of habitat, species, and time. 

Therefore, we tested the global model, which included all possible context types, and 63 

possible sub-models.  

3.4.2 iRecord 

We applied the expert behaviour classification model to Coleoptera and Diptera records 

submitted to iRecord between January 2000 and March 2022. Each record had been verified 

by experts and either accepted as correct or redetermined to another species.  

The original Coleoptera and Diptera datasets consisted of 285,731 and 344,104 records. We 

limited the datasets to observations that were identified to species level and removed any 

species that had occurred only once in the dataset. We also removed any records that had 

no evidence, such as photos, videos, or specimens, submitted with the observation because, 

in these cases, there was no basis on which to determine whether or not the species was 

correct (N Coleoptera records = 142,336; N Diptera records = 199,209). We removed 

families that had a redetermination rate of less than 0.03 because, in these cases, the lack of 

prior data on redeterminations prevents useful modelling of the process. Within the Diptera 

data, the majority of records belonged to the hoverfly family, Syrphidae, which were 

predominantly submitted to the UK Hoverfly Recording Scheme. For the Coleoptera dataset, 

the majority of records belonged to the ladybird family, Coccinellidae, which were mainly 

submitted through the UK Ladybird Survey. We therefore separated these families from the 

rest of the species records and analysed them separately. This resulted in four separate 

datasets to which we applied the classification model (Table 3.1). 
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Table 3.1: Number of records, species and redetermination rate of iRecord datasets to 

which we applied the expert behaviour verification model.  

Dataset Number of 

records 

Number of 

species 

Redetermination 

rate 

Syrphidae 83,585 229 0.0400 

Diptera (without Syrphidae 

records) 

13,762 204 0.0612 

Coccinellidae 82,758 51 0.0427 

Coleoptera (without 

Coccinellidae records) 

33,107 442 0.0527 

The contextual variables included in the model were habitat, season, sample method and 

“data cleaner” result; these attributes are explained, as follows. Habitat was not reported 

consistently; therefore, we grouped habitats into UK Habitat Classifications (Butcher et al., 

2020) based on the information provided with each record. This resulted in 23 habitat 

categories for the Coleoptera Data and 25 for the Diptera data. We categorised season using 

the dates reported with each record, again using the solstice and equinox dates for the year 

in which the species was reported. Sample method describes how the data were collected in 

the field; this might include, for example, whether a trap or net was used when surveying. 

Data cleaner result refers to whether the observation passed the NBN data cleaner, which is 

the first step in the validation and verification process once a record has been submitted to 

iRecord. The NBN Record Cleaner is software that carries out automated validation checks 

to flag dates, grid references and species names that have been incorrectly entered. The 

software also carries out verification checks that flag species records that are observed 

outside of the typical spatial or temporal range, are particularly rare, or difficult to identify 

(Dean, 2013). This variable was categorised as ‘true’ for species that passed the record 

cleaner, and ‘false’ for records that were flagged. We could not include time as a contextual 

variable for the iRecord data, because records do not have an exact time submitted with the 

meta-data. 

We saturated 𝑛𝑠𝑘̃ , imposing no constraints, modelling dependence on all combinations of 

the four context types. Therefore, we tested 16 models.  
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3.5 Results 

3.5.1 MammalWeb  

The null model, where we classified species based on choosing the modal species (i.e., the 

species with the most reports) for each instance, had an accuracy of 0.896.  

The species-only community consensus classification model that included no contextual 

environmental variables and relied solely on the relative abundances of misidentifications 

within the species confusion matrix improved very slightly on simply accepting the modal 

species (proportion correct = 0.9002, squared error=0.0095, negative log likelihood = 0.661). 

For the environmental -context models that included environmental information within the 

species confusion matrix, 𝜋1, and context matrix, 𝜋2, the model that performed best across 

the three metrics included time in 𝜋1; i.e., the model confusion matrix depended on time, 

but not habitat or season. The same model included all three of habitat, season, and time in 

𝜋2; i.e., all three were deemed relevant to determining whether a species was likely to be 

captured by a camera trap (proportion correct = 0.919, squared error = 0.0056, negative log 

likelihood = 0.402). See Appendix B.1 for the cross-validation results from all models.  

If we set a probability threshold for whether we accept the model classification (i.e., the 

species with the highest posterior probability), the proportion of correct instances (N 

instances = 4970) for both the species-only model and the best performing model in cross 

validation increases, with the model that includes contextual environmental variables 

performing better at thresholds below 0.6 (Figure 3.1A). By setting thresholds for 

acceptance, a proportion of the instances are removed from the pool that need to be 

verified. More instances are removed at lower thresholds for the best performing 

contextual model (Figure 3.1B), meaning that the contextual model is classifying instances 

with higher confidence.  
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Figure 3.1: The proportion of correct instances for MammalWeb data across 100 cross-

validation iterations when applying the species-only community consensus classification 

model and the best performing environmental context model  (which included the 

contextual variables habitat, season and time), when we only classified instances if the 

maximum species probability is above a certain threshold (A); and the proportion of 

instances removed (i.e. accepted and verified as the classified species) for a given threshold 

for the species-only model and best performing model (B).  Trendline and standard errors 

(filled polygons) fitted from a locally estimated scatterplot smoothing function (LOESS).  

To examine the impacts of the number of classifications on the model selection metrics, we 

compared the species-only model and the best performing contextual model. We limited 

the minimum number of citizen science classifications per instance by selecting the first 1-5 

classifications for each instance and removed sequences which had below the minimum 

number of classifications. We then applied the species-only and best performing 

environmental-context community consensus classification model to each subset of 

classifications. Models performed better when the minimum number of citizen science 

reports was increased, with the best performing environmental-context model 

outperforming the species-only model when the classification number was limited to 

between 1 and 5 (Figure 3.2).  
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Figure 3.2: Proportion of correct instances across 100 model iterations when we limit the 

minimum number of citizen science classifications to 1-5 for each instance for the species-

only model and best performing context model.  

The model that included contextual environmental variables improved on the species-only 

model for some species but not others (Figure 3.3). The best model generally outperformed 

the species-only model for commoner species, such as Grey squirrel, Rabbit and Roe deer, 

but performed worse for rarer species such as American mink, Red squirrel and Stoats 

(Figure 3.3).  
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Figure 3.3: Proportion of correct instances across 100 model iterations for the species-only 

model and best performing context model by species, with the frequency with which each 

species appears in the dataset.  

3.5.2 iRecord  

3.5.2.1 Coleoptera records 

If we accept as correct the initial reported species, i.e., the species report submitted by the 

recorder, the proportion correct for the Coccinellidae family would be 0.957, and for the 

remaining Coleoptera records, 0.947.  

For the Coccinellidae records, the model that included season, performed marginally better 

in terms of proportion correct (accuracy) and negative log likelihood (certainty). This 

contextual model improved on the species-only model that did not include any contextual 

variables and relied solely on the matrix that describes the frequency with which species are 
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redetermined (See Table 3.2). For the remaining Coleoptera records the species-only model 

performed best overall (See Table 3.2). See Appendix B.2 for full cross validation results 

summary. 

Table 3.2 iRecord Coleoptera data results summary for the null model, species-only model 

and the best performing contextual model (that included season) 

Dataset Model Proportion 

Correct 

Squared 

Error 

Negative Log 

Likelihood 

Coccinellidae records Null 0.957 - - 

Coccinellidae records Season 0.959 0.0082 0.245 

Coccinellidae records Species-only 0.958 0.005 0.203 

Remaining Coleoptera 

records 

Null 0.947 - - 

Remaining Coleoptera 

records 

Species-only 0.957 0.0019 1.55 

3.5.2.2 Diptera records 

For the Syrphidae family, the proportion correct would be 0.959, and for the remaining 

Diptera records, 0.938. 

For both the Syrphidae records and the remaining Diptera records, the species-only model 

performed best overall (See Table 3.3). See Appendix B.3 for full cross validation summary.  

Table 3.3 iRecord Diptera data results summary for the null model and species-only models 

(that did not include contextual information) 

Dataset Model Proportion 

Correct 

Squared Error Negative Log 

Likelihood  

Syrphidae records Null 0.959 - - 

Syrphidae records Species-only 

model 

0.969 0.0032 0.394 

Remaining Diptera 

Records 

Null 0.938 - - 
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Remaining Diptera 

Records 

Species-only 

model 

0.953 0.0037 1.261 

The species-only classification model that used the species confusion matrix improved on 

simply accepting the initial reported species as correct; however, in these examples, 

including contextual information did not improve on the species-only classification model. 

Although none of the contextual variables included in these models were deemed relevant, 

the species-only model proved informative in predicting whether or not an expert would 

redetermine a species.  

3.6 Discussion  

We present a general Bayesian framework for verifying citizen science data. The models we 

present integrate contextual meta-data associated with citizen science records, and 

historical data submitted to citizen science schemes. This historic data is used to quantify 

the probability that a citizen science record is a particular species for the community 

consensus classification model, and that the species identity provided by the recorder is 

correct for the expert behaviour model. Importantly, the information we use to improve on 

the null model where we accept the modal species or the initial observation as correct is all 

readily obtainable from past data from any scheme. This means that our approach is likely 

to be applicable to any scheme for which historic, verified data are already available. We 

show how this framework can be applied to community-classified citizen science data and 

adapted for the case of expert-verified citizen science data. We also outline model 

performance metrics that can be used to compare models, and to assess which variables are 

most useful in verifying the true species.  

 

For MammalWeb, an example of a community consensus-based citizen science scheme, our 

framework for verification improved the proportion of correct instances relative to simply 

accepting the modal species as the true species. Furthermore, cross validation showed that 

including contextual environmental variables improved the performance of the verification 

framework. The best performing model included time in describing the probability that a 

species was classified correctly, given the true species, indicating that whether a photo was 

taken during the day or night influences the accuracy of a citizen scientist’s identification. If 
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images are taken at night by camera traps then the quality can be lower (Swanson et al., 

2015), the image may be too dark to see the species clearly (Egna et al., 2020), or the flash 

may ‘white out’ the animal captured in the photo (Willi et al., 2019); all of these issues could 

influence whether a citizen scientist accurately reports what is in that image (Westworth et 

al., 2022). Additionally, the best performing model included habitat, season, and time in 

describing the probability of the true species given the environmental context in which that 

species was observed, indicating that all of these variables influence whether a given species 

is recorded at all. Given what is known about habitat preferences (Coomber et al., 2021; 

Mathews et al., 2018), and specific diurnal or seasonal patterns of mammals (Hart et al., 

2022; Helm et al., 2013), it is unsurprising that these factors assist us in verifying the true 

species for this dataset. Considering the improvement in model performance when 

integrating contextual variables into the models applied here, citizen science schemes 

should make use of the information available with a citizen science record and consider 

incorporating such information into automated approaches to verification.  

Setting thresholds for confidence in species records before verifying the species for that 

instance can improve the accuracy of the models, but high thresholds mean that only a 

small proportion of records can be accepted. The thresholds set will depend on the level of 

accuracy required. For example, if an accuracy of 95% is considered suitable, then we can 

set the probability threshold to between 0.7 and 0.8 and remove 80% of instances. If a 

higher accuracy is required then the threshold needs to be higher, but we can still 

potentially halve the number of instances that require further classification (Figure 3.1). For 

more common species a lower threshold may still achieve a high accuracy, but for rarer 

species, however, where errors impose greater risks to interpretation and use of the data, a 

higher threshold may be required.  

If we limit the number of citizen science reports per instance for MammalWeb, we can use 

cross-validation to track how the proportion correct changes in relation to the number of 

citizen science reports. The best performing model in cross validation achieved similar 

proportions of correct instances for 3 citizen science reports and above (Figure 3.2), 

indicating that incorporating contextual variables into classification models can reduce the 

number of classifications that are required to verify an observation as a certain species. This 

means that the true species can be accepted with fewer citizen science reports, and 
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volunteers can be directed to those instances that remain unverified. Of course, the number 

of classifications required before an instance can be verified will depend on the species, and 

how recognisable or easily identifiable it is. For example, Hsing et al. (2018) found that for 

the MammalWeb dataset, instances containing badgers could be retired after two 

classifications with a 97.5% confidence, whereas other, less well recognised species required 

more classifications before they could be retired with the same confidence.  

When comparing the accuracy of identification of different species in the MammalWeb 

dataset, it is clear that the model performed well for the most common species, such as 

Grey Squirrel, Rabbit and Roe Deer, and for highly recognisable species, such as Red Fox and 

Badger (Figure 3.3). The model performed poorly for rarer species, such as American Mink, 

Pine Marten, and Stoat. For species such as Pine Marten of which there were only 3 

observations in the dataset, the poor model performance results from a lack of training 

data. However, for species such as stoats that use a range of habitats (Sainsbury et al., 

2019), the poor model performance may be due to a lack of clear habitat preferences 

meaning that for this particular species contextual information is not useful in verifying 

species identity.  

To highlight the generality of this approach to a range of schemes, we applied it to iRecord 

data, which currently rely on expert verification. The approach presented here has the 

potential to identify species that can be accepted as correct without expert checks, and 

those that will need additional expert verification, allowing expert verifiers to focus 

attention on citizen science reports in which we have less confidence. In this case, applying 

our framework to the expert-verified iRecord datasets improved on simply accepting the 

initial citizen science report as correct, with the species-only model that did not include any 

contextual information performing best overall. This indicates that for these iRecord 

datasets, contextual information was not deemed important, but the species confusion 

matrix was useful in verifying the true species. This may be due to species’ traits being used 

in preference to the environmental context when assessing whether or not a record is 

correct (Ratnieks et al., 2016). For example, Morris (2019) found that within the iRecord 

Hoverfly Record Scheme, common misidentifications were often due to confusion between 

two similar species or species requiring examination under a microscope before they could 

be identified to species level. Therefore, for identifying Diptera, the physical attributes of 
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the species are more important than where the species was observed.  This reflects the 

ubiquitous and cosmopolitan nature of many of the species in these datasets, which means 

that their distribution may not be influenced by habitat preferences or seasonal patterns 

(Terry et al., 2020); rather, their distributions may be better explained by host plants or prey 

distributions (Comont and Ashbrook, 2017), and experts are more likely to consider the 

distributions of these interacting species, as opposed to broad contextual variables such as 

habitat or season. Although, in this case, the contextual variables were not deemed 

important in verifying the true species, other meta-data associated with records may be 

important in assessing confidence in, and verifying, species records (Terry et al., 2020). For 

example, observers can vary in their contributions to schemes, motivations, and encounters 

with wildlife (August et al., 2020; Di Cecco et al., 2021); all of these attributes might affect 

an observer’s ability to identify species correctly. Consequently, models that consider 

observer attributes or identities might improve discrimination in this context (De Lellis et al., 

2019; Mugford et al., 2021; Santos-Fernandez and Mengersen, 2021; Saoud et al., 2020). 

Our framework is straightforward to adapt to include recorder information, accounting for 

variance in recorder ability and expertise, as well as including any other contextual variables 

that citizen science schemes may consider important when assessing the accuracy of citizen 

science records. 

For some citizen science datasets, experts rarely redetermine records to other species, 

which presents the question of whether experts need to verify every record. Low rates of 

redetermination could be due to a lack of evidence, such as photos or specimens; such 

evidence might be necessary to identify a record as any species other than the reported 

species (Pocock et al., 2015). Furthermore, if the record is of a widely recognised species or 

from a trusted recorder, expert verifiers are likely to accept the record as correct without 

additional evidence. It could also be the case that citizen scientist reports are simply very 

accurate. Accuracies of records amongst citizen scientists have been shown to be high in 

certain cases (Austen et al., 2016; Kallimanis et al., 2017; Kosmala et al., 2016a). This is 

particularly relevant for iRecord datasets that are often associated with National Recording 

Schemes; many citizen scientists contributing to such schemes are experts (Boakes et al., 

2016; Pocock et al., 2015). Moreover, providing training and identification support to citizen 

scientists can improve accuracy (Perry et al., 2021; Ratnieks et al., 2016). Therefore, 
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whether expert verification of every record is needed is highly questionable within many 

schemes. This could be examined by evaluating historical data to identify which species are 

most frequently reported correctly, or by experts deciding on the species that they know are 

difficult to identify. This means records of more easily identified species could be 

automatically accepted, enabling experts to focus their efforts on verifying records of 

species that are more often misidentified.  

As the volume of data collected through citizen science schemes grows, verification is 

becoming an increasingly intensive process (Baker et al., 2021; Dickinson et al., 2012; 

Johnston et al., 2022; Pocock et al., 2015). For both kinds of schemes that we looked at, our 

framework – drawing on readily available data – could reduce the time taken to verify the 

bulk of instances, which typically consist of uncontroversial records of common species. This 

means that new species reports can be processed more efficiently and made available for 

research and analysis more rapidly. How citizen science schemes choose to use this 

framework may depend on the information required from the scheme and the species that 

are recorded. Importantly, cross validation identifies sources of error in these classification 

models, which can provide insight into whether model classifications should be accepted. In 

the case of MammalWeb, the model performed poorly for rarer species. Therefore, if the 

model classifies an instance as a rare species, it is unlikely that we can accept this 

classification without further human verification. Once the sources of error, i.e. which 

species the model is classifying incorrectly, have been identified, the costs associated with 

inaccurate species verification can be evaluated. Citizen science data can be used to inform 

conservation management decisions regarding rare or threatened species (Callaghan et al., 

2020; Hyder et al., 2015; Young et al., 2019), or detect and monitor invasive species (Crall et 

al., 2011, 2015; Maistrello et al., 2016). In these cases, appropriate policy and management 

decisions are often contingent on pinpointing exact locations of species. For citizen science 

schemes from which data are used for research into overarching ecological trends and 

processes, the probabilistic outputs from the classification model’s outputs could be 

integrated into modelling species abundances and distributions. The posterior probabilities 

reflect the probability of a species report being correct, allowing modelling approaches to 

integrate metrics of the accuracy of the data and account for records in which we have less 

confidence (Bird et al., 2014; Isaac et al., 2014; Van Eupen et al., 2021). 
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The approaches presented here have the potential to support verification in any recording 

scheme for which some previously verified data are available. For schemes that rely on 

community consensus verification, Bayesian classification models can reduce the number of 

classifications required for each instance. For schemes in which experts verify every record, 

this general framework can be used to prioritise records that may need additional levels of 

verification, reducing the number of records that need to be checked. By integrating these 

approaches into the verification process, data can be assessed and processed more 

efficiently, allowing the data to be verified in real-time. This ensures citizen science data are 

both accurate and up to date, providing robust and reliable datasets for research and 

analysis. 
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4. Using Observer Metrics in the Verification 

of Ecological Citizen Science Data. 

4.1 Abstract 

Citizen science approaches within ecology are an effective means of collecting widespread 

species data and engaging the public in environmental issues. However, concerns around 

accuracy and bias have been raised. Citizen scientists can vary in terms of their ecological 

knowledge, contributions to citizen science schemes and motivations for joining the 

schemes, which can impact their ability to correctly identify a species. Here, we present a 

method that uses observer metrics to inform verification approaches and account for 

variability among citizen scientists. The verification approach outlined in this chapter builds 

on the classification models presented in Chapter 3 to show how observer ID can be used to 

inform the probability of a record being correct by assigning a confusion matrix to each 

observer. We then show a variation of this model that uses past data to categorise observer 

traits, which are then used to assess confidence in an observation. As outlined in Chapter 3, 

we apply these approaches to MammalWeb and iRecord datasets. We show that, for the 

datasets used here, accounting for user accuracy and other observer traits improves 

verification accuracy minimally. For many citizen science schemes, the majority of 

contributors submit very few records, and volunteer retention is low. This limits the 

effectiveness of the approach because we cannot effectively estimate observer expertise for 

most citizen scientists. We suggest that where observer information is not available, or a 

new observer submits to a scheme for the first time, the species confusion matrix is most 

effective for helping to verify the observation. Furthermore, we consider whether intensive 

verification approaches are required to achieve highly accurate verification, given the 

already high accuracy of citizen science observations that are accepted to be correct in 

datasets such as MammalWeb and iRecord.  

4.2 Introduction 

Citizen science has been used extensively within ecology to collect large volumes of data 

and to engage the public in environmental issues (Adler et al., 2020; Brown and Williams, 
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2019; Dickinson et al., 2010, 2012; Pocock et al., 2017; Silvertown, 2009). Ecological citizen 

science schemes vary in their approaches and aims  (Pocock et al., 2017), with volunteers 

contributing to, and collaborating on, scientific research through data collection, 

interpretation, and analysis (Johnston et al., 2022; Kobori et al., 2016). Advances in, and 

increased access to, technology mean that – in many cases – contributing to citizen science 

schemes is now more accessible. This has enabled more people to contribute to citizen 

science schemes (Anhalt-Depies et al., 2019; August et al., 2015; Kelling et al., 2019), leading 

to larger volumes of data being collected using citizen science approaches (Clare et al., 

2019; Crimmins et al., 2021; Johnston et al., 2020a). Advances in data processing, AI, and 

high-performance computing mean that these increased volumes of data can be stored and 

processed, and the capabilities of citizen science data to address a range of ecological 

research questions and hypotheses can continue to be explored (Green et al., 2020; 

Johnston et al., 2019; McClure et al., 2020). Alongside being used as a research tool, citizen 

science is also used as a means of outreach and public engagement to increase awareness of 

ecological and environmental issues as well as to allow participants to learn about the 

research process (Dickinson et al., 2012; Johnston et al., 2022). This has additional benefits 

that can lead to enhanced protection and conservation of species and ecosystems by the 

public (Pocock et al., 2023; Von Gönner et al., 2023).   

The two aims of citizen science schemes, to collect data and engage the public, often create 

a trade-off between data quality and mass participation (Anhalt-Depies et al., 2019). To 

encourage as many individuals as possible to submit data, contributing to citizen science 

schemes is often kept as simple as possible with minimal information required when 

submitting a species record (Sutherland et al., 2015; Terry et al., 2020). Although this leads 

to large volumes of data being collected, citizen scientists’ motivations for joining a scheme 

(Ganzevoort et al., 2017; Hobbs and White, 2012), and the amount they contribute to a 

scheme may vary (Boakes et al., 2016; Di Cecco et al., 2021), which can lead to differences in 

experience and expertise with species identification. This influences data quality and 

introduces biases and inaccuracies into citizen science datasets. For example, species 

records collected by citizen scientists can lack precision (Forrester et al., 2015), have false-

positive or false-negative errors (Gorleri et al., 2022; Johnston et al., 2022) or be incomplete 

(Kallimanis et al., 2017). Observers may also prefer to record certain species, leading to 
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taxonomic bias in datasets; for example, some observers record more detectable species 

(Callaghan et al., 2021; Farmer et al., 2014), whilst others record a species because it is an 

interesting or unusual observation (Johnston et al., 2022). Citizen science datasets can also 

be biased towards more charismatic species (Troudet et al., 2017), or species about which 

there is greater public awareness (Boakes et al., 2016). Observer efforts can also be 

temporally biased towards the summer months (Di Cecco et al., 2021) and weekends 

(Courter et al., 2013). The unstructured nature of many citizen science schemes also means 

that observers often choose where they record species, leading to spatially biased datasets 

(Johnston et al., 2022; Mair and Ruete, 2016). Such variation in observers can negatively 

impact data quality and reduce confidence in citizen science datasets. To assure the quality 

of the data, citizen science records need to be verified to ensure the species’ identification is 

correct (Baker et al., 2021; Kosmala et al., 2016a; Lotfian et al., 2021; Pocock et al., 2015; 

Wiggins et al., 2011). This process is typically carried out by experts, with some schemes 

using community consensus or automated approaches to verify data (Baker et al., 2021).  

Given the range of factors that can lead to biases and inaccuracies in citizen science 

datasets, verification could be improved by considering all the available information 

associated with a citizen science observation (Baker et al., 2021; Terry et al., 2020). In 

Chapter 2 of this thesis, we reviewed the current approaches to verification and presented 

an idealised approach to verification. This idealised approach categorised the information 

that can be used to inform verification under attributes of the species, the environmental 

context of a record and the observer. Chapter 3 of this thesis presented a verification 

approach that accounted for attributes of the species and the environmental context, which 

was applied to MammalWeb and iRecord data. We presented two models, the species-only 

model which assessed confidence in citizen science observations based only on the species 

confusion matrix, and the environmental context model, which included contextual meta-

data submitted with records to quantify where and when species were most likely to be 

observed. These models assumed that all observers made similar mistakes and therefore 

were included in the same confusion matrix. The results from this chapter showed that 

contextual information can assist with automated verification. For MammalWeb, including 

contextual information improved on the performance of the species-only model. For 

iRecord, the species confusion matrix improved on the null model where we accepted the 
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initial observation as correct, but including contextual information provided little advantage. 

We aim to build on Chapter 3 by exploring verification approaches that account for observer 

variability, to examine whether this impacts on the performance of the models and 

improves the accuracy of verification.  

Here, we present how observer metrics can be used to account for variability among citizen 

scientists and inform the verification of citizen science records in two ways. Firstly, we 

outline how observer ID can be used to inform the probability of a record being correct by 

assigning a species confusion matrix to each observer that quantifies mistakes made in their 

previous observations. The second approach uses observer traits that describe each 

individual’s contributions to a scheme, such as time contributing to a scheme, accuracy of 

previous records or number of records contributed, to inform the verification of an 

observation. Both of these approaches are applied to citizen scientist datasets from the 

same two schemes used in Chapter 3, to which citizen scientists contribute in different 

ways. Specifically, we apply verification models to MammalWeb, a citizen science scheme in 

which volunteers classify camera trap images, and iRecord, in which field-based citizen 

scientists submit ad-hoc, opportunistic species observations. We use cross-validation to 

compare models, assess the effectiveness of the verification approach and examine the 

extent to which information about the observer matters when verifying citizen science data 

in these examples. We aim to present a simple approach that is widely applicable across 

schemes, and that incorporates observer variation without intrusive requests for additional 

information from citizen scientists.   

4.2.1 Current approaches to accounting for observer variability in citizen science schemes 

Citizen science schemes may ask contributors for a range of information that can be used to 

assess and quantify observer variation; for example, some schemes ask citizen scientists for 

personal details regarding their profession (Pusceddu et al., 2019), age (Bates et al., 2015) or 

prior knowledge of the study species (Meentemeyer et al., 2015), others ask citizen 

scientists to categorise their confidence in the submitted identification (Desaegher et al., 

2019; McDonough et al., 2017; Sun et al., 2018; Waetjen and Shilling, 2017), or ask for 

information about the data collection process, such as sampling effort over space and time 

(Kelling et al., 2019; Sequeira et al., 2014). Citizen science schemes also quantify observer 

variability using novel computational and statistical approaches. For example, iSpot has 



62 
 

designed a novel reputation system for citizen scientists (Silvertown et al., 2015). Other 

examples include Kelling, et al. (2015), who propose an approach for eBird that indexes 

observers’ ability to create expertise scores for individuals; Evolution MegaLab, which 

weights observations based on scores from a quiz in which citizen scientists have to answer 

species identification questions before submitting records (Worthington et al., 2012); and 

August et al., (2020), who present a data-derived approach for understanding  recording 

patterns in observers for opportunistic data. Citizen science schemes may also increase 

confidence in the data by trying to mitigate inaccuracies associated with observer variation. 

This has been approached in a range of ways; for example, some citizen science schemes 

provide training in identification and survey methods (Earp et al., 2022; Feldman et al., 

2018), provide online identification tools and quizzes (Perry et al., 2021; Sharma et al., 2019; 

Worthington et al., 2012), or recruit expert volunteers (Van Strien et al., 2011) or citizen 

scientists with a particular interest in the area being monitored (e.g., recruiting hikers to 

record species in national parks or along trails, Sun et al., (2018), or divers to monitor 

marine wildlife, Meschini et al., (2021).  

Various modelling approaches have been developed to assess observer expertise and verify 

citizen science data. Santos-Fernandez and Mengersen, (2021) present an approach that 

uses item response models to define observer ability for Snapshot Serengeti Data and De 

Lellis et al., (2019) introduce a classification algorithm that uses Bayesian approaches to 

integrate citizen scientist demographics into the verification process. Mugford et al. (2021), 

use a modification of an Independent Bayesian Classifier Combination to assess user ability 

and classify observations that generate user accuracies from a multinomial distribution 

instead of using a confusion matrix. Machine learning approaches (Crowston et al., 2020; 

Saoud et al., 2020) have also been used to assess user ability, detect misidentifications, and 

then classify observations for crowdsourced image classifications. Machine learning 

approaches achieve high accuracies and have been effective but are computationally 

intensive, making them inaccessible for citizen science schemes that do not have the 

resources or expertise to develop such verification approaches. Furthermore, these 

approaches are generally applicable to datasets where citizen scientists contribute primarily 

through image classification, which limits the applicability of machine learning approaches 

to a smaller number of citizen science schemes. Here, by contrast we present a simple 
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statistical approach that makes use of past data submitted to a scheme to assess confidence 

in citizen science observations using the confusion matrix, that can be applied to both 

classification- and field-based citizen science schemes.  

4.3 Methods 

Our framework builds on the methodology outlined in Chapter 3, which uses an adapted 

version of the Independent Bayesian Classifier Combination (IBCC) model described by Kim 

and Ghahramani (2012). As in Chapter 3, we outline two separate adaptations of the model, 

a community consensus classification model which we apply to MammalWeb data, and an 

expert behaviour classification model which we apply to iRecord data. In the community 

consensus classification model, a citizen science record, hereafter described as an instance, 

consists of a species observation that has ben classified by one or more citizen scientists. For 

the expert behaviour model, an instance is referring to a single species identification made 

by a citizen scientist that has been submitted to a scheme and verified by an expert. Building 

on the species-only model and environmental-context models presented in Chapter 3, here, 

we outline an observer-expertise model that accounts for observer variability by 

incorporating information on the observer into the species confusion matrix. We account 

for observer variability in two different ways. Firstly, we use observer ID to create a species 

confusion matrix for each observer, accounting for the mistakes individuals made. Secondly, 

we categorise observer traits such as time contributing to a scheme, number of records 

submitted and role within the scheme, which we incorporate into the confusion matrix. As 

described in Chapter 3 these models output probabilities for every species that is then used 

to classify an instance as a given species. We use cross-validation to compare models and 

determine which information is most useful when verifying species observations.  

4.3.1 Classification model 

For each instance, we calculate a set of probabilities, each one representing a species that 

could be observed within the model. Each probability can be denoted as 𝑃(𝑆 ∣ 𝑅, O, 𝐻, 𝐷, 𝐾) 

which refers to the probability of an observation being species 𝑆, given the reported species 

𝑅, which may be a set of one or more citizen science classifications, or a single report of a 

species, the observer, 𝑂, which represents the citizen scientist(s) reporting the species they 

believe to be in that instance, the context of the instance e.g. the habitat, season or time, 𝐻, 
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other prior knowledge 𝐾, and previous observations 𝐷. Here, 𝐷 = {(𝑟𝑖, 𝑜𝑖 , ℎ𝑖 , 𝑠𝑖)}, where 

𝑖 ∈ [1. . 𝑛] labels an instance that consists of a citizen science classification 𝑟𝑖, by an 

observer or observers  𝑜𝑖, the environmental context ℎ𝑖 of the instance and the true species 

𝑠𝑖  that gave rise to the classification. 

We calculate 𝑃(𝑆 ∣ 𝑅, O, 𝐻, 𝐷, 𝐾) using two factors that describe different components the 

probability. The first factor, 𝑃(𝑅 ∣ 𝑆, O, 𝜋1), which we label as 𝜋1, describes the classification 

process, denoting the probability of an instance being reported as a particular species given 

the true species and the observer classifying that instance. If there are multiple reports by 

different observers for a given instance, then we calculate 𝑃(𝑅 ∣ 𝑆, 𝑂, 𝜋1) for each observer. 

As in Chapter 3, we incorporate contextual environmental information using a second 

parameter 𝑃(𝑆 ∣ 𝐻, 𝜋2), which we label as 𝜋2, that describes the observation process, 

denoting the probability of an instance being the true species 𝑆, given the environmental 

context 𝐻.  

This can be denoted as:  

𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾) ∝ ∫ 𝑑𝜋 𝑃(𝑅 ∣ 𝑆, 𝑂, 𝜋1) 𝑃(𝑆 ∣ 𝐻, 𝜋2)                                          (1)  

If we only want to include species and observer information when calculating 

𝑃(𝑆 ∣ 𝑅, O, 𝐻, 𝐷, 𝐾), then we calculate the first factor  𝑃(𝑅 ∣ 𝑆, 𝑂, 𝜋1) using the species 

confusion matrix and set the second factor to be a constant. However, if we wish to 

incorporate contextual information such as habitat, season, or time, then we calculate 

second parameter, 𝑃(𝑆 ∣ 𝐻, 𝜋2), using the context matrix. Here, the species-only model 

excludes observer information in the first factor and the observer-expertise model includes 

observer information in first factor. The environmental-context model uses the context 

matrix to calculate a probability for the second factor, instead of keeping it as a constant. 

The null model is the species with the highest number of citizen science classifications.  

Each factor is calculated using a confusion matrix, which is obtained from the training data. 

Here, 𝜋1 is calculated using confusion matrix 𝑛𝑠𝑟𝑜,  which describes the number of instances 

where observer, 𝑜, identifies true species, 𝑠, as reported species, 𝑟. This, therefore, 

quantifies the number of mistakes that each observer has made previously when identifying 

all the species that could be observed in the model. We calculate 𝜋2 using the matrix 𝑛𝑠ℎ, 

which is the number of instances in which the environmental context is ℎ and the true 
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species is 𝑠. Each probability is calculated using a categorical distribution for reported 

species 𝑟 in instance 𝑖. 

When introducing prior probabilities for 𝜋, for 𝜋1 we assume citizen science reports are 

independent of each other, which is appropriate in this case because, on MammalWeb, 

citizen scientists cannot see classifications made by previous observers. For 𝜋2 we assume 

that the true species in different instances are independent of one another. We place 

constant Dirichlet priors with all parameters equal to 1 on each independent 𝜋1 and 𝜋2. We 

then calculate the posterior probability of the unknown true species 𝑆, given the known 

classifications for each reported species 𝑅, the observer or observers that provided those 

classifications, 𝑂, the observed environmental context 𝐻 and the training data 𝐷, using:  

𝑃(𝑆|𝑅, 𝑂, 𝐻, 𝐷) 𝛼 [∏
𝐵({𝑛̃𝑟𝑜+ 𝑛𝑟𝑜𝑠̃ℎ̃+ 1}𝑅)

𝐵({ 𝑛𝑟𝑜𝑠̃ℎ̃ + 1})𝑜 ]  𝐵({𝑛𝑆𝐻 + 2, {𝑛𝑠𝐻 + 1}𝑠≠𝑆})             (2) 

Where: 

• 𝑛̃𝑟𝑜 is the number of classifications by observer 𝑜 of reported species 𝑟 for the 

current instance 

• 𝑛𝑟𝑜𝑠̃ℎ̃ is the total number of species reports 𝑟 by observer 𝑜 when the trues species 

is 𝑠 across all instances in the training data 

• 𝑛𝑠ℎ is the number of instances in the training data where the true species is 𝑠 in 

context ℎ 

• 𝐵 is the beta function defined as: 

𝐵({𝑧𝑖}) =
∏ (𝑧𝑎−1)𝑎∈𝐴 !

∑ (𝑧𝑎−1)𝑎 !
                                                                              (3) 

Equation (2) provides a posterior probability for every species that could be the true species, 

i.e. every species that has been observed in the dataset. Therefore, the final step in this 

classification framework is estimating the true species based on the array of posterior 

probabilities provided by the model. The approach that could be taken will depend on the 

cost of incorrect classification. If an incorrect classification is costly and comes with high 

risks, then thresholds could be imposed before estimating the true species. For now, 

however, we use the same approach as in Chapter 3, classifying the true species as the 

species that has the highest posterior probability.  
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4.3.1.1 Expert behaviour variant of the classification model  

As outlined in Chapter 3, the decision for an expert to determine whether the reported 

species is correct or not differs from the citizen science classification process for community 

consensus datasets. Therefore, the posterior probabilities of species for expert-verified 

datasets do not need to be weighted by the number of times the expert has selected the 

true species when the reported species was different, i.e., 𝜋1 in the classification model. 

This means that we vary the calculation of the posterior probability slightly so that 

𝑃(𝑆 ∣ 𝑅, O, 𝐻, 𝐷, 𝐾) is modelled based on the confusion matrix 𝑛𝑠𝑘, where 𝑠 describes the 

true species and 𝑘 is the context from the training data which, in this case, includes the 

reported species 𝑟 and the observer 𝑜. The probability of the true species is then calculated 

using:  

𝑃(𝑠̃|𝑘̃, 𝐷) =  
𝑛𝑠𝑘̃+1

𝑛𝑘̃+|𝑆|
                                                                 (4) 

Where:  

• 𝑛𝑠𝑘̃ is the number of instances with true species 𝑠 and context 𝑘 = (𝑟, 𝑜), where 𝑟 is 

the reported species and 𝑜 is the observer, 

•  𝑛𝑘̃ is the number of instances with context 𝑘, which is equal to the sum of true 

species 𝑠 in 𝑛𝑠𝑘̃  matrix, 

• |𝑆| is the total number of species. 

Here, the null model is accepting the initial citizen science identification as correct. As with 

the model described above, this provides a posterior probability for every possible species 

that has been observed in the data and, in this variant of the model, instances are also 

classified by taking the species with the highest posterior probability to be the estimated 

true species.  

4.3.2 Data  

Firstly, we applied the community consensus classification model to MammalWeb data 

collected between April 2015 and June 2022. MammalWeb is a citizen science scheme that 

collects data using camera traps across the UK and areas of mainland Europe and verifies 

data using the community consensus approach, where citizen scientists, or ‘spotters’, 
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classify an instance based on what they believe is in that sequence of photos or videos 

(Hsing et al., 2022). We only used classifications for instances for which we had a ‘gold 

standard’, where an expert had identified the species that were captured in that photo 

sequence. This dataset consisted of 48,692 instances with 145,582 citizen science 

classifications. A total of 1086 citizen scientists, or ‘spotters’, had contributed classifications 

to this dataset, with 577 contributing more than 10 classifications.   

We applied the expert behaviour model to iRecord Coleoptera and Diptera data collected 

between January 2000 and March 2022. These datasets consisted of reports of ad-hoc, 

opportunistic observations by citizen scientists. The Coleoptera dataset consisted of 115,865 

records, and the Diptera dataset consisted of 97,347 records. Within the Coleoptera 

records, the majority of records were Coccinelidae observations (N=82,758) which were 

predominantly submitted to the UK Ladybird survey, and within the Diptera records, the 

majority of records were Syrphidae observations (N=83,585) which were mainly submitted 

to the UK Hoverfly Recording Scheme. Therefore, these records were separated from the 

main dataset, and we applied the model to them separately. The datasets varied in the 

number of observers who had submitted records, and the proportion of observers with 

more than 10 observations (Table 4.1).  

Table 4.1: Number of observers contributing to iRecord datasets.  

Dataset Total number of observers Number of observers with 

more than 10 observations 

Syrphidae 6799 862 

Diptera (without Syrphidae 

records) 

1942 

 

281 

Coccinellidae 14893 1,009 

Coleoptera (without 

Coccinellidae records) 

5778 577 

 

4.3.3 Observer metrics  

We used two different ways of quantifying observer expertise to inform the posterior 

probability of the true species. Firstly, observer IDs (MammalWeb) or usernames (iRecord) 
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enabled us to create a confusion matrix for each individual contributor. Many observers had 

classified very few images on MammalWeb or submitted only a small number of species 

observations to iRecord (Table 4.1). Therefore, we categorised any citizen scientists who had 

fewer than 10 classifications/observations as new observers. When applying the model, new 

observers had one shared confusion matrix, derived from grouping all new observers, and 

any observer with 10 or more classifications/reports had an individual confusion matrix. This 

assumes that all new observers have the same expertise, which is unlikely to be the case. 

However, when a new observer joins a scheme, there is little information available to 

quantify their expertise; using a more general confusion matrix is the best available 

information regarding common errors. 

The second approach we took to quantifying observer expertise was to categorise observers 

based on metrics that quantified their contributions to the focal scheme, and which relate 

to the probability with which they would correctly identify species. We used number of 

classifications and number of records submitted to MammalWeb and iRecord, respectively. 

We also calculated the time contributing to the scheme, in years, and the accuracy of 

previously submitted records. In addition, we considered the different roles that 

contributors could adopt. For MammalWeb, this meant categorising observers as either 

‘spotters’ who only classify camera trap images, ‘trappers’ who put out camera traps to 

record observations as well as classifying images, and ‘own camera’, where trappers are 

classifying the records captured by their own camera trap. For iRecord, we categorised 

contributors as ‘observers’ or ‘verifiers’ where verifiers are individuals who are experts who 

check the records of others to ensure they are correct, as well as submitting them.  

These observer metrics can be used alongside contextual environmental information. 

Chapter 3 shows that contextual information assists in verification for MammalWeb but not 

for iRecord. Therefore, we included contextual information alongside observer metrics for 

MammalWeb but not for iRecord. The contextual variables included for MammalWeb were 

habitat, season, and time.  
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4.3.4 Model selection  

As outlined in Chapter 3, we carried out model selection using cross-validation to identify 

which observer metrics and context types are most effective when identifying the true 

species.  

For MammalWeb, when using observer ID, we saturated 𝜋2 using all possible context types 

and estimated parameters for all possible combinations of variables. Therefore, we ran 16 

models. For the observer traits model we saturated both 𝜋1 and 𝜋2 and ran for all possible 

combinations of variables, running 128 models in total. For iRecord, we ran the model to 

include only observer ID, and then for all combinations of observer traits. Therefore, we ran 

17 models in total.  

For 100 repeats, we divided the data randomly using an 80/20 training and test partition. 

Using the training data, we acquired the relevant matrices, which we then used to apply the 

classification model to the training data. We then validated the model classification against 

the expert assessments to calculate the proportion of correct instances, the negative log-

likelihood of instances and the mean squared error. These metrics were used to compare 

models to determine which was most suitable for verifying the true species for each 

dataset. We also compared the performance of these models to the null model which, for 

MammalWeb, is simply accepting the modal species as the true species and, for iRecord, is 

accepting the reported species as the correct one. For each dataset, we calculate the 

proportion correct and the squared error for the null model to compare with the 

classification model.  

4.4 Results  

4.4.1 MammalWeb 

The null model, where we accept the modal species as the true species, had a proportion 

correct of 0.917 and a squared error of 0.0047. The result here is higher because the 

Chapter 3 dataset was restricted to MammalWeb Britain, whereas here we used a larger 

dataset, including data from other projects. 

The model where each observer had an individual confusion matrix (proportion correct = 

0.929, negative logged likelihood = 0.637, squared error = 0.0069) improved on both the null 
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model and species-only classification model (proportion correct = 0.918, negative logged 

likelihood = 0.65, squared error = 0.0073). Models that included both observer ID and 

environmental context performed worse overall (Figure 4.1). However, models that 

included only environmental context performed better than the observer ID models with 

the model that saturated 𝜋2, i.e., included habitat, season, and time, performing best 

overall (proportion correct = 0.934, negative logged likelihood = 0.354, squared error = 

0.0036). This result was seen in Chapter 3 with the most saturated environmental context 

model performing best overall. See Appendix C.1 for the full cross-validation summary.  

Models that included one observer trait in 𝜋1 improved on the species-only classification 

model, and performed better than models that included a combination of observer traits 

(Figure 4.1). The models that included observer accuracy, as well as environmental context, 

performed best overall (proportion correct = 0.936, negative logged likelihood = 0.351, 

squared error = 0.00354), and the models that included observer role generally performed 

similarly to the environmental context only models (observer role best-performing model: 

proportion correct = 0.934, negative logged likelihood = 0.355, squared error = 0.0036). See 

Appendix C.2 for the full cross-validation summary.  
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Figure 4.1: Model performance for proportion of correct instances across 100 iterations of 

cross-validation for MammalWeb classification models. 
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For MammalWeb spotters, accuracy did not improve with time classifying or with 

classification number (Figure 4.2). The majority of observers submitted very few 

observations, but those who submitted a large number of observations generally had high 

accuracy. Some spotters classified images sporadically and with large gaps between 

classifications (Figure 4.2C).  

 

Figure 4.2: The accuracy of spotters in relation to (A) the number of days between their first 

and last classification and (B) the total number of classifications. (C) The relationship 

between days classifying (quantified as the number of days between their first and last 

classification) and classification number. Trendlines and standard errors fitted from a locally 

estimated scatterplot smoothing function (LOESS). 

The mean accuracy for those who classified and uploaded images to MammalWeb 

(Trappers) was 89.6%, for those who only classified images (Spotters) the average accuracy 

was 85.3% (Figure 4.3A). Trappers classifying images that were captured by their own 
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camera trap had a mean accuracy of 92.1% (Figure 4.3B). Trappers classifying images that 

were not captured by their own camera trap had a mean accuracy of 87.7% (Figure 4.3B).  

 

Figure 4.3: The accuracy of MammalWeb spotters in relation to whether they are (A) a 

trapper as well as a spotter, and (B) spotting for their own trap or not. The lines within each 

box display the means from each group.  

4.4.2 iRecord  

4.4.2.1 Coleoptera 

If we accept the initial citizen science observation as the true species (the null model), then 

the proportion of correct instances for Ladybirds was 0.957 and for the remaining 

Coleoptera records was 0.947.  

The observer ID models did not improve on the null model or the species-only model for the 

Ladybird records (species-only model: proportion correct = 0.958, negative log likelihood = 

0.313, squared error = 0.109; observer ID model: proportion correct = 0.925, negative log 

likelihood = 0.932, squared error = 0.0133) or the remaining Coleoptera records (species-

only model: proportion correct = 0.957, negative log likelihood = 1.551, squared error = 

0.0019; observer ID model = 0.756, negative log likelihood = 3.64, squared error = 0.0022).  

Models that included observer traits performed similarly or worse than the null model and 

the species-only model for both the Ladybird records and the remaining Coleoptera records. 
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The models that included observer role and observer accuracy performed most similarly to 

the species-only model (Figure 4.4). See Appendix C.3 for the full cross-validation results.  

 

Figure 4.4: Model performance for proportion of correct instances across 100 iterations of 

cross-validation for iRecord Coleoptera classification models. 
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Accuracy did not improve with time recording through iRecord but did improve with record 

numbers for both the Ladybird observers and the observers for the remaining Coleoptera 

records. The number of observations was also uneven through time, with increased time as 

an iRecord observer not necessarily leading to increased observation numbers (Figure 4.5). 

 

Figure 4.5: The accuracy of iRecord Coleoptera observers in relation to the number of days 

between their first and last observation (A & B), the total number of classifications (C & D) 

and the relationship between days classifying (quantified as the number of days between 

their first and last observations) and classification number (E & F). Trendlines and standard 

errors fitted from a locally estimated scatterplot smoothing function (LOESS). 
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4.4.2.2 Diptera 

If we accept the initial observation as correct (the null model), the proportion correct for 

Hoverfly records is 0.960, and for the remaining Diptera records is 0.938.  

The observer ID models did not improve on the null model or the species-only model for the 

Hoverfly records (species-only model: proportion correct = 0.969, negative logged likelihood 

= 0.395, squared error = 0.0032; observer ID model: proportion correct = 0.864, negative log 

likelihood = 2.607, squared error = 0.0047), or the remaining Diptera records (species-only 

model: proportion correct = 0.953, negative logged likelihood = 1.26, squared error = 

0.0037; observer ID model: proportion correct = 0.786, negative log likelihood = 3.23, 

squared error = 0.0045). 

Several of the observer traits models improved slightly on the null model for the Hoverfly 

dataset, and even more so for the remaining Diptera records. None of the observer traits 

models improved on the species-only model. For the Hoverfly data, the models that 

included the observer role only (proportion correct = 0.968, negative logged likelihood = 

0.424, squared error = 0.0032) and the observer accuracy only (proportion correct = 0.967, 

negative logged likelihood = 0.592, squared error = 0.0036) performed similarly to the 

species-only model. For the remaining Diptera records, the species-only model 

outperformed all the models that included observer traits (Figure 4.6). See Appendix C.4 for 

the full cross-validation results. 
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Figure 4.6: Model performance for proportion of correct instances across 100 iterations in 

cross-validation for iRecord Diptera classification models. 
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Accuracy remained consistent in relation to time recording with iRecord. Accuracy did, 

however, improve slightly with record numbers for Hoverfly observers (Figure 4.7). Hoverfly 

and Diptera datasets exhibited similar patterns to MammalWeb and iRecord Coleoptera 

records, with most citizen scientists submitting very few observations (Figure 4.7).  

 

Figure 4.7: The accuracy of iRecord Diptera observers in relation to the number of days 

between their first and last observation (A & B) and the total number of classifications (C & 

D). As well as the relationship between days classifying (quantified as the number of days 

between their first and last observations) and classification number (E & F). Trendlines and 

standard errors fitted from a locally estimated scatterplot smoothing function (LOESS). 
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4.5 Discussion  

We explored whether integrating information on the experience and expertise of citizen 

scientists into classification models can assist in verifying citizen science records. The 

approaches outlined here can be applied to schemes where the only information available 

on citizen scientists contributing to schemes is observer ID. However, we go beyond that to 

consider how observer ID can be used to categorise observer traits and be integrated into 

verification approaches.  

For MammalWeb, a scheme in which citizen scientists classify what they believe to be in 

camera trap images, including observer ID improved on the null model and the species-only 

model but did not improve on the environmental context model. As MammalWeb monitors 

mammals across the UK and parts of mainland Europe (Hsing et al., 2022; Smith et al., 

2023), it is possible that citizen scientists may be asked to classify a sequence of images of a 

species that they have not previously encountered. This can lead to differences in species-

specific confusion by observers, which will not be captured in the species-only classification 

model. However, the observer ID model did not improve on the environmental context 

model, indicating that, in this instance, environmental factors were more useful for verifying 

the true species. Chapter 3 of this thesis discusses why contextual information may be 

beneficial in identifying the true species in the case of MammalWeb. When incorporating 

observer traits into the classification models, including the accuracy of the observers’ 

previous classifications improved slightly on the environmental context model. 

Unsurprisingly, therefore, an observer’s previous accuracy can indicate their likely future 

accuracy. Furthermore, as citizen scientists contribute more to a scheme, their accuracy can 

improve with greater experience in species identification (Falk et al., 2019; Greving et al., 

2022; Kelling, et al., 2015). Within MammalWeb, there was greater variation in the accuracy 

of citizen scientists who submitted very few records, with citizen scientists who had 

submitted a greater number of records generally having a higher accuracy (Figure 4.2).  If an 

individual has classified a large number of images, then they are more likely to have 

encountered the same species multiple times, allowing them to develop their identification 

skills. In this example, time classifying with MammalWeb did not assist in estimating the 

true species. MammalWeb classifiers do not contribute classifications at a steady rate 

through time, with some classifiers submitting very few observations, with large gaps 
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between their first and last classifications (Figure 4.2). This pattern is found widely in online 

citizen science schemes, with many schemes experiencing low retention rates of citizen 

scientists, and a small proportion of citizen scientists accounting for the majority of citizen 

science records (Crall et al., 2017; Kaplan Mintz et al., 2023; Segal et al., 2015). 

Models of iRecord data that included observer ID or observer traits did not improve on the 

species-only classification model. As was observed with MammalWeb, the majority of 

iRecord observers submit few observations and contribute for only a short time. This means 

that insufficient information is captured by the confusion matrix to differentiate between 

observers and, therefore, observer metrics are not useful in verifying the true species in 

these examples. Although expert verifiers may be familiar with some trusted observers 

within iRecord (Baker et al., 2021), due to the high volume of contributors that submit 

records to the scheme, it is unlikely that verifiers are familiar with all observers. If an expert 

is unfamiliar with the observer and their expertise is based on observer ID, they are likely to 

use a range of information when verifying a record (Terry et al., 2020). Although degrees of 

participation do vary, both in terms of time recording and number of observations, these 

factors do not seem to influence accuracy to a great extent (Figures 4.5 and 4.7).  

We previously suggested that efficient verification of citizen scientists’ data should make 

use of all available information, including species attributes, environmental context and 

observer attributes (Baker et al., 2021, Chapter 2). Overall, however, in the examples we 

explored here, integrating observer attributes made marginal or no difference to the 

accuracy of the verification approaches, primarily due to the low contributions of most 

individual citizen scientists and their generally high initial accuracy. Quantifying previous 

mistakes made by observers using the confusion matrix or by categorising observer traits 

could still help inform verification, either by determining how many more classifications are 

required or by informing expert-made decisions. If a record comes in from an observer who 

has a high accuracy and a high number of previous classifications, then this could be 

accepted automatically, directing effort towards those submitted by observers with a 

historically lower accuracy. In the cases where a new observer or an observer characterised 

by low contributions submits an observation, then these approaches can still be applied 

using the overall species confusion matrix and the species-only classification model, which 

for both MammalWeb and iRecord has shown improvements on the null models.   
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The results presented here and in Chapter 3 show how a range of information can be 

incorporated into verification approaches for two contrasting citizen science schemes. For 

MammalWeb, each individual category of information - the species, environmental context, 

and observer - shows improvement on the null models. However, for iRecord, only 

attributes of the species proved useful when verifying observations. For both MammalWeb 

and iRecord, including all the available information when using these approaches to verify 

species records makes little or no difference to the overall accuracy of verification. Should 

schemes choose and apply the approach presented here, consideration should be given to 

the meta-data available and the factors that may influence the accuracy of records. 

Furthermore, where information is not available, using the simplest approach and 

considering only the species confusion matrix can assist in verification and achieve high 

accuracies. Given the initial high accuracies of the records accepted to be correct in the 

schemes presented here, the value of intensive, highly accurate verification for exploring 

research questions and trends in species abundances and distributions is debatable.  
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5. Does accurate verification of ecological 

citizen science data matter? The impact of 

data accuracy on protected area coverage 

for UK butterflies. 

5.1 Abstract 

In the current nature and climate crisis, large-scale citizen science datasets are being used in 

a range of contexts to understand trends in species abundances and distributions in 

response to widespread anthropogenic threats. Concerns are often raised regarding biases 

and inaccuracy in citizen science datasets, and verification is often required to promote 

confidence in those data. Verification is becoming an increasingly intensive and time-

consuming process for many citizen science schemes as data volumes grow. Here, we 

explore the extent to which accurate verification matters when examining the protected 

area coverage for UK butterfly species. To examine this, we simulated different levels of 

inaccuracy (20%, 10%, 5% and 2%) for National Biodiversity Network butterfly records. We 

then compared the percentage overlap between protected areas and estimated areas of 

occupancy for the inaccurate datasets and compared those with the same metrics derived 

from the original data. The consequences of inaccurate data varied between species. For 

more ubiquitous species, inaccuracy had minimal impacts on analytical outputs. For species 

with restricted ranges, inaccurate data overestimated the area of occupancy relative to the 

original data, leading to differences in protected area overlap; however, the direction of 

differences depended on the original extent of overlap. The need to verify every record is 

dependent on the costs of inaccuracy and the end use of the data. In some cases, locating 

specific species occurrences is necessary for targeted conservation efforts. However, for 

most species, this is unnecessary, and if inferences are robust to low levels of inaccuracy, 

then citizen science schemes should reevaluate the need for continued improvements in the 

accuracy of verification approaches for all species.  
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5.2 Introduction 

The global climate and biodiversity crises are impacting species’ populations and functioning 

of global ecosystems (Hayhow et al., 2019; IPBES, 2019; WWF, 2022), and ambitious global 

targets are being set to improve the outlook for nature by 2030 (Nicholson et al., 2019; 

Buchanan et al., 2020; Joly, 2023). Quantifying the rate of biodiversity loss and tracking 

species abundances and distributions in response to widespread threats is vital in assessing 

progress towards these targets (Joly, 2023); in particular, monitoring is essential for 

highlighting the scale of the problem, galvanising political and public support to mitigate and 

reverse biodiversity loss, and protecting, conserving, and promoting species populations 

(Mace et al., 2008; Akçakaya et al., 2018; Heilpern et al., 2018; Bolam et al., 2021; Grace et 

al., 2021). Monitoring is also essential to predict future scenarios for nature (Di Marco et al., 

2019; Leadley et al., 2022; Nicholson et al., 2019; Powers and Jetz, 2019). Investigating 

large-scale ecological questions typically requires large volumes of up-to-date species 

occurrence data, collected across great spatial and temporal scales (Hassani et al., 2021; 

Hochkirch et al., 2021; Nathan et al., 2022). This level of data coverage is most frequently 

found in datasets collected by volunteers and through crowdsourced observations (Groom 

et al., 2017), the contributions of which can broadly be categorised as ‘citizen science’. 

Projects that mobilise citizen scientists to collect data are continuing to grow in scope and 

scale (Baker et al., 2021; Pocock et al., 2017). Technological advancements are leading to 

novel methods for data collection (Biggs et al., 2015; Newson et al., 2015; van Klink et al., 

2022) and increased access to technology mean that more people are contributing to citizen 

science schemes than ever before (Callaghan et al., 2019b; Di Cecco et al., 2021a). As data 

volumes increase, and data processing and storage capabilities progress, citizen science data 

have been used to explore a range of research questions and hypotheses, to expand our 

understanding of ecological processes in response to biodiversity loss and climate change 

(Brown and Williams, 2019; Crimmins and Crimmins, 2022; Soroye et al., 2018). 

Ecological data collected by citizen scientists typically consist of ad-hoc, opportunistic 

records (Baker et al., 2021; Dickinson et al., 2012; Fraisl et al., 2022; Kobori et al., 2016; 

Pocock et al., 2017), and the data quality of these volunteer collected datasets is often 

questioned, due to concerns around unstructured sampling methods (Callaghan et al., 2021; 

Isaac et al., 2014; Kamp et al., 2016; Kelling et al., 2018), bias (Callaghan et al., 2019; 
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Johnston et al., 2020b; Kosmala et al., 2016a) and inaccuracies of species identifications by 

non-experts (Barbato et al., 2021; Crall et al., 2011; Gardiner et al., 2012; Vantieghem et al., 

2017). Various studies have reviewed and examined the accuracy of citizen science data. A 

taxon-specific example assessed identification errors of passerine species on eBird, and 

found that 97% of the photo observations were correctly identified but accuracy varied from 

species to species and depended on the ease of identification (Gorleri et al., 2023). 

Identification accuracy is lower for some other taxa; for example, assessing two UK-based 

bumblebee citizen science schemes, Falk et al., (2019) found an overall citizen science 

accuracy of 49% for BeeWatch and 44% for Blooms for Bees. Although this highlights wide 

discrepancies between taxa in the accuracy of citizen identification, citizen science 

identification has been shown to be generally accurate. For example, Aceves-Bueno et al. 

(2017) reviewed studies that compared citizen-collected with expert-collected datasets and 

found that over half of these studies had an agreement of 80% or more between citizen 

scientists and experts. These findings also align with Kosmala et al., (2016a), whose 

assessment of data quality in citizen science stated that between 70 and 95% accuracy is 

typical for species identification tasks within citizen science schemes. The level of accuracy 

that may be considered acceptable is dependent on the risks associated with inaccurate 

data and how the data is going to be used. In large-scale analysis of species abundances and 

distributions, models can account for some level of inaccuracy, reducing the impact of 

incorrect observations. However, if data is being used at a local or regional level to inform 

policy and management decisions, inaccuracies have a greater impact on the interpretation 

of the data.  

Concerns around data quality have led to large volumes of human and technical resources 

being focused on mitigating, quantifying, and correcting for inaccuracies in citizen science 

data. Pre-record submission, citizen science schemes can aim to prevent inaccurate species 

identification by providing training and ID support, either in-person (Feldman et al., 2018) or 

online (Perry et al., 2021; Sharma et al., 2019). Post-submission, resources are focused on 

verifying data to ensure they are of a known quality (Baker et al., 2021). For the majority of 

citizen science schemes, this process is carried out by experts, which can be time-consuming 

and relies on large networks of volunteers with taxonomic and regional expertise (Baker et 

al., 2021). More recently, technical resources have been focused on developing statistical 
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machine learning and artificial intelligence (AI) approaches for automating verification 

(Green et al., 2020; Mugford et al., 2021; Siddharthan et al., 2016; Terry et al., 2020; Willi et 

al., 2019). These approaches can have a high accuracy overall, but this is dependent on the 

volume of training data available (Green et al., 2020); classification accuracy is generally 

lower for rarer, or less frequently recorded species (van Klink et al., 2022; Willi et al., 2019). 

Furthermore, limited funding or technical expertise may pose barriers to the 

implementation of these approaches, due to intensive and costly technical requirements 

(Baker et al., 2021).  

An example of an AI verification approach includes Terry et al. (2020), who integrated 

automated image identification with the meta-data associated with each image to verify 

ladybird images automatically; the top-1 (i.e. choosing the species with the highest 

probability) accuracy of the model was 69%. Palmer et al. (2021) composed an AI algorithm 

that eliminated empty images and then identified the species in images that are not empty 

for Snapshot Safari data. The first step that identified whether an image was empty or not 

had a 95% accuracy, and the species identification had an 89% accuracy. Statistical 

approaches to verification also exist. For example, Swanson et al., (2016) applied a plurality 

algorithm to Snapshot Serengeti data that had a 97.9% agreement with expert 

identifications and Siddharthan et al., (2016) developed a Bayesian incremental model for 

BeeWatch data that achieved a 91% accuracy. Chapters 3 and 4 of this thesis applied a 

variation of the Independent Bayesian Classifier Combination model that harnesses aspects 

of the species, environmental context (Chapter 3) and the recorder (Chapter 4) to assess 

confidence in and classify MammalWeb and iRecord data; this achieved a 92-97% accuracy, 

depending on the dataset and the meta-data included. Despite this, even the null models 

(taking citizen-submitted classifications at face value) achieved high accuracies (89-96%), 

prompting the question of whether elaborate statistical approaches to yield incremental 

improvements in accuracy are likely to be worthwhile. 

Overall, given the generally high accuracy of citizen science observations, and the effort that 

goes into ensuring that citizen science data are as accurate as possible, it is timely to explore 

to what extent accurate verification matters when using these datasets to explore real-

world questions and hypotheses. Ecological citizen science data is used in a range of 

contexts in research, policy development and environmental management. This can include 
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species distribution modelling (Feldman et al., 2021), tracking progress towards targets for 

nature (Fraisl et al., 2020) or managing the spread of invasive species (Larson et al., 2020). 

Here, we aim to address whether accurate verification matters by assessing the extent to 

which butterfly species are represented by protected areas in the UK. We explore these 

questions by repeating the analytical frameworks for the same dataset where we have 

simulated different levels of accuracy to see how this impacts the analytical outputs and 

interpretation of the data.  

5.3 Methods  

To compare the extent to which accurate verification matters in an environmental policy 

and conservation management context, we carried out a national version of a recent global 

analysis carried out by Chowdhury et al., (2023) that assessed protected area coverage for 

insect populations. The primary objective of protected areas is to conserve nature by 

reducing anthropogenic threats and pressures within the designated area (Schulze et al., 

2018). Protected areas are therefore a primary focus of the 2030 targets for nature, with 

many countries across the globe committing to protect 30% of the earth’s land and oceans 

by 2030 (Dinerstein et al., 2019). Protected area coverage for species populations provides 

an index to inform conservation efforts, making it a suitable metric to examine and directly 

compare between datasets with different levels of inaccuracy, allowing us to evaluate the 

potential impacts of data quality on policy and management responses. For our assessment 

of the impacts of data accuracy in citizen science data, we focused on butterflies in the UK. 

Butterflies are a charismatic species group that are well monitored and studied, and for 

which there is generally a large volume of citizen science data in the UK (Fox et al., 2022). 

Butterflies have short life cycles, are often reliant on a specific plant species as hosts or for 

food and can be restricted to particular habitats (Brereton et al., 2011). Therefore, butterfly 

species can be sensitive to changes in habitats or environmental conditions, making them a 

key taxon indicator for assessing environmental quality and overall biodiversity (Brereton et 

al., 2011). Many butterfly species in the UK have seen significant declines in recent decades 

(Warren et al., 2021), and many species are considered at risk of extinction by the IUCN Red 

List for Threatened Species (Fox et al., 2022). Butterflies are therefore a focus in policy and 

management decisions. Analysing trends in butterfly abundances and distributions can 

influence landscape-scale habitat management (Ellis et al., 2019), policies regarding 
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agricultural practices (Stewart et al., 2022; Threadgill et al., 2021) or conservation efforts 

within protected areas (Ashe-Jepson et al., 2022; Hetherington et al., 2022).  

5.3.1 Data 

The verified citizen science dataset we used as the baseline analysis against which to 

compare inaccurate date was the National Biodiversity Network (NBN) Atlas records for UK 

butterfly species. The NBN Atlas is the UK’s largest repository for biodiversity data, which 

holds over 208 million occurrence records from 170 data partners including conservation 

organisations, local environmental records centres, and research institutions (National 

Biodiversity Network, 2022, 2023). NBN butterfly records from the last 10 years were 

downloaded in May 2023. We removed records for which the grid reference location 

accuracy was greater than 1-km² and that had not been identified to species level. We also 

removed records that were categorised as ‘unconfirmed’. The NBN Atlas aggregates data 

from multiple data sources provided by a range of organisations each with different 

processes for verification. Confirmed records could be verified as ‘correct’, if evidence such 

as photos or videos were provided with the observation, or ‘considered correct’ if there is 

no other information with which to determine whether an observation is anything other 

than the reported species. Although, confirmed records may not be completely accurate, 

here we assume that the NBN data is correct. The remaining dataset included 4,053,121 

records of 58 species.  

5.3.2 Simulating inaccuracies  

Inaccuracies were simulated in two different ways. Firstly, we simulated inaccuracies in a 

‘guessing’ scenario. For a randomly selected proportion of the whole dataset, we randomly 

changed each record to another species that had been observed in the dataset. Each record 

had an equal chance of being reclassified. This meant that each inaccurate record could be 

misidentified as 1 of 57 species. The probability of each mistake was proportional to the 

frequency with which the species was observed within the dataset. Therefore, those species 

that were more common were more likely to be ‘guessed’. This decision was based on the 

assumption that citizen scientists who were unsure of the species’ identity would be more 

likely to guess more common species.  
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The second scenario for inaccurate records was based on empirical species confusions. To 

simulate this scenario, we used the species confusion matrix from iRecord redetermination 

data for butterfly records. The butterfly records had been submitted through the iRecord 

online platform or app and verified by experts. Each record had either been accepted as 

correct, or redetermined to another species. This redetermination data was then used to 

create a frequency matrix, quantifying the number of times that each species had been 

redetermined to another species by expert verifiers. We converted this frequency matrix to 

a proportional confusion matrix (See Appendix D.3 for the proportional species confusion 

matrix). We then simulated inaccuracies by changing a proportion of the records to another 

species based on the relative proportion of times that specific mistake was made. In this 

scenario, the number of potential species that a record could be changed to was smaller, as 

a record would only be changed to a species that the original species had been incorrectly 

identified as in the iRecord confusion matrix. The probability of each mistake was weighted 

based on the proportional confusion matrix; therefore, more common mistakes within the 

confusion matrix would be reflected in the inaccurate data.  

For each scenario, we simulated four levels of inaccuracies, such that we had four 

inaccurate datasets for each scenario. Many citizen science schemes and automated 

verification approaches achieve an accuracy of 80% or more (Aceves-Bueno et al., 2017; 

Kosmala et al., 2016a). We therefore set four levels of inaccuracy: 20%, 10%, 5% and 2%. 

Including the original NBN Atlas dataset, this yielded 9 datasets with which to carry out the 

analysis.  

5.3.3 Protected area coverage  

To assess the level of protected area coverage for butterfly species in the UK, we replicated 

the analysis carried out by Chowdhury et al. (2023). The analysis was carried out in QGIS 

(QGIS Development Team, 2023). For each species within the dataset, we estimated 

occupancy using an alpha-concave hull. This is a variation of the convex hull which 

encompasses all species records within the minimum bounding geometry (Asaeedi et al., 

2017; Chowdhury et al., 2023). The alpha-concave hull removes links between occurrence 

points based on the mean nearest neighbour, with individual outliers being removed if they 

are more than twice the mean distance of the nearest neighbour. This means the occupancy 

can be divided into several polygons (Asaeedi et al., 2017; Chowdhury et al., 2023) and 



89 
 

distributions are typically a spatial subset of the minimum bounding geometry of the convex 

hull. This was calculated using the concave hull plugin in QGIS (QGIS Development Team, 

2023). 

Once the area of occupancy had been estimated using the alpha-concave hull, we then 

calculated the percentage overlap with the protected areas of the UK. The protected areas 

dataset was downloaded through the World Database on Protected Areas, a comprehensive 

global database of marine and terrestrial protected areas that is updated monthly (UNEP-

WCMC and IUCN, 2023). The UK dataset included, but was not limited to, Areas of 

Outstanding Natural Beauty, Areas of Species Scientific Interest, National and Local Nature 

Reserves. We downloaded the dataset for the UK terrestrial protected areas in May 2023. 

Using the Overlap Analysis plugin in QGIS (QGIS Development Team, 2023), we calculate the 

percentage overlap between the area of occupancy and the protected areas for the UK for 

each butterfly species.  

We carried out this analysis for the original dataset to provide the baseline outputs. We 

then repeated this process for the 8 datasets containing simulated inaccuracies, so that we 

could compare the outputs with those from the original analysis.  

5.3.4 Data analysis 

To examine the impact of inaccuracies on the protected area coverage analysis for different 

species, we explored two questions. Firstly, we assessed the impact of errors on species 

with limited ranges, to understand the extent to which verification may be necessary for 

certain species. To explore this question, we analysed the relationship between change in 

area of occupancy and the original area of occupancy. Secondly, we explored the extent to 

which inaccurate data leads to the over or under-estimation of protected area coverage for 

different species, to understand the potential consequences of inaccurate verification on 

interpretation of the data and potential impacts on policy and management responses. This 

was explored by modelling the relationship between error and protected area overlap.  

We explored the impact of error on area of occupancy by modelling logged proportional 

change in area of occupancy (in km²) between the original and inaccurate data using a 

Gaussian linear regression. We included the predictors of error type (guessing or species 

confusions), logged number of observations in the original dataset, logged area of 
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occupancy for the original dataset and extent of error (0.02, 0.05, 0.1, 0.2). Change in area 

of occupancy, number of observations and original area of occupancy were logged to 

normalise the data. To determine which predictors were most informative within the model, 

the dredge function (package MuMln, Barton, 2020) was used to compare all combinations 

of variables within the global model. To analyse the relationship between error and 

protected area overlap, we modelled proportional change in protected area overlap 

between the original data and the inaccurate data, again using a Gaussian linear regression. 

We included the same predictors as the previous analysis as well as the logged original 

protected area overlap, to examine how the over and under-estimation of protected area 

coverage related to the original extent of coverage. The dredge function was used again to 

evaluate models.    

5.4 Results  

The overlap between the protected areas of the UK and the area of occupancy for the whole 

butterfly dataset, i.e., the aggregated ranges of all species, was 16%. For the original NBN 

occurrence records, the protected area coverage of the estimated area of occupancy ranged 

from 5% for the Black Hairstreak (Satyrium pruni) and Heath Fritillary (Melitaea athalia) to 

95% for the Lulworth Skipper (Thymelicus acteon). The majority of species had a 15-20% 

overlap with protected areas (Figure 5.1). 

Neither the guessing nor the species confusion scenarios captured the range of protected 

area overlap seen in the original dataset. As with the original dataset, the majority of 

species had a 15-20% overlap (Figure 5.1). Generally, the more inaccurate datasets had a 

narrower range of overlap between areas of occupancy and protected areas.  
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Figure 5.1: Percentage overlap between protected areas and estimated occupancy of UK 

butterfly species for the original NBN dataset and datasets where inaccuracies were 

introduced. 

Species with fewer observations generally had a higher overlap with protected areas in the 

original data (Figure 5.2). When inaccuracy was introduced, percentage overlap varied less 

with the number of observations (Figure 5.2). See Appendix D.1 for the results by species for 

the guessing scenario and Appendix D.2 for the results by species for the species confusion 

scenario. 
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Figure 5.2: Protected area overlap in relation to the logged number of observations in the 

original dataset for inaccuracies by guessing and inaccuracies by species confusions. 

Trendlines fitted from a locally estimated scatterplot smoothing function (LOESS). 

As more inaccuracy was introduced, the estimated area of occupancy increased relative to 

the original dataset (Figure 5.3). The area of occupancy was generally higher for datasets 

with frequency-weighted random inaccuracies (Figure 5.3).  
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Figure 5.3: Estimated area of occupancy by number of observations in each inaccurate 

dataset. Trendlines fitted from a locally estimated scatterplot smoothing function (LOESS). 

5.4.1 Impacts of error on analysis outputs  

Proportional change in area of occupancy was significantly related to the extent of 

inaccuracy (estimate = 2.24 ± 0.384 SE, t = 5.83, p < 0·05), logged number of observations in 

the original data (estimate = 0.12 ± 0.017 SE, t = 6.79, p < 0·05), logged original area of 

occupancy (estimate = -0.85 ± 0.018 SE, t = -47.083, p < 0.05) and inaccuracy type (estimate 

= -0.17 ± 0.052 SE, t = -3.31, p < 0.05). For species with smaller ranges in the original dataset, 

the proportional change in area of occupancy was generally higher and more ubiquitous 

species showed little change in area of occupancy (Figure 5.4).  

 

 

Figure 5.4: Logged proportional change in area of occupancy by logged original area of 

occupancy for inaccurate datasets. Trendlines fitted from a general linear regression. 

Proportional change in protected area overlap was significantly related to the logged 

number of observations per species in the original data (estimate = 0.017 ± 0.005 SE, t = 

3.37, p < 0.05), logged original area of occupancy (estimate = -0.149 ± 0.005 SE, t = -27.97, p 

< 0.05) and logged original protected area overlap (estimate = -1.28 ± 0.018 SE, t = -68.74, p 

< 0.05). Species with low protected area coverage in the original dataset saw an over-
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estimation of protected area coverage when both types of inaccuracies were introduced 

(Figure 5). The species that had the highest protected area coverage saw an under-

estimation of the protected area coverage for inaccurate datasets (Figure 5.5). 

 

 

Figure 5.5: Proportional change in protected area coverage by original protected area 

overlap for each inaccurate dataset. Trendlines fitted from a general linear regression. 

5.4.2 Species results  

The consequences of inaccuracy on the analysis varied between species. Species with 

limited ranges such as the Lulworth Skipper (See 5.4.2.1) showed a greater difference in 

estimated area of occupancy and protected area overlap between the original data and the 

inaccurate data, with the inaccurate data leading to an under-estimation of protected area 

coverage. For more widespread species such as the Large Skipper (See 5.4.2.2) and the 

Painted Lady (See 5.4.2.3) the results here show less difference in protected area coverage 

between the original and inaccurate data.  

5.4.2.1 Thymelicus acteon 

The Lulworth Skipper has a small range in the South of Dorset, where it is found in large 

numbers (R. Jones et al., 2023). It is considered near threatened on the most recent red list 

assessment for UK Butterflies (Fox et al., 2022). The confusion matrix (Table 5.1) shows that 
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citizen scientists more often submit an observation of another species, erroneously 

identified as the Lulworth Skipper (false positives), than they submit an observation labelled 

as another species that is the Lulworth Skipper (false negative). The number of observations 

in the original dataset was 1400. The numbers of observations in the guessing scenarios 

were similar to the original dataset (20% inaccuracy: N = 1417; 2 % inaccuracy: N = 1411), 

but the datasets where inaccuracies were introduced using species confusions led to an 

increase in observations in the more inaccurate dataset (20% inaccuracy: N = 1865; 2% 

inaccuracy N=1450). When simulating inaccuracies, the data overestimated the range, 

because observations were spread farther beyond the restricted range of this species, thus 

leading to an under-estimation of protected area coverage; the estimated area of 

occupancy, and difference between actual and estimated protected area coverage, was 

larger for the guessing scenario data (Figure 5.6).  

Table 5.1: The proportional confusion matrix for the Lulworth Skipper.  
 

True species 

Citizen science 

identification 

Callimorpha 

dominula 

Macroglossum 

stellatarum 

Ochlodes 

sylvanus 

Thymelicus 

acteon 

Thymelicus 

sylvestris 

Thymelicus 

acteon 

0.1 0.1 0.6 0 0.2 

Thymelicus 

sylvestris 

0 0 0 1 0 
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Figure 5.6: Map to show the estimated area of occupancy for the Lulworth Skipper in the 

original NBN data (A) and for the datasets where inaccuracies were simulated by guessing 

(B) and by species confusions (C).  

 

4.4.2.2 Satyrium pruni 

The Black Hairstreak has a small range in central England and is only found in Blackthorn 

scrub on clay soils (Tilley et al., 2023). This species is considered endangered in the most 

recent red list assessment (Fox et al., 2022). The iRecord confusion matrix (Appendix D.3) 

showed that the Black Hairstreak was only subject to false-positive errors. The number of 

observations in the original dataset was 287, and the protected area coverage was 5%. The 

inaccurate datasets over-estimated the area of occupancy for the Black Hairstreak, which 

led to an over-estimation of the protected area coverage. Although the difference in 

estimated area of occupancy compared to the original dataset was greater for the guessing 

scenario (Figure 5.7), the level of overestimation in protected area coverage was similar for 

both the guessing (20% inaccuracy = 22% overlap; 2% inaccuracy = 15% overlap) and species 

confusion scenarios (20% inaccuracy = 20% overlap, 2% inaccuracy = 21% overlap). 
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Figure 5.7: Map to show the estimated area of occupancy for the Black Hairstreak in the 

original NBN data (A) and for the datasets where inaccuracies were simulated by guessing 

(B) and by species confusions (C).  

5.4.2.3 Ochlodes sylvanus 

The Large Skipper is found throughout most of England and is categorised as least concern 

in the most recent red list assessment (Fox et al., 2022). The original dataset had 93,119 

records with a 20% overlap with protected areas. The iRecord confusion matrix (Appendix 

D.3) showed a range of false positive and false negative errors. 

Increases in the area of occupancy were larger for the datasets where inaccuracies were 

introduced by guessing (Figure 5.8). This did not result in a difference in protected area 

overlap for either the guessing (20% inaccuracy = 19% overlap; 2% inaccuracy = 20% 

overlap), or the species confusion (20% inaccuracy = 19% overlap; 2% inaccuracy = 19% 

overlap) scenarios.  
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Figure 5.8: Map to show the estimated area of occupancy for the Large Skipper in the 

original NBN data (A) and for the datasets where inaccuracies were simulated by guessing 

(B) and by species confusions (C). 

5.4.2.4 Vanessa cardui 

The Painted Lady is a ubiquitous species found across much of the UK and is categorised on 

the Red List as of least concern (Fox et al., 2022). The original dataset had 38,709 records 

and an 18% overlap with protected areas. Introducing inaccuracies for this species showed 

little change in the area of occupancy and protected area overlap compared to the original 

data (Figure 5.9).  
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Figure 5.9: Map to show the estimated area of occupancy for the Painted Lady in the 

original NBN data (A) and for the datasets where inaccuracies were simulated by guessing 

(B) and by species confusions (C). 

5.5 Discussion 

We explored the extent to which accurate verification of ecological citizen science datasets 

matters in the context of protected area coverage of UK butterfly species, by applying the 

same analytical framework to datasets with different levels of accuracy. We simulated 

inaccuracies for two different scenarios: inaccuracies due to random errors and inaccuracies 

based on empirical species confusions. We aim to examine the impact of these inaccuracies 

on the outputs of this analysis, the inferences that can be made using these results, and the 

implications for policy and management responses that these might prompt. Our findings 

show that inaccurate data have the potential to increase the estimated area of occupancy 

for butterfly species (Figure 5.4). This has consequences for assessing protected area 

coverage, particularly for species that have restricted geographic ranges (Figure 5.6), with 

this analysis severely over- or under-estimating protected area coverage for these species. 

For species that have ubiquitous distributions and large volumes of observations, our 

analyses indicate that some error can be tolerated when estimating occupancy and making 

inferences with the outputs of the analysis, because inaccurate data has little impact on the 

analysis output. For species with large ranges, introducing error did not to lead to high levels 
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of over- or under-estimation of range sizes, with little difference between 20% inaccuracy 

and 2% inaccuracy (Figure 5.9).  

In the analysis presented here, the observation densities are lower in areas that are outside 

of the range of the original data than areas within the range of the original data (Figures 5.6 

- 9). As alpha-hulls are based on nearest neighbour distances, if there are enough 

observations that are within the mean nearest neighbour distance to one another they will 

be included in the distribution regardless of the density of observations. Alpha-hulls have 

been used in a range of contexts to estimate species distributions (Meyer et al., 2018; Pena 

et al., 2014; Rivers et al., 2010). However, given the varied density in observations between 

the original data and inaccurate data, the alpha-hull approach may not be an appropriate 

approach, especially for analysing inaccurate datasets.  Rather, approaches that account for 

variability in densities of observations, such as kernel density estimation may be a more 

suitable method of analysis (Fleming and Calabrese, 2017; Pena et al., 2014; Zhang et al., 

2018). Kernel densities can be applied by identifying biases in observations of presence-only 

data, by weighting points with fewer neighbours. In some cases, up-weighting observations 

with fewer neighbours may be more appropriate, for example when accounting for 

sampling bias (Brown, 2014). Here, where observations with fewer neighbours are more 

likely to be inaccurate, observations could be down-weighted to provide more accurate 

estimated occupancies. In the context of the verification process, random errors in 

occurrence data could be picked up by automated tools such as the NBN Record Cleaner, 

which run checks to identify records that are out of range (Dean, 2013).  

Given the high levels of accuracy that can be observed in citizen science datasets pre-

verification, as well as how demanding it can be to implement accurate verification, there is 

an argument for evaluating how verification can evolve and adapt to growing data volumes 

and the demand for up-to-date data. The results here question whether every record needs 

to be verified, and suggest which species should be prioritised for verification and which 

records could be accepted as correct without time-consuming verification approaches. For 

widespread species with large numbers of citizen science observations, verifying every 

citizen science record is perhaps unnecessary, as errors in individual records will make little 

difference to the overall spread of the data. A small proportion of records could still be 

verified, to monitor inaccuracies and ensure data quality. For species that are known to be 
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threatened, vulnerable, or range-restricted, verifying every record is more important, 

because analysis of trends will be more sensitive to errors. Another consideration for 

evaluating the need for verification should be species-specific accuracies. For example, if 

citizen science identification accuracy is high for a given species, then verifying every record 

is less necessary, but for species that are frequently misidentified, verification is more 

important to correct for errors in citizen science observations.  

Before evaluating approaches to verification, and whether there is a need to verify every 

record, the costs of errors should also be considered. If species’ ranges are over or 

underestimated, this can have consequences for policy and management decisions that are 

developed in response to analysing trends in species populations (Gardiner et al., 2012; 

Kamp et al., 2016; Soroye et al., 2018). For example, when managing the spread of invasive 

species, underestimating the distribution of a species could lead to delays in control 

measures being implemented, potentially allowing the species to disperse further (Andow 

et al., 2016; Maistrello et al., 2016). This could, in turn, lead to more time and resources 

being needed to manage the species in the future (Epanchin-Niell, 2017). In the case of 

invasive species, inaccurate observations can be costly both via environmental impacts, and 

in the contact of the time and resources that may be directed to control the species’ spread. 

When assessing the conservation status of rare, threatened, or declining species, the 

implications of inaccurate verification may also be costly. Accurate species occurrences and 

distributions are necessary to assess, evaluate and implement site-specific habitat 

management practices to promote and conserve specific species (Johnston et al., 2020a; 

Robinson et al., 2018). If the species’ data are inaccurate, this can lead to resources being 

directed to where they are not needed, potentially to the detriment of areas where habitat 

management would be most beneficial (Gill et al., 2023; Zurell et al., 2022). If a citizen 

science scheme is monitoring these species, efforts should be focused on ensuring 

observations of these species are as accurate as possible (Baker et al., 2021). For more 

ubiquitous species, data inaccuracy might conceal range contractions or population 

decreases; in turn, this could lead to underestimates of the species’ vulnerability. In the 

context of the datasets used here, many butterfly species are experiencing declines. A 2022 

red list assessment showed that 41% of UK butterfly species were considered threatened 

under IUCN red list criteria, which was a 26% increase in threatened species since the last 
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assessment in 2006 (Fox et al., 2022). This is a pattern that can be seen in other invertebrate 

groups, due to climate change (Harvey et al., 2020), agricultural intensification (Outhwaite 

et al., 2022) and habitat loss (Kehoe et al., 2021). Due to the rapidly changing conservation 

status of many species, the costs of inaccurate verification should be assessed dynamically. 

If a species’ conservation status changes, or if declines in abundance and distribution are 

observed, then accurate verification may become more necessary for species that were 

formerly considered ubiquitous. 

Here, we explore the impacts of inaccurate verification on ecological analysis, and the 

inferences that can be made using the outputs. In this context, we show that inaccurate 

verification can overestimate the area of occupancy of some species, specifically for those 

with limited geographical ranges, but, for more ubiquitous species, small amounts of error 

(≤20% inaccuracy) make minimal difference to spatial inferences. For some species, 

therefore, verifying every record may be unnecessary; verification should be focused on 

species where highly accurate data are needed to pinpoint exact locations of species. Given 

how time- and resource-intensive verification can be this research signposts a way forward 

for how verification can evolve to deal with large volumes of data without compromising 

inferences that can be made in analysis. 
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6. General Discussion   

6.1 Synthesis 

Citizen science has underpinned ecological data collection for centuries (Mesaglio et al., 

2021; Pocock et al., 2015, 2017; Sutherland et al., 2015). As volunteer-collected datasets are 

being used more widely in ecological research to explore a range of research questions 

(Fraisl et al., 2022; Poisson et al., 2020), data quality and accuracy of citizen science data 

remain at the forefront of the discourse around their use (Johnston et al., 2023). Verification 

is a necessary and essential process for ensuring data quality (Gilfedder et al., 2019; 

Tweddle, et al. 2012), but the large volumes of citizen science records submitted to schemes 

can create bottlenecks in data processing (Baker et al., 2021). A range of scheme-specific 

verification approaches have aimed to address verification bottlenecks (Bonter and Cooper, 

2012; Siddharthan et al., 2016; Swanson et al., 2016; Yu et al., 2011). However, there has not 

been a large-scale examination of the verification of ecological citizen science data. 

This thesis contributes to our understanding of the role that verification currently plays in 

ecological citizen science schemes by examining how approaches to verification should 

evolve in response to increased data volumes, presenting alternative approaches to 

verification and exploring the impacts of inaccurate verification on inferences that can be 

made using citizen science data. Chapter 2 of this thesis presents the first review of 

verification approaches within ecological citizen science schemes. In this chapter, I reviewed 

259 citizen science schemes that record species data across the globe to provide a current 

examination of the verification approaches of citizen science data. The results from this 

research highlighted that verification by experts has tended to be the default approach, but 

alternative approaches such as community consensus and automation are being adopted by 

more recent schemes. I discuss the issues that may arise from relying on expert verification 

and present an idealised approach for verification. This idealised system outlined a 

hierarchical approach to verification that suggested using community consensus or 

automation as the first level of verification and only using expert verification for anomalous 

observations. Furthermore, I outline the range of information that can be used to verify 

citizen science observations, which we broadly categorise as attributes of the species, the 

environmental context, and the observer.  
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Based on the idealised approach to verification outlined in the previous chapter, Chapter 3 

shows the implementation of an automated verification approach that incorporates species 

attributes, using existing information on species confusions, and environmental context, 

using relative frequencies with which species appear in different contexts. I illustrate how 

this approach can be applied to both schemes that crowdsource image classification tasks 

and schemes that rely on field-based citizen scientists to collect species data. In the 

crowdsourcing example, including contextual information improved verification accuracy by 

1-3%, but for ad-hoc records, context provided little advantage in verifying records. I discuss 

why meta-data can sometimes be useful in assessing confidence in citizen science 

observations, and how setting thresholds for confidence can improve accuracy. Chapter 4 

presents how variation in observer expertise can be used to inform automated verification 

approaches and shows that, in the examples presented, accounting for observer expertise 

does not necessarily improve the accuracy of verification. Strong skews in observer 

contributions lead to difficulties in quantifying observer variability when, for the majority of 

observers, little data is available to assess expertise. This problematic attribute is likely to be 

common to many citizen science schemes, suggesting that it might often be difficult to make 

use of information on observers. Chapters 3 and 4 highlight that citizen science observations 

are already highly accurate pre-verification (89-96% for the datasets analysed in this thesis), 

and that automated verification approaches provide marginal improvements in verification 

accuracy. I, therefore, discuss the extent to which accurate verification is necessary, and 

whether it is worthwhile to continue to develop intensive automated verification 

approaches that provide minimal improvements in verification accuracy.  

Given the difficulties of using contextual data to improve the accuracy of verification, 

particularly for schemes that consist of ad hoc records, in Chapter 5 I examine the extent to 

which accurate verification matters by exploring the impacts of inaccurate data on spatial 

analysis that informs policy and management responses. Specifically, I examined the impact 

of inaccurate data when examining protected area coverage for UK Butterfly species. I 

explored this by simulating different levels of inaccuracy (20%, 10%, 5%, 2%) in NBN 

butterfly occurrences, then estimated occupancy and calculated percentage overlap with UK 

protected areas. The results from this chapter show that the impacts of inaccurate 

verification vary from species to species. For more ubiquitous, widespread species, the 
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spatial inferences showed little variation with different levels of inaccuracy. However, for 

species with restricted ranges, inaccurate datasets tended to increase the estimated area of 

occupancy. This resulted in a misrepresentation of protected area coverage for these 

species, leading to under- or over-estimations of protected area coverage for species that 

originally had either high or low protected area overlap, respectively. I discuss these results 

in the context of evaluating the need to verify every record, and the costs and consequences 

of using inaccurate data in different contexts. For example, for some rare or threatened 

species, pinpointing the exact location of occurrences is necessary for implementing 

effective conservation and habitat management. However, for species where pinpointing 

individual occurrences is not necessary, small amounts of error, such as the 2-20% range 

presented in this thesis, can potentially be tolerated, and the need for intensive and highly 

accurate verification approaches should be evaluated.  

This research contributes to our understanding of verification within ecological citizen 

science data and explores how citizen science schemes should evaluate approaches to 

verification. Furthermore, this thesis signposts a way forward for verification approaches to 

evolve in the future, to ensure data are processed efficiently and effectively, benefiting both 

those who run and manage citizen science schemes and end users of the data.  

6.2 Confidence in citizen science approaches within ecological research 

Citizen science initiatives have collected large volumes of data that provide insight into 

species abundances (Callaghan et al., 2021), distributions (Johnston et al., 2020b), and 

phenology (Soroye et al., 2018). These citizen science datasets have proven to be a key 

resource that can be used in ecological research, conservation management and 

environmental policy development (Adler et al., 2020; Fraisl et al., 2022). However, data 

quality remains a concern when using citizen science data in ecological research (Johnston et 

al., 2023), and resources are continuing to be focused on improving the accuracy of citizen 

science data through verification (Baker et al., 2021; McClure et al., 2020). Despite these 

efforts to increase verification accuracy, all datasets will inevitably have some amount of 

error (Freitas et al., 2020; Grenié et al., 2023; Valdez et al., 2023). Given the increased use of 

citizen-collected data in a range of research, policy, and management contexts, there is a 

need to address issues around confidence in citizen science data and examine how to deal 

with imperfect citizen science data. 
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6.2.1 Transparency within citizen science data 

Verification is the primary way in which data quality is assessed and inaccuracies are 

corrected (Baker et al., 2021; Tweddle et al., 2012). However, as Chapter 2 of this thesis 

highlighted, many citizen science schemes whose data are used in ecological research 

provide no information as to how the data are verified (Baker et al., 2021). Transparency in 

verification approaches can be increased by reporting how the data are verified (i.e., expert, 

community consensus or automation), who verifies the data and the information used to 

verify data. Furthermore, it would be beneficial to report on the decision-making framework 

that is used to evaluate whether a record could be accepted or not, and the percentage of 

records that are redetermined to another species. End users of the data can then be aware 

of the potential issues in data quality and can then account for this in research and analysis 

(Anhalt-Depies et al., 2019; Wang et al., 2015).   

If verification approaches are reported more widely, concerns around confidence and data 

quality can be directly addressed on a case-by-case basis when they arise and ensures citizen 

science schemes are accountable for the quality of their data. For example, some schemes 

allow records to be submitted without evidence such as photos or videos. If there is 

transparency in the fact that a proportion of the data is not backed by photographic 

evidence, then end users may choose to filter out all records without photos or selectively 

remove instances for hard to identify species with no photographic evidence. More broadly, 

if redetermination rates are shared, as they have been in Chapters 3 and 4 of this thesis, 

then this could highlight the already high accuracy of citizen science observations prior to 

verification, further bolstering confidence in citizen science data.  

Increased transparency has the potential to catalyse movement towards better data 

standards and best practices for data collection and management within citizen science. This 

then can improve the reputation of, and confidence in, citizen science data, leading to the 

wider use of citizen science approaches within the ecological research community.  

6.2.2 Dealing with imperfect data 

All data, irrespective of how they are collected and verified are subject to errors (Barré et al., 

2019; Bird et al., 2014; Simões and Peterson, 2018). Research efforts, including those 

presented in this thesis, are continuing to be focused on understanding data quality and 
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striving for verification approaches that, in many cases, only marginally improve verification 

accuracy (Chapter 3, Chapter 4, Mugford et al., 2021; Siddharthan et al., 2016; Terry et al., 

2020). Therefore, citizen science schemes and end users of the data should consider 

alternative frameworks for managing, processing, and analysing imperfect data.  

As citizen science schemes grow, verification becomes a more intensive and time-consuming 

process (Baker et al., 2021). The research presented throughout this thesis highlights that 

verification approaches should adapt to meet the needs of citizen science schemes and 

discusses two considerations for citizen science schemes when evaluating verification 

approaches. Firstly, Chapter 2 of this thesis questions whether expert verification should be 

the default approach to verification and recommends that citizen science schemes explore 

alternative approaches to verification. Secondly, Chapter 5 of this thesis questions the need 

for continuing to develop intensive verification approaches and suggests that citizen science 

schemes should evaluate the need for every record to be verified. Moving forward, schemes 

should consider alternative frameworks for processing citizen science records, that not only 

evaluates the most suitable approach to verification, but also whether the verification of 

every record is necessary.  

When designing a verification framework, initially citizen science schemes should aim to 

understand data quality, determining the overall level of inaccuracy and identifying where 

inaccuracies are within the data. Furthermore, citizen science schemes should evaluate the 

specific costs of inaccurate verification for a given dataset. This will identify species where 

highly accurate verification matters and whether the end use of the data can tolerate the 

inaccuracies present within the dataset. This process will identify two groups of data, citizen 

science records where the level of inaccuracy within the data can be accepted, and 

observations where highly accurate verification is essential. If inaccuracy can be tolerated 

then citizen science schemes can choose to accept those observations at face value, and 

resources can be focused on striving for higher accuracy for records where highly accurate 

verification is necessary. 

6.2.2.1 Confidence metrics when using citizen science data 

Bayesian approaches provide a useful framework with which to assess whether a citizen 

science observation is correct by incorporating prior information and data to estimate 
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likelihood, i.e., the probability of a species observation being correct or not (Siddharthan et 

al., 2016). Additionally, Bayesian models have the flexibility to incorporate past data and 

prior knowledge to inform the posterior probability and can be updated when new evidence 

becomes available. This thesis contributes to, and builds on, a growing body of research that 

uses Bayesian approaches to assess confidence in, and verify, citizen science data (De Lellis 

et al., 2019; Mugford et al., 2021; Santos-Fernandez and Mengersen, 2021; Siddharthan et 

al., 2016). Given the flexibility of Bayesian approaches, such frameworks have the potential 

to be a valuable tool for evaluating imperfect data and using citizen science data within 

ecological research. 

In Chapters 3 and 4 of this thesis, a variation of the Independent Bayesian Classifier 

Combination was used to provide a likelihood value for each species that could be observed, 

which was then used to classify a record as a given species using top-1 accuracy, i.e., the 

species with the highest probability. Chapters 3 and 4 show that using this approach 

improves the accuracy of verification by 1-3%. Accuracy can be further increased if 

thresholds are set, i.e., where records are only accepted if the likelihood exceeds a certain 

value. For example, in Chapter 3, verification accuracy for MammalWeb data increased from 

91.9% to 96.3% when the probability threshold was set to 0.9. However, setting higher 

thresholds mean that more of the data remains unverified and will either require additional 

classifications by citizen scientists or expert review. In Chapter 3, a threshold of 0.9 removed 

77% of instances, leaving 23% requiring further verification. Beyond being used in the 

verification process, probability metrics have the potential to be used as a measure of 

confidence and could be an alternative to records either being categorised as ‘correct’ or 

‘incorrect’. This means that end users of the data can avoid removing large proportions of 

the data and allows inaccuracies in the data to be accounted for in analysis. Confidence 

metrics could be used as an indicator for data quality, or when developing modelling 

approaches, with analysis integrating probability metrics to account for potential 

inaccuracies or varying likelihoods in the data.  

Probability metrics can be calculated and assigned to individual species occurrence records 

using the methods presented in Chapters 3 and 4 of this thesis. If a citizen science scheme is 

collecting more than species occurrence data, such as behaviour or life stage, the methods 

presented in this thesis for calculating confidence metrics would need to be expanded to 
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account for the additional levels of data that end users may analyse. This could be achieved 

by expanding the confusion matrix to account for categorical factors such as behaviour, 

assigning a single probability to the species and the behaviour, i.e., the probability of that 

certain species behaviour being observed given the contextual information included in the 

model. Alternatively, more complex item response models (Santos-Fernandez and 

Mengersen, 2021) or Bayesian hierarchical models (Hertzog et al., 2021) could calculate 

separate probabilities for the species and the behaviour observed.  

Prior to analysis, confidence metrics could be used as an indicator of overall data quality, and 

as an identifier for subsets of the dataset where confidence is low. If, within a dataset, 

probability metrics are showing low confidence in specific species, then this could be 

accounted for by pooling data from other sources to fill in data gaps (Callaghan et al., 2019; 

Fithian et al., 2015), either by compiling data from expert-collected sources (Robinson et al., 

2020) or other citizen science datasets (Crall et al., 2010). When analysing citizen science 

datasets, confidence metrics could be incorporated into models that explore species 

distributions and temporal trends in species populations. For example, records could be 

weighted based on confidence, which has been shown to be an effective approach when 

accounting for bias and uneven sampling in occupancy models when estimating species 

distributions (Dennis et al., 2017; Johnston et al., 2020b). Correction factors, where bias and 

inaccuracy are corrected for based on observed patterns, could be used to account for 

variability in confidence when analysing trends in species abundances through time (Belt 

and Krausman, 2012; Cretois et al., 2021; Isaac et al., 2014; Stuber et al., 2022).   

Although a range of known inaccuracies and biases affect citizen-collected datasets, citizen 

science datasets continue to be used in ecological research to expand our knowledge of 

species and ecological processes. By assessing confidence in citizen science observations and 

assigning confidence metrics to species identifications, end users of the data can make 

informed decisions about how to account for data quality in the analysis. By using metrics to 

quantify confidence, issues of data quality can be identified, and concerns around data 

quality can be challenged, further highlighting the value of, and increasing confidence in 

citizen science datasets and their use in ecological research. In the future, research could be 

focused on exploring how these confidence metrics influence inferences that could be made 

using citizen science data to address ecological questions. 
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6.3 Citizen science and targets for nature  

As the severity of the nature and climate crises increase, ambitious targets are being set to 

mitigate climate change and protect biodiversity to improve the global outlook for nature 

(Dinerstein et al., 2019; Roberts et al., 2020; Waldron et al., 2020). Some of the most notable 

targets include the sustainable development goals, which were agreed upon by the global 

community at the 2015 UN Summit (Locke et al., 2019), and committed to meet a range of 

social, economic, and environmental goals by 2030, which included stopping biodiversity 

loss (Opoku, 2019; Visseren-Hamakers et al., 2021). More recently, nature conservation 

organisations across the globe have committed to the target of conserving at least 30% of 

land by 2030 (Dinerstein et al., 2019). To track our progress toward reaching these targets, 

as well as assess the effectiveness of conservation efforts that are being developed to meet 

these targets, dynamic assessments of the state of nature are required at a global scale 

(Buchanan et al., 2020; Green et al., 2019; Shepherd et al., 2016). Furthermore, engagement 

and collaboration between scientists, policymakers, and citizens is required to mobilise and 

empower communities across the world to take action for nature, improving the outlook for 

biodiversity across the globe (Devictor et al., 2010; Fritz et al., 2019; Pocock et al., 2019). 

Citizen science has proven to be a powerful tool for both large-scale data collection and 

engagement within the fields of ecology and conservation (Fraisl et al., 2022; Von Gönner et 

al., 2023). By engaging citizen scientists in different levels of the research and decision-

making process we can collect large volumes of data with which to assess the state of 

nature, as well as catalyse environmental stewardship, conservation management and 

protection of biodiversity, ensuring we are on track to meet these targets for nature. 

Verification is a fundamental process that is intrinsic to the collection, processing, and use of 

citizen science data, and therefore is key to considering the wider use of citizen science 

approaches in research and policymaking associated with meeting global targets for nature.  

Connecting with citizen scientists more widely through knowledge sharing has the potential 

to provide insight into local knowledge and values systems, filling critical data gaps for 

species or geographical regions where data are currently deficient (Fontaine et al., 2021; 

Hochkirch et al., 2021; Tauginienė et al., 2020; Tengö et al., 2021). This could be particularly 

beneficial when assessing rare or threatened species. The IUCN Red List for Threatened 

Species is the largest database for the assessment of the extinction risk of species, globally, 
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and has assessed over 150,000 species (IUCN, 2023). However, these species assessments 

are generally biased towards terrestrial ecosystems and animal species (Bachman et al., 

2019; Cazalis et al., 2022; Harfoot et al., 2021; IUCN, 2023; Miqueleiz et al., 2020). Plants 

and fungi, freshwater and marine species, and invertebrates are currently underrepresented 

in Red List assessments (IUCN, 2023). Failing to identify species that are at risk of extinction 

can lead to the loss of species and impact assessments that are made regarding the global 

state of biodiversity change (Betts et al., 2020). By striving to target and fill these gaps in 

data through citizen science and community initiatives, we can identify the species and 

taxonomic groups most at threat and target resources to those most at risk from extinction. 

Many of the underrepresented species’ groups are more difficult to identify (Barbato et al., 

2021; Mesaglio et al., 2023; Newcomer et al., 2019), and therefore, verification will be 

necessary to ensuring that this data is accurate. As highlighted in Chapter 5, accurate 

verification is necessary for rare or threatened species, and therefore, verification efforts 

should be focused on the species that are identified as at risk from extinction by Red List 

assessments. Verification will also be essential in engaging citizen scientists, as providing 

timely feedback enhances engagement and provides support that could lead to continued 

contributions by citizen scientists towards data collection. Furthermore, efficient verification 

will be necessary to ensure that the state of nature is accurately assessed, filling in data gaps 

and providing more robust evidence to inform decision-making around conservation and the 

protection of biodiversity, as well as assess our progress towards nature targets.  

Aside from data collection, engaging citizen scientists in conservation policy and 

management decisions can catalyse bottom-up action for nature locally, which can amount 

to positive cumulative impacts for nature at a greater geographic scale (Devictor et al., 2010; 

McKinley et al., 2017). Involving communities in conservation management democratises 

the decision-making process and can inspire public involvement in the implementation of 

conservation measures for habitats and species (Devictor et al., 2010; McKinley et al., 2017; 

Newman et al., 2017). Furthermore, by maintaining long-term engagement with citizen 

scientists and providing efficient and timely feedback through verification, local communities 

can effectively maintain and evaluate the effectiveness of conservation efforts (Newman et 

al., 2017). Engaging with citizen scientists can increase the community of people across the 

globe concerned for and working to protect nature. This has the power to influence 
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policymaking and hold decision-makers accountable to protect and conserve nature (Adler 

et al., 2020; Hollow et al., 2015; Young et al., 2019). This could lead to top-down decision-

making to establish legal obligations to protect nature, designate protected areas and 

outline mitigation measures to reduce the impact of infrastructure development (Dinerstein 

et al., 2019; Maxwell et al., 2020).  

Citizen scientists can play a key role in working towards these bold and necessary targets to 

protect nature and halt biodiversity loss by 2030. Citizen science can continue to play a role 

in data collection to fill in gaps and data deficiencies, but we can move beyond data 

collection to engage citizen scientists further in the implementation of conservation 

measures, with verification providing the foundation for the data and information collected 

through these schemes. Just as citizen science has been proven to collect data at a scale 

unmatched by traditional data collection methods, if we engage citizen scientists in 

conservation actions, we can have a greater positive impact on the protection of nature at a 

global scale.  

6.4 Conclusions  

This thesis contributes to and builds upon the range of research that examines issues of data 

quality within ecological citizen science data by examining approaches to verification, 

exploring ways in which we can increase efficiency within verification, and assess the 

impacts of inaccurate verification. The research conducted here includes the first review of 

verification approaches within ecological citizen science schemes, which highlights the 

reliance on experts in the verification process and the need to move towards more efficient 

ways of verifying data. In pursuit of that greater efficiency, I explore how attributes of the 

species, the environmental context and the observer can be used to inform automated 

verification approaches. The key findings here show the usefulness of the species confusion 

matrix in verifying citizen science data, and how the environmental context and observer 

variability can be captured using the confusion matrix. However, in some situations the 

environmental context provided little advantage when verifying data, and for all the 

examples presented here, accounting for the observer did not improve the accuracy of 

verification. I then explore the impacts of inaccurate data on spatial analysis in an 

environmental policy and management context, discussing the costs of inaccurate 

verification when conserving species and habitats. The overarching findings of this thesis 
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highlight the need to evaluate approaches to verification within ecological citizen science 

schemes to verify records efficiently without compromising data quality and downstream 

decision-making. Moving forward, there should be a focus on increasing confidence in 

citizen science data within ecological research. Increased trustworthiness of citizen science 

data could be achieved through more transparency regarding data quality and verification 

within citizen science schemes, and by exploring alternative approaches for dealing with 

imperfect data, including the use of confidence metrics in the analysis of citizen science 

data. The scientific community should move beyond only involving citizen scientists in data 

collection and consider engaging them further in the decision-making process and 

implementation of conservation efforts. This can lead to widespread efforts to conserve 

nature and ensure we are on track to meet the current targets for halting and reversing 

biodiversity loss.  
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Appendices  

Appendix A 

Chapter 2 

Table A.1: References for 434 papers that were reviewed, and the citizen science schemes that featured in each 

paper.  

Literature search references DOI: https://doi.org/10.5334/cstp.351.s1 

Table A.2: Names, attributes, verification approaches and references for each of the 259 citizen science schemes 

that were reviewed.  

Citizen Science Scheme Data DOI: https://doi.org/10.5334/cstp.351.s2 
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Appendix B 

Chapter 3 

Table B.1: Cross-validation summary from the community consensus classification model that was applied to 

MammalWeb data. Cross validation was used to compare models and determine which contextual variables were 

most useful in verifying species correctly. Variables included in 𝜋1 refer to the contextual information that was 

included in the confusion matrix to calculate 𝑃(𝑅 ∣ 𝑆, 𝐻, 𝜋1) , the probability of a species being classified as a 

particular species given the true species and the context. Variables included in 𝜋2 refer to the context information 

that was included in the context matrix to calculate 𝑃(𝑆 ∣ 𝐻, 𝜋2), the probability of the true species given the 

environmental context. Model selection metrics included proportion of correct instances (i.e. citizen science records 

where the species was correctly classified by the model), the negative log likelihood across instances and the squared 

error (where the error is the difference between the probability assigned to a species and 1, if it is the correct 

species, or zero, otherwise).  

Variables included in 𝝅𝟏 Variables included in 𝝅𝟐 Model selection metrics 

Habitat Season Time Habitat Season Time Proportion correct Mean squared error Log likelihood 

0 0 0 0 0 0 0.900219673 0.009479838 -0.661323428 

1 0 0 0 0 0 0.903396169 0.009495696 -0.669377363 

0 1 0 0 0 0 0.904645783 0.009504704 -0.671655858 

1 1 0 0 0 0 0.907533899 0.009564245 -0.67353931 

0 0 1 0 0 0 0.902316403 0.009880948 -0.694896237 

1 0 1 0 0 0 0.906690052 0.009704785 -0.686010163 

0 1 1 0 0 0 0.907983497 0.009591541 -0.681210756 

1 1 1 0 0 0 0.907802148 0.009927646 -0.703395597 

0 0 0 1 0 0 0.916587019 0.005713633 -0.406526627 

1 0 0 1 0 0 0.913848987 0.005915473 -0.419613022 

0 1 0 1 0 0 0.915754259 0.005822821 -0.412873125 

1 1 0 1 0 0 0.907834396 0.006323705 -0.448277425 

0 0 1 1 0 0 0.916038713 0.00577987 -0.422165492 

1 0 1 1 0 0 0.910537985 0.006128597 -0.444106639 

0 1 1 1 0 0 0.911404185 0.00609931 -0.440716718 

1 1 1 1 0 0 0.900159198 0.006923735 -0.49160144 

0 0 0 0 1 0 0.915790179 0.005765215 -0.413200584 

1 0 0 0 1 0 0.910559452 0.006115711 -0.44087924 

0 1 0 0 1 0 0.916709242 0.00584177 -0.414408154 

1 1 0 0 1 0 0.90378241 0.00661069 -0.468547352 

0 0 1 0 1 0 0.914163017 0.005929787 -0.431852691 

1 0 1 0 1 0 0.905445276 0.006485935 -0.473055698 

0 1 1 0 1 0 0.910183338 0.00615888 -0.446115094 

1 1 1 0 1 0 0.893349069 0.007238995 -0.519513653 

0 0 0 1 1 0 0.915298355 0.005702828 -0.404691683 

1 0 0 1 1 0 0.916549628 0.005770379 -0.411135301 

0 1 0 1 1 0 0.918115218 0.005639771 -0.400859476 

1 1 0 1 1 0 0.911546913 0.006140079 -0.4362837 

0 0 1 1 1 0 0.917606032 0.005751333 -0.417751287 

1 0 1 1 1 0 0.912102452 0.006059448 -0.435379318 

0 1 1 1 1 0 0.915354902 0.005877223 -0.422951189 

1 1 1 1 1 0 0.901867549 0.006745126 -0.476071255 

0 0 0 0 0 1 0.913785955 0.00583828 -0.417213776 
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1 0 0 0 0 1 0.909486919 0.00617104 -0.443449286 

0 1 0 0 0 1 0.915586962 0.005931154 -0.421546 

1 1 0 0 0 1 0.902328194 0.006630053 -0.470982215 

0 0 1 0 0 1 0.916561879 0.005757097 -0.414836746 

1 0 1 0 0 1 0.908427406 0.006296439 -0.454369631 

0 1 1 0 0 1 0.913991473 0.00602421 -0.431212118 

1 1 1 0 0 1 0.896855973 0.007015649 -0.496689542 

0 0 0 1 0 1 0.914635656 0.005776557 -0.406473696 

1 0 0 1 0 1 0.914237161 0.005890909 -0.41663583 

0 1 0 1 0 1 0.914618986 0.005850193 -0.41476603 

1 1 0 1 0 1 0.907627734 0.006309331 -0.443686592 

0 0 1 1 0 1 0.917328405 0.005671997 -0.405760229 

1 0 1 1 0 1 0.914100388 0.005915184 -0.421745991 

0 1 1 1 0 1 0.914068524 0.005924598 -0.42138084 

1 1 1 1 0 1 0.901982394 0.006723614 -0.471775099 

0 0 0 0 1 1 0.914907258 0.005800663 -0.413791842 

1 0 0 0 1 1 0.909541655 0.006160757 -0.439332931 

0 1 0 0 1 1 0.917164846 0.005803008 -0.410744493 

1 1 0 0 1 1 0.903412976 0.00653075 -0.457012329 

0 0 1 0 1 1 0.91788653 0.005694175 -0.411983455 

1 0 1 0 1 1 0.910158947 0.006212238 -0.443570296 

0 1 1 0 1 1 0.916786491 0.005848515 -0.417121258 

1 1 1 0 1 1 0.899390184 0.006840629 -0.485131083 

0 0 0 1 1 1 0.914350161 0.005785407 -0.407763102 

1 0 0 1 1 1 0.916704315 0.005780615 -0.409678793 

0 1 0 1 1 1 0.9172162 0.005715107 -0.403292335 

1 1 0 1 1 1 0.911703361 0.006133681 -0.429583591 

0 0 1 1 1 1 0.918709002 0.005612251 -0.402947986 

1 0 1 1 1 1 0.91619043 0.005855489 -0.417356553 

0 1 1 1 1 1 0.917979888 0.005733235 -0.407534988 

1 1 1 1 1 1 0.907486624 0.006455964 -0.456437853 
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Table B.2: Cross-validation summary for the expert behaviour model that was applied to iRecord Coleoptera data. 

Contextual information included in model refers to the information included in the overall matrix to calculate 

𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾), the probability of true species 𝑆, given the recorded species, 𝑅, and contextual information 𝐻. 

Model selection metrics are as described in Appendix B.1. 

Contextual information included in the model Coccinellidae records model selection metrics Remaining Coleoptera records model 
selection metrics 

Data cleaner 
result 

Sample 
method 

UK Habitat 
category 

Season Proportion 
correct  

Mean 
squared error  

Log 
likelihood  

Proportion 
correct  

Mean squared 
error  

Log 
likelihood  

0 0 0 0 0.958561888 0.005885833 -0.20323671 0.95716056 0.001964051 -1.54886 

1 0 0 0 0.958522749 0.007156035 -0.22507814 0.95279529 0.001991753 -1.71446 

0 1 0 0 0.957860631 0.00614 -0.21222723 0.95165188 0.001975957 -1.62934 

1 1 0 0 0.958536648 0.007338604 -0.23258588 0.94853 0.002001884 -1.78859 

0 0 1 0 0.957625733 0.01033926 -0.32274299 0.91684015 0.00214959 -2.73416 

1 0 1 0 0.954917244 0.011495869 -0.38039354 0.90700444 0.002164674 -2.88654 

0 1 1 0 0.957162621 0.010484671 -0.33645744 0.90959692 0.002156643 -2.80324 

1 1 1 0 0.954221755 0.011567159 -0.39136671 0.9007186 0.002171178 -2.95241 

0 0 0 1 0.959079067 0.008250348 -0.24489323 0.94738757 0.002084606 -2.11454 

1 0 0 1 0.958778207 0.009711029 -0.29061822 0.93991374 0.002101324 -2.28373 

0 1 0 1 0.958560699 0.008437243 -0.25609015 0.94110286 0.002090978 -2.18907 

1 1 0 1 0.95818753 0.009869617 -0.30286919 0.9337774 0.00210919 -2.35579 

0 0 1 1 0.954053094 0.012978718 -0.4852712 0.8685586 0.002201057 -3.29081 

1 0 1 1 0.947099837 0.0139786 -0.56301311 0.85657478 0.002209989 -3.43551 

0 1 1 1 0.952748919 0.013070308 -0.50200266 0.86067767 0.002203216 -3.35486 

1 1 1 1 0.946226957 0.014052059 -0.57887767 0.84931468 0.00221454 -3.49302 
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Table B.3: Cross-validation summary for the expert behaviour model that was applied to iRecord Diptera data. 

Contextual information included in model refers to the information included in the overall matrix to calculate 

𝑃(𝑆 ∣ 𝑅, 𝐻, 𝐷, 𝐾), the probability of true species 𝑆, given the recorded species, 𝑅, and contextual information 𝐻. 

Model selection metrics are as described in Appendix B.1. 

Contextual information included in the model Syphidae records Remaining Diptera records 

Data cleaner 
result 

Sample 
method 

UK Habitat 
category 

Season Proportion 
correct 

Mean 
squared error  

Log 
likelihood 

Proportion 
correct  

Mean squared 
error  

Log 
likelihood  

0 0 0 0 0.969175 0.003241 -0.39449 0.953008 0.003707 -1.26141 

1 0 0 0 0.96903 0.003448 -0.53116 0.949598 0.003755 -1.33797 

0 1 0 0 0.968441 0.003264 -0.42317 0.949116 0.003788 -1.39444 

1 1 0 0 0.967846 0.003472 -0.56345 0.945864 0.003833 -1.47054 

0 0 1 0 0.962148 0.004063 -0.94674 0.945249 0.004016 -1.61674 

1 0 1 0 0.955393 0.004216 -1.16719 0.941376 0.004051 -1.69072 

0 1 1 0 0.960628 0.004079 -0.97908 0.939279 0.004081 -1.7536 

1 1 1 0 0.95378 0.004229 -1.19962 0.933201 0.004118 -1.83195 

0 0 0 1 0.968353 0.003578 -0.56692 0.90525 0.004493 -2.56036 

1 0 0 1 0.966415 0.00378 -0.75623 0.899659 0.004515 -2.62201 

0 1 0 1 0.967224 0.003599 -0.60116 0.890805 0.004531 -2.69443 

1 1 0 1 0.965136 0.003798 -0.79223 0.886308 0.004555 -2.75274 

0 0 1 1 0.953107 0.004303 -1.28348 0.863595 0.004618 -2.93938 

1 0 1 1 0.94144 0.004439 -1.5309 0.855272 0.004637 -2.99973 

0 1 1 1 0.951476 0.004316 -1.31922 0.846562 0.00465 -3.06485 

1 1 1 1 0.938838 0.004453 -1.5679 0.8399 0.004673 -3.1207 
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Appendix C 

Chapter 4 

Table C.1: Full cross-validation results for observer ID models applied to MammalWeb data using the community 

consensus verification model. Variables included in 𝜋1 refer to the contextual information that was included in the 

confusion matrix to calculate 𝑃(𝑅 ∣ 𝑆, 𝑂, 𝜋1), the probability of a species being classified as a particular species 

given the true species and the observer. As described in Appendix B.1, Variables included in 𝜋2 refer to the context 

information that was included in the context matrix to calculate 𝑃(𝑆 ∣ 𝐻, 𝜋2), the probability of the true species 

given the environmental context. Model selection metrics are as described in Appendix B.1. 

Variables included in 𝝅𝟏 Variables included in 𝝅𝟐 Model selection metrics 

Observer ID Habitat Season Time Proportion correct Mean squared error Log likelihood 

0 1 1 0 0.934781537 0.003576593 -0.353810084 

0 1 1 1 0.934582977 0.003588988 -0.354605015 

0 1 0 1 0.934771878 0.003634319 -0.360105823 

0 1 0 0 0.934734316 0.003619812 -0.362087377 

0 0 1 1 0.932842565 0.003688106 -0.370366107 

0 0 1 0 0.932936159 0.003691745 -0.373848182 

0 0 0 1 0.932536506 0.003734691 -0.374542189 

0 0 0 0 0.917713526 0.007357774 -0.659816714 

1 1 1 1 0.919595249 0.00429944 -0.411861073 

1 1 1 0 0.917190652 0.004419336 -0.42561421 

1 1 0 1 0.917074746 0.00441696 -0.426726839 

1 1 0 0 0.915340203 0.004534782 -0.444592947 

1 0 1 1 0.913403067 0.004680195 -0.456495006 

1 0 0 1 0.912471655 0.00474525 -0.468580855 

1 0 1 0 0.91254877 0.004794747 -0.471413388 

1 0 0 0 0.92904671 0.006896607 -0.636739642 
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Table C.2: Full cross-validation results for observer traits models applied to MammalWeb data using the community 

consensus verification model. Variables included in 𝜋1 refer to the contextual information that was included in the 

confusion matrix to calculate 𝑃(𝑅 ∣ 𝑆, 𝑂, 𝜋1), the probability of a species being classified as a particular species 

given the true species and the observer traits. MammalWeb role refers to whether the observer was a spotter (only 

classifies photos) or a trapper (also records observations using camera traps). As described in Appendix B.1, Variables 

included in 𝜋2 refer to the context information that was included in the context matrix to calculate 𝑃(𝑆 ∣ 𝐻, 𝜋2), the 

probability of the true species given the environmental context. Model selection metrics are as described in 

Appendix B.1. 

Variables included in 𝝅𝟏 Variables included in 𝝅𝟐 Model selection metrics 

MammalWeb 
role 

Classification 
number 

Years classifying Accuracy Habitat Season Time Proportion 
correct 

Mean 
squared 
error 

Log 
likelihood 

0 0 0 0 0 0 0 0.917564707 0.007358504 -0.658950527 

1 0 0 0 0 0 0 0.918951344 0.007320674 -0.656694909 

0 1 0 0 0 0 0 0.920274825 0.00718009 -0.648804134 

1 1 0 0 0 0 0 0.922433704 0.007141178 -0.647804469 

0 0 1 0 0 0 0 0.918861991 0.007367266 -0.66527163 

1 0 1 0 0 0 0 0.922268586 0.007276476 -0.654326661 

0 1 1 0 0 0 0 0.922066815 0.007133541 -0.649175039 

1 1 1 0 0 0 0 0.924785958 0.00710279 -0.647117403 

0 0 0 1 0 0 0 0.922395633 0.006886964 -0.625157406 

1 0 0 1 0 0 0 0.924804766 0.006924103 -0.628412877 

0 1 0 1 0 0 0 0.924834925 0.006743164 -0.619348751 

1 1 0 1 0 0 0 0.927367324 0.006782604 -0.624618871 

0 0 1 1 0 0 0 0.924344014 0.006952251 -0.631302329 

1 0 1 1 0 0 0 0.927802102 0.006996318 -0.635089732 

0 1 1 1 0 0 0 0.926592227 0.006808449 -0.627836032 

1 1 1 1 0 0 0 0.928355896 0.007011132 -0.643942551 

0 0 0 0 1 0 0 0.93454631 0.003629007 -0.362863369 

1 0 0 0 1 0 0 0.933623027 0.003672955 -0.362944598 

0 1 0 0 1 0 0 0.933295468 0.003687094 -0.366649852 

1 1 0 0 1 0 0 0.930553416 0.003822554 -0.376711807 

0 0 1 0 1 0 0 0.933121905 0.003705449 -0.368448843 

1 0 1 0 1 0 0 0.929891953 0.003887442 -0.380498849 

0 1 1 0 1 0 0 0.930931881 0.003833796 -0.38085235 

1 1 1 0 1 0 0 0.925648967 0.004112994 -0.401000157 

0 0 0 1 1 0 0 0.935591677 0.003583606 -0.359626467 

1 0 0 1 1 0 0 0.932698705 0.003715782 -0.367826948 

0 1 0 1 1 0 0 0.933051048 0.003688044 -0.369265997 

1 1 0 1 1 0 0 0.929158588 0.003922897 -0.387711587 

0 0 1 1 1 0 0 0.933552223 0.003726766 -0.372006478 

1 0 1 1 1 0 0 0.926856579 0.004019707 -0.393622333 

0 1 1 1 1 0 0 0.930203155 0.003908693 -0.387799804 

1 1 1 1 1 0 0 0.919840139 0.004323169 -0.422511153 

0 0 0 0 0 1 0 0.933033589 0.003692323 -0.371262978 

1 0 0 0 0 1 0 0.931549686 0.003754004 -0.377357437 

0 1 0 0 0 1 0 0.931790894 0.00377484 -0.381252394 

1 1 0 0 0 1 0 0.928958244 0.003942289 -0.393750394 

0 0 1 0 0 1 0 0.931997464 0.003778655 -0.378199386 

1 0 1 0 0 1 0 0.928294067 0.003996779 -0.399382214 
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0 1 1 0 0 1 0 0.930106094 0.003904378 -0.391774257 

1 1 1 0 0 1 0 0.923425084 0.004288074 -0.423971361 

0 0 0 1 0 1 0 0.935065083 0.003627299 -0.36848418 

1 0 0 1 0 1 0 0.930845978 0.003825762 -0.384685163 

0 1 0 1 0 1 0 0.932538417 0.003769282 -0.38244908 

1 1 0 1 0 1 0 0.926923731 0.004076171 -0.406937241 

0 0 1 1 0 1 0 0.932616617 0.003820711 -0.386141899 

1 0 1 1 0 1 0 0.925080619 0.004201672 -0.418024422 

0 1 1 1 0 1 0 0.929128069 0.004019761 -0.40607704 

1 1 1 1 0 1 0 0.918331309 0.004505875 -0.446323713 

0 0 0 0 1 1 0 0.934522299 0.003598079 -0.355622916 

1 0 0 0 1 1 0 0.934280798 0.003609708 -0.354827561 

0 1 0 0 1 1 0 0.933696396 0.003636815 -0.357415045 

1 1 0 0 1 1 0 0.931441442 0.00376141 -0.366920163 

0 0 1 0 1 1 0 0.933078298 0.003683874 -0.363339486 

1 0 1 0 1 1 0 0.931355244 0.003796275 -0.36743363 

0 1 1 0 1 1 0 0.931756037 0.003766331 -0.369612717 

1 1 1 0 1 1 0 0.926946214 0.004038669 -0.390966259 

0 0 0 1 1 1 0 0.935851095 0.003542111 -0.351578131 

1 0 0 1 1 1 0 0.934133734 0.003630669 -0.358558512 

0 1 0 1 1 1 0 0.933407064 0.003649556 -0.361634827 

1 1 0 1 1 1 0 0.930364394 0.003845014 -0.37789275 

0 0 1 1 1 1 0 0.933677737 0.003708975 -0.365432456 

1 0 1 1 1 1 0 0.929585301 0.00390918 -0.381737971 

0 1 1 1 1 1 0 0.930852947 0.003847149 -0.377600011 

1 1 1 1 1 1 0 0.923153084 0.004197168 -0.406722244 

0 0 0 0 0 0 1 0.933041799 0.003710203 -0.372451689 

1 0 0 0 0 0 1 0.932347613 0.00379135 -0.379638653 

0 1 0 0 0 0 1 0.932156584 0.003775395 -0.380930085 

1 1 0 0 0 0 1 0.928840287 0.003966323 -0.395137767 

0 0 1 0 0 0 1 0.930877954 0.003818932 -0.382881643 

1 0 1 0 0 0 1 0.928066068 0.004018023 -0.399287981 

0 1 1 0 0 0 1 0.929514458 0.00393438 -0.392469066 

1 1 1 0 0 0 1 0.923720297 0.004301412 -0.426827345 

0 0 0 1 0 0 1 0.93372798 0.003687009 -0.372817992 

1 0 0 1 0 0 1 0.93061695 0.003844491 -0.38410271 

0 1 0 1 0 0 1 0.93205594 0.003794846 -0.383318531 

1 1 0 1 0 0 1 0.926503754 0.004090775 -0.408088495 

0 0 1 1 0 0 1 0.930949702 0.003854998 -0.388899408 

1 0 1 1 0 0 1 0.925212935 0.004179027 -0.415630491 

0 1 1 1 0 0 1 0.928424649 0.004027889 -0.404070858 

1 1 1 1 0 0 1 0.918466875 0.004498978 -0.445706958 

0 0 0 0 1 0 1 0.935104291 0.003607736 -0.356106409 

1 0 0 0 1 0 1 0.933902029 0.00365357 -0.358308595 

0 1 0 0 1 0 1 0.933763936 0.003682427 -0.366324582 

1 1 0 0 1 0 1 0.931297135 0.003798522 -0.370121566 

0 0 1 0 1 0 1 0.933020768 0.003709782 -0.365392332 

1 0 1 0 1 0 1 0.930925057 0.003828682 -0.372691204 

0 1 1 0 1 0 1 0.931593725 0.003799612 -0.373630616 
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1 1 1 0 1 0 1 0.926224333 0.004061356 -0.393114728 

0 0 0 1 1 0 1 0.935131582 0.003598431 -0.356818869 

1 0 0 1 1 0 1 0.932561137 0.003708265 -0.363742073 

0 1 0 1 1 0 1 0.932906639 0.003697224 -0.365509391 

1 1 0 1 1 0 1 0.929304665 0.003895273 -0.38045828 

0 0 1 1 1 0 1 0.933230843 0.003714918 -0.367182192 

1 0 1 1 1 0 1 0.927974646 0.00397166 -0.387718571 

0 1 1 1 1 0 1 0.929736183 0.003904289 -0.384047409 

1 1 1 1 1 0 1 0.922071163 0.004218629 -0.40662219 

0 0 0 0 0 1 1 0.933236859 0.003668507 -0.367625759 

1 0 0 0 0 1 1 0.932077373 0.003736713 -0.371969547 

0 1 0 0 0 1 1 0.932031283 0.003762779 -0.377962723 

1 1 0 0 0 1 1 0.929362006 0.003910034 -0.388181747 

0 0 1 0 0 1 1 0.931502376 0.003772163 -0.376754166 

1 0 1 0 0 1 1 0.928334998 0.003945084 -0.391572844 

0 1 1 0 0 1 1 0.929267839 0.003898862 -0.390459257 

1 1 1 0 0 1 1 0.924415454 0.00420606 -0.411160877 

0 0 0 1 0 1 1 0.934774372 0.003630824 -0.364955199 

1 0 0 1 0 1 1 0.931191049 0.003802648 -0.37972936 

0 1 0 1 0 1 1 0.932053954 0.00375671 -0.378265003 

1 1 0 1 0 1 1 0.927038825 0.004030543 -0.399068079 

0 0 1 1 0 1 1 0.931802949 0.0038167 -0.382446609 

1 0 1 1 0 1 1 0.925380575 0.004108666 -0.405934202 

0 1 1 1 0 1 1 0.928099955 0.003992551 -0.400371927 

1 1 1 1 0 1 1 0.919178251 0.004411259 -0.433625497 

0 0 0 0 1 1 1 0.934077284 0.003605565 -0.355635559 

1 0 0 0 1 1 1 0.934003029 0.003615383 -0.35510421 

0 1 0 0 1 1 1 0.933634286 0.003634908 -0.357941622 

1 1 0 0 1 1 1 0.932000891 0.003727748 -0.362068638 

0 0 1 0 1 1 1 0.933158435 0.003666838 -0.361301385 

1 0 1 0 1 1 1 0.931171557 0.003784368 -0.367546017 

0 1 1 0 1 1 1 0.932029112 0.003734446 -0.36348234 

1 1 1 0 1 1 1 0.927142791 0.003969128 -0.379826523 

0 0 0 1 1 1 1 0.935570929 0.003526881 -0.347094995 

1 0 0 1 1 1 1 0.934334914 0.003620694 -0.354674172 

0 1 0 1 1 1 1 0.934244933 0.003624485 -0.356317676 

1 1 0 1 1 1 1 0.931191677 0.003800675 -0.371225049 

0 0 1 1 1 1 1 0.933954641 0.003666063 -0.362144578 

1 0 1 1 1 1 1 0.929814713 0.003883742 -0.376215198 

0 1 1 1 1 1 1 0.930833865 0.003817377 -0.373418985 

1 1 1 1 1 1 1 0.924214399 0.004129651 -0.396141729 
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Table C.3: Cross-validation summary for the expert behaviour model that was applied to iRecord Coleoptera data. 

Contextual information included in model refers to the information on the observer that was included in the overall 

matrix to calculate 𝑃(𝑆 ∣ 𝑅, 𝑂, 𝐷, 𝐾), the probability of true species 𝑆, given the recorded species, 𝑅, and observer 

information 𝑂. Model selection metrics are as described in Appendix B.1. 

Contextual information included in the model Coccinellidae records Remaining Coleoptera records 

Observer 
role 

Record 
number 

Accura
cy 

Time 
recor
ding 

Observer 
ID 

Proportion 
correct 

Mean 
squared error 

Log 
likelihood 

Proportion 
correct 

Mean 
squared error 

Log 
likelihood 

0 0 0 0 0 0.958400328 0.005916235 -0.20454766 0.956513547 0.001964184 -1.55154 

0 0 0 0 1 0.925473144 0.01337201 -0.932646985 0.755551916 0.002191741 -3.64908 

0 0 0 1 0 0.958262942 0.010907045 -0.313444825 0.92089759 0.002187975 -2.96522 

0 0 1 0 0 0.959876106 0.006926567 -0.216294223 0.947841719 0.002087983 -2.14929 

0 0 1 1 0 0.956451928 0.011692266 -0.388982186 0.87395402 0.002208283 -3.40952 

0 1 0 0 0 0.959148616 0.008630034 -0.235595831 0.950771853 0.002105004 -2.17699 

0 1 0 1 0 0.956172124 0.012772738 -0.438310251 0.869050435 0.002210341 -3.42572 

0 1 1 0 0 0.959604319 0.008723994 -0.245889302 0.941825964 0.002124321 -2.36389 

0 1 1 1 0 0.95499869 0.012877946 -0.468670128 0.845154463 0.002213257 -3.5553 

1 0 0 0 0 0.958274868 0.006448005 -0.215040838 0.954014929 0.00197218 -1.60707 

1 0 0 1 0 0.957689559 0.011331486 -0.337466115 0.913711803 0.002188495 -3.01743 

1 0 1 0 0 0.95973402 0.007464868 -0.230549518 0.943671705 0.002092453 -2.2031 

1 0 1 1 0 0.9553966 0.012105523 -0.414028274 0.866575461 0.002208587 -3.45044 

1 1 0 0 0 0.959093806 0.009184715 -0.257435205 0.946575065 0.002108899 -2.23082 

1 1 0 1 0 0.954485109 0.013103999 -0.466288861 0.861624481 0.002211339 -3.46801 

1 1 1 0 0 0.95939465 0.009275153 -0.267725856 0.937742218 0.002127574 -2.41437 

1 1 1 1 0 0.95348425 0.013195706 -0.495419418 0.83746658 0.002214662 -3.59338 
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Table C.4: Cross-validation summary for the expert behaviour model that was applied to iRecord Diptera data. 

Contextual information included in model refers to the information on the observer that was included in the overall 

matrix to calculate 𝑃(𝑆 ∣ 𝑅, 𝑂, 𝐷, 𝐾), the probability of true species 𝑆, given the recorded species, 𝑅, and observer 

information 𝑂. Model selection metrics are as described in Appendix B.1. 

Contextual information included in the model Syphidae records Remaining Diptera records 

Observer 
role 

Record 
number 

Accuracy Time 
recording 

Observer 
ID 

Proportion 
correct 

Mean 
squared error  

Log 
likelihood 

Proportion 
correct 

Mean 
squared 
error  

Log 
likelihood 

0 0 0 0 0 0.969031 0.003242 -0.39521 0.953077 0.003705 -1.26129 

0 0 0 0 1 0.864507 0.004793 -2.607 0.785866 0.004586 -3.23074 

0 0 0 1 0 0.964051 0.004303 -1.04257 0.918029 0.004572 -2.64313 

0 0 1 0 0 0.967191 0.003573 -0.59219 0.943892 0.004159 -1.83904 

0 0 1 1 0 0.953398 0.004482 -1.37013 0.868947 0.004669 -3.11698 

0 1 0 0 0 0.967747 0.003905 -0.69396 0.948643 0.004206 -1.83868 

0 1 0 1 0 0.953856 0.004643 -1.59773 0.864895 0.004668 -3.10178 

0 1 1 0 0 0.966006 0.003999 -0.80748 0.940021 0.004288 -2.0379 

0 1 1 1 0 0.945002 0.004687 -1.75532 0.842062 0.004688 -3.25467 

1 0 0 0 0 0.96858 0.003268 -0.42356 0.9494 0.003752 -1.31506 

1 0 0 1 0 0.962487 0.004314 -1.08117 0.909339 0.004579 -2.68149 

1 0 1 0 0 0.966242 0.003597 -0.62334 0.938029 0.004189 -1.89042 

1 0 1 1 0 0.951374 0.004495 -1.40627 0.860483 0.004676 -3.1431 

1 1 0 0 0 0.966338 0.003925 -0.72931 0.941455 0.00423 -1.88867 

1 1 0 1 0 0.951801 0.004653 -1.63421 0.858801 0.004673 -3.12919 

1 1 1 0 0 0.964578 0.004017 -0.84243 0.932414 0.004309 -2.08807 

1 1 1 1 0 0.942541 0.00469 -1.79195 0.833521 0.004695 -3.28439 
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Appendix D 

Chapter 5 

Table D.1 Full results for the protected area coverage analysis of 58 UK Butterfly species where inaccuracies have 

been introduced into the data by a random guessing scenario. 

Species N Estimated area of occupancy (km2) Protected area overlap (%) Inaccuracy 

Aglais io 184707 580267.2 19.12416 10% inaccuracy 

Aglais io 184598 572504.4 19.27975 2% inaccuracy 

Aglais io 184728 591825.6 18.81213 20% inaccuracy 

Aglais io 184760 568884.5 19.35305 5% inaccuracy 

Aglais io 184715 572504.4 19.27975 Original data 

Aglais urticae 120334 591036.8 19.10815 10% inaccuracy 

Aglais urticae 120334 591036.8 19.10815 2% inaccuracy 

Aglais urticae 120193 590895.7 19.10302 20% inaccuracy 

Aglais urticae 120477 591036.8 19.10815 5% inaccuracy 

Aglais urticae 120364 591036.8 19.10815 Original data 

Anthocharis cardamines 89625 575282.9 19.13195 10% inaccuracy 

Anthocharis cardamines 89466 557321.2 19.37706 2% inaccuracy 

Anthocharis cardamines 89491 566896.3 19.5337 20% inaccuracy 

Anthocharis cardamines 89465 560652.3 19.46824 5% inaccuracy 

Anthocharis cardamines 89445 553120.1 19.47996 Original data 

Apatura iris 479 130913.9 22.56293 10% inaccuracy 

Apatura iris 461 87024.2 22.55752 2% inaccuracy 

Apatura iris 448 112853.2 23.88931 20% inaccuracy 

Apatura iris 462 74055.94 17.04851 5% inaccuracy 

Apatura iris 460 36266 21.69369 Original data 

Aphantopus hyperantus 252859 571152.8 19.21959 10% inaccuracy 

Aphantopus hyperantus 252669 545205.2 19.15039 2% inaccuracy 

Aphantopus hyperantus 252820 597408.3 18.80014 20% inaccuracy 

Aphantopus hyperantus 252726 567042.3 19.28167 5% inaccuracy 

Aphantopus hyperantus 252681 511745.2 19.08535 Original data 

Argynnis paphia 50588 513720.9 19.72636 10% inaccuracy 

Argynnis paphia 50545 445231.1 19.87316 2% inaccuracy 

Argynnis paphia 50624 536735.6 19.31373 20% inaccuracy 

Argynnis paphia 50638 526272.1 19.1363 5% inaccuracy 

Argynnis paphia 50559 228682.5 19.72489 Original data 

Aricia agestis 40631 518168.9 19.80213 10% inaccuracy 

Aricia agestis 40622 474339.3 19.24526 2% inaccuracy 

Aricia agestis 40546 558154.9 19.30584 20% inaccuracy 

Aricia agestis 40669 474806.3 20.27512 5% inaccuracy 

Aricia agestis 40601 193606.8 19.3958 Original data 

Aricia artaxerxes 4441 430669.6 20.07352 10% inaccuracy 

Aricia artaxerxes 4492 259289.6 23.60662 2% inaccuracy 

Aricia artaxerxes 4473 398625.3 21.41258 20% inaccuracy 

Aricia artaxerxes 4487 318591.7 21.41253 5% inaccuracy 

Aricia artaxerxes 4471 13335.5 48.81071 Original data 

Boloria euphrosyne 4516 372381.8 22.79499 10% inaccuracy 

Boloria euphrosyne 4534 274388.1 24.46554 2% inaccuracy 
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Boloria euphrosyne 4477 426212.8 21.5285 20% inaccuracy 

Boloria euphrosyne 4537 266121.3 24.51068 5% inaccuracy 

Boloria euphrosyne 4539 140640 31.56002 Original data 

Boloria selene 8854 512057.4 20.41815 10% inaccuracy 

Boloria selene 8861 463282.2 21.21362 2% inaccuracy 

Boloria selene 8947 530045.8 19.54113 20% inaccuracy 

Boloria selene 8867 514296.9 19.6842 5% inaccuracy 

Boloria selene 8870 370303.5 22.91718 Original data 

Callophrys rubi 12017 512040.2 20.11945 10% inaccuracy 

Callophrys rubi 12007 499689.7 19.90418 2% inaccuracy 

Callophrys rubi 12004 503593.8 20.31442 20% inaccuracy 

Callophrys rubi 12028 497079.6 20.15744 5% inaccuracy 

Callophrys rubi 12025 434081.1 21.67565 Original data 

Carterocephalus palaemon 995 189483.5 20.79537 10% inaccuracy 

Carterocephalus palaemon 974 46820.82 28.32762 2% inaccuracy 

Carterocephalus palaemon 968 336633.6 21.28313 20% inaccuracy 

Carterocephalus palaemon 983 138478.9 24.99984 5% inaccuracy 

Carterocephalus palaemon 980 4305.853 24.02542 Original data 

Celastrina argiolus 43299 511440.4 19.55033 10% inaccuracy 

Celastrina argiolus 43411 496621.6 19.46255 2% inaccuracy 

Celastrina argiolus 43433 556965.1 19.09569 20% inaccuracy 

Celastrina argiolus 43459 530169.6 18.9925 5% inaccuracy 

Celastrina argiolus 43396 309212.3 20.29071 Original data 

Coenonympha pamphilus 150852 587448 19.01243 10% inaccuracy 

Coenonympha pamphilus 150935 582364.2 18.94145 2% inaccuracy 

Coenonympha pamphilus 150848 573695.7 19.2863 20% inaccuracy 

Coenonympha pamphilus 150764 584226.6 18.9122 5% inaccuracy 

Coenonympha pamphilus 150917 579226.5 19.01562 Original data 

Coenonympha tullia 991 441729 21.89376 10% inaccuracy 

Coenonympha tullia 993 443665.2 21.00485 2% inaccuracy 

Coenonympha tullia 988 487370.6 20.91237 20% inaccuracy 

Coenonympha tullia 994 443104.5 21.65862 5% inaccuracy 

Coenonympha tullia 988 166060.1 25.05485 Original data 

Colias croceus 5941 473752.5 19.32954 10% inaccuracy 

Colias croceus 5947 325501 21.37831 2% inaccuracy 

Colias croceus 5853 505260.3 20.05763 20% inaccuracy 

Colias croceus 5923 357149.5 21.02878 5% inaccuracy 

Colias croceus 5916 285079.9 20.85504 Original data 

Cupido minimus 10127 504380.9 20.44323 10% inaccuracy 

Cupido minimus 10113 403725 21.90506 2% inaccuracy 

Cupido minimus 10118 521946.3 19.02589 20% inaccuracy 

Cupido minimus 10159 426961.9 21.18411 5% inaccuracy 

Cupido minimus 10137 208370.3 23.25082 Original data 

Erebia aethiops 3838 456147.8 21.79722 10% inaccuracy 

Erebia aethiops 3800 293984.8 22.97063 2% inaccuracy 

Erebia aethiops 3759 466131.6 21.08858 20% inaccuracy 

Erebia aethiops 3820 458530.7 21.30083 5% inaccuracy 

Erebia aethiops 3823 143656.3 27.36644 Original data 

Erebia epiphron 261 64242.74 33.05098 10% inaccuracy 
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Erebia epiphron 256 6679.372 51.41869 2% inaccuracy 

Erebia epiphron 247 145077 23.00595 20% inaccuracy 

Erebia epiphron 246 50299.81 25.18593 5% inaccuracy 

Erebia epiphron 254 4928.171 50.07188 Original data 

Erynnis tages 24239 530726.5 19.02268 10% inaccuracy 

Erynnis tages 24180 383028.2 20.56461 2% inaccuracy 

Erynnis tages 24128 527169.6 19.5622 20% inaccuracy 

Erynnis tages 24211 455125.2 20.61803 5% inaccuracy 

Erynnis tages 24235 257483.9 22.68824 Original data 

Euphydryas aurinia 2662 427915 20.57538 10% inaccuracy 

Euphydryas aurinia 2696 294270.6 20.84907 2% inaccuracy 

Euphydryas aurinia 2684 469690.8 20.22976 20% inaccuracy 

Euphydryas aurinia 2694 283868.6 21.87723 5% inaccuracy 

Euphydryas aurinia 2689 75002.82 23.94571 Original data 

Fabriciana adippe 1020 153578.5 25.97098 10% inaccuracy 

Fabriciana adippe 1001 8880.089 37.89653 2% inaccuracy 

Fabriciana adippe 1008 240901.1 20.81203 20% inaccuracy 

Fabriciana adippe 1019 114251.1 24.80987 5% inaccuracy 

Fabriciana adippe 1009 1919.403 56.18406 Original data 

Favonius quercus 7171 494405.6 19.29038 10% inaccuracy 

Favonius quercus 7212 263778.2 22.36014 2% inaccuracy 

Favonius quercus 7183 447504.7 20.94946 20% inaccuracy 

Favonius quercus 7194 324408.3 22.47103 5% inaccuracy 

Favonius quercus 7201 243452.8 22.45568 Original data 

Gonepteryx rhamni 152644 562065.3 18.89022 10% inaccuracy 

Gonepteryx rhamni 153042 518290.4 19.17758 2% inaccuracy 

Gonepteryx rhamni 152840 575785.5 19.48622 20% inaccuracy 

Gonepteryx rhamni 152903 554088 18.92714 5% inaccuracy 

Gonepteryx rhamni 152874 301129.9 21.40257 Original data 

Hamearis lucina 1715 195040.2 21.58459 10% inaccuracy 

Hamearis lucina 1725 110465.6 25.49609 2% inaccuracy 

Hamearis lucina 1706 360393.5 23.01643 20% inaccuracy 

Hamearis lucina 1734 171476.9 25.12821 5% inaccuracy 

Hamearis lucina 1725 49440.83 31.79749 Original data 

Hesperia comma 3116 380286.9 20.81265 10% inaccuracy 

Hesperia comma 3065 62603.98 31.04548 2% inaccuracy 

Hesperia comma 3067 405568.4 21.97746 20% inaccuracy 

Hesperia comma 3069 269804.8 22.15256 5% inaccuracy 

Hesperia comma 3073 14340.94 44.11636 Original data 

Hipparchia semele 11846 537280.2 19.11098 10% inaccuracy 

Hipparchia semele 11838 493436.6 17.44317 2% inaccuracy 

Hipparchia semele 11915 558125.2 19.31844 20% inaccuracy 

Hipparchia semele 11867 555342.5 19.00218 5% inaccuracy 

Hipparchia semele 11841 380289.5 17.99586 Original data 

Lasiommata megera 16165 492464.3 19.17182 10% inaccuracy 

Lasiommata megera 16166 404848.5 18.63638 2% inaccuracy 

Lasiommata megera 16149 532493.1 19.34892 20% inaccuracy 

Lasiommata megera 16184 506728.9 19.36787 5% inaccuracy 

Lasiommata megera 16142 360128.5 19.40038 Original data 
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Leptidea sinapis 4609 367225.7 21.84757 10% inaccuracy 

Leptidea sinapis 4655 169779.2 23.09522 2% inaccuracy 

Leptidea sinapis 4727 397201.8 22.04229 20% inaccuracy 

Leptidea sinapis 4643 206110.1 22.6975 5% inaccuracy 

Leptidea sinapis 4665 36998.11 23.2966 Original data 

Limenitis camilla 8798 442236.6 20.01368 10% inaccuracy 

Limenitis camilla 8831 233808.8 21.97837 2% inaccuracy 

Limenitis camilla 8935 497228.2 20.0353 20% inaccuracy 

Limenitis camilla 8895 373745 22.57429 5% inaccuracy 

Limenitis camilla 8866 110015.7 21.46816 Original data 

Lycaena phlaeas 58271 543420.6 19.16345 10% inaccuracy 

Lycaena phlaeas 58233 526411.2 19.5166 2% inaccuracy 

Lycaena phlaeas 58107 560091.5 19.44748 20% inaccuracy 

Lycaena phlaeas 58250 526001.3 19.47797 5% inaccuracy 

Lycaena phlaeas 58182 526387.3 19.5166 Original data 

Maniola jurtina 558418 598558 18.80892 10% inaccuracy 

Maniola jurtina 558937 595271.4 18.89715 2% inaccuracy 

Maniola jurtina 559380 594309.1 18.94868 20% inaccuracy 

Maniola jurtina 558747 595260.9 18.89745 5% inaccuracy 

Maniola jurtina 559031 595271.4 18.89715 Original data 

Melanargia galathea 101482 539940.4 19.14766 10% inaccuracy 

Melanargia galathea 101136 441955.9 21.37446 2% inaccuracy 

Melanargia galathea 101515 552375.7 19.64238 20% inaccuracy 

Melanargia galathea 101376 540767.8 19.49451 5% inaccuracy 

Melanargia galathea 101230 193855.1 21.15487 Original data 

Melitaea athalia 1405 209301.1 21.70823 10% inaccuracy 

Melitaea athalia 1395 89501.22 21.32245 2% inaccuracy 

Melitaea athalia 1431 201423 23.46738 20% inaccuracy 

Melitaea athalia 1389 127061.7 19.97687 5% inaccuracy 

Melitaea athalia 1397 613.577 5.792878 Original data 

Melitaea cinxia 314 102896.4 21.70263 10% inaccuracy 

Melitaea cinxia 308 3624.379 41.73114 2% inaccuracy 

Melitaea cinxia 305 132419.6 23.69195 20% inaccuracy 

Melitaea cinxia 286 9377.883 33.04715 5% inaccuracy 

Melitaea cinxia 304 165.526 50.88322 Original data 

Nymphalis polychloros 30 25281.38 26.58232 10% inaccuracy 

Nymphalis polychloros 27 12406.22 25.93525 2% inaccuracy 

Nymphalis polychloros 26 44227.47 27.92332 20% inaccuracy 

Nymphalis polychloros 27 34510.52 20.87399 5% inaccuracy 

Nymphalis polychloros 26 12406.22 25.93525 Original data 

Ochlodes sylvanus 92965 566232.5 19.22556 10% inaccuracy 

Ochlodes sylvanus 93018 501178.7 19.90576 2% inaccuracy 

Ochlodes sylvanus 93199 560399.6 19.39396 20% inaccuracy 

Ochlodes sylvanus 93118 521032.9 19.58077 5% inaccuracy 

Ochlodes sylvanus 93119 331934.2 20.54358 Original data 

Papilio machaon 713 172876.1 22.74707 10% inaccuracy 

Papilio machaon 721 11245.13 36.5678 2% inaccuracy 

Papilio machaon 713 262355.4 22.82244 20% inaccuracy 

Papilio machaon 711 111238.7 20.02756 5% inaccuracy 
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Papilio machaon 716 9883.109 23.32231 Original data 

Pararge aegeria 333157 598103.9 18.80824 10% inaccuracy 

Pararge aegeria 333091 561483.4 19.46321 2% inaccuracy 

Pararge aegeria 333438 583122.7 19.14517 20% inaccuracy 

Pararge aegeria 333016 572202.9 19.25658 5% inaccuracy 

Pararge aegeria 333167 556020 19.59625 Original data 

Phengaris arion 19 28880.72 14.89035 10% inaccuracy 

Phengaris arion 34 84229.81 24.23934 20% inaccuracy 

Pieris brassicae 252572 637942 17.72104 10% inaccuracy 

Pieris brassicae 252363 626389.9 17.99511 2% inaccuracy 

Pieris brassicae 252411 587161.8 19.17775 20% inaccuracy 

Pieris brassicae 252373 626568.6 17.99149 5% inaccuracy 

Pieris brassicae 252318 626389.9 17.99511 Original data 

Pieris napi 243764 593721.1 18.98957 10% inaccuracy 

Pieris napi 243823 598408.9 18.86283 2% inaccuracy 

Pieris napi 244168 593607.9 18.98695 20% inaccuracy 

Pieris napi 243492 593954.8 18.99149 5% inaccuracy 

Pieris napi 243700 593954.8 18.99149 Original data 

Pieris rapae 329340 587581.3 18.88044 10% inaccuracy 

Pieris rapae 329076 583463.9 18.86445 2% inaccuracy 

Pieris rapae 328835 596608.8 18.80166 20% inaccuracy 

Pieris rapae 329307 592519.6 18.85259 5% inaccuracy 

Pieris rapae 329145 575697.6 18.98081 Original data 

Plebejus argus 11010 398239.4 21.73574 10% inaccuracy 

Plebejus argus 10931 255261.3 21.25389 2% inaccuracy 

Plebejus argus 10841 493139.6 19.8803 20% inaccuracy 

Plebejus argus 10966 449240.7 19.47266 5% inaccuracy 

Plebejus argus 10958 52139.32 26.63524 Original data 

Polygonia c-album 84052 569614.7 19.38516 10% inaccuracy 

Polygonia c-album 84098 482170.3 19.41387 2% inaccuracy 

Polygonia c-album 84178 561595.3 19.38339 20% inaccuracy 

Polygonia c-album 84006 491360.1 19.568 5% inaccuracy 

Polygonia c-album 84073 413094.2 21.09203 Original data 

Polyommatus bellargus 12147 451034 20.49276 10% inaccuracy 

Polyommatus bellargus 12065 268860.9 24.20511 2% inaccuracy 

Polyommatus bellargus 12048 482511.5 20.38153 20% inaccuracy 

Polyommatus bellargus 12117 470728.7 21.13587 5% inaccuracy 

Polyommatus bellargus 12087 25977.4 46.03947 Original data 

Polyommatus coridon 24780 528379.7 19.76921 10% inaccuracy 

Polyommatus coridon 24905 357952.2 21.33836 2% inaccuracy 

Polyommatus coridon 24740 510217.9 20.01637 20% inaccuracy 

Polyommatus coridon 24748 459214.6 19.93156 5% inaccuracy 

Polyommatus coridon 24848 58473.54 33.56056 Original data 

Polyommatus icarus 189850 598903.1 18.90898 10% inaccuracy 

Polyommatus icarus 189942 600713.9 18.87974 2% inaccuracy 

Polyommatus icarus 189819 616435.8 18.36697 20% inaccuracy 

Polyommatus icarus 190177 594701 19.0513 5% inaccuracy 

Polyommatus icarus 189957 595248.7 18.96352 Original data 

Pyrgus malvae 8625 413897.3 19.85558 10% inaccuracy 



130 
 

Pyrgus malvae 8605 300547.3 21.08182 2% inaccuracy 

Pyrgus malvae 8573 451844.8 20.73644 20% inaccuracy 

Pyrgus malvae 8601 302725.3 21.21454 5% inaccuracy 

Pyrgus malvae 8604 81074.33 27.49584 Original data 

Pyronia tithonus 248284 572853.7 19.34106 10% inaccuracy 

Pyronia tithonus 248470 524336.7 20.00781 2% inaccuracy 

Pyronia tithonus 247875 575764.4 19.43236 20% inaccuracy 

Pyronia tithonus 248186 558217.3 18.95115 5% inaccuracy 

Pyronia tithonus 248325 298644.9 21.59251 Original data 

Satyrium pruni 295 69063.95 22.44257 10% inaccuracy 

Satyrium pruni 295 13330.01 15.095 2% inaccuracy 

Satyrium pruni 280 170182.4 22.43635 20% inaccuracy 

Satyrium pruni 284 23687.94 29.44517 5% inaccuracy 

Satyrium pruni 287 169.526 5.832583 Original data 

Satyrium w-album 1237 252159.6 22.0745 10% inaccuracy 

Satyrium w-album 1239 188896.6 22.21277 2% inaccuracy 

Satyrium w-album 1249 246913.4 21.1448 20% inaccuracy 

Satyrium w-album 1239 238484.6 21.83155 5% inaccuracy 

Satyrium w-album 1247 142876.6 19.88425 Original data 

Speyeria aglaja 26940 576766.3 18.99892 10% inaccuracy 

Speyeria aglaja 27001 567593.1 19.16546 2% inaccuracy 

Speyeria aglaja 26960 573616.4 19.06895 20% inaccuracy 

Speyeria aglaja 27062 572407.6 19.06954 5% inaccuracy 

Speyeria aglaja 27011 559013.4 19.00846 Original data 

Thecla betulae 953 242592.1 22.87095 10% inaccuracy 

Thecla betulae 961 79858.85 23.67109 2% inaccuracy 

Thecla betulae 947 239809 21.75134 20% inaccuracy 

Thecla betulae 960 142392.3 21.08711 5% inaccuracy 

Thecla betulae 961 31878.1 34.83758 Original data 

Thymelicus acteon 1417 151675.9 24.09002 10% inaccuracy 

Thymelicus acteon 1411 115666 24.66895 2% inaccuracy 

Thymelicus acteon 1417 322739.5 23.24783 20% inaccuracy 

Thymelicus acteon 1429 173048.6 21.63541 5% inaccuracy 

Thymelicus acteon 1400 107.808 95.22837 Original data 

Thymelicus lineola 14983 454515.8 20.83915 10% inaccuracy 

Thymelicus lineola 14891 368028.7 21.69349 2% inaccuracy 

Thymelicus lineola 14822 500804.8 20.33795 20% inaccuracy 

Thymelicus lineola 14798 479042.8 19.00826 5% inaccuracy 

Thymelicus lineola 14913 178630.6 20.4294 Original data 

Thymelicus sylvestris 82864 559139.5 19.42371 10% inaccuracy 

Thymelicus sylvestris 82829 507183 18.89909 2% inaccuracy 

Thymelicus sylvestris 82800 588576.5 18.91295 20% inaccuracy 

Thymelicus sylvestris 82790 528962.2 19.06233 5% inaccuracy 

Thymelicus sylvestris 82809 326860 21.0936 Original data 

Vanessa atalanta 115241 646943.8 17.59217 10% inaccuracy 

Vanessa atalanta 115149 646971 17.59158 2% inaccuracy 

Vanessa atalanta 115076 644184 17.64731 20% inaccuracy 

Vanessa atalanta 115119 649329.3 17.53759 5% inaccuracy 

Vanessa atalanta 115136 649352.1 17.53708 Original data 
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Vanessa cardui 38653 605224.8 18.69949 10% inaccuracy 

Vanessa cardui 38768 600028.7 18.86607 2% inaccuracy 

Vanessa cardui 38627 595111.8 18.97675 20% inaccuracy 

Vanessa cardui 38664 599522.9 18.86675 5% inaccuracy 

Vanessa cardui 38709 599662.9 18.86351 Original data 
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Table D.2 Full results for the protected area coverage analysis of 58 UK Butterfly species where inaccuracies have 

been simulated using the species confusion matrix. 

Species N Estimated area of occupancy (km2) Protected area overlap Inaccuracy 

Aglais io 170196 577127.2 19.21465 10% inaccuracy 

Aglais io 181864 572327.3 19.28294 2% inaccuracy 

Aglais io 155597 581305.7 19.34193 20% inaccuracy 

Aglais io 177420 570437.5 19.39726 5% inaccuracy 

Aglais io 184715 572504.4 19.27975 Original data 

Aglais urticae 121689 590974 19.11004 10% inaccuracy 

Aglais urticae 120635 591036.8 19.10815 2% inaccuracy 

Aglais urticae 122760 611352.3 18.57464 20% inaccuracy 

Aglais urticae 121073 591036.8 19.10815 5% inaccuracy 

Aglais urticae 120364 591036.8 19.10815 Original data 

Anthocharis cardamines 82823 559688.8 19.52574 10% inaccuracy 

Anthocharis cardamines 88092 558341.7 19.56753 2% inaccuracy 

Anthocharis cardamines 76261 561018.6 19.53886 20% inaccuracy 

Anthocharis cardamines 86202 554411.4 19.45477 5% inaccuracy 

Anthocharis cardamines 89445 553120.1 19.47996 Original data 

Apatura iris 1109 406650.6 19.71332 10% inaccuracy 

Apatura iris 600 120769.1 20.49265 2% inaccuracy 

Apatura iris 1727 368511.5 22.1113 20% inaccuracy 

Apatura iris 759 144597 24.83716 5% inaccuracy 

Apatura iris 460 36266 21.69369 Original data 

Aphantopus hyperantus 241894 544636.2 18.69703 10% inaccuracy 

Aphantopus hyperantus 250447 551078.9 18.8437 2% inaccuracy 

Aphantopus hyperantus 231033 568161.4 19.26431 20% inaccuracy 

Aphantopus hyperantus 247356 547925.7 19.09934 5% inaccuracy 

Aphantopus hyperantus 252681 511745.2 19.08535 Original data 

Argynnis paphia 47365 464289.9 21.55584 10% inaccuracy 

Argynnis paphia 49901 325079.6 22.46543 2% inaccuracy 

Argynnis paphia 44381 519231.3 20.35725 20% inaccuracy 

Argynnis paphia 49006 428881.6 20.80706 5% inaccuracy 

Argynnis paphia 50559 228682.5 19.72489 Original data 

Aricia agestis 40415 527358.4 20.09344 10% inaccuracy 

Aricia agestis 40493 473372.8 20.84717 2% inaccuracy 

Aricia agestis 40267 566291.5 19.08381 20% inaccuracy 

Aricia agestis 40521 536269.7 19.93773 5% inaccuracy 

Aricia agestis 40601 193606.8 19.3958 Original data 

Aricia artaxerxes 5135 471942.2 19.6082 10% inaccuracy 

Aricia artaxerxes 4588 307596.3 22.61376 2% inaccuracy 

Aricia artaxerxes 5850 503461.2 18.529 20% inaccuracy 

Aricia artaxerxes 4767 481057.4 19.83163 5% inaccuracy 

Aricia artaxerxes 4471 13335.5 48.81071 Original data 

Boloria euphrosyne 7222 526650.7 20.00017 10% inaccuracy 

Boloria euphrosyne 5062 391911.8 22.68663 2% inaccuracy 

Boloria euphrosyne 10108 531860.4 19.96632 20% inaccuracy 

Boloria euphrosyne 5888 502714.2 20.65396 5% inaccuracy 

Boloria euphrosyne 4539 140640 31.56002 Original data 

Boloria selene 9361 492762.2 20.21557 10% inaccuracy 
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Boloria selene 8996 435141.8 22.64105 2% inaccuracy 

Boloria selene 10015 513167.3 19.38583 20% inaccuracy 

Boloria selene 9113 505920.2 19.89516 5% inaccuracy 

Boloria selene 8870 370303.5 22.91718 Original data 

Callophrys rubi 11380 436740.2 21.73271 10% inaccuracy 

Callophrys rubi 11896 434081.1 21.67565 2% inaccuracy 

Callophrys rubi 10856 433767 21.7077 20% inaccuracy 

Callophrys rubi 11755 430657.2 21.79873 5% inaccuracy 

Callophrys rubi 12025 434081.1 21.67565 Original data 

Carterocephalus palaemon 4068 499297.1 19.66535 10% inaccuracy 

Carterocephalus palaemon 1601 343077.3 23.08817 2% inaccuracy 

Carterocephalus palaemon 7147 486770.3 20.55188 20% inaccuracy 

Carterocephalus palaemon 2558 386927.2 21.36974 5% inaccuracy 

Carterocephalus palaemon 980 4305.853 24.02542 Original data 

Celastrina argiolus 45829 561849.6 19.03638 10% inaccuracy 

Celastrina argiolus 43848 513594.4 18.71533 2% inaccuracy 

Celastrina argiolus 48588 562081.9 19.43698 20% inaccuracy 

Celastrina argiolus 44741 521083.7 19.53467 5% inaccuracy 

Celastrina argiolus 43396 309212.3 20.29071 Original data 

Coenonympha pamphilus 173339 587945.5 18.8755 10% inaccuracy 

Coenonympha pamphilus 155387 584207.4 18.92997 2% inaccuracy 

Coenonympha pamphilus 195787 587872 18.83504 20% inaccuracy 

Coenonympha pamphilus 162262 585152.4 18.91923 5% inaccuracy 

Coenonympha pamphilus 150917 579226.5 19.01562 Original data 

Coenonympha tullia 7153 569413.2 19.42472 10% inaccuracy 

Coenonympha tullia 2115 545122.8 19.57172 2% inaccuracy 

Coenonympha tullia 13234 573584 19.33415 20% inaccuracy 

Coenonympha tullia 3989 566548.1 19.47852 5% inaccuracy 

Coenonympha tullia 988 166060.1 25.05485 Original data 

Colias croceus 14905 379845.6 21.84076 10% inaccuracy 

Colias croceus 7644 329596.7 21.36452 2% inaccuracy 

Colias croceus 23804 393570.8 21.83806 20% inaccuracy 

Colias croceus 10344 332705.8 20.77923 5% inaccuracy 

Colias croceus 5916 285079.9 20.85504 Original data 

Cupido minimus 21372 568778.4 19.10732 10% inaccuracy 

Cupido minimus 12447 480891.6 20.49756 2% inaccuracy 

Cupido minimus 33282 573787.9 19.26051 20% inaccuracy 

Cupido minimus 15873 545132.9 18.72906 5% inaccuracy 

Cupido minimus 10137 208370.3 23.25082 Original data 

Erebia aethiops 4857 507973.1 20.81932 10% inaccuracy 

Erebia aethiops 4019 437924.4 21.67232 2% inaccuracy 

Erebia aethiops 5866 519799.6 19.95144 20% inaccuracy 

Erebia aethiops 4364 492856.2 21.17567 5% inaccuracy 

Erebia aethiops 3823 143656.3 27.36644 Original data 

Erebia epiphron 2987 476591.5 20.79249 10% inaccuracy 

Erebia epiphron 778 359249.6 23.09308 2% inaccuracy 

Erebia epiphron 5514 518818.9 19.98662 20% inaccuracy 

Erebia epiphron 1581 505260.9 20.3965 5% inaccuracy 

Erebia epiphron 254 4928.171 50.07188 Original data 
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Erynnis tages 23875 475892.1 19.76234 10% inaccuracy 

Erynnis tages 24207 356522.6 22.12397 2% inaccuracy 

Erynnis tages 23778 568045.3 18.87535 20% inaccuracy 

Erynnis tages 24130 483779 19.41798 5% inaccuracy 

Erynnis tages 24235 257483.9 22.68824 Original data 

Euphydryas aurinia 3027 433509 20.75334 10% inaccuracy 

Euphydryas aurinia 2751 398931 19.92935 2% inaccuracy 

Euphydryas aurinia 3247 450677.3 21.85417 20% inaccuracy 

Euphydryas aurinia 2862 373563.5 21.86825 5% inaccuracy 

Euphydryas aurinia 2689 75002.82 23.94571 Original data 

Fabriciana adippe 1763 371829.5 20.60386 10% inaccuracy 

Fabriciana adippe 1161 230280.3 21.74826 2% inaccuracy 

Fabriciana adippe 2494 410862.2 20.66363 20% inaccuracy 

Fabriciana adippe 1377 266924.2 21.74048 5% inaccuracy 

Fabriciana adippe 1009 1919.403 56.18406 Original data 

Favonius quercus 6557 243707.6 22.44132 10% inaccuracy 

Favonius quercus 7086 239978.6 22.62907 2% inaccuracy 

Favonius quercus 5875 236530 22.29716 20% inaccuracy 

Favonius quercus 6878 243707.6 22.44132 5% inaccuracy 

Favonius quercus 7201 243452.8 22.45568 Original data 

Gonepteryx rhamni 141329 500311.7 20.21795 10% inaccuracy 

Gonepteryx rhamni 150616 454402.1 20.32325 2% inaccuracy 

Gonepteryx rhamni 129808 543427.4 18.83036 20% inaccuracy 

Gonepteryx rhamni 147159 481662.2 19.15309 5% inaccuracy 

Gonepteryx rhamni 152874 301129.9 21.40257 Original data 

Hamearis lucina 2740 360774.7 23.7213 10% inaccuracy 

Hamearis lucina 1939 219367.6 23.09687 2% inaccuracy 

Hamearis lucina 3753 491163.8 19.75918 20% inaccuracy 

Hamearis lucina 2251 317276.9 21.23761 5% inaccuracy 

Hamearis lucina 1725 49440.83 31.79749 Original data 

Hesperia comma 4144 447534.9 20.15035 10% inaccuracy 

Hesperia comma 3298 291884.2 21.53325 2% inaccuracy 

Hesperia comma 5117 387300.5 19.46791 20% inaccuracy 

Hesperia comma 3649 280825.7 22.49548 5% inaccuracy 

Hesperia comma 3073 14340.94 44.11636 Original data 

Hipparchia semele 14668 553971 19.36784 10% inaccuracy 

Hipparchia semele 12397 543230.1 19.27888 2% inaccuracy 

Hipparchia semele 17336 563099.3 19.17778 20% inaccuracy 

Hipparchia semele 13265 556861.9 19.09747 5% inaccuracy 

Hipparchia semele 11841 380289.5 17.99586 Original data 

Lasiommata megera 17682 516245.6 19.71458 10% inaccuracy 

Lasiommata megera 16471 475731.5 19.46105 2% inaccuracy 

Lasiommata megera 19305 534518.6 19.00354 20% inaccuracy 

Lasiommata megera 16967 470991.9 18.70698 5% inaccuracy 

Lasiommata megera 16142 360128.5 19.40038 Original data 

Leptidea sinapis 6867 471160.5 20.21015 10% inaccuracy 

Leptidea sinapis 5086 417652.9 20.79943 2% inaccuracy 

Leptidea sinapis 8894 526833.1 19.18426 20% inaccuracy 

Leptidea sinapis 5745 444759.4 20.80708 5% inaccuracy 



135 
 

Leptidea sinapis 4665 36998.11 23.2966 Original data 

Limenitis camilla 15204 352041.4 21.11182 10% inaccuracy 

Limenitis camilla 10095 252902.4 22.7763 2% inaccuracy 

Limenitis camilla 21534 369418.2 21.01268 20% inaccuracy 

Limenitis camilla 12118 267671.9 21.99348 5% inaccuracy 

Limenitis camilla 8866 110015.7 21.46816 Original data 

Lycaena phlaeas 53829 526464.6 19.52355 10% inaccuracy 

Lycaena phlaeas 57268 526411.2 19.5166 2% inaccuracy 

Lycaena phlaeas 49487 539376.7 19.18882 20% inaccuracy 

Lycaena phlaeas 56137 526387.3 19.5166 5% inaccuracy 

Lycaena phlaeas 58182 526387.3 19.5166 Original data 

Maniola jurtina 539181 595271.4 18.89715 10% inaccuracy 

Maniola jurtina 555185 595271.4 18.89715 2% inaccuracy 

Maniola jurtina 519324 593844.8 18.94562 20% inaccuracy 

Maniola jurtina 549030 599003.2 18.81256 5% inaccuracy 

Maniola jurtina 559031 595271.4 18.89715 Original data 

Melanargia galathea 93287 478882.9 19.64957 10% inaccuracy 

Melanargia galathea 99638 243046 21.51977 2% inaccuracy 

Melanargia galathea 85485 510678.5 19.67875 20% inaccuracy 

Melanargia galathea 97080 316812.8 22.76471 5% inaccuracy 

Melanargia galathea 101230 193855.1 21.15487 Original data 

Melitaea athalia 1511 124439.3 19.7206 10% inaccuracy 

Melitaea athalia 1422 101113 26.43204 2% inaccuracy 

Melitaea athalia 1663 195030.6 23.00139 20% inaccuracy 

Melitaea athalia 1442 135350.6 21.6912 5% inaccuracy 

Melitaea athalia 1397 613.577 5.792878 Original data 

Melitaea cinxia 361 162950.2 20.63175 10% inaccuracy 

Melitaea cinxia 313 42042.58 25.54045 2% inaccuracy 

Melitaea cinxia 383 345797.7 20.2926 20% inaccuracy 

Melitaea cinxia 318 97858.68 25.42067 5% inaccuracy 

Melitaea cinxia 304 165.526 50.88322 Original data 

Nymphalis polychloros 7277 521180.5 19.09956 10% inaccuracy 

Nymphalis polychloros 1517 497794.3 19.87934 2% inaccuracy 

Nymphalis polychloros 14612 571373 19.31154 20% inaccuracy 

Nymphalis polychloros 3657 548846.8 19.01545 5% inaccuracy 

Nymphalis polychloros 26 12406.22 25.93525 Original data 

Ochlodes sylvanus 90758 425164.7 20.1891 10% inaccuracy 

Ochlodes sylvanus 92715 392477.7 19.15741 2% inaccuracy 

Ochlodes sylvanus 88268 482347 19.68937 20% inaccuracy 

Ochlodes sylvanus 91851 420888.3 19.96378 5% inaccuracy 

Ochlodes sylvanus 93119 331934.2 20.54358 Original data 

Papilio machaon 644 9883.109 23.32231 10% inaccuracy 

Papilio machaon 704 9883.109 23.32231 2% inaccuracy 

Papilio machaon 553 9689.663 23.23783 20% inaccuracy 

Papilio machaon 678 9883.109 23.32231 5% inaccuracy 

Papilio machaon 716 9883.109 23.32231 Original data 

Pararge aegeria 313200 566582 19.3293 10% inaccuracy 

Pararge aegeria 329191 561510.8 19.47873 2% inaccuracy 

Pararge aegeria 292822 572566.2 19.39376 20% inaccuracy 
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Pararge aegeria 323025 565568.7 19.35304 5% inaccuracy 

Pararge aegeria 333167 556020 19.59625 Original data 

Phengaris arion 748 402006.9 20.75285 10% inaccuracy 

Phengaris arion 152 305017.9 21.9686 2% inaccuracy 

Phengaris arion 1539 454360.6 19.87734 20% inaccuracy 

Phengaris arion 370 323280.3 22.26566 5% inaccuracy 

Pieris brassicae 254424 626389.9 17.99511 10% inaccuracy 

Pieris brassicae 252565 626691.8 17.99023 2% inaccuracy 

Pieris brassicae 256582 626568.5 18.07226 20% inaccuracy 

Pieris brassicae 253415 628998.1 17.92178 5% inaccuracy 

Pieris brassicae 252318 626389.9 17.99511 Original data 

Pieris napi 237936 593644.3 18.99968 10% inaccuracy 

Pieris napi 242621 593916 18.9926 2% inaccuracy 

Pieris napi 231907 595524.1 18.93918 20% inaccuracy 

Pieris napi 240790 593820.1 18.99579 5% inaccuracy 

Pieris napi 243700 593954.8 18.99149 Original data 

Pieris rapae 340995 595614.4 18.78562 10% inaccuracy 

Pieris rapae 331693 591106.1 18.67354 2% inaccuracy 

Pieris rapae 353695 597199.3 18.82389 20% inaccuracy 

Pieris rapae 335102 581743.6 19.06188 5% inaccuracy 

Pieris rapae 329145 575697.6 18.98081 Original data 

Plebejus argus 14577 532110.7 20.43997 10% inaccuracy 

Plebejus argus 11678 464278.8 19.99366 2% inaccuracy 

Plebejus argus 18194 537946.4 19.93151 20% inaccuracy 

Plebejus argus 12765 519920 18.98219 5% inaccuracy 

Plebejus argus 10958 52139.32 26.63524 Original data 

Polygonia c-album 77023 517058.4 19.19437 10% inaccuracy 

Polygonia c-album 82664 413210.1 21.09379 2% inaccuracy 

Polygonia c-album 70094 525565.6 19.25102 20% inaccuracy 

Polygonia c-album 80599 457426.1 19.61461 5% inaccuracy 

Polygonia c-album 84073 413094.2 21.09203 Original data 

Polyommatus bellargus 12087 25977.4 46.03947 Original data 

Polyommatus bellargus 12051 259989.8 22.45132 2% inaccuracy 

Polyommatus bellargus 11847 411662.4 20.68344 10% inaccuracy 

Polyommatus bellargus 11941 291286.5 20.40414 5% inaccuracy 

Polyommatus bellargus 11574 546230.5 19.35125 20% inaccuracy 

Polyommatus coridon 24024 529596 18.88325 10% inaccuracy 

Polyommatus coridon 24686 306129.5 20.9296 2% inaccuracy 

Polyommatus coridon 23194 551308.7 19.75849 20% inaccuracy 

Polyommatus coridon 24444 356900.7 21.31082 5% inaccuracy 

Polyommatus coridon 24848 58473.54 33.56056 Original data 

Polyommatus icarus 180483 594943.4 18.96534 10% inaccuracy 

Polyommatus icarus 188157 595248.7 18.96352 2% inaccuracy 

Polyommatus icarus 170370 596118 18.92641 20% inaccuracy 

Polyommatus icarus 185024 595230.1 18.96412 5% inaccuracy 

Polyommatus icarus 189957 595248.7 18.96352 Original data 

Pyrgus malvae 14168 500131.7 19.95731 10% inaccuracy 

Pyrgus malvae 9677 361683.7 22.11907 2% inaccuracy 

Pyrgus malvae 19491 514289.6 20.0079 20% inaccuracy 
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Pyrgus malvae 11275 483562.1 20.03156 5% inaccuracy 

Pyrgus malvae 8604 81074.33 27.49584 Original data 

Pyronia tithonus 249449 562774 19.0457 10% inaccuracy 

Pyronia tithonus 248552 503618.4 20.10166 2% inaccuracy 

Pyronia tithonus 250792 577300.7 19.26487 20% inaccuracy 

Pyronia tithonus 248805 554572 19.6217 5% inaccuracy 

Pyronia tithonus 248325 298644.9 21.59251 Original data 

Satyrium pruni 287 169.526 5.832583 Original data 

Satyrium pruni 399 126228.6 18.80619 5% inaccuracy 

Satyrium pruni 856 335824.1 20.79249 20% inaccuracy 

Satyrium pruni 341 112242.1 21.429 2% inaccuracy 

Satyrium pruni 573 288778 21.66953 10% inaccuracy 

Satyrium w-album 2002 342418.7 21.47241 10% inaccuracy 

Satyrium w-album 1373 254410.4 21.42585 2% inaccuracy 

Satyrium w-album 2737 443619.2 19.98083 20% inaccuracy 

Satyrium w-album 1614 276270.5 21.38887 5% inaccuracy 

Satyrium w-album 1247 142876.6 19.88425 Original data 

Speyeria aglaja 28370 572930.8 19.09476 10% inaccuracy 

Speyeria aglaja 27263 559041.9 19.00417 2% inaccuracy 

Speyeria aglaja 29155 572422 19.09426 20% inaccuracy 

Speyeria aglaja 27620 570255.6 19.15991 5% inaccuracy 

Speyeria aglaja 27011 559013.4 19.00846 Original data 

Thecla betulae 968 115969.7 19.086 10% inaccuracy 

Thecla betulae 973 43489.57 30.87228 2% inaccuracy 

Thecla betulae 1009 115986 21.78681 20% inaccuracy 

Thecla betulae 981 177453.5 18.79657 5% inaccuracy 

Thecla betulae 961 31878.1 34.83758 Original data 

Thymelicus acteon 1400 107.808 95.22837 Original data 

Thymelicus acteon 1531 145800.2 24.04745 5% inaccuracy 

Thymelicus acteon 1450 69971.35 23.09578 2% inaccuracy 

Thymelicus acteon 1865 277161.5 22.47116 20% inaccuracy 

Thymelicus acteon 1622 265103.2 21.68828 10% inaccuracy 

Thymelicus lineola 16896 303117 21.1885 10% inaccuracy 

Thymelicus lineola 15362 276137.5 22.2702 2% inaccuracy 

Thymelicus lineola 18879 318374.9 21.59723 20% inaccuracy 

Thymelicus lineola 15895 318417.5 21.32531 5% inaccuracy 

Thymelicus lineola 14913 178630.6 20.4294 Original data 

Thymelicus sylvestris 84737 518660.6 19.19506 10% inaccuracy 

Thymelicus sylvestris 83137 397243.3 18.54589 2% inaccuracy 

Thymelicus sylvestris 86773 503809.2 19.53498 20% inaccuracy 

Thymelicus sylvestris 83845 465056.2 19.18316 5% inaccuracy 

Thymelicus sylvestris 82809 326860 21.0936 Original data 

Vanessa atalanta 114858 649352.1 17.53708 10% inaccuracy 

Vanessa atalanta 115033 649352.1 17.53708 2% inaccuracy 

Vanessa atalanta 114518 646039.7 17.59355 20% inaccuracy 

Vanessa atalanta 114882 659086.6 17.31243 5% inaccuracy 

Vanessa atalanta 115136 649352.1 17.53708 Original data 

Vanessa cardui 45360 607314.6 18.63469 10% inaccuracy 

Vanessa cardui 39998 607543.7 18.63044 2% inaccuracy 
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Vanessa cardui 51900 604124.4 18.72709 20% inaccuracy 

Vanessa cardui 42100 606233.9 18.68432 5% inaccuracy 

Vanessa cardui 38709 599662.9 18.86351 Original data 
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Table D.3 The proportional confusion matrix for UK Butterfly species from iRecord that was used to simulate 

inaccuracies for the species confusion scenario (see Appendix D.2 for the results from the species confusion analysis).  

True species Citizen science identification Proportion of redeterminations  

Aglais io Aglais urticae 0.333333333 

Aglais io Anthocharis cardamines 0.041666667 

Aglais io Boloria euphrosyne 0.020833333 

Aglais io Erebia aethiops 0.020833333 

Aglais io Euphydryas aurinia 0.020833333 

Aglais io Limenitis camilla 0.020833333 

Aglais io Maniola jurtina 0.020833333 

Aglais io Nymphalis polychloros 0.020833333 

Aglais io Pieris napi 0.020833333 

Aglais io Polygonia c-album 0.020833333 

Aglais io Pyronia tithonus 0.0625 

Aglais io Vanessa atalanta 0.3125 

Aglais io Vanessa cardui 0.083333333 

Aglais urticae Aglais io 0.084444444 

Aglais urticae Anthocharis cardamines 0.004444444 

Aglais urticae Aphantopus hyperantus 0.004444444 

Aglais urticae Carterocephalus palaemon 0.004444444 

Aglais urticae Erynnis tages 0.004444444 

Aglais urticae Hipparchia semele 0.008888889 

Aglais urticae Limenitis camilla 0.004444444 

Aglais urticae Lycaena phlaeas 0.013333333 

Aglais urticae Maniola jurtina 0.004444444 

Aglais urticae Nymphalis polychloros 0.324444444 

Aglais urticae Ochlodes sylvanus 0.004444444 

Aglais urticae Pararge aegeria 0.004444444 

Aglais urticae Pieris brassicae 0.013333333 

Aglais urticae Polygonia c-album 0.013333333 

Aglais urticae Pyronia tithonus 0.004444444 

Aglais urticae Vanessa atalanta 0.257777778 

Aglais urticae Vanessa cardui 0.244444444 

Anthocharis cardamines Aglais urticae 0.016666667 

Anthocharis cardamines Celastrina argiolus 0.033333333 

Anthocharis cardamines Gonepteryx rhamni 0.033333333 

Anthocharis cardamines Leptidea sinapis 0.033333333 

Anthocharis cardamines Maniola jurtina 0.016666667 

Anthocharis cardamines Melanargia galathea 0.016666667 

Anthocharis cardamines Pieris brassicae 0.1 

Anthocharis cardamines Pieris napi 0.233333333 

Anthocharis cardamines Pieris rapae 0.5 

Anthocharis cardamines Pyrgus malvae 0.016666667 

Apatura iris Limenitis camilla 0.9 

Apatura iris Pararge aegeria 0.1 

Aphantopus hyperantus Coenonympha pamphilus 0.019230769 

Aphantopus hyperantus Coenonympha tullia 0.019230769 

Aphantopus hyperantus Cupido minimus 0.230769231 

Aphantopus hyperantus Erebia aethiops 0.019230769 
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Aphantopus hyperantus Erebia epiphron 0.096153846 

Aphantopus hyperantus Maniola jurtina 0.346153846 

Aphantopus hyperantus Ochlodes sylvanus 0.019230769 

Aphantopus hyperantus Pararge aegeria 0.211538462 

Aphantopus hyperantus Phengaris arion 0.019230769 

Aphantopus hyperantus Thymelicus sylvestris 0.019230769 

Argynnis paphia Aphantopus hyperantus 0.012987013 

Argynnis paphia Boloria euphrosyne 0.168831169 

Argynnis paphia Fabriciana adippe 0.103896104 

Argynnis paphia Polygonia c-album 0.012987013 

Argynnis paphia Speyeria aglaja 0.701298701 

Aricia agestis Aricia artaxerxes 0.085714286 

Aricia agestis Cupido minimus 0.028571429 

Aricia agestis Plebejus argus 0.057142857 

Aricia agestis Polyommatus coridon 0.042857143 

Aricia agestis Polyommatus icarus 0.785714286 

Aricia artaxerxes Aricia agestis 1 

Boloria euphrosyne Argynnis paphia 0.166666667 

Boloria euphrosyne Boloria selene 0.666666667 

Boloria euphrosyne Lasiommata megera 0.166666667 

Boloria selene Boloria euphrosyne 0.818181818 

Boloria selene Euphydryas aurinia 0.060606061 

Boloria selene Hamearis lucina 0.03030303 

Boloria selene Speyeria aglaja 0.090909091 

Callophrys rubi Aphantopus hyperantus 0.5 

Callophrys rubi Gonepteryx rhamni 0.5 

Celastrina argiolus Aphantopus hyperantus 0.005076142 

Celastrina argiolus Cupido minimus 0.304568528 

Celastrina argiolus Phengaris arion 0.020304569 

Celastrina argiolus Pieris brassicae 0.005076142 

Celastrina argiolus Plebejus argus 0.010152284 

Celastrina argiolus Polyommatus bellargus 0.010152284 

Celastrina argiolus Polyommatus coridon 0.015228426 

Celastrina argiolus Polyommatus icarus 0.624365482 

Celastrina argiolus Pyronia tithonus 0.005076142 

Coenonympha pamphilus Coenonympha tullia 0.209302326 

Coenonympha pamphilus Maniola jurtina 0.395348837 

Coenonympha pamphilus Pieris rapae 0.023255814 

Coenonympha pamphilus Pyronia tithonus 0.348837209 

Coenonympha pamphilus Thymelicus sylvestris 0.023255814 

Colias croceus Gonepteryx rhamni 0.75 

Colias croceus Maniola jurtina 0.25 

Cupido minimus Celastrina argiolus 0.333333333 

Cupido minimus Plebejus argus 0.333333333 

Cupido minimus Polyommatus icarus 0.333333333 

Erebia aethiops Aricia agestis 0.285714286 

Erebia aethiops Erebia epiphron 0.285714286 

Erebia aethiops Hipparchia semele 0.142857143 

Erebia aethiops Maniola jurtina 0.285714286 
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Erynnis tages Pararge aegeria 0.5 

Erynnis tages Pyrgus malvae 0.5 

Fabriciana adippe Speyeria aglaja 1 

Favonius quercus Apatura iris 0.130434783 

Favonius quercus Cupido minimus 0.043478261 

Favonius quercus Satyrium pruni 0.043478261 

Favonius quercus Satyrium w-album 0.695652174 

Favonius quercus Thecla betulae 0.086956522 

Gonepteryx rhamni Aglais io 0.038461538 

Gonepteryx rhamni Callophrys rubi 0.038461538 

Gonepteryx rhamni Colias croceus 0.576923077 

Gonepteryx rhamni Pieris brassicae 0.038461538 

Gonepteryx rhamni Pieris napi 0.153846154 

Gonepteryx rhamni Pieris rapae 0.153846154 

Hamearis lucina Melitaea athalia 1 

Hesperia comma Argynnis paphia 0.2 

Hesperia comma Coenonympha tullia 0.2 

Hesperia comma Ochlodes sylvanus 0.6 

Hipparchia semele Maniola jurtina 0.4 

Hipparchia semele Pararge aegeria 0.2 

Hipparchia semele Vanessa cardui 0.4 

Lasiommata megera Aphantopus hyperantus 0.076923077 

Lasiommata megera Coenonympha pamphilus 0.076923077 

Lasiommata megera Coenonympha tullia 0.153846154 

Lasiommata megera Erebia epiphron 0.076923077 

Lasiommata megera Hipparchia semele 0.153846154 

Lasiommata megera Lycaena phlaeas 0.076923077 

Lasiommata megera Pararge aegeria 0.230769231 

Lasiommata megera Pyronia tithonus 0.153846154 

Limenitis camilla Apatura iris 0.5 

Limenitis camilla Melanargia galathea 0.5 

Lycaena phlaeas Aphantopus hyperantus 0.142857143 

Lycaena phlaeas Celastrina argiolus 0.142857143 

Lycaena phlaeas Coenonympha pamphilus 0.428571429 

Lycaena phlaeas Pyronia tithonus 0.142857143 

Lycaena phlaeas Thymelicus sylvestris 0.142857143 

Maniola jurtina Aglais io 0.006825939 

Maniola jurtina Aphantopus hyperantus 0.126279863 

Maniola jurtina Aricia agestis 0.003412969 

Maniola jurtina Aricia artaxerxes 0.003412969 

Maniola jurtina Celastrina argiolus 0.006825939 

Maniola jurtina Coenonympha pamphilus 0.464163823 

Maniola jurtina Coenonympha tullia 0.020477816 

Maniola jurtina Erebia aethiops 0.010238908 

Maniola jurtina Erynnis tages 0.003412969 

Maniola jurtina Gonepteryx rhamni 0.003412969 

Maniola jurtina Hipparchia semele 0.013651877 

Maniola jurtina Lasiommata megera 0.003412969 

Maniola jurtina Ochlodes sylvanus 0.003412969 
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Maniola jurtina Pararge aegeria 0.020477816 

Maniola jurtina Pieris napi 0.003412969 

Maniola jurtina Polygonia c-album 0.003412969 

Maniola jurtina Pyronia tithonus 0.283276451 

Maniola jurtina Satyrium pruni 0.003412969 

Maniola jurtina Satyrium w-album 0.006825939 

Maniola jurtina Thymelicus sylvestris 0.003412969 

Maniola jurtina Vanessa atalanta 0.003412969 

Maniola jurtina Vanessa cardui 0.003412969 

Melanargia galathea Limenitis camilla 0.666666667 

Melanargia galathea Pararge aegeria 0.333333333 

Melitaea athalia Argynnis paphia 0.5 

Melitaea athalia Euphydryas aurinia 0.5 

Nymphalis polychloros Aglais urticae 1 

Ochlodes sylvanus Carterocephalus palaemon 0.008097166 

Ochlodes sylvanus Celastrina argiolus 0.004048583 

Ochlodes sylvanus Coenonympha pamphilus 0.004048583 

Ochlodes sylvanus Coenonympha tullia 0.008097166 

Ochlodes sylvanus Erynnis tages 0.024291498 

Ochlodes sylvanus Hesperia comma 0.064777328 

Ochlodes sylvanus Lycaena phlaeas 0.004048583 

Ochlodes sylvanus Maniola jurtina 0.004048583 

Ochlodes sylvanus Polygonia c-album 0.004048583 

Ochlodes sylvanus Pyronia tithonus 0.008097166 

Ochlodes sylvanus Thymelicus acteon 0.024291498 

Ochlodes sylvanus Thymelicus lineola 0.137651822 

Ochlodes sylvanus Thymelicus sylvestris 0.700404858 

Ochlodes sylvanus Vanessa atalanta 0.004048583 

Pararge aegeria Aphantopus hyperantus 0.148648649 

Pararge aegeria Boloria euphrosyne 0.013513514 

Pararge aegeria Carterocephalus palaemon 0.081081081 

Pararge aegeria Celastrina argiolus 0.013513514 

Pararge aegeria Coenonympha pamphilus 0.013513514 

Pararge aegeria Coenonympha tullia 0.013513514 

Pararge aegeria Erynnis tages 0.027027027 

Pararge aegeria Gonepteryx rhamni 0.013513514 

Pararge aegeria Hamearis lucina 0.027027027 

Pararge aegeria Hesperia comma 0.013513514 

Pararge aegeria Hipparchia semele 0.067567568 

Pararge aegeria Lasiommata megera 0.081081081 

Pararge aegeria Maniola jurtina 0.162162162 

Pararge aegeria Melanargia galathea 0.040540541 

Pararge aegeria Pieris brassicae 0.013513514 

Pararge aegeria Pieris napi 0.027027027 

Pararge aegeria Pieris rapae 0.013513514 

Pararge aegeria Pyrgus malvae 0.148648649 

Pararge aegeria Pyronia tithonus 0.054054054 

Pararge aegeria Thymelicus sylvestris 0.013513514 

Pararge aegeria Vanessa atalanta 0.013513514 
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Pieris brassicae Aglais urticae 0.008130081 

Pieris brassicae Colias croceus 0.016260163 

Pieris brassicae Gonepteryx rhamni 0.024390244 

Pieris brassicae Hipparchia semele 0.008130081 

Pieris brassicae Ochlodes sylvanus 0.008130081 

Pieris brassicae Pararge aegeria 0.008130081 

Pieris brassicae Pieris napi 0.130081301 

Pieris brassicae Pieris rapae 0.796747967 

Pieris napi Aglais io 0.002808989 

Pieris napi Anthocharis cardamines 0.033707865 

Pieris napi Gonepteryx rhamni 0.002808989 

Pieris napi Leptidea sinapis 0.030898876 

Pieris napi Melanargia galathea 0.002808989 

Pieris napi Pieris brassicae 0.219101124 

Pieris napi Pieris rapae 0.707865169 

Pieris rapae Aglais urticae 0.004385965 

Pieris rapae Anthocharis cardamines 0.01754386 

Pieris rapae Celastrina argiolus 0.00877193 

Pieris rapae Colias croceus 0.00877193 

Pieris rapae Gonepteryx rhamni 0.030701754 

Pieris rapae Leptidea sinapis 0.048245614 

Pieris rapae Melanargia galathea 0.004385965 

Pieris rapae Pararge aegeria 0.004385965 

Pieris rapae Pieris brassicae 0.587719298 

Pieris rapae Pieris napi 0.280701754 

Pieris rapae Pyronia tithonus 0.004385965 

Plebejus argus Celastrina argiolus 0.076923077 

Plebejus argus Cupido minimus 0.153846154 

Plebejus argus Hesperia comma 0.076923077 

Plebejus argus Polyommatus icarus 0.692307692 

Polygonia c-album Aglais io 0.00990099 

Polygonia c-album Aglais urticae 0.158415842 

Polygonia c-album Anthocharis cardamines 0.01980198 

Polygonia c-album Aphantopus hyperantus 0.00990099 

Polygonia c-album Argynnis paphia 0.158415842 

Polygonia c-album Boloria euphrosyne 0.01980198 

Polygonia c-album Carterocephalus palaemon 0.00990099 

Polygonia c-album Coenonympha pamphilus 0.00990099 

Polygonia c-album Fabriciana adippe 0.00990099 

Polygonia c-album Gonepteryx rhamni 0.00990099 

Polygonia c-album Hamearis lucina 0.02970297 

Polygonia c-album Hesperia comma 0.01980198 

Polygonia c-album Lasiommata megera 0.00990099 

Polygonia c-album Lycaena phlaeas 0.04950495 

Polygonia c-album Maniola jurtina 0.00990099 

Polygonia c-album Melitaea athalia 0.00990099 

Polygonia c-album Nymphalis polychloros 0.277227723 

Polygonia c-album Ochlodes sylvanus 0.00990099 

Polygonia c-album Pararge aegeria 0.01980198 
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Polygonia c-album Polyommatus icarus 0.00990099 

Polygonia c-album Pyronia tithonus 0.02970297 

Polygonia c-album Speyeria aglaja 0.00990099 

Polygonia c-album Vanessa atalanta 0.02970297 

Polygonia c-album Vanessa cardui 0.069306931 

Polyommatus bellargus Plebejus argus 0.125 

Polyommatus bellargus Polyommatus coridon 0.375 

Polyommatus bellargus Polyommatus icarus 0.5 

Polyommatus coridon Plebejus argus 0.142857143 

Polyommatus coridon Polyommatus bellargus 0.142857143 

Polyommatus coridon Polyommatus icarus 0.714285714 

Polyommatus icarus Aricia agestis 0.163265306 

Polyommatus icarus Aricia artaxerxes 0.030612245 

Polyommatus icarus Celastrina argiolus 0.214285714 

Polyommatus icarus Coenonympha tullia 0.010204082 

Polyommatus icarus Cupido minimus 0.265306122 

Polyommatus icarus Lycaena phlaeas 0.010204082 

Polyommatus icarus Pararge aegeria 0.020408163 

Polyommatus icarus Phengaris arion 0.010204082 

Polyommatus icarus Plebejus argus 0.183673469 

Polyommatus icarus Polyommatus bellargus 0.030612245 

Polyommatus icarus Polyommatus coridon 0.051020408 

Polyommatus icarus Pyronia tithonus 0.010204082 

Pyrgus malvae Carterocephalus palaemon 0.25 

Pyrgus malvae Erynnis tages 0.5 

Pyrgus malvae Polygonia c-album 0.25 

Pyronia tithonus Aglais urticae 0.012345679 

Pyronia tithonus Aphantopus hyperantus 0.024691358 

Pyronia tithonus Coenonympha pamphilus 0.314814815 

Pyronia tithonus Coenonympha tullia 0.012345679 

Pyronia tithonus Erynnis tages 0.012345679 

Pyronia tithonus Hipparchia semele 0.00617284 

Pyronia tithonus Lasiommata megera 0.00617284 

Pyronia tithonus Lycaena phlaeas 0.00617284 

Pyronia tithonus Maniola jurtina 0.580246914 

Pyronia tithonus Ochlodes sylvanus 0.012345679 

Pyronia tithonus Pararge aegeria 0.00617284 

Pyronia tithonus Pieris brassicae 0.00617284 

Satyrium w-album Satyrium pruni 0.5 

Satyrium w-album Thecla betulae 0.5 

Speyeria aglaja Argynnis paphia 0.170731707 

Speyeria aglaja Boloria euphrosyne 0.195121951 

Speyeria aglaja Boloria selene 0.414634146 

Speyeria aglaja Euphydryas aurinia 0.024390244 

Speyeria aglaja Fabriciana adippe 0.097560976 

Speyeria aglaja Pararge aegeria 0.024390244 

Speyeria aglaja Vanessa cardui 0.073170732 

Thecla betulae Favonius quercus 0.4 

Thecla betulae Maniola jurtina 0.4 
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Thecla betulae Satyrium pruni 0.2 

Thymelicus acteon Thymelicus sylvestris 1 

Thymelicus lineola Ochlodes sylvanus 0.137931034 

Thymelicus lineola Polygonia c-album 0.017241379 

Thymelicus lineola Thymelicus sylvestris 0.844827586 

Thymelicus sylvestris Carterocephalus palaemon 0.008928571 

Thymelicus sylvestris Coenonympha pamphilus 0.017857143 

Thymelicus sylvestris Lycaena phlaeas 0.044642857 

Thymelicus sylvestris Ochlodes sylvanus 0.625 

Thymelicus sylvestris Pieris rapae 0.017857143 

Thymelicus sylvestris Thymelicus acteon 0.017857143 

Thymelicus sylvestris Thymelicus lineola 0.267857143 

Vanessa atalanta Aglais io 0.14084507 

Vanessa atalanta Aglais urticae 0.338028169 

Vanessa atalanta Apatura iris 0.014084507 

Vanessa atalanta Hipparchia semele 0.014084507 

Vanessa atalanta Maniola jurtina 0.014084507 

Vanessa atalanta Nymphalis polychloros 0.028169014 

Vanessa atalanta Pararge aegeria 0.014084507 

Vanessa atalanta Pieris brassicae 0.028169014 

Vanessa atalanta Polygonia c-album 0.014084507 

Vanessa atalanta Vanessa cardui 0.394366197 

Vanessa cardui Aglais io 0.052631579 

Vanessa cardui Aglais urticae 0.315789474 

Vanessa cardui Boloria euphrosyne 0.01754386 

Vanessa cardui Erynnis tages 0.01754386 

Vanessa cardui Hesperia comma 0.01754386 

Vanessa cardui Hipparchia semele 0.01754386 

Vanessa cardui Maniola jurtina 0.01754386 

Vanessa cardui Melitaea cinxia 0.01754386 

Vanessa cardui Nymphalis polychloros 0.087719298 

Vanessa cardui Pararge aegeria 0.070175439 

Vanessa cardui Polygonia c-album 0.035087719 

Vanessa cardui Pyronia tithonus 0.01754386 

Vanessa cardui Vanessa atalanta 0.315789474 
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