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Abstract

Quasi-static aberrations are wavefront distortions that vary on a timescale

longer than that typically controlled by the active optics control loops used

to maintain the image quality within a large telescope. The source of these

errors can be due to gravitational or thermal flexure of the telescope; or poorly

averaged atmospheric turbulence residuals.

Following the method of Gordon et al. (2011), a simulation was used to ex-

plore the averaging rate of atmospheric turbulence residuals for a phase screen

translating across the telescope aperture. Crucially, the rate at which the in-

dividual modes average out is dependent upon wind direction, meaning that

both the C2
n and wind velocity profiles can have a large effect on the modal

variance of observed quasi-static aberrations.

We have verified that the use of a Zernike covariance matrix library is both

viable and useful when considering a multi-layered atmospheric profile with

variable velocity dispersions. Using this library we tested the effects of finite

averaging time in an active optics model, calculating the residual error gener-

ated by a correction from an off-axis guide star. We have used this model for

varying atmospheric velocity dispersions and exposure times, for both existing

telescopes and ELT scales.
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Chapter 1

Introduction

Evidence of tracking star patterns can be traced all the way back to the Assyro-

Babylonians in the twelfth century BCE. "Three Stars Each" is suggested to be

the earliest catalogue, and is considered a calendar of sorts, containing three stars

for each month. For the vast majority of astronomy, we looked up at the night

sky with no tools to aid us. The advent of the telescope is muddy, but the first

reflecting telescope is generally attributed to Newton in the 17th century and was

just 2 inches in diameter (Newton, 2014)†. After this, technological advancements

began to push telescopes wider to gather more light - in just over 100 years Herschel

had developed a reflecting telescope 1.2m in diameter at the primary mirror. As

time passed the techniques for mirror creation and refinement improved, meaning

existing telescopes can be up to 10m. The next generation of planned telescopes,

such as the ESO-ELT will be 39m in diameter - over 700 times wider than Newton’s

first attempt 355 years ago. As the telescope sizes get larger, correcting their optical

errors becomes both more necessary and complicated.

An example telescope layout is shown in figure 1.1. Any distortion or misalignment

of the optical elements (shown in blue) will cause aberrations of the telescope image

and worsen the imaging performance (Noethe, 2002). If these aberrations can be

measured independently then corrections can be applied in real time by adjusting

the telescope mirrors. This computing control system is shown in purple in figure
†The letter was written in 1672 and digitally uploaded by the Royal Society in 2014.

1



1. Introduction

Figure 1.1: Diagram showing a simple active optics setup. Light is reflected
through a telescope and before it reaches the focus point, some is split off into a
WFS which reconstructs the wavefront. A computer system is used to control the
shape and positions of the mirrors, correcting for the aberrations caused by the
incoming wavefront, the telescope itself, or both. If this process is successful the
image at the detector placed at the focus point will be stationary and diffraction
limited.

1.1.

If the large primary mirror is one monolithic piece of glass then its shape can be

changed with the use of actuators which "poke" the mirror into a a different shape,

to improve the performance of the telescope - as seen on the William Herschel

telescope, or the VLT. Mirrors with this variable shape are known as active mirrors.

The active mirror supports for the VLT are shown in figure 1.2. As the telescope
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1. Introduction

diameter gets larger it becomes unfeasible to use a continuous primary mirror.

Instead it can be split into segments, with a series of smaller mirrors acting as one

large diameter. With this setup a telescope control system can change the position

and tilt of the different segments to account for aberrations to the wavefront. This

design will be used in the ESO-ELT, where 798 hexagonal mirrors with individual

diameters of 1.4m will be put together to form a 39m diameter primary mirror.

Figure 1.2: The 150 computer-controlled supports for the VLT primary mirror.
Credit: ESO, PR Image eso9940a

An AcO system measures the slow moving errors inherent to the telescope itself,

allowing for this to be corrected for in real time. For example as the telescope

pointing and tracking changes, the gravitational vector will shift, causing the optical

components to sag and continually change shape on a slow time scale. Flexure can

also be caused by changes in temperature warping the mirror materials. Wind

buffeting around the dome may also changes to the telescope alignment. The use

of such a correction system was first demonstrated on sky by the New Technology

Telescope (Wilson et al., 1991).

An AcO system updates on the timescale of tens of seconds. At higher frequencies

there is still an atmospheric error that cannot be compensated for (Guisard et al.,

2000). High frequency atmospheric aberrations evolve faster than the active optics

can account for, so act as a noise source. Therefore AcO is now often used in
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tandem with an adaptive optics system, which accounts for the quickly evolving

aberrations caused by the atmospheric turbulence. The turbulence changes the

path that star light takes through our atmosphere, which inhibits a telescope’s

ability to focus accurately and degrades its image quality (Wilson et al., 1987).

Adaptive Optics (AO) was first proposed in the mid 20th century in Babcock (1953),

the optics within the telescope must adapt with the moving atmosphere. An AO

system updates on the timescale of milliseconds in order to correct for the ever

evolving atmospheric effects - much faster than AcO, but the corrections are also

much smaller in magnitude.

Given that the atmospheric turbulence varies across the sky, the correctable area

from a single guide star is limited. As the separation between the guide star and the

science target increases the turbulence in each line of sight becomes more dissimilar.

This is referred to as anisoplanatism (Fried, 1982). Whilst VISTA has a smaller

diameter than the VLT, it covers a wider field of view as a survey telescope, and

so needs three off axis guide stars (Terrett et al., 2004). At the VLT they attempt

to remove the remainder fast moving errors with a filter (Guisard et al., 2000).

Next generation 20m+ telescopes will require AcO to function, Clénet, Y. et al.

(2010), but their large diameter will require multiple guide stars. The ESO-ELT

will be equipped with six laser guide stars, and will use up to five natural guide

stars in addition (Rousset et al., 2010). The full adaptive optics requirements call

for the ELT to have multiple active mirrors, meaning unaccounted for errors that

are fed back into the control system of the ELT may cause focal plane distortions

(Rodeghiero et al., 2021).

Gordon et al. (2011) showed that the effects of atmospheric aberrations should

average out towards zero with long exposure times, which is correlated to telescope

diameter: τ ∝ D8/3. This will leave only the instrument error for the active

optics system to correct. These long averaging times could become an issue for the

performance of next generation ELT telescopes and their simulation is the main

focus of this thesis.
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In addition to purely considering the long exposure times necessitated by these

extremely large diameters, we have also explored the errors between multiple lines

of sight. If using an off-axis guide star, the atmospheric aberrations along both

lines of sight will be slightly different. This will cause an error in the correction,

purely caused by the atmosphere. How this scales with exposure time could affect

the active optics performance. Assuming Taylor’s frozen flow, the exposure time

is intrinsically linked to the wind speed. Throughout this thesis we test how the

atmospheric residual error scales with telescope diameter, wind velocity and sep-

aration between a guide star and the on-axis target, focusing on next generation

ELT scale telescopes.

1.1 Synopsis

Chapter 2 discusses the necessary background turbulence and simulation theories,

including the use of phase screens for a multi-layer atmospheric profile and our

initial long exposure method.

In chapter 3 we explore how the variance and RMS for coefficients from individual

Zernike modes are affected by changes to both wind speed and wind direction. We

start with a simple atmosphere consisting of one turbulent layer and then extend

to a multi-layered atmospheric model, with layers moving at different velocities.

This uses both theoretical, helically varying angular dispersions and based on on-

sky data from both SCIDAR and the Paranal ambient atmospheric conditions

database. We show how this changes the time necessary for a single line of sight

to average to an acceptable threshold of error.

Extending our research into the effects of different wind directions on two lines of

sight could become computationally intensive and time consuming, particularly if

using a multi-layered atmospheric model. In chapter 4 we describe the construction

of a more efficient covariance library method and justify the parameter spaces we

choose.
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We utilise this covariance library in chapter 5 to create an active optics model, cal-

culating the residual error between one off axis guide star and the on axis science

target. We prove this model against a tested independent Monte Carlo simulation

ANGuS. This is shown for changes to: the angular separation between the lines

of sight, the exposure time used to measure the reference guide star and the wind

velocity of the atmospheric profile. We demonstrate how the residual error also

scales with telescope diameter and the possible advantages of varying modal av-

eraging times. The final chapter, chapter 6 contains our conclusions and possible

future work.
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Chapter 2

Methods

2.1 Turbulence Theory

Sunlight causes large temperature variations in the Earth’s atmosphere, causing

pressure differentials which create wind. Initially the air moves in laminar type

flow with near uniform changes in velocity (Taylor, 1938). In certain conditions,

the flow becomes turbulent. This change occurs when the Reynolds number is

large enough - the exact value varies between different mediums (Roddier, 1981).

The Reynolds number depends on the velocity V0 and length L of the flow and

kinematic viscosity ν0 of the fluid as

Re = V0L

ν0
. (2.1)

Pockets of air form, which vary in size and temperature. These pockets, or turbu-

lent eddies, differ in density and therefore refractive index. The eddies alter the

path of light travelling through our atmosphere and degrade potential image qual-

ity of ground based astronomical telescopes. One solution to this would be to place

telescopes above the atmosphere; but space based telescopes are limited in size

and therefore are capable of gathering less light and have a larger diffraction limit

(Énard et al., 1996). Alternatively, if a telescope could remove the atmospheric ab-

errations, larger ground based telescopes would still be viable. In order to mitigate
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2.1. Turbulence Theory

the atmospheric effects, the turbulence and movement of air in the atmosphere has

to be characterised and a statistical model which accounts for random nature of

the turbulence found (Roddier, 1999).

Light from a star or other distant point source travelling through our atmosphere

can be considered a plane wave, meaning the amplitude and phase of the electric

field are constant with respect to position. The width of a point source image

through a circular aperture with diameter D is diffraction limited, with Airy disk

radius of 1.22λ/D (Hecht, 2012). However, if that wave passes through the turbu-

lent atmosphere, the eddies act like localised positive and negative lenses, changing

the curvature of the wavefront.

Energy cascade theory dictates that the kinetic energy of turbulent flow moves

from large scale eddies at the size of the outer scale L0 down into smaller pockets

(Von Karman (1948), Kolmogorov (1991)). When the eddies are small enough the

energy is dissipated through viscous friction between air molecules. The scale of

these small eddies is referred to as the inner scale l0. Between these extremes is

the inertial subrange. The inner scale varies from a few millimetres when near

the ground to a few centimetres higher up (Roddier, 1981). A larger inner scale

limits the turbulent flow, weakening the turbulence, but has minimal effects on

atmospheric propagation (Valley, 1979). The outer scale can reach hundreds of

metres high in the atmosphere, and tends to the height above the surface when

close to it (Roddier, 1981).

Modelling the effects of turbulence requires a statistical approach as opposed to

trying to describe the variation of refractive index across space and time in a

closed, analytical solution. By assuming that the eddies in the inertial sub-range

are homogeneous and isotropic in small sections, characteristics like velocity and

refractive index will change in static increments. The outer scale is the limit at

which the turbulence can no longer be considered isotropic.

Kolmogorov studied the difference in mean square velocity between two points

8



2.1. Turbulence Theory

(Kolmogorov (1991) translation of original paper) separated by vector r. The

structure tensor can be expressed in terms of the velocities vi and vj as:

Dij = ⟨[vi(r1 + r) − vi(r1)][vj(r1 + r) − vj(r1)]⟩, (2.2)

for Kolmogorov turbulence. This can be simplified by making a few assumptions

about the atmosphere. If the atmosphere is locally homogeneous then the velocity

only depends on the vector r and if the atmosphere is locally isotropic then the

velocity only depends on the magnitude of r. In addition if the turbulence is

incompressible then equation 2.2 can be simplified to a structure function:

Dv = ⟨[vr(r1 + r) − vr(r1)]2⟩ (2.3)

If the separation is small enough to fit within the inertial sub-range, but larger

than l0, then this can be re-expressed as:

Dv = C2
v r2/3 (2.4)

Where C2
v is the velocity structure constant - a measure of the energy within the

turbulence. The turbulence can also be described with a refractive index structure

function.

Dn(r) = C2
nr2/3 for l0 ≪ r ≪ L0 (2.5)

where C2
n is the refractive index structure constant which has units m−2/3. A

larger C2
n value indicates larger amplitude aberrations caused by the atmosphere.

Assuming the atmosphere has a mean index of refraction ⟨n(r)⟩, where ⟨ ⟩ indicates

the ensemble average, and a varying part n1(r) gives the covariance of the refractive

index field as:

Bn = ⟨n1(r1 + r)n1(r1)⟩ (2.6)

From here the PSD of the variations in refractive index can be determined by the

Fourier transform of equation 2.6:

Φn(κ) = 1
(2π)3

∫
d3rBn(r)e−iK.r (2.7)
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2.1. Turbulence Theory

where K is the 3D spatial wave number. By switching to spherical coordinates

where K = (K, Θ, ϕ) and using equation 2.5 reduces equation 2.7 to:

Φn(κ) = 5
18π

∫ L0

l0
dr sin (Kr)r−1/3 (2.8)

If the integral limits diverge to l0 → 0 and L0 → ∞, this now represents the

Kolmogorov spectrum:

Φn(κ) = 0.033C2
nκ−11/3 (2.9)

where κ = 2π(fxi + fyj) is the spatial frequency Kolmogorov (1991). The Von

Karman PSD follows in much the same way but includes both the inner and outer

scale:

Φn(κ) = 0.033C2
n

exp(κ2/κ2
m)

(κ2 + κ2
0)11/6 for 0 ≪ κ ≪ 1

l0
(2.10)

where κ0 = 2π/L0 and κm = 5.92/l0 (Von Karman, 1948). In simulation, we

assume that different layers of turbulence are separated vertically enough that

they can be treated as statistically independent layers with their own strengths

C2
n(h), meaning each layer can be represented independently by a different phase

screen.

The Fried parameter r0 or Fried coherence length, is a measure of the total strength

of the turbulence integrated along a line of sight:

r0 = [0.423k2(cos γ)−1
∫

dhC2
n(h)]−3/5 (2.11)

where γ is the zenith angle and k = 2π/λ (Fried, 1966). As can be seen from

Eq. 2.11, r0 ∝ λ6/5 meaning longer wavelengths have a larger Fried parameter and

therefore the turbulence has less effect (Roddier, 1981). For optical wavelengths,

r0 typically has magnitude of tens of centimetres at astronomy sites. The phase

power spectrum for Kolmogorov turbulence can be expressed in terms of r0 as:

Φ(κ) = 0.023r
−5/3
0 κ−11/3 (2.12)

From here the phase structure function can be calculated for Kolmogorov turbu-

lence (Rao et al., 2000):

DΦ(r) = 6.88
( |r|

r0

)5/3
. (2.13)
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2.1.0.1. Temporal Effects

2.1.0.1 Temporal Effects

It can be assumed that light travels so quickly that it will travel through an eddy

before the properties of the eddy has time to change. Refractive index can therefore

be thought of as independent of time over very short time scales. To allow for

changes in time, Taylor’s frozen-flow turbulence hypothesis treats the eddies as

fixed and are all moved together by a single wind velocity as it crosses the pupil

(Taylor, 1938).

The coherence time τ0 represents the timescale over which the turbulent aberrations

are correlated as

τ0 = 0.314r0
v⃗

, (2.14)

where v⃗ is the effective wind speed:

v⃗ =
(∫∞

0 C2
n(h)V (h)5/3dh∫∞
0 C2

n(h)dh

)
. (2.15)

where V (h) is the wind speed as a function of altitude. τ0 defines time the adaptive

optics system has to correct the turbulence before it changes significantly. By

definition then, τ0 represents the the minimum update rate of an adaptive optics

system in order for it to correct the same turbulence the telescopes sees (Roddier,

1981).

The coherence time is dependent on both the strength and the velocity of the

turbulence.

If the exposure time is short, light passing through the atmospheric turbulence will

produce a distorted image. If observing with a larger telescope, an image of the

star may break into speckles. Imaging on longer timescales allows the turbulence

to randomly evolve, producing a blurred image, referred to as seeing.
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2.1.1. Simulating Turbulence Using Phase Screens

For long exposures, the image of a point source will change from speckles of size

λ/D to a ∼ Gaussian Point Spread Function (PSF) with a Full Width Half Max-

imum (FWHM) of λ/r0 as it is now limited by the turbulence, rather than the

telescope size (Fried, 1966). Longer wavelengths will have a larger Fried para-

meter, so diffraction limited images are easier to achieve in the infrared than in the

optical.

2.1.1 Simulating Turbulence Using Phase Screens

To simulate the effects of the atmosphere on light travelling through it, phase

screens are used to represent discrete thin layers of turbulence which can be trans-

lated across a telescope pupil to represent frozen flow. Multiple phase screens can

be generated to represent more than one layer of turbulence. The method presen-

ted here to generate a phase screen is taken from Ellerbroek and Cochran (2002).

To generate a phase screen, consider the effects a thin layer of turbulence will have

on a wavefront. We can express a complex wavefront U of a single wavelength λ,

with amplitude A and phase ϕ as:

U(x, y) = A(x, y)exp(iϕ(x, y)) (2.16)

Variations in the amplitude A cause the wavefront to distort. However it is often,

and in this case, assumed that astronomical observations will only occur under

weak turbulence conditions, in which the effects of scintillation are negligible, (Rod-

dier, 1981). For this reason A remains constant at 1, and we assume geometrical

propagation (Fried, 1982). If the wavefront is incident on a layer of turbulence at

height h and thickness δh, the wavefront undergoes a phase shift ∆ϕ(x) due to the

varying refractive indices n(x, h):

∆ϕ(x) = k

∫ h+dh

h
n(x, y, z)dz (2.17)

where k is the wave number. For a turbulent phase screen of width w with a Von

Karman PSD, the spatial power spectrum is:
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Φn(κ) = 2.54 × 10−4δ2L2
0(1 + κ2

κ2
0
)−11/6 (2.18)

where κ is a spatial frequency variable and κ0 = 2π
L0

2 (Tyson, 2000). δ2 is the

variance of the refractivity fluctuations:

δ2 = C2
n

1.9L
2/3
0

. (2.19)

To recreate Kolmogorov turbulence, L0 can be set to infinity. By multiplying

the power spectrum by Gaussian white noise, a random spectral distribution is

generated that retains the correct statistics. Gaussian white noise is a complex

field with zero mean and unit variance, expressed as (r(κ) + ir′(κ)). From here, a

phase screen P (x, y) can be defined as:

P (x, y) = cR{F[
√

Φ(κ)((r(κ) + ir′(κ))]} (2.20)

RF here represents a real Fourier Transform (FT) and c is a scaling factor which

means the strength of the turbulence in the phase screen can be defined in terms

of r0:

c = 0.1517√
2

( w

r0
)5/6 (2.21)

The phase screen can be expressed as a physical path difference (in metres), as

opposed to radians of phase at a specific wavelength. This allows the same phase

screen to be defined independently of wavelength.

Due to the Fast Fourier Transform (FFT) the phase screen will be periodic. This

means the width W should be significantly larger than the aperture of the telescope.

W should also be larger than L0, or the turbulence from the low order modes

will be undervalued. Figure 2.1 gives examples of phase screens generated using

the python package AOTools (Townson et al., 2019). The two phase screen are

generated using the same phase sampling and r0, but have different outer scales.
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Figure 2.1: Example simulated phasescreens in radians: Von Karman turbulence
with a 5m outer scale (left) and 200m outer scale (right). Both have the same
r0 and phase sampling, but the larger L0 shows a wider variation in amplitude.
Both phase screens represent 200x200m and spatial scale. Below: a normalised 1-D
version of the PSDs used to generate both phase screens

14



2.1.1.1. Infinite Phase Screens

The effect of a small outer scale is indicated in the small pockets of turbulence

across the screen. For the larger outer scale the eddies stretch across the phase

screen. In addition, note the changes in magnitude of the two phase screens, the

smaller L0 has suppressed the peak to valley optical path difference.

2.1.1.1 Infinite Phase Screens

The method detailed in 2.1.1 will generate a phase screen of finite size. In order to

simulate frozen flow over the telescope, the aperture would instead have to move

over the phase screen. This can be particularly problematic for modelling larger

aperture telescopes due to the size of the phase screens that become necessary.

As an example, an ELT-sized aperture of 39 m given 1024x1024 pixels, a one-

minute exposure with a wind speed of 10 m/s would require a 20480x20480 screen.

If using 64-bit data, this corresponds to over 3Gb of storage for a phase screen

corresponding to one layer of turbulence for one minute.

As an alternative, “infinite” phase screens can be used (Assémat et al., 2006).

Initially a finite phase screen is created in a similar fashion as discussed in section

2.1.1. The last two columns of the screen can be used as a stencil to create a new

column of the phase screen at the same time as the first column is removed. This

allows the array to stay the same size and the turbulence to appear to move across

the phase screen; meaning the telescope aperture can also remain still. This kind of

stencilling is sufficient for Von Karman turbulence, but for Kolmogorov turbulence

the sampling of the original phase screen is more complex (Fried and Clark, 2008).

This includes an additional reference point, near but not in the 2 columns used

as the stencil, which can be used to ensure the Kolmogorov statistics from the

structure function remain constant across the original phase screen and the new

columns. The use of infinite von Karman or Kolmogorov phase screens allows for

ELT scale simulations as well as very long exposure images to be generated.

Following the method presented in (Assémat et al., 2006), we define the stencil as
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vector Z, containing two columns of the initial phasescreen. This relates to the

new phase data X as:

X = AZ + Bβ (2.22)

where A and B are both matrices, and β is a random vector with Gaussian stat-

istics. To find matrix A first multiply by ZT and take the average over time. This

reduces to:

⟨XZT ⟩ = A⟨ZZT ⟩ (2.23)

as β and Z are uncorrelated. From here we find A:

A = ⟨XZT ⟩⟨ZZT ⟩−1 (2.24)

The transpose of A is therefore:

AT = ⟨ZZT ⟩−1⟨ZXTT ⟩ (2.25)

as ⟨ZZT ⟩ and its inverse is symmetric.

Next to find matrix B, we use equation 2.22 and multiply by XT , giving:

XXT = AZZT AT + AZβT BT + BβZT AT + BββT BT (2.26)

Taking the average of equation 2.26 and remembering β and Z are uncorrelated we

get:

⟨XXT ⟩ = A⟨ZZT ⟩AT + BBT (2.27)

BBT = ⟨XXT ⟩ − A⟨ZZT ⟩AT (2.28)

Substituting in equation 2.25 gives:

BBT = ⟨XXT ⟩ − A⟨ZZT ⟩⟨ZZT ⟩−1⟨ZXT ⟩

= ⟨XXT ⟩ − A⟨ZXT ⟩
(2.29)

BBT is symmetric so can be re-expressed as:

BBT = UWUT (2.30)
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2.1.2. Multi-Layered Profile

using a singular value decomposition where U is the eigenvectors of BBT and the

diagonal values of W are its eigenvalues. As W is a diagonal matrix W = LLT ,

where the diagonal elements of L are the square roots of the eigenvalues of BBT .

Substituting this into equation 2.30 gives:

BBT = ULLT UT

= (UL)(ULT )
(2.31)

and therefore:

B = UL (2.32)

By substituting equations 2.24 and 2.32, representing matrices A and B, back into

equation 2.22, we can now calculate new phase data and extend the initial phase

screen. This process can be repeated indefinitely, allowing for longer exposure times

at smaller memory costs. Unless stated otherwise, the infinite phase screens from

the AOTools package have been used.

2.1.2 Multi-Layered Profile

Phase screens describe a thin layer of atmosphere, so often multiple phase screens

are used to model a full atmosphere. Each layer within a model atmosphere will

be given a different altitude and strength J . J is the strength of the turbulence

with height - C2
ndh in units m1/3. Measuring the turbulence as a function of height

can be achieved by sending a balloon up through the atmosphere to measure the

vertical temperature profile, or using ground based instruments (Sarazin et al.,

2013).

Balloon sounding measurements of the temperature structure function are still used

in present day, but they are impractical as a permanent measuring technique at

astronomical sights as they cannot measure different altitudes concurrently (Bufton

et al., 1972) (Azouit and Vernin, 2005). Weather balloons are of particular help

when attempting to measure the atmospheric turbulence in inaccessible locations,

such as the south pole (Azouit and Vernin, 2005).
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2.1.2. Multi-Layered Profile

Ground based techniques for measuring the atmospheric turbulence as a function

of height include the SLOpe Detection And Ranging (SLODAR) method (Wilson,

2002). This can be used in real time and is ideal for astronomical sites. By using

two stars, the overlap between the turbulence seen by each line of sight will decrease

with increasing altitude, meaning C2
n(h) can be found from the correlation in the

wavefront slopes(Butterley et al., 2006). SCIDAR uses a similar triangulation

methodology but with the scintillation patterns for the two stars imaged onto a

single detector Vernin and Roddier (1973). Stereo-SCIDAR builds on this by using

one camera for each of the double stars, making it up to twelve times more sensitive

than a traditional SCIDAR approach (Shepherd et al., 2014). These methods may

utilise a Shack-Hartmann wavefront sensor (Platt and Shack, 2001). This uses

a series of lenslets to split the incoming light into multiple different spots. The

movement in each of these subimages demonstrates the changes in the phase local

to each lenslet. When combined together this is indicative of the total wavefront

seen by the telescope.

As measuring the atmospheric turbulence as a function of height requires real on-

sky data, atmospheric profiles are often site specific. Here we use the median ESO

profile, Marchetti (2015), generated from data from Paranal and Cerro Armazones.

It defines 35 different layers from 30 m to 26500 m in altitude, and defines the Fried

parameter as 0.157 m and the outer scale as 25 m at 500 nm. Table 2.1 shows

the heights, speeds and relative strengths of this profile, but the directions of the

individual layers .

We note that 50% of the strength of atmospheric turbulence occurs in the first

4 layers, with heights up to 200m. This is typical at astronomical observatories

(Tokovinin et al., 2003).

18



2.1.2. Multi-Layered Profile

Layer Height (m) Wind (m/s) %J

1 30 5.5 24.2
2 90 5.5 12
3 150 5.1 9.68
4 200 5.5 5.9
5 245 5.6 4.73
6 300 5.7 4.73
7 390 5.8 4.73
8 600 6 4.73
9 1130 6.5 3.99
10 1880 7 3.24
11 2630 7.5 1.62
12 3500 8.5 2.6
13 4500 9.5 1.56
14 5500 11.5 1.04
15 6500 17.5 1
16 7500 23 1.2
17 8500 26 0.4
18 9500 29 1.4
19 10500 32 1.3
20 11500 27 0.7
21 12500 22 1.6
22 13500 14.5 2.59
23 14500 9.5 1.9
24 15500 6.3 0.99
25 16500 5.5 0.62
26 17500 6 0.4
27 18500 6.5 0.25
28 19500 7 0.22
29 20500 7.5 0.19
30 21500 8 0.14
31 22500 8.5 0.11
32 23500 9 0.06
33 24500 9.5 0.09
34 25500 10 0.05
35 26500 10 0.04

Table 2.1: Table describing height above telescope, speeds and strengths as a per-
centage %J of the ELT 35 layer atmospheric profile. Taken from Marchetti (2015)
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2.1.2.1. Measuring Wind Velocity

2.1.2.1 Measuring Wind Velocity

The velocity of the atmosphere as a function of height is not routinely measured at

observatories. It can be physically measured, often by using weather balloons, but

these take time to rise through the atmosphere, so cannot measure the velocity of

all heights simultaneously or continuously - the NOAA balloons take 85 minutes to

reach an altitude of 25km (Osborn et al., 2016). Balloons will also drift with the

wind, so cannot measure exactly along one line of sight. They are also limited in

that they can only be succesfully launched when the ground layer moves at 5 ms−1

or less (Storvold et al., 1998). Martin et al. (2011) used a plane with a spiral flight

pattern, but is only usable in wind speeds of 10 ms−1 or less.

An alternative is to calculate the wind velocity profile from the ground. This can

be done using the stereo SCIDAR two star optical triangulation technique. By

measuring the light from two stars there will be overlap across the atmosphere

between the two lines of sight. Aberrations from where there is overlap will be

seen by both and given the angular separation of the two sensors the atmospheric

errors can be assigned to a specific height. By assuming frozen flow, changes in the

cross covariance of the optical phase aberration are attributed to the velocity of the

turbulence. Wind speed and direction measurements using stereo SCIDAR have

been shown to match that of weather balloon data and forecast data in Osborn et al.

(2016). The SCIDAR data can measure the wind velocity for the full height of the

atmospheric profile, is only able to assign velocities to teh stronger turbulent layers.

Osborn and Sarazin (2018) shows that meteorological models can be used to predict

turbulence patterns. In comparison to SCIDAR data, the forecast predictions

have an RMSE in the wind direction of 29 degrees and cannot produce a velocity

dispersion with height.

Wind velocity profiling data is available for the ground layer. For example the

Nordic Optical Telescope (NOT) has a database from its Meteorological Station

at La Palma, which includes ground layer speed and direction in around 5 minute
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2.2. Zernike Modes

intervals. This records wind direction with north as 0 degrees, and east as 90.

Lombardi et al. (2007) analysed this NOT data from 1998 to 2004 and showed that

this particular site is more likely to have ground layer wind along the east-west

axis, but there is still a heavy spread in all other directions. A bias to westerly

wind is to be expected due to the Coriolis effect - the wind is more likely to run

parallel to the earth’s rotation than perpendicular to it.

2.2 Zernike Modes

It is often convenient to describe optical aberrations using a modal decomposition

into an orthogonal basis set over a numerical grid. Zernike developed a commonly

used set of orthogonal modes to describe aberration within circular apertures. The

eponymous Zernike polynomials are a complete, orthogonal set of polynomials

defined on a unit circle. Low-order Zernike polynomial modes correlate to clas-

sical optical aberrations e.g. defocus, coma and astigmatism, and can also be used

to represent the effects of atmospheric turbulence in an optical system (Noll, 1976).

It is worth noting that as they are continuous, they may not be orthogonal over a

discrete series of points within a circle. The infinite series of polynomials Zm
n can be

sorted by Noll conventions using their radial degree (n) and azimuthal frequency

(m). The polynomials are given in polar coordinates (X = r sin θ, Y = r cos θ),

expressed as:

Zm
n (r, θ) ± iZ−m

n (r, θ) = Rm
n (r)exp(±imθ) (2.33)

this leads to:

Zm
n (r, θ) = Rm

n (r) cos mθ for m ≥ 0

Z−m
n (r, θ) = Rm

n (r) sin mθ for m < 0
(2.34)

where 0 ≤ r ≤ 1, so the modes are limited to within a unit circle. The radial

function Rm
n (r) follows as:

Rm
n (r) =

n−m/2∑
s=0

(−1)s(n − s)!
s![1

2(n + m) − s]![1
2(n − m) − s]!

(2.35)
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2.2. Zernike Modes

Zernike polynomials are commonly described using a single index as Zj , where j

increases by radial order and then azimuthal order (j = [n(n + 2 + m]/2). By

ordering in this fashion, the polynomials split into symmetric and antisymmetric

modes for even and odd values of j respectively:

Zevenj =
√

n + 1Rm
n (r)

√
2 cos mθ (2.36)

Zoddj =
√

n + 1Rm
n (r)

√
2 sin mθ (2.37)

Zj =
√

n + 1R0
n(r) for m = 0 (2.38)

There are other ways of numbering the Zernike polynomials for example OSA or

Fringe numbering. Fringe indexing is often used in optical design. As is common

for work in astronomical adaptive optics, this work will follow the Noll conventions.

The first 6 modes are shown in Table 2.2, listed with their radial and azimuthal

orders and their classical aberration names.

Figure 2.2 shows the Zernike modes sorted into radial order and by same azimuthal

order in an attempt to highlight the differences in the indexing. A series of the

polynomials with different weights or coefficients aj can be used to describe an

aberrated wavefront W (Rρ, θ) passing through a optical system with radius R

where ρ = r/R :

W (Rρ, θ) =
∑

j

ajZj(ρ, θ) (2.39)

Zj n m Equation Classical Aberration
Z1 0 0 1 Piston
Z2 1 -1 2rcos θ Tip
Z3 1 1 2rsin θ Tilt
Z4 2 0

√
3 (2r2 -1) Defocus

Z5 2 -2
√

6 r2 sin 2θ Astigmatism
Z6 2 2

√
6 r2 cos 2θ Astigmatism

Table 2.2: Table describing equations for the first six low order Zernike polyno-
mials and their equivalent classical optical aberrations, generated using AOTools
(Townson et al., 2019)
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2.2. Zernike Modes

Figure 2.2: First 21 Zernike modes, sorted by radial order and azimuthal order.

Naturally, the larger the Zernike coefficient, the higher the contribution from that

particular mode to the aberration on the system. The Zernike coefficients are

independent of the number of polynomials used to describe a wavefront as the

modes are orthogonal. For example, the coefficients for the first n modes will not

change if more polynomials are used.

The Noll paper also derives the expected variances for the Zernike coefficients for

Kolmogorov turbulence. These can be used as a verification for our simulation,

running a test case of D = r0. Figure 2.3 shows that simulation variances still

follow in the same step like pattern and at very similar scales for larger outer

scales, building confidence that the simulation is working as intended. As seen in

Winker (1991), a finite outer scale will attenuate the Zernike variances, particularly

the lower order modes. Note that even for L0/D = 10, tip and tilt are still much

lower than the Noll variances but the high order modes do match in scale.
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Figure 2.3: A comparison of Zernike coefficient variances from simulation for dif-
fering L0/D values, excluding piston. A larger outer scale will converge in to the
Noll variances, which assume Kolmogorov turbulence.

The results in figure 2.3 are produced using Zernike modes that have been orthonor-

malised using the Gram-Schmidt process (Swantner and Chow, 1994). Without

this, using larger outer scales, modes from higher radial orders begin to exhibit

odd behaviours. As the outer scale gets larger, spikes begin to appear in the in-

stantaneous Zernike variance for positive and even azimuthal order modes, reaching

an order of magnitude higher than other modes in that radial order. To reduce

this the phase used to generate the covariances should be zero mean. To achieve

this we can utilise the Gram-Schmidt process. Afterwards, the variances appear

as expected, as seen in figure 2.4. All Zernike coefficients in this work have been

generated with Gram-Schmidt Zernike modes.
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Figure 2.4: Instantaneous Zernike Variance for L0/D = 10 compared to Noll
variance excluding piston. Without the use of Gram-Schmidt orthonormalisation,
spikes occur for modes with azimuthal order +4 and +8.

2.2.1 Alternative Modes

As most optical set ups use circular apertures, they are a useful tool when describing

an aberrated wavefront. Zernikes are not the only set of polynomials that can be

used to describe optical aberrations. Systems with alternative aperture shapes

may use different series, but Zernikes still hold the advantage of corresponding to

classical optical aberrations (Lakshminarayanan and Fleck, 2011). Systems that

use annular apertures may choose Karhunen-Loeve modes as an alternative. A

third fewer KL modes than Zernike modes are required to produce an equivalent

match to a wavefront Cannon (1996).

Regular Zernikes are not orthogonal over non circular apertures, but basis changes,

such as the Gram-Schmidt method, can be performed to alter the series for annular

or elliptical systems (Swantner and Chow, 1994).
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2.3. Long exposure simulation method

2.3 Long exposure simulation method

In order to explore the effects of long term phase averaging a Monte Carlo simu-

lation of atmospheric turbulence was used to model atmospheric wavefront errors

as a function of wavefront sensor averaging time. The model uses infinite phase

screens (Assémat et al., 2006), to allow for long exposures to be simulated without

the prohibitive computer memory requirements.

For an individual aperture observing a single layer of turbulence, a section of the

phase screen at time t which is the same size as the aperture p, q is selected;

ϕ
′
screen(t, p, q), where p and q are pixel coordinates. The instantaneous Zernike

coefficient a
′
j(t) for an individual mode is calculated by multiplying the Zernike

mode Zj(p, q) by the phase screen and summing across the aperture

a′
j(t) =

∑
p

∑
q ϕ′

screen(t, p, q)Zj(p, q)
A

, (2.40)

where A is the area of the circular pupil. Zernike modes have been indexed and

normalised using the Noll convention (Noll, 1976).

The phase screen is translated across the telescope aperture in a series of small

steps, and the resulting instantaneous coefficient is calculated repeatedly at differ-

ent values of time t. The long exposure Zernike coefficient for an averaging time of

τ can then be calculated as

aj(τ) = 1
Nt

Nt(τ)∑
t=0

a′
j(t), (2.41)

where Nt is the number of time steps in the period τ . The mean Zernike coefficient

represents the magnitude of phase aberration represented by a mode within an

exposure time τ . To account for the finite exposure time of the simulation, this

mean coefficient can be calculated for different realisations of the atmosphere by

generating new phase screens with the same input parameters. The variation of
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2.3. Long exposure simulation method

τ is how this thesis tests the effects of an increasing but finite averaging time.

As the Zernike coefficients are zero-mean the RMS of the Zernike coefficient σj is

calculated as

σj(τ) =
√

⟨|aj(τ)|2⟩. (2.42)

The RMS σ(τ) represents the amount of phase aberrations sampled by the mode,

integrated over a finite exposure time. For a simulation with many layers, the

Zernike variances from the individual layers are summed together to create a total

variance and then the RMS is calculated. Geometrical propogation is assumed

(Fried, 1982). The results are also weighted for the strength of each layer %J ,

given its height as discussed in section 2.1.1, giving a total σtot(τ) of:

σtot =

√√√√h=max∑
h=0

(
Vj · %J

100
)

(2.43)
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Chapter 3

Effects of wind velocity profiles on

turbulence-induced quasi-static

aberrations

3.1 Introduction

In this chapter, we investigate the impact of wind velocity on the characteristic

timescales required for turbulence averaging, focusing on next generation ELT scale

telescopes. An AcO system aims to correct for errors inherent to the telescope.

Ideally the reference centroids should correspond to a flat wavefront. This can

be achieved on-sky by averaging over a sufficiently long enough period of time so

that the atmospheric effects will average to zero, leaving only the instrument error

for the AcO system to correct. The time this takes scales strongly with telescope

diameter, which may cause problems for ELT-scale apertures. Part of this work

was previously presented in Gill et al. (2022).

A simulation was used to explore the decay rates of time-averaged atmospheric

turbulence residuals under frozen flow conditions. This chapter first shows that

the RMS of Zernike coefficients averaged across each radial order decreases with

exposure time with an approximate −0.5 power law, in line with the published
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3.1. Introduction

results from Gordon et al. (2011). However, our model shows that there is a

significant deviation in the power law exponent when individual Zernike modes

within the same azimuthal pair are considered. For example, for a 39 m telescope,

Fried parameter of 0.14 m and outer scale of 39 m and a wind speed of 10 m/s, the

times taken for Zernike modes 5 and 6 to reach a residual error of λ/20 are 10 and

64 seconds in the K-band and 40 and 1016 seconds in the V-band respectively.

This chapter shows via simulation that the characteristic timescale needed for a

time-averaged Zernike mode to achieve a specified wavefront variance is depend-

ent upon wind direction, meaning that both the C2
n and wind velocity profiles can

have a large effect on the modal variance of observed quasi-static aberrations. We

initially explore the effects of varying wind direction on individual modes using a

single layer turbulence model (section 3.2.2). This was then extended in section

3.3 to incorporate some angular dispersion of wind direction in a multi-layer at-

mosphere. We show that a larger angular dispersion is equivalent to averaging

over the azimuthal order. This means that for atmospheres where there is a wide

dispersion of wind directions the characteristic averaging timescale tends back to

the results presented in Gordon et al. (2011); whereas for a bulk wind direction the

timescale is closer to the results of a single layer.

As the turbulence closer to the ground is typically stronger, varying the directions of

the lowest layers in our model has a clear effect on results generated with the same

angular separation between layers. A mean profile is generated looking at on sky

data from a SCIDAR instrument, as used in Osborn et al. (2016). The multi-layered

profile allowed us to investigate the effects of varying the wind speed of the ground

layer in section 3.4. For example combined with ground wind speed statistics from

the ESO Paranal ambient conditions database ESO (1998), our model predicts that

for an ELT scale telescope 10% of the time mode 5 will take over an hour to reach

a λ/20 at 500 nm threshold. Unless stated otherwise, all results presented in this

chapter are for a 39 m diameter telescope with an atmospheric profile of 39 m outer

scale and 0.157 m Fried parameter.

29



3.2. Single Layer Model

3.2 Single Layer Model

3.2.1 Azimuthally Averaged Zernike Modes

Following the method presented in section 2.3, we have explored the behaviour of

the RMS WFE of the time averaged Zernike coefficients. Gordon et al. (2011) notes

two regimes, separated by a break point τbp ≈ D/v where D is the pupil diameter

and v is the wind speed. This is recreated in figure 3.1. Initially the RMS WFE

of the time averaged Zernike coefficients is near constant for short exposures and

then decreases approximately as a power law after the break point.

Figure 3.1 presents σn(τ) for azimuthally averaged Zernike coefficients - the average

of an azimuthal pair or a full radial order produces the same results. For long expos-

ures, the WFS will sample different values of the Zernike modes as the atmosphere

moves past. In a "heuristic analysis", Gordon assumes before and after τbp as un-

correlated, so the latter can be treated as a random walk process. The azimuthally

averaged σn(τ) decreases approximately as a -0.5 power law - σn(0)(τ/τbp)−0.5 from

Gordon et al. (2011). This is due to the rotational symmetry of the azimuthal or-

ders averaging as the phase translates across. The exposure time needed to reach

τbp will be different for different radial orders, shown in figure 3.1. The curves for

the different radial orders are parallel but τbp is longer than for smaller modes.

The results in figure 3.1 are not affected by changes in wind direction, but are

affected by wind speed. We demonstrate this dependency in figure 3.2, which

shows the time averaged Zernike RMS WFE for radial order 2. The only change

between the two lines is the speed at which the phase moves past the aperture -

5.1 ms−1 and 32 ms−1 respectively. These speeds have been chosen as they are

the extremes shown in table 2.1 and are representative of possible wind speeds at

the Paranal site. As discussed in Gordon et al. (2011) both scenarios start with

the same Zernike coefficient RMS WFE and decrease with the same power law,

as the same atmospheric statistics and pupil diameter have been used - but the
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Figure 3.1: Time-averaged RMS WFE for frozen flow atmospheric turbulence for
Zernike radial orders 1 through 4, showing the same gradient for each azimuthally
averaged pair. This is a replication of the results from Gordon et al. (2011) using
a single layer of von Karman turbulence with outer scale L0 = 39 m and r0 of
0.157 m moving at 10 ms−1 for an ELT sized aperture of diameter 39 m.

faster velocity breaks first. This can have large effects on averaging times if we

wish to reach a specific threshold. The averaging times are linearly dependent on

wind speed. For example, to reach a threshold of λ/10 will take six times longer

for the slower wind speed for this particular case. To expand on these results we

first continued with a single layer model but looked at individual Zernike modes.

3.2.2 Behaviour of Individual Modes

We started with a simple atmospheric model using a single phase screen of Von

Karman turbulence with a Fried parameter r0 of 0.157 m and outer scale L0 of

39 m. Using the infinite phase screen function of aotools as discussed in section

2.1.1, we translated this past a 39 m aperture for 100 seconds with a wind speed

v = 10m/s. For each step, we measured the instantaneous Zernike coefficients for

the first 10 radial orders containing 66 modes in Noll convention. After repeating

this process for different phase screens with the same statistics, we can calculated
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Figure 3.2: Dependence of the time-averaged residual wavefront error of mode
focus versus averaging time for an ELT sized aperture using a single layer of von
Karman turbulence with outer scale L0 = 39 m and r0 of 0.157 m with wind speeds
of 5.1 ms−1 and 32 ms−1, showing the break point’s dependency on wind speed.

the Zernike modal distribution of time-averaged residual WFE as a function of

averaging (or WFS exposure) time as shown in equation 2.42.

Figure 3.3 shows that the time taken for the averaging error of individual modes

to reach a limit is also dependent on their azimuthal order. In the same way as the

azimuthally averaged results shown in section 3.2.1, the averaging error for indi-

vidual modes also follows the trend of constant RMS WFE for short exposures until

reaching a break point at which they follow an approximate power law. The RMS

WFE for Zernike coefficients within the same radial order are the same until the

break point τbp, but have varying behaviour afterwards. In this logarithmic space

a power law presents as a straight line. As well as the azimuthally averaged results

from section 3.2.1, figure 3.3 shows that individual modes also act approximately

as power laws. We have fit power laws to the Zernike RMS WFE after the break

point. This is shown as the the fainter straight lines in the figure. We see that this

approximate straight line fit is only valid for exposure times after the break point,

so only these times are used to generate the fit. We fit gradients of -0.46 and -1 for
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Figure 3.3: WFE for time averaged Zernike coefficients in nm RMS shown as a
function of exposure time for Zernike Modes 2 and 3, tip and tilt, using a single
layer of von Karman turbulence with outer scale L0 = 39 m and r0 of 0.157 m
moving at 32 ms−1 for an ELT sized aperture of diameter 39 m.

modes tip and tilt respectively.

3.2.3 Effects of Varying Wind Direction

To explore the effects of wind direction on the results shown above in section 3.2.2,

we repeated this process whilst applying a rotation matrix to the individual Zernike

modes prior to calculating the instantaneous coefficients. In figure 3.4 we plot the

same time-averaged residual WFE for the modes of radial order 2, with azimuthal

orders 0 and ±1, the only difference between each of the simulations being the wind

direction.

The right and lower panels of figure 3.4 show that the approximate power law
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Figure 3.4: RMS WFE for time averaged Zernike coefficients in nm shown as a
function of exposure time for Zernike Modes 4,5 and 6, (focus and astigmatisms)
using a single layer of von Karman turbulence with outer scale L0 = 39 m and r0
of 0.157 m moving at 10 ms−1 for an ELT sized aperture of diameter 39 m. Panels
left, right, bottom for wind directions 0, 45, 22 degrees respectively. Also shown
on each panel is the threshold of λ/20 at 2200 µm (K Band).

for an individual mode is dependent on both its azimuthal order and the wind

direction. This azimuthal order dependence stems from the rotational symmetry

of the modes. Modes 4 and 5 have azimuthal order ±2 respectively and are shown

in figure 3.5 to demonstrate their rotational symmetry. It follows logically that the

results produced by rotating mode 5 by 45 degrees should match that of mode 4

with no rotation and visa versa.

In addition after rotating both by 22 degrees, halfway between 0 and 45 degrees,

the modes are symmetrical about the wind direction and so have identical RMS

34



3.2.3. Effects of Varying Wind Direction

Figure 3.5: Zernike Modes 5 and 6, astigmatism 1 and 2 with no rotation applied.

WFE power laws. All three panels of figure 3.4 show that the averaging error for

mode 4 (focus) is unaffected by wind direction. This is to be expected as mode 4

has zero azimuthal order and is always symmetric about the wind direction. Mode

4 reduces at an approximate -0.5 power law - the same as the azimuthally averaged

results presented above. At 22 degrees when modes 3 and 5 align, they match the

zero order time-averaged wavefront error power law. Using the same power law fit

discussed in section 3.2.2, we plot the gradients of each mode for a full rotation

of 0 through 90 degrees in figure 3.6. This clearly shows that the gradients of the

three modes align at 22 degrees and that the astigmatisms switch positions over 45

degrees. The angular separation between the extremes in gradient can be expressed

as 180
|m| degrees.

Extending this to higher order modes, at 0 degrees wind direction where the wind

direction is aligned with the origin of the azimuthal angle of the Zernike mode,

the slope gradients after the break point for all pairs of modes show the greatest

difference. However the angle at which both modes are symmetric about the wind

direction varies with azimuthal order. For example, the gradient of the slope after

the break point for Zernike modes with azimuthal order 10 will switch places every

9 degrees, whereas tip and tilt would require a wind direction change of 90 degrees.

The behaivour of azimuthal order 10 is shown in figure 3.7, and tip and tilt are

plotted in 3.7. As a reference, the Zernike modes are shown in figures 3.9 and 3.10.
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Figure 3.6: Power law gradient for radial order 2 as wind direction rotates from
-90 through 90 degrees.
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Figure 3.7: Power law gradient for an azimuthal pair ±10 as wind direction rotates
from -90 through 90 degrees.

For a single phase screen this behaviour can be clearly explained, but for a more

realistic multi-layered atmospheric model this would require the whole atmosphere

to exhibit bulk motion in a single direction. In the next section we instead consider

the case of a more complex atmosphere with multiple turbulent layers, each of which
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Figure 3.8: Power law gradient for an azimuthal pair ±1 as wind direction rotates
from -90 through 90 degrees.

can have its own velocities.

Figure 3.9: Zernike Modes 2 and 3, tip and tilt, with no rotation applied

3.3 Extending to Multiple Layers

To investigate the impact of wind velocity on the averaging time for more realistic

atmospheres, we implemented 3 regimes:
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3.3. Extending to Multiple Layers

Figure 3.10: Zernike Modes 65 and 66, azimuthal order +-10 with no rotation
applied.

1. The ESO 35 layer profile with vertical wind speed profile as described in

section 2.1.2. Leaving the lowest layer translating at "0" degrees, a second

direction was chosen for the highest layer. The wind direction of intermediate

layers was evenly spread as a function of layer number. This gives helically

varying wind directions between the lowest and highest layers. To find the

wind direction θi for a layer i in our 35 layer profile:

θi = 1
35 − 1(i − 1)θend (3.1)

where θend is the chosen direction for the highest layer. This allowed for large

angular dispersions and also limited ones that mimicked a bulk motion of the

atmosphere.

2. We repeated the helical dispersion and also varied the direction of the lowest

layer. This followed in much the same way as equation 3.1 but we also define

a starting angle θstart for the lowest layer,

θi = 1
35 − 1(i − 1)(θend − θstart) + θstart (3.2)

3. Used SCIDAR data to produce a random wind velocity specified by a Gaus-

sian distribution.
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3.3.1 Helically Varying Wind Directions with Fixed Ground

Layer

In this section we explore how wind directions of a multi-layered atmospheric profile

affects the time averaged variance of Zernike modes. We kept the direction of the

lowest layer fixed at 0 degrees - equivalent to the results shown in 3.2.2 - and helic-

ally vary the velocities of the 34 higher layers. Whilst previous results showed the

evolution of Zernike variance with increasing exposure time for individual modes,

here we show the variances for multiple modes after a set exposure time.

Figure 3.11 shows the time-averaged wavefront variance for individual Zernike

modes after an exposure time of 100 seconds for the full 35 layer profile with

all layers translating in one direction (at 0 degrees). The time-averaged wavefront

variances for pairs of azimuthally-averaged Zernike modes are shown as the green

lines for comparison. This result is akin to what we see in the first part of figure

3.4, all the modes within their azimuthal pairs are at their maximum offset from

the azimuthal average.

A next step is to suggest that the atmosphere would have a bulk direction but with

a small angular dispersion of wind velocities. To represent this we helically vary the

layers through 45 degrees, as shown in figure 3.12. Also included in figure 3.12 is a

"wind rose" to demonstrate the individual velocities of the full atmospheric profile.

This shows that atmospheres with small angular dispersions can still give rise to

very large differences in atmospheric turbulence residuals. All non-zero azimuthal-

order modes have moved to be closer to the azimuthal average. Higher order

being more effected by this small increase given their smaller angular symmetry.

The comparison between figures 3.11 and 3.12 also shows that modes with zero

azimuthal order and azimuthally averaged results are unaffected by wind direction.

Figure 3.13 shows the variances after 100 seconds given a helix between 0 and 360

degrees. We now see that all modes are very close to the azimuthal average as we

are now equivalently averaging over wind direction. They are not identical results
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Figure 3.11: Modal breakdown of residual wavefront variance after integration time
of 100 seconds for all layers aligned at 0 degrees. The red bars indicate different
radial orders. Generated using the ESO 35 layer profile with L0 = 39 m and r0 of
0.157 m, wind speeds detailed in table 2.1, for an ELT sized aperture of diameter
39 m.

though, given the atmospheric profiles discreet layers with individual speeds and

weighting.

Individual layers have their own specific directions and strengths. Layers closer to

the ground are more dominant so as the angular dispersion increases the variance

does not tend smoothly to the azimuthally averaged case. This is seen in figure

3.14 which shows the time taken to reach a threshold of λ/20 at 550 nm for radial

order two as the angular dispersion increased. The RMS WFE for the azimuthal

pair never exactly average out to the zero order case, but their split does decrease

as the angular dispersion increases. For a given wind speed profile, the wavefront

averaging time can vary by an order of magnitude depending on the distribution

of layer directions.
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Figure 3.12: Modal breakdown of residual wavefront variance after integration
time of 100 seconds for layers helically varied from 0 through 45 degrees. The
azimuthally averaged variances are shown as the green lines. The polar plot shows
the layers velocity distributions in ms−1, starting with a surface layer aligned at 0
degrees, with respect to tip. The length of each line represents that layer’s speed.
Generated using the ESO 35 layer profile with L0 = 39 m and r0 of 0.157 m for an
ELT sized aperture of diameter 39 m.

3.3.2 Offsetting the Ground Layer

The results in the above section explore the effects of varying angular dispersion,

but the helically varying profile starts at the ground moving at 0 degrees. The

lowest three layers, below 200 m, hold just over half the total weight of the entire

profile, so naturally the directions of these layers heavily affect the variance. In

addition to varying the total angular dispersion of the whole wind helix we have

also tested the effects of changing its starting angle. For example, starting with

the lowest layer at 0 degrees and helically varying to the highest at 360 degrees

has the same total angular dispersion as starting at 10 degrees and ending at 370

degrees; but will produce a different residual wavefront error.

By offsetting the wind velocity by just 10 degrees the distribution of modes appears

less regular and closer to the azimuthally averaged case for an equivalent angular

dispersion. Starting again with all layers aligned in a singular direction, figure 3.15

demonstrates how differently the individual modes are affected by wind direction.

Here whilst only some modes are noticeably closer to the azimuthal average, the
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Figure 3.13: Modal breakdown of residual wavefront variance after integration
time of 100 seconds for angular dispersion of all layers through 360 degrees. The
azimuthally averaged variances are shown as the green lines. The polar plot shows
the layers velocity distributions in ms−1, starting with a surface layer aligned at 0
degrees, with respect to tip. The length of each line represents that layer’s speed.
Generated using the ESO 35 layer profile with L0 = 39 m and r0 of 0.157 m for an
ELT sized aperture of diameter 39 m.

Figure 3.14: Time taken to reach an RMS WFE threshold of λ/20 at 550 nm
for increasing angular dispersion, starting at 0 degrees. Generated using the ESO
35 layer profile with L0 = 39 m and r0 of 0.157 m for an ELT sized aperture of
diameter 39 m.
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offset ground layers have a much clearer effect when considering angular dispersions.
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Figure 3.15: Modal breakdown of residual wavefront variance after integration
time of 100 seconds for all layers aligned at 10 degrees. The azimuthally averaged
variances are shown as the green lines. The red bars indicate different radial orders.
Generated using the ESO 35 layer profile with L0 = 39 m and r0 of 0.157 m for an
ELT sized aperture of diameter 39 m.

Figure 3.16 shows a small dispersion of 45 degrees, but with the lowest layer mov-

ing at 10 degrees rotation. The comparison between figures 3.12 and 3.16 show

the strong effect that the ground layer has on the overall results. The same small

angular dispersion has a much smaller residual wavefront error when the ground

layers change direction. Accurate profiling of wind direction at low altitudes would

appear to be useful in reducing unnecessary averaging time - possibly by rotating

the Zernike modes to a more optimal position. Consider the difference between fig-

ures 3.14 and 3.17: the x axis on both shows the same degree of angular dispersion,

but the small additional offset of 10 degrees at the ground consistently affects the

non-zero azimuthal order modes.
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3.3.2. Offsetting the Ground Layer

Figure 3.16: Modal breakdown of residual wavefront variance after integration
time of 100 seconds for layers helically varied from 10 through 55 degrees. The
azimuthally averaged variances are shown as the green lines. The polar plot shows
the layers velocity distributions in ms−1, starting with a surface layer aligned at 10
degrees, with respect to tip. The length of each line represents that layer’s speed.
Generated using the ESO 35 layer profile with L0 = 39 m and r0 of 0.157 m for an
ELT sized aperture of diameter 39 m.

Figure 3.17 shows the time taken to reach a threshold of λ/20 at 550 nm as the

angular dispersion increases with the bottom layer at 10 degrees. This shows in

quite a pronounced way that a larger spread of wind velocities does not always

guarantee a smaller residual wavefront error. Here we see that radial order 2 is

much closer to the azimuthally averaged case with an angular dispersion between 10

an 180 degrees. Upon closer inspection we can see that this particular arrangement

puts the seven lowest layers with the strongest weighting between 10 and 45 degrees.

As established in section 3.2.2, averaging over this angular range is the the same

as azimuthally averaging, hence why this range of atmospheric dispersions have a

much smaller range of values. This does highlight a possible limitation of our helix

model. If there isn’t a smooth rotation in wind direction between layers, this model

could suggest a faster averaging time than is probable.
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Figure 3.17: Time taken to reach an RMS WFE threshold of λ/20 at 550 nm for
increasing angular angular dispersion, starting at 10 degrees. Generated using the
ESO 35 layer profile with L0 = 39 m and r0 of 0.157 m for an ELT sized aperture
of diameter 39 m.

3.3.3 Considering Real Data

Available SCIDAR data for Paranal includes wind direction and speed for 100

different layers at variable time intervals for over 150 different nights over a 3 year

period. Speed and direction data was not available for all heights as seen in figure

3.18. For this reason, for results presented here we discard SCIDAR data from

above 20km in altitude, as there is less information about these high turbulent

layers as they are very weak and SCIDAR algorithm tends to associate velocity

values to the strongest layers. This may bias our results, but the effects should

be minimal given that layers of these heights hold less than 1 percent of the total

strength in our ESO profile. We show this in figure 3.19, where we have plotted

the total C2
n value from available SCIDAR data that contains wind direction, as a

function of height. There is reasonably consistent information for the ground layer,

with altitudes below 1 km, and for the jet stream; which we defined as existing
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between 8 km and 15 km.

0 5000 10000 15000 20000 25000
Height /m

0

20

40

60

80

Pe
rc

en
ta

ge
 o

f E
xi

st
in

g 
Da

ta

Figure 3.18: From all available SCIDAR files, across multiple nights, the per-
centage of data that included wind direction information, as a function of layer
height.
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Figure 3.19: Total C2
n value from available SCIDAR data that included information

on wind direction.

We have calculated the angular change between temporally consecutive measure-

ments, regardless of direction. This ensures that a change between 355 and 10

degrees registers the same as between 10 and 25 degrees. Figure 3.20 shows the

mean angular change between measurements on each individual night. The ground
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layer tends to behave much more erratically, typically having a much wider angular

change in the same time frame.
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Figure 3.20: Mean angular change between SCIDAR measurements for each night
of measurements; for the ground layer and the jet stream.
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Figure 3.21: Mean wind direction with height of the layers across the available
SCIDAR data. Errorbars are the standard deviation of the angular change between
layers.

As well as changes in wind direction we have also shown the mean wind direction

over the different measurements as a function of layer height. The average wind

direction of each layer settles around 270 degrees at altitudes above 2.5km and up
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to 15km, seen in figure 3.21, which is consistent with a westerly wind as discussed

in section 2.1.2.1. The error bars are generated from the standard deviation of the

angular change between layers at each time point. Using the mean directions from

figure 3.21, we have generated a new wind velocity profile to use in our theoretical

model. Each layer has a direction generated from a normal distribution with mean

and standard deviation as shown in figure 3.21.
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Figure 3.22: Modal breakdown of residual wavefront variance after integration
time of 100 seconds for layers following a Gaussian distribution generated from the
SCIDAR data. The azimuthally averaged variances are shown as the green lines.
The polar plot shows the layers velocity distributions in ms−1, the length of each
line represents that layer’s speed. Generated using the ESO 35 layer profile with
L0 = 39 m and r0 of 0.157 m for an ELT sized aperture of diameter 39 m.

The results presented in figure 3.22 are consistent with others presented in this

chapter. The ground layers are far from 0 degrees, so all modes are less scattered

than shown in figure 3.11, but not as smoothly averaged as results that used a 360

degree helix such as figure 3.13. Higher azimuthal order modes are very close to the

azimuthal average, but the WFE from tip and tilt remains an order of magnitude

different to one another.

48



3.4. Varying Ground Layer Wind Speed

3.4 Varying Ground Layer Wind Speed

We define the ground layer as less than 1km in height, so the lowest eight layers

within the ESO profile. These hold 70 percent of the weighting of the whole profile

so their behaviour strongly influences the overall results. Here we broke from the

wind speed profile presented in Marchetti (2015) and varied the speed of the ground

layer, leaving the higher altitude layers as set in the ESO profile. As ground speed

increases, the break point in the RMS will lower and so will reach a given threshold

faster, as seen in figure 3.23. We have varied the speed of the ground layer from 1 to

31 ms−1, the fastest speed in the original ESO profile. At low ground wind speeds

averaging times can take tens of minutes to reach a λ/20 threshold. However, the

ground layers are where we have the best measurements of wind speed, and wind

speed variation.

Figure 3.23: Time taken to reach an RMS threshold of λ/20 at 550 nm for ground
layer wind speed in the range 1-31 ms−1.

Differences between averaging times for modes within azimuthal pairs can be ex-
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treme - at low ground wind speeds mode 4 can take tens of minutes to average to

λ/20 whereas mode 6 takes nearly a thousand seconds.

To provide context to this we have used ground layer wind speed data from the ESO

ambient conditions database ESO (1998). 2 years of data from the meteorological

station at Paranal provided us with wind speeds taken at a height of 10 m, shown

in figure 3.24. Wind speeds below 1 ms−1 have been removed as the model, which

assumes Taylor frozen flow, may not be valid in this regime.
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Figure 3.24: Histogram of ground layer wind speeds from the Paranal ambient
conditions database. 1ms−1 are marked with a vertical line. All speeds below this
have been discarded as they may not be valid within our model.

A histogram has been generated to show the frequency of times taken to reach the

V-band threshold, shown in figure 3.25. For the individual modes a faster time is

more likely, but each has a possible range of seconds to reach the threshold easily

over an order magnitude. 10% of the time mode 5 will take an hour or longer to

reach the V-band threshold, far longer than typical telescope control update rates.
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Figure 3.25: Histogram of time taken to reach an RMS threshold of λ/20 at 550 nm
for modes 3, 4 and 5. 1 hour is marked with vertical line.

51



3.5. Conclusions

3.5 Conclusions

In this chapter we have tested the how considering an atmospheric wind velocity

profile over a speed profile can impact the timescales for turbulence averaging on

a single line of sight whilst assuming Taylor’s frozen flow (Taylor, 1938). Initially

in section 3.2.2 we showed that, inline with the azimuthally averaged results from

Gordon et al. (2011), after a break point τbp ≈ D/v the RMS for Zernike coefficients

individual modes also decreases with exposure time approximately as power laws.

Their gradients are dependent on both azimuthal order and the direction in which

the phasescreen is moving. Wind velocity therefore can have a large impact on the

time taken for a given mode to average to a specific threshold. We have shown

that at ELT scales this can take thousands of seconds for low order modes.

We expanded our model to consider multiple atmospheric layers in section 3.3 and

now explored the effects of the profiles angular dispersion, with both a theoretical

helical variation and based on existing SCIDAR data. A larger dispersion of wind

directions pushes averaging times towards the azimuthally averaged values shown in

Gordon et al. (2011). These times can still be longer than the typical update rates

of telescope control systems Bonnet et al. (2018). Looking at the SCIDAR data

we see that the wind velocity profile changes with time. A possible extension to

this work would be to use a variable wind velocity profile: changing wind direction

with time.

As well as the degree of dispersion, the specific directions of lower layers have large

impacts on the overall results given their relative strength. Section 3.4 varied the

wind speed of the ground ground layer within the bound of existing Paranal data.

This can have a significant impact on averaging time; for example changing wind

speeds from 18 to 1 m/s can increase averaging time by a factor of 50.

We have expanded this work in chapter 5, by testing the impacts of wind dispersion

and exposure time on an active optics system using an off-axis guide star. To create
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this simulation we have used a covariance matrix library, the development of which

is detailed in chapter 4.
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Chapter 4

Generating A Covariance Library

for Two Lines of Sight

4.1 Introduction

Two lines of sight are a common requirement in AcO simulation, for example when

considering a layout of one on-axis point of interest and one off-axis guide star, seen

in figure 4.1. For an individual line of sight, such as in Chapter 3, simulating varying

wind directions can be achieved by applying a rotation matrix to the Zernike modes.

Now when considering two pupils on a single phase screen, the separation between

the pupils must remain the same with respect to the Zernike modes.

Figure 4.1: An example layout of one on-axis line of sight in green and one off-
axis line of sight in orange. At a turbulent layer shown in blue, the two projected
pupils are separated. This demonstrates a case in which simulating two pupils
simultaneously is needed.

In section 4.2 we test two different methods to generate Zernike coefficients from
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two pupils with variable phase direction and verify that the use of a covariance

matrix library is both viable and useful as it saves computational space and overall

computing time. The parameter spaces we chose for our Zernike covariance library

are presented in 4.3.

4.2 Choice of Coordinate System

Traditionally simulating multiple pupils simultaneously required one large phase

screen where, assuming Taylor’s frozen flow, the pupils are moved together across

the phase screen to mimic the phase blowing past. The size of the phase screen

required increases in proportion to the exposure time. Simulating different phase

directions required changing the direction in which they move across the screen.

This is computationally intensive as each set up requires new Zernike coefficients

to be calculated from a phase screen using a large amount of internal storage.

The use of an infinite phase screen reduced the size of the phase screen necessary

to simulate a long exposure time as discussed in section 2.1.1 - but as new rows

are only generated in one direction, the trade off is that the pupil positions have

to be changed and Zernikes recalculated for each wind velocity needed. Varying

wind directions whilst simulating two lines of sight through our 35 layer profile

with this classical method could have become unwieldy: each layer at a different

height creating a different pupil separation, for each of which Zernike coefficients

would have to be recalculated for every different wind direction tested.

As an alternative, we proposed first calculating the Zernike coefficients and then

varying the wind direction by applying a rotation transformation to the resultant

covariance matrix. Whilst the implementation of this method is more complex, it

allows one set of Zernike coefficients to represent multiple wind directions; making

it on balance a more efficient system.

In this section we investigated these two methods and verify that they generate the

same results:
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1. The classical frozen flow method: We move the phase past the pupils at an

angle, which requires a large phase screen and therefore higher computing

time and storage.

2. Applying Coordinate Rotation to the Covariance Matrix (CRCM): We find

and apply the transformation after calculating the time averaged Zernike

coefficients.

The classical method requires running the simulation repeatedly for each wind

direction we wished to study and for each variation on the lines of sight. This

method is simple to understand and set up but overall computational time remains

long, and storage requirements are higher given the repeated generation of large

phase screens. We propose that instead we find the covariance of the Zernike

coefficients and then apply the rotation directly to the coordinate system of the

covariance matrix. Whilst the set up of this method is more complex, it allows

one set of Zernike coefficients to represent multiple wind directions; making it

on balance a more efficient system. Then in turn, a grid of Zernike coefficient

covariance matrices of different pupil separations could act as a library or lookup

table.

4.2.1 Pupil Geometry

To prove this CRCM method to be functional, we have shown that it produces the

same covariance matrix of the coefficients as "rotating" the motion of the phase

screen. Their aperture layouts on a phase screen are described in figure 4.2.

In order to ensure the cases all see the same phase screen movement in between

time-steps, the layout of this test was based on a Pythagorean triple. All results

should mimic phase screen motion of −53◦, relative to Z2 (tip). The separation

of the apertures in terms of pixels was divisible by 5 to avoid interpolation effects

from sub-pixel offsets. We defined the positions of the apertures given the length

of the baseline and the coordinates of the midpoint of the baseline. Given that the
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Figure 4.2: Upper: Classical method geometry of pupil separation on phase screen
showing a flat baseline with angled phase screen motion. Lower: CRCM test case
geometry of pupil separation on phase screen showing an angled baseline. The
purple arrows show phase screen motion and the black arrows show Zernike mode
orientation.

baseline = 5a and the midpoint m, the coordinates of the two apertures can be

defined as:

ap1 = (m − 1.5a, m + 2a) (4.1)

ap2 = (m + 1.5a, m − 2a) (4.2)

The classical method used a baseline between the apertures perpendicular to the

edges of the phase screen and angled phase motion. When using the infinite phase

screens function of AOTools, new rows appear at y=0, so the phase moves vertically

upwards. At the same time, we moved the apertures in a positive x direction,

making the phase appear to also move in a negative x direction. By basing this

motion on the Pythagorean triple triangle, the phase motion per step remained an

integer number of pixels, 5a, and in the same apparent direction as seen by CRCM

once the correct rotation angle has been applied.
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4.2.2. Generating a Rotation Matrix

4.2.2 Generating a Rotation Matrix

In order to utilise the CRCM method we need a rotation matrix for a series of

Zernike modes. To calculate this we first derive equations for rotated Zernike

modes expressed in terms of the Noll Zernikes. Starting with Noll definitions of

the Zernike modes:

Zeven,j =
√

n + 1Rm
n

√
2 cos mθ

Zodd,j =
√

n + 1Rm
n

√
2 sin mθ

}
m ̸= 0 (4.3)

We define Z ′ as a set of Zernike modes that have been rotated by angle θ0. These

rotated modes can be expressed by using the Noll definitions and replacing θ with

(θ − θ0):

Z ′
evenj = A cos m(θ − θ0)

= A
[
cos mθ cos mθ0 + sin mθ sin mθ0

]
= cos mθZevenj + sin mθ0Zoddj ,

(4.4)

where A =
√

n + 1Rm
n

√
2. This defines Z’ purely in terms of Noll Zernikes and a

rotation angle. The full set of rotated Zernike modes can be expressed as:

m ̸= 0

 Z ′
evenj = cos mθZevenj + sin mθ0Zoddj

Z ′
oddj = cos mθZoddj − sin mθ0Zevenj

(4.5)

m = 0
{

Z ′
j = Zj

(4.6)

This can then be expressed as a rotation matrix for a series of Zernike modes by

working in pairs of coefficients, using a 2x2 block for odd or even Zernike pairs.

Modes with zero azimuthal order are not rotated, so the rotation matrix is 1 on

diagonal. An example matrix for the first 9 Zernike modes:
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4.2.3. Comparison Between Classical and CRCM Methods



1 0 0 0 0 0 0 0 0

0 cos mθ − sin mθ 0 0 0 0 0 0 0

0 sin mθ cos mθ 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0

0 0 0 0 cos mθ sin mθ 0 0 0 0

0 0 0 0 − sin mθ cos mθ 0 0 0 0

0 0 0 0 0 0 cos mθ sin mθ 0 0

0 0 0 0 0 0 − sin mθ cos mθ 0 0

0 0 0 0 0 0 0 0 cos mθ sin mθ

0 0 0 0 0 0 0 0 − sin mθ cos mθ


(4.7)

4.2.3 Comparison Between Classical and CRCM Methods

Theoretically these cases are equivalent and should yield identical covariance matrices.

However they of course have small variations caused by small statistical differences

across the generated phase screens and the imperfect nature of expressing circular

Zernikes on a square array. We calculated the Zernike coefficients for 500 points

of phase motion - limited by the size of the required phase screen for angled phase

motion. This was repeated for 250 different phase screens, limited by both com-

puting time and memory space. This gave over 100,000 coefficients for each mode

to calculate the covariance.

We tested these comparisons for 4 different pupil diameter samplings - 32, 64, 96

and 128 array elements - but constant physical size. We have also set r0 = L0 = D

to remain dimensionless. This allows us to probe the possible limitations of these

comparisons given the coarseness of the circular modes on square pixels. In the

following sections we investigate several metrics to highlight differences between

the results of the classical and CRCM methods
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4.2.3.1 Instantaneous Zernike Variance Verification

The instantaneous Zernike variance from one aperture should have the same step

like pattern as the Noll variances as seen in figure 2.3, but not identical given the

finite outer scale. These should match across the cases if the phase screens had

been generated with the same parameters, which is confirmed in figure 4.3. As

expected, the approach is valid as both methods produce similar instantaneous

Zernike variance values.
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Figure 4.3: Instantaneous Zernike Variance produced using the CRCM and the
classical method for a pupil sampling of 96 pixels.

4.2.3.2 Difference Matrices

To compare the similarities in two different covariance matrices, a normalised dif-

ference matrix was used,

∆ab = (Ca − Cb)/Crmsa, (4.8)

where the difference between two covariance matrices Ca and Cb is normalised by

the RMS of the first:

Crmsa =
√

⟨Csub
a

2⟩ (4.9)

This RMS was calculated by splitting the coefficients into 10 sections of 12,500,

then finding the covariance matrix, Csub
a , for each group. Subsequently the RMS
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4.2.3.3. Measurement of Statistical Noise

across these 10 covariance matrices is found. This allowed us to more clearly see

the difference between two matrices that includes values close to and either side of

0. We then split ∆ab into different radial orders as shown in figure 4.4.

Figure 4.4: From left to right: Structure of a variance matrix from a single line of
sight containing three radial orders. Structure of covariance matrix from two lines
of sight containing three radial orders. Structures of each individual radial order
used when showing the maximum difference values.

We used the first 12 radial orders for this test, so each comparison resulted in 12

variably sized difference matrices. To show these results graphically we present the

maximum value in ∆ab from each radial order.

4.2.3.3 Measurement of Statistical Noise

The comparisons between the classical method and our CRCM method are not

expected to be completely identical due to limited sampling. Calculating the dif-

ference between two covariance matrices both produced with the classical method of

phase rotation or two cases using CRCM will establish a criterion for "agreement".

We see that the differences between repeat cases remain reasonably constant with

variation in pupil sampling.
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Figure 4.5: Maximum difference value across radial orders of the difference matrix
between two repeated cases of the CRCM method for pupil diameter of 32, 64, 96
and 128 pixels.
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Figure 4.6: Maximum difference value across radial orders of the difference matrix
between two repeated cases of classical rotation method for pupil diameter of 32,
64, 96 and 128 pixels.

Figures 4.5 and 4.6 show a slight increase in difference for lower order modes when

using the smallest pupil sizes, but results remain of a similar scale for all four

scales. These covariance matrices were produced with identical methods but in-

dependent phase screens. These results show that there is a non-zero difference,

which appears to be more pronounced for higher radial order Zernike modes. This

statistical noise could be attributed to the number of coefficients used to create the
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4.2.3.4. Comparison between Mismatched Cases

covariance matrices or the phase screens. These are a benchmark of comparability,

the difference matrices between the classical and CRCM methods should be no

larger than the peak value of 1.75 shown in figure 4.5.

4.2.3.4 Comparison between Mismatched Cases

As an example of a poor equivalence between two covariance matrices we have

compared one case using the same CRCM method and pupil orientation as above

against a purposefully mismatched scenario. This used the classical method with a

wider separation of 8a pixels. For the classical method the only phase motion came

from the addition of new rows from the AOTools infinite phase screen. This led to

a phase angle difference of +53 degrees between the two cases. The separation 8a

was chosen as the largest baseline that would fit in a phase screen of the same size

used for the other tests.
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Figure 4.7: Maximum difference value across radial orders between mismatched
pupil separations and apparent phase rotation. Common parameters between sim-
ulations are the averaging distance and that r0 = L0 = D. This is shown for pupil
diameters of 32, 64, 96 and 128 pixels.

As expected, figure 4.7 shows a consistent increase in difference for all radial orders

and all pupil sampling. The maximum differences from figure 4.7 are at least an

order of magnitude larger than the repeated test cases shown in section 4.2.3.3.
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4.2.3.5. Cross Verification Between Classical and CRCM Methods

Taking the 64 pixel sampling as an example, for radial order 12 the difference

has jumped from ∼1 to just over 350. This logic is reasonable when we consider

how heavily the averaged results were effected by wind direction in Chapter 3, it

follows that the whole covariance matrix will also be sensitive to changes in phase

direction.

4.2.3.5 Cross Verification Between Classical and CRCM Methods

We now calculate the difference matrix between the two different coordinate sys-

tems with the same angle of phase motion relative to both the Zernike modes and

the pupil orientation.
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Figure 4.8: Maximum value across radial orders of the difference matrix between
the classical method of phase rotation and using the CRCM, for pupil diameter of
32, 64, 96 and 128 pixels.

The maximum values from the difference matrix of this comparison are shown

in figure 4.8. This does show a slight change in the difference matrix for pupil

sampling of 32 pixels. For radial orders 9 through 12 the difference value increases

from 0.7 through to 3.2, whereas the larger pupil samplings remain constant in

scale. We had expected to consistently see that coarser sampling caused a larger

difference for the higher radial orders across sections 4.2.3.3, 4.2.3.4 and 4.2.3.5. As

the higher order modes have steeper gradients, coarser sampling would struggle to
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4.2.3.5. Cross Verification Between Classical and CRCM Methods

accurately represent a more complex circular pattern on a square array. It would

seem however, that the use of the Gram-Schmidt orthonormalisation process has

reduced this effect, except in figure 4.8. Higher order modes still have a slightly

higher difference when comparing between any two covariance matrices - from ∼ 0.5

to ∼ 1rad−2, but this is not noticeably affected by sampling. When moving forward

with our covariance library, we have still limited our covariance matrices to the first

10 radial orders of Zernike modes. Pupil sampling of 96 pixels has been chosen for

historical reasons - due to initially performing these tests prior to applying the

Gram Schmidt process.
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Figure 4.9: Maximum value across radial orders of the difference matrix for pupil
diameter of 96 pixels. Shown are the difference values between two cases of both the
classical and CRCM methods and a comparison between the classical and CRCM
methods

Figure 4.9 shows three maximum difference values, all with pupil sampling of 96

array elements in diameter: 2 independent runs of the classical method, 2 inde-

pendent runs of the CRCM method and a comparison between one independent

run of each. All three show a slight increase in difference with radial order but

are all of comparable scale. The comparison between the two methods is larger

than the repeating comparisons for radial orders 1, 2 and 6, but only reaches 78%

of the maximum 1.55 value of the comparison between two cases of using CRCM

at this pupil sampling. This was sufficient evidence to say that the comparison
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4.3. Defining the Parameter Space for a Covariance Library

between using a coordinate transformation of the covariance matrix and the clas-

sical method of rotating the phase motion were the same within statistical error;

and the two methods are equivalent.

4.3 Defining the Parameter Space for a Covariance

Library

Having established that applying a coordinate transformation to a Zernike coeffi-

cient covariance matrix between two pupils to represent different wind velocities

is a valid method, we set out to generate a library of covariance matrices that

represent a range of pupil separations and averaging times. This series of pupil

geometries with a fixed wind direction could then be re-scaled and rotated for vari-

ous wind velocities. In this next section we discuss the limits of this method and

the justifications for the parameter spaces we chose.

4.3.1 Method for Calculating Covariance Matrices

In this section we discuss the method used to create a covariance library from

an individual phase screen. A grid of Zernike covariance matrices first required

a grid of Zernike coefficients. A row of nx pupils were positioned perpendicular

to phase screen motion where we measured ny instantaneous Zernike coefficients,

again utilising the infinite phase screen, where nx << ny. Using Taylor’s frozen

flow approximation, a spatial offset in the direction of phase screen translation is

equivalent to a temporal offset; meaning later coefficients for this row of pupils

were equivalent to an earlier measurement further along the phase screen. This

meant the large number of Zernikes from the initial row could be cut into shorter

series of coefficients for an apparent grid of pupils, meaning only one infinite phase

screen was necessary rather than repeatedly generating new ones. This method is
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4.3.1. Method for Calculating Covariance Matrices

demonstrated in figure 4.10. This produced a spatial grid of pupils, each with a

long series of instantaneous Zernike coefficients.

Figure 4.10: Left: As the phase screen moves the row of pupils calculate a long
series of Zernike coefficients. Right: The long list of coefficients from the row of
pupils becomes a grid of pupils with smaller lists of coefficients.

Figure 4.11: Ensuring all baselines are covered, here for a smaller grid example.
The first and last pupil in the first row is compared to every other pupil in the
grid.

To determine all possible baselines required for the covariance matrices, only the

first and last pupil from the initial row are compared with all others in the grid

as shown in figure 4.11, making the total pairs of pupils - and therefore files -

2(pupil row)2. The total number of pupils within the grid is dependent upon the

spatial sampling of the initial row of pupils, and its length. This meant the cov-

ariance library covered pupil separations in all directions for separations, but only
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4.3.2. Setting Parameters

within the bounds of the total grid size. Pupil separations with non-integer pixel

spacings were reproduced by interpolating between points in the covariance grid.

A grid of covariance matrices has been generated for three different D/L0 ratios: 1,

3 and 10, to allow the library to produce results for a range of telescope diameter

sizes.

4.3.2 Setting Parameters

The covariance library must contain enough detail to be useful for further calcu-

lations, but not unnecessarily detailed to detract from any possible improvement

in computing time. In this section we have tested and constrained the separa-

tions between points in the grid in terms of both spatial, δx and δy, and temporal

separations Tav in order to make the library as small as possible without introdu-

cing significant errors. We have also set the maximum size of the grid mx, after

which the covariance values are small enough to not include in the library. We

demonstrate these parameters visually in figure 4.12.

Figure 4.12: Demonstrating the constraints we put on the covariance matrix grid.
The spatial separation between pupils, δx and δy, the maximum spatial width of
the grid mx and the distance between temporal averaging steps Tav.
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4.3.2.1. Maximum Pupil Separation

4.3.2.1 Maximum Pupil Separation

We constrain the size of the covariance grid to minimise the total size of the covari-

ance library. To do this we have used simulation to replicate the normalised spatial

covariance as seen in figure 8 (Wilson and Jenkins, 1996). This shows covariance

with no time averaging - normalised by zero offset variance values - against pu-

pil separation and eventually the separation between the pupils was so large that

there was no longer a correlation between the covariance of the two pupils. The

maximum pupil separation can be set by the separation where the covariance is

zero. ∗

Figure 4.13 recreates the Wilson and Jenkins covariance for modes with the same

azimuthal order, showing they follow similar trends before settling around zero, but

the higher radial order reaches zero faster – the limiting factor to the maximum

size of the grid mx is the lowest order modes.
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Figure 4.13: Instantaneous Zernike covariance normalised by variance as a function
of pupil separation for azimuthal order 1 modes. This was generated using a single
layer of turbulence with r0 = L0 = D. The normalised covariance fluctuates as the
pupil separation increases before settling around zero.

Following on from this we checked the effect of outer scale on the normalised cov-
∗Note that in Wilson and Jenkins (1996) there is an error in the x axis of figure 8, which

should read 0-2 rather than 0-4, Figure 8 is also given in terms of pupil radius rather than pupil
diameter.
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Figure 4.14: Instantaneous Zernike covariance normalised by variance as a function
of pupil separation for modes tip and tilt. This was generated using a single layer
of turbulence with pupil diameter D = r0, with outer scales of 1, 3, 10 × D. The
normalised covariance fluctuates as the pupil separation increases before settling
around zero at larger separations for larger outer scale values relative to pupil
diameter.

ariance for the lowest order modes: tip and tilt. For larger outer scales relative to

pupil diameter, the Zernike covariance will reach zero at larger separations. This is

shown in figure 4.14. Wavefront tilt settled around zero by ∼ two pupil diameters

of separation for all three tested outer scales in figure 4.13. Wavefront tip however,

takes much longer to reduce. The change between the two modes is due to the

phase direction. If phase motion was perpendicular to this, the behaviour for tip

and tilt would be reversed. mx was set at 4 pupil diameters, meaning that tip and

70



4.3.2.2. Spatial Step Size

tilt cannot be accurately extended off the spatial grid, but the other 9 radial orders

can be.

4.3.2.2 Spatial Step Size

Having constrained mx, the maximum spatial separation of the grid, we move to

find δx, the step size between pupil locations within the grid. It is unlikely that all

pupil separations we wish to use will fall directly on a grid point, so δx must be

small enough to accurately interpolate to any other position in the grid space.

To find the maximum acceptable step size between pupil separations we first calcu-

lated the same normalised covariance from section 4.3.2.1, with pupil separations

increasing with the minimum possible step of one pixel. From this we pulled out

the equivalent of larger step sizes and judged the accuracy of interpolating back to

the finer sampling.
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Figure 4.15: Use of linear interpolation for a range of spatial samplings for the
normalised covariance of focus (mode 4).

As expected, figures 4.15 and 4.16 show the interpolated curves begin to deviate

from the target values as the sampling gets coarser. The different spatial offsets

are stored in different files so we have used linear interpolation here, meaning only

the two files either side of the relevant point are needed. As these curves oscillate

71



4.3.2.2. Spatial Step Size

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Pupil Separation /diameter

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ise
d 

Co
va

ria
nc

e
Steps of 1/96 Diameter
Steps of 1/24 Diameter
Steps of 1/18 Diameter
Steps of 1/3 Diameter

Figure 4.16: Use of linear interpolation from a range of spatial samplings for the
normalised covariance of mode 66.

either side of zero, the normalised difference cannot be used to show the accuracy

of the interpolation. Instead we find the RMSE for a rolling short range of pupil

offsets – moving in sections of 1/3 pupil diameters to cover the initial dip shown

in figure 4.16.

The rise in error for smaller pupil separations is present in all pupil steps - the

use of cubic interpolation would reduce it by an order of magnitude as seen in

figure 4.18, but would require loading a much larger proportion of the grid every

time a desired separation did not fall exactly on a saved file, increasing overall

computing time when utilising our covariance library. The RMSE for steps of 1/8

pupil diameter at large separations is of a similar scale to the error from smaller

steps at smaller separations; indicating that non-linear sampling across the grid

may not have had a noticeable effect in the performance of the covariance grid.

Despite the fact that this could have also reduced the number of files in the grid

we have elected to keep linear sampling, given that the different baselines will run

in both positive and negative orientations (see figure 4.11). It was simpler to have

a constant step in between pupils, rather than a non-linear series running in two

directions.

Figure 4.17 shows this RMSE for linear interpolation with a range of δx steps.
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Figure 4.17: RMSE in interpolation from coarser spatial sampling of the normalised
Zernike covariance of mode 66. RMS was taken from rolling sections of 1/3 pupil
diameter. From this result we have set δx to 1/24th the pupil diameter.
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Figure 4.18: RMSE in linear and cubic interpolation from steps of 4 pixels of the
normalised Zernike covariance for mode 66. RMS was taken from rolling sections
of 70 pixels.

Steps of 1/32D and 1/24D pupils have a relatively similar error of 1.5 and 2.4%

respectively, so we additionally consider computational storage. For the established

grid width mx of four pupils with 96 pixel diameters, steps of 3 or 4 pixels translates

to 96 or 128 pupils per row respectively. This means an overall difference of over

7000 files as part of the full grid. Therefore the pupil separations δx and δy were

set at 1/24 pupil diameters. When linear interpolation is used, this gives a worst
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4.3.2.3. Temporal Separations

case error in the normalised covariance of ±2.4%.

4.3.2.3 Temporal Separations

Having defined the maximum spatial size of the grid and the separations of the

pupils within it, in this section we define the temporal separations between the time

averaged Zernike coefficients, Tav, used to create the different covariance matrices

for each pupil baseline. The individual covariance files include matrices for the

same pupil separation with increasing time averaging. The time averaging steps

are therefore the major factor in the size of the individual files - and should be

reduced as far as possible whilst remaining fine enough to utilise the covariance

library without additional errors

As shown in figure 4.10, the spatial y-axis and time axis are the same for the

translation of the screen in y. The chosen δy of four pixels was therefore also

the maximum number of phase screen rows moved in-between calculated Zernike

coefficients. Whilst the ideal here would be to keep the step size for the coefficients

the same as the grid spacing, the initial coefficients have to be close enough together

to identify the initially correlated Zernike RMS WFE for very small exposure times,

before the break point, as seen in figure 3.1. As all the time averaging steps are

saved within the same file, cubic interpolation can be used. We also note that the

higher order modes have a break point for smaller averaging distances as seen in

figure 3.1 - the higher order modes are the limit on the size of the Tav steps. For

this reason we use mode 66, the last mode in radial order 10, to test Tav as it is

the highest order mode we plan to save in the covariance library.

To remain dimensionless, we show this temporal averaging in terms of averaging

distance in the units of pupil diameter. We have calculated the time averaged vari-

ance of mode 66 for increasing averaging distance up to 1 pupil diameter, increasing

in the minimum steps of one pixel, shown in figure 4.19. We have then interpolated

back to this result from steps of 1/48, 1/32 and 1/24 pupil diameters. We then
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4.3.2.3. Temporal Separations

calculated the rolling RMSE as previously shown in 4.3.2.2, this is shown in figure

4.20.
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Figure 4.19: Variance of mode 66 for increasing averaging distance, measured in
steps of one and four pixels.
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Figure 4.20: RMSE in cubic interpolation from steps of 1/48, 1/32 and 1/24 pupil
diameters of the variance of mode 66 for an increasing averaging distance to one
pupil diameter. The RMSE was taken from rolling sections of 5/24 pupil diameters.

Figure 4.20 shows that there is very little difference the interpolation error between

moving in steps of two, three or four pixels for mode 66. Also shown in figure 4.19, is

the Zernike variance of mode 66 in steps of both 1 and 4 pixels for a short averaging

distance up to one pupil diameter. As it is convenient and has no noticeable effect

on the error, we set Tav initially in steps of four pixels.

75



4.3.2.3. Temporal Separations

The maximum time averaging was set at 100 pupil translations, over a total series

of 20,000 pupil translations. 100 pupil translations is the same as the maximum

separation in the results presented in Chapter 3. For example, for a 10m diameter

pupil and a wind speed of 5 ms−1, the covariance library would cover 200 seconds.

With 1/24 pupil diameters between each coefficient sampling point, this gives a

maximum of 2400 different covariance matrices for each pair of pupils.

From figure 3.3, we see that the change in time averaged variance between averaging

over 1 and 1.1 pupil translations is much more significant than the change between

99 and 99.1. We can therefore reduce the overall file size by working in non-linear

averaging steps. Given this, a non-linear series of 100 Tav steps has been used. The

non-linear steps in δy exponentially increase with base 2. The error in the coarser

sampling is compared to the linear sampling of 1/24 pupil diameters in figure 4.21

demonstrating a consistently small error across the full separation. Whilst the non

linear steps do produce a slightly larger error, it remains at most ±0.8% of the

variance value and is not visible when plotted. The change in time averaging steps

reduces the file size from over 320,000KB each to under 14,000KB. By saving as

32-bit data this reduces again to 6,180KB for each file within the covariance grid.
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Figure 4.21: RMSE in cubic interpolation from a linear and non-linear range of
averaging steps of the variance of mode 66 for an increasing averaging distance to
100 pupil diameters. RMS was taken from rolling sections of 20 pixels.
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4.3.3. Going Off the Grid

4.3.3 Going Off the Grid

There are naturally scenarios in which we wanted to use the covariance library that

include either pupil separations or exposure times that are outside the modelled

values of the grid. To allow for this we created a specific covariance file to represent

larger separations. Off the edge of the grid we have established that we can treat

the spatial covariance values as zero. The variances of the individual pupils do not

depend on their position, so we take an average of all variances across the grid. If

there are averaging times needed that are longer than stored in the library, then

we use our power law fit as described in section 3.2.2 to extend the time axis for

the variance values. This is shown graphically in figure 4.22. The extensions of the

grid overlap the data from the covariance library to demonstrate the accuracy of

the fit. We are only able to extend the grid for on-diagonal variance and covariance

values, however these are the only ones currently necessary for our science cases.

77



4.3.3. Going Off the Grid
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Figure 4.22: Demonstrating how we extend our variance and covariance values in
both the spatial and temporal axes. Top shows the use of an approximate power
law fit to increase the averaging time for the variance of mode tilt. Bottom shows
that we can approximate the covariance of mode tilt between two pupils as the
separation increases off the grid as zero.
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4.4 Conclusions

In section 4.2 we have shown that when simulating different wind directions for two

lines of sight, rotating the Zernike modes and rotating the phase motion produces

an equivalent covariance matrix to applying the rotation directly to the covariance

matrix. Much of the work presented in this chapter has been investigating how

the choice of simulation parameters and approximations affect the determination

of covariance whilst minimising the size of the library.

4.4.1 Defining Covariance Library Parameters

We have chosen and justified appropriate parameters for the covariance files, their

separation and the overall size of the grid.

• Number of Zernike modes, fixed at 66 modes, the first 10 radial orders.

• Pupil diameter in pixels, fixed at 96 pixels.

• Pupil diameter and r0. These remain constant at D = r0, so that the covari-

ance matrices can be re-scaled when used.

• Tav Number of Zernike coefficients to be averaged over, up to 100 pupil trans-

lations, in 100 non-linear steps.

• Minimum baseline δx between pupils is set at 4 pixels, or 1/24th of a pupil

diameter

• Maximum baseline between pupils mx. The width of the initial row of pupils

is set at 4 pupil translations. The grid of saved pupil positions is a square.

• Outer scale in terms of pupil diameter. This cannot be rescaled for as it

is an inherent property of the phase screens used to generate the Zernike

coefficients. Instead three copies of the covariance library are saved, with an

L0/D ratio of 1, 3 and 10 respectively.
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4.4.1. Defining Covariance Library Parameters

Due to the parameters chosen there is a ±2.4% error in the spatial separations

of the covariance matrices and a ±0.8% error in the temporal averaging of the

variance, inherent to the covariance library. We have shown that we can extend

the time averaging of the grid for all modes. Spatial separations can be accurately

extended off the grid for radial orders 2 and above, but not for tip and tilt. The

model assumes Taylor’s frozen flow and only consider fully developed atmospheric

turbulence - dome seeing is not addressed.

To use the generated covariance library we first require the pupil separation between

two lines of sight. This is calculated from their angular separation, and the height of

the atmospheric layer in question. Next the inverse of the wind direction is applied

to the pupil separation. These new coordinates are used to search the library for the

two nearest grid points corresponding to this offset. Linear interpolation is used to

find the covariance matrix that would exist in between these 4 points. The positive

wind direction is then applied as a coordinate transformation. The matrix can

then be simply re-scaled for the correct pupil diameter and Fried parameter. This

method allows for rapid generation of covariance matrices, even for large telescopes

with complex, multi-layer atmospheres.

80



Chapter 5

Active Optics Correction Using an

Off-Axis Guide Star

5.1 Introduction

An active optics system will use a bright guide star as a reference to correct the

telescope surface shape (Babcock, 1953). Residual WFE due to the finite exposure

time of the AcO WFS is an additional term that is difficult to separate from a

telescope misalignment. The model developed in this thesis places a fundamental

limit on AcO performance. As discussed in chapter 3 the time required to reduce

the atmospheric error from an individual Zernike mode is dependant on both wind

direction and telescope diameter. We have tested the effects of finite averaging

time in an active optics telescope model. If a single off axis wavefront sensor is

used to correct the on-axis line of sight, the covariance library detailed in chapter

4, allowed us to find the potential residual WFE of this correction. We have used

this model for both existing telescopes and ELT scales.

Both the Gemini telescopes and the VLT unit telescopes have a primary mirror

of 8.1m in diameter, but have very different Field of View (FoV). We have also

considered the VISTA telescope. The diameters, FoV and AcO update rates of

the three telescopes are detailed in table 5.1. Also included is the outer scale used
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5.2. Theory of Calculating the Residual Variance Error

for the atmosphere when calculating the residual error for these telescopes. As

mentioned in section 4.3.1, we have a full covariance grid for diameter to outer

scale ratios of 1, 3 and 10. To be as close as possible to the 39m outer scale for our

ELT simulations, we choose a ratio of 3 for our 8m telescopes and 10 for the 4m.

Name Diameter /m FoV /degrees AcO Update Rate /s Outer Scale
Modelled /m

VISTA 4 0.75 40 40
VLT 8.1 1 30 24.3

Gemini 8.1 0.08 30-60 24.3
ELT 39 0.0083 <300 39

Table 5.1: Diameter in metres, FoV in degrees, update rate in seconds and the
Outer Scale in metres used in the corresponding simulation for the VISTA, VLT,
Gemini and ELT telescopes. ELT will update every 5 minutes in a worst case
(Bonnet et al., 2018).

In section 5.2 we explore the residual difference between one time averaged off axis

line of sight used to correct instantaneous on-axis line of sight. We discuss our

method in section 5.2 and have used a single layer atmospheric model to verify

this against the existing ANGuS Monte-Carlo model in section 5.3. Then in 5.4 we

have utilised the full ESO 35 layer turbulence profile, as detailed in table 2.1, to

explore how variations in the exposure time used in the off-axis line of sight effects

the residual difference.

5.2 Theory of Calculating the Residual Variance

Error

In this section we detail our theory used to predict the long exposure performance

of an AcO system. An off axis WFS measures the atmosphere for an exposure time

T . This is then used as a correction for a subsequent on-axis observation. This

was an ideal simulation in which to use our covariance library as it required both

instantaneous and time averaged covariance matrices for variable pupil separations

and wind profiles.
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5.2. Theory of Calculating the Residual Variance Error

To simulate an AcO system we first measured instantaneous phase along reference

line of sight ϕref (t) for time between T0 and T1. This is used to correct the in-

stantaneous phase along the on axis line of sight ϕon(t) between T1 and T2. Both

processes take an equal amount of time, T1 − T0 = T2 − T1 and ϕT represents the

telescope error, which is seen by both lines of sight. Both are sampled in n steps.

This is shown as a diagram in figure 5.1.

Figure 5.1: Timeline for measuring the reference line of sight between T0 and T1
and then correcting the on-axis wavefront between T1 and T2

If it is not an instantaneous phase value, and has been averaged over a length of

time, we denote this with ϕ such as:

ϕx =
∑n

k=1 ϕx(tk)
n

. (5.1)

The measured AcO uses the ϕref average between T0 and T1. The residual WFE

after applying this correction is

ϕres(t) = ϕon(t) + ϕT (t) − ϕref − ϕT . (5.2)

In this example we assume that ϕT (t) − ϕT ≈ 0 so that the telescope error varies

slowly enough it doesnt change over this timeline and therefore cancels out. We

are then left with

ϕres(t) = ϕon(t) − ϕref . (5.3)

The average residual error due to the atmosphere can then be shown as

⟨ϕres(t)2⟩ = ⟨(ϕon(t) − ϕref )2⟩, (5.4)
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5.2. Theory of Calculating the Residual Variance Error

which expands out to:

⟨ϕres(t)2⟩ = ⟨ϕon(t)2⟩ + ⟨ϕ2
ref ⟩ − 2⟨ϕon(t)ϕref ⟩. (5.5)

Now concentrating on that final term,

−2⟨ϕon(t)ϕref ⟩ = −2
〈∑2n

j=n+1 ϕon(tj)
n

∑n
i=1 ϕref (ti)

n

〉
. (5.6)

As ϕon and ϕref are measured at times tj and ti respectively, we use δ to express

the time delay as

δ = j − i, (5.7)

This allowed for the covariance cross term to be expressed in a way which allowed

us to utilise the covariance library. Equation 5.6 expands into n2 terms which can

be grouped together in terms of their δ values:

−2
n2



1⟨ϕon(ti+1)ϕref (ti)⟩

+2⟨ϕon(ti+2)ϕref (ti)⟩

+3⟨ϕon(ti+3)ϕref (ti)⟩

...

+n⟨ϕon(ti+n)ϕref (ti)⟩

+(n − 1)⟨ϕon(ti+n+1)ϕref (ti)⟩

...

+1⟨ϕon(ti+2n−1)ϕref (ti)⟩



δ = 1

δ = 2

δ = 3

...

δ = n

δ = n + 1

...

δ = 2n − 1

(5.8)

This can be expressed as a sum as δ increases from 1 to 2n − 1

−2⟨ϕon(t)ϕref ⟩ = −2
n2

2n−1∑
δ=1

(n − |δ − n|)⟨ϕon(ti+δ)ϕref (ti)⟩. (5.9)

Substituting equation 5.9 back into 5.5 gives

⟨ϕres(t)2⟩ = ⟨ϕon(t)2⟩ + ⟨ϕ2
ref ⟩ − 2

n2

2n−1∑
δ=1

(n − |δ − n|)⟨ϕon(ti+δ)ϕref (ti)⟩. (5.10)

This leaves us with three terms to calculate the residual variance after the correc-

tion, whilst accounting for the finite exposure of the AcO WFS; the instantaneous

variance from the on-axis pupil, a time averaged variance from the off-axis refer-

ence pupil and a covariance cross-term, all of which are available in our covariance

library.
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5.2.1. Method

5.2.1 Method

We utilised the covariance library from Chapter 4 to find the residual variance as

calculated in equation 5.10:

• For a given layer of turbulence, this required us to define the angle between

the projected pupils, the height and wind velocity.

• Once the angular separation has been converted to a coordinate separation,

the rotation transformation for the inverse wind direction is applied to the

coordinates.

• The covariance matrix for the new coordinate separation was pulled from the

library and the coordinate rotation of the positive wind direction was applied.

• The matrix was then scaled for pupil diameter and Fried parameter as D/r
5/3
0

The time averaged covariances in the library all represent the same averaging dis-

tance in terms of pupil diameter, but this translates to different times in seconds,

for different speeds. When utilising a multi-layer profile with variable wind speeds

the summed covariance matrices must all represent the same timescales. This limits

our covariance model to a total exposure time of 120 seconds at ELT scales.

For each layer in the simulation, we determine the separation of the two pupils

based on the angular separation of the two lines of sight. An additional spatial

offset is then added to emulate the effect of a time delay between ti and tj in frozen

flow. After accounting for any rotations due to wind and pupil orientation, we then

sum covariance values to simulate long exposures.
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5.3. Single Layer Atmosphere and Verification of Theoretical Model

5.3 Single Layer Atmosphere and Verification of

Theoretical Model

As a check of this theory, we have compared to an independent model, histor-

ically named for "All Natural GUide Stars" or ANGuS simulation developed by

T.Butterley, previously used in Osborn et al. (2012) and currently used for MO-

SAIC ground layer adaptive optics simulations. This is an end-to-end Monte Carlo

adaptive optics simulation, implemented in Python 3 and C. This comparison util-

ised ANGuS’s multiple layered atmosphere model made of periodic phase screens

and its Zernike WFS and Deformable Mirror (DM). The ANGuS model uses a

large periodic phase screen generated using the Ellerbroek method, detailed in sec-

tion 2.1.1, unlike the covariance library which was generated using AOTools infinite

phase screens.

Both models ran for a single layer of turbulence with a pupil diameter and outer

scale of 4 m, Fried parameter of 0.2 m, wind speed of 2 ms−1, layer height of 50 m

and number of steps n=50. ANGuS measures Zernike coefficients along both lines

of sight for n steps and applies a correction using the off-axis coefficients to the

on-axis pupil for the next n steps and so on. Wavefront measurements from this

simulation were measured and produced a series of "uncorrected and corrected"

Zernike coefficients, from which we can replicate all terms of equation 5.10.

The variance of the on-axis corrected Zernike coefficients should match our ⟨ϕres(t)2⟩,

providing an initial check on the similarity of the models. The instantaneous vari-

ance of the on-axis uncorrected Zernike coefficients should match our first term

⟨ϕon(t)2⟩, proving the atmosphere we are using is the same. The remaining two

terms can be calculated from the results of the ANGuS simulation. The second

term can be calculated as the time averaged variance of the Zernike coefficients from

the off-axis line of sight. Then finally the cross term can be checked by rearranging
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5.3. Single Layer Atmosphere and Verification of Theoretical Model

equation 5.10 as:

− 2
n2

2n−1∑
δ=1

(n − |δ − n|)⟨ϕon(ti+δ)ϕref (ti)⟩ = ⟨ϕres(t)2⟩ − ⟨ϕon(t)2⟩ − ⟨ϕ2
ref ⟩. (5.11)

The ANGuS simulation uses finite phase screens so running for a similar number

of Zernike coefficients to generate the covariance library was impractical in terms

of both storage space and time. Instead it ran each angular variation for 40 in-

dependent runs of 3200 coefficients, covering 160 seconds each. This additionally

allowed for standard deviation errorbars on the ANGuS coefficients by treating

each iteration as a subset of the data as a whole. This subsetting error calculation

is similar to the jackknife method, detailed in Efron (1979).

We verify the similarities between these two methods for phase motion both per-

pendicular and in line with pupil separation respectively in sections 5.3.1 and 5.3.2.

For clarity these pupil separations with respect to the phase motion are shown in

figure 5.2. These represent the positions of the pupils on the phase screen for

the ANGuS simulation, and the separation between the pupils used to select a

covariance matrix from our library.

Figure 5.2: Demonstrating the difference in phase motion shown in purple which
is perpendicular and in line with the separation between two pupils. Zernike mode
orientation is shown in the black lines.
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5.3.1. Comparison to ANGuS Model for Separation Perpendicular to Phase Motion

5.3.1 Comparison to ANGuS Model for Separation

Perpendicular to Phase Motion

To check the accuracy of the method proposed in equation 5.10 we compared to an

output of the ANGuS simulation which should represent the same residual error

but produced in a different way. In order for the comparison to work, the pupil

separation, Zernike modes and phase motion had to be aligned with each other. For

both models the phase moves in the same direction as tip. We tested two different

directions of pupil separation: parallel and perpendicular to the phase motion. In

order to fully test the accuracy of our simulation we ran these comparisons for a

short simulated exposure time of 0.25 seconds and a longer one of 2 seconds.

Figure 5.3 shows the three terms from equation 5.10 as well as the calculated

residual variance term for the modes 2 and 4, tip and focus, with a short T1 − T0

of 0.25 seconds. We chose to examine modes tip and focus here as results in

Chapter 3 have shown tip to be noticeably affected by changes to the wind direction,

particularly over 90 degrees, which would indicate a misalignment between the

two simulations. Focus on the other hand is unaffected by angular changes and

should indicate a provide a more general indicator in the accuracy of active optics

simulation.

The blue lines showing the instantaneous variance match very well - the two mod-

elled atmospheres are in good agreement. Both variances are unaffected by the

change in pupil separation as expected. There is a slight but consistent discrep-

ancy between the time averaged variances which is discussed in section 5.3.3. The

covariance cross term fluctuates before settling around zero, in a similar fashion

the results from Wilson and Jenkins (1996) and section 4.3.2.1. The cross terms

from both models are well matched which suggests that equation 5.10 accurately

describes the time averaging and temporal delay. The theoretical model results

calculate the three terms individually, whereas the cross term from the ANGuS

model is the remainder from the corrected term and the two variances, indicating

88



5.3.1. Comparison to ANGuS Model for Separation Perpendicular to Phase Motion

that both our derivation and implementation is correct.

Figure 5.3: Instantaneous ⟨ϕon(t)2⟩ and time averaged variance ⟨ϕ2
ref ⟩, covariance

cross term 2⟨ϕon(t)ϕref ⟩ and corrected variance ⟨ϕres(t)2⟩ as separation between the
pupils increases perpendicular to phase motion. Solid lines are from the theoretical
model, the individual points are from the ANGuS simulation. Both simulations ran
using a single layer of von Karman turbulence with D = L0 = 4m and r0 of 0.2m
moving at 2ms−1, for a short exposure time of 0.25 seconds. Results are shown for
z2 (tip) and z4 (focus) top and bottom respectively.

Figure 5.4 shows the uncorrected, instantaneous variance ⟨ϕon(t)2⟩ and the correc-

ted variance ⟨ϕres(t)2⟩ for a longer exposure time of 2 seconds. Values from the

corrected variances from our theoretical model are not consistently within the er-

ror bounds of the results from the ANGuS simulation, but do have the same scale
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5.3.1. Comparison to ANGuS Model for Separation Perpendicular to Phase Motion

and approximate shape. The consistent disparity between the corrected variance

results from both models stems from the time averaged variance term. Given the

dependence on wind direction for the time averaged Zernike variance established in

Chapter 3, we can conclude that the phase is moving in the same direction for both

models, relative to the Zernike modes. For this longer exposure time the covariance

cross terms still vary between baselines of 0 and ∼1 pupils, producing the peak in

the corrected variance, but with a much smaller amplitude. This is expected given

that the same n steps are representing a longer separation and therefore smaller

individual covariances.
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5.3.1. Comparison to ANGuS Model for Separation Perpendicular to Phase Motion

Figure 5.4: Instantaneous ⟨ϕon(t)2⟩ and corrected variance ⟨ϕres(t)2⟩ as separation
between the pupils increases perpendicular to phase motion. Solid lines are from
the theoretical model, the individual points are from the ANGuS simulation. Both
simulations ran using a single layer of von Karman turbulence with D = L0 = 4m
and r0 of 0.2m moving at 2ms−1, for a longer exposure time of 2 seconds. Results
are shown for Z2 (tip) and Z4 (focus) top and bottom respectively.
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5.3.2. Comparison to ANGuS Model for Separation In-Line with Phase Motion

5.3.2 Comparison to ANGuS Model for Separation In-Line with

Phase Motion

The other variation to consider as part of this verification is the direction of sep-

aration with respect to the phase motion. This allows us to further confirm the

orientations of the pupil separations and test the effects this has on residual vari-

ance in a single layer model.

Figure 5.5: Corrected variance ⟨ϕres(t)2⟩ for Z3, tilt, as separation between the
pupils increases both parallel and perpendicular to phase motion. Solid lines are
from the theoretical model, the individual points are from the ANGuS simulation.
Both simulations ran using a single layer of von Karman turbulence with pupil
diameter and outer scale L0 = 4m and r0 of 0.2m moving at 2 ms−1, for a longer
exposure time of 2 seconds.

Starting with mode tilt in figure 5.5, whilst the scales are slightly different we see

that the trends/pattern for the corrected variance term of modes tip and tilt are

reversed compared to figure 5.3 - it would seem that the covariances are similarly

affected by a 90 degree change in separation as the Zernike variances are by a

90 degree phase rotation as discussed in section 3.2.2. There is a small but con-

sistent discrepancy between the residual variance from our theoretical model and

the ANGuS simulation. This stems from the time averaged variance term and is

discussed in 5.3.3.
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5.3.2. Comparison to ANGuS Model for Separation In-Line with Phase Motion

Figure 5.6: Corrected variance ⟨ϕres(t)2⟩ for z4, focus, as separation between the
pupils increases both parallel and perpendicular to phase motion. Solid lines are
from the theoretical model, the individual points are from the ANGuS simulation.
Both simulations ran using a single layer of von Karman turbulence with pupil
diameter and outer scale L0 = 4m and r0 of 0.2m moving at 2 ms−1, for a longer
exposure time of 2 seconds.

Changes to the direction of pupil separation also cause variation in the corrected

variance for mode focus. Focus has an azimuthal order of 0 and when considering

a singular line of sight was unaffected by changes to the wind direction. Figure 5.6

shows the residual variance for mode focus after an exposure time of 2 seconds.

Given our use of Taylor’s frozen flow, the off-axis reference line of sight is measuring

from phase that will be seen by the on-axis pupil at a later time. This effect is re-

duced for wider off-axis separations as there is reduced overlap in the instantaneous

covariance values within the same time frame, The reduction in overlap means the

residual variance for all modes will be affected by relative changes between angular

separation of the pupils and wind direction. Beyond a separation of ∼ 2 pupil

diameters the residual variances for both of these separations converge.
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5.3.3. Discrepancies in the Time Averaged Variance

5.3.3 Discrepancies in the Time Averaged Variance

To further explore the differences in the time averaged variance ⟨ϕ2
ref ⟩ we can

compare both models to the results presented in Gordon et al. (2011). We can

re-scale the ANGuS results to match the 30m diameter, r0 = 0.14m, v = 10ms−1

and compare to Gordon figure 3b, which shows the effects of different outer scales.

We have plotted the ±3% error from the covariance library on the results from our

theoretical model.
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Figure 5.7: Time-averaged RMS WFE for frozen flow atmospheric turbulence for
Z4, focus, using a single layer of von Karman turbulence with outer scale L0 =
39 m and r0 of 0.14 m moving at 10 ms−1 for an ELT sized aperture of diameter
39 m. Comparison between our covariance based simulation, the ANGuS model
and the results presented in Gordon et al. (2011)

Figure 5.7 shows that both models match the results from Gordon reasonably

well, and at this ELT scale are within error bounds of one another, but that the

ANGuS simulation is closer to the results from Gordon et al. (2011). One possible

explanation for this is that both Gordon and ANGuS both use finite sized phase

screens, whereas our theoretical model uses an infinite phase screen and there may

be a systematic difference between the two. There may be a discrepancy in the
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5.4. Realistic Atmospheric Model and Telescopes

outer scale values between the simulations. Alternatively if there is any variation

in pixel scales then it is possible that the variances do match well as shown in figure

5.7, we are simply comparing two slightly different specific times in .

5.4 Realistic Atmospheric Model and Telescopes

Having built confidence that our model works as intended, we then started utilising

the full extents of our covariance grid, working again with a multi-layer atmospheric

profile with a pupil diameter of 30m.

5.4.1 Exploring Effects of Wind Speed and Strength of a

Multiple Layered Atmosphere

To clearly show the effects of the different speeds and weights of the different

layers we started with a 35 layer profile of the atmosphere, with the same heights

as detailed in Table 2.1, but with all layers moving at the same speed and with

equal strengths. Whilst this is a non-physical profile, it allowed for the effects of the

variable strengths and speeds to be seen more clearly in comparison. A short, AO

like exposure time of 0.25 seconds was chosen in this section, to amplify the effects

of increasing pupil separation. The theory behind the AcO and AO corrections is

same, just at different rates. The AO updates very rapidly and is able to correct

for the atmospheric aberrations and AcO updates slowly, to allow for correction of

the telescopic errors.

As we are now considering multiple layers we must express the distance between

the on and off-axis lines of sight not in pupil diameters but in terms of their angular

separation. In this section we increase from 0 degrees (perfectly overlapped) to 0.1

degrees or 6 arcminutes. For mode focus we plot the uncorrected instantaneous

variance and the corrected variance for 4 different atmospheric profiles in figure

5.8.
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Figure 5.8: The residual focus variance term for multi-layered atmospheric model
with angular separation increasing from 0 to 0.1 degrees. This is shown for three
simplified atmospheric models with constant speeds and/or strengths across the
layers and one with both varying according to the ESO 35 layer profile. All use
layers use von Karman turbulence with L0 = 39m and r0 of 0.157m for an ELT
sized aperture of diameter 39m. Exposure time of 0.25s is used, putting this in the
adaptive optics regime.

First we consider a basic case, a wind speed of 5.1ms−1, the slowest speed of the

profile listed in table 2.1, with all layers given equal strengths - the orange curve in

figure 5.8. The Zernike variances for a single line of sight are not affected by position

within a phase screen or our covariance library, so as we sum together the ⟨ϕon(t)2⟩

and ⟨ϕ2
ref ⟩ terms across the 35 layers, this should be equivalent to a single layer

profile as used in section 5.3. The cross term 2⟨ϕon(t)ϕref ⟩ encodes the covariance

between the two lines of sight and so does change with the new multi-layered profile.

Increasing the angular separation leads to a larger physical separation for layers at

higher altitude. As we sum over layers of increasing height we effectively sum over

increasing physical separation, increasing the anisoplanatism effects. This leads

to different covariance cross term results from each atmospheric layer regardless

of wind speed so the covariance, and therefore the residual variance, will not be

the same as for a single layer model with the same outer scale, Fried parameter

and wind speeds. The performance deteriorates rapidly with increasing angular

separation due to the top heavy profile, the same as Single-Conjugated Adaptive
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Optics (SCAO).

Next we alter the speeds of the different layers to match the ESO 35 layer profile,

as shown in table 2.1. This does not effect the instantaneous ⟨ϕon(t)2⟩, but will

effect the time averaged ⟨ϕ2
ref ⟩ and the covariance cross term 2⟨ϕon(t)ϕref ⟩. In this

scenario all the layers still have equal strength, so the time averaged variance will

be equivalent to a single layer profile with a speed of 11ms−1, this is the average

across the ESO profile. We therefore expect the time averaged variance term to

be lowered. Whilst the covariance cross term is made of only instantaneous val-

ues it is affected by wind speed as it changes the distance travelled between the

instantaneous measurements - faster travelling layers will generate smaller covari-

ance cross terms. We see this in the orange curve of figure 5.8 where the faster

model has a slightly higher residual variance for small pupil separations. Overall

this has an increased wind speed, hence the worse performance. As the covariance

cross term is approaches zero as pupil separation increases the increased speed has

a less noticeable effect.

There is a much more pronounced effect when changing the strengths of the lay-

ers shown in figure 5.8. As mentioned before, 70% of the overall strength of the

profile lies in the lowermost eight layers. This emphasis on the smaller separa-

tions increases the magnitude of the overall cross-covariance term regardless of the

angular distance, which in turn decreases the residual error. The purple line in

figure 5.8 shows the results of a realistic atmospheric model with layers with varied

strengths and speeds. Again there is a small increase in residual error for small

separations caused by increasing the speeds of most of the layers. The atmospheric

AcO error is clearly ground dominated, demonstrating the importance of detailed

ground layer Cn2 and v⃗(h) profiling for this application.
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5.4.2 Variations in Exposure Time

The main consideration for our active optics model, and the focus of this section, is

the exposure time used to measure the off axis line of sight ⟨ϕ2
ref ⟩ before correcting;

and how this effects the residual on-axis error. This is representational of the

fundamental limit on AcO performance with one off-axis WFS, purely from an

atmospheric perspective.

As the exposure time increases the time averaged variance term will decrease ap-

proximately as a power law - in line with the results discussed in Chapter 3. Equa-

tion 5.9 shows the cross term is made of a sum of instantaneous covariance values

that cover increasing δ time differences between the on-axis and reference lines of

sight. As the exposure time increases, so will the spatial difference between the

lines of sight and the covariance cross term will reduce to zero. We have seen that

the covariance between two pupils can be negative; as demonstrated in Chapter 4,

showing instantaneous covariance values for increasing pupil separation. The cross

term drops quite rapidly for short exposure times of a few seconds to negative val-

ues before settling around zero. This trough occurs at shorter timescales for more

complex Zernike modes, which will correspond to a peak in the residual variance,

as shown in figure 5.9.

Figure 5.9 shows residual variance for azimuthal order -1 modes against exposure

times between 0.01 and 30 seconds. For very short timescales the residual variance

is smaller than the instantaneous variance. In this regime our model theoretically

could correct for the atmosphere. Once the residual variance has crossed the in-

stantaneous variance it peaks, this would be the worst timescale to correct for a

particular mode. We note that this peak occurs at shorter timescales for higher

order modes, but is of smaller value in comparison. Z3 Tip has a maximum residual

error at ∼7 seconds - increasing the exposure time after this point will reduce the

residual error for all modes.
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Figure 5.9: The residual ⟨ϕres(t)2⟩ and insantaneous variance ⟨ϕon(t)2⟩term for
multi-layered atmospheric model with increasing exposure for the off-axis reference
pupil. This is shown for three different radial orders with azimuthal order -1. The
guide star is 6 arcmin off-axis. Also included is the uncorrected instantaneous
variance term for the corresponding mode. Generated using the ESO 35 layer
profile with L0 = 39m and r0 of 0.157m for an ELT sized aperture of diameter
39m.

5.4.2.1 Variations in Wind Direction

Here we can finally test the impacts of wind velocity on this model. We vary

the directions of the wind profile, both helically between the different layers as

discussed in Chapter 3, but now also relative to the azimuthal coordinate of the

guide star. We have established in section 5.3.2 that the angular difference between

phase motion and the pupil separation can have a large effect on the scale of the

residual variance for individual modes when considering a single layer model and

section 3.3 discusses how, given its relative strength, the motion of the ground layer

has a strong effect on the overall averaging times when considering a single line of

sight. In this section, we have considered the AcO excess variance ⟨ϕexc(t)2⟩:

⟨ϕexc(t)2⟩ = ⟨ϕ2
ref ⟩ − 2

n2

2n−1∑
δ=1

(n − |δ − n|)⟨ϕon(ti+δ)ϕref (ti)⟩, (5.12)

or the difference between the residual error and the instantaneous variance. For

simplicity we have varied the ground layer in steps of 90 degrees and shown the
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5.4.2.1. Variations in Wind Direction

effects on modes with azimuthal order ±1:

• All layers aligned at 0 degrees

• All layers aligned at 90 degrees

• Angular helical dispersion of 360 degrees, starting with the ground layer at 0

degrees

• Angular helical dispersion of 360 degrees, starting with the ground layer at

90 degrees

where 0 degrees is aligned with the slope of tip.

Figures 5.10 and 5.11 show the changes to the AcO excess RMS with exposure

time for different angular dispersions. These show the expected patterns in that

the results of phase motion at 0 degrees and 90 degrees are reversed for azimuthal

orders 1 and -1. Taking the results for Z2, tip, the peak in RMS is reduced for

ground layers moving at 0 degrees compared to 90 (∼270 versus 390 nm), but

decreases more slowly - for exposure times longer than 8 seconds the residual RMS

is on average 100 nm higher for phase motion aligned at 0 degrees. The same

logic is true when considering the angular dispersion cases, but the differences

are less pronounced. In Chapter 3, when just considering the variance, modes

with the same azimuthal order but different radial order decreased with the same

approximate power laws, but higher order modes were at smaller scales. Now when

considering both variances and covariances, this is no longer completely true. Take

mode 7 in figure 5.11 for example, when the wind direction is aligned at 90 degrees,

the AcO excess RMS dips and rises again between 2 and 10 seconds, which we do

not see in mode 2.

Whilst changes in wind dispersion do affect all individual modes, the effect on the

sum total is minimal, as seen in figure 5.12. As seen in Chapter three, pairs of modes

average together to produce the same variance, regardless of wind direction. The
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Figure 5.10: The excess AcO RMS term ⟨ϕexc(t)⟩ for increasing exposure time,
for Zernike modes tip and tilt upper and lower respectively. This is shown for four
different velocity dispersions. The guide star is 6 arcmin off-axis. Generated using
the ESO 35 layer profile with L0 = 39m and r0 of 0.157m for an ELT sized aperture
of diameter 39m.

same is true of the AcO excess RMS from pairs of modes, so the only variation to

the sum of the first ten radial orders stems from the small changes to the azimuthal

order 0 modes - of which there are only five. At ELT scales, exposure times should

be at least 10 seconds in length, to avoid the peak in AcO excess RMS. To reach

350nm, half the maximum value, takes over 30 seconds. Any shorter will risk

extremely large residual errors.
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Figure 5.11: The excess AcO RMS term ⟨ϕexc(t)⟩ for increasing exposure time,
for Zernike modes 7 and 8 upper and lower respectively. This is shown for four
different velocity dispersions. The guide star is 6 arcmin off-axis. Generated using
the ESO 35 layer profile with L0 = 39m and r0 of 0.157m for an ELT sized aperture
of diameter 39m.

5.4.3 Application to Real Telescope Examples

To provide the ELT-scale results from 5.4.2 with some additional context in this

section we have calculated the residual error ⟨ϕres(t)2⟩ for smaller, existing tele-

scopes - VISTA, Gemini and the VLT. We continue to use the median ESO profile

for the atmospheric layers.

Boccas and Vucina (2006) states that Gemini’s update rate is variable - in 0.5"

seeing the update rate is 30 seconds but will increase to 60 seconds in worse con-

ditions of 1" or above. In figure 5.13 we show the excess AcO RMS for a guide
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Figure 5.12: The excess AcO RMS term ⟨ϕexc(t)⟩ for increasing exposure time,
summed together for the different Zernike modes, for increasing exposure time.
This is shown for four different velocity dispersions. The guide star is 6 arcmin
off-axis. Generated using the ESO 35 layer profile with L0 = 39m and r0 of 0.157m
for an ELT sized aperture of diameter 39m.

star at the edge of the FoV for all three telescopes from table 5.1 and the ELT,

for exposure times increasing to 60 seconds. Despite their differences in FoV, the

residual covariance for the Gemini and VLT telescopes are only noticeably different

for timescales under 10 seconds. The peak residual error is higher for the VLT,

which follows the results from 5.4.1 given its wider FoV. However, for longer ex-

posure times the separation in phase is dominated by the temporal split and so

both telescopes have a similar error. In the long exposure regime of many seconds,

the residual WFE is a function of aperture diameter but not off-axis angle. We

also note that the excess AcO RMS for the Gemini telescope only drops from 129

to 98 nm as exposure time increases from 30 to 60 seconds. The residual covari-

ance from VISTA does not peak as highly as the larger telescopes and conversely

the ELT peaks at the highest value of 698nm. After an exposure of 60 seconds

the excess AcO RMS lowers to 189 nm - equivalent to a 12 second exposure for a

Gemini-like pupil separation. In 300 seconds, the "worst case" update rate for the

ELT, Bonnet et al. (2018), our model predicts a 90 nm error - just less than the

excess AcO RMS for the Gemini 8.1m telescope after a one minutes exposure.

103



5.4.3. Application to Real Telescope Examples

0 10 20 30 40 50 60
Exposure Time /s

100

200

300

400

500

600

700
Ac

O 
Ex

ce
ss

 R
M

S 
/n

m
GEMINI
VLT
VISTA
ELT

Figure 5.13: The excess AcO RMS sum of the first 10 radial orders with increasing
exposure for the off-axis reference pupil. This is shown for Gemini, VLT andVISTA
at separations of 0.08, 1 and 0.75 degrees respectively. Generated using the ESO
35 layer profile with r0 of 0.157m.

In order to balance the need for a frequent update rates (hence shorter exposure

times) with a smaller residual error, different modes could, in principle, be averaged

for different amounts of time. For example, leaving radial orders one and two at an

exposure time of 60 seconds, radial orders three through ten can be shortened to 15

seconds without raising the total excess AcO RMS to above 250 nm. Conversely,

if the drive was to shorten the exposure times for the low order modes, radial

orders one and two can be measured for 30 seconds and the higher order modes

for a minute and achieve the same excess error. If this variable averaging time

was viable, the overall wind dispersion becomes an important consideration again.

For example taking our 90-450 degree dispersion radial orders one and two meas-

ured for 30 seconds and the higher radial orders for a minute gives a total excess

AcO RMS of 122 nm. Implementing this would require knowledge of the temporal

power spectrum and the variability of the wind velocity profile - and would increase

the computational complexity of updating the AcO system. Plantet et al. (2022)

presents a method for considering both the spatial and temporal statistics of the

turbulence and how this may affect an AO system. This takes the temporal and

104



5.5. Conclusions

spatial covariances of the Zernike modes and produces the temporal cross power

spectral densities (Whiteley et al., 1998). They show that only considering spatial

covariances causes an SCAO system to overestimate the contributions of aniso-

planatism. Implementing a similar analysis using our covariance library would

help indicate the viability of a variable averaging time, and is a consideration for

future work.

5.5 Conclusions

In this chapter we have used our covariance library to create an AcO model that

finds the residual error between one off-axis guide star and the main on-axis line

of sight. We have detailed this method in section 5.2, indicating how we have

taken advantage of our covariance library to generate a covariance cross term that

includes both instantaneous and time averaged values. This theory was verified

in sections 5.3.1 and 5.3.2, comparing against an existing Monte Carlo model that

was run independently of our theoretical model. Our simulation assumes Taylor’s

frozen flow, and that the telescope is static.

Confident in the validity of our model we have shown how the residual error peaks at

short exposure times before decreasing towards the instantaneous Zernike variance

value. We have shown this residual error for a range of telescope sizes. For example

at an ELT scale, for a 30 second exposure an off axis wavefront sensor 0.0083 degrees

off axis correcting the on axis line of sight will have a excess AcO RMS of 274 nm.

For exposure times of 1 to 60 seconds, a single off-axis WFS leads to a relative

residual error of on average three times higher error for a 39m telescope vs an 8m

diameter. We recommend that exposure times be above 10 seconds at ELT scales.

Future work for this model would again involve varying the wind directions as a

function of time to create a more accurate atmospheric profile. In section 5.4.3 we

discussed the possibility of varying the exposure times of different modes to achieve

the same level of residual error. A useful extension of this would be to calculate
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this algorithmically - if we could input a wind velocity profile, which modes we need

to keep with a short exposure time and an error threshold, and output a series of

necessary exposure times. We could also extend the simulation to consider multiple

guide stars, creating a more accurate ELT model.

An alternative avenue would be to follow on the work presented in Holzlöhner

et al. (2014). They have presented an alternative AcO control method for the

VST. As a survey telescope with a wide FoV, they propose taking advantage of

the thousands of stars in the science image and track the telescopic error with

the elongation of the stellar PSFs across the field. The pattern of both sizes and

ellipticities of the PSFs is compared against an telescopic-aberration-free version in

an analytical model. Using 5th-order geometrical optics this model calculates the

mirror misalignments and distortions up to nine degrees of freedom. As this uses

aberration theory it claims to be faster than ray tracing methods, but it’s function

requires the atmospheric effects to be fully averaged. They assume an exposure

time of one to a few minutes will average out the atmospheric effects - which we

could test with our atmospheric active optics model.
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Chapter 6

Conclusions

This thesis has considered the long term phase averaging required for ELT scale

active optics and how this is affected by wind velocity dispersion. In this chapter

we summarise the results presented in this thesis and suggest probable avenues for

future research.

6.1 Effects of Wind Velocity Profiles on

Turbulence-Induced Quasi-static Aberrations

Chapter 3 focused on the residual phase variance as a function of averaging time

for a single ELT scale line of sight.

• The decay rates for individual Zernike modes can be fitted approximately as

a power law (after a break point τBP ≈ D/v).

• The gradient of this fit, and therefore the time taken to reach an accept-

able threshold of error, is dependent on the azimuthal order of the Zernike

mode and the wind direction. For example, for an ELT scale telescope

(r0 = 0.14m,L0 = 39m and a wind speed of 10ms−1) the times taken for

Zernike modes to reach a residual error of λ/20 are 10 and 64 seconds in the

K-band and 40 and 1016 seconds in the V-band respectively.
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• Modes with azimuthal order zero behave in the same way for any wind dir-

ection.

• Azimuthal pairs Zn±m, two modes within a radial order with ± azimuthal

order m, will switch between power law gradients ∼ −0.45 and -1 every 180
|m|

degrees of wind direction rotation - for a single layer model.

• When considering an atmospheric profile with multiple layers, the effects of

wind dispersion are not as simple to quantify given the different strengths and

speeds of the individual layers. The averaging times do tend back to the azi-

muthally averaged case for larger angular dispersions, as this is equivalently

averaging over wind direction.

• Given its relative strength, the velocity of the ground layer has a large impact

on averaging times in comparison to layers at higher altitudes. Slower moving

turbulence exacerbates the split in averaging times between pairs of modes.

• Varying the ground layer wind speeds from 18 to 1 m/s can increase averaging

time by a factor of 50.

6.2 Generating A Covariance Library for Two Lines

of Sight

In Chapter 4 we have verified the use of a coordinate transform of the Zernike

coefficient covariance matrix to rotate the wind velocity. The resultant covariance

matrix covariance library allows for more efficient simulation varying wind disper-

sions for multi-layer atmospheric profiles. The chosen parameter spaces for this

library are:

• Maximum baseline between pupils (mx). The total grid size is set at 4x4 pupil

diameters. After this separation the normalised instantaneous covariance is
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0 for radial order 2 and above as there is no longer a correlation between the

covariance of the two pupils.

• Minimum baseline between pupils (δx). This sampling was tested against

the normalised instantaneous covariance. δx was set at 4 pixels, or 1/24th

of a pupil diameter. This sampling is fine enough to successfully interpolate

between grid points and generates a worst case ±2.4% error in the instant-

aneous covariance values.

• Number of Zernike coefficient values to be averaged over Tav, up to 100 pupil

translations which covered a 100 second exposure at ELT scales for the ESO

atmospheric profile. We increased Tav in 100 non-linear steps because it

limited the storage necessary for the covariance library. This generated a

worst case ±0.8% error in the time averaged variance values.

• Number of Zernike modes, fixed at 66 modes, the first 10 radial orders to

ensure there was no additional error in our CRCM method for higher order

modes.

• By setting D = r0, the covariance matrices can be easily re-scaled to any r0

value when utilising the covariance library. The covariance matrices can used

for variable wind speeds, directions and turbulence strength.

• The outer scale L0 cannot be rescaled for, as it is an inherent property of

the phase screens used to generate the Zernike coefficients. The covariance

libraries must be regenerated for specific outer scales. Three copies of the

covariance library are saved, with an L0/D ratio of 1, 3 and 10 respectively.

• The use of this library is only valid for atmospheres exhibiting Taylor’s frozen

flow (Taylor, 1938). Non-frozen flow turbulence is seen at astronomical sites,

but further characterisation of dome seeing is required before fully under-

standing the accuracy of our assumption and how we might adjust our model

to account for this.
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6.3 Active Optics Correction Using an Off-Axis Guide

Star

Chapter 5 utilised our covariance library as an active optics simulation, to calculate

the residual difference after a finite exposure time.

• We have verified our method to calculate the residual error against an inde-

pendent Monte Carlo simulation (ANGuS).

• For a single layer model, all modes are effected by changes in wind direction

as, given our assumption of Taylor’s frozen flow, the winds direction may

either increase or decrease the separation between the pupils as time passes.

• Increasing the exposure time for our multi-layer atmospheric profile causes the

residual difference between two lines of sight to first peak at a short exposure,

giving the worst timescale to apply a correction, before slowly decreasing

again. As the exposure time increases we move from an AO regime into AcO.

• For long exposures the residual WFE is a function of aperture diameter and

C2
n, but not the off-axis angle.

• The exposure time to reach an acceptable level of residual error for an ELT

scale telescope will be in the hundreds of seconds rather than the tens required

for existing telescopes.

• The wind dispersion has a less noticeable effect when considering the sum

error over multiple radial orders. It may still be a useful consideration if

using a variable averaging time for different modes.

6.4 Future Work

The continued use of the covariance library holds considerable possibilities. The use

of real velocity data as a function of time would allow us to evolve the atmospheric
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wind velocity dispersion as exposure time increases. An additional possibility would

be to run additional copies of the covariance library with different outer scales.

Given our focus on ELT scales, L0 < D would also be a useful inclusion for more

accurate modelling of the ground layer.

In simulation we can test how different wind velocity profiles affect the residual

error, and how varying the averaging time for different modes might be beneficial

for ELT scale telescopes. This could assist not only in decreasing the sum excess

AcO RMS at long exposure times, but potentially actively avoid the 10s peak. This

may have not been considered before as existing 8m telescopes reach an acceptable

level of error within their AcO update rates. At ELT scales the necessary averaging

times reach into the minutes, over which time the wind velocity profile may have

changed. With ground layer velocity information as a function of time we could

more seriously consider the serviceability of varying the modal averaging times.

In Chapter 5 we have considered the residual error between one off-axis line of

sight and the main on-axis in an AcO simulation. As telescopes get larger it is

more common to have more than one off-axis WFS. The physical separations

between the guide stars will be of similar scale to the separation between a guide

star and the on-axis target and so our covariance library could also be used to

generate wide field long exposure wavefronts (after AcO correction) for multiple

lines of sight.

We would approach calculating this residual difference ⟨ϕ2
diff ⟩ much the same way

as our single line of sight active optics model, but now both lines of sight are time

averaged. We would allow for consecutive measurements of different guide stars

in our simulation with a continued assumption of Taylor’s frozen flow, and add

a temporal offset to the second reference line of sight of the appropriate distance

given the exposure time and the speed of each atmospheric layer.

The work presented in this thesis only accounts for the atmospheric turbulence

error. To progress from this we could test how this will impact ELT performance.
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For example examining how an AcO system could account for these atmospheric

long term exposure errors. We could investigate how these errors propagate through

a tomographic reconstructor simulation - such as ANGuS (previously used in 5.3) -

and how the residual difference between the off-axis guide star lines of sight affect

the on-axis results.

Using our covariance library we would create a larger covariance matrix that de-

scribes multiple lines of sight, each representing an Natural Guide Star (NGS)

WFS. This matrix holds both the statistics for the atmosphere used and the sep-

arations of the WFS. We would add our residual errors to the ANGuS model via

additional Zernike DMs. Our quasistatic errors would act as static aberrations

in the reconstructor. This requires Zernike coefficients, so to test our covariance

based residual error we would have to convert back to Zernike coefficients via mat-

rix decomposition. Note that as these new coefficients would not be correlated or

continuous this method could not be used to make a time sequence of coefficients,

but as our initial library includes both instantaneous and time averaged covariance

matrices we could recreate Zernike coefficients for different exposure times.

As a multi-active mirror telescope, excess AcO errors may be looped back into the

control system of the ELT which may cause focal plane distortions and plate scale

errors (Rodeghiero et al., 2021). The results of our simulation could be used as an

atmospheric error input into an ELT optical model to test how this could affect

ELT performance.
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