
Durham E-Theses

E�ective Operators and Long-Range Forces for Dark

Matter

ROSTAGNI, GUILLAUME

How to cite:

ROSTAGNI, GUILLAUME (2024) E�ective Operators and Long-Range Forces for Dark Matter,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/15576/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15576/
 http://etheses.dur.ac.uk/15576/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Effective Operators and

Long-Range Forces for Dark

Matter

Guillaume Rostagni

A Thesis presented for the degree of
Doctor of Philosophy

Institute for Particle Physics Phenomenology
Department of Physics

Durham University
United Kingdom

May 2024





Effective Operators and

Long-Range Forces for Dark

Matter

Guillaume Rostagni

Submitted for the degree of Doctor of Philosophy

May 2024

Abstract: As successful as the Standard Model has proven to be, many unknowns

cloud our understanding of the Universe; in particular, the nature of as much as 80%

of matter remains mysterious, and the search for dark matter (DM) is one of the

main areas of research in particle physics. In this thesis, we consider two approaches

to help solve the DM problem. First, we consider axion-like particles and show how

the addition of shift symmetry-breaking operators affects the phenomenology of the

QCD axion. In particular, we show that potentials resulting from the exchange of

a pair of virtual axions acquire a different scaling as we include some higher-order

operators. We demonstrate how this result affects the sensitivity of searches for

new long-range forces. Later, we study a shift-symmetry preserving, Z2 invariant

dimension-6 interaction term between an axion and the Higgs field. We compare

constraints from Higgs-boson and meson decays, bounds from atomic spectroscopy

searching for fifth forces, and astrophysical observables. In the other approach, we

study the Stodolsky effect, a spin-dependent shift in the energy of a fermion sitting in

a bath of neutrinos. We generalise this effect to DM candidates and give expressions

for the induced energy shifts, considering all effective operators up to dimension-6.

We consider two experimental setups, a torsion balance and a SQUID magnetometer,

to place constraints on the parameter space for these candidates.
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Chapter 1

Introduction

When, in 2012, the Higgs boson was discovered at CERN, it closed a chapter in

particle physics: the Standard Model of particle physics, our best description of the

infinitely small, and the most precise theory ever written, was finally completed. Far

from the end of the story, this discovery was meant to open up the next chapter,

in which the next batch of particles that would fill in the many cracks that had

appeared in this theory were just around the corner. And then nothing. The great

particle colliders that had cemented the Standard Model refused to reveal anything

beyond. From this crisis was reinforced the idea that the answer might be found,

not deep underneath the French-Swiss border, but at ground level, in more modest

laboratories, or higher, in the sky.

In truth, we did not wait for everyone to give up on SUSY to look elsewhere (nor

did we abandon particle accelerators). From the electron and cosmic rays, to the

muon’s magnetic moment and gravitational waves, dozens of crucial discoveries have

been made without the need to crash particles together with ever-increasing ener-

gies, and today, hopes of discovering physics beyond the Standard Model rely on a

vast breadth of experiments. We will concern ourselves with a small subset of these

which aim to measure low-energy observables, measurable on a tabletop experiment,

with great precision. Long-range forces result from the exchange of virtual particles

and manifest as a potential whose effect can theoretically be measured. Alternat-
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ively, spin-dependent effects can cause precessions of the spins in a material, again

measurable, as a torque or magnetisation of the material.

The focus of this thesis will be understanding how to use these experiments to place

bounds on the parameter space new theories are allowed to stand in. In order to

remain general, we will use an effective theory approach in which we will not make

a choice for the underlying theory, but rather consider any effect it can have at

the scale of the experiment. We will further contrast two approaches. In one, we

consider a complete effective theory of a type of particle (axions), defined just below

some symmetry breaking scale, and in the other we look at a basis of individual

operators for a range of undetermined new particles as dark matter candidates.

The structure of this thesis is as follows. In Chapter 2 we will introduce some of the

theoretical concepts we will use in later chapters. Specifically, we will give a short

introduction to renormalisation in Quantum Field Theory (QFT), before moving

on to a brief review of the contents of the Standard Model (SM); we will then

give evidence for the existence of dark matter, and finally introduce the axion as a

solution to the strong CP problem before generalising towards axion-like particles

as dark matter candidates. In Chapter 3, we will develop a method to calculate

long-range, non-relativistic interaction potentials, caused by the exchange of virtual

particles; these so-called fifth forces will then be used to place phenomenological

constraints on axion-like particles. Still within the context of these particles, we

will spend some time in Chapter 4 on the properties of a particular dimension-6

operator describing an interaction between the SM Higgs boson and a scalar particle,

preserving the Z2 and shift symmetries of the latter. Later, in Chapter 5, we will

introduce an analogue to the Stodolsky effect, proposed to detect the cosmic neutrino

background, for dark matter, and develop a basis of effective dark matter operators

to study this effect systematically. Finally, we will be concluding this thesis in

Chapter 6.



Chapter 2

Background

Before diving into the content of this thesis, we need to introduce some concepts

that will be useful for later discussion. This work assumes that the reader is familiar

with group theory and quantum field theory, and concepts from these topics are

not necessarily mentioned and used with detailed derivations from first principles.

Most of this background information can be found in standard QFT textbooks such

as [4, 5]. Natural units ℏ = c = 1 are used throughout this thesis. Unless specified

otherwise, numerical values used in this work are taken from [6].

We will first introduce the concept of renormalisation and running couplings in

Section 2.1, using scalar ϕ4 theory in four dimensions as a toy model. Then, in Sec-

tion 2.2, we give a brief review of the field content of the Standard Model, including

the Higgs mechanism and SM beta functions. Despite its successes, we will argue

that its shortcomings justify the dark matter hypothesis and give a short overview

of the main production and detection methods in Section 2.3. Finally, in Section 2.4,

we will introduce the QCD axion via the strong CP problem, move on to extend

the definition of the axion to include axion-like particles as popular dark matter

candidates, and give the formulation of a generic axion effective Lagrangian and its

evolution across different energy scales.
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2.1 Renormalisation

2.1.1 ϕ4 Theory at Tree-level

We begin by introducing the concepts of renormalisation and running couplings ap-

pearing in many QFTs using a simpler theory. In fact, one of the simplest interacting

theory one can write is the “ϕ4 theory” describing a real scalar field ϕ of mass m

with quartic self-interactions with strength λ, and a Lagrangian

L
ϕ

4 = 1
2

(∂µϕ)(∂µϕ) − 1
2
m2ϕ2 − λ

4!
ϕ4 . (2.1.1)

In this theory, interaction processes can be mathematically described by scattering

amplitudes, written down as overlaps between an initial state i and a final state f ,

⟨f |S|i⟩ , (2.1.2)

where we call S the scattering matrix encoding all the interactions in the theory.

In a free theory, there are no interactions and so S is simply the identity matrix

1. Bearing this in mind, in perturbation theory we write all interactions as a small

perturbation away from the free theory and decompose the S-matrix as

S = 1 + iT , (2.1.3)

where we call T the transfer matrix. Explicitly enforcing momentum conservation,

we finally define

⟨f |T |i⟩ = (2π)4δ(4)

∑
i

pi −
∑
f

pf

M , (2.1.4)

where the sums run over all incoming and outgoing momenta pi and pf respectively.

The quantity M contains the non-trivial interactions of the theory and is what we

will focus our efforts on calculating. From now on, we will simply refer to M as the

“matrix element”.

Computing the matrix element can be done diagrammatically through the use of

the so-called Feynman rules, themselves directly derived from the Lagrangian. The
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= i

p2 −m2 + iϵ
= −iλ

Figure 2.1: Momentum-space Feynman rules for the ϕ4 theory.

matrix element for a process is given by writing down and summing over all possible

diagrams describing this process. In our ϕ4 theory, we assign to each element of a

diagram the factors given in Figure 2.11. Taking for example a ϕϕ → ϕϕ scattering

process, at leading order in λ, the matrix element is simply

iM (ϕ(p1)ϕ(p2) → ϕ(p3)ϕ(p4)) = −iλ+O(λ2) . (2.1.5)

The matrix element M is not actually a physical quantity, the quantities we meas-

ure are the decay width dΓ for particle decays and differential cross-section dσ for

scattering processes, both of which involve the squared matrix element |M|2. For

non-scalar external states, we note that we also need to average over all initial and

sum over all final state spins and polarisations. In the Centre of Mass (CoM) frame,

for a 1 → n decay and 2 → n scattering, these will respectively take the forms

dΓ = 1
2m1

|M|2dΦn and dσ = 1
4
√

(p1 · p2)2 −m2
1m

2
2

|M|2dΦn , (2.1.6)

where n is the number of particles in the final state, and we write the n particle

Lorentz-invariant phase space

dΦn = (2π)4δ(4)

∑
i

pi −
∑
f

pf

 n∏
f=1

d3pf
(2π)32Ef

, (2.1.7)

where the sum in the delta function runs over all incoming and outgoing momenta,

and the product is only taken over all n outgoing momenta. For 2-body processes,

the phase space is

dΦ2 = (2π)4δ(4) (W − p3 − p4)
d3p3

(2π)32E3

d3p4

(2π)32E4
, (2.1.8)

1All Feynman diagrams in this work were drawn using the FeynGame tool [7, 8]



6 Chapter 2. Background

Figure 2.2: Diagrams contributing to the 1-loop corrections to the
quartic vertex in ϕ4 theory.

where we have defined W ≡ p1 + p2. In the CoM frame, we can write W = (
√
s,0)

and use the delta function to perform the integral over p4,

dΦ2 = π

2
δ
(√

s− E3 − E4

) 1
E3E4

d3pf
(2π)3 (2.1.9)

with E3 =
√
m2

3 + |pf |2 and E4 =
√
m2

4 + |pf |2. Finally, we can use the remaining

delta function, and the identity

δ [f(x)] =
∑
xi

δ(x− xi)∣∣∣f ′(xi)
∣∣∣ for f(xi) = 0 , (2.1.10)

to perform the |pf | integral,

dΦ2 = 1
8π

√
s− (m3 +m4)2

√
s− (m3 −m4)2

s

dΩ
4π

. (2.1.11)

Plugging this back into (2.1.6), we end up with the formula for the differential

cross-section for a 2 → 2 process in the CoM frame,

dσ
dΩ

∣∣∣∣∣
CoM

= 1
64π2

1
s

√
s− (m3 +m4)2

√
s− (m3 −m4)2√

s− (m1 +m2)2
√
s− (m1 −m2)2

|M|2 . (2.1.12)

A similar, albeit more complex derivation can be used for the three-body phase

space, the results of which can be found in [6].

2.1.2 Loop Integrals and UV Divergences

To compute higher-order corrections in λ, we need to include more complex diagrams

involving loops. To deal with undetermined loop momenta k, we have to integrate
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Figure 2.3: 1-loop self-energy diagram in ϕ4 theory.

them over all possible values by including a factor
∫ d4

k

(2π)4 . For example, 1-loop

corrections to the four point vertex are given by the diagrams shown in Figure 2.2,

the first of which gives an amplitude

iM1-loop,s = λ2
∫ d4k

(2π)4
1

k2 −m2 + iϵ

1
(k + p1 + p2)2 −m2 + iϵ

. (2.1.13)

The loop integral can be evaluated using the Feynman parameterisation technique

[5, 9], which transforms it into an integral of the form

I2 ≡ λ2
∫ d4k′

(2π)4
1

[k′2 − ∆2]2
−→ ∞ , (2.1.14)

where ∆ is a function of m, p1 and p2. This integral diverges as we integrate

k′ to infinity, and our first-order correction appears to create an infinitely strong

interaction, which is obviously problematic. To regularise this divergence, we change

the integration from 4-dimensions to d = 4 − 2ϵ dimensions2, and take the ϵ → 0

limit to recover a result in 4-dimensions. In d-dimensions, the coupling constant

λ has mass dimension 4 − d, and so we define an explicitly dimensionless coupling

constant λ̄ ≡ µd−4λ = µ−2ϵλ where µ is some arbitrary mass scale. It can be shown

that the scalar integral I2 is now equal to

I2 ≡ µ4ϵλ̄2
∫ ddk′

(2π)d
1

[k′2 − ∆2]2
= µ4ϵ iλ̄

2

(4π)2 (4π)ϵ
(
∆2
)−ϵ

Γ(ϵ) . (2.1.15)

The offending part comes from the Γ(ϵ) term which diverges as ϵ goes to zero (i.e.

d → 4). We expand I2 in powers of ϵ to obtain

I2 = iµ2ϵλ̄2

16π2

(1
ϵ

+ finite
)
. (2.1.16)

2This ϵ is not to be confused with the ϵ appearing in propagators. To simplify notation, the
latter will be omitted from now on.
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As it turns out, this problem also appears when considering corrections to the scalar

propagator, drawn as the “self-energy” diagram shown in Figure 2.3, which translates

as an infinitely large mass m for the scalar field. We call these types of divergences,

Ultraviolet (UV) divergences. We note that another type of divergences appears

when considering massless external states, these are known as infrared divergences

but are not relevant for this work, and so will not be mentioned further.

2.1.3 Counterterms and Running Couplings

To solve this problem of infinite quantities appearing in calculations, we start by

redefining all the fields and parameters appearing in (2.1.1) to explicitly separate

the UV divergent parts from the finite parts. Relabelling the quantities appearing

in (2.1.1) as bare parameters {ϕB,mB, λB}, we define the renormalised parameters

{ϕR,mR, λR} such that

ϕB =
√
ZϕϕR , mB =

√
ZmmR , λB = ZλλR , (2.1.17)

where the Zi are the renormalisation factors. The Lagrangian can then be written

in terms of these renormalised quantities,

L
ϕ

4 = 1
2
Zϕ(∂µϕR)(∂µϕR) − 1

2
ZϕZmm

2
Rϕ

2
R − Z2

ϕZλ
λR
4!
ϕ4
R , (2.1.18)

or alternatively,

L
ϕ

4 = 1
2
(
1 + δϕ

)
(∂µϕR)(∂µϕR) − 1

2
(1 + δm)m2

Rϕ
2
R − (1 + δλ)

λR
4!
ϕ4
R , (2.1.19)

where we have defined δϕ = Zϕ − 1, δm = ZϕZm − 1, and δλ = Z2
ϕZλ − 1, to

explicitly show extra terms containing the renormalisation factors appearing in the

Lagrangian separately. We call these counterterms, and we want to set the δi such

that these counterterms exactly cancel out the UV divergences appearing in higher-

order corrections; i.e. at 1-loop, a tree-level counterterm must cancel all 1-loop UV

divergences.
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We start by studying the effect of higher-order corrections on the scalar propagator

D(p). At leading order, this is simply D(p) = D0(p) = i

p
2−m2 , and corrections give

D(p) = + + + + ... (2.1.20)

Grouping non-separable higher-order diagrams as One-Particle Irreducible (1PI) ,

such that all 1PI diagrams cannot be separated by cutting a single line, i.e. the

second and fourth diagrams above are 1PI, and defining the sum of all 1PI diagrams

as iΣ, we rewrite the propagator as

D(p) = + + + ...

= D0(p) +D0(p)(iΣ)D0(p) +D0(p)(iΣ)D0(p)(iΣ)D0(p) + ...

= D0(p)
[ ∞∑
n=0

(
iΣD0(p)

)n]
. (2.1.21)

The term in brackets is known as a Dyson series, and for an expansion parameter

sufficiently small, it converges to
(
1 − iΣD0(p)

)−1
and we can write

(D(p))−1 =
(
D0(p)

)−1 (
1 − iΣD0(p)

)
= −i

(
p2 −m2 + Σ

)
. (2.1.22)

At 1-loop order, the only 1PI diagram contributing to Σ is the self-energy diagram

shown in Figure 2.3, and we have

iΣ = −iµ2ϵλ̄
∫ ddk

(2π)d
i

k2 −m2

= i
λ̄m2

16π2

[
1
ϵ

+ 1 + log 4π − γE + log µ2

m2

]
, (2.1.23)

where γE is the Euler-Mascheroni constant. Plugging this into the propagator

(2.1.22) and expressing the result in terms of renormalised quantities gives

i (D(p))−1 =
(
1 + δϕ

)
p2 − (1 + δm)m2

R + λ̄Rm
2
R

16π2

[
1
ϵ

+ 1 + log 4π − γE + log µ2

m2
R

]
,

(2.1.24)
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where to cancel out divergences we require

δϕ = 0 , and δm = λ̄R
16π2

1
ϵ

+ finite . (2.1.25)

The finite part of δm can be chosen as desired and defines the renormalisation scheme.

Two common choices are the minimal subtraction (MS) scheme where we set the

finite part to 0, and the modified MS (MS) scheme where we absorb the (log 4π−γE)

term into δm. In MS then, the bare and renormalised masses are related by

mR = 1√
ZϕZm

mB = mB

[
1 − λ̄R

32π2

(1
ϵ

+ log 4π − γE

)
+O

(
λ̄2
R

)]
. (2.1.26)

As a result of this choice, the higher-order corrections to the renormalised mass mR

are now scheme-dependent.

We note that while we found δϕ = 0 which implies that the bare field is identical to

the renormalised field in ϕ4 theory, this is not true in general, and the fields of the

theory need to be renormalised as well.

We can treat the 1-loop corrections to the quartic coupling λ similarly. Up to one-

loop, the four point vertex function is found by calculating the diagrams in Figure 2.2

and gives

−i (1 + δλ)λR + 3iλRλ̄R
16π2

(1
ϵ

+ finite
)
. (2.1.27)

To cancel out divergences we require

δλ = 3λ̄R
16π2

1
ϵ

+ finite . (2.1.28)

An unintended consequence of renormalising our Lagrangian is that we have intro-

duced dependencies on the renormalisation scale µ in our renormalised quantities,

explicitly through the µ−2ϵ factor appearing in the definition of λ̄R, and implicitly

through the presence of λ̄R in the counterterms (2.1.25) and (2.1.28). In fact, since

the bare quantities in the Lagrangian must be scale invariant, these dependencies of

the physical renormalised quantities on the scale µ remain and must be taken into

account when calculating observables. To see this, let us consider the bare quartic
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coupling λB; we must have

0 != d
dlog µ

λB = d
dlog µ

(
µ2ϵZλλ̄R

)
= µ2ϵZλλ̄R

(
2ϵ+ 1

Zλ

dZλ
dlog µ

+ 1
λ̄R

dλ̄R
dlog µ

)
.

(2.1.29)

At leading order in λ̄R, we have then d
dlogµ λ̄R = −2ϵλ̄R, and at next-to-leading order,

β(λ̄R) ≡ d
dlog µ

λ̄R = −2ϵλ̄R + 3λ̄2
R

8π2 +O
(
λ̄3
R

)
, (2.1.30)

where we have defined the 1-loop beta function β(λ̄R) which describes the evolution

of the coupling constant with respect to the mass scale µ.3 Therefore, the phys-

ical coupling constant that we measure will change depending on the mass scale

considered.

We can do a similar calculation with the renormalised field ϕR and mass mR, which

will also depend on the scale µ through λ̄R. We write

0 != d
dlog µ

ϕB = d
dlog µ

(√
ZϕϕR

)
=
√
ZϕϕR

(
1

2Zϕ
dZϕ

dlog µ
+ 1
ϕR

dϕR
dlog µ

)
, (2.1.31a)

0 != d
dlog µ

m2
B = d

dlog µ
(
Zmm

2
R

)
= Zmm

2
R

(
1
Zm

dZm
dlog µ

+ 1
m2
R

dm2
R

dlog µ

)
, (2.1.31b)

and further define the anomalous dimension γϕ(λ̄R) and anomalous mass dimension

γm(λ̄R),

γϕ(λ̄R) ≡ 1
ϕR

d
dlog µ

ϕR = O
(
λ̄2
R

)
, (2.1.32a)

γm(λ̄R) ≡ 1
m2
R

d
dlog µ

m2
R = λ̄R

8π2 +O
(
λ̄2
R

)
. (2.1.32b)

Together, the beta function (2.1.30) and anomalous dimensions (2.1.32) form the

Renormalisation Group Equations (RGEs). They can be solved to determine the

evolution, or running, of the parameters of a model with respect to a reference scale

µ0. For example, the beta function (2.1.30) gives

λ̄R(µ) = λ̄0

1 − 3λ̄0
8π2 log µ

µ0

, (2.1.33)

3Several conventions exist for defining β(λ), notably β(λ) = µ2 dλ/dµ2 which is related to the
one we use by a factor 1/2.
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with λ̄0 = λ̄R(µ0), which allows us to obtain the value of the coupling at any scale

given we know its value at the scale µ0. This will be useful later when we define

a model at a high UV scale and want to calculate the parameters of this model

relevant in lower energy experiments.

2.2 The Standard Model

Somewhat stepping up from the simple ϕ4 theory, we now take a look at the Standard

Model. The SM is a QFT with the gauge symmetry group SU(3)c×SU(2)L×U(1)Y ,

respectively corresponding to the Quantum Chromodynamics (QCD), weak and

hypercharge groups, and with the particle content described in Figure 2.4. Its

Lagrangian can be written as [5, 6, 10]

LSM = Lgauge + Lfermion + LHiggs + LYukawa (2.2.1)

where the four terms respectively describe the gauge fields corresponding to the sym-

metries, the fermionic content, dynamics of the Higgs scalar field, and the Yukawa

interactions generating masses for the fermion fields.

We omit the gauge fixing and ghost Lagrangian terms, as they are not relevant for

the content of this work. For a full discussion of these concepts, see for example [5].

2.2.1 The Gauge Lagrangian

The first ingredient is the gauge Lagrangian describing the gauge fields associated

with each of the three symmetry groups of the SM. For a non-Abelian SU(N) group

we define the field strength tensor

F a
µν ≡ ∂µA

a
ν − ∂νA

a
µ + gfabcAbµA

c
ν , (2.2.2)

where Aaµ represent the N2−1 gauge fields, g is the interaction coupling strength and

fabc the structure constants of SU(N) defined via the commutator of the generators
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Figure 2.4: Particle content of the Standard Model below the
EWSB scale. In the white boxes are the six quarks,
interacting via the strong, electromagnetic, and weak
forces. In the light blue boxes are the six leptons; in
the topmost row are the charged leptons which inter-
act via the electromagnetic and weak forces, and in
the second row are the neutrinos which only interact
with the weak force. Neutrinos are massless in the SM,
but their masses are known to be non-zero from the
measurement of neutrino oscillations. The gauge bo-
sons are the gluon, photon, and weak W and Z bosons,
mediating the strong, electromagnetic and weak inter-
actions respectively. The Higgs boson responsible for
the eponymous mechanism is the grey box. Figure ad-
apted from [11] with updated values from [6].
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of the group,

[ta, tb] = ifabctc . (2.2.3)

The 8 generators of the SU(3) group are related to the Gell-Mann matrices T a =

λa/2; and SU(2) has 3 generators defined by τa = σa/2 where σa are the Pauli

Matrices. The generator of U(1) is simply the identity.

For the SM SU(3)c group, there are 8 different gluons corresponding to the 8 gen-

erators of SU(3) and we call the coupling strength gs. For the weak group SU(2)L,

we have 3 weak bosons and the weak coupling is denoted g. Finally, for the Abelian

U(1)Y , a similar definition is used with the structure constants set to 0, meaning

the associated B boson does not self-interact, and we call its coupling g′. Overall,

the gauge part of the SM Lagrangian can be written as

Lgauge = −1
4
Ga
µνG

µνa − 1
4
W b
µνW

µνb − 1
4
BµνB

µν (2.2.4)

with integers a ranging from 1 to 8 and b from 1 to 3, and Ga
µν , W b

µν and Bµν the

field strength tensors of the three groups discussed.

Finally, we note that explicit mass terms of the form m2AµA
µ are not gauge invariant

and therefore forbidden. Combinations of the W b and B bosons will acquire masses

as the electroweak symmetry SU(2)L×U(1)Y is spontaneously broken by the Higgs

mechanism introduced in Section 2.2.3.

2.2.2 The Fermion Lagrangian

The second part of the SM Lagrangian is the fermion Lagrangian; it contains the

kinematic terms for all fermions in the SM. We differentiate between left- and right-

handed chiral components of a fermion field ψ by defining ψL ≡ PLψ and ψR ≡ PRψ

where we have used the left- and right-handed chiral projectors PL,R = 1
2(1 ∓ γ5)

with γ5 the fifth gamma matrix. There are then three generations of fermions, each

of which contains four left-handed and three right-handed fields.
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The up- and down-type quarks u and d are charged under SU(3)c and each trans-

form as triplets in the fundamental representation of the strong group; all other

fermions are uncharged and transform trivially under SU(3). Chiral components

of the fermion fields transform differently under the weak SU(2)L group, as such

they are commonly grouped into five multiplets: the left-handed quark and lepton

doublets qL = (uL, dL) and lL = (νL, eL), and the right-handed up- and down-type

quark uR and dR and charged lepton eR singlets which transform trivially under

SU(2)L. There are no right-handed neutral leptons νR in the SM. Each of these

multiplets transforms under U(1)Y with a given hypercharge Y , while the quantum

number associated with SU(2)L is the weak isospin τ 3. The left-handed “up-type”

fields uL and νL have τ 3 = 1
2 , while the “down-type” dL and eL have τ 3 = −1

2 ; all

right-handed fields have τ 3 = 0.

For each generation, the up-type quarks are named up u, charm c and top t, the

down-type quarks are down d, strange s and bottom b. Similarly, the charged leptons

are the electron e, muon µ and tau τ , along with their corresponding neutrinos νe,

νµ and ντ . We sum up the gauge transformation properties of each SM field, along

with their composition, in Table 2.1.

Following these transformation properties, we define the gauge covariant derivative

Dµ such that the fermion kinetic terms remain gauge invariant under SU(3), SU(2)

and U(1) transformations. Recalling the generators for each of these groups given

earlier we write

Dµ = ∂µ − igsT
aGa

µ − igτ bW b
µ − ig′Y Bµ . (2.2.5)

Finally, we write the fermion SM Lagrangian,

Lfermion = q̄Li /DqL + ūRi /DuR + d̄Ri /DdR + l̄Li /DlL + ēRi /DeR , (2.2.6)

where we implicitly sum over all three generations, and we have used the Feynman

slash notation /D ≡ γµDµ and defined the adjoint fermion field ψ̄ ≡ ψ†γ0, with γµ

the gamma matrices.
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Field Composition SU(3)c SU(2)L τ 3 Y

Ga a = 1, ..., 8 8 1 0

W b b = 1, 2, 3 1 3 0

B 1 1 0

qL

uL
dL

,

cL
sL

,

tL
bL

 3 2

 1
2

−1
2

 1
6

uR uR, cR, tR 3 1 0 2
3

dR dR, sR, bR 3 1 0 −1
3

lL

νeL
eL

,

νµL
µL

,

ντL
τL

 1 2

 1
2

−1
2

 −1
2

eR eR, µR, τR 1 1 0 −1

Φ 1 2

 1
2

−1
2

 1
2

Table 2.1: Transformation properties of each SM field multiplet un-
der SU(3)c and SU(2)L, along with their U(1)Y hyper-
charge Y . The gauge bosons G, W and B transform
in the adjoint representation of their respective groups,
while the fermions and the Higgs Φ transform in the fun-
damental representation.
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We note the absence of explicit mass terms for any of the SM fermions. Such terms

would be written as

mψ̄ψ = mψ̄LψR +mψ̄RψL , (2.2.7)

and are not gauge invariant in the presence of chiral gauge interactions. The masses

for the fermions will be generated in the Yukawa part of the Lagrangian via the

Higgs mechanism introduced in the following section.

2.2.3 The Higgs Mechanism

The final ingredient in the SM is the Higgs boson, and the associated Higgs mechan-

ism responsible for the masses of (nearly) all SM particles. We introduce the Higgs

field as a complex scalar SU(2)L doublet,

Φ = 1√
2

ϕ1 + iϕ2

ϕ3 + iϕ4

 , (2.2.8)

which is uncharged under SU(3)c, and with hypercharge Y = 1
2 . We write the

associated Lagrangian,

LHiggs = (DµΦ)†(DµΦ) + µ2Φ†Φ − λ
(
Φ†Φ

)2
, (2.2.9)

where the final two terms make up the Higgs potential. If µ2 > 0 then the Higgs

potential minimum is displaced from zero and the Higgs fields acquires a Vacuum

Expectation Value (VEV) at

v ≡ ⟨Φ⟩ =

√
µ2

λ
. (2.2.10)

This non-zero VEV spontaneously breaks the electroweak SU(2)L×U(1)Y symmetry

into the electromagnetic U(1)Q symmetry; we call this the Electroweak Symmetry

Breaking (EWSB).

Of the four massless weak and hypercharge gauge bosons, we then expect a single one,

associated with the new unbroken U(1)Q symmetry, to remain massless, while the
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other three will gain masses as three Goldstone bosons associated with the broken

symmetry are absorbed through the gauge choice. To see this, we re-parameterise

the Higgs field in the unitary gauge, effectively setting ϕ1 = ϕ2 = ϕ4 = 0 and

ϕ3 = v + h, such that

Φ = 1√
2

 0

v + h

 , (2.2.11)

where h is a new real scalar with ⟨h⟩ = 0; we identify it as the physical Higgs boson,

and the fields that were gauged away are the Goldstone bosons whose degrees of

freedom (d.o.f.) have been absorbed into the masses of the gauge bosons. In this

convention, recalling the definition of the covariant derivative (2.2.5), the kinetic

term of (2.2.9) can be expanded as

(DµΦ)†(DµΦ) = g2

8
(h+ v)2

(
W 1µ − iW 2µ

) (
W 1
µ + iW 2

µ

)
+ 1

2
(h+ v)2

∣∣∣∣∣∂µ + i
g

2
W 3
µ − i

g′

2
Bµ

∣∣∣∣∣
2

. (2.2.12)

Focusing on the O(v2) terms for now, we identify them as mass terms of new gauge

bosons of the broken symmetry and U(1)Q. We make these new fields explicit by

diagonalising these mass terms in the fields. We define the W± and Z bosons via

W±
µ ≡ 1√

2

(
W 1
µ ∓ iW 2

µ

)
and Zµ ≡ 1√

g2 + g′2

(
gW 3

µ − g′Bµ

)
, (2.2.13)

and identify their masses from (2.2.12) as

mW = gv

2
and mZ = v

2

√
g2 + g′2 . (2.2.14)

With these definitions, we can rewrite (2.2.9) as

LHiggs = 1
2

(∂µh)(∂µh) − 1
2
mhh

2 − g
m2
h

4mW

h3 − g2 m2
h

32m2
W

h4

+m2
W

(
1 + h

v

)2

W+µW−
µ + 1

2
m2
Z

(
1 + h

v

)2

ZµZµ , (2.2.15)

where we have further identified the Higgs boson mass m2
h = 2λv2. Finally, recog-

nising that the Z boson was obtained by rotating the W 3
µ and Bµ fields by an angle
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tan θw ≡ g′/g, we formally define the massive Z boson and the massless photon Aµ

via the rotation Zµ
Aµ

 ≡ 1√
g2 + g′2

g −g′

g′ g


W

3
µ

Bµ

 . (2.2.16)

This rotation angle θw is known as the weak angle, or Weinberg angle, and we define

the shorthands cw ≡ cos θw = g√
g

2+g′2 and sw ≡ sin θw = g
′√

g
2+g′2 . To complete the

rotation of the SM Lagrangian to the gauge bosons mass basis, we transform (2.2.5)

accordingly,

Dµ = ∂µ − igsT
aGa

µ − i
g√
2

(
τ+W+

µ + τ−W−
µ

)
− i

g

cw

(
τ 3 − s2

wQ
)
Zµ

− ieQAµ , (2.2.17)

where we have identified the unit of the U(1)Q charge, the electric charge, via

e ≡ gg′√
g2 + g′2

= g′cw = gsw , (2.2.18)

the corresponding charge operator Q = τ 3+Y , and the weak operators τ± = τ 1±iτ 2.

The derivation of the gauge mass eigenstates can be reproduced in a generic gauge,

leading to identical mass terms, but additional interactions between the gauge, Higgs,

and Goldstone bosons remaining. In generic gauge, the Higgs doublet is written as

Φ =

 φ+

1√
2 (v + h+ iφZ)

 , (2.2.19)

with a complex scalar φ± ≡ 1√
2(ϕ1 ± iϕ2) and a real scalar φZ ≡ ϕ4. Relevant

interaction terms and Feynman rules can be found in [10].

As we saw earlier, explicit mass terms for fermions are forbidden, however the Higgs

VEV v allows us to generate masses through the Yukawa Lagrangian,

LYukawa = −q̄LYuuRΦ̃ − q̄LYddRΦ − l̄LYeeRΦ + h.c. (2.2.20)

where we have defined Φ̃ ≡ iσ2Φ† to make the term involving the up-type quarks

gauge-invariant, and where Yu, Yd and Ye are the three complex Yukawa matrices.
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These matrices are arbitrary but can be diagonalised by defining

Yf = UfMfK
†
f = Uf


y1f 0 0

0 y2f 0

0 0 y3f

K†
f , (2.2.21)

where Uf and Kf are two unitary matrices and Mf a diagonal matrix with real

coefficients yi. Setting the Higgs field to its VEV in (2.2.20), we find the fermion

mass terms,

LYukawa = − v√
2

(
yuūLUuK

†
uuR + ydd̄LUdK

†
ddR + ylēLUeK

†
eeR + h.c.

)
+O(h) ,

(2.2.22)

with the O(h) terms describing all interactions between the fermions and the Higgs

boson. We finally redefine our fermion fields into the mass basis using the chiral

rotations

uL → UuuL , uR → KuuR , dL → UddL , dR → KddR , eL → UeeL , eR → KeeR

(2.2.23)

to obtain the fermion mass terms,

LYukawa = −muūLuR −mdd̄LdR −meēLeR + h.c. +O(h) , (2.2.24)

with mf ≡ yfv/
√

2. Thus, we have obtained non-zero masses for the quarks and

charged leptons. Due to the absence of right-handed neutrinos, neutrinos remain

massless through the Higgs mechanism and can be freely rotated to set Ye diagonal.4

This rotation into the mass basis however has consequences for quarks. When ex-

panding the terms in the fermion Lagrangian (2.2.6), only the Uu and Ud matrices

remain, in the terms involving interactions between the W± bosons and quarks,

Lfermion ⊃ g√
2

(
W+
µ ūLγ

µU †
uUddL +W−

µ d̄Lγ
µU †

dUuuL
)
. (2.2.25)

As the combination U †
uUd needs not be diagonal, these terms cause explicit mix-

4In contradiction with the SM, neutrinos are now known to have non-zero masses through
observations of neutrino oscillations [12,13].
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ing between quarks of different generations. We define a single matrix paramet-

erising these flavour violating effects V ≡ U †
uUd, known as the Cabbibo-Kobayashi-

Maskawa (CKM) matrix.

2.2.4 The Running of the SM

As we demonstrated in Section 2.1, renormalisation causes physical constants to

acquire a dependency on the energy scale µ. This is also the case for the SM, and

all parameters used, such as masses and couplings, have to be carefully evaluated

at the relevant energy scale. Here we give the beta functions, as defined in (2.1.30),

for the couplings of each interaction, defining αs ≡ g
2
s

4π , α2 ≡ g
2

4π and α1 ≡ g
′2

4π above

the EWSB scale, and α ≡ e
2

4π below; as well as the running of the top quark mass

mt. For further details, we refer to [14–16] evaluating the complete set of SM RGEs

up to 2-loop order.

Up to 2-loops, the QCD beta function is given by

β(αs) = −33 − 2nq
3

α2
s

2π
− 153 − 19nq

3
α3
s

4π2 , (2.2.26)

with nq the number of quarks d.o.f. available at a given energy scale. [6]

At 1-loop, the running for the SU(2)L and U(1)Y couplings above the EWSB scale

are

β(α2) = −19
6
α2

2

2π
and β(α1) = 41

6
α2

1

2π
, (2.2.27)

while below this scale, the QED beta function for the U(1)Q coupling is

β(α) = 4
3
∑
f

N f
c Q

2
f

α2

2π
(2.2.28)

where the sum over f runs over all fermions available at a given energy scale, with

Nc the number of colours (3 for quarks, 1 for leptons) and Qf the electric charge for

each fermion. [17]

Finally, neglecting the effect of electroweak interactions, the running of the top quark
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mass is described via the running of the top Yukawa coupling with αt ≡ y
2
t

4π , [18]

β(αt) =
(9

2
αt − 8αs

)
αt
2π

. (2.2.29)

2.3 The Case for Dark Matter

Despite its many successes and its ubiquity, the SM suffers from a number of short-

comings. The wide range of masses of its components [6], the absence of Charge-

Parity (CP) symmetry violation in QCD [19], its failure to predict neutrino oscilla-

tions (and therefore masses) [12, 13], the problematic value of the muon’s magnetic

moment [20], recent discrepancies in the measured mass of the W boson [21], incon-

sistencies in the measurement of the proton radius [22], and the absence of gravity

altogether form only some of the overwhelming evidence that there must be some-

thing beyond. Extensions of the SM are designated under the moniker of “Beyond

the Standard Model (BSM) physics”. Interestingly, one of the greatest flaws in our

model of the infinitely small comes from the study of the infinitely large. As early

as the 1930s, with F. Zwicky’s work on the Coma cluster [23], astronomers started

noticing that galaxies did not rotate as expected: stars in the outer reaches of galax-

ies all move at similar speeds, despite Keplerian dynamics suggesting their velocity

should fall with increasing distance to the centre. [24, 25] Increasingly numerous

and precise observations of this phenomenon [26–28] led astronomers to postulate

the existence of invisible matter surrounding the visible galaxy, accounting for as

much as 4/5 of its total mass on average. Thus was popularised the idea of Dark

Matter (DM)5.

Now, it would be disingenuous to introduce the hypothesis of DM without men-

tioning its alternatives. A class of theories, known collectively as modified gravity

theories (see [31] for a review), postulate that General Relativity (GR) inaccurately

describes gravity at the largest scales, and that the anomalous rotation of galaxies

5The term “dark matter” itself was coined as early as 1906 by Henri Poincaré, as “matière
obscure” [29]. For a review on the history of dark matter, see [30].
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can be explained with a framework superseding GR. The most famous of these

being Modified Newtonian Dynamics (MOND) [32]. As we will see below, evidence

for DM spreads far beyond rotation curves, and minimal modified gravity theories

are unable to reproduce this evidence [33–36], necessitating more intricate models

which forfeit the elegant simplicity of the MOND hypothesis. Henceforth, and fol-

lowing the consensus of the particle physics community, we will only consider the

hypothesis of particulate DM as a solution to the DM problem, cemented in the

Cosmological Standard Model, better known as ΛCDM.

Since the discovery of the galactic rotation curves, there have been numerous astro-

nomical and cosmological observations that challenge the SM as a standalone explan-

ation for the content of the Universe. Imaging of the infamous Bullet Cluster’s mass

distribution [33], surveys of weak gravitational lensing [37], mapping of the large-

scale structure of the Universe, through Baryon Acoustic Oscillations (BAO) [38]

or weak lensing [39], the shape of the Cosmic Microwave Background (CMB) power

spectrum [40], and calculations of the yields of light elements from Big Bang Nuc-

leosynthesis (BBN) [41] are only some of the observations which overwhelmingly

favour the DM hypothesis. In spite of its own shortcomings [42], ΛCDM is the most

successful cosmological model to date, and predicts a Universe made of ∼ 5% visible

matter, ∼ 26% dark matter, and ∼ 70% dark energy6. [40]

All evidence of DM’s existence so far have been through its gravitational interactions

with visible matter. The few known (or at least supposed) properties of DM can be

inferred from fairly straightforward arguments. First, BBN simulations and meas-

urements of the CMB suggest that not more than a few percent of the Universe’s

total energy could have formed as ordinary, baryonic matter; DM must then be

non-baryonic, hence the need for exotic candidates. Secondly, the lack of measured

interactions between dark and visible matters means that it must be at most very

feebly coupled to SM interactions. Similarly, objects such as the Bullet Cluster sug-

6Dark energy, the Λ in ΛCDM, is a parameter needed to account for the accelerating expansion
of the Universe.
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gest that DM is nearly collisionless, placing stringent bounds on its self-interactions.

Then, the sizes of the smallest DM haloes give indications that it must move slowly

enough to be gravitationally bound; this translates into lower bounds for DM mass,

through the Compton wavelength for bosonic DM, or Fermi pressure for fermionic

DM. Combined with simulations of structure formation, this also indicates that

DM must have been non-relativistic (cold) in the early Universe as well.7 Finally,

observations of the effects of DM at various epochs suggest that its abundance must

have been roughly constant throughout the evolution of the Universe, meaning that

it must have a lifetime at least equal to the age of the Universe. In order for new

fields to be considered suitable DM candidates, it is then sufficient that they fulfil

these five requirements. This leaves an overwhelmingly large range of possible DM

candidate theories, an exhaustive list of which is beyond the scope of the reader’s

time (see [45] for a review of some of the more popular candidates).

2.3.1 Dark Matter Production

The various models attempting to describe DM must all predict the correct DM

density observed in the Universe today. This so-called relic abundance is often

expressed as a fraction of the total Universe energy density, ΩDMh
2 = 0.12 [40]8

with h = H0/100 the reduced Hubble constant, while DM production mechanisms

output a comoving number density, or yield Y ≡ nDM/s, with nDM the DM number

density and s the Universe entropy density. The value of the yield corresponding to

the correct relic abundance is given by

Y = ρc
mDMsh

2 (ΩDMh
2) ≈ 4 × 10−10

(
1 GeV
mDM

)
, (2.3.1)

with ρc = 3H2
0/8πGN the critical density of the Universe, and mDM the mass of the

DM particle. Depending on the model and DM mass, there are three popular scenari

7We note that the cold DM paradigm can cause discrepancies in simulated and measured halo
profiles for dwarf galaxies, this is known as the cusp-core problem [43, 44].

8Not to be confused with the much larger local DM density ρDM ≈ 0.4 GeV cm−3 describing
the density of the Milky Way’s DM halo.
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for DM production: thermal freeze-out, freeze-in, and vacuum misalignment.

In the Freeze-Out (FO) scenario, DM particles are originally abundant and in

thermal equilibrium with the Universe plasma, and creation and annihilation pro-

cesses, schematically DM + DM ↔ SM + SM, are balanced out. As the temperature

of the plasma drops below the DM mass, x ≡ mDM/T ≳ 1, the rate of DM cre-

ation processes diminishes and the DM abundance falls as annihilation processes

become energetically favoured. When DM becomes sparse enough, mainly through

annihilation processes, the rate of DM annihilation processes drops to zero, and the

DM abundance is “frozen-out” of equilibrium at the relic abundance. The critical

density at which DM decouples, and therefore the relic abundance, is inversely pro-

portional to the DM annihilation cross-section ⟨σv⟩. To reproduce the correct relic

density, we require a cross-section ⟨σv⟩ ∼ G2
Fm

2
DM, with GF the Fermi constant

and mDM ∼ mW . In other words, particles with masses of O(100 GeV) interacting

with strength comparable to the weak interaction can reproduce the relic density;

this coincidence is known as the WIMP miracle and motivates an especially popular

class of DM candidates known as Weakly-Interacting Massive Particles (WIMPs).

In contrast, Freeze-In (FI) requires the initial abundance of DM to be very small,

such that the DM is thermally decoupled from the plasma. Creation processes

slowly increase the DM density until they become disfavoured at x ≳ 1. At this

point, smaller couplings than that in the FO scenario guarantee that annihilation

processes never become common enough to reduce the DM abundance, and it is

then “frozen into” its relic abundance. As opposed to FO, the FI yield increases

with the DM interaction cross-section. A schematic evolution of the yield Y as a

function of the parameter x for both FI and FO mechanisms is shown in Figure 2.5.

Finally, in the case where DM-SM couplings are too small for either FO or FI,

the relic abundance can still be generated via the Vacuum Misalignment (VM)

mechanism. VM occurs when, at some temperature T1, the potential of a field V (ϕ)

is displaced away from its minimum by a small value ϕ1 = ϕ(T1) (e.g. through

non-perturbative effects shifting the minimum of the potential, or through ϕ simply
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Figure 2.5: Schematic evolution of the DM yields for thermal freeze-
out (solid coloured) and freeze-in (dashed coloured) as a
function of x = mDM/T . The black solid line indicates
the yield assuming equilibrium is maintained, while the
arrows indicate the effect of increasing the cross-section
⟨σv⟩ for the two processes. Figure reproduced from [46].

being created at a random value away from the minimum). The evolution of the

field ϕ can be described by the equation of motions in an expanding Universe; using

the Friedmann-Lemaître-Robertson-Walker metric, it reads

ϕ̈+ 3Hϕ̇+m2
ϕϕ = 0 , (2.3.2)

where we recognise the equation for a damped harmonic oscillator. If the misalign-

ment occurs at a temperature high enough that the Hubble constant H(T1) is much

greater than the field mass mϕ(T1), then the field behaves like an overdamped os-

cillator and is prevented from rolling down to its minimum. As the Universe cools

down, if H drops below the critical value 3H(Tosc) = mϕ(Tosc), the field begins to

oscillate around its minimum with an energy density

ρ(Tosc) = 1
2
mϕ(Tosc)2ϕ2

osc , (2.3.3)
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Figure 2.6: Diagram illustrating the main dark matter detection
directions.

where ϕosc = ϕ(Tosc) ∼ ϕ1 is the value that the field reached by slowly rolling down

from ϕ1. The relic density can be extracted by redshifting the density ρ(T ) from

Tosc down to the current temperature of the Universe T0 = 2.7 K; the details of

this procedure depend on the functional form of mϕ(T ), and therefore the model

considered.

2.3.2 Dark Matter Detection

Now that we have argued for the existence of DM, given some of its basic properties,

and outlined three production mechanisms, all that remains is to find it. All methods

to detect DM rely on its unknown non-gravitational interactions with SM fields, and

it is helpful to orient them along three main avenues, as illustrated in Figure 2.6.

There are of course experiments that do not quite fit in these categories, such as

those using coherent interactions with the DM field, especially used for light bosonic

DM; but they are sufficient to give an overview of the field of DM detection.

Direct detection relies on DM particles scattering against SM particles, presumably

situated inside a detector, and transferring some energy that can be measured, sig-

nalling the passage of the DM. The exact process through which the detection occurs

depends on the nature of the candidate. An especially popular method for WIMPs
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are experiments based on nuclear recoil [47–50]. Beyond particle-particle scattering,

we also mention methods where the DM field interacts coherently with the detector

material, preferred for ultralight DM, such as axion haloscopes [51–53] or atom in-

terferometers [54–56]. Several reviews exist on the topic, see for example [57] to

mention just one.

On the other hand, indirect detection experiments rely on DM particles from as-

tronomical sources annihilating into SM particles that can then be detected in tele-

scopes. X-ray and gamma telescopes directly measure high-energy photons or cosmic

rays from astrophysical sources [58–61], while Cherenkov detectors measure Cheren-

kov radiation emitted as a cosmic ray passes through the detector material [62, 63].

At cosmological scales, DM can be detected through its imprint on the CMB [40,64],

or via baryon acoustic oscillations [38,65]. Finally, measurements of neutrino fluxes

from the Sun or nuclear reactors can also be used to infer the presence of DM [66–69].

Some reviews on indirect DM detection are [70,71].

Finally, the third DM detection direction is to produce SM particles in colliders and

measure their outgoing momentum, with the hope that missing momentum in the

final state can be interpreted as DM particles escaping the detector. Searches have

been and are being conducted, notably by the ATLAS [72, 73] and CMS [74, 75]

detectors at the LHC. For a review on collider searches of DM, specifically at the

LHC, see [76].

2.4 Axions and the Like

2.4.1 The Strong CP Problem

One of the more interesting candidates for DM originates from an a priori unrelated

issue in the QCD sector. The so-called strong CP problem states that despite the

CP violating angle θ̄ allowed in the QCD Lagrangian being free in the theory, and
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therefore expected to be O(1) from naturalness arguments, measurements of the

neutron Electric Dipole Moment (EDM) constrain it to |θ̄| ≲ 10−10 [77].

To see where the CP violating term arises from, let us start by considering a simple

model with a quark field with Lagrangian density

L = ψ̄
(
i /D −m

)
ψ , (2.4.1)

with an associated gauge field Aµ under which the quark field has charge g. Under

the chiral rotation of the quark fields, defined by ψ → eiγ
5
αψ (or alternatively

ψL → e−iαψL and ψR → eiαψR), this Lagrangian transforms as

L → L − 2imαψ̄γ5ψ +O(α2) , (2.4.2)

and is only invariant in the massless limit. Alternatively, we can use the equations

of motions to show that the associated axial current jµ5 ≡ ψ̄γµγ5ψ is only conserved

if m → 0 as

∂µj
µ
5 = 2imψ̄γ5ψ . (2.4.3)

We have however omitted an important aspect in this reasoning by considering only

the Lagrangian density: the path integral formulation of QFT tells us that the object

to consider is instead the functional integral

Z =
∫

DψDψ̄ exp
[
i
∫

d4x ψ̄
(
i /D −m

)
ψ
]
. (2.4.4)

Now, performing the chiral rotation not only involves acting on the fields in the

Lagrangian, but also carefully transforming the path integral measure DψDψ̄ [78,79].

A full derivation of this transformation is shown in Section 19.2 of [4], we only state

the final result,

Z →
∫

DψDψ̄ exp
{
i
∫

d4x

[
ψ̄
(
i /D −m

)
ψ + α

(
∂µj

µ
5 + g2

8π2FµνF̃
µν

)]}
, (2.4.5)

with Fµν the field strength tensor of Aµ and we have defined the dual of a field

strength tensor F̃ µν ≡ 1
2ε
µναβFαβ with ε the Levi-Civita symbol. The chiral sym-

metry, despite being conserved in the Lagrangian, is broken in the functional integ-
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ral; we then call it an anomalous symmetry. This anomaly in the chiral symmetry

is known as the chiral anomaly, axial anomaly, or Adler-Bell-Jackiw (ABJ) anom-

aly [80,81].

Another piece of the puzzle comes when realising that there exists an additional

term allowed in the SM Lagrangian that we have omitted so far,

LSM ⊃ θ
g2
s

32π2G
a
µνG̃

µνa , (2.4.6)

known as the CP violating theta term. Clearly, there then exists some interplay in

the SM between chiral rotations of the quarks, the chiral anomaly, and this theta

term generated by the former two. Recalling the chiral rotations used to diagonalise

the Yukawa matrices (2.2.21) and (2.2.23), without loss of generality we rewrite the

Yukawa matrices as [5]

Yf = UfMfU
†
fK†

f , (2.4.7)

which we can diagonalise by performing chiral rotations on the right-handed fields

uR → KuuR and dR → KddR only and then non-chiral rotations u → Uuu and

d → Udd. These chiral rotations will induce a phase [5]

η = arg [det (KdKu)] = − arg [det (YdYu)] , (2.4.8)

and the CP violating theta term becomes

LSM ⊃ θ̄
g2
s

32π2G
a
µνG̃

µνa , (2.4.9)

with θ̄ ≡ θ − 2η. Chiral rotations by an angle α then just move the phase between

θ and η, such that η → η + α and θ → θ + 2α, leaving θ̄ unchanged. The angle θ̄ is

then a free parameter, and a measurable physical quantity known as the strong CP

phase or angle.

There is however a reason why we did not include the theta term when writing down

the Lagrangian of the SM in Section 2.2: by manipulating the structure in the theta
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term, one can show that it can be written as

Ga
µνG̃

µνa = ∂µK
µ , with Kµ ≡ εµναβ

(
Ga
νG

a
αβ − g

3
fabcGa

νG
b
αG

c
β

)
, (2.4.10)

where Kµ is known as a Chern-Simons current. In other words, the theta term

is a total derivative and will therefore be unable to contribute to any process in

perturbation theory. There may nonetheless be physical consequences through non-

perturbative effects.

It turns out that in Chiral Perturbation Theory (χPT), θ̄ generates a CP violating

coupling between the nucleon doublet and the pion.9 This coupling takes the form

ḡπNN = −θ̄ c+µ

fπ
where c+ = c1 + c2 ≈ 1.7 GeV−1 [85], µ ≡ mumd

mu+md
, and fπ is the

pion decay constant. [84] Then, evaluating loop diagrams such as the one shown in

Figure 2.7 and casting the result onto an effective neutron EDM operator,

OEDM = dnFµνn̄iσ
µνγ5n , (2.4.11)

with σµν ≡ i
2 [γµ, γν ] the commutator of gamma matrices, we find

dn = θ̄
egAc+µ

8π2f 2
π

log Λ2

m2
π

≈ 3 × 10−16θ̄ e cm , (2.4.12)

with the isovector coupling gA = 1.2754(13) [6], and where we set a UV cutoff

at Λ = 4πfπ. Current experimental results place bounds on the neutron EDM

at dn ≲ 10−26 e cm [86, 87], leading to a maximal value for the strong CP angle,

θ̄ ≲ 10−10.

A simple solution to the strong CP problem would be having one (or more) quarks be

massless at some mass scale, mq = 0. In this case, (2.4.8) does not hold and θ could

simply be rotated away from the Lagrangian by redefining the quark field q. As the

theory is run from the high scale to a lower scale, instanton effects would actually be

able to generate masses at a low scale comparable to current estimates [82], however

the fine-tuning problem is shifted from making θ̄ small to making mq small, and one

9See [82–84] for more detailed reviews of the strong CP problem and its links to the neutron
EDM.
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Figure 2.7: 1-loop diagram contributing to the neutron EDM
through CP violating couplings between nucleons and
pions. The bullet represents the CP violating coupling.

still need to find a suitable explanation for this.

Alternatively, if the high-scale theory superseding the SM is CP conserving, then

a bare θ parameter, and so the theta term (2.4.6), would be forbidden in the UV

theory. In this theory, CP violation must arise spontaneously, somehow without

generating an explicit theta term while still reproducing the observed CP violation

in the weak sector. Such theories include Nelson-Barr models [88, 89], as well as

other models based on string theory and/or supersymmetry (see e.g. Refs. [26–31]

from the review by A. Hook [84]).

2.4.2 The QCD Axion

A third, and currently the most popular, solution to the strong CP problem is the

so-called QCD axion [90, 91]. The basic idea consists in adding a new anomalous

U(1) symmetry we call the Peccei-Quinn (PQ) symmetry. This symmetry is spon-

taneously broken at a high energy scale ΛPQ by an additional term associated with

a new Goldstone boson a,10

La =
(
θ̄ + a

f

)
g2
s

32π2G
a
µνG̃

µνa + kin. , (2.4.13)

with the rest of the SM Lagrangian obeying the shift symmetry a → a + α. The

effective CP phase of this theory is then θeff = θ̄ + a
f
. Then, by a shift in a, we can

eliminate this effective strong CP angle and solve the strong CP problem. In fact,

10Not to be confused with the SU(3)c index a which only appears in the GG̃ structure.
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one can write the vacuum energy as a function of θ̄ and a as [5]

E(θ̄) = −m2
πf

2
π cos

(
θ̄ + a

f

)
. (2.4.14)

Then, shifting a to eliminate θeff corresponds to giving a a VEV at ⟨a⟩ = −θ̄f ; the

vacuum energy potential then has a minimum at θeff = 0 and excitations around this

minimum are axion particles. We call a the axion field and f ∼ ΛPQ the axion decay

constant. Expanding (2.4.14) in a/f , one finds an estimate for the mass of the axion

ma ∼ mπfπ
f

, which for the minimal U(1)PQ model gives ma ∼ 10 − 100 keV [92, 93].

As a brief aside, we mention the so-called axion quality problem, or whether it is

justified that the QCD contribution to the axion potential dominates over other

contributions that may arise as a result of the PQ symmetry breaking at a high

scale [94–97]. This theoretical issue is not directly relevant for this work and we will

not discuss it further.

This new light and long-lived particle is an attractive candidate for DM, and while

the PQ model was quickly ruled out [98], several more complex models opened up

the parameter space for an axion to solve both the CP and DM problems [99]. UV

completions for the QCD axion are often grouped into two categories:

• Kim-Shifman-Vainshtein-Zakharov (KSVZ) models [100,101], in which one in-

troduces one or several new heavy quark fields Q charged under the U(1)PQ

symmetry, generating (2.4.13) through the anomalous symmetry, and any

other couplings at loop-level.

• Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) models [102, 103], in which one

adds at least one new Higgs scalar doublet and charges the SM fermions under

U(1)PQ, in addition to (2.4.13), axion-fermion couplings may therefore occur

at tree level.

In this work, we will treat the axion model as an effective theory and not consider

specific UV completions unless necessary. See [104] for an extensive review of several

types of axion models.
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Owing to the popularity of the DM problem over the strong CP problem, many axion

models have been written to make suitable candidates for DM, sometimes at the cost

of their ability to solve the problem they were created for. While literature often

refers to “axions” ambiguously, we will emphasize this distinction and call “QCD

axions” particles that solve the strong CP problem through a variant of the PQ

mechanism, and with a mass ma ∼ mπfπ
f

. The term “Axion-Like Particle (ALP)”,

or “axion” without any qualifier, will refer to more generic DM candidates with

pseudoscalar and anomalous couplings similar to that of the QCD axion, that need

not solve the strong CP problem.

2.4.3 Axions at Different Scales

In order to study ALPs generally, without restricting ourselves to a specific model,

we use an Effective Field Theory (EFT) approach. EFTs are a class of theories in

which one considers all or specific operators defined at a low energy scale, whereby

the UV behaviour of the theory has been integrated out and is only present through

calculable coefficients scaling the operators, called Wilson coefficients. The SM can

be treated as an EFT where effects of unknown high-energy phenomena determine

the values of its many parameters [105]; alternatively, the archetype of an EFT is the

Standard Model Effective Field Theory, or SMEFT [106–108], in which all possible

operators involving SM fields are considered.11 We treat here the ALP similarly: by

writing down all its interactions below a new physics scale Λ with Wilson coefficients

for couplings.

The most generic effective ALP Lagrangian above the EWSB scale that one can

write up to dimension-5 reads [17]

L(5)
a = 1

2
(∂µa)(∂µa) − 1

2
m2
a,0a

2 + ∂µa

f

∑
ψ

ψ̄cψγ
µψ

11The SMEFT assumes an SM Higgs doublet of the form (2.2.8); relaxing this assumption yields
what is known as Higgs Effective Field Theory, or HEFT. A discussion of both theories is included
in [105].
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+ cGG
αs
4π

a

f
Ga
µνG̃

µνa + cWW

α2

4π
a

f
W b
µνW̃

µνb + cBB
α1

4π
a

f
BµνB̃

µν . (2.4.15)

Here, the sum extends over the SM fermion fields ψ ∈ {u, d, e, ν} and the cψ are

Hermitian coupling matrices. The axion decay constant f is related to the new

physics scale Λ = 4πf , assumed to be well above the weak scale. Finally, ma,0 is the

bare axion mass, taken to be zero when considering the QCD axion as the Goldstone

boson of the broken U(1)PQ symmetry.

We note the omission of an additional term describing ALP couplings to the Higgs

doublet Φ [109]

O(5)
aΦ = ∂µa

f

(
Φ†iDµΦ + h.c.

)
. (2.4.16)

This operator can be shown to be redundant, as it can be reduced to the fermionic

operators in (2.4.15) using field redefinitions of the Higgs doublet Φ and the chiral

fermions ψ. [110]

As the Lagrangian (2.4.15) is defined well above any scale that can be probed in

an experiment, we want to obtain a form of it that is relevant at lower energies,

that is, below the EWSB scale and even below the QCD scale. In this section, we

will outline the steps followed in [17] to derive the effects of running on the axion

couplings, as well as the matching conditions at the weak and QCD scales.

We start by noting that the axion-gauge couplings cGG, cWW and cBB as defined in

(2.4.15) are scale independent up to 2-loop order, that is

β (cV V (µ)) = 0 , (2.4.17)

with V = G,W,B. [111] The Wilson coefficient matrices cψ do run however, and their

evolution is described by Equations (18) in [17] in the flavour basis, and neglecting

all Yukawa coefficients except yt. One can alternatively redefine the quark fields ψ

by rotating them into the mass basis via the chiral rotations (2.2.23); the matrices

cψ are then also redefined in this mass basis and now follow the RGEs in (24) of [17],

or (A.2) in the case of the axion-top coupling defined as ctt = [cu]33 − [cq]33. At this
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point it is useful to define the modified axion-gauge couplings,

c̃GG ≡ cGG + 1
2

Tr
[
cu + cd − 2cq

]
, (2.4.18a)

c̃WW ≡ cWW − 1
2

Tr
[
3cq + cl

]
, (2.4.18b)

c̃BB ≡ cBB + Tr
[4
3

cu + 1
3

cd − 1
6

cq + ce − 1
2

cl

]
, (2.4.18c)

which appear in the RGEs for the axion-fermion couplings, as well as the calculations

for several processes where they encapsulate fermion loop corrections to the axion-

gauge couplings. These modified axion-gauge couplings are now scale dependent

through the presence of the scale dependent cψ; their evolution at 2-loops is given

in Equation (A.1) of [17].

Upon running down to the weak scale µw ≈ mt, we express the Lagrangian (2.4.15)

in terms of the gauge fields generated by the Higgs mechanism as well as the mass-

basis fermion fields,

L(5)
a (µw) = 1

2
(∂µa)(∂µa) − 1

2
m2
a,0a

2 + ∂µa

f

∑
ψ

(
ψ̄RkψRγ

µψR + ψ̄LkψLγ
µψL

)

+ cGG
αs
4π

a

f
Ga
µνG̃

µνa + cγγ
α

4π
a

f
FµνF̃

µν

+ cγZ
α

2πswcw
a

f
FµνZ̃

µν + cZZ
α

4πs2
wc

2
w

a

f
ZµνZ̃

µν + cWW

α

2πs2
w

a

f
W+
µνW̃

µν− , (2.4.19)

where we now sum over left- and right-handed fermion fields independently, with

the new coupling matrices,12

kuL = cq , kdL = V †cqV , keL = kνL = cl , kuR,dR,eR = cu,d,e (2.4.20)

with V the CKM matrix, and the axion-boson couplings defined at the weak scale,

cγγ = cWW + cBB , cγZ = c2
wcWW − s2

wcBB , cZZ = c4
wcWW + s4

wcBB . (2.4.21)

We further define the diagonal axion-fermion couplings by generalising the earlier

12Note the different convention, uL, dL, eL, νL in this work correspond to U , D, E, ν in [17],
and uR, dR, eR correspond to u, d, e.
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definition for ctt,

cψiψi =
[
kψR

]
ii

−
[
kψL

]
ii
. (2.4.22)

The scale evolution for these axion-fermion couplings can directly be obtained from

that of the cψ couplings mentioned earlier.

As the energy scale drops below the weak scale µ ≲ µw, approximating µw ≈ mt ≈

mW ≈ mZ , we integrate out the W± and Z bosons and the top quark. The resulting

Lagrangian will contain the first two lines of (2.4.19) with the tL and tR fields omitted

from the sum over fermions,

L(5)
a (µ ≲ µw) = 1

2
(∂µa)(∂µa) − 1

2
m2
a,0a

2 + ∂µa

f

∑
ψ ̸=t

(
ψ̄RkψRγ

µψR + ψ̄LkψLγ
µψL

)

+ cGG
αs
4π

a

f
Ga
µνG̃

µνa + cγγ
α

4π
a

f
FµνF̃

µν . (2.4.23)

Integrating out these fields then causes matching corrections as loop diagrams such

as the ones in Figure 2.8 are absorbed into new effective axion-photon or axion-

gluon couplings. Assuming a light ALP and neglecting terms of order m2
a/m

2
t,W ,

these matching corrections at the weak scale are given by

∆c̃GG(µw) = −1
2
ctt(µw) , ∆c̃γγ(µw) = −4

3
ctt(µw) , (2.4.24)

such that c̃V V (µ ≲ µw) = c̃V V (µw) + ∆c̃V V (µw). Recalling the definitions of the

modified axion-gauge couplings (2.4.18), we obtain

c̃GG(µ ≲ µw) = cGG + 1
2
∑
q

cqq(µ) + ∆c̃GG(µw) = cGG + 1
2
∑
q ̸=t

cqq(µ) , (2.4.25a)

c̃γγ(µ ≲ µw) = cγγ +
∑
ψ

Nψ
c Q

2
ψcψψ(µ) + ∆c̃γγ(µw) = cγγ +

∑
ψ ̸=t

Nψ
c Q

2
ψcψψ(µ) ,

(2.4.25b)

where the sum over q (ψ) indicates summing over all quarks (fermions), and note

that the matching condition at the weak scale amounts to removing the contribu-

tion from the integrated out top quark from the definitions of c̃V V . This matching

correction will also apply at lighter fermion mass thresholds. Matching corrections
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Figure 2.8: Diagrams responsible for the 1-loop matching correc-
tions to the axion-gauge couplings when integrating out
the top quark and W boson below the weak scale. Fig-
ure reproduced from [17].

Figure 2.9: Diagrams responsible for the 1-loop matching correc-
tions to the axion-fermion couplings when integrating
out the top quark and W and Z bosons below the weak
scale. In the second diagram, the boson lines can be
WW , ZZ, Zγ, or γZ; in the third and fourth diagrams,
the boson line can be a W or a Z. Figure reproduced
from [17].

also occur for the axion-fermion couplings, caused by diagrams such as the ones

shown in Figure 2.9. The matching coefficients ∆kψL(µw) and ∆kψR(µw) are given

in Equation (59) of [17], with an additional CKM dependent coefficient ∆̂kdL(µw)

given in (60).

The fermion part of the ALP Lagrangian below the weak scale (2.4.23) can be re-

written in terms of non-chiral fermion fields and vector and axial currents. Recalling

the definition of the left- and right-handed projectors PL,R we can write

ψ̄RkψRγ
µψR + ψ̄LkψLγ

µψL = 1
2
ψ̄
(
kψR + kψL

)
γµψ + 1

2
ψ̄
(
kψR − kψL

)
γµγ5ψ .

(2.4.26)

Focusing on the diagonal couplings, and remembering that the vector currents are

conserved below the weak scale, i.e. ψ̄γµψ → 0, we can rewrite the axion-fermion

interactions in terms of the diagonal couplings (2.4.22),

L(5)
a (µ ≲ µw) ⊃ ∂µa

f

∑
ψ ̸=t

cψψ
2
ψ̄γµγ5ψ , (2.4.27)
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where we sum over non-chiral fields.

Below the weak scale, the RGEs for the axion-gauge couplings and axion-fermion

couplings are greatly simplified. The scale dependence of the coefficients c̃γγ and

c̃GG only arises at 2-loop order below the weak scale and is therefore very weak; at

next-to-leading logarithmic order, it can be neglected and the axion-gauge couplings

taken to be scale-independent. We nevertheless reiterate the matching procedure as

the energy scale crosses various fermion mass thresholds, and generalise (2.4.25),

c̃GG(µ) = cGG + 1
2
∑
q

cqq(µ) Θ(µ−mq) , (2.4.28a)

c̃γγ(µ) = cγγ +
∑
ψ

Nψ
c Q

2
ψcψψ(µ) Θ(µ−mψ) , (2.4.28b)

where Θ(x) is the Heaviside step function. The evolution for the axion-fermion

couplings can now only be built from diagrams involving gluon and photon loops

(still setting the light quark Yukawas to zero), and must therefore be flavour diagonal.

The RGEs for the axion-fermion coupling matrices kψ are given in Equation (75) of

[17], and are indeed diagonal in flavour space. Then, the flavour changing couplings

can be taken to be scale-independent, while only the flavour diagonal couplings cψiψi
will run.

The final step of the matching procedure involves matching the theory onto the χPT

Lagrangian as the energy scale reaches the QCD scale µ = ΛQCD. The detail of the

procedure is beyond the scope of this work but is discussed at length in Section

7 of [17]. We nevertheless quote the result for the physical ALP mass, given by

the explicit mass parameter ma,0 and a contribution from the chiral Lagrangian

[101,112,113], such that

m2
a = m2

a,0

1 + f 2
π

8f 2
m2
πm

2
a,0(

m2
π −m2

a,0

) (∆cud)2

+ c2
GG

f 2
πm

2
π

f 2
2mumd

(mu +md)2 +O

(
f 4
π

f 4

)
,

(2.4.29)

with mπ the neutral pion π0 mass and the parameter

∆cud = cuu − cdd + 2cGG
md −mu

md +mu

. (2.4.30)
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We additionally quote the resulting axion-nucleon axial couplings, [114]

gp = g0 (cuu + cdd + 2cGG) + gA
m2
π

m2
π −m2

a

∆cud , (2.4.31a)

gn = g0 (cuu + cdd + 2cGG) − gA
m2
π

m2
π −m2

a

∆cud , (2.4.31b)

for an interaction of the form gN
4
∂µa

f
N̄γµγ5N , with the isovector g0 = 0.440(44)

[115, 116] and isoscalar gA couplings. All parameters involved in these definitions

are evaluated at the QCD scale ΛQCD. Further details on the chiral Lagrangian in

the presence of an ALP field are given as necessary in Section 3.2.
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Fifth Forces

The methods for DM detection described in Section 2.3.2 rely on the presence of

DM particles as an external background state, either through its relic abundance,

or through production via an external source. Another indirect detection method

uses the scattering of two SM particles via the exchange of virtual particles. Such

processes form the macroscopic forces corresponding to each fundamental interac-

tion, the most common example being that of the electromagnetic Coulomb force

originating from exchanges of virtual photons. These forces can be mediated by any

particle, with a characteristic range dependent on the mediator’s mass. In the case

of BSM particles, we call these fifth forces. We emphasize however, that since the

BSM states are purely virtual, fifth forces are not sensitive to a DM background1,

and are not strictly purely DM detection tools.

Fifth forces are parameterised by a potential derived from the S-matrix element

of the interaction pictured in Figure 3.1. These potentials are functions of the

separation r between the two interacting SM particles and are calculated by taking

the Fourier Transform (FT) of the scattering amplitude

V (r) =
∫ d3q

(2π)3 A(q)eiq·r , (3.0.1)

1Breaking the loop with external thermal propagators can yield a modified force that is sensitive
to thebackground density, see for example [117–119].
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Figure 3.1: Generic XY → XY diagram responsible for fifth forces
interactions. The momentum convention shown here is
the one used all throughout this work.

with A the Non-Relativistic (NR) limit of the matrix element M, and q the trans-

ferred momentum. To avoid confusion with quantum field potentials appearing in

QFT, we will call these Interaction Potentials (IPs).

3.1 Interaction Potentials

3.1.1 The One-Pion Exchange Potential

The simplest type of IP is the Yukawa potential, arising from the exchange of a single

scalar particle. To keep things interesting, we will instead derive the form of the

slightly more complicated One-Pion Exchange (OPE) IP, which arises as the main

component of the residual nuclear force binding atomic nuclei [120]. We consider an

effective interaction between a neutral pseudoscalar π0 and two nucleons N ,

OπN = g
∂µπ

0

f
N̄γµγ5N , (3.1.1)

with f the energy scale of the effective interaction. The diagram responsible for the

four-nucleon scattering via exchange of a single neutral pion is shown in Figure 3.2.

The corresponding matrix amplitude is then

iM = −i g
2

f 2

[
ū(p2)γµγ5u(p1)

] qµqν
q2 −m2

π

[
ū(p4)γνγ5u(p3)

]
, (3.1.2)
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Figure 3.2: Interaction responsible for the OPE potential.

with the transferred momentum q ≡ p1 − p2 = p4 − p3. Plugging in one of the NR

spinor identities given in Appendix A and taking out the relativistic normalisation

factor 4m2
N gives the NR amplitude

A = g2

f 2
(q · σ1)(q · σ2)

|q|2 +m2
π

. (3.1.3)

Plugging this amplitude into the FT defined in (3.0.1) and evaluating it using the

basis defined in [121] for spin-dependent IPs gives the OPE potential

VOPE(r) = − g2

f 2
1

4πr3 e
−mπr

×
[
(1 +mπr) (σ1 · σ2) −

(
3 + 3mπr + (mπr)2

)
(r̂ · σ1) (r̂ · σ2)

]
= g2

4π
m2
π

f 2
1
3
mπ

[
e−mπr

mπr
(σ1 · σ2) +

(
1 + 3

mπr
+ 3

(mπr)2

)
e−mπr

mπr
S12

]
,

(3.1.4)

where in the second line we have defined Sij ≡ 3(r̂ · σi)(r̂ · σj) − σi · σj. This result

is exactly the form of the OPE IP given in [120] and showcases the general process

to obtain IPs.

3.1.2 Potentials from Pair Exchange

As we saw in the previous section, the exchange of a single pseudoscalar particle

yields a spin-dependent potential. To obtain a spin-independent IP, we must con-

sider the next order in perturbation theory: the exchange of two particles via a



44 Chapter 3. Fifth Forces

Figure 3.3: Generic 1-loop diagram responsible for pair exchange
IPs.

loop, such as the one shown in Figure 3.3. Furthermore, in other cases such as an

interaction with a fermion mediator, pair exchange is the leading order process that

generates an IP. We must therefore extend the method we used to calculate IPs

from single particle exchanges to pair exchanges.

Naively taking the FT of a loop amplitude is impossible for any case of interest, and

so most, if not all, methods of calculations for IPs rely on using some variation of the

optical theorem and discontinuities of the amplitude. [122–127] For our calculation,

we will follow the method from [123] where they show, using Cauchy’s theorem, that

an IP can be calculated via

V (r) = 1
4π2r

∫ ∞

(mi+mj)
2
dt ρ(s, t)e−

√
tr , (3.1.5)

with ρ(s, t) the spectral density function, defined as ρ(s, t) ≡ [M]t /2i, where

[M(s, t)]t ≡ M (s, t+ iϵ) − M (s, t− iϵ) (3.1.6)

is the discontinuity of the amplitude M along the t branch cut.

To compute the discontinuity for a given process, we can use Cutkosky’s theorem

[128], which states that the discontinuity along t of an amplitude can be found by
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replacing the propagators running along t by their own discontinuity

1
k2 −m2 + iϵ

→ (−2πi)Θ
(
k0
)
δ
(
k2 −m2

)
, (3.1.7)

where Θ(x) is the Heaviside step function as before. For example, a diagram like

the one in Figure 3.3 will yield a scalar loop integral of the form

Is(P) =
∫ d4k

(2π)4
d4k′

(2π)4
1

k2 −m2
i

1
k′2 −m2

j

P(q, k, k′; pi) (2π)4δ(4)
(
q − k − k′

)
(3.1.8)

where P is a generic function of any momentum involved; its discontinuity along t

is then given by

[Is(P)]t = − 1
4π2

∫
d4k d4k′ P(q, k, k′; pi) δ(4)

(
Q− k − k′

)
× Θ

(
k0
)
δ
(
k2 −m2

i

)
Θ
(
k′0
)
δ
(
k′2 −m2

j

)
. (3.1.9)

Six of the eight integrals above can be trivially computed using the delta functions

available. To perform these, we use the “q rest frame” where we set q = (q0,0), and

start by expanding k = (Ek,k) and k′ = (E ′
k,k

′) in terms of their components to

obtain

[Is(P)]t = − 1
4π2

∫
dEkd3k dE ′

kd3k′ P(q, k, k′; pi) δ
(
q0 − Ek − E ′

k

)
δ(3)

(
k + k′

)
× Θ (Ek) δ

(
E2
k − |k|2 −m2

i

)
Θ
(
E ′
k

)
δ
(
E ′2
k − |k′|2 −m2

j

)
. (3.1.10)

The Ek and E ′
k integrals can be computed via the delta-function identity (2.1.10),

using the step functions to select the positive solution. The k′ integral is performed

using the 3-dimensional delta function, leaving

[Is(P)]t = − 1
16π2

∫
d3k

1√
|k|2 +m2

i

√
|k|2 +m2

j

P(q, k, k′; pi)

× δ
(
q0 −

√
|k|2 +m2

i −
√

|k|2 +m2
j

)
. (3.1.11)

Again using the identity (2.1.10), we can perform the integral over the |k| compon-

ent of the k vector integral, leaving only an angular integral over the function of
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momenta P ,

[Is(P)]t = − 1
8π

√
τ√
t

√
t− δm2

√
t

∫ d2Ω
4π

P(q, k, k′; pi) , (3.1.12)

where we have defined the mass difference δm ≡ mi − mj and the parameter τ ≡

t − (mi + mj)2, and used the Mandelstam variable t ≡ q2 =
(
q0
)2

to express the

result in terms of Lorentz invariant quantities.

The above derivation and result are very similar to the derivation of the two-particle

phase space done earlier in Section 2.1.1. This similarity can be understood via

the optical theorem: it states that the imaginary part of a loop amplitude XY →

{Zi} → XY can be related to the cut amplitude XY → {Zi}, where {Zi} represents

an n-particle state [5]. In other words, it allows us to transform a loop integral into

an n-body phase space integration such as (2.1.7), which is precisely what we have

done above.

All angular dependence in (3.1.12) will come from the 3-momenta k, p and p′

appearing via dot products in various momentum contractions (see Appendix B.1).

The resulting angular integrals are analytically solvable but not trivial; we define a

basis of functions

I(a,b) =
∫ d2Ω

4π
(
Y + Zk̂ · p̂

)a (
Y ′ + Z ′k̂ · p̂′

)b
, (3.1.13)

with a, b ∈ Z, based on the one used in [129]. The solutions of the most common

of these angular integrals are given in Appendix B.2; additional solutions may be

found in the reference above. In these solutions appears the parameter y defined as

y ≡ p̂ · p̂′ = −
2s+ 1

2(τ1 + τ2)√
τ1

√
τ2

, (3.1.14)

with τ1,2 ≡ t− 4M2
1,2 where M1 and M2 are the external fermion masses.

This method to solve for the discontinuities of scalar integrals is easily extendable

to vector Iµ and tensor Iµν integrals using Passarino-Veltman (PV) reduction [130].

We generate several scalar integrals by considering all possible contractions of the

vector/tensor integral with the external momenta entering P(p), and then solve
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these using the method described above. Since there are 3 independent external

momenta, we will have to solve at most 3 or 10 contractions for vector and tensor

integrals respectively.

The final step of the calculation is to plug the result for the NR amplitude dis-

continuity A into (3.1.5) and perform the t integration. Unfortunately, the most

general case, an arbitrary function of t, mi,j and M1,2, is not solvable analytically.

However, there exists a useful case when both particles in the loop have the same

mass mi = mj = m (i.e. we take δm = 0): if we can write the amplitude as a

polynomial in t and τ = t − 4m2 then, using the definition of the modified Bessel

functions of the second kind Kν(x) [131], we can show that

∫ ∞

4m2
dt

√
τ√
t
tkτ le−r

√
t

= 2√
π

(4m
r

)k+l+1 k∑
i=0

(
k

i

)
Γ
(
l + i+ 3

2

)
(mr)k−iKl+i+1(2mr) , (3.1.15)

with k ≥ 0 and l ≥ −1 integers,
(
k
i

)
the binomial coefficient k choose i, and Γ(x)

the gamma function.

3.1.3 The Neutrino IP

We illustrate the method described by computing the potential between two fermions

arising from the exchange of a pair of neutrinos. The relevant interaction term is

Fermi’s 4-fermion interaction,

OFermi = GF

2
√

2

[
ν̄iγ

µ(1 − γ5)νj
] [
ψ̄γµ

(
gVij − gAijγ

5
)
ψ
]

(3.1.16)

for Dirac neutrinos. Here GF is the Fermi constant and i, j ∈ {1, 2, 3} denote the

neutrino mass eigenstates. For quarks, the couplings gVij and gAij are simply the

vector and axial couplings, respectively

[
gVij
]
q

= δijg
V
q and

[
gAij
]
q

= δijg
A
q . (3.1.17)
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For leptons, operators of the type (ν̄l)(l̄ν) arising from charged-current interactions

can be recast onto the form (3.1.16) via a Fierz transformation, giving the effective

couplings [
gVij
]
l
= δijg

V
l + U∗

liUlj and
[
gAij
]
l
= δijg

A
l + U∗

liUlj , (3.1.18)

where Uli are entries of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix de-

scribing neutrino-sector flavour violation. The vector and axial fermion couplings

are given by

gVf = 1
2
τ 3
f −Qfs

2
w and gAf = 1

2
τ 3
f . (3.1.19)

The matrix element corresponding to the exchange can be written

iMij = G2
F

[
ū(p3)γµ

(
gVij − gAijγ

5
)
u(p1)

] [
ū(p4)γν

(
gVij − gAijγ

5
)
u(p2)

]
· Iµν , (3.1.20)

with

Iµν =
∫ d4k

(2π)4
d4k′

(2π)4
gµνk · k′ − k′µkν − kµk′ν + iεµναβkαk

′
β

(k2 −m2
i )(k′2 −m2

j)
(2π)4δ(4)

(
q − k − k′

)
.

(3.1.21)

The only external momentum entering Iµν is q, therefore using PV reduction we can

write Iµν = Iqqq
µqν + Igg

µν , with

Iqq = 4qµqνIµν − tgµνI
µν

3t2
and Ig = tgµνI

µν − qµqνI
µν

3t
, (3.1.22)

where the two contractions entering the scalar integrals are

qµqνI
µν =

∫ d4k

(2π)4
d4k′

(2π)4
tk · k′ − 2(q · k)(q · k′)
(k2 −m2

i )(k′2 −m2
j)

(2π)4δ(4)
(
q − k − k′

)
, (3.1.23)

gµνI
µν =

∫ d4k

(2π)4
d4k′

(2π)4
2k · k′

(k2 −m2
i )(k′2 −m2

j)
(2π)4δ(4)

(
q − k − k′

)
. (3.1.24)

We take the discontinuities of these integrals using (3.1.12), evaluate the scalar

products using the components given in Appendix B.1, and solve for Iµν to obtain

[Iµν ]t = 1
16π

√
τ√
t

√
τδ√
t

(
τ

t
+ τδ

t
− 4

3
ττδ
t2

)
qµqν

− 1
32π

√
τ√
t

√
τδ√
t

(
τ + τδ − 2

3
ττδ
t

)
gµν , (3.1.25)
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where we have defined τδ = t− (δm)2. The integral in (3.1.5) is not solvable analyt-

ically for the corresponding general matrix element Mij; however, we can consider

the diagonal elements Mii such that mj = mi and τδ = t. In the NR limit, using

the spinor contractions from Appendix A, we find the diagonal amplitude

Aii = − G2
F

16πi
[(
gV1
)
ii
δ0
µ −

(
gA1
)
ii
δjµσ1j

] [(
gV2
)
ii
δ0
ν −

(
gA2
)
ii
δkνσ2k

]
×

√
τ√
t

[
1
2

(
t+ 1

3
τ
)
gµν −

(
2
3

+ 4
3
m2
i

t

)
qµqν

]
. (3.1.26)

Finally, using (3.1.15) to perform the integrals and identifying q → −i∇ in the

Fourier transform, we obtain

Vii(r) = G2
F

16π3

( (
gV1
)
ii

(
gV2
)
ii

1
r5

[
(mir)3K3(2mir)

]
+
(
gA1
)
ii

(
gA2
)
ii

{
− (σ1 · σ2)

1
r5

[
(mir)3K3(2mir)

]
+ (σ1 · ∇) (σ2 · ∇)

( 1
6r3 [2mirK1(2mir)] + 1

3r
m2
iF (2mir)

)})
, (3.1.27)

where we have used recurrence relations of Bessel functions to simplify the result,

defined

F (x) ≡
∫ ∞

1
dy

√
y2 − 1
y2 e−xy , (3.1.28)

and normalised the result such that the quantities in square brackets tend to 1 in

the massless neutrino limit. As such, in this limit, the spin-independent term of the

potential exactly matches the well-known result [132,133]. The full result, including

mass dependency and spin-dependent terms, agrees with that in [134], up to the

term containing the F (x) function.

3.2 Fifth Forces for ALPs

Fifth forces have been identified as potential probes for axions very early on [135].

The early focus was on spin-dependent interactions, which are the consequence of

the exchange of a single light CP odd scalar, such as the pion in the OPE potential

seen in Section 3.1.1. The leading contribution to a spin-independent long-range
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force mediated by axions is generated by axion-pair exchange at one loop [136]

and therefore similarly suppressed as the neutrino IP seen earlier. The potential

corresponding to the exchange of a pair of neutrinos scales as V (r) ∼ 1/r5, as does

the potential generated by the exchange of pairs of massless axions [136, 137]. In

contrast, the exchange of pairs of pseudoscalars scales as V (r) ∼ 1/r3, whereas

the potential for the axion-Higgs portal we will introduce in Chapter 4 scales as

V (r) ∼ 1/r7 [138]. The difference between the potentials induced by pseudoscalars

and axions is a consequence of the manifest shift-symmetry that protects all linear

axion interactions and has been discussed in the case of the pion in very early

literature [139–142].

3.2.1 Derivative vs. Mass Bases

We recall the general form of the Lagrangian for an interaction between an ALP

and a SM fermion below the weak scale from (2.4.27), and write the relevant terms

of the ALP Lagrangian (2.4.23),

L(5)
a ⊃ 1

2
ψ̄i

↔
/∂ψ + 1

2
(∂µa)(∂µa) −Mψψ̄ψ − 1

2
m2
aa

2 + ∂µa

f

cψ
2
ψ̄γµγ5ψ , (3.2.1)

that we wrote in terms of the physical axion mass ma defined in (2.4.29), and we

sum over any fermion d.o.f.

We can use a chiral rotation to rescale the fermion fields by ψ → eicψaγ
5
/fψ as defined

earlier (we will ignore the anomalous FF̃ terms for this section). This allows us to

absorb the axion-fermion coupling into the fermion kinetic term, at the cost of

creating an axion dependency in the mass term,

L(5)
a ⊃ 1

2
ψ̄i

↔
/∂ψ + 1

2
(∂µa)(∂µa) −Mψψ̄e

2icψaγ
5
/fψ − 1

2
m2
aa

2 . (3.2.2)

Equating the two forms of the Lagrangian and expanding in 1/f we obtain two

equivalent forms for the axion-fermion interaction operator,

cψ
2
∂µa

f
ψ̄γµγ5ψ = −imψcψ

a

f
ψ̄γ5ψ + 2mψc

2
ψ

a2

2f 2 ψ̄ψ +O

(
a3

f 3

)
. (3.2.3)
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Figure 3.4: Box-type diagrams responsible for the axion IP.

Figure 3.5: Triangle- and bubble-type diagrams appearing as ex-
tra contributions to the 1-loop IP when including the
quartic vertex appearing in the mass basis.

Naively, we expect the terms linear in a/f on both sides of the equation above to

be equivalent, however they lead to contradicting results for processes with more

than one axion involved. The reason for this is that the divergence of the axial-

vector current, or equivalently the equations of motions for the axion only capture

terms up to linear order in the fields. A consistent rescaling of the fermion fields

generates the higher order terms in a/f seen on the right-hand side of (3.2.3) that

precisely account for the difference between results obtained from the two O(1/f)

terms. Notably, the axion pair exchange, which is order O(1/f 4), is represented by

the box diagrams in Figure 3.4 when only allowing interactions linear in the axion

field; however, when including contributions from the term quadratic in a, bubble

and triangle type diagrams as shown in Figure 3.5 will be generated.

For discussions involving this type of interaction, we will designate the interaction

operator on the left-hand side of (3.2.3) as the “derivative basis”, and the operators

in the expansion on the right-hand side as the “mass basis”.
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3.2.2 Deriving the Axion IP

We now present the derivation of the spin-independent axion pair exchange IP. This

will closely follow the similar derivation of pseudoscalar IPs presented in [143], but

includes non-zero axion mass effects.

For the vector and tensor integrals that we will encounter in triangle- and box-

type diagrams from Figures 3.5 and 3.4 respectively, we use PV reduction with the

external momenta basis

P1 ≡ p1 + p3 , P2 ≡ p2 + p4 and q . (3.2.4)

A useful property of this basis is that we have P1 · q = P2 · q = 0, greatly simplifying

the contractions when solving PV equations. Additionally, using the equations of

motion we can show that ū(p3)/qu(p1) = ū(p4)/qu(p2) = 0, meaning we will not have

to consider components of the integrals proportional to qµ since they will always

vanish in the amplitude when contracted against the spinors.

We start by building the Compton amplitude corresponding to the tree-level ψa →

ψa scattering process. Using the derivative basis operator, this corresponds to the

two diagrams shown in Figure 3.6; after some simplifications using the equations of

motion, the matrix amplitude can be written as

Md
C(pin, pout; k, k′) = c2

ψ

4f 2 4M2
ψ ū(pout)

[
/k

k2 + 2pin · k
+

/k
′

k′2 + 2pin · k′ − 1
Mψ

]
u(pin) .

(3.2.5)

Similarly, in the mass basis, the amplitude corresponding to the two diagrams in

Figure 3.6, plus the four-point vertex induced by the O(1/f 2) term in (3.2.3), is

Mm
C (pin, pout; k, k′) = c2

ψ

4f 2 4M2
ψ ū(pout)

[
/k

k2 + 2pin · k
+

/k
′

k′2 + 2pin · k′

]
u(pin)

− 4Mψ

c2
ψ

4f 2 ū(pout)u(pin) , (3.2.6)

which is exactly equal to the matrix amplitude in the derivative basis Md
C that we

wrote above, up to order 1/f 3.
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Figure 3.6: Tree-level diagrams involved in the ψa → ψa Compton
amplitude.

The amplitude associated with the exchange of two axions is then

iM = 1
2

∫ d4k

(2π)4
d4k′

(2π)4 (2π)4δ(4)
(
q − k − k′

) i

k2 −m2
a

i

k′2 −m2
a

× Md
C(p1, p3; −k,−k′)Md

C(p2, p4; k, k′) . (3.2.7)

Replacing the Compton amplitudes by their expressions and using (3.1.12), we write

the discontinuity of the matrix amplitude as

[M]t = i
c2
ψ1
c2
ψ2

2f 4 M2
1M

2
2

{ [
ū(p3)γµu(p1)

]
[ū(p4)γνu(p2)] × [Iµνbox]t

− 1
M2

[
ū(p3)γµu(p1)

]
[ū(p4)u(p2)] × [Iµtri.1]t

− 1
M1

[ū(p3)u(p1)] [ū(p4)γνu(p2)] × [Iνtri.2]t

+ 1
M1M2

[ū(p3)u(p1)] [ū(p4)u(p2)]
(

− 1
8π

√
τ√
t

)}
, (3.2.8)

where we have defined the angular integrals

[Iµνbox]t = − 1
8π

√
τ√
t

∫ d2Ω
4π

kµkν

D1D2
and

[
Iµtri.1,2

]
t

= − 1
8π

√
τ√
t

∫ d2Ω
4π

kµ

D1,2
, (3.2.9)

with the terms in the denominators

1
D1

=
(

− 1
k2 − 2p1 · k

+ 1
k′2 − 2p1 · k′

)
= −2

 1
т + √

ττ1k̂ · p̂
+ −1

т − √
ττ1k̂ · p̂

 ,

(3.2.10a)

1
D2

=
(

1
k2 + 2p2 · k

− 1
k′2 + 2p2 · k′

)
= −2

 1
т + √

ττ2k̂ · p̂′ + −1
т − √

ττ2k̂ · p̂′

 ,

(3.2.10b)

and the shorthand notations τ ≡ t− 4m2
a, τ1,2 ≡ t− 4M2

1,2, and т ≡ t− 2m2
a. In the
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definitions for D1,2, we have used the kinematics defined in Appendix B.1 to express

them in terms directly useable in the angular integrals defined in (3.1.13).

We start with the angular integrals Iµtri.1 and Iνtri.2. To solve these, we use PV

reduction over the basis {P1, P2, q} chosen earlier to find

Iµtri.1,2 = −
P1 · Itri.1,2 − y

√
τ1√
τ2
P2 · Itri.1,2(

1 − y2
)
τ1

P µ
1 −

P2 · Itri.1,2 − y
√
τ2√
τ1
P1 · Itri.1,2(

1 − y2
)
τ2

P µ
2 . (3.2.11)

Then, evaluating the dot products and the resulting angular integrals of the form

(3.1.13), we find

[Iµtri.1]t = − 1
8π

√
τ√
t

[
− 2
τ1

(
1 − т

√
ττ1

arctanh
√
ττ1

т

)]
P µ

1 ≡ [I1]t P
µ
1 , (3.2.12a)

[Iνtri.2]t = − 1
8π

√
τ√
t

[
− 2
τ2

(
1 − т

√
ττ2

arctanh
√
ττ2

т

)]
P ν

2 ≡ [I2]t P
ν
2 . (3.2.12b)

Now, we use a similar process for the tensor integral Iµνbox. Using the fact that it

is symmetric under the exchange of tensor indices, we write the decomposition in

terms of the scalar integrals

Iµνbox = P µ
1 P

ν
1 I11 + (P µ

1 P
ν
2 + P µ

2 P
ν
1 ) I12 + P µ

2 P
ν
2 I22 + (P µ

1 q
ν + qµP ν

1 ) I1q

+ (P µ
2 q

ν + qµP ν
2 ) I2q + qµqνIqq + gµνIg , (3.2.13)

which can then be solved using the various contractions with pairs of external vectors.

Ignoring the components containing qµ as before, we obtain solutions to the system

of the form

I11 = 1(
1 − y2

)2
τ1

[
2
τ1
P11 · I − 2y

√
τ1

√
τ2
P12 · I + 1 + y2

τ2
P22 · I +

(
1 − y2

)
Q · I

]
,

(3.2.14a)

I12 = 1

2
(
1 − y2

)2 √
τ1

√
τ2

[
− 4y
τ1
P11 · I + 1 + 3y2

√
τ1

√
τ2
P12 · I − 4y

τ2
P22 · I

− 2y
(
1 − y2

)
Q · I

]
, (3.2.14b)
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I22 = 1(
1 − y2

)2
τ2

[
1 + y2

τ1
P11 · I − 2y

√
τ1

√
τ2
P12 · I + 2

τ2
P22 · +

(
1 − y2

)
Q · I

]
,

(3.2.14c)

Ig = 1
1 − y2

[
1
τ1
P11 · I − y

√
τ1

√
τ2
P12 · I + 1

τ2
P22 · I +

(
1 − y2

)
Q · I

]
, (3.2.14d)

in terms of the four contractions

P11 · I ≡ P1µP1νI
µν
box , (3.2.15a)

P12 · I ≡
(
P1µP2ν + P2µP1ν

)
Iµνbox , (3.2.15b)

P22 · I ≡ P2µP2νI
µν
box , (3.2.15c)

Q · I ≡
(
gµν − 1

t
qµqν

)
Iµνbox . (3.2.15d)

We write the matrix amplitude in terms of the scalar integrals we obtained above,

and compute the spectral density ρ by taking the NR limit. Using the fact that

P1,2 = 2W − P2,1, where we have defined W ≡ p1 + p2 = p3 + p4 such that W 2 = s,

we evaluate the spinor contractions in the CoM frame using the identities found in

Appendix A, to get

ρa(s, t) =
c2
ψ1
c2
ψ2

4f 4 M1M2

{
M1M2

[
Ig
]
t

+ 4M2
1M2

(√
s−M2

)
[I11]t + 4M1M

2
2

(√
s−M1

)
[I22]t

+ 4M1M2

(
M1M2 +

(√
s−M1

) (√
s−M2

))
[I12]t

− 2M2
1 [I1]t − 2M2

2 [I2]t +
(

− 1
8π

√
τ√
t

)}
. (3.2.16)

The angular integrals contain several terms which cannot be written as polynomials

in t, and the integral (3.1.5) has therefore no exact analytical solution when using

the expression above for the spectral density. To nonetheless obtain a closed form

expression, we choose to evaluate the spectral density in the heavy external fermion

limit M1,2 → ∞. This limit implies that the resulting IP is only valid for a light

mediator ma ≪ M1,2 and for long ranges r ≫ 1/M1,2. In practice, fifth force

experiments involve relatively long ranges (r ≳ a0), with a0 the Bohr radius, and

are only sensitive to light axion masses ma < 1 eV. If we consider the interaction
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between two nucleons, or even a nucleon and an electron, this sets a range limit

at rmin ≈ 10−12 m, well below the ranges of interest. In this limit, we have
√
s ≈

M1 +M2 and the expression above simplifies to

ρa(t) =
c2
ψ1
c2
ψ2

4f 4 M1M2

{
4M3

1M2 [I11]t + 4M1M
3
2 [I22]t + 8M2

1M
2
2 [I12]t

+M1M2

[
Ig
]
t
− 2M2

1 [I1]t − 2M2
2 [I2]t +

(
− 1

8π

√
τ√
t

)}
. (3.2.17)

When taking a similar expansion in the massless mediator limit, the authors of [143]

show that terms odd in powers of
√
t (or equivalently odd in powers of M1,2) are

cancelled by the contributions from the iterated lowest order potential which we

have ignored so far. This allows us to only consider terms even in powers of M1,2 in

the expansion.

Recognising the first four terms in (3.2.17) as the contributions from box-type dia-

grams from Figure 3.4, the fifth and sixth terms from triangle-type diagrams, and

the final term from the bubble diagram from Figure 3.5, we separate the spectral

density as ρa = ρbox + ρtri.1 + ρtri.2 + ρbub. and evaluate these to, up to order 1/M2
1,2,

ρbox = −
c2
ψ1
c2
ψ2

32πf 4M1M2

√
τ√
t

[
1 +

(
1

4M2
1

+ 1
4M2

2

)(
t+ т2

τ

)
− t

4M1M2

]
, (3.2.18a)

ρtri.1 = +
c2
ψ1
c2
ψ2

32πf 4M1M2

√
τ√
t

[
1 + 1

4M2
1

(
t+ т2

τ

)]
, (3.2.18b)

ρtri.2 = +
c2
ψ1
c2
ψ2

32πf 4M1M2

√
τ√
t

[
1 + 1

4M2
2

(
t+ т2

τ

)]
, (3.2.18c)

ρbub. = −
c2
ψ1
c2
ψ2

32πf 4M1M2

√
τ√
t
. (3.2.18d)

Summing these contributions together we finally obtain

ρa(t) =
c2
ψ1
c2
ψ2

128πf 4

√
τ√
t
t+O

(
1

M2
1,2

)
. (3.2.19)

Recalling the discussion in Section 3.2.1 and repeating this calculation in the “naive”

mass basis, that is ignoring the a2/f 2 term in the right-hand side of (3.2.3), we find

that only the contributions from the “box” terms are present2, yielding a spectral

2Pictorially, we realise that the triangle and bubble type diagrams in Figure 3.5 require a
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density ρ′ = ρbox. This spectral density will eventually yield the r−3 potential

found when considering a purely pseudoscalar interaction of the form ϕψ̄γ5ψ [143],

or, noting that it is also exactly equal to ρbub. at leading order, a quadratic scalar

interaction of the form ϕ2ψ̄ψ. Only when including the additional quadratic terms

do we observe a cancellation between the spectral densities at leading order, leaving

a higher order r−5 potential.

Finally, we use (3.1.5) to obtain the full axion IP

Va(r) =
3c2
ψ1
c2
ψ2

128π3f 4
1
r5

[
2m2

ar
2K2(2mar) + 4

3
m3
ar

3K1(2mar)
]
, (3.2.20)

and the purely pseudoscalar, or quadratic scalar, potential

V ′(r) = −
c2
ψ1
c2
ψ2

64π3f 4M1M2
1
r3

[
2mϕrK1(2mϕr)

]
. (3.2.21)

As earlier, we have normalised these expressions such that the terms in square

brackets tend to 1 as ma,ϕ → 0. Expanding in this small mass parameter, we find

Va(r) =
3c2
ψ1
c2
ψ2

128π3f 4

(
1
r5 − 1

3
m2
a

r3 +O(m4
a)
)
, (3.2.22)

V ′(r) = −
c2
ψ1
c2
ψ2

64π3f 4M1M2

(
1
r3 +

(
−1 + 2γE + 2 logmϕr

) m2
ϕ

r
+O(m4

ϕ)
)
. (3.2.23)

3.2.3 Axion-nucleon Interactions

To quadratic order in a, the inclusion of the additional quadratic operator in (3.2.3)

restores the results obtained using the shift invariant coupling. However, the shift

invariance in (3.2.1) is explicitly broken by the presence of an axion mass. Treating

m2
a as the only spurion that breaks the shift invariance suggests the existence of

higher order shift symmetry breaking operators proportional to this spurion term,

such as

Ossb ⊃
∑
ψ

m2
a

cm
f 3 a

2ψ̄ψ , (3.2.24)

quadratic vertex.
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where cm is a dimensionless Wilson coefficient. These operators spoil the cancellation

in (3.2.3).

In general, it is a conservative assumption that the spurion is given by m2
a, because

the source of shift symmetry breaking responsible for generating the axion mass can

induce higher-order operators that are less suppressed than (3.2.24). An example

of such an enhancement is the coupling of the QCD axion to nucleons. The shift

symmetry is explicitly broken by the presence of light quark masses and the QCD

confinement scale via the second term of (2.4.29). Interactions between the QCD

axion and nucleons are therefore shift-invariant or suppressed by these spurions. At

leading order, the operators of the two-flavour chiral Lagrangian coupling baryons

to pions and axions read [114,144]

L(1)
aN = N̄

(
i /D −mN + gA

2
γµγ5uµ + g0γ

µγ5a(s)
µ

)
N . (3.2.25)

Couplings to the axion enter via the covariant derivative Dµ and the objects uµ and

a(s)
µ , all three of which contain the axion in an explicitly shift-invariant way, and can

be found in Section 2.5 of [114]. At second order, there are four operators [144],

L(2)
aN = c1 Tr [χ+] N̄N − c2

4m2
N

Tr
[
uµuν

] (
N̄DµDνN + h.c.

)
+ c3

2
Tr
[
uµuµ

]
N̄N − c4

4
N̄γµγν

[
uµ,uν

]
N . (3.2.26)

The axion field additionally enters via

χ+ = 2B0

(
ξ†m̂q(a)ξ† + ξm̂†

q(a)ξ
)
, (3.2.27)

m̂q(a) = e−iκq a2f (2cGG+cu+cd)mqe
−iκq a2f (2cGG+cu+cd) , (3.2.28)

where B0 is the parameter appearing in the Gell-Mann-Oakes-Renner relation m2
π ≈

B0(mu+md) [145], ξ = exp
(
i 1√

2fπ
πbσb

)
contains the pion fields, the quark matrices

read mq = diag(mu,md), and κq = diag(κu, κd) are unphysical parameters3 subject

3They can be chosen freely as they will drop out of any physical result, but we note that (2.4.29),
taken from [17], was written with a choice of κq such as to eliminate ALP-pion mixing at leading
order in fπ/f .
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to the constraint Tr[κq] = 1. All operators in (3.2.26) are shift-invariant, apart

from the operator with coefficient c1, which contains a shift-symmetry breaking

interaction

c1 Tr [χ+] N̄N = cN
a2

f 2 N̄N + . . . (3.2.29)

After rotating into the mass eigenbasis and taking into account contributions from

pion mixing one can write the leading terms for the amplitude of axions coupled to

nuclei from (3.2.25) and (3.2.26) as

iM
(
N(k′) → N(k) + a(q)

)
= −gN

4f
ūN(k′)/qγ5uN(k) , (3.2.30a)

iM
(
N(k′) → N(k) + 2a(q/2)

)
= −cN

f 2 ūN(k′)uN(k) (3.2.30b)

respectively. Here, the couplings are defined for protons and neutrons N = p, n,

with gN defined in (2.4.31) and

cN = −c1
m2
π

2
1

(1 − τa)2

{
4c2
GG

[
τ 2
a + 4(1 − 2τa)

mumd

(mu +md)2

]

− 4τ 2
a cGG(cd − cu)

md −mu

md +mu

+ τ 2
a (cd − cu)2

}
, (3.2.31)

with τa = m2
a/m

2
π. The low energy coefficients c1, c2, c3, c4 can be found in [85], we

use c1 = −1.26(14) GeV−1 here.

Expanding cN in small axion masses and using the expression for the QCD axion

mass (2.4.29) with mu = md, one can write the coefficient in (3.2.24) as cm =

−8c1f
3/f 2

π , which corresponds to a substantial enhancement compared with the

naive assumption.

Since the axion has a potential, in principle any quadratic interaction can also give

rise to a linear spin-independent interaction if the axion vacuum expectation value

does not vanish. The Vafa-Witten theorem guarantees that ⟨a⟩ = 0 in vacuum [146],

but in a high density environment the potential is modified such that the minimum

of the axion potential jumps to ⟨a⟩ = πf above some critical density, leading to

long-range forces for large, dense objects such as neutron stars [147,148].

In general, linear interactions proportional to the theta angle are strongly sup-
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pressed [149–151]. For the remainder of this chapter, we therefore focus on the

spin-independent force induced by the exchange of axion pairs.

Consider now the ALP IP; additional contributions from shift-symmetry breaking

operators (3.2.24) are suppressed by ∼ 1/f 6. However, in the case of the QCD

axion there are additional terms at order 1/f 4 induced by the quadratic interaction

terms (3.2.29) proportional to the shift-symmetry breaking spurion responsible for

the axion mass. Evaluated for an interaction between two nucleons N1 and N2,

the quadratic interaction (3.2.29) generates five additional diagrams as shown in

Figure 3.7, corresponding to the diagrams in Figure 3.5 with a new type of quadratic

vertex carrying a coupling cN . These additional contributions take the form of

the spectral densities (3.2.18b), (3.2.18c) and (3.2.18d), eventually giving the extra

potential

Vsp.(r) = −
cN1

cN2

64π3f 4
1
r3 [2marK1(2mar)]

+ 3
64π3f 4

(
c2
ψ1
cN2

1
M1

+ cN1
c2
ψ2

1
M2

)
1
r5

×
[
m3
ar

3K1(2mar) +
(

2m2
ar

2 + 1
3
m4
ar

4
)
K2(2mar)

]
. (3.2.32)

We note that the leading order contribution from the mixed c2
ψi
cNj term cancel out

between the triangle and bubble diagrams from Figure 3.7. As a result, the effect of

the shift-symmetry breaking interaction will not significantly affect an IP between a

nucleon and lepton, as only the cN1
cN2

term contributes to leading order in (3.2.32).

The contributions from the quadratic axion interaction induced by the spurion

(3.2.32) dominate over the contribution from the interaction induced by shift-invariant

operators (3.2.20), even though the latter appear at leading order in the EFT ex-

pansion. Note that this is different from the corrections in the expansion (3.2.22)

which are suppressed by the axion mass, which in the case of the QCD axion scales

as m2
a ∝ f 4

π/f
2. We also note that the importance of the shift-symmetry breaking

operator has been pointed out previously in the context of coherent axion-nucleon

scattering [152].
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Figure 3.7: Additional diagrams for the ALP IP generated by the
presence of an extra quadratic vertex. Bullets indicate
a vertex carrying a coupling cN .

3.2.4 Fifth Force Constraints on Axions

In the following, we illustrate the effect of the shift-symmetry breaking interaction

on the sensitivity of experiments searching for a fifth force. We consider the simplest

axion model with a single coupling to gluons described by the Wilson coefficient cGG,

keeping its mass ma a free parameter. Constraints on such a model will be expressed

as bounds on cGG/f as a function of ma; for the specific case of the QCD axion, the

mass is not a free parameter, and it is useful to recast these as bounds on cGG as a

function of f .

There are several ways to search for the effects of a new, macroscopic force, including

searches with Cavendish-type experiments [153], searches for new forces in atoms

and molecules [154], measurements of the effective Casimir pressure [155, 156] and

experiments specifically designed to suppress the Casimir force [157]. Bounds from

atomic and molecular spectroscopy are not substantially changed by the inclusion of

the higher order operators (3.2.26) as the leading effects only affect nucleon-nucleon

interactions. We then consider experiments probing macroscopic, spin-independent

forces such as the one described in [157], in which the difference in the force between

a sphere and a plate of two different materials is probed, which minimises the con-

tribution from the Casimir effect. The accuracy in measuring this force (or absence

thereof) has been used in [158] to obtain the best limits on the pseudoscalar-to-
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nucleon coupling in the meV–eV range for an experiment of this type.

The experimental setup consists of a disk of thickness D with alternating gold (Au)

and silicon (Si) sections, coated with a uniform layer of gold to equalise the Casimir

force, placed at a distance ℓ from a sphere of radius R. The sphere is made of

a sapphire (sa.) core coated with a layer of chrome (Cr) of thickness dCr and an

outer layer of gold of thickness dAu. The corresponding differential force between

the sphere and the disk (taken to be infinitely wide) reads

∆F (ℓ) = 2πCs (CAu − CSi)
∫ 2R+ℓ

ℓ
dz1

[
R2 − (z1 −R − ℓ)2

]
× ∂

∂z1

∫ 0

−D
dz2

∫ ∞

0
ρdρ V

(√
ρ2 + (z1 − z2)2

)
, (3.2.33)

where we factor out the coupling constants such that Va(r) = c2
ψ1
c2
ψ2

Va(r) in the

case of the potential derived from the derivative interaction (3.2.20), and Vsp.(r) =

cN1
cN2

Vsp.(r) for the leading term of (3.2.32). We define the material-dependent pre-

factors in terms of the axion couplings to nucleons (2.4.31) and (3.2.31), respectively

CX = ρX

(
g2
p

4
ZX
mX

+ g2
n

4
NX

mX

)
, (3.2.34a)

CX = ρXcN
AX
mX

, (3.2.34b)

with density ρX , average number of protons and neutrons AX = ZX+NX , and mean

masses mX of the disc and sphere atoms for a material X. The calculation of (3.2.33)

is lengthy but straightforward following [156, 158, 159]. Integrating (3.2.33) for the

potential (3.2.20) and (3.2.32) yields respectively

∆Fa(ℓ) = 3
64πma

1
f4

|CAu − CSi|
∫ ∞

1
du

√
u2 − 1
u3

∑
l

ClΨ(mau) , (3.2.35a)

∆Fsp.(ℓ) = 1
32πma

1
f 4 |CAu − CSi|

∫ ∞

1
du

√
u2 − 1
u3 e−2mauℓ

(
1 − e−2mauD

)
X(mau) .

(3.2.35b)

The coefficients CX are given by (3.2.34a) and (3.2.34b) respectively, and the func-
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tion X(x) is given by Eq. (11) in [158]. The sum in (3.2.35a) is

∑
l

ClΨ(x) = CAuΨ(x;R, ℓ) + (CCr − CAu)Ψ(x;R − dAu, ℓ+ dAu)

+ (Csa. − CCr)Ψ(x;R − dAu − dCr, ℓ+ dAu + dCr) (3.2.36)

with the function

Ψ(x;R, ℓ) = 8x4
∫ 2R+ℓ

ℓ
dz

[
R2 − (R + ℓ− z)2

]
×
{

−e−2xz

2xz

(
1 − z

D + z
e−2xD

)
+ Ei [−2x(D + z)] − Ei [−2xz]

}
(3.2.37)

where Ei(x) is the exponential integral function. We mention that Ψ has a closed

but unwieldy analytical form. Comparing the axion force derived from the shift-

symmetry breaking interactions Vsp.(r) to that derived from the derivative interac-

tions Va(r), we note that, as expected, the former grows with ℓ relative to the latter,

such that ∆Fsp./∆Fa ∼ m2
πℓ

2.

The resulting bounds on cGG/f are shown as a function of the axion mass in Fig-

ure 3.8. The red line is the bound obtained by using the purely pseudoscalar inter-

action term aψ̄γ5ψ in (3.2.3). However, including the quadratic interaction terms

as shown in (3.2.3) changes the potential to the 1/r5 form in (3.2.20), resulting in a

substantially weaker bound compared to the previous potential, as shown by the po-

sition of the green line in the figure. The quadratic nucleon spurion term in (3.2.29)

generates the additional potential (3.2.32) proportional to 1/r3 at leading order.

Furthermore, the coupling of this term is not suppressed by the axion mass, unlike

what one would expect from a spurion breaking the axion shift symmetry. As a

result, this spurion term generates a bound close to that obtained using the 1/r3

pseudoscalar potential; this bound is shown by the blue line in Figure 3.8.
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Figure 3.8: Limits on the axion-gluon couplings cGG/f obtained
from the Casimir-less experiment [157]. The red con-
tour corresponds to the limit obtained using the pseudo-
scalar form of the potential (3.2.21), the green con-
tour corresponds to the axion potential without shift-
symmetry breaking terms (3.2.20), and the blue line
corresponds to the full axion potential including the
nucleon spurion term (3.2.32).

3.3 Summary

In this chapter, we have developed a framework for deriving long-range, spin-dependent

and -independent, IPs, starting from the simple case of tree-level, single particle ex-

changes to more complicated loop-induced pair exchanges. We have applied this

method to evaluate IPs for several interactions, notably the full neutrino pair ex-

change IP, and the first result for the massive ALP pair exchange IP.

For the latter, we have identified the dominant contribution to the low-energy poten-

tial for ALPs that—like the QCD axion—obtain their mass from the chiral anomaly.

This contribution arises from higher-order operators of the axion Lagrangian that

would naively be expected to produce subleading effects. We show explicitly that

these operators not only generate the most important contribution to the IP, but
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result in a scaling V (r) ∼ 1/r3 as opposed to the leading term V (r) ∼ 1/r5 expected

from derivative interactions. Moreover, since the QCD axion mass is generated via

strong dynamics, this new contribution is only present for interactions between had-

rons and so the nature of the shift-symmetry breaking for an axion can be probed

via the comparison of different searches for fifth forces. We demonstrate the im-

pact with the example of a Casimir-less fifth-force experiment and find an improved

sensitivity of almost five orders of magnitude in cGG/f .





Chapter 4

The Axion-Higgs Portal

4.1 Motivation

In the general dimension-5 ALP Lagrangian (2.4.15) from earlier, we explicitly omit-

ted the dimension-5 operator (2.4.16) describing the interactions between an axion

and the Higgs boson, as it can be shown to vanish under field redefinitions. In fact,

the leading order axion-Higgs interaction to give non-zero contributions to Higgs

decays is the dimension-6 operator [160]

O(6)
aΦ = cah

f 2 (∂µa)(∂µa)Φ†Φ (4.1.1)

which we name the derivative Higgs portal, or axion-Higgs portal, in order to avoid

confusion with scalar dimension-4 operators often referred to as Higgs portals. Im-

portantly, the operator (4.1.1) is the leading operator in the axion field expansion

that preserves the shift symmetry a → a+ c, where c is a constant, and is invariant

under the Z2 transformation a → −a.

Such an ALP has several interesting features. It can be a dark matter candidate

independent of its mass as it cannot decay, and interactions with light SM particles

are strongly suppressed by Higgs couplings as well as by the momentum suppression

due to the two derivatives in (4.1.1). As a consequence, it is particularly challen-

ging to discover an axion that interacts with the SM through this operator, and
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observables based on very precise measurements at low energies can be less sensitive

compared to high-energy probes.

Near the UV scale, we define the theory of the axion-Higgs portal as an extension

of the SM with a real pseudoscalar field a and an effective Lagrangian

Lah(µ < f) = 1
2

(∂µa)(∂µa) − 1
2
m2
aa

2 + cah
f 2 (∂µa)(∂µa)Φ†Φ + LSM , (4.1.2)

where LSM denotes the SM Lagrangian. For this discussion, we consider the Z2

symmetry as a consequence of the UV completion which remains unbroken at the

level of the effective theory, while the shift symmetry is softly broken by the axion

mass ma. The Z2 symmetry implies that the effects of the axion do not introduce

any additional parity violation, independent of it being a scalar or a pseudoscalar

particle. In the following sections, we will discuss some theoretical and phenomenolo-

gical aspects of this model. We compare constraints from spectroscopy experiments,

flavour violating and flavour conserving meson decays, invisible Higgs decays and

astrophysics. Throughout the discussion we will compare these results with the

corresponding parameter space for a renormalisable scalar Higgs portal [161]

OsΦ = cshs
2Φ†Φ (4.1.3)

which is not protected by a shift symmetry, but still invariant under the Z2 trans-

formation s → −s. Therefore—in contrast to the axion—the mass of the scalar s is

not protected against quadratically divergent radiative corrections.

In this chapter, we first consider some theoretical aspects of the axion-Higgs portal

in Section 4.2, namely we present a simple model for a UV completion, write down

its interactions with SM particles present at various energy scales, and consider its

suitability as a true QCD axion. Then, in Section 4.3, we place constraints on the

axion-Higgs portal, via Higgs boson and meson decays, and fifth force effects.
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4.2 The Theory of the Axion-Higgs Portal

4.2.1 A Minimal UV Completion

The discussion in this chapter does not depend on the specific UV completion

of (4.1.2), but for completeness we nonetheless give a particularly simple UV com-

pletion of the SM by introducing a complex scalar singlet [160]

S = s+ f√
2
eia/f , (4.2.1)

with a vacuum expectation value ⟨S⟩ = f/
√

2, coupled to the SM Higgs doublet and

with a corresponding Lagrangian

LS = (∂µS†)(∂µS) + µ2
sS

†S − λs(S†S)2 − λhsS
†SΦ†Φ + LSM . (4.2.2)

This Lagrangian arises from the assumption that no SM fields are charged under

the global U(1) symmetry associated with this complex scalar, such that linear

interactions with S are forbidden.

Expanding (4.2.2) in terms of the radial s and angular a modes of S yields

LS = 1
2

(∂µs)(∂µs) + 1
2
(
µ2
s − 3λsf 2

)
s2 − λsfs

3 − 1
4
λss

4

+ 1
2

(∂µa)(∂µa) + 1
f
s(∂µa)(∂µa) + 1

2f 2 s
2(∂µa)(∂µa)

− 1
2
λhsf

2Φ†Φ − λhsfsΦ†Φ − 1
2
λhss

2Φ†Φ . (4.2.3)

Upon EWSB, the radial mode s mixes with the SM Higgs field. The dominant

contribution to the mass of the radial mode is determined by the scale f , whereas the

mass ma of the Pseudo Nambu-Goldstone Boson (PNGB) a is generated by explicit

symmetry breaking effects. In order for (4.2.3) to match onto (4.1.2) we assume

that the scalar s is sufficiently heavy and can be integrated out at the energy scales

that we can access experimentally. From (4.2.3) follows for the axion-Higgs portal

cah = f

v
sinα with tan 2α = 2λhsvf

m2
s −m2

h

, (4.2.4)
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where ms and mh are the masses of the radial mode s and the SM Higgs boson

h, respectively. The coefficients in (4.2.3) are constrained by measurements of the

SM Higgs decays into SM particles. For example, a conservative estimate using

bounds on the signal strength from Large Hadron Collider (LHC) Higgs analyses

leads to | sinα| < 0.2 for masses ms > mh/2 [162–164]. Further constraints on the

parameters in (4.2.3) arise from perturbativity, requiring a stable minimum of the

potential and measurements of electroweak precision observables [165].

4.2.2 The Axion-Higgs Portal at Different Scales

As earlier for the full dimension-5 ALP Lagrangian from Section 2.4.3, we need

to translate Lah as defined in (4.1.2) in terms of heavy SM d.o.f. to a Lagrangian

involving only particles present in low-energy environments, namely nucleons and

electrons.

Below the electroweak scale µ < v, we integrate out the W± and Z gauge bosons

as well as the Higgs scalar and the top quark, so that we can write the effective

Lagrangian as

Lah(µ < v) = cahcγ
f 2m2

h

(∂µa)(∂µa)FρσF ρσ + cahcG
f 2m2

h

(∂µa)(∂µa)Ga
ρσG

ρσa

−
∑
i,j

cahcij
f 2m2

h

(∂µa)(∂µa)ψ̄i
(
miPL +mjPR

)
ψj + h.c. (4.2.5)

Here, mi and mj are the masses of the fermions ψi and ψj and the sum over i, j

extends over all SM leptons and quarks apart from the top quark. The dimensionless

Wilson coefficients are obtained to leading order in m2
h/(2mt)2 and m2

h/(2mW )2. In

this limit, the couplings between the axion and gauge bosons read [166]

cγ = − α

4π
47
18
, cG = αs

4π
1
3
, (4.2.6)

and the couplings of the axion to SM fermions are given by

cii = 1
2
, (4.2.7)
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in the case of flavour diagonal couplings. Flavour-violating axion couplings are

induced through the Higgs penguin [167–169] and are only relevant for external

down-type quarks. For example, the axion-coupling to d and s quarks is given by

cds = − 3
16π2

m2
t

v2 V
∗
tdVts . (4.2.8)

The Wilson coefficients for the flavour changing transitions b → d and b → s can

be obtained by replacing the CKM elements in (4.2.8). Flavour changing axion

couplings to up-type quarks are suppressed by m2
b/v

2 at the amplitude level, and

charged lepton flavour-changing couplings are suppressed by neutrino masses.

In contrast to the QCD axion, or more generally axions that interact linearly with

quarks or gluons [170], the axion-Higgs portal does not induce mixing between the

neutral pion or other pseudoscalar mesons with the axion as long as the Z2 symmetry

remains unbroken. At energies below the QCD scale ΛQCD, the relevant degrees of

freedom are nucleons, leptons and photons. The effective Lagrangian for interactions

induced by the axion-Higgs portal then reads

Lah(µ < ΛQCD) = cahcN
f 2m2

h

mN(∂µa)(∂µa)N̄N + cahml

f 2m2
h

(∂µa)(∂µa)l̄l

+ cahcγ
f 2m2

h

(∂µa)(∂µa)FρσF ρσ , (4.2.9)

where the nucleons are protons and neutrons N = p, n with mass mN and the leptons

can be electrons or muons l = e, µ with mass ml. The coupling to nucleons can be

written as [171]

cN =
∑

q=u,d,s
fNq + 6

27
fTG , (4.2.10)

with the matrix elements defined by

fNq ≡ ⟨N |mq q̄q|N⟩
mN

,
8π
9αs

fTG = −⟨N |Ga
ρσG

ρσa|N⟩
mN

, (4.2.11)

that can be determined from pion-nucleon scattering [172–174]. Using the results

from [175], we find the numerical values

cp ≈ cn ≈ 0.30 . (4.2.12)
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We will neglect the mass difference between the proton and the neutron.

For the scalar Higgs portal defined via the interaction (4.1.3), the matching proced-

ure outlined above can be repeated in a straightforward way, by replacing the field

structures and couplings with, respectively,

(∂µa)(∂µa) → s2 and cah
f 2 → csh , (4.2.13)

leaving the Wilson coefficients unchanged.

4.2.3 Relation to the Strong CP Problem

We briefly discuss the possibility of the axion as defined in (4.1.2) being a solution

to the strong CP problem. We recall the discussion in Section 2.4.1 and how we

subsequently defined the axion in (2.4.13) such as to drive the value of the effective

strong CP angle θeff to zero.

For the case of the axion-Higgs portal, the coupling (2.4.13) is forbidden by the

Z2 symmetry prohibiting linear axion couplings. This Z2 symmetry is a global

symmetry and should therefore be explicitly broken at a scale ΛZ2
that need not be

related to the scale of shift symmetry breaking ΛPQ and should fulfil ΛZ2
≫ f in

order to make the axion-Higgs portal a good effective theory, so that the equivalent

to (2.4.13) reads

L ∋ g2
s

32π2

(
θ̄ + a

ΛZ2

)
Ga
µνG̃

µνa . (4.2.14)

The axion couplings to Higgs bosons and gluons can therefore be controlled by

different scales, but because the axion is periodic (such that a = a + 2πf), the

allowed parameter space for the effective QCD theta angle becomes

θeff = θ̄ + a

ΛZ2

∈
[
θ̄ − π

f

ΛZ2

, θ̄ + π
f

ΛZ2

)
. (4.2.15)

Given the hierarchy f ≪ ΛZ2
, the vacuum expectation value ⟨θeff⟩ can only take

values in the close vicinity of θ̄. This is in contrast to the QCD axion, where the Z2
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symmetry is spontaneously broken as well, so that ΛZ2
= f and the axion field can

balance an arbitrary value of θ̄. We conclude that the mechanism that solves the

strong CP problem for the QCD axion does not work if the axion-Higgs portal is the

dominant interaction between SM fields and the axion. This discussion did not rely

on the specific properties of the axion-Higgs portal, but holds for any ALP model

where the coupling (2.4.13) is forbidden by a global symmetry and only generated

through explicit symmetry breaking.

4.3 Phenomenological Constraints on the

Axion-Higgs Portal

After the preparations of the last section, we are now ready to calculate the pre-

dictions of the axion-Higgs portal and compare them to experimental data. The

phenomenology of the axion-Higgs portal is different from the QCD axion and other

linearly coupled ALPs. Axions and ALPs are constrained by searches for the dir-

ect production at colliders [109, 176, 177], indirect effects in lab based experiments

such as light-shining-through-the-wall experiments [178, 179] or cavity resonance

searches [180], and astrophysical observables [181]. Many of these experiments are

only sensitive to axial interactions or axions decaying into SM final states, which

are both absent in the case of the axion-Higgs portal. In the following sections,

we present existing bounds on the ratio cah/f
2 and discuss the best experimental

strategy to discover a sterile axion.

4.3.1 Higgs decays

The study of Higgs decays is the most direct way to probe the axion-Higgs portal.

The corresponding diagram is the leftmost shown in Figure 4.1 and the decay rates

read

Γ(h → aa) = v2m3
h

32π
c2
ah

f 4

(
1 − 2m2

a

m2
h

)2
√√√√1 − 4m2

a

m2
h

(4.3.1)
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Figure 4.1: Diagrams for different processes induced by the axion-
Higgs portal, from left to right: the Higgs decay into
two axions, a contribution to the flavour changing trans-
ition s → daa, a contribution to the vector meson anni-
hilation V → γaa, and a contribution to the potential
between electrons and nuclei generated by the exchange
of axion pairs. Bullets indicate effective Higgs-mediated
vertices.

experiment BR(h → inv.) cah/f
2[GeV−2] csh ref

LHC (today) 1.45 × 10−1 7.1 × 10−7 4.9 × 10−3 [182]
HL-LHC 2 × 10−2 2.6 × 10−7 1.8 × 10−3 [186]
ILC 250 GeV 4.4 × 10−3 1.2 × 10−7 8.6 × 10−4 [187]
FCC-hh 2.5 × 10−4 3 × 10−8 2.0 × 10−4 [188]

Table 4.1: Current limits and projections for experimental bounds
on the branching ratio of Higgs bosons to invisible final
states, with corresponding maximal constraints on the
axion-Higgs cah/f 2 and scalar Higgs csh portals coup-
lings.

for the axion-Higgs portal defined in (4.1.2), and

Γ(h → ss) = v2

8πmh

c2
sh

√√√√1 − 4m
2
s

m2
h

(4.3.2)

for the scalar Higgs portal. In the absence of linear interactions, the axion is stable,

leading to invisible Higgs decays. Bounds on the branching ratio are set by searches

for invisible decays of Higgs bosons produced in vector-boson fusion BR(h → inv.) ≤

0.145 at ATLAS [182] and BR(h → inv.) ≤ 0.18 at CMS [183] at 95% Confidence

level (CL). Global fits result in slightly stronger bounds of BR(h → inv.) ≤ 0.13

at ATLAS [184] and BR(h → inv.) ≤ 0.16 at CMS [185]. The reach of the high

luminosity LHC and potential future colliders is given in Table 4.1.
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4.3.2 Flavour-Violating Meson Decays

Some of the most sensitive probes of axions or ALPs in the mass range ma = 1−100

MeV are meson decays like K± → π±a [110, 114, 189]. These decays are however

forbidden for the axion-Higgs portal as they violate the Z2 symmetry. Instead,

axions interacting through the axion-Higgs portal are pair-produced in meson decays,

such as K± → π±aa induced by so-called penguin diagrams like the second diagram

in Figure 4.1. The 3-body phase space leads to a strong suppression of the decay

rate

Γ(K± → π±aa) =
m9
K

±

3 · 213π3
c2
ah

f 4
c2
ds

m4
h

F3

(
m2
a

m2
K

±
,
m2
π

±

m2
K

±

)
, (4.3.3)

where m
K

± and m
π

± are the charged kaon and pion masses respectively, and cds the

flavour-violating coupling given in (4.2.8). Similar expressions hold for analogous

3-body decays of B mesons. In (4.3.3) we defined the phase space function

F3(a, b) = 24(1 − b)2
∫ (1−

√
b)2

4a
dx (x− 2a)2√x− 4a

√√√√(1 − b− x

2
√
x

)2

− b . (4.3.4)

with useful limiting forms

F3(a, 0) =
√

1 − 4a
(
1 − 10a+ 42a2 + 12a3

)
− 48a3 (2 − a) arctanh

√
1 − 4a ,

(4.3.5a)

F3(0, b) = (1 − b)2
[(

1 − b2
) (

1 + 28b+ b2
)

+ 12b
(
1 + 3b+ b2

)
log b

]
. (4.3.5b)

In addition to 3-body decays, the axion-Higgs portal predicts flavour-violating de-

cays of neutral mesons to invisible final states. Similar to invisible Higgs decays,

it is experimentally very challenging to constrain invisible meson decays unless the

meson recoils against SM particles. In B factories, the invisible decay of B0 mesons

can be observed through e+e− → Υ → B0B̄0 with a subsequent invisible B0 decay

by tagging the second B0 meson [190]. The decay rate reads

Γ(B0 → aa) =
m7
B

0

128π
c2
ah

f 4
c2
bdf

2
B

0

m4
h

(
1 − 2m2

a

m2
B

0

)2
√√√√1 − 4m2

a

m2
B

0
, (4.3.6)

wherem
B

0 is the B0 meson mass, cbd a flavour-violating coupling obtained via (4.2.8),
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Decay mode upper bound cah/f
2[GeV−2] csh ref

BR(K± → π± + inv.) 4.8 × 10−11 1.15 × 101 3.4 × 10−1 [192,193]
BR(B± → K± + inv.) 1.6 × 10−5 6.0 × 10−2 2.9 × 10−1 [194]
BR(B± → π± + inv.) 1.4 × 10−5 2.3 × 10−1 1.3 [195]
BR(B0 → inv.) 2.4 × 10−5 2.0 × 10−1 2.7 [190]
R(Υ → γ + inv) 1.5 × 10−4 9.5 × 10−1 1.7 × 101 [196]

Table 4.2: Current experimental bounds on meson decays into final
states with invisible particles, with corresponding max-
imal constraints on the axion-Higgs cah/f 2 and scalar
Higgs csh portals couplings.

and f
B

0 = 190.5 MeV [191] is the neutral B meson decay constant.

Similarly, we find, for the scalar Higgs portal, the decay rates

Γ(K± → π±ss) =
m5
K

±

210π3
c2
shc

2
ds

m4
h

G3

(
m2
s

m2
K

±
,
m2
π

±

m2
K

±

)
, (4.3.7)

Γ(B0 → ss) =
m3
B

0

32π
c2
shc

2
bdf

2
B

0

m4
h

√√√√1 − 4 m2
s

m2
B

0
, (4.3.8)

where the phase space function G3 is defined as

G3(a, b) = 4(1 − b)2
∫ (1−

√
b)2

4a
dx

√
x− 4a

√√√√(1 − b− x

2
√
x

)2

− b (4.3.9)

and has limiting forms

G3(a, 0) =
√

1 − 4a (1 + 2a) − 8a (1 − a) arctanh
√

1 − 4a , (4.3.10a)

G3(0, b) = (1 − b)2
(
1 − b2 + 2b log b

)
. (4.3.10b)

Current experimental bounds for the K± → π±+ inv., B± → K±+ inv., B± → π±+

inv., and B0 → inv. decays, as well as the corresponding bounds on the parameters

cah/f
2 and csh are calculated using meson masses and lifetimes found in [6] and

given in Table 4.2.

4.3.3 Radiative Vector Meson Decays

The axion-Higgs portal mediates the flavour-conserving vector meson decays V →

γaa via diagrams like the third one in Figure 4.1. These decays avoid loop suppres-
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sion and are proportional to the flavour diagonal couplings (4.2.7), which can be

many orders of magnitude larger compared to the flavour violating couplings (4.2.8).

In line with the Wilczek equation [197], we use the ratio of decay widths

R(V → γaa) ≡ Γ(V → γaa)
Γ(V → e+e−)

= 1
3 · 210π3α

c2
ah

f 4
m8
V

m4
h

F3

(
m2
a

m2
V

, 0
) [

1 − 4αs
3π

aH(z)
]
,

(4.3.11)

not including contributions suppressed by terms of order O(cγ), for the axion-Higgs

portal, and

R(V → γss) = 1
27π3α

c2
shm

4
V

m4
h

G3

(
m2
s

m2
V

, 0
) [

1 − 4αs
3π

aH(z)
]

(4.3.12)

for the scalar Higgs portal. We use the Next-to-Leading Order (NLO) corrections

aH(z) where z = 1 − 4m2
a/m

2
V as given in [198] such that aH(1) ≈ 10 for ma = 0

and aH(z) ∝ z−1/2 in the limit ma → mV /2. The strongest constraints are currently

set by BESIII [199] for J/ψ decays and Belle [196] for Υ(1S) decays, the latter of

which is also shown in Table 4.2.

4.3.4 Constraints from Spectroscopy

We can also study the effect of the fifth force induced by the exchange of pairs of

axions as shown in the last diagram of Figure 4.1 on atomic or molecular systems.

The interaction through the axion-Higgs portal is strongly suppressed by the two

effective vertices in (4.2.9) proportional to the inverse Higgs mass squared as well as

to the small Higgs Yukawa couplings to stable SM particles. Following the method

outlined in Section 3.1.2, we derive the IP between a nucleon N and an electron e

mediated by a pair of axions,

Vah(r) = − 15
8π3

c2
ah

f 4
cNmNme

m4
h

1
r7

×
[ 1
15

(mar)5K1(2mar) + 2
5

(mar)4K2(2mar) + (mar)3K3(2mar)
]
, (4.3.13)

in agreement with existing literature [124,125,127,138]. We note that, for low axion

masses, this potential scales as r−7, in contrast to the IP that we derived in Section
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Figure 4.2: Constraints and projections from Higgs and flavour-
violating meson decays and bounds from supernova en-
ergy loss for the axion-Higgs portal. For the parameter
space above the black solid line, the approximate shift
symmetry is not a good assumption any more. The su-
pernova bound is taken from [200].

3.2 for an ALP coupling linearly via dimension-5 operators, which scales as r−5. This

harsher scaling can be understood as the result of the momentum suppression caused

by the derivatives enforcing the shift symmetry in (4.1.2). The IP corresponding to

the scalar Higgs portal (4.1.3) takes a form similar to the quadratic scalar potential

(3.2.21) and is given by,

Vsh(r) = − 1
16π3 c

2
sh

cNmNme

m4
h

1
r3 [2msrK1(2msr)] , (4.3.14)

which “only” scales as r−3.

Spectroscopic experiments measure atomic or molecular energy transitions with ex-

tremely high-precision, and have been proposed as probes of new physics, via the

measurement of the change of fundamental constants over time [154], or via fifth

force interactions [201]. For the latter, at first order in perturbation theory, the shift

in the energy of the nℓj state of a hydrogen-like atom is given by the expectation
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Figure 4.3: Constraints and projections from Higgs and flavour-
violating meson decays and bounds from supernova en-
ergy loss for the scalar Higgs portal. The region above
the black line violates perturbativity. The supernova
bound is taken from [200].

value of the corresponding potential with respect to the electronic wavefunction,

∆Enℓj = ⟨ψnℓj |V (r)|ψnℓj⟩ =
∫

d3r |ψnℓj(r)|2V (r) (4.3.15)

where ψnℓj(r) is the hydrogen Schrödinger wavefunction. [202] For a spherically

symmetric potential, V (r) = V (r), only the radial component of the wavefunction

will enter the calculation; the calculated energy shifts will therefore only depend on

the principal and orbital angular momentum quantum numbers n and ℓ.

Using hydrogen-like atoms (or just hydrogen) has the benefit that the theoretical

corrections to the wavefunction of a given state are known with extremely high pre-

cision [203,204] allowing strong constraints when considering discrepancies between

these predictions and measurements. Errors stemming from uncertainties in fun-

damental constants, notably the difficulty of measuring the Rydberg constant R∞

without using transition frequencies, can be minimised by considering ratios of two

different atomic transitions; the strongest constraint is currently found by comparing
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the (2s1/2 ↔ 8d5/2) and (1s1/2 ↔ 3s1/2) transition frequencies [205], and reads

E2s1/2
− E8d5/2

E1s1/2
− E3s1/2

∣∣∣∣∣∣
exp

−
E2s1/2

− E8d5/2

E1s1/2
− E3s1/2

∣∣∣∣∣∣
SM

< (−0.5 ± 3.1) × 10−12 , (4.3.16)

where the experimental values are taken from [204] and the theoretical SM predic-

tions have been calculated using corrections in [203].

The computation of the energy shifts using (4.3.15) is however not straightforward in

some cases. The hydrogen electronic wavefunction can be written as a polynomial in

r multiplied by an exponential, and at lowest order in r, it scales as ψnℓj(r) ∼ rℓe−r/2.

Therefore, evaluating the integral (4.3.15) for a potential scaling as r−p yields terms

of the form ∫ ∞

0
r2dr

(
rℓe−r/2

)2
r−p = Γ (3 + 2ℓ− p) , (4.3.17)

which is divergent when the argument of the gamma function is non-positive. In

other words, in the case of the axion-Higgs IP (4.3.13), which scales as r−7, the

calculated energy shifts will be divergent for ℓ ≤ 2 which includes all three states

considered in (4.3.16).

This divergence can reasonably be expected to be non-physical and ought to be

caused by the breakdown of the effective IP at short distances/high momenta. In the

case of an atom, the first effect we expect to change the form of the momentum is the

treatment of the nucleus as an extended object at r ≲ rN ; while more generally, the

effective interaction will become invalid at r ≲ 1/f and the low-distance behaviour

of the potential will be dictated by higher-order operators in the UV completion.

For example, when computing the neutrino IP in Section 3.1.3, considering the weak

theory with extended weak boson propagators instead of the four-fermion interaction

(3.1.16) yields an IP scaling as V ∼ 1/r in the short-distance limit r ≲ 1/mZ [206].

Nevertheless, we can regulate these divergences by introducing a cutoff scale rC on

the integral over r following [125, 127, 207]. Using a reference cutoff scale to be the

proton radius rp = 0.84 fm [204], (4.3.16) translates into a maximal bound on the
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axion coupling at 1σ,
cah
f 2 < 4 × 106

(
rC
rp

)2

GeV−2 , (4.3.18)

for ma ≪ 1/rp ≈ 0.2 GeV, dropping sharply as ma approaches 1/rp. We note that

this result strongly depends on the cutoff scale chosen and is therefore not as robust

a constraint as the bounds from Higgs and meson decays shown in Figure 4.2. In

the case of scalar Higgs portal, the r−3 scaling of (4.3.14) yields an approximately

logarithmic dependence on the cutoff scale chosen.

A solution to eliminate the divergences and cutoff dependency of the spectroscopic

bounds is to consider higher-ℓ states of hydrogen, with ℓ at least 3. Theoretical values

can be obtained using [203,208,209], and measurements for the 4f5/2, 4f7/2 and 5f7/2

states can be found in [210]. Considering the (4f7/2 ↔ 4f5/2) and (5f7/2 ↔ 4f7/2)

transitions we find

(E4f7/2
− E4f5/2

)/h
(E5f7/2

− E4f7/2
)/h

∣∣∣∣∣
exp−SM

= (−0.9 ± 2.1) × 10−8 . (4.3.19)

Our simple calculation for energy shifts (4.3.15) uses Schrödinger wavefunctions

which do not depend on the total angular momentum quantum number j, therefore

we need states with at least three distinct n or ℓ numbers to obtain a non-zero shift.

Instead, we could use Dirac radial wavefunctions of hydrogen which are functions

of n, ℓ and j in the computation of the axion-induced energy shift. [211] However,

this causes some issues. First, the energy shifts of two states from a transition

(nℓj1 ↔ nℓj2) are very close, leading to worse constraints than a transition between

states with different n or ℓ. Then, the Dirac wavefunction of a state nℓj=ℓ− 1
2

actually

scales in r like the Schrödinger wavefunction of the state n(ℓ−1)j. In other words, the

energy shift for the 4f5/2 state used in (4.3.19) will still be divergent, and we would

actually need to go to ℓ = 4 states to obtain non-divergent energy shifts, leading to

even weaker constraints. To nevertheless obtain an estimate of the bounds for these

high-ℓ states, we suppose that a fictitious measurement of the 6f7/2 state has been

made with an agreement between experiment and the SM similar to that in (4.3.19)
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such that
(E5f7/2

− E6f7/2
)/h

(E4f7/2
− E6f7/2

)/h

∣∣∣∣∣
exp−SM

= (−0.9 ± 2.1) × 10−8 . (4.3.20)

The bounds corresponding to this estimate are shown in Figure 4.4.

Molecular spectroscopy can yield stronger constraints at short distances, in particu-

lar for systems in which an electron is replaced by a muon whose wavefunction has

a larger overlap with the nucleus. It can also offer measurements precise enough to

derive bounds on the model. Various systems are considered in [125, 127] with the

strongest bound resulting from the binding energy of the (ν = 1, J = 0) state of the

muonic molecular deuterium ion ddµ+ giving

cah
f 2 < 4.4 × 108

(
rC
rd

)2

GeV−2 , (4.3.21)

for a cutoff set at the deuterium radius rd = 2.1 fm [204] and assuming cd ≈ cp for

the deuterium-Higgs coupling. This result is however also strongly dependent on

the cutoff scale chosen, as the full integral is divergent for this system [125].

We contrast these constraints with the corresponding results for the Higgs portal

scalar. The main difference between the two models is that for interactions induced

by the axion-Higgs portal, the bounds obtained from high-ℓ transitions are consid-

erably weaker compared to transitions at low ℓ, whereas the difference is not as

extreme in the case of the scalar Higgs portal. This is due to the different scaling of

the potentials (4.3.13) and (4.3.14) with r. We also mention the strongest molecu-

lar spectroscopy bounds from [125,127] from the antiprotonic helium molecular ion

p̄He+

csh < 8.4 × 104 , (4.3.22)

for ms < 104 eV, and from the ddµ+ ion with

csh < 2.2 × 105 , (4.3.23)

for ms < 105 eV. We note that for the axion-Higgs portal model, the shift-symmetry

breaking operator m
2
a

f
2 a

2Φ†Φ always generates the potential (4.3.14) with csh =
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Figure 4.4: Bounds on the axion coupling and scale obtained from
spectroscopic data for the axion-Higgs portal. The
red bound is obtained from low-ℓ hydrogen states with
a cutoff rC = rp, in blue are the cutoff-independent
bounds obtained from ℓ = 3 hydrogen f -states, and in
green that obtained from molecular spectroscopy of the
ddµ+ ion. The dashed lines show the scale dependence
of the bounds on the chosen cutoffs with rC = 2rp, rp/2
and rC = 2rd, rd/2 for the hydrogen and ddµ+ states
respectively. Most of the parameter space is excluded
by shift-symmetry breaking operators with ma ≳ f as
shown by the black line.

m2
a/f

2. The bounds on cah/f
2 in Figure 4.4 are so weak that for some values of

ma, stronger constraints on f could be extracted from the bounds on csh itself.

4.3.5 Discussion

The different constraints discussed in this section are shown in the ma − cah/f
2

plane in Figure 4.2, including supernova bounds from [200]. Given the hierarchy

in precision between the constraints, one would expect that low-energy experiments

give stronger bounds for sufficiently small axion masses. However, due to the power-

ful double suppression by the axion derivative couplings and the factor 1/m2
h in
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the effective couplings, invisible Higgs boson decays result in the strongest bound

cah/f
2 ≲ 10−6 GeV−2 for the axion mass range where the decay is allowed. This

bound is considerably stronger than bounds from searches for pair-produced axions

in flavour violating or flavour conserving meson decays, as well as the bound from

supernova energy loss discussed in [200]. We also note that the strength of the con-

straints from the meson decays correspond to an energy scale f ≲ 10 GeV ≈ mB,Υ

for a coupling cah ≈ 1, and one must be careful before taking these bounds at face

value. In order for the effective approach to remain valid, we can drive the value of

f by requiring a large coupling cah ≫ 1. The constraints from atomic spectroscopy

are so weak that they do not show up in Figure 4.2; a dedicated plot is shown in Fig-

ure 4.4. Note that for some of the values for cah/f 2 in Figure 4.2 and Figure 4.4 the

bounds shown are only qualitative because the effective theory approach is not justi-

fied there. The parameter space shown in gray in Figure 4.2 is excluded because the

axion mass is larger than the decay constant and the assumption of an approximate

shift symmetry is not justified. Axions with masses ma ≥ mh/2 can only be pro-

duced in off-shell, invisible decays of the Higgs boson, which provide a significantly

weaker bound [212–214]. For comparison, we show the constraints on a scalar Higgs

portal with a stable scalar in Figure 4.3. Here the strongest constraint for masses

ms ≳ 50 MeV is set by the bound on invisible Higgs decays, but for smaller scalar

masses the constraint from supernova energy loss is stronger. These results are in

stark contrast to axions with an approximate shift symmetry and linear couplings

to Standard Model particles, for which flavour constraints are substantially stronger

than the constraint from invisible Higgs decays [114].

4.4 Summary

In this chapter, we have introduced the axion-Higgs portal as the leading effective

operator describing interactions between SM particles and axions or ALPs respecting

the shift symmetry as well as a Z2 symmetry. We established some of the theoretical
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properties of this effective operator. Namely its couplings to d.o.f. present at different

energy levels, such as quarks, gauge bosons, and nucleons. We also showed that

the axion-Higgs portal is unsuitable to solve the strong CP problem via the PQ

mechanism, and therefore cannot be classified as a QCD axion.

In the absence of any additional interaction, the Z2 symmetry ensures that the axion

is stable and can only be produced in pairs. As a result, we found that very precise

measurements such as searches for fifth forces do not result in relevant bounds, as

the potential induced by the exchange of axion pairs scales as V (r) ∼ r−7 as a

consequence of the derivative axion interaction in the axion-Higgs portal. Similarly,

we showed that the production of axions in the decays of pseudoscalar mesons such

as K± → π±aa and B0 → aa, and vector mesons V → γaa are suppressed by

powers of the meson mass over the UV scale f . Bounds on the UV scale from

atomic spectroscopy and meson decays are therefore substantially weaker compared

to the bounds from searches for invisible Higgs decays. Invisible Higgs decays provide

the strongest constraint on the axion-Higgs portal independent of the axion mass,

including astrophysical constraints from supernova cooling.





Chapter 5

The Dark Stodolsky Effect

5.1 Motivation

Recalling the discussion in Section 2.3, we justified the existence of DM through

gravitational interactions, leaving the details of its interactions with the SM unclear

and unconstrained. We considered some of the properties of a specific class of DM

candidates, QCD axions and ALPs, in the previous chapters; the methods used are

however not straightforwardly applicable to other candidates as they rely on model

specific properties. Instead, we use the framework of EFTs, which have already

proven to be an incredibly powerful tool to constrain DM in a model-independent

way [215–218]; by making use of the symmetries of the interaction Lagrangian, EFTs

reduce the landscape of underlying theories to a finite number of permitted operators.

These operators are typically classified by the spin of the DM particle, along with

their mass dimension and coupling to the SM, which can then be constrained and

mapped onto the candidate DM theory on a case-by-case basis.

In this chapter, we propose two experiments to observe a spin-dependent energy

shift induced by a DM background, which is more commonly known as the Stodolsky

effect [219]. As we will see in the following section, the Stodolsky effect has several

features which make it a promising avenue for DM detection. First, unlike scattering,

the magnitude of the energy shift depends on the DM-SM coupling linearly rather
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than quadratically, leading to an effect which is less suppressed by small coupling

constants. Second, while many detection techniques depend heavily on the mass

of the DM particle under consideration, the Stodolsky effect depends primarily on

the velocity of the background particle. For neutrinos, this leads to an energy shift

that is largely independent of the neutrino mass [220], which if also true for dark

matter would allow us to probe a wide region of parameter space. On the contrary,

the Stodolsky effect for neutrinos requires either a neutrino-antineutrino or left-right

helicity asymmetry in the background, the former of which is expected to be absent

in the standard Cosmic Neutrino Background (CνB) scenario [221]. As we will

see, analogous requirements persist for DM backgrounds, potentially restricting the

range of models that can give rise to the Stodolsky effect. Even so, both chiral and

asymmetric [222] models of DM exist, which, alongside models with finite chemical

potentials, generate an asymmetry during DM production. We additionally note

that there are several mechanisms, such as finite chemical potentials, DM reflection

at the surface of the Earth [223], or gravitational potentials [224], through which

either asymmetry may develop post-production.

In Section 5.2 we review the Stodolsky effect for neutrinos and introduce the general

formalism that will be used throughout this chapter. Following this, in Section 5.3

we compute the magnitude of the Stodolsky effect for all effective DM operators

ranging from spin-0 to spin-3
2 , up to dimension-6. Finally, we will discuss the ex-

perimental signatures of the Stodolsky effect and the feasibility of this technique for

DM detection in Section 5.4.

5.2 The Stodolsky Effect

We begin by reviewing the Stodolsky effect for the CνB, which has been discussed

in several previous works [219, 220, 225, 226]. This will closely follow the formal-

ism of [220], with the exception that we more carefully treat the external states as

partially localised wavepackets, rather than eigenstates of definite momentum. Ad-
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ditionally, we assume that the neutrinos are monochromatic in the CνB reference

frame, which is a good approximation when their momentum distribution is narrow.

Working in the mass basis and starting from the neutrino interaction term (3.1.16),

the effective low-energy Hamiltonian density for neutrino-electron interactions is

Hint(x) = GF√
2
∑
i,j

ν̄iγµ
(
1 − γ5

)
νj ēγ

µ
(
gVij − gAijγ

5
)
e , (5.2.1)

where GF is the Fermi constant, gVij and gAij are the effective electron vector and

axial couplings defined in (3.1.18), and i, j ∈ {1, 2, 3} denote the neutrino mass

eigenstates. To leading order in Hint, the energy shift of the electron helicity state

he is given by

∆Ee(pe, he) =
∑
ν,i,hν

∑
Nν

〈
ehe , νi,hν

∣∣∣∣∫ d3x Hint(x)
∣∣∣∣ ehe , νi,hν

〉
, (5.2.2)

where he and hν denote the electron and neutrino helicities respectively, and ∑
ν

is a sum over neutrinos and antineutrinos. Similarly, ∑Nν
is a sum over all neutri-

nos in the background with the d.o.f. specified by the preceding sum. The fermi-

onic external states are incoherent superpositions of momentum eigenstates, defined

by [117,118,227]

|ψh⟩ ≡ |ψ(p, x, h)⟩ =
∫ d3q

(2π)3
1√
2Eq

ωψ(p, q)e−iq·x |{q, h}⟩ , (5.2.3)

with ψ ∈ {e, ν}, where Eq is the energy of the momentum eigenstate with momentum

q, and ωψ is a wavepacket function centred on the momentum p. The wavepacket

states are normalised to unity, which also sets the normalisation of ωψ,

∫ d3q

(2π)3 |ωψ(p, q)|2 = 1 . (5.2.4)

For the momentum eigenstates, we use the relativistic normalisation

|{p, h}⟩ =
√

2Ep a†
ψ(p, h)|0⟩ , (5.2.5)

where a†
ψ(p, h) is the particle creation operator for species ψ with momentum and

helicity p and h respectively, while its Hermitian conjugate is the corresponding
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annihilation operator. We denote the antiparticle creation and annihilation operat-

ors with b†
ψ and bψ, respectively. These operators all satisfy the anticommutation

relations

{
ai(p, h), a†

j(q, h′)
}

=
{
bi(p, h), b†

j(q, h′)
}

= (2π)3δ(3)(p − q)δijδhh′ , (5.2.6)

with all other anticommutators equal to zero. Finally, the fermion field operators

are decomposed as

ψ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
h

(
aψ(p, h)uψ(p, h)e−ip·x + b†

ψ(p, h)vψ(p, h)eip·x
)
, (5.2.7a)

ψ̄(x) =
∫ d3p

(2π)3
1√
2Ep

∑
h

(
a†
ψ(p, h)ūψ(p, h)eip·x + bψ(p, h)v̄ψ(p, h)e−ip·x

)
, (5.2.7b)

for Dirac fermions, where uψ and vψ are positive and negative frequency Dirac

spinors respectively. The corresponding field decompositions for Majorana fermions

are found by setting bψ = aψ in (5.2.7). Expanding out (5.2.2), we find1

∆Ee(pe, he)
∣∣∣
xe,xν

=
∑
ν,i,hν

∑
Nν

∫
d3x dΠ ωe(pe, qe)ω∗

e(pe, q′
e)e−i(qe−q

′
e)·xe

× ων(pν , qν)ω∗
ν(pν , q′

ν)e−i(qν−q
′
ν)·xν

×
〈{
q′
e, he

}
,
{
q′
ν , hν

}∣∣∣Hint(x) |{qν , hν} , {qe, he}⟩ , (5.2.8)

where we have introduced the shorthand

dΠ = d3qe
(2π)3

d3q′
e

(2π)3
d3qν
(2π)3

d3q′
ν

(2π)3
1√

2Eqe

1√
2Eq′

e

1√
2Eqν

1√
2Eq′

ν

. (5.2.9)

In line with [117,227], we now average ∆Ee over the regions in which the wavepackets

are localised, i.e. we take

∆Ee(pe, he)
∣∣∣
xe,xν

→ 1
V 2

∫
d3xe d3xν ∆Ee(pe, he)

∣∣∣
xe,xν

, (5.2.10)

1For notational clarity, we suppress the neutrino indices i in equations from now on, qνi
→ qν

and so on.
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which allows us to eliminate two of the momentum integrals, giving

∆Ee(pe, he) =
∑
ν,i,hν

∑
Nν

1
4V 2

∫
d3x

d3qe
(2π)3Ee

d3qν
(2π)3Eν

|ωe(pe, qe)|2|ων(pν , qν)|2⟨Hint⟩ ,

(5.2.11)

with the dimensionless quantity

⟨Hint⟩ = ⟨{qe, he} , {qν , hν}| Hint(x) |{qν , hν} , {qe, he}⟩ . (5.2.12)

Recalling the normalisation of the wavepacket function ω allows us to identify

|ω(p, q)|2/V as the phase space density for a single particle. The sum over all

particles in the background can therefore be used to replace the wavepacket func-

tions with momentum distribution functions

∑
Nν

|ων(pν , qν)|2

V
= nν(νi,hν )fν(qν)

|ωe(pe, qe)|2

V
= 1
V

(2π)3δ(3)(pe − qe) , (5.2.13)

where nν(νi,hν ) is the number density of background neutrino eigenstate i with heli-

city hν . Finally, after noting that nothing in ⟨Hint⟩ depends on position and consid-

ering an electron at rest in the lab frame, we find

∆Ee(0, he) = 1
4me

∑
ν,i,hν

nν(νi,hν )
∫ d3qν

(2π)3fν(qν)
1
Eν

⟨Hint⟩||pe|=0

≡ 1
4me

∑
ν,i,hν

nν(νi,hν )
〈

1
Eν

⟨Hint⟩
〉
, (5.2.14)

where me is the electron mass and the outermost angled brackets denote an averaged

quantity, which must be done in order to account for the motion of the Earth relative

to the CνB reference frame. The averaging procedure differs slightly between the

CνB and DM, as we do not know the velocity of the former. We therefore use the

flux averages method from [220] for the CνB, while those for DM are discussed in

Appendix C.

Expanding out the external states with (5.2.5), applying the appropriate anticom-

mutation relations (5.2.6) and taking the traces of Dirac spinor chains yields [220]

⟨Hint⟩ = 2
√

2GFg
A
iimehe [mνhν(Se · Sν) − (Se · pν)] + f(gVii ) , (5.2.15)
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where h = ±1 denotes the particle spin eigenvalue, mνi
denotes the neutrino mass

and f(Vii) contains terms that do not depend on the electron spin, which will not

contribute to the Stodolsky effect. Note that (5.2.15) takes the opposite sign for

external antineutrino states, while for external Majorana neutrino states the expect-

ation value is twice as large. For a massive particle with four-spin Sµrest = (0, s) in

its rest frame, its four-spin in the reference frame where it has momentum p is found

by boosting Sµrest into this frame and reads

Sµ =
(

p · s

m
, s + p · s

m(E +m)
p

)
. (5.2.16)

By inspection, we see that Sµ satisfies S2 = −|s|2 and p · S = 0. If we restrict our

discussion to helicity eigenstates then s will be directed along p, such that (5.2.16)

reduces to

Sµ =
(

|p|
m
,
E

m

p

|p|

)
, (5.2.17)

and we instead identify h = ±1 with the particle helicity.2 Naturally, we cannot

use (5.2.17) for a particle at rest.

The energy splitting between the two electron spin states is then found by taking

the difference between the energy shifts for each spin state, which after performing

the flux averaging on (5.2.15) gives

∆ED
e =

√
2GF

3
|β⊕|

∑
i

Aii

[
2
∑
sν

(
2 − |βν |2

) (
nν(νDi,sν ) − nν(ν̄Di,sν

)

+ 1
|βν |

(
3 − |βν |2

) (
nν(νDi,L) − nν(νDi,R) + nν(ν̄Di,R) − nν(ν̄Di,L)

) ]
, (5.2.18)

for a Dirac neutrino background, where the subscripts L and R denote left and

right helicity neutrinos respectively, with R/L corresponding to hν = ±1 (∓1) for

(anti)neutrinos. Additionally, β⊕ is the relative velocity between the Earth and CνB

reference frame, which may be time-dependent, and βν is the lab frame neutrino

velocity. For completeness, we note that while the term scaling as |βν |−1 appears

divergent, it in fact tends to zero as |βν | → 0 as a consequence of a vanishing

2For simplicity, we will only consider helicity eigenstates for the remainder of this discussion.
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helicity asymmetry for slow neutrinos.3 Similarly, we find for a Majorana neutrino

background

∆EM
e = 2

√
2GF

3
|β⊕|

∑
i

Aii
|βν |

(
3 − |βν |2

) (
nν(νMi,L) − nν(νMi,R)

)
. (5.2.19)

We immediately see that the Stodolsky effect for neutrinos requires either a non-

zero neutrino-antineutrino or helicity asymmetry, but depends only on the neutrino

velocity and scales linearly with GF . These features, if present in an analogue effect

for DM, would allow an experiment utilising the Stodolsky effect to probe a vast

region of DM parameter space, as the effect is less suppressed than scattering in

weakly coupled regions, whilst only depending on the dark matter velocity, |βDM| ≃

1.2 × 10−3 [57], independent of the DM mass.

We are now ready to move onto the Stodolsky effect for DM, henceforth referred to as

the Dark Stodolsky Effect (DSE) to distinguish it from the effect for neutrinos, which

we will explicitly call the Neutrino Stodolsky Effect (νSE). By analogy with (5.2.2),

the energy shift of a SM fermion ψ at rest in a DM background will be given by

∆Eψ(0, hψ) = 1
4mψ

∑
d.o.f.

nDM

〈
1

EDM
⟨Hint⟩

〉
, (5.2.20)

where the sum runs over all the DM degrees of freedom. For the remainder of this

chapter we will focus on the object appearing inside the angled brackets, which

will typically be some kinematic structure depending on the effective DM operator

under consideration. When evaluating these expectation values we will only keep the

terms that depend on Sψ, as no other terms will contribute to the DSE. The energy

splitting of the two SM fermion spin states can then found by starting with (5.2.20),

and then taking the difference in the energy shifts for the two spin states. This will

typically enter as an overall factor of two.

3The apparent divergence is an artefact of the frame transformation, and is discussed in Section
5.2 and Appendix B of [220].
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5.3 Effective Dark Matter Operators

We now turn our attention to the landscape of effective DM operators that can give

rise to the DSE. For the remainder of this work, we will consider an effective DM

Lagrangian of the form

LDM = LSM + Lkin + Lint, (5.3.1)

where LSM is the complete SM Lagrangian, Lkin contains the kinetic and mass terms

for the DM field, and Lint contains effective SM-DM interaction operators. This will

take the form

Lint = − gψχ

Λd−4 Oµν...
DM OSM

µν... , (5.3.2)

where gψχ denotes the coupling between the SM fermion and DM field, Λ is the new

physics scale, and d is the combined mass dimension of the SM and DM effective

operators, OSM and ODM respectively. We will only work with Lagrangians that are

Lorentz invariant, Hermitian, invariant under the SM gauge group and irreducible

by the equations of motion. By inspection of the expectation value, we immediately

see that in order for an operator to contribute to the DSE it must contain at least

two copies of the field operator corresponding to each external field. For bosonic

DM, this gives a minimum combined mass dimension for OSM and ODM of d = 5,

while for fermionic DM, the minimum mass dimension is d = 6. As such, we include

all effective DM operators up to d = 6; we however do not consider DM operators

with d > 6, which become increasingly suppressed by the new physics scale Λ with

increasing d.

For an operator OSM ∼ ψ̄Γµν...ψ, where Γµν... is an arbitrary Dirac matrix structure,

after expanding out the field operators and external states, and applying the ap-

propriate (anti)commutation relations, we find the general form for the expectation

value containing a trace over the SM fermion Dirac structure

⟨Hint⟩ = gψχ

Λd−4P
µν...
DM · Tr

[
uψūψΓµν...

]
, (5.3.3)

where PDM contains details of the DM kinematics, and may itself contain Dirac
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traces, and we have used the shorthand uψ ≡ uψ(pψ, sψ) for the Dirac spinors. The

trace can be simplified in a basis independent way be making use of the identities

u(p, h)ū(p, h′) = 1
2

(/p+m)(1 + hγ5/S)δhh′ , (5.3.4a)

v(p, h)v̄(p, h′) = 1
2

(/p−m)(1 + hγ5/S)δhh′ . (5.3.4b)

There are a total of five independent gamma matrix structures that can be included

in the fermion trace

1, γ5, γµ, γµγ5, σµν , (5.3.5)

with σµν = i
2 [γµ, γν ]. Of these, only some will give rise to expectation values that

depend on the SM fermion spin, and the remainder can be neglected. Explicitly, we

find

Tr
[
uψūψ

]
= 2mψ (5.3.6a)

Tr
[
uψūψγ

5
]

= −2hψpψ · Sψ = 0 (5.3.6b)

Tr
[
uψūψγ

µ
]

= 2pµψ (5.3.6c)

Tr
[
uψūψγ

µγ5
]

= 2mψhψS
µ
ψ (5.3.6d)

Tr
[
uψūψσ

µν
]

= −2hψεαβµνpψαSψβ (5.3.6e)

where εαβµν is the Levi-Civita tensor, such that of the five independent gamma mat-

rix structures appearing in (5.3.5), we only need to consider γµγ5 and σµν . Therefore,

excluding field indices, we realise that the Lorentz structures that can enter into ef-

fective DM operators are the ones already given in (5.3.5), along with the partial

derivative ∂µ, and the Levi-Civita tensor εαβµν mentioned earlier. Considering op-

erators up to dimension-6 with a fermionic SM part, we can have at most a single

derivative entering. As such, for spin-0 and spin-1
2 DM candidates, the only way

that the Levi-Civita tensor can enter a Lagrangian is through operators that con-

tain at least three gamma matrices; which can then be reduced to simpler Lorentz

structures via the Chisholm identity,

γαγβγµ = gαβγµ + gβµγα − gαµγβ − iεσαβµγσγ
5 , (5.3.7)
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where gµν is the metric tensor. Including the Levi-Civita tensor in the list of Lorentz

structures we can use in the OSM part of the operators, we find that there exists

an additional Lorentz invariant structure that we need to consider which includes

contractions of a Levi-Civita tensor and a sigma tensor σµν , which will clearly depend

on Sψ. Using the Chisholm identity (5.3.7) we can derive the identity

εαβµνσ
µν = −2iσαβγ5 (5.3.8)

which allows us to rewrite this new operator in terms of γ5 as

εαβµνP
αβ
DMūψσ

µνuψ = −2iP µν
DMūψσµνγ

5uψ , (5.3.9)

and so we will consider the structure ψ̄σµνγ5ψ as an additional “independent” oper-

ator throughout, with

Tr
[
uψūψσ

µνγ5
]

= 2ihψ
(
pµψS

ν
ψ − Sµψp

ν
ψ

)
. (5.3.10)

Many operators containing derivatives can be reduced using conserved currents, and

through integration by parts. Take, for example, the scalar operator

(
∂µ|ϕ|2

)
ψ̄γµγ5ψ = ∂µ

[
|ϕ|2ψ̄γµγ5ψ

]
− |ϕ|2∂µ

(
ψ̄γµγ5ψ

)
. (5.3.11)

The first term on the right-hand side is a total derivative and so will not contribute

to the classical action, while the second term contains the derivative of the axial

current which can be re-expressed as 2imψ|ϕ|2ψ̄γ5ψ using the equations of motion

for spin-1
2 fields. We can therefore perform the operator reduction

(
∂µ|ϕ|2

)
ψ̄γµγ5ψ ⇝ |ϕ|2ψ̄γ5ψ, (5.3.12)

which as per (5.3.6) does not contribute to the DSE. Note that similar structures

containing vector currents vanish from the requirement ∂µ(ψ̄γµψ) = 0. Further

reductions in the effective operator basis can be obtained using equations of motion

for the relevant field.
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Finally, we note that there are several operator combinations, e.g.

ODMOSM = |ϕ|2ψ̄γ5ψ = |ϕ|2ψ̄LψR + ... , (5.3.13)

containing some complex scalar DM field ϕ, that couple left to right-chiral SM

fermions and appear to be dimension-5. However, in order for the SM component

to be gauge invariant under SU(2)L, we require an additional insertion of the SM

fermion mass. As a result, if Λ ≫ mψ, the operator will effectively scale as one of

dimension-6. However, as we do not specify the new physics scale, we will treat such

operators as dimension-5 throughout. By extension, we will define the dimension

of any operator considered in the remainder of this work as the sum of the mass

dimensions of its field content and the number of derivatives.

The operator bases used throughout this chapter are those in which the equations

of motion have been applied maximally. This avoids the need to apply Hamilton’s

equations to the Hamiltonian when computing the energy shifts, which is a far more

involved task than using the Euler-Lagrange equations. For completeness, we also

specify the spin-independent members of our operator bases: at spin-0, these are

|ϕ|2ψ̄ψ, i|ϕ|2ψ̄γ5ψ, and i(ϕ† ↔
∂µϕ)(ψ̄γµψ); for spin-1 DM, we have |X|2ψ̄ψ, i|X|2ψ̄γ5ψ,

along with the vector current analogues of each axial-vector operator appearing in

Table 5.2, made Hermitian with appropriate factors of the imaginary unit. Finally,

the full spin-1
2 basis includes products of fermion bilinears not given in Table 5.1,

while the complete basis for spin-3
2 fermions is given in [228]. The same spin-0 basis,

along with a similar spin-1 basis can also be found in [229].

5.3.1 Spin-0

New scalar fields are popular candidates for DM [99,230, 231], which typically take

the form of axions or Higgs-like particles. The latter are Higgs-like extensions to

the SM and require very few additional parameters. In fact, a real singlet scalar

coupled to the SM Higgs is the minimal renormalisable extension to the SM capable
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of explaining DM [161].

In our EFT approach, we will make no reference to the underlying theory and simply

consider some complex scalar field ϕ, for which the corresponding field decomposi-

tions are

ϕ(x) =
∫ d3p

(2π)3
1√
2Ep

(
a(p)e−ip·x + b†(p)eip·x

)
, (5.3.14a)

ϕ∗(x) =
∫ d3p

(2π)3
1√
2Ep

(
a†(p)eip·x + b(p)e−ip·x

)
, (5.3.14b)

and the analogous field decomposition for a real scalar DM candidate is found by

setting b = a. Unlike neutrinos, the creation and annihilation operators for bosonic

DM follow commutation relations

[
ai(p), a†

j(q)
]

=
[
bi(p), b†

j(q)
]

= (2π)3δ(3)(p − q)δij , (5.3.15)

with all other commutators equal to zero. As it turns out, there is only one scalar

operator up to dimension-6 that gives rise to the DSE, with interaction Lagrangian

Lϕ
int = −igψϕ

Λ2 (ϕ∗ ↔
∂µϕ)(ψ̄γµγ5ψ) , (5.3.16)

where we use ϕ∗ ↔
∂µϕ = ϕ∗(∂µϕ) − (∂µϕ∗)ϕ. The corresponding Hamiltonian density

is found via a Legendre transformation,

Hϕ
int ≡

∑
ϕ

ϕ̇
∂Lϕ

int

∂ϕ̇
− Lϕ

int = igψϕ
Λ2 (ϕ∗(∇ϕ) − (∇ϕ∗)ϕ) ·

(
ψ̄γγ5ψ

)
, (5.3.17)

where the sum runs over ϕ and ϕ∗. In a background of pure ϕ scalars, the relevant ex-

pectation value that contributes to the DSE can be computed using the appropriate

field decompositions and commutators defined earlier to find

⟨Hϕ
int⟩ = −2gψϕ

Λ2 pϕ · Tr
[
ūψγγ5uψ

]
= −4gψϕ

Λ2 mψhψ(pϕ · Sψ) , (5.3.18)

where in going from the first to the second equality we have used one of the trace

identities in (5.3.6). If a background of pure ϕ∗ scalars is considered instead, the

expectation value (5.3.18) takes the opposite sign. Plugging this into (5.2.20), we
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find the energy shift of the SM fermion state with spin hψ

∆Eϕ
ψ(0, hψ) = −gψϕ

Λ2 hψ

〈
pϕ · Sψ

Eϕ

〉(
nϕ(ϕ) − nϕ(ϕ∗)

)
, (5.3.19)

with nϕ(ϕ) and nϕ(ϕ∗) the number densities of background species ϕ and ϕ∗ respect-

ively. Replacing the average with the corresponding expression found in Appendix C

yields

∆Eϕ
ψ(0, hψ) = −2gψϕ

Λ2 hψβ⊕(nϕ(ϕ) − nϕ(ϕ∗)), (5.3.20)

where β⊕ is the magnitude of the relative velocity between the laboratory and DM

reference frames. By taking the difference between the energy shift for each SM

fermion spin state, we find an energy splitting

∆Eϕ
ψ = ∆Eϕ

ψ(0, 1) − ∆Eϕ
ψ(0,−1) = −4gψϕ

Λ2 β⊕

(
nϕ(ϕ) − nϕ(ϕ∗)

)
. (5.3.21)

The energy splitting (5.3.21) is therefore independent of the DM kinematics, poten-

tially allowing us to constrain scalar DM with masses ranging across many orders

of magnitude. Notably however, we still require a matter-antimatter asymmetry in

order to generate a DSE for scalar DM. The culprit in this case is the derivative

appearing between the scalar fields in (5.3.16), which generates an overall minus

sign between the positive and negative frequency field modes. This differs from the

neutrino case presented in Section 5.2, where the asymmetry results from the an-

ticommutation relations for fermionic operators. Finally, for completeness we note

that the corresponding energy splittings for a real scalar DM background are found

by setting nϕ(ϕ) = nϕ(ϕ∗), such that (5.3.21) should vanish identically.

5.3.2 Spin-1
2

We now turn our attention to spin-1
2 dark matter, popular candidates for which

include sterile neutrinos [232–234] (or more generally heavy neutral leptons), which

may also explain short baseline anomalies [235], and neutralinos [45, 236], which

naturally arise from supersymmetric models.
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Label ODMOSM Background ⟨Hint⟩

Oχ1 (χ̄γµχ)(ψ̄γµγ5ψ)
|χ⟩ 4mψ(pχ · Sψ)

|χ̄⟩ −4mψ(pχ · Sψ)

Oχ2 (χ̄γµγ5χ)(ψ̄γµγ5ψ)
|χ⟩ 4mψmχhχ(Sχ · Sψ)

|χ̄⟩ 4mψmχhχ(Sχ · Sψ)

Oχ3 (χ̄σµνχ)(ψ̄σµνψ)

|χ⟩
8hχ

[
(pχ · Sψ)(Sχ · pψ)

− (pχ · pψ)(Sχ · Sψ)
]

|χ̄⟩
−8hχ

[
(pχ · Sψ)(Sχ · pψ)

− (pχ · pψ)(Sχ · Sψ)
]

Oχ4 i(χ̄σµνχ)(ψ̄σµνγ5ψ)
|χ⟩ −8hχεαβµνpαχpβψS

µ
χS

ν
ψ

|χ̄⟩ 8hχεαβµνpαχpβψS
µ
χS

ν
ψ

Table 5.1: Lorentz invariant, Hermitian, gauge invariant and irre-
ducible spin-1

2 DM operators contributing to the DSE
up to dimension-6, along with their corresponding ex-
pectation values in a background of Dirac fermions and
antifermions, denoted by |χ⟩ and |χ̄⟩ respectively. We
leave the global factors of the coupling, new physics scale
and SM fermion spin eigenvalue hψ implicit.

As we have already seen for neutrinos, the DSE for spin-1
2 backgrounds differs con-

siderably to the effect for scalar DM, as it can additionally depend on the helicity

composition of the background. Furthermore, as the product of four fermion field

operators has mass dimension-6, there can be no derivative couplings for fermions

at the order considered here. As such, we only need to consider Lorentz structures

containing products of linearly independent gamma matrices (5.3.5) and Levi-Civita

symbols, the latter of which, as we saw, can be treated as an additional gamma mat-

rix structure, σµνγ5. In all cases, the absence of derivative couplings, along with the

anticommutators for fermionic operators, will necessarily lead to energy splittings

that require a background asymmetry.

Considering a spin-1
2 DM candidate χ, we tabulate all irreducible operators contrib-

uting the DSE up to dimension-6, along with their corresponding expectation values,

in Table 5.1. For each, we consider the case where the background consists of Dirac

χ and anti-χ, which we denote by |χ⟩ and |χ̄⟩, respectively. The corresponding
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expectation values in Majorana χ backgrounds are found by summing those in |χ⟩

and |χ̄⟩ backgrounds.

In addition to the operators shown in Table 5.1, we could also have considered

operators of the form i(χ̄σµνγ5χ)(ψ̄σµνψ) and (χ̄σµνγ5χ)(ψ̄σµνγ5ψ). However, using

the identity (5.3.8), we can show that these are equivalent respectively to Oχ4
and

Oχ3
from Table 5.1.

We have already seen the operators Oχ1
and Oχ2

in our discussion of the νSE in

Section 5.2, which gave rise to the neutrino-antineutrino and helicity asymmetry

terms for neutrinos respectively. The third operator in Table 5.1, Oχ3
, with the

corresponding interaction Lagrangian

Lχ3
int = −gψχ

Λ2 (χ̄σµνχ)(ψ̄σµνψ), (5.3.22)

leads to an energy shift

∆Eχ3
ψ (0, hψ) = 2gψχ

mψΛ2hψ
∑
hχ

hχ

[〈
(pχ · Sψ)(Sχ · pψ)

Eχ

〉
−
〈

(pχ · pψ)(Sχ · Sψ)
Eχ

〉]

×
(
nχ(χhχ) − nχ(χ̄hχ)

)
, (5.3.23)

which after computing the averages as shown in Appendix C yields

∆Eχ3
ψ (0, hψ) = 7gψχ

4Λ2 hψ
(
nχ(χR) − nχ(χL) − nχ(χ̄L) + nχ(χ̄R)

)
+O

(
β2

⊕, 1 − βr
)
,

(5.3.24)

where βr = β⊕/βc ≃ 1 is the ratio of the relative frame velocity and galactic circular

velocity, βc. The resulting energy splitting between the SM fermion spin states has

magnitude

∆Eχ3
ψ = 7gψχ

2Λ2 hψ
(
nχ(χR) − nχ(χL) − nχ(χ̄L) + nχ(χ̄R)

)
, (5.3.25)

to leading order in small quantities, where the subscripts L and R denote the number

densities of left and right helicity dark fermions χ, which satisfy nχ(χR) +nχ(χL) =

nχ(χ) and nχ(χ̄L) + nχ(χ̄R) = nχ(χ̄) by definition. Remarkably, this energy shift

is not suppressed by the velocity scale provided that βr ≃ 1. Despite this, energy
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shifts of the form (5.3.25) are exceedingly difficult to generate: while the helicity

asymmetry requirement of (5.3.25) naively appears comparable to that of (5.2.18)

for neutrinos, this is not the case. The first difference is seen when considering

Majorana fermions, for which nχ(χR) = nχ(χ̄L) and nχ(χL) = nχ(χ̄R). This leads

to (5.3.25) vanishing identically, when (5.2.18) becomes (5.2.19) which importantly

is non-zero. The second difference is more subtle. A chiral theory such as the weak

interaction will naturally lead to scenarios in which

nχ(χR) ≃ nχ(χ̄L) ̸= nχ(χL) ≃ nχ(χ̄R), (5.3.26)

in particular when the DM fermion is produced relativistically, such that its helicity

and chirality coincide4. This helicity profile is sufficient to generate a DSE through

the operator Oχ2
, but not Oχ3

, which requires a further fermion-antifermion asym-

metry (e.g. through a chemical potential) to give a non-zero energy splitting. This

significantly restricts the number of models that can generate a DSE through oper-

ators of the form Oχ3
. Finally, we note that as discussed in Appendix B of [220],

background helicity asymmetries vanish for very cold DM as a consequence of the

relative frame velocity. This is true irrespective of the DM spin, and so should be

taken into account whenever an operator requires a non-zero helicity asymmetry to

contribute to the DSE.

The final operator appearing in Table 5.1, Oχ4
, generates an energy shift scaling

with

∆Eχ4
ψ (0, sψ) ∼ εαβµνp

α
χp

β
ψS

µ
χS

ν
ψ = mψ

[
pχ,Sχ,Sψ

]
, (5.3.27)

where, in the second inequality, we have used that the SM fermion is at rest in the

lab frame in the setup considered, and [a, b, c] = a · (b × c) is the scalar triple

product. Considering only helicity eigenstates (5.2.17) with Sχ ∥ pχ, (5.3.27) van-

ishes identically. We note, however, that this operator may give rise to a non-zero

4As helicity is a good quantum number, it is conserved in time. The helicity profile of the DM
background today should therefore be the same as at production in the absence of significant late
time interactions. See [220] and [221] for the argument as applied to the CνB.
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DSE for an alternative experimental setup where the SM fermion is not at rest in

the lab frame.

5.3.3 Spin-1

Vector bosons remain popular in many models of DM, with candidates including

additional U(1) gauge bosons [6,237–240], superpartners to neutrinos [45,236], and

Kaluza-Klein states in theories with extra dimensions [45,241,242]. It is also possible

to generate dark hadronic vector states in non-Abelian extensions to the SM [243].

The DSE for vector bosons is similar to that for scalar bosons, and may depend on

either the total background DM density or require an asymmetry in the presence

of derivative couplings. They differ, however, in the fact that vector bosons carry

an additional Lorentz index, which expands the number of contributing operators.

Here we consider a massive5 vector field Xµ, with field decomposition

Xµ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
l

(
a(p, l)ϵµ(p, l)e−ip·x + b†(p, l)ϵ∗

µ(p, l)eip·x
)
, (5.3.28a)

X∗
µ(x) =

∫ d3p

(2π)3
1√
2Ep

∑
l

(
a†(p, l)ϵ∗

µ(p, l)eip·x + b(p, l)ϵµ(p, l)e−ip·x
)
, (5.3.28b)

where the creation and annihilation operators satisfy the commutation relations (5.3.15),

and ϵµ(p, l) ≡ ϵµl is the polarisation vector with polarisation l ∈ {−1, 0, 1}. Con-

sidering the helicity eigenstates for a state with momentum along the positive z

direction, these take the form

ϵµ(p, 1) ≡ ϵµ+ = 1√
2

(0, 1, i, 0) (5.3.29a)

ϵµ(p,−1) ≡ ϵµ− = 1√
2

(0, 1,−i, 0) (5.3.29b)

ϵµ(p, 0) ≡ ϵµL = 1
mX

(
|p|, 0, 0, Ep

)
(5.3.29c)

which we will refer to as the right, left and longitudinal polarisation states respect-

ively, together satisfying ϵl · ϵ∗
l
′ = −δll′ . The polarisation vectors for momenta along

5In order to be cold, the dark matter background must be massive.



104 Chapter 5. The Dark Stodolsky Effect

other directions are found by applying the appropriate rotation matrix. These will

need to be considered in order to perform the averaging appropriately.

We tabulate all irreducible operators for vector DM contributing to the DSE up

to dimension-6 in Table 5.2. As before, we consider each of the cases where the

background consists of a complex vector field, Xµ and its conjugate, X∗
µ, which we

denote by |X⟩ and |X∗⟩, respectively. The corresponding expectation values in real

X backgrounds are found by summing those in |X⟩ and |X∗⟩ backgrounds.

The first operator in Table 5.2, OX1
, is analogous to the scalar DM operator ap-

pearing in (5.3.16). The DSE for this operator has been discussed in detail in

Section 5.3.1; the only difference being the overall sign of the energy shift, gener-

ated by the contraction of two polarisation vectors. As a result, the energy splitting

between the two SM fermion spin states will be the same for OX1
as for its scalar

counterpart, and sensitivity to the individual energy shifts is required to distinguish

between the two operators.

The second operator in Table 5.2, OX2
, generates an energy shift

∆EX2
ψ (0, hψ) = gψX

2mψΛ
hψ
∑
lX

〈
1
EX

Im
[
εαβµνp

α
ψS

β
ψϵ

∗µ
lX
ϵνlX

]〉 (
nX(XlX

) − nX(X∗
lX

)
)
,

(5.3.30)

for charged vector bosons, and zero otherwise. We immediately see that the lon-

gitudinal modes of Xµ with real polarisation vectors do not contribute to the DSE.

This leaves the remaining two polarisation states, which after performing the aver-

aging and taking the difference between the two energy shifts gives an SM fermion

energy splitting

∆EX2
ψ = 7gψX

8mXΛ
(nX(X−) − nX(X+) − nX(X∗

−) + nX(X∗
+)) , (5.3.31)

to leading order. Similarly to (5.3.25), the energy shift from OX2
is not suppressed by

the velocity scale, but requires both a polarisation and matter-antimatter asymmetry

in order to give a non-zero contribution to the DSE. The former requirement is

more difficult for vector bosons than fermions, which permit chiral Lagrangians that
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Label ODMOSM Background ⟨Hint⟩

OX1 i(X∗
α

↔
∂µX

α)(ψ̄γµγ5ψ)
|X⟩ 4mψ(pX · Sψ)

|X∗⟩ −4mψ(pX · Sψ)

OX2 iX∗
µXν(ψ̄σµνψ)

|X⟩ 2 Im
[
εαβµνϵ

∗α
lX
ϵβlXp

µ
ψS

ν
ψ

]
|X∗⟩ −2 Im

[
εαβµνϵ

∗α
lX
ϵβlXp

µ
ψS

ν
ψ

]
OX3 X∗

µXν(ψ̄σµνγ5ψ)
|X⟩ 4 Im

[
(ϵ∗
lX

· Sψ)(ϵlX · pψ)
]

|X∗⟩ −4 Im
[
(ϵ∗
lX

· Sψ)(ϵlX · pψ)
]

OX4

i
[
Xµ∗(∂µXν)−(∂µX∗

ν )Xµ
]

× (ψ̄γνγ5ψ)
|X⟩ −4mψRe

[
(ϵ∗
lX

· Sψ)(ϵlX · pX)
]

|X∗⟩ 4mψRe
[
(ϵ∗
lX

· Sψ)(ϵlX · pX)
]

OX5

[
Xµ∗(∂µXν)+(∂µX∗

ν )Xµ
]

× (ψ̄γνγ5ψ)
|X⟩ 4mψIm

[
(ϵ∗
lX

· Sψ)(ϵlX · pX)
]

|X∗⟩ 4mψIm
[
(ϵ∗
lX

· Sψ)(ϵlX · pX)
]

OX6

i(X∗µXν+XµX∗
ν )

× (ψ̄
↔
∂µγ

νγ5ψ)
|X⟩ −8mψRe

[
(ϵ∗
lX

· Sψ)(ϵlX · pψ)
]

|X∗⟩ −8mψRe
[
(ϵ∗
lX

· Sψ)(ϵlX · pψ)
]

OX7

iεαβµν
[
X∗
α(∂βXµ)−(∂βX∗

µ)Xα

]
× (ψ̄γνγ5ψ)

|X⟩ 0

|X∗⟩ 0

OX8

εαβµν
[
X∗
α(∂βXµ)+(∂βX∗

µ)Xα

]
× (ψ̄γνγ5ψ)

|X⟩ 4mψIm
[
εαβiνϵ

∗α
lX
ϵβlXpiXS

ν
ψ

]
|X∗⟩ 4mψIm

[
εαβiνϵ

∗α
lX
ϵβlXpiXS

ν
ψ

]
Table 5.2: Lorentz invariant, Hermitian, gauge invariant and irredu-

cible spin-1 DM operators contributing to the DSE up to
dimension-6, along with their corresponding expectation
values in a background of complex vector bosons and the
conjugate field, denoted by |X⟩ and |X∗⟩, respectively.
We leave the global factors of the coupling, new physics
scale and SM fermion spin eigenvalue hψ implicit.
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preferentially produce fermions of a single helicity at high energies. For vector DM,

a polarisation asymmetry must therefore be generated through another mechanism

such as scattering on a polarised fermionic background.

The third operator in Table 5.2 gives rise to an energy shift

∆EX3
ψ (0, sψ) ∼

〈
1
EX

Im
[
(pψ · ϵlX )(Sψ · ϵ∗

lX
)
]〉

, (5.3.32)

which vanishes for an SM fermion at rest in the lab frame. We note, however, that

there may be a contribution to the energy shift from the right and left polarisation

states for other experimental setups. On the other hand, the longitudinal state

cannot contribute for any setup as its polarisation vector is real.

The fourth operator in Table 5.2 is unique, and leads to an energy splitting

∆EX4
ψ = 2gψX

Λ2
∑
lX

〈
1
EX

Re
[
(ϵ∗
lX

· Sψ)(ϵlX · pX)
]〉 (

nX(XlX
) − nX(X∗

lX
)
)

= −4gψX
Λ2 β⊕ (nX(XL) − nX(X∗

L)) , (5.3.33)

which depends solely on the density of longitudinally polarised background states.

This energy splitting is most closely related to the one generated by OX1
, which

instead depends on the total asymmetry between Xµ and its conjugate. As such, it

must always be the case that ∆EX1
ψ ≥ ∆EX4

ψ , which may serve to distinguish the

two.

Of the remaining operators, all have vanishing contributions to the Stodolsky effect

for the experimental setup considered: the contribution from OX5
is proportional to

the imaginary part of the kinematic structure found in (5.3.33), which is real valued

after averaging over background momenta; the contribution from OX6
is proportional

to pψ, which is zero for this setup; the contribution due to OX7
vanishes at the

kinematic level as 〈
HX7

int

〉
∼ εαβµν Re

[
ϵ∗α
lX
ϵβlX

]
= 0 ; (5.3.34)
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while the energy splitting due to OX8
scales with

〈
HX8

int

〉
∼ εαβiνϵ

∗α
lX
ϵβlXpiXS

ν
ψ , (5.3.35)

which is zero for the longitudinal states since ϵ∗
L = ϵL, and for the right and left

helicity states as only their spatial components are non-zero.

Notice that the operator giving rise to the Zeeman effect, OF ∼ Fµνψ̄σ
µνψ, where

Fµν is the field strength tensor, does not appear in Table 5.2. This is because it only

contains a single copy of the vector field, and as a result has a zero expectation value

for incoherent background DM states (5.2.3). Instead, the Zeeman effect occurs in

a coherent background, defined as the minimum uncertainty state and by extension

the state which is the closest to a classical background. Importantly, bosonic field

operators have non-zero expectation values in coherent backgrounds. Such coherent

states can be formed by any boson, leading to SM fermion spin-dependent energy

shifts that are generated by lower dimension operators than those for incoherent

states. It is possible, therefore, that the energy shifts arising from coherent states

are significantly larger than those considered here. It is also worth noting that none

of the operators in Table 5.2 describe U(1) gauge bosons, but that the wider class of

operators generating energy splittings for coherent backgrounds can. The operator

OF is such an example.

5.3.4 Spin-3
2

The last class of particle we look at are spin-3
2 fermions, which satisfy both Dirac

and spin-1 equations of motion,

(
i/∂ −m

)
Ψµ = 0 , ∂µΨµ = 0 , (5.3.36)

together with the constraint /Ψ = γµΨµ = 0. Combining these equations and the

Chisholm identity (5.3.7), one can show that these fermions are solutions to the
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Rarita-Schwinger (RS) Lagrangian which can be written as [244],

LRS = −1
2

Ψ̄µ

(
εµαβνγ5γα∂β − imσµν

)
Ψν , (5.3.37)

and we will refer to the solutions Ψµ to this equation as RS fermions. There is

however a caveat to this definition: it can be shown that the general massive solution

to the RS Lagrangian in fact consists of a superposition of a spin-3
2 and two spin-1

2

states [245, 246]6. In other words, Ψµ is not a pure spin-3
2 state. This problem

can however be alleviated by only considering the helicity λ = ±3
2 modes of an RS

fermion, which is equivalent to selecting the spin-3
2 components [247]. Bearing this

in mind, we nevertheless choose to consider the general solution Ψµ in this section,

as the helicity λ = ±3
2 and λ = ±1

2 states of the gravitino are present alongside each

other in most scenari [248–250].

Spin-3
2 particles are less popular candidates for DM, partly due to the fact that there

are no known spin-3
2 fermions in renormalisable theories [228]. Despite this, spin-3

2

DM has been shown capable of reproducing the observed relic density [251], and can

be produced as the gravitino in supergravity [45], or as bound states in non-Abelian

extensions to the SM. In particular, spin-3
2 baryons are the lightest states of a dark

SU(3) with a single quark flavour [243,252].

Despite sharing many properties with pure spin-1
2 fermions, the additional spin d.o.f.

carried by RS fermions give rise to operators with richer Lorentz structures. This is

turn leads a larger number of operators that generate a DSE, the energy shift from

which will depend on up to four helicity states. As we will see, the contribution to

the energy shift from each helicity state will differ in both sign and magnitude for

RS fermions, which may serve as an additional tool to help distinguish them from

pure spin-1
2 fermions.

For this section, we consider an RS fermion Ψµ with field decomposition [247]

Ψµ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
λ

(
a(p, λ)ξ+

µ (p, λ)e−ip·x + b†(p, λ)ξ−
µ (p, λ)eip·x

)
, (5.3.38)

6The spin- 1
2 states do not satisfy the constraint /Ψ = 0.
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Ψ̄µ(x) =
∫ d3p

(2π)3
1√
2Ep

∑
λ

(
a†(p, λ)ξ̄+

µ (p, λ)eip·x + b(p, λ)ξ̄−
µ (p, λ)e−ip·x

)
, (5.3.39)

where λ ∈ {3
2 ,

1
2 ,−

1
2 ,−

3
2} is the helicity of the RS fermion, a and b are annihilation

operators obeying the anticommutation relations (5.2.6), and again we set a = b for

Majorana fermions, while we define the “polarisation spinors” ξ±
µ via

ξ+
µ (p, λ) =

∑
l,h

Cλ
l,hϵµ(p, l)u(p, h) , (5.3.40a)

ξ−
µ (p, λ) =

∑
l,h

Cλ
l,hϵ

∗
µ(p, l)v(p, h) , (5.3.40b)

with the sum running over the values of l ∈ {−1, 0, 1} and h = ±1 for which l+ h
2 = λ.

Finally, the Clebsch-Gordan coefficients for an RS field can be found in [6] and read

λ = +3
2

: C
3
2
1,1 = 1 , (5.3.41a)

λ = +1
2

: C
1
2
1,−1 =

√
1
3
, C

1
2
0,1 =

√
2
3
, (5.3.41b)

λ = −1
2

: C
− 1

2
−1,1 =

√
1
3
, C

− 1
2

0,−1 =
√

2
3
, (5.3.41c)

λ = −3
2

: C
− 3

2
−1,−1 = 1 , (5.3.41d)

with all other coefficients equal to zero.

Once more, we tabulate all irreducible operators for RS fermion DM contributing to

the DSE up to dimension-6 in Table 5.3. As before, we consider backgrounds of RS

fermions Ψµ and anti-RS fermions, Ψ̄µ, which we denote by |Ψ⟩ and |Ψ̄⟩, respectively.

The corresponding expectation values in backgrounds of RS fermions that satisfy the

Majorana condition are found by summing those in |Ψ⟩ and |Ψ̄⟩ backgrounds. We

additionally introduce the shorthand sum

∑
C

≡
∑
lΨ,hΨ

(
C
λΨ
lΨ,hΨ

)2
. (5.3.42)

We note that the argument used to exclude the operators Oχ5
and Oχ6

in Sec-

tion 5.3.2 applies here to the equivalent operators with RS fields.
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Label ODMOSM Background ⟨Hint⟩

OΨ1 (Ψ̄αγµΨα)(ψ̄γµγ5ψ)
|Ψ⟩ −4mψ(pΨ · Sψ)

|Ψ̄⟩ 4mψ(pΨ · Sψ)

OΨ2 (Ψ̄αγµγ
5Ψα)(ψ̄γµγ5ψ)

|Ψ⟩ −4mψmΨ
∑
C hΨ(SΨ · Sψ)

|Ψ̄⟩ −4mψmΨ
∑
C hΨ(SΨ · Sψ)

OΨ3 i(Ψ̄µΨν)(ψ̄σµνψ)
|Ψ⟩ 4mΨ

∑
C Im

[
εαβµνp

α
ψS

β
ψϵ

∗µ
lΨ
ϵνlΨ

]
|Ψ̄⟩ −4mΨ

∑
C Im

[
εαβµνp

α
ψS

β
ψϵ

∗µ
lΨ
ϵνlΨ

]

OΨ4 (Ψ̄ασµνΨα)(ψ̄σµνψ)

|Ψ⟩
−8∑ChΨ

[
(pΨ · Sψ)(SΨ · pψ)

− (pΨ · pψ)(SΨ · Sψ)
]

|Ψ̄⟩
8∑ChΨ

[
(pΨ · Sψ)(SΨ · pψ)

− (pΨ · pψ)(SΨ · Sψ)
]

OΨ5 (Ψ̄µΨν)(ψ̄σµνγ5ψ)
|Ψ⟩ 8mΨ

∑
C Im

[
(Sψ · ϵ∗

lΨ
)(pψ · ϵlΨ)

]
|Ψ̄⟩ −8mΨ

∑
C Im

[
(Sψ · ϵ∗

lΨ
)(pψ · ϵlΨ)

]
OΨ6 i(Ψ̄ασµνΨα)(ψ̄σµνγ5ψ)

|Ψ⟩ 8∑C hΨεαβµνp
α
Ψp

β
ψS

µ
ΨS

ν
ψ

|Ψ̄⟩ −8∑C hΨεαβµνp
α
Ψp

β
ψS

µ
ΨS

ν
ψ

Table 5.3: Lorentz invariant, Hermitian, gauge invariant and irredu-
cible RS DM operators contributing to the DSE up to
dimension-6, along with their corresponding expectation
values in a background of RS and anti-RS fermions, de-
noted by |Ψ⟩ and |Ψ̄⟩, respectively. We leave the global
factors of the coupling, new physics scale and SM fer-
mion spin eigenvalue, hψ, implicit.
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The first operator, OΨ1
, gives the same energy shift as the similar spin-1

2 operator Oχ1

up to an overall sign, which results from the contraction of two polarisation vectors.

It therefore only requires a matter-antimatter asymmetry in order to generate a

DSE, but cannot tell us anything about the helicity structure of the background.

This naturally makes it difficult to distinguish from Oχ1
.

The remaining operators are far more interesting. Consider OΨ2
, which gives rise to

an energy shift

∆EΨ2
ψ (0, hψ) = −gψΨ

Λ2 mΨhψ
∑
λΨ

∑
C

hΨ

〈
1
EΨ

(SΨ · Sψ)
〉(

nΨ(ΨλΨ
) + nΨ(Ψ̄λΨ

)
)

= 7gψΨ

8Λ2 hψ
[ (
nΨ(Ψ++) + nΨ(Ψ̄++) − nΨ(Ψ−−) − nΨ(Ψ̄−−)

)
+ 1

3
(
nΨ(Ψ+−) + nΨ(Ψ̄+−) − nΨ(Ψ−+) − nΨ(Ψ̄−+)

) ]
, (5.3.43)

where the subscripts ±± and ±∓ refer to the ±3
2 and ±1

2 helicity states respectively.

Taking the difference between the energy shifts for each spin state gives the energy

splitting due to OΨ2

∆EΨ2
ψ = 7gψΨ

4Λ2

[ (
nΨ(Ψ++) + nΨ(Ψ̄++) − nΨ(Ψ−−) − nΨ(Ψ̄−−)

)
+ 1

3
(
nΨ(Ψ+−) + nΨ(Ψ̄+−) − nΨ(Ψ−+) − nΨ(Ψ̄−+)

) ]
, (5.3.44)

which requires a non-zero helicity asymmetry in order to generate a DSE, akin to

Oχ2
. This is easily achieved in a chiral theory similar to the weak interaction. Owing

to the Clebsch-Gordan coefficients, however, the contribution to the DSE from the

±1
2 helicity states is suppressed by a factor of three, which for the same total DM

density then leads to a reduced energy shift. As such, if the mass, and by extension

the number density of the DM is known, the reduced energy splitting could serve

as a tool to distinguish between spin-1
2 and spin-3

2 DM backgrounds. Although

difficult to observe, we also note that the energy shifts of the individual spin states

differ by an overall sign between OΨ2
and Oχ2

. The operator OΨ3
yields a similarly

suppressed energy splitting
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∆EΨ3
ψ = 7gψΨ

4Λ2

[ (
nΨ(Ψ++) − nΨ(Ψ̄++) − nΨ(Ψ−−) + nΨ(Ψ̄−−)

)
+ 1

3
(
nΨ(Ψ+−) − nΨ(Ψ̄+−) − nΨ(Ψ−+) + nΨ(Ψ̄−+)

) ]
, (5.3.45)

which is only non-zero in a background with both a fermion-antifermion and helicity

asymmetry. In this case, we note the analogous lower spin operator is in fact bo-

sonic, OX2
, which should result in a slightly larger splitting for the same background

density. However, the biggest difference is in the generation of (5.3.31) and (5.3.45);

as previously discussed, a helicity asymmetry cannot arise at the Lagrangian level

for bosons, but are possible in chiral theories of fermions which, if relativistic at

production, prefer a given helicity. Consequently, it is much easier to generate the

DSE from OΨ3
. The remaining three operators, OΨ4

, OΨ5
and OΨ6

are analogous to

Oχ3
, OX3

and Oχ4
, respectively, such that only the first contributes a DSE for the

experimental setup considered here. In the same way as (5.3.44), the energy shifts

due to OΨ4
differ from their analogues by an overall sign and a small suppression

factor from the Clebsch-Gordan coefficients. Finally, we have omitted the pseudo-

scalar analogues of OΨ3
and OΨ5

, proportional to Ψµγ
5Ψν , from Table 5.3 as the

expectation values of their Hamiltonians vanish trivially using (5.3.6).

The discussion here is easily extended to higher spin states, which we naively expect

will differ only in the overall sign and magnitude of their DSEs. In particular, the

magnitude of the DSE for most operators should decrease with increasing spin, as

progressively smaller Clebsch-Gordan coefficients will suppress the contribution from

the intermediate helicity states.

5.4 Experimental Feasibility

Observing the tiny energy splittings induced by the DSE directly is a remarkable

challenge due to their small magnitude. Take for example the splitting due to the
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CνB, whose magnitude is expected to be of order

|∆Eψ| ∼ GFβ⊕nν,0 ≈ 5 × 10−39 eV , (5.4.1)

assuming maximal neutrino-antineutrino asymmetry, where we have used β⊕ ≃ 10−3

and nν,0 = 56 cm−3 is the predicted relic neutrino density per degree of freedom. This

is approximately thirty orders of magnitude smaller than the energy splitting due to

the Zeeman effect in a 1 G magnetic field. Clearly then, this effect is nigh impossible

to observe on the scale of a single target. To that end, we identify two methods

utilising macroscopic targets through which the DSE may be observed. Both of

these rely on the same property; as a result of the energy splitting due to the DM

background, the SM fermion Hamiltonian Hψ and spin operators orthogonal to the

DM wind S⊥ no longer commute, leading to a spin precession

dS⊥

dt
= i

[
Hψ, S⊥

]
∼ O(∆Eψ) , (5.4.2)

which can equivalently be interpreted as a torque. A ferromagnet with polarisa-

tion transverse to the DM wind will therefore experience a macroscopic acceleration

as a result of the spin precession, which can be observed with a Cavendish-style

torsion balance. Alternatively, a target initially polarised along an external mag-

netic field will develop some transverse magnetisation as a consequence of the DM

background, which may measurable with a Superconducting Quantum Interference

Device (SQUID) magnetometer. We will explore each of these methods in turn.

5.4.1 Torsion Balance

The possibility of using a torsion balance to observe the tiny energy splittings due

to the CνB was first identified by Leo Stodolsky in [219] and has since been dis-

cussed in several works [220,225,226]. A single SM fermion interacting with the DM

background will experience a torque τψ ≈ |∆Eψ|, such that a macroscopic target
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consisting of Nψ fermions with degree of polarisation P will experience a total torque

τtot ≈ PNψ|∆Eψ| = NA

mA

P

A
M ×


Z|∆Ee| , ψ = e ,

|∆EN | , ψ = N ,

(5.4.3)

where N denotes an atomic nucleus, NA is the Avogadro number, while M , A and

Z denote the total mass, the mass number and atomic number of the target, re-

spectively. We have additionally introduced the “Avogadro mass” mA = 1 g/mol as

a conversion factor. To estimate the sensitivity of a torsion balance to this energy

splitting, we consider the same setup as [220] using a torsion balance consisting of

Nm spherical, uniformly dense ferromagnets a distance R away from some central

axis. To maximise the sensitivity, we additionally assume that opposing ferromag-

nets are polarised antiparallel to one another. For this setup, the torsion balance

will experience a linear acceleration

a ≈ NA

mA

P

A

Nm

R
×


Z|∆Ee| , ψ = e ,

|∆EN | , ψ = N .

(5.4.4)

As such, if accelerations as small as a0 can be measured, the experiment is sensitive

to energy splittings

|∆Eψ| ≳ a0
mA

NA

A

P

R

Nm

×


1
Z
, ψ = e ,

1 , ψ = N ,

= 5.8 × 10−28 eV
(

a0

10−15 cm s−2

)(
R

1 cm

) 2
Nm

A

P
×


1
Z
, ψ = e ,

1 , ψ = N ,

(5.4.5)

where for our reference sensitivity we have used a0 = 10−15 cm s−2, which has re-

cently been achieved in torsion balance tests of the weak equivalence principle [253].

We highlight that this value has been achieved using an unpolarised target to elim-

inate strong errors due to induced magnetic fields. For polarised targets, [254]

sets a reference acceleration a0 ≈ 10−6 cm s−2 comparing polarised and unpolarised

targets, while [255] constrains preferred-frame interactions to 10−21 eV. By com-
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parison with (5.4.1), we see that this torsion balance experiment is insensitive to

the CνB, but may still be able to observe DM for which the background number

density nDM ≫ nν,0. In particular, as the background DM number density scales

as nDM = ρDM/mDM, where ρDM ≈ 0.4 GeV cm−3 is the local dark matter energy

density [256], low mass DM scenarios are ideal candidates for detection using this

method. Finally, we note that a torsion balance consisting test masses suspended

by superconducting magnets has been considered in [257], which has an estimated

sensitivity to accelerations as small as a0 ≈ 10−23 cm s−2. This, in turn, would allow

us to probe energy splittings of the order 10−36 eV.

5.4.2 SQUID Magnetometer

The DM wind resulting from the relative motion of the Earth through the back-

ground acts similarly to a magnetic field, leading to the spin precession (5.4.2). As

such, if the target spins are initially aligned along some fixed external magnetic field

Bext that is not collinear with the DM wind, the presence of the background will

cause the spins to shift away from the axis of Bext and give rise to a small transverse

magnetisation. The spins will then precess around the combined magnetic field and

DM wind with some characteristic frequency, which can be detected using a highly

sensitive SQUID magnetometer. This idea has previously been discussed in the

context of axion DM in [258], and is the basis of the CASPEr experiment [259].

Following the calculations in Appendix D, we find that the transverse magnetisation

of a target consisting of Nψ spins evolves as

|M⊥(t)| = 2ρNA

mA

P

A

∣∣∣R sin
(
ωψ,0

2 t
)∣∣∣

1 +R2

√
1 +R2 cos2

(
ωψ,0

2
t
)

×


Zµe , ψ = e ,

µN , ψ = N ,

(5.4.6)

where ρ is the mass density of the target, µψ denotes the magnetic moment of

species ψ, R = ∆Eψ/∆EB is the ratio of the DM and Zeeman energy splittings,

and ωψ,0 = ∆EB
√

1 +R2. In (5.4.6) we have assumed that the DM wind is exactly



116 Chapter 5. The Dark Stodolsky Effect

perpendicular to Bext, which maximises the transverse magnetisation, and that both

the external magnetic field and DM wind directions are constant in time7. We give

the full expression for |M⊥(t)| and discuss the time dependence in Appendix D.

The transverse magnetisation has a maximum of

|M⊥(tmax)| = 2ρNA

mA

P

A

|R|
1 +R2 ×


Zµe , ψ = e ,

µN , ψ = N ,

(5.4.7)

for R ≤ 1, at tmax = (2k + 1)π/ωψ,0 with k ∈ N0. Supposing that a magnetometer

can precisely measure transverse magnetic fields with magnitude B0, we will have

sensitivity to energy splittings with magnitude

|∆Eψ| ≳ B0|Bext|
mA

ρNA

A

P
×


1
Z
, ψ = e ,

1 , ψ = N ,

= 1.0 × 10−32 eV
(

B0

10−16 T

)( |Bext|
10−10 T

)(
7.9 g cm−3

ρ

)
A

P
×


1
Z
, ψ = e ,

1 , ψ = N ,

(5.4.8)

for R ≪ 1, where we have used ∆EB = 2µψ|Bext|. For our reference scenario we

have chosen B0 = 10−16 T, corresponding to the SQUID magnetometer discussed

in [260], and used the density of iron in place of ρ. It is clear that the SQUID

magnetometer setup is at the very least as sensitive as the torsion balance setup

discussed in Section 5.4.1, but can be made more sensitive by decreasing the applied

magnetic field. The ideal setup would therefore be to initially apply a strong external

magnetic field to align the target spins, and then steadily decrease the applied field

to maximise the acquired transverse polarisation.

7For a given choice of axes, at least one of either the DM wind or magnetic field direction must
have some time dependence due to the evolution of the relative velocity between the laboratory
and DM reference frames.
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5.4.3 A Scalar DM Model as a Case Study

To give a rough estimate of the constraints that can be placed on DM using this

method, we consider the two component DM model given in [231], which features

a heavy, leptophilic dark vector mediator Z ′
µ and complex scalar ϕ with interaction

Lagrangian

LZ
′ = g2

ϕZ
′
µZ

′µ|ϕ|2 − igϕϕ
∗ ↔
∂µϕZ

′µ − Z ′
µℓ̄γ

µ(gLPL + gRPR)ℓ , (5.4.9)

where ℓ ∈ {e, µ, τ}, gϕ, gL and gR are dimensionless couplings, and PR/L = (1±γ5)/2

are the right and left chirality projection operators. Focusing on the case with ℓ = e,

and integrating out the heavy Z ′ leads to the effective low energy Lagrangian

LZ
′ = −igϕ(gR + gL)

2m2
Z

′

(
ϕ∗ ↔
∂µϕ

)
ēγµe− i

gϕ(gR − gL)
2m2

Z
′

(
ϕ∗ ↔
∂µϕ

)
ēγµγ5e+ . . . (5.4.10)

Of interest is the second term, which by comparison with (5.3.21) generates an

electron energy splitting with magnitude

|∆Ee| = 2gϕ|gR − gL|
m2
Z

′
β⊕

∣∣∣nϕ(ϕ) − nϕ(ϕ∗)
∣∣∣ . (5.4.11)

Next, rewriting |nϕ(ϕ)−nϕ(ϕ∗)| = |δϕ|ρDM/mϕ, where δϕ ∈ [−1, 1] parameterises the

asymmetry between ϕ and ϕ∗, and considering purely axial couplings, gR = −gL =

gA, we find

|∆Ee| = 4
Λ2
Z

′

ρDM

mϕ

β⊕|δϕ| ,

≈ 1.0 × 10−34 eV
(

3 GeV
ΛZ

′

)2 (10 MeV
mϕ

)
|δϕ| , (5.4.12)

for β⊕ = 7.6 × 10−4 [261], where we have defined the effective new physics scale

ΛZ
′ = mZ

′/
√
gϕ|gA| and assumed that ϕ makes up the entire local relic density,

ρDM ≈ 0.4 GeV cm−3.

The reference value of ΛZ
′ = 3 GeV in (5.4.12) corresponds to the approximate value

required to reproduce the relic density for mϕ = 10 MeV via FO production. More
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generally, we require

ΛZ
′ ≈ 3 GeV

(
mϕ

10 MeV

)1/2
. (5.4.13)

If we now assume FO production of DM, we can estimate the local DM density in

terms of ΛZ
′ and mϕ as ρDM ∼ Λ4

Z
′/m2

ϕ for m2
Z

′ ≫ m2
ϕ > m2

e [231], and the energy

shift has a different scaling to (5.4.12):

|∆Ee| ≈ 1.0 × 10−34 eV
(

ΛZ
′

3 GeV

)2 (10 MeV
mϕ

)3

|δϕ| . (5.4.14)

It is instructive to recast both (5.4.12) and (5.4.14) in terms of the constraints that

can be placed on the effective new physics scale using the DSE. Given a sensitiv-

ity to energy shifts |∆E0| ≳ 10−32 eV, corresponding to the SQUID magnetometer

considered in (5.4.8), we find the constraint on the effective new physics scale

ΛZ
′ ≲ 26 GeV

(
mϕ

10 MeV

)3/2
(

|∆E0|
10−32 eV

)1/2 1√
|δϕ|

, (5.4.15)

assuming the energy splitting from FO production (5.4.14), which for O(1) values

of the asymmetry parameter, i.e. supposing that the dark sector matter-antimatter

asymmetry follows that of the visible sector, is just one order of magnitude away from

being able to probe ΛZ
′ that reproduces the measured relic density at mϕ = 10 MeV.

If we instead assume that ϕ makes up the entirety of DM independent of mϕ and

ΛZ
′ , corresponding to the energy splitting (5.4.12), we find the constraint

ΛZ
′ ≳ 0.30 GeV

(
10 MeV
mϕ

)1/2 (10−32 eV
|∆E0|

)1/2√
|δϕ| , (5.4.16)

which is once more roughly an order of magnitude away from the FO band (5.4.13).

We show the constraints that could be placed on ΛZ
′ using a SQUID magnetometer

in Figure 5.1 as a function of mϕ for both the FO and unspecified production scen-

arios, and compare these with the existing constraints from direction detection exper-

iments [263–265] and anomalous supernova cooling, computed following the method

of [231] for the 18M⊚ progenitor discussed in [262]. As expected, this experiment

significantly outperforms existing direct detection experiments for mϕ ≲ 30 MeV.
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Figure 5.1: Constraint projections on the effective DM coupling,
ΛZ

′ = mZ
′/

√
gϕgA, from the SQUID magnetometer for

the generic (green) and FO (orange) production scen-
arios, where we assume δϕ = 1. We compare these
with the constraints from direct detection experiments
(blue), and anomalous supernova cooling constraints
(red), computed following the method of [231] for the
18M⊚ progenitor discussed in [262]. For comparison,
we show the combination of parameters that reproduce
the local relic density for a FO scenario with the black
curve, corresponding to the saturation of (5.4.13).

Additionally, if FO is assumed, the SQUID magnetometer experiment is instead

able to place constraints on the maximum value of ΛZ
′ , owing to the linear scaling

of the DSE with the effective coupling. Importantly, this includes regions that are

currently unconstrained by SN1987a.

Aside, notice that the energy splitting due to ϕ backgrounds far exceeds that ex-

pected from the CνB for the parameter ranges considered here, assuming the same

asymmetry for both. It is therefore entirely possible that the DSE completely washes

out the νSE. One could also envisage scenarios in which the opposite is true, and

the DSE is overwhelmed by the CνB, or those in which one acts as a significant

background to the other. This should be taken into consideration when using this
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technique, especially as it is difficult to distinguish between the operators respons-

ible for the DSE. Nevertheless, the observation of either the DSE or νSE would be

a strong indicator of as-yet-unobserved physics.

5.5 Summary

The key finding of this chapter is that the energy splittings due to the DSE scale lin-

early with the effective DM coupling, inversely with the DM mass, and are roughly

independent of the DM kinematics. Importantly, this differs from traditional DM

direct detection experiments, where the sensitivity typically decreases with decreas-

ing DM mass. On the other hand, every operator discussed here requires either a

particle-antiparticle or helicity asymmetry in the background to give a non-zero con-

tribution to the DSE. This technique therefore favours chiral models and those with

a sizeable chemical potential during production, however we note that either asym-

metry may develop post-production through several mechanisms, e.g. DM reflection

at surface of the Earth, scattering on polarised backgrounds.

In this work, we have identified two methods through which these tiny energy split-

tings can be observed. The first utilises an extremely sensitive, polarised torsion

balance, which experiences a torque due to the energy splittings induced by the

DM background. For a conservative setup, this experiment is sensitive to energy

splittings of ∆Eψ ≃ 10−28 eV, but could have a sensitivity to splittings as small

as ∆Eψ ≃ 10−36 eV for a more optimistic setup. The second utilises a SQUID

magnetometer to detect the time-varying magnetisation of a target due to the DM

background, which acts similarly to an external magnetic field on the target. We

estimate that this experiment will be sensitive to splittings of ∆Eψ ≃ 10−32 eV.

Finally, we have explored a scalar DM model, considering both the case where the

new scalar constitutes the entire local DM density regardless of the model paramet-

ers, and the more realistic scenario where it is produced via the FO mechanism.
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In both scenarios, we showed the SQUID magnetometer proposal is able to ex-

clude regions of parameter space that are not already ruled out by direct detection

experiments or SN1987a, provided that there is a sizeable asymmetry in the DM

background. For the range of parameters considered, we also demonstrated that

the DSE for the scalar DM model far exceeded the Stodolsky effect for neutrinos,

provided that the asymmetry in both backgrounds was comparable. Overall, the

DSE is a powerful tool to constrain DM models in otherwise difficult-to-test regions

of parameter space.





Chapter 6

Conclusions

In this thesis, we have highlighted some methods to detect, or constrain, some of

the hypothetical particles that could solve the dark matter problem. This involved

considering several types of experiments in order to gain as wide a view as possible.

Notably, we have introduced the concept of fifth forces experiments, in which one

measures the effect of a supposed interaction potential resulting from the exchange

of virtual particles. These techniques were considered in the context of effective

theories, in which all high-energy behaviour in a theory is integrated out, leaving

only numerical coefficients as parameters to measure. In particular, we examined

the general effective theory of axion-like particles, revealing its properties at various

scales, down from a high symmetry breaking scale to the energies occurring in bound

systems.

In Chapter 3, we re-examined the low-energy potential for a macroscopic fifth force

generated from the exchange of two axions. The shift symmetry of the linear axion

interactions led to a potential falling off as V (r) ∼ 1/r5. We found that in the

case of the QCD axion, higher-order terms in the Lagrangian were induced by non-

perturbative effects occurring upon matching the theory to the chiral Lagrangian.

These higher-order terms break the shift symmetry and lead to the dominant con-

tribution to the potential scaling as V (r) ∼ 1/r3. These terms are generated by the

same physics responsible for the axion mass, and therefore the new contributions to
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the potential induce a different force for external nucleons and leptons. We demon-

strated how this result affects the sensitivity of searches for new long-range forces,

via the example of a particular experiment measuring the Casimir force between

two objects, to find a substantial enhancement of the bound obtained using the shift

symmetry breaking induced V (r) ∼ 1/r3 potential instead of the shift symmetry

preserving interaction potential derived.

The focus of Chapter 4 was the phenomenology of the unique dimension-six operator

respecting the shift symmetry: the axion-Higgs portal, with a scalar particle coupling

quadratically to the Standard Model Higgs boson. We compared constraints from

Higgs physics, flavour-violating and radiative meson decays, bounds from atomic

spectroscopy searching for fifth forces, and astrophysical observables, and, as might

have been expected, found the strongest bounds to be from tree-level Higgs decays.

In contrast to the QCD axion, axions interacting through the axion-Higgs portal are

stable and can provide a dark matter candidate for any axion mass. For comparison,

we also derived Higgs, flavour, and spectroscopy constraints, and the parameter

space for which the scalar Higgs portal without derivative interactions could explain

dark matter.

Finally, in Chapter 5, we presented a comprehensive discussion of the Stodolsky

effect for dark matter, and discussed two techniques to measure the effect and con-

strain the dark matter candidates parameter space. We generalised the Stodolsky

effect, the spin-dependent shift in the energy of a Standard Model fermion sitting

in a bath of neutrinos, to dark matter, and gave expressions for the induced energy

shifts for candidates from spin-0 to spin-3
2 , considering all effective operators up to

mass dimension-6. In all cases, the effect scales inversely with the candidate mass,

but requires an asymmetric background. We showed that a torsion balance exper-

iment is sensitive to energy shifts of ∆E ≳ 10−28 eV, whilst a more intricate setup

using a SQUID magnetometer is sensitive to shifts of ∆E ≳ 10−32 eV. Finally, we

computed the energy shifts for a model of scalar dark matter, and demonstrated

that the Stodolsky effect could be used to constrain regions of parameter space that
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are not presently excluded.

In summary, in this thesis, we have provided a consistent framework to apply bounds

from fifth-force type experiments to axions and ALPs, and other possible mediat-

ors, taking all running effects into account. We have also worked out the existing

constraints on a new dark matter model, namely the axion-Higgs portal. Finally,

we have proposed a new experimental approach to search for various dark matter

candidates in a model independent way via the dark Stodolsky effect.

Building upon the work done in this thesis, [266] will set new bounds on the effective

QCD axion model used throughout this work. There, a wide range of experiments

and quantum sensors are reviewed and used to derive various bounds on this generic

model, effectively combining several independent existing bounds consistently. We

will then have demonstrated the power of an effective theory standpoint in searches

for dark matter: by considering the phenomenology of a set of individual operators,

we are able to place a wide set of bounds on a wide range of models at once.





Appendix A

Spinor Contractions

We give here a short overview of the NR spinor identities used throughout the

computation of IPs. For convenience, we will use the chiral, or Weyl, basis. In this

basis, the Dirac matrices are

γµ =

 0 σµ

σ̄µ 0

 and γ5 =

−12 0

0 12

 , (A.0.1)

where σµ ≡ (12,σ) and σ̄µ ≡ (12,−σ), with σ the Pauli vector and 12 the 2 × 2

identity matrix. For fermions of mass m and 4-momentum pµ we have the spinors

us(p) =


√
p · σξs

√
p · σ̄ξs

 and ūs(p) ≡ u†
s(p)γ0 =

(
ξ†
s

√
p · σ̄ ξ†

s
√
p · σ

)
(A.0.2)

with ξs a two-component spinor, normalised such that ξ†
rξs = δrs.

Using the definitions above, and applying the NR limit |p| → 0 in the incoming

particles CoM frame, we can derive the following identities:

ūr(p2)us(p1) = 2mδrs +O (|p|) (A.0.3a)

ūr(p2)γ5us(p1) = (p1 − p2) · σδrs +O
(
|p|2

)
(A.0.3b)

ūr(p2)γµus(p1) = 2mδµ0 δrs +O (|p|) (A.0.3c)

ūr(p2)γµγ5us(p1) = 2mδµkσ
kδrs +O (|p|) (A.0.3d)
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For the identities involving γµ we have also used the decomposition γµ = δµ0γ
0 +δµkγ

k

with k = 1, 2, 3.
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Kinematics and Angular Integrals

In this Appendix we give supplementary material useful for the calculation of fifth

forces in Chapter 3, that is, kinematics and the solutions of angular integrals ap-

pearing in the computations of IPs.

B.1 Kinematics

From Figures 3.1 and 3.3, we have to consider the loop momenta k and k′ of the

exchange particles with masses mi and mj respectively, the momentum transfer q

and the four external momenta p1,2,3,4 of the fermions with masses M1 and M2. In

the t rest frame used earlier, these are given by

q =
(√

t, 0
)
, (B.1.1a)

k =
(
t+ 2m̂ δm

2
√
t

,
1
2

√
τδ√
t

√
τ k̂

)
, (B.1.1b)

k′ =
(
t− 2m̂ δm

2
√
t

, −1
2

√
τδ√
t

√
τ k̂

)
, (B.1.1c)

p1 =
(1

2
√
t,

1
2

√
τ1p̂

)
, (B.1.1d)

p2 =
(

−1
2

√
t,

1
2

√
τ2p̂

′
)
, (B.1.1e)

p3 =
(

−1
2

√
t,

1
2

√
τ1p̂

)
, (B.1.1f)
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p4 =
(1

2
√
t,

1
2

√
τ2p̂

′
)
, (B.1.1g)

using the shorthand notations m̂ = 1
2(mi + mj), δm = mi − mj, and τ = t − 4m̂2,

τδ = t − δm2, τ1 = t − 4M2
1 and τ2 = t − 4M2

2 . Then we write the 28 possible

momentum contractions:

q2 = t k2 = m2
i k′2 = m2

j p2
1 = p2

3 = M2
1 p2

2 = p2
4 = M2

2

q · k = 1
2

(t+ 2m̂ δm) q · k′ = 1
2

(t− 2m̂ δm) k · k′ = 1
4

(t+ τδ)

q · p1 = q · p4 = t

2
q · p2 = q · p3 = − t

2

p1 · p3 = −1
4

(t+ τ1) p2 · p4 = −1
4

(t+ τ2)

p1 · p2 = p3 · p4 = 1
4
(
−t− √

τ1
√
τ2p̂ · p̂′

)
p1 · p4 = p2 · p3 = 1

4
(
t− √

τ1
√
τ2p̂ · p̂′

)

k · p1 = 1
4

(
t+ 2m̂ δm−

√
τδ√
t

√
ττ1k̂ · p̂

)

k · p2 = 1
4

(
−t− 2m̂ δm−

√
τδ√
t

√
ττ2k̂ · p̂′

)

k · p3 = 1
4

(
−t− 2m̂ δm−

√
τδ√
t

√
ττ1k̂ · p̂

)

k · p4 = 1
4

(
t+ 2m̂ δm−

√
τδ√
t

√
ττ2k̂ · p̂′

)

k′ · p1 = 1
4

(
t− 2m̂ δm+

√
τδ√
t

√
ττ1k̂ · p̂

)

k′ · p2 = 1
4

(
−t+ 2m̂ δm+

√
τδ√
t

√
ττ2k̂ · p̂′

)

k′ · p3 = 1
4

(
−t+ 2m̂ δm+

√
τδ√
t

√
ττ1k̂ · p̂

)

k′ · p4 = 1
4

(
t− 2m̂ δm+

√
τδ√
t

√
ττ2k̂ · p̂′

)

We further define the combined momenta,

P1 ≡ p1 + p3 = (0, √
τ1p̂) , (B.1.2a)

P2 ≡ p2 + p4 =
(
0, √

τ2p̂
′
)
, (B.1.2b)



B.2. Angular Integrals 131

W ≡ p1 + p2 = p3 + p4 . (B.1.2c)

Immediately we can see that P1 · q = P2 · q = 0. We also have the contractions

P 2
1 = −τ1 , P 2

2 = −τ2 and P1 · P2 = −y√
τ1

√
τ2 .

B.2 Angular Integrals

Adapting the basis used in [129], we parameterise the relevant dot products as

p̂ · p̂′ = y , k̂ · p̂ = cos θ , k̂ · p̂′ = y cos θ +
√

1 − y2 sin θ cosϕ , (B.2.1)

to define our own basis of functions in (3.1.13) as

I(a,b) =
∫ d2Ω

4π
(
Y + Zk̂ · p̂

)a (
Y ′ + Z ′k̂ · p̂′

)b
, (B.2.2)

and perform the angular integration over d2Ω = sin θ dθdϕ. Some of the solutions

are given below:

I(0,0) = 1 , (B.2.3a)

I(−1,0) = 1
Z

arctanh Z
Y
, (B.2.3b)

I(0,−1) = 1
Z ′ arctanh Z

′

Y ′ , (B.2.3c)

I(−1,−1) = 1√
X

arctanh
√
X

Y Y ′ − yZZ ′ , (B.2.3d)

I(1,0) = Y , (B.2.3e)

I(0,1) = Y ′ , (B.2.3f)

I(1,−1) = y
Z

Z ′ +
(
Y

Y ′ − y
Z

Z ′

)
Z ′

Y ′ , (B.2.3g)

I(−1,1) = y
Z ′

Z
+
(
Y ′

Y
− y

Z ′

Z

)
Y

Z
arctanh Z

Y
, (B.2.3h)

I(1,1) = Y Y ′ + 1
3
yZZ ′ , (B.2.3i)

with X ≡
(
Y Y ′ − yZZ ′

)2
−
(
Y 2 − Z2

) (
Y ′2 − Z ′2

)
and where arctanh designates

the principal branch of the inverse hyperbolic tangent function.
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The solutions involving negative coefficients a or b are strictly only valid for Y, Z, Y ′, Z ′ ∈

R when |Y | > |Z| and |Y ′| > |Z ′|, since the integrand acquires poles otherwise. How-

ever, for the cases that are physically relevant in this work, this will never happen.

To see this, let us consider one the triangle diagram in Figure 3.5 where the angular

integrals involve terms of the form

∫ d2Ω
4π

1
(k − p1)2 −M2

1
=
∫ d2Ω

4π
1

m2 − 1
2t− 1

2
√
τ
√
τ1k̂ · p̂

, (B.2.4)

where we recognise an I(−1,0) type integral with Y = m2 − t/2 and Z = −1
2
√
τ
√
τ1.

The integrand is analytic everywhere except at a pole when the denominator van-

ishes. Consider two cases:

• When t < 4M2, τ1 is negative and Z is imaginary. Since Y is real and strictly

negative in the t integration region, we have Y + Zk̂ · p̂ ̸= 0.

• When t ≥ 4M2, τ1 is positive and Z is real, and the denominator has a zero

when |Y | ≤ |Z|. This occurs when t < 4m2 − m
4

M
2 which lies outside the t

integration region, therefore the integrand has no poles in this region.

A similar reasoning applies to the I(−1,−1) integral with Z or Z ′ real or imaginary.



Appendix C

Lab Frame Averaging of Energy

Shifts

In this Appendix we will describe the averaging procedure used to compute the

energy shifts in the lab frame. We begin by assuming that the DM is described by

an isothermal spherical halo, with galaxy frame velocity distribution

f(p) =
(

2π
m2

DMσ
2

) 3
2

e
− |p|2

2m2
DMσ

2
, (C.0.1)

where p is the DM momentum in the galactic reference frame, mDM is its mass and

σ is the velocity dispersion. The normalisation factor is found by requiring that∫ d3
p

(2π)3f(p) = 1. As a result of the frame transformation, DM particles in the lab

frame will not follow (C.0.1) but instead the transformed distribution function flab,

such that the average of some lab frame quantity Xlab will be given by

⟨Xlab⟩ =
∫ d3p

(2π)3Xlabflab(p) . (C.0.2)

To find flab(p), we first note that since all velocities involved are small, the mo-

mentum of the DM particle in the lab frame plab can be written in terms of the
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relative frame velocity β⊕ as

plab ≃ p +mDMβ⊕ = |p|


cosϕ sin θ

sinϕ sin θ

cos θ

+mDMβ⊕


0

0

1

 , (C.0.3)

where β⊕ ≡ |β⊕|, and we have chosen β⊕||z for simplicity. This choice makes

no difference at the level of averaging, but becomes important when considering

experimental setups. We will therefore write our final expressions for averaged

quantities in terms of a general orientation of β⊕. Next, since flab(plab) = f(p), the

lab frame distribution function will satisfy

flab(p) = f(p −mDMβ⊕) =
(

2π
m2

DMσ
2

) 3
2

e
−

|p|2+m2
DMβ⊕

2m2
DMσ

2
e

|p|β⊕ cos θ

mDMσ
2
, (C.0.4)

which can be readily plugged into (C.0.2) to compute averaged lab frame quantities.

In addition to the distribution function, we must also write the lab frame polarisa-

tion vectors in terms of DM reference frame quantities. To do so, we rotate the

polarisation vectors (5.3.29) to point along an arbitrary axis, and then use plab to

rewrite angles in the lab frame in terms of those in the DM frame, yielding

ϵµ+ = (ϵµ−)∗ = 1√
2



0
1

|plab| cosϕ (|p| cos θ + β⊕mDM) − i sinϕ
1

|plab| sinϕ (|p| cos θ + β⊕mDM) + i cosϕ

− |p|
|plab| sin θ


, (C.0.5)

ϵµL =



|plab|
mDM

|p|
|plab| cosϕ sin θ

|p|
|plab| sinϕ sin θ

1
|plab| (|p| cos θ + β⊕mDM)


, (C.0.6)

again assuming β⊕||z.

Relaxing the assumption β⊕||z, we find the averages relevant to the operators con-
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sidered in this work .〈
1

EDM
(pDM · Sψ)

〉
= 2β⊕sψ,∥〈

1
EDM

(pDM · Sψ)
〉

= −2β⊕sψ,∥〈
1

EDM
(SDM · Sψ)

〉
=
[

(1 − 8β2
r )

8β2
r

erf (2βr) − 1
2
√
πβr

e−4β2
r

]
sψ,∥
mDM

≈ −7
8
sψ,∥
mDM

+O(1 − βr)〈
1

EDM
(pDM · Sψ)(SDM · pψ)

〉
=
[

(1 − 16β2
r − 64β4

r )
16β4

r

erf (2βr)

− (1 + 8β2
r )

4
√
πβr

e−4β2
r

]
β2
cmψsψ,∥

≈ −5β2
cmψsψ,∥ +O(1 − βr)〈

1
EDM

(pDM · pψ)(SDM · Sψ)
〉

=
[

(1 − 8β2
r )

8β2
r

erf (2βr) − 1
2
√
πβr

e−4β2
r

]
mψsψ,∥

≈ −7
8
mψsψ,∥ +O(1 − βr)〈

1
EDM

εαβµνp
α
DMp

β
ψS

µ
DMS

ν
ψ

〉
= 0〈

1
EDM

εαβµνp
α
ψS

β
ψϵ

∗µ
± ϵ

ν
±

〉
= ±i

[
(1 − 8β2

r )
8β2

r

erf (2βr) − 1
2
√
πβr

e−4β2
r

]
mψ

mDM
sψ,∥

≈ ∓7i
8
mψ

mDM
sψ,∥ +O(1 − βr)〈

1
EDM

εαβµνp
α
ψS

β
ψϵ

∗µ
L ϵ

ν
L

〉
= 0〈

1
EDM

(pψ · ϵ±)(Sψ · ϵ∗
±)
〉

= 0〈
1

EDM
(pψ · ϵL)(Sψ · ϵ∗

L)
〉

= − 2mψ

mDM
β⊕sψ,∥〈

1
EDM

(pX · ϵ±)(ϵ∗
± · Sψ)

〉
= 0〈

1
EDM

(pX · ϵL)(ϵ∗
L · Sψ)

〉
= −2β⊕sψ,∥〈

1
EDM

εαβiνϵ
∗α
± ϵβ±piXS

ν
ψ

〉
= 0〈

1
EDM

εαβiνϵ
∗α
L ϵ

β
LpiXS

ν
ψ

〉
= 0 ,

with sψ,∥ = (β⊕ · sψ)/β⊕ and βr = β⊕/βc, where βc =
√

2σ is the circular velocity
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of the galaxy. The presence of sψ,∥ indicates that only the spin state directed along

the DM wind experiences an energy shift. We will not include this factor explicitly

in the main text.



Appendix D

Fermion spin precession

Here we derive the spin precession of an SM fermion in a combined magnetic and

DM background field that gives rise to the transverse magnetisation (5.4.6) in Sec-

tion 5.4.2. To do so, we need to set up the differential equation that governs the

evolution of the SM fermion spin. There will be two components to this: the preces-

sion due to the DM background, and the precession due to an external magnetic field.

Both of these are due to the same effect, a non-diagonal Hamiltonian resulting from

the energy splittings due to background fields. We begin with the time-dependent

Schrödinger equation, which for our system takes the form

i
∂

∂t
ψ(x, t) = (Hkin(x) + VDM + VB)ψ(x, t) , (D.0.1)

where ψ(x, t) is the fermion wavefunction, Hkin(x) is its kinetic Hamiltonian, which

is spin and time-independent, whilst VDM and VB are the potentials due to the DM

background and applied magnetic field Bext respectively, which are spin-dependent

and we will treat as constant in time here1. This motivates the factorisation

ψ(x, t) = X(x)T (t) , (D.0.2)

1In truth, at least one of these must be time-dependent. If we fix our coordinate system in the
lab frame, then due to the relative motion of the Earth to the DM reference frame, the direction
of the background wind will change in time. However, this can alternatively be accounted for
by weighting the collected data by the projection of the relative velocity onto the magnetic field
direction. See supplementary material S10.1 of [267] for details of the weighting, and [268] for a
full parameterisation of the relevant coordinate systems.
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where X(x) is a scalar, containing the spatial components of the wavefunction, and

T (t) is an eigenspinor of the form

T (t) =

T+(t)

T−(t)

 , |T (t)|2 = 1 . (D.0.3)

This factorisation makes (D.0.1) separable, but it is easier to note that

Hkin(x)X(x) = EkinX(x) , (D.0.4)

such that we can absorb Ekin as a time-independent, spin-diagonal contribution to

the potential. The overall factor of X(x) can then be factored out, allowing us to

write (
i
∂

∂t
−H

)
T (t) = 0 , (D.0.5)

where H is the total Hamiltonian, including the spin-diagonal contribution from

Hkin. If the magnetic field is defined such that it points along z, then the z oriented

spin state will experience an energy shift. Additionally, the up and down spin states

should experience a shift of opposite sign. The potential due to the magnetic field

should therefore be proportional to the spin operator along z, that is

VB = ∆EB
2

Sz = ∆EB
2

1 0

0 −1

 , (D.0.6)

where ∆EB is the energy shift due to the magnetic field. We see that this has the

desired properties, as if we act on an Sz eigenstate with eigenvalue2 sz = ±1, we get

the eigenvalue sz∆EB/2. Next, we seek to do the same for the potential due to the

DM, which should be directed along the DM wind. Explicitly,

VDM = ∆Eψ
2

(β⊕ · S) = ∆Eψ
2

 βz βx − iβy

βx + iβy −βz

 , (D.0.7)

where βi = (β⊕ · êi)/β⊕ ∈ [−1, 1] is the fraction of the relative frame velocity along

the direction i. We should also include a diagonal term due to the spin-independent

2We adopt the convention Si = σi, with i ∈ {x, y, z} and σ denoting a Pauli matrix.
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effects from the DM, however this can simply be absorbed into Ekin. The total

Hamiltonian is then

H = 1
2

2Ekin + ∆EB + ∆Eψβz ∆Eψ
(
βx − iβy

)
∆Eψ

(
βx + iβy

)
2Ekin − ∆EB − ∆Eψβz

 , (D.0.8)

such that the solution to (D.0.5) is given by

T±(t) =

s± cos
(
ω

2
t
)

−

(
βx ∓ iβy

)
Rs∓ ± (1 ± βzR) s±√

1 + 2βzR +R2
i sin

(
ω

2
t
) e−iEkint ,

(D.0.9)

where ω ≡ ∆EB
√

1 + 2βzR +R2 is the (angular) precession frequency of the system,

proportional to the Larmor frequency, s± = T±(0) are the initial values of the SM

fermion eigenspinor, and R ≡ ∆Eψ/∆EB ∈ [−1, 1] is the ratio of the energy shifts

due to each of the background potentials. We further note that s+ is always real,

while s− may be complex.

To compute the spin precession using T±, we note that the time derivative of some

operator O is given by Heisenberg’s equation of motion

dO
dt

= i[H,O] , (D.0.10)

such that the time derivative of each of the expectation values, si, is

dsi
dt

= T (t)†
(

dSi
dt

)
T (t). (D.0.11)

Plugging in (D.0.9), we find

dsx
dt

=

 βx(1 + βzR)√
1 + 2βzR +R2

sin(ωt) + βy cos(ωt)

∆Eψ , (D.0.12a)

dsy
dt

=

 βy(1 + βzR)√
1 + 2βzR +R2

sin(ωt) − βx cos(ωt)

∆Eψ , (D.0.12b)

dsz
dt

=

−

(
1 − β2

z

)
R√

1 + 2βzR +R2
sin(ωt)

∆Eψ , (D.0.12c)

where we have related s± to the initial values of sx, sy and sz, using

sx,0 = T (0)†Sx T (0) = 2s+ Re (s−) = 0 , (D.0.13a)
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sy,0 = T (0)†Sy T (0) = 2s+ Im (s−) = 0 , (D.0.13b)

sz,0 = T (0)†Sz T (0) = |s+|2 − |s−|2 = 1 , (D.0.13c)

and assumed that the spins are initially aligned with the external magnetic field.

Notice that all three of (D.0.12), in particular those along x and y, are proportional

to the energy splitting due to the background DM field, and so will vanish in its

absence. These equations are readily solved to find the expectation values of the

SM fermion spin as a function of time

sx(t) = 2R√
1 + 2βzR +R2

 βx(1 + βzR)√
1 + 2βzR +R2

sin2
(
ω

2
t
)

+ βy
2

sin (ωt)

 , (D.0.14a)

sy(t) = 2R√
1 + 2βzR +R2

 βy(1 + βzR)√
1 + 2βzR +R2

sin2
(
ω

2
t
)

− βx
2

sin (ωt)

 , (D.0.14b)

sz(t) = 1 −
2R2

(
1 − β2

z

)
1 + 2βzR +R2 sin2

(
ω

2
t
)
, (D.0.14c)

such that the magnitude of the spin along the transverse direction evolves according

to

|s⊥(t)| =
√
sx(t)2 + sy(t)2

=
2
∣∣∣R sin

(
ω
2 t
)∣∣∣

1 + 2βzR +R2

√
1 − β2

z

√
1 + 2βzR +R2

[
cos2

(
ω

2
t
)

+ β2
z sin2

(
ω

2
t
)]
,

(D.0.15)

which vanishes identically when |βz| = 1, or equivalently when the DM wind is

colinear with the magnetic field. Consequently, the expression equivalent to (D.0.15)

for a general magnetic field orientation is found by making the replacement βz → β∥,

where β∥ is the fraction of the relative frame velocity along the external magnetic

field direction. The corresponding transverse magnetisation is simply

|M⊥(t)| = nψµψ|s⊥(t)| , (D.0.16)

where nψ is the number density of SM fermions in the target, and µψ is their magnetic

moment. In the case of a perfectly DM exactly perpendicular to Bext, that is β∥ = 0,
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we have ω0 = ∆EB
√

1 +R2 and (D.0.15) reduces to (5.4.6). For completeness, we

note that (D.0.15) has a maximum of

|s⊥(tmax)| =
2|R|

√
1 − β2

∥

√
1 + β∥R + β2

∥R
2

1 + β∥R +R2 at tmax = (2k + 1)π
ωψ

, (D.0.17)

where k ∈ N0. This recovers (5.4.7) for β∥ = 0.
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