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Abstract: We consider the use of different electroweak input schemes in the

Standard Model Effective Field Theory (SMEFT). First, we provide a review of the

implementation of three commonly used input schemes in the literature, detailing

the definitions of counterterms and present analytic formulas. An analysis of these

three schemes follows, where we discuss general features and provide benchmark

numerical results for heavy boson decays in each of the schemes at next-to-leading

order (NLO) in the dimension-six SMEFT. Exploring the sensitivity to Wilson

coefficients and perturbative convergence of different schemes, we show that the

pattern of convergence is more complicated than in the Standard Model, yet the

large-mt limit provides a valid approximation to the largest corrections. Using a

benchmark process of the W boson decay to leptons, a set of universal corrections

are defined on the leading order results. Remaining NLO corrections thus become

of a similar size between schemes.

Secondly, we develop the necessary theoretical machinery to define two new input

schemes for the SMEFT. These involve the effective weak mixing angle as an input

parameter. Again, we provide definitions and formulas for the counterterms. We

analyse a set of precision observables to find an attractive feature of the two schemes



is that large correction from top loops appearing in other schemes are absorbed

into the definition of the weak mixing angle. Conversely, this same renormalisation

condition undesirably introduces numerous flavour specific couplings between the

Z boson and charged leptons, motivating a need for flavour assumptions for any

practical application. Once more, a large-mt analysis provides a good approximation,

in most instances, to the full NLO results, allowing for the largest scheme depend-

ent corrections to be understood. However, the non-trivial pattern of perturbative

convergence across all the schemes is remarked on, and examples of prefactors mul-

tiplying different Wilson coefficients in multiple schemes are given, highlighting the

influence and importance of the scheme choice in precision electroweak calculations.
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Chapter 1

The Standard Model

We start this thesis with the customary review of the Standard Model (SM). We

focus on salient features in order to provide context for what follows.

1.1 The Standard Model Lagrangian

The SM is our best description of the fundamental interactions of the universe. It

uses the language of a Quantum Field Theory (QFT), which combines the concepts

of Special Relativity and Quantum Mechanics into a single theory.

To delve into the details of the SM, unless otherwise stated, we use [1] as a reference,

potentially changing the notation slightly to suit our needs.

The SM is a Gauge Theory, a type of QFT which is invariant under transformations

of a gauge group. For the SM, this gauge group [2–7] is

SU(3)c × SU(2)L × U(1)Y , (1.1.1)

where the subscripts c, L and Y correspond to colour, left and hypercharge respect-

ively.2 The SM Lagrangian3 is invariant under transformations belonging to the

2We shall drop the subscripts from here on.
3More precisely, a Lagrangian density. However, we refer to this as a Lagrangian throughout.
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gauge group. Despite the complexity of the SM, its Lagrangian can be written in a

succinct form, namely,

LSM =− 1
4F µνFµν

+
(
DµH

)†
(DµH)− V (H)

+ iΨ̄ /DΨ

− YijΨ̄iHΨj + h.c. , (1.1.2)

where we have used Feynman slash notation such that /D ≡ γµDµ. The covariant

derivative, Dµ, in Eq. (1.1.2), which preserves invariance under transformations of

the SM gauge group, takes the form,

Dµ = ∂µ − ig1YBµ − ig2τ
aW a

µ − igst
AGA

µ , (1.1.3)

where g1, g2 and gs are couplings, Y , τa and tA are generators and Bµ, W a
µ and GA

µ

are fields of the gauge groups U(1), SU(2) and SU(3) respectively. The group U(1)

is an Abelian , whereas SU(2) and SU(3) are non-Abelian therefore their generators

are non-commutative.

When describing the SM Lagrangian, we choose to separate it into three parts, where

each predominantly contains the information corresponding to certain collections of

particles.

1.1.1 Gauge

The first part of the SM Lagrangian we consider is the gauge Lagrangian, which

comprises terms given in line one of Eq. (1.1.2). The gauge Lagrangian is named

accordingly due to its construction purely from gauge fields. Moreover, the inform-

ation contained within describes the self interactions and dynamics of those gauge

fields. To better understand these interactions and dynamics we write this part of
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the SM Lagrangian as a sum of three terms, one for each gauge group,

LGauge = −1
4F µνFµν = −1

4BµνBµν −
1
4W aµνW a

µν −
1
4GAµνGA

µν . (1.1.4)

Written as above, the gauge Lagrangian is built of field strength tensors. We can

express the field strength tensors as a combination of their corresponding gauge

fields and structure functions of the gauge groups,

Bµν = ∂µBν − ∂νBµ ,

W a
µν = ∂µW a

ν − ∂νW a
µ + g2ε

abcW b
µW c

µ ,

GA
µν = ∂µGA

ν − ∂νGA
µ + gsf

ABCGB
µ GC

µ , (1.1.5)

where Bµ is the gauge field for U(1), W a
µ are the gauge fields for SU(2) and GA

µ are

the gauge fields for SU(3). Furthermore, εabc and fABC are the structure constants

for the gauge groups SU(2) and SU(3) respectively. We see that for the Abelian

gauge field, Bµ, the gauge part of the Lagrangian consists of only a dynamical term

whereas for the non-abelian gauge fields, W a
µ and GA

µ , we additionally produce self

interactions of the gauge fields, a feature of non-abelian gauge theories.

1.1.2 Higgs

The following part of the SM Lagrangian is the Higgs Lagrangian, given in line two

of Eq. (1.1.2),

LHiggs =
(
DµH

)†
(DµH)− V (H). (1.1.6)

The Higgs field H takes the form of an SU(2) doublet of complex scalar fields with

hypercharge Y = 1
2 [8, 9],

H =

φ+

φ0

 = 1√
2

φ1 + φ2

φ3 + φ4

 . (1.1.7)

This part of the Lagrangian describes the interaction and dynamics of the Higgs

fields and, as we will shortly see, through the process of spontaneous symmetry
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breaking, it gives rise to the masses of the particles in the SM [8,9]. To see how this

occurs, we consider the Higgs potential,

V (H) = µ2H†H + λ
(
H†H

)2
, (1.1.8)

where we have λ > 0 and µ2 < 0 such that the minimum of the Higgs potential

occurs for a non-zero value of the Higgs doublet. The minimum of the Higgs potential

occurs at the Vacuum Expectation Value (VEV), v, of the field,

〈H†H〉 ≡ v2

2 = −µ2

2λ
. (1.1.9)

Eq. (1.1.9) defines an infinite continuum of degenerate minima which are invariant

under SU(2) rotations. We are free to choose that the minimum occurs at H0,

H0 = 1√
2

0

v

 , (1.1.10)

where the VEV has the value of 246 GeV, [10]. The process of VEV generation has

consequences for the gauge bosons of the theory. Consider the action of the following

linear combinations of generators on H0,

QH0 =
(
τ 3 + Y

)
H0 = 0 ,

KH0 =
(
τ 3 − Y

)
H0 6= 0 ,

τ 1H0 6= 0 ,

τ 2H0 6= 0 . (1.1.11)

The first generator is unbroken, whereas the subsequent three are broken. Thus, as

will be demonstrated soon, we will have one massless gauge boson, and three massive

gauge bosons in the theory whose mass is generated via the Higgs mechanism.

Goldstones theorem dictates that for each broken generator of a symmetry, there

is a resultant massless Goldstone boson in the spectrum [11, 12]. These would be

Goldstone bosons are then said to be "eaten" by the gauge fields, and in doing so,

the gauge fields acquire a mass and the required longitudinal degree of freedom.
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The remianing unbroken generator Q corresponds to the electric charge. The Higgs

field, and therefore the vacumm, is uncharged as demonstrated by the annihalation

of the vacuum by the generator. The generator Q corresponds to a symmetry of the

vacuum, U(1)QED, which the guage group of the SM has been spontaneously broken

down to

SU(2)L × U(1)Y → U(1)QED. (1.1.12)

After choosing a VEV, we wish to determine the dynamics of the Higgs field around

it. For small fluctuations around the vacuum, we can write the Higgs doublet as

H = 1√
2

 0

v + h

 , (1.1.13)

whereby we have again used the fact that full Higgs Lagrangian is invariant under

SU(2) rotations and have "rotated" the doublet into this form. This procedure is

called choosing a gauge, and we have chosen what is known as the unitary gauge, the

basis in which the Goldstone components of the Higgs fields are set to zero. The field

h is the small fluctuation around the VEV and is what we take to be the physical

Higgs boson.

This form of the Higgs doublet as in Eq. (1.1.13), when substituting into the Lag-

rangian in Eq. (1.1.8), enables us to identify the Higgs mass as

m2
H = 2λv2. (1.1.14)

Furthermore, to demonstrate the generation of the gauge boson masses, we can

expand the kinetic part of the Higgs Lagrangian in unitary gauge,

(
DµH

)†
(DµH) ⊃ v2

8

[
g2

2

(
W 1

µ

)2
+ g2

2

(
W 2

µ

)2
+
(
g2W

3
µ − g1Bµ

)2
]

. (1.1.15)

The fields W 1
µ and W 2

µ are mass-diagonal, but W 3
µ and Bµ are not. To diagonalise
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these, we perform the field rotationsW 3
µ

Bµ

 =

 cos θw sin θw

− sin θw cos θw


Zµ

Aµ

 , (1.1.16)

where θw is the weak mixing angle given by

tan θw = g1

g2
, (1.1.17)

and

sin θw = g1√
g2

1 + g2
2

,

cos θw = g2√
g2

1 + g2
2

. (1.1.18)

We identify that Zµ and Aµ are the physical degrees of freedom given by the Z boson

and photon respectively.

Additionally, experimentally we measure the charges of the W bosons to be ±1. To

match this, we define

W ±
µ = 1√

2
(
W 1

µ ± iW 2
µ

)
. (1.1.19)

Therefore, to identify the masses of the gauge bosons we express Eq. (1.1.15) in

terms of the physical fields,

(
DµH

)†
(DµH) ⊃

[
M2

W W +
µ W µ− + 1

2M2
Z

(
Zµ

)2
+ 1

2M2
A

(
Aµ

)2
]

, (1.1.20)

with

MA = 0,

MW = g2
v

2 ,

MZ =
√

g2
1 + g2

2
v

2 . (1.1.21)

As expected, we have one massless boson and three massive ones. Finally, for

completeness, using all notation set forth thus far, we express the covariant derivative
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in the EW sector as

Dµ = ∂µ − i
g2√

2
(
W +

µ τ+ + W −
µ τ−

)
− i

g2

cos θw

Zµ

(
τ 3 − sin2 θwQ

)
− ieAµQ, (1.1.22)

where we have defined, τ±
µ = 1√

2

(
τ 1

µ ± iτ 2
µ

)
and e is the electric charge,

e = g1g2√
g2

1 + g2
2

. (1.1.23)

1.1.3 Fermion

The final two lines of Eq. (1.1.2) are the last part of the SM Lagrangian. The fermion

part, as our name suggests, describes the dynamics and interactions of the fermions.

Line three is a kinetic term for massless fermions and line four, after the spontaneous

symmetry breaking, gives rise to the fermion masses through the Higgs mechanism.

In what is to follow, we split the fermions up into the leptons and quarks and discuss

each separately.

Leptons

The kinetic term for the leptons reads,

Llep,kin = i¯̀i
L /Dδij`

j
L + i¯̀i

R /Dδij`
j
R, (1.1.24)

where

`i
L =


νi

eL

ei
L


 , `i

R =
{
ei

R

}
, (1.1.25)

and i = {1, 2, 3} represents the three flavour generations. The fields `i
L are an

SU(2) doublet whereas the fields `i
R are an SU(2) singlet. As the operator /D is

the identity in leptonic flavour space, which we have made explicit in Eq. (1.1.24)

via the inclusion of the flavour space delta function δij, `L and `R form a triplet

representation of a global symmetry group, U(3)`L
and U(3)`R

respectively.1

1This is an approximate symmetry as it is broken by the Yukawas.
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The final line of Eq. (1.1.2) is the Yukawa Lagrangian, and for the leptons we have

Llep,Yuk = −Y e
ij

¯̀i
LHej

R + h.c.

= −Y e
ij ē

i
Lej

R

v + h√
2

+ h.c. , (1.1.26)

where in the second line we have chosen unitary gauge for the Higgs doublet. The

matrix Y e is the Yukawa matrix for leptons which does not need to be Hermitian

and may be complex.

In the form as written, the fields are expressed in what is labelled as the weak basis,

so called as it is the basis for weak interactions. However, we are not restricted to

this basis and have the freedom to redefine the lepton fields,

eL → LeeL, eR → ReeR , (1.1.27)

where Le and Re are unitary matrices. Therefore, we can choose a frame in which

we are diagonal in flavour space, labelled as the mass basis. In the mass basis, the

Yukawa Lagrangian takes the form

Llep,Yuk = −M e
ij ē

i
Lej

R

v + h√
2

+ h.c. , (1.1.28)

where

M e = L†
eY

eRe = diag
(
ye, yµ, yτ

)
. (1.1.29)

Hence, we have rotated the fields into mass eigenstates, giving justification for the

name of the basis. The masses of the leptons are read off as

ml = yl

v√
2

. (1.1.30)

The presence of the Yukawa interaction breaks the global symmetry of the leptons,

U(3)`L
× U(3)`R

→ U(1)e × U(1)µ × U(1)τ , (1.1.31)

to the symmetry group of lepton family number conservation, which is exact in

the SM. Therefore, the number of leptons of each species Ne, Nµ and Nτ are
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separately conserved in each interaction [13]. Consequently, total lepton number is

also conserved.

Quarks

The other fermionic fields in the SM are the quarks. Their kinetic terms are

Lquark,kin = iq̄i
L /Dδijq

j
L + iūi

R /Dδijuj
R + id̄i

R /Dδijdj
R + h.c. , (1.1.32)

where

qi
L =


ui

L

di
L


 , ui

R =
{
ui

R

}
, di

R =
{
di

R

}
, (1.1.33)

with i = {1, 2, 3} for the three generation of quarks. Here, ql, uR and dR again form

triplet representations of the global symmetry groups U(3)qL
, U(3)uR

and U(3)dR
.

Analogous to leptons, this is an approximate symmetry as it is broken by the presence

of the Yukawa term for quarks,

Lquarks,Yuk = −Y u
ij q̄i

LH̃uj
R − Y d

ij q̄
i
LHdj

R + h.c.

= −Y u
ij ūi

Luj
R

v + h√
2
− Y d

ij d̄
i
Ldj

R

v + h√
2

+ h.c. , (1.1.34)

where in the second line we have chosen the unitary gauge and

H̃ = iσ2H , (1.1.35)

where σ2 is the second Pauli matrix

σ2 =

0 −i

i 0

 . (1.1.36)

Again, we have the freedom to perform the field redefinitions,

uL → LuuL, uR → RuuR,

dL → LddL, dR → RddR, (1.1.37)
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which take us from the weak basis for the quarks into the mass basis. In doing so,

the Yukawa terms for quarks in unitary gauge become,

Lquarks,yuk = −Mu
ijū

i
Luj

R

v + h√
2
−Md

ij d̄
i
Ldj

R

v + h√
2

+ h.c. , (1.1.38)

where

Mu = L†
uY uRu = diag (yu, yc, yt) ,

Md = L†
dY dRd = diag (yd, ys, yb) . (1.1.39)

We can therefore read off the masses of the quarks as

mq = yq

v√
2

. (1.1.40)

The field redefinitions of Eq. (1.1.27) and Eq. (1.1.37) have some interesting con-

sequences for the kinetic terms of the Lagrangian for the fermions. In the weak basis,

the covariant derivative can be expanded such that part of the kinetic terms read,

Lfer,kin ⊃
e√

2 sin θw

(
ēi

LγµW +
µ νi

eL
+ ν̄i

eL
γµW −

µ ei
L

+ūi
LγµW +

µ di
L + d̄i

LγµW −
µ ui

L

)
. (1.1.41)

After performing the redefinitions of Eq. (1.1.27) and Eq. (1.1.37) we have the

freedom to keep the leptonic current flavour diagonal by redefining νeL
which was

previously untouched. This freedom is not available for the quarks. Consequently,

in the mass basis, the terms in the equation above for quarks are written as

Lquarks,kin ⊃
e√

2 sin θw

(
[Lu]†ik[Ld]kjū

i
LγµW +

µ dj
L + [Ld]†ik[Lu]kj d̄

i
LγµW −

µ uj
L

)

= e√
2 sin θw

(
Vijū

i
LγµW +

µ dj
L + V †

ij d̄
i
LγµW −

µ uj
L

)
, (1.1.42)

where we have defined

V ≡ L†
uLd =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 , (1.1.43)
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which is known as the CKM matrix [14,15], named after Cabibbo, Kobayashi and,

Maskawa. In the SM, the CKM matrix is the only source of interactions between

fermions of different generations, so-called flavour violating interactions. The Wolfen-

stein parameterisation [16] can approximate the CKM matrix using a single para-

meter

V ≈


1− λ

2

2 λ λ3

−λ 1− λ
2

2 λ2

λ3 −λ2 1

 (1.1.44)

where experimentally, it is found that λ ≈ 0.23 [10]. This parameterisation of the

CKM matrix gives us an approximate strength of the flavour violating interactions,

where we see that these interactions are significantly suppressed as compared to the

flavour conserving interactions.

1.1.4 Assumptions on the Lagrangian

In the previous sections, we have described the bulk of the SM, mentioning all

fields and couplings relevant for this thesis, with remaining aspects being discussed

in detail in reference texts [1, 17, 18]. Going forward, we need to understand how

calculations in the SM are performed, detailing specifics to navigate potential road

blocks along the way. As is apparent from the numerous particles and interactions

present in the SM, any calculations we pose will have significant complexity when, as

we wish to do, quantum corrections are discussed. Consequently, we therefore apply

a few simplifications and assumptions on the Lagrangian to reduce the computational

ordeal we have to undertake. These assumptions, although not at the cutting edge

of our ability in SM precision calculations, nonetheless are common practice for the

field of work considered in this thesis and more than suffice for this application.

The first assumption we make is taking the massless limit of all fermions except

the top quark. The quark masses we have set to zero range from the lightest being

the electron having a mass of 0.5 MeV, up to the bottom quark of mass 4.2 GeV.
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In comparison to the W boson of mass 80.4 GeV, which is approximately 20 times

heavier than that of the bottom quark, the light fermions masses are insignificant

and can be ignored. The main desirable consequence of this assumption affects the

loop integrals introduced in Section 1.2.1. We have reduced the number of massive

scales appearing inside the integrals, greatly simplifying them.

Secondly, we set the CKM matrix to the identity. From the Wolfenstein paramet-

erisation, Eq. (1.1.44), we can see that this simplification, although not perfect, is

a good approximation of the underlying physics as we only neglect terms sublead-

ing in the small parameter λ. The importance of this assumption is found again

when considering the loop corrections to a process. Removing the source of flavour

changing interactions results in a significantly reduced set of Feynman diagrams one

must consider when computing loop corrections. Hence, fewer loop integrals must

be computed.

1.2 Calculations in the Standard Model

It is at this point we wish to demonstrate how calculations in the SM are performed,

in particular, Next-to-Leading-Order (NLO) EW calculations, which contribute the

main calculational workload of this thesis. We will focus on the problem of loop

level calculations and the difficulties that emerge which we must overcome. We

will discover how Ultra Violet (UV) divergences arise, how they are regularised

and ultimately renormalised to return finite predictions once a sufficiently inclusive

observable is considered.

To highlight all the intricacies of an NLO calculation in the SM, there is no better

way than that of an example. An important process in the discussion of input

schemes is the decay of the Z boson to leptons. Specifically, here we choose to

consider the decay to the first generation of charged leptons, the electron, and its

anti-particle, the positron. To make our point in the most succinct way, we choose



1.2. Calculations in the Standard Model 13

a slightly simplified version of the problem and only consider the Quantum Electro

Dynamics (QED) corrections to the process.

The first port of call is to use the Feynman rules, which can be derived from the

Lagrangian (with details found in [1] and a full list can be found in [19]), to write

down the matrix element for the process. Using the SM Feynman rules, the bare

amplitude, denoted by the subscript 0, thus reads

A0 (Z → ee) = e0

2cw,0sw,0

(
AL,0SL +AR,0SR

)
, (1.2.1)

where we have defined

s2
w,0 = 1− c2

w,0 , c2
w,0 = M2

W,0

M2
Z,0

. (1.2.2)

We have introduced the spinor structures

SL =
[
ū(p

e
−)γνPLv(p

e
+)
]

ε∗
ν(pZ) , SR =

[
ū(p

e
−)γνPRv(p

e
+)
]

ε∗
ν(pZ) , (1.2.3)

with PL = (1 − γ5)/2 and PR = (1 + γ5)/2 being the left and right projection

operators. The expansion for the bare amplitude can be written as

AL/R,0 = A(4,0)
L/R,0 +A(4,1)

L/R,0 + . . . , (1.2.4)

where the superscript (i, j) of A(i,j)
L/R,0 labels the operator dimension1, i, and the order

in the perturbative series, j. The Leading-Order (LO) terms are simple to write

down,

A(4,0)
L,0 = −1 + 2s2

w,0 , A(4,0)
R,0 = 2s2

w,0 , (1.2.5)

At LO the amplitude is now complete, we could square it, perform the spin sum/av-

erage and integrate over the two body phase space to obtain a prediction for this

decay rate - see Appendix A.2. However, the NLO corrections to the amplitude,

A(4,1)
L/R,0, have features which we must discuss further.

1In the SM this is redundant as it is always four, but we introduce it with the foresight of what
is to come.
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p
e

−

p
e

+

kγZ

e−

e+

Figure 1.1: Feynman diagram contributing to the decay of the Z
boson to electrons at one loop and with a QED correc-
tion.

1.2.1 Loop Diagrams

In many instances, an NLO calculation in the SM, or any QFT, will involve a loop

integral which is infinite. In our example of Z → ee, this is no different. Consider

the virtual QED correction to the process: the graph where a photon connects the

two outgoing electrons, as seen in Figure 1.1.

The calculation of this diagram involves the loop integral

∫ d4k

(2π)4 γµ

(
/pe

− − /k
)

(
p

e
− − k

)2 γσ
(
PLA

(4,0)
L + PRA

(4,0)
R

) (/pe
+ + /k

)
(
p

e
+ + k

)2 γµ

1
k2 , (1.2.6)

where, as per our assumptions, we have set the electron mass to zero.

In four space-time dimensions, this integral is infinite. The integral infinite as we

integrate up as k →∞, which we call a UV divergence. This can easily be seen by a

counting exercise, giving the number of powers of loop momenta in the problem as

zero, which then when integrated to infinity diverges. Moreover, the integral diverges

as we integrate k → 0, labelled an Infra Red (IR) divergence [20]. This occurs as the

inegrand itself diverges in this limit. These divergences are dealt with separately to

achieve a finite result. UV divergences are cancelled in the renormalisation process,
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whereby counterterms are introduced which exactly match the divergences of the

amplitude. On the other hand, to NLO in perturbation theory, the IR divergences

of the virtual corrections are cancelled by considering an IR safe observable. An

IR safe observable is one in which we also include diagrams with an extra particle

such that if it goes soft or collinear to another particle, the result will look identical

to the desired process. In the case of Z → ee, the process including an additional

photon in the final state should also be considered. The Z → eeγ decay rate will also

have IR divergences which will exactly cancel with those appearing in the virtual

correction. This cancellation, or more generally the fact that the SM is IR finite

as a whole when a sufficiently inclusive observable is considered, is called the KLN

theorem [21,22].

In order to cancel both UV and IR divergences, we first need a method to math-

ematically define the divergences arising from the Feynman integrals, we need to

regularise them. One method of regularisation, but not the only, is that of dimen-

sional regularisation [23]. Dimensional regularisation involves moving the integral

away from four spacetime dimensions, where it is infinite, to d = 4− 2ε spacetime

dimensions, with ε being a small positive parameter, where it is finite. This enables

a Laurent series around ε = 0 to be taken. The resulting expansion contains poles

in ε providing an explicit, analytic expression of the divergences upon recovering the

four dimensional space-time result.

An interesting consequence of moving away from four space-time dimensions is that

the mass dimension of the fields and couplings shift. However, to maintain integer

coupling mass dimensions, we can factor out some function of the parameter µ, which

has mass dimension one, as

g → µ
4−d

2 g, (1.2.7)

where g is an arbitrary coupling.

Returning to our example, after regularising the integral, UV and IR singularities

are made manifest as poles in ε which enabling explicit cancellation through the
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renormalisation procedure or when considering an IR safe observable. We find the

diagram (figure 1.1) evaluates to

MQED
loops ∼

(
1

εUV
− 2

ε2
IR
− 2

εIR

(
2 + log −µ2

M2
Z

))

× e3

32π2cwsw

(
A(4,0)

L SL +A(4,0)
R SR

)
+ . . . , (1.2.8)

where µ is the renormalisation scale and the ellipsis represents finite terms. For

convenience, we have dropped the subscript 0 denoting that these are bare parameters.

Additionally, we have identified the source of the divergence, either UV or IR in

nature, with a subscript on the epsilon, even though strictly speaking in dimensional

regularisation εUV = εIR = ε. To move forward in our calculation, we require a

method to remove these divergences.

1.2.2 UV Renormalisation

Renormalisation is the method we use to deal with UV divergences. This constitutes

redefining the bare parameters and fields in the Lagrangian. This allows the infinite

shifts, introduced by quantum corrections to relations between the Lagrangian para-

meters and the experimentally measured quantities, to be absorbed into additional

terms called counterterms. Therefore, the counterterms themselves are divergent;

the use of dimensional regularisation manifests the divergences as poles in ε.

A full review of the renormalisation in the EW SM is given in [24], but briefly,

the renormalisation procedure follows the following format. We write the bare

Lagrangian parameters or fields in terms of the renormalised quantities as,

X0 = XZX = X(1 + δX) , (1.2.9)

where ZX is a renormalisation constant, which we then expand in perturbation theory

to define the counterterm δX. A renormalisation condition defines the exact form

of the counterterm with different conditions giving a differing finite structure but a

necessarily identical pole structure. Calculations using the renormalised Lagrangian
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then involve additional diagrams, with counterterm insertions, which cancel UV

divergences of the loop integrals.

We will demonstrate this procedure with a subset of the SM parameters and fields

relevant for our example of Z → ee and the additional calculations presented here-

inafter. We will focus on quantities which are renormalised on-shell, whereby the

renormalisation conditions are such that the pole of a propagator is at the physical

mass whilst also requiring that the resudue of a propagator is unity when evaluated

at this mass. Furthermore, it is required that higher order vertex corrections vanish

in the limit of zero momnetum transfer. The set of quantities we renormalise

here are: the wavefunction of the W and Z bosons, and the fermions as well as the

W -bosons and Z-bosons masses and the QED coupling α.

As a side note, as the main focus of this thesis is renormalisation of different input

schemes in the Standard Model Effective Field Theory (SMEFT), it is important to

state at this point that these are not the only way to perform the renormalisation nor

the only parameters we can define renormalisation conditions for. For example, the

Minimal Subtraction (MS) renormalisation scheme defines the counterterms to be

solely the poles in ε. Alternatively, modified Minimal Subtraction (MS) also includes

factors of γE and log 4π which are associated with the pole structure. Furthermore,

the on-shell scheme, which we discuss here, includes finite corrections in counterterms

from two point functions in their definition. Moreover, we could use the Fermi

constant GF as our coupling parameter as opposed to α and thus a renormalisation

condition for this must be defined - see Section 4.2.

Nonetheless, to begin the determination of the on-shell counterterms we first relate

the bare parameters to the renormalised ones as,

e0 = eZe = e(1 + ∆e(4,1)) ,

M2
W,0 = M2

W Z
M

2
W

= M2
W (1 + 2∆M

(4,1)
W ) ,

M2
Z,0 = M2

ZZ
M

2
Z

= M2
Z(1 + 2∆M

(4,1)
Z ) ,

f i
L,0 = f i

L

√
ZL

f
i = f i

L(1 + 1
2∆Z

L(4,1)
f

i ) ,
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f i
R,0 = f i

R

√
ZR

f
i = f i

R(1 + 1
2∆Z

R(4,1)
f

i ) ,

W ±
0 = W ±

√
ZW = W ±(1 + 1

2∆Z
(4,1)
W ) ,Z0

A0

 =


√

ZZZ

√
ZZA

√
ZAZ

√
ZAA


Z

A

 =

1 + 1
2∆Z

(4,1)
ZZ

1
2∆Z

(4,1)
ZA

1
2∆Z

(4,1)
AZ 1 + 1

2∆Z
(4,1)
AA


Z

A

 . (1.2.10)

For succinctness of expression and to reduce the number of equations, we have

changed the notation slightly from that of Section 1.1 and written a general fermion

as f . The renormalised one-particle irreducible two point functions in Feynman

gauge are then given by

ΓW
µν(k) = −igµν

(
k2 −M2

W

)
− i

(
gµν −

kµkν

k2

)
ΣW

T (k2)− i
kµkν

k2 ΣW
L (k2) ,

Γab
µν(k) = −igµν

(
k2 −M2

a

)
− i

(
gµν −

kµkν

k2

)
Σab

T (k2)− i
kµkν

k2 Σab
L (k2) ,

Γf
ij(p) = iδij

(
/p−mi

)
+ i

[
/pPLΣf,L

ij (p2) + /pPRΣf,R
ij (p2) +

(
mf,iPL + mf,jPR

)
Σf,S

ij (p2)
]

.

(1.2.11)

where a, b = A, Z and remembering MA = 0. The self energies Σ(k2) are in

general defined as in 1.2.12 where we have reproduced the figures from [25]. The self

energies are constructed from 1PI diagrams Σ1PI(k2), a 2-point tadpole counterterm

Σt,2, tadpole loop diagrams Σtad and one point tadpole counterterms Σt,1,

Σ(k2) = Σ1PI(k2) + Σt,2 + Σtad + Σt,1 . (1.2.12)

= 1 +
δt

+
1

+
δt

Specifically, here in this thesis we use the Fleischer Jegerlehner (FJ) tadpole scheme

[26] where the tadpole counterterms Σt,1 and Σt,2 cancel exactly. What remains

is therefore just the contribution from the 1PI diagrams and the direct tadpole

loop diagrams. Invoking the renormalisation condition, for which an explicit

mathematical constraint can be found in [24], gives the gauge boson counterterms
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to be

∆M
(4,1)
W = 1

2 Re ΣW
T (M2

W )
M2

W

, ∆M
(4,1)
Z = 1

2 Re ΣZZ
T (M2

Z)
M2

Z

,

∆Z
(4,1)
ZZ = −Re ∂ΣZZ

T (k2)
∂k2

∣∣∣∣∣
k

2=M
2
Z

, ∆Z
(4,1)
ZA = 2ΣAZ

T (0)
M2

Z

,

∆Z
(4,1)
AZ = −2 Re ΣZA

T (M2
Z)

M2
Z

, ∆Z
(4,1)
AA = −Re ∂ΣAA

T (k2)
∂k2

∣∣∣∣∣
k

2=0
. (1.2.13)

While the fermion wavefunction counterterms are given by

∆Z
L(4,1)
f

i = −Re Σf,L
ii (m2

f,i)−m2
f,i

∂

∂p2 Re
[
Σf,L

ii (p2) + Σf,R
ii (p2) + 2Σf,S

ii (p2)
] ∣∣∣

p
2=m

2
f,i

,

∆Z
R(4,1)
f

i = −Re Σf,R
ii (m2

f,i)−m2
f,i

∂

∂p2 Re
[
Σf,R

ii (p2) + Σf,R
ii (p2) + 2Σf,S

ii (p2)
] ∣∣∣

p
2=m

2
f,i

.

(1.2.14)

It is important to remember that although we have made the simplification of setting

the light fermion masses to zero, this limit must be made after taking the derivative

with respect to momentum in the fermion wavefunction counterterms. Finally, the

electric charge renormalisation is given by

∆e(4,1) = −1
2∆ZAA −

sw

cw

∆ZZA. (1.2.15)

It should be made clear that the mass dimension and loop number of the two point

functions on the right-hand side of the above equations should match that of the

left-hand side, so in all the cases given here we have a mass dimension four and one

loop. This is important when it comes to renormalising the SMEFT, in the second

half of this thesis, where the mass dimension for counterterms needed is six.

Moving back to our example, calculation of the counterterms gives the following,

MQED
CT ∼

(
1

εIR
− 1

εUV

)
e3

32π2cwsw

(
A(4,0)

L SL +A(4,0)
R SR

)
+ . . . , (1.2.16)

where again the ellipsis represents finite terms. As expected, the UV divergences

cancel exactly with those in Eq. (1.2.8) ,

MQED
loops +MQED

CT ∼
(
− 2

ε2
IR
− 1

εIR

(
3 + log −µ2

M2
Z

))
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× e3

32π2cwsw

(
A(4,0)

L SL +A(4,0)
R SR

)
+ . . . . (1.2.17)

The amplitude is now UV finite, however, IR divergences remain which we handle

next.

1.2.3 IR safety

From the UV renormalised matrix element, we are now in the position to calculate

the decay rate for Z → ee . However, naively following the procedure to calculate a

decay rate for a two body decay returns a result which is not IR safe,

ΓQED
Z→ee = MZe2

96πc2
ws2

w

(
5− 12c2

w + 8c4
w

)
(1− e2

8π2

(
2

ε2
IR

+ 1
εIR

(
5 + 4 log µ2

M2
Z

)
+ . . .

)
.

(1.2.18)

There remains IR divergences which we need to remove. IR divergences can be

classified into two categories, soft and collinear. Soft divergences occur when, at the

amplitude level, loop momenta of a massless particle tends to zero, as we have seen

in Eq. (1.2.8) or when a singular massless external particles’ energy tends to zero.

Collinear divergences occur when two massless particles occupy the same region in

phase space.

The KLN theorem [21,22] states that the SM is finite when an IR safe observable is

considered to a given expansion level in perturbation theory. An IR safe observable

is one in which all degenerate states are summed over. For our example, this

involves the addition of the decay rate where we have included an additional photon

in the final state. As the photon becomes sufficiently soft or collinear, this is

indistinguishable from the desired process. The decay rate of this three body final

state contains IR singularities as expected,

ΓQED
Z→eeγ = MZe2

96πc2
ws2

w

(
5− 12c2

w + 8c4
w

) e2

8π2

(
2

ε2
IR

+ 1
εIR

(
5 + 4 log µ2

M2
Z

)
+ . . .

)
.

(1.2.19)
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The determination of this decay rate involves a three-body phase space integral, for

which details can be found in Appendix (A.2) along with those for the two-body

phase space. The aggregate of the two decay rates ΓQED
Z→ee and ΓQED

Z→eeγ is an IR safe

observable at NLO and is therefore finite to NLO in perturbation theory,

ΓQED
Z→ee(γ) ≡ ΓQED

Z→ee + ΓQED
Z→eeγ = MZe2

96πc2
ws2

w

(
5− 12c2

w + 8c4
w

)
(1 + . . .) . (1.2.20)

Additionally, the result is independent of the renormalisation scale µ, a feature of the

on-shell renormalisation scheme as all inputs are defined from a physical observable.

1.2.4 Renormalisation Group

In our example above, we have chosen to present the on-shell renormalisation scheme.

However, this is by no means the only choice. As mentioned, one could use the MS

or MS scheme for the coupling to equally achieve a UV finite result. A different

renormalisation procedure will however render the UV finite matrix element differ-

ent. A key difference of the MS or MS scheme is an explicit dependence on the

renormalisation scale, µ, which is accompanied by the coupling additionally being

dependent on the same scale.

Consider the renormalisation of the electric charge in the MS scheme in d = 4− 2ε

dimensions. We relate the bare and renormalised couplings through an analogous

equation to Eq. (1.2.10)

e0 = µεe(µ)Ze(µ), (1.2.21)

where we have now an explicit and implicit dependence on µ. As the unrenormalised

Lagrangian has no reference to a renormalisation scale, it is necessarily independent

on µ. The same can also be said about any one of the parameters of the Lagrangian.

This property must be preserved when expressing the bare parameters in terms of

the renormalised ones. Therefore, we take a derivative of Eq. (1.2.21) with respect
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to µ,1

0 = µ
de0

dµ
= εµεe(µ)Ze(µ) + µε+1 de(µ)

dµ
Ze(µ) + µε+1e(µ)dZe(µ)

dµ
. (1.2.22)

We can then rewrite the right-hand side to read

0 = µεZe(µ)
(

de(µ)
d log µ

+ εe(µ)
)

+ µεe(µ)dZe(µ)
d log µ

, (1.2.23)

or when rewriting in terms of α = e
2

4π
, the fine structure constant,

Ze(µ)
(

1
2

dα(µ)
d log µ

+ εα(µ)
)

+ α(µ)dZe(µ)
d log µ

= 0. (1.2.24)

Again, we can rewrite this one last time to identify the QED beta function,

dα(µ)
d log µ

≡ β(α) . (1.2.25)

Eq.(1.2.25) and those similar are known as the Renormalisation-Group (RG) equa-

tions [27,28]. These can be solved perturbatively in the coupling,

β(α) = −2α(µ)
∑

n=0

(
α(µ)
4π

)n+1

βn(α)
 . (1.2.26)

The LO solution to Eq.(1.2.26) is the LO QED beta function β0(α). We can compute

this in a five flavour QED×QCD theory, where the top quark has been decoupled

[29],2

β0(α) = −4
3
(
NlQ

2
l + NC

(
(Nu − 1) Q2

u + NdQ2
d

))
= −80

9 , (1.2.27)

where Nc is the number of colours and Nf and Qf , with f = l, d, u, are the number

and charges of the leptons, down type quarks and up type quarks respectively.

Solving Eq.(1.2.25) to LO we have

α(µ) = α(µ0)
1− α(µ0)β0(α)

2π
log µ0

µ

1We multiply through by µ for later convenience.
2We choose to use the five flavour theory here to match the calculations presented in Chapters

4 and 5.
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= α(µ0)
(

1 + 2γe(µ0) log µ0

µ

)
, (1.2.28)

where in the final line we have again expanded the denominator and written the

equation in terms of the electric charge anomalous dimension γe(µ0) = α(µ0)
π
× 20

9 .

Eq. (1.2.28) can be used to perform scale changes of the couplings.

One can analogously play the same game with the QCD couplings or with the quark

masses to define the QCD beta function or the quark mass anomalous dimension.

In a five flavour QED×QCD theory, this procedure is detailed in [29] along with the

additional details on the previous discussion.

A final remark is to mention that any observable should be invariant under a change

in scale at a certain order in perturbation theory. Any explicit µ dependence must

analytically cancel against the implicit µ dependence of the running of the couplings

and masses, such as in Eq. (1.2.28).

Changes in the numerical value of predictions when the scale is varied occur first at

the succeeding order in perturbation theory, giving an avenue to make an estimate

on theoretical uncertainties.

These so-called scale uncertainties are typically estimated by varying the scale up

and down by a factor of two in order to determine the stability of a result under

changes in the unphysical renomalisation scale. The uncertainty is thus determined

by the variation of the prediction. Scale uncertainties give one advantage of an MS

renormalisation scheme over an on-shell one, where parameters do not run.





Chapter 2

The Standard Model Effective

Field Theory

In this chapter, we wish to introduce the concept of the Standard Model Effective

Field Theory (SMEFT). However, we first start with the general notion of an Effect-

ive Field Theory (EFT), using Fermi Theory as a simple example, and progressing

the ideas to define the SMEFT. We consider how working with the SMEFT changes

the interpretation parameters that also exist in the SM. We conclude in obtaining

the first step in relating the Lagrangian parameters to an input scheme.

2.1 Effective Field Theories

An EFT, in the context of particle physics, is a QFT which is only a valid approx-

imation up to a given energy scale. Defining an applicable EFT is dependent on

the underlying high energy process having a hierarchy of scales [30], a high "new

physics" scale, Λ, and the relatively smaller scale of the experimental process, E,

being considered. A general EFT Lagrangian will have the structural form [31–33]

LEFT =
∑

i

C(d)
i O

(d)
i , (2.1.1)
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where C is the Wilson coefficient for operator O. When constructing the EFT

Lagrangian, there is a systematic procedure to include corrections of higher powers

in δ ∼ E
Λ , which can be achieved in a top-down or bottom-up method. The precision

of predictions made in the EFT are determined by the small expansion parameter

δ, otherwise called a power counting parameter. For the EFT to be an accurate

description of the physics at low orders in the expansion in δ, it needs to be small,

i.e. we need the hierarchy of scales. Like any QFT, an EFT is accompanied by

a regularisation and renormalisation scheme, which are necessary to obtain finite

matrix elements and ultimately make predictions for physical processes.

Given the current limitations of the SM, it can be said that it is the first term of an

EFT expansion, valid up to some currently unknown, high energy scale. At energies

approaching this scale, the SM would no longer be an accurate description of physics,

and a new alternate theory with a different particle content and interactions would

be a more apt description.

2.1.1 Introduction to Effective Field Theories

First, in order to demonstrate some of the properties of EFTs, let us consider an

EFT where the UV theory, the theory containing the heavy dynamical degrees

of freedom, is known. Through the process of integrating-out the heavy degrees of

freedom [34,35], we obtain a new EFT, which approximates the UV theory in the low

energy limit. The mass scale of the heavy particle integrated-out of the theory gives

the energy scale, around which the EFT is no longer a valid approximation. This

process of obtaining the EFT from a known, high energy theory is colloquially called

the top-down approach. A simple toy example, illustrating how the integrating-out

process is applied, is given in [36] where a heavy scalar is integrated-out of a zero

dimensional theory, containing the heavy scalar and a light scalar, leaving only a

single light scalar in the EFT. Any notion of the heavy particle is lost, but its effects

are imprinted on additional operators included in the low energy theory.
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Here however, to understand some key features of EFTs, we use a more applicable

and probably the most famous example of an EFT, Fermi theory. Fermi theory is a

low energy theory of lepton interactions which was first proposed in the 1930s to

explain nuclear β-decay [37]. Today, a more fundamental theory is known, the SM,

from which Fermi theory can be derived as an EFT.

Consider the process of Muon decay as described in the SM. This process is mediated

by the W boson, which couples to a charged lepton and corresponding neutrino via

the weak current,

jµ
W = (ν̄`γ

µPL`) , (2.1.2)

where ` is a generic charged-lepton, ν` is the corresponding neutrino and barred

quantities have their usual definitions. The Feynman gauge tree level amplitude for

this process in the SM is given by

A =
(

g2√
2

)2 [
ν̄µγµPLµ

] ( gµν

p2 −M2
W

)
[ēγµPLνe] , (2.1.3)

where g2√
2 is the coupling of the W boson, of which we have two copies; the W

propagator connects two lepton currents. Now consider the situation in which there

is a low momentum transfer such that we have p�MW . In this low energy limit of

the problem, we can expand the W propagator in powers of p
2

M
2
W

,

1
p2 −M2

W

= − 1
M2

W

1 + p2

M2
W

+
(

p2

M2
W

)2

+ . . .

 , (2.1.4)

where the . . . represents higher order terms in the expansion. Substituting Eq. (2.1.4)

into our muon decay amplitude calculated in the SM, Eq. (2.1.3), and keeping only

the leading order term in the expansion of the propagator, we have,

A = − g2
2

2M2
W

[
ν̄µγµPLµ

]
× [ēγµPLνe] , (2.1.5)

which is the low energy limit of the amplitude in the SM. However, this same low

energy approximation for the amplitude could have been obtained by considering
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the Effective Lagrangian,

L = −4GF√
2
[
ν̄µγµPLµ

]
× [ēγµPLνe] , (2.1.6)

where, for the historical reason that GF was experimentally measured before the

idea of electroweak theory, we have made the identification,

GF√
2

= g2
2

8M2
W

. (2.1.7)

The EFT Lagrangian in Eq. (2.1.6), is the Lagrangian for Fermi Theory. The W

boson has been integrated out of the SM as it is no longer a dynamical degree of

freedom in the EFT. The effects of the W boson are captured by the dimension-six

four fermion interaction and the associated effective coupling.

Although it is a simple example of an EFT, with only a single term in the Lagrangian,

we can explore some of the key aspects and characteristic features of EFTs by

studying it.

First, we note that the derivation required the fact that p�MW , the mass of the W

boson is large compared to other scales in the problem, and so we have a hierarchy of

scales as required. Therefore, this implies that the EFT loses validity as we approach

this energy scale, E ∼MW , as a defining assumption of the EFT is broken.

The expansion parameter in this theory can be identified as δ = p
2

M
2
W

from Eq. (2.1.4).

In this example, we have only kept terms to zeroth order in the expansion parameter,

errors are therefore O
(

p
2

M
2
W

)
as these are the largest terms we have truncated in

the series. The truncated terms have the approximate size, m
2
µ

M
2
W

∼ 10−6, giving

rationalsation for the truncation of the expansion to first order. Nonetheless, to

reduce the errors, one could have kept higher order terms in the expansion parameter.

At the next order, dimension-eight terms are included, which involve the same fermion

bilinears as the dimension-six terms along with two powers of a derivative. Retention

of terms O(δ2) implies the errors are now O(δ3). This relation between the order of

terms kept, and the precision potentially obtained from a physical prediction, is a

general feature of an EFT. Expansion up to order δn implies predictions will have
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an inherent error of order δn+1.

The examples of EFTs given so far have been examples of top down EFTs, where

the high energy dynamics are known and have been integrated out. What remains

are effective operators and an effective coupling constant comprised from known

parameters of the UV theory. However, one can consider the same operator, with

no mention of the UV theory, and include an unknown effective coupling constant.

In the example of Fermi theory,

L = C
[
ν̄µγµPLµ

]
× [ēγµPLνe] , (2.1.8)

is the form of this Lagrangian, with C being the effective coupling constant, more

generally known as a Wilson coefficient. As alluded previously, this was historically

the first theory for Muon decay, derived before any knowledge of the W boson, where

the Fermi constant GF was used in place of the more modern terminology of Wilson

coefficients.1

Building the EFT by starting with a low energy theory and constructing higher

dimensional operators from fields in the low energy theory is known as the bottom-

up approach.

One can consider the SM as the first term in a low energy EFT. By keeping the

method of electroweak symmetry breaking linear and including higher dimensional

operators constructed purely from SM fields in a bottom-up approach, one will arrive

at the SMEFT. This theory is the topic of discussion for the remainder of this thesis.

2.2 The Standard Model Effective Field Theory

We now focus on the SMEFT [33,38–40] which, contrary to our initial presentation

of Fermi Theory, is an example of a bottom-up EFT. The SMEFT Lagrangian starts

from the SM Lagrangian Eq. (1.1.2) and is constructed by the inclusion of additional,

1As written, a factor of −2
√

2 is also required.
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higher dimensional operators. The introduced operators are built purely from SM

fields, so that no new degrees of freedom are introduced. These composite operators,

by construction, obey all the symmetries of the SM: the Poincaré symmetries and the

gauge symmetries of Eq. (1.1.1). Each operator is accompanied by a corresponding

Wilson coefficient, which, as previously mentioned, can be interpreted as an effective

coupling coefficient for the corresponding operator. The mass dimension of the

Lagrangian must be four. Consequently, Wilson coefficients associated with higher

dimensional operators have negative mass dimensions.

Much like Eq. (2.1.1) but specifying that the dimension-four terms are the SM, we

can write down a generic structural form of the SMEFT Lagrangian. Making no

claim on what the introduced operators are at this point,

LSMEFT = LSM +
∑
d>4

∑
i

C(d)
i O

(d)
i

= LSM +
∑
d>4

∑
i

C̃(d)
i

Λd−4
NP
O(d)

i , (2.2.1)

where the O(d)
i are the operators of dimension d and the C(d)

i are the corresponding

Wilson coefficients. The two sums indicate that we are including all possible mass

dimensions of operators greater than four and all possible operators of a given mass

dimension. In the second line, we have factored out the new physics scale, ΛNP, from

the Wilson coefficients to define the dimensionless quantity C̃
(d)
i , making manifest

the negative mass dimensionality of the Wilson coefficients in the first line.

The most general SMEFT Lagrangian in Eq. (2.2.1) contains a sum over all operators

of mass dimension greater than four. However, as the scale of new physics is large,

typically ΛNP ∼ O (1 TeV) in analyses, the effects of operators of higher mass

dimensions become greatly diminished due to an ever-increasing number of inverse

powers of this large scale.

From here on in, we truncate the SMEFT Lagrangian to dimension-six in the op-

erator’s mass dimension. Consequently, the expressions given are only correct and

self-consistent up to dimension-six and should be interpreted accordingly. Written
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equations, which may implicitly contain a dimension-eight contribution, should be

understood such that the dimension-eight pieces are ignored as the relations are only

valid to linear order in the Wilson coefficients.

After truncating the SMEFT Lagrangian to dimension-six, we are left with only the

dimension-five and dimension-six operators to add to the SM

At dimension-five, after imposing the SM gauge symmetry constraints and ignoring

flavour indices, there is only a single operator to be included into the SMEFT

Lagrangian. This is the Weinberg operator [41], which after electroweak symmetry

breaking generates neutrino masses and mixing. However, due to this operator

playing no role in the Electroweak precision observables, we forgo to mention any

further physics implication of the operator and shall remove it from our Lagrangian.

Finally, we are just left with the dimension-six operators. In order to write down the

Lagrangian for the SMEFT we first need to identify all the operators. We require

a minimal basis of operators, where equations of motion, field redefinitions and

Fierz relations have been used to eliminate redundant operators such that no single

operator can be rewritten as a linear combination of the others.

A first attempt to derive a minimal basis was completed in [33] where a total of

80 operators were found if one ignores flavour indices. Later, in [40], it was shown

that only 59 of these were linearly independent to define what is now known as the

Warsaw basis.1 A full list of these operators can be found in Appendix (A.1) where

the operators are categorised into eight distinct classes.

Using the Warsaw basis, we arrive at and can write down the SMEFT Lagrangian

used throughout this work as

LSMEFT = L(4) + L(6)

= LSM +
∑

i

CiQi , (2.2.2)

where the terms in the second line are in the same order as those on the first. The
1If one includes flavour indices there are 2499 independent Wilson coefficients.
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sum now runs over all operators in the Warsaw basis. Identically to [40], we choose

to represent an operator in the Warsaw basis using a Q to distinguish from any other

basis.

2.2.1 Changes to SM Electroweak parameters

The introduction of the SMEFT operators has consequences for many of the bare

parameters as defined in the SM in Section 1.1. Additional operators disrupt the SM

relations between parameters. Moreover, fields are no longer canonically normalised

due to the presence of these operators.

Field redefinitions can reimpose canonical normalisation, yet in other fundamental

relations of the theory, the influence of the operators remains. The work of [42]

draws attention to most of these changes, whilst here, with the foresight of studying

the Electroweak input parameters, we give a review of the changes to the Higgs VEV

and doublet and gauge couplings.

Higgs VEV

We start with the Higgs VEV where in the SM, Section 1.1.2, the VEV takes the

form

v =
√

µ2

2λ
. (2.2.3)

The Class 2 operator QH is an interaction between Higgs doublets only. As a result,

it provides an additional term in the Higgs potential, which now reads,

V (H) = λ

(
H†H − v2

2

)
− CH

(
H†H

)3
, (2.2.4)

where the first term is the usual SM potential, which has been rearranged compared

to Eq. (1.1.8).1 Following the same procedure as for the SM, minimising the VEV

1A constant term, which does not change the position of the minimum has also been included.
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yields the following after expanding to first order in the Wilson coefficient,

〈H†H〉 ≡ v2
T

2 = v2

2

(
1 + 3

4
CHv2

λ

)
. (2.2.5)

The quantity vT is the ’true’ VEV, which includes a contribution from the SMEFT

Wilson coefficient CH .

Class 3 operators involve the quantity H†H and its derivatives. These contribute

additional kinetic terms to the Higgs field,

LHiggs, Kin =
(
DµH

)†
(DµH) + CH�

(
H†H

)
�
(
H†H

)
+ CHD

(
H†DµH

)∗ (
H†DµH

)
= 1

2(∂µh)(∂µh)− v2
T CH�(∂µh)(∂µh) + v2

T

4 CHD(∂µh)(∂µh) , (2.2.6)

where in the second line we have chosen to expand the Higgs doublet in unitary

gauge. As has been made explicit in Eq. (2.2.6), the dynamic part of the Higgs

field is no longer canonically normalised using the SM form of the Higgs doublet,

Eq. (1.1.13). Performing the field redefinition,

h→ h

(
1 + v2

T CH� −
v2

T

4 CHD

)
, (2.2.7)

we can reinstate this condition as required. The Higgs doublet is now written, in

unitary gauge, as

H(x) = 1√
2

 0

h
(

1 + v2
T CH� − v

2
T

4 CHD

)
+ vT

 , (2.2.8)

where the Higgs field is now normalised correctly. For completeness, we note that in

Rξ gauge, while the charged gauge bosons φ± require no redefinitions from the SM,

the neutral Goldstone boson φ0 is redefined to be

φ0 → φ0
(

1− v2
T

4 CHD

)
. (2.2.9)

Again for completeness, combining the kinetic terms with the Higgs potential, the
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Higgs mass is obtained to be

m2
H = 2λv2

T

(
1− 3v2

T CH

2λ
+ 2v2

T

(
CH� −

CHD

4

))
. (2.2.10)

Gauge Couplings

Similar to the Higgs sector, definitions in the gauge sector are affected by the presence

of SMEFT operators. In the broken theory, Class 4 operators contribute to kinetic

terms of the gauge bosons,

LGauge, Kin =− 1
2W +

µνW µν
− −

1
4W 3

µνW µν
3 −

1
4BµνBµν − 1

4GA
µνGA,µν

+ 1
2v2

T CHGGA
µνGA,µν + 1

2v2
T CHW W a

µνW a,µν + 1
2v2

T CHBBµνBµν

+ 1
2v2

T CHW BW 3
µνBµν , (2.2.11)

while the class 3 operator CHD has a contribution to the mass terms,

LGauge, Mass =1
4g2

2W +
µ W µ

− + 1
8v2

T

(
g2W

3
µ − g1Bµ

)2
+ 1

16v4
T CHD

(
g2W

3
µ − g1Bµ

)2
.

(2.2.12)

Again, the direct inclusion of the SMEFT operators into the SM Lagrangian has left

us with problems. The final term in Eq. (2.2.11) gives rise to kinetic mixing, while

the Lagrangian as a whole is again not canonically normalised. Similar to the Higgs

sector, field redefinitions are once again required to regain the desired properties of

the Lagrangian.

First, we redefine the gauge fields as,

Bµ = Bµ(1 + v2
T CHB),

W a
µ =Wa

µ(1 + v2
T CHW ),

GA
µ = GA

µ (1 + v2
T CHG). (2.2.13)

Requiring that the products of gauge fields and corresponding couplings remain
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unchanged, we define the modified coupling constants

ḡ1 = g1(1 + v2
T CHB),

ḡ2 = g2(1 + v2
T CHW ),

ḡs = gs(1 + v2
T CHG). (2.2.14)

These redefinitions fix the normalisation of the gluon field, however like in the SM,

we need a rotation into the mass basis for the electroweak sector. The mass basis

rotation, as first written in [43], isW
3
µ

Bµ

 =

 1 −1
2v2

T CHW B

−1
2v2

T CHW B 1


 cos θ̄ sin θ̄

− sin θ̄ cos θ̄


Zµ

Aµ

 , (2.2.15)

where

sin θ̄ = ḡ1√
ḡ2

1 + ḡ2
2

(
1 + v2

T

2
ḡ2

ḡ1

ḡ2
2 − ḡ2

1

ḡ2
2 + ḡ2

1
CHW B

)
,

cos θ̄ = ḡ2√
ḡ2

1 + ḡ2
2

(
1− v2

T

2
ḡ1

ḡ2

ḡ2
2 − ḡ2

1

ḡ2
2 + ḡ2

1
CHW B

)
. (2.2.16)

Writing the Lagrangian in the mass basis allows one to read off the boson masses in

terms of ḡ1, ḡ2 and the two Wilson coefficients CHD and CHW B,

M2
A = 0,

M2
W = ḡ2v

2
T

4 ,

M2
Z = v2

T

4
(
ḡ2

1 + ḡ2
2

)
+ 1

8v4
T

(
ḡ2

1 + ḡ2
2

)
CHD + 1

2v4
T ḡ1ḡ2CHW B. (2.2.17)

As is to be expected, the photon is massless because the U(1)EM gauge symmetry

is unbroken. In the limit that ΛNP →∞, the masses of the W and Z boson regain

the expected form as seen in Section 1.1.2.

From here, one could go further to write the covariant derivative in terms of the

barred quantities ḡ1, ḡ2, sin θ̄ and cos θ̄. This would lead to the covariant derivative

having the same form as for the SM, where one can directly read off the couplings

as is done in [42].
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Here however, we opt to show a somewhat inverted relation allowing for the couplings

ḡ1 and ḡ2 to be written in terms of masses and the Higgs VEV, vT , in addition to

Wilson coefficients. This is undertaken with the foreknowledge of requiring the

Lagrangian to be written in a standard and convenient form to conduct a study into

electroweak input schemes. These relations read,

ḡ1 = 2MW sw

cwvT

[
1− v2

T

4s2
w

(CHD + 4cwswCHW B)
]

,

ḡ2 = 2MW

vT

, (2.2.18)

where

sw =
√

1− c2
w , cw = MW

MZ

. (2.2.19)

The use of these equations, at the level of the electroweak Lagrangian, is an important

first step in Chapters 4 and 6.

2.2.2 Operator renormalisation

If we wish to calculate quantum corrections in the SMEFT, additional to the renor-

malisation procedure of Section 1.2.2 applied to the SMEFT, we need to renormalise

the local dimension-six operators. We achieve this by introducing counterterms for

the associated Wilson coefficients.

We follow the same tack as Section 1.2.2, where we relate the bare operators to the

renormalised ones through, what is in this case, a renormalisation constant matrix

ZO defined in an MS scheme. The matrix ZO allows for operator mixing between

the bare and renormalised fields [44],

O
(0)
i = [ZO(µ)]ij Oj(µ) , (2.2.20)

or, for later convenience, inverting and writing in terms of amputated Green’s
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functions of the operator,

〈Oi〉 =
[
Z−1

O (µ)
]

ij
〈Oj〉(0) . (2.2.21)

Taking a derivative of Eq. (2.2.20) with respect to the renormalisation scale µ gives

0 = dO
(0)
i

d log µ
=

d [ZO(µ)]ij
d log µ

Oj(µ) + [ZO(µ)]ij
dOj(µ)
d log µ

, (2.2.22)

where we have made use of the fact that the bare parameters have no dependence

on a renormalisation scale. Solving this equation yields,

dOi(µ)
d log µ

= −
[
Z−1

O

]
ik

d [ZO(µ)]kj

d log µ
Oj(µ) = −γᵀ

ijOj(µ) , (2.2.23)

where we use this as a definition of the anomalous dimension matrix γij. We

include the somewhat arbitrary transpose and negative sign at this point for later

simplification.

The operator renormalisation constants will provide a way to renormalise the EFT,

however, when considering bottom-up EFTs, as is the SMEFT, one usually likes

to think in terms of counter terms to Wilson coefficients. To this end, consider a

generic renormalised expectation value,

〈H〉 = C
(0)
i 〈Oi〉(0)

= [ZC(µ)]ij Cj(µ)〈Oi〉(0)

= Ci(µ)〈Oi〉(0) +
(
[ZC(µ)]ij − δij

)
Cj(µ)〈Oi〉(0)

= Ci(µ)〈Oi〉(0) +
(
[δZC(µ)]ij

)
Cj(µ)〈Oi〉(0)

= Ci(µ)〈Oi〉 . (2.2.24)

In the first equality we have introduced the renormalisation constant for the Wilson

coefficients [ZC(µ)]ij. The second term in the third line is identified to be the

counterterms resulting in the finite prediction in line five.

To make the connection with the operator renormalisation constants we make use



38 Chapter 2. The Standard Model Effective Field Theory

of Eq. (2.2.21) to find

[ZC(µ)]ij Ci(µ)〈Oi〉(0) = Ci(µ)〈Oi〉 = Ci(µ)
[
Z−1

O (µ)
]

ij
〈Oj〉(0)

=
[
Z−1

O (µ)
]

ji
Cj(µ)〈Oi〉(0), (2.2.25)

making it easy to identify that

[ZC(µ)]ij =
[
Z−1

O (µ)
]

ji
. (2.2.26)

This identification of renormalisation constants for operators and Wilson coefficients

allows us to write the RG equation in terms of the anomalous dimension matrix.

Starting from the Wilson coefficient equivalent of Eq. (2.2.23),

dCi(µ)
d log µ

= −
[
Z−1

C

]
ik

d [ZC(µ)]kj

d log µ
Cj(µ)

= −
d
[
Z−1

O (µ)
]

jk

d log µ
[ZO]ki Cj(µ)

=

d
([

Z−1
O (µ)

]
jk

[ZO(µ)]ki

)
d log µ

+
[
Z−1

O

]
jk

d [ZO(µ)]ki

d log µ

Cj(µ)

= γijCj(µ), (2.2.27)

where now the previous minus sign and transpose in the definition of γij are justified.

This equation above describes the running of the Wilson coefficients as the scale at

which they are evaluated is changed. In the SMEFT, these runnings are known to

one loop [42,45,46] and thus, so is the anomalous dimension matrix. Furthermore,

computational tools [47, 48] allow for quick implementation.

However, for a specific loop calculation in the SMEFT, we still require the analytic

form of the counterterms in order to make finite predictions. In the MS scheme, these

can be related to the running of the Wilson coefficients. Consider a renormalised

amplitude in the MS scheme,

〈A〉 ∼
[
δij + Aij

(1
ε

+ 2 log µ
)

+ [δZC ]ij + . . .
]

Cj(µ)〈Oi〉, (2.2.28)
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where the . . . represents additional finite pieces of the amplitude. We clearly see

that we must have,

[δZC ]ij = −1
ε
Aij , (2.2.29)

in order for the amplitude to be finite. Therefore, understanding the form of Aij

enables the determination of the counterterms. At one loop, the amplitude is

independent of the renormalisation scale, therefore we write

d〈A〉
d log µ

= 0 = 2AijCj(µ)〈Oi〉+ dCj(µ)
d log µ

〈Oi〉

=
(
2Aij + γij

)
Cj(µ)〈Oi〉, (2.2.30)

hence,

Aij = −1
2γij. (2.2.31)

This identification leads simply on to the equality

[δZC ]ij = −1
ε
Aij = 1

2ε
γij, (2.2.32)

or in terms of counterterms for individual Wilson coefficients,

δCi = 1
2ε

γijCj = 1
2ε

dCi(µ)
d log µ

. (2.2.33)

The specific form of the counterterms for the Wilson coefficients are now known in

the MS scheme, and we have all we need to calculate quantum corrections in the

SMEFT. Interestingly, as a final remark, although we are concerned here with the

SMEFT, no part of the lead up to Eq. (2.2.33) relies on specific SMEFT framework,

and so it is valid for any EFT.





Chapter 3

Preliminary Information

In this chapter and the following chapters, we begin to focus on the main topic of

the thesis; a study into EW input schemes in the dimension-six SMEFT. In Chapter

4 we introduce three schemes which have common use in the SMEFT literature,

and we set our notation for what follows. Chapter 5 provides a study into these

commonly used input schemes, discussing the salient features and finishing with a

set of universal corrections associated with each scheme. In Chapter 6, we introduce

two new schemes for the SMEFT, which involve the effective mixing angle sin θ`
eff as

an input and in Chapter 7, we again discuss the features of these new schemes but

mainly focus on comparison with the aforementioned schemes which are currently

in use.

In order to undertake such a task, we must first motivate why such a study is

necessary.

3.1 Motivation

The first step in motivating why a study into electroweak input schemes is necessary,

we must clarify what we understand an input scheme to be. We will discuss what

it means to choose an input scheme and what are the possible choices that one can

make. The link between the choice of input scheme and renormalisation will be
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made apparent, allowing the importance of the scheme choice to be highlighted and

alluding to how differences between schemes come to pass. Here we tell no specifics

about any one scheme, which is left for later chapters.

At the most basic level, an input scheme can loosely be defined as a set of physical,

experimentally measurable parameters one uses in a calculation, in order to obtain

a numerical prediction. They are the numbers we "input" into the machinery of the

theory in order to return predictions. These experimentally measurable parameters

can be anything from the theory. In the SM they can consist of, but are not limited

to, masses of particles and couplings between particles. If the SM were exact to LO

our definition of an input scheme would be complete here. However, this is not the

case in the SM or SMEFT, as we work in perturbation theory and relations between

potential input parameters at LO do not hold true to NLO and beyond.

Working in perturbation theory beyond LO requires renormalisation to obtain finite

predictions for amplitudes. Renormalisation introduces counterterms into the amp-

litude, cancelling the divergences appearing from the matrix elements of a process.

The counterterms introduced are those relating to the potential input parameters

appearing in the LO matrix elements.1

Although the divergences appearing in the appropriate combination of counterterms

must match for all possible scheme choices, as the divergences in the matrix elements

remain the same, there is in general no relation between finite pieces. Hence, dif-

ferent schemes will have differing perturbative behaviours as a result of the scheme

dependent corrections stemming from the counterterms.

An input scheme is therefore not merely the numbers one plugs into a calculation to

return a numerical prediction, but an intrinsic part of the renormalisation procedure

and a crucial step in any perturbative calculation.

To fully define an input scheme, one must list the full set of parameters one chooses

to replace the Lagrangian parameters with to obtain a numerical result. Further-
1Along with those associated with wave-function renormalisation and, in the SMEFT, Wilson

coefficients.
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more, if renormalisation is needed to produce finite prediction, specification of how

counterterms are defined and extracted should be given to leave no ambiguity.

For the simpler case of a purely Quantum Chromo Dynamics (QCD) process1, the

choice of input parameters, to re-express the Lagrangian variables in terms of, is

predetermined by the theory. The only available quantities are the strong coupling

and the quark masses, and therefore they must be used.

In EW physics, this is not the case due to an over complete basis of possible input

parameters. There are, however, a number of choices which are customary to use,

for example one should use the fermionic particle masses as an input2, identical to

a QCD process, and it is customary to use the MS definition of Wilson coefficients.

Despite this, not all parameters in the EW Lagrangian have an ’obvious’ choice. In

particular, the gauge couplings g1 and g2, and the Higgs VEV in the Lagrangian

can be re-expressed in terms of a number of different experimentally measurable

quantities. Some of these have already been introduced in Section 2.2.1, where the

renormalisation conditions of Section 1.2.2 can be extended to dimension-six.

From here on in, when mentioning an input scheme, we refer to the EW input

scheme, i.e. the set of three parameters to replace the variables g1 and g2 and the

Higgs VEV in the Lagrangian and the definitions of counterterms.

Clearly, an important consideration for SMEFT predictions and fits is the choice

of the EW input scheme. The investigation of NLO corrections in dimension-six

SMEFT has been the focus of numerous recent studies: QCD corrections have been

fully automated [49], NLO EW corrections and, in a few instances Next-to-Next-to-

Leading-Order (NNLO) QCD corrections, have been calculated on a case-by-case

basis for specific processes [29, 50–99]. Therefore, it is more pressing than ever to

understand our choice of input scheme.

Ideally, the input parameters should be measured with very high accuracy such

that the effect on SMEFT fits is subdominant or even negligible. However, even
1With regard to defining input parameters.
2Assuming one has not set them to zero.
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beyond that, the choice of the input parameters influences perturbative convergence

as well as the pattern of Wilson coefficients appearing in LO and NLO predictions.1

Typical choices of the input parameters include the Fermi constant GF , the mass

of the W and Z bosons, MW and MZ , as well as the electromagnetic coupling

constant α. Invariably, the NLO SMEFT calculations described above have been

performed in one of three different schemes, which use either {MW , MZ , GF} (αµ

scheme), {MW , MZ , α} (α scheme), or {α, MZ , GF} (LEP scheme) as inputs. Some

discussions of these input schemes can be found in [100,101]. However, there has been

no systematic study which elucidates general features of these EW input schemes

beyond LO in the SMEFT, much less a numerical exploration of benchmark results

at NLO in the different schemes. The work presented in this thesis fills this gap.

Furthermore, in the SM, several studies have proposed EW input schemes which use

the effective leptonic weak mixing angle sin θ`
eff as an input parameter [102–107].

In spite of this recent and past interest in EW input schemes involving sin θ`
eff, a

discussion in the context of SMEFT has not yet appeared in the literature. Again,

the work of this thesis fills this gap by incorporating the {GF , sin θ`
eff, MZ} (veff

µ

scheme) and {α, sin θ`
eff, MZ} (veff

α scheme) input schemes into the methodology in

detail.

3.2 Assumptions and Work Flow

3.2.1 Lagrangian Assumptions and Flavour Scenarios

In order to reduce the calculational complexity of our Lagrangian, a number of

beneficial assumptions must be made. The assumptions we make are common

practice in recent developments for EW physics in SMEFT.

We reiterate the assumptions previously mentioned in Section 1.1.4 and extend them

to the SMEFT. We work in the limit that all leptons and the light quarks are
1All will be seen in later chapters
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massless, that being all quarks except the top. Therefore, the only masses which

remain are those of the W , Z, and Higgs bosons, and that of the top quark.

Furthermore, we take the theory to be flavour diagonal. This has consequences on

the SM, whereby the CKM matrix is set to the identity. Additionally, this restriction

greatly reduces the number of Wilson coefficients, as two-fermion operators, cannot

have differing flavour generations and so take the form,

Cx
ii
, i = 1, 2, 3 , (3.2.1)

where we have labelled an arbitrary two fermion operator Cx and i is the flavour

generation. It should be noted that for subscripts on Wilson coefficients, we are not

using Einstein summation notation, unlike in the rest of this thesis. Therefore, in

the above we have the operators C x
11

, C x
22

, and C x
33

and not a sum of them. For

four-fermion operators, if the fermion representations are different a single flavour is

associated with each representation,

C xy
iijj

, i, j = 1, 2, 3 , (3.2.2)

whereas for identical fermion representations an additional structure is allowed,

C xx
iijj

, i, j = 1, 2, 3 ,

C xx
ijji

, i, j = 1, 2, 3 . (3.2.3)

Additionally, in an attempt to reduce the number of Wilson coefficients appearing

in the processes, we also consider the assumption of U(2)2 × U(3)3 flavour scenario.

In the SM, the U(3)5 symmetry for the SM fermions

U(3)5 ≡ U(3)q × U(3)l × U(3)u × U(3)d × U(3)e , (3.2.4)

is broken only by the Yukawa couplings [108, 109]. The U(2)2 × U(3)3 scenario

extends this requirement to the SMEFT [110]. Since we consider all fermions except

the top quark to be massless, we thus only allow the breaking of the U(3)5 symmetry
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by the top Yukawa coupling Yt hence we have a

U(2)2 × U(3)3 ≡ U(2)q × U(2)u × U(3)l × U(3)d × U(3)e , (3.2.5)

flavour symmetry. In the scenario case, we therefore distinguish Wilson coefficients

involving the top quark from those involving first and second-generation up-type

quarks.

We change from the flavour-general scenario to U(2)2 × U(3)3 by making a set of

replacements on the Wilson coefficients, see e.g. [96]. For operators with two flavour

indices involving leptons or down-type quarks, we can suppress the flavour indices

Cx
ii
→ Cx for Cx ∈ CHe, C

(1)
Hl , C

(3)
Hl , CHd . (3.2.6)

For the Wilson coefficients with two flavour indices involving up-type quark fields,

we explicitly distinguish top-quark couplings

C x
jj
→ Cx for j ∈ 1, 2 , CHu

33
→ CHt, C

(1)
Hq
33
→ C

(1)
HQ, C

(3)
Hq
33
→ C

(3)
HQ . (3.2.7)

For CuB and CuW , only Wilson coefficients with third-family indices contribute in

the first place, so no replacement is necessary.

For four-fermion operators with two different fermion bilinears as well as Cee, which

is simplified by a Fierz identity, there is a single coefficient contributing under the

U(2)2 × U(3)3 assumption when no up-type quarks are involved

C x
iijj
→ Cx for Cx ∈ Cee, Cle, Cld, Ced . (3.2.8)

For Wilson coefficients involving up-type quark fields we distinguish the third gener-

ation

C x
iijj
→ Cx for j ∈ 1, 2, C

(1)
lq

ii33
→ C

(1)
lQ , C

(3)
lq

ii33
→ C

(3)
lQ , C lu

ii33
→ Clt,

C qe
jjii
→ Cqe for j ∈ 1, 2, C qe

33ii
→ CQe . (3.2.9)

For Cll, which involves two fermion currents of the same species and chirality, there
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are two U(3)5 symmetric combinations, which we distinguish with a prime

C ll
iijj
→ Cll, C ll

ijji
→ C ′

ll, C ll
iiii
→ Cll + C ′

ll. (3.2.10)

3.2.2 Work Flow

We have carried out the calculations of this thesis using an in-house FeynRules [111]

implementation of the SMEFT dimension-six Lagrangian and cross-checked our

results with SMEFTsim [112, 113]. These model files were subsequently used with

FeynArts and FormCalc [114–116] which we employed for the automated calculation

of Feynman diagrams. The packages listed previously allowed the calculation of dia-

grams containing operators from classes 1-7 in the SMEFT. However, loop diagrams

involving a class-8 operator cannot currently be implemented by this procedure.

To calculate these, we used a ’by hand’ approach, making use of PackageX [117]

to extract analytic results for Feynman integrals. DsixTools [47] allowed for the

quick implementation of Wilson coefficient renormalisation and the reduction of

Wilson coefficient flavour indices. Finally, numerical results were obtained with

LoopTools [115].





Chapter 4

Schemes in the SMEFT Literature

In this chapter, we introduce three of the five EW input schemes that we are

considering in this thesis. The three schemes we introduce here are the α, αµ and

LEP schemes, which have common use in the SMEFT literature. For reference, the

three input parameters that define each scheme are given in table 4.1 with the exact

definition of the parameters given in the relevant sections.

We present definitions and derivations of counterterms necessary to complete EW

NLO calculations in the SMEFT and print analytic results where appropriate.

However, in order to get into the specifics about the individual schemes, we neces-

sitate having a common starting point for each scheme to treat them in a unified

fashion. To achieve this we use the tree-level Lagrangian written in terms of vT ,

MW , and MZ . In practice, this is obtained by transforming to the gauge-boson

mass-basis using the field rotations defined in [42] and making the substitutions

given in Eq. (2.2.18) and repeated here,

ḡ1 = 2MW sw

cwvT

[
1− v2

T

4s2
w

(CHD + 4cwswCHW B)
]

, (4.0.1)

ḡ2 = 2MW

vT

, (4.0.2)

which are valid up to linear order in the Wilson coefficients. The sine and cosine of
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scheme inputs
αµ GF , MW , MZ

α α, MW , MZ

LEP GF , α, MZ

Table 4.1: Nomenclature for the EW input schemes considered in
this work.

the Weinberg angle are defined as,

sw =
√

1− c2
w , cw = MW

MZ

. (4.0.3)

The renormalised Lagrangian in a given scheme is then obtained by interpreting the

tree-level parameters and fields as bare ones, denoted with a subscript 0, and trading

them for renormalised quantities through the addition of counterterms appropriate

to that scheme much like Eq. (1.2.9) but extended to have counterterms of higher

mass dimension.

Common to all schemes here is the fact we use the FJ renormalisation scheme

[26] with definitions of the scheme and counterterms found in Section 3.1.6 of [24].

Additionally, in the same reference, alternative tadpole schemes are mentioned, but

we make no comment on their use other than to highlight that they exist.

4.1 The α Scheme

To start our discussion of the three schemes which appear in current SMEFT literat-

ure, let’s consider the α scheme. The α scheme uses the set of inputs {α, MW , MZ},

where α = e2/(4π) is the QED coupling constant defined in a given renormalisa-

tion scheme and MW and MZ are the masses of the W and Z bosons which are

renormalised on-shell as described in Section 1.2.2.

For convenience, we introduce the derived parameter,

vα = 2MW sw√
4πα

. (4.1.1)
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The bare quantity vT,0 is then related to renormalised parameters and counterterms

through

1
v2

T,0
= 1

v2
α

[
1− v2

α∆v(6,0,α)
α − 1

v2
α

∆v(4,1,α)
α −∆v(6,1,α)

α

]
. (4.1.2)

The superscripts i and j in the counterterms ∆v(i,j,α)
α label the operator dimension

and the number of loops (j = 0 for tree-level and j = 1 for one-loop) respectively,

while the superscript α refers to the fact that the expansion coefficients are multiplied

by explicit factors of vα. As is the case with many equations to follow, the dependence

on the perturbative expansion parameter, which in this case is 1/v2
α ∼ α, has been

made explicit.1 The dependance on the expansion parameter has been factored out

from each term. Consequently, the ∆X may be dimenesionful but the combination

including the appropriate powers of the expansion parameter is dimensionless.

The expansion coefficients in Eq. (4.1.2) are determined by the counterterms for the

input parameters MW , MZ , and the electric charge e. These are calculated from

two-point functions, as in [29]. In the α scheme, we relate the bare and renormalised

quantities up to NLO as,

X0 = X

(
1 + 1

v2
α

∆X(4,1,α) + ∆X(6,1,α)
)

= X

(
1 + 1

v2
α

∆X(4,1) + ∆X(6,1) −∆v(6,0)
α ∆X(4,1)

)
, (4.1.3)

where X ∈ {MW , MZ , e} and X0 are the corresponding bare parameters and in

the final line we split the (6, 1) piece into the scheme dependent and independent

parts. We have additionally suppressed the α superscript in the (4, 1) term, as it is

independent of the expansion of the VEV. The quantities ∆M
(6,1,α)
W and ∆M

(6,1,α)
Z

are calculated by extending the SM calculation of Section 1.2.2 to the SMEFT

by including a single dimension-six operator in the loop whereas ∆e(6,1,α) requires

1There are a handful of exceptions to this in ∆v(6,1,α)
α ; all appear in tadpoles, with the exception

of the contribution from the Class-1 coefficient CW .



52 Chapter 4. Schemes in the SMEFT Literature

modification and is given by [29],

∆e(6,1)

e
= 1

2
∂ΣAA(6,1)

T (k2)
∂k2

∣∣∣∣∣
k

2=0
+ 1

M2
Z

(
cw

cw

ΣAZ(6,1)
T (0)− v2

T

4cwsw

CHDΣAZ(4)
T (0)

)
.

(4.1.4)

We use the same notation for the expansion coefficients of the derived parameters

cw and sw, so that, for instance,

∆s(i,1,α)
w = −c2

w

s2
w

(
∆M

(i,1,α)
W −∆M

(i,1,α)
Z

)
. (4.1.5)

At tree level the relation between vT and vα is given by [29]

1
v2

T

= 1
v2

α

(
1 + 2v2

α

cw

sw

[
CHW B + cw

4sw

CHD

])
. (4.1.6)

Interpreting this as a relation between the bare parameters, renormalising them as

in Eq. (4.1.3), and matching with Eq. (4.1.2) we find

∆v(6,0,α)
α = − 2cw

sw

[
CHW B + cw

4sw

CHD

]
, (4.1.7)

∆v(4,1,α)
α = 2

(
∆M

(4,1)
W + ∆s(4,1)

w −∆e(4,1)
)

, (4.1.8)

∆v(6,1,α)
α = 2

(
∆M

(6,1,α)
W + ∆s(6,1,α)

w −∆e(6,1,α)
)

+ 2
cwsw

[
CHW B + cw

2sw

CHD

]
∆s(4,1)

w

− 2v2
α

cw

sw

[
δCHW B + cw

4sw

δCHD

]
.

(4.1.9)

where the δCi are counterterms for the Wilson coefficients in the MS scheme, which

are defined in Section 2.2.2 as

Ci,0 = Ci + δCi, δCi ≡
1
2ε

Ċi ≡
1
2ε

dCi

d ln µ
, (4.1.10)

where ε is the dimensional regulator in d = 4 − 2ε space-time dimensions. As

mentioned, explicit results for the δCi at one loop can be derived from [42,45,46].1

The counterterms ∆MZ , ∆MW and ∆vα as described here form the basis to perform

any NLO calculation renormalised in the α scheme by replacing the bare parameters
1Practically, we use DsixTools [47] to extract them.
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with the appropriate relation of Eq. (4.1.6) or Eq. (4.1.3).

A small stipulation which we neglected so far is in the implementation of the α

scheme and the LEP scheme, to be introduced in Section 4.3, requires specifying the

renormalisation scheme for α. Previously, we have defined α in an on-shell method.

However, another possible choice is the MS definition α(µ) in five-flavour QED×QCD,

where EW scale contributions are included through decoupling constants [29] and

perturbative uncertainties can be estimated through scale variations.

In Chapter 5, when discussing these three schemes detailed in this chapter, we

indeed choose this MS definition to take advantage of the scale uncertainty estimates.

However, it should be noted that later, in Chapter 7, we change the scheme for α to

the on-shell definition to be more in line with what is conventionally used in order to

make just comparisons of results and potential EW fits with the current literature.

4.2 The αµ Scheme

The second scheme we introduce in this section is the αµ scheme. The αµ scheme

uses the set of inputs {GF , MW , MZ}, where GF is the Fermi constant as measured

in muon decay.

In this scheme, the W-boson and Z-boson masses are again renormalised on-shell,

identically to the α scheme. However, the renormalisation of vT differs therefore we

will expand in explicit powers of vµ, as will be seen shortly, hence we have

MX,0 = MX

(
1 + 1

v2
µ

∆M
(4,1,µ)
X + ∆M

(6,1,µ)
X

)
, (4.2.1)

where the µ in the subscript indicates the expansion by explicit powers of vµ and

X ∈ {Z, W}. An equivalent expansion to that of Eq. (4.1.3) can be performed to

obtain the counterterms in this scheme from previously calculated and soon to be

calculated results.

The renormalisation of GF in this scheme is implemented by modifying the coun-
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terterms for vT to read,

1
v2

T,0
= 1

v2
µ

[
1− v2

µ∆v(6,0,µ)
µ − 1

v2
µ

∆v(4,1,µ)
µ −∆v(6,1,µ)

µ

]
. (4.2.2)

where

vµ ≡
(√

2GF

)− 1
2 ≡ 2MW sw√

4παµ

. (4.2.3)

We have introduced the derived EW coupling αµ in the final equality of the above

equation. Using the PDG value of GF = 1.166× 10−5 GeV−2 [10] gives αµ ≈ 1/132.

The counterterms, ∆vµ, in Eq. (4.2.2) are defined by the renormalisation condition

that the relation in Eq. (4.2.3), vµ =
(√

2GF

)− 1
2 , holds to all orders in perturbation

theory. The Fermi constant GF is a Wilson coefficient appearing in the effective

Lagrangian

Leff = LQED + LQCD + Lµ , (4.2.4)

where

Lµ = −4GF√
2

Qµ, Qµ =
[
ν̄µγµPLµ

]
× [ēγµPLνe] . (4.2.5)

The four-fermion operator Qµ mediates tree-level muon decay, and radiative cor-

rections are obtained through Lagrangian insertions of a five-flavour version of

QED×QCD, where the top-quark is integrated out. We will work only to NLO

in the couplings, so QCD couplings will not appear, and we can drop the QCD

Lagrangian in what follows.

The dimension-six term of the effective Lagrangian should be familiar, as it is

identical to that of Eq. (2.1.6), the Lagrangian for Fermi Theory, and plays a vital

role in the definition of the αµ scheme.

The Fermi constant GF is calculated by matching the SMEFT onto the effective

Lagrangian above, by integrating out the heavy electroweak bosons and the top

quark. In practice, this is done by ensuring that renormalised Green’s functions

match order by order in perturbation theory, to leading order in the EFT expansion
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parameter mµ/MW � 1. The matching can be performed with any convenient choice

of external states. We work with massless fermions, and set all external momenta to

zero. In that case, the loop corrections to the bare tree-level amplitude in the EFT

are scaleless and vanish, so the renormalised amplitude is just given by the tree-level

one plus UV counterterms. The main task is thus to evaluate the renormalised NLO

matrix element for the muon decay in SMEFT.

To write the matrix element for the process µ → νµeν̄e, we first define the spinor

product

Sµ =
[
ū(pνµ

)γνPLu(pµ)
]
×
[
ū(pe)γνPLv(pν̄e

)
]

, (4.2.6)

where PL = (1− γ5)/2 and it is understood that the arguments of the Dirac spinors

u and v are evaluated at pi = 0. Furthermore, we define expansion coefficients of

the bare one-loop amplitude in terms of the bare parameter vT,0 as

Abare = − 2
v2

T,0

(
A(4,0)

bare + v2
T,0A

(6,0)
bare + 1

v2
T,0
A(4,1)

bare +A(6,1)
bare

)
Sµ + . . . . (4.2.7)

The . . . in the above equations refer either to spinor structures with different chirality

structure, which we do not interfere with the tree-level SM result and can thus be

neglected, or matrix elements of evanescent operators. Evanescent operators, which

vanish in four dimensions as a result of their γ-matrix structure, no longer vanish

in dimensional regularization where we work in d dimensions. The definition of the

evanescent operators depends on the definition of the γ5 matrix in d dimensions [118].

We choose to define γ5 in naive dimensional regularization, where it anti-commutes

with the other γ matrices, {γ5, γµ} = 0. For the muon decay only one evanescent

operator appears in the one-loop diagrams with a four-fermion interaction and a

boson connecting the two fermion bilinears. It is defined in the chiral basis as [119]

PRγµγνγλPL ⊗ PRγµγνγλPL = 4(4− ε)PRγµPL ⊗ PRγµPL + ELL , (4.2.8)

where PR = (1 + γ5)/2 and the ⊗ indicates a direct product of γ matrices (as in

Eq. (4.2.6) after removing the external spinors). The scheme choice for the evanescent
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operators impacts the finite pieces at one-loop when multiplied with 1/ε terms. The

evanescent operator ELL itself can be removed by an appropriate counterterm.

The renormalised amplitude in the αµ scheme to one-loop order then takes the form

A = − 2
v2

µ

(
A(4,0,µ) + v2

µA(6,0,µ) + 1
v2

µ

A(4,1,µ) +A(6,1,µ)
)

Sµ + . . .

!= − 2
v2

µ

Sµ + . . . . (4.2.9)

In the second line of Eq. (4.2.9) we have indicated that after imposing the renormal-

isation conditions in the αµ scheme GF does not receive any corrections at higher

orders. Expanding v2
T,0 in Eq. (4.2.7) using Eq. (4.2.2) and enforcing the above

equality determines the expansion coefficients ∆v(i,j,µ)
µ in Eq. (4.2.2). The tree-level

results are

A(4,0,µ) = 1 , (4.2.10)

A(6,0,µ) = C
(3)
Hl
11

+ C
(3)
Hl
22
− C ll

1221
−∆v(6,0,µ)

µ . (4.2.11)

This implies that

∆v(6,0,µ)
µ = C

(3)
Hl
11

+ C
(3)
Hl
22
− C ll

1221
. (4.2.12)

At one loop, on the other hand, one finds that

∆v(4,1,µ)
µ =A(4,1)

bare + 1
2∆Z

(4,1,µ)
f , (4.2.13)

∆v(6,1,µ)
µ =A(6,1)

bare + 1
2∆Z

(6,1,µ)
f + ∆v(6,0,µ)

µ

(1
2∆Z

(4,1,µ)
f − 2∆v(4,1,µ)

µ

)
+ δC

(3)
Hl
11

+ δC
(3)
Hl
22
− δC ll

1221
. (4.2.14)

In the above, the δC are given in Eq. (4.1.10) and we have defined the combination

of on-shell wavefunction renormalisation factors for the external fermions

∆Zf = ∆ZL
µ + ∆ZL∗

νµ
+ ∆ZL∗

e + ∆ZL
νe

, (4.2.15)

where the superscript L has been used to indicate left-handed fermions and the ∆Zf
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are expanded as usual

∆Zf = 1
v2

µ

∆Z
(4,1,µ)
f + ∆Z

(6,1,µ)
f . (4.2.16)

Much like the counterterms for the on-shell gauge boson masses, the counterterms

∆Z
(6,1,µ)
f can be calculated in the same manner as in Section 1.2.2 and extending

the two point functions to contain one dimension-six operator insertion. At one

loop, ∆Zf receives contributions from photon graphs, which vanish as the integrals

are scaleless, and heavy-particle graphs (Z and W exchanges), which give finite

contributions that must be taken into account. The explicit results for the one-loop

coefficients in Eq. (4.2.2) are relatively compact, and we list them here. In the SM,

one has

16π2 ∆v(4,1,µ)
µ = −M2

h

2 −M2
W −

M2
Z

2 + Ncm
2
t + 3M2

W

M2
h −M2

W

A0(M2
h)− 2NcA0(m2

t )

+
(

9− 3M2
h

M2
h −M2

W

)
A0(M2

W ) + 3A0(M2
Z) + 3c2

w

s2
w

[
A0(M2

W )− A0(M2
Z)
]

+ 16π2∆v
(4,1,µ)
µ,tad , (4.2.17)

where the tadpole contribution in unitary gauge is

16π2M2
h∆v

(4,1,µ)
µ,tad = 8M4

W + 4M4
Z − 3M2

hA0(M2
h) + 8Ncm

2
t A0(m2

t )

− 12M2
W A0(M2

W )− 6M2
ZA0(M2

Z) , (4.2.18)

and

A0(M2) = M2
(

1
ε

+ 1 + ln µ2

M2

)
. (4.2.19)

In SMEFT we find

16π2∆v(6,1,µ)
µ = 1

ε

[
M2

W

2
3CH� −

28
3 C

(3)
Hl
11
− 28

3 C
(3)
Hl
22

+ 8
3C

(3)
Hl
33

+ 8C
(3)
Hq
11

+ 8C
(3)
Hq
22

+ 8C
(3)
Hq
33

+ 12
(

C ll
1122
− C ll

1221

)+ 6m2
t

(
C

(3)
Hl
11

+ C
(3)
Hl
22
− C

(3)
lq

1133
− C

(3)
lq

2233

)

− 6M2
ZC ll

1221

]
+ 16π2∆v(4,1,µ)

µ

(
−2∆v(6,0,µ)

µ + CHD

2

)
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+ M2
h

(
−CH� + CHD

2

)
+ 5M2

ZC ll
1221

+ M2
W

(
− CH� −

3CHD

2 − 12sw

cw

CHW B + 10C
(3)
Hl
11

+ 10C
(3)
Hl
22

+ 10
(

C ll
1122
− C ll

1221

))
+ 3m2

t

(
−CHD

2 + C
(3)
Hl
11

+ C
(3)
Hl
22

+ 2C
(3)
Hq
33
− C

(3)
lq

1133
− C

(3)
lq

2233

)

+ 6M2
W

A0(M2
h)− A0(M2

W )
M2

h −M2
W

(
CH� −

CHD

2

)
+ 6A0(M2

W )
(

C
(1)
Hl
11

+ C
(1)
Hl
22

+ C
(3)
Hl
11

+ C
(3)
Hl
22

+ 2C ll
1122

)

+ 6c2
wA0(M2

Z)
− CHD − C

(1)
Hl
11
− C

(1)
Hl
22

+ C
(3)
Hl
11

+ C
(3)
Hl
22

+
(
−2 + 1

c2
w

)
C ll

1221


+ A0(m2

t )
(

3CHD − 6C
(3)
Hl
11
− 6C

(3)
Hl
22
− 12C

(3)
Hq
33

+ 6C
(3)
lq

1133
+ 6C

(3)
lq

2233

)

+ 16π2∆v
(6,1,µ)
µ,tad , (4.2.20)

where the tadpole contribution in unitary gauge is

16π2M2
h∆v

(6,1,µ)
µ,tad = +32π2M2

h∆v
(4,1,µ)
µ,tad CH� − 8M4

W (CHD − 2CHW )

− 8M2
W M2

Z (CHB − CHW ) + 2M4
Z (4CHB − CHD + 4swcwCHW B)

−M2
hA0(M2

h)
(

4CH� − 4CHD − 6 v2
µ

M2
h

CH

)

+ 12M2
W A0(M2

W ) (CHD − 2CHW )

− 12m2
t A0(m2

t )
(

2CHD +
√

2vµ

mt

CuH
33

)

−M2
ZA0(M2

Z)
(
12s2

wCHB − 3CHD + 12c2
wCHW + 12cwswCHW B

)
.

(4.2.21)

Note that the expansion coefficients are only gauge invariant when tadpoles are

included – the split that we have given above is unique to unitary gauge. We have

checked that our results are consistent with those in [70], a previous result using a

simplified flavour structure for the SMEFT Wilson coefficients, and omitting tadpoles

such that the results are gauge dependent and limited to Rξ gauge - thus providing
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a strong check on both sets of results.

4.2.1 Relation to the α scheme

Now we have been introduced to two schemes, the α and αµ schemes, a logical next

question to pose is how are the two related.

We can convert results in the αµ scheme to the α scheme using the perturbative

relation between vµ and vα. A useful quantity for this purpose is

v2
α

v2
µ

≡ 1 + ∆r . (4.2.22)

Two equivalent SMEFT expansions of this quantity are

∆r = v2
α∆r(6,0) + 1

v2
α

∆r(4,1) + ∆r(6,1) ,

= v2
µ∆r(6,0) + 1

v2
µ

∆r(4,1) + ∆r(6,1) . (4.2.23)

The expansion coefficients are the same whether expanded in vµ or vα, so we use

superscripts for operator dimension and loop order only.1 They are obtained by

equating the two expressions for vT,0 given in Eq. (4.1.2) and Eq. (4.2.2) and per-

forming a SMEFT expansion, yielding the result

∆r(6,0) = ∆v(6,0)
µα ,

∆r(4,1) = ∆v(4,1)
µα ,

∆r(6,1) = ∆v(6,1)
µα + 2∆v(4,1,µ)

µ ∆v(6,0)
µα ,

(4.2.24)

where we have defined

∆v(i,j)
µα = ∆v(i,j,µ)

µ −∆v(i,j,α)
α . (4.2.25)

For two-body decays of heavy bosons, the SMEFT expansion coefficients in the αµ

1It is understood that any implicit vT dependence in the (6, 1) term is expressed in terms of vα

in the first line or vµ in the second.
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or α scheme take the form

Γ = F

v2
µ

[
1 + v2

µ∆(6,0,µ)
Γ + 1

v2
µ

∆(4,1,µ)
Γ + ∆(6,1,µ)

Γ

]

= F

v2
α

[
1 + v2

α∆(6,0,α)
Γ + 1

v2
α

∆(4,1,α)
Γ + ∆(6,1,α)

Γ

]
, (4.2.26)

where F does not depend on vµ in the first line or vα in the second. The relation

between the expansion coefficients in the two schemes is

∆(6,0,α)
Γ = ∆(6,0,µ)

Γ + ∆r(6,0) ,

∆(4,1,α)
Γ = ∆(4,1,µ)

Γ + ∆r(4,1) ,

∆(6,1,α)
Γ = ∆(6,1,µ)

Γ + ∆r(6,1) + 2∆(4,1,µ)
Γ ∆r(6,0) . (4.2.27)

Conversions from the α to the αµ scheme work in a similar manner. As a simple

example, the expansion of counterterms X in Eq. (4.1.3) in the αµ scheme is obtained

by replacing α→ µ in that equation, with expansion coefficients related through

∆X(4,1,µ) = ∆X(4,1,α) , ∆X(6,1,µ) = ∆X(6,1,α) −∆r(6,0)∆X(4,1,α) . (4.2.28)

Here we can see explicitly that although both the α and the αµ scheme use on-shell

renormalisation for MW and MZ , the perturbative expansions of the counterterms

differ at one-loop in SMEFT, yet the SM counterterms are the same - motivating

the dropping of the index in Eq. (4.1.3).

4.3 The LEP Scheme

Finally, to conclude our introduction to the three common schemes in the literature,

we have the LEP scheme. At LEP and in SMEFT analyses, one often considers the

LEP scheme, where the on-shell W -boson mass is not used as an input, but is instead

expressed as a SMEFT expansion in terms of the three independent input parameters

{α, GF , MZ}. Renormalised amplitudes in this scheme could be obtained similarly to

previously, where one introduces counterterms for each of the input parameters. Here
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however, we take an alternative tack and deduce the counterterms of the W-boson

mass, a derived parameter in this scheme, from previously introduced relations. One

may then use this derived parameter counterterm to achieve renormalisation in the

LEP scheme alongside those for vT and MZ if one starts from our usual starting

point of a Lagrangian written in terms of vT , MW , and MZ .

The SMEFT expansion of the on-shell W -boson mass in this scheme is most easily

obtained by re-arranging Eq. (4.2.22) and then expanding in ∆r to find

M2
W = M̂2

W

[
1− ŝ2

w

ĉ2w

∆r − ĉ2
wŝ4

w

ĉ3
2w

∆r2
]

+O
(
∆r3

)
, (4.3.1)

where

M̂2
W = M2

Z

2

1 +

√√√√1− 4παv2
µ

M2
Z

 , ĉ2
w = M̂2

W

M2
Z

= 1− ŝ2
w , ĉ2w = 2ĉ2

w − 1 . (4.3.2)

In the LEP scheme, the appropriate SMEFT expansion of ∆r depends only on the

derived parameter M̂W . We therefore define expansion coefficients

∆r = v2
µ∆̂r(6,0) + 1

v2
µ

∆̂r(4,1) + ∆̂r(6,1) , (4.3.3)

where the “hat” on the expansion coefficients ∆̂r(i,j) means that the dependence on

the on-shell mass MW in the ∆r(i,j) in Eq. (4.2.23) has been eliminated in favour

of M̂W through iterative use of Eq. (4.3.1). A short calculation yields the following

results:

∆̂r(6,0) = ∆r(6,0)
∣∣∣
MW =M̂W

,

∆̂r(4,1) = ∆r(4,1)
∣∣∣
MW =M̂W

,

∆̂r(6,1) = ∆r(6,1) − ŝ2
w

2ĉ2w

[
∆r(6,0)∂W ∆r(4,1) + ∆r(4,1)∂W ∆r(6,0)

] ∣∣∣∣∣∣
MW =M̂W

, (4.3.4)

where the notation
∣∣∣
MW =M̂W

means that MW is to be replaced by M̂W and we have

defined

∂W ≡MW

∂

∂MW

. (4.3.5)
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Notice that the term ∆̂r(6,1) involves derivatives of Passarino-Veltmann functions,

which at one-loop level are simple to evaluate. As a simple example, the derivative

of the bubble function A0(M2
W ) is given by

∂W A0(M2
W ) = 2M2

W log µ2

M2
W

. (4.3.6)

We can now write the SMEFT expansion of MW in the LEP scheme as

MW = M̂W

[
1 + v2

µ∆̂(6,0,µ)
W + 1

v2
µ

∆̂(4,1,µ)
W + ∆̂(6,1,µ)

W

]
, (4.3.7)

where

∆̂(6,0,µ)
W = − ŝ2

w

2ĉ2w

∆̂r(6,0),

∆̂(4,1,µ)
W = − ŝ2

w

2ĉ2w

∆̂r(4,1) ,

∆̂(6,1,µ)
W = − ŝ2

w

2ĉ2w

∆̂r(6,1) − ŝ4
w

4ĉ2
2w

(
1 + 4ĉ2

w

ĉ2w

)
∆̂r(6,0)∆̂r(4,1) . (4.3.8)

The above expressions allows for the conversion of the SMEFT expansion of any

quantity from the αµ scheme to the LEP scheme by expressing the on-shell mass by

the "hatted" version. The conversion for a general function of the on-shell W-boson

mass takes the form

X(MW )
[
1 + v2

µ∆(6,0,µ)
X + 1

v2
µ

∆(4,1,µ)
X + ∆(6,1,µ)

X

]

= X(M̂W )
[
1 + v2

µ∆̂(6,0,µ)
X + 1

v2
µ

∆̂(4,1,µ)
X + ∆̂(6,1,µ)

X

]
,

(4.3.9)

where the expansion coefficients ∆X (∆̂X) are functions of MW (M̂W ). They are

related through

∆̂(6,0,µ)
X = ∆(6,0,µ)

X + ∆̂(6,0,µ)
W

∂W X

X
,

∆̂(4,1,µ)
X = ∆(4,1,µ)

X + ∆̂(4,1,µ)
W

∂W X

X
,

∆̂(6,1,µ)
X = ∆(6,1,µ)

X + ∆̂(6,0,µ)
W ∂W ∆(4,1,µ)

X + ∆̂(4,1,µ)
W ∂W ∆(6,0,µ)

X (4.3.10)

+ 1
X

[(
∆̂(6,1,µ)

W + ∆(4,1,µ)
X ∆̂(6,0,µ)

W + ∆(6,0,µ)
X ∆̂(4,1,µ)

W

)
∂W X
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+ ∆̂(6,0,µ)
W ∆̂(4,1,µ)

W ∂2
W X

]
,

where X = X(MW ), in a slight abuse of notation we have defined

∂2
W ≡M2

W

∂2

∂M2
W

, (4.3.11)

and one is to set MW = M̂W on the right-hand side of the relations in Eq. (4.3.10).

Finally, to achieve our initial goal, we can relate the counterterm for MW in the

on-shell scheme to that in the LEP scheme, providing a framework of renormalisation

in the LEP scheme. Setting X = MW in Eq. (4.3.9), and recalling that the on-shell

definition of MW has no tree-level dimension-six contributions, we can write

MW,0 = MW

(
1 + 1

v2
µ

∆M
(4,1,µ)
W + ∆M

(6,1,µ)
W

)

= M̂W

(
1 + v2

µ∆̂M̂
(6,0,µ)
W + 1

v2
µ

∆̂M̂
(4,1,µ)
W + ∆̂M̂

(6,1,µ)
W

)
.

(4.3.12)

The terms on the second line as determined from Eq. (4.3.10) read

∆̂M̂
(6,0,µ)
W = ∆̂(6,0,µ)

W , (4.3.13)

∆̂M̂
(4,1,µ)
W = ∆̂(4,1,µ)

W + ∆M
(4,1,µ)
W

∣∣∣∣∣
MW =M̂W

, (4.3.14)

∆̂M̂
(6,1,µ)
W = ∆̂(6,1,µ)

W + ∆M
(6,1,µ)
W + ∆̂(6,0,µ)

W ∆M
(4,1,µ)
W

+ ∆̂(6,0,µ)
W ∂W ∆M

(4,1,µ)
W

∣∣∣∣∣
MW =M̂W

.
(4.3.15)

We emphasise, however, that the LEP scheme uses {α, GF , MZ} as input paramet-

ers, so the result is ultimately a function of these parameters and the associated

counterterms {∆̂e, ∆̂vµ, ∆̂MZ}, which can be obtained from expansion coefficients

in the α or αµ scheme similarly to ∆̂M̂W .

Nonetheless, the counterterms ∆̂M̂W alongside those for GF , given in Eq. (4.2.2),

and MZ after eliminating the on-shell MW for M̂W using Eq. (4.3.1) will renormalise

an amplitude in the LEP scheme.





Chapter 5

Analysis of Schemes in the

Literature

In Chapter 4 we outlined implementation of three schemes: the α, αµ, and LEP

schemes. Derivations of counterterms were shown, which allows one to calculate any

process to NLO in the EW coupling in the SMEFT.

In this chapter, we provide a comparison of the schemes and give note to their

salient features. We are mainly interested in two features of the EW input schemes:

the number of Wilson coefficients they introduce into physical observables through

renormalisation, and perturbative convergence. One would assume it’s advantageous

for a small number of coefficients to appear, so that the finite parts of observables

are dominated by process-specific Wilson coefficients rather than those related to

the EW renormalisation scheme. Furthermore, one would like to avoid large cor-

rections between orders, so that perturbation theory is well-behaved and can safely

be truncated at a low order. We discuss these two issues in the following sections.

This is then followed by an analysis of the derived parameters and the heavy boson

decays, where we compare the three schemes. We finally suggest a set of universal

replacements to account for large perturbative corrections for each of these schemes.
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5.1 Numerical Values of Inputs

A numerical analysis of the different schemes requires specification of numerical

values for the inputs. A somewhat important, but overlooked aspect of these values

for the these three input schemes is the precision of these values extracted from

measurements. In SM high precision calculation, where observables are predicted

to many orders in perturbation theory, the uncertainties on the inputs may become

significant to a point where one may wish to consider this effect further. However, for

our purpose we have no such problem as uncertainties from truncation in perturbation

theory, estimated in this section by scale uncertainties, by far dominate at LO and

are in general larger at NLO. As a simple illustration, the value and uncertainty

(solely from the precision on the inputs) for the prediction of GF in the α scheme is

given by

GNLO
F,α = (1.157± 0.002)× 10−5 GeV (5.1.1)

where we have taken the uncertainties on the input parameter from [10] and included

the SM NLO correction to the LO result. This uncertainty is at the per-mille level

and provides a negligible change to the uncertainties on the quoted results given

later in this thesis for illustrative purposes. It is for that reason, the precision on

the inputs has been dropped from the uncertainties quoted from results here on in.

That being said

That all being said, Table 5.1 shows the numerical values of the inputs used in this

work, where we take the values as given in [10]. The quantity mb(Mh) takes the

value shown only in the h→ bb process, otherwise it is set to zero.

5.2 Number of Wilson coefficients

Probably the easiest comparison one can make between the schemes, and thus the one

which we start with, is to compare the number of different Wilson coefficients each
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Mh 125.1 GeV mb(Mh) 3.0 GeV
mt 172.9 GeV vα(Mh) 241.7 GeV

MW 80.38 GeV vµ 246.2 GeV
MZ 91.19 GeV αs (Mh) 0.1125

Table 5.1: Input parameters employed throughout this section.
Note that vα is a derived parameter.

scheme introduces through the renormalisation process. It is a simple matter to count

the number of Wilson coefficients appearing in the finite parts of counterterms for the

bare parameters MZ,0, MW,0 and vT,0 in the different input schemes. The results at

LO and NLO are listed in Table 5.2. Here and below we exclude Wilson coefficients

which contribute only through tadpoles and therefore drop out of observables. This

includes CH and CuH
33

in each of the three counterterms considered here. Note that

although all schemes use the on-shell renormalisation scheme for MZ , its dimension-

six counterterm still differs between the schemes. To see this explicitly, we note that

expansion coefficients in αµ and α schemes can be written in the form

MZ,0 = MZ

(
1 + 1

v2
σ

∆M
(4,1)
Z + ∆M

(6,1)
Z −∆v(6,0,σ)

σ ∆M
(4,1)
Z

)
, (5.2.1)

where here and throughout the remainder of the chapter the choice of σ ∈ {µ, α}

selects between the α and αµ schemes. An analogous equation holds for the coun-

terterms for MW . The coefficients ∆M
(4,1)
Z and ∆M

(6,1)
Z are the same in the two

schemes, but differences in the dimension-six piece arise due to the renormalisation

of vT . In the LEP scheme, one must use σ = µ and in addition apply Eq. (4.3.7) to

trade MW for M̂W , which gives an additional scheme-dependent contribution.

The specific Wilson coefficients appearing in the various counterterms in the α scheme

are determined by the two-point functions shown in Figure 5.1. The counterterm

for the W -boson mass contains the following coefficients:

∆M
(6,1,α)
W : {CW , CH�, CHD, CHW , CHW B, C

(3)
Hl
ii

, C
(3)
Hq
ii

, CuW
33
} , i = 1, 2, 3 . (5.2.2)

CH� and CHW contribute to the two left-most topologies in Figure 5.1, while CHW B
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MW MZ vT Total # unique WC

α
LO 0 0 2 2

NLO 12 29 29 29

αµ
LO 0 0 3 3

NLO 13 30 12 33

LEP LO 5 0 3 5
NLO 33 30 12 33

Table 5.2: Number of Wilson coefficients introduced in the
dimension-six counterterms for the bare MW , MZ and
vT at LO and NLO, as well as the number of unique
coefficients between them.

and CW contribute to topologies three and four, which involve vertices with at least

three gauge bosons. CHD appears in all four purely bosonic diagrams. We see that 7

of the 12 coefficients appearing are due to flavour-specific W couplings to fermions,

arising from the right-most graph in Figure 5.1. Since in the SM the W boson

couples only to left-handed fermions, the SMEFT operators must also be left-handed

unless they contain a top-quark loop (in which case a chirality flip is associated

with a power of mt), which explains the relatively small number appearing. For the

Z-boson mass, on the other hand, both left and right-handed couplings are relevant

even for massless fermions, and operators containing the field-strength tensor for

the hypercharge field Bµ, namely CHB and CuB, contribute as well. This leads to a

much larger number of coefficients compared to MW . The full set is:

∆M
(6,1,α)
Z : {CW , CH�, CHD, CHW , CHB, CHW B, C

(1)
Hl
ii

, C
(1)
Hq
ii

, C
(3)
Hl
ii

, C
(3)
Hq
ii

, CuW
33

, CuB
33

,

CHe
ii

, CHd
ii

, CHu
ii
} , i = 1, 2, 3 . (5.2.3)

The counterterm ∆v(6,1,α)
α requires also the counterterm ∆e, as shown in Eq. (4.1.9).

Only those Wilson coefficients appearing in W , top-quark or Higgs loops contribute

to the finite parts of the counterterm for electric charge renormalisation (through

decoupling constants, as explained in [29]), which limits the result to the following

6 coefficients:

∆e(6,1,α) : {CW , CHW , CHB, CHW B, CuW
33

, CuB
33
} . (5.2.4)
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Figure 5.1: Representative Feynman diagrams contributing to the
WW , ZZ, γZ, and γγ two-point functions in SMEFT.

All of these are already contained in ∆M
(6,1,α)
Z , so the set of coefficients contributing

to ∆v(6,1,α)
α is the same as in Eq. (5.2.3).

In the αµ scheme, one needs the counterterms ∆v(6,j,µ)
µ , which are calculated from

muon decay in Section 4.2. In SMEFT, two kinds of coefficients appear at NLO –

those that involve modified couplings of the external fermions, including four-fermion

operators of the kind shown in Figure 5.2, or those that contribute to the W -boson

two-point function at vanishing external momentum. The latter condition eliminates

some operators compared to what is seen in ∆MW itself (in the case of massless

fermions or certain derivative couplings), while the former increases it mainly due

to four-fermion operators. The end result is that the following set appears:

∆v(6,1,µ)
µ : {CH�, CHD, CHW B, C

(1)
Hl
jj

, C
(3)
Hl
jj

, C
(3)
Hq
33

, C ll
1221

, C ll
1122

, C lq
jj33
} , j = 1, 2 .

(5.2.5)

The counterterms for MW and MZ are also modified compared to the α scheme,

as follows from Eq. (5.2.1); one finds that the αµ scheme contains the four-fermion

coefficient C ll
1221

in addition to the α-scheme coefficients listed in Eqs. (5.2.2, 5.2.3).

Finally, in the LEP scheme the counterterm ∆̂M̂
(6,1,µ)
W (see Eq. (4.3.15)) is a function

of those for e, MZ , and vT (renormalised in the αµ scheme), and thus contains the full

set of 33 unique coefficients that also appear in the αµ scheme, while no additional

coefficients appear in the counterterms for MZ or vT compared to the αµ scheme.

The conclusion of this counting exercise is that there is a large overlap between the

set of operators appearing in the NLO counterterms in the different schemes. The

main difference is that a handful of four-fermion operators related to muon decay

appear in the LEP and αµ schemes but not in the α scheme.
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µ ν̄e

νµ

e

µ

ν̄e

νµ

e

Figure 5.2: Representative Feynman diagrams contributing to the
decay of the muon at one loop and involving four-
fermion operators.

Although the direct comparison of the number of Wilson coefficients introduced

by the specific counterterms in each scheme is instructive in understanding the

potential number of Wilson coefficients introduced in a given calculation, ultimately

the number of Wilson coefficients contributing to observables in the different schemes

is process dependent and is determined by the structure of the LO amplitude. For

instance, consider a process involving a γ`` vertex, where ` is a charged lepton and

γ is a photon. In the α scheme, the square of the bare vector-coupling vertex plus

SMEFT counterterms (other than from field strength renormalisation) reads

4M2
W s2

w

v2
α

(
1 + 2∆e(4,1,α)

v2
α

+ 2∆e(6,1,α)
)

. (5.2.6)

In the αµ scheme, on the other hand, the bare vertex plus associated counterterms

read

4M2
W s2

w

v2
µ

{
2∆e(4,1,α)

v2
µ

+ 2∆e(6,1,α) − 4∆e(4,1,α)∆r(6,0)
}

+ 4M2
W s2

w

v2
µ

{
1− v2

µ∆r(6,0) − 1
v2

µ

∆r(4,1) −∆r(6,1) + 2∆r(6,0)∆r(4,1)
}

.

(5.2.7)

The two results are equal to each other if Eq. (4.2.22) is used to relate vµ to vα, but

when the numerical value of vµ is used as an input the terms on the second line of

Eq. (5.2.7) contribute a large number of coefficients compared to what one has in

the α scheme. The same set of coefficients contributes to muon decay calculated in

the α scheme, or in the LEP scheme when MW appears in a tree-level vertex.
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5.3 Perturbative convergence

Next in our numerical analysis of these three commonly used input schemes we wish

to discuss the perturbative convergence of each scheme, or more bluntly put, the finite

corrections each scheme introduces to a given process. Generally speaking, one uses

renormalisation schemes that avoid sensitivity to large logarithms of light fermion

masses in fixed-order corrections, and also tadpole contributions to finite parts of

observables in cases where some parameters are renormalised in the MS scheme

and some in the on-shell scheme [29]. As long as those two issues are dealt with,

top-quark loops are the main source of enhanced NLO corrections in the finite

parts of counterterms. These can be especially important when associated with the

counterterm ∆sw, since they involve inverse powers of s2
w ∼ 0.25 through the relation

2∆sw = −2c2
w

s2
w

(∆MW −∆MZ) ≈ −7(∆MW −∆MZ) , (5.3.1)

where the factor of 2 is chosen to match that in Eq. (4.1.8).

In the SM, enhanced corrections from top-loop contributions to ∆sw related to the

renormalisation scheme are easy to trace. First, by analysing the one-loop Feynman

diagrams in the large-mt limit, one can show that in the αµ scheme

∆v(4,1,µ)
µ

∣∣∣∣∣
mt→∞

≡ ∆v
(4,1,µ)
µ,t = 2∆M

(4,1,µ)
W,t . (5.3.2)

The subscript "t" here and below refers to the large-mt limit of the given quantity,

i.e. the terms containing positive powers of mt in the limit mt → ∞. Second,

using Eqs. (4.1.8, 4.2.24), along with the fact that the SM contributions to ∆e are

subleading in the large-mt limit, the α-scheme result is

∆v
(4,1,α)
α,t = −∆r

(4,1)
t + 2∆M

(4,1,α)
W,t , (5.3.3)

where ∆r is defined in Eq. (4.2.22) such that

∆r
(4,1)
t

v2
α

= −2∆s
(4,1,α)
w,t

v2
α

≡ −c2
w

s2
w

∆ρ
(4,1)
t

v2
α

≈ −3.4% , (5.3.4)
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and we have defined

∆ρ
(4,1)
t

v2
α

≡ 3
16π2

m2
t

v2
α

≈ 1% . (5.3.5)

The numerical values above use µ = MW to evaluate the running parameter vα, along

with the inputs in Table 5.1. Finally, using Eqs. (5.3.2, 5.3.3), the counterterms for

vT in the large-mt limit in the two schemes can be written as

1
v2

T,0

∣∣∣∣∣
mt→∞

= 1
v2

σ

[
1 + 1

v2
σ

(
∆r

(4,1)
t δασ − 2∆M

(4,1)
W,t

)]
, (5.3.6)

where δασ is the Kronecker delta, and we have used that ∆M
(4,1,α)
W = ∆M

(4,1,µ)
W =

∆M
(4,1)
W , see Eq. (5.2.1).

For the heavy boson decays considered in this work, the tree-level decay rates all scale

as 1/v2
T . Therefore, Eq. (5.3.6) produces a simple pattern for the NLO corrections in

the α and αµ schemes. In the αµ scheme, the tadpole and divergent contributions in

∆M
(4,1)
W,t cancel against other such contributions in physical observables, producing

one-loop corrections proportional to ∆ρ
(4,1)
t ∼ 1% in the large-mt limit. In the α

scheme, the ∆M
(4,1)
W,t term is accompanied by a factor of ∆r

(4,1)
t , which produces

a correction of roughly −3.4% compared to the αµ scheme. One indeed sees this

pattern in the NLO SM corrections to W decays and Z decays, shown in Tables 5.3

and 5.5. Input-scheme dependent NLO corrections to weak vertices are thus better

behaved in the αµ scheme, and the numerical differences between the two schemes

are nearly process independent.1

We now ask whether a simple relation between the dominant NLO corrections in the

α and αµ schemes also exists in SMEFT. To do this, we first define

M2
W,0

v2
T,0

zW

∣∣∣∣∣
mt→∞

≡ M2
W

v2
σ

[
1 + v2

σK
(6,0,σ)
W + 1

v2
σ

K
(4,1,σ)
W + K

(6,1,σ)
W

]
, (5.3.7)

where zW is the squared wavefunction renormalisation factor of the W -boson field.

After replacing the bare quantities on the left-hand side by their renormalised coun-
1On the other hand, if the bare vertex contains a photon, then examining Eq. (5.2.7) shows

that the situation is reversed and +3.4% correction is associated with the αµ scheme.
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terparts, it is straightforward to determine the K
(i,j,σ)
W in terms of ∆M

(i,j,σ)
W,t , ∆z

(i,j,σ)
W,t ,

and ∆v
(i,j,σ)
σ,t . This yields K

(6,0,σ)
W = −∆v

(6,0,σ)
σ,t at tree level, and substituting in the

explicit results for the counterterms leads to the following one-loop expressions in

the α scheme:

K
(4,1,α)
W = ∆r

(4,1)
t ,

K
(6,1,α)
W = −1

2K̇
(6,0,α)
W ln µ2

m2
t

+ ∆r
(4,1)
t

[
1
s2

w

CHD + 3
cwsw

CHW B

+ 2C
(3)
Hq
33

+ 2
√

2(1− 2c2
w)

c2
w

MW

mt

CuW
33

]
, (5.3.8)

where

K̇
(6,0,α)
W = −4∆r

(4,1)
t

[
CHD + 2sw

cw

CHW B + 2C
(1)
Hq
33
− 2CHu

33

− 2
√

2sw

c2
w

MW

mt

(
cwCuB

33
+ 5

3swCuW
33

) ]
. (5.3.9)

In the αµ scheme one has instead

K
(4,1,µ)
W = 0 ,

K
(6,1,µ)
W = −1

2K̇
(6,0,µ)
W ln µ2

m2
t

+ ∆ρ
(4,1)
t

∑
j=1,2

[
C

(3)
Hl
jj
− C

(3)
lq

jj33

]
, (5.3.10)

where

K̇
(6,0,µ)
W = −4∆ρ

(4,1)
t

∑
j=1,2

[
C

(3)
Hl
jj
− C

(3)
lq

jj33

]
. (5.3.11)

One sees that the SMEFT expansion of KW is tadpole free, finite, and independent

of the renormalisation scale up to NLO. This is not an accident – it gives the flavour-

independent part of the large-mt limit of W decay into fermions. Furthermore,

rearranging the above expressions yields the following result for the vT counterterms:1

∆v
(4,1,σ)
σ,t = −K

(4,1,σ)
W + 2∆M

(4,1)
W,t ,

∆v(6,0,σ)
σ = −K

(6,0,σ)
W ,

1We omit here Wilson coefficient counterterms δCi, which contribute only divergent parts and
thus do not play a role in the discussion of perturbative convergence.



74 Chapter 5. Analysis of Schemes in the Literature

∆v
(6,1,σ)
σ,t = −K

(6,1,σ)
W +

[
2∆M

(6,1,σ)
W,t + 2∆M

(4,1)
W,t K

(6,0,σ)
W + ∆z

(6,1,σ)
W,t

]
. (5.3.12)

The SM part of Eq. (5.3.12) is identical to Eq. (5.3.6). The dimension-six parts are

the generalisation to SMEFT. In each case, the counterterm for vT is split into two

distinct parts: a physical piece that is a finite, gauge and scale-independent quantity

(the KW ), plus remaining terms which contain tadpoles and divergent parts that

cancel against other such terms in physical observables. While at one-loop in the SM

it was simple to identify the physical factor ∆r(4,1) in the α scheme by studying the

counterterm v(4,1,α)
α alone, in SMEFT it is helpful to choose an observable process

in order to split the counterterm into the two distinct parts. While the choice of W

decay is not unique, it leads directly to the SM results obtained from studying vT

alone.

We can now use our expressions for the counterterms for vT in Eq. (5.3.12) to check

whether, as in the SM, a simple pattern emerges for input-scheme dependent SMEFT

corrections to weak vertices. As an example, consider the following expression, which

gives a flavour-independent correction to Z-boson decays into fermions:

zZ

M2
Z,0

v2
T,0

(
1− v2

T,0
CHD

2

) ∣∣∣∣∣
mt→∞

= M2
Z

v2
σ

[
1 + v2

σk
(6,0,σ)
Z + 1

v2
σ

k
(4,1,σ)
Z + k

(6,1,σ)
Z

]
,

(5.3.13)

where zZ is the wavefunction renormalisation factor squared of the Z-boson field.1

The expression on the right-hand side is finite, tadpole free, and scale-independent

up to NLO. Writing the counterterms for vT using Eq. (5.3.12), one has

k
(6,0,σ)
Z = K

(6,0,σ)
W + k

(6,0)
Z ,

k
(4,1,σ)
Z = K

(4,1,σ)
W + k

(4,1)
Z , (5.3.14)

k
(6,1,σ)
Z = K

(6,1,σ)
W + 2k

(4,1)
Z K

(6,0,σ)
W + k

(6,1)
Z .

Here we have split each term in the perturbative expansion further into scheme de-
1Compared to Eq. (5.3.7) an additional factor of CHD arises for Z-boson decays. This arises

from the relations between the W/Z-mass and the Lagrangian parameters in SMEFT and can be
seen by considering the flavour independent part of Eq. (5.25) in addition to Eq. (5.27) in [42].
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pendent and independent parts (the latter being denoted without the σ superscript).

Both the scheme dependent and independent parts are separately scale independent

and tadpole free. The results for the scheme-independent pieces are

k
(6,0)
Z = −CHD

2 ,

k
(4,1)
Z = 2

(
∆M

(4,1)
Z −∆M

(4,1)
W

)
= ∆ρ

(4,1)
t , (5.3.15)

k
(6,1)
Z = 2∆ρ

(4,1)
t C

(3)
Hq
33
− k̇

(6,0)
Z

2 ln µ2

m2
t

,

where

k̇
(6,0)
Z = −4∆ρ

(4,1)
t

[
CHD + 2C

(1)
Hq
33
− 2CHu

33

]
. (5.3.16)

Inverse powers of sw appear only in the α scheme and are absorbed into the factors

K
(i,j,α)
W , so the scheme-independent coefficients k

(i,j)
Z have an expansion in ∆ρ

(4,1)
t .

In the SM, it is evident that the scheme-dependent corrections k
(4,1,σ)
Z follow the

pattern discussed after Eq. (5.3.6). In SMEFT, scheme-dependent corrections appear

in the combination K
(6,1,σ)
W + 2k

(4,1)
Z K

(6,0,σ)
W in the last line of Eq. (5.3.14). Moreover,

the K
(6,1,σ)
W pieces are explicitly µ-dependent, and one normally chooses the scale

in a process-dependent way. For these reasons, the numerical pattern of scheme-

dependent NLO corrections to weak vertices in SMEFT in the α and αµ schemes is

not nearly as regular as in the SM; this is best seen by comparing results for a range

of processes, which we leave to Section 5.5.

We have focussed the above discussion on the α and αµ schemes. Corrections in

the LEP scheme are derived from those in the αµ scheme by using Eq. (4.3.7) to

eliminate MW in favour of M̂W . The result simplifies considerably in the large-mt

limit. To derive it, we first note that the large-mt limit of the expansion coefficients

of ∆r defined in Eq. (4.2.24) can be written in terms of the KW from Eq. (5.3.7)

according to

∆r
(i,j)
t = K

(i,j,α)
W −K

(i,j,µ)
W . (5.3.17)
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We can convert these into expansion coefficients of ∆̂rt using Eq. (4.3.4). The SM

and tree level SMEFT pieces just involve evaluating the expression at MW = M̂W .

The only non-trivial SMEFT piece is the NLO coefficient, for which we find

∆̂r
(6,1)
t = ∆r

(6,1)
t + 1

c2w

[
cw

sw

CHW B −∆r(6,0) −K
(6,0,α)
W

]
K

(4,1,α)
W

∣∣∣∣∣∣
MW =M̂W

. (5.3.18)

Inserting these results into Eq. (4.3.7) gives the following large-mt corrections to the

W -boson mass in the LEP scheme within the SM

∆̂(4,1,µ)
W,t = 1

2
ĉ2

w

ĉ2w

∆ρ
(4,1)
t , (5.3.19)

while the SMEFT result is

∆̂(6,0,µ)
W,t = s2

w

2c2w

(
K

(6,0,µ)
W −K

(6,0,α)
W

)
(5.3.20)

∆̂(6,1,µ)
W,t = s2

w

2c2w

(
K

(6,1,µ)
W −K

(6,1,α)
W

)

+ s2
w

2c2
2w

[
K

(6,0,α)
W − cw

sw

CHW B +
(

1− s2
w

2 −
2c2

ws2
w

c2w

)
∆r(6,0)

]
K

(4,1,α)
W

∣∣∣∣∣∣
MW =M̂W

.

As an example, let us use this to write the factor of M2
W in Eq. (5.3.7) in terms of

M̂2
W . Denoting the resulting LEP-scheme expansion coefficients as K̂

(i,j,µ)
W , one has

the NLO SM result

K̂
(4,1,µ)
W = 2 1

v2
µ

∆̂(4,1,µ)
W,t ≈ 1.5% . (5.3.21)

The tree-level SMEFT result is

v2
µK̂

(6,0,µ)
W = 1

c2w

(
c2

wK
(6,0,µ)
W − s2

wK
(6,0,α)
W

)
≈ 1.4K

(6,0,µ)
W − 0.4K

(6,0,α)
W , (5.3.22)

while the NLO contribution is

K̂
(6,1,µ)
W = 1

c2w

(
c2

wK
(6,1,µ)
W − s2

wK
(6,1,α)
W

)
+ c2

w

c2
2w

K
(4,1,α)
W

{(
1− c2

ws2
w

c2w

)
CHD

+ 3sw

cw

(
1− 4

3
c2

ws2
w

c2w

)
CHW B − 2s2

w

(
1− s2

w

c2w

)
K

(6,0,µ)
W

}∣∣∣∣∣∣
MW =M̂W

. (5.3.23)

For other processes, the numerical factors multiplying the ∆̂W terms are dictated
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by the dependence of the bare vertex on MW , and are therefore rather process

dependent, a point illustrated in Section 5.5.1.

5.4 Derived Parameters

Having an initial understanding on the perturbative behaviour of each scheme we next

move onto some concrete examples of the simplest observables for any scheme which

are “derived parameters”, where an input parameter in one scheme is calculated as

a SMEFT expansion in another. For the schemes considered here there are three

such quantities: α in the αµ scheme, GF in the α scheme, or MW in the LEP scheme.

All of these are functions of the expansion coefficients (and their derivatives, in the

case of the LEP scheme) of ∆r defined in Eq. (4.2.22). In this section we briefly

examine the latter two cases, and also define the procedure for estimating higher-

order corrections in the SMEFT expansion through scale variations used throughout

the remainder of the chapter.

The SMEFT expansion for GF in the α scheme is obtained from Eq. (4.2.22) and

yields

GF,α = 1√
2v2

α

[
1 + v2

α∆r(6,0) + 1
v2

α

∆r(4,1) + ∆r(6,1)
]

. (5.4.1)

The tree-level result (LO) evaluates to

GLO
F,α

GF

=1.034 + v2
α

3.859CHW B + 1.801CHD + 1.034
∑

j=1,2
C

(3)
Hl
jj
− 1.034C ll

1221

 ,

(5.4.2)
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and the sum of tree-level and one-loop corrections (NLO) is

GNLO
F,α

GF

=0.992 + v2
α

3.733CHW B + 1.756CHD + 1.064
∑

j=1,2
C

(3)
Hl
jj
− 1.039C ll

1221

− 0.167CHu
33

+ 0.142C
(1)
Hq
33
− 0.083C

(3)
Hq
33

+ 0.062CuB
33

+ 0.020CuW
33

+ 0.018C ll
1122
− 0.016

∑
j=1,2

C
(3)
lq

jj22
+ 0.010CW − 0.006

∑
j=1,2

(
CHu

jj
+ C

(3)
Hq
jj

)

+ 0.004
∑

j=1,2
C

(1)
Hl
jj

+ 0.003
(

C
(1)
Hl
33

+
∑

i=1,2,3
CHe

ii
+

∑
i=1,2,3

CHd
ii
−
∑

j=1,2
C

(1)
Hq
jj

)

+ 0.002
(

CHB + CHW + CH� − C
(3)
Hl
33

) ,

(5.4.3)

where in both cases we have used µ = MZ , so that vα = vα(MZ) and Ci = Ci(MZ)

in the above equations. In the SM, the LO prediction for GF differs by 3.4% from

the measured value while at NLO the difference is −0.8%. Evidently, the large-mt

limit contribution in Eq. (5.3.4) accounts for the bulk of the NLO correction. The

LO SMEFT result contains 5 Wilson coefficients which alter the result, while the

NLO one contains the full set of 33 Wilson coefficients identified in Table 5.2.

SMEFT expansions of physical quantities such as GF,α contain a residual dependence

on the renormalisation scale µ due to the truncation of the full series at a fixed order

in perturbation theory. In the SM this is due to the running of α, while in SMEFT

the Wilson coefficients Ci also run. It is often useful to use the stability of the results

under variations of the scale µ about a default value as an estimate of uncalculated,

higher-order corrections in the perturbative expansion. The Wilson coefficients are

unknown numerical quantities that we wish to extract from data, so in order to

implement their running we must calculate their value at arbitrary scales µ given

their value at a default scale choice µdef . For our purposes, it is sufficient to use the

fixed-order solution to the RG equation in this calculation, which reads

Ci(µ) = Ci(µdef) + ln
(

µ

µdef

)
Ċi(µdef) , (5.4.4)

where Ċi was defined in Eq. (4.1.10). For the running of α we can also use the
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fixed-order solution to the RG equation discussed in detail in Section 5.2 of [29] and

is given as

α(µ) = α(MZ)
(

1 + 2γe(MZ) ln µ

MZ

)
, (5.4.5)

where γe(MZ) = α(MZ)
π
× 20

9 . This equation is identical to that of Eq. (1.2.28) but

where we have set the initial value of the scale to the Z-boson mass. Throughout the

section, we estimate uncertainties from scale variations by using the afore mentioned

equations to evaluate observables for the three scale choices µ ∈ {µdef , 2µdef , µdef/2}.

Central values are given for µ = µdef , and upper and lower uncertainties are determ-

ined by values of the observables at the other two choices.1

Let us apply this method to the calculation of MW in the LEP scheme, which is

obtained by evaluating Eq. (4.3.7). Compared to GF,α, the W -mass is sensitive to

a different combination of ∆r as well as its derivatives with respect to MW . The

LO result with µ = MZ as the default value and scale uncertainties estimated as

described above yields

MLO
W =79.82+0.13

−0.13 GeV + M̂W v2
µ

− 0.795+0.038
−0.038CHW B − 0.360+0.026

−0.026CHD

− 0.220+0.008
−0.008

∑
j=1,2

C
(3)
Hl
jj

+ 0.22+0.003
−0.003C ll

1221
+ 0.000+0.038

−0.038C
(1)
Hq
33

+ 0.000+0.036
−0.036CHu

33

+ 0.000+0.013
−0.013CuB

33
+ 0.000+0.012

−0.012CuW
33

+ 0.000+0.006
−0.006

∑
j=1,2

C
(3)
lq

jj33
+ . . .

 , (5.4.6)

where the . . . indicate contributions where the difference between the upper and

lower values obtained from scale variation is less that 1% of M̂W when the numerical

choice Ci = v−2
µ is made. At NLO we find

MNLO
W =80.47+0.01

−0.00 GeV + M̂W v2
µ

− 0.807+0.002
−0.000CHW B − 0.381+0.004

−0.000CHD (5.4.7)

− 0.228+0.000
−0.000

∑
j=1,2

C
(3)
Hl
jj

+ 0.223+0.000
−0.000C ll

1221
+ 0.032+0.000

−0.010CHu
33

1At NLO a large number of Ċi must be evaluated; we have employed DsixTools [47, 120] for
this purpose.
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− 0.028+0.009
−0.000C

(1)
Hq
33

+ 0.016+0.000
−0.003C

(3)
Hq
33

+ 0.012+0.000
−0.002CuB

33
+ . . .

 ,

where in this case the . . . refer to contributions where both the central values

and the difference in upper and lower scale uncertainties are both less than 1% in

magnitude. For both the SM and SMEFT, the scale uncertainties are significantly

larger at LO than at NLO. While the NLO corrections in SMEFT all lie within the

scale uncertainties of the LO calculation, the same is not true of the SM, where

scale variations in the SM at LO do not capture the behaviour of the higher-order

corrections.

We can understand the qualitative features of these results by studying them in the

large-mt limit. Using Eqs. (5.3.19, 5.3.20) for the NLO corrections in this limit, the

numerical result at the scale µ = MZ is

MNLO
W,t =80.36+0.00

−0.00 GeV + M̂W v2
µ

[
− 0.799+0.001

−0.000CHW B − 0.373+0.002
−0.000CHD (5.4.8)

− 0.226+0.000
−0.000

∑
j=1,2

C
(3)
Hl
jj

+ 0.222+0.000
−0.000C ll

1221
+ 0.035+0.000

−0.008CHu
33

− 0.035+0.007
−0.000C

(1)
Hq
33

+ 0.014+0.000
−0.003C

(3)
Hq
33

+ 0.012+0.000
−0.000CuB

33
+ . . .

]
.

This is clearly a good approximation to Eq. (5.4.7), where as in that equation we

have not included contributions of less than 1%. The SM result is scale invariant in

this limit, because the top quark is decoupled from the QED coupling α(µ).

The NLO result for MW in SMEFT generalises the previous result [81] to include

the full flavour structure, and resums logarithms of light fermion masses related to

the running of α; a more detailed comparison is given Appendix A.3. The current

state-of-the-art in the SM [121] includes complete two-loop corrections as well as a

partial set of even higher-order corrections. Adjusted to our numerical inputs, the

result derived from the parametrisation in Eq. (6) of that paper, which we refer to

as NNLO, reads

MNNLO
W = 80.36 GeV , (5.4.9)



5.5. Heavy Boson Decays 81

which is outside the uncertainties in the NLO result Eq. (5.4.7). In order to gain

insight into the structure of higher-order corrections, we have studied the split of

the NNLO result into pure EW, and mixed EW-QCD components, which was given

in [121] for the unphysical value Mh = 100 GeV. When adjusting our own inputs to

that unphysical value, we find that the pure NNLO EW contributions are within our

NLO uncertainty estimate, so that the discrepancy is due to mixed EW-QCD effects

first appearing at NNLO and unrelated to the running of α. The large-mt limit of

these EW-QCD corrections can be obtained by making the following replacement in

Eq. (5.3.19) [122]:

∆ρ
(4,1)
t → ∆ρ

(4,1)
t

[
1− αs

π

2
3 (2ζ2 + 1)

]
, (5.4.10)

where

ζ2 = π2

2 , (5.4.11)

is the Riemann Zeta Function evaluated at 2. Including this correction changes

the central value in Eq. (5.4.7) to 80.41 GeV, which agrees with the NNLO result

to better than the per-mille level. Further improvements can be made through

resummations of the type discussed in Section 5.6.

5.5 Heavy Boson Decays

While the previous sections elucidating some general features of the different input

schemes, the aim of this section is to study in detail three benchmark observables to

NLO in the SMEFT expansion in each scheme: W decay into leptons, Z decay into

charged leptons, and Higgs decay into bottom quarks. For the numerical analysis

we focus on W → τν and Z → ττ .

We write the expansion coefficients of the decay rates to NLO in SMEFT for boson
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X ∈ {W, Z, h} to fermion pair f1f2 as

Γs
Xf1f2 = Γs(4,0)

Xf1f2
+ Γs(4,1)

Xf1f2
+ Γs(6,0)

Xf1f2
+ Γs(6,1)

Xf1f2
, (5.5.1)

where the superscript s(i, j) refers to dimension-i, j-loop contributions in input

scheme s ∈ {α, αµ, LEP}. To study convergence, it is convenient to work instead

with expansion coefficients of the decay rate normalised to the LO SM result, namely

∆s(i,j)
Xf1f2

=
Γs(i,j)

Xf1f2

Γs(4,0)
Xf1f2

. (5.5.2)

Throughout the section numerical values for the decay rates are evaluated using the

default value µdef. = mdecay, where mdecay is the mass of the decaying particle, and

scale uncertainties are obtained by varying the scale up and down by a factor of 2

about the default value, as in Section 5.4.

Obviously, results for three decays in three renormalisation schemes and involving a

large number of SMEFT Wilson coefficients contain a plethora of information. We

have organised it as follows:

• Figures 5.4, 5.5 and 5.6 show Eq. (5.5.2) for the NLO SM corrections as well

as corrections appearing at LO and NLO in SMEFT when the choice Ci =

1 TeV−2 is made. They also show the large-mt limits of the NLO corrections

in cases where top-loops contribute, and group the coefficients such that those

appearing solely due to the choice of renormalisation scheme appear on the

far right.

• In Tables 5.3, 5.4 and 5.5 we show the size of the NLO corrections to the SM

and SMEFT coefficients which appear at tree-level in the different schemes,

for the default scale choices.

• In Appendix A.4, we give results for the numerically most important contribu-

tions to the decay rates at LO and NLO in the SMEFT expansion, including

uncertainties as estimated from scale variations.
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Figure 5.3: Representative virtual corrections for W decay into
leptons at NLO.

The following subsections serve to explain and highlight the most noteworthy patterns

emerging from these results.

5.5.1 W → `ν decays

The tree-level decay rate for W → τν decays, written in terms of vT , takes the form

Γ(4,0)
W τν + Γ(6,0)

W τν = MW

12π

M2
W

v2
T

(
1 + 2v2

T C
(3)
Hl
33

)
. (5.5.3)

Renormalisation-scheme dependence thus enters the result through the counterterms

for MW and vT .

The NLO decay rate is calculated by evaluating virtual corrections such as those

shown in Figure 5.3, and then adding together with UV counterterms and real

emission diagrams with an extra photon in the final state to get a finite result. The

size of NLO SM corrections in the different schemes is easily understood using the

large-mt analysis in Section 5.3. In that limit, the NLO corrections in the αµ scheme

vanish, while those in α scheme are roughly −3.4%, a pattern which agrees well with

the full results in Table 5.3. The SM LEP scheme corrections in the large-mt limit

are

M̂W

12π

M̂2
W

v2
µ

1 + 3
2

ĉ2
w

ĉ2w

∆ρ
(4,1)
t

v2
µ

 ≈ M̂W

12π

M̂2
W

v2
µ

(1 + 0.02) , (5.5.4)

so that the NLO correction is again very close to the result in the table. Note that
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in Eq. (5.5.4) we have consistently expressed all powers of the W mass in terms of

M̂W , whether they come from the 2-body phase space or directly from the amplitude,

which accounts the factor of 3/2 compared to Eq. (5.3.21). Absolute values of the

decay rates at LO and NLO are given in Appendix A.4.1. In that notation, one finds

the following ratios in the SM at NLO

Γα
W,NLO

Γαµ

W,NLO
= 0.992 ,

ΓLEP
W,NLO

Γαµ

W,NLO
= 1.003 . (5.5.5)

The first ratio agrees quite well with the estimate GNLO
F,α /GF using Eq. (5.4.3), while

the second is consistent with the estimate (MNLO
W )3/M3

W using Eq. (5.4.7). Once the

NLO corrections are included the results between the schemes show (better than)

percent-level agreement.

In Figure 5.4 the corrections in SMEFT are shown. The absolute size of the SMEFT

corrections is determined by the choice Ci = TeV−2. For that choice, SMEFT

contributions are suppressed by v2
σ × TeV−2 ≈ 6%, and are anywhere between 10%

to below per-mille level of the SM tree-level result depending on the coefficient.

The NLO SMEFT results contain a large number of Wilson coefficients. We have

organised the coefficients in Figure 5.4 such that those appearing only due to the

renormalisation of vT or MW up to NLO are separated out onto the right part of

the figure, while those appearing also in the bare matrix elements or wavefunction

renormalisation factors and thus common to all schemes are on the left. In the αµ

scheme the coefficients ∆v(6,1,µ)
µ appearing in Eq. (5.2.5) have a large overlap with

those appearing in W -boson couplings, and as a result only four-fermion coefficients

as well as those that modify Z couplings to leptons, C
(1)
Hl
jj

, with j = 1, 2, are particular

to that scheme. In the α scheme, on the other hand, the renormalisation of vT brings

in sensitivity to coefficients related to the renormalisation of MZ and e, which are

listed in Eqs. (5.2.3) and (5.2.4). The LEP scheme is sensitive to the full set of

coefficients contained in ∆r, through the renormalisation of MW , and therefore

contains the overlap of the coefficients in the other two schemes. Taken as a whole,

the number of Wilson coefficients contributing at NLO for the central scale choice
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is 39 in the LEP scheme, 35 in the α scheme and 25 in the αµ scheme.

As in the SM, the numerically dominant NLO SMEFT corrections are related to

top-quark loops. In the α and αµ schemes, the scheme-dependent corrections in the

large-mt limit are nearly all contained in the factors KW given in Eqs. (5.3.8, 5.3.10).

For the default input choices, the SMEFT contributions evaluate to

v2
µK

(6,0,µ)
W + K

(6,1,µ)
W = v2

µ

[ ∑
j=1,2

(
− C

(3)
Hl
jj

(1 + 0.0193) + 0.0193C
(3)
lq

jj33

)
+ C ll

1221
(1 + 0.0)

]
,

v2
αK

(6,0,α)
W + K

(6,1,α)
W = v2

α

[
1.74CHD (1− 0.0275) + 3.73CHW B (1− 0.0354)

+ 0.206
(

C
(1)
Hq
33
− CHu

33

)
− 0.0674C

(3)
Hq
33
− 0.0727CuB

33
− 0.0334CuW

33

]
. (5.5.6)

For coefficients appearing at LO, the NLO corrections are the second term in the

parentheses, facilitating a comparison with Table 5.3. Results also for coefficients

first appearing at NLO can be found in Eq. (A.4.3) and Eq. (A.4.5). We see the

large-mt limit corrections are a good approximation to the full ones. Interestingly, for

the coefficients appearing at LO, there is no large hierarchy between the size of NLO

corrections in the α scheme compared to the αµ scheme, even though the analytic

result for K
(6,1,α)
W contains 4 (3) inverse powers of sw in the case of CHD (CHW B). In

fact, the largest corrections are from C
(1)
Hq
33

and CHu
33

, which appear only due to the

scale-dependent logarithmic terms from Eq. (5.3.9). This illustrates the important

point that, unlike the SM, the NLO corrections are strongly scale dependent in

SMEFT.

The SMEFT corrections in the LEP scheme can be derived from results in the αµ

scheme using Eq. (4.3.7) to write MW in terms of M̂W . The expansion coefficients

arising after converting the factor of M2
W in the large-mt limit, K̂

(6,j,µ)
W , were given

in Eqs. (5.3.22, 5.3.23). In order to calculate the decay rate one must also write the

factor of MW arising from 2-body phase space in terms of M̂W . We have checked

that after doing so the large-mt limit corrections to the coefficients appearing in K̂W

are a good numerical approximation to the full ones.

In addition to the corrections related to the flavour-independent corrections, there
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W → τν SM CHD CHW B C
(3)
Hl
jj

C ll
1221

C
(3)
Hl
33

α −4.2% −1.7% −3.0% — — 2.2%
αµ −0.3% — — 2.5% −0.2% 2.2%

LEP 2.0% 8.1% 3.2% 5.1% 2.5% 4.6%

Table 5.3: NLO corrections to prefactors of LO Wilson coefficients
in the three schemes. Negative corrections indicate a
reduction in the magnitude of the numerical coefficient
of a given Wilson coefficient. The flavour index j refers
to j ∈ 1, 2.

are also contributions from the coefficient C
(3)
Hl
33

, which specifically modifies the τνW

coupling. The large-mt limit correction to ∆LEP(6,1)
W,t due to this coefficient is given

by

−2∆ρ
(4,1)
t C

(3)
Hl
33

(
1 + 2 ln µ2

m2
t

)(
1 + 3∆̂(4,1,µ)

W,t

)
. (5.5.7)

The corresponding results in the α and αµ schemes are obtained from the above

by setting ∆̂(4,1,µ)
W,t to zero. Numerically, one finds that the NLO corrections to

C
(3)
Hl
33

are about 4% in the LEP scheme, and 2% in the α and αµ schemes, in rough

agreement with Table 5.3. Compared to the other schemes, the NLO corrections to

the coefficients appearing at tree-level in the LEP scheme show a rather irregular

pattern due to the complicated dependence on the Weinberg angle.

While the size of the NLO corrections studied above is rather scale dependent, the

sum of the LO and NLO contributions is independent of the scale (up to uncalculated

NNLO terms in the SMEFT expansion) and is thus much less sensitive. To study

this effect in detail, in Appendix A.4.1 we give numerical results in the three schemes

including scale variations at LO and NLO. It is seen that in SMEFT, the dominant

NLO corrections are typically within the uncertainties of the LO calculation as

estimated through scale variations, and that the scale uncertainties in the NLO

results are substantially smaller than in the LO ones.
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h→ bb̄ SM CH� CHD CdH
33

CHW B C
(3)
Hl
jj

C ll
1221

NLO QCD 20.3% 20.3% 20.3% 20.3% 20.3% - -
α NLO EW -5.2 % 2.1% -11.0% 4.2% -6.7% - -

NLO correction 15.1% 22.4% 9.3% 24.5% 13.6% - -
NLO QCD 20.3% 20.3% 20.3% 20.3% - 20.3% 20.3%

αµ NLO EW -0.8 % 2.1% 2.0% 1.9% - 0.9% -0.8%
NLO correction 19.5% 22.4% 22.3% 22.2% - 21.2% 19.5%
NLO QCD 20.3% 20.3% 20.3% 20.3% - 20.3% 20.3%

LEP NLO EW -0.7 % 2.1% 1.6% 1.9% - 0.7% -0.9%
NLO correction 19.5% 22.3% 21.9% 22.2% - 21.0% 19.3%

Table 5.4: NLO corrections to prefactors of LO Wilson coefficients
in the three schemes, split into QCD and EW corrections.
The flavour index j refers to j ∈ 1, 2.

5.5.2 h → bb̄ decays

The tree-level decay rate for h→ bb̄ decay is given by

Γ(4,0)
hbb̄

+ Γ(6,0)
hbb̄

= 3m2
bMh

8πv2
T

[
1 + v2

T

(
2CH� −

1
2CHD −

√
2 vT

mb

CdH
33

)]
. (5.5.8)

The decay h → bb̄ has two important differences with respect to the decays W →

`ν and Z → `` (to be discussed in Section 5.5.3). First, we retain the b-quark

mass and, second, the strong coupling αs(µ) plays a role in the results already at

NLO. The Higgs mass Mh is evaluated on-shell, but the NLO corrections do not

involve its counterterm since it appears through phase space rather than through the

amplitude. Therefore, the input-scheme dependence to NLO arises mainly through

the counterterm for vT .1

The decay h→ bb̄ receives both QCD and EW corrections at NLO. The two effects

are additive and to study the EW input scheme dependence of the results it is useful

to quote the QCD and EW corrections separately, as in Table 5.4. To this order,

the QCD corrections are scheme independent. In the α scheme the EW corrections

are rather large and depend heavily on the Wilson coefficient considered, ranging

1Results in the αµ and LEP scheme differ because one must eliminate MW in favour of M̂W in
the NLO SM correction, but this is a small effect numerically.
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from -11% to 4% and thus inducing significant shifts to QCD alone, while in the αµ

and LEP schemes the corrections are smaller are more uniform.

We can understand the qualitative features of the NLO EW corrections using the

large-mt limit. To this end, we use Eq. (5.3.12) to write the NLO decay rate in this

limit as

Γs
hbb̄

∣∣∣∣∣
mt→∞

= 3m2
bMh

8πv2
σ

[
1 + v2

σ

(
K

(6,0)
h + K

(6,0,σ)
W

)
+ 1

v2
σ

(
K

(4,1)
h + K

(4,1,σ)
W

)

+ K
(6,1)
h + ∆K

(6,1,σ)
h

]
, (5.5.9)

where K
(6,0)
h is the SMEFT contribution in Eq. (5.5.8), and the scheme-dependent

part of the NLO SMEFT correction is

∆K
(6,1,σ)
h = K

(6,1,σ)
W + 2K

(4,1)
h K

(6,0,σ)
W + 1√

2
vσ

mb

K
(4,1,σ)
W CdH

33
. (5.5.10)

Large-mt limit results in the α scheme have been given previously in [29], while

those in the αµ scheme can be extracted from [58]. We make use of those results in

what follows, thus employing the “vanishing gauge coupling limit", which in this case

amounts to taking the limit MW �Mh in addition to mt →∞. This is implemented

to achieve simple results that are representative of the full calculation. The LEP

and αµ scheme results are identical in this limit.

In the SM, the scheme-independent NLO correction in the large-mt limit is given by

1
v2

σ

K
(4,1)
h = 1

3v2
σ

∆ρ
(4,1)
t

(
1 + 7(Nc − 3)

3

)
≈ 0.003 . (5.5.11)

It follows from the discussion in Section 5.3 that the large-mt limit corrections

in the αµ scheme are tiny, while those in the α scheme are well approximated by

K
(4,1,α)
W ≈ −3.4%. Clearly, this mimics the features of the exact NLO EW corrections

given in Table 5.4.

In SMEFT, the scheme-independent1 NLO correction in the large-mt limit is given
1In fact there is mild dependence on the scheme through the numerical value for vσ.
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by

K
(6,1)
h

K
(4,1)
h

= CHD (−1 + 6Lt) + 2
√

2MW

mt

(−7 + 6Lt) CuW
33

+ 4 (1 + 6Lt) C
(3)
Hq
33

+ 3
2
√

2
vσ

mb

(−1 + 10Lt) CdH
33

+ . . . , (5.5.12)

where Lt = ln
(
µ2/m2

t

)
and we have set Nc = 3. The . . . refer to Wilson coefficients

which contain no overlap with those appearing in the scheme-dependent pieces in

Eq. (5.5.10). In the α scheme the numerical value of the NLO corrections at µ = Mh

is

1
v2

α

(
K

(6,1)
h + ∆K

(6,1,α)
h

)
=
{
− CHD(1.6 + 9.7) + (0.0− 17)CHW B

− (3.7 + 6.8)C(3)
Hq
33

+ (0.0− 8.8)(CHu
33
− C

(1)
Hq
33

) + (0.0− 3.1)CuB
33

+ (−4.6 + 0.42)CuW
33

−
√

2vα

mb

(1.8 + 1.7) CdH
33

}
× 10−2 + . . . , (5.5.13)

where the . . . refer to coefficients not appearing in ∆K
(6,1,α)
W , and the order of the

numbers inside the parentheses multiplying the Wilson coefficients on the right-hand

side of the above equation matches the order of the two terms on the left-hand side.

In most cases the scheme-dependent parts contained in ∆K
(6,1,α)
W dominate over the

scheme-independent ones. For coefficients not appearing already at NLO, one can

verify that the results above are close to the exact NLO results in Eq. (A.4.12).

Combined with the LO result in Eq. (A.4.11), one infers NLO EW corrections of

−9% for CHD, −5% for CHW B in the α scheme. In the αµ scheme, one has

1
v2

µ

∆K
(6,1,µ)
h =

{
0.6C ll

1221
+
∑

j=1,2

[
− 0.9C

(3)
Hl
jj

+ 0.3C
(3)
lq

jj33

]}
× 10−2 . (5.5.14)

Contributions from CHW B are completely absent in the αµ scheme, while the NLO

EW correction to CHD from the above result and Eq. (A.4.13) is 3% in the large-mt

limit. This explains the pattern of results seen for these coefficients in Table 5.4. It

makes clear that in this case factors of K
(i,j,α)
W work much the same in SMEFT as in

the SM, producing sizeable NLO EW corrections compared to the αµ scheme.

The full set of NLO corrections in the different schemes is shown in Figure 5.5. In
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the numerical results in Appendix A.4.2 we follow [29] and leave in symbolic form

enhancement factors of mb/vσ which disappear when U(2)2 ×U(3)3 is assumed. We

have not done this in the figure, which explains, for instance, the very large contri-

bution from CdH
33

. In contrast to the case of W decay, in some cases there are large

differences between the large-mt limit and full corrections; this occurs when a Wilson

coefficient receives both EW and QCD corrections, the latter invariably being the

larger effect. From the perspective of EW input-scheme dependent corrections, the

most important feature of the figure is the number of Wilson coefficients appearing.

In particular, there are far more in the α scheme, 42 in total, than in the αµ or LEP

schemes, both of which receive contributions from the same 29 Wilson coefficients.

The main reason is that the renormalisation of vT in the α scheme involves the large

set of flavour-specific couplings to fermions identified given in Eq. (5.2.3), while in

the αµ and LEP schemes MZ does not enter the tree-level amplitude and many of

these coefficients are therefore absent.

5.5.3 Z → `` decays

The tree-level decay rate for Z → ττ decay, written in terms of vT , takes the form

Γ(4,0)
Zττ + Γ(6,0)

Zττ = MZ

24π

{[
M2

Z

v2
T

(
1− v2

T

2 CHD

)] (
g(4,0)

τ + v2
T g(6,0)

τ

)
+ 2M2

Z

[
c2w

(
C

(1)
Hl
33

+ C
(3)
Hl
33

)
− 2s2

wCHe
33

] }
, (5.5.15)

where

g(4,0)
τ = 1− 4s2

w + 8s4
w ,

g(6,0)
τ = 2

(
1− 4s2

w

) (
c2

wCHD + 2cwswCHW B

)
. (5.5.16)

The term inside the square brackets in the first line of Eq. (5.5.15) is independent of

the fermion species into which the Z decays and was considered in Eq. (5.3.13). The

function gτ depends on the charge and weak isospin of the τ lepton, and the terms on

second line are specific to Zττ couplings in SMEFT. The LO decay rate depends on
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the full set of parameters MW , MZ , vT , and so scheme-dependent corrections involve

the full set of coefficients identified in Section 5.2.

The NLO decay rates in the three schemes are shown in Figure 5.6. In the α scheme

the set of coefficients appearing in the renormalisation of vT is the same as that

for renormalising MZ and MW , so it does not introduce any unique coefficients at

NLO. In the LEP and αµ schemes, on the other hand, the renormalisation of vT

introduces a set of 4-fermion coefficients shown on the right-hand side of the figure

that would not otherwise appear in the decay rate. In this case the number of

coefficients appearing at NLO is quite large: 63 in the α scheme, and 67 in the αµ

and LEP schemes.

In order to understand the dominant corrections we study the large-mt limit. Let

us first consider the corrections to the SMEFT coefficients specific to Zττ couplings,

given in the second line of Eq. (5.5.15). In order to evaluate them in the three

schemes, we can use

∆M
(4,1)
Z,t = ∆̂M

(4,1,µ)
Z,t = −∆ρ

(4,1)
t ln µ2

m2
t

+ . . . , (5.5.17)

where the . . . signify tadpole contributions which cancel against those in the bare

matrix elements. Along with the LEP scheme result

∆̂s
(4,1,µ)
w,t = − ĉ2

w

2ĉ2w

∆ρ
(4,1)
t ≈ −0.7∆ρ

(4,1)
t ≈ −0.4∆s

(4,1,µ)
w,t , (5.5.18)

it is then easy to show that in the large-mt limit we can replace the tree-level

expressions involving CHe
33

by

M2
Zs2

wCHe
33
→M2

Zs2
wCHe

33

(
1 + 1

v2
µ

[
c2

w

s2
w

− 2 ln µ2

m2
t

]
∆ρ

(4,1)
t

)
≈M2

Zs2
wCHe

33
(1 + 0.06) ,

M2
Zs2

wCHe
33
→M2

Z ŝ2
wCHe

33

(
1 + 1

v2
µ

[
− ĉ2

w

ĉ2w

− 2 ln µ2

m2
t

]
∆ρ

(4,1)
t

)
≈M2

Z ŝ2
wCHe

33
(1 + 0.01) ,

(5.5.19)

where the first result is for the αµ (or α scheme after µ→ α) and the second line is

for the LEP scheme. The results are a good approximation to the exact ones shown
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in Table 5.5. The fairly large difference between the LEP and αµ scheme makes

clear that the corrections can be quite sensitive to the exact dependence on e.g. sw

in the tree-level results. We have checked that the corrections to the remaining

coefficients appearing in the second line of Eq. (5.5.15) are also well-approximated

by the large-mt limit.

The NLO corrections related to the first line of Eq. (5.5.15) are more complicated.

To study them, we first note that the large-mt limit corrections to the function gτ

can be written in the α and αµ schemes as

gτ = g(4,0)
τ + v2

σg(6,0)
τ + 1

v2
σ

g(4,1)
τ + g(6,1)

τ +
(
K

(6,0,σ)
W g(4,1)

τ −K
(4,1,σ)
W g(6,0)

τ

)
. (5.5.20)

The scheme-independent function g(4,1)
τ is obtained by replacing sw → sw(1 + ∆sw)

and isolating the SM corrections; it thus reads

g(4,1)
τ = −4c2

w(1− 4s2
w)∆ρ

(4,1)
t . (5.5.21)

The function g(6,1)
τ is obtained in the same way, except for in that case one must also

include corrections from Z − γ mixing to get a finite and tadpole-free result. The

explicit result is

g(6,1)
τ = −1

2 ġ(6,0)
τ ln µ2

m2
t

+ g(4,1)
τ

(
−CHW B

2cwsw

+ 2C
(3)
Hq
33
− 2
√

2MW

MT

CuW
33

)

− 12c2w∆ρ
(4,1)
t

(
c2

wCHD + 2cwswCHW B

)
, (5.5.22)

where

ġ(6,0)
τ = −4g(4,1)

τ

[
CHD + sw

cw

CHW B + 2C
(1)
Hq
33
− 2CHu

33
−
√

2sw

c2
w

MW

mt

(
cwCuB

33
+ 5

3swCuW
33

) ]
.

(5.5.23)

We can now obtain the NLO corrections to the first line of Eq. (5.5.15) in the large-mt

limit in the α scheme through the replacement

M2
Z

v2
T

(
1− v2

T

2 CHD

)(
g(4,0)

τ + v2
T g(6,0)

τ

)
→ M2

Z

v2
α

(
g(4,0)

τ + v2
αK

(6,0,α)
Z + 1

v2
α

K
(4,1,α)
Z + K

(6,1,α)
Z

)
,

(5.5.24)
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where the coefficients KZ are obtained by expanding out Eqs. (5.3.13) and (5.5.20).

The SM result in the α scheme is then given by

g(4,0)
τ + 1

v2
α

K
(4,1,α)
Z = g(4,0)

τ + 1
v2

α

(
g(4,0)

τ K
(4,1,α)
W + g(4,0)

τ k
(4,1)
Z + g(4,1)

τ

)
≈ g(4,0)

τ (1− 0.034 + 0.009− 0.006) , (5.5.25)

where the order of numerical terms on the second line matches the first, and g(4,0)
τ ≈

0.51. In the αµ scheme K
(4,1,µ)
W = 0, and in the LEP scheme one replaces g(4,1)

τ →

− s
2
w

c2w
g(4,1)

τ ≈ −0.40g(4,1)
τ . This accounts for the SM corrections in the α and αµ

schemes given in Table 5.5, which as in Higgs and W decay follows the pattern

identified in Section 5.3.

Turning to SMEFT, the LO corrections in the α scheme are contained in

K
(6,0,α)
Z = g(4,0)

τ K
(6,0,α)
W − g(4,0)

τ

CHD

2 + g(6,0)
τ

≈ g(4,0)
τ K

(6,0,α)
W − 0.25CHD + (0.17CHD + 0.18CHW B)

≈ 0.80CHD + 2.0CHW B , (5.5.26)

where the order of the terms on the second line matches that in the first. In the αµ

scheme one replaces α → µ in the above equation; in that case it is clear that the

tree-level contributions from CHD and CHW B are quite small, since K
(6,0,µ)
W contains

neither of these coefficients. At NLO in SMEFT, we can write

K
(6,1,σ)
Z = K

(6,1)
Z + ∆K

(6,1,σ)
Z , (5.5.27)

where the first term is independent of the scheme. In terms of component objects,

one finds

∆K
(6,1,σ)
Z = g(4,0)

τ K
(6,1,σ)
W + 2g(4,0)

τ K
(6,0,σ)
W k

(4,1)
Z + 2g(4,1)

τ K
(6,0,σ)
W ,

K
(6,1)
Z = g(4,0)

τ k
(6,1)
Z + g(6,1)

τ + g(6,0)
τ k

(4,1)
Z + g(4,1)

τ k
(6,0)
Z . (5.5.28)

One can use explicit expressions for the component functions given above to evaluate

these numerically. As an example, let us consider the contributions from CHW B and
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CHD in the αµ scheme. These are contained solely in the scheme-independent factor,

which at the scale µ = MZ

1
v2

µ

K
(6,1)
Z = −0.049CHD − 0.042CHW B + . . . (5.5.29)

where the . . . refer to contributions from other Ci, which are less than 1% in the

units above. Comparing with the second line of Eq. (5.5.26), this implies NLO

corrections of 60% for CHD and −20% for CHW B, which are indeed close to the huge

corrections in the exact results in Table 5.5. In the α scheme these coefficients also

contribute through the scheme dependent piece. The numerical result is

1
v2

α

∆K
(6,1,α)
Z =− 0.027CHD − 0.064CHW B (5.5.30)

+ g(4,0)
τ

[
0.17C

(1)
Hq
33
− 0.17CHu

33
− 0.067C

(3)
Hq
33
− 0.061CuB

33
− 0.023CuW

33

]
.

Even though the contributions on the first line contain up to four (three) inverse

powers of sw in the case of CHD (CHW B), there is no clear hierarchy compared to the

scheme-independent pieces in Eq. (5.5.29). Combining them with the LO numbers

in Eq. (5.5.26), we account for the pattern seen in Table 5.5. Clearly, this pattern

is quite complicated and is not driven by the scheme-dependent factors KW as in

the SM. On the other hand, the coefficients on the second line only appear through

K
(6,1,α)
W , and as seen from the exact results in Eq. (A.4.18) we see that this factor

indeed absorbs the dominant corrections from them, much like K
(4,1,α)
W in the SM.

The LEP scheme results can be obtained from those in the αµ scheme by employing

Eq. (4.3.10). In the large-mt limit the only non-trivial conversions are on the

functions gτ , which contain MW dependence already at tree level. For instance,

calling the LEP-scheme functions ĝτ , we have the LO SMEFT result

ĝ(6,0)
τ = 4(1− 4s2

w)c2
ws2

w

c2w

[
1
2CHD + 1

cwsw

CHW B −K
(6,0,µ)
W

]
, (5.5.31)

and the LEP-scheme version of Eq. (5.5.26) becomes

K̂
(6,0,µ)
Z =ĝ(4,0)

τ K
(6,0,µ)
W − ĝ(4,0)

τ

CHD

2 + ĝ(6,0)
τ



5.5. Heavy Boson Decays 95

Z → ττ SM CHD CHW B CHe
33

C
(1)
Hl
33

C
(3)
Hl
33

C
(3)
Hl
jj

C ll
1221

α −4.0% −10.6% −5.4% 7.7% 0.3% −0.5% — —
αµ < 0.1% 71.1% −27.2% 7.6% 0.1% −0.4% 2.9% 0.6%

LEP 1.0% 7.8% 17.4% 2.0% 4.7% 4.2% 6.9% 4.5%

Table 5.5: NLO corrections to prefactors of LO Wilson coefficients
in the three schemes. Negative corrections indicate a
reduction in the magnitude of the numerical coefficient
of a given Wilson coefficient, while < 0.1% indicates
changes below 0.1%, both positive and negative. The
flavour index j refers to j ∈ 1, 2.

≈ −0.29CHD − 0.21CHW B − 0.59
∑

j=1,2
C

(3)
Hl
jj
− C ll

1221

 . (5.5.32)

Compared to the αµ scheme, the LO result for the coefficient CHD is significantly

larger, and those from the operators contained in K
(6,0,µ)
W are slightly smaller, which

roughly explains the pattern for those coefficients seen in LEP scheme results

Table 5.5. The result for CHW B is slightly increased, but remains small and for

that reason still receives a substantial NLO correction.

We have derived the complete large-mt limit results and verified that they provide a

good approximation to the full one, but the explicit expression for the function ĝ(6,1,µ)
τ

is somewhat lengthy and we do not reproduce it here. In Section A.4.3 we show

detailed LO and NLO results including uncertainties estimated from scale variations.

It is clear that in cases where the NLO corrections are large, namely for certain

operators in the αµ and the LEP schemes, the uncertainties are underestimated,

while in the α-scheme the uncertainty estimates are more reliable. This example

highlights very clearly that the issue of NLO corrections in SMEFT is considerably

more scheme and process-dependent than in the SM. The general rule that NLO

corrections to weak decays are smaller in the LEP and αµ schemes than in the α

scheme familiar from the SM does not transfer over to SMEFT.
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5.6 Universal corrections in SMEFT

A recurring theme of the previous sections was that EW corrections are dominated

by top loops. While the numerical patterns in EW input-scheme dependent top-

loop corrections in the SM are quite regular, those in SMEFT are more process

and Wilson-coefficient dependent. The purpose of this section is to show that the

dominant scheme-dependent EW corrections in SMEFT can nonetheless be taken

into account by a certain set of simple substitutions in the LO results, similarly to

the well-studied case of the SM.

Let us begin the discussion with the SM, where an important feature is that weak

vertices in the α scheme receive corrections proportional to ∆r
(4,1)
t , related to the

renormalisation of vT . It is simple to resum such corrections to all orders in per-

turbation theory. Using the large-mt limit result in Eq. (5.3.3), and keeping for the

moment only the ∆r
(4,1)
t terms (i.e. terms enhanced in the limit c2

w/s2
w � 1, in which

case the ∆MW,t piece is subleading), we have

1
v2

T,0
≈ 1

v2
α

[
1 + 1

v2
T,0

∆r
(4,1)
t

]
≈ 1

v2
α

[
1 + 1

v2
α

∆r
(4,1)
t + 1

v2
αv2

T,0

(
∆r

(4,1)
t

)2
+ . . .

]

= 1
v2

α

[
1− 1

v2
α

∆r
(4,1)
t

]−1

≡ 1
ṽ2

α

. (5.6.1)

This resums the ∆r
(4,1)
t terms to all orders. Adding back the subleading terms away

from the double limit mt, c2
w/s2

w � 1 by matching with the one-loop result yields

1
v2

T,0
= 1

ṽ2
α

[
1− 1

ṽ2
α

(
∆v(4,1,α)

α + ∆r
(4,1)
t

)]
. (5.6.2)

Expressing the counterterm for vT as an expansion in ṽα rather than vα will obviously

lead to a quicker convergence between orders. For example, the SM prediction to

NLO for the derived quantity GF in such a “α̃ scheme" is

GNLO
F,α̃ = 1√

2ṽ2
α

[
1 + 1

ṽ2
α

(
∆r(4,1) −∆r

(4,1)
t

)]
. (5.6.3)

Numerically, including uncertainties from scale variation using the procedure de-
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scribed in Section 5.4,

GLO
F,α̃

GF

= 1.000+0.007
−0.007 ,

GNLO
F,α̃

GF

= 0.994+0.000
−0.000 , (5.6.4)

where GLO
F,α̃ refers to the first term in Eq. (5.6.3). This shows considerably improved

convergence compared to the fixed-order α scheme expression in Eq. (5.4.1), and

scale variations in the LO result give a good estimate of the NLO corrections.

To the best of our knowledge, a resummation of the type described above was first

derived in [123], at the level of the W -boson mass in the LEP scheme (and also

including subleading two-loop terms in the limit sw → 0). In that case, similar

reasoning using Eq. (4.2.22) as a starting point leads to the resummed LO prediction

(
M L̃O

W

)2
= M̃2

W ≡
M2

Z

2

1 +

√√√√√√1− 4παv2
µ

M2
Z

(
1− 1

v
2
µ

∆r
(4,1)
t

)
 . (5.6.5)

The NLO result within the resummation formalism, modified to avoid double count-

ing, is

M ÑLO
W = M̃W

[
1− 1

2
ŝ2

w

ĉ2w

1
v2

µ

∆r̃(4,1)
]

, ∆r̃(4,1) = ∆r(4,1) −∆r
(4,1)
t . (5.6.6)

Evaluating numerically and including uncertainties from scale variation leads to

M L̃O
W = 80.33+0.13

−0.13GeV , M ÑLO
W = 80.44+0.01

−0.00GeV , (5.6.7)

which again shows improved perturbative convergence compared to the fixed-order

results in Eqs. (5.4.6, 5.4.7).

Resummations are especially useful for derived parameters, which are known to

a high level of experimental and perturbative accuracy. However, when viewed

as a subset of corrections to EW vertices contributing to scattering amplitudes

or decay rates in a specific input scheme, the corrections beyond NLO contained

in the resummed formulas are typically negligible compared to process-dependent

experimental and perturbative uncertainties. For instance, the central values of the
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LO resummed results in Eqs. (5.6.4, 5.6.7) can be split up as

GLO
F,α̃

GF

= 1.034− 0.035 + 0.001 = 1.000 ,

M L̃O
W = (79.82 + 0.54− 0.03) GeV = 80.33 GeV , (5.6.8)

where in both cases the sequence of three numbers after the first equality are the

fixed-order LO, the fixed-order NLO correction, and the beyond NLO corrections,

respectively. Clearly, the NLO expansions of the resummed formulas approximate

the full results at sub percent-level precision, so a fixed-order implementation suffices

for practical applications.

Universal NLO corrections to weak vertices implied by resummation can be obtained

through a procedure of substitutions on LO results. The remaining, non-universal

NLO corrections need to be calculated on a case-by-case basis, but these are typically

small compared to the ones already included at LO through the aforementioned

substitutions. While such procedures for universal corrections are well known in

the SM (see for instance [124]), we give here a first implementation within SMEFT.

Step-by-step, it works as follows

(1) Write the LO amplitude in terms of vT , MW , and MZ = MW /cw.

(2) Make EW-input scheme dependent replacements on the LO amplitudes. In

the α or αµ scheme, these read

1
v2

T

→ 1
v2

σ

1 + v2
σK

(6,0,σ)
W + K

(4,1,σ)
W

v2
σ

+ K
(6,1,σ)
W

 ,

s2
w → s2

w

(
1− 1

v2
σ

∆r
(4,1)
t + ∆v(6,0,σ)

σ ∆r
(4,1)
t − 2C

(3)
Hq
33

∆r
(4,1)
t

)
,

c2
w → c2

w

(
1− 1

v2
σ

∆ρ
(4,1)
t + ∆v(6,0,σ)

σ ∆ρ
(4,1)
t − 2C

(3)
Hq
33

∆ρ
(4,1)
t

)
, (5.6.9)

where as usual σ ∈ {α, µ} and the KW are given in Eqs. (5.3.8, 5.3.10).

In the LEP scheme, make the above replacements with σ = µ in the LO

amplitude. Subsequently, eliminate MW in favour of M̂W using Eq. (4.3.7),
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in both the replacements and everywhere else in the LO observable (so that

factors of MW related to phase space are also taken into account).

(3) Expand the resulting expressions to NLO in a fixed-order SMEFT expansion

before evaluating numerically.

We shall refer to results obtained from the above procedure as “LOK” accurate.

In the SM, the substitutions in Eq. (5.6.9) are sufficient to capture NLO corrections

proportional to ∆r
(4,1)
t . Beyond that, writing MZ = MW /cw before performing the

shifts ensures that the large-mt limits of both W and Z decay are reproduced. In

SMEFT, the substitution for vT is motivated by Eq. (5.3.12), which splits the coun-

terterm for vT into a “physical", µ-independent order-by-order in perturbation theory

and tadpole free part, KW , and an “unphysical” part, which is tadpole dependent

and divergent. The physical part captures the most singular large-mt corrections as

sw → 0 in SMEFT, as well as µ-dependent logarithms. The substitutions for sw also

capture such pieces of its counterterm, including a piece proportional to C
(3)
Hq
33

which

is easily shown to be proportional to the NLO SM result. Finally, in both SMEFT

and the SM, the shift for cw is chosen to maintain s2
w + c2

w = 1. While Eq. (5.6.9)

is not unique, other reasonable choices would differ only by terms proportional to

∆ρ
(4,1)
t rather than ∆r

(4,1)
t and thus agree with the above to roughly the percent

level.1

In Table 5.6, we compare various perturbative approximations to heavy-boson decay

rates in the SM within the α and LEP schemes, in each case normalised to the NLO

result in the αµ scheme at the default scale choice. The LO and NLO results refer to

fixed-order perturbation theory, NLOt refers to the large-mt limit of NLO, and LOK

refers to the sum of LO and NLO corrections obtained through the above procedure.

For the case of W and Z decay in the α scheme, the convergence between LOK and

NLO is greatly improved compared to pure fixed order, and varying the scale in the
1Substitutions for SMEFT vertices involving photons need to be considered on a case-by-case

basis. For instance, a QED-type vertex in the α and LEP schemes is proportional to e and spurious
corrections would be generated through the substitution procedure outlined above.
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W → τν Z → ττ h→ bb̄

α LEP α LEP α LEP

NLO 0.992+0.001
−0.001 1.003+0.000

−0.000 0.992+0.001
−0.001 1.002+0.000

−0.000 0.991+0.001
−0.001 1.000+0.000

−0.000

NLOt 1.001+0.007
−0.007 1.003+0.005

−0.005 1.002+0.007
−0.007 1.003+0.002

−0.002 1.013+0.007
−0.007 1.011+0.001

−0.001

LO 1.036+0.008
−0.008 0.983+0.005

−0.005 1.034+0.008
−0.008 0.993+0.001

−0.001 1.045+0.007
−0.007 1.008+0.001

−0.001

LOK 1.001+0.007
−0.007 1.003+0.005

−0.005 1.002+0.007
−0.007 1.003+0.002

−0.002 1.010+0.007
−0.007 1.008+0.001

−0.001

Table 5.6: SM results in the α and LEP schemes. For each process,
the results are normalised to the SM NLO results in the
αµ scheme.

LOK results gives a good estimate for the residual corrections contained in the full

NLO result. Also in Higgs decay LOK is a marked improvement over LO, although in

that case the results in all schemes are subject to a roughly -1% scheme-independent

correction which is unrelated to the large-mt limit and not captured through scale

variations.

We next turn to SMEFT, focusing on cases where LOK results involve corrections

proportional to ∆r
(4,1)
t . In Table 5.7 we show heavy-boson decay rates in SMEFT in

the α scheme, listing the prefactors of Wilson coefficients appearing in K
(6,1,α)
W . In

this case, the NLOt (but not LOK) results use the large-mt limit of Eq. (5.4.4) for

scale variations of the Wilson coefficients. We see that also in SMEFT, the LOK

description improves perturbative convergence compared to pure fixed order, taking

into account especially the dominant scheme-dependent corrections. This works

best for W decay, where the central values of LOK reproduce the NLOt results by

construction, and perturbative uncertainties are reduced compared to LO while still

showing a good overlap with the NLO results. In Higgs decay, Wilson coefficients

that receive significant scheme-independent corrections as shown Eq. (5.5.12), such

as CuW
33

, display the biggest deviations from the NLOt and NLO results at LOK

accuracy, although scale variations generally give a good indication of the size of

the missing pieces. The case of Z decay is similar, although in contrast to Higgs

and W decay the form of the LO amplitude in Eq. (5.5.15) implies that the shifts
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of sw in Eq. (5.6.9) also play a role. This latter effect is even more important in

Z decay in the αµ scheme; as shown in Table 5.8, LOK accuracy largely takes into

account the very large corrections to CHD and CHW B (as well as the more moderate

but still significant corrections to CHe
33

) seen in Table 5.5. The LOK results for Higgs

and W decay in the αµ scheme, and for all decays in the LEP scheme, show similar

levels of improvement as the cases discussed above – detailed tables can be found in

Appendix A.5.
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W → τν CHD CHW B C
(3)
Hq
33

CHu
33

C
(1)
Hq
33

CuB
33

CuW
33

NLO 1.713+0.000
−0.011 3.621+0.000

−0.011 −0.079+0.018
−0.012 −0.195+0.038

−0.000 0.172+0.000
−0.033 −0.072+0.008

−0.000 −0.032+0.005
−0.000

NLOt 1.694+0.000
−0.009 3.601+0.001

−0.008 −0.067+0.019
−0.004 −0.206+0.034

−0.000 0.206+0.000
−0.030 −0.073+0.005

−0.000 −0.033+0.004
−0.000

LO 1.742+0.120
−0.120 3.733+0.131

−0.131 0.000+0.008
−0.008 0.000+0.182

−0.182 0.000+0.189
−0.189 0.000+0.066

−0.066 0.000+0.059
−0.059

LOK 1.694+0.016
−0.033 3.601+0.021

−0.031 −0.067+0.011
−0.000 −0.206+0.029

−0.000 0.206+0.000
−0.032 −0.073+0.007

−0.000 −0.033+0.005
−0.000

h→ bb̄ CHD CHW B C
(3)
Hq
33

CHu
33

C
(1)
Hq
33

CuB
33

CuW
33

NLO 1.106+0.002
−0.018 3.482+0.005

−0.016 −0.116+0.025
−0.000 −0.079+0.033

−0.000 0.058+0.000
−0.034 −0.030+0.008

−0.000 −0.040+0.009
−0.000

NLOt 1.129+0.002
−0.012 3.560+0.005

−0.011 −0.105+0.030
−0.000 −0.088+0.028

−0.000 0.088+0.000
−0.027 −0.031+0.006

−0.000 −0.042+0.006
−0.000

LO 1.242+0.089
−0.089 3.733+0.128

−0.128 0.000+0.112
−0.112 0.000+0.183

−0.183 0.000+0.188
−0.188 0.000+0.066

−0.066 0.000+0.094
−0.094

LOK 1.134+0.004
−0.021 3.536+0.014

−0.024 −0.068+0.125
−0.110 −0.088+0.034

−0.000 0.088+0.000
−0.027 −0.031+0.007

−0.000 0.004+0.036
−0.029

Z → ττ CHD CHW B C
(3)
Hq
33

CHu
33

C
(1)
Hq
33

CuB
33

CuW
33

NLO 1.406+0.002
−0.021 3.867+0.003

−0.016 −0.074+0.014
−0.001 −0.143+0.031

−0.000 0.117+0.000
−0.032 −0.065+0.007

−0.000 −0.016+0.008
−0.000

NLOt 1.419+0.002
−0.015 3.876+0.004

−0.011 −0.061+0.016
−0.002 −0.156+0.027

−0.000 0.156+0.000
−0.026 −0.067+0.006

−0.000 −0.019+0.007
−0.000

LO 1.573+0.109
−0.109 4.088+0.144

−0.144 0.000+0.008
−0.008 0.000+0.163

−0.163 0.000+0.172
−0.172 0.000+0.072

−0.072 0.000+0.064
−0.064

LOK 1.426+0.000
−0.013 3.870+0.030

−0.040 −0.061+0.008
−0.000 −0.173+0.050

−0.002 0.173+0.000
−0.042 −0.061+0.012

−0.000 −0.023+0.007
−0.000

Table 5.7: The numerical prefactors of the Wilson coefficients in the
α scheme appearing in K

(6,1,α)
W for various perturbative

approximations. The tree-level decay rate as well as v2
α

have been factored out and the results have been evalu-
ated at the scale of the process. We show the results for
W decay (top), h decay (center) and Z decay (bottom).
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Z → ττ C
(3)
Hl
jj

C
(3)
lq

jj33
C ll

1221
C

(3)
Hq
33

CHD CHW B CHe
33

NLO −1.029+0.001
−0.000 0.015+0.000

−0.001 1.006+0.000
−0.000 0.006+0.000

−0.002 −0.289+0.009
−0.007 0.258+0.003

−0.008 −1.897+0.006
−0.002

NLOt −1.021+0.001
−0.000 0.015+0.004

−0.005 1.006+0.002
−0.002 0.006+0.000

−0.002 −0.266+0.006
−0.005 0.272+0.002

−0.002 −1.864+0.005
−0.001

LO −1.000+0.015
−0.015 0.000+0.026

−0.026 1.000+0.004
−0.004 0.000+0.001

−0.001 −0.169+0.011
−0.011 0.355+0.012

−0.012 −1.764+0.046
−0.046

LOK −1.021+0.012
−0.010 0.015+0.000

−0.001 1.006+0.004
−0.004 0.006+0.001

−0.000 −0.260+0.017
−0.017 0.267+0.009

−0.009 −1.838+0.048
−0.048

Table 5.8: The numerical prefactors of the Z decay SMEFT Wilson
coefficients in the αµ scheme appearing leading to dom-
inant corrections at various perturbative approximations.
The tree-level decay rate as well as v2

µ have been factored
out and the results have been evaluated at the scale of
the process.
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Figure 5.4: LO and NLO corrections ∆s(i,j)
W τν , as defined in Eq. (5.5.2),

for the decay W → τν in the three schemes. Note that
“NLO" in the legends only refers to the NLO corrections
and that we write superscripts in the Wilson coefficient
names as CHq3 ≡ C

(3)
Hq. The flavour indices i and j run

over values j ∈ 1, 2, and i ∈ 1, 2, 3. Operators which ap-
pear only through counterterms in a particular scheme
are shown on the right. The dashed lines indicate the
large-mt limit of the NLO corrections. For operators
appearing at LO the orange triangles indicate if the sign
of the NLO correction is the same as (triangle pointing
up) or different from (triangle pointing down) the sign
of the LO contribution.
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Figure 5.5: As in Figure 5.4, but for the decay h→ bb̄.
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Figure 5.6: As in Figure 5.4, but for the decay Z → ττ .



Chapter 6

Introduction to the veff
σ Schemes in

the SMEFT

In the previous sections, we mainly concerned ourselves with a review of three

current EW input schemes that are used in the SMEFT. However, these three

choices of input schemes are by no means the only choice, as a plethora of potential

measurements are available to define an input scheme around.

In the SM, several studies have proposed EW input schemes which use the effective

leptonic weak mixing angle sin θ`
eff as an input parameter [102–107]. The effective

leptonic weak mixing angle has been measured with per-mille level precision at

LEP [125], the Tevatron [126] and the LHC [127–130]. However, its numerical preci-

sion is (more than an order of magnitude) below that of other commonly used input

values such as the mass of the W boson. This lack of precision potentially facilitated

its exclusion from common use in the literature. However, future experiments, such

as the P2 experiment at MESA [131], as well as the Møller [132] and SoLID [133,134]

experiments at Jefferson Laboratory, will test this quantity with similar precision

at lower energy scales. With potential improvements in precision of the measured

value on the horizon, the arguments for using the weak mixing angle as an input in

electroweak calculations is ever strengthening.

The aim of the next chapters introduce the {GF , sin θ`
eff, MZ} and {α, sin θ`

eff, MZ}
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input schemes which we collectively call the veff
σ schemes or individually the veff

µ and

veff
α scheme respectively. We will provide a method of renormalisation in the one

loop dimension-six SMEFT for the first time for these new input schemes.

6.1 Introduction to sin θ
`
eff

In order to implement the veff
σ schemes in a unified notation, we again write the

tree-level Lagrangian in terms of {vT , MW , MZ} using Eq. (2.2.18). The renormal-

ised Lagrangian is again obtained by interpreting the tree-level quantities as bare

ones which are replaced by renormalised parameters plus counterterms in a partic-

ular scheme. For the inputs common to the two schemes, we relate the bare and

renormalised parameters according to

MZ,0 = MZ (1 + ∆MZ) ,

sw,0 =
√

1− c2
w,0 = sin θ`

eff (1 + ∆seff) ≡ seff (1 + ∆seff) , (6.1.1)

where here, like previously, we indicate bare parameters with a subscript 0, and

cw,0 = MW,0/MZ,0. The quantities ∆MZ and ∆seff appearing on the right-hand side

of the above equations are counterterms, which are calculated in a SMEFT expansion

in loops and operator dimension, including tadpoles in the FJ tadpole scheme [26].

It will often be convenient to work with the quantity

M eff
W ≡ ceffMZ , ceff =

√
1− s2

eff . (6.1.2)

The relation between M eff
W and the bare mass can be derived using Eq. (6.1.1).

Writing

MW,0 = M eff
W

(
1 + ∆M eff

W

)
, (6.1.3)

one finds

∆M eff
W = ∆MZ −

s2
eff

c2
eff

[
∆seff + ∆MZ∆seff + 1

2c2
eff

(∆seff)2
]

+ . . . , (6.1.4)
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where the . . . indicates terms not needed to NLO in the dimension-6 SMEFT ex-

pansion.

In addition to the counterterms for seff and MZ , we also need those for vT . In the

veff
µ scheme, one uses

1
v2

T,0
= 1

v2
µ

(
1−∆veff

µ

)
, (6.1.5)

while in the veff
α scheme one has instead

1
v2

T,0
= 1

v2
eff

(
1−∆veff

α

)
, (6.1.6)

where we have defined

vµ ≡
(√

2GF

)− 1
2 , veff

α ≡ veff ≡
2M eff

W seff√
4πα

. (6.1.7)

In the following two sections, we discuss renormalisation in the veff
σ schemes to NLO

in SMEFT.

6.2 The veff
µ Scheme

We start by giving results for the SMEFT expansion of the counterterms needed

for renormalisation in the veff
µ scheme, structuring the discussion in such a way that

most results in the veff
α scheme can be obtained by a simple set of substitutions.

We begin with the determination of the counterterm ∆seff. To this end, consider

the amplitude for Z → `` decay, where ` ≡ `i ∈ {e, µ, τ}. We can write the bare

amplitude to NLO in SMEFT in the form

A0(Z → ``) = N0

[
A`

L,0SL +A`
R,0SR

]
+ . . . , (6.2.1)

where we have introduced the spinor structures

SL =
[
ū(p

`
−)γνPLv(p

`
+)
]

ε∗
ν(pZ) , SR =

[
ū(p

`
−)γνPRv(p

`
+)
]

ε∗
ν(pZ) , (6.2.2)
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with PL = (1−γ5)/2 and PR = (1 + γ5)/2. The ellipsis in Eq. (6.2.1) refers to spinor

structures appearing beyond LO in the SMEFT expansion, which do not interfere

with those above in the limit of vanishing lepton masses, and the overall factor N0

is defined by

N0 = MZ,0

vT,0

(
1− v2

T,0

4 CHD,0

)(
1 + δQED

)
, (6.2.3)

where δQED refers to QED corrections.

We can write the SMEFT expansion of the bare amplitudes as

A`
L/R,0 = A(4,0)

L/R,0 + v2
T,0A

`(6,0)
L/R,0 + 1

v2
T,0
A(4,1)

L/R,0 +A`(6,1)
L/R,0 , (6.2.4)

where the superscript (i, j) labels the operator dimension i contribution to the j-loop

diagram, and we have pulled out explicit factors of vT,0 such that the coefficients A(i,j)

do not depend on vT,0.1 The notation makes clear that the dimension-6 amplitudes

depend on the lepton species ` while those in the SM do not.

The tree-level SM amplitudes read

A(4,0)
L = −1 + 2s2

w,0 ≡ −c2w,0, A(4,0)
R = 2s2

w,0 , (6.2.5)

while in SMEFT

A`(6,0)
L/R = G(6,0) + g

`(6,0)
L/R , (6.2.6)

where the explicit results for decay into lepton species `i are

G(6,0) = −c2
w,0CHD − 2cw,0sw,0CHW B ,

g
`(6,0)
L = −C

(1)
Hl
ii
− C

(3)
Hl
ii

,

g
`(6,0)
R = −CHe

ii
. (6.2.7)

1An implicit dependence on vT in the (6, 1) coefficients occurs through the Class-1 coefficient
CW .
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Consider now the definition of the effective weak mixing angle

sin2 θ`
eff = −1

2 Re
(

G`
R(M2

Z)
G`

L(M2
Z)−G`

R(M2
Z)

)
, (6.2.8)

where the G`
L,R are experimentally measured form factors at q2 = M2

Z [125–130]. The

counterterm ∆seff in Eq. (6.1.1) is determined to all orders in the SMEFT expansion

through the renormalisation condition

sin2 θ`
eff = s2

eff . (6.2.9)

To implement this renormalisation condition order by order in SMEFT, we first

substitute the G`
L(G`

R) in eq. (6.2.8) with the coefficients of SL(SR) in Eq. (6.2.1),

and replace the bare quantities with renormalised ones plus associated counterterms.

We write the SMEFT expansions of ∆seff and ∆veff
µ in the veff

µ scheme as

∆seff = v2
µ∆s

(6,0)
eff + 1

v2
µ

∆s
(4,1)
eff + ∆s

(6,1,µ)
eff ,

∆veff
µ = v2

µ∆veff(6,0)
µ + 1

v2
µ

∆veff(4,1)
µ + ∆veff(6,1)

µ . (6.2.10)

The superscripts (6, 0) and (4, 1) have the same meaning as in Eq. (6.2.4), while

the coefficient ∆s
(6,1,µ)
eff contains an extra superscript µ to indicate that vT has been

renormalised as in Eq. (6.1.5). Isolating the dependence on ∆veff
µ allows us to write

∆s
(6,1,µ)
eff = ∆s

(6,1)
eff −∆s

(4,1)
eff ∆veff(6,0)

µ + ∆s
(6,0)
eff ∆veff(4,1)

µ , (6.2.11)

where the coefficient ∆s
(6,1)
eff does not depend on the renormalisation scheme for vT .

The construction of renormalised Z → `` decay amplitudes also requires the on-

shell wavefunction renormalisation factors of the external Z-boson and lepton fields.

For the lepton fields, we can write the SMEFT expansion of the wavefunction

renormalisation factors as

`L/R,0 =
[
1 + 1

2v2
T,0

∆Z
`(4,1)
L/R,0 + 1

2∆Z
`(6,1)
L/R,0

]
`L/R

=
[
1 + 1

2v2
µ

∆Z
`(4,1)
L/R + 1

2
(
∆Z

`(6,1)
L/R −∆v(6,0)

µ ∆Z
`(4,1)
L/R

)]
`L/R . (6.2.12)
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In the first line all terms are expressed in terms of the bare parameters vT,0, sw,0,

while in the second renormalised parameters are used. The notation is such that

∆Z
`(4,1)
L/R = ∆Z

`(4,1)
L/R,0

∣∣∣∣∣
sw,0→seff

,

∆Z
`(6,1)
L/R = ∆s

(6,0)
eff seff

∂

∂seff
∆Z

`(4,1)
L/R + ∆Z

`(6,1)
L/R,0

∣∣∣∣∣
sw,0→seff

, (6.2.13)

where the derivative in the SMEFT counterterm arises from replacing the implicit

dependence on sw,0 in the SM counterterm ∆Z
`(4,1)
L/R,0 with the right-hand side of

Eq. (6.2.10) and performing a SMEFT expansion. We emphasise that the ∆Z`
L/R

do not include QED corrections, which are instead contained in the factor δQED in

Eq. (6.2.3). Wavefunction renormalisation graphs related to the Z-boson two-point

function can be absorbed into the factor N0 in Eq. (6.2.1). Since N0 drops out of

the ratio in Eq. (6.2.8) we do not discuss these two terms further. On the other

hand, contributions from the Zγ two-point function, where γ denotes the photon,

are included in the definition of A`
L/R,0.

Performing a tree-level SMEFT expansion on Eq. (6.2.8) using the above equations

yields

∆s
(6,0)
eff = − 1

4s2
eff

[
G(6,0) + 2s2

effg
`(6,0)
L + c2effg

`(6,0)
R

]
= 1

4s2
eff

[
c2

effCHD + 2ceffseffCHW B + 2s2
eff

(
C

(3)
Hl
ii

+ C
(1)
Hl
ii

)
+ c2effCHe

ii

]
, (6.2.14)

while the one-loop result in the SM is

∆s
(4,1)
eff = −1

2 Re
[
A(4,1)

L,0 + c2eff

2s2
eff
A(4,1)

R,0 + c2eff

(
∆Z

`(4,1)
R −∆Z

`(4,1)
L

)]
. (6.2.15)

The part of the one-loop SMEFT result which is independent of the renormalisation

scheme for vT is

∆s
(6,1)
eff =− 1

2 Re
{
A(6,1)

L,0 +A(6,0)
L ∆Z

`(4,1)
L + c2eff

2s2
eff

(
A(6,1)

R,0 +A(6,0)
R ∆Z

`(4,1)
R

)
+ c2eff

(
∆Z

`(6,1)
R,0 −∆Z

`(6,1)
L,0

)}
+ 1

2ε
v2

µ∆ṡ
(6,0)
eff
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−∆s
(4,1)
eff

(
∆s

(6,0)
eff + 1

2CHD −
c2eff

2ceffseff
CHW B

)

+ ∆s
(6,0)
eff

[
seff

∂

∂seff
∆s

(4,1)
eff − 1

2s2
eff
A(4,1)

R,0 −∆Z
`(4,1)
R

]
, (6.2.16)

where we have defined

c2eff = 1− 2s2
eff . (6.2.17)

A couple of comments are in order concerning the form of this counterterm. First,

the quantity ∆ṡ
(6,0)
eff is obtained from ∆s

(6,0)
eff through the replacement Ci → Ċi, where

Ċi ≡ dCi/d ln µ; the term involving this quantity arises from MS renormalisation of

the Wilson coefficients in d = 4− 2ε dimensions, and the Ċi were calculated at one

loop in [42, 45, 46].1 Second, the final two lines are related to using Eq. (6.2.10) in

the lower-order amplitudes and then performing the SMEFT expansion.

To evaluate the full NLO SMEFT result ∆s
(6,1,µ)
eff in Eq. (6.2.11) requires also the

counterterm ∆veff
µ . This counterterm, including tadpoles and without flavour as-

sumptions, was determined at NLO in SMEFT in the αµ scheme and given in Section

4.2. Their relation with the present work is

∆veff(6,0)
µ = ∆v(6,0)

µ = C
(3)
Hl
11

+ C
(3)
Hl
22
− C ll

1221
,

∆veff(4,1)
µ = ∆v(4,1)

µ

∣∣∣∣∣
MW →M

eff
W

,

∆veff(6,1)
µ = ∆s

(6,0)
eff seff

∂

∂seff
∆veff(4,1)

µ + ∆v(6,1)
µ

∣∣∣∣∣
MW →M

eff
W

, (6.2.18)

where to obtain the above results we have implicitly reexpressed the on-shell sw in

terms of seff .

It will be useful later on to have an expression for the large-mt limit of the loop

corrections to the counterterm ∆seff. As a reminder, the large-mt limit of a given

quantity means the approximation where only terms proportional to positive powers

of the top-quark mass mt in the limit mt →∞ are kept. In the SM, top-quark loops
1The Ċi typically depend on a large number of Wilson coefficients, so again we mention the

convenient electronic implementation in DsixTools [47,120]. As they are one-loop corrections they
thus scale as 1/v2

µ and so the counterterm is independent of vµ.
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contribute to ∆s
(4,1)
eff in Eq. (6.2.15) only through the Zγ-mixing contribution to the

bare amplitudes A(4,1)
L/R,0. It is easy to show, however, that this two-point function

vanishes in the large-mt limit, so

∆s
(4,1)
eff,t = 0 , (6.2.19)

where here and below the subscript t refers to the large-mt limit of a given quantity.

In SMEFT, there are three contributions in the large-mt limit, which arise from Zγ

mixing, top-loop corrections from four-fermion operators, and a scheme-dependent

correction proportional to ∆v
(4,1)
µ,t . The result can be written in the form

∆s
(6,1,µ)
eff,t = ∆s

Zγ(6,1)
eff,t + ∆s

4f(6,1)
eff,t + ∆s

(6,0)
eff ∆v

eff(4,1,µ)
µ,t + . . . , (6.2.20)

where the . . . refers to divergent and tadpole contributions, which drop out of

physical observables. An explicit calculation yields

∆s
Zγ(6,1)
eff,t =

√
2ceff

3seff

MZ

mt

∆ρ
(4,1)
t

[
ceffCuB

33

(
−3 + 16s2

eff

)
+ seffCuW

33

(
−11 + 16s2

eff

)]
ln
(

µ2

m2
t

)
,

∆s
4f(6,1)
eff,t = ∆ρ

(4,1)
t

[
C

(3)
lq

ii33
− C

(1)
lq

ii33
+ C lu

ii33
+ c2eff

2s2
eff

(
C eu

ii33
− C qe

33ii

)]
ln
(

µ2

m2
t

)
,

∆v
eff(4,1)
µ,t = −∆ρ

(4,1)
t

[
1 + 2 ln

(
µ2

m2
t

)]
, (6.2.21)

where, as above, we omitted divergent and tadpole contributions, and quoted the

results in units of

∆ρ
(4,1)
t ≡ 3

16π2 m2
t . (6.2.22)

6.3 The veff
α Scheme

The veff
α scheme differs from the veff

µ scheme through the renormalisation of vT ,

which is performed as in Eq. (6.1.6). The SMEFT expansion coefficients of that

counterterm, as well as those of ∆seff in this scheme, are defined as in Eq. (6.2.10)

after the replacement µ→ α.

In order to calculate the expansion coefficients of ∆veff
α , we will need those for MZ
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and electric charge renormalisation. We define these in the veff
α scheme as

MZ,0 = MZ

(
1 + 1

v2
eff

∆M
(4,1)
Z + ∆M

(6,1)
Z −∆veff(6,0)

α ∆M
(4,1)
Z

)
,

e0 = e

(
1 + 1

v2
eff

∆e(4,1) + ∆e(6,1) −∆veff(6,0)
α ∆e(4,1)

)
, (6.3.1)

where the coefficients with superscript (6, 1) are calculated as in Eq. (4.1.3) from

two point functions whilst replacing the implicit dependence on sw,0 in the SM coun-

terterm as in Eq. (6.2.13). It will also be useful to work with expansion coefficients

of the derived counterterm ∆M eff
W . We define these coefficients as

MW,0 = M eff
W

[
1 + v2

eff∆M
eff(6,0)
W + 1

v2
eff

∆M
eff(4,1)
W + ∆M

eff(6,1,α)
W

]
. (6.3.2)

Performing a SMEFT expansion on Eq. (6.1.4) leads to

∆M
eff(6,0)
W = −s2

eff

c2
eff

∆s
(6,0)
eff ,

∆M
eff(4,1)
W = ∆M

(4,1)
Z − s2

eff

c2
eff

∆s
(4,1)
eff ,

∆M
eff(6,1,α)
W = ∆M

eff(6,1)
W −∆M

eff(4,1)
W ∆veff(6,0)

α + ∆M
eff(6,0)
W ∆veff(4,1)

α , (6.3.3)

where

∆M
eff(6,1)
W = ∆M

(6,1)
Z − s2

eff

c2
eff

[
∆s

(6,1)
eff + ∆s

(6,0)
eff ∆M

(4,1)
Z + 1

c2
eff

∆s
(6,0)
eff ∆s

(4,1)
eff

]
. (6.3.4)

With this notation at hand, we can present a compact result for the expansion

coefficients of ∆veff
α . They read

∆veff(6,0)
α = ∆v(6,0)

α − 2c2eff

s2
eff

∆M
eff(6,0)
W ,

∆veff(4,1)
α = 2

(
∆M

eff(4,1)
W + ∆s

(4,1)
eff −∆e(4,1)

)
,

∆veff(6,1)
α = 2

(
∆M

eff(6,1)
W + ∆s

(6,1)
eff −∆e(6,1)

)
−∆veff(6,0)

α ∆veff(4,1)
α

+ 2
ceffseff

[
CHW B + ceff

2seff
CHD

]
∆s

(4,1)
eff

+ 2
s2

eff

[
−s2

eff∆M
eff(4,1)
W + c2

eff∆s
(4,1)
eff

]
∆M

eff(6,0)
W

− v2
eff

ceff

seff

1
ε

[
ĊHW B + ceff

4seff
ĊHD

]
. (6.3.5)
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In the above, we have the tree-level α-scheme result

∆v(6,0)
α = −2ceff

seff

[
CHW B + ceff

4seff
CHD

]
, (6.3.6)

which leads to the following tree-level results in the veff
α scheme:

∆veff(6,0)
α = −1

2CHD −
1

ceffseff
CHW B −

c2eff

c2
eff

(
g

`(6,0)
L + c2eff

2s2
eff

g
`(6,0)
R

)
. (6.3.7)

One should note that unlike in Chapter 5, the QED coupling e from here on is given

by the more conventional on-shell definition [10] as opposed to the MS definition of

Chapters 4 and 5. This is done with the foresight of potential comparison with other

results in the literature at the order of decay rate calculations and fits of Wilson

coefficients. Even when discussing the α and LEP schemes from now on, we refer to

their counterparts with this on-shell definition of the QED coupling.

It is simple to convert between these two schemes using the perturbative relation

α(µ) = α(MZ)
1 + α(MZ)

π

∑
f 6=t

N f
c

3 Q2
f

(
5
3 + ln µ2

M2
Z

)
= α(MZ)

[
1 + α(MZ)

π

(
100
27 + 20

9 ln µ2

M2
Z

)]
, (6.3.8)

where Qf is the charge of the fermion and N f
c = 3 (N f

c = 1) for quarks (leptons).

6.3.1 Relation to the veff
µ scheme

In Section 4.2.1 we outlined a method to convert between the α and αµ scheme or

vice versa. Here we follow a similar structure to relate the veff
µ and veff

α schemes.

We again start with the useful quantity

v2
eff

v2
µ

≡ 1 + ∆reff . (6.3.9)

The SMEFT expansion coefficients are the same whether vµ or veff is used.

∆reff = v2
eff∆reff(6,0) + 1

v2
eff

∆reff(4,1) + ∆reff(6,1)
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= v2
µ∆reff(6,0) + 1

v2
µ

∆reff(4,1) + ∆reff(6,1) . (6.3.10)

The expansion coefficients are calculated similarly to those for MW . The results are

∆reff(6,0) = ∆veff(6,0)
µ −∆veff(6,0)

α ,

∆reff(4,1) = ∆veff(4,1)
µ −∆veff(4,1)

α

∆reff(6,1) = ∆veff(6,1)
µ −∆veff(6,1)

α + 2∆veff(4,1)
µ ∆reff(6,0) . (6.3.11)

We do not write it, but relations between terms in a perturbative expansion of a

decay rate between the two schemes are given by an equivalent relation to that of

Eq. (4.2.27) where the logical replacement of the appropriate terms for those relevant

for these two schemes has taken place.

In lieu of giving full analytic expressions as to not print long expressions, we write

the results in the large-mt limit in the form

∆r
eff(i,j)
t = Keff(i,j)

α −Keff(i,j)
µ . (6.3.12)

Results for the Keff
µ can be read off from Section 5.3 as they are identical to the Kµ

given there, while the results for Keff
α are new. The one-loop result in the SM is

Keff(4,1)
σ = −∆ρ

(4,1)
t δασ . (6.3.13)

The SMEFT answer takes the form

Keff(6,0)
σ = −∆veff(6,0)

σ ,

Keff(6,1)
σ = −1

2v2
σK̇

eff(6,0)
σ,t ln µ2

m2
t

+ keff(6,1)
σ . (6.3.14)

One has, for the non-logarithmic pieces

keff(6,1)
µ = ∆ρ

(4,1)
t

∑
j=1,2

[
C

(3)
Hl
jj
− C

(3)
lq

jj33

]
,

keff(6,1)
α = 2Keff(4,1)

α

(
Keff(6,0)

α + C
(3)
Hq
33

)
, (6.3.15)
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whereas the dependence on the renormalisation scale µ is governed by

v2
σK̇

eff(6,0)
µ,t = −4∆ρ

(4,1)
t

∑
j=1,2

[
C

(3)
Hl
jj
− C

(3)
lq

jj33

]
,

v2
σK̇

eff(6,0)
α,t = 1

2ĊHD,t + 1
ceffseff

ĊHW B,t + c2eff

c2
eff

(
ġ

`(6,0)
L,t + c2eff

2s2
eff

ġ
`(6,0)
R,t

)
. (6.3.16)

All components needed to evaluate the latter result were given in Eq. (6.3.26).

Although not exercised here, the previous form of the results alludes to a potential

set of universal corrections to be defined synonymous with those in Section 5.6 but

for the schemes in consideration here.

6.3.2 Relation to the α and αµ schemes

Finally, to tie all schemes considered in this thesis together, the determination of

relations between one of the veff
σ schemes and one of the three previous schemes is

necessary. Doing so allows predictions in any one scheme to be related to another

through a series of replacements, potentially in multiple steps.

We follow the same course as relating the αµ and LEP schemes and obtain shifts

of the W-boson mass which then relates the schemes using an on-shell (MW ) and

effective (M eff
W ) W-boson mass.

We write the SMEFT expansion of MW in the veff
σ scheme, where σ ∈ {α, µ}, as1

MW = M eff
W

(
1 + v2

σ∆eff(6,0)
W + 1

v2
σ

∆eff(4,1)
W + ∆eff(6,1,σ)

W

)
. (6.3.17)

Identically to deriving the expansion of M̂W , a simple way to derive ∆eff
W is to use

the bare mass MW,0 as an intermediary

MW,0 = M eff
W

(
1 + ∆M eff

W

)
= MW (1 + ∆MW ) . (6.3.18)

After expressing the expansion coefficients of the on-shell counterterm ∆MW in

1remembering that when σ = α we have the notation that vσ = veff
α ≡ veff
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terms of M eff
W following the notation of Eq. (6.2.13), one finds

∆eff(6,0)
W = ∆M

eff(6,0)
W ,

∆eff(4,1)
W = ∆M

eff(4,1)
W −∆M

(4,1)
W ,

∆eff(6,1,σ)
W = ∆eff(6,1)

W −∆eff(4,1)
W ∆veff(6,0)

σ + ∆eff(6,0)
W

(
∆veff(4,1)

σ − 2∆M
(4,1)
W

)
, (6.3.19)

with

∆eff(6,1)
W = ∆M

eff(6,1)
W −∆M

(6,1)
W + ∆eff(6,0)

W ∆M
(4,1)
W . (6.3.20)

In contrast to the counterterms themselves, the quantities ∆eff
W are finite and tadpole

free. As is now customary at this point, we study the large-mt corrections to this

quantity in the two schemes. To do so, we first note that

∆s
(4,1)
eff,t = ∆e

(4,1)
t = 0 ,

∆v
eff(4,1)
α,t = 2∆M

eff(4,1)
W,t = 2∆M

(4,1)
Z,t ,

∆v
eff(4,1)
µ,t = 2∆M

(4,1)
W,t . (6.3.21)

It follows that the SM result is

∆eff(4,1)
W,t = ∆M

(4,1)
Z,t −∆M

(4,1)
W,t = 1

2∆ρ
(4,1)
t . (6.3.22)

Moreover, the result in SMEFT can be written in the form

∆eff(6,1,σ)
W = ∆eff(6,1)

W,t + ∆eff(4,1)
W,t

(
2∆eff(6,0)

W δσα −∆veff(6,0)
σ

)
, (6.3.23)

where δσα is the Kronecker delta. An explicit calculation shows that

∆eff(6,1)
W,t = 2∆eff(4,1)

W,t

[
C

(3)
Hq
33
−
√

2M eff
W

mt

CuW
33
− 1

2∆(6,0)
W

]
− ∆̇eff(6,0)

W,t ln µ

mt

, (6.3.24)

where the logarithmic dependence is governed by

∆̇eff(6,0)
W,t = −1

4ĊHD,t −
seff

2ceff
ĊHW B,t + s2

eff

2c2
eff

ġ
`(6,0)
L,t + c2eff

4c2
eff

ġ
`(6,0)
R,t , (6.3.25)
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with

ĊHD,t = 8∆ρ
(4,1)
t

[
CHD + 2C

(1)
Hq
33
− 2CHu

33

]
,

ĊHW B,t = 4∆ρ
(4,1)
t

[
CHW B −

√
2MZ

mt

(
ceffCuB

33
+ 5

3seffCuW
33

)]
,

ġ
`(6,0)
L,t = 4∆ρ

(4,1)
t

[
g

`(6,0)
L − C

(1)
lq

ii33
+ C

(3)
lq

ii33
+ C lu

33ii

]
,

ġ
`(6,0)
R,t = 4∆ρ

(4,1)
t

[
g

`(6,0)
R + C eu

ii33
− C qe

33ii

]
. (6.3.26)

where the g
`(6,0)
L/R are defined in Eq. (6.2.7).

The re-expression of the on-shell MW in an α or αµ scheme expression using

Eq. (6.3.17) with σ ∈ {α, µ} and expanding in SMEFT produces the result in

the veff
α or veff

µ scheme, respectively. The expansion in SMEFT is equivalent to that

of Eq. (4.3.9), after one replace the "hatted" quantities with the corresponding "eff"

quantities.



Chapter 7

Numerical Analysis of the veff
σ

schemes

With results of the previous chapters in hand, we now have the framework available

to calculate electroweak processes to one loop in the SMEFT in five different input

schemes.2 In this chapter, we provide discussion of the attributes of the veff
α and

veff
µ schemes. However, as opposed to the approach of Chapter 5 whereby a detailed

breakdown of the schemes in question was undertaken, we focus more on comparison

with the three commonly used schemes previously mentioned in this thesis, discussing

all important attributes.

7.1 Numerical Values of Inputs

We begin this section on numerical analysis identically to the last, with the specific-

ation of the numerical values used for the inputs. For the analysis of the veff
α and veff

µ

schemes we employ the use of the numerical values given in table 7.1. Comments

about the precision of the values made in Section 5.1 are applicable again here.

Values for the inputs of the α, αµ, and LEP schemes used in this section for com-

2Potentially, one could argue eight different schemes if one counts double for each scheme
involving the input α due to the choice of renormalising on-shell or in MS.
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mt 172.9 GeV vµ 246.2 GeV
MW 80.38 GeV veff

α 246.5 GeV
MZ 91.19 GeV (sin θe

eff)2 0.23166
mH 125.1 GeV α(MZ) 1/128.946

Table 7.1: Input parameters employed throughout this section.
Note that veff

α is a derived parameter.

parison, can also be taken from table 7.1. These are identical to those specified in

table 5.1 except the QED coupling as we use an on-shell definition here. A numerical

value of the derived parameter vα can be obtained by using its definition given in

Eq. (4.1.1) and substituting in the numerical values. Again, numerical values are

taken from [10].

One comment we make here is that the choice of a value for sin θ`
eff is somewhat

problematic, especially in the SMEFT. Experimentally, sin2 θ`
eff is typically averaged

over measurements involving electrons and muons. In SMEFT, using an average

leads to some difficulties because it would require a combination of first and second-

generation Wilson coefficients entering the counterterms, depending on the ratio of

electron and muon data entering the combination. To avoid this issue, we use the

most precise available measurement of sin θ`
eff from the couplings to electrons only,

namely the ATLAS measurement with one central and one forward electron [128].

7.2 Number of Wilson coeffficients

The discussion of the number of Wilson coefficients appearing in each of the coun-

terterms in the veff
α and veff

µ schemes follows mainly the same path as that of Section

5.2. The quantities ∆e, ∆MZ and ∆vµ were discussed in detail there, and so we do

not repeat it here. That being said, a slight comment is needed as a few additional

counterterms may be present. The expansion of each of the counterterms in the veff
σ

will have an explicit dependence on veff
σ , and so there will be a direct contribution

from ∆veff
σ . As we have done many times before, we can write the counterterm for a



7.2. Number of Wilson coeffficients 123

Figure 7.1: Representative Feynman diagrams contributing to the
decay of a Z boson via a four fermion operator.

quantity X as

X0 = X

(
1 + 1

v2
µ

∆X(4,1,µ) + ∆X(6,1,µ)
)

= X

(
1 + 1

v2
µ

∆X(4,1) + ∆X(6,1) −∆veff(6,0)
µ ∆X(4,1)

)
, (7.2.1)

in the veff
µ scheme, and analogously for the veff

α scheme. Therefore, Wilson coefficients

appearing in the quantities ∆veff(6,0)
σ will additionally appear, if not already so, in

the set of Wilson coefficients for each counterterm.

The counterterm ∆seff defined in a particular scheme, is a new quantity unique to

these two schemes. Defined through Z decay, it contains numerous Wilson coefficient

previously unseen in counterterms, the majority of which arise from four fermion

operator insertions, such as in Figure 7.1. Overall, the following 62 coefficients

appear

∆s
(6,1,µ)
eff : {CHB, CHDCHW , CHW B, CW , CuW

33
, CuB

33
, CHd

ii
, CHu

ii
,

CHe
ii

, C
(1)
Hl
ii

, C
(3)
Hl
ii

, C
(1)
Hq
ii

, C
(3)
Hq
ii

, C ee
11ii

, C eu
11ii

, C ld
11ii

, C lu
11ii

,

C le
11ii

, C le
ii11

, C ll
ii11

, C ll
1ii1

, C
(1)
lq

11ii

, C
(3)
lq

11ii

, C qe
ii11
}, i = 1, 2, 3 , (7.2.2)

where one should take care as some Wilson coefficients appear twice (e.g. C ll
1111

) for

compactness.

The large number of Wilson coefficients in this counterterm has a noticeable impact

on the numbers appearing for any observable. To this end, we find it instructive here

to look at the derived parameters (by proxy through looking at the finite quantities

∆r, ∆reff , ∆̂M̂W , and ∆M eff
W ).

Table 7.2 shows the number of Wilson coefficients entering the important quantities
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∆r ∆reff ∆̂W ∆eff
W

gen U(2)2 × U(3)3 gen U(2)2 × U(3)3 gen U(2)2 × U(3)3 gen U(2)2 × U(3)3

LO 5 4 7 6 5 4 5 5
NLO 33 21 64 34 33 21 63 34

Table 7.2: Number of Wilson coefficients appearing in the derived
parameters of each scheme under general flavour assump-
tions and U(2)2×U(3)3. The LO row represents the (6,0)
piece of the corresponding quantity, whereas NLO rep-
resents the (6,1) piece.

∆r, ∆reff , ∆̂M̂W and ∆M eff
W . These quantities, through the use of the relevant

equations to be outlined in Section 7.3.1, are the key ingredient to the simplest of

the predictions in each scheme, the derived parameters.

It is seen that the quantities ∆̂M̂W and ∆r contain exactly the same number of

Wilson coefficients, which is not surprising as they can be easily related to each

other, as shown in Section 4.3. Both quantities are functions of the counterterms

∆MW , ∆MZ , ∆e and ∆vµ, hence, will contain the combined set of all coefficient

appearing in those counterterms.

More noticeably however is the large number of coefficients appearing in the "eff"

quantities as compared to their equivalent counterparts for both the general flavour

and U(2)2 × U(3)3 assumptions. As mentioned, these are mainly due to additional

four fermion operators arising from Z decay introduced through the counterterm to

seff . As we would ideally keep the number of scheme dependant Wilson coefficients

to a minimum, this is much an undesirable property of the veff
µ and veff

α schemes.

The pattern of predictions in the veff
σ schemes containing more Wilson coefficients

continues to the more involved calculation of the heavy gauge boson decays. Table 7.3

shows the counting for such process at LO and NLO for a general flavour assumption

and U(2)2 × U(3)3.

For the general flavour assumption, there are no surprises in what is seen, there are

many additional Wilson coefficients appearing in the veff
µ and veff

α schemes at NLO,

with the exception being for the decay Z → ee where we have an overlap between

the four fermion operators of the matrix element and those in ∆seff .
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ΓW τν ΓZττ (ΓZee) Total # unique WC
gen U(2)2 × U(3)3 gen U(2)2 × U(3)3 gen U(2)2 × U(3)3

veff
µ

LO 8 6 9 (6) 4 10 6
NLO 69 34 93 (63) 33 93 34

veff
α

LO 6 5 7 (4) 4 8 5
NLO 68 34 92 (63) 34 92 34

αµ
LO 4 1 8 (7) 6 8 6

NLO 25 14 67 (64) 34 67 34

α
LO 3 3 5 (5) 5 5 5

NLO 35 22 63 (63) 34 63 34

LEP LO 6 4 8 (7) 6 8 6
NLO 39 22 67 (64) 34 67 34

Table 7.3: Number of Wilson coefficients appearing in heavy bo-
son decay rates under general flavour assumptions and
U(2)2 × U(3)3. Note that assuming U(2)2 × U(3)3 the
number of operators appearing in ΓZττ and ΓZee is the
same and hence only one value is given.

Under the U(2)2 × U(3)3 assumption as described in Section 3.2.1, a lot of flavour

structure is removed. Consequently, the four fermion operators appearing in the

Z → ee and Z → ττ processes are now identical. An overlap between the Wilson

coefficients in counterterms of seff and the matrix element for the decays to any

charged lepton is observed, giving an identical count. For W decay additional

Wilson coefficients remain in the veff
µ and veff

α schemes in contrast to the other three,

although fewer than for the general flavour case, as Wilson coefficients involving

right-handed particles are still introduced through the counterterms to seff .

In a full analysis of electroweak precision observables including gauge-boson decays

to quarks and Z decay to neutrinos, the total number of Wilson coefficients that can

appear is further increased through contributions from four-quark operators. For the

U(2)2 × U(3)3 assumption, the total number of operators appearing grows from 34

in the leptonic Z and W decays considered here to 56 in the full set of electroweak

precision observables [96].
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scheme inputs
veff

µ GF , sin θ`
eff, MZ

veff
α α, sin θ`

eff, MZ

αµ GF , MW , MZ

α α, MW , MZ

LEP GF , α, MZ

Table 7.4: Nomenclature for the EW input schemes considered in
this work.

M
s
W

MW
− 1 α

s

α
− 1 G

s
F

GF
− 1 sin2

θ
`,s
eff

sin2
θ

`
eff
− 1

veff
µ

LO −0.56% 0.21% – –
NLO 0.05% 0.23% – –

veff
α

LO −0.56% – −0.21% –
NLO 0.04% – −0.23% –

αµ
LO – −2.44% – −3.72%
NLO – 0.51% – 0.34%

α
LO – – 2.50% −3.72%
NLO – – −0.67% 0.45%

LEP LO −0.51% – – −0.30%
NLO 0.09% – – −0.32%

Table 7.5: SM results for derived parameters in scheme s relative
to the experimental values in table 7.1.

7.3 Numerical Analysis

In this section, we present a brief numerical analysis of the veff
σ schemes, covering

derived input parameters in Section 7.3.1 before turning to heavy EW boson decays

in Section 7.3.2. Like the numerical analysis of Chapter 5, we study the perturbative

convergence associated with these schemes. Moreover, here we make qualitative and

quantitative comparisons of the veff
σ schemes with the widely used α, αµ, and LEP

schemes. As a reminder, we put all inputs of the five schemes in table 7.4

7.3.1 Derived parameters

In each of the five input schemes in table 7.4, two parameters in the set {MW , α, GF , sin θ`
eff}

are derived parameters which can be calculated in a SMEFT expansion. For instance,
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in the veff
σ schemes, the on-shell W -boson mass MW is given by

MW = M eff
W

(
1 + ∆eff

W

)
= M eff

W

(
1 + v2

σ∆eff(6,0)
W + 1

v2
σ

∆eff(4,1)
W + ∆eff(6,1,σ)

W

)
, (7.3.1)

where ∆eff
W is a finite shift. Similarly, the vµ and veff are related according to

1
v2

µ

= 1
v2

eff

[
1 + ∆reff

]
= 1

v2
eff

[
1 + v2

eff∆reff(6,0) + 1
v2

eff
∆reff(4,1) + ∆reff(6,1)

]
. (7.3.2)

The form above allows to determine GF in the veff
α scheme, whereas α in the veff

µ

scheme is easily obtained after inverting the equation. We have derived the SMEFT

expansions for ∆eff
W and ∆reff , including explicit results in the large-mt limit, in

Section 6.3.2 and 6.3.1 respectively. Results for sin θ`
eff in the α, αµ and LEP schemes

are obtained by evaluating Eq. (6.2.8), while results for all other derived parameters

have been given in Section 5.4.1

The derived parameters are useful for two reasons. First, from a practical perspective,

they are the simplest examples of EW precision observables and therefore play an

important role in global analyses of data. Second, they are the key ingredients for

converting results and understanding differences between EW input schemes. For

example, if one calculates a quantity in the αµ scheme, one can convert it to the veff
µ

scheme by substituting MW with Eq. (7.3.1) with σ = µ and performing a SMEFT

expansion. In the SM, if the derived value of MW in the veff
µ agrees well with the

measured value at a given order, then results for other observables in the αµ and

veff
µ scheme will show similar level of numerical agreement. This should also be

true in SMEFT, but in that case the derived value of MW depend on the Wilson

coefficients, whose values are not precisely known and are left symbolic. Differences

in observables between schemes show up in non-trivial patterns of Wilson coefficients

and the level of agreement between schemes is less obvious. In the remainder of this

section we examine derived parameters in the SM across all schemes, and use the

prediction of MW in the veff
σ schemes to illustrate some of their important features.

1We have converted factors of α(µ) used previously to the on-shell definition α(MZ) using
Eq. (6.3.8).
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SM. In table 7.5 we show LO and NLO results for derived parameters in the SM,

where NLO is defined as LO plus the NLO correction. In all cases, the NLO and

measured values agree to roughly half a percent or better. In the veff
σ schemes, the

deviation between the derived parameters and the experimental values is already

below the per-mille level at LO, while the α and αµ schemes involve percent-level

NLO corrections to sin θ`
eff, α or GF . Such corrections originate mainly from large-mt

corrections to the counterterm for sw in those schemes; for instance, in the αµ scheme

the one-loop SM result is

s2
w,0 = s2

w

1 +
(

cw

sw

)2 ∆ρ
(4,1)
t

v2
µ

+ . . .

 ≈ s2
w [1 + 3.3% + . . . ] , (7.3.3)

where the . . . refers to terms which are subleading in the large-mt limit, and cw =

MW /MZ . The same result holds in the α scheme after the replacement vµ →

2MW sw/
√

4πα.

A noticeable feature of the veff
σ schemes is that the NLO corrections to GF or α are

extremely small. These corrections are related to ∆reff(4,1) in Eq. (7.3.2), and an

estimate from the top-loop contribution in Eq. (6.3.12) gives −∆ρ
(4,1)
t /v2

σ ≈ −1%.

To understand why this estimate breaks down, we split the one-loop SM correction

into component parts according to

1
v2

α

∆reff(4,1) = 1
v2

α

∆r
eff(4,1)
t + 1

v2
α

∆reff(4,1)
rem + α(MZ)

π

100
27

= (−0.9348 + 0.0049 + 0.9143) % = −0.0156% , (7.3.4)

where the ordering of the numerical terms on the second line matches those of the

analytic expressions above. We note an accidental cancellation between the large-mt

limit result and that related to the running of α in the on-shell scheme1; the latter

correction can be eliminated by converting to the MS definition as in Eq. (6.3.8).

By contrast, the NLO corrections to MW in the veff
σ scheme do not depend on the

1A similar cancellation occurs in the NLO correction to sin2 θ`
eff in the LEP scheme, whose

large-mt correction is obtained from Eq. (7.3.3) by the replacement c2
w/s

2
w → −c2w/c

2
w and is

roughly −1.5% numerically.
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Figure 7.2: SMEFT corrections to the W boson mass in the veff
µ

(top) and veff
α (bottom) schemes, with ∆sw determined

from Z → ee decay, so that ` = 1. The Wilson coeffi-
cients are evaluated at Ci = 1/v2

σ. The flavour indices i
and j run over values j ∈ 1, 2, and i ∈ 1, 2, 3.

counterterm for α. The top-loop contribution in Eq. (6.3.22) is a good estimate for

the NLO correction, as seen in the result

M
v

eff
σ

W = M eff
W

[
1 + 1

v2
σ

(1
2∆ρ

(4,1)
t + ∆eff(4,1)

W,rem.

)]

= 79.93 GeV [1 + 0.00468 + 0.00137] = 80.42 GeV , (7.3.5)

where the order of numerical contributions in the second line matches that on the

first and we set vσ = vµ to obtain the numerical value.

SMEFT. Results for derived parameters in SMEFT depend on a number of Wilson

coefficients and are thus quite lengthy. For brevity, we focus the discussion on MW

in the veff
σ schemes, leaving a comparison of observables across schemes to the heavy-
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CHW B CHD CHe
11

C
(3)
Hl
11

LO veff
σ −0.275+0.009

−0.009 −0.250+0.017
−0.017 −0.175+0.004

−0.004 −0.151+0.003
−0.003

NLO
veff

µ −0.290+0.001
−0.000 −0.269+0.003

−0.000 −0.180+0.000
−0.000 −0.161+0.000

−0.000

veff
α −0.276+0.000

−0.000 −0.266+0.002
−0.000 −0.185+0.000

−0.000 −0.159+0.000
−0.000

NLOt

veff
µ −0.280+0.003

−0.002 −0.261+0.006
−0.003 −0.178+0.000

−0.000 −0.158+0.001
−0.001

veff
α −0.272+0.002

−0.002 −0.261+0.006
−0.003 −0.183+0.000

−0.000 −0.158+0.001
−0.001

C
(1)
Hl
11

CHu
33

C
(1)
Hq
33

C
(3)
Hq
33

LO veff
σ −0.151+0.004

−0.004 0.000+0.026
−0.026 0.000+0.026

−0.026 0.000+0.001
−0.001

NLO
veff

µ −0.156+0.000
−0.000 0.023+0.000

−0.007 −0.019+0.006
−0.000 0.012+0.000

−0.002

veff
α −0.160+0.000

−0.000 0.023+0.000
−0.006 −0.019+0.006

−0.000 0.012+0.000
−0.002

NLOt

veff
µ −0.154+0.000

−0.000 0.024+0.000
−0.005 −0.024+0.005

−0.000 0.009+0.000
−0.002

veff
α −0.158+0.000

−0.000 0.024+0.000
−0.005 −0.024+0.005

−0.000 0.009+0.000
−0.002

Table 7.6: The numerical prefactors of the Wilson coefficients in the
veff

µ and veff
α schemes contributing to ∆W for the LO, NLO

and NLOt (large-mt limit) perturbative approximations.
The SM tree-level approximation along with v2

µ has been
factored out. The results have been evaluated at µ =
MZ and varied up and down by a factor of 2 to give the
uncertainties. Only Wilson coefficients whose numerical
prefactor is greater than 1% at NLO have been included.
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boson decay rates presented in Section 7.3.2.

We show in figure 7.2 the LO and NLO SMEFT corrections to MW in the veff
σ

schemes. The numerical contribution from each Wilson coefficient at the scale

µ = MZ is obtained by making the choice Ci(MZ) = 1/v2
σ, and the results are given

in units of M eff
W ; in other words, we are quoting results for the expansion coefficients

of ∆W as defined in Eq. (7.3.1).

It is clear from figure 7.2 that many of the NLO SMEFT corrections to MW are

numerically small when all Wilson coefficients are set to a common value. In table 7.6,

we give numerical results at LO and NLO (defined as the sum of LO plus the NLO

correction) for those SMEFT operators whose NLO contribution is larger than

1% for the default choice Ci(MZ) = 1/v2
σ. All of these coefficients receive NLO

corrections from top loops, and to show their significance we give results where

only the large-mt limit of these corrections is used (NLOt in the table). In each

case, we include scale uncertainties obtained by evaluating the prediction for the

three scale choices µ ∈ [MZ , 2MZ , MZ/2], using Eq. (5.4.4) to express the results in

terms of Ci(MZ). In most cases there is a good convergence between LO and NLO

when scale uncertainties are included. The large-mt limit results are generally an

improvement for central values, but come with small scale uncertainties which do

not always overlap with the complete NLO result.

7.3.2 Heavy boson decays at NLO

To analyse W → τν and Z → ττ decays we define SMEFT expansion coefficients

for the decay X → f1f2 in input scheme s as

Γ(X → f1f2) = Γs(4,0)
Xf1f2

+ Γs(6,0)
Xf1f2

+ Γs(4,1)
Xf1f2

+ Γs(6,1)
Xf1f2

. (7.3.6)

Moreover, we write LO and NLO results as

Γs
Xf1f2,LO ≡ Γs(4,0)

Xf1f2
+ Γs(6,0)

Xf1f2
,

Γs
Xf1f2,NLO ≡ Γs

Xf1f2s,LO + Γs(4,1)
Xf1f2

+ Γs(6,1)
Xf1f2

. (7.3.7)
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Γs
W `ν/ Γexp

W `ν − 1 Γs
Z``/Γexp

Z`` − 1

veff
µ

LO −1.30% −0.70%
NLO 0.16% 0.12%

veff
α

LO −1.51% −0.91%
NLO −0.06% −0.11%

αµ
LO 0.37% −0.08%
NLO 0.03% −0.07%

α
LO 2.87% 2.41%
NLO −0.66% −0.74%

LEP LO −1.17% −0.66%
NLO 0.31% 0.16%

Table 7.7: Deviations of the SM predictions for Z → `` and
W → `ν decay rates in scheme s from the experi-
mental measurements of Γexp

Z`` = 83.98 MeV and Γexp
W `ν =

226.4 MeV [10].

The LO results for s ∈ {veff
µ , veff

α } are given by

Γs
W τν,LO = M eff

W

12π


(

M eff
W

vσ

)2

+ (M eff
W )2

[
2C

(3)
Hl
33

+ 3∆eff(6,0)
W −∆veff(6,0)

σ

] ,

Γs
Zττ,LO = MZ

24π

{
M2

Z

v2
σ

(
1− v2

σ

2 CHD

)
g(4,0) + M2

Z

[ (
2
(
g

`(6,0)
R − g

`(6,0)
L

)
−∆veff(6,0)

σ

)
g(4,0)

+ 2c2eff

(
g

τ(6,0)
L − g

`(6,0)
L

)
+ 4s2

eff

(
g

τ(6,0)
R − g

`(6,0)
R

) ]}
, (7.3.8)

where ` ≡ `i is the charged lepton species used in the definition of ∆seff and

g(4,0) = 1− 4s2
eff + 8s4

eff . (7.3.9)

As a reminder, the LO results in the other three schemes are given in Chapter 5.

To derive the result for W decay we have written W -mass dependence arising both

through two-body phase-space and in the matrix element squared in terms of M eff
W .

Note that in Z decay the flavour-independent coupling G(6,0) given in Eq. 6.2.7

has dropped out of the decay rate due to a cancellation against ∆s
(6,0)
eff . Further

simplifications occur only if ` = τ or a flavour symmetry such as U(2)2 × U(3)3 is

imposed, in which case the contribution in the final line vanishes.

The LO and NLO results for W and Z decay in the SM are shown in table 7.7,

where we have normalised the results to the experimentally measured values. The
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CHD CHW B CHe
33

CHu
33

C
(3)
Hq
33

veff
µ

LO −0.500+0.033
−0.033 0.000+0.000

−0.000 −1.843+0.048
−0.048 0.000+0.052

−0.052 0.000+0.000
−0.000

NLO −0.527+0.005
−0.000 0.004+0.000

−0.000 −1.905+0.004
−0.000 0.048+0.000

−0.013 0.022+0.000
−0.004

veff
α

LO 0.000+0.000
−0.000 2.370+0.081

−0.081 −1.843+0.050
−0.050 0.000+0.003

−0.003 0.000+0.005
−0.005

NLO −0.001+0.000
−0.000 2.439+0.000

−0.006 −1.903+0.004
−0.000 0.005+0.000

−0.001 0.002+0.000
−0.000

αµ

LO −0.169+0.011
−0.011 0.355+0.012

−0.012 −1.764+0.046
−0.046 0.000+0.018

−0.018 0.000+0.001
−0.001

NLO −0.289+0.009
−0.007 0.258+0.003

−0.004 −1.897+0.006
−0.002 0.018+0.011

−0.016 0.006+0.000
−0.002

α
LO 1.573+0.108

−0.108 4.088+0.143
−0.143 −1.764+0.050

−0.050 0.000+0.162
−0.162 0.000+0.008

−0.008

NLO 1.408+0.002
−0.019 3.869+0.002

−0.013 −1.898+0.006
−0.002 −0.142+0.030

−0.000 −0.073+0.014
−0.000

LEP
LO −0.600+0.040

−0.040 −0.474+0.016
−0.016 −1.837+0.048

−0.048 0.000+0.062
−0.062 0.000+0.001

−0.001

NLO −0.631+0.005
−0.000 −0.475+0.001

−0.000 −1.899+0.004
−0.000 0.057+0.000

−0.015 0.025+0.000
−0.005

Table 7.8: Selected SMEFT contributions to the Z → ττ decay
rate including scale variation in the five schemes.

NLO corrections in the SM bring results from all five schemes into close numerical

agreement. These corrections are at the 1.5% level for W decay in the veff
σ and LEP

schemes, where MW is not an input and hence factors of 3∆s(4,1)
W /v2

σ arise compared

to the αµ scheme. Corrections of around −3% arise in the α scheme, which are

mainly due to the top-loop corrections to sw shown in Eq. (7.3.3) and in Chapter

5. As explained in Section 7.3.1, the close agreement between decay rates at NLO

different schemes is a direct consequence of the predictions of the derived parameters

matching the experimental inputs as seen in table 7.5.

However, the situation in SMEFT is different. The relations between input para-

meters in different schemes depend on the unknown Wilson coefficients. Therefore,

in general, although the numerical prefactor multiplying a particular Wilson coeffi-

cient stemming from the matrix element is consistent across schemes, the somewhat

arbitrary relations between schemes can result in the numerical prefactor of a given

Wilson coefficient being very different across schemes. This point is seen in table 7.8,

where the LO and NLO contributions for an illustrative sample of Wilson coefficients

are shown for the decay Z → ττ , using `i = e to determine the ∆seff counterterm in
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the veff
σ schemes. The results include perturbative uncertainties obtained by varying

the default scale choice µdef = MZ up and down by a factor of two. We note the

following features:

• The contributions from the coefficients CHD and CHW B have rather different

prefactors in each scheme, and convergence between LO and NLO also differs

markedly from case to case – especially in the αµ scheme the NLO corrections

are large and well outside the LO scale uncertainties.

• By contrast, at LO the coefficient CHe
33

appears only in the Z → ττ matrix

element. The dominant NLO corrections arise from SM counterterms on this

LO vertex, and tend to push the NLO results in different schemes to similar

values. The NLO corrections in the α and αµ schemes are outside the LO scale

uncertainties.

• The coefficients CHu
33

and C
(3)
Hq
33

first appear at NLO for fixed µ. The contribution

of the former is well estimated by LO scale uncertainties through the running

of CHD (driven by the top-loop contribution shown in Eq. (6.3.26)), while

that of the latter is unrelated to RG running and requires a genuine NLO

calculation.

Regarding the first two points, NLO corrections in the veff
σ schemes tend to be

milder than in the α or αµ schemes because in the latter case ∆sw gets scale-

independent corrections of the type shown in Eq. (7.3.3). In that case including

universal corrections from the large-mt limit using the procedure outlined in Section

5.6 can improve convergence between orders.1

We conclude by stating that the specific pattern of contributions described above is

specific to Z decay, but the important point that the size of SMEFT contributions

related to a particular Wilson coefficient is highly scheme specific in general.

1A similar procedure could be followed for the veff
σ schemes using eq. (6.3.12) as a starting point.
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Conclusions

Throughout this thesis, we have devoted our efforts into understanding the qualit-

ative and quantitative features of numerous different choices of Electroweak (EW)

input schemes in the Standard Model Effective Field Theory (SMEFT). We have

provided definitions and expressions for counterterms in each of the schemes, which

for schemes involving the weak mixing angle is a first implementation in the SMEFT.

Furthermore, we used the derived parameters and the decays of the heavy gauge

bosons in each scheme, making use of large-mt analysis, to illucidate the salient

features of each of the schemes.

In Chapters 1 and 2 we gave an introduction to the relevant background information

for this thesis. The former concerned the Standard Model (SM), mainly focusing on

the form of the Lagrangian and one-loop renormalisation, while the latter introduced

Effective Field Theories (EFTs) and most importantly, the SMEFT, discussing the

main changes to SM parameters. This culminated in the relation expressing the

Lagrangian parameters g1, and g2 in terms of the bare parameters vT , MW,0, and

MZ,0 giving a unified starting point for our discussions on input schemes. In Chapter

3 we gave preliminary information useful to motivate and understand the ideas

presented in the subsequent chapters.

Chapter 4 began our review of the EW input schemes and introduced the α, αµ,

and LEP schemes, the most common choices in the literature. Counterterms for all
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input parameters in the schemes were defined and expressions were given. However,

we found it instructive to define the quantities vα in the α scheme and M̂W in the

LEP scheme and derive their associated counterterms, thus giving replacements for

our unified starting Lagrangian. We presented how analytic predictions for derived

parameters in each scheme can be obtained. Furthermore, it was shown that the

analytic expressions for the derived parameters were precisely the relations which

relate the schemes, allowing any analytic results in the literature in one scheme to

be converted into another.

In Chapter 5 we provided analysis of the three schemes of Chapter 4. We started with

counting the number of unique Wilson coefficients which appear in each counterterms.

However, this counting is not everything, as the specific form of the calculation

can lead to cancellations, drastically reducing the number of Wilson coefficients

appearing. We showed that the source of the largest corrections can be associated to

top loops in the finite parts of the counterterms. If then coupled with inverse powers

of s2
w ∼ 0.25 the effects are accentuated. These largest corrections were shown to be

well approximated by the large-mt limit for the schemes as defined. In the SM, by

writing the counterterms for vT in a unified way in the large-mt limit, it was manifest

that corrections associated with the VEV in the αµ or LEP scheme go approximately

as ∆ρ
(4,1)
t ∼ 1%, whereas those in the α scheme go with ∆r(4,1) = − c

2
w

s
2
w

∆ρ
(4,1)
t ∼ 3.4%.

In SMEFT, the dominant corrections related to the renormalisation of vT still arise

from top loops, but these involve µ-dependent logarithmic corrections related to

the running of Wilson coefficients, in addition to more complicated dependence

on the Weinberg angle than in the SM. Consequently, the numerical results across

Wilson coefficients and processes are not nearly as regular. Nonetheless, we used

the decay of the W boson to leptons as a benchmark process to define the finite,

gauge, and scale independent K factors, K
(i,j,σ)
W . The K factors allowed us to write

further processes as a combination of scheme dependent parts involving KW , which

accounted for the large correction of the counterterms, and scheme independent parts.

This identification of scheme dependent corrections enabled the creation of a set of
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universal replacement rules, allowing for the largest scheme dependent correction

to be introduced into the Leading-Order (LO) result. The consequences of such

replacements were to bring all the three schemes into closer alignment with each

other, with the remaining Next-to-Leading-Order (NLO) corrections, for a Wilson

coefficient, all being of a similar, smaller size.

Chapter 6 saw the introduction of two new schemes, those involving the effective

weak mixing angle as an input, the veff
α and the veff

µ schemes. We extended the

already established implementation of these schemes in the SM to the SMEFT,

giving expressions of necessary counterterms in a compact notation. The notation

conveyed that the large-mt counterterms to the weak mixing angle was proportional

to ∆ρ
(4,1)
t , a notable feature of these schemes. The connection between the two

schemes was made, and analytic conversion factors were derived and presented. To

finish, and to make the connection with the initially presented schemes, expressions

for the W mass predictions in the veff
σ schemes were given, relating these schemes

to either the α or αµ schemes thus allowing analytic results in the literature to be

expressed in terms of any one of five schemes with minimal effort.

Chapter 7 again started with a counting exercise; counterterms for the weak mixing

angle involved numerous Wilson coefficients, most of which previously uninvolved in

EW counterterms. By considering the definition of the weak mixing angle, this is of

little surprise, as all Wilson coefficients involved in Z decay to leptons are present,

which involves many four-fermion operators. A numerical analysis of the schemes

showed that, in general, corrections in the SM in the veff
σ schemes are smaller, a

fact already established. Moreover, for certain predictions in the veff
α scheme, these

corrections can be even smaller than a large-mt analysis would suggest due to an

accidental cancellation between corrections to the VEV and the on-shell running of α.

For processes in the SMEFT, it was seen that, somewhat surprisingly on first sight,

the prefactors to Wilson coefficients of the predictions in different schemes don’t

necessarily align as higher orders in perturbation theory are calculated. Scheme

dependent corrections can drive these prefactors to independent values, which can
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result in large differences with a non-trivial pattern of perturbative convergence

across all the schemes.

We end this thesis by asking whether there is a preferred input scheme for SMEFT

calculations. After including universal corrections, the perturbative convergence in

the different schemes presented here is expected to be similar. With the schemes on

equal footing and conversions amongst them unchallenging, there is little reason to

prefer one over the other, a fact we can exploit. Differences in theoretical predictions

in the SMEFT between different input schemes arise from unknown uncalculated

higher order corrections in perturbation theory, much like in the SM. If we wish to

concern ourselves with constraining the Wilson coefficients, the non-trivial pattern of

perturbative convergence across all the schemes has the capacity to be advantageous.

Fits of the Wilson coefficients performed in different schemes may provide a valuable

consistency check, alongside potential improvement in the constraints of some Wilson

coefficients. No input scheme is perfect, each has beneficial properties over the

others. Including multiple input schemes into our arsenal of tools to constrain

Wilson coefficients, facilitated by the work presented here, has the potential to be

highly fruitful.
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Appendix

A.1 Warsaw Basis
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1 : X3

QG fABCGAν
µ GBρ

ν GCµ
ρ

Q
G̃

fABCG̃Aν
µ GBρ

ν GCµ
ρ

QW εIJKW Iν
µ W Jρ

ν WKµ
ρ

Q
W̃

εIJKW̃ Iν
µ W Jρ

ν WKµ
ρ

2 : H6

QH (H†H)3

3 : H4D2

QH� (H†H)�(H†H)

QHD

(
H†DµH

)∗ (
H†DµH

)

4 : X2H2

QHG H†H GA
µνG

Aµν

Q
HG̃

H†H G̃A
µνG

Aµν

QHW H†HW I
µνW

Iµν

Q
HW̃

H†H W̃ I
µνW

Iµν

QHB H†H BµνB
µν

Q
HB̃

H†H B̃µνB
µν

QHW B H†σIHW I
µνB

µν

Q
HW̃ B

H†σIH W̃ I
µνB

µν

5 : ψ2H3 + h.c.

QeH (H†H)(l̄perH)

QuH (H†H)(q̄purH̃)

QdH (H†H)(q̄pdrH)

6 : ψ2XH + h.c.

QeW (l̄pσµνer)σIHW I
µν

QeB (l̄pσµνer)HBµν

QuG (q̄pσ
µνTAur)H̃ GA

µν

QuW (q̄pσ
µνur)σIH̃ W I

µν

QuB (q̄pσ
µνur)H̃ Bµν

QdG (q̄pσ
µνTAdr)H GA

µν

QdW (q̄pσ
µνdr)σIHW I

µν

QdB (q̄pσ
µνdr)H Bµν

7 : ψ2H2D

Q
(1)
Hl (H†i

←→
D µH)(l̄pγµlr)

Q
(3)
Hl (H†i

←→
D I

µH)(l̄pσIγµlr)

QHe (H†i
←→
D µH)(ēpγ

µer)

Q
(1)
Hq (H†i

←→
D µH)(q̄pγ

µqr)

Q
(3)
Hq (H†i

←→
D I

µH)(q̄pσ
Iγµqr)

QHu (H†i
←→
D µH)(ūpγ

µur)

QHd (H†i
←→
D µH)(d̄pγ

µdr)

QHud + h.c. i(H̃†DµH)(ūpγ
µdr)
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8 : (L̄L)(L̄L)

Qll (l̄pγµlr)(l̄sγµlt)

Q(1)
qq (q̄pγµqr)(q̄sγ

µqt)

Q(3)
qq (q̄pγµσIqr)(q̄sγ

µσIqt)

Q
(1)
lq (l̄pγµlr)(q̄sγ

µqt)

Q
(3)
lq (l̄pγµσI lr)(q̄sγ

µσIqt)

8 : (R̄R)(R̄R)

Qee (ēpγµer)(ēsγ
µet)

Quu (ūpγµur)(ūsγ
µut)

Qdd (d̄pγµdr)(d̄sγ
µdt)

Qeu (ēpγµer)(ūsγ
µut)

Qed (ēpγµer)(d̄sγ
µdt)

Q
(1)
ud (ūpγµur)(d̄sγ

µdt)

Q
(8)
ud (ūpγµT Aur)(d̄sγ

µT Adt)

8 : (L̄L)(R̄R)

Qle (l̄pγµlr)(ēsγ
µet)

Qlu (l̄pγµlr)(ūsγ
µut)

Qld (l̄pγµlr)(d̄sγ
µdt)

Qqe (q̄pγµqr)(ēsγ
µet)

Q(1)
qu (q̄pγµqr)(ūsγ

µut)

Q(8)
qu (q̄pγµT Aqr)(ūsγ

µT Aut)

Q
(1)
qd (q̄pγµqr)(d̄sγ

µdt)

Q
(8)
qd (q̄pγµT Aqr)(d̄sγ

µT Adt)

8 : (L̄R)(R̄L) + h.c.

Qledq (l̄j
per)(d̄sqtj)

8 : (L̄R)(L̄R) + h.c.

Q
(1)
quqd (q̄j

pur)εjk(q̄k
s dt)

Q
(8)
quqd (q̄j

pT Aur)εjk(q̄k
s T Adt)

Q
(1)
lequ (l̄j

per)εjk(q̄k
s ut)

Q
(3)
lequ (l̄j

pσµνer)εjk(q̄k
s σµνut)

Table A.1: The 59 independent baryon number conserving
dimension-six operators built from Standard Model
fields, in the notation of [45]. The subscripts p, r, s, t
are flavour indices, and σI are Pauli matrices.
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A.2 Phase Space Integrals

Here we outline the steps needed to perform the phase space integrals necessary

to compute the decays of the Heavy bosons to fermions at LO and NLO. These

are the 2-body phase space integrals where the final state is just massless fermions

and the 3-body phase space integrals where we additionally have an emission of a

massless gauge boson. We shall present the result for a massive Z boson of four

momentum PZ and mass MZ decaying to two massless electrons (and a massless

gauge boson). Results for other decays are easily obtained by substitutions. We will

work in dimensional regularisation where we have d = 4− 2ε space-time dimensions.

Our calculations start from the differential cross-section given by,

dσ = 1
F
|M|2dΦ1→n, (A.2.1)

where F is a flux factor and dΦ1→n is the differential Lorentz invariant phase space

for an n particle final state,

dΦ1→n (PZ ; p1, ..., pn) =
n∏

i=1

[
ddpi

(2π)d (2π) δ+(p2
i )
]

(2π)d δd

(
n∑

i=1
pi − PZ

)
, (A.2.2)

where we have

δ+(p2
i −m2

i ) = δ(p2
i −m2

i )Θ(Ei) , (A.2.3)

which ensures final state particles are on-shell with positive energy. For a particle

decay, we have F = 2E0, where E0 is the energy of the decaying particle, which in

our case is MZ . We can integrate out the delta functions which ensures the final

states are on shell,

dΦ1→n (PZ ; p1, ..., pn) =
n∏

i=1

[
dd−1~pi

(2π)d−1 2p0
i

]
(2π)d δd

(
n∑

i=1
pi − PZ

)
. (A.2.4)
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A.2.1 Two-body phase space

The decay rate of the Z boson to electrons can be written as

ΓZ→ee = 1
2MZ

∫ dd−1~p1

(2π)d−1 2p0
1

dd−1~p2

(2π)d−1 2p0
2

(2π)d δd (p1 + p2 − PZ) |MZee|2 . (A.2.5)

In the center of mass frame,

PZ = (MZ ,~0), p1 = (p0
1, ~p1), p2 = (p0

2, ~p2) . (A.2.6)

We can write the d-dimension delta functon as a product of a (d-1)-dimensional

spacial delta function and a temporal delta function

δd (p1 + p2 − PZ) = δ
(
p0

1 + p0
2 −MZ

)
δd−1

(
~p1 + ~p2 −~0

)
. (A.2.7)

Hence, performing the integral over ~p2 imposes ~p2 = −~p1,

ΓZ→ee = 1
2MZ

∫ dd−1~p1

(2π)d−2 4|~p1|2
δ
(
2|~p1|2 −MZ

)
|MZee|2

∣∣∣
~p2→−~p1

. (A.2.8)

We choose to write the final (d-1)-dimensional integral in spherical coordinates

dd−1~p1 = |~p1|d−2d|~p1|dΩd−1 , (A.2.9)

where

dΩd−1 = sind−2(φd−1) sind−3(φd−2)... sin(φ1)dφ1...dφd−1, (A.2.10)

and we have defined the range of φ1 to be [0, 2π] and all other angles ranges to be

[0, π]. For the decays we consider in this thesis, the two body matrix elements are

angle independent. Therefore, we can use

∫
dΩd−1 = 2π

d−1
2

Γ
(

d−1
2

) (A.2.11)

when integrating over all angles such that

ΓZ→ee = π
3−d

2

2dMZΓ
(

d−1
2

) ∫ d|~p1||~p1|d−4δ
(
2|~p1|2 −MZ

)
|MZee|2

∣∣∣
~p2→−~p1

. (A.2.12)
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Performing the integral over ~p1 using

δ (f(x)) =
∑

x0∈roots

δ (x− x0)
f ′(x0)

, (A.2.13)

gives us

ΓZ→ee = 23−2dπ
3−d

2 Md−5
Z

Γ
(

d−1
2

) |MZee|2

= 1
8π
|MZee|2 . (A.2.14)

In the second line we are free to take the limit d→ 4 as the result contains no poles

in epsilon.

A.2.2 Three-body phase space

Now we move on to the process with a three body final state, where, in our example,

we include a photon into the final state additional to the two electrons. To tackle this

problem, we separate the three body phase space into two two-body phase spaces

through the use of

dΦ1→3

(
PZ ; p1, p2, pγ

)
= dQ2

2π
dΦ1→2

(
PZ ; Q, pγ

)
dΦ1→2 (Q; p1, p2) , (A.2.15)

we can write

ΓZeeγ = 1
2MZ

I3 , (A.2.16)

where we have defined the integral

I3 =
∫

dΦ1→3

(
PZ ; p1, p2, pγ

)
|MZeeγ|2

=
∫ dQ2

2π
dΦ1→2

(
PZ ; Q, pγ

)
dΦ1→2 (Q; p1, p2) |MZeeγ|2. (A.2.17)

The first step is to solve the integral

IPS1 =
∫

dΦ1→2 (Q; p1, p2) |MZeeγ|2 , (A.2.18)
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which we have named phase space 1. This integral can be solved in any frame, and

so we choose to use the rest frame of Q, parameterising the momenta of the particles

as

Q = (Q0,~0) ,

PZ = (EZ , 0, ..., 0, | ~pZ |) ,

p1 = (|~p1|, 0, ..., |~p1| sin θ, |~p1| cos θ) ,

p2 = (|~p2|, 0, ..., |~p2| sin θ,−|~p2| cos θ) ,

pγ = (|~pγ|, 0, ..., 0, |~pγ|) . (A.2.19)

In general, for a three body decay, there will be some angular dependence between

outgoing particles, so when performing the angular integrals, we keep dependence

on a single angle through

∫
dΩd−1 = 2π

d−2
2

Γ
(

d−2
2

) ∫ π

0
dφ sind−3(φ) , (A.2.20)

yielding

IPS1 = 24−3dπ
2−d

2 (Q2)
d−4

2

Γ
(

d−2
2

) ∫ π

0
dφ sind−3(φ)|MZeeγ|2. (A.2.21)

Next, we move on to the second phase space integral

IPS2 =
∫

dΦ1→2

(
PZ ; Q, pγ

)
IPS1

= dd−1 ~Q

(2π)d−1 2Q0
dd−1~pγ

(2π)d−1 2p0
γ

(2π)d δd
(
PZ −Q− pγ

)
IPS1 . (A.2.22)

As IPS1 is written in terms of Lorentz invariant quantities, and an angle which we

integrate over, changing frames is trivial, hence we evaluate phase space two in the

rest frame of the Z boson. This introduces no new difficulties. First we integrate

over dd−1~pγ, perform a change to spherical coordinates and integrate over all the

sphere as the angular dependence is already in phase space one. Doing so we find

IPS2 = 25−3dπ2−dM2−d
Z

Γ (d− 2) (Q2)
d−4

2
(
M2

Z −Q2
)d−3 ∫ π

0
dφ sind−3 φ|MZeeγ|2. (A.2.23)
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Finally, interpreting the quantity Q2 as the energy imparted to the electron pair, we

see that, for the case of massless electrons, we integrate Q2 from zero upto M2
Z . The

end result is the phase space integral evaluates as

I3 = 24−3dπ1−dM2−d
Z

Γ (d− 2)

∫ M
2
Z

0
dQ2(Q2)

d−4
2
(
M2

Z −Q2
)d−3 ∫ π

0
dφ sind−3 φ|MZeeγ|2.

(A.2.24)

A.3 Comparison with previous literature

Electroweak precision observables at NLO in SMEFT have been calculated previously

in [81, 135]. In this section we compare the LEP-scheme results for MW and the

Z → `` decay rate with results given in that work.1 In order to do so, we must take

into account some differences in calculational set-ups.

First, in contrast to the present work, those works use αO.S.(0) as an input, so that

large logarithms of lepton masses and hadronic contributions appear in fixed order.

We can convert our results to that renormalisation scheme by eliminating α(MZ)

through use of Eq. (6.3.8) and

αO.S.(MZ) = αO.S.(0)
1−∆α

≈ αO.S.(0)(1 + ∆α) , (A.3.1)

where

∆α = ∆αlep + ∆α
(5)
had = 0.03142 + 0.02764 . (A.3.2)

Expanding observables to linear order in αO.S.(0) and ∆α then yields SM predictions

as given in [81,135]. After making this conversion and using a common set of input

parameters also for heavy-particle masses, we can exactly reproduce the SM values

for the W mass at LO and NLO:

MLO
W = 80.939 GeV, MNLO

W = 80.548 GeV . (A.3.3)

1The decay rate for the W boson has not been compared since a leptonic partial branching
fraction is not provided in the previous literature.
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The SMEFT results for the W -boson mass also agree, when the same set of flavour

assumptions is made.

For the Z → `` decay rate, we agree with an analytic result in the αµ scheme

provided to us by the authors of [81, 135] (after using the flavour assumptions of

those papers). This forms the basis for LEP-scheme results. In our case these

are obtained by using Eqs. (4.3.7) and (4.3.9) to express the result in terms of M̂W ,

while [81,135] re-organise the SM part of the loop expansion in a way that is specified

in [96]. Taking into account these differences, as well as the renormalisation of α

discussed above, we find numerical agreement with [81,135].

A.4 Numerical results for the decay rates

Here we present numerical results for the decay rates considered in Section 5.5 in

the three schemes. We use the notation

Γs
X,LO ≡ Γs(4,0)

Xf1f2
+ Γs(6,0)

Xf1f2
,

Γs
X,NLO ≡ Γs

X,LO + Γs(4,1)
Xf1f2

+ Γs(6,1)
Xf1f2

, (A.4.1)

where the quantities appearing on the right-hand side are defined in Eq. (5.5.1). Scale

uncertainties are obtained as explained in Section 5.4. For brevity, we show only

those coefficients which have an absolute numerical prefactor or absolute difference

between the upper and lower scale uncertainties of greater than 1% of the LO SM

result after factoring out the appropriate v2
σ; results omitted for this reason are

indicated by . . . in the equations that follow.

A.4.1 W → τν decay

For W decay in the α-scheme we find

Γα
W,LO = 234.6+1.8

−1.8 MeV + v2
αΓα(4,0)

W τντ

{
3.733+0.132

−0.132CHW B + 2.000+0.034
−0.034C

(3)
Hl
33

+ 1.742+0.120
−0.120CHD
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+ 0.000+0.189
−0.189C

(1)
Hq
33

+ 0.000+0.182
−0.182CHu

33
+ 0.000+0.066

−0.066CuB
33

+ 0.000+0.059
−0.059CuW

33

+ 0.000+0.046
−0.046C

(3)
lq

3333
+ 0.000+0.008

−0.008

(
CHB + CHW + CW +

∑
i=1,2,3

C
(3)
Hq
ii

+
∑

j=1,2
C

(3)
lq

33jj

)

+ 0.000+0.007
−0.007CH� + 0.000+0.005

−0.005
∑

j=1,2
CHu

jj
+ . . .

}
, (A.4.2)

Γα
W,NLO = 224.6+0.1

−0.2 MeV + v2
αΓα(4,0)

W τντ

{
3.620+0.000

−0.011CHW B + 2.043+0.000
−0.002C

(3)
Hl
33

+ 1.713+0.000
−0.011CHD − 0.195+0.038

−0.000CHu
33

+ 0.172+0.000
−0.033C

(1)
Hq
33
− 0.079+0.018

−0.002C
(3)
Hq
33

− 0.072+0.008
−0.000CuB

33
− 0.034+0.002

−0.000C
(3)
lq

3333
− 0.032+0.005

−0.000CuW
33
− 0.011+0.000

−0.000CW

+ 0.000+0.001
−0.026C uu

3333
+ 0.000+0.000

−0.023C
(1)
qq

3333
+ 0.000+0.020

−0.000C
(1)
qu

3333

+ 0.000+0.003
−0.012C

(3)
qq

3333
+ . . .

}
, (A.4.3)

For the αµ-scheme we obtain

Γαµ

W,LO = 227.2+0.0
−0.0 MeV + v2

µΓµ(4,0)
W τντ

{
2.000+0.031

−0.031C
(3)
Hl
33
− 1.000+0.015

−0.015
∑

j=1,2
C

(3)
Hl
jj

+ 1.000+0.004
−0.004C ll

1221
+ 0.000+0.044

−0.044C
(3)
lq

3333
+ 0.000+0.026

−0.026
∑

j=1,2
C

(3)
lq

jj33
+ 0.000+0.011

−0.011C ll
1122

+ 0.000+0.007
−0.007

∑
j=1,2

C
(3)
lq

33jj

+ . . .

}
, (A.4.4)

Γαµ

W,NLO =226.5+0.0
−0.0 MeV + v2

µΓµ(4,0)
W τντ

{
2.043+0.000

−0.001C
(3)
Hl
33
− 1.025+0.001

−0.000
∑

j=1,2
C

(3)
Hl
jj

+ 0.998+0.000
−0.000C ll

1221
− 0.033+0.001

−0.000C
(3)
lq

3333
+ 0.019+0.000

−0.001
∑

j=1,2
C

(3)
lq

jj33

− 0.015+0.000
−0.000C ll

1122
+ 0.010+0.000

−0.000CHW B + . . .

}
. (A.4.5)

And finally for the LEP scheme, we find

ΓLEP
W,LO =222.7+1.1

−1.1 MeV + v2
µΓLEP(4,0)

W τντ

{
− 2.379+0.102

−0.102CHW B + 2.000+0.019
−0.019C

(3)
Hl
33

− 1.656+0.032
−0.032

∑
j=1,2

C
(3)
Hl
jj

+ 1.656+0.001
−0.001C ll

1221
− 1.078+0.073

−0.073CHD + 0.000+0.114
−0.114C

(1)
Hq
33

+ 0.000+0.109
−0.109CHu

33
+ 0.000+0.045

−0.045C
(3)
lq

3333
+ 0.000+0.043

−0.043
∑

j=1,2
C

(3)
lq

jj33
+ 0.000+0.040

−0.040CuB
33
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+ 0.000+0.037
−0.037CuW

33
+ 0.000+0.018

−0.018C ll
1122

+ 0.000+0.007
−0.007

∑
j=1,2

C
(3)
lq

33jj

+ . . .

}
,

(A.4.6)

ΓLEP
W,NLO =227.2+0.0

−0.0 MeV + v2
µΓLEP(4,0)

W τντ

{
− 2.455+0.008

−0.000CHW B + 2.091+0.001
−0.001C

(3)
Hl
33

− 1.742+0.002
−0.000

∑
j=1,2

C
(3)
Hl
jj

+ 1.697+0.000
−0.001C ll

1221
− 1.165+0.012

−0.001CHD + 0.116+0.002
−0.031CHu

33

− 0.103+0.029
−0.002C

(1)
Hq
33
− 0.033+0.002

−0.002C
(3)
lq

3333
+ 0.046+0.001

−0.010C
(3)
Hq
33

+ 0.044+0.000
−0.008CuB

33

− 0.024+0.001
−0.000C ll

1122
+ 0.019+0.000

−0.006CuW
33

+ 0.032+0.001
−0.003

∑
j=1,2

C
(3)
lq

jj33

+ 0.000+0.015
−0.001C uu

3333
+ 0.000+0.014

−0.000C
(1)
qq

3333
+ 0.000+0.000

−0.011C
(1)
qu

3333
+ . . .

}
. (A.4.7)

A.4.2 h → bb̄ decay

To evaluate scale uncertainties for h→ bb̄ we also require the running of mb(µ) and

αs(µ). As with the running of α(µ), we again use a one-loop fixed-order solution to

the RG equations for mb(µ) and αs(µ) which are given by

mb(µ) = mb(Mh)
[
1 + γb(Mh) ln

(
µ

Mh

)]
, (A.4.8)

αs(µ) = αs(Mh)
[
1− αs(Mh)

2π
β0 ln

(
µ

Mh

)]
, (A.4.9)

where

γb(µ) = − 3
2π

[
αs(µ)CF + α(µ)Q2

b

]
, β0 = 11

3 CA −
4
3TF nf , (A.4.10)

with

CF = 4
3 , CA = 3 , TF = 1

2 , and nf = 5 .

In the α scheme we find

Γα
hbb,LO = 2.300+0.209

−0.209 MeV + v2
αΓα(4,0)

hbb

{
− 1.414+0.099

−0.099
vα

mb

CdH
33

+ 3.733+0.243
−0.243CHW B
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+ 2.000+0.084
−0.084CH� + 1.242+0.034

−0.034CHD + 0.000+0.078
−0.078

vα

mb

C
(1)
quqd
3333

+ 0.000+0.067
−0.067

vα

mb

CdW
33

+ 0.000+0.015
−0.015

vα

mb

C
(8)
quqd
3333

+ 0.000+0.008
−0.008

vα

mb

CHud
33

+ 0.000+0.397
−0.397CHG + 0.000+0.213

−0.213CdB
33

+ 0.000+0.189
−0.189C

(1)
Hq
33

+ 0.000+0.183
−0.183CHu

33
+ 0.000+0.112

−0.112C
(3)
Hq
33

+ 0.000+0.094
−0.094CuW

33

+ 0.000+0.066
−0.066CuB

33
+ 0.000+0.027

−0.027CHW + 0.000+0.027
−0.027CuH

33
+ 0.000+0.013

−0.013C
(8)
qd

3333

+ 0.000+0.011
−0.011CHd

33
+ 0.000+0.009

−0.009C
(1)
qd

3333
+ 0.000+0.008

−0.008
∑

j=1,2
C

(3)
Hq
jj

+ 0.000+0.008
−0.008CW

+ 0.000+0.006
−0.006CHB + 0.000+0.005

−0.005
∑

j=1,2
CHu

jj
+ . . .

}
, (A.4.11)

Γα
hbb,NLO =2.647+0.036

−0.119 MeV + v2
αΓα(4,0)

hbb

{
− 1.761+0.072

−0.030
vα

mb

CdH
33
− 0.060+0.012

−0.020
vα

mb

CdW
33

+ 4.239+0.055
−0.159CHW B + 3.094+0.704

−0.953CHG + 0.031+0.031
−0.000

vα

mb

C
(1)
quqd
3333

+ 2.448+0.031
−0.083CH� + 1.358+0.013

−0.042CHD + 0.009+0.003
−0.000

vα

gsmb

CdG
33

+ 0.006+0.005
−0.001

vα

mb

C
(8)
quqd
3333
− 0.004+0.003

−0.001
vα

mb

CHud
33
− 0.116+0.014

−0.024C
(3)
Hq
33

− 0.079+0.012
−0.032CHu

33
+ 0.058+0.035

−0.013C
(1)
Hq
33
− 0.040+0.004

−0.025CuW
33
− 0.031+0.005

−0.011CuH
33

− 0.030+0.001
−0.015CuB

33
+ 0.028+0.007

−0.013CHW + 0.024+0.000
−0.000CH − 0.014+0.010

−0.000C
(8)
qd

3333

− 0.011+0.022
−0.079CdB

33
− 0.010+0.007

−0.001C
(1)
qd

3333
+ 0.000+0.072

−0.049
1
gs

CuG
33

+ 0.000+0.000
−0.020C

(3)
qq

3333
+ 0.000+0.000

−0.018C uu
3333

+ 0.000+0.016
−0.000C

(1)
qu

3333
+ 0.000+0.000

−0.016C
(1)
qq

3333

+ . . .

}
. (A.4.12)

Here and in other numerical results for h → bb̄, we have left enhancement factors

such as vα/mb symbolic, with the exception of CdB
33

. Scale variations of the LO

SMEFT results fail to include the NLO results of the operators first appearing

at LO in all schemes, where only one operator is within 2σ region. However, for

operators first appearing at NLO the NLO result is typically included in the LO

scale-variation band. More reliable uncertainty estimates can be made by varying

the renormalisation scales of the b-quark mass and Wilson coefficients independently

as in [29].
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In the αµ scheme one finds

Γαµ

hbb,LO = 2.217+0.221
−0.221 MeV + v2

µΓαµ(4,0)
hbb

{
− 1.414+0.095

−0.095
vµ

mb

CdH
33

+ 2.000+0.095
−0.095CH�

+ 1.000+0.104
−0.104C ll

1221
− 1.000+0.086

−0.086
∑

j=1,2
C

(3)
Hl
jj
− 0.500+0.021

−0.021CHD

+ 0.000+0.074
−0.074

vµ

mb

C
(1)
quqd
3333

+ 0.000+0.063
−0.063

vµ

mb

CdW
33

+ 0.000+0.014
−0.014

vµ

mb

C
(8)
quqd
3333

+ 0.000+0.007
−0.007

vµ

mb

CHud
33

+ 0.000+0.397
−0.397CHG + 0.000+0.206

−0.206CdB
33

+ 0.000+0.115
−0.115C

(3)
Hq
33

+ 0.000+0.034
−0.034CuW

33
+ 0.000+0.034

−0.034CHW + 0.000+0.026
−0.026CuH

33
+ 0.000+0.026

−0.026
∑

j=1,2
C

(3)
lq

jj33

+ 0.000+0.012
−0.012C

(8)
qd

3333
+ 0.000+0.011

−0.011C ll
1122

+ 0.000+0.009
−0.009C

(1)
qd

3333
+ 0.000+0.008

−0.008CHd
33

+ ...

}
,

(A.4.13)

Γαµ

hbb,NLO = 2.650+0.043
−0.129 MeV + v2

µΓαµ(4,0)
hbb

{
− 1.728+0.068

−0.029
vµ

mb

CdH
33
− 0.057+0.009

−0.018
vµ

mb

CdW
33

+ 3.094+0.698
−0.946CHG + 2.447+0.035

−0.084CH� + 0.030+0.028
−0.000

vµ

mb

C
(1)
quqd
3333

− 1.212+0.054
−0.020

∑
j=1,2

C
(3)
Hl
jj

+ 1.195+0.019
−0.060C ll

1221
− 0.612+0.020

−0.008CHD

+ 0.009+0.003
−0.000

vµ

gsmb

CdG
33

+ 0.006+0.005
−0.001

vµ

mb

C
(8)
quqd
3333
− 0.004+0.002

−0.001
vµ

mb

CHud
33

− 0.046+0.001
−0.008CuW

33
− 0.031+0.008

−0.038C
(3)
Hq
33
− 0.030+0.004

−0.010CuH
33

+ 0.028+0.006
−0.015CHW + 0.024+0.000

−0.000CH − 0.022+0.007
−0.002C ll

1122
− 0.013+0.009

−0.000C
(8)
qd

3333

− 0.011+0.016
−0.073CdB

33
+ 0.010+0.001

−0.001CHB − 0.010+0.001
−0.001CHW B

+ 0.003+0.010
−0.000

∑
j=1,2

C
(3)
lq

jj33
+ 0.000+0.059

−0.083
1
gs

CuG
33

+ 0.000+0.000
−0.010C

(3)
qq

3333
+ ...

}
.

(A.4.14)

In the LEP scheme one finds

ΓLEP
hbb,LO =2.217+0.221

−0.221 MeV + v2
µΓLEP(4,0)

hbb

{
− 1.414+0.095

−0.095
vµ

mb

CdH
33

+ 2.000+0.095
−0.095CH�

+ 1.000+0.104
−0.104C ll

1221
− 1.000+0.085

−0.085
∑

j=1,2
C

(3)
Hl
jj
− 0.500+0.020

−0.020CHD

+ 0.000+0.074
−0.074

vµ

mb

C
(1)
quqd
3333

+ 0.000+0.062
−0.062

vµ

mb

CdW
33

+ 0.000+0.014
−0.014

vµ

mb

C
(8)
quqd
3333



152 Appendix A. Appendix

+ 0.000+0.008
−0.008

vµ

mb

CHud
33

+ 0.000+0.397
−0.397CHG + 0.000+0.207

−0.207CdB
33

+ 0.000+0.115
−0.115C

(3)
Hq
33

+ 0.000+0.034
−0.034CuW

33
+ 0.000+0.033

−0.033CHW

+ 0.000+0.026
−0.026CuH

33
+ 0.000+0.026

−0.026
∑

j=1,2
C

(3)
lq

jj33
+ 0.000+0.012

−0.012C
(8)
qd

3333

+ 0.000+0.011
−0.011C ll

1122
+ 0.000+0.009

−0.009C
(1)
qd

3333
+ 0.000+0.008

−0.008CHd
33

+ ...

}
, (A.4.15)

ΓLEP
hbb,NLO =2.650+0.049

−0.124 MeV + v2
µΓLEP(4,0)

hbb

{
− 1.728+0.068

−0.029
vµ

mb

CdH
33
− 0.056+0.009

−0.018
vµ

mb

CdW
33

+ 3.094+0.698
−0.946CHG + 2.447+0.035

−0.084CH� + 0.030+0.028
−0.000

vµ

mb

C
(1)
quqd
3333

− 1.210+0.054
−0.020

∑
j=1,2

C
(3)
Hl
jj

+ 1.193+0.019
−0.060C ll

1221
− 0.609+0.020

−0.008CHD

+ 0.009+0.003
−0.000

vµ

mb

CdG
33

+ 0.006+0.005
−0.001

vµ

mb

C
(8)
quqd
3333
− 0.003+0.002

−0.001
vµ

mb

CHud
33

− 0.045+0.001
−0.008CuW

33
− 0.031+0.008

−0.038C
(3)
Hq
33
− 0.030+0.004

−0.010CuH
33

+ 0.028+0.006
−0.015CHW + 0.024+0.000

−0.000CH − 0.022+0.007
−0.002C ll

1122
− 0.013+0.009

−0.000C
(8)
qd

3333

− 0.011+0.016
−0.074CdB

33
+ 0.003+0.010

−0.000
∑

j=1,2
C

(3)
lq

jj33
+ 0.011+0.001

−0.001CHB

+ 0.000+0.059
−0.083CuG

33
+ 0.000+0.000

−0.010C
(3)
qq

3333
+ ...

}
. (A.4.16)

A.4.3 Z → ττ decay

We present results for Z-boson decay in the three different schemes, using µ = MZ

as the central scale. In the α-scheme we find

Γα
Z,LO = 86.75+0.067

−0.067 MeV + v2
αΓα(4,0)

Zττ

{
4.088+0.144

−0.144CHW B + 2.190+0.056
−0.056C

(1)
Hl
33

+ 2.190+0.038
−0.038C

(3)
Hl
33
− 1.764+0.051

−0.051CHe
33

+ 1.573+0.109
−0.109CHD + 0.000+0.172

−0.172C
(1)
Hq
33

+ 0.000+0.163
−0.163CHu

33
+ 0.000+0.072

−0.072CuB
33

+ 0.000+0.064
−0.064CuW

33
+ 0.000+0.060

−0.060C
(1)
lq

3333

+ 0.000+0.057
−0.057C lu

3333
+ 0.000+0.050

−0.050C
(3)
lq

3333
+ 0.000+0.048

−0.048C qe
3333

+ 0.000+0.046
−0.046C eu

3333

+ 0.000+0.008
−0.008

( ∑
j=1,2

C
(3)
lq

33jj

+
∑

i=1,2,3
C

(3)
Hq
ii

+ CHW + CHB

)
+ 0.000+0.008

−0.008CW
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+ 0.000+0.007
−0.007CH� + 0.000+0.006

−0.006
∑

j=1,2
CHu

jj
+ . . .

}
, (A.4.17)

Γα
Z,NLO = 83.25+0.04

−0.06 MeV + v2
αΓα(4,0)

Zττ

{
3.867+0.003

−0.016CHW B + 2.196+0.000
−0.004C

(1)
Hl
33

+ 2.179+0.000
−0.001C

(3)
Hl
33
− 1.899+0.008

−0.002CHe
33

+ 1.406+0.002
−0.021CHD − 0.143+0.031

−0.000CHu
33

+ 0.117+0.000
−0.032C

(1)
Hq
33
− 0.074+0.014

−0.001C
(3)
Hq
33
− 0.065+0.007

−0.000CuB
33
− 0.054+0.001

−0.001C
(3)
lq

3333

− 0.051+0.004
−0.000C lu

3333
+ 0.043+0.000

−0.003C
(1)
lq

3333
+ 0.041+0.002

−0.006C eu
3333
− 0.035+0.007

−0.002C qe
3333

− 0.016+0.008
−0.000CuW

33
− 0.011+0.001

−0.000CW − 0.010+0.000
−0.000

∑
j=1,2

C
(3)
lq

33jj

+ 0.000+0.000
−0.021C uu

3333

+ 0.000+0.000
−0.019C

(1)
qq

3333
+ 0.000+0.016

−0.000C
(1)
qu

3333
+ 0.000+0.002

−0.010C
(3)
qq

3333
+ . . .

}
. (A.4.18)

In the αµ-scheme we obtain

Γαµ

Z,LO = 83.91+0.00
−0.00 MeV + v2

µΓµ(4,0)
Zττ

{
2.190+0.057

−0.057C
(1)
Hl
33

+ 2.190+0.034
−0.034C

(3)
Hl
33
− 1.764+0.046

−0.046CHe
33

− 1.000+0.015
−0.015

∑
j=1,2

C
(3)
Hl
jj

+ 1.000+0.004
−0.004C ll

1221
+ 0.355+0.012

−0.012CHW B − 0.169+0.011
−0.011CHD

+ 0.000+0.058
−0.058C

(1)
lq

3333
+ 0.000+0.055

−0.055C lu
3333

+ 0.000+0.049
−0.049C

(3)
lq

3333
+ 0.000+0.046

−0.046C qe
3333

+ 0.000+0.045
−0.045C eu

3333
+ 0.000+0.026

−0.026
∑

j=1,2
C

(3)
lq

jj33
+ 0.000+0.018

−0.018CHu
33

+ 0.000+0.017
−0.017C

(1)
Hq
33

+ 0.000+0.011
−0.011C ll

1122
+ 0.000+0.008

−0.008
∑

j=1,2
C

(3)
lq

33jj

+ 0.000+0.006
−0.006CuB

33

+ 0.000+0.005
−0.005CuW

33
+ . . .

}
, (A.4.19)

Γαµ

Z,NLO = 83.92+0.00
−0.00 MeV + v2

µΓµ(4,0)
Zττ

{
2.193+0.000

−0.003C
(1)
Hl
33

+ 2.181+0.000
−0.001C

(3)
Hl
33
− 1.897+0.006

−0.002CHe
33

− 1.029+0.001
−0.000

∑
j=1,2

C
(3)
Hl
jj

+ 1.006+0.000
−0.000C ll

1221
− 0.289+0.009

−0.007CHD + 0.258+0.003
−0.004CHW B

− 0.053+0.001
−0.001C

(3)
lq

3333
− 0.049+0.003

−0.000C lu
3333

+ 0.042+0.000
−0.002C

(1)
lq

3333
+ 0.040+0.002

−0.005C eu
3333

− 0.034+0.006
−0.002C qe

3333
− 0.020+0.016

−0.012C
(1)
Hq
33

+ 0.018+0.011
−0.016CHu

33
− 0.017+0.000

−0.000C ll
1122

+ 0.015+0.000
−0.001

∑
j=1,2

C
(3)
lq

jj33
+ ...

}
, (A.4.20)



154 Appendix A. Appendix

and in the LEP-scheme we find

ΓLEP
Z,LO = 83.30+0.11

−0.11 MeV + v2
µΓLEP(4,0)

Zττ

{
2.121+0.035

−0.035C
(1)
Hl
33

+ 2.121+0.012
−0.012C

(3)
Hl
33

− 1.863+0.069
−0.069CHe

33
+ 1.173+0.031

−0.031C ll
1221
− 1.173+0.008

−0.008
∑

j=1,2
C

(3)
Hl
jj
− 0.587+0.026

−0.026CHD

− 0.410+0.046
−0.046CHW B + 0.000+0.061

−0.061C
(1)
Hq
33

+ 0.000+0.060
−0.060CHu

33
+ 0.000+0.056

−0.056C
(1)
lq

3333

+ 0.000+0.053
−0.053C lu

3333
+ 0.000+0.049

−0.049C qe
3333

+ 0.000+0.047
−0.047C

(3)
lq

3333
+ 0.000+0.047

−0.047C eu
3333

+ 0.000+0.030
−0.030

∑
j=1,2

C
(3)
lq

jj33
+ 0.000+0.013

−0.013C ll
1122

+ 0.000+0.008
−0.008

∑
j=1,2

C
(3)
lq

33jj

+ 0.000+0.007
−0.007CuB

33
+ 0.000+0.006

−0.006CuW
33

+ ...

}
, (A.4.21)

ΓLEP
Z,NLO = 84.12+0.00

−0.03 MeV + v2
µΓLEP(4,0)

Zττ

{
2.219+0.003

−0.004C
(1)
Hl
33

+ 2.210+0.002
−0.001C

(3)
Hl
33

− 1.901+0.005
−0.000CHe

33
− 1.254+0.000

−0.004
∑

j=1,2
C

(3)
Hl
jj

+ 1.227+0.002
−0.000C ll

1221
− 0.633+0.004

−0.003CHD

− 0.481+0.000
−0.012CHW B + 0.055+0.002

−0.013CHu
33
− 0.052+0.011

−0.002C
(1)
Hq
33
− 0.051+0.000

−0.002C
(3)
lq

3333

− 0.048+0.004
−0.002C lu

3333
+ 0.042+0.000

−0.004C eu
3333

+ 0.041+0.002
−0.003C

(1)
lq

3333
− 0.036+0.005

−0.000C qe
3333

+ 0.025+0.000
−0.005C

(3)
Hq
33
− 0.020+0.002

−0.000C ll
1122

+ 0.017+0.003
−0.001

∑
j=1,2

C
(3)
lq

jj33
+ ...

}
.

(A.4.22)

A.5 Numerical results using universal corrections

in SMEFT

For completeness, we present here numerical results for the prefactors of the Wilson

coefficients at different perturbative orders for W , h and Z decay which have not

been shown in Section 5.6 yet. Table A.2 shows the results for W and h decay in the

α scheme. For the LEP scheme, Table A.3 shows the results for W , and Z decay,

respectively. The h decay results for the LEP scheme have been omitted since they

only have very small (numerical) differences with respect to the numbers in the

αµ scheme, which are presented in Table A.2.
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W → τν C
(3)
Hl
jj

C
(3)
lq

jj33
C ll

1221

NLO −1.025+0.001
−0.000 0.019+0.000

−0.001 0.998+0.000
−0.000

NLOt −1.019+0.001
−0.000 0.019+0.004

−0.005 1.000+0.002
−0.002

LO −1.000+0.015
−0.015 0.000+0.026

−0.026 1.000+0.004
−0.004

LOK −1.019+0.011
−0.010 0.019+0.000

−0.001 1.000+0.004
−0.004

h→ bb̄ C
(3)
Hl
jj

C
(3)
lq

jj33
C ll

1221

NLO −1.009+0.001
−0.000 0.003+0.000

−0.000 0.992+0.000
−0.000

NLOt −1.009+0.002
−0.001 0.003+0.003

−0.005 1.006+0.002
−0.002

LO −1.000+0.014
−0.014 0.000+0.026

−0.026 1.000+0.005
−0.005

LOK −1.003+0.013
−0.012 0.003+0.000

−0.001 1.000+0.005
−0.005

Table A.2: The numerical prefactors of the Wilson coefficients in the
αµ scheme appearing in K

(6,1,µ)
W for various perturbative

approximations. The tree-level decay rate as well as
v2

µ have been factored out and the results have been
evaluated at the scale of the process. We show the
results for W decay (left) and Higgs decay (right).

For results in the α scheme and Z decay in the αµ scheme, we refer to Tables 5.7

and 5.8 in Section 5.6.
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W → τν CHD CHW B C
(3)
Hq
33

CHu
33

C
(1)
Hq
33

CuB
33

CuW
33

NLO −1.165+0.012
−0.001 −2.455+0.008

−0.000 0.046+0.001
−0.010 0.116+0.002

−0.031 −0.103+0.029
−0.002 0.044+0.000

−0.008 0.019+0.000
−0.006

NLOt −1.143+0.009
−0.002 −2.434+0.024

−0.019 0.040+0.002
−0.011 0.124+0.002

−0.028 −0.124+0.026
−0.002 0.045+0.000

−0.005 0.023+0.000
−0.004

LO −1.078+0.073
−0.073 −2.379+0.102

−0.102 0.000+0.005
−0.005 0.000+0.109

−0.109 0.000+0.114
−0.114 0.000+0.040

−0.040 0.000+0.037
−0.037

LOK −1.143+0.027
−0.018 −2.434+0.045

−0.039 0.040+0.000
−0.005 0.124+0.000

−0.025 −0.124+0.027
−0.004 0.045+0.000

−0.007 0.023+0.000
−0.005

C
(3)
Hl
jj

C
(3)
lq

jj33
C ll

1221
C

(3)
Hl
33

NLO −1.742+0.002
−0.000 0.032+0.001

−0.003 1.697+0.000
−0.001 2.091+0.001

−0.001

NLOt −1.725+0.007
−0.005 0.032+0.007

−0.010 1.693+0.003
−0.003 2.079+0.007

−0.009

LO −1.173+0.008
−0.008 0.000+0.030

−0.030 1.656+0.001
−0.001 2.000+0.019

−0.019

LOK −1.725+0.011
−0.009 0.032+0.001

−0.003 1.693+0.001
−0.001 2.040+0.020

−0.020

Z → ττ CHD CHW B C
(3)
Hq
33

CHu
33

C
(1)
Hq
33

CuB
33

CuW
33

NLO −0.633+0.004
−0.003 −0.481+0.000

−0.012 0.025+0.000
−0.005 0.055+0.002

−0.013 −0.052+0.011
−0.002 0.007+0.002

−0.000 0.005+0.002
−0.000

NLOt −0.631+0.012
−0.009 −0.493+0.055

−0.057 0.022+0.000
−0.005 0.056+0.001

−0.013 −0.056+0.012
−0.002 0.006+0.001

−0.000 0.006+0.001
−0.000

LO −0.587+0.026
−0.026 −0.410+0.046

−0.046 0.000+0.001
−0.001 0.000+0.060

−0.060 0.000+0.061
−0.061 0.000+0.007

−0.007 0.000+0.006
−0.006

LOK −0.619+0.011
−0.013 −0.496+0.056

−0.060 0.022+0.000
−0.001 0.027+0.031

−0.034 −0.027+0.031
−0.034 0.010+0.004

−0.002 0.004+0.003
−0.002

C
(3)
Hl
jj

C
(3)
lq

jj33
C ll

1221
CHe

33
C

(1)
Hl
33

C
(3)
Hl
33

NLO −1.254+0.000
−0.004 0.017+0.003

−0.001 1.227+0.002
−0.000 −1.901+0.005

−0.000 2.219+0.003
−0.004 2.210+0.002

−0.001

NLOt −1.244+0.025
−0.024 0.017+0.006

−0.006 1.227+0.027
−0.027 −1.882+0.024

−0.019 2.197+0.016
−0.020 2.197+0.017

−0.020

LO −1.174+0.008
−0.008 0.000+0.030

−0.030 1.174+0.031
−0.031 −1.863+0.069

−0.069 2.121+0.035
−0.035 2.121+0.012

−0.012

LOK −1.244+0.037
−0.037 0.017+0.001

−0.001 1.227+0.030
−0.030 −1.855+0.069

−0.069 2.166+0.037
−0.037 2.166+0.013

−0.013

Table A.3: The numerical prefactors of the Wilson coefficients in the
LEP scheme appearing in K

(6,1,µ)
W and ∆̂(6,1,µ)

W,t for various
perturbative approximations. The tree-level decay rate
as well as v2

µ have been factored out and the results have
been evaluated at the scale of the process. We show the
results for W decay (top) and Z decay (bottom).
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