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Abstract: The Standard Model (SM) has done an excellent job at predicting the

outcomes of experiments, but many questions remain unanswered. Neutrino masses

and the existence of dark matter (DM) are two of these, both of which are not

included in the Standard Model. The particle physics community, together with the

rest of the world, faces difficult decisions and obstacles presented by the increasing

threat of climate change. Making the most of the experiments, which have already

been built, is therefore an important endeavour for exploiting all possibilities of New

Physics (NP). This thesis presents two projects which are opportunities to extend

the reach of two existing particle colliders in the search for dark matter.

The searches for dark matter particles at the ATLAS detector at the LHC have a

limited reach for long-lived Particles (LLPs) due to the finite width of the detector.

The ANUBIS detector will extend these searches through measuring decays in the

cavern above ATLAS. SET-ANUBIS sets out to calculate the sensitivity projections

for the detector for various long-lived particle models. In this thesis, the development

of the sensitivity study, with the considerations and choices made, are presented. The

specific case of heavy neutral leptons is used for the development and is discussed.



Considering a wider dark sector for which an invisible state is the portal, the pro-

duction of the invisible state X together with a photon, e+e− → γ +X, at electron

positron colliders is one of the strongest searches for mX ∈ [0.1, 10] GeV. This thesis

presents measurement strategies that can detect the spin of the invisible state as

well as the underlying production mechanism. Based on the angular distribution of

the final state photon, the cross-sections for polarised initial states and the photon

polarisation, the measurement strategy can be used to identify whether the invisible

state is a dark photon or an axion-like particle (ALP). The results are compared

with a detailed analysis of the Standard Model background, and the sensitivity reach

for searches for axion-like particles and dark photons at Belle II are calculated. It is

found that the sensitivity of the ALP coupling the electrons can be improved when

both incoming beams are polarised.
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Abbreviations, Notations, &

Physical Constants

The following list describes the abbreviations, units, and symbols used within the

body of this thesis. Unless stated otherwise, throughout this thesis natural units,

c = ℏ = 1, will be used. The values and units of the constants were found at [2].

Physical Constants

αEW Fine-structure constant 7.297 352 569 3 × 10−3

sin θw Weinberg angle 0.227 736

c Speed of light in a vacuum 299 792 458 m s−1

GF Fermi coupling constant 1.166 378 7 × 10−5 (ℏc)3/GeV2
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me Electron mass 0.510 998 950 00 MeV/c2

mH Higgs boson mass 125 GeV/c2

mT Top quark mass 172 GeV/c2

mZ Z0 boson mass 91.1876 GeV/c2
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BSM Beyond Standard Model
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Chapter 1

Introduction

In the 1970s, the Standard Model (SM) was formulated as the theory for the fun-

damental particles and their interactions. It combined the theories at the time,

creating a common language between particle physicists across the globe. The result-

ing model described particles which had already been experimentally observed, but

also several that were only theorised and had yet to be discovered. In the following

years, the W− and Z−bosons were detected in 1983, whereas the heaviest quark,

the top quark, was discovered in 1995, and finally the last fundamental particle in

2012 was the Higgs boson [3].

Experiments over the last decades have done an excellent job at confirming the

Standard Model, but there are a number of issues that are still unexplained or not

included; neutrino masses and oscillations, dark matter (DM), cosmological inflation,

and many more. Neutrinos are observed to oscillate between their different flavours,

which implies that they must have masses, contradicting the Standard Model, see

section 2.5 [4]. Through evidence presented below, it is known that a large proportion

of the matter in the universe is unaccounted for by the Standard Model. The Cosmic

Microwave Background (CMB) consists of photons emitted during recombination,

when the universe was cold enough for neutral atoms to form [5]. From the CMB,

it is observed that the universe exponentially inflated in the early times, and is

experiencing accelerated expansion currently. Inflation will not be described further
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in this thesis, for a review see [6]. The densities of matter, radiation, and dark

energy, which infer the existence of DM, are extracted from the CMB [5], see the

next section for further detail.

Many ideas have been proposed to solve each of these problems, though few manage

to explain all, and none have been experimentally proven yet. In general, most of the

ideas describe New Physics (NP) or Beyond the Standard Model (BSM) which differs

from the Standard Model through, for example, the introduction of new particles or

interactions. A category of New Physics is Effective-Field Theories (EFTs) which

have a broad application, even when only considering Standard Model particles

(SMEFT) [7]. Introducing new interactions and/or particles at energy scales much

larger than what is currently experimentally possible to probe, EFTs provide a

framework for seeing how these effect smaller energy scales [8]. See section 4.2 for

further detail.

The remainder of this thesis is structured as follows. At first, an introduction to the

evidence for dark matter and particle colliders is presented. Chapter 2 describes the

Standard Model theory relevant for the remaining chapters, in particular the particle

content, the Higgs mechanism, and the theory of weak interactions. Chapter 3

contains a brief introduction to particle colliders with their layout and components,

followed by an overview of New Physics searches at colliders. In particular the Belle

II and ATLAS detectors are the two main detectors considered. The principles of

dark matter models will be presented in chapter 4, including the theories of the dark

photon, axion-like particles, and heavy neutral leptons. Building on the foundation

of general New Physics searches, the specifics of dark matter searches at particle

colliders are described. Chapter 5 outlines the sensitivity studies carried out for the

ANUBIS detector at CERN. A brief review of the detector setup, together with the

considerations gone into the development of the SET-ANUBIS software, are included.

The issue of distinguishing different dark matter signals in colliders is addressed in

chapter 6, where the polarisation of the incoming beams and the outgoing photon

are utilised to determine the spin of invisible states in e+e− → γ +X.
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1.1 Evidence for Dark Matter

Throughout the years evidence has been accumulating, which all points to that fact

that 84.4% of the total matter density in the universe has an unknown constitution

[2].

This has been observed through rotation curves of spiral galaxies, where the rotational

speed of the galaxy is expected to fall as r−1/2 with the distance from the galactic

centre. However, the speed is found to be constant instead, implying that the parts

of the spiral galaxies visible to us are surrounded by an invisible halo of matter.

The distribution of masses can also be infered using gravitational lensing, where it

is observed that light is bent around large masses that are not luminous. Merging

clusters provide another example, where it is observed that the clusters must contain

large amounts of weakly to non-interacting matter [9].

The evidence presented above can be explained by a lack in the understanding

of general relativity. But the following will outline why dark matter cannot be

fully explained by modifying gravity. The universe can be described as containing

different fluids; matter (dark and baryonic 1), radiation (relativistic particles such

as photons and neutrinos), and unknown sources of negative pressure, called dark

energy. Throughout the history of the universe, these three different components have

each dominated at different times as they each scale differently with the expansion

of the universe [5]. The early universe was radiation-dominated, a gas of relativistic

particles, but as the universe cooled down non-relativistic matter eventually started

to dominate, matter-domination [2]. Today, the total energy density of the universe

is dominated by dark energy.

The formation of the stellar objects observed today, known as structure formation,

occurred mainly during matter-domination. During this formation, the balance

between the attraction from the gravitational interactions between matter and the
1In the field of astronomy, baryonic matter does not only refer to baryons, such as protons and

neutrons, but includes all visible particles [2].
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repulsion from the expansion of the universe can be disturbed. For example, if

neutrinos, which are relativistic particles, were to explain all of the dark matter

observed, the stellar structures in the universe would look significantly different.

Therefore, dark matter cannot be radiation and must be matter with non-relativistic

velocities, also known as cold dark matter [5].

There are several production mechanisms for dark matter, where the two most

commonly used are freeze-out and freeze-in. Generally, freeze-out has the dark

matter existing in the universe in great quantities that then decrease over time. The

number density is determined by the production of dark matter from the annihilation

of lighter particles and the reverse process of dark matter annihilating into lighter

particles. As the universe expands and cools, these eventually balance out, and the

number density becomes fixed. Freeze-in initially has a low number of DM particles,

but the quantity increases over time through production by annihilation of Standard

Model particles until an equilibrium is again reached [10].

The local density of our neighbourhood of the universe is measured by a range of

methods to be ρ0 = [0.2, 1.5] GeV/cm3, see [11] for a review. Regardless of the

production mechanism, number of dark particles, and interactions in the dark sector,

the predicted dark matter population cannot exceed the observed quantity. Hence,

this restricts large areas of parameter space for proposed models, as it is possible for

more than one model to make up the dark matter observed, hence only parameters

that underestimate the density are allowed.

From the observations described, conclusions can be drawn about the properties of

dark matter. Firstly, it must have minimal electric charge, known as milli-electric

charge, given by the upper bounds depending on the dark matter mass

QDM ≤ 3.5 × 10−7
(
mDM

GeV

)0.58
e for mDM > 1 GeV , (1.1.1)

QDM ≤ 4.0 × 10−7
(
mDM

GeV

)0.35
e for mDM < 1 GeV . (1.1.2)

Here e is the electric charge of the electron and mDM the dark matter mass. Hence,
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the interactions between dark matter and charged particles in the Standard Model

must be limited [2]. From merging clusters, the interaction of dark matter with itself

is restricted to be
σDM−DM

mDM
< 0.47cm2

g
≃ 0.84barn

GeV , (1.1.3)

for the cross-section of DM-DM interactions σDM−DM [2].

In general, the evidence presented above only require DM particles to gravitationally

interact with the Standard Model. It is therefore possible, that this is the only

interaction between the SM and the dark sector. This greatly restricts the methods

for detecting dark matter, and it is therefore often assumed that dark matter interacts

weakly with the SM [2].

1.2 Colliders

A powerful category of experiments used to examine particle physics are particle

colliders, which collide particles together at high speeds and observe the resultant

showers of produced particles. The first prototypes of colliders were built in the

1960s by the Midwestern Universities Research Association (MURA). Since then,

colliders have become bigger and bigger in order to collide particles with increasing

energies, allowing for the production of particles with larger masses [3].

Scientists have a duty to consider the wider community and be responsible for their

choices and actions, whilst using their resources to progress the scientific know-

ledge with consideration. The construction of particle colliders and detectors is

a resource-intensive endeavour, has a significant environmental impact, and their

power-consumption when running is extensive. Therefore, existing experiments

should be maximally utilised to explore all possibilities and reduce future environ-

mental impact. This thesis addresses this through the introduction of two methods

that increase the reach and effectiveness of two different particle detector experi-

ments.



Chapter 2

The Standard Model

2.1 Introduction

The Standard Model is described by the symmetry group SU(3)c × SU(2)L × U(1)Y

where the group represents Quantum Chromodynamics (QCD) (also known as the

strong interactions), the weak interactions, and hypercharge respectively. The parts

of the SM covered in this thesis are contained in the Lagrangian,

LSM ⊃ Lgauge + LFermion + LYukawa+LHiggs , (2.1.1)

each described in the following sections where section 2.2 will briefly outline the

particles in the Standard Model. Section 2.3 contains the theoretical motivations

and detail of the Higgs mechanism, which subsequently introduces the Glashow-

Weinberg-Salam (GWS) theory in section 2.4. The detail of neutrino physics can be

found in section 2.5, and finally the calculations of amplitudes and particle decays

are reviewed in section 2.6.

2.2 Particle Content

Firstly, the gauge bosons and fermions in the Standard Model and the couplings

between the two will be presented. The concepts of spin, helicity, and polarisation
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for both groups of particles will then be introduced, followed by the issue of their

masses.

2.2.1 Gauge Fields

Each of the three symmetry groups in the SM have a number of associated gauge

fields which are spin-1 particles called bosons. SU(3)c has eight called gluons (g), the

c stands for colour and therefore any particle which interacts with gluons is called

coloured and have an associated colour charge, either red, blue, or green [12] As the

strong interactions of QCD are not relevant for the remainder of this thesis, they

will not be described in any further detail.

The combined SU(2)L×U(1)Y group describes the electroweak (EW) gauge symmetry

where L stands for left-handed, which will be discussed further in section 2.4, and

Y represents hypercharge. The group has four associated fields; three from SU(2)L,

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gϵabcW b

µW
c
ν , (2.2.1)

and an additional field from U(1)Y ,

Bµν = ∂µBν − ∂νBµ . (2.2.2)

Here a ∈ {1, 2, 3}, ϵabc is the Levi-Civita tensor, and g the coupling constant to

SU(2)L. The four gauge fields will later be shown in section 2.4 to become the

photon (γ), W±, and Z bosons through spontaneous symmetry breaking (SSB).

Together with the gluon, the four gauge fields can be seen on the right column in

Figure 2.1 [13]. Using the SU(2)L × U(1)Y gauge fields, the covariant derivative is

constructed,

Dµ = ∂µ − igW a
µ τ

a − ig′Y Bµ , (2.2.3)

for coupling constants g and g′ to SU(2)L and U(1)Y respectively, SU(2)L generators

τa, and the hypercharge quantum number Y .
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Figure 2.1: Depiction of all particles in the Standard Model with
their respective quantum numbers (from [14]).

The Lagrangian with the kinetic terms for the gauge fields is constructed,

Lgauge = −1
4G

a
µνG

aµν − 1
4W

a
µνW

aµν − 1
4BµνB

µν , (2.2.4)

where Ga
µν are the gluon fields [15].

2.2.2 Fermions

The main contributions of the matter in the SM are spin-1
2 particles known as

fermions which are categorised by their couplings to SU(3)c × SU(2)L × U(1)Y .

Fermions which do not couple through the strong interaction are called leptons (l)

and consist of the electron e, muon µ, tau τ , and their neutrino counterparts νe,µ,τ .

The strongly interacting fermions are quarks (q) of which there are six; up, down,
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charm, strange, top, and bottom [13]. The quarks and leptons are grouped by their

flavours,

u = {u, c, t}, d = {d, s, b}, e = {e, µ, τ}, and ν = {νe, νµ, ντ} , (2.2.5)

where u and d are referred to as up and down type quarks respectively.

The flavours are grouped together into i ∈ {1, 2, 3} families or generations represented

by the columns labelled “|”, “||”, and “|||” in Figure 2.1. All fermions have a

corresponding antiparticle, and the quarks a colour charge due to their interactions

with SU(3)c.

Fermion fields can be constructed as Dirac spinors which can be split into left- and

right-handed parts,

ψ = ψL + ψR = PLψ + PRψ , (2.2.6)

for projection operators PR/L = 1
2

(
1 ± γ5

)
, and left- and right-handed Chiral Dirac

spinors ψL and ψR [13]. The chirality of a fermion field is described by its handedness

[16].

Coupling to Gauge Fields

Due to their interactions with SU(2)L, fermions can be represented as doublets and

singlets,

LiL =

ν
i
L

eiL

 , eiR, νiR, Qi
L =

u
i
L

diL

 , uiR, diR , (2.2.7)

where L/R refer to the chirality of the field, left- and right-handed fermions respect-

ively, and ui, di, νi, and ei are as defined in eq. (2.2.5) [16]. LL and QL transform

as the fundamental representation of SU(2)L, the simplest representations of the

group, and are therefore 2-dimensional vectors [12].

The couplings between the fermion and gauge fields, excluding the couplings to
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gluons, are described by Lagrangian,

L ⊃ iL̄iL
(
��∂ − ig��W

aτa − ig′YL��B
)
LiL + iQ̄i

L

(
��∂ − ig��W

aτa − ig′YQ��B
)
Qi
L (2.2.8)

+ iēiR
(
��∂ − ig′Ye��B

)
eiR + iv̄iR

(
��∂ − ig′Yv��B

)
viR

+ iūiR
(
��∂ − ig′Yu��B

)
uiR + id̄iR

(
��∂ − ig′Yd��B

)
diR ,

for the covariant derivative in eq. (2.2.3) and slash-notation (�p = pµγ
µ) [16]. Here

the individual coupling strengths between the fields and the hypercharge group,

U(1)Y , also referred to as the charge, are displayed using Yf for f ∈ {e, ν, u, d}. The

values of the charges can be found in Table 2.1, where it is worth noting that the

right-handed neutrino has zero couplings to both SU(2)L and U(1)Y [12]. They have

also not been experimentally observed yet, but are included here for completeness.

Neutrinos will be described further in sections 2.5 and 4.2.4. All other fermions

couple to the hypercharge gauge boson [16].

Field LiL eiR νiR Qi
L uiR diR

SU(3)c - - - □ □ □

SU(2)L □ - - □ - -
U(1)Y −1

2 −1 0 1
6

2
3 −1

3

Table 2.1: The charges of the fermion fields for each SM gauge
group, □ symbolises that the field transforms in the
fundamental representation [16].

All together, the Lagrangian with the fermion sector kinetic terms can be constructed,

LFermion =
∑

quarks
iq̄γµDµq +

∑
ψL

iψ̄Lγ
µDµψL +

∑
ψR

iψ̄Rγ
µDµψR , (2.2.9)

for covariant derivatives Dµ [15].

2.2.3 Hadrons

For low energies, quarks have small momenta and hence the potential energy, arising

from the exchange of gluons, is larger than their kinetic energy. They are therefore
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attracted to each other and form bound states, which is called colour confinement.

These colour-neutral bound states of quarks are called hadrons, where mesons are

quark-antiquark pairs and baryons have three quarks 1 [16]. The masses of hadrons

are not just the sum of the masses of its constituents, but also include their binding

energies. The lightest mesons are the pions, either charged π+ and π−, or neutral

π0. Whereas, the lightest baryons are the proton (uud) and neutron (udd). The

constituents of hadrons are called partons.

Mesons have quantum numbers JPC = 0−+ (Pseudo-scalars) and JPC = 1−−

(Pseudo-vectors) with relation to representations of the subgroup SU(3)f which

describes the low energy hadrons. Here f stands for flavour, J is the total angular

momentum, P parity, and C charge conjugation. Charge conjugation exchanges a

particle for its anti-particle, Ce∓ = e±, whereas parity reverses the handedness of

a field, Pe−
L/R = e−

R/L. Therefore, CP results in CPe∓
L/R = e±

R/L. For CP conserved

symmetries, all interactions would be the same for matter and anti-matter [2]. Ba-

ryons will not be discussed further in this thesis, with the exception of protons used

in particle colliders in section 3.2.

For energies much larger than the binding energy of hadrons, the quarks can be

assumed to be free [13]. This is due to asymptotic freedom which refers to theories

where the coupling constant tends to zero as the energy scale increases [12].

Running of Couplings

When calculating diagrams of particle processes/interactions, an arbitrary number of

loops, which are corrections to the tree-level process/interaction, can be considered.

An example can be seen for the photon propagator seen in Figure 2.2, where the

tree-level propagator is depicted on the left panel. The addition of a fermion loop

can be seen in the middle panel, for loop momentum k. For an arbitrary number of

insertions, represented by the blob on the right panel, a series of diagrams is created
1The Particle Data Group has full lists of known mesons and baryons [2].
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Figure 2.2: Photon propagator (left) with a fermion loop (middle),
and arbitrary insertions (right).

with increasing orders in the coupling constant(s). From this, momentum/energy

dependent (coupling) constants, that are said to be running, can be derived. An

example of the phenomena of running coupling constants is the inclusion of heavy

particles, that can appear in loops in leading order calculations. As the energy scale

of the process increases, more and more heavy particles can be included in loops. As

the momentum of the photon in Figure 2.2 increases, the number of quarks which

can appear in the loop increases. But if the momentum considered is 10 GeV, the

top quark with mt ≈ 173 GeV is not included. This effect can be seen in eq. (2.2.10).

In the rest of this thesis, the coupling value for the relevant scale will be used.

The running of the strong coupling constant, αs, will be presented without proof as

this is beyond the scope of this thesis, see [17] for further information. At one-loop,

the dependence of αs on the energy scale Q is given by

αs(Q2) = 4π

β0 ln
(
Q

2

Λ2

) , (2.2.10)

for scale parameter Λ and beta-function β0 = 11 − 2
3nf , where nf is the number of

active quark flavours at the energy scale (m2
q ≪ Q2). As the energy scale increases,

more and more quarks have to be taken into consideration as they start to appear in

loops. Depending on the degree of accuracy needed in a calculation or measurement,

the number of loops used when deriving the running of coupling constants should

be increased.

Unless proper care is taken, the active number of quarks causes sudden changes in
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αs. This can be avoided by matching the value of αs below and above the new quark

masses,

α
nf −1
s (Q2 = m2

q) = α
nf
s (Q2 = m2

q) , (2.2.11)

where mq the quark mass. From this, equations for the scale parameter Λ are

constructed. For leading order running of αs, the dependence of Λ on the quark

mass and nf is given by [18]

Λnf = Λnf −1
(

Λnf −1

mq

) 2
33−2nf

. (2.2.12)

2.2.4 Spin, Helicity & Chirality

Up to now, the handedness, or chirality, of fermion fields and the spin of gauge

bosons and fermions have been mentioned. But, the last concept connected to spin

has not been introduced yet; helicity. The helicity operator projects a particle’s spin

onto its momentum, ĥ = p̂ · S⃗ for momentum p and spin vector S and has eigenvalues

±1
2 for fermions and {−1, 0,+1} for vector bosons [12]. The foundations for the

inclusion of spin and helicity in amplitude calculations will be presented here, for

first fermions and afterwards gauge bosons.

Fermions

For massless fermions, it can be shown that the helicity eigenstates are the same as

the chirality eigenstates, but for massive particles one can boost into a frame where

the momentum is in the opposite direction, and thus helicity and chirality have to

be distinguished [12].

For processes with initial or final state fermions, the Dirac field is written as a linear

combination of plane waves,

ψ(x) = u(p) · e−ip·x and ψ(x) = v(p) · e+ip·x , (2.2.13)

for column vectors u(p) and v(p) and momentum p2 = m2. Using the Dirac equation,
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(
iγµ∂µ −m

)
ψ(x) = 0, the momentum space equations are obtained,

0 = (�p−m)us(p) = ūs(p)(�p−m) , (2.2.14)

0 = (�p+m)vs(p) = v̄s(p)(�p+m) . (2.2.15)

Here, the notation us(p) is introduced to include the helicities of the particle with

ūr(p)us(p) = 2mδrs and v̄r(p)vs(p) = −2mδrs. This requires the helicity of the

particle to remain constant in the absence of interactions. u and v are orthogonal

resulting in ūr(p)vs(p) = 0 = v̄r(p)us(p). When performing amplitude calculations,

the summation over all possible spin states is often required,

∑
s

us(p)ūs(p) = �p+m, (2.2.16)

∑
s

vs(p)v̄s(p) = �p−m, (2.2.17)

for particles with momentum p and mass m [12]. Spin-1
2 particles with four-

momentum pµ = (E,p) have a corresponding spin four-vector,

Massive : Sµ = 2λ
m

(|p|, E p̂) , (2.2.18)

Massless : Sµ = 2λ (1, p̂) , (2.2.19)

where λ = ±1
2 is the helicity of the particle [19]. Using the spin vectors, the following

helicity projection expressions can be written,

u(p, λ)ū(p, λ) = 1
2 (1 + γ5

��S)(�p+m) (2.2.20)

⇒
m→0

u(p, λ)ū(p, λ) = 1
2 (1 + 2λ γ5)�p , (2.2.21)

v(p, λ)v̄(p, λ) = 1
2 (1 + γ5

��S)(�p−m) (2.2.22)

⇒
m→0

v(p, λ)v̄(p, λ) = 1
2 (1 − 2λ γ5)�p , (2.2.23)

which are used to implement the fermion’s helicity into amplitudes [20].

Using these, the spinors of massless fermions can be re-written,

v̄(p, λ) = 1
2 v̄(p)(1 − 2λγ5) and u(p, λ) = 1

2(1 + 2λγ5)u(p) . (2.2.24)
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Gauge Bosons

A spin-1 particle with four-momentum kµ = (k0,k) and helicity λ has a polarisation

four-vector basis given by

ϵµ1(k) = 1
|k|kT

(
0, kxkz, kykz,−k2

T

)
, (2.2.25)

ϵµ2(k) = 1
kT

(
0,−ky, kx, 0

)
, (2.2.26)

ϵµ3(k) = k0

|k|
√
k2

(
k2

k0
, kx, ky, kz

)
, (2.2.27)

ϵµ4(k) = 1√
k2

(
k0, kx, ky, kz

)
, (2.2.28)

where kT =
√
k2
x + k2

y [21]. The longitudinal polarisation vector for a boson with

λ = 0 is described by eq. (2.2.27), and the helicity eigenvectors with λ = ±1 are

ϵµ(k, λ) = 1√
2

[
−λ ϵµ1(k) − i ϵµ2(k)

]
. (2.2.29)

The last vector in the basis, ϵµ4(k), is equal to the normalised momentum of the

particle. It is the unphysical time-like polarisation and completes the basis.

In order to sum over all possible polarisations for a massless gauge boson with

momentum k, the polarisation sum rule is given by

∑
s

ϵ∗
µ(k)ϵν(k) = −gµν . (2.2.30)

For massive gauge bosons, where the longitudinal polarisation modes have to be

considered, the sum becomes

∑
s

ϵ∗
µ(k)ϵν(k) = −gµν + kµkν

m2
V

, (2.2.31)

for mass mV of the particle [12].

2.2.5 Particle Masses

One particle in Figure 2.1 remains to be explained; the only scalar particle in the SM,

which is known as the Higgs boson. It is introduced as the solution to the following
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problems.

The left-handed fermions are doublets under SU(2)L whereas the right-handed fer-

mions are singlets under SU(2)L, hence the fermionic mass term has the form,

L ⊃ −mf ψ̄ψ = −mf

(
ψ̄LψR + ψ̄RψL

)
, (2.2.32)

using the notation introduced in eq. (2.2.6). This is not invariant under SU(2)L due

to the product of a doublet and a singlet not being a gauge invariant scalar [22].

The same is true for the gauge bosons, where under SU(2)L gauge transformations

the mass term is not invariant,

L ⊃ 1
2M

2
aAµA

µ → 1
2M

2
a

(
Aµ − 1

e
∂µα

)(
Aµ − 1

e
∂µα

)
̸= 1

2M
2
aAµA

µ . (2.2.33)

This implies that fermions and gauge bosons are massless, though the masses of

fermions, W, and Z bosons have been measured experimentally. Therefore, a piece

of the theory is not covered by SU(3)C × SU(2)L × U(1)Y alone. The discrepancy

is solved through the introduction of a SU(2)L doublet scalar field, which causes the

SU(2)L × U(1)Y symmetry to spontaneously break; the Higgs boson [15,23].

2.3 Spontaneous Symmetry Breaking & the

Higgs Mechanism

The spontaneous breaking of SU(2)L × U(1)Y → U(1)EW is performed by the

ABEGHHK’tH mechanism (Anderson, Brout, Englert, Guralnik, Hagen, Higgs,

Kibble, and ’t Hooft), usually shortened to the Higgs Mechanism [24]. The fol-

lowing section will show how the Higgs boson introduces mass terms for the fermions

and gauge bosons through Spontaneous Symmetry Breaking (SSB). A simplified ex-

ample, the Linear Sigma Model, is used first to describe the concept of symmetry

breaking.
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2.3.1 The Linear Sigma Model

Consider N real scalar fields ϕi with a Lagrangian given by

L = 1
2(∂µϕi)2 + 1

2µ
2(ϕi)2 − λ

4
[
(ϕi)2

]2
, (2.3.1)

with a sum over i for each ϕi. The potential,

V (ϕi) = −1
2µ

2(ϕi)2 + λ

4
[
(ϕi)2

]2
, (2.3.2)

has minimum for (ϕi0)2 = µ2/λ which fixes the length of the vector ϕi0 but not

the direction. Choosing ϕi0 = (0, 0, ...., 0, v) for vacuum expectation value or vev

v = µ/
√
λ, the shifted fields are defined by the set

{
πk(x), v + σ(x)

}
, (2.3.3)

for k ∈ [1, N − 1]. The Lagrangian is re-written in terms of the shifted fields,

L = 1
2(∂µπk)2 + 1

2(∂µσ)2 − 1
2(2µ2)σ2 (2.3.4)

−
√
λµσ3 −

√
λµ(πk)2σ − λ

4σ
4 − λ

2 (πk)2σ2 − λ

4
[
(πk)2

]2
.

Field σ requires mass (mσ =
√

2µ) whereas πk are N−1 massless fields. The original

Lagrangian is invariant under symmetry ϕi → Rijϕj for N × N orthogonal matrix

R. This symmetry is hidden in the new Lagrangian, but can be restored by using

linear combinations of the fields σ and πk. The final Lagrangian is invariant to the

rotation of the fields πk amongst themselves, and hence the original O(N) symmetry

is spontaneously broken to a O(N − 1) subgroup.

2.3.2 Higgs Mechanism

Having shown how spontaneous symmetry breaking is introduced by a scalar field

acquiring a non-zero vacuum expectation value, it will now be shown how this leads

to the introduction of mass terms for both fermions and vector bosons in the SM.
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Gauge Boson Masses

Consider a complex scalar boson ϕ and a massless gauge boson Aµ with Lagrangian,

L ⊃ (Dµϕ)∗(Dµϕ) + µ2ϕ∗ϕ− λ(ϕ∗ϕ)2 − 1
4F

µνFµν , (2.3.5)

for F µν = ∂µAν − ∂νAµ, λ > 0, and µ2 > 0. Requiring local gauge transformations,

ϕ → ϕ′ = eigX(x)ϕ and Aµ → A′µ = Aµ − ∂µX(x) , (2.3.6)

for some function X(x), the covariant derivative is found to be Dµ = ∂µ + igAµ.

The scalar field potential,

V (ϕ) = −µ2ϕ∗ϕ+ λ(ϕ∗ϕ)2 , (2.3.7)

has minimum at ϕ = vH/
√

2 =
√
µ2/2λ for vev vH . Expanding around the minimum,

the complex scalar field is written in terms of real field h(x),

ϕ = 1√
2

 0

vH + h(x)

 , (2.3.8)

which results in a Lagrangian given by

L = 1
2
[(
∂µ − igAµ

)
(vH + h) (∂µ + igAµ) (vH + h)

]
(2.3.9)

+ 1
2µ

2(vH + h)2 − 1
4λ(vH + h)4 − 1

4F
µνFµν .

From this Lagrangian, the mass terms for the gauge boson
(
L ⊃ g2v2

H/2AAµµ
)

and

the scalar boson
(
L ⊃ −λv2

Hh
2
)

are found, together with the interaction terms

proportional to higher-order combinations of the fields. The theory with a complex

scalar boson and a massless gauge boson has therefore been rewritten in terms of

a real scalar boson and a massive gauge boson due to the non-zero scalar potential

minimum.

The Higgs field is a SU(2)L doublet of complex scalars, consisting of four real fields

and the SM contains four massless gauge bosons, W a and B, with two polarisation

states each (λ = ±1). The vacuum expectation value causes symmetry breaking
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resulting in one real Higgs field, one massless gauge boson, and three massive gauge

bosons with three polarisation states (λ ∈ {−1, 0,+1}). Similarly to the linear sigma

model presented above, the spontaneous symmetry breaking results in SU(2)L ×

U(1)Y → U(1)EW, called Electroweak Symmetry Breaking (EWSB) [15].

Fermion Masses

The Higgs boson is a doublet under SU(2)L with Y = 1
2 , which allows for the

construction of the gauge invariant Lagrangian term given by

L ⊃ −λl
(
L̄L · ϕ

)
lR + h.c. , (2.3.10)

for Higgs field ϕ, lepton doublet LL, singlet lR, and constant λl. After EWSB this

becomes

L ⊃ − 1√
2
λlvHL̄LlR + h.c. , (2.3.11)

where the Higgs field has been replaced by its vev. The Lagrangian term corresponds

to a lepton with mass given by

ml = 1√
2
λlvH . (2.3.12)

As right-handed neutrinos do not interact with the Higgs doublet, it is not possible

to construct the same term for neutrinos only, and hence in the SM neutrinos are

massless. It will later be shown in section 2.5 how this is one of the unsolved puzzles

of particle physics.

The mass terms for quarks are introduced,

L ⊃ −λd
(
Q̄L · ϕ

)
dR − λuϵ

abQ̄Laϕ
†
buR + h.c , (2.3.13)

for matrices λu,d, quark doublet QL, singlets dR and uR, and two-dimensional Levi-

Civita symbol ϵab. Here a second construction, which is invariant under SU(2)L, is

used,

ϵabQ̄Laϕ
†
b = iQ̄Lσ2ϕ

∗ = Q̄Lϕ̃ , (2.3.14)
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for the second Pauli matrix σ2, from SU(2)L generators τa = σ
a

2 , and ϕ̃ = iσ2ϕ
∗.

After EWSB, the Higgs’ vev is introduced, leading to

L ⊃ − vH√
2
(
λdd̄LdR + λuūLuR

)
+ h.c , (2.3.15)

for quark masses given by

md = 1√
2
λdvH and mu = 1√

2
λuvH . (2.3.16)

The treatment of quarks in the SM will not be described further in this thesis [12].

Finally, the Yukawa Lagrangian is constructed,

LYukawa = −λlL̄L ϕ lr − λdQ̄L ϕ dR − λuQ̄L ϕ̃ uR + h.c. . (2.3.17)

2.4 Glashow-Weinberg-Salam Theory

As alluded to earlier, the four gauge boson fields initially seen in the Standard Model

are not the same as the ones detected by experiments. The Glashow-Weinberg-Salam

Theory describes how the photon, W , and Z boson fields are composed of the initial

four gauge fields. First, the derivation of the mass eigenstates of the gauge boson

fields is presented, followed by the couplings between these and the fermion sector.

2.4.1 Gauge Boson Mass Eigenstates

The covariant derivative from eq. (2.2.3) and the scalar definition from eq. (2.3.8)

are inserted into the kinetic term of the Higgs boson, (Dµϕ)†Dµϕ,

L ⊃ 1
2 (0 vH) ·

(
gW a

µ τ
a + 1

2g
′Bµ

)(
gW bµτ b + 1

2g
′Bµ

)
·

 0

vH

 , (2.4.1)

where the Higgs field h is neglected. Using generator definitions τa = σ
a

2 for Pauli

matrices σa, the Lagrangian is re-written to be

L ⊃ 1
2
v2
H

4

[
g2(W 1

µ)2 + g2(W 2
µ)2 +

(
−gW 3

µ + g′Bµ

)2
]
. (2.4.2)
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The four mass eigenstates are the one massless Aµ and the three massive W±
µ and Z0

µ

vector bosons given by

W±
µ = 1√

2
(
W 1
µ ∓ iW 2

µ

)
, (2.4.3)

Z0
µ = 1√

g2 + (g′)2

(
gW 3

µ − g′Bµ

)
, (2.4.4)

Aµ = 1√
g2 + (g′)2

(
g′W 3

µ + gBµ

)
, (2.4.5)

for masses mW = 1
2g vH and mZ = 1

2vH

√
g2 + (g′)2.

The W bosons are found straightforwardly from the Lagrangian, whereas the Z

boson and the photon are found through the mixing of W 3
µ and Bµ. For angle θW ,

called the weak mixing or Weinberg angle, the mixing matrix is given byZ
0
µ

Aµ

 =

cos θW − sin θW

sin θW cos θW


W

3
µ

Bµ

 , (2.4.6)

with

cos θW = g√
g2 + (g′)2

. (2.4.7)

The W boson mass can be written as mW = mZ cos θW and used to define the Fermi

constant, GF =
√

2
8

(
g

mW

)2
. Finally, defining the electron charge,

e = gg′√
g2 + (g′)2

, (2.4.8)

the coupling constant g is simplified, g = e
sin θW

[12].

2.4.2 Gauge Bosons Couplings

Having derived the gauge boson mass eigenstates, their couplings to fermions can

be determined from the fermion kinetic terms,

L ⊃ i
[
L̄L��DLL + Q̄L��DQL + ēR��D eR + ūR��DuR + d̄R��DdR

]
, (2.4.9)
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where the covariant derivatives contain the physical gauge fields of W±
µ , Z0

µ, and Aµ.

This allows for the extraction of the interactions between gauge fields and fermions,

L ⊃ g
(
W+
µ J

µ+
W +W−

µ J
µ−
W + Z0

µJ
µ
Z

)
+ eAµJ

µ
EM . (2.4.10)

Here, the couplings are constructed using the currents given by

Jµ+
W = 1√

2
(ν̄LγµeL + ūLγ

µdL) , (2.4.11)

Jµ−
W = 1√

2
(
ēLγ

µvL + d̄Lγ
µuL

)
, (2.4.12)

JµZ = 1
cos θw

[
1
2 ν̄Lγ

µνL +
(

−1
2 + sin2 θw

)
ēLγ

µeL + sin2 θwēRγ
µeR (2.4.13)

+
(1

2 − 2
3 sin2 θw

)
ūLγ

µuL − 2
3 sin2 θwūRγ

µuR

+
(

−1
2 + 1

3 sin2 θw

)
d̄Lγ

µdL + 1
3 sin2 θwd̄Rγ

µdR

]
,

JµEM = −ēγµe+ 2
3 ūγ

µu− 1
3 d̄γ

µd . (2.4.14)

It can be recognised, that the constants in the electromagnetic current JµEM are the

associated fields’ charges under U(1)Y , which can also be seen in JµZ though it is

more hidden there [12].

2.5 Neutrinos

Having provided a general introduction to neutrinos, a more in-depth description

will now follow. As described previously in section 2.3.2, right-handed neutrinos

do not interact with the remaining SM particle content, whilst the SM left-handed

neutrino interactions consist of two separate contributions; leptonically universal

gauge interactions,

L ⊃ −
(
g√
2
W+
µ

3∑
a=1

ν̄aLγ
µlaL + h.c.

)
− g

2 cos θW
Zµ

3∑
a=1

ν̄aLγ
µvaL , (2.5.1)
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and gauge-invariant Yukawa interactions,

L ⊃ −
3∑

a1,a2=1
f la1a2L̄a1 L ϕ la2 R + h.c. , (2.5.2)

which depend on the lepton doublet LaL, singlet laR, Higgs field ϕ, and matrix f l [25].

In W-boson decays the neutrinos are produced in association with a charged lepton,

see eq. (2.5.1), and therefore they are produced in flavour eigenstates [13]. It has

been proven experimentally that neutrinos go through flavour oscillations, where the

flavour (weak) eigenstates (νe, νµ, or ντ ) evolve over time; the originally produced

neutrino flavour may not be the same as that detected some time later. The cause

of these oscillations is the difference between the neutrino flavour eigenstates and

mass eigenstates, which can be written ν1,2,3 for masses m1,2,3. The probability of

oscillation between the different flavour eigenstate is proportional to the difference

in mass between the mass eigenstates, and hence the existence of oscillations infer

that the masses differ and that not all three neutrino states can be massless [13].

The lack of neutrino masses in the SM is a major disagreement between experiment

and theory. Many models have been introduced with the aim to give the neutrinos

masses, one of which will be described later in section 4.2.4.

The neutrino flavour states can be written as a linear composition of the mass

eigenstates,

|να⟩ =
∑
j

UPMNS
αj |νj⟩ ⇒


νe

νµ

ντ

 = UPMNS


ν1

ν2

ν3

 , (2.5.3)

where UPMNS is the Pontecorvo-Maki-Nakagawa-Sakata matrix given by [26]
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|UPMNS| =


|Ue1| |Ue2| |Ue3|

|Uµ1| |Uµ2| |Uµ3|

|Uτ1| |Uτ2| |Uτ3|

 , (2.5.4)

=


[0.801, 0.845] [0.513, 0.579] [0.143, 0.156]

[0.233, 0.507] [0.461, 0.694] [0.631, 0.778]

[0.261, 0.526] [0.471, 0.701] [0.611, 0.761]

 ,

for parameters Uαi with i ∈ {1, 2, 3} and α ∈ {e, µ, τ} [27]. Each entry in the PMNS

matrix has a complex value, the real parts have been shown here, where the phases

and further detail can be found in [2]. It can be seen that there is no considerable

pattern to the values of the PMNS matrix; none of the elements are significantly

bigger or smaller than the rest.

At collider scale energies and distances, neutrino oscillations do not have to be taken

into account as the characteristic oscillation length is much larger than the radius

of the detectors [13].

2.6 Cross-sections & Scattering Amplitudes

The Standard Model has now been introduced, with its particles and their inter-

actions, and now the methodology to calculate expectations for experiments can

be described. To begin with, the concept of amplitudes and cross-sections will be

introduced following the most commonly used method of calculating these. Finally,

a description of particle decay is included.

When considering particle colliders, there is an initial state |i⟩ with the two incoming

beam particles and a final state |f⟩ with all outgoing particles. It is assumed that

the initial state consists of free particles existing at time t → −∞, whereas the free

final state particles are at t → +∞ with interactions happening in-between the two
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times. The initial and final states are used to measure the transition probability,

P = | ⟨f |i⟩ |2

⟨f |f⟩ ⟨i|i⟩
, (2.6.1)

which describes the probability of the initial state |i⟩ ending up as the final state

|f⟩. The S-matrix is defined to be

Sfi = ⟨f |i⟩ = δif + i(2π)4δ(4)(Pf − Pi)Mfi , (2.6.2)

for the sum of initial and final state four-momenta Pi,f and the Lorentz invariant

matrix element M. Here momentum conservation is enforced using the Dirac delta

function δ. It can be seen that the S-matrix describes two scenarios; the initial and

final state are the same (δif), or something happens such that the state changes,

which is described by M [28].

In an experiment, the probability of a process is dependent on more than the matrix

element; it is described by the cross-section,

σ = N

TΦ ⇒ dσ = dN

TΦ , (2.6.3)

for the running time of the experiment T , incoming flux Φ, number of particles

scattered N , and dN the probability of N particles to scatter. The flux describes the

number of incoming particles per unit time per unit area. The cross-section can be

imagined as the probability of a projectile hitting a surface, and hence it has units

barns (1 barn [b] = 10−24cm2 [29]).

The derivation of the differential cross-section for 2 → 2 scattering is now briefly

described, for further detail see [16]. Starting from an arbitrary 2 → n scattering,

p1 + p2 → pj for j ∈ [1, n], the cross-section,

dσ = 1
(2E1)(2E2)|v⃗1 − v⃗2|

|M|2 dΠLIPS , (2.6.4)

is defined for initial energies E1,2 and velocities v⃗1,2, and the Lorentz-invariant phase

space (LIPS),
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dΠLIPS = (2π)3δ(4)
(∑

p
)∏

j

d3pj
(2π)3

1
2Ej

. (2.6.5)

Here δ(4) (∑ p) = δ(4)
(∑

pµi −∑
pµf
)

is the momentum conservation for initial and

final state momenta. For 2 → 2 processes, the phase space is given by

dΠLIPS = 1
16π2 dΩ

pf
ECMS

Θ(ECMS −m3 −m4) , (2.6.6)

for the solid angle Ω, masses of the two final states m3,4, centre-of-mass (CMS)

energy for the process,

ECMS =
√

(pµ1 + pµ2)
(
p1µ + p2µ

)
, (2.6.7)

see section 3.2.2 for further detail, and Heaviside function,

Θ(x) =


1 x≥0 ,

0 otherwise .
(2.6.8)

The differential cross-section in the centre-of-mass frame, where the incoming particles

have the same momentum, is given by [16](
dσ

dΩ

)
CMS

= 1
64π2E2

CMS

pf
pi

|M|2Θ(ECMS −m3 −m4) . (2.6.9)

2.6.1 Amplitudes for Polarised Initial & Final States

Due to its use in chapter 6, the effects of the initial and final state polarisation in the

process e+e− → γ + X are commented upon. In particular, for incoming electron

and positrons, the amplitudes for right-and left-handed fermions are defined as

|MRR|2 = |M|2
(
λ
e

− = +1
2 , λe

+ = +1
2

)
, (2.6.10)

|MLR|2 = |M|2
(
λ
e

− = −1
2 , λe

+ = +1
2

)
, (2.6.11)

similarly for |MLL|2 and |MRL|2. For longitudinally polarised fermion beams, the

amplitude can be separated into parts proportional to the four combinations of
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fermion helicities,

|M|2 = 1
4

{(
1 + P

e
−

) (
1 + P

e
+

)
|MRR|2 +

(
1 − P

e
−

) (
1 − P

e
+

)
|MLL|2 (2.6.12)

+
(
1 + P

e
−

) (
1 − P

e
+

)
|MRL|2 +

(
1 − P

e
−

) (
1 + P

e
+

)
|MLR|2

}
,

where P
e

± is the degree of electron and positron polarisation given by

P
e

± =
n
e

±
R

− n
e

±
L

n
e

±
R

+ n
e

±
L

, (2.6.13)

Here n
e

±
R,L

denote the number of left- and right-handed electrons and positrons in

each beam. An unpolarised beam has P
e

± = 0, and P
e

± = ±1 are 100% left- and

right-handed polarised beams respectively.

Using the degree of photon polarisation,

αγ = γR − γL
γR + γL

, (2.6.14)

the amplitude can again be separated into parts,

|M|2 = 1
2
{
(1 + αγ)γR + (1 − αγ)γL

}
, (2.6.15)

where γL = |M|2(λγ = −1) and γR = |M|2(λγ = +1).

2.6.2 Feynman Rules

The most common method to calculate matrix elements is through the visualisation

and formation of diagrams for processes, called Feynman Diagrams. These are space-

time representations of particle interactions, and are used for the construction of

matrix element calculations which consists of Feynman rules. Given a Lagrangian,

like the ones presented above, expressions for the Feynman rules can be derived.

The Feynman rules in Feynman gauge for incoming and outgoing external particles

(fermions and vector bosons) and their propagators can be seen in Table 2.2, for

further detail see [12]. Each interaction vertex has a corresponding Feynman Rule

found from the interactions in the Lagrangian, for example the coupling between a
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photon and an electron-pair is found from eq. (2.4.14) to be −ieγµ.

The derivation of Feynman rules is a laborious process, and hence softwares like

FeynRules [30] have been developed in order to automatise the derivations. For the

remainder of this thesis, FeynRules will be utilised for the extraction of Feynman

rules from the Lagrangians of New Physics.

Particle Fermion Anti-Fermion Polarisation Vector Scalar

Incoming u(p) v̄(p) ϵµ(p) 1

Outgoing ū(p) v(p) ϵ∗
µ(p) 1

Propagators i(�p+m)
p2 −m2

−i
(
gµν − pµpν

m
2
V

)
p2 −m2

V

i

p2 −m2

Table 2.2: Incoming and outgoing particle notation and particle
propagators for fermions, vector bosons, and scalars.

2.6.3 Decays

The decay width of a particle is the probability that the particle will decay to n

decay products. It is given by

dΓ = 1
2γ1m1

|M|2dΠLIPS , (2.6.16)

for m1 the mass of the initial particle, γ1 the gamma factor γ = (1 − β2)−1/2 with

β = v
c
, dΠLIPS the phase space, and |M|2 the amplitude for the decay [16]. Summing

over all possible decays for the particle, the total decay width Γ is derived.

Due to time dilation, the proper time for a particle produced in a collider is t = γτ

for gamma factor γ, and the lifetime of the particle τ = ℏ
Γ , which is given by its

total decay width Γ. The decay length of the particle is given by its velocity and

the proper time,

λ = vt = βγcτ , (2.6.17)
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for the boost of the particle βγ. These can re-write in terms of the energy, momentum,

and mass of the decaying particle; γ = E
m

and β = p
E

[28]. Hence, the decay length

of a particle can be expressed for the momentum p and mass m,

λ = p

m
cτ . (2.6.18)

The decay length is not certain and therefore the probability for particle to decay

at a distance l is given by

P (l) = e−l/λ

λ
, (2.6.19)

for the characteristic decay length λ as defined above [31].

Stability describes whether a particle will decay; some particles are unconditionally

stable, and hence they do not decay regardless of how much time passes, whereas

others are unstable. It is possible for unstable particles to appear stable if their

lifetime is much longer than the timeframe considered. For example, the muon has

a lifetime of τ ≈ 2.2 × 10−6 s with cτ ≃ 660 m, therefore the muon is an unstable

particle but on collider distances O(10) m it is stable.

2.7 Conclusion

The current best theory for the fundamental particles in the universe and their in-

teractions, known as the Standard Model, was described. How the Higgs mechanism

introduces masses for the fermion and gauge boson sectors, leading to Glashow-

Weinberg-Salam theory for the physical mass eigenstates of gauge bosons and the

interactions between these and fermions. But this is not the full picture, and there

are several issues that the model does not address. Neutrinos have masses, and the

existence of dark matter is absent. Many theories and models have been proposed

to resolve the problems, introducing new particles and interactions. Theoretically,

many of these are well-motivated and equally-likely, and hence there is a need to

determine which model is correct. This is carried out by experiments, testing the

theories by comparing their predictions to the results found. Many hundreds have
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been carried out throughout the years, either with the intention to precisely measure

a value predicted by the Standard Model, or specifically looking for New Physics.



Chapter 3

Particle Collider Physics

3.1 Introduction

One of the biggest and most well-known categories of particle physics experiments

are particle colliders. They have played a major role throughout the years, leading

to the discovery of several particles in the Standard Model. The concept has been

mentioned already, but a more in-depth description will be provided here.

This chapter starts with an introduction to particle colliders in section 3.2, briefly

describing the different types of colliders together with the detectors present at

each, the parameters and observables used to analyse the output of detectors, and

the methodology behind comparing experimental results to theoretical predictions.

Sections 3.3 and 3.4 contain reviews of the Belle II and ATLAS detectors at Su-

perKEKB and the Large Hadron Collider (LHC) respectively. The various parts of

the detectors, together with the Chiral Belle Programme are covered, forming the

foundation for subsequent chapters. Lastly, section 3.5 outlines the general approach

for New Physics searches in colliders.
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3.2 Particle Colliders

Particle accelerators or colliders are machines which accelerate particles to near-

speed-of-light velocity and then collide them. Colliders usually use electric and

magnetic fields in order to accelerate the particles, the beams are therefore restricted

to consist of charged particles such as leptons (electrons, positrons, muons, etc),

hadrons (protons, anti-protons), ions, and many others.

A variety of collider types exist; fixed-target (one beam and one stationary target

of particles or nuclei), linear, and circular colliders which differ by the acceleration

method of the incoming beams. Colliders with two incoming beams have larger

energies available in the collisions, as it is not reduced by the increase of kinetic

energy in the fixed target. The advantage of linear colliders is that the incoming

beams do not lose energy due to synchrotron radiation, which arises from the constant

acceleration of the charged particles when travelling in a circle. But they require much

greater distances in order to accelerate particles, whereas a circular collider achieves

this through having the particles complete several rotations. Circular colliders can

reach higher luminosities than linear colliders, see section 3.2.2 for further detail, as

they reuse the beam particles which did not take part in the collision [28].

Figure 3.1 displays the layout of a circular collider, specifically the LHC at CERN

Figure 3.1: The LHC circular collider with its main detectors, see
detail in text (from [32]).
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(Conseil européen pour la Recherche nucléaire). It can be seen how the protons are

produced away from the collider, then directed into the main ring for acceleration

(red lines), and finally brought to collide at four points along the ring where the

main four detectors are located (in yellow). See section 3.4 for further detail.

The centre-of-mass energy describes the energy available in each event at the collider.

For initial particles with energies E1,2, masses m1,2, and pµ1 =
(
E1, 0, 0,−

√
E2

1 −m2
1

)
and pµ2 =

(
E2, 0, 0,

√
E2

2 −m2
2

)
, the centre-of-mass energy is defined by

ECMS =
√
s =

√
(pµ1 + pµ2)

(
p1µ + p2µ

)
, (3.2.1)

=
(

2E1E2 +
[
m2

1 +m2
2

]
+ 2 cos θc

√
E2

1 −m2
1

√
E2

2 −m2
2

) 1
2
,

for beam crossing angle θc and s one of three Mandelstam variables (see eq. (3.2.6) for

further detail). The crossing angle describes the angle at which the particles collide

at the interaction point (IP), often approximated to be zero for which
√
s ≈ 2

√
E1E2,

when the masses of the incoming particles are much smaller than their energies .

Figure 3.2 displays nearly a hundred years of particle colliders, both past and future,

with the evolution of the centre-of-mass energy, labelled Ecme in the Figure. It is seen

that hadron colliders can reach higher energies than lepton, but because hadrons are

composite particles only a fraction of the energy is available in each collision [33]. At

high energies, the individual partons in the incoming protons collide. If the proton

is moving at near-speed-of-light, the momenta of the individual partons (pi) can be

described as a fraction of the overall proton momentum P ,

pi = xiP , (3.2.2)

for momentum fraction 0 ≤ xi ≤ 1. Therefore, Parton Distribution Functions (PDFs)

fα(xi), the probability of finding a parton of type α with momentum fraction xi

inside the proton, are defined. As these functions describe partons confined and

bound into hadrons this cannot be derived theoretically with current methods, and

PDFs are therefore measured experimentally. Extracting and fitting PDFs from data
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Figure 3.2: Centre-of-mass energies, Ecme, for past and future col-
liders (from [34]).

introduces uncertainties and errors, and hence there are different sets of PDFs one

can choose between when performing simulations and analyses.

Many particle colliders have beams consisting of bunches of particles. For hadron

colliders, when these bunches of protons collide, one of the partons participates

in the hard interaction (the main collision), leaving the remaining partons, the

beam remnants. These can interact with each other creating the underlying event.

Furthermore, as the bunches consist of several protons, there is the probability that

more than one pair of protons collide in the same bunch, causing pile-up where

several events occur at indistinguishable times [28]. Colour confinement demands

that the beam remnants must combine with each other, or the hard interaction final

state, forming hadrons which add to the pile-up.

The result of these effects, alongside the lack of gluons and colour structure, means

that lepton colliders have “cleaner” environments than hadron colliders; they have

much less background noise consisting of processes that are not of interest [33].

After the collision, the resulting showers of particles are detected by the detectors

which are built around the interaction points of the colliders.
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3.2.1 Particle Detectors

For circular colliders, their main associated detectors are typically cylindrical and

located such that the beam pipe goes through the centre. They are constructed using

several layers, each specialising in detecting certain groups of particles, and so each

detector has a different layout. A more thorough description of the two detectors

considered in this thesis are described in section 3.3.1 and section 3.4. For cylindrical

detectors, the forwards and backwards directions are defined as the regions of the

detector close to the beam axis in either direction [28].

The output of a detector can be thought of theoretically as consisting of a list of

particles with their properties and four-momentum, together with the potentially

missing energy of each event. The four-momenta are defined in a coordinate system

where the z-axis is parallel to the incoming beam with a transverse (x, y) plane.

The missing energy is found by subtracting the sum of the energies of the outgoing

particles observed, from the energy of the incoming beams. There are several reasons

for having non-zero missing energy which will be described in future sections.

When analysing the results from the detectors, the differential cross-section is a useful

property. It describes the probability of obtaining a certain final-state distribution

for a given observable. The observables are either measured in the detector or

constructed using other observables which can be measured. The differential cross-

section for any observable O,

f(O) = d σ

dO
, (3.2.3)

represents the distribution of the observable [28]. The following section includes a

selection of observables commonly used during data analysing of detector outputs.

3.2.2 Observables

The focus when conducting analyses is on each scattering event (shortened to event)

where the beam particles interact. Not all events are of interest to the physics com-

munity, and hence great amounts of work has gone into categorising the interesting
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events, whilst getting rid of the others. The frequency of each type of event is given

by its partial cross-section σi, which all add up to the total cross-section σ = ∑
i σi.

These partial cross-sections can be determined using the event or interaction rate,

dNi

dt = L · σi , (3.2.4)

for luminosity L. The luminosity, with units cm−2s−1, describes the concentration

of particles per area per unit time and is determined by the frequency of the beams,

the beam densities (how many particles per beam), and the intensity of the beams.

For a collider, the luminosity is measured experimentally, and the total luminosity

for the experiment over a period T is the integrated luminosity, L =
∫ T

0 L dt.

In order to describe a system of particles, the invariant mass is defined,

si,..,n = (pi + ...+ pn)µ (pi + ...+ pn)µ , (3.2.5)

which contains information about the total energy and momentum of each event [28].

For 2 → 2 processes, Mandelstam variables are given by

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2 , (3.2.6)

for incoming particles p1,2 and outgoing particles p3,4. The transverse momentum of

a particle with three-momentum p⃗ =
(
px, py, pz

)
is

p⃗T = (px, py) , (3.2.7)

defined in the transverse (x − y) plane to the z-axis of the incoming beams. In

order to describe the angle of the final state particles in a Lorentz invariant way, the

pseudorapidity is used,

η = − ln
(

tan
[
θ

2

])
, (3.2.8)

where the polar angle θ is the angle between the particle’s four-momentum and the

z-axis. Here η = 0 corresponds to a particle travelling perpendicularly to the beams,

for η > 0 it is travelling in the forward region along the +z-axis (θ → 0◦), and η < 0



3.2. Particle Colliders 55

in the backwards region (θ → 180◦). The azimuthal angle ϕ is the angle between

the transverse (x-y) plane and the z-axis which is Lorentz invariant under boosts

along the z-axis [28].

3.2.3 Comparison of Experiments to Theory

As seen throughout this section, particle colliders and detectors are complex ex-

periments, and therefore it is usually not possible to completely describe them

theoretically. Many software packages have been developed to solve this, generally

called Monte Carlo event generators named after the Monte Carlo (MC) statist-

ical method. The event generators simulate particle collisions, producing lists of

final state particles with their respective four-momenta given a set of initial condi-

tions. These are constantly under development in order to become more complex

theoretically, taking into account higher and higher order of precision [28].

In the following chapters, two MC generators will be used; Pythia [35] and MadGraph

[36]. Both programs calculate the matrix amplitude, as described in section 2.6, for

processes specified when running the software. Samples of the specified process are

created by running the generator with a certain number of events, calculating the

cross-section for the process considered. Using the luminosity of a collider, one can

calculate the expected number of times the process would occur at the collider.

An example of an event in an MC generator can be seen in Figure 3.3, consisting of

the incoming hadrons (h), the hard interaction (represented by a grey circle), the

production of two particles where one subsequently decays. Finally, the introduction

of initial and final state radiation (ISR and FSR) of gluons are seen in orange, which

are carried out by the parton shower. Additionally, one has to consider secondary

interactions of the remaining partons incoming hadrons, and the final hadronisation

and hadron decays of the final states [37]. After the parton shower, the final state

particles hadronise, forming hadrons which are clustered together into jets. These

jets consist of groups of hadrons travelling in the same general direction and are
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Figure 3.3: Monte Carlo event with incoming particles, primary
hard interaction, decay of heavy particle, and parton
showering (from [37]).

the objects detected in particle collider detectors [12]. One can visualise how the

two particles produced in the hard interaction in Figure 3.3, with subsequent parton

showers, will form two measurable jets. Due to momentum conservation, the particles

emitted will generally travel in the same direction as the particle, which they were

emitted from.

The basics of particle colliders and their detectors have now been introduced. In

order to describe the more intricate details of detectors, two examples of detectors

will be presented.

3.3 SuperKEKB & Belle II

KEK is the High Energy Accelerator Research Organisation in Japan which hosts

KEKB, an asymmetric-energy electron-positron collider, where the Belle detector is

located. It is called a B-factory as its centre-of-mass energy (
√
s = 10.58 GeV) is

equal to the mass of the Υ(4S) resonance, which decays into two B mesons. This

leads to a large amount of B-mesons being produced, and their interactions can

therefore be studies in-depth [38]. The experiment was built to study CP violations

in B meson decays [39], and for the general investigation of flavour physics, such as

radiative decays b → sγ [40]. SuperKEKB and Belle II are the upgrades of KEKB

and Belle, with much increased luminosity and improved detector setup [38].
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The SuperKEKB accelerator has beam energies of 7.0 and 4.0 GeV for the electron

and positron beams respectively. The asymmetric beam energy is designed for the

production and decay of B-mesons; for equal beam energies, the mesons would be

produced almost at rest and a large proportion would decay into back-to-back decay

products travelling down the beam pipes outside the detector range. With unequal

beam energies, the B-mesons are produced with a large boost and therefore travel

further before decaying. The decay vertices will be separated and the decay products

easier to detect and distinguish [41].

The lab frame z-axis of the detector is found at the bisect of the angle between the

direction of the incoming electron beam and the reverse direction of the incoming

positron beam. There is a 41.5 mrad (2.37◦) crossing angle between the lab frame

and the beams [42].

Figure 3.4: Schematics of Belle II, further detail in text (from [40]).
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3.3.1 Detector Components

Figure 3.4 displays the top view of the Belle II detector with all of its components

where the main ones will be described in this section. The detector has two main

parts: the barrel and two end-caps in the forwards and backwards directions.

At the core of the detector, immediately surrounding the interaction point, the

Vertex Detector (VXD) consists of the silicon Pixel Detector (PXD) and Silicon

Vertex Detector (SVD). All together, they determine the position of the vertices

which is used to distinguish particles that produced at the interaction point, from

ones that were produced from particles which travelled before decaying [40]. The

track reconstruction is carried out through charged particles ionising strips of silicon,

the individual hits can then be reconstructed into tracks [28]. The Central Drift

Chamber (CDC) is pictured as a large empty volume in Figure 3.4, and acts as

the central tracking device for the detector [40]. Here, using a magnetic field, the

path of charged particles becomes curved, and hence positive, negative, and neutral

particles can be distinguished. This also allows for the identification of particles and

their anti-particles [28].

An important matter in detectors is the identification of particles, in Belle II this

is carried out by the time-of-propagation (TOP) detector component in the main

barrel and the Aerogel Ring Imaging Cherenkov (ARICH) counters in the forward

end-cap regions. The ARICH is specifically designed to distinguish between pions

and kaons. These can be seen in cyan and orange in Figure 3.4. The identification is

done through the detection of Cherenkov radiation. Continuing radially from the IP,

the Electromagnetic Calorimeter (ECL) is present in both the barrel and end-caps.

It detects gamma rays and identifies particles through the energy deposits in the

material from the parton showers. Similarly, the K0
L and muon detector (KLM)

detects hadronisation showers [40]. All together, the components of the detector

provide a series of hits along the path of each particle which are reconstructed into

tracks [28].
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Angular Coverage

The components described above each have an angular coverage due to their finite

width. The ECL has the largest cover with 12.4◦ < θlab < 155.1◦, where there are

gaps between the endcaps and the barrel at 31.4◦ < θlab < 32.2◦ and 128.7◦ < θlab <

130.7◦. The gaps exist to make room for cables to reach the inner parts of the

detector. With unequal beam energies, the mesons are boosted in the direction of

travel of the incoming, more energetic, electron. The decay products will acquire the

same boost, and therefore to capture the largest number of the decay products the

angular coverage is asymmetric in the direction of the boost, providing the largest

opportunity of detection.

Any particle outside the angular coverage, travelling down the beam pipe or in

the gaps, will not be detected and shows up as missing energy. Other sources of

missing energy are the loss of particles to small gaps in the mechanical structure

of the detector and the gaps between crystals in the end-caps, though these are

minor compared to the angular coverage loss. Finally, the components of Belle II

are not able to detect neutrinos, which therefore is an additional source of missing

energy [40].

3.3.2 Chiral Belle Programme

The Chiral Belle Programme aims to upgrade the collider to have left and right

longitudinal polarisation of approximately 70% for the electron beam and an unpo-

larised positron beam. The beam polarisation will be measured with a precision of

better than ±0.5%, and each beam will have average electron beam polarisation of

⟨Pol⟩ = 1
2

[(
NeR −NeL

NeR +NeL

)
R

−
(
NeR −NeL

NeR +NeL

)
L

]
, (3.3.1)

where NeR,eL is the number of right/left-handed electrons in the event samples with

electron beam bunches with either left (L) or right (R) polarisation [43].

With one polarised beam, Belle II will be able to uniquely measure electroweak
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parameters to unprecedented precision [38]. One such possibility is presented here.

The left-right asymmetry for processes e+e− → ff̄ with f ∈ b, c, τ, µ, e is given by

AfLR = σfL − σfR
σfL + σfR

, (3.3.2)

where σfL/R are the cross-sections for 100% left- and right-handed incoming electron

beams respectively. In the SM, the asymmetry is induced by the γ − Z mediator

interference,

e+e− → V → ff̄ for V ∈ {γ, Z} , (3.3.3)

which, at leading order, has a theoretical value given by [44]

AfLR(SM) = sGF√
2παQf

geAg
f
V . (3.3.4)

Here s is the centre-of-mass energy, Qf the electric charge of the fermion, GF the

Fermi constant, geA is the neutral current axial coupling of the electron, and gfV the

neutral current vector couplings [38].

The asymmetry will be measured at Belle II using

AfLR(meas.) = N f
L −N f

R

N f
L +N f

R

⟨Pol⟩ , (3.3.5)

where NL,R is the number of events for left-handed and right-handed electron beam

polarisation [43]. It is expected to achieve a reduction in the error in the measurement

of gfV of a factor of 4 for b-quarks, 7 for c-quarks, and 3 for muons [38]. Similarly to

αs, see section 2.2.3, the Weinberg angle runs, and it can be shown that the neutral

current vector couplings gfV are directly related to the Weinberg angle [12].

Figure 3.5 displays the current and proposed measurements of sin2 θW as a function

of the energy scale µ. The Belle II projection, seen as “e- Polarized SuperKEKB”

in red, are for L = 40ab−1. It is worth noting that both the Tevatron and LHC

measurements are also at the Z0-pole around µ = 102 GeV together with SLC and

LEP1, indicated by the black arrows. The Mainz-P2, Moller, and SoLID experiments

are expected to agree with theory but have been moved down for better visibility. It

can be seen that the measurements at the Z-pole are very precise and in agreement
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Figure 3.5: Measurements of the running of the Weinberg angle
sin θW , see text for detail (from [43]).

with the predicted SM value. But for lower energies, there is slight disagreement

between experiments and theory. As sin2 θW can be modified by the introduction

of New Physics it is important to have precise measurements at a range of energies.

The Belle II with a polarised electron beam provides a unique measurement between

the low and high energy measurements [43].

As described previously, the Chiral Belle Programme will have only one beam polar-

ised as there has yet to be a substantial case for polarising both, but in chapter 6 a

compelling proposal shall be outlined.

3.4 ATLAS

The ATLAS (A Toroidal LHC Apparatus) detector is located between ALICE (A

Large Ion Collider Experiment) and LHCb (LHC-beauty) at the LHC at CERN.

The LHC is currently operating with proton beams of energies up to 6.8 TeV each,

resulting in a centre-of-mass energy of
√
s = 13.6 TeV. Initially, ATLAS was intended

to search for the theorised but yet to be discovered Higgs boson, together with a
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Figure 3.6: Schematics showing particle tracks in each component
of the ATLAS detector (from [46]).

plethora of particles predicted by Supersymmetry (SUSY). The details of SUSY are

beyond the scope of this thesis [45] .

ATLAS has a similar layout to Belle II, as described in section 3.3.1, with the

addition of a hadronic calorimeter (HCAL) and the KLM exchanged for a muon

spectrometer (MS). The HCAL consists of nuclei with which the produced hadrons

interact strongly, causing them to decay and be detected. The MS specialises in

measuring muons, which are not sufficiently measured in the inner detector due to

their high energy [28]. How six different particles show up in the ATLAS detector

depending on their mass and charge is shown in Figure 3.6. Similar diagrams can

be constructed for the Belle II detector described previously. The tracks of charged

particles are initially curved depending on the sign of their charge. Leptons are

stopped through the loss of energy in the ECL, whereas hadrons deposit their energy

in the HCAL. It is important to note that neutrinos, as they do not interact very

strongly are not detected and will show up only as missing energy.

The MS consists of three layers located at radii 5.0 m, 7.5 m, and 10.0 m away from
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the interaction point. In order to achieve correct vertex reconstruction, the particle

tracks have to pass through at least two of these layers. Hence, any particle which

decays more than 7.5 meters away from the IP in ATLAS will escape the detector

without detection [47]. Figure 3.7 displays two separate particles moving in parallel

detected by four hits in an arbitrary detector. It can here be seen how, even with

hits in two layers, the vertex reconstruction can be incorrect [48].

Figure 3.7: Vertex reconstruction for correct (left) and incorrect
(right) outcomes (from [48]).

3.5 New Physics Searches

The most commonly used procedures when searching for New Physics in collider

experiments can be split into two categories; implicit and explicit, also known as

direct and indirect. For both, most often the final state detected is not unique and

the same can be produced with only SM particles and interactions. This is known

as the SM background that obscures the signal from the New Physics, and these are

usually calculated using MC generators, see section 3.2.3, or inferred by looking at

existing data from experiments.

Measuring SM processes at very high precision allows searching for processes, where

the experimental results do not match the theoretical predictions. This method

is the foundation for implicit searches. These searches have broad application but

reveals little detail about the underlying New Physics if discrepancies between theory

and experiment are found. Generally, implicit searches look for New Physics which,
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through appearing in higher-order correction loops, modifies observables such as

cross-sections, decay rates, and differential cross-sections. This approach therefore

does not require the new particles to have masses below the centre-of-mass of the

collider, and the potential mass range is larger than explicit searches.

Explicit searches look for the direct production of new particles, which will reveal

more about the involved New Physics. The detection of the new particle depends

on its decay modes, which can be categorised into three types of searches.

Resonance searches, where the particle decays promptly, too close to the in-

teraction point to be distinguished. The new particle must decay back into SM

particles, either directly or through intermediate New Physics particles. The reson-

ance appears in the distribution of the invariant mass (see eq. (3.2.5)) of the decay

products from the new particle. Due to quantum mechanics, the decaying particle’s

four-momentum can deviate from the relativistic invariant mass formula, and due to

detector inefficiencies, the momenta of the decay products will never be measured

with 100% accuracy. Together, this causes the invariant mass distribution to be

broadened around the mass of the new particle. The possible SM backgrounds result

in a smooth continuous invariant mass distribution on which the resonance would

be a bump. The height and shape of the bump depend on the interactions between

the SM and the new particle.

Semi-invisible particle searches are necessary when the new particle decays

into one or more invisible particles which leave the detector without decaying or

being detected, and therefore show up as missing energy.

If the particle’s lifetime is large enough that the particle travels a significant dis-

tance before decaying, the decay vertex can be displaced from the IP, or the tracks

within the detector can be different to anything predicted by SM. This is known

as displaced vertex searches. As described previously, collider detectors have

layers of components of finite width, and therefore, depending on the decay length

of the particle, the vertex will be placed within one of these layers. This dictates
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the relevant SM background for the search, and for certain distances from the IP

one can have almost zero background events.

Lastly when the NP particle is stable on collider scales, decaying outside the de-

tector and showing up as missing energy. For these missing transverse energy

searches, one selects certain final states to focus on, where either the cross-section

is large, or the SM background is small such that the signal stands out.

For all these types of searches, in order to claim that New Physics has been observed,

the signal on top of the background has to be statistically different to the background

alone. The methods for determining this are described in section 4.3.1.

3.6 Conclusion

The foundations for collider physics have been presented through the introduction

of different types of colliders, together with how they facilitate the detection of

particles after collision. In particular, the Belle II and ATLAS detectors are reviewed

with an overview of their components and layouts. For Belle II, the Chiral Belle

Programme aims to polarise the incoming electron beam, and one reason for this

plan is described. Methods for analysing the experimental data and comparing

the results to the theoretical predictions are discussed . Including examples of the

observables used, such as pseudorapidity, and Monte Carlo event generators. Implicit

and explicit searches for New Physics at colliders were described.

Particle colliders are an incredibly strong tool for both precisely measuring quantities,

such as particle masses and decay widths, and discovering particles predicted by the

Standard Model. They have throughout the years not only confirmed theories, but

also excluded and disproven many others. By continuously constructing colliders

with increasing centre-of-mass energy, particles of higher masses can be produced

and studied. The development of detector components, hardware, and software

analyses have greatly increased the precision. But there is still plenty left to solve

the puzzles of the Standard Model, such as the nature of dark matter.
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Dark Matter

4.1 Introduction

Little is known about the properties of dark matter, which leaves room for many

interpretations and models. As seen in Figure 4.1, the mass range considered when

looking for dark matter is extremely large, ranging from zepto-eV
(
10−21 eV

)
to

the Planck scale, MPL = 1.22 × 1019 GeV. The lower bound is produced from

restrictions from dark matter halos of dwarf galaxies where the DM particle’s de

Broglie wavelength has to be smaller than the size of the halo [50]. Direct detection

experiments, such as DEAP which uses liquid argon, has been used to set upper

limits on the dark matter mass [51]. These lower and upper bounds are general

but can vary depending on the dark matter model considered, for a review see [50].

Fortunately, the mass of the dark matter particle dictates the experiments which are

sensitive to the particle. For example, both ultra-light and -heavy dark matter are

studied mostly using cosmology and astronomy, whereas O(1 eV) − O(1 TeV) DM is

considered for lab and collider experiments [3].

This chapter first describes, in section 4.2, the details of the dark matter models

considered in this thesis with their general theoretical descriptions and decays. The

theories of dark photons, axion-like particles, and heavy neutral leptons are included.

Secondly, the approaches for searches for dark matter in particle colliders, together
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Figure 4.1: Dark matter mass range with categories of models
(from [49]).

with the procedure to extract information from the results, are presented in sec-

tion 4.3. Finally, section 4.4 displays the current limits and projections on the

models presented in section 4.2.

4.2 Dark Matter Models

Dark matter can be implemented through a plethora of mechanisms, which vary

in terms of particle content, complexity, and possible interactions with the Stand-

ard Model particles. In general, the type of dark matter particle follows the ones

presented in the SM, (pseudo-)scalar and (pseudo-)vector, where the couplings to

the SM are restricted by the model and implementation. Five popular theoretical

mechanisms for DM are very heavy DM (masses above TeV scale), sterile or right-

handed neutrinos (RHNs), weakly interacting massive particles (WIMPs) , axions

or axion-like particles (ALPs), and hidden sector particles and mediators [7]. Many

of these models can be found in Figure 4.1 with representative masses, though it

is worth noting that the mass ranges displayed are not exact, and one finds many
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examples of these models outside these ranges.

For future use, the concept of effective field theories will briefly be introduced.

The foundation of EFTs is the principle that one can perform calculations without

knowing the full, exact underlying theory; approximations and simplifications can

be made to obtain an effective theory.

The Lagrangian of mass dimension d for an arbitrary EFT is given by

LEFT =
∑

D≥0,i

c
(D)
i O(D)

i

ΛD−d , (4.2.1)

where the sum is over all possible operators O(D)
i of dimension D with coefficient c(D)

i .

The operators are constructed of the fields of the EFT, for example in SMEFT the

operators has only SM fields. For the coefficients c(D)
i to be dimensionless, the scale

Λ is introduced, which is the scale at which New Physics occurs. Therefore, if the

scale is large, the higher order contributions are suppressed. For d = 4 space-time

dimensions,

LEFT = LD≤4 + L5

Λ + L6

Λ2 , (4.2.2)

it can be seen that the EFT Lagrangian can be understood as an expansion in powers

of 1
Λ [52].

Hidden sectors have one or more dark matter particles weakly interacting with the

SM through a portal, which will be described in further detail in the following section.

This allows the DM particle(s) to have masses below the EW scale1, even though this

mass range has already been explored by experiments [2]. These models are therefore

popular as they do not require the construction of new colliders. Alternatively, the

masses of the DM particle(s) may be much larger than the EW scale and therefore

outside the reach of current experiments [2]. For the remainder of this thesis, the

focus shall be on portal dark matter models.

1vH = (
√

2G0
F )−1/2 ≃ 246.22 GeV for the Higg’s vev and G0

F the tree-level Fermi constant [2].
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4.2.1 Portals

Portals between the SM and a dark sector have Lagrangians given by

L ⊃
k+l=n+4∑
k,l,n

O(l)
SMO(k)

DS
Λn , (4.2.3)

for cutoff scale Λ, and current OSM and ODS consisting of only SM and dark sector

fields respectively. Here, the sum is over all possible combinations of the fields in the

SM and dark sector. In general, the currents can have a number of different Lorentz

presentations, but OSM is gauge invariant under all SM symmetries [53].

For dimension-4 currents with n = 0, there are three well-known examples of portals

which have the lowest dimension SM currents; vector (section 4.2.2), scalar (Ap-

pendix A), and lepton (section 4.2.4). The corresponding SM currents are Fµν , H†H,

and LH with mass dimension 2,2, and 5
2 respectively. Here Fµν is the hypercharge

field strength, H the Higgs doublet, and L the lepton doublet. These currents

couple the dark sector to the SM without the introduction of a New Physics mass

scale [53]. The three portals mix with one SM particle, and therefore bounds are

straightforwardly put on each model. If the mixing is too strong observables, such

as the masses and decay widths of the SM particles, would differ significantly from

the values measured experimentally.

On their own, the portals can be viable dark matter models, accounting for the total

density of dark matter described in section 1.1, where either the mediator particle

or the new dark sector particles act as DM. However, the portals themselves do

not solve the problems present in the SM; they are simplifications of more complex

theories for dark matter which do address these problems. The more complex models

will take the place of the portal models eventually. The advantage of the portal

framework is that one can often construct models with two parameters, for which

exclusion limits and projections can easily be found. The projections can be used

to compare current and future experiments and proposals, and highlight parameter

spaces of special interest which should be investigated experimentally [7].
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In the following section, three different dark matter models are presented with the

wider theories in which they lie. Section 4.2.2 describes dark photons, whereas axion-

like particles (ALPs) are presented in section 4.2.3, and heavy neutral leptons (HNLs)

in section 4.2.4. Together with a dark scalar portal, briefly described in Appendix A,

these make up the Feebly-Interacting Particles (FIPs) portals presented in [54], see

section 5.5.1 for further detail. The ALP is not a portal model as it is suppressed by

a decay constant, but it is included as it often acts as a mediator to a wider dark

sector [54].

4.2.2 Dark Photons

The dark photon (also known as the hidden photon) was originally introduced to be

the gauge boson of a new U(1)X gauge group added to the SM, which kinetically

mixed with the SM photon of U(1)EM. But as this would have occurred after EWSB,

the mixing cannot be fundamental [54]. Therefore, it has since then become more

common to have the dark gauge boson mix with the hypercharge boson associated

with U(1)Y . The simplest model for dark photons will be presented first, which is

used for the portal framework.

Minimal Kinetic Mixing

The Lagrangian for the gauge boson Xµ of the new U(1)X group and hypercharge

boson Bµ is given by

L ⊃ −1
4W

3
µW

3µ − 1
4BµB

µ − 1
4XµX

µ + 1
2m

2
XX

µXµ − ϵ

2 cos θW
BµνX

µν , (4.2.4)

for mixing parameter ϵ of the kinetic mixing, dark gauge boson mass mX , and

Weinberg angle θW [31]. The kinetic terms for two of the four gauge bosons of the
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SM, W 3
µ and Bµ, have been included as they mix with Xµ,

W 3
µ

Bµ

Xµ

 =


cos θW sin θW −ϵ sin θW

− sin θW cos θW −ϵ cos θW

ϵ tan θW 0 1




Zµ

Aµ

A′
µ

 , (4.2.5)

where Aµ and Zµ are the SM electroweak photon and Z-boson, and A′
µ is the dark

photon field. Using the mixing matrix, the kinematic terms in the mass eigenstate

Lagrangian are

L ⊃ −1
4AµA

µ − 1
4ZµZ

µ − 1
4A

′
µA

′µ + O(ϵ2) . (4.2.6)

The mixing matrix consists of the EWSB mixing matrix, see eq. (2.4.6),

VEWSB =


cos θW sin θW 0

− sin θW cos θW 0

0 0 1

 , (4.2.7)

and the new dark mixing matrix,

Vϵ =


1 0 0

0 1 −ϵ

ϵ tan θW 0 1

 . (4.2.8)

due to the photon-fermion current JµEM, as previously seen in eq. (2.4.14),

L ⊃ −eJµEMAµ , (4.2.9)

after mixing the dark photon couples to the SM fermions through a rescaling of the

photon coupling to fermions,

L ⊃ −eϵJµEMA
′
µ . (4.2.10)

As the mixing parameter ϵ is small, this gives rise to the name dark or hidden

photon [55]. An advantage of this simplified model is that it only contains two new

parameters: the mixing parameter ϵ and the mass mX [56].
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General Kinetic Mixing

The simplified kinetic mixing can be extended by including the possibility that

the fermions of the SM are charged under the new U(1)X group, and thus the dark

photon directly interacts with the SM through the current jXµ with coupling constant

gX . The general Lagrangian for a U(1)X group with an associated kinetically mixing

dark photon is

L = −1
4 F̂µνF̂

µν − ϵ′

2 F̂µνX̂µν − 1
4X̂µνX̂

µν −g′jYµ B̂µ−gXj
X
µ X̂µ− 1

2M̂
2
XX̂µX̂

µ (4.2.11)

for the hypercharge B̂µ and dark photon X̂µ fields, where X̂ refers to the fact that

the fields have yet to be normalised. Each have associated field strength tensors

F̂µν = ∂µB̂ν − ∂νB̂µ and X̂µν defined similarly. B̂µ has coupling g′ and current jYµ ,

whereas the new dark matter gauge boson has coupling gX and mass M̂X .

The current jXµ depends on the U(1)X group considered, where three examples are

jXµ = 0 , (4.2.12)

ji−jµ = LiγµLi + liγµli − LjγµLj − ljγµlj i ̸= j = e, µ, τ , (4.2.13)

jB−L
µ = 1

3QγµQ+ 1
3uRγµuR + 1

3dRγµdR − LγµL− lγµl − νRγµνR . (4.2.14)

Firstly, jXµ = 0 corresponds to the simplified model described above, U(1)Li−Lj
is

the gauged lepton number difference with associated current ji−jµ , and similarly for

the gauged baryon-lepton number difference U(1)B−L [57].

Following the procedure described in Appendix A of [57], through the modified

covariant derivative,

Dµ = ∂µ − i

(
g

2τ
aŴ a

µ − g′

2 B̂µ − gX
2 X̂µ

)
, (4.2.15)

the Higgs kinetic term, (DµH)†(DµH), after EWSB becomes

L ⊃ 1
2
v2
H

4

[
g2(W 1

µ)2 + g2(W 2
µ)2 +

(
−gŴ 3

µ + g′B̂µ + 2
ν
gXX̂µ

)2]
, (4.2.16)

where B̂µ and Ŵ a
µ are the U(1)Y and SU(2)L gauge bosons and the Higgs field has
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been left out. The normalised fields are found from the rotation given by

B̂µ

Ŵ 3
µ

X̂µ

 = G(ϵ′)


Bµ

W 3
µ

Xµ

 for G(ϵ′) =


1 0 − ϵ

′√
1−(e′)2

0 1 0

0 0 1√
1−(e′)2

 . (4.2.17)

To find the mass eigenstates, the fields are again rotated resulting in interactions of

the dark photon, SM photon, and Z boson, given by Lagrangian

L ⊃
(
ejEM,

e

sinθW cosθW
jZ , gXj

X

)
K


A

Z

A′

 , (4.2.18)

for currents jEM and jZ as described previously in section 2.4, current jX with

coupling gX , ϵ = ϵ′ cosθW ,

K =


1 0 −ϵ

0 1 0

0 ϵ tan θW 1

+ O
(
ϵδ, ϵ2

)
, and δ = M̂2

A
′

M̂2
Z

. (4.2.19)

Here θW is the Weinberg angle, and the masses M̂A
′
,Z are given by the Z boson and

dark photon masses,

M2
Z = M̂2

Z

(
1 + (ϵ′)2 sin2 θW [1 + 2δ]

)
+ O(δ2[ϵ′]2) , (4.2.20)

M2
A

′ = M̂2
X

(
1 + (ϵ′)2[1 − sin2 θW (1 + δ)]

)
+ O(δ2[ϵ′]2) . (4.2.21)

Hence the masses are unchanged to leading order in ϵ′. The couplings of the SM

photons are untouched, the Z boson has a new coupling to jX , and the dark photon

couples to both jEM and jX .

In particular, and of interest to chapter 6, the U(1)B−L gauge group has the coupling

to fermions arise from the current jX , defined in eq. (4.2.14), without the existence

of kinetic mixing (ϵ′ = 0). Here the coupling between the dark photon and the SM
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leptons is given by

L ⊃ −gxXµ

∑
e,µ,τ

(
LγµL+ lγµl

)
, (4.2.22)

for coupling constant gX for the current jX .

Dark Photon Decays

When considering kinetic mixing, the dark photon inherits the couplings of the SM

photon. Therefore, the decay widths for the dark photon into charged SM leptons

are given by the couplings of the SM photon, where the coupling is replaced by

α → αϵ2. For example, the width for the dark photon decaying into an electron pair

is given by

Γ
A

′→e
+
e

− =
g2
X

√
M2

X − 4m2
e

(
2m2

e +M2
X

)
12πM2

X

me→0
≈ g2

XMX

12π . (4.2.23)

As described in section 2.2.3, when quarks are produced with low momenta they form

hadrons, and therefore the decays into leptons and quarks are considered separately.

The hadronic decay widths can be determined using

ΓA′→hadrons(mA
′) = Γ

A
′→µ

+
µ

− × Rµ(mA
′) , (4.2.24)

where Γ
A

′→µ
+
µ

− is the decay width of the dark photon into a muon pair. Through

the ratio of the cross-sections of e+e− annihilation into hadronic final states and

muon pairs,

Rµ(mA
′) = σ(e+e− → hadrons)

σ(e+e− → µ+µ−)
, (4.2.25)

the dark photon decay into muons is re-scaled to take into account the hadronic

resonances [58]. The values of Rµ(mA
′) are displayed in Figure 4.2 as a function of

the centre-of-mass energy
√
s, where the resonances for each meson state are distinct

peaks [2].

Summing over all available decay channels, one can calculate the total width and

decay length of the dark photon as a function of the mixing parameter ϵ and mass

MX . As seen in Figure 4.3, as the mass increases, the decay length decreases, and
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Figure 4.2: e+e− hadronic annihilation cross-section ratio, see text
for details (from [2]).

similarly for increasing coupling constant as the dark photon interacts more strongly.

Following the methods described in section 2.6.3, the decay length was found using

λ = |p⃗(mX)|
mX

cτ for |p⃗(mX)| = s−m2
x

2
√
s

and τ = ℏ
Γ . (4.2.26)

Here e+e− → γ + X processes at Belle II, see section 3.3 for further detail, were

considered, and the total width Γ is found using the decay width formula described

above. At tree-level, the 2 → 2 process fixes the energy of the outgoing photon,

and therefore its momentum, to be a function of the center-of-mass energy and dark

photon mass [31].

The irregularities seen in Figure 4.3 around 1 and 5 GeV are due to decays into

hadronic states, and the dip around 0.2 GeV is due to the decay channel A′ → µ+µ−

becoming available
(
2 ×mµ ≈ 0.2 GeV

)
. All decays in the region above the purple

line at 0.2 cm are effectively prompt decays, between the purple and green (0.9 cm)

lines the decay vertex is inside the beam pipe. The region between the green and
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Figure 4.3: Decay length as a function of dark photon mass and
mixing parameter, the purple, green and red lines are
at 0.2, 0.9, and 17 cm respectively, see details in text.

red (17 cm) line, which can faintly be seen in the left-hand lower corner, is inside the

vertex detector (VXD) part of the detector. Each section of parameter space has

different SM backgrounds to consider, and hence when considering a displaced vertex

search one has to make an educated choice of parameter values [59]. For smaller

masses and couplings, the decay length increases, and similarly for larger boosts, the

lifetimes and decay lengths increase and eventually the particle completely escapes

the detector before decaying.

4.2.3 Axion-Like Particles

Axion-like particles are pseudo-scalar particles with a broad mass range from as low

as 10−20 eV to over 103 GeV. The fields of astronomy and cosmology are interested

in very light ALPs, whereas the collider searches described in this thesis will focus

on masses between 10−2 and 10 GeV. ALPs have strong theoretical motivations and
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are included in many models [60]. The name originates from the axion which was

introduced as a solution to the strong CP problem [60].

The Strong CP Problem

Using gluon fields, the only term not included in the QCD Lagrangian that obeys

the gauge symmetries of the QCD Lagrangian is

L⊃ − θ
αs
8πG

a
µνG̃

µν
a , (4.2.27)

for αs the strong coupling constant, a constant θ, and gluon field strength tensor

Gµν and its dual G̃µν = 1
2ϵ
µνσγGσγ [60]. This CP violating term results in an

electric dipole moment for the neutron proportional to θ. Experimentally, the

neutron electric dipole moment has been measured to be very small, implying that

|θ| ≲ 10−10. However, theoretically there is no motivation for the smallness of θ, and

this has therefore been named the strong CP Problem [2].

The axion, also known as the QCD axion, is introduced in the Lagrangian,

L⊃
(
a

fa
− θ

)
αs
8πG

a
µνG̃

µν
a , (4.2.28)

using its field a and decay constant fa related to the scale of the New Physics

associated with the axion. The axion field acquires a minimum at a = θfa, hence

solving the strong CP problem and the smallness of the term in the Lagrangian.

Through calculations that are beyond the scope of this thesis, it can be shown that

the axion mass and decay constant are related through its mixing with mesons,

mA = 5.691(51)
(

1012 GeV
fa

)
meV , (4.2.29)

restricting the parameter space available. Therefore, the more general axion-like

particle, which does not satisfy the criteria related to the axion, was introduced [2].
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General Axion-Like Particle Lagrangian

The general effective dimension-5 Lagrangian for ALPs is given by

Leff ⊃ 1
2
(
∂µa

)
(∂µa) + ∂µa

fa

∑
f

cf
2 f̄γµγ

5f + cG̃AG̃ + cW̃AW̃ + cB̃AB̃ , (4.2.30)

for couplings to the Standard Model with operators,

AB̃ = −BµνB̃
µν a

fa
, AW̃ = −W a

µνW̃
µν,a a

fa
, AG̃ = −Ga

µνG̃
µν,a a

fa
, (4.2.31)

for field strength tensors Bµν , W a
µν , and Ga

µν for the weak vector bosons and gluons

respectively [61]. The coupling to fermions is assumed to be flavour-diagonal, and

the couplings to leptons and quarks are assumed equal, cl = cq = cf . As alluded

to previously, the ALP is not a portal model as its couplings are suppressed by its

decay constant fa.

For future use in chapters 6 and 5, the couplings between ALPs, photons, fermions,

and gluons will now be shown. For other couplings and further details see [61].

After EWSB, the coupling between ALPs and photons,

L ⊃ −cγ
a

fa
FµνF̃

µν for cγ =
(
cB̃ cos2 θW + cW̃ sin2 θW

)
, (4.2.32)

has contributions from both the AB̃ and AW̃ operators, where θW is the Weinberg

angle. The ALP-fermion interaction can be rewritten using the equations of motion,

cf
2
∂µa

fa
f̄γµγ

5f = −i cf mf

a

fa
f̄γ5f , (4.2.33)

for fermion masses mf . The coupling to gluons come straightforwardly from the

Lagrangian,

L ⊃ −cG̃
a

fa
Ga
µνG̃

aµν . (4.2.34)

Here it is worth noting that the ALP coupling to gluons is not the QCD axion

coupling and therefore cG̃ ≠ αs

8π . As seen earlier, coupling constants can depend on

the energy scale at which they are measured, see section 2.2.3. Hence, through the

inclusion of higher-order loops, the QCD axion, which only couples to gluons, will
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generically also interact with photons and fermions [62].

Axion-Like Particle Decays

Without considering loop corrections, the width for the ALP decaying to two photons

is given by

Γ(a → γγ) = c2
γm

3
a

4πf 2
a

, (4.2.35)

where ma is the mass of the axion. The decay width of an ALP to an electron pair,

at tree level,

Γ(a → e+e−) =
c2
em

2
e

√
m2
a − 4m2

e

8πf 2
a

me≪ma≈ c2
em

2
ema

8πf 2
a

, (4.2.36)

depends on the mass of the electron. When considering loops, the couplings run at

different energy scales and each decay channel depends on all coupling constants

introduced, from for example fermion or boson loops. The specifics of the higher

order corrections are beyond the scope of this thesis, see [63] for further detail.

As several decay channels are present, the decay length of the ALP is more com-

plicated than the one found above for the dark photon; it depends on the ratio of

the various couplings compared to each other. For similar values of the coupling

constants, the decay length of the ALP is similar to that of the dark photon.

4.2.4 Heavy Neutral Leptons

Heavy Neutral Leptons (HNLs), also known as right-handed or sterile neutrinos, are

often introduced in order to solve the problem of neutrino oscillations and masses

through the seesaw mechanism [7]. The new right-handed neutrino fields are singlets

under SU(2)L × U(1)Y and mix with the SM neutrinos [64].
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Simplified Model

A simplified example of one HNL mixing with one SM neutrino has a Lagrangian

given by

L ⊃ mDνLνR + 1
2MRν

T
RCνR + h.c. , (4.2.37)

where mD and MR are the Dirac and Majorana masses respectively with MR ≫ mD.

From the Lagrangian the mass matrix is constructed,

M =

 0 mD

mT
D MR

 , (4.2.38)

which has eigenvalues,

m± =
MR ±

√
M2

R + 4m2
D

2 . (4.2.39)

For MR ≫ mD, at leading order in MR, the eigenvalues are

m± = MR

2

1 ±

√√√√1 + 4m
2
D

M2
R

 ≈ MR

2

(
1 ±

[
1 + 2m

2
D

M2
R

])
=


MR + O(M−1

R )

−m
2
D

MR

,

(4.2.40)

where one of the mass eigenstates will have the same mass as the new HNL, whereas

the other will have a small mass due to the scaling between the Dirac and Majorana

masses. Hence, the introduction of a massive HNL has introduced the very small

mass of the SM neutrino giving the name “seesaw” to this mechanism [65].

The mass matrix M can be diagonalised using,

M = OmOT for O =

 cos θ sin θ

− sin θ cos θ

 and m =

m− 0

0 m+

 , (4.2.41)

from which one finds the mixing angle using the small angle approximation,

tan (2 θ) = 2 mD

MR

⇒ θ ≈ mD

MR

. (4.2.42)



4.2. Dark Matter Models 81

In this approximation, the diagonalising matrix O is given by

O =

 cos θ sin θ

− sin θ cos θ

 ≈

 1 mD

MR

−mD

MR
1

 . (4.2.43)

The mass eigenstates v± are found usingν−

ν+

 = OT

νL
νR

 =

cos θνL − sin θνR

sin θνL + cos θνR

 ≈

νL − θ νR

θ νL + νR

 , (4.2.44)

and hence they are a linear combination of the initial fields [66].

General Mixing

Moving on from the simplified example, the general Lagrangian for N heavy neutral

leptons is given by

L ⊃ iN I��∂NI − FαILα · ϕ̃ NI + h.c. , (4.2.45)

where FαI is a matrix of Yukawa couplings between the left-handed SM lepton doublet

(Lα) and the right-handed singlet containing the HNLs (NI) for α ∈ {e, µ, τ} and

I ∈ [1,N ]. ϕ̃ = iσ2ϕ
∗ is defined for the Higgs doublet ϕ and the second Pauli matrix

σ2 [67].

Through EWSB, the Higgs field is replaced by its vev, vH , and kinetic mixing between

the SM neutrinos and the new HNLs occurs through

ϕ̃ = 1√
2

vH
0

 ⇒ Lα · ϕ̃NI = vH√
2
ναNI . (4.2.46)

Together with the left-handed SM neutrinos (vα), the right-handed neutrinos NI

form Dirac spinors and can construct Dirac mass terms,

Ldirac ∝ νmDν = νLmDνR + h.c. (4.2.47)

The HNLs can be Majorana particles with mass terms given by

LMajorana ∝ MRNR
C
NR + h.c. (4.2.48)
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for the mass matrix MR [67]. Altogether, the mass terms are

L ⊃ −1
2

[(να)L (mD)αI (NI)R +
(
N
C
I

)
L

(mD)Iα
(
νCα
)
R

]

+
N∑

I1,I2=1

(
N
C
I1

)
L

(MR)I1I2

(
NI2

)
R

+ h.c.

= −1
2
(
νL N

C
L

)
M

(
νCR
NR

)
+ h.c. (4.2.49)

Here the number of SM flavours and new HNLs are summed over [68], and the mass

matrix is given by

M =

 0(3×3) mD (3×N )

mT
D (N ×3) MR (N ×N )

 (4.2.50)

for Majorana MR and Dirac (mD)αI = 1√
2vH FαI mass matrices [67]. The Lagrangian

in eq. (4.2.45) contains the flavour eigenstates of the neutrinos, which are different

to the mass eigenstates obtained through diagonalising the mass matrix,

V TMV = m =

mL (3×3) 0(3×N )

0(N ×3) M(N ×N )

 . (4.2.51)

Here m is a block-diagonal for unitary matrix, and matrix V has a form given by

V =

 1(3×3) a†
(3×N )

−a(N ×3) 1(N ×N )

 . (4.2.52)

Choosing a = M−1
R mT

D, the diagonal matrix is obtained [66],

m = V TMV ≈

−mDM
−1
R mT

D O(M−2
R )

O(M−2
R ) MR + O(M−1

R )

 . (4.2.53)

The light left-handed neutrino masses become mL = −mDM
−1
R mT

D whereas the

right-handed neutrino mass is at leading order unchanged. The mass eigenstate

Lagrangian is given by

L ⊃ −1
2νLmL(νL)c − 1

2νR
cMRνR + h.c. (4.2.54)

In addition to the mixing between the new HNL(s) and the SM neutrinos, the
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presence of mixing between the SM neutrino states needs to be taken into account

through the inclusion of the PMNS matrix as seen in section 2.5,νLα
NC
RI

 =

UPMNS (3×3) a†
(3×N )

−a(N ×3) 1(N ×N )


 νm

NC
m

′

 , (4.2.55)

for α,m ∈ {1, 2, 3} and I,m′ ∈ [1,N ]. Hence, the neutrino mass eigenstates are

νL =
3∑

m=1
(UPMNS)lmνm +

N∑
m

′=1

a†
lm

′N
C
m

′ , (4.2.56)

given the flavour eigenstates vm and Nm
′ . It can be assumed that only one HNL

is relevant, either through being the only new particle in the theory, or as the

others have significantly higher masses which are kinematically out of reach [67].

Simplifying to one HNL, the Lagrangian with interactions to the Higgs, W , and

Z-bosons is

L ⊃ − g√
2
W+
µ

τ∑
l=e

( 3∑
m=1

νn(UPMNS)∗
lmγ

µPLl
− +N ca∗

l γ
µPLl

−
)

(4.2.57)

− g

2 cos θW
Zµ

τ∑
l=e

( 3∑
m=1

νn(UPMNS)∗
lmγ

µPLνL +NCa∗
l γ

µPLνL

)

− gmN

2MW

h
τ∑
l=e

NCa∗
lPLνL + h.c. ,

where it can be seen that the HNL interactions with W±, Z0, and h are the neutrino

interactions modified by the mixing angle al [69]. PL = 1
2

(
1 − γ5

)
are the left-

handed projection operator defined in section 2.2. For one HNL, there are three

angles aα = vH√
2
Fα

MR
, which in literature are usually refereed to as Uα. One often

assumes either electron-, muon-, or tau-dominance for |Uα| much bigger than the

other two [67]. For the remainder of this thesis, the common practice in literature

will be adopted, and Uα will be used for HNL mixing with SM neutrinos.

Heavy Neutral Lepton Decays

The HNLs considered in this thesis have masses mHNL ≪ m
W

±
,Z

0 , and hence the

W± and Z0 bosons will be integrated out when considering the decays of the HNLs,
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much like Fermi’s EFT for weak interactions [70].

Through a Z0-mediator, the HNL can have neutrino-only decays into three neutrinos,

which is a purely invisible final state.

The decays of HNLs into fermionic final states can be categorised by their heavy, in-

tegrated out mediator; charged and neutral. For decays mediated by W±, the charged

current, the HNL decays into two leptons and a neutrino (N → l−α vβl
+
β for α ̸= β)

or two quarks (one up-type u and one down-type d) and a lepton (N → lαuidj),

where the outgoing fermions have different flavours. For decays mediated by Z0,

the neutral current, the HNL decays into two fermions and a neutrino (N → vαff),

where the flavour of the lepton pair (lβlβ) can either match α = β or be different

α ̸= β to the neutrino flavour.

For HNLs with masses below 1 GeV, when quark pairs are produced they form

bound states, mesons, as their momenta are too small to escape the attraction from

QCD between them. See section 2.2.3 for further detail. Both charged h+ and

neutral h0, pseudo-scalar hP and vector hV mesons can be produced from charged

and neutral mediated decays of HNLs; N → lαh
+
P,V and N → vαh

0
P,V . See Figure 4.4

for depictions of HNL decays into mesons, the integrated out mediators have been

included in the depictions for visualisation of the current for each type of decay.

Figure 4.4: HNL decay into a neutrino and neutral meson (left),
and lepton and a charged meson (right).

For mHNL > 1 GeV, the produced quarks have enough momenta to be free, but they

later shower and hadronise forming multi-hadron final states. These can be described

using the underlying quark interactions, where the subsequent hadronisation is an
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Figure 4.5: HNL decay into a neutrino (left), or a lepton (right)
and two kaons.

additional correction [71]. Figure 4.5 displays two possibilities for decays into multi-

meson through neutral (left) and charged (right) currents for production of two

kaons, K−K+ and K0K− respectively [70]. The decay width formulas for the

channels described can be found in Appendix B.

Figure 4.6 displays the branching ratio for six groupings of HNL decay channels;

invisible, v+multi-hadrons (hadr.), l±+multi-hadrons (hadr.), v+single meson (mes.),

l±+single meson (mes.), and purely leptonic vll̄. Here the invisible final state contains

the 3-neutrino decay mode, but this category can be modified to also contain decays

into a dark sector, which the HNL is a portal to. It can be seen that the single

Figure 4.6: HNL branching ratios for |Ue| = 1 and |Uµ,τ | = 0.
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meson final states dominate for mHNL < 1 GeV compared to multi-hadrons final

states, but the latter starts to dominate for mHNL > 2 GeV. The three-neutrino and

the purely leptonic final state branching ratios can be seen to be somewhat stable

for mHNL ∈ [1, 10] GeV. The sudden kinks and changes in branching ratio happen

when new decay channels become available.

For the decay widths described in this section, Figure 4.7 displays the characteristic

decay length cτ (without boost and therefore process independent) as a function of

the HNL mass and the mixing parameter Ue. The HNL is assumed to only mix with

SM electron neutrinos, electron-dominance (Ue ≫ Uµ,τ ). The red line represents the

radius of the ATLAS detector at 12.5 m. Without boost, it can here be seen that the

HNL must have a significantly small coupling to escape ATLAS if its mass is 10 GeV

or above, therefore reducing the sensitivity drastically. As the momentum of the

particle increases the radius of ATLAS becomes contracted for the decaying particle,

and therefore for sufficiently high boosts it is possible for a 10 GeV particle to leave

Figure 4.7: Decay length, without boost cτ , for HNLs with the
radius of the ATLAS detector highlighted in red.
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without decaying. The boost is given by p
mHNL

, hence for mass mHNL = 10 GeV and

momentum p = 100 GeV the sensitivity to |Ue|2 is increased by a factor of 10.

4.3 Dark Matter Searches

Having introduced several models for dark matter, the searches for dark matter will

be described now, expanding on the New Physics searches outlined in section 3.5.

In order to determine the nature of dark matter, many experiments and searches

have been preformed and are planned to take place in the future. These generally

fall into three categories; collider searches, indirect detection, and direct detection.

As seen in Figure 4.8, each rely on the dark matter exhibiting different interactions

with the particles in the SM.

Direct detection searches depend on dark matter particles scattering off SM particles

and on the ability to measure the recoil energy of target particles, such as nuclei.

If the DM particles annihilate into SM particles, one can detect these SM particles

as an indirect method of detecting the DM particles. An example of this method is

measuring excesses of cosmic rays or neutrinos. Both of these methods of direction

have a lower limit on their reach with respect to the masses of dark matter. Direct de-

tection have a minimum recoil energy threshold due to detector limitations, whereas

the indirect detection signals will be obscured by background for small masses.

The third method has SM particle interactions producing DM particles, which is the

foundation for particle collider searches for dark matter. The previous two searches

Figure 4.8: Detection methods of dark matter χ (from [5]).
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have the dark matter particles already existing, whereas collider searches rely on the

production of dark matter. But collider searches have a large reach, being able to

detect both light and heavy dark matter. The detection methods presented are not

exclusive and can be used together in order to pinpoint the nature of DM [72].

When searing for dark matter at particle colliders, many considerations have to

be taken into account, a few of these will be described here. The type of collider

considered determines the productions modes present, for example a lepton collider

excludes the possibility of production modes like gluon-fusion (gg → X). The DM

particle(s) interactions also affects the production modes. For example at leading

order, the dark photon does not interact with gluons, and hence even at hadron

colliders gluon-fusion is not available. The centre-of-mass energy of the collider puts

an upper bound on the mass of the DM particle(s), which can be produced, and

determines the probability of the production and decay modes of the DM.

As described in section 3.5, there are three main types of collider searches; missing

energy, prompt, and displaced. Missing energy searches, as the name suggests, consists

of looking for missing energy in the events. An example is a dark matter model with

a particle acting as a portal, both interacting with the SM and a dark sector but

with much larger couplings to the dark sector. In this case, every time the portal

particle is produced it will decay into the dark sector, which is undetectable, and

show up as missing energy in the collider.

The decay length of a particle is determined by its lifetime, which in turn depends

on its interactions. The decay length is inversely proportional to both the coupling

strength and the particle’s mass. Therefore, if the DM particle is very heavy or

interacts strongly with the SM, it will decay promptly. For combinations of coupling

strength and mass, the particle travels a distinguishable length away from the IP

and the vertex becomes displaced.

Further, if the DM particle is long-lived enough, it will travel through the detector

and decay outside it, appearing as missing energy. Detectors are built around

the IP and therefore have a sensitivity to dark matter with a lower bound on the
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coupling and mass. Recently, many proposals are trying to address this problem,

detectors specialising in long-lived particles (LLPs) like SHiP [67], MATHUSLA [73],

FASER [74], CODEX-b [75], and many others. These detectors are also known as

far detectors due to their location far away from the interaction point. They are

usually extensions to already existing particle collider experiments but differ in their

design, relation to the experiment it is connected to, and sensitivity. An example

of an LLP experiment is the ANUBIS detector which will be described in further

detail in chapter 5.

4.3.1 Exclusion Limits & Sensitivity Projections

Having presented several models describing dark matter together with the searches

used to look for dark matter in colliders, there are two possible options for results:

the experimental results match the theoretical predictions, or they differ. For each

result, a different statistical approach is used to ensure that the correct conclusion is

drawn. If the result deviates from the expected, it has to be determined whether the

deviation is statistically significant, or can be explained as a statistical fluctuation.

Oppositely, if the result is as expected, limits can be set on any model which would

cause deviations that are statistically significant. Most results currently agree with

the SM predictions, and hence regions of parameter space have been excluded, which

will be seen in the plots presented in the following section [2].

In general, given a certain model one can calculate the expected cross-section for each

production mode which, together with the integrated luminosity of the experiment,

provides an expected number of events (N = σNP × Lint). Using this, depending on

the expected number of background events, one can calculate the sensitivity of the

collider to the production mode.

In order to determine the statistical significance of a result (or lack thereof), the

confidence interval (CoI) is defined within which the true value of a parameter will

lie a certain percentage of the time, given by the confidence level (CL) [28]. A
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commonly used confidence level is 95%. This means that if a measured parameter

is within the corresponding CoI, then there is a 5% chance that the result has been

accepted incorrectly.

To calculate the confidence level, the probability density function f(y) is defined,

P (y ∈ [y, y + dy]) = f(y) dy , (4.3.1)

which is the probability of an observable y being in the interval [y, y+ dy]. Whereas

the cumulative distribution function (CDF) for variable Y ,

F (y) = P (Y ≤ y) , (4.3.2)

describes the probability of achieving a result less than or equal to y. Continuous

CDFs can be written as

F (y) =
∫ y

−∞
f(t) dt , (4.3.3)

for probability density function f(t).

For a specific confidence level, αcrit, the critical value xcrit is defined for when the

CDF has value F (xcrit) = αcrit, such that xcrit = F−1(αcrit) for the inverse of the

cumulative function [28].

The statistical test used later in section 6.6 will now be described. The Poisson

distribution for observing k events when expecting λ number of events is given by

P (k, λ) = λke−λ

k! . (4.3.4)

The discrete cumulative Poisson distribution is found by summing from 0 to k events,

F (k, λ) = P (K ≤ k, λ) =
⌊k⌋∑
x=0

λxe−λ

x! = Γ(⌊k + 1⌋, λ)
Γ(⌊k + 1⌋) , (4.3.5)

for the upper incomplete gamma function,

Γ(k, λ) =
∫ ∞

λ
tk−1e−tdt , (4.3.6)
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and the gamma function,

Γ(k, 0) = Γ(k) =
∫ ∞

0
tk−1e−tdt . (4.3.7)

For positive number of expected events (λ > 0) and k > 0, the regularized upper

incomplete gamma function is constructed,

Q(⌊k⌋, λ) = Γ(⌊k⌋, λ)
Γ(⌊k⌋) = 1

Γ(⌊k⌋)

∫ ∞

λ
t⌊k−1⌋e−tdt =

⌊k−1⌋∑
x=0

λxe−λ

x! . (4.3.8)

Here the relationship between the sum of Poisson probabilities is given in terms of

incomplete gamma integrals (see proof in Appendix. C) [76].

The probability for observing both µS signal events from New Physics and µB SM

background events,

αµS+µB
= PµS+µB

(X ≤ Xobs) , (4.3.9)

is given by the probability of the results of a statistical test X being less than or equal

to the observed value Xobs. For example, using the Poisson distribution described

above, the probability of observing less than or equal to µB events when expecting

µB + µS events is given by

α = Γ(⌊µB + 1⌋, µB + µS)
Γ(⌊µB + 1⌋) = Q(⌊µB + 1⌋, µB + µS) , (4.3.10)

which can rearranged to get an expression for µS,

µS = Q−1 (⌊µB + 1⌋, α) − µB , (4.3.11)

where Q(a, z) is the regularised incomplete gamma function. For the critical value

αcrit, the critical number of signal events, (µS)crit, needed for µB+µS to be statistically

different from µB is found. Hence, the confidence level (CLµS+µB
= 1 − αµS+µB

) is

used to calculate exclusion limits and sensitivity projections [77].
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4.4 Current Limits & Projections

Having presented the procedures for searching for dark matter in collider experiments

and how these are used to find exclusion limits and projections, the current and

projected results for the three dark matter models described previously will be

presented.

Dark Photon

Figure 4.9 displays the current exclusion limits on the mixing parameter ϵ as a

function of the dark photon mass mA
′ for various past, current, and future experi-

ments. The grey regions have already been excluded by past experiments, whereas

the coloured regions are projections from currently running experiments. The dashed

Figure 4.9: Current limits and projections on a minimal dark
photon with mass mA

′ and kinetic mixing ϵ (from [78]).
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lines are projections for experiments proposed to start operations before 2032, while

the dotted grey lines are proposed for after 2032. Experiments bounded from both

above and below, like “FASER(2)” in light pink or “Belle II (displaced)” in orange,

are looking for long-lived particles with displaced vertices. Hence, a sufficiently large

decay length is needed in order to distinguish the decay from being prompt, but the

searches are limited by both sensitivity and finite detector volume for longer decay

lengths. It can be seen that the sensitivity drastically drops for masses above 1 GeV,

where the current best limits are found at Belle II for prompt searches. This region

of parameter space requires detectors located at key distances from the IP in order

to acquire the correct mass-coupling correlation to detect displaced vertices.

Axion-Like Particles

Figure 4.10 displays the Current limits and projections on the ALP coupling to

photons (|gaγγ| = | 4
fa
cγ|) as a function of the ALP mass ma. Coloured regions

and solid lines are experimentally excluded, whereas dashed and dotted lines are

projections. The grey regions are mainly from astrophysical data such as restrictions

from big bang nucleosynthesis (BBN) [5]. BBN is when the production of lighter

Figure 4.10: Current limits and projections on ALPs with coupling
to photons, see text for detail (from [54]).
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nuclei began, which can be significantly disrupted by the injection of particles from

decay of DM particles, where the sequence of processes in BBN and their ratios

are altered [79]. The exclusion limit from BBN is also applicable for HNLs, see

figure 4.11, and have been produced for dark photons [80]. Similarly to the limits

on the dark photon coupling, one can distinctly differentiate between the displaced

vertex and prompt searches, see “Belle II-3 γ” in cyan compared to the blue “SHiP”

results. It is worth noting that for these limits and projections, one assumes that all

other ALP couplings are negligible, varying only one coupling and the ALP mass.

For exclusion limits on the ALP-fermion and ALP-gluon couplings see Appendix D.

Heavy Neutral Leptons

Figure 4.11 displays the current limits and projections on the HNL mixing with

electron neutrinos (|Ue|2), where the coupling to muon and tau neutrinos are assumed

negligible. For muon- and tau-dominance see Appendix D. The colour-coding is the

same as the ALP limits described previously in Figure 4.10. It can again be seen

that there remains a large area of unexplored parameter space above 5 GeV. The

dashed line for “seesaw” has |Uα|2 =
√

∆m2
atm/mHNL and is found from the “naive

seesaw type I prediction” [54]. Here ∆matm is the difference in mass between the

two lightest mass eigenstates of atmospheric neutrinos [81], which are produced in

interactions between the Earth’s atmosphere and incoming cosmic rays [2].

4.5 Conclusion

Here, a range of models and production mechanisms for dark matter were intro-

duced, with a focus on portals. In particular, the models of dark photons, axion-like

particles, and heavy neutral leptons are presented, together with their current exclu-

sion limits and projections. These show areas of parameter space yet to be explored,

combinations of coupling parameters and masses which current detector designs

cannot reach.
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Figure 4.11: Current limits and projections on minimal HNL models
for electron-dominated mixing (from [54]).

Extending the New Physics searches at colliders from the previous chapter, the

specifics of dark matter searches in colliders were discussed. Given the lack of New

Physics observed in experiments thus far, a statistical method for creating exclusion

limits and sensitivity projects were demonstrated.

When producing these limits and projections, many assumptions are made. If the

dark matter model contains more than one variable, one has to either keep all but

one static using pre-set values, or perform scans varying more than one parameter.

The use of simplified models, such as portals, addresses this, but in chapter 6 an

alternative method to reduce the number of parameters is presented.

The particle detectors, Belle II and ATLAS described in sections 3.3 and 3.4, were

not build with the discovery of dark matter in mind. They mainly focus on prompt

decays at the interaction point, though have over the years increasingly improved the

searches for displaced vertices. But the detectors at colliders have finite radius, and

thus a long-lived particle can escape the detector undetected. In the next chapter,

this issue will be addressed.
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ANUBIS Sensitivity Studies

5.1 Introduction

The finite dimensions of detectors at particle colliders limits their reach for long-lived

particles with small coupling constants and light masses. In this chapter, a solution

to extending the reach of the ATLAS detector, described in section 3.4, is presented.

AN Underground Belayed In-Shaft search experiment (ANUBIS) aims to detect

particles decaying outside the limitations of ATLAS but still inside the surrounding

cavern.

Searches at ATLAS have a limited sensitivity to LLPs, as seen on the exclusion

plots presented in section 4.4. Due to the light masses of the LLPs, the remaining

center-of-mass energy results in large amounts of noise from pile-ups in each event.

Figure 4.11 displays the ATLAS searches for an electron-dominated HNL, where

the prompt decays start at around 10 GeV and displaced vertex searches around

2 GeV. The reach for the latter is complementary to the LLP detectors (such as

MATHUSLA200 [73] and SHiP [67]), though the sensitivity is significantly reduced.

The LLP detectors have shielding from both the materials, such as air or earth,

between the detector and the interaction point, and from the main detector they are

associated with. Hence, noise is stopped before reaching the detector, resulting in

much cleaner signals and therefore increased sensitivities.
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The rest of this chapter is organised as follows. Section 5.2 describes the ANUBIS

detector layout and implementation, and section 5.3 briefly presents previous studies

of the detector. The ongoing development of the software for the sensitivity studies by

the ANUBIS collaboration is described in section 5.4. Finally, the current ANUBIS

studies and the future of these are discussed in sections 5.5 and 5.6, where the models

for the long-lived particles considered are outlined.

5.2 The ANUBIS Detector

The ANUBIS experiment was originally proposed to be located in the service shaft

above ATLAS, left panel of Figure 5.1, where four tracking stations are located

vertically in the shaft [82]. Subsequently, it was proposed to install components

along the ceiling of the cavern (right panel of Figure 5.1), or a combination of the

shaft and ceiling configurations. Figure 5.1 displays the ATLAS detector (mostly

in blue) and its surrounding underground cavern, together with the LHC beampipe

on the left panel. The two ANUBIS configurations can be seen in red (left) and

orange (right). The ceiling configuration includes two disks at the entrance to each

of the two service shafts, which can be removed for inspections and down-time of

the experiment [83].

The reason for the change in detector configuration was mainly due to concerns of

Figure 5.1: ANUBIS configurations for (left) the service shaft
(from [83]), and (right) ceiling (from [84]).
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background events. For example, when particles hit the wall material at the entrance

to the shaft, they create showers of particles which will interfere with the detection

of signals at ANUBIS. Additionally, the new ceiling configuration presents improved

sensitivity and acceptance in comparison to the shaft configuration. This is due

to the larger solid angle coverage as the ceiling tracking stations are closer to the

interaction point of ATLAS compared to the shaft ones [48].

Currently, a prototype, proANUBIS, has been installed in the ATLAS cavern and is

taking data in order to estimate the backgrounds, verifying the detector design and

its operation during data-taking. The detector consists of layers of tracking stations,

see Figure 5.2 where the design of proANUBIS is depicted [85]. Each tracking station

consist of Resistive Plate Chambers (RPCs), which are parallel plates separated by a

narrow gap filled with gas. An electric field is applied across the plates, and therefore

when charged particles pass through they ionise the gas which subsequently release

electrons [28]. As the RPCs rely on the incoming particle being charged, ANUBIS

is currently unable to detect neutral particles. The RPCs are currently installed in

the muon spectrometers in ATLAS, their production is thus already undergoing and

the production of the RPCs needed for ANUBIS is easy [82].

The inclusion of several layers allows for better particle detection and vertex recon-

struction, as seen in Figure 3.7. The prototype tracking stations have an area of

Figure 5.2: Design of the proANUBIS detector consisting of three
layers of tracking stations seen in red.
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1 m × 1.8 m separated by approximately 0.5 m. Each tracking station will consist

of up to three layers of tracking material, which allows for better trajectory recon-

struction. The bottom tracking station of proANUBIS has three layers whereas the

middle has one, and the top has two [85]. For further detail of the detector design

see [48,82,85].

The full ANUBIS detector is located approximately 20m from the ATLAS interaction

point and is therefore sensitive to LLPs with lifetimes 10−1 m < cτ < 106 m [85],

extending the reach of ATLAS beyond the 7.5m limitation described in section 3.4.

ANUBIS proposes a low-cost extension to the ATLAS detector making use of existing

infrastructure such as the service shaft and ceiling, as well as existing technology

for its tracking detectors. The proximity to ATLAS provides ANUBIS with a large

angular coverage and therefore a large detection volume, together with the possibility

of integrating ANUBIS with the ATLAS trigger system; signals at ANUBIS will be

able to be timed with the signals observed in ATLAS. This will provide an active-

veto system and can isolate events of interest, allowing ATLAS to keep events that

otherwise would have been thrown out [85].

5.3 Previous ANUBIS Studies

In the following section, some previous sensitivity studies done for the ANUBIS

detector are outlined. First, a study of a dark scalar model is described followed by

a study of heavy neutral leptons. For other studies of HNLs at ANUBIS see [86–89],

and [90] studies the lightest neutralino which is found in SUSY. Another study of

note is [91] that introduces inelastic dark matter, a pair of particles with almost

degenerate masses, which couple to the SM with a dark photon portal.
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5.3.1 Dark Scalar

The initial proposal of ANUBIS [82] presented the study of a dark scalar, as described

in Appendix A, produced in Higgs decay, h → SS. The projections were produced

for the service shaft configuration. These results were updated in the unpublished

Master’s thesis [48] for both the shaft and ceiling configurations. The Higgs is

considered to be produced in gluon fusion (ggF) and vector boson fusion (vbf), and

then decays into a pair of dark scalar particles, which are assumed to decay into

bb̄-pairs. These subsequently hadronise, forming charged jets detected by ANUBIS.

The number of LLPs produced,

NLLP = n ·NM · Br (M → nLLP) , (5.3.1)

is determined from the number of produced mother particles, NM = L σM for

luminosity L and mother particle production cross-section. Br (M → nLLP) is the

branching ratio of the mother particle into n long-lived particles. From this, the

number of LLPs detected at ANUBIS is calculated,

Ndetect.
LLP = Pdetect. ·NLLP · Br (LLP → X) , (5.3.2)

for the number of LLPs decaying into a set of final states X and the probability of

detection Pdetect.. The probability is acquired using Monte Carlo simulations, where

the percentage of produced LLPs reaching the detector is determined,

Pdetect. = Nobs.

Ntot.
. (5.3.3)

Here the fraction of the LLPs detected at ANUBIS (Nobs.) given a total number of

LLPs produced in the simulations (Ntot.) is found. The geometry of the detector

and the kinematic distributions of the LLPs are taken into account when Nobs. is

derived.

For both the studies of dark scalars, σM = σHiggs is the production cross-section

of the Higgs, and the branching ratio of the Higgs decaying into two dark scalars
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Br(H → SS) is considered for n = 2 dark scalars produced. As the dark scalars

are assumed to decay into only bb̄-pairs, Br (LLP → X) = Br
(
LLP → bb̄

)
= 1.

The sensitivity projections are found for High-Luminosity LHC (HL-LHC) with
√
s = 14 GeV and L = 3 ab−1. For varying dark scalar masses, the projections for

Br(H → SS) were found as a function of the decay length cτ , where τ is the LLP

lifetime [48,82]. See section 5.5 for further detail.

5.3.2 Heavy Neutral Leptons

The bounds seen in Figure 4.11 for ANUBIS (in dashed purple) are based on the

findings in [92], which performed sensitivity studies for HNLs. Through an imple-

mentation of a U(1)B−L symmetry and considering one HNL mixing with either the

Standard Model electron or muon neutrinos, the study calculates the projections for

ANUBIS. The outdated shaft configuration was used, the projections were found

assuming zero background events, and all visible decay channels for HNLs were

included.

The number of LLPs detected at ANUBIS was calculated using the same method as

described above for the dark scalar studies, but for a range of mother particles to-

gether with the HNLs decaying into all visible final states. The sensitivity projections

were found for HNLs produced by B and D mesons,

Br(B → LLP +X) · Br(LLP → vis.) and Br(D → LLP +X) · Br(LLP → vis.) ,

as a function of cτ . The study compares the projections for the HNL mixing angle,

|Uα|2 for α = e, µ, as a function of the HNL mass for several mother particles,

M ∈ {B− meson, D− meson, Z, t,W, h}, and the combined projections for ANUBIS

were compared to other LLP detectors.

Similarly to the studies described above, most sensitivity studies for detectors spe-

cialising in LLPs consider either one dominating decay channel with Br = 1, or all

decay channels equally by using the branching ratio into visible final states. This
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method, for example, does not take into account the additional parton showering

involved when hadrons are produced, as opposed to leptons. In order to address

this, the software development, which is a part of the ongoing sensitivity study of

the ANUBIS collaboration, will now be presented.

5.4 SET-ANUBIS

To create model-independent and reproducible sensitivity projections for the ANU-

BIS detector, it was decided to develop a software package, SEnsitivity sTudies for

ANUBIS (SET-ANUBIS). The aim of SET-ANUBIS is to allow any user to produce

sensitivity projections for any implemented LLP model with the ability to study

each individual production mode and decay channel/final state.

In Figure 5.3, an example LLP path is presented. The LLP is initially produced in

the ATLAS detector before travelling through it (dashed black line), then traversing

the cavern before decaying (dotted black line) into a jet of decay products that will

be detected by ANUBIS if charged (full black cone). To cover these individual stages,

the software is separated into five parts. First the input and implementation of LLP

models, which provides the foundation for the subsequent simulations of the LLP

production in ATLAS and resulting kinematic distributions. The next two stages are

the decays in the cavern and the detection of the final states in ANUBIS, providing

the number of signal events used to finally calculate the sensitivity projection.

The remainder of this section will focus on the individual parts of SET-ANUBIS,

particularly on the implementation and choice of dark matter models considered.

It is worth noting that SET-ANUBIS is still under development, and hence the

following sections describe the current structure of the software, but it is subject to

change.
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5.4.1 Dark Matter Model Input

In order to allow any user to find the ANUBIS sensitivity for any potential model,

one has to construct a model-independent and user-friendly software. With this in

mind, it was decided to use a Python runner script for the input and implementation

of the dark matter models which contain the LLPs considered. The main purpose

of the script is to produce a UFO model file [93] for a particular LLP model, and

derive the total width of the LLP alongside the widths of each production mode

and decay channel. These widths will subsequently be passed on to the simulation

softwares to calculate the appropriate branching ratios.

There are three possible options (and a combination of them) for the input of the dark

matter model will be available in SET-ANUBIS: a FeynRules model [30], individual

formula for decay widths of the LLPs in Python, and a number for the total width

of the LLP. The latter two are optional, whereas the first is required.

The FeynRules model is handled in Mathematica [94] and used to calculate the

branching ratios of the production modes of the LLP considered. This is necessary

Figure 5.3: Production at ATLAS (dashed), decay in cavern (dot-
ted), and detection at ANUBIS (full) of a long-lived
particle (Modified from [84]).
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as, when introducing a new particle which interacts with SM particles, one has to

consider how this changes the branching ratios of the SM particles. From the Feyn-

Rules model, the widths for the LLP decay channels can be derived and afterwards

exported to Python. Alternatively, formulas for the decay widths can be provided in

Python. Using either sets of formulas, the total width of the LLP as a function of its

mass and coupling constant(s) is derived. This is used to calculate the characteristic

decay length and displace the decay to be inside the cavern between ATLAS and

ANUBIS.

Additionally, one needs to consider the possibility of a wider dark sector where either

the LLP is a portal or several new particles interact with the SM. This is accounted

for by allowing the user to provide total widths, which will be used to rescale all

branching ratios calculated.

Using the example of heavy neutral leptons, the choice of using individual decay

width formula will be justified. The mass range for HNLs considered at ANUBIS is

0.1–10 GeV for which, as seen in section 4.2.4, all decays are mediated through W±

and Z0 bosons which are integrated out. Alone, this EFT lagrangian could be used

to create an UFO model. But for HNLs with masses below 1 GeV, the produced

quark pairs form mesons, and hence a modified EFT containing mesons rather than

quarks would have to be used. Above 2 GeV the quark pairs are free, and the initial

EFT can be used, whereas the intermediate range, 1 GeV < mHNL < 2 GeV, is more

complicated. Therefore, in order to fully represent the decays of HNLs, one has

to use at least two different UFO models and make a choice of how to interpolate

between the two. Calculating the branching ratios directly from the decay width

formulas prevents this.

For LLPs with more than one coupling to the SM, as seen in section 4.2.3 for ALPs,

both production and decay modes can be included or excluded through setting

couplings to zero. In general, it will be assumed that only one coupling needs to be

considered through the remaining couplings being negligible or constant.
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5.4.2 Production Simulations

The dark matter UFO model generated by Mathematica is passed to the simulation

for production of LLPs in ATLAS. For this it was decided to use both Pythia [35] and

MadGraph [36], though it is worth noting that MadGraph uses Pythia to handle the

parton showering and hadronisation. Both simulations softwares lack the ability to

have the production of LLPs through decays of mesons. Hence, with consent of the

SHiP Collaboration, the FairShip software [95] was modified in order to implement

the production and decay of mesons in Pythia.

Each production mode will be split into multiple parts; production cross-section for

the mother particle(s), the branching ratio of the mother particle(s) decaying into

the LLP, and the kinematic distribution of the LLP and potentially accompanying

particles. The production branching ratios are calculated by the simulation software

using the UFO model or the widths provided by the Python runner script.

The subsequent decay of the LLP in the cavern is done in Pythia, where the width

for each possible decay channel and the total width of the LLP is again provided

by the Python runner script. The branching ratio for each possible decay channel

is calculated by Pythia for the values of the LLP mass and coupling constant(s)

considered. By adding new decay channels for both mother particles and the LLP

with associated widths, Pythia calculates the branching ratios by either summing

over all decay channels or using a total width provided. This procedure allows for a

model-independent approach where a potential wider dark sector can be taken into

account.

As described in section 3.2.3, the simulation softwares (independent of the particular

generator) output the kinematic distributions of the final states of the processes

considered. These are passed to a python script which considers the ANUBIS

geometry and produces the number of signal events for the distribution. The script

is an extension of the work in [48].
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5.4.3 ANUBIS Geometry

When considering the detection of LLPs in ANUBIS, one has to take the formation

of jets into account. This is carried out in FastJet [96], where the final state particles

produced by Pythia are grouped into jets by jet clustering algorithms. There exists

different types of algorithms, though they generally cluster final state particles

together by their distance to surrounding particles compared to the distance to the

incoming beams. The most energetic particles are clustered first and neighbouring

softer particles are added to the jet up to the jet radius R [28].

Figure 5.4 displays the creation of two jets at the interaction point (primary vertex)

and a third, displaced jet at a secondary vertex due to the decay of a long-lived

particle. A signal at ANUBIS consists of one and only one jet hitting at least one

tracking station of the detector. The presence of any other jets near ANUBIS will

be categorised as a background event and neglected. The radius between the signal

and any other jet is defined, ∆R =
√

(∆η)2 + (∆φ)2 > 0.5, for pseudo-rapidity η,

see eq. (3.2.8), and azimuthal angle ϕ [48].

Additionally, the detection of the final state particles in the ANUBIS fiducial volume

Figure 5.4: Depiction of two jets from the primary vertex and a
displaced jet at a secondary vertex (from [97]).
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is implemented within SET-ANUBIS through a series of cuts on the energy, mo-

mentum, and angular distribution of the particles, to mention a few. Using cut flow

diagrams, the different production and decay channels can be studied in order to

determine the most important processes. In doing so, later detector efficiencies can

be incorporated, for example for the detection of a specific particle or grouping of

particles such as quarks or leptons. The cut flow diagrams visualise the reduction in

signal and background events for each cut introduced, allowing for the development

of cuts which remove the most background whilst keeping the signal events.

All together the ANUBIS geometry gives a total number of signal events which is

compared to an expected number of background events.

5.4.4 Sensitivity Projections

In order to find the sensitivity projection for ANUBIS, one needs an estimate of

the expected background. The shaft configuration had an expected number of SM

background events of 50, found using ATLAS muon spectrometer searches [82]. This

is updated for the ceiling configuration by rescaling the active volume,

Nevents-ceiling = Nevents-shaft ·
√
Vc
Vs

= 50 ·
√

3.2 ≈ 90, (5.4.1)

for Vc,s the active volumes of the ceiling and shaft configurations respectively (For

further detail see [48]).

The main Standard Model background arises from long-lived, neutral SM particles

such as the neutron (n0) and K-Long (K0
L), a long-lived, neutral kaon. As both

particles escape ATLAS without being detected, they can scatter off the atoms in

the air in the cavern, creating jets that can be detected by ANUBIS. The neutron

has a mean lifetime of 878.4 s whereas the K-Long has a much shorter lifetime of

5.116 × 10−8 s [2], thus their characteristic decay lengths (λ = cτ) are 2.633 × 1011 m

and 15.34 m respectively. The K-Long can therefore decay inside the cavern into

muons that act as a background to ANUBIS, but the background from neutrons is
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purely from scattering of air atoms [48].

In the future, a more thorough investigation needs to be carried out for the SM

background, using for example Monte Carlo simulations. When this analysis has

been carried out, it will inform and update the analysis of the importance of each

production and decay channel. Each has associated final state configurations which

will have differing backgrounds.

Sensitivity projections for the ANUBIS detector are calculated by rescaling the

number of signal events found for a certain value of the coupling constant(s) and

LLP mass, finding the coupling value for which 90 signal events are detected. For

LLP models with only one varying coupling constant, the rescaling is easily done as

the number of signal events is proportional to the coupling squared.

5.4.5 Software Overview

Having described each stage of SET-ANUBIS, the following section presents a general

overview of the software. Table. 5.1 shows the specifications for each module, where

the initial input of dark matter models is handled with a Python runner script and

UFO models using FeynRules in Mathematica, the main simulations of the events

are carried out in Pythia and MadGraph, and the final detection and acceptance in

ANUBIS is implemented in a Python script.

Component Software

Input Mathematica [94] & Python Runner Script
Simulations Pythia [35] & MadGraph [36]

ANUBIS Geometry & Python ScriptSensitivity Projections

Table 5.1: Overview of the softwares used for each stage of SET-
ANUBIS.

Figure 5.5 displays the flow diagram for SET-ANUBIS from theoretical inputs on

the left to the final sensitivity projection in the lower-right corner. The light blue
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Figure 5.5: Flow diagram for SET-ANUBIS with the contributions
from the author of this thesis highlighted by the red
box.

parallelograms represent input and output from modules seen in light orange rounded

squares. It can be seen here how each module interlinks with the others. Both the

calculations of width in Mathematica and the MadGraph/Pythia simulations will

rely on the same parameter input such that the final results are consistent. The

part of SET-ANUBIS which is the work by the author of this thesis is enclosed

in the red box seen in the Figure. This includes the implementation of FeynRules

models, production of UFO models, and calculations of branching ratios of both the

production and decay modes for the LLP. The SET-ANUBIS GitLab is available

upon request from the reader.

5.5 Current ANUBIS Studies

There are two approaches to sensitivity studies; how does the experiment compare

to others, and what is the experiment uniquely good at. It was decided to start

with producing the ANUBIS sensitivity to the benchmarks described by the Feebly-

Interaction Particles Group (FIPs) [7], such that the projections can be included on

the plots seen in section 4.4. Starting with updating the previous study of ANUBIS
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performance for heavy neutral leptons [92], as this used the outdated ANUBIS shaft

configuration, and the selection cuts for the detector has been updated.

5.5.1 FIPs Benchmark Models

The FIPs benchmarks consists of four models; dark photon, heavy neutral leptons,

dark scalar, and axions as described in section 4.2 and Appendix A. A brief outline

of the models can be found in Table 5.2. These benchmarks will briefly be presented

Dark Matter Model Particle Spin Coupling

Dark Photon Aµ 1 − ϵ
2 cos θW

F ′
µνB

µν

Dark Scalar S 0
(
µSS + λSS

2
)
H†H

ALPs a 0 a
fa
FµνF̃

µν , a
fa
Gi,µνG̃

µν
i , ∂µa

fa
ψ̄γµγ5ψ

Heavy Neutral Leptons N 1
2 FLHN

Table 5.2: Long-lived particle models for FIPs benchmarks

here, for further detail see [7]. Due to the ANUBIS detector’s construction, not all

benchmarks are relevant for the sensitivity study. For all benchmarks considered, it

was decided to keep the parameter space simple, and if possible only consider two

parameters for each; the mass of the LLP and a coupling constant.

For the simplified kinetic mixing model of a dark photon vector portal, see sec-

tion 4.2.2, benchmark BC1 is defined where the mass and coupling constant are

the only two parameters. Introducing a dark sector, for which the dark photon is a

portal, with at least one particle of mass mχ and coupling constant αD = g2
D/(4π),

two more benchmarks are available (BC2 and BC3). These will not be considered

any further as the dark photon predominantly decay into the dark sector, which is

undetectable.

The scalar portal has a new scalar dark particle mixing with the SM Higgs boson

with linear µSSHH† and pair λSS2HH† couplings. The specifics of the model can
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Vector Portal

BC1 Minimal dark photon model {mA
′ , ϵ}

BC2 Light dark matter coupled to dark photon {mA
′ , ϵ,mχ, αD}

BC3 Milli-charged particles {mχ, Qχ/e}
for mA

′ → 0 and |Qχ| = |ϵgDe|

be found in Appendix A. Defining mixing angle,

θ = νµS
m2
H −m2

S

, (5.5.1)

two benchmarks for λS = 0 (BC4) and λS > µS (BC5) are found. The FIPs group

recommends the use of λS ≃ 5 × 10−4 for BC5. The second benchmark (BC5) is the

foundation for the dark scalar study in [48] and [82].

Scalar Portal

BC4 Higgs-mixed scalar {mS, θ}
BC5 Higgs-mixed scalar with large pair-production {mS, λ, θ} for large λ

All three possible mixings between a heavy neutral lepton and the three SM neutrinos,

see section 4.2.4, are available at ANUBIS, where the three benchmarks (BC6-8)

assume one mixing dominating over the two others.

Neutrino Portal (One HNL)

BC6 Electron dominance {mHNL, |Ue|2}
BC7 Muon dominance {mHNL, |Uµ|2}
BC8 Tau dominance {mHNL, |Uτ |2}

The ALP model presented in section 4.2.3 has three main couplings to photons,

gluons, and fermions respectively, for which three separate benchmarks (BC9-11)

are created with only one coupling being non-zero. For simplicity, it is assumed that

the ALP couples equally to leptons and quarks cl = cq = cf . Currently, the ANUBIS

detector will not be able to detect photons and gluons, and hence BC9 and BC11

are not considered. However, there is the possibility for photons to be detected in

the future.
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Axion "Portal"

BC9 Photon dominance {ma, cγ}
BC10 Fermion dominance {ma, c

−1
l , c−1

q }
BC11 Gluon dominance {ma, c

−1
G̃

}

Having presented the FIPs benchmarks, the current developments on the sensitivity

studies of HNLs at ANUBIS will be reported.

5.5.2 Heavy Neutral Lepton Study

The development of SET-ANUBIS is being carried out with the study of HNLs as a

prototype. At the finalisation of the HNL sensitivity projections, it is expected that

the SET-ANUBIS software will be functionally complete. Additional developments,

such as the modelling of the detector backgrounds, are expected to be carried out

later. This will allow for the production of projections for the other FIPs benchmarks

described above shortly after the HNL results.

At the time of the writing of this thesis, the sensitivity projections for HNLs are not

finalised, but are expected to be soon. Instead, an overview of the current progress

will be presented. Using FeynRules [30] and UFO model files provided by [69] and

the decay widths described in Appendix B, the heavy neutral lepton model is fully

implemented. The widths of production and decay modes as functions of HNL mass

and mixing angles Uα have been derived. The simulations of production of HNLs

have been completed in MadGraph, and the mesonic production implemented in

Pythia. Almost all ANUBIS detection and geometry cuts are incorporated, together

with the calculations of the sensitivity projections. The remaining tasks are to ensure

communication between the different modules, and the finalisation of the acceptance

cuts on jets in the detection at ANUBIS.

The previous HNLs sensitivity study [92] found that production through meson decay

were the largest contributions, followed by the Z and W bosons, and lastly the top

quark [92]. This is expected to change when considering the more transverse ceiling
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Figure 5.6: HNL projections for ANUBIS for HNL mixing |VαN |2
with α ∈ {e, µ} and HNL mass mN (from [92]).

configuration, compared to the service shaft. Therefore, each production channel

should be analysed to determine the updated contributions for each.

As previously seen in Figure 4.6, at varying HNL masses different decay channels

dominate. The purely leptonic decay channels will induce significantly less showering

and hadronisation, and therefore presents as “cleaner” final states. The contributions

for each grouping of final state will be analysed to better understand the detector

performance.

At the finalisation of the HNL study, the projection for ANUBIS from [92], seen in

Figure 5.6, will be updated for the ceiling configuration. The projection displayed is

for one HNL which mixes with either electron or muon neutrinos for |VαN | = |Uα|.

The grey region shows already experimentally excluded parameter space, whereas

the coloured lines are projections from DUNE [98] and other LLP detectors such as

MATHUSLA [99].

For HNL masses ≫ mµ,e, the masses of electrons and muons can be assumed equal,

and the production and decay rates for electron and muon mixing are therefore

mostly the same. With the assumption that ANUBIS will have approximately

equivalent efficiencies to the detection of electrons and muons, the sensitivity to

electron- and muon-mixing can be taken to be equal. The mixing with tau-neutrinos



114 Chapter 5. ANUBIS Sensitivity Studies

is not considered due to the additional decay and showering from the tau mass being

significantly larger than the other two leptons. See [92] for further detail.

Figure 5.7 displays the branching ratio of Higgs to two dark scalars, Br(H → SS),

as a function of the decay length cτ . As described previously in section 5.3, the two

scalars are assumed to decay solely into bb̄-pairs [48]. It can be here seen how the

ceiling configuration has a significantly better sensitivity than the shaft configuration.

Here “PX14” refers to the PX14 installation shaft in ATLAS, the right service shaft

on the left panel of Figure 5.1. The difference between the “cavern or shaft decay”

and “shaft decay” projections is the restriction that the latter has the LLP decay

inside the service shaft, whereas the first includes the possibility of decays in the

cavern. The projections are found for 4 (dashed lines) and 90 (full lines) signal events

for no background events and the expected number of background events from the

ATLAS muon spectrometer as described earlier. The width of the projections, best

seen around cτ ≈ 105 m, is given by the statistical uncertainty given by the standard

Figure 5.7: ANUBIS projection for branching ratio of Higgs to two
dark scalars, mLLP = 10 GeV, and cτ (from [48]).
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deviation of the Poisson distribution of generated events with mean Nobs, σ =
√
Nobs.

The projected limit for HL-LHC of the Higgs decay into invisible particles is seen as

the shaded band across the top [48].

The ANUBIS sensitivity projections in Figure 5.6 were found for 3 signal events

where no background is assumed. This exact result is expected to improve for the

ceiling configuration, increasing the reach of ANUBIS. But as the expected sensitivity

projection for ANUBIS will require 90 signal events, it is not certain whether the

projections found with SET-ANUBIS will increase the sensitivity found in [92].

5.6 Outlook

When the initial sensitivity study of ANUBIS has been finalised for the FIPs bench-

marks, the detector will be able to easily be compared to other detectors specialising

LLPs. The next step is to consider specific processes and LLP models that ANUBIS

has unique sensitivity to. One example of such process is the decay of a Higgs boson

into an axion-like particle and either a Z boson or a photon, h → ALP + Z/γ. The

initial Higgs production and decay are prompt, and the photon or following prompt

decay of the Z boson will be detected by ATLAS. Currently, the ALP in this pro-

cess will show up purely as missing energy, but ANUBIS proposes the possibility of

detecting the ALP decay products. With the integration into the active-veto system

of ATLAS, ANUBIS will be able to connect the photon or prompt Z decay with the

displaced decay of the ALP in the cavern. Therefore, the otherwise missing energy

is correctly assigned to the ALP, and the {h ALP Z} and {h ALP γ} couplings can

be studied.

5.7 Conclusion

The ANUBIS detector is a low-cost extension to the ATLAS detector, increasing

the reach for long-lived particles with small masses and coupling constants. The



116 Chapter 5. ANUBIS Sensitivity Studies

proposals for the designs of the detector were described, the service shaft and ceiling

configurations, together with the prototype proANUBIS. An overview of the previous

studies of the ANUBIS detector for heavy neutral leptons and dark scalars was

included, summarising the points which SET-ANUBIS seek to address such as the

individual study of the LLP decay channels.

The current status of the sensitivity studies of ANUBIS is the development of the

SET-ANUBIS software by the ANUBIS collaboration. The software implements

arbitrary LLP models, like the ones described in the previous chapter, and creates

the sensitivity projections for the detector. It performs simulations of production in

ATLAS, travel and subsequent decay in the surrounding cavern, and final detection

by ANUBIS. Aiming to increase the complexity and accuracy of the sensitivity pro-

jections, SET-ANUBIS allows for the study of individual production and LLP decay

modes. The initial plans for SET-ANUBIS are updating and creating projections

for the FIPs benchmarks, which are presented.

The ANUBIS detector relies on the LLPs produced to decay into visible, charged final

states. Hence, if the LLP is a portal to a dark sector into which the LLP dominantly

decays, ANUBIS will not be able to detect anything. The studies presented above

make theoretical assumptions about models and parameters; introducing one LLP

and varying one coupling constant at a time. These assumptions are necessary when

performing searches for dark matter with current detector designs. Therefore in the

following chapter, a novel method to distinguish different dark matter models in

missing energy searches is presented.
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How to measure the spin of

invisible states in e+e− → γ + X

6.1 Introduction

The ANUBIS detector addresses the noise present in proton-proton collisions by

being placed away from the interaction point. But larger actions can be taken to

reduce noise can be done; using a lepton collider. In particular for missing energy

searches, where the dark matter particle decays into a dark sector, the signals become

swamped by the background and noise at hadron colliders.

It is here discussed how one can take advantage of the clean environment at e+e−

colliders and use the angular distribution of the final state photons, polarised beams,

and final state photon polarisation to identify the spin and the coupling structure of

two invisible states; the spin 1 dark photon and spin 0 ALPs as introduced previously.

Searches for missing energy at electron positron colliders with a final state photon,

e+e− → γ+X, are one of the most sensitive probes for invisible states X with masses

in the range 0.1 − 9 GeV. The existence of such a signal, the measurement of one

jet plus missing energy, is not possible in a pp collider. With unequal beam energies,

E
e

+ = 4 GeV and E
e

− = 7 GeV, and a centre-of-mass energy of
√
s = 10.58 GeV,

Belle II will provide a valuable opportunity to search for these signatures [100].
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This search provides a complimentary search to the ones performed at ANUBIS.

For ALPs such a search has been proposed first by Wilczek [101] and searches have

been performed with CLEO [102] and BaBar [103,104]. For Belle II, projections are

available [105–107]. A search for dark photons has been performed by BaBar [108]

and a projection for Belle II can be found in [100]. Each study assumes the existence

of one dark matter particle, and interpret searches for missing energy and a single

photon as a signal in that model. The search strategy proposed in [100] is extended,

and observables, that can distinguish between the different models in the case where

a signal is observed, are identified.

The rest of this chapter is organised as follows. In section 6.2, the dark photon

and axion-like particle Lagrangians are introduced, and in section 6.3 how the

differential cross-sections with and without polarised beams can be used to identify

the production process is discussed. In section 6.4, simulations and analyses for

signal and background are presented, and an improvement to the search strategy

is proposed. The implications of measuring the photon polarisation are discussed

in section 6.5, and in section 6.6 the sensitivity reach for future runs of Belle II is

presented.

6.2 ALP & Dark Photon Lagrangians

Two minimal models of invisible states, that can be produced via e+e− → γ + X,

that carry either spin 1 or spin 0 will be compared. Here the dark photon and

axion-like particle are considered. As seen in section 4.2.2, the relevant terms for

the spin 1 field or dark photon are given by

L ⊃ −gXψ̄γµψXµ − m2
X

2 XµX
µ , (6.2.1)

where mX is the mass of the dark photon and gX denotes its coupling strength to

fermions. In the case of kinetic mixing one can write gX = ϵ eQψ, where ϵ is the

coefficient of the kinetic mixing term of the electromagnetic field strength tensor
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Fµν and the dark photon field strength tensor, and Qψ is the electric charge of the

fermion ψ in units of the electron charge e [109–112]. Interactions due to mixing

with the Z boson are suppressed for masses mX ≤ 10 GeV, but can play a role for

dark photons with masses closer to the Z-pole [58, 113].

In the case of the spin 0 particle, an ALP a is considered with interactions given by

L ⊃ cf
∂µa

2f f̄γ
µγ5f − cγ

a

fa
FµνF̃

µν − m2
a

2 a2 , (6.2.2)

where, as described in section 4.2.3, cf and cγ are coupling constants, and ma is the

mass term, though mX is used to denote the mass of the new particle when referring

to both the dark photon and ALPs. The coupling to gluons will not be included as,

at tree level, it does not appear in e+e− → γ + ALP processes.

The main differences between the models are their spin, the coupling structure to

fermions, and the ALP coupling to photons. The production of the dark photon

only occurs though couplings to the electron, whereas for the ALP there are two

contributions. The corresponding Feynman diagrams are shown in Figure 6.1.

In section 4.2.2, it was shown that dark photons in e+e− → γ + X at Belle II

will decay within the detector if only considering decays back into SM particles.

Therefore, in all cases the dark photon and ALP are considered not to decay into

SM particles on collider scales, e.g. by introducing a dominant decay into dark

sector with a set of invisible particles for which the invisible states act like portals.

Otherwise, for the mass range considered here with masses up to mX = 9 GeV, both

the dark photon and ALP decay back into electron positron or photon pairs. Due

Figure 6.1: Different contributions to the production of ALPs (left
and middle) and dark photons (right) at an e+e− col-
lider.
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to this, throughout this chapter the state X in the process will be referred to as

an invisible state rather than a dark matter particle. Neglecting subleading terms

suppressed by the electron mass, as seen in eqs. (4.2.23), (4.2.35), and (4.2.36), the

corresponding decay lengths for the three models read

ℓ(gX) =
(
g2
XmX

12π

)−1

≈ 7 × 10−15
[

1
mXg

2
X

]
GeVm ,

ℓ(ce) =
(
c2
emam

2
e

8πf 2
a

)−1

≈ 2 × 10−8
[
f 2
a

mac
2
e

]
GeV−1m ,

ℓ(cγ) =
(
c2
γm

3
a

4πf 2
a

)−1

≈ 2 × 10−15
[
f 2
a

m3
ac

2
γ

]
GeVm . (6.2.3)

6.3 Angular Distributions

In the following, it will be discussed how the angular distribution of the final state

photon in the process e+e− → γ +X can be used to discriminate between the dark

photon and ALP final states as well as between the ALP coupling to electrons and

photons. In general the amplitude for the process,

e+(p1, λe+) + e−(p2, λe−) → γ(q1, λγ) +X(q2, λX) , (6.3.1)

can be written as M = Mµϵ
µ(q1, λγ) for photon polarisation vector ϵµ and helicities

|λ
e

±| = 1
2 , |λγ| = 1, |λX | = 0 for the ALP, and |λX | = 1 for the dark photon,

respectively. As described in section 2.2.4, the helicity and chirality of a massive

fermion are not the same, and hence the helicity of the incoming fermions will

distinctly be referred to in this chapter.

The partial amplitude,

Mµ = v̄(p
e

+ , λ
e

+)Γµu(p
e

− , λ
e

−) , (6.3.2)

is written for the current of the interaction Γµ. Using eq. (2.2.24) for massless

fermions, it is found that the amplitude is proportional to two possible combinations

of incoming helicities, see Table. 6.1.
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Equal Beam Helicities Opposite Beam Helicities
λ
e

− = λ
e

+ = λ λ
e

− = −λ
e

+ = λ

1
4(1 + 2λ

e
+ γ5)(1 + 2λ

e
− γ5) 1

2(1 + 2λ γ5) 0

1
4(1 + 2λ

e
+ γ5)(1 − 2λ

e
− γ5) 0 1

2(1 − 2λ γ5)

Table 6.1: Combinations of incoming beam helicities for |λ| = 1
2 .

From these one finds that axial and vector interactions, Γµ ∈ {γµ, γµγ5}, require

the electron and positron helicities to be opposite sign, as otherwise the amplitude

goes to zero. Whereas for (pseudo-)scalar, and tensor, Γµ ∈ {1, γ5, σµν = i
2 [γµ, γν ]}

interactions, the helicities signs must be equal. For massive leptons, contributions

from both opposite and equal sign helicities will be present, but the massless case

will dominate due to mass suppression of O(m2
e/s).

In order to calculate the amplitude, the momenta of the particles are defined as

pµ1 =
(
E1, 0, 0,−

√
E2

1 −m2
e

)
, (6.3.3)

pµ2 =
(
E2, 0, 0,

√
E2

2 −m2
e

)
, (6.3.4)

qµ1 = Eγ (1, cosϕsin θlab, sinϕsin θlab, cos θlab) , (6.3.5)

qµ2 = pµ1 + pµ2 − qµ1 , (6.3.6)

where Eγ is the photon energy in the laboratory frame, θlab is the angle between

the photon and incoming beams, and ϕ between the photon and the x-axis in the

transverse plane. At Belle II, the incoming beams are angled 83 mrad with respect

to each other, with the z-axis defined with equal distance to the beams [100]. This

distinction is assumed to have little effect on the results presented in this chapter,

and hence it is assumed that the beams are antiparallel along the z-axis with energies

E1 and E2 respectively.

In the following, the derivations for the amplitudes for the dark photon and ALP

contributions will be described.
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Dark Photon

As seen in Figure 6.1, the amplitude for the dark photon production has two contri-

butions,

M1 = e gX
t−m2

e

ϵµ(q1, λγ)ϵν(q2, λX) v̄(p2, λe+)γµ(��p1 −��q1 +me)γνu(p1, λe−) , (6.3.7)

M2 = e gX
u−m2

e

ϵν(q1, λγ)ϵµ(q2, λX) v̄(p2, λe+)γµ(��p1 −��q2 +me)γνu(p1, λe−) , (6.3.8)

resulting in an amplitude given by

|M|2 = |M1|2 + |M2|2 + M∗
1M2 + M1M∗

2 . (6.3.9)

Using FeynCalc [114], the matrix amplitude squared is calculated with the momenta,

spin, and polarisation vectors as described in section 2.2.4. As the dark photon is

undetectable its spin will be summed over using eq. (2.2.31) for its mass mX . The

photon helicity is included in the calculations for future use in section 6.5.

The leading term O(m0
e) of the final total amplitude is

|M|2 = − g2
Xe

2 csc2 θ

2s (τX − 1)2

 (6.3.10)

β2
Xλγ(2λe− − 2λ

e
+)
[
E+E−(cos(2θ) + 3) +

(
4E2

+ − 2s
)

cos θ
]

− 2(4λ
e

−λ
e

+ − 1)
[
−2β2

XE+E− cot θ + sin θ
(
β2
X

(
E2

+ − s

2

)
− sτX

)

− β2
X

(
2E2

+ − s
)

csc θ
] ,

where θ is the polar angle in the lab frame, and s, t, and u are the Mandelstam

variables defined in eq. (3.2.6),

E± = E1 ± E2 , τX = m2
X/s , and β2

X = 1 + τ 2
X . (6.3.11)

The photon energy Eγ has been re-written as a function of mX , θ, and E1,2 in order

to simplify the expression.

From the amplitude, two separate expressions containing the incoming fermion

helicities emerge; (λ
e

− −λ
e

+) and (4λ
e

−λ
e

+ − 1) which both go to zero for λ
e

+ = λ
e

− .
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Therefore, as described earlier, due to the vector interaction the helicities are required

to be opposite and any dependence on the equal helicity part of the amplitude is of

order O(m2
e/s).

The effects of the polarisation of the incoming beams on the amplitude is investigated

using the ratio given by

R
(
P
e

− , P
e

+

)
=

|M|2
(
αγ = 0

)
|M|2

(
αγ = P

e
± = 0

) , (6.3.12)

where beam polarisations P
e

± are defined in eq. (2.6.13) and αγ is the degree of

photon polarisation in eq. (2.6.14) . It is found, using eq. (6.3.10), that R
(
P
e

− , P
e

+

)
=

(1 − P
e

−P
e

+) at O(m0
e), and the cross-section is maximally enhanced for fully oppos-

itely polarised beams.

Axion-Like Particles

As seen in Figure 6.1, the matrix amplitude of the ALP production has two t/u-

channel contributions, eq. (6.3.13) and (6.3.14), and a third s-channel contribution

coming from the photon coupling, eq.(6.3.15).

M1 = e ceme

fa
(
t−m2

e

) ϵ∗
β(q1, λγ) v̄(p2, λe+)γ5(��p1 −��q1 +me)γβu(p1, λe−) , (6.3.13)

M2 = e ceme

fa
(
u−m2

e

) ϵ∗
β(q1, λγ) v̄(p2, λe+)γβ(��p1 −��q2 +me)γ5u(p1, λe−) , (6.3.14)

M3 =e cγ
fa s

gµν ϵ∗
β(q1, λγ) v̄(p2, λe+)γµu(p1, λe−)ϵνβρσ(p2 + p1)ρ(q1)σ . (6.3.15)

The ALP coupling to fermions is proportional to me, hence its contribution will at

leading order be proportional to m2
e. The interference between the two channels

is suppressed by a factor of me and is found to be negligible. Following the same

procedure as the dark photon calculations, the amplitude is derived accounting for

contributions from ALP coupling to electrons, eq. (6.3.16), ALP coupling to photons,

eq. (6.3.17), and the interference between them, eq. (6.3.18).
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|M|2e = m2
ec

2
ee

2 csc2 θ

2f 2
a s(τX − 1)2 (E− cos θ + E+)2 (6.3.16)[

(λ
e

−λ
e

+ + 1)(1 + τ 2
X) + λγ(λe− + λ

e
+)
(
τ 2
X − 1

)]
,

|M|2γ = c2
γe

2s(τX − 1)2

32f 2
a (E− cos θ + E+)2 (6.3.17)2λγ(λe− − λ

e
+)
[
4E2

2 cos θ +
(
E2

+ − s

2

)
(cos θ + 1)2

]

+ (λ
e

−λ
e

+ − 1)
[
4E2

2 cos θ −
(
E2

+ − s

2

)
(cos θ + 1)2

] ,

|M|2i =cγcee
2me csc θ

2f 2
a s

2 (6.3.18)λγ
[
s(λ

e
− − λ

e
+)
(
E2

+ − s

2

)
(cos θ + 1)2(1 − τX)

− 1
2s

2(λ
e

− + λ
e

+)(τX + 1) sin2(θ)
]

− E2
2 [cos(2θ) + 3]

+ s(τX − 1)
[
λ
e

−λ
e

+(E− + E+ cos θ)2 − (E− cos θ + E+)2
] .

Here the amplitudes squared are displayed with their relative leading order in the

electron mass; O(m0
e) for the ALP-photon coupling, O(m2

e) for the ALP-electron

coupling, and O(m1
e) for the interference. The leading order terms for the contri-

bution from the ALP coupling to photons require the incoming fermions to have

opposite helicity, and any contributions from equal helicities are of O(m2
e). Unlike

the dark photon and s-channel contribution, the t/u-channel contribution from the

ALP coupling to fermions requires equal beam helicities, where opposite helicities

only give rise to terms O(m4
e). Hence, with 100% polarised beams, where the heli-

city of both incoming particles is fixed, one can to leading order approximation

distinguish between the two ALP couplings.

Using eq. (6.3.12) for the effect of the polarisation of the incoming beams, and

the amplitudes squared eq. (6.3.16) and (6.3.17), the s-channel contribution gives
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R
(
P
e

− , P
e

+

)
= (1−P

e
−P

e
+) at O(m0

e), while the t/u-channel contribution gives rise

to R
(
P
e

− , P
e

+

)
= (1 + P

e
−P

e
+) at O(m2

e), both with little to no corrections from

higher orders. The full ALP amplitude squared has a more complex structure with

the two main components, from each ALP coupling, having opposite polarisation

dependencies. For similarly sized t/u- and s-channel cross-sections, one can control

the ratio of the two channels using the beam polarisations.

The two ALP couplings have different dependencies on the ALP mass. The s-channel

contribution is directly proportional to (τX − 1)2 = (m2
a − s)2, which for m2

a ≪ s

simplifies to s2, and as ma increases the expression tends to zero. The t/u-channel has

a more complicated dependence, where for small ALP masses an overall suppression

by s−1 emerges, and the s-channel dominates over the t/u-channel. But as the

mass increases and ma ∼
√
s, the expression blows up and the t/u-channel starts

to dominate. For equally sized coupling constants, the ALP coupling to photons

process dominates for small masses and hence the maximum enhancement of the

total amplitude is found for opposite helicities, whereas the opposite becomes true

for large mass.

6.3.1 Differential Cross-sections

Using the 2 → 2 differential cross-section in eq. (2.6.9), the differential cross-section

for the production of dark photons in the centre-of-mass frame for unpolarised beams,

up to corrections of order O(m2
e/s), is given by

dσ

dΩ = g2
X

α

4π s
(1 + τX)2 + (1 − τX)2 cos2 θ

(1 − τX)(1 − cos2 θ)
, (6.3.19)

for τX = m2
X/s. For the production of ALPs, the differential cross-section reads [106]

dσ

dΩ = α

4π f 2
a

[
c2
e

m2
e

s

1 + τ 2
X

(1 − τX)(1 − cos2 θ)
(6.3.20)

+ cecγ
m2
e

2s
(1 − τX)2

(1 − cos2 θ)
+ c2

γ

32(1 + cos2 θ)(1 − τX)3
]
,
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Figure 6.2: Cross-sections for the production of dark photons with
gX = 1 (black), ALP-photon coupling for cγ/fa =
1/GeV and ce = 0 (red dashed), and ALP-electron with
ce/fa = 1/GeV and cγ = 0 (blue dotted) as a function
of θlab (left) and τX (right). Other variables are set as
s = 10 GeV, τX = m2

X/s = 0 (left), and θlab = π
4 (right).

up to relative corrections of order O(m2
e/s). Here the first term is the contribution

from the left panel of Figure 6.1 with the ALP coupling to the electron, the second

is the interference term, and the last term is the contribution from the middle

panel of Figure 6.1 with the ALP radiated from the photon (ALP-strahlung). The

contribution from the ALP coupling to photon process is of order O(m0
e) as the

O(m2
e/s) term is heavily suppressed.

The differential cross-sections are shown in the left panel of Figure 6.2. Both the dark

photon and the ALP coupled to electrons are produced mostly for | cos(θlab)| → 1

(the forwards and backwards directions), whereas the ALP coupled to photons

has a significantly more flat distributions. The angular distribution can therefore

distinguish a new particle produced in t/u-channel diagrams (ALPs coupling to

electrons or dark photons) from particles produced in the s-channel (ALPs coupling

to photons), though it is not enough to distinguish within these categories.
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The dependence of the differential cross-sections on the mass of the invisible state

mX is shown in the right panel of Figure 6.2. As described earlier, the production of

ALPs via s-channel is suppressed for large τX , but the production via t/u-channel is

enhanced. Hence, independently of the background present, the expected signal from

the s-channel contribution reduces for larger masses, decreasing the experimental

sensitivity to the ALP coupling to photons. It is worth noting that the t/u-channel

contributions seem to diverge for both large angles and τX → 1, but are regularised

by the inclusion of the electron mass.

The Chiral Belle Programme, as described in section 3.3.2, is the proposal to use

a polarised electron beam to collide with an unpolarised positron beam [115]. The

amplitude for dark photon and ALP-strahlung production is dominated by incoming

beams with opposite helicities, whereas the production of ALPs through coupling to

electrons is dominated by incoming beams with equal helicities. This requires both

beams to be polarised, the polarisation of one beam will not have a qualitative effect

on the differential production cross-sections.

If both the electron and positron beams are polarised, one can distinguish the dark

photon from an ALP. In the case of a dark photon, if the electrons and positrons are

polarised with equal helicity, the signal would be suppressed by m2
e/s with respect

to the unpolarised case. In contrast, the leading term for the cross-section for

ALPs produced via electron couplings remains unchanged for electron and positron

beams with equal helicities. These two production channels have the same angular

distribution, but with the polarisation of both beams one can significantly reduce the

contribution of either channel, distinguishing them from one another. Similarly, in

the context of a dark vector boson Zd, which differs from the dark photon considered

by the inclusion of an axial-vector coupling, the angular distribution of the polarised

differential cross-section of e+e− → Zdγ can be used to distinguish between the

vector and axial-vector couplings [116]. The longitudinal beam polarisations are

used in this thesis, but for electron and positron beams with transversal polarisation

the information from the azimuthal angular distribution can be used to further
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discriminate between background and signal [117–119].

6.4 Event Generation

The signature in the production of an invisible state together with a photon is a

single photon recoiling against missing energy. Any search for New Physics with

this signature needs to account for a number of SM processes that produce final

states that are difficult to distinguish. The SM background is dominated by the

process e+ e− → e+ e− γ in which both the electron and the positron escape the

detector. Additional background final states are e+ e− γγ, γ γ (γ) in which one or

two photons are lost, and the irreducible production of neutrinos ν ν̄ γ(γ). Even

though the neutrino background is significantly smaller than the other backgrounds,

it has to be considered as it cannot be reduced with detector upgrades. The selection

process for the signal events will be presented here, following the analysis in [100]

with modifications.

6.4.1 Standard Model Background

Each SM background process has several contributions, where the corresponding

Feynman diagrams are shown in Figure 6.3. Implementing minimal cuts on the

lab frame energy of photons, Eγ > 0.01 GeV, and the asymmetric angular coverage

12.4◦ ≤ θlab ≤ 155.1◦ of the Belle II detector [43], the fraction of the different

processes contributing to the background is shown in Table 6.2.

SM process e+e−γ e+e−γγ γγγ γγ ν̄νγ(γ)

Fraction 79.38% 10.39% 9.72% 0.51% < 0.01%

Table 6.2: Fraction of the different SM backgrounds for simulations
performed with minimal cuts.

In Figure 6.4, it can be seen how the normalised differential photon energy distribu-

tion of the different background processes compares to the signal process for three
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Figure 6.3: Feynman diagrams for all background processes,
e+e− → γγ(γ) (top left and middle), e+e− → e+e−γ(γ)
(top right and bottom left), and e+e− → νν̄(γ) (bottom
middle and right), with V ∈ {γ, Z}.

different masses of the invisible state mX ∈ {1, 6, 9} GeV using the cuts described

above. In the centre-of-mass frame, the energy of the photon recoiling against the

invisible state is fixed by the mass of the invisible state,

ECMS = 1
2

(s−m2
X)√

s
. (6.4.1)

The signal is therefore constant in ECMS where larger masses mX correspond to lower

photon energies. Notably, for the ECMS observable the signals with mX ≤ 1 GeV are

almost identical to the e+e− → γγ background and therefore positioned underneath

the γγ signal in the figure. The shape of the differential energy distribution is

therefore independent, up to small corrections, of the spin or specific production

process of the invisible state. The figure shows how cuts on the photon energy can

isolate the signal, in particular for small masses mX .

For high photon energies or small mass mX , the background process e+e− → γγ

has increasing significance, whereas for low photon energies or high mass mX the

other background processes are more important. For this reason, the BaBar search

for dark photons distinguishes two different mass regions, −4 < m2
X < 36 GeV2 and

24 < m2
X < 69 GeV2, in which the background from e+e− → γγ and e+ e− → e+ e− γ
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Figure 6.4: Differential cross-section for the different SM back-
ground processes and the production of a new state
with mX ∈ {1, 6, 9} GeV as a function of the centre-of-
mass energy of the final state photon ECMS.

dominate respectively [103]. The upper limit is m2
X = 63.5 GeV2 for the Υ(2S)

dataset. Similarly, Belle II anticipates two different signal regions for mX < 6 GeV

and mX ∈ [6, 8] GeV [100]. In the following, the proposed cuts for these analyses

from [100], which are optimised to search for dark photons, will be analysed. How

the different optimisation for ALP searches, how polarised beams, or a final state

photon polarisation measurement could improve the analysis, will be commented on.

Using MadGraph [36], 5 × 106 background events are simulated with a minimum

transverse momentum cut applied to outgoing photons and invisible states, pT ≥

0.01 GeV, and to outgoing fermions, pT ≥ 0.1 GeV, in order to avoid divergences.

The simulations are performed for tree-level, fixed-order QED contributions with

a simplified detector setup. For example, the imperfections in the crystals in the

detector and the photon conversion probability are not considered. The beam

polarisation is specified within MadGraph for 0 − 100% polarised beams. It is

required that only one photon is within the angular acceptance of the detector,

either in the end-caps or the main barrel, all other particles must be undetected.



6.4. Event Generation 131

Figure 6.5: Distribution of SM background events in θlab − ECMS
plane for e+e− → γ +��E, see text for details.

The distribution of outgoing photons from the various SM backgrounds in the plane

spanned by the scattering angle θlab and centre-of-mass energy ECMS is shown in

Figure 6.5.

The distributions for the different background processes are displayed in Figure 6.6,

where for larger displays see Appendix E. The background from γγ final states,

upper left panel of Figure 6.6, has a fixed energy due to the 2 → 2 scattering, but

only contributes for certain angles as only one of the two photons are detected. This

happens when one photon is lost in the two gaps between the endcaps and the

main barrel of the detector, and for the asymmetric angular coverage of the detector

where the photon is lost along the beampipe. Figure 6.7 highlights the two gaps

and the difference in angular coverage (17◦, 30◦) of the Belle II detector as viewed

from the top. As a consequence of the asymmetric beam energies and asymmetric

angular coverage, processes in which photons are lost along the beampipe in the

other direction does not contribute to the background because the recoiling photon

is not covered by the detector.
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Figure 6.6: SM background distributions for e+e− → γγ (upper
left), γγγ (upper right), νν̄γ(γ) (bottom left), and
e+e−γ(γ) (bottom right).

The endcap gaps are also visible in the background from γγγ final states, upper

right panel of Figure 6.6, where the two bands crossing the central region of the

plane correspond to photons lost in either forward or backward direction. Here one

of the three photons will be produced along the beam pipe whilst the other two

travel transversely, one escaping detection through an endcap gap.

The background from the e+e−γ(γ) final states, bottom left panel of Figure 6.6,

is most pronounced for small angles with respect to the beampipe, and there are

fewer events for angles 40◦ ≲ θlab ≲ 120◦. Whereas background events from νν̄γ(γ)

final states, bottom right panel of Figure 6.6, have an almost flat θlab distribution,

but the contribution decreases for high photon energies. In all backgrounds the gap

between the main barrel and endcaps are visible as straight white lines, most clearly

in the neutrino final states in bottom right panel of Figure 6.6 at θlab ≈ 130◦ but

also present at θlab ≈ 30◦.
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Figure 6.7: Depiction of the gaps between the barrel and end-caps
and difference in angular coverage for the Belle II de-
tector (Modified from [100]).

The background distribution found agrees with the unpublished results found in [120]

where a detailed analysis of the different background processes is performed. More

background events are found for large θlab, in the forward direction, than the Belle

II physics book [100], which has only one γγγ band going across the plot. The

Belle II physics book includes higher-order QED corrections, performs a full detector

analysis, and applies other cuts. The discrepancy could arise from these, or be due

to detector components or deficiencies, which were not taken into consideration in

the detector simulations in this thesis. For electron and positron beams polarised

with equal helicities, the SM backgrounds are significantly reduced. Similarly to the

dark photon process, the backgrounds from γγ and γγγ final states are substantially

suppressed with respect to the unpolarised case, and the remaining background

is mostly peaked towards small angles with the beam axis. In the left panel of

Figure 6.8, the distribution of background events for beams polarised with the same

helicities is shown. Instead, for electron and positron beams polarised with opposite

helicities the backgrounds, seen on the right panel of Figure 6.8, are very similar

to the unpolarised case. Hence, in the following analysis the case for oppositely

polarised beams will not be considered. The panels in Figure 6.8 for polarised beams

have significantly fewer generated events than the unpolarised case seen in the right

panel of Figure 6.5, and hence the resolutions are worse.
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Figure 6.8: SM background for equal (left) and opposite (right)
helicities polarised beams.

6.4.2 Signal

The signal processes are implemented into MadGraph using UFO models [93] based

on modified Feynrules [30] models for ALPs [121] and Z ′ models [122–124]. As

described previously and seen in Figure 6.2, the angular distribution of the signal

peaks towards small and large angles with respect to the beam-line in the case of

dark photons or ALPs coupled to electrons, whereas it is approximately flat for

ALPs coupled to photons. In case a signal is observed, and enough statistics are

available, the angular distribution can be used to distinguish these models.

For the ALP coupling to photon, it was decided to set cW̃ = cB̃. As the coupling

constant does not change the shape of the distribution, this can be done without

loss of generality. Making this choice results in the ALP coupling to γZ going to

zero, which isolate the ALP-strahlung process in simulations. The ALP couplings

were fixed for three options; cγ = 1 and ce = 0, cγ = 0 and ce = 1 × 104, and cγ = 1

and ce = 1 × 104. For each set of values, 106 events were simulated where the decay

constant fa was kept as a free parameter. It is assumed that all dark photons and

ALPs leave the detector before they decay, or that they decay into invisible particles,

so that their decay width is considered to be zero for the remainder of this analysis.

The parameters are varied within,

gX ∈ [5 × 10−6, 1 × 10−5, 5 × 10−5, ..., 5 × 10−3] ,
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fa ∈ [4 × 105, 2 × 105, 4 × 104, ..., 4 × 102] .

The mass of the invisible state is varied with changing step sizes in order to increase

precision; mX ∈ [1.0, 8.0] GeV in steps of 1 GeV with additional mX = 0.1, 0.5, 8.5,

and 9.0 GeV.

For polarised beams, the signal changes as discussed in section 6.3, and if the beams

have the same helicities the background is substantially suppressed. In the case of a

dark photon, the signal is suppressed and very small compared to the unpolarised case.

Similarly, ALPs coupled only to photons are produced with a strongly suppressed

cross-section for beams with equal helicities. In contrast, the cross-section for the

production of ALPs interacting with electrons is not suppressed, and one can take

advantage of the lower background for polarised beams.

6.4.3 Event Selection

The searches for light new states mX < 6 GeV and heavy new states mX ≥ 6 GeV

are distinguished due to the increased background of softer photons for the heavier

states. The photon trigger efficiency also varies significantly with energy [100], which

will be discussed further in section 6.4.3. The Belle II angular acceptance regions

are used, see section 3.3.1, and a cut is applied on the energy of the detected photon,

ECMS ≥ 1.8 GeV, which restricts the mass of the invisible state. The angular coverage

consists of three regions; the forward endcap 12.4◦ < θ < 31.4◦, the main barrel

32.2◦ < θ < 128.7◦, and the backwards endcap 130.7◦ < θ < 155.1◦.

Energy-Dependent Cut

In a first step, an energy-dependent cut in the θlab − ECMS plane is imposed, taking

advantage of the correlation between energy and scattering angle for the distribution

of the background events. The cut functions are generic functions fitted using an

algorithm designed to minimise background events. It takes advantage of the signal
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and background event distributions, maximising the signal to background ratio. In

contrast to the cut functions in [59], the cuts used here reduce the background from

γγ(γ) final states. In the following, the work carried out to perform the fits is

presented.

When observing the total SM background in Figure 6.5, two prominent regions stand

out; the V-shape created by the γγγ final state bands, and the areas between the

main e+e−γ(γ) background and the bands. The signal for low mass invisible states

falls within the first region, but for increasing masses the second region has to be

considered. Two fits are therefore performed.

For the high mass fit, the points were found for each photon energy; going from small

and large θlab-values respectively, finding the first bin with less than 10 events. This

threshold number was chosen to represent bins with low numbers of events based

on the 106 simulated events. A similar procedure was done for the low mass fit, this

time going from the middle (θlab ≈ 80◦) for both decreasing and increasing θlab, the

last bin with more events than the threshold was found.

Furthermore, the three peaks from the γγ final state were of particular interest to

avoid due to their large cross-sections. This was ensured by finding the coordinates

of the two centre peaks and continuing these points downwards (constant θlab and

decreasing ECMS) until reaching the points found as described above. As the outgoing

photon in the case of large mX has an energy around the ECMS ≥ 1.8 GeV threshold

imposed, the fit was extended downwards into the area of increased background

by including the range of [60◦, 100◦]. The points found are displayed on of the

relevant distributions in Figure 6.9 for unpolarised (left panel) and equal helicity

beam polarisation (right panel).

The fits of the points were found using Mathematica [125] for a generic function,

f(x) = c1 + c2 x+ c3 x
2 + c4

√
x+ c5 x

−1/2 + c6 x
−1 + c7 x

−2 . (6.4.2)

The cut functions for the unpolarised SM background are described by eqs. (6.4.3)

and (6.4.4) for low and high mX respectively. For the equal beam helicity, the
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Figure 6.9: Points used for unpolarised (left) with low mass (black
circles) and high mass (black stars), and equal beam
polarisation (right) background.

photon-only final states were not present, and therefore this opens a big area with

little to no background (only from neutrino final states). This allows for a single,

much wider fit which include more signal events found in eq. (6.4.5).

ECMS, low(θlab) = −1.753 × 104 − 61.42 θlab + 4.708 × 10−2 θ2
lab (6.4.3)

+ 1.572 × 103
√
θlab + 9.795 × 104

√
θlab

− 2.379 × 105

θlab
+ 6.994 × 105

θ2
lab

,

ECMS, high(θlab) = −2.601 × 104 − 1.109 × 102 θlab + 0.1001 θ2
lab (6.4.4)

+ 2.583 × 103
√
θlab + 1.304 × 105

√
θlab

− 2.826 × 105

θlab
+ 6.573 × 105

θ2
lab

,

ECMS, equal(θlab) = −2.929 × 103 − 13.66 θlab + 1.293 × 10−2 θ2
lab (6.4.5)

+ 3.061 × 102
√
θlab + 1.379 × 104

√
θlab

− 2.763 × 104

θlab
+ 5.284 × 104

θ2
lab

.

The fit functions for unpolarised beams are displayed in Figures 6.10, where the

dotted black line defines the cut for light invisible states, and the dash-dotted black

line defines the cut for heavy invisible states. The parameter space enclosed by

these lines is the fiducial region for signal and background events. In the case of

polarised beams with the same helicity, the energy-dependent θlab-cut is shown by

the black line in Figure 6.11. The reduced background allows for a large fiducial

region compared to the unpolarised case, so the separation for different mass regions

is unnecessary.
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Figure 6.10: Event selection for unpolarised beams and the ECMS
envelope used to define cuts in the search for a 5 GeV
invisible state.
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Figure 6.11: Event selection for equal helicities polarised beams.

Mass-Dependent Cut

In a second step, a mass-dependent cut on ECMS is introduced. The fixed rela-

tion between the final state photon energy and the mass of the invisible state, see
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eq. (6.4.1), is shown by the alternative y-axis in Figure 6.10. It allows a more targeted

search, since the locations of the signal events are predicted by the invisible state

mass. The inclusion of higher-order corrections causes a smearing in the final state

photon energy, and hence in addition to the energy-dependent θlab-cut, the events

in a window of ECMS ± 0.4 GeV (∆ECMS = 0.4 GeV) are selected. This window is

shown in Figure 6.10 for the case of mX = 5 GeV.

In Figure 6.12, it can be seen that the size of ∆ECMS has a considerable influence

on the exclusion limit produced. Here g∆E→∞ is the value for the critical coupling

found when no mass-dependent cut is implemented and all background events inside

the energy-dependent cut function are included. This is the largest value for the

exclusion limit. The narrower mass-dependent windows with small ∆ECMS have a

smaller value and the displayed ratio increases. For ∆ECMS = 0 GeV, when only

background events which satisfy eq. (6.4.1) are included, an improvement of up to

a factor of ≈ 10 for the high mass fit is seen. As the size of the window increases

with ∆ECMS, the number of background events included increases and the value of

the critical coupling g∆E tends to g∆E→∞.

The presence of low statistics can be seen in the jumps between ∆ECMS-values; one

additional bin included can drastically change the value of the critical coupling.

Figure 6.12: Effect of energy band size ∆ECMS on the final coupling
constant value g for mX = 1 GeV.
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The value of ∆ECMS = 0.4 GeV was chosen in order to avoid the significant jump in

number of background events seen for the low mass fit at ∆ECMS = 0.5 GeV.

This mass cut window is comparable to the energy window used in [59], and a

comparison to the analysis used in [100] will now be performed.

The Novosibirsk function,

F (x) = Nexp
(

− 1
2σ2

0
ln
[
1 − x− xp

σR
η

]
− σ2

0

2

)
, (6.4.6)

was originally found by convoluting a Compton energy spectrum with a logarithmic

Gaussian function, implementing the instrumentational limitations with a resolution

function [126]. The function is defined for peak value xp, asymmetry parameter η,

normalisation factor N , and ξ = 2
√

ln 4. The resolution σR found by dividing the

full-width at half-maximum (FWHM) with ξ, and

σ0 = 2
ξ

sinh−1
(
η ξ

2

)
. (6.4.7)

The energy of the photon recoiling of the invisible state is expected to be smeared

with a Novosibirsk function, and hence the invisible state mass reconstructed from

the photon energy will also be smeared. The reconstructed recoil mass squared

distribution at mX = 7 GeV can be seen as the simulated data in Figure 6.13, where

a Novosibirsk function with xp = 49.089, σR = 1.152, N ≈ 730, and η ≈ −0.5 is

fitted to the data. Here the mean xp and spread σR are from Figure 208 in [100],

and the corresponding mean and spread of the photon energy are µE = 2.97647 GeV

and σE = 0.0544269 GeV.

Figure 6.13 displays how the window used in this analysis, ECMS ∈ [µE−0.4, µE+0.4]

⇒ m2
X ∈ [40.53, 57.47] GeV2, captures most of the signal. The window is bigger

than the one used by the Belle II collaboration, ECMS ∈ [µE − 3σE, µE + 1.5σE]

⇒ m2
X ∈ [47.27, 52.46] GeV2. By integrating over the area of the Novosibirsk

function for the window used, it is found that the window captures more than 95%

of the signal for the example given for mX = 7 GeV. It is not expected that this

result should change significantly for lighter or heavier invisible state masses.
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Figure 6.13: Fit of Novosibirsk function to data and energy band
(green) from [100] with the energy band used in ana-
lysis (blue).

Trigger Efficiency

Using the ECMS − θ cut functions and the ∆ECMS window described above, the

number of signal and background events within the enclosed region is found. As the

components of the detector are not perfect, a trigger efficiency, ϵs, is implemented,

which is taken from Figure 206 in [100] and interpolated for different masses as shown

in Figure 6.14. In the case of polarised beams, the conservative choice to use the

trigger efficiency for the low-mass region is made, which is worse than the efficiency

expected for the high-mass region as long as mX < 8 GeV. The final sensitivity

projections will later be presented in section 6.6.

6.5 Polarisation of the Final State Photon

The angular distribution together with the polarisation of the incoming beams can

be used to distinguish between the dark photon, ALP coupling to photons, and ALP

coupling to electron contributions. The polarisation of the beams can be used to

significantly reduce the background for the ALP coupling to electrons, but leaves
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Figure 6.14: Trigger efficiency for the low- and high mass region and
the fixed efficiency used for the analysis with polarised
beams.

the background for the other two invisible state contributions essentially unchanged.

Therefore, it will now be considered how the helicity of the outgoing photon can be

used as a complementary discriminator.

Figure 6.15 displays the percentage of outgoing photons with helicity equivalent to

that of the incoming electron for 100% polarised beams as a function of the angle of

the photon in the lab frame θlab,

P =
|M|2(P

e
− = αγ = 1)

|M|2(P
e

± = αγ = 0)
, (6.5.1)

where P
e

± is the beam polarisations defined in eq. (2.6.13) and αγ the degree of

photon polarisation in eq. (2.6.14).

As |M|2(αγ = 0) = |M|2(αγ = 1) + |M|2(αγ = −1), at each cos θlab-value the

distribution indicates that for X photons detected at this angle P ×X of them will

have the same helicity as the incoming electron beam, and (P − 1) ×X will have the

opposite helicity. From now on, this distribution will be referred to as the helicity

fraction distribution. The error-bars shown are calculated using,

Pi = Ni

Ntot
⇒ δPi = Ni

Ntot

√
1
Ni

+ 1
Ntot

, (6.5.2)

for Ni number of events for each cos θlab and total number of events Ntot.
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Figure 6.15: Helicity fraction distribution of the outgoing photon
for SM background processes.

6.5.1 Standard Model Background

The helicity fraction distribution for the background has contributions from every

SM background process, each with their own tendencies which will be described

in this section. The simplest case is e+e− → γγ, where the incoming electron and

positron must have parallel spin vectors (opposite helicities) due to the emission of

two photons not changing the direction of the spin. Figure 6.16 is a 2D representation

of the process with a horizontal z-axis and arbitrary vertical axis in the x-y plane.

Without loss of generality, the electron is assumed to have positive helicity, and two

combinations of incoming beam helicities are possible; the electron and positron spin

vectors are parallel (λ
e

+ = −λ
e

−) or antiparallel (λ
e

+ = λ
e

−).

It can be seen that the z-components of the spin vectors of the outgoing photons will

have the same sign as the incoming fermions. The direction of the photon therefore

determines its helicity; if emitted in the same direction as the electron, the helicity

will match that of the electron, and vice versa if emitted in the positron direction.
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Figure 6.16: Helicity visualisation for e+e− → γγ
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Figure 6.17: Helicity fraction distributions for e+e− → γγ(γ) with
no cuts.

Hence, the helicity fraction distribution has the s-shape seen in Figure 6.17, due to

the photon being more likely to travel in the same direction as the fermion which

it was emitted from. At cos θlab = −1, all photons detected will have the same

helicity as the incoming electron. In the opposite direction, cos θlab = +1, none of

the photons have matching helicity, as it matches that of the incoming positron. The

skew away from the centre line is due to the unequal beam energies at Belle II, for

equal energies the shape will be centred around (0, 50%).

The spin vector diagram in Figure 6.16, looks similar for e+e− → γγγ. The fermions

are still required to have opposite helicities, but the helicities of the outgoing photons

are more random due to the 3-particle final state. Therefore, the correlation between

direction and helicity fraction reduces, and the distribution is closer to 50%.
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Figure 6.17 displays the helicity fraction distribution for e+e− → γγ(γ) without any

cuts applied. When implementing the criteria that only one photon can be detected,

the few cases allowed for e+e− → γγ are due to the asymmetric angular coverage of

the detector and the gaps between the barrel and end-caps. As seen on the bottom

right panel of Figure 6.15, this corresponds to the two points around cos θlab ≈ −1

and another set at cos θlab ≈ 0.6.

The helicities involved in the main background process, e+e− → e+e−γ(γ), are

much more complex due to many contributions and interferences between them,

some of which require the incoming helicities to be opposite and others equal. The

resulting helicity fraction distribution, upper left panel of Figure 6.15, does not

show any directional/angular dependence. Similar arguments can be made for

e+e− → νν̄γ(γ), and as seen on the upper right panel of Figure 6.15, the process

has a slight cos θlab-dependence but mostly resides around 50%.

As e+e− → e+e−γ is the dominating process, the full background results, the bottom

left panel of Figure 6.15, looks very similar. The slight upwards motion at cos θlab ≈

−1 and outlying point around cos θlab ≈ 0.6 are due to the large e+e− → γγ

contribution. It can therefore be concluded that any significant variation from 50%

would indicate the presence of New Physics.

6.5.2 Dark Photon

The dark photon interacts similarly to the SM photon, and hence the incoming

fermions are required to have opposite helicities. Two scenarios are possible; the

photon and dark photon travel in opposite directions along the z-axis (Figure 6.16

with one γ replaced with a dark photon X), or due to the unequal beam energies

they travel in the same direction (see Figure 6.18). The direction of the spin vectors

involved remain the same, but as the direction of the momentum changes the photon

helicity differs between the two scenarios.
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For small mX effectively only scenario one happens, resulting in the photon direction

and helicity being strongly coupled; the helicity of the photon will match the helicity

of the fermion travelling in the same direction. But as the dark photon mass

increases, the accompanying photon becomes softer and its direction more random.

This introduces occurrences of scenario two, pushing the helicity fraction distribution

towards 50%. The results for the dark photon can be seen in Figure 6.19. Here the

points for both the dark photon and the SM background were found from Monte

Carlo simulations, the lines through the dark photons results are the analytical

results found from the helicity amplitude calculations described earlier, and the SM

line is the average of the SM points.

Figure 6.18: Helicity visualisation for the production of dark
photons for large mX .

6.5.3 Axion-Like Particles

As the two ALP contributions have different spin structures, they will be described

separately. For ALP coupling to photons, the incoming electron-positron pair anni-

hilate into a virtual photon which then emits an ALP. The leptons are required to

have the same direction spin vector, which the virtual photon inherits. The outgoing

photon helicity is determined by its direction after the ALP emission, see left panel

of Figure 6.20, and depends on whether it is in the same direction as the electron or

positron.

Hence, the helicity fraction distribution, seen in Figure 6.21, is the s-shape seen

before. The distribution is not influenced by the mass of the ALP as it factorises out

and becomes a part of the coupling constant for the process, see eq. (6.3.17) where
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Figure 6.19: Helicity fraction distribution of the outgoing photon
for dark photon for mX = 3, 6, and 9 GeV as a function
of the angle cos θlab.

Figure 6.20: Helicity visualisation for the production of ALP-
photon (left) and ALP-electrons (right) couplings.

τX = m2
X/s only enters as in the first fraction. Therefore, when calculating the ratio

P in eq. (6.5.1), any dependence on the ALP mass disappears. The s-shape helicity

distribution is substantially different to the constant Standard Model background,

and can therefore be used to distinguish the signal and provide improved exclusion

limits. This will not be carried this out due to the unknown detector setup needed

to measure the helicity of the outgoing photon.

The ALP coupling to electrons consists of t/u-channel diagrams like the dark photon,

but as the interaction introduces a helicity flip for the incoming fermions (right panel

of Figure 6.20), their helicities are equal. Therefore, the photon helicity will match

both fermions or neither, resulting in no angular dependence as seen in Figure 6.22.
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Figure 6.21: Helicity fraction distributions of the outgoing photon
for ALP-photon coupling for mX = 3, 6, and 9 GeV.

For small ma, the photon helicity always matches the incoming fermions, resulting

in a constant percentage of 100%. But as described before for the dark photon, as

the ALP mass increases the photon direction becomes more random, resulting in

the helicity fraction approaching 50%. The ALP coupling to electrons will cause a

shift in the distribution, and hence it can easily be distinguished from the other to

dark matter contributions, but would be difficult to separate from the background.

6.5.4 Degree of Photon Polarisation

Using the helicity fraction distributions discussed above, the overall degree of photon

polarisation Aγ can be determined by integrating over the polar angle θ,

Aγ =
∫ θ2

θ1

αγ dθ , (6.5.3)

for angles θ1.2, which for example can be the angular coverage of the detector. In

addition to the beam polarisation, the polarisation of the final state photon can

be used to determine the Dirac structure in the production amplitude. This has

been successfully used to examine the chiral structure of the operator responsible

for b → sγ transitions at LHCb [127]. Measuring the final state photon polarisation
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Figure 6.22: Helicity fraction distributions of the outgoing photon
for ALP-electrons coupling for mX = 3, 6, and 9 GeV.

is extremely challenging, but if possible it could provide an additional handle on

the spin of the dark matter state. The degree of photon polarisation is defined in

eq. (2.6.14) and is the ratio of the two polarisation states.

For the Standard Model background, Aγ = 0.5 is expected for random photon

polarisation. If only one beam is polarised, all invisible state contributions will have

the same degree of photon polarisation as the background, but this result can be

significantly changed when polarising both beams.

At order O(m0
e), the degree of photon polarisation for the dark photon is found to

be,

αγ =

(
P
e

− − P
e

+

)
(
P
e

−P
e

+ − 1
)f (E1, E2,mX , θlab) , (6.5.4)

where the largest αγ-value is found for small mX and fully oppositely polarised beams.

As seen in the helicity fraction distributions for the dark photon, Figure 6.19, it is

possible to affect the photon polarisation by applying angular cuts in the forwards

or backwards directions with |Aγ| ≥ 0.8 for mX ≤ 4 GeV.
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For the ALP coupling to photons the degree of photon polarisation is

αγ =

(
P
e

− − P
e

+

)
(
P
e

−P
e

+ − 1
)f (E1, E2, θlab) , (6.5.5)

which, unlike the case of the dark photon expression, does not dependent on the

ALP mass as implied by the helicity fraction distribution. Values of |Aγ| ≈ +1 are

achieved for all ma when applying a forward angular cut (10◦ ≤ θlab ≤ 50◦). For the

ALP coupling to electrons,

αγ =

(
P
e

− + P
e

+

) (
s2 −m4

a

)
(
P
e

−P
e

+ + 1
) (
m4
a + s2

) , (6.5.6)

it can be seen that the degree of photon polarisation is independent of the angle of

the outgoing photon, θlab. The maximum magnitude is found for small ma and fully

polarised beams, and |Aγ| ≈ +1 for ma ≤ 2 GeV with no angular cuts applied.

6.6 Sensitivity to New Physics

In the following, the sensitivity reach of Belle II for dark photons and ALPs interact-

ing with photons or electrons for unpolarised and polarised beams is discussed. It is

assumed that the new invisible states are stable on collider scales, by for example

decaying into a wider dark sector. The expected 90% CL upper limit on the observed

number of signal events (µS) is obtained by demanding that the Poisson probability

of observing no more than the number of background events (µB), if µB + µS events

are expected is P (µB, µS + µB) > 0.1 as in [100].

As described in section 4.3.1, the needed number of signal events is given by

µS = Q−1 (N + 1, F [N,µB + µS]) − µB , (6.6.1)

Here N is the integer closest to µB, and µB is the number of SM background events

found within both the θlab−ECMS cut and the energy window around the dark matter

signal for ∆ECMS = 0.4 GeV. The function scipy.special.gammainccinv(a, y) from

the Python Scipy Module, which is the inverse of the regularised upper incomplete
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gamma function, is used. The sensitivity projections are found for

gcrit =
√
σcrit
σi

gi =
√

µS
ϵS ∗ L ∗ σi

gi . (6.6.2)

where the signal efficiency (ϵS) is taken from Figure 6.14, σi is the cross-section for

a given mass mX and coupling constant gi.

Figure 6.23 shows the sensitivity reach of Belle II for the dark photon (left) and

ALP-photon coupling (right) for L = 20 fb−1 (orange line) and L = 50 ab−1 (dashed

orange line) and unpolarised beams. It is worth nothing that the projected sensitivity

for masses mX < 2 GeV at 50 ab−1 can only be achieved if backgrounds from cosmic

rays are fully understood [107].

For comparison, the limits from a search for dark photons by BaBar [108], limits

from beam-dumps experiments E787, E949 [128–131] and NA64 [132], are shown.

The right panel shows BaBar limits on ALPs from single-photon decays of Υ(1) [103]

and mono-photon searches by LEP [133,134], taken from [105], as well as constraints

from the supernova SN1987A [135,136].

Similar colour-coding is used for the ALP coupling to electrons, where the improved

sensitivity using polarised beams is shown by the red line in Figure 6.24. The bounds

shown are from the neutrinoless double-beta decay experiment Gerda [137], the
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Figure 6.23: Belle II sensitivity to dark photons (left), ALPs coup-
ling to photons (right). Details are in the text.
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helioscope Edelweiss [138] taken from [139], together with the bounds by NA64 [140],

BaBar [108] and LEP [134], taken from [106]. Note that the bounds from Edelweiss

and Gerda require the ALP to be stable on astrophysical scales and therefore only

constrain ma < 2me.

The projected sensitivity reach exceeds the existing constraints for all three models

by at least about an order of magnitude. In all models the sensitivity drops with

larger mass mX for which backgrounds are larger. In the case of ALP-strahlung, this

drop is particularly steep because the cross-section drops for large masses as shown

in the right panel of Figure 6.2. The slight improvement of sensitivity for masses

mX > 6 GeV is a consequence of the better trigger sensitivity.

The results can be compared with previous analyses of the sensitivity reach of

Belle II. In general, the analysis presented here largely follows [100], that also sets

constraints on an invisible spin 1 state. The main differences being that different

θlab −ECMS cut functions are implemented, and a constant mass-dependent window

as opposed to previous estimates in [100] that consider higher-order effects and a

more sophisticated detector simulation. As a consequence of this and the simplified
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Figure 6.24: Belle II sensitivity to ALPs coupling to electrons. De-
tails are in the text.
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detector geometry used, the projections obtained in this section are roughly a factor

three better. An analysis that translates the projection for the case of ALPs produced

in ALP-strahlung can be found in [105, 106]. The improvement with the method

used is again roughly a factor three in the projected sensitivity, consistent with the

dark photon case. A recast for ALPs interacting with electrons has been performed

in [106], and it is found again that the projections are roughly 3–4 times better using

the improved cuts.

If a signal is observed at Belle II, it is possible in principle to determine whether the

invisible state is a vector boson (gX), an ALP interacting with photons (cγ), or an

ALP interacting with electrons (ce). The angular distribution of the signal events

can distinguish between cγ and {ce, gX}, whereas the beam polarisation suppresses

the signal for {gX , cγ} and does not affect the signal for ce.

6.7 Outlook

The results presented above assumed the incoming beams of the SuperKEKB collider

to acquire 100% polarisation. Currently, the Chiral Belle Programme expects to

be able to achieve 70% polarisation for the electron beam only. Hence, a study

of the degree of beam polarisation needed to separate the invisible signals is vital.

For example, would 70% polarisation of both beams lead to statistically significant

suppression of the invisible state signals such that they can be distinguished? The

improvement of the ALP-fermion coupling projection is due to the decrease in the

Standard Model background processes, but the correlation between the degree of

beam polarisation and reduction in background has yet to be studied.

The novel method of exploiting the beam polarisation can be implemented at other

particle colliders, though most have unpolarised incoming beams. Two examples of

colliders with one polarised beam are the Hadron–Electron Ring Accelerator (HERA)

and the Relativistic Heavy Ion Collider (RHIC). HERA operated between 1992 and

2005 with
√
s ≈ 320 GeV with electron-proton collisions and polarised electrons up
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to 60%. RHIC is located at Brookhaven National Laboratory (BNL) and collides

heavy-ions with protons polarised up to 55% [34].

A future collider to consider is the electron-ion collider (EIC) which is currently under

development at BNL. It will have both the electron and nucleon beam polarised

up to 70% with centre-of-mass energies of up to 100 GeV. The reasoning for the

polarisation of both beams, is the determination of polarised PDFs; how the quarks

and gluons are distributed inside the nucleon depending on their spins [141]. In

order to fully exploit the EIC, one should consider the possibility to distinguish the

signals from invisible states and improve their sensitivity projections. Going from

electron-positron to electron-ion collisions would result in a significantly less clean

environment, the mono-photon signal considered earlier would not be possible due

to the composite nature of the ions. But other signals can be explored.

6.8 Conclusions

Measurement strategies were proposed, that can be used at electron positron colliders

to determine the spin, mass, and production mechanism of an invisible state produced

in association with a photon e+e− → γ +X. In particular, dark photons and ALPs

that interact with electrons or photons can be distinguished even in the absence of

detecting any of their decay products.

The angular distribution of the final state photon is sensitive to the production

mechanism and can distinguish s-channel production as in the case of ALP-strahlung

from t/u-channel production, e.g. of a dark photon or an ALP produced from

interactions with electrons and positrons directly. If both the electron and positron

beams can be polarised with equal helicities, the dark photon cross-section is strongly

suppressed with respect to the unpolarised cross-section, and only the cross-section

for ALPs interacting with electrons remains unchanged. In combination, the angular

distribution and the beam polarisation can distinguish between these three models.

Further, the dependence of the polarisation of the final state photon on the polar
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angle can be used to discriminate between the different models as well as the SM

background, if it can be reconstructed with future detectors. For beams with opposite

helicities and small masses mX , both the dark photon and ALP coupling to photons

helicity fraction distributions are significantly different from the SM background.

While beams with equal helicities can be used to reduce backgrounds for ALPs

interacting with electrons, the sensitivity for both ALPs interacting with photons

as well as dark photons can be increased if final state photon polarisation can be

measured.

The SM background is also significantly reduced if both the electron and positron

beams are polarised. A careful analysis of different SM background processes shows

that a combination of a universal cut in the plane spanned by the scattering angle

θlab and centre of mass energy ECMS together with a mass-dependent cut could

improve the projections for searches at Belle II, assuming the method described

in this chapter accounts for smearing effect from higher-order QED. If a run with

polarised beams can be performed the sensitivity to ALPs interacting with electrons

is further improved by a factor two. The projections are compared with constraints

from other experiments and astrophysics, and the parameter space that can be

probed at Belle II using the proposed measurement strategy is identified.



Chapter 7

Conclusion

Dark matter has been found to constitute a large proportion of the matter in the

university, its nature is still very unknown. Many experiments have been constructed

in the search for answers, looking to test the current best theory of visible matter,

the Standard Model, in order to find inconsistencies. In the hunt for New Physics,

scientists have a responsibility to consider the impact of these experiments. Therefore,

making the most out of already existing experiments is an important endeavour. This

thesis presented two methods of extending the reach of current dark matter searches

at colliders; building a new detector in association with an already existing ones,

and a method for using the polarisation of the incoming beams.

In Chapters 2, 3, and 4, the foundations for the remaining chapters were set-out.

At first, the Standard Model describing the currently known particles and their

interactions, where in particular the Higgs mechanism and Glashow-Weinberg-Salam

theory were introduced. It is known that the SM is not final as there are several key

components missing. Neutrinos oscillate and therefore have masses, the existence of

dark matter, and many others are not contained in the SM.

Next, chapter 3 presented the concept of particle colliders, focusing on circular

colliders and their detectors. The Belle II detector at SuperKEKB and the ATLAS

detector at LHC were of special interest due to their relevance for the remaining

chapters. The layout and purpose of the components of each detector is described,
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together with how groupings of particles are detected depending on their interactions

and properties. The Chiral Belle II programme, which include the polarisation of

one of the incoming beams leaving the other unpolarised, is described. This provided

the inspiration for the methods presented in Chapter 6. Dark particles leave collider

detectors without detection if they are long-lived or invisible states acting as portals

to a wider dark sector. Therefore, many types of searches for New Physics have been

developed in order to study these at detectors, the main categories of these were

outlined.

The detectors are limited to detect particles within their volume, and thus by building

new detectors further away from the interaction point of existing detectors, one can

extend their reach. One of these proposals is introduced in Chapter 5; the ANUBIS

detector.

Both extensions considered in this thesis concern themselves with dark matter; long-

lived dark particles with small masses and couplings to the SM, and invisible states

which are portals or mediator particles interacting with both the SM and a wider

dark sector. Other theories for dark matter are mentioned in Chapter 4. The specific

models of dark photons, axion-like particles, and heavy neutral leptons are presented,

describing their underlying theories, mechanisms, and interactions with the particles

in the Standard Model. The decay modes of the particles are of interest when

considering LLPs, and hence, particularly for HNLs, the possible decay channels and

their widths are described.

The general approaches for detecting dark matter, collider, indirect, and direct

detection, are covered and lead to a characterisation of the different searches and

considerations one has to make, when studying dark matter in a collider. The

statistical methods are presented, these are used for making exclusion limits and

sensitivity projections for experiments when no evidence of New Physics is found.
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The ANUBIS detector is a far detector located above the ATLAS detector with the

purpose of detecting long-lived particles, which leave ATLAS without detection. For

the proposal and during construction of new detectors, it is important to determine

their sensitivity. For ANUBIS, the sensitivity studies currently consist of the de-

velopment of the software SET-ANUBIS. Each module of the software is described

in detail, including the reasoning for the decisions made, and how it is intended to

allow anyone to produce projections for any LLP model. Most LLP studies considers

one dominating or all visible decay modes of LLPs. With this in mind, the software

is separated into segments such that as few generalisations as possible are made,

allowing for the study of individual production and decay modes of the LLP, and

the possibility of a wider dark sector to be present.

Finally, a new method which makes use of the two polarised beams at Belle II is

presented. In e+e− → γ +X processes, the signals from invisible dark photons and

ALPs are currently indistinguishable. The angular distributions from the two models’

t/u-channel contributions from the coupling to electrons are the same, though the

s-channel contribution from the ALP coupling to photons, not present for dark

photon, is different. As there is no theoretical motivation for only one of the two

ALP couplings to be non-zero, the final ALP contribution will be a mixture of the

two.

The dependence on the helicity of the incoming leptons of each contribution was

examined. It was found that the dark photon coupling to electron and ALP-photon

coupling require the helicities to be opposite, whereas the ALP coupling to electrons

requires equal. Hence, it is concluded that with both incoming beams polarised,

each ALP coupling can be isolated, to leading order approximation. Combining the

angular distributions and the polarised beams, the signals from the three couplings

are separated. It was shown how the background for beams with equal helicity is

significantly reduced, allowing for a significant improvement on the sensitivity to the

ALP coupling to fermions.

Additionally, the opportunities that the measurement of the outgoing photon helicity
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offer are explored. It was found that the helicity fraction distributions for the dark

photon and ALP coupling to photons have a distinctly different shape to the Standard

Model background. Therefore, if it were one day possible to measure, the photon

helicity can provide an increased sensitivity to the aforementioned couplings.

The two approaches presented offers low-cost methods for extending the reach of

detectors. Thus expanding the searches for New Physics whilst limiting the wider

environmental impact.



Appendix A

Dark Scalar Model

A.1 Lagrangian

A minimal dark scalar portal model that is utilised in chapter 5 is presented here.

The Lagrangian for a dark scalar that interacts with the Higgs boson is given by

L = LSM + LDS −
(
µSS + λSS

2
)
H†H , (A.1.1)

for Higgs field H = (vH + h)/
√

2 with vev vH , and S a dark scalar field with zero

vacuum expectation value. The potential is defined as

V (S, h) = −1
4 (h+ vH)2

[
λH(h+ vH)2 − 2µ2

H + 2S (λSS + µS)
]
,

for λH and µH the parameters in the SM Higgs potential defined as in section 2.3.

The vacuum expectation value for the h field, v2
H = µ

2
H/λH, is found from the potential,

and is used to define the masses of the fields, mH and mS,

V (S, h) ⊃ 1
2
(
−3v2

HλH + µ2
H

)
h2 = −m2

H

2 h2 ⇒ λH = m2
H

2v2
H

, (A.1.2)

V (S, h) ⊃ −1
2v

2
HλSS

2 = −m2
S

2 S2 ⇒ λS = m2
S

v2
H

. (A.1.3)
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The resulting mass matrix,

M2 =

 m2
H

1
2vHµS

1
2vHµS m2

S

 , (A.1.4)

is diagonalised through the following field re-definitions

hSM = h cos θ − S sin θ and ϕ = −h sin θ + S cos θ . (A.1.5)

Here diag
(
m2
hSM ,m

2
ϕ

)
= R(θ)M2R(θ)T and

R(θ) =

 cos θ sin θ

− sin θ cos θ

 . (A.1.6)

From this the mixing angle θ is found to be

θ ≈ tan 2θ = 2 tan θ
1 − tan θ = vHµS

m2
H −m2

S

, (A.1.7)

found using the elements of R. The masses of the mass eigenstates are

mhSM = 1
2

(
m2
H +m2

S −
√(

m2
H −m2

S

)2
+ v2

Hµ
2
S

)
, (A.1.8)

mϕ = 1
2

(
m2
H +m2

S +
√(

m2
H −m2

S

)2
+ v2

Hµ
2
S

)
. (A.1.9)

Therefore, it can be seen, that the new dark scalar mixes with the SM Higgs. From

this mixing, the dark scalar has Yukawa-like couplings to SM fermions proportional

to the mixing angle θS ×∑
SM Oh, where Oh is the Higgs current to the other SM

particles. For further detail see [7, 142,143].

A.2 Current Limits & Projections

The current exclusion limits and projections can be seen in Figure A.1 for the mixing

angle θ as a function of the dark scalar mass where λ = 0. The colour-coding

is the same as the one seen for dark photons in Figure 4.9 in section 4.2.2. The

parameter space looks rather restricted, but there are no limits set for sin θ < 10−1
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for masses above 5 GeV, and hence this entire parameter space is yet to be explored.

Similarly, for dark scalar masses above 10−1 GeV limits and projections do not reach

sensitivities lower than sin θ ≈ 10−6.

Figure A.1: Current limits and projections on minimal dark scalar
with mixing angle θ and λ = 0 [78].



Appendix B

Heavy Neutral Lepton Decay

Width Formulas

In the following, the widths for heavy neutral lepton decays will be presented. At

first, the low energy effective field theory used throughout will be introduced.

B.1 Low Energy Effective Field Theory

For low energy processes, where the momentum of particles is much smaller than

their masses, p ≪ M , the heavy mediator boson propagator can be Taylor expanded,

1
p2 −M2 ≈ − 1

M2 + p2

M4 + O
(
p4

M6

)
, (B.1.1)

where only the first term is not heavily suppressed [144].

The terms in the Standard Model Lagrangian, with the addition of a heavy neutral

lepton N, containing the W± bosons are given by

L ⊃ m2
WW

+
µ W

µ− + g√
2
(
W+
µ J

µ+
W +W−

µ J
µ−
W

)
(B.1.2)

− g√
2
U∗
α

(
W+
µ N

cγµPLlα + h.c.
)
,
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for a sum over leptons lα = e, µ, τ , HNL-neutrino mixing angle Uα, and currents

defined in eqs. (2.4.11) and (2.4.12).

Without considering the HNL interactions and using the equations-of-motion of the

W bosons, it can be shown that W±
µ can be replaced with − 1

m
2
W

g√
2J

±
Wµ resulting in

the point-like interaction between an HNL and three fermions,

L ⊃ − g√
2
U∗
α

[(
− 1
m2
W

g√
2
Jµ+
W

)
N cγµPLl + h.c.

]
∝ GFU

∗
α

(
N cγµPLl

)
Jµ+
W . (B.1.3)

A similar procedure is carried out for the Z boson, and hence all 3-body decay

channel widths in the remainder of this section will be proportional to G2
F |Uα|2 [12].

The full derivation of the decay width formulas are beyond the scope of this thesis.

In the following section, the results from [70] will be stated; the decay width formula

for each decay channel of HNLs with masses below 10 GeV.

B.2 Decays into Fermions

Neutrino-Only Decays

The decay width for neutrino-only HNL decays is given by

Γ(N → νανβνβ) = (1 + δαβ)G
2
FM

5
X

768π3 |Uα|2 , (B.2.1)

for HNL mass MX and Fermi-constant GF .

Charged Mediator Decays

For integrated out W boson mediators, the decay width for a charged mediator

decaying into a lepton and two fermions is

Γ
(
N → lαUD

)
= NW

G2
FM

5
X

192π3 |Uα|2I(xu, xd, xl) , (B.2.2)
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for xi = mi

MX
with masses mi, i ∈ {lα, U,D}, and integral

I(xu, xd, xl) = 12
∫ (1−xu)2

(xd+xl)
2

dx

x
(B.2.3)

(x− x2
l − x2

d)(1 + x2
u − x)

√
λ(x, x2

l , x
2
d)λ(1, x, x2

u) .

Here UD represents the two options of lepton-only (νβl+β ) and quark (uidj) final

states, and the Kallen function is defined by

λ(a, b, c) = a2 + b2 + c2 − 2 (ab+ bc+ ac) . (B.2.4)

NW is a factor which for lepton-only final state NW = 1 and for quarks is NW =

Nc|Vij|2 with the number of colours Nc = 3 and CKM matrix element Vij for ui and

d̄j.

Neutral Mediator Decays

The decay width for neutral mediator decays, mediated by the integrated out Z

boson, is defined

Γ
(
N → ναff

)
= Nz

G2
FM

5
X

192π3 |Uα|2 (B.2.5)Cf
1

((
1 − 14x2 − 2x4 − 12x6

)
x1/2 + 12x4(x4 − 1)L(x)

)

+ 4Cf
2

(
x2(2 + 10x2 − 12x4)x1/2 + 6x4(1 − 2x2 + 2x4)L(x)

) ,

for x = mf

MX
with mf the mass of the fermion, x1/2 =

√
1 − 4x2, and

L(x) = log
(

1 − 3x2 − (1 − x2)x1/2

x2(1 + x1/2)

)
. (B.2.6)

The factor NZ is 1 for leptons and Nc for quarks, and the Cf
1,2 expressions are given

in Table B.1 for up-type and down-type quarks, and for the two lepton scenarios

respectively. sW is the sine of the Weinberg angle θW .
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f Cf
1 C2

f

u, c, t 1
4

(
1 − 8

3s
2
w + 32

9 s
4
W

)
1
3s

2
w

(
4
3s

2
w − 1

)
d, s, b 1

4

(
1 − 4

3s
2
w + 8

9s
4
W

)
1
6s

2
w

(
2
3s

2
w − 1

)
lβ, β ̸= α 1

4

(
1 − 4s2

w + 8s4
W

)
1
2s

2
w

(
2s2

w − 1
)

lβ, β = α 1
4

(
1 + 4s2

w + 8s4
W

)
1
2s

2
w

(
2s2

w + 1
)

Table B.1: Cf
1,2 expressions for fermions (From [70]).

B.3 Decays into Hadrons

For decays of heavy neutral leptons into a fermion and a meson, distinctions are

made between pseudo-scalar and vector mesons. The decay width for decays into a

charged pseudo-scalars and a lepton,

Γ(N → l−αh
+
P ) = G2

Ff
2
h |VUD|2|Uα|2M3

X

16π (B.3.1)[
(1 − x2

l )2 − x2
h(1 + x2

l )
]√

λ(1, x2
h, x

2
l ) ,

depends on the decay constant of the charged pseudo-scalar meson fh, and xi = mi

MX

as defined above. VUD is the CKM matrix element for the up- and down-type quarks

in the pseudo-scalar, and mh the mass of the meson. For a neutral pseudo-scalar

mesons and a neutrino, the decay width is given by

Γ(N → ναh
0
P ) = G2

Ff
2
hM

3
X

32π |Uα|2(1 − x2
h)2 . (B.3.2)

Similarly to charged pseudo-scalar mesons, the decay width into a charged vector

meson and a lepton is

Γ(N → l−αh
+
V ) = G2

Fg
2
h|VUD|2|Uα|2M3

X

16πm2
h

(B.3.3)
[
(1 − x2

l )2 + x2
h(1 + x2

l ) − 2x4
h

]√
λ(1, x2

h, x
2
l ) ,



B.4. Multi-Hadron Decays 167

where gh is the decay constant of the charged vector meson. Whereas for a neutral

vector meson and a neutrino, the decay width is

Γ(N → ναh
0
V ) = G2

Fκ
2
hg

2
h|Uα|2M3

X

32πm2
h

(1 − x2
h)2(1 + 2x2

h) , (B.3.4)

with the additional factor κh, which values for certain mesons can be found in

Table B.2. Values for the decay constants for the various mesons can be found at [2].

h ρ0 ω ϕ J/ψ

κh 1 − 2 sin θW 2 4
3 sin θW 2 4

3 sin θW 2 − 1 1 − 8
3 sin θW 2

Table B.2: κh expressions for four neutral vector mesons (From
[70]).

B.4 Multi-Hadron Decays

The total hadronic decay width of HNLs is found using the decay width into quarks

with a factor, which takes into account loop corrections. This factor, ∆QCD, is taken

from calculations of hadronic τ decays using

1 + ∆QCD = Γ(τ → ν + hadrons)
Γtree(τ → νqq) , (B.4.1)

for quarks q. An additional suppression factor,
√

1 − 4m2
K/MX , is added for the s

quark and any quarks with larger masses. The correction is given by

∆QCD = αs
π

+ 5.2
(
αs
π

)2
+ 26.4

(
αs
π

)3
, (B.4.2)

for αs = αs(MX), see section. 2.2.3 for the running of αs1.

The fully inclusive hadronic final state decay widths are constructed,

Γνhadronic = (1 + ∆QCD)Γtree(N → νqq) , (B.4.3)

1The running of αs in HNL decays is carried out using https://github.com/Hyperiso/
Hyperiso in this thesis.

https://github.com/Hyperiso/Hyperiso
https://github.com/Hyperiso/Hyperiso
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Γlαhadronic = (1 + ∆QCD)Γtree(N → lαud) , (B.4.4)

for decay width described above.

The decay of HNLs into multi-hadron states can be found by comparing the total

hadronic width to the combined width of all decays into one meson [70]. Therefore,

the widths for HNLs decays into multi-hadron final states are

Γ(N → ν multi-hP,V ) = Γνhadronic − Γ(N → νh0
P,V ) , (B.4.5)

Γ(N → lα multi-hP,V ) = Γlαhadronic − Γ(N → l∓αh
±
P,V ) . (B.4.6)
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Proofs

C.1 Poisson & Gamma Distributions

In the following, the proof for the link between Poisson and gamma distribution

functions is shown. The proof follows [145]. Starting from the incomplete gamma

function,

Γ(y, λ) =
∫ ∞

λ
ty−1e−tdt ⇒ Γ(y + 1, λ) =

∫ ∞

λ
tye−tdt , (C.1.1)

a change of variables is performed,

t = λ+ u ⇒ d t
du = 1 ⇒ d t = du , (C.1.2)

where when t = λ then u = 0. Therefore, the integral becomes

Γ(y + 1, λ) =
∫ ∞

0
(λ+ u)ye−(λ+u)du = e−λ

∫ ∞

0
(λ+ u)ye−udu . (C.1.3)

Using the Binomial theorem defined by

(x+ y)n =
n∑
k=0

(
n

k

)
xn−kyk , (C.1.4)

the integrand is rewritten,

Γ(y + 1, λ) = e−λ
∫ ∞

0

y∑
k=0

(
y

k

)
uy−kλke−udu ,
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= e−λ
y∑
k=0

(
y

k

)
λk
∫ ∞

0
uy−ke−udu ,

= e−λ
y∑
k=0

(
y

k

)
λk Γ(y − k + 1) = e−λ

y∑
k=0

(
y

k

)
λk(y − k)! .

Here, the definition of the gamma function,

Γ(y) =
∫ ∞

0
uy−1e−udu = (y − 1)! , (C.1.5)

has been used. Re-writing using,
(
n
k

)
= n!

k!(n−k)! , incomplete gamma function becomes

Γ(y + 1, λ) = e−λ
y∑
k=0

y!
k!λ

k ,

⇒Γ(y, λ) =
y−1∑
k=0

(y − 1)!
k! e−λλk =

y−1∑
k=0

Γ(y)e
−λλk

k! . (C.1.6)

Therefore, it can be seen that the Poisson cumulative distribution function is given

by the regularised upper gamma function.
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Dark Matter Limits & Projections

D.1 Axion-Like Particles Limits & Projections

In the following, the current limits and projections for axion-like particles are dis-

played. The couplings on the figures are given in terms of gY = cfvH

fa
and f−1

G = 2αscG̃

πfa

for the couplings presented in section 4.2.3.

Figure D.1: Current limits and projections for the ALP-fermion
coupling (From [54]).
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Figure D.2: Current limits and projections for the ALP-gluon coup-
ling (From [54]).

D.2 Heavy-Neutral-Lepton Limits & Projections

In the following, the current limits and projections for heavy neutral leptons are

displayed. The couplings on the figures are the same as the ones described in

section 4.2.4.
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Figure D.3: Current limits and projections on minimal HNL models
for muon-dominated mixing (From [54]).

Figure D.4: Current limits and projections on minimal HNL models
for tau-dominated mixing (From [54]).



Appendix E

Standard Model Background
In the following, the individual θlab − ECMS distributions for the four distinct con-

tributions to the SM background discussed in section 6.4.1 are displayed. Each

distribution has an individual colour coding. The explanation for the features of

each distribution can be found in the aforementioned section.
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Figure E.1: SM background distributions for e+e− → γγ (top) and
γγγ (bottom).
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Figure E.2: SM background distributions for νν̄γ(γ) (top) and
e+e−γ(γ) (bottom).
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