W Durham
University

AR

Durham E-Theses

A Standardised Environment for the Application of
Al i Production Scheduling Research

MCGOWAN, CALLUM,DREW

How to cite:

MCGOWAN, CALLUM,DREW (2024) A Standardised Environment for the Application of Al in
Production Scheduling Research, Durham theses, Durham University. Available at Durham E-Theses
Online: http://etheses.dur.ac.uk/15555/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15555/
 http://etheses.dur.ac.uk/15555/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Standardised Environment for the Application of Al
in Production Scheduling Research

Callum McGowan

Supervisors: Dr Oliver Vogt & Dr Stefano Giani

A

&
P Durham

University

A

Department of Engineering
Durham University

A Thesis presented for the degree of
Master of Science by Research
Submitted: March 11, 2024

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be published
without the author’s prior written consent and information derived from it should be acknowl-
edged.

Acknowledgements

I would like to thank my supervisors Oliver Vogt and Stefano Giani for their invaluable advice
and guidance throughout this project.

Abstract

Production scheduling contains a wide variety of nondeterministic polynomial time
hard problems that are differentiated by machine setups, constraints and optimisation tar-
gets. Traditionally, scheduling is run overnight for the next day and cannot adapt to a
dynamic situation. Newer research methods such as deep reinforcement learning aim to
address this problem, but require robust environments which can be generalised to these
different setups in order to be examined properly. Currently, researchers must create their
own environments when examining production scheduling problems due to the often pro-
prietary nature of the research undertaken. This process both takes time and means that
comparisons between methods are difficult. This work introduces a suitable environment
which can be applied to different setups in order to reduce this wasted time and allow easier
comparisons between current research methods.

Contents

1 Introduction
L1 Overview e e e e e e
1.2 Motivation e e e e e e e e e
2 Production Scheduling
2.1 Classification of Production Scheduling Problems
2.1.1 Machine Setups
2.1.2 Additional Constraints
2.1.3 Optimisation Targets
2.2 LAteratur€ reVIEW v v v bt e e e e e e e e e e e e
2.2.1 Simple Heuristics e
2.2.2 Advanced Heuristics
223 ExpertSystemso e e
2.2.4 Approximation Algorithms oL
2.2.5 Machine Learning o
2.2.6 Reinforcement Learning
2.2.7 Deep Reinforcement Learning
2.3 Summary ... oL e e e e e
3 Proposed Environment
3.1 Factory Class
32 Resource Class
33 JobClass e
34 Operation Class e
4 Creating Factory Environments
4.1 Machine Setups L
4.2 Constraints e e e
4.3 Optimisation Targets e
5 Model Interaction
5.1 Heuristic Based Methods,
5.2 Reinforcement Learning L oL
6 Conclusions
7 References
Appendices

A Environment code

10
10
10
10
11
12
13
14
15
17
18
19
22
27

29
29
30
32
35

37
37
37
39

40
40
41

43

44

48

48

Nomenclature

Reinforcement Learning
discount parameter
action space
reward function
state space

state transition function

4 o oA = 2

T policy
a action

A(s,a) advantage value

E expected discount return
et experience
L, loss function

Q(s,a) Q value associated with taking action @ when in state s
r reward
s state

V7™ (s) value of being in state s using policy 7

Yy temporal difference target
Scheduling

Q@ machine setup

I6; additional constraints

~y optimisation target

brkdwns resource breakdowns

C; completion time of a job

Cmae makespan, the final completion time of all jobs
d; deadline for a job

E; job earliness

FJc flexible job shop

Fm flow shop

Jm job shop

L; job lateness

M? matrix of an operation’s viable resource routing options
oj; setof operations

Om open shops

Pii stochastic processing time for an operation

Dji production time for an operation

Pm parallel machines

@m heterogeneous machines

Tj release date for a job

5ji Start time of an operation with job index ;7 and operation index ¢
Sj, operation setup times

T} job tardiness

Tpt), , average throughput

Utl; resource utilisation

WIP work in process

1. Introduction

1.1. Overview

The rise of Industry 4.0 has led to the increased interest in harnessing digital technology to
increase productivity [1]. Industry 4.0 utilises cyber-physical systems such as sensors to collect
vast amounts of data alongside the Internet of Things (IoT) in order to produce insights which
can be acted upon to deliver superior cost efficiencies and better quality goods and services.

Production scheduling is one such application within Industry 4.0 which can help to drive
increases in productivity and profitability. Production scheduling is the allocation of tasks to a
set of resources in order to complete them within a factory environment. These resources are
usually limited meaning that tasks are effectively competing for resource usage.

Good schedules lead to decreased manufacturing costs, reduced lateness of deliveries to
customers, and increased machine utilisation [2]. Modern industrial factories face several chal-
lenges that makes the need to schedule effectively paramount. These challenges include in-
creased product variety, shortening delivery fates to customers, reducing production lot sizes
and an increase in customer orders but of smaller size. These are indicative of a transition from
mass manufacturing to mass customisation in the global economy. These challenges can only
be met with optimised schedules for the hundreds, if not thousands, of production orders present
on a busy shop floor [3].

Production scheduling in complex, dynamic environments, such as within low volume, high
variance factories (e.g. a job shop) is known to be non-deterministic polynomial-time hard
(N'P-hard), meaning that as complexity increases, the time to produce optimal solutions grows
to the point of being impossible to solve in polynomial time for large production instances
[4]. This is true of many other similar combinatorial optimisation problems, yet scheduling
problems seem to be especially hard to solve with traditional techniques. For comparison, the
well known Capacitated Vehicle Routing Problem (CVRP) was solved optimally for an instance
of 135 clients and 7 vehicles at the same time as a job shop scheduling problem was solved for
just 10 jobs on 10 machines.

For many instances of these problems, the models provide an incomplete overview of the
problem by leaving out many real world constraints. Additionally, there is a huge amount of
variety within real world factories, as can be imagined when comparing semiconductor facto-
ries to car factories to job shop situations. Unavoidable changes to the environment, such as
emergencies and an unknown influx of tasks form further constraints that lead to the need for a
dynamic schedule due to the complexity they add, and also further reduce the ability to produce
optimal schedules.

For real world situations, optimal schedules will likely not be achieved due to the reasons
highlighted above. Nevertheless, improvements in production scheduling techniques can be
made by advancing the approximation techniques used to produce schedules.

1.2. Motivation

Depending on product, factories can take on a wide variety of different general forms which
can lead to added complexity in the scheduling task. These forms theoretically range from
single machine setups to flexible job shops, which have many different types of machines and
can produce a variety of different products, each requiring the completion of multiple different
tasks [2].

There are then further added complexities introduced by additional constraints and the need
to optimise for different objectives. These objectives and constraints can include considerations
such as stochasticity, the elimination of late completion of tasks, reducing work in process
(WIP), and reducing setup times and costs, among many other side constraints which can be
found in real world factory setups and can change over time.

To try and provide schedules for these complicated situations, many different techniques are
researched and deployed, including more traditional heuristic methods, expert systems and al-
gorithms. Recent advances in computing power and machine learning (ML) techniques provide
a new avenue to explore the problem. These techniques have shown the potential to be able to
provide schedules which can adapt to dynamic environments once trained. They can also be
trained for the specific environment required and therefore are of great interest for production
scheduling research.

Current machine learning based production scheduling research is often limited to either
less complex environments, such as parallel machine setups, or spans a limited time period
of jobs rather than being continuous. Part of this limitation is due to the closed off nature
of the reinforcement learning environments used, often due to their proprietary nature, which
leads to research time being used to create and define the factory environment and the way
the reinforcement learning agent interacts with it. The lack of standardisation also means that
different methods cannot easily be compared to determine which is the most efficient, as well
as meaning that benchmark optimisation algorithms and heuristics are not easily applied to the
environments for further comparison. By extension, verification is more difficult which can lead
to slower progress in the area.

This work introduces a factory environment which provides a robust generalisable frame-
work which can produce intuitive representations for both human operators and reinforcement
learning agents, whilst also being powerful enough to encapsulate the many different possible
behaviours and constraints, or at least allow them to be added easily. The proposed environment
can mimic highly complex and varied factory scenarios from the real world, with the ability to
easily apply different algorithms and benchmarks to it, which will help to reduce research time
spent repeating this step and allow more time to be spent refining the agents that interact with
the environment.

The remaining sections of this report are organised as follows: Section 2 examines the dif-
ferent forms of production scheduling problems in more detail, as well as the current literature
on the topic. Sections 3 and 4 presents the proposed environment and demonstrates how it can
be used to replicate the different forms of production scheduling problems discussed in section
2. Section 5 then shows how different prediction models, including deep reinforcement learn-

ing, can be applied to the environments. Finally, the conclusions of this report are presented in
section 6.

2. Production Scheduling

2.1. Classification of Production Scheduling Problems

Production scheduling is the family of problems that concerns assigning start times s; > 0 to
a set of operations o0;; onto one of m production resources, where j is the job index and 7 the
operation index. Each operation has an associated production time pj; and all operations are
grouped into n jobs. Release dates r; and deadlines d; define the times when job processing
can be started and must be completed by, respectively [4]. The completion time of a job is then
defined as C; and the final completion time of all jobs, the makespan, is Cy,q5.

Specification of production scheduling problems is done using «|3|v notation, where « is
the machine setup, (3 is the set of additional constraints, which can be empty, and v is the
optimisation target [2].

2.1.1. Machine Setups

When each job contains only a single operation, complexity is increased from a single machine
problem by adding parallel identical machines (leading to Pm - parallel machines setup), which
can then each process the jobs at different rates (leading to ()m - heterogeneous machines).

Shop-scheduling problems are when the n jobs contain multiple operations which can each
only be processed by resources of corresponding types. Flow shop (F/'m) setups are when
each job has an identical operational order. Distinct sequences of operations lead to a job-shop
environment (Jm). Finally, for completeness, open-shops (Om) require no operational order
constraints.

When there is replication of resources into groups, then operations can be processed on any
of the resources within the group (e.g. with two laser cutters in a shop, laser cutting operations
can be routed through either). This leads to flexible shop setups, for example the flexible job
shop (F'Jc). These resource groups then have similar constraints as in Pm and QQm setups.
Jobs therefore require a routing choice in addition to the operation sequencing.

The hierarchy of increasing complexities and the differences that lead to them is shown in
figure 1.

2.1.2. Additional Constraints

The addition or changing of existing constraints J add further complexity to scheduling prob-
lems. One of the most common constraints is the addition of a setup time. Setup times can be
added between different families, or between any jobs (S;;). These are additionally machine
dependent when the parameter is S)y;.

Another important constraint is the addition of stochasticity to parameters, such as the pro-
cessing time pj; being replaced with p7;. This makes the problem model more applicable to real
world scheduling scenarios due to the completion of jobs rarely being deterministic. Similar
parameters add a stochastic effect to the release dates () of the jobs, affecting when the job
is first seen by the controlling agent, and breakdowns (brkdwns®), which represent unexpected
machine outages.

10

1 1 Machine
n jobs

Single Machine (M) | 1 operation (op) per job

m distinct machines

m identical machines m ops per job
\ 4 v Identical op order
Pm Fm
Parallel M Flow Shop (FS) m workcenters with c;

identical machines
machine dependent

speed Distinct jobs FFc
¥ Flexible FS
Qm
Heterogeneous M L
Job Shop (JS)
c,mac:hijma ?nd opd FJc
ependent spee :
! Flexible JS
Rm
Unrelated M

Figure 1: Hierarchy of different machine setups with increasing complexity [2]

Operations can go to different resources but also some resources can process different types
of operations, for example a welder can perform different distinct types of welding which are
different operations within the process and require different materials. This is denoted M}
and leads to a matrix of eligibility for each operation and its viable resource choices. A fur-
ther extension of this is that different resources process the same operation at different speeds.
For example, newer equipment is often quicker than older equipment, and a more experienced
operator can often process an operation faster than someone who is less experienced.

2.1.3. Optimisation Targets

There are many different objectives in production scheduling which can be optimised. Some of
the most common metrics related to scheduling problems are related to one or more of through-
put, timeliness, and utilisation.

Throughput is the dynamic environment version of makespan, and measures the how many
units can be produced or jobs can be completed in a given amount of time. The average job
throughput, T'pt/ , at time ¢ is represented by

avg®

Tptl,, = % > ligy<n- (1)
This can then be further expanded to operation throughput which can then be measured per
machine or resource group [4].
Objectives related to timeliness include whether a job is completed late or early. As such,
the lateness, L; is defined using completion times and due dates as

11

positive and negative lateness values therefore indicate a job was completed late or early
respectively.
A metric describing all jobs completed late is described by tardiness, 75,

T; := max{0, L}, (3)

and similarly jobs which finish early are described by earliness, F;,

E; :=min|L;,0|. 4)

Tardiness is the most obviously important of these two, as finishing a job late can lead to
contractual fines, however finishing a job too early can also be detrimental due to, for example,
storage restrictions [5].

A further timeliness consideration is work in process (WIP), which in a factory environment
relates to jobs which have been started but have not yet finished. As such, individual job WIP
is given by the equation

1 iijg §t<8jo—|—0j

WIP; = , ®)

0 otherwise
and total WIP is the sum of all job WIP values, multiplied by some factor scaling with the
importance of the job.
Finally, the utilisation, Utl;, of any given resource is given by

1
Utly = <D pji* Lseepictys (6)

which is the amount of time the machine was working over the total time ¢.

2.2. Literature review

Production scheduling problems are N P-hard, which means that optimal solutions are impos-
sible to find in large production instances as the number of possible solutions increases rapidly.
For example, according to Fox in [6] when sequencing 10 orders, each with 5 operations, with a
single machine for each different operation type, there are 10!° or roughly 1032 possible sched-
ules. It is obvious that a more complex situation in an actual manufacturing facility is more
complex, as each of the number of orders, operations, and resources are usually substantially
greater.

Traditionally, scheduling is run overnight for the next day and is too time consuming to be
run again in the middle of the day. Complications can be added by disruptions, which can render
these schedules obsolete and make the problem more difficult. Machines can breakdown and
workers can be ill, therefore losing expected resources. Dynamic schedules which can produce
new solutions quickly are required to adapt to these situations. Factory dispatchers are often
accustomed to handling these disruptions, but their decisions can miss the bigger picture and
therefore their impact as they are often crisis-oriented.

12

Thus computer-aided methods for scheduling must be run often and fast in order to deal
with these fast changing situations. These requirements often lead to simplistic models which
trade a decreased solution quality and lower realism of the model for a decreased solution time.

Traditionally, production scheduling problems are approached using either simulation mod-
els, analytical models, heuristics, or a combination of these methods.

Newer methods involve using artificial neural networks and deep reinforcement learning to
make production schedules. These methods are difficult to train but in theory they can make
changes quickly if required when trained.

This section aims to analyse the methods and current applications of the most common of
the wide variety of approaches to solving production scheduling problems and the situation in
which they are used.

2.2.1. Simple Heuristics

Heuristics are a common traditional method whereby a simple set of rules are used to produce
schedules. Examples of simple heuristics include using a first in first out processing order for
all eligible tasks for a given machine, or scheduling the next eligible task with the shortest or
longest processing time [3].

The earliest due date rule introduced in [7] schedules the task with the earliest due date into
the resource. This is optimal for single machine tardiness/lateness situations, as discussed in
[3], and has been shown to be stronger when used online than some offline scheduling methods
in [8].

Simple heuristics are advantageous as they are easy to understand and implement, which
is a quality especially valued by human schedulers so that they can easily see the logic behind
the decisions being made. These methods are also quick to run, due to their fast computational
complexities of O(nlogn) where n is the number of tasks to be scheduled. This is due to
them effectively being sorting problems and therefore having the same lower bound for their
computational complexity. Their main disadvantage is their lack of foresight and production of
sub-par results, especially when used to provide schedules for more complicated systems.

These two main factors need to be weighed up against each other when deciding whether
or not to use simple heuristics. In some simple situations, such as the m identical parallel
machines problem with a makespan optimisation target (P//C)qz), Which is still N"P-hard for
two machines, the longest processing time heuristic has a worst case performance of % — %
[9].

An example from the real world is the exam scheduling problem of Pearson VUE, where the
goal is to process all exams and students in each of their given test centres whilst minimising the
number of opening hours. The seats in each exam centre form a parallel machine setup with the
jobs to be processed being represented by the different exams with varying lengths. The goal
to minimise the number of hours each exam centre is open is equivalent to a minimisation of
the makespan. Over the course of 2012 there were effectively 11261 different parallel machines
problems accross the different centres. CPLEX 12.5, an optimisation studio produced by IBM,
produced schedules which were on average 0.57% from being optimal. By comparison, the
longest processing time heuristic resulted in a gap of 0.91%. However, the total CPU time to

13

produce the CPLEX solutions was 80 hours on a 240 core cluster, compared to less than 18
seconds on a single computer for the longest processing time solution [3].

Overall, it can be seen that these simple heuristics can produce powerful results for real,
albeit less complex problems. However, different heuristics are suited more towards different
optimisation targets and so in the real world, where targets often change, would need to be
swapped between to be effective. These heuristics also do not take into account more than what
is in front of them, which is to say that they have no consideration for other resources within a
system’s environment.

2.2.2. Advanced Heuristics

More elaborate dispatching heuristics also exist, such as the apparent tardiness cost dispatching
rule proposed in [10]. This rule calculates an index value [; for every job each time a machine
is free, which in its more complicated form is given by the equation

max(d; — p; —t,0)
Lt :—exp{— - }7
i() m Kb

where w; is the weight of the job, which effectively acts as a priority factor by denoting the

wj

(7

importance of job j relative to other jobs, the K values are parameters to be fixed and p is the
average processing time of the remaining jobs. This rule was designed to be used for weighted
tardiness problems but can be applied to other problems too.

The apparent tardiness cost rule has a computational complexity of O(n?) due to how many
times the index is computed. The calculations become slower than other rules due to the dif-
ficulty of computing the index coupled with the higher complexity. The rule is also harder to
apply when compared to simpler heuristics in exchange for better performance.

Advanced heuristics which go beyond dispatching rules often have some problem specific
knowledge about theoretical properties of scheduling problems. These properties are then ex-
ploited to produce production schedules. Other methods aim to derive better schedules starting
from any previous schedules.

Many of these advanced techniques are built upon local search techniques, which requires
a definition of neighbouring solutions, ways to explore them, and a way to evaluate which is
better.

A strong example of an advanced heuristic is the NEH heuristic, which was first proposed
for solving a flow shop with a an objective of minimising the makespan [11]. The steps to
carry out the heuristic first requires the total processing time of all jobs in all machines to be
calculated. These are then sorted in descending order. The first two jobs are then taken, and the
order in which they minimise makespan is maintained. The next job in the descending sequence
is then chosen and inserted in all possible sequences with the jobs already in the queue, and the
minimum makespan order is again chosen. This process is repeated until all jobs are placed
in the sequence via this insertion technique, building upon the previous best partial sequence.
This has a computational complexity of O(n*m). This was later improved to O(n?m) with the
NEHT technique [12].

14

NEH outperforms many other heuristics, with an average statistical deviation from the best
known solutions in 120 different instances of just 3.3%. Quite often, NEH is used to seed meta-
heuristic techniques [3]. The faster NEHT gave performances of 2.24% in 10 large instances in
an average of 0.077 seconds. There are many extensions and examinations of this technique in
flow shop environments with makespan objectives [13; 14].

Further advancements are in the form of metaheuristics, which attempt to be general tem-
plates with increased performance over regular heuristics, with the downside of often being
more computationally demanding. Metaheuristics commonly use several similar features. Ex-
amples of these common features include a representation of the solution, which is an arrange-
ment of the variables involved, an initial solution or set of solutions from which to start the
process, a diversification mechanism such as local search, with the goal of finding a better solu-
tion, a set of comparison criteria for judge new solutions against older ones, and a termination
condition to limit the computational time used, as optimal solutions are not guaranteed due
to the nature of scheduling problems. Example termination conditions include the number of
iterations, the number of iterations without improvements, or CPU time taken [3].

An example use of a metaheuristic is the iterated greedy method, which was created to apply
to a permutation flow shop problem with a makespan objective. An initial solution is presented,
and then the method performs a destruction phase where some jobs are randomly removed.
The incomplete solution is not reconstructed by reinserting the jobs using the NEH method,
which is to say that each job is placed back in to maximise the objective function. Optionally, a
local search can take place to examine adjacent solutions at this point, and then an acceptance
criterion is used to determine which solution to take. This has some random element to it to
encourage exploration of the solution space whereby a worse solution can be accepted with a
probability that decreases with new solution quality. Algorithm 1 shows this process [15].

Iterated greedy has been shown to deviate from the 120 solutions mentioned alongside NEH

by just 0.44%, but the solutions on average took just under a minute, which is much longer than
for NEH [15].

2.2.3. Expert Systems

Expert systems contain organised bodies of knowledge which try to emulate the problem solving
skills of an expert within its domain. As defined by Welbank,

An expert system is a program which has a wide base of knowledge in a restricted
domain, and uses complex inferential reasoning to perform tasks which a human
expert could do [16].

Expert systems consist of three main parts, the knowledge base, the inference engine and
the user interface. A diagram of this architecture is shown in figure 2.

The knowledge base is an essential part of the system as the knowledge it contains is used
for solving the problems that the system encounters. Facts, heuristics and relationships known
by domain experts are some of the forms the knowledge within the knowledge base can take.
The most common representation technique for this knowledge is the usage production rules,
which take the form of If-Then statements.

15

Algorithm 1 Iterated Greedy
Require:

x := NEH heuristic

x := Insertion Local Search(x)

Tp =T
procedure ITERATED GREEDY

while (termination condition not satisfied) do
/

¥i=ux
for : := 1—destruct do > Destruction phase
x’ := randomly extract a hob of 2’ and insert it into 2/,
end for
for i := 1—destruct do > Reconstruction phase
x’ := best permutation after inserting xz(7) into all possible positions of x’
end for
2" := Insertion Local Search(x’) > Optional local search
if Crpoz(2”) < Choge(z) then > Acceptance criterion
x ="
if Craz () < Cpraz(xp) then
Ty =1
end if
else if random < exp{— C’”“”“‘T(ef;lg;ixf(x) } then
x ="
end if
end while
return x;

The inference engine handles the knowledge base’s content and examines its status. It de-
termines the order in which inferences are made using various different inference methods.

The user interface allows the user to interact with the system, usually through a screen
display and with an optionally explanation component. External interfaces are usually also in-
cluded which allow the expert system to communicate with databases and other external sources
of information [17].

The advantages of expert systems are the ability to encapsulate the knowledge of several
experts, and to always be available and consistent with that knowledge.

However, since all of the decisions are made based on the rules within the inference engine,
the output is only as good as the rules allow it to be. This means that sometimes expert systems
can lack common sense and won’t innovate in unusual circumstances. The difficulty in creating
these inference rules is also high, as the knowledge of experts needs to be codified and some-
times it is difficult to explain the logic and reasoning behind decisions. The cost of creating or
implementing an expert system is also expensive, in part due to the hard to codify logic and the
requirement of domain experts in their creation. The creation process also takes a large amount
of time.

16

Y
Knowledge Base External Interfaces
(facts, heuristics)

R i

Inference Engine

—

User Interface

A

~ @@/

Figure 2: Architecture of a standard expert system.

The intelligent scheduling and information system introduced in [6] uses hierarchical plan-
ning to turn complicated problems into smaller pieces and was the first application of expert
systems to job shop scheduling. Building on this other schedulers were built such as the oppor-
tunistic scheduler in [18].

Whilst these techniques are used somewhat successfully it should be noted that the problem
spaces were small. In general, expert systems have been most successful when the number of
possibilities at each step of the problem are small, which is often not the case for production
scheduling problems [19; 20].

2.2.4. Approximation Algorithms

Approximation algorithms are another common approach to produce ’good enough’ solutions
quickly. There are a wide variety of different approaches taken to applying approximation
algorithms within the field of production scheduling.

A branch and bound algorithm, which views the set of solutions as a tree which it searches
along, is used in a stochastic single machine setup in [5]. However it took nearly an hour to
solve a problem with around 20 jobs. A similar algorithm is examined in [21] for a two and
three machine flow shop problem with six jobs, and finds that it took less than five seconds,
although the number of combinations is obviously much lower.

Ant colony optimisation is used in [22] with a single machine setup and it is found to be
reasonable, with expectations that it could be applied to larger production instances and more
complicated flow shop setups. It was found to be fast compared to semi-exhaustive procedures,
producing a solution for a 20 job two machine problem in less than three seconds compared
to an expected 40 for more the more complicated method, with a 3.5% gap to that method’s
results.

There are many more examples of approximation algorithms such as particle swarm optimi-
sation [23], and genetic algorithms [24]. In general, these methods benefit from being incredibly
fast but often fall into local optima [25].

17

2.2.5. Machine Learning

Machine learning techniques aim to solve problems by learning from a set of training data and
then building a mathematical model from that data in order to make predictions. These methods
have the advantage of requiring less prior knowledge when compared to the rules based systems
discussed previously [26].

Artificial neural networks (ANNs) aim to mimic a human brain’s ability to learn from expe-
rience and generalise in order to solve complex problems using large amounts of data. They are
able to determine non-linear relationships by training on available data in order to make their
predictions. There are many different architectures for ANNs, each with variations designed to
improve their performances based on the specific task they are being used for.

The most basic neural network structure is a multi-layer perceptron (MLP), which consists
of at least three interconnected layers of nodes: an input layer, one or more hidden layers, and an
output layer. An example diagram of a typical MLP with one hidden layer can be seen in figure
3. During the training phase, each input is passed into the neural network and then goes through
the hidden layers in order to produce a prediction for the output. Each predicted output is then
compared to the correct value which the network was aiming to produce. The network then
back-propagates to change the weights of the weights of the connections between the nodes,
slightly changing the model and its associated parameter weights. This changing of the weights
during this phase is based on an initially selected optimisation function, for example stochastic
gradient descent. This change in weights should make future predictions more accurate [27].

An MLP has been used in a case of six jobs over five machines to produce a production
schedule deemed to be reasonable in [28]. This system was used by the manufacturing firm that
they were working with to improve profitability.

Convolutional neural networks (CNNs) are regularised MLPs. They assemble simple pat-
terns to regularise the data in order to model more complex patterns. This solves a common
issue with MLPs have of overfitting the data due to being fully connected networks [27]. Con-
volutional neural networks are most commonly used for image recognition tasks, with the state-
of-the-art architectures sometimes using over a hundred hidden layers to achieve above a 95%
accuracy rate in a large scale image recognition task. Quite often convolutional neural networks
are used alongside deep reinforcement learning, discussed in section 2.2.7.

Recurrent neural networks (RNNs) loop information from previous steps into the current
step alongside the new inputs. This means that they can remember sequences in order to eval-
uate whole time series, so that important information from previous iterations is not forgotten
[27]. There are many different types of RNN architectures, such as attention based RNNs,
which form matrices of weights for each input prior to evaluating the data, and long short-term
memory (LSTM) RNNs, which have layers where the nodes are replaced with special LSTM
cells. RNNs in general are traditionally used for times series forecasting.

An RNN which tries to minimise the energy of the state of the network is applied to a
cyclical job shop scheduling problem in [29]. It is coupled with a lagrangian relaxation method
in order to reduce the complexity of the problem. The method was able to cope with larger
sizes of problems with simple constraints but struggled when the problem got very large and

18

Input Hidden Output
Layer Layer Layer

Input #1

Output
Input #2

Figure 3: An example diagram of a basic multi-layer perceptron artificial neural network, consist-
ing of four inputs, one hidden layer, and one output.

with more complicated constraints.

An LSTM RNN is combined with convolutional layers to create an auto encoder in [30].
However, rather than being used for producing production schedules themselves it is used to
predict machine speeds, and so is more of an auxiliary method to actual scheduling methods to
improve real world processing time predictions.

Supervised machine learning fails due to requiring labelled datasets in order to train to
form predictions accurately. Within production scheduling the problems lead to increasingly
large amounts of different scheduling possibilities which can’t be accounted for simply as a
regression between different dependent and independent variables.

2.2.6. Reinforcement Learning

Reinforcement learning concerns a variety of algorithms and techniques whereby an agent in-
teracts with an environment through perception and action. Each step of the interaction between
the agent and the environment involves the agent receiving an input, which contains a represen-
tation of the current state, s, of the environment, and then choosing an action, a. This action
leads to a change in state of the environment which has an associated value, which is fed to
the agent by means of a reinforcement signal » which acts as a reward. This basic feedback
loop is shown in figure 4. The goal is for the agent’s actions to tend towards the long term
increasing sum of the reward, which it learns to do gradually through trial and error, guided by
the algorithm used [31].

In general, the agent’s actions determine both its reward and also the next state of the en-
vironment. This means that the agent must take into account both the immediate reward and
the expected reward from the next state and therefore all future states when picking from its
available actions. The agent may take a sequence of low reward actions in order to finally arrive
at a state with a high reward and therefore must be able to learn which actions are optimal based
on delayed rewards which can be arbitrarily far in the future.

There are four key components used for attempting to solve reinforcement learning prob-
lems: a model of the environment, a policy, a value function and a reward function. Models

19

> Agent
-
State | |Reward Action
4
»| Environment

-
Figure 4: Basic reinforcement learning model where the agent receives a state signal and a reward

feedback from the previous action and then performs a new action based on this feedback.

of the environment help to predict the next state based on the current state and proposed ac-
tion. Policies define agent behaviours in a state. Reward functions effectively guide the agent
towards learning how to achieve the goal of the experiment. Finally, value functions aim to
evaluate states or state-action pairs for how good they are in the long run [32].

An important assumption in reinforcement learning is that each state contains all important
information in order for the agent to make its decision. That is to say that all information
pertaining to possible future states is contained within the current state representation. This
is known as the Markov property. Such problems are well represented as Markov decision
processes (MDPs). MDP problems contain a set of states, S, a set of actions A, a reward
function 'R whereby

R:S x A—R, ®)

and finally a state transition function 7, whereby

TS x A—TI(S), 9)

where I1(S) is a probability distribution for set S which in essence maps states to probabil-
ities. Alternatively, 7 (s, a, s') represents the probability of action a leading to a transition from
state s to state s’. Similarly, the probability for this transition P, happening at time t is given by

P.(s,s) = p(sip1 = §'|sy = s,a; = a). (10)

These probabilities are required due to the presence of stochasticity in the environment and
therefore uncertainty in the state transitions [33; 34; 35; 36]. It should be noted that the state
and action spaces must be finite for this to be valid, but countably infinite spaces can be reduced
using techniques such as masking.

A common objective for agents looking to maximise their long term returns is to aim to
maximise the expected discount return, £, given by

E{rie +9ripe + Vo ripg o+ }, (11)

where 7y is a discount parameter. This discount parameter is between zero and one which
leads to a higher valuation by the agent of immediate rewards over later ones.

20

In order to maximise this long term return, reinforcement learning methods aim to improve
the agent’s policy 7 over time, therefore improving its behaviour. More formally, policies map
states to actions, or in stochastic cases map states to probability distributions of actions. The
value of being in a state when using policy 7 is given by

V7(s) = E{ris1 + yrip2 + Vris + 0 [se = s}, (12)

which is the expected discounted return when following the specified policy when starting
in state s. Policy 7 is then said to be better than policy 7’ if and only if for all states V™ (s)V ™ .
In the case of finite MDPs, such as those examined in production scheduling problems, there
are always one or more optimal policies which share the same value function and are at least
better than or equal to all other value functions [32].

A common attempt in reinforcement learning is to apply algorithms which change the policy
in real time. Q-learning is an example of this sort of algorithm, which applies directly to the
agent’s experience of interacting with the environment. In Q-learning, the experience of each
state transition updates one element of a table containing Q-values, which map state-action
pairs. Each Q-value entry ()(s,) has a value for every possible state action pair and effectively
represents the expected reward for the given action in the specified state. The initial assigned
value for each)(s, a) is arbitrary. Upon the state transition from s, to s;,1 having taken action
a; and receiving reward 7,1, the update

Qr+1(5¢, ar) = Qu(Se, ar) + (st a)[re + fymgx Q(8t41,a) — Q(s4, ar)], (13)

where « is the learning rate, is applied [37]. The learning rate is present to allow conver-
gence in non-deterministic systems. This is because the new Q-value after the update is de-
pendent on the previous value, and so with the different rewards received in non-deterministic
systems the Q function would bounce around and not converge. The learning rate means that
new knowledge is only accepted in part. Usually the learning rate is set high initially and is
decreased as training progresses, which has the dual effect of making the initial arbitrary val-
ues of Q less influential and then helping the values to converge later [38]. The algorithm for
Q-learning can be seen in algorithm 2 [37].

The effect of Q-learning is that the agent does not know state transition probabilities or
rewards unlike when using value functions. In stochastic settings, the agent learns about the
transitions through experience of how the states move between each other depending on the
action taken. This is important for creating agents that can adapt to new situations efficiently.
Q-learning can also be beneficial in large state spaces as the agent explores without initial
knowledge of all the available states. Instead, optimal actions can be selected without knowing
anything about the environment’s dynamics.

In any given finite MDP, Q-learning can identify the best action selection policy if initiated
with a partly random selection policy, so that exploration can occur, and infinite exploration
time [39].

Q-learning is used to select between which of a selection of simple heuristics to use at
different times in a single machine setup with different criteria in [40]. It finds that Q-learning

21

Algorithm 2 Q-learning

Require:
States S = {1,...,ns}
Actions A = {1,...,n,} pA:S=A

Reward Function R : § x A — R
Probabilistic Transition Function 7 : § x A — I1(S)
Learning Rate «v € [0, 1]
Discount Factor «y € [0, 1]
procedure Q-LEARNING(S, A, R, T, a,7)
Initialise (Qy(s, a) arbitrarily for all s € Sand all a € A
while () has not converged do
Start in state s € S
while s is not a terminal state do
Calculate 7 accoring to () and exploration strategy

a; < 7(s;)
1 R(sy, ar) > Receive new reward
Ser1 < T (8¢, a4) > Receive new state
Qir1(5¢, ar) = Qu(5¢, ay) + (e, ar)[re + Wmfo(3t+1, a) — Q(s¢, ay)]
S < Sy41

return ()

selects the most effective rule more often than not for the different objectives.

A similar single machine dispatching rule selection problem is examined using Q-learning in
[41], but with a higher number of different rules, some of which are more complex. The research
finds that Q-learning outperformed each of the individual dispatching rules for reducing WIP
over the equivalent of a month of single shift days in a factory.

Traditional reinforcement learning fails in situations where the state and action spaces be-
come too large, as the Q table effectively becomes too large to visit every state-action pair often
enough to converge successfully. Real world scenarios often have sufficiently large state-action
spaces that it is impractical to deploy these methods. This leads to the combination of deep
neural networks with reinforcement learning techniques to create deep reinforcement learning.

2.2.7. Deep Reinforcement Learning

Deep reinforcement learning combines the usage of artificial neural networks with reinforce-
ment learning.

The two main types of deep reinforcement learning are model-based reinforcement learning
and model-free reinforcement learning.

In model-based reinforcement learning, the agent has access to or attempts to learn a func-
tion which predicts the state transitions and rewards of the environment. This allows the agent
to create plans by seeing what would happen for a range of options and choosing between these
choices explicitly. A famous example of this is Google DeepMind’s AlphaZero which beat

22

state-of-the-art programs specialised for chess, shogi and go, as well as human masters of these
games [42].

The advantage to model-based methods over model-free methods, which do not attempt to
learn the model of the environment, is a substantial increase in sample efficiency. The main
downside to the applicability of model-based methods is that the true model of the environment
is often not available to the agent. The agent therefore has to learn the model from experience,
which leads to several potential downsides. The biggest drawback is that any bias which is
present in the learned model will be exploited by the agent, leading to an agent that performs
well within the simulated environment but is drastically overfitted and therefore is not optimal
in the real environment. Model learning is also difficult, meaning that the model may not be
learned even after large amounts of computational time is expended.

Model-free methods effectively give up the potential sample efficiency gains in order to be
easier to implement and tweak. Model-free methods have been more extensively developed and
tested and are far more popular within production scheduling research.

Within model-free reinforcement learning there are two different approaches for what the
agent should train to learn. The first of these approaches is an extension of Q-learning, where the
agent attempts to approximate Q-values. Typically these methods operate off-policy, meaning
any update can use data from obtained at any point during the training phase, regardless of the
agent’s action.

An example of a Q-learning approach is Deep Q-Networks (DQNs), first introduced by
Google DeepMind in [43], effectively launched the field of deep reinforcement learning. DQN's
replace the Q table with a neural network which is trained to approximate the Q-function. The
neural network is initiated with parameters # and estimates Q-values such that (s, a;0) ~
Q) * (s,a) where @ is the optimal Q-function. This is done by minimising the loss function,
L,(0,) at each time step ¢, given by

Li(6;) = Es,mp(.)[(yt —Q(s,a; et))Q]a (14)

where p is the behaviour distribution over the transitions {s,a,r, s’} collected from the
environment, and y; is the temporal difference target, which is given by

Yy = ES’NE[T+7m3X (Q(Slaal;etfl))‘saa]- (15)

The temporal difference error is then given by y; — (). Note that when optimising the loss
function the parameters from the previous iteration are fixed. In contrast to targets in supervised
learning, the network parameter weights affect the targets used here. Differentiating the loss
function with respect to the parameter weights leads to the gradient of each parameter weight,
Ay, given by

AGtLt(Qt) - Es,awp(.);s’NEKT + ’melx (Q(3/7 CL,; Qi—l» - Q(Sa a; Qt))AQtQ(Sv Q; et)] (16)

These values are used to update the parameter weights during the gradient descent step.
However, computing the full expectations of the gradient values is often computationally ex-

23

pensive. In this case, stochastic gradient descent can be used to optimise the loss function by
sampling the expectation values rather than using the full dataset in each iteration.

Commonly, the behaviour distribution p is selected by an e-greedy strategy that chooses a
random action with probability ¢ and follows the greedy strategy otherwise with probability
1 — e. This helps to encourage the agent to explore the environment [44]. € is also usually
decreased every cycle as the network converges until it reaches a set minimum value. Within
production scheduling, exploring the environment helps the to agent learn about the factory
environment it is in so that it is less likely to get stuck choosing the same action repeatedly,
depending on setup.

DQNs also tend to use a feature called experience replay to increase stability during the
fitting process whilst training. A single experience contains the information of the starting and
final state, the action taken and the reward, i.e e, = (s, as, 74, Se41). A random sample of
experiences are chosen from a replay buffer, which are then used to fit the network.

There are several advantages given by using experience replay. The first is that otherwise,
experiences obtained by trial and error are used once and then discarded, but there are some
rare yet important experiences, such as ones involving damage, which should be reused in
order to be effective. Secondly, the learning from the rewards is sped up as experiences are
replayed again and again, meaning the network usually converges more quickly. Finally, the
order of the experiences being random helps the network to avoid overfitting due to processing
sequences which often contain similar states and therefore similar actions. This helps to learn
the probability distribution for actions by decorrelating the datasets. In order for experience
replay to be useful, the environment must not change over time, as then past experiences can be
irrelevant or harmful [45; 46].

Another common way to improve DQN:ss is to introduce a target network to further increase
stability. DQNs are function approximators trying to emulate Q-functions, which are exact. Due
to this, when the neural networks’ predicted Q-values are updated to make (s, a;) converge
closer to the desired value, nearby states, including Q(s;.1,a) for all a, also have their value
indirectly altered. This introduces instability into the process. Target networks are a copy of the
main neural network which are used to evaluate Q)(s;11,a;11), which is then used to train the
main Q-network during the backpropagation phase. Periodically, usually over a fixed number
of steps, the target network’s parameters are synchronised with those of the main network. This
delay between () updates affecting the target values makes oscillations and divergence much
less likely. Algorithm 3 shows the process for applying a DQN with experience replay and a
target network [43].

Experience replay and target networks are used in almost all DQN research, but there are
also some other improvements that can be made on the architecture which further improve their
performances, such as double dueling Q-networks [47]. It is worth noting the existence of such
improvements, but as they are not as ubiquitous in usage within production scheduling research
they will not be discussed further.

A modified deep Q-network is used in [48] to try and minimise the effects of bottlenecks
in a flexible job shop environment by making decisions at the point when a machine is idle
about what should be queued. It handled the dynamic action space but was limited by having

24

Algorithm 3 Deep Q-learning with Experience Replay and Target Network

Initialise network) with random weights

Initialise target network a

Initialise replay memory D to capacity N

for episode = 1, M do

fort=1,T do
With probability eselectarandomactiona;
otherwise select a; = maxQ (s, as; 0;)
execute action a; and obaserve reward 7; and next state S,
Store transition (s;, a;, 74, S111, done) in replay memory D
if enough experiences in D then
Sample random minibatch of transitions (s, a, ¢, S¢+1, done) from D

T, if episode terminates at time t.
Set Y = ~ .
Y = 1 + ymax Q(St+1,a11;0¢), otherwise
a
Perform gradient descent step on (y; — Q(sy, az; 6))?

Every C' steps set () = Q)

deterministic processing times and a lack of deadlines within its constraints.

Another job shop environment, this time within the semiconductor industry, is examined in
[49]. A DQN is used to minimise the makespan but it failed to beat heuristics despite handling
a relatively small number of machines.

A graph neural network is employed alongside a DQN in [50] to a job shop environment
and found that the method out competed heuristics. However this is only over a time period of
thirty jobs total.

A more complex graph neural network approach is used in a search online, learn offline
manner in [51]. However this method was only applied to a parallel machine setup within pro-
duction scheduling. The results were promising for general combinatorial optimisation prob-
lems so perhaps this could be applied to more complex systems.

The alternative approach to Q-learning methods is policy optimisation, which is a family
of methods that explicitly represent the policy 7y (a|s). These methods attempt to optimise the
parameters 6 either by performing optimisation techniques such as gradient ascent directly on
the performance objective J(7y), or in a more indirect manner by maximising local approxima-
tions of this objective. These optimisation techniques are on-policy as they only update using
data collected whilst using the most recent version of the policy. This family of methods also
often involves learning an approximation V,(s) of the on-policy value function V" (s) to help
with how to go about updating the policy.

Policy optimisation methods in theory handle continuous and stochastic environments better
and have a faster convergence, whereas Q-learning methods can be more steady and sample
efficient. Actor critics aim to take advantage of both of these features in order to provide a new
method for tackling reinforcement learning problems.

Actors take an input of the state and output the best actions, essentially controlling the agent

25

AN

—> Policy

Actor
Critic Jgr
state ' .
> Valu_e action
Function
¥
reward

Environment

Figure 5: Architecture of an actor critic model, showing how the actor is the application of a policy
that returns probabilistic actions based on the environment’s state, and the critic is the value function
that evaluates the actor’s actions and provides an error used to perform policy correction. Recreated
from [32].

via policy optimisation. The critic evaluates the action by computing the value function, making
it value based. Over time both of these models get better at their roles and should learn to handle
the environment better than the if the models were used separately. The architecture of an actor
critic model is shown in figure 5.

Advantage actor critic (A2C) deconstructs Q values into the value function and advantage
value A(s, a), whereby the advantage value is then given by the equation

A(sya) =r+~V(s') =V (s). (17)

Instead of learning Q values, the critic learns the advantage values so that it can evaluate how
much better an action can be. This helps to stabilise the model by reducing the high variance of
policy networks.

Asynchronous advantage actor critic (A3C) models consist of multiple independent net-
works with different weights who interact with different environment copies in parallel. This
means that they can explore a much larger part of the state space in less time. The independent
agents are trained individually and periodically update a global network which holds shared
parameters. The agents then update their own parameters to match the global network’s and
continue their independent exploration of the environment. The algorithm for this process can
be seen in algorithm 4 [52].

A two stage hybrid flow shop, effectively two parallel machine problems, is examined with
multiple A2C agents in [53]. The optimisation objective is to minimise makespan and total
tardiness and chooses between a set of dispatching rules to use when requested by an empty
machine. It beats simple heuristics but doesn’t examine the results on unseen randomly gener-
ated datasets.

An asynchronous actor critic model is used in a job shop environment with dynamic com-

26

Algorithm 4 Asynchronous advantage actor critic

Global shared parameter vectors ¢ and 6, and global shared counter 7" = 0
Thread specific parameter vectors ¢’ and 6/,
Initialise thread step counter ¢ <— 1
repeat
Reset gradients df < 0 and df,, < 0.
Synchronise thread specific parameters ¢’ = 6 and 6, = 6’
lstart =1
Get state s;
repeat
Perform a, according to policy m(ay|s; 6)
Receive reward r; and new state s;;

t+—1t+1
T+ T+1
until terminal s; or ¢t — toi0t == timax
0, for terminal s;
Sety, =

V (s, 6,) for non terminal s;
fori e {t —1,... tsu} do
R+ ri+vR
Accumulate gradients wrt 0’ : df <— df + Vi logm(a;|s;; 0") (R — V (s4;0.))
Accumulate gradients wrt 6/ : df, < df, + %W
end for ’
Perform asynchronous update of 8 using d6 and of 6, using df,

until 7" > T, =0

ponents involving breakdowns and additional orders in [54]. The model again selected between
different dispatching rules at decision time. It achieved a makespan scheduling score of 91% in
a static job shop and 80% in a dynamic job shop which outperforms simple heuristics in a range
of environments up to 20 jobs on 15 machines.

A flexible job shop with more than 100 jobs and 100 machines is examined in [55] using
an actor critic based method. Features of the input set are extracted to help find a policy in
large datasets and it beats other benchmark methods, but it is noted that the random seed is set
so the results are effectively cherry picked as this seed setting process will be required for any
alterations to the scenario.

A semiconductor fabrication flow shop problem is examined using A3C methods in [56].
Limited uncertainties are considered, but the A3C algorithm is found to optimise the mean cycle
time of the system and is superior to rules based methods.

2.3. Summary

Current deep reinforcement learning research, and by extension production scheduling research
in general, often falls short of examining flexible job shops with continuous inputs with realistic

27

constraints. Every piece of research for production scheduling requires an environment to be
produced in order to test the algorithm that is being used. This wastes time for every piece of
research creating and refining the environment rather than the algorithm. This work introduces
an environment that aims to reduce this wasted time.

Additionally, as each environment is bespoke, it can be difficult to compare techniques
between papers which use different environments, or even if the same technique performs con-
sistently well. By introducing a standardised environment, this problems will be reduced.

The introduced environment will also help to open up a wider range of production schedul-
ing research constraints and optimisation targets. Currently, the main optimisation target is often
makespan, when other metrics could be more desirable or examined in tandem. For example,
minimising WIP is a desirable metric for small SMEs.

The environment proposed and discussed in the following sections aims to take a step to-
wards addressing each of these problems, by allowing these features to be examined without
having to spend time coding them each time a researcher wants to examine production schedul-
ing problems, as well as making the ability to compare methods easier by attempting to create
a standard environment.

28

3. Proposed Environment

An effective environment is required in order to interact with the various different techniques
used in production scheduling research. The environment must be generalisable to the many
different types of production scheduling problems which can encapsulate the different machine
setups, constraints, and optimisation targets that are used in the research, as detailed in section
2.2. This section details the code structure used to produce the environments, including how
the various classes interact with each other using their in-built methods. The full code for the
environment can be found in appendix A.

The code is structured such that there are four main classes of object which interact with
each other. These are the factory class, resource class, job class and operation class. The
interaction between these classes is shown in figure 6.

The factory class regulates the flow of all information, and provides the interface through
which any required commands can be run. In the case of reinforcement learning, the agent
interacts solely with the factory class when creating its decisions. Similar to a real factory, this
interface includes the ability to add and remove jobs and resources, and schedule individual
operations into a resource’s queue.

Resources process individual operations within the environment, but the handling of their
queues is contained within the factory class, and therefore the main aim of the class is to facili-
tate this functionality.

Jobs are comprised of an ordered set of operations that must be completed. They also
include appropriate job level information such as its deadline.

Finally, operations are the building blocks of jobs and are defined by the ability to complete
them through a single action performed by an appropriate resource e.g. bending or laser cutting.

The rest of this section discusses the usage of each of these classes in more detail, as well
as necessary features and considerations which allow them to accurately represent a factory.

3.1. Factory Class

The factory class is the main class through which the factory environment, with all its included
resources and jobs, is simulated and controlled. It contains some of the validation logic for
many of the checks required for a factory simulation to run successfully. Factory objects are
initiated with a starting list of resource and job objects, as well as an empty list of completed
jobs which is used for verification purposes. The UML diagram for the factory class, including
its methods and properties, is shown in figure 7.

The properties for the factory object include getter and setter methods for the resources,
jobs and completed_jobs within the factory. There are also property methods to retrieve the
total wip_value of all jObS within the factory. Finally, the resource_queues_are_not_empty
property indicates whether or not all resources within the factory have empty processing queues,
which can be used to check if a simulation is finished if there are a finite number of jobs and
operations.

All other workings of the factory are then included in the class methods. Adding new jobs or
resources to the factory’s respective properties can be achieved using add_job or add_resource.

29

Factory

Contains Contains

Resource Job
Processes Contains
Operation

Figure 6: Interaction between the environment classes.

Resources and jobs can be found within their respective property lists using their respective
find_ methods. Jobs can be found using their IDs with find_job. Individual resources can be
founding using their name with find_resource_by_name, and all resources that can process a
certain type of operation can be found with find_resource_by_operation_type.

The flow of operations and jobs within the factory are also handled with factory class meth-
ods. Operations are queued into resources using the factory object’s queue_operation method,
which takes as its parameters the resource_name that will process the operation, the job_id
that the operation is part of, the operation_job_index which is the index in the job which the
operation lies, and a resource_queue_position, which is the place in the queue the operation
will be added. By default, this method can take just the resource_name and job_id, and will
queue the first operation in that job’s operation list at the end of the specified resource queue.

Operations can also be removed from a resource’s queue using the unqueue_operation
method. Using this in conjunction with the queue_operation method allows reordering of
operations within resource queues.

The factory class also contains methods which handle the passing of time within the sim-
ulated environment. The process_shortest_operation method triggers the processing of
all operations at the front of each resource queue by the amount of time found using the
find minimum resource_time method. This accounts for the resources’ processing_speeds.
After this, all operations which have been completed are marked as such and removed from the
front of the resource and job queues. All jobs have their deadline reduced by the amount of time
passed. Finally, any jobs with no remaining operations are moved into the completed_jobs list,
meaning their associated wip_value will now not count towards the factory’s total. This method
is partly based on the assumption that operations willnot be removed from a resource queue af-
ter they are in progress due to there being setup time penalties. Otherwise, in built methods in
the resource class can handle separate operation processing.

3.2. Resource Class

The resource class represents a single resource within the factory, whether that is a machine
or a worker, which can process a specific operation type. Resource objects contain a queue of

30

-

P
“

P

€ FactoryEnvironment.Factory.Factory

resources(self)

resources(self, resources)

P_'jobs(self)

Pﬁjobs(self, jobs)

5
P
«
P
N
P
N
P

m

m

completed_jobs(self)
completed_jobs(self, completed_jobs)
wip_value(self)

resource_queues_are_not_empty(self)

__init__(self, resources=None, jobs=None, completed_jobs=None)

add_resource(self, resource)

find_resource_by_name(self, resource_name)

find_resources_by_operation_type(self, resource_operation_type)

add_job(self, job)

find_job(self, job_id)

complete_job(self, job_id=None, job_index=None)

find_minimum_resource_time(self)

process_shortest_operation(self)

queue_operation(self, job_id, resource_name, operation_job_index=0, resource_queue_position=None]

unqueue_operation(self, resource_name, resource_queue_position)

Figure 7: UML diagram for the factory class including class methods and properties.

31

operations that they are to process, in the order that they will process them. These operations are
assigned through the factory classes queue_operation method. Resources in this environment
setup can only process one type of operation, and can only process one operation at a time. The
UML diagram for the resource class, including its class methods and properties, is shown in
figure 8.

A resource object is initiated with a set of properties that includes its name, which identifies
the resource, its operation_type, which defines which type of operation that the resource, its
queue, which is initiated empty, as well as a wip_rate, which represents the comparative cost
of using the resource, and a processing_speed, which is a comparative measure of how fast
the resource processes operations compared to other resources of the same type.

Many of the resource based methods in the factory class call a method in the resource
class that then produces the required functionality. The process_first_in_queue method is
called by the factory class’s process_shortest_operation method, and similarly the methods
add_operation_to_queue and remove_operation_from_gueue are called by the respective
factory class methods.

There are some methods which provide information, such as check_times_in_queue and
check_cumulative_time_in_queue, Which returns a list of the time remaining for each oper-
ation in the resource’s queue, list of the cumulative times to process the remaining operations
in the queue, respectively. The get_first_in_progress method returns if the first operation
in the queue is in progress, so that it can be checked if setup time penalties will occur if the
operation is unqueued.

The first_operation_out_of_order method acts as a validation check for if the first
operation in the queue is the first operation in its job’s queue, meaning it is ready to be processed.

3.3. Job Class

The job class aims to mimic a job within a factory by holding an ordered list of operations
which must be processed in the right order so that the job can be completed. The UML diagram
for the job class, including its class methods and properties, is shown in figure 9.

Job objects are initiated with a set of operations that must be processed in order to be
completed, an empty set of completed operations, a unique id, and a deadline. There are
also properties which represent the total wip_value for the job, which is the sum of the job’s
operations’ and completed operations’ WIP values, as well as whether the job is in_process,
completed Or late.

The add_operation method initiates a new operation object and adds it at the required
index to the job’s operations list, and the complete operation method moves the first oper-
ation in the operations list into the completed_operations list. The move_deadline method
is called by the factory class’s process_shortest_operation method, and reduces the job’s
deadline by the specified amount of time.

There is also a find_operation_index method which returns the index of the opera-
tion in the operations list of the specified operation_type parameter. Finally, the method
assign_operational_order assigns the index value for each operation in the operations list

32

€ FactoryEnvironment.Factory.Resource

P name(self)

p° name(self, name)

P operation_type(self)

p- operation_type(self, operation_type)

p’ wip_rate(self)

p° wip_rate(self, value)

P processing_speed(self)

p- processing_speed(self, value)

p’ queue(self)

p- queue(self, queue)

m __init_ (self, name, operation_type, wip_rate=1, processing_speed = 1)
m process_first_in_queue(self, time)

m get_first_in_progress(self)

m check_times_in_queue(self)

m check_cumulative_queue_time(self)

m add_operation_to_queue(self, operation, position=None)
m remove_operation_from_queue(self, operation_index)

m remove_completed_operation(self)

m first_operation_out_of order(self)

Figure 8: UML diagram for the resource class including class methods and properties.

33

"
P
-
P
N
p
-
P
N
P
-
P
N
P
-
P
N
p
N
P
N
P
-
P
N
P

m

m

€ FactoryEnvironment.Factory.Job
id(self)
id(self, value)
operations(self)
operations(self, operations)
completed_operations(self)
completed_operations(self, completed_operations)
deadline(self)
deadline(self, value)
completed(self)
late(self)
wip_value(self)
wip_value(self, value)

in_process(self)

__init_ (self, job_id, deadline)

move_deadline(self, time)

assign_operational_order(self)

add_operation(self, processing_time=None, operation_type=None, setup_time=0, position=None
find_operation_index(self, operation_type)

complete_operation(self)

Figure 9: UML diagram for the job class including class methods and properties.

34

to the respective operation objects within it. This is used for validation checks when processing
those operations.

3.4. Operation Class

Operations are the smallest building blocks of jobs as they represent one process within a job
which can be completed by one resource within the factory. Within this environment these re-
source behaviours are represented by the resource class. Operations contain a lot of information
about their state that is then used by the other classes within the environment for their various
methods and properties. The UML diagram for the operation class, including its class methods
and properties, is shown in figure 10.

Operations are initiated with the job_id of the job that they are part of, the operational_order,
which is the index of the operation within that job’s operations list, the processing time
that it will take to complete the job, the setup_time required for a resource to start pro-
cessing the job, a completion_time, which is the sum of the processing and setup times, an
operation_type, for example, bending, and an initial wip_value of zero.

There are also properties that represent the operation’s progress to completion. An operation
object has additional properties for its is_gueued state, in_progress state, and completed
state.

The operation class has only one method, which is process_operation. This sets in_progress,
reduces the completion_time, and increases the wip_value. If the completion time is zero,
the object is marked as completed and in_progress is set to false.

35

€ FactoryEnvironment.Factory.Operation
P’ job_id(self)
P‘_job_id(self, value)
P completion_time(self)
p" completion_time(self, value)
P processing_time(self)
p- processing_time(self, value)
P’ setu p_time(self)
P setu p_time(self, value)
P operation_type(self)
p- operation_type(self, operation_type_name)
p wip_value(self)
p- wip_value(self, value)
p’ completed(self)
P operational_order(self)
p- operational_order(self, value)
P in_progress(self)
p" in_progress(self, state)
p’ is_queued(self)
p" is_queued(self, state)
m __init_(self, job_id, processing_time, operation_type, setup_time=0)

m process_operation(self, time, wip_rate, processing_speed)

Figure 10: UML diagram for the operation class including class methods and properties.

36

4. Creating Factory Environments

This section outlines how the environments that can be created are fit for the purpose of research.
The ability to create environments with various different machine setups and constraints is out-
lined in sections 4.1 and 4.2, as well as the ability to track the different optimisation targets in
section 4.3.

The general process for creating a factory environment is to first initialise a factory object,
some resource objects with their names and associated WIP rates, and some jobs with their IDs
and deadlines. Operations are created and added to jobs using the job class’s add_operation
method, which takes as arguments the operation’s type and time until completion. The operation
type should match a resource operation type. Created resource and job objects are added to the
factory using the factory class’s add_resource and add_job methods, respectively. A flow
diagram showing this process can be seen in figure 11.

4.1. Machine Setups

Simulating complex machine setups is straightforward. Single machine setups can trivially be
created by initialising a single resource and adding it to the factory with as many jobs as re-
quired, each with a single operation. Extending to parallel machine setups then just requires
creating and adding to the factory multiple resources which process the same type of oper-
ation but with different IDs. Heterogeneous machine setups can be achieved by setting the
processing_speed variable to different values.

Setting up resources with different operation types that they can process allows shop schedul-
ing problems to be simulated, with the type of shop scheduling problem then determined by the
operation setup for the jobs. Flow shops require adding the same operations in the same order
to the jobs. Job shops can be achieved by having jobs with different operation orders in various
arrangements, with each operation being able to be processed by at least one resource within
the factory. The same extension as moving from a single machine setup to a parallel machine
setup of adding multiple resources with the same operation type can be applied here to allow
the simulation of flexible shop problems of various types.

For research purposes, sets of jobs can be generated using loops with random times within a
range, and a random amount of operations in order. These can maintain unique identities simply
through applying the index as the job id, but more complicated ids can be derived if required
using other methods. Using the index as an ID can help with applying first in first out and last
in first out methods.

4.2. Constraints

Some constraints are handled by logic within the environment code, whereas others will need
to be added manually when creating the factory. The code has been structured to be extensible
for different additional constraints.

Setup times can be added to operations as part of the creation of operation objects. Setup
times with a resource dependence aren’t currently supported but could in theory be added by

37

Start

\ 4

Initialise Factory,
Resource, and
Job objects

Y

Use Job.add_operation
method to add operations
to job objects

\ 4

Use Factory.add_job
method to add jobs to
factory object

\ 4

Use Factory.add_resource
method to add available
resources to factory object

\ 4

End

Figure 11: Flow diagram for the general process of creating a factory environment with different
jobs, operations and resources.

38

creating a resource property that adds to the setup time of the operation.

Stochasticity in different parameters can be handled in a variety of different ways. Stochastic
release dates can be achieved by creating a job generator that generates random times until the
job is released to be a visible part of the environment to the agent. The total environment time
can be tracked as part of the environment if required to help with this.

Stochastic processing times can be achieved by generating a random time for the represen-
tation of the processing time to the agent. The environment then knows the processing time and
will process that amount of time for the operation, but the model will have a different amount
of time expected.

Breakdowns can be handled as forced operations at the front of a resource queue that can’t
be moved with a randomly decided length. The agents used can queue the held up operations
elsewhere, and if they are completed in another resource they will mark themselves as such.
Then, when they reach the front of the resource queue which had the breakdown, they will be
automatically removed as they have no completion time left.

Alternatively, the resource’s processing speed can be set to 0. Stochastic speeding up and
slowing down of resources can be handled in a similar way to add further uncertainty to the
system.

4.3. Optimisation Targets

Completed jobs are stored with their final state to allow tracking of many different optimisation
targets. Job level throughput can be tracked by the amount of completed jobs in a certain amount
of time, and operation and resource level throughput requires a simple tracker to be added to
the operation to measure which resource processed it.

The time left before the deadline for a job is stored within the final state. Late jobs are easily
identifiable by those that are completed with a negative deadline. Early jobs similarly have a
positive final deadline, and a comparison can be made between the deadline value and a variable
to determine if a job was too early and should be penalised. Therefore earliness and lateness
metrics are available within the environment.

Work in process is tracked at an operational level and is then summed at a job level to give
the total WIP for a job. It is then also available at a factory level, with each of the values for the
different levels accessible through each classes’ wip_value property. The factory WIP value
by default only tracks jobs that have currently not yet been completed, but a similar sum can be
done for all completed jobs to see how much work units and therefore how much cost has been
involved in the processing of a certain job.

39

5. Model Interaction

In general, models can be applied to a constructed scenario by either building the algorithm pro-
gramatically, in the case of simple heuristics, or by creating a state-action space and appropriate
agent that interacts with the environment, in the case of reinforcement learning methods.

The rest of this section aims to demonstrate how the different methods outlined in section 2.2
can be applied to a factory environment that has been set up using the code provided in this work.
First, heuristic based methods, including expert systems and approximation algorithms, are
examined in section 5.1, then reinforcement learning and deep reinforcement learning methods
are examined in 5.2.

5.1. Heuristic Based Methods

Simple heuristics in general can be applied to the environment by programming the relevant
algorithm to determine the optimal operation to queue at any given decision point for a given
resource.

For example, the first in first out and last in first out methods can be achieved by, at each de-
cision step, determining which operation that is applicable to the given resource is the attached
to the job which is earliest or latest arriving. Possible ways of finding which job was the earliest
or latest to arrive is to use the IDs, if the jobs arrive in ID order, or a timestamp if not.

The earliest due date heuristic can be applied by sorting the operations available for a given
resource by their respective jobs’ due dates and then adding the lowest result to the queue. This
information is easily found within the environment by creating a list of valid jobs that can be
queued by searching each job for a valid operation that can be queued into the resource, and
then sorting the list of valid jobs by the deadline, and then ordering the operation from the job
that is first in the queue.

More advanced heuristics can be constructed following this same basic process based on
the ability to combine the information provided by the environment. For example, the apparent
tardiness cost can be computed for each job and operation within the factory to provide the basis
for which operation to queue next.

As operations can be removed and inserted via inbuilt factory class methods the NEH and
iterated greedy methods are both able to be employed via coding the algorithm using these
inbuilt methods to find the correct sorting of jobs and operations within the environment.

Approximation algorithms can be applied in a similar method to create plausible solutions
that are then compared based on the optimisation targets. They operate in a similar manner to
heuristics in regards to the algorithm needing to be inputted and the flow of information that
they need.

Rules based expert systems rely on information to use their inference machines. The infor-
mation provided within the factory environment should be able to provide enough information
at a given decision point. The main difficulty would then be interfacing the expert system with
the environment to create an adequate representation for it.

It can therefore be seen that the application of a variety of the differing complexities of
heuristics can be achieved with the information available within the factory environment. Small

40

tweaks may be needed in order to achieve the full functionality of the exact heuristic being
examined, but this can be done within the code.

5.2. Reinforcement Learning

The process for applying reinforcement learning algorithms begins similarly to the process for
applying simple heuristics. Reinforcement learning algorithms, including deep reinforcement
learning algorithms, require an environment to act as a representation of the problem that the
agent can interface with so that it can make decisions. From this environment, a set of states,
actions, and rewards need to be constructed so that the reinforcement learning agent can learn
about the environment and the best actions to take. Therefore, in addition to the process of
creating the environment used for simple heuristics, a state, action and reward set must be
created.

States are a representation to the agent of what the environment looks like. Within produc-
tion scheduling, this can be an overview of the whole factory with all of its jobs and operations,
with all of their statuses, as well as resources with their full queue information, or a smaller
slice of this, for example information about operations that can be queued into a given machine.
The action space can then be constructed to provide the possible state transitions for this pro-
cess. Finally, the rewards are dictated by the optimisation objective, and so by measuring the
optimisation target as part of the process the reward for the agent after each action can be deter-
mined. It is also common to add a negative reward for each action so that the agent attempts to
maximise its reward in the fewest amount of steps possible.

A simple example of a possible configuration for the state action space is to create a state
representation containing the current resource cumulative queues, as well as operation infor-
mation including whether it is queued, its time until completion, and the job deadline. The
action space is then queueing each operation into the relevant resource, and a separate action to
advance time to process the shortest operation in any of the resources’ queues.

There are many other possible ways of creating a state action space for researching pro-
duction scheduling supported by this environment. For example, a decision can be taken only
when a resource queue is empty, and the state representation could then include all possible
operations that could be queued to that resource, with information about each of the relevant
completion times and job deadlines. Cumulative queue times for other resources could then be
included with their processing speeds and WIP rates, so that the agent can judge which op-
eration to prioritise. If the state representation gets too large this method could be combined
with heuristics to create a simplified decision space. The available actions for the agent are
then to choose which operation to queue only, and the passing of time is handled within the
environment within the step function, until a new decision point is reached.

The action space can be further expanded if the ability to remove items and reposition them
in queues is included. Similarly, when extra constraints are added such as breakdowns, the
representation can include information about processing speeds.

Rewards are then just structured by the controller based on the desired optimisation target
and the chosen action. For example, the agent can receive a negative reward for allowing a job
to be late before completion, or for allowing WIP value to be raised, and a positive reward for

41

the completion of a job. If a benchmark is known for a particular test, the agent can be penalised
for its distance away from optimality. The information flow allowed by the environment allows
these rewards to be applied to the agent.

Once an environment with a state representation and action space with rewards for the tran-
sitions has been created, an agent can then be added to interact with the system. The general
process for creating a factory environment, and applying an agent can be seen in figure 12.

Start

Initialise Factory
environment

A 4

Define state
action space with
transition rewards

Y

Create agent
and apply to
environment

End

Figure 12: Flow diagram showing the general process of creating an environment and applying an
agent.

Following this general process, the different reinforcement learning techniques can be ap-
plied to the created environments with various different setups, optimisation targets and con-
straints. Training these algorithms is achieved in the normal way by allowing the agent to
interact with the environment to learn about the interactions between the state-action spaces
and rewards.

42

6. Conclusions

This work aimed to produce a factory environment which could be used for production schedul-
ing research purposes with modern techniques and methods.

The factory environment produced is generalisable to many different possible machine se-
tups, constraints and optimisation objectives and can be used alongside reinforcement learning
methods due to its structure and methods.

Currently, the environment cannot properly handle all machine setups constraints, such as
job and operations dependent setup times and flexible shops which allow machines to process
more than one type of resource. The latter can be approached by allowing resources to hold
arrays of types of operations they can process and then managing to display a representation to
the model that adequately shows this. The main next stage would be to move this environment
into the OpenAl framework as this is more familiar with many researchers.

Overall, this advancement will allow production scheduling researchers and controllers to
reduce the amount of time that they spend producing and curating environments and instead
focus on applying novel techniques to make advancements in the field of production schedul-
ing. These advancements can impact productivity and profitability within manufacturing by
providing dynamic schedules for different environments.

43

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

7. References

B. Waschneck, T. Altenmiiller, T. Bauernhansl, and A. Kyek, “Production scheduling in complex
job shops from an industrie 4.0 perspective: A review and challenges in the semiconductor indus-
try,” CEUR Workshop Proceedings, vol. 1793, 2016.

M. L. Pinedo, Scheduling: Theory, algorithms, and systems. 2008.

R. Ruiz, “Scheduling Heuristics,” in Handbook of Heuristics, pp. 1-24, Springer International Pub-
lishing, 2016.

A. Rinciog and A. Meyer, “Towards Standardizing Reinforcement Learning Approaches for
Stochastic Production Scheduling,” Procedia CIRP, vol. 107, pp. 1112-1119, 2022.

K. R. Baker, “Minimizing earliness and tardiness costs in stochastic scheduling,” European Journal
of Operational Research, vol. 236, pp. 445-452, 7 2014.

M. S. Fox and S. Smith, “ISIS: a knowledge-based system for factory scheduling,” Expert Systems,
vol. 1, no. 1, pp. 2549, 1984.

J. R. Jackson, “Scheduling a production line to minimize maximum tardiness,” Tech. Rep. 43,

University of California, Los Angeles, 1955.
I. Sabuncuoglu and O. B. Kizilisik, “Reactive scheduling in a dynamic and stochastic FMS envi-
ronment,” International Journal of Production Research, vol. 41, no. 17, pp. 4211-4231, 2003.

R. L. Graham, “Bounds on Multiprocessing Timing Anomalies,” SIAM Journal on Applied
Mathematics, vol. 17, no. 2, pp. 416429, 1969.

A. P. J. Vepsalainen and T. E. Morton, “Priority Rules for Job Shops with Weighted Tardiness
Costs,” Management Science, vol. 33, no. 8, pp. 1035-1047, 1987.

M. Nawaz and E. E. Enscore, “A Heuristic Algorithm for the m-Machine, n-Job Flow-shop Se-

quencing Problem,” Omega, vol. 11, no. 1, pp. 91-95, 1983.
E. Taillard, “Theory and Methodology Some efficient heuristic methods for the flow shop sequenc-
ing problem,” European Journal of Operational Research, vol. 47, no. 1, pp. 65-74, 1990.

P. J. Kalczynski and J. Kamburowski, “An improved NEH heuristic to minimize makespan in per-
mutation flow shops,” Computers and Operations Research, vol. 35, pp. 3001-3008, 9 2008.

W. Liu, Y. Jin, and M. Price, “A new improved NEH heuristic for permutation flowshop scheduling
problems,” International Journal of Production Economics, vol. 193, pp. 21-30, 11 2017.

R. Ruiz and T. Stiitzle, “A simple and effective iterated greedy algorithm for the permutation flow-
shop scheduling problem,” European Journal of Operational Research, vol. 177, pp. 2033-2049, 3
2007.

M. Welbank, “A Review of Knowledge Acquisition Techniques for Expert Systems,” tech. rep.,

British Telecom Research Laboratories, 1983.

K. Metaxiotis, D. Askounis, and J. Psarras, “Expert systems in production planning and scheduling:
A state-of-the-art survey,” Journal of Intelligent Manufacturing, vol. 13, pp. 253-260, 2002.

S. F. Smith, M. S. Fox, and P. S. Ow, “Constructing and Maintaining Detailed Production
Plans: Investigations into the Development of Knowledge-Based Factory Scheduling Systems,”

Al Magazine, vol. 7, pp. 45-61, 9 1986.

C. Badie, G. Bel, E. Bensana, and G. Verfaillie, “Operations research and artificial intelligence
cooperation to solve scheduling problems: the OPAL and OSCAR systems,” in Expert Planning
Systems, pp. 1-5, 1990.

S. F. Smith, “Knowledge-based production management: Approaches, results and prospects,”
Production Planning and Control, vol. 3, no. 4, pp. 350-380, 1992.

44

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

E. Ignall and L. Schrage, “Application of the Branch and Bound Technique to Some Flow-Shop
Scheduling Problems,” Operations Research, vol. 13, no. 3, pp. 400412, 1965.
R. F. Tavares Neto and M. Godinho Filho, “An ant colony optimization approach to a permutational

flowshop scheduling problem with outsourcing allowed,” Computers and Operations Research,
vol. 38, no. 9, pp. 1286-1293, 2011.
S. Wang, X. Xiao, F. Li, and W. Ce, “Applied research of improved hybrid discrete PSO for dynamic

job-shop scheduling problem,” in 2010 8th World Congress on Intelligent Control and Automation,
pp- 4065-4068, 2010.

C. Bierwirth and D. C. Mattfeld, “Production Scheduling and Rescheduling with Genetic Algo-
rithms,” Evolutionary Computation, vol. 7, pp. 1-17, 3 1999.

D. P. Williamson and D. B. Shmoys, The design of approximation algorithms. Cambridge univer-

sity press, 2011.

A. Dey, “Machine Learning Algorithms: A Review,” International Journal of Computer Science
and Information Technologies, vol. 7, no. 3, pp. 1174-1179, 2016.

J. Schmidhuber, “Deep learning in neural networks : An overview,” Neural Networks, vol. 61,
pp- 85-117, 2015.

F. Zhao, Q. Zhang, D. Yu, and Y. Yang, “A Novel Method Based on Artificial Neural Network to
Production Scheduling,” International Journal of Information Technology, vol. 11, no. 6, pp. 20-29,
2005.

M.-T. Kechadi, K. S. Low, and G. Goncalves, “Recurrent neural network approach for cyclic job

shop scheduling problem,” Journal of Manufacturing Systems, vol. 32, pp. 689—699, 10 2013.

A. Essien and C. Giannetti, “A Deep Learning Model for Smart Manufacturing Using Convolu-
tional LSTM Neural Network Autoencoders,” IEEE Transactions on Industrial Informatics, vol. 16,
pp- 6069-6078, 9 2020.

L. Pack Kaelbling, M. L. Littman, A. W. Moore, and S. Hall, “Reinforcement Learning: A Survey,”
Journal of Artiicial Intelligence Research, vol. 4, pp. 237-285, 1996.

R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction. The MIT Press, 1 ed.,
2008.

S. Edelkamp and S. Schrédl, “Introduction and Guidelines,” in Heuristic Search, pp. 3—46, Elsevier,
2012.

R. Bellman, “A Markovian Decision Process,” Indiana University Math Journal, vol. 6, no. 4,
pp. 679-684, 1957.

R. A. Howard, Dynamic Programming and Markov Processes. New York, London: The Technol-

ogy Press of The Massachusetts Institute of Technology and John Wiley and Sons, Inc, 1 ed., 1960.
M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic Programming. John
Wiley & Sons, Inc., Ist ed., 1994.

C.J. C. H. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp. 279-292, 5 1992.
T. M. Mitchell, “Machine learning,” in Machine Learning, ch. 13, pp. 367-386, New York:
McGraw-Hill Science/Engineering/Math, 1997.

FE. S. Melo, “Convergence of Q-learning: a simple proof,” tech. rep., Institute for Systems and
Robotics, Lisboa, 2001.

Y. C. Wang and J. M. Usher, “Application of reinforcement learning for agent-based production

scheduling,” Engineering Applications of Artificial Intelligence, vol. 18, pp. 73-82, 2 2005.

45

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

L. C.Rabelo, A. Jones, and Y. Yih, “Development of a real-time learning scheduler using reinforce-
ment learning concepts,” in IEEE International Symposium on Intelligent Control, pp. 291-296,
IEEE, 1994.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot, L. Sifre, D. Ku-
maran, T. Graepel, T. Lillicrap, K. Simonyan, and D. Hassabis, “A general reinforcement learning

algorithm that masters chess, shogi, and Go through self-play,” Science, vol. 362, pp. 1140-1144,
12 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Ried-
miller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King,
D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through deep reinforce-
ment learning,” Nature, vol. 518, no. 7540, pp. 529-533, 2015.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller,
“Playing Atari with Deep Reinforcement Learning,” 12 2013.

L.-J. Lin, “Self-Improving Reactive Agents Based On Reinforcement Learning, Planning and
Teaching,” Machine learning, vol. 8, no. 3, pp. 293-321, 1992.

W. Fedus, P. Ramachandran, R. Agarwal, Y. Bengio, H. Larochelle, M. Rowland, and W. Dab-
ney, ‘“Revisiting Fundamentals of Experience Replay,” in International Conference on Machine

Learning, pp. 3061-3071, 7 2020.

Z. Wang, T. Schaul, M. Hessel, and M. Lanctot, “Dueling Network Architectures for Deep Rein-
forcement Learning Hado van Hasselt,” in International conference on machine learning, pp. 1995—
2003, PMLR, 2016.

T. E. Thomas, J. Koo, S. Chaterji, and S. Bagchi, “Minerva: A reinforcement learning-based tech-

nique for optimal scheduling and bottleneck detection in distributed factory operations,” in 2018
10th International Conference on Communication Systems & Networks (COMSNETS), pp. 129—
136, 2018.

B. Waschneck, A. Reichstaller, L. Belzner, T. Altenmiiller, T. Bauernhansl, A. Knapp, and A. Kyek,
“Optimization of global production scheduling with deep reinforcement learning,” Procedia CIRP,
vol. 72, pp. 1264-1269, 2018.

M. S. A. Hameed and A. Schwung, “Reinforcement learning on job shop scheduling problems

using graph networks,” arXiv, pp. 1-8, 2020.
J. Oren, C. Ross, M. Lefarov, F. Richter, A. Taitler, Z. Feldman, C. Daniel, and D. Di Castro,
“SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems,” in International

Symposium on Combinatorial Search, vol. 1, pp. 97-105, 2021.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu,
“Asynchronous Methods for Deep Reinforcement Learning,” in International Conference on
Machine Learning, pp. 1928-1937, PMLR, 2 2016.

F. T. Gerpott, S. Lang, T. Reggelin, H. Zadek, P. Chaopaisarn, and S. Ramingwong, “Integration of

the A2C Algorithm for Production Scheduling in a Two-Stage Hybrid Flow Shop Environment,”
Procedia Computer Science, vol. 200, pp. 585-594, 2022.

C. L. Liu, C. C. Chang, and C. J. Tseng, “Actor-critic deep reinforcement learning for solving job
shop scheduling problems,” IEEE Access, vol. 8, pp. 7175271762, 2020.

A. K. Elsayed, E. K. Elsayed, and K. A. Eldahshan, “Deep Reinforcement Learning based
Actor-Critic Framework for Decision-Making Actions in Production Scheduling,” in 2021 Tenth

International Conference on Intelligent Computing and Information Systems (ICICIS), pp. 3240,
Institute of Electrical and Electronics Engineers (IEEE), 2 2021.

46

[56] J. Liu, F. Qiao, and Y. Ma, “Real time production scheduling based on Asynchronous Advanced
Actor Critic and composite dispatching rule,” in 2020 Chinese Automation Congress (CAC),
pp- 7380-7383, Institute of Electrical and Electronics Engineers Inc., 11 2020.

47

A. Environment code

The Python code used for the environment can be found in a repo at https://github.com/C-
McGowan/FactorySimulation.

48

