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Abstract

In this dissertation, we focus on graphs with an added time dimension, called tem-
poral graphs. Temporal graphs naturally model graphs whose underlying topology
changes over time. Our aim is to extend classical graph concepts with a temporal
dimension and contribute to the algorithmic developments in temporal graphs. We
achieve this by presenting an in-depth study of four different problems.

We start with the problem of finding temporally disjoint paths or walks between
a given set of vertices, where two paths or walks are temporally disjoint if they
do not intersect at any point in time. We focus on the special cases, where the
underlying graph of the given temporal graph is either a tree or a path. While this
problem proves to be computationally demanding in general, we identify specific
cases where its complexity is more manageable.

Our research extends to the Temporal Vertex Cover (TVC) and Sliding-
Window Temporal Vertex Cover (∆-TVC) problems, natural extensions of
the classic Vertex Cover problem. Interestingly, ∆-TVC proves to be computa-
tionally challenging already on simple graphs like paths or cycles, presenting a sharp
contrast to the more tractable TVC in similar scenarios. We introduce various al-
gorithms to solve these problems in specific types of temporal graphs.

Shifting our focus, we explore temporal design problems for ensuring connectivity
in undirected temporally connected graphs. The core objective is to minimize the
number of time-labels added to the edges while preserving temporal connectivity. We
present scenarios where this task is computationally challenging and others where
it demonstrates more tractable behavior, which leads us to investigate the complex
connection between time and structure in these graphs.

Our final problem explores temporal graph realization, specifically in construct-
ing periodic temporal graphs with fastest paths matching prescribed time durations
between vertices. We show that while this problem is generally hard, it becomes
more manageable when the underlying structure resembles a tree.
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CHAPTER 1

Introduction

The fundamental concept of a graph, simply a "collection of dots and lines", rep-

resents a basic yet powerful mathematical abstraction. In this abstraction, each

dot represents a specific object, and a line between two dots represents a certain

relation between them. Formally, a (simple) graph is a pair, consisting of a set of

objects and a set of binary relations between them. We usually denote the graph

as G = (V, E), where V represents the set of vertices and E ⊆
(

V
2

)
the set of edges.

Despite their apparent simplicity, graphs provide a robust framework for modelling

a diverse range of everyday problems. This versatility has played a big role in the

fast development of the study of graphs, known as Graph Theory, into a discipline

with a rich history. For the birth of this discipline, we usually consider the year 1736

with the Köningsberg bridge problem. The city of Köningsberg (now Kaliningrad)

was situated on both sides of the river, with two large islands in the middle. All of

the parts of the city were connected to each other by seven bridges. The challenge

posed was to find a path that would traverse each bridge exactly once. Leonhard

Euler ingeniously addressed this problem by introducing an abstract mathematical

object that later became known as a graph. He replaced each landmass with a ver-

tex, and each bridge with an edge. By doing so Euler transformed the problem from

1



finding the desired path in the city to finding a path on the graph, that would use

each edge exactly once. After analyzing the properties of the derived graph, Euler

concluded that no such path exists. This seminal work paved the way for centuries

of research on graphs, inspiring many researchers to explore and introduce various

properties and concepts in the field.

The simple definition of graphs, while straightforward, often proves insufficient

and has to be extended to be used for modelling and solving more advanced prob-

lems. Take, for instance, the task of finding an optimum (shortest/fastest) path

between two points in a city – a task we would normally use a GPS service like

Google Maps to solve. In this scenario, we can transform the city map into a graph,

similar to Euler’s approach. We set each point of interest, along with every in-

tersection, to be a vertex, and each road between two such points to be an edge

between the corresponding vertices. However, a brief investigation reveals that the

constructed graph lacks sufficient information to determine an optimal path accu-

rately. This is true because the streets in cities are normally of different lengths.

Therefore, an optimal path from point A to point B may naturally traverse many

points/streets, yet it could still be better (shorter/faster) than an alternative route

that traverses only a few of them (using fewer edges in our derived graph). To accu-

rately determine the optimal path in such cases, we need to have more information

in our graph. We achieve this by assigning extra values to the edges, representing

street lengths (or traversal times). With this modification, we can now determine

the optimal path. The resulting modified graph belongs to a special class of graphs

called (edge) weighted graphs.

Another example of a modified definition of graphs occurs when the relations can

involve more than two vertices each. In one scenario, k ≥ 2 elements can be involved

in one relation, resulting in E ⊆
(

V
k

)
. Such graphs are referred to as hypergraphs.

In an alternative scenario, the binary relation on elements of V is not symmetric,

implying that the order of elements is important. In this case, if (u, v) ∈ E, it does

not necessarily imply that (v, u) ∈ E. Here, we are dealing with directed graphs. It

turns out that there exist various extensions of the definition of a graph that take

into account a range of different structures and characteristics.

2



In this dissertation, our focus is on studying graphs that extend the basic def-

inition by incorporating a time dimension. We refer to such graphs as temporal

graphs. Within this framework, the set of vertices remains static, while the set of

edges changes over time. Building upon the foundational work of Kempe et al. [84],

we adopt the following simple and natural model for them.

Definition 1.0.1 (Temporal Graph). A temporal graph G is a pair (G, λ), where

G = (V, E) is an underlying (static) graph and λ : E → 2N is a time-labeling

function which assigns to every edge of G a set of discrete-time labels.

Due to their relevance and applicability in many areas, temporal graphs have

been studied from various perspectives and under different names such as dynamic [26,

61], evolving [22, 32, 50], time-varying [1, 51, 122], and graphs over time [93]. For a

comprehensive overview of the existing models and results on temporal graphs from

a distributed computing perspective see the surveys [24–26, 101]. There were some

previous attempts to incorporate a different perspective of time to the graph, for

example, see Orlin [109,110] or Berman [18], but these models are different from the

one considered in our study.

While time flows linearly and is uniquely defined for everyone in the world, we

have all experienced its complex nature. As a simple example, consider how five

minutes can sometimes feel extremely long (imagine holding your breath for this

amount of time), and conversely, can pass in a blink of an eye (especially in the

morning, after pressing that snooze button on your alarm). Given the complicated

nature of time, it is no surprise that introducing the time dimension increases the

difficulty and complexity of different problems in graphs. The first obstacle already

arises when attempting to extend/lift some basic definitions from static graphs to

temporal graphs. For instance, a (natural) definition of a path in temporal graphs is

a sequence of edges, where the edges must form a path in the underlying graph, and

the labels have to be non-decreasing, reflecting the inability to travel backwards in

time. Now, the interesting part arises when we aim to compute the “best” temporal

path from a vertex u to a vertex v, where here “best” can be appropriately defined.

In a simple, static graph, the optimum (shortest) path between vertices u and v has

the minimum number of edges we need to traverse to reach v from u. In a temporal
3



graph, we can consider (at least) three different analogues for the same problem.

The path can be again interpreted as the path that uses the smallest number of

edges to reach v from u (in this case we call it the shortest (u, v)-temporal path),

it can be the path that, from the moment it starts at u uses the least amount of

time to reach v (we call it the fastest (u, v)-temporal path) or it can be a path that

finishes at the earliest possible time (we call it the foremost (u, v)-temporal path).

Each of the above definitions is interesting and worth exploring for its own merits.

Lifting the simple definition of a shortest path to temporal graphs was already a

three-step process. Coming up with the correct temporal problem can be even more

complex. For instance, consider the concept of a clique. In static graphs, a clique

is a set of vertices where each member of the set is connected to all other members.

Extending the definition of a clique to the temporal graph setting can be approached

in various ways. We present the following three variations. Firstly, we may require at

least one time-edge between any two vertices in the clique, indicating that at least at

one point in time, two vertices are connected. In a second variant, any two vertices

in the clique must be connected at all time-steps. While both of the above definitions

are valid, the latter one seems a bit too restrictive, and the former is not restrictive

enough. This brings us to the third definition, utilizing sliding time windows as

follows: for any two vertices in the clique, there must exist at least one edge in

every ∆-consecutive units of time. This definition was first presented in the work of

Virad et al. [126], where the authors studied the contact patterns among high-school

students with the aim of determining groups of students that were interacting more

frequently. In this example, expecting two students to be in constant interaction

(i. e., at every time the measurement happened) is a bit too restrictive, as students

naturally spend time apart during different classes. Conversely, expecting any two

to interact at least once is clearly not restrictive enough. Following the initial work

of Virad et al. many other graph problems were introduced on temporal graphs with

the use of sliding time windows.

In the research area of temporal graph theory, we normally categorize problems

into two distinct classes: those that are path-related and those that are non-path-

related. Within both categories, there exists an extensive body of literature address-
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ing various challenges and complexities. Some interesting path-related problems deal

with temporal paths, temporal analogues of distance, reachability, exploration and

centrality [3, 4, 27, 41, 46, 76, 86, 98, 102, 132]. On the other hand, non-path-related

problems study temporal cliques, cluster editing problem on temporal graphs, tem-

poral vertex cover, temporal graph coloring, temporal matching, and orientations of

temporal graphs [5, 16,28,60,78,99,100,126,131].

The main goal of this dissertation is to contribute to the development of al-

gorithmic temporal graph theory, similar to the well-established algorithmic graph

theory on static graphs. This objective is achieved through an in-depth analysis of

four different problems, covering both path-related topics (covered in Chapters 3, 5

and 6), and non-path-related topics (covered in Chapter 4).

1.1 Short overview of the thesis contributions

The organization of this thesis is as follows. In Chapter 2, we begin by presenting

fundamental definitions and notations from graph theory, temporal graph theory,

parameterized algorithms, and approximation algorithms. In Chapters 3 to 6 we

focus on the study of four different problems on temporal graphs. In the following,

we give a brief summary of the contributions made by each chapter.

Chapter 3: Interference-Free Walks in Time: Temporally Disjoint Paths.

In this chapter, we study the problem of finding disjoint temporal paths or walks

that connect given pairs of source-sink vertices. In our setting two temporal paths

(or walks) Q1, Q2 are considered disjoint if they do not intersect at any vertex or

edge in a given time. This means that both Q1 and Q2 are allowed to visit the same

vertex or edge, as long as they do not visit it at the same time step. We focus on

the special cases where the underlying graph of the given temporal graph is either

a tree or a path. It turns out that the problem of finding disjoint paths and walks

in this setting is NP-hard. Moreover, we present an FPT algorithm for the case of

finding disjoint temporal paths, where the parameter is the number of source-sink

pairs. On the positive side, when restricting the problem even further – namely

the underlying graph of the given temporal graph is a path P , and the source-sink
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vertices we want to connect consist only of the endpoints of P – then there is a

polynomial-time algorithm solving it.

Chapter 4: The Complexity of Temporal Vertex Cover in Small-Degree

Graphs. In their work Akrida et al. [5] introduced Sliding-Window Temporal

Vertex Cover (or ∆-TVC for time-windows of a fixed-length ∆), as a natural

extension of the well-known Vertex Cover problem on static graphs. Given a

temporal graph (G, λ), and any ∆ ∈ N the aim of ∆-TVC is to find a set of vertex

appearances S that cover every edge at least once at every ∆ consecutive time-

steps, while minimizing the size of S. Here a vertex appearance is a pair (v, t) for

some vertex v and t ∈ {1, 2, . . . , T}. The results we present in this chapter are

built upon the work of Akrida et al. [5]. We show that for any ∆ ≥ 2, ∆-TVC

is NP-hard already when the underlying graph of the input temporal graph is a

path or cycle, and provide a Polynomial-Time Approximation Scheme (PTAS) for

it. We present also an exact algorithm for ∆-TVC with exponential running time

dependency on the number of edges of the underlying graph. This algorithm is then

used as a subroutine in the polynomial-time (d−1)-approximation algorithm, where

d is the maximum vertex degree at any time-step of the input temporal graph. This

result improves the d-approximation algorithm proposed by Akrida et al. We finish

with presenting a fixed-parameter tractable algorithm, with respect to the size of

an optimum solution.

Chapter 5: The Complexity of Computing Optimum Labelings for Tem-

poral Connectivity. In this chapter, we present temporal design problems of

undirected temporally connected graphs. The basic setting of these optimization

problems is as follows: given an undirected graph G, what is the smallest number

|λ| of time-labels that we need to assign to the edges of G such that (G, λ) is tem-

porally connected (i. e., there is a temporal path among each pair of vertices)? We

show that the unrestricted problem, called Min. Labeling (ML) can be solved in

polynomial time. We define three additional variations. One, where the input con-

sists also of an upper bound of the allowed age (i. e., maximum label) of the obtained

temporal graph (G, λ), we call this problem Min. Aged Labeling (MAL). And

the next two where we consider problem variations with the aim of having temporal
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paths only between pairs of terminals that lie in a subset R ⊆ V . Similarly, in

one problem there is no restriction on the largest label used - we call this problem

Min. Steiner Labeling (MSL) - and in the second problem, the age restriction

is used (i. e., the largest label we are allowed to use is bounded) - we call this version

Min. Aged Steiner Labeling (MASL). We show that MAL is NP-hard when

the required maximum age is equal to the diameter dG of the input static graph

G. We then go on to prove that MSL is NP-hard and provide a fixed-parameter

tractable algorithm for it, with respect to the size of the labelling and the number of

terminals. Lastly, we establish that MASL is W[1]-hard with respect to the number

of terminals.

Chapter 6: Realizing Temporal Graphs From Fastest Travel Times. The

(static) graph realization problem with respect to a graph property P is to find a

graph that satisfies P or to decide that no such graph exists. In the simplest version

of a (static) graph realization problem with respect to vertex distances, we are given

a symmetric n × n matrix D and we are looking for an n-vertex undirected and

unweighted graph G such that Di,j equals the distance between vertices vi and vj

in G. We try to extend the idea of the graph realization problem with respect to

vertex distances to the context of temporal graphs. We focus our study on periodic

temporal graphs, i. e., temporal graphs in which the temporal availability of each

edge of the underlying graph is periodic. More precisely, each edge e ∈ E(G) is

labeled with exactly one label ℓe from the set {1, 2, . . . , ∆}, which implies that edge

e appears at times ℓe, ℓe + ∆, ℓe + 2∆, ℓe + 3∆, . . . We define the problem of Simple

periodic Temporal Graph Realization (Simple TGR) that is given as an

input an n × n matrix D, together with a positive integer ∆, and asks if there exists

a temporal graph G = (G, λ), where λ assigns one label to each edge of G, such that

the resulting ∆-periodic temporal graph admits a fastest temporal path from vi to vj

that is of duration Di,j. We prove that Simple TGR is NP-hard already for a small

constant ∆, and it is polynomial-time solvable if the underlying graph G is a tree.

We then show that Simple TGR is W[1]-hard when parameterized by the feedback

vertex number of the underlying graph, and present a fixed-parameter tractable

algorithm for it, with respect to the feedback edge number of the underlying graph.
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1.1.1 Publications

The work presented in this thesis represents a small yet noteworthy contribution

to the field of temporal graphs. All of this research is an outcome of different

collaborations, and most of the results have already appeared in different conferences

and journals. The list of published results is presented in Table 1.1.

Table 1.1: List of publications this work is based on.

Title Authors Place and Year of Pub-
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Interference-free walks

in time: Temporally

disjoint paths

Nina Klobas,

George B. Mertzios,

Hendrik Molter,

Rolf Niedermeier,

Philipp Zschoche

Proceedings of the 30th

International Joint Confer-

ence on Artificial Intelli-

gence (IJCAI) 2021 [85]

Journal of Autonomous

Agents and Multi-Agent

Systems (JAAMAS)

2023 [86]

The Complexity of

Temporal Vertex Cover

in Small-Degree Graphs

Thekla Hamm,

Nina Klobas,

George B. Mertzios,

Paul G. Spirakis

Proceedings of the 36th

Conference on Artificial In-

telligence (AAAI) 2022 [73]

ArXiv version [74]

Under the submission to the

Journal of Artificial Intelli-

gence Research (JAIR)
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International Symposium
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(MFCS) 2022 [87]

ArXiv version [88]

Under submission to the

Journal of Computer and

System Sciences (JCSS)

Realizing Temporal
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Nina Klobas,
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Hendrik Molter,

Paul G. Spirakis

Proceedings of the 2nd

Symposium on Algorithmic
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Networks (SAND) 2024 [90]

ArXiv version [89]
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CHAPTER 2

Definitions

In this chapter, we present all the concepts, notations, and terminology that we use

throughout the thesis. Each chapter also has a separate preliminaries section where

we introduce any chapter-specific concepts and notations.

With N and N0 we denote the natural numbers excluding and including 0, re-

spectively. An interval on N0 from a to b is denoted by [a, b] := {i ∈ N0 | a ≤ i ≤ b}

and [a] := [1, a].

2.1 Graphs

In this section, we present several graph-related definitions, that are necessary to

understand the work of this thesis. Since the scope of graph theory is really broad, we

present just a small part of the concepts. For a more comprehensive understanding

of the field see [21, 127].

Definition 2.1.1. A graph G is an ordered pair (V, E), consisting of the set of

vertices V (G) = V and the set of edges E(G) = E ⊆
(

V
2

)
. If both |V | and |E| are

finite, then we say that G is a finite graph. Two vertices u, v are adjacent if there

exists an edge e = {u, v} ∈ E between them. Two edges e1, e2 are adjacent if they
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are incident to the same vertex. A self-loop is an edge {u, v} for which u = v. If

E is a multi-set, meaning there are edges e1, e2 ∈ E such that e1 = e2, then we say

that e1 and e2 are parallel edges. A graph without self-loops and parallel edges is

called a simple graph.

A directed graph or digraph D is an ordered pair (V, A), consisting of the set of

vertices V (D) = V and the set of arcs A(D) = A of ordered pairs of elements in V .

An arc (u, v) represents a directed edge oriented from u to v.

Throughout this work, we are usually concerned only with finite, simple, undi-

rected graphs. Therefore, unless specified otherwise, whenever we use the term

graph we mean a finite, simple, undirected graph. For the sake of simplicity, we

mostly drop the set notation from edge e = {u, v} and use e = uv instead.

Definition 2.1.2. The number of edges incident with a vertex v, in a graph G is

called the degree (or valence) of v, and is denoted by degG(v).

If every vertex in a graph G is of degree k, then we say that G is a k-regular

graph.

Definition 2.1.3. A walk of length k in a graph G is a sequence of vertices of G

of the form: S = (v0, v1, v2, v3, v4, . . . , vk), where ei = vi−1vi ∈ E(G), for all i ∈ [k].

If the first and last vertex of the walk are the same, then the walk is called closed,

otherwise, it is open. If all of the edges between consecutive vertices of S are distinct,

the sequence S is called a trail, in the case when also all vertices of S are distinct

we call S a path. A cycle is a path together with an additional edge between the first

and the last vertex.

We say that a graph G is connected, if there exists a path between any two

vertices u, v ∈ V (G) and disconnected if it is not connected. Let G be a graph with

a path P on vertices (v0, v1, . . . , vk). Then we say that P has length k, which we

denote as dG(P ) = k.

Definition 2.1.4. A path Q between vertices u, v ∈ V (G) is called a shortest

(u, v)-path if for any other path Q′ between the same pair of vertices u and v
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it holds that dG(Q) ≤ dG(Q′). For vertices u, v, we say that they are at dis-

tance d in G, when dG(u, v) = dG(Q) = d. The diameter dG of a graph G is the

length of the longest shortest path among any two vertices in G. More precisely

dG = maxu,v∈V (G){dG(u, v)}.

A path on n-vertices is denoted by Pn, and a cycle on n-vertices by Cn. If a

graph G has no cycles, then it is called acyclic. If such a graph is also connected,

we call it a tree.

Definition 2.1.5. Let G = (V, E) and H = (V ′, E ′) be two graphs. Graph H is a

subgraph of G (denoted H ⊆ G), if V (H) ⊆ V (G) and E(H) ⊆ E(G), moreover in

the case where V (H) = V (G) graph H is called a spanning subgraph of G. For a

set S ⊆ V , G[S] is the subgraph of G induced by S whose vertex set is S and whose

edge set consists of all of the edges in E that have both endpoints in S.

Given a set of objects O we define an intersection graph GO, with a vertex for

each object in O and an edge between vertices whose corresponding objects intersect.

An example of an intersection graph is a unit interval graph, where the set of objects

consists of intervals on the real line, that are of unit length.

2.1.1 Temporal graphs

In this section, we introduce a range of notation and terminology that is connected

to temporal graphs. Although we already presented the full definition of temporal

graphs in the introduction (see Definition 1.0.1) we restate it here again.

Definition 2.1.6. A temporal graph G is a pair (G, λ), where G = (V, E) is an

underlying (static) graph and λ : E → 2N is a time-labeling function which assigns

to every edge of G a set of discrete-time labels.

The maximum value over all labels is called the lifetime T of G, which can be finite

or infinite. These time-labels indicate the discrete points in time, where each edge is

present. For every v ∈ V and every time t ∈ [T ], we denote the appearance of vertex

v at time t by the pair (v, t) and the edge appearance (or time-edge or temporal-

edge) of e at time t by (e, t). With E1, E2, . . . , ET we denote the temporal edges that
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appear at time 1, 2, . . . , T , respectively. Note that E = {e | (e, t) ∈ Et, for some t}.

The graph Gt = (V, Et) is called the t-th snapshot/layer of G.

One of the most central notions in temporal graphs is that of a temporal or

time-respecting path which is motivated by the fact that, due to causality, entities

and information in temporal graphs can “flow” only along sequences of edges whose

time-labels are strictly increasing, or at least non-decreasing.

Definition 2.1.7. Let G = (G, λ) be a temporal graph. A (u, v)-temporal path (or

temporal path from u to v) in G is a sequence P = ((u = v0v1, t1), (v1v2, t2), . . . ,

(vk−1vk = v, tk)) where P = (u = v0, v1, . . . , vk = v) is a path in the underlying

graph G, for all i ∈ [k] it holds that ti ∈ λ(vi−1vi) and t1 ≤ t2 ≤ · · · ≤ tk. In the

case with t1 < t2 < · · · < tk we say that P is a strict temporal path. The length of

P is the same as the length of its static path P , the duration of P is tk − t1 + 1, and

the arrival (or finishing) time of P is tk. If P is a walk in the underlying graph G,

then P in the temporal graph G is called a temporal walk.

A shortest (u, v)-temporal path is a temporal path from u to v that uses the

smallest number of edges. A fastest (u, v)-temporal path is a temporal path from u

to v with the smallest duration. A foremost (u, v)-temporal path is a temporal path

from u to v with the earliest arrival time.

Given a temporal graph G = (G, λ), there can be multiple temporal paths P

traversing the vertices of a static path P in G. This makes the choice of labeling

λ′ ⊆ λ for the edges of P important. To simplify notation in this thesis, there will

be instances where we refer to P as a temporal path, when in fact we mean that the

pair (P, λ′) is a temporal path. In these instances, it is implied that the temporal

path traverses the vertices of P , using its edges at times determined by λ′. Here,

λ′ is a subset of λ that makes (P, λ′) either the fastest, the foremost, or a valid

temporal path - this will be easily inferred from the context.

When devising algorithms for temporal graphs it is important to determine what

is the size of the temporal graph G = (G, λ). The size depends on the encoding size

of λ, which can be either the total number of the time-labels over all edges, i. e.,

|G| = |V | +∑T
i=1 |Ei|, or the length of a suitable succinct representation of λ.
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Throughout the thesis, we refer to a temporal graph (G, λ) whose underlying

graph G is a path, as a temporal line graph. This is in contrast to a temporal path

(P, λ) in a temporal graph (H, λ), where P is a path in the graph H.

2.2 Parameterized complexity

In this section, we provide a short introduction of some basic definitions and nota-

tions from parameterized complexity theory. For a deeper overview of the research

area consider [34,38].

Definition 2.2.1. Let Σ denote a finite alphabet. A parameterized problem L ⊆

{(x, k) ∈ Σ∗ × N0} is a subset of all instances (x, k) from Σ∗ × N0, where k denotes

the parameter.

For example, an instance in the case of Vertex cover parameterized by the

solution size k is the pair (G, k), where k is a positive integer and G = (V, E) is

an undirected graph encoded as a string over the alphabet Σ. Therefore (G, k)

belongs to the Vertex cover parameterized language if and only if there exists a

set C ⊆ V of size k, such that C is a vertex cover of G. We define the size of the

instance (x, k) of some parameterized problem as |x| + k.

Definition 2.2.2. A parameterized problem L is fixed-parameter tractable (FPT) if

there exists a fixed parameterized algorithm A and a computable function f : N0 7→ N0

for which the algorithm correctly decides in f(k)·|x|O(1) time whether an instance (x, k)

is in L.

An example of a problem in the class FPT is the Vertex cover parameterized

with respect to the solution size. Let (G, k) be an instance of Vertex cover,

where k is the solution size and G = (V, E) with |V | = n. The naive brute-force

approach that calculates all possible k-subsets of vertices (there are
(

n
k

)
such sets)

and checks for each of them if it forms a vertex cover runs in time O(nk+2), which is

too slow, as by the definition of FPT we want the exponent on n in the running time

to be a constant, independent of k. Therefore, a little smarter approach is needed.

By the definition of Vertex cover, an edge is covered when at least one of its
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endpoints is in the cover. So we can use this fact to devise a recursive algorithm,

that picks an uncovered edge, selects one of its endpoints to be in the vertex cover

and continues to cover other uncovered edges. If, after k steps the set of selected

vertices does not cover all the edges, it is not a vertex cover and the algorithm has

to backtrack. The algorithm starts each step by picking an uncovered edge and

putting one of its endpoint to the vertex cover. Since each edge has 2 endpoints

there are 2 different possible outcomes of this step, for a selected edge. This step

is performed at most k times, which results in at most 2k different sets of vertices.

The only thing left to do is to check if a set of selected vertices is a vertex cover. If

there is at least one set that is a vertex cover the algorithm returns YES, otherwise

NO. The running time of this algorithm is O(2kn2), which satisfies the conditions

in the definition of FPT.

As we observed from the running time of the naive approach, sometimes there

are parameterized algorithms that run in a time greater than in the case of FPT.

Therefore we need to define also the following class.

Definition 2.2.3. A parameterized problem L is slice-wise polynomial (XP) if there

exists an algorithm A and two computable functions f, g : N0 → N0 for which the

algorithm correctly decides in f(k) · |x|g(k) time, if an instance (x, k) is in L.

There are cases when there is no polynomial-time algorithm even when k is a

constant. An example of this kind of problem is deciding whether a graph can be

properly colored with 3 colors. These problems are in the following class.

Definition 2.2.4. A parameterized problem L is para-NP-hard if already for some

constant value of the parameter k the problem is NP-hard.

In the case of NP-hard problems there is a notion of polynomial-time reductions

that is usually used in hardness proofs. Similar to that, there is an analogous

notion of a reduction for parameterized problems that preserves the fixed-parameter

tractability. Let us define it.

Definition 2.2.5. Let L1, L2 be two parameterized problems. A parameterized re-

duction (called also FPT-reduction) from L1 to L2 is an algorithm A that for a

given instance (x, k) ∈ L1 outputs an instance (x′, k′) ∈ L2 such that:
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1. (x, k) is a YES instance of L1 if and only if (x′, k′) is a YES instance of L2,

2. for some computable function g we have k′ ≤ g(k) and

3. the running time of A is f(k) · |x|O(1), for some computable function f .

For these reductions the following holds.

Theorem 2.2.6 ( [34], p. 424). If there is a parameterized reduction from L1 to L2

and L2 is in FPT then also L1 is in FPT.

Comparing the definitions of an FPT-reduction to a known polynomial-time

reduction of NP-hard problems we see that Item 2 in the definition of the former,

gives some extra requirements. In particular, the new parameter has to be upper-

bounded by a function of the parameter of the original instance. Therefore, not every

NP-hardness reduction gives a parameterized reduction. For example, polynomial

reduction from Independent Set to Vertex Cover, where (G, k) is a YES

instance of the Independent Set if and only if (G, |V | − k) is a YES instance of

the Vertex Cover, does not fulfil the requirements of Item 2 and is therefore not

an FPT-reduction.

Not all parameterized problems can be reduced to each other. In some cases,

the one-way reduction (i. e., from L1 to L2) is known but the other way (i. e., L2 to

L1) is not. This suggests that, unlike in the case of NP-complete problems, there is

a hierarchy of hard parameterized problems. For example Independent Set and

Vertex Cover are in different classes. Therefore Downey and Fellows [38] define

the W-hierarchy.

The class FPT = W[0] and W [i] ⊆ W [j] for all i ≤ j. All the classes in the W-

hierarchy are closed under FPT-reductions. If a parameterized problem L is W[1]-

hard, then it is presumably not fixed-parameter tractable. In fact, it is expected

that W[i] ̸= W[i + 1] for every i ≥ 0.

Some known results of this hierarchy include:

• Independent Set is W[1]-hard,

• Dominating Set, Set Cover and Hitting Set are W[2]-hard.
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Figure 2.1: A visual representation outlining the relationships within complexity
classes.

A diagram illustrating the relationships among all the above complexity classes

is depicted in Figure 2.1.

2.3 Approximation algorithms

In various optimization problems, achieving an optimal solution in polynomial time

is often impossible. However, by relaxing our demands concerning solution quality

(optimality), we often find algorithms that not only run within a reasonable time-

frame but also yield solutions reasonably close to the optimal. Such algorithms are

known as approximation algorithms. In this chapter, we introduce basic notations

and definitions from the field of approximation algorithms. For a more comprehen-

sive overview, refer to [125,128].

Definition 2.3.1. Let X be a minimization/maximization problem and let α ≥ 1.

An algorithm A is called an α-approximation algorithm for problem X, if for all

instances I of X the algorithm calculates the solution A(I), that is at most α away

from the optimum, i. e.,

max
{

A(I)
OPT (I) ,

OPT (I)
A(I)

}
≤ α
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where the A(I)
OP T (I) ≤ α corresponds to a minimization problem and OP T (I)

A(I) ≤ α to a

maximization problem.

An easy example of an approximation algorithm is a 2-approximation algo-

rithm for the vertex cover problem, that first calculates a maximum matching (in

polynomial-time) and puts in the vertex cover both endpoints of each edge in the

matching.

The value α, from the definition of approximation algorithms, is viewed as a

measure of the performance of the algorithm. The closer it is to 1 the better the

approximation algorithm it becomes. In some cases, the bound can come arbitrarily

close to 1, in other cases the lower bound is fixed and sometimes there exist no

constant-factor approximation algorithms. In particular, the following classes have

been identified.

1. Problems that are not α-approximable in polynomial-time, for any α > 0,

unless P = NP.

2. Constant factor approximable (APX) problems. These are the problems that

can be approximated by some constant α > 0.

3. Problems admitting a polynomial-time approximation scheme (PTAS). A

PTAS algorithm is an algorithm that produces a solution which is within a

factor (1 + ϵ) (or (1 − ϵ) in case of maximization problems) away from the

optimum and runs in O(|I|f(1/ϵ)) time, where |I| is the size of the instance of

the problem.

4. Problems admitting a fully polynomial-time approximation scheme (FPTAS).

An FPTAS algorithm, similarly with PTAS, produces a solution within a factor

(1+ ϵ) (or (1− ϵ)) away from the optimum but runs in a time polynomial both

in the input size and 1/ϵ, i. e., O(|I|O(1) · (1/ϵ)O(1)).

18



CHAPTER 3

Interference-Free Walks in Time: Temporally Disjoint Paths

This chapter is based on a joint work with George B. Mertzios, Hendrik Molter,

Rolf Niedermeier and Philipp Zschoche. The preliminary results were presented

in Proceedings of the 30th International Joint Conference on Artificial Intelligence

(IJCAI) [85] and the full paper was published in the Journal of Autonomous Agents

and Multi-Agent Systems [86].

In this thesis I focus only on the second part of the full paper [86], as my involve-

ment in the results from the first part was not significant. However, for the sake of

completeness, an overview of the key results from the first part is provided. I believe

that the inclusion of these results provides a better understanding and presents a

clearer picture of the complexity of the addressed problem.

3.1 Introduction

Computing (vertex-)disjoint paths in a graph is a cornerstone problem of algorithmic

graph theory and many applied network problems. It was among the early problems

that were shown to be NP-complete [81]. One of the deepest achievements in discrete

mathematics, graph minor theory [106,107], as well as the development of the theory
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Figure 3.1: A temporal graph where a label of an edge reflects at which time it is
available. There are two temporally disjoint (s, z)-paths P1 and P2, where P1 uses
the solid (orange) edges and P2 the dashed (blue) edges. Here, P1 visits v before P2.

of parameterized complexity analysis [39] are tightly connected to it. The problem

is known to be solvable in quadratic time if the number of paths is constant, that

is, it is fixed-parameter tractable when parameterized by the number of paths [83].

Besides being of fundamental interest in (algorithmic) graph theory, finding disjoint

paths has many applications and there exist numerous variations of the problem.

In AI and robotics scenarios, for instance, multi-agent path finding is an intensively

studied, closely related problem [119,120].

Coming from the graph-algorithmic side, we propose a new view on finding

disjoint paths (and walks), that is, we place the problem into the world of temporal

graphs. In our model, we consider two paths (or walks) to be disjoint if they do

not use the same vertex at the same point in time. Consider Figure 3.1 for an

example. Moreover, the path finding also has to take into account that edges are

not permanently available, reflecting dynamic aspects of many real-world scenarios

such as routing in traffic or communication networks, or the very dynamic nature of

social networks. We intend to initiate studies on this natural scenario. Doing so, we

focus on two extreme cases for the underlying graphs, namely the (underlying) graph

structure being completely unrestricted or being restricted to just a path graph. For

these opposite poles, performing (parameterized) computational complexity studies,

we present surprising discoveries. Before coming to these, we discuss (excerpts of)

the large body of related work.

Related work As mentioned above, the literature on (static) disjoint paths

and on multi-agent path finding is very rich. Hence, we only list a small frac-

tion of the relevant related work. In the context of graph-algorithmic work, the

polynomial-time (in-)approximability of the NP-hard maximization version has been

studied [31]. Variants of the basic problem studied include bounds on the path
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length [62] or relaxing on the disjointness of paths [52,53,68,123].

In directed graphs, finding two disjoint paths is already NP-hard [54], whereas

in directed acyclic graphs the problem is solvable in polynomial time for every fixed

number of paths [117].

As to multi-agent path finding, we remark that it has been intensively researched

(with several possible definitions) in the last decade in the AI and robotics commu-

nities [7,9,118–120]. Timing issues (concurrency of moving agents) and the various

objective functions of the agents play a fundamental role here; also a high variety of

conflict scenarios is studied.1 The scenario we study in this work can be interpreted

as a basic variant of multi-agent path planning, now translated into the world of

temporal graphs.

In algorithmic graph theory, edge-colored graphs have also been studied. Edge-

colored graphs are essentially multilayer (or multiplex) graphs where the fundamen-

tal difference to temporal graphs is that there is no order on the graph snapshots

(also referred to as layers). Here, path-finding scenarios are motivated, for example,

by applications in social and optical (routing) networks [37,114,129].

Finally, as to temporal graphs, note that several prominent graph problems have

been studied in this fairly new framework. In particular, another model of vertex-

disjoint temporal paths [84], where two temporal paths are considered vertex-disjoint

if they do not visit the same vertex. The problem of finding two such paths is NP-

hard [84]. Note that the major difference to our model is that we allow two temporally

disjoint paths to visit the same vertex as long as they do not both visit that vertex

at the same time.

Our contributions.

When the studied temporal graph G = (G, λ) is a temporal line or a temporal tree

(i.e., the underlying graph of G is a path or a tree, respectively), we show that the

problem of finding disjoint temporal paths and walks is NP-hard. However, we also

provide a fixed-parameter tractability result with respect to the number of paths.

1Also see the multi-agent path planning webpage: http://mapf.info/
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Temp. Disjoint Paths Walks
temporal line NP-hard

or tree FPT wrt. |S| FPT wrt. |S| [91]
temporal line &

S contains only pairs poly-time
of extremal points

unrestricted NP-hard W[1]-hard wrt. |S|
underlying graph for |S| = 2 XP wrt. |S|

Table 3.1: Overview of computational complexity of Temporally Disjoint
Paths/Walks. Here, S is the multiset of source-sink pairs. Temporal line means
that the underlying graph is a path.

For the special case where, in an input temporal line, the given multiset of source-

sink pairs only contains pairs of the extremal points of the temporal line, we provide

a polynomial-time algorithm.

Further contributions of the paper this chapter is based on are for temporal

graphs where the underlying graph is unrestricted. In this case, finding walks instead

of paths turns out to be computationally easier. More specifically, finding temporally

disjoint walks is W[1]-hard with respect to the number of walks but can be solved in

polynomial time if this number is constant (that is, in the language of parameterized

algorithmics, there is an XP algorithm), whereas finding temporally disjoint paths

already turns out to be NP-hard for two paths. All of our results are outlined in

Table 3.1.

Further results. The work presented in this chapter inspired the research by

Kunz et al. [91], where the authors provided an almost complete picture of the

parameterized computational complexity of the presented problems, when structural

graph parameters of the underlying graph combined with the number of source-sink

pairs are considered. They show that the problem is in FPT when parameterized

by the number of walks if the underlying graph is a path, which answered an open

question left by our research. They prove the problem is NP-hard also for the

temporal graphs when the underlying graph is a star, and show that in this case,

the problem is W[1]-hard when parameterized by the number of vertices of the star
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graph. Furthermore, they explore the parameterized hardness of finding disjoint

paths with respect to the combination of the number of disjoint paths and some extra

graph-related parameters. Namely, they show that the problem is W[1]-hard when

parameterized by the number of disjoint paths together with the vertex cover number

of the underlying graph, and it is fixed-parameter tractable when parameterized by

the feedback edge number combined with the number of paths.

3.2 Preliminaries and problem definition

Let P = ((vi−1vi, ti))k
i=1 be a temporal walk, where for all i ∈ [k] we have that

{vi−1, vi} ∈ Eti
and for all i ∈ [k − 1] we have that ti ≤ ti+1. We say that P visits

the vertices V (P ) := {vi | i ∈ [0, k]}. In particular, P visits vertex vi during the

time interval [ti, ti+1], for all i ∈ [k − 1]. Furthermore, we say that P visits v0 at

time t1 and P visits vk at time tk.

Given two temporal walks/paths P1, P2 we say that P1 and P2 temporally inter-

sect if there exists a vertex v and two time intervals [a1, b1], [a2, b2], where [a1, b1] ∩

[a2, b2] ̸= ∅, such that v is visited by P1 during [a1, b1] and by P2 during [a2, b2].

Now, we can formally define our problem.

Temporally Disjoint Paths

Input: A temporal graph G = (V, (Ei)i∈[T ]) and a multiset S of source-sink

pairs containing elements from V × V .

Question: Are there pairwise temporally non-intersecting temporal (si, zi)-

paths for all (si, zi) ∈ S?

Analogously, Temporally Disjoint Walks gets the same input but asks

whether there are pairwise temporally non-intersecting temporal (si, zi)-walks for

all (si, zi) ∈ S. From the NP-hardness of Disjoint Paths [81], we immediately get

the following.

Observation 3.2.1. Temporally Disjoint Paths/Walks is NP-hard even if

T = 1.
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Recall that a foremost temporal path from s to z starting at time t0, in a given

temporal graph G, is a temporal path which starts at s not earlier than at time t0

and arrives at z with the earliest possible arrival time. Similar to this we define an

always-foremost temporal path P = ((s = v0, v1, t0), (v1, v2, t2), . . . , (vk−1, vk = z, tk))

from s to z as a temporal path where each prefix path is also a foremost temporal

path. Namely, for every vertex vi from the path P we have that the subpath from

s to vi forms a foremost temporal path in G. A foremost temporal path between

two vertices can be computed in linear O
(
|V | +∑T

i=1 |Ei|
)

time [130], by slightly

modifying the algorithm the same result follows for the always-foremost temporal

paths.

3.3 Temporal lines and trees

In this section, we investigate the computational complexity of Temporally Dis-

joint Paths/Walks for restricted classes of underlying graphs, in particular, tem-

poral lines and temporal trees. The former are temporal graphs that have a path as

an underlying graph and the latter are temporal graphs that have a tree as underly-

ing graph. We first show that, to our surprise, the problem is NP-hard on temporal

lines (and thus also on temporal trees). On the positive side, we show that, on

temporal trees, Temporally Disjoint Paths is fixed-parameter tractable with

respect to the number of source-sink pairs. If we further restrict all source-sink

pairs to consist of the two end-points of the temporal line, however, then we obtain

a polynomial-time algorithm.

Theorem 3.3.1. Temporally Disjoint Paths/Walks is NP-hard even on a

temporal line where all temporal paths are to the same direction.

Proof. We present here a polynomial-time reduction for Temporally Disjoint

Walks. Towards the end of this proof, we argue that the same reduction also

works for Temporally Disjoint Paths. The reduction is done from Multi-

colored Independent Set on Unit Interval Graphs, which is known to be

NP-complete [19, Lemma 2]. In this problem, the input is a unit interval graph

G = (V, E) with n vertices, where V consists of k subsets of independent vertices;
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we interpret each of these subsets as a vertex color. The goal is to compute an

independent set of size k in G which contains exactly one vertex from each color.

By possibly slightly shifting the endpoints of the intervals in the given unit interval

representation of G, we can assume without loss of generality that all endpoints of

the intervals are distinct. Furthermore, we can assume without loss of generality

that each interval endpoint is an integer between k +1 and k +n2 (while all intervals

still have the same length).

Construction From the given multi-colored unit intervals in G, we construct

a temporal line P using the following procedure. Let {c1, . . . , ck} be the set of

all colors of the intervals in G. First we fix an arbitrary linear ordering c1 <

c2 < . . . < ck of the k colors, and we add to the underlying path P of P two

vertices v1
i and v2

i , for every color ci. We add to P also three basis vertices

vℓ, v⋆, vr. The vertices of P are ordered starting from v1
1, v1

2, . . . , v1
k, followed by

the basis vertices vℓ, v⋆, vr, and finishing with v2
1, v2

2, . . . , v2
k. At the end we have

P = (v1
1, v1

2, . . . , v1
k, vℓ, v⋆, vr, v2

1, v2
2, . . . , v2

k).

We construct the multiset S of source-sink pairs as follows. Let mi be the number

of intervals of color ci. For every color ci we add the pair (v1
i , v2

i ) to S. We refer to

this source-sink pair as “the verification source-sink pair for color ci”. Furthermore,

we add mi − 1 copies of the pair (v1
i , vℓ) to S and we add mi − 1 copies of the pair

(vr, v2
i ) to S. We call these 2mi − 2 source-sink pairs the “dummy source-sink pairs

for color ci”.

To fully define the temporal line P , we still need to add time labels to the edges

of P . Denote by aj
i and bj

i the start and end points of the jth interval of color ci.

We set up the edge labels of path P from v1
i to v2

i as follows. To edge {v1
s , v1

s+1}

with s ∈ [k − 1], we add the labels aj
i with i ≤ s. To edges {v1

k, vℓ} and {vℓ, v⋆},

we add all labels aj
i . To edge {v2

s , v2
s+1} with s ∈ [k − 1], we add the labels bj

i with

i > s. To edges {v⋆, vr} and {vr, v2
1}, we add all labels bj

i . See Figure 3.2 for an

example. The construction can clearly be performed in polynomial time.

Correctness (⇒): Assume there is a multicolored independent set V ′ ⊆

V in G. Let vi ∈ V ′ be the vertex in the independent set with color ci and
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(b) Temporal graph constructed from the given multicolored unit intervals.

Figure 3.2: An example of the reduction described in the proof of Theorem 3.3.1.

let [aj
i , bj

i ] be the interval of vi. Then for the verification source-sink pair of ci

we use the following temporal path: ((v1
i , v1

i+1, aj
i ), (v1

i+1, v1
i+2, aj

i ), . . . , (v1
k−1, v1

k, aj
i ),

(v1
k, vℓ, aj

i ), (vℓ, v⋆, aj
i ), (v⋆, vr, bj

i ), (vr, v2
1, bj

i ), (v2
1, v2

2, bj
i ), . . . , (v2

i−1, v2
i , bj

i )). For the

dummy source-sink pairs (v1
i , vℓ) of ci we use the temporal paths ((v1

i , v1
i+1, aj′

i ), . . . ,

(v1
k−1, v1

k, aj′

i ), (v1
k, vℓ, aj′

i )) with j′ ̸= j. Note that there are exactly mi−1 pairwise dif-

ferent paths of this kind. Analogously, for the dummy source-sink pairs (vr, v2
i ) of ci

we use the temporal paths ((vr, v2
1, bj′

i ), (v2
1, v2

2, bj′

i ), . . . , (v2
i−1, v2

i , bj′

i )) with j′ ̸= j.

It is easy to check that the temporal paths for the dummy source-sink pairs of all

colors do not temporally intersect. Now assume, for the sake of contradiction, that

temporal paths of two verification source-sink pairs of colors ci and ci′ temporally

intersect. Then they have to intersect in v⋆, since this is the only vertex where the

paths wait. By construction, the temporal path for the verification source-sink pairs

of color ci visits v⋆ during the interval [aj
i , bj

i ] and the verification source-sink pairs

of color ci′ visits v⋆ during the interval [aj′

i′ , bj′

i′ ]. These two intervals correspond to

the intervals of the vertices of colors ci and ci′ in the multicolored independent set

V ′. Hence, those intervals intersecting is a contradiction to the assumption that V ′
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is in fact an independent set.

(⇐): Assume we have a set of pairwise temporally disjoint walks for all source-

sink pairs in S. Note that all edges except {vℓ, v⋆} and {v⋆, vr} have as many time

labels as temporal walks that need to go through them. Furthermore, note that

{vℓ, v⋆} has the same labels as {v1
k, vℓ} and {v⋆, vr} has the same labels as {vr, v2

1}.

This, in particular, implies that all temporal walks are in fact paths since the only

vertex that could be visited by a path for more than one time step is v⋆. Therefore,

for every pair (s, z) ∈ S, no temporal path from s to z can ever stop and wait at any

vertex different from v⋆. Furthermore, the only paths going through vertex v⋆ are

the paths connecting vertices v1
i and v2

i (which correspond to color ci); we will refer

to this path as the color path of ci. Consider color c1 and its dummy source-sink

pairs (v1
1, vℓ). By construction, the edge {v1

1, v1
2} has time labels corresponding to

the start points aj
1 of intervals from the m1 vertices of G that have color c1. It

follows that the temporal paths for these dummy source-sink pairs and the color

path of c1 use only time labels corresponding to the start points aj
1 of intervals

from the m1 vertices of G that have color c1 until they are at vℓ or arrive at v⋆,

respectively, since they cannot wait at any vertex. Now by induction, this holds for

all other colors ci and by an analogous argument, this also holds for the “second

half”. More specifically, we also have that temporal paths for the dummy source-

sink pairs (vr, v2
i ) as well as the “second part” of the color path of ci use time labels

corresponding to end points bj
i of intervals from the vertices of G that have color ci

when going from vr (respectively v⋆) to their corresponding destinations.

It follows that each color path can enter and leave vertex v⋆ only at the time

corresponding to the start and end points of its color intervals. In any other case

some of the other vertices are blocked, which prevents the completion of other tem-

poral S-paths. Recall that intervals of the same color are non-overlapping. Hence,

for every color path corresponding to a color ci we can find one interval [aj
i , bj

i ] such

that the color path visits v⋆ in an interval that includes [aj
i , bj

i ]. Since the color paths

are temporally non-intersecting, the vertices corresponding to the intervals form a

multicolored independent set in G.

This completes the proof for the case of Temporally Disjoint Walks. As,
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in the constructed reduction, all walks are actually just paths, it follows that also

Temporally Disjoint Paths is NP-hard.

NP-hardness even in the case of temporal lines motivates to study the potential

for parameterized tractability results. Next, we show fixed-parameter tractability

of Temporally Disjoint Paths parameterized by the number |S| of source-sink

pairs if the underlying graph is a tree.

Theorem 3.3.2. Temporally Disjoint Paths on temporal trees is fixed-parameter

tractable when parameterized by |S|, as it can be solved in O
(
|S||S| · |G|

)
time.

Proof. Let I = (G, S) be an instance of Temporally Disjoint Paths, the under-

lying graph G being a tree and S consisting of k source-sink pairs (s1, z1), . . . , (sk, zk).

We solve I using the following procedure.

We enumerate all possible permutations π of the k source-sink pairs (si, zi). For

every permutation π and for every i = 1, 2, . . . , k, we compute the always-foremost

temporal path Pi(π) from si to zi (i.e., a foremost temporal path where each prefix

path is also a foremost temporal path). Let vx be an arbitrary internal vertex of

Pi(π), and suppose that vx is visited by Pi(π) within the time interval [ax, bx]. Then,

we mark all the edges that are incident to vx with labels ℓ ≤ bx, as these temporal

edges cannot be used by any further temporal path Pj(π), where j > i. We proceed

by computing the always-foremost path Pi+1(π) from si+1 to zi+1 which only uses

unmarked temporal edges. The permutation π leads to a feasible routing of the

paths between the k source-sink pairs if and only if we can compute all these k

always-foremost paths P1(π), P2(π), . . . , Pk(π) as described above.

During the above procedure we construct O(k!) = O(kk−1) different permuta-

tions π. For every permutation we calculate |S| = k always-foremost paths, each in

O(|V | + ∑T
i=1 |Ei|) time [130]. In total, all the above computations can be done in

O
(
|S||S| ·

(
|V | +∑T

i=1 |Ei|
))

time.

The correctness of the algorithm follows from the uniqueness of the paths Pi

between source-sink pairs (si, zi) in G, which implies that the intersection between

two such paths Pi ∩ Pj is also uniquely determined. This means that the choice of

the labels of the temporal (si, zi)-path affect the choice of the labels of the temporal
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(sj, zj)-path only on the edges that are incident to the vertices in the intersection

Pi ∩ Pj. We therefore need to determine which of the two paths has a priority

and passes through the intersection first. Once the path of the highest priority is

determined, we route that path so that it traverses the intersection at the earliest

possible time leaving the most time for the second path (meaning we calculate the

always-foremost temporal path). We then check if we can route the remaining path

in such a way that it would be temporally disjoint with the first path. A single

path Pi can intersect at most k − 1 other Pj paths, therefore we need to check all

possible orderings of priorities among them. Note also that the priority ordering

is transitive. This follows from the fact that G is a tree. More specifically, for

any three paths Pi, Pj, Pk in G we have that if Pi intersects with Pj and Pk then

either Pj ∩ Pk = ∅ or Pi ∩ Pj ∩ Pk ̸= ∅. Which assures us that in a situation when

the path Pi has a lower priority than Pk and a higher priority than Pj, the path

Pk will have a higher priority than Pj. From the above, it also follows that all

possible intersections of different source-sink paths in G follow the same priority

ordering. Therefore, whenever a solution exists all paths follow a certain total order

(permutation) and our algorithm will test it and find a solution.

Finally, we show that we can solve Temporally Disjoint Paths/Walks in

polynomial time if the underlying graph is a path and all source-sink pairs consist

of the endpoints of that path.

Theorem 3.3.3. Let G be a temporal line having P = (v0, v1, v2, . . . , vn) as its

underlying path. If S contains k times the source-sink pair (v0, vn) and ℓ = |S| − k

times the source-sink pair (vn, v0), then Temporally Disjoint Paths/Walks

can be solved on G in O (Tkℓ (k + ℓ) · |G|) time.

Proof. We first consider the problem version Temporally Disjoint Paths. Let

I = (P , S) be an instance of Temporally Disjoint Paths, where P is a given

temporal line with P = (v0, v1, v2, . . . , vn) as its underlying path. Assume that there

have to be k (resp. ℓ = |S| − k) temporally disjoint (v0, vn)- (resp. (vn, v0)-) paths

in the output, i. e., they must have the orientation from v0 to vn, (resp. from vn to

v0).
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We solve the instance I using dynamic programming. The main idea is that, since

all temporal paths start and end in endpoints of P , in any optimal solution, once

a temporal path starts, it proceeds in the fastest possible way (without interfering

with previously started paths). Therefore, assuming we start with (v0, vn)-temporal

paths, we only need to find out how many (v0, vn)-temporal paths follow the starting

path, after that how many (vn, v0)-temporal paths follow, then after that how many

(v0, vn)-temporal paths follow, etc.

Let 0 ≤ i ≤ k, 0 ≤ j ≤ ℓ, and 1 ≤ t ≤ T . Then L(i, j, t) denotes the earliest

arrival time of (k − i)+(ℓ−j) temporally non-intersecting temporal paths with k − i

being (v0, vn)-temporal paths and ℓ − j being (vn, v0)-temporal paths, assuming

that the earliest-starting temporal path is a (v0, vn)-temporal path that starts at

time t. If it is not possible to route such (k − i)+(ℓ− j) temporally non-intersecting

temporal paths starting at time t, then let L(i, j, t) = ∞. Similarly we define

R(i, j, t), with the only difference that here the earliest-starting temporal path needs

to start at time t from vn and finishes at v0. For the sake of completeness, we let

L(i, j, ∞) = R(i, j, ∞) = ∞ for every i ≤ k and every j ≤ ℓ. Furthermore, for

every t, every i ≤ k − 1, and every j ≤ ℓ − 1, we let L(k, j, t) = R(i, ℓ, t) = ∞.

Finally we let L(k, ℓ, t) = R(k, ℓ, t) = t − 1. Note that, the input instance I is a

yes-instance if and only if min{L(0, 0, 1), R(0, 0, 1)} ≠ ∞. Furthermore, note that,

for every triple i, j, t, the value min{L(i, j, t), R(i, j, t)} is the earliest arrival time

of all temporal paths in the subproblem where, until time t − 1, exactly i and j

temporally non-intersecting temporal (v0, vn)- and (vn, v0)-paths, respectively, have

been routed.

The value L(i, j, t) can be recursively computed as follows. Suppose that, in the

optimal solution, 1 ≤ p ≤ k − i temporally non-intersecting (v0, vn)-temporal paths

are first routed (starting at time t) before the first (vn, v0)-temporal path (among

the ℓ − j ones) is routed. Let tp be the earliest arrival time of these p paths if they

can all be routed; if not, then we set tp = ∞. Then:

L(i, j, t) = min{R(i + p, j, tp + 1) | 1 ≤ p ≤ k − i}. (3.1)
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The value R(i, j, t) can be computed similarly:

R(i, j, t) = min{L(i, j + p, t∗
p + 1) | 1 ≤ p ≤ ℓ − j}, (3.2)

where (vn, v0)-temporal paths are routed.

The values {tp | 1 ≤ p ≤ k − i} can be computed as follows. If p = 1, then

tp is the arrival time of the (v0, vn)-always-foremost temporal path P1. To deter-

mine t2, we first compute P1 and then, for every internal vertex vx of P , if vx

is visited by P1 within the time interval [ax, bx], then we remove from the edges

{vx−1, vx}, {vx, vx+1} of P all labels l ≤ bx. In the resulting temporal line we then

compute the always-foremost temporal path P2, which arrives at vn at time t2. By

applying this procedure iteratively, we either compute p temporally non-intersecting

temporal paths P1, P2, . . . , Pp, starting at time t and arriving at time tp, or we con-

clude that tp = ∞. The values {t∗
p | 1 ≤ p ≤ ℓ − j} (for the (vn, v0)-temporal paths)

can be computed in a symmetric way. All these computations together can be done

in linear time.

From the above, it follows that we can decide Temporally Disjoint Paths

by checking whether min{L(0, 0, 1), R(0, 0, 1)} is finite or not. In total, there are

2kℓT values L(i, j, t) and R(i, j, t). Observe that, for every pair i, j, we only need

to remember the value L(i, j, t) (resp. R(i, j, t′)) for the smallest value of t (resp. t′).

Therefore, we build two memoization matrices ML and MR, each of size (k + 1) ×

(ℓ + 1), such that ML(i, j) (resp. MR(i, j)) stores the smallest value of t for which

we need to compute L(i, j, t) (resp. R(i, j, t)). If during the calculation we see that

the value of ML(i, j) is smaller than the current value t of L(i, j, t), we set the value

of L(i, j, t) to be infinity and stop with the calculation of this branch.

Similarly, for the recursion tree originating at R(0, 0, 1) we need to build two

other matrices NL and NR (each of size (k + 1) × (ℓ + 1)) for the same purpose,

as the recursion tree originated at R(0, 0, 1) is different to the one originated at

L(0, 0, 1).

Each of these four (k+1)×(ℓ+1) matrices can be computed by running O(Tkℓ(k+

ℓ)) times the always-foremost temporal path algorithm (in order to compute at
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each step in linear time O
(
|V | +∑T

i=1 |Ei|
)

the values {tp | 1 ≤ p ≤ k − i} and

{t∗
p | 1 ≤ p ≤ ℓ − j}, respectively). Once we have built these four matrices, we can

iteratively compute the value L(0, 0, 1) (resp. R(0, 0, 1)) in at most kℓ computations,

each of which takes at most O(k + ℓ) time (see equations (3.1)-(3.2)). Thus, all

computations can be done in O
(
Tkℓ (k + ℓ) ·

(
|V | +∑T

i=1 |Ei|
))

time.

This completes the proof for the case of Temporally Disjoint Paths. Finally,

it is easy to see that in the problem Temporally Disjoint Walks, where the

input temporal graph is a temporal line, in any optimal solution, every temporal

walk is a temporal path, as every temporal walk is from v0 to vn or from vn to

v0. Hence, the above algorithm for Temporally Disjoint Paths also solves

Temporally Disjoint Walks.

3.4 The case of few source-sink pairs

In this section, we briefly discuss further results from [86] that were not included in

this chapter. More specifically, we present the computational complexity of Tem-

porally Disjoint Paths/Walks for the case when the size of the multiset S of

source-sink pairs is small and the underlying graph of the input temporal graph is

unrestricted. These findings represent the work which was mostly a product of the

collaboration between G. B. Mertzios, H. Molter, R. Niedermeier, and P. Zschoche,

where my involvement was not significant.

The first result shows that Temporally Disjoint Paths is NP-hard even

for two source-sink pairs [86, Theorem 2]. This is a similar situation as for find-

ing vertex-disjoint paths in directed static graphs, which is also NP-hard for two

paths [54]. However, in the temporal setting there is a surprising difference between

finding walks and paths that does not have an analogue in the static setting. More

specifically, we see that Temporally Disjoint Walks is W[1]-hard for the num-

ber |S| of source-sink pairs [86, Theorem 3] and is contained in XP for the same

parameter [86, Theorem 4].
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3.5 Concluding remarks

In this chapter, we introduced temporally disjoint paths and walks, which models

the property that agents moving along the paths never meet, even though they

might visit the same vertices. We focused our study on temporal lines and trees.

We showed the NP-hardness of Temporally Disjoint Paths and Temporally

Disjoint Walks, and provided an FPT algorithm for the number of paths. We

left open the question of whether we can obtain a similar result for Temporally

Disjoint Walks, which was subsequently answered positively by Kunz et al. [91].

Additionally, we presented a polynomial-time algorithm for the restricted case with

source-sink pairs consisting of the endpoints of the path.

We believe that this work can be a starting point for the investigation of many

well-motivated variants or generalizations of our problem. One can, for example,

consider the case where a predefined set of vertices has to be visited by temporal

paths, or a certain “amount” of intersection between paths is acceptable. It is also

of interest to investigate our problem for restricted temporal path models such as

so-called restless temporal paths or walks [17,27,124].
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CHAPTER 4

The Complexity of Temporal Vertex Cover in Small-Degree

Graphs

This chapter is based on a joint work with Thekla Hamm, George B. Mertzios and

Paul G. Spirakis. The preliminary results were presented in the Proceedings of the

36th Conference on Artificial Intelligence (AAAI) [73]. The full paper, containing

our detailed results, is accessible as a preprint on ArXiv [74]. As of winter 2023-

2024, it is also under the submission process to the Journal of Artificial Intelligence

Research (JAIR).

4.1 Introduction

The problems Temporal Vertex Cover (or TVC) and Sliding-Window Tem-

poral Vertex Cover (or ∆-TVC for time-windows of a fixed-length ∆) have

been established as natural extensions of the well-known Vertex Cover problem

on static graphs [5]. Given a temporal graph G, the aim of TVC is to cover every

edge at least once during the lifetime T of G, where an edge can be covered by one

of its endpoints, and only at a time-step when it is active. For any ∆ ∈ N, the aim

of the more “pragmatic” problem ∆-TVC is to cover every edge at least once at
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every ∆ consecutive time-steps. In both problems, we want to minimize the number

of “vertex appearances” in the resulting cover, where a vertex appearance is a pair

(v, t) for some vertex v and t ∈ {1, 2, . . . , T}.

TVC and ∆-TVC naturally generalize the applications of the static problem

Vertex Cover to more dynamic inputs, especially in the areas of wireless ad

hoc networks, as well as network security and scheduling. In the case of a static

graph, the vertex cover can contain trusted vertices which have the ability to mon-

itor/surveil all transmissions [79, 112] or all link failures [82] between any pair of

vertices through the edges of the graph. In the temporal setting, it makes sense to

monitor the transmissions and to check for link failures within every sliding time

window of an appropriate length ∆ (which is exactly modelled by ∆-TVC).

It is already known that both TVC and ∆-TVC are NP-hard; for ∆-TVC this

is even the case when ∆ = 2 and the minimum degree of the underlying graph G

is just 3 [5]. One of the most intriguing questions left open (see Problem 1 in [5])

is whether ∆-TVC (or, more generally, Sliding-Window Temporal Vertex

Cover) can be solved in polynomial time on always degree at most 2 temporal

graphs, that is, on temporal graphs where the maximum degree of the graph at each

time-step is at most 2.

Our Contribution. In this work, we present the study of the complexity of TVC

and ∆-TVC on sparse graphs. Our main result (see Section 4.3.1) is that, for every

∆ ≥ 2, ∆-TVC is NP-hard even when G is a path or a cycle. This resolves the

first open question (Problem 1) of [5]. In contrast, we show that TVC (see Sec-

tion 4.3.2) can be solved in polynomial time on temporal lines and cycles. Moreover,

for any ∆ ≥ 2, we provide a Polynomial-Time Approximation Scheme (PTAS) for

∆-TVC on temporal lines and cycles (see Section 4.3.2), which also complements

our hardness result for temporal lines.

The NP-hardness of Section 4.3.1 signifies that an optimum solution for ∆-TVC

is hard to compute, even for ∆ = 2 and under severe degree restrictions of the

input instance. To counter this hardness for more general temporal graphs than

those with underlying paths and cycles as in Section 4.3, in Section 4.4 we give

three algorithms for every ∆ ≥ 2: First we present an exact algorithm for ∆-TVC
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with exponential running time dependency on the number of edges in the underlying

graph (see Section 4.4.1). Using this algorithm we are able to devise, for any d ≥ 3, a

polynomial-time (d−1)-approximation (see Section 4.4.2), where d is the maximum

vertex degree in any time-step, i. e., in any part of the temporal graph that is active at

the same time. This improves the currently best known d-approximation algorithm

for ∆-TVC [5] and thus also answers another open question (Problem 2 in [5]).

Finally, we present a simple fixed-parameter tractable algorithm with respect to the

size of an optimum solution (see Section 4.4.3).

4.2 Preliminaries

Throughout this chapter, we consider temporal graphs whose underlying graphs are

finite and whose time-labeling functions only map to finite sets. This implies that

there is some t ∈ N such that, for every t′ > t, no edge of G is active at t′ in (G, λ).

We denote the smallest such t by T , i. e., T = max{t ∈ λ(e) | e ∈ E}, and call T

the lifetime of (G, λ). Unless otherwise specified, n denotes the number of vertices

in the underlying graph G, and T denotes the lifetime of the temporal graph G. We

refer to each integer t ∈ [T ] as a time slot of (G, λ). The instance (or snapshot) of

(G, λ) at time t is the static graph Gt = (V, Et), where Et = {e ∈ E : t ∈ λ(e)}.

Recall, a temporal line of length k is a temporal graph P = (P, λ), where the

underlying graph P is the path (v0, v1, v2, . . . , vk) on k + 1 vertices, with edges

ei = vi−1vi for i = 1, 2, . . . , k. In many places throughout this chapter, we visualize

a temporal line as a 2-dimensional array V (P )×[T ], where two vertices (x, t), (y, t′) ∈

V (P ) × [T ] are connected in this array if and only if t = t′ ∈ λ(xy) and xy ∈ E(P ).

For example see Figure 4.1.

For every t = 1, . . . , T −∆+1, let Wt = [t, t+∆−1] be the ∆-time window that

starts at time t. For every v ∈ V and every time slot t, we denote the appearance of

vertex v at time t by the pair (v, t) and the edge appearance (or time-edge) of e at

time t by (e, t).

A temporal vertex subset of (G, λ) is a set of vertex appearances in (G, λ), i.e. a

set of the form S ⊆ {(v, t) | v ∈ V, t ∈ [T ]}. For a temporal vertex subset S and
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⇒
v1 v2 v3 v4 v5

v1 v2 v3 v4 v5

t = 1

t = 2

t = 3

t = 4

t = 5

{1, 3, 5} {2, 4} {2, 3, 4} {1} {2, 3}

v0

v0

Figure 4.1: An example of visualizing a temporal line graph G as a 2-dimensional
array, in which every edge corresponds to a time-edge of G.

some ∆-time window Wi within the lifetime of (G, λ), we denote by S[Wi] = {(v, t) ∈

S | t ∈ Wi} the subset of all vertex appearances in S in the ∆-time window Wi. For

a ∆-time window Wi within the lifetime of a temporal graph (G, λ), we denote by

E[Wi] = {e ∈ E | λ(e) ∩ Wi ̸= ∅} the set of all edges which appear at some time

slot within Wi.

A temporal vertex subset C is a sliding ∆-time window temporal vertex cover, or

∆-TVC for short, of a temporal graph (G, λ) if, for every ∆-time window Wi within

the lifetime of (G, λ) and for every edge in E[Wi], there is some (v, t) ∈ C[Wi] such

that v ∈ e, i.e. v is an endpoint of e, and t ∈ λ(e). Here we also say (v, t) covers

(e, t) in time window Wi.

4.3 Paths and cycles

In Section 4.3.1 we provide our main NP-hardness result for ∆-TVC, for any ∆ ≥ 2,

on instances whose underlying graph is a path or a cycle (see Theorem 4.3.8 and

Corollary 4.3.9). In Section 4.3.2 we prove that TVC on underlying paths and cycles

is polynomially solvable, and we also provide our PTAS for ∆-TVC on underlying

paths and cycles, for every ∆ ≥ 2.

4.3.1 Hardness on temporal lines and cycles

Our NP-hardness reduction of Theorem 4.3.8 is done from the NP-hard problem

planar monotone rectilinear 3 satisfiability (or planar monotone rectilinear 3SAT ),
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see [35]. This is a specialization of the classical Boolean 3-satisfiability problem to

a planar incidence graph. A Boolean satisfiability formula ϕ in conjunctive normal

form (CNF) is called monotone if each clause of ϕ consists of only positive or only

negative literals. We refer to these clauses as positive and negative clauses, respec-

tively. By possibly repeating literals, we may assume without loss of generality that

every clause contains exactly three (not necessarily different) literals.

In an instance of planar monotone rectilinear 3SAT, each variable and each clause

is represented with a horizontal line segment, as follows. The line segments of all

variables lie on the same horizontal line on the plane, which we call the variable-axis.

For every clause C = (xi ∨ xj ∨ xk) (or C = (xi ∨ xj ∨ xk)), the line segment of

C is connected via straight vertical line segments to the line segments of xi, xj and

of xk, such that every two (horizontal or vertical) line segments are pairwise non-

intersecting. Furthermore, every line segment of a positive (resp. negative) clause

lies above (resp. below) the variable-axis. Finally, by possibly slightly moving the

clause line segments higher or lower, we can assume without loss of generality that

every clause line segment lies on a different horizontal line on the plane. For an

example see Figure 4.2.

x1 x2 x3 x4 x5

(x2 ∨ x3 ∨ x4)

(x1 ∨ x2 ∨ x4)

(x1 ∨ x4 ∨ x5)

(x2 ∨ x3 ∨ x5)

(x1 ∨ x2 ∨ x5)

Figure 4.2: An example of an instance of a planar monotone rectilinear 3SAT ϕ =
(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4) ∧ (x1 ∨ x4 ∨ x5) ∧ (x2 ∨ x3 ∨ x5) ∧ (x1 ∨ x2 ∨ x5). For
visual purposes, the line segments for variables and for clauses are illustrated here
with boxes.

Let ϕ be an arbitrary instance of planar monotone rectilinear 3SAT, where X =

{x1, . . . , xn} is its set of Boolean variables and ϕ(X) = {C1, . . . , Cm} is its set of

clauses. We construct from ϕ a temporal line Gϕ and prove (see Lemma 4.3.7) that
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there exists a truth assignment of X which satisfies ϕ(X) if and only if the optimum

value of 2-TVC on Gϕ is at most f(Gϕ). The exact value of f(Gϕ) will be defined

later.

High-level description

Given a representation (i.e. embedding) Rϕ of an instance ϕ of planar monotone

rectilinear 3SAT, we construct a 2-dimensional array of the temporal line Gϕ, where:

• every variable (horizontal) line segment in Rϕ is associated with one or more

segment blocks (to be formally defined below) in Gϕ, and

• every clause (horizontal) line segment in Rϕ, corresponding to the clause C =

(xi ∨ xj ∨ xk) (resp. C = (xi ∨ xj ∨ xk)), is associated with a clause gadget in

Gϕ, which consists of three edges (one for each of xi, xj, xk), each appearing

in 4 consecutive time-steps, together with two paths connecting them in the

2-dimensional array for G (we call these paths the clause gadget connectors,

for an illustration see Figure 4.9),

• every vertical line segment in Rϕ, connecting variable line segments to clause

line segments, is associated with an edge of Gϕ that appears in consecutive

time-steps.

The exact description of the variables’ and clauses’ gadgets is given below; first,

we need to precisely define the segment blocks.

Segment blocks are used to represent variables. Every segment block consists of

a path of length 7 on vertices (u0, u1, . . . , u7), where the first and last edges (i. e.,

u0u1 and u6u7) appear at 9 consecutive time-steps starting at time t and ending at

time t + 8, with all other edges appearing only two times, i. e., at times t + 1 and

t + 7. For an example see Figure 4.3.

Time-edges which correspond to the first and last appearances of u0u1 and u6u7

in a segment block are called dummy time-edges, all remaining time-edges form

two (bottom and top) horizontal paths, and two (left and right) vertical sequences

of time-edges (which we call here vertical paths), see Figure 4.4. Using the next
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u0 u1 u2 u3 u4 u5 u6 u7

t

t + 1

t + 2

t + 3

t + 4

t + 5

t + 6

t + 7

t + 8

Figure 4.3: Example of a segment block construction.

vertical paths

horizontal paths

dummy temp. edges

dummy temp. edges

Figure 4.4: An example where dummy time-edges, vertical and horizontal paths are
depicted.

technical lemma will allow us to model the two different truth values of each variable

xi (True, resp. False) via two different optimum solutions of 2-TVC on a segment

block (namely the “orange and green”, resp. “orange and red” temporal vertex covers

of the segment block, see Figure 4.5).

Lemma 4.3.1. There are exactly two different optimum solutions for 2-TVC of a

segment block, both of size 15.

Proof. Let C be a 2-TVC of a segment block on vertices u0, . . . , u7 that starts at

time t and finishes at time t + 8.

To cover the dummy time-edges in time windows Wt−1 and Wt+8 one of their
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endpoints has to be in C. Now let us start with the covering of the first edge (u0u1)

at time t + 1. Since the dummy time-edges are covered, the edge u0u1 is covered in

the time window Wt but it is not yet covered in the time window Wt+1. We have

two options, either cover it at time t + 1 or t + 2.

• Suppose that we cover the edge u0u1 at t + 1, then the next time-step it has

to be covered is t + 3, the next one t + 5 and the last one t + 7. Now that the

left vertical path is covered we proceed to cover the bottom and top horizontal

paths. The middle 5 edges, from u1 to u6, appear only at time-steps t + 1 and

t + 7. Since we covered the edge u0u1 at time t + 1, we can argue that the

optimum solution includes the vertex appearance (u1, t + 1) and therefore the

edge u1u2 is also covered. Extending this covering optimally to the whole path

we need to add every second vertex to C, i. e., vertex appearances (u3, t+1) and

(u5, t + 1). Similarly, it holds for the vertex appearances of vertices u1, . . . , u6

at time t + 7. The last thing we need to cover is the right vertical path. Since

the edge u6u7 is covered at time t, the next time-step we have to cover it is

t + 2, which forces the next cover to be at t + 4 and the last one at t + 6.

In total C consists of 4 endpoints of the dummy time-edges, 4 vertices of the

left and 3 of the right vertical paths, 2 vertices of the bottom and 2 of the

top horizontal paths. Altogether we used 11 vertices to cover vertical and

horizontal paths and 4 for dummy time-edges. The above described 2-TVC

corresponds to the “orange and red” vertex appearances of the odd segment

block depicted in Figure 4.5.

Let us also emphasize that, except for times t+1 and t+7, we do not distinguish

between the solutions that use a different endpoint to cover the first and last

edge. For example, if a solution covers the edge u0u1 at time t + 2 then we do

not care which of (u0, t + 2) or (u1, t + 2) is in the TVC.

• Covering the edge u0u1 at time t + 2 produces the 2-TVC that is a mirror

version of the previous one on the vertical and horizontal paths. More precisely,

in this case the covering consists of 3 vertices of the left and 4 of the right

vertical paths and again 2 vertices of the bottom and 2 of the top horizontal
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paths, together with 4 vertices covering the dummy time-edges.

This 2-TVC corresponds to the “orange and green” vertex appearances of the

segment block depicted in Figure 4.5.

If we start with vertex appearances from one solution and add vertex appearances

from the other solution then we either create a 2-TVC of bigger size or leave some

edges uncovered. Therefore, the optimum temporal vertex cover of any segment

block consists of only “orange and red” or “orange and green” vertex appearances.

Figure 4.5: An example of two optimum covers of a segment block: (i) with the
“orange and green”-colored, or (ii) with the “orange and red”-colored vertex ap-
pearances.

For each variable xi we create multiple copies of segment blocks, and some specific

pairs of these segment blocks are connected to each other via the so-called “horizontal

bridges”. Two segment blocks, which are connected via a horizontal bridge, start

at the same time t but are built on different sets of vertices (i. e., one is to the

left of the other in the 2-dimensional array). All the copies have to be created in

such a way, that their optimum 2-TVCs depend on each other. In the following, we

describe how to connect two different segment blocks (both for the same variable

xi). As we prove below (see Lemma 4.3.2), there are two ways to optimally cover

this construction: one using the “orange and green”, and one using the “orange and

red” vertex appearances (thus modelling the truth values True and False of variable

xi in our reduction), see Figure 4.6.
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Consistency in the horizontal direction. Let H be a temporal line on vertices

(u1
0, u1

1, . . . , u1
7, w1, w2, w3, w4, u2

0, u2
1, , . . . , u2

7), with two segment blocks on vertices

(u1
0, u1

1, . . . , u1
7) and (u2

0, u2
1, . . . , u2

7), respectively, starting at time t and finishing at

time t + 8, and let P = (u1
6, u1

7, w1, w2, w3, w4, u2
0, u2

1) be a path of length 7, that

appears exactly at times t + 2 and t + 5. For an example see Figure 4.6. We refer

to this temporal line P as a horizontal bridge between the two segment blocks.

Figure 4.6: An example of connecting two segment blocks in the horizontal direction.
The two different ways to optimally cover this construction are (i) with the green-
colored and the orange-colored, or (ii) with the red-colored and the orange-colored
vertex appearances.

Lemma 4.3.2. The temporal graph H has exactly two optimum 2-TVCs, both of

size 34.

Proof. Let H consist of two segment blocks. Suppose that the first segment block,

i. e., left one, is covered with the “orange and green” 2-TVC. Then the first edge

u1
6u

1
7 of the path P does not have to be covered at time t+2 as it is covered at times

t + 1 and t + 3. For the other 6 edges of P , there exists a unique optimum 2-TVC,

that uses every second vertex at time t + 2 and is of size 3. Therefore we cover the

edge u2
0u

2
1 at time t + 2 which enforces the “orange and green” 2-TVC also on the

right segment block. Now, the only remaining uncovered edges are four consecutive

edges of P , from w1 to u2
0 at time t+5, which are optimally covered with two vertex

appearances. Altogether we used 15+15 vertex appearances, to cover both segment

blocks and 2 + 2 to cover P at t + 2, t + 5.

Lemma 4.3.2 ensures that, in an optimum 2-TVC of the construction of Fig-

ure 4.6, either both the left and the right segment blocks contain the “orange and
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green” vertex appearances, or they both contain the “orange and red” vertex ap-

pearances. We can extend the above result to d consecutive copies of the same

segment block and get the following result.

Corollary 4.3.3. The temporal graph corresponding to d copies of a segment block,

where two consecutive are connected via horizontal bridges, has exactly two optimum

2-TVCs of size 19d − 4.

Proof. The optimum 2-TVC of each segment block consists of 15 vertex appearances.

A horizontal bridge is optimally covered using 4 extra vertex appearances. Therefore

all together we have 15d + 4(d − 1) = 19d − 4 vertex appearances in the optimum

2-TVC.

Variable gadget

From the planar, rectilinear embedding Rϕ of ϕ, we can easily fix the order of

variables. We fix the variables in the order they appear in the variable-axis, starting

from the left to the right.

Let di be the number of appearances of variable xi as a literal (i. e., as xi and xi)

in ϕ. For every variable xi we create di copies of the segment block, which follow

each other on a horizontal line and are connected via horizontal bridges. Between

variable gadgets of two consecutive variables xi and xi+1 we add 4 vertices (without

any additional time-edges). All variable gadgets in Gϕ start and finish at the same

time i. e., they lie on the same horizontal line.

Lemma 4.3.4. The distance between two rightmost (or two leftmost) edges of any

pair of segment blocks in Gϕ is odd.

Proof. Let (u6u7, t) and (v6v7, t) be the rightmost time-edges of two segment blocks

X and Y in Gϕ. Without loss of generality, we may assume that X appears before/left

of the Y in Gϕ.

If X and Y are consecutive (i. e., right next to each other) then there are 4

vertices between them and two blocks are on the distance 5. Since (v6v7, t) is the

last (rightmost) time-edge in Y it is on the distance 6 from the beginning of the

block and therefore on the distance 11 from (u6u7, t) .
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If there are k segment blocks between X and Y , there are 8k + 4(k + 1) vertices

between the end of X and the beginning of the Y . Since (v6v7, t) is the last (right-

most) time-edge in Y there are 6 other vertices before it in the block. Therefore,

there are 12k + 10 vertices between the two edges (u6u7, t) and (v6v7, t), so they are

on the distance 2(6k + 5) + 1.

Similarly it holds for the leftmost time-edges (u0u1, t) and (v0v1, t) of two segment

blocks X and Y in Gϕ.

Vertical line gadget

A vertical line gadget is used to connect a variable gadget to the appropriate clause

gadget. It consists of one edge appearing in 2k consecutive time-steps, where k is

a positive integer. The value of k for each clause gadget will be specified later; it

depends on the embedding Rϕ of the input formula ϕ. More precisely, let X be a

segment block for the literal xi (resp. xi) on vertices (u0, u1, . . . , u7), which starts

at time t and finishes at time t′ = t + 8. Then the vertical line gadget V of this

segment block consists of just the 2k appearances of the edge u6u7 from time t′ to

time t′ + 2k − 1 (resp. of the edge u0u1 from time t − 2k + 1 to time t).

Lemma 4.3.5. Let V be any vertical line gadget, whose edge appearances are between

time t0 and time t0 + 2k − 1. Then a minimum 2-TVC of V in the time windows

from Wt0 to Wt0+2k−2 is of size k.

Proof. To cover an edge in a specific time-step we use just one vertex appearance.

Since V consists of 2k consecutive appearances of the same edge uxux+1, containing

in the 2-TVC an appearance of ux or ux+1 at a time t (where t0 +1 ≤ t ≤ t0 +2k−2)

temporally covers the edge uxux+1 in two time windows, namely Wt−1 and Wt. Note

that there are 2k − 1 time windows between Wt0 to Wt0+2k−2.

Suppose that there is an optimum 2-TVC of V of size at most k −1. This 2-TVC

then can cover the edge uxux+1 in at most 2(k − 1) time windows, which leaves at

least one time window uncovered. Therefore the size of an optimum 2-TVC is at

least k.

Let us now build two minimum 2-TVCs of V , both of size k. We observe the

following two options.
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• Suppose we cover uxux+1 at time t0. Then we can cover it also at times

t0 + 2, t0 + 4, . . . , t0 + 2k − 2, and thus uxux+1 is covered in all time windows

between Wt0 to Wt0+2k−2 by using exactly k vertex appearances. This 2-TVC

corresponds to the red-colored vertex appearances of the vertical line gadget

depicted in Figure 4.7.

• Suppose we cover uxux+1 at time t0 + 1 (instead of time t0). Then we can

cover it also at times t0 + 3, t0 + 5, . . . , t0 + 2k − 1, and thus uxux+1 is covered

again in all time windows between Wt0 to Wt0+2k−2 by using exactly k vertex

appearances. This 2-TVC corresponds to the green-colored vertex appearances

of the vertical line gadget depicted in Figure 4.7.

t′
t′ + 1

t′ + 2

t′ + 2k − 1

2k

Figure 4.7: An example of two optimum covers of a vertical line gadget: (i) with
the green-colored, or (ii) with the red-colored vertex appearances.

Clause gadget

Without loss of the generality, we can assume that in every positive clause (xi ∨xj ∨

xk) (resp. negative clause (xi ∨ xj ∨ xk)) the literals are ordered such that i ≤ j ≤ k.

Every clause gadget corresponding to a positive (resp. negative) clause consists of:

• three edges appearing in 4 consecutive time-steps, these edges correspond to

the rightmost (leftmost, in the case of a negative clause) edge of a segment
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block of each variable,

• two paths P1 and P2, each of odd length, such that P1 (resp. P2) connects the

second-to-top (or second-to-bottom, in the case of a negative clause) newly

added edges above (below, in the case of a negative clause) the segment blocks

of xi and xj (resp. of xj and xk). We call paths P1 and P2 clause gadget

connectors.

For an example see Figure 4.8.

vx ux vy uy vz uz

P1

P2

X Y Z

Figure 4.8: An example of a positive clause gadget, depicted with vertical line
gadgets X , Y , Z connected to it.

Lemma 4.3.6. Let C be a positive clause (xi ∨ xj ∨ xk) (resp. negative clause

(xi ∨ xj ∨ xk)) and let C be its corresponding clause gadget in Gϕ. Let the clause

gadget connectors P1 and P2 have lengths p1 and p2, respectively. If we temporally

cover at least one of the three vertical line gadgets connecting to C with the green

(resp. red) vertex appearances, then C can be covered with exactly 7 + p1+p2
2 vertex

appearances; otherwise we need at least 8 + p1+p2
2 vertex appearances to temporally

cover C.

Proof. Let X , Y , Z be the vertical line gadgets connecting the segment blocks of

variables xi, xj, xk to the clause gadget, respectively and let C be a positive clause.

Suppose that C starts at time t. We denote with vxux, vyuy, vzuz the underlying

edges of X , Y , Z respectively. The clause gadget consists of edges vxux, vyuy, vzuz

appearing in consecutive time-steps from t to t + 3, together with the clause gadget

connectors, i. e., a path P1 of length p1 from ux to vy at time t + 2 and a path P2 of

length p2 from uy to vz at time t + 2. Note p1 and p2 are odd (see Lemma 4.3.4).
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A 2-TVC of C always covers all three time-edges at time t+3, as the time window

Wt+3 needs to be satisfied. If X is covered with the red vertex appearances, then we

need to cover its underlying edge at time t, to satisfy the time window Wt−1. Besides

that, we also need one extra vertex appearance for the time window Wt+1. Without

loss of generality, we can cover the edge at time t + 2. If X is covered with the

green vertex appearances, then the edge vxux is already covered in the time window

Wt−1, so we cover it at time t + 1, which satisfies the remaining time windows Wt

and Wt+1. Similarly it holds for Y , Z.

We still need to cover the clause gadget connectors P1 and P2. Since P1 and P2

are paths of odd length appearing at only one time-step, their optimum 2-TVC is

of size (p1 + 1)/2 and (p2 + 1)/2, respectively. Therefore, if one endpoint of P1 or

P2 is in the 2-TVC, then to cover them optimally the other endpoint cannot be in

the cover.

If Y is covered with the red 2-TVC, then one of the endpoints of the time-edge

(vyuy, t + 2) has to be in the 2-TVC, in the other case, the time-edge is already

covered by a vertex appearance in the previous time-step. If X (resp. Z) is covered

with the red 2-TVC, the first (resp. last) time-edge of P1 (resp. P2) has to be covered,

thus vertex appearance (ux, t + 2) (resp. (vz, t + 2)) is in the 2-TVC. Therefore if all

X , Y , Z are covered with the red 2-TVC we use (p1 + p2)/2 + 2 vertex appearances

to cover P1 and P2.

Altogether we need

• one vertex appearance for each edge at time t + 3,

• one vertex appearance for each edge at time-steps t and t + 1 and

• either (p1 + p2)/2 + 1 or (p1 + p2)/2 + 2 vertex appearances to cover the clause

gadget connectors.

We have 8 + p1+p2
2 vertex appearances to cover C if all three X , Y , Z are covered

with the “orange and red” 2-TVC and 7 + p1+p2
2 in any other case.

Similarly, it holds when C is a negative clause.
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x1 x2 x3 x4 x5

(x2 ∨ x3 ∨ x4)

(x1 ∨ x2 ∨ x4)

(x1 ∨ x4 ∨ x5)

(x2 ∨ x3 ∨ x5)

(x1 ∨ x2 ∨ x5)

x3 x3x2 x2x1x1 x1 x2 x2 x5 x5 x5x4 x4 x4

Figure 4.9: An example of the construction of a temporal graph from a planar
rectilinear embedding of monotone 3SAT.

Creating a temporal line Gϕ

Before we start with the detailed construction we need to fix the following notation.

Notation. From the planar, rectilinear embedding Rϕ of ϕ, we can easily fix the

order of clauses. We fix the clauses by first fixing all the positive clauses and then

all negative ones using the order they appear in the Rϕ. If Ci, Cj are two positive

(resp. negative) clauses and i < j, then the clause Ci is above (resp. below) the

clause Cj in the Rϕ. For example in Figure 4.2 we have C1 = (x1 ∨ x4 ∨ x5), C2 =

(x1 ∨ x2 ∨ x4), C3 = (x2 ∨ x3 ∨ x4), C4 = (x1 ∨ x2 ∨ x5), C5 = (x2 ∨ x3 ∨ x5).

Recall that di denotes the number of appearances of the variable xi as a literal

(i. e., either xi or xi) in ϕ. For a clause Ca = (xi ∨ xj ∨ xk) or Ca = (xi ∨ xj ∨ xk) we

denote with ga
i , ga

j and ga
k the appearances of the literals xi, xj and xk (resp. xi, xj

and xk) in Ca, i. e., xi (resp. xi) appears in Ca for the ga
i -th time, xj (resp. xj)

appears ga
j -th time and xk (resp. xk) appears ga

k-th time. With m1 we denote the
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number of positive and with m2 the number of negative clauses in ϕ. For every

clause Ca, we define also the level ℓa in the following way. If Ca is a positive clause

then ℓa equals the number of clauses between it and the variable-axis increased by

1, i. e., the positive clause C1, which is furthest away from the variable-axis, is on

the level m1, the clause Cm1 , which is the closest to the variable axis, is on level 1.

Similarly, it happens for the negative clauses, where the value of the level is negative,

i. e., the clause Cm1+1 is on the level −m2 and the clause Cm is on the level −1.

Now we are ready to combine all the above gadgets and constructions to describe

the construction of the temporal line Gϕ.

Detailed construction. For each variable xi in ϕ we construct its corresponding

variable gadget in Gϕ. All variable gadgets lie on the same horizontal line. We create

the clause gadget of a positive Ca = (xi∨xj ∨xk) or negative clause Ca = (xi∨xj ∨xk)

such that we connect the ga
i -th copy of the segment block of xi to it, together with

the ga
j -th copy of the segment block of xj and ga

k-th copy of the segment block of

xk. We do this using vertical line gadgets, that connect the corresponding segment

blocks to the level ℓa where the clause gadget is starting.

Let us now define our temporal graph Gϕ = (G, λ).

• The underlying graph G is a path on 12∑n
i=1 di − 4 vertices.

– A variable gadget corresponding to the variable xi consists of di copies

of the segment block, together with di − 1 horizontal bridges. We need

di8 + (di − 1)4 = 12di − 4 vertices for one variable and ∑n
i=1(12di − 4) for

all of them.

– Between variable gadgets of two consecutive variables xi, xi+1 there are 4

vertices. Therefore we use extra 4(n − 1) vertices, for this construction.

• The lifetime T of Gϕ is 4(m + 4).

– There are m clauses and each of them lies on its own level. Therefore we

need 4m time-steps for all clause gadgets.

– There is a level 0 with all the variable gadgets, of height 9. We add

one extra time-step before we define the start of levels 1 and −1. This
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ensures that the vertical line gadget, connecting the variable gadget to

the corresponding clause gadget, is of even height.

– The first time-edge appears at time 5 instead of 1, which adds 4 extra

time-steps to the lifetime of Gϕ and does not interfere with our construc-

tion. Similarly, after the appearance of the last time-edge, there is one

extra time-step, where no edge appears. We add these time-steps to en-

sure that the dummy time-edges must be covered in the time-step they

appear and that the lifetime of the graph Gϕ is divisible by 4.

– All together we have 4m + 11 + 4 + 1 time-steps.

Therefore GΦ is a temporal graph of lifetime T = 4(m + 4) with the underlying

path on 12∑n
i=1 di−4 vertices. The appearances of each edge arise from the structure

of the planar monotone rectilinear 3SAT.

Size of the optimum 2-TVC of Gϕ

Using the notation introduced above we determine the size of the optimum 2-TVC of

Gϕ, under the assumption that the input 3SAT formula ϕ is satisfiable. We do this in

two steps, first determining the size of the optimum 2-TVC for each variable gadget

and then determining the optimum 2-TVC of all vertical line gadgets together with

the clause gadgets.

1. Optimum 2-TVC covering all variable gadgets is of size 19∑n
i=1 di − 4n.

• Since a variable xi appears in di clauses as a positive or negative literal,

we construct di connected copies of the segment block. By Corollary 4.3.3

this construction has exactly two optimum 2-TVCs, each of size 19di − 4.

• Using one of the four dummy time-edges of a segment block, denote it

(e, t), we connect the corresponding variable gadget to the clause gadget.

Therefore we need to cover just 3 dummy time-edges. Since there is one

extra time-step before the first clause gadget level, the edge e appears also

at time t + 1 in the case of a positive clause and t − 1 in the case of the

negative one. To optimally cover it we then use one vertex appearance.
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• There are n variables, so all together we need ∑n
i=1(19di − 4) vertex

appearances in 2-TVC to optimally cover all of them.

2. Optimum 2-TVC covering all vertical line gadgets and clause gadgets is of size

∑
Ca=(xi∨xj∨xk) or

Ca=(xi∨xj∨xk)

6|ℓa| + 6
k−i−1∑

b=1
di+b + 6(di − ga

i + ga
k)
− 2m. (4.1)

Let Ca = (xi ∨ xj ∨ xk) (resp Ca = (xi ∨ xj ∨ xk)).

• Vertical line gadgets connect variable gadgets of xi, xj and xk with the

clause gadget of Ca. Since the clause gadget is on level ℓa the correspond-

ing vertical line gadgets are of height 4(|ℓa| − 1). By Lemma 4.3.5 and

the fact that each clause requires exactly three vertical line gadgets, we

need 6(|ℓa| − 1) vertex appearances to cover them optimally.

• Using Lemma 4.3.6 we know that an optimum 2-TVC covering the clause

gadget corresponding to Ca requires 7+ p1+p2
2 vertex appearances where p1

and p2 are the lengths of the clause gadget connectors. Let us determine

the exact value of p1 + p2.

– There are k − i − 1 variable gadgets between xi and xk, namely

xi+1, xi+2, . . . , xk−1. Variable gadget corresponding to any variable

xb is of length 12db −4. There are 4 vertices between two consecutive

variable gadgets. Therefore there are ∑k−i−1
d=1 (di+d12 − 4) + (k −

i)4 = 12∑k−i−1
d=1 di+d−4 vertices between the last vertex of xi variable

gadget and the first vertex of xk variable gadget.

– From the end of ga
i -th segment block of xi to the end of the variable

gadget there are di − ga
i copies of the segment block together with

the di − ga
i horizontal bridges connecting them. Similarly, it holds

for the case of xk, there are ga
k − 1 segment blocks and horizontal

bridges. Altogether we have (di −ga
i +ga

k −1)8+(di −ga
i +ga

k −1)4 =

12(di − ga
i + ga

k − 1) vertices.

– By the construction, paths p1 starts in the last vertex of the ga
i -th

52



segment block of the variable gadget of xi, and p2 finishes in the

first vertex of the ga
k-th segment block of the variable gadget of xk.

Therefore we add 2 to the value of p1 + p2.

– The value of p1 + p2 is

12
k−i−1∑

d=1
di+d+4+12(di−ga

i +ga
k−1)+2 = 12

k−i−1∑
d=1

di+d+12(di−ga
i +ga

k)−6.

Since the optimum 2-TVC of the clause Ca requires 7 + p1+p2
2 vertex

appearances, it is of size

6
k−i−1∑

d=1
di+d + 6(di − ga

i + ga
k) + 4.

Altogether, the optimum 2-TVC of the clause Ca with the corresponding

vertical line gadgets is of size

6|ℓa| + 6
k−i−1∑

d=1
di+d + 6(di − ga

i + ga
k) − 2.

Extending the above equation to all clauses and variables we get that the

optimum 2-TVC of Gϕ is of size

s =19
n∑

i=1
di +

∑
Ca=(xi∨xj∨xk) or

Ca=(xi∨xj∨xk)

6|ℓa| + 6
k−i−1∑

b=1
di+b + 6(di − ga

i + ga
k)


− 2m − 4n.

(4.2)

We are now ready to prove our main technical result of this section.

Lemma 4.3.7. There exists a truth assignment τ of the variables in X which sat-

isfies ϕ(X) if and only if there exists a feasible solution to 2-TVC on Gϕ which is of

the size s as in Equation (4.2).

Proof. Each segment block corresponding to a variable x has exactly two optimum

2-TVCs (the “orange and green” and “orange and red” one, depicted in Figure 4.5).

We set the “orange and green” solution to the True value of x and the “orange and

red” one to False.
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(⇒): From τ we start building a 2-TVC of Gϕ by first covering all variable gadgets

with a 2-TVC of “orange and green” (resp. “orange and red”) vertex appearances

if the corresponding variable is True (resp. False). Using Lemma 4.3.2 we know

that the optimum 2-TVC of every variable gadget uses either all “orange and green”

or all “orange and red” vertex appearances for every segment block and horizontal

bridges connecting them. Next, we extend the 2-TVC from variable gadgets to

vertical line gadgets, i. e., if the variable gadget is covered with the “orange and

green” (resp. “orange and red”) vertex appearances then the vertical line gadget

connecting it to the clause gadget uses the green (resp. red) vertex appearances. In

the end, we have to cover also clause gadgets. Using Lemma 4.3.6 we know that

we can cover each clause gadget optimally if and only if at least one vertical line

gadget connecting to it is covered with the green vertex appearances, in the case

of a positive clause and red vertex appearances in the case of the negative one.

More precisely, a clause gadget C corresponding to the clause C is covered with

the minimum number of vertex appearances whenever C is satisfied. Since τ is a

truth assignment satisfying ϕ, all clauses are satisfied and hence covered optimally.

Therefore the size of the 2-TVC of Gϕ is the same as in Equation (4.2).

(⇐): Suppose now that C is a minimum 2-TVC of the temporal graph Gϕ of size

s. Using Lemma 4.3.2 and Corollary 4.3.3 we know that the optimum 2-TVC of

each variable gadget consists of either all “orange and green” or all “orange and red”

vertex appearances. If this does not hold then C is not of minimum size on variable

gadgets. Similarly, Lemma 4.3.6 assures that the number of vertex appearances

used in the 2-TVC of any clause gadget is minimum if and only if there is at least

one vertical line gadget covered with green vertex appearances in the case of a

positive clause and red vertex appearances in the case of a negative clause. If

this does not hold then C is not of minimum size on clause gadgets. Lastly, if a

vertical line gadget V connects a variable gadget covered with “orange and green”

(resp. “orange and red”) vertex appearances to a clause gadget using “orange and

red” (resp. “orange and green”) vertex appearances, then the 2-TVC of V is not

minimum (see Lemma 4.3.5) and C cannot be of size s.

To obtain a satisfying truth assignment τ of ϕ we check for each variable xi which
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vertex appearances are used in the 2-TVC of its corresponding variable gadget. If

C covers the variable gadget of xi with all “orange and green” vertex appearances

we set xi to True else we set it to False.

Our main result of this section follows now directly from Lemma 4.3.7 and the

fact that the planar monotone rectilinear 3SAT is NP-hard [35].

As, for every ∆ ≥ 2, there is a known polynomial-time reduction from ∆-TVC

to (∆ + 1)-TVC [5], we obtain the following.

Theorem 4.3.8. For every ∆ ≥ 2, ∆-TVC on instances on an underlying path is

NP-hard.

With a slight modification to the Gϕ we can create the temporal cycle from Rϕ

and therefore the following holds.

Corollary 4.3.9. For every ∆ ≥ 2, ∆-TVC on instances on an underlying cycle is

NP-hard.

Proof. We follow the same procedure as above where we add one extra vertex w, to

the underlying graph P of Gϕ. We add also two time-edges connecting the first and

the last vertex of the temporal line graph Gϕ at time 1. This increases the size of the

2-TVC by 1 (as we need to include the vertex appearance (w, 1)) and it transforms

the underlying path P into a cycle.

4.3.2 Algorithmic results

To complement the hardness presented in Section 4.3.1, we present two polynomial-

time algorithms. Firstly, a dynamic program for solving TVC on instances with

underlying paths and cycles, which shows that the hardness is inherently linked to

the sliding time windows. Secondly, we give a PTAS for ∆-TVC on instances with

underlying paths. This approximation scheme can be obtained using a powerful

general purpose result commonly used for approximating geometric problems [105].

Theorem 4.3.10. TVC can be solved in polynomial time on instances with a path/cycle

as their underlying graph.
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Proof. Let us start the proof with the case when the underlying graph G is a path

(v0, v1, v2, . . . , vn) on n + 1 vertices. Our algorithm mimics the greedy algorithm for

computing a minimum vertex cover in a (static) path graph, which just sweeps the

path from left to right and takes every second vertex. For every i = 1, 2, . . . , n we

denote by ei the edge vi−1vi.

To compute the optimum temporal vertex cover C of G we need to determine

for each edge which vertex appearance covers it. We first consider the edge v0v1.

Without loss of generality, we can cover this edge in C by a vertex appearance in

the set {(v1, t) : v0v1 ∈ Et}, as no appearance of vertex v0 can cover any other edge

apart from v0v1. We check whether the set {t : v0v1 ∈ Et}∩{t′ : v1v2 ∈ Et′} is empty

or not; that is, we check whether v0v1 appears together with v1v2 in any time-step.

If this set is empty, then we add to C an arbitrary vertex appearance (v1, t), where

(e1, t) ∈ Et. This choice is clearly optimum, as we need to cover v0v1 with at least

one vertex appearance of v1, while any of the vertex appearances of v1 can not cover

any other edge of the graph. Otherwise, let t ∈ {t : v0v1 ∈ Et} ∩ {t′ : v1v2 ∈ Et′} be

an arbitrary time-step in which both v0v1 and v1v2 appear. Then we add (v1, t) to C.

This choice is again optimum, as in this case the vertex appearance (v1, t) covers both

edges v0v1 and v1v2. After adding one vertex appearance to C, we ignore the edges

that have been covered so far by C, and we proceed recursively with the remaining

part of G, until all edges are covered. Each iteration of the above algorithm can

be performed in O(T ) time, and we have at most O(n) iterations. Therefore the

running time of the whole algorithm is O(Tn).

We can similarly deal with the case where the underlying graph G is a cycle

on the vertices v0, v1, v2, . . . , vn. Here we just need to observe that, without loss

of generality, the optimum solution contains either a vertex appearance of v0 or a

vertex appearance of v1 (but not both). Therefore, to solve TVC on G, we proceed

as follows. First we create an auxiliary cycle G′ on the vertices v′
0, v0, v1, v2, . . . , vn

(in this order), where v′
0 is a new dummy vertex. Then we create the temporal

graph G ′ = (G′, λ′), where λ′(vivi+1) = λ(vivi+1) for every i = 1, 2, . . . , n − 1,

λ′(vnv′
0) = λ(vnv0), and λ′(v′

0v0) = λ′(v0v1) = λ(v0v1). Next we compute the tempo-

ral subgraphs G ′
1 and G ′

2 of G ′, where the underlying graph of G ′
1 (resp. of G ′

2) is the
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path (v0, v1, . . . , vn, v′
0) (resp. the path (v1, v2, . . . , vn, v′

0, v0)). Every edge of G ′
1 and

of G ′
2 has the same time labels as the corresponding edge in G. Now we optimally

solve TVC on G ′
1 and on G ′

2, and we return the smaller of the two solutions, as

an optimum solution of TVC on G (by replacing any vertex appearance (v′
0, t) by

(v0, t)). The running time is again O(Tn).

Next, we turn to approximating ∆-TVC on underlying paths. The Geometric

Hitting Set problem takes as an instance a set of geometric objects, e.g. shapes

in the plane, and a set of points. The task is to find the smallest set of points, that

hit all of the objects. In the paper by Mustafa and Ray [105] the authors present

a PTAS for the problem, when the geometrical objects are r-admissible set regions.

We transform an arbitrary temporal line to the setting of the geometric hitting set.

As a result, we obtain a PTAS for the ∆-TVC problem.

Definition 4.3.11. Let R = (P, D) be a range space that consists of points P in

R2 and a set D of regions containing points of P . The minimum geometric hitting

set problem asks for the smallest set S ⊆ P , such that each region in D contains at

least one point from S.

Definition 4.3.12. Let D be the set of regions in the plane, where any region s ∈ D

is bounded by a closed Jordan curve 1. We say, that D is an r-admissible set of

regions, if Jordan curves bounding any two regions s1, s2 ∈ D cross l ≤ r times and

both s1 \ s2 and s2 \ s1 are connected regions2.

Theorem 4.3.13 ( [105]). Let R = (P, D) be a range space consisting of a set

P of n points in R2 and a set D of m r-admissible regions. There exists a (1 +

ε)-approximation algorithm for the minimum geometric hitting set problem that is

performed in O(mnO(ε−2)) time.

Theorem 4.3.14. For every ε > 0, there exists an (1 + ε)-approximation algorithm

for ∆-TVC on instances with a path/cycle as their underlying graph, which runs in

1A Jordan curve is a non-self-intersecting continuous loop.
2The space X is said to be path-connected if there is a path joining any two points in X. Every

path-connected space is also connected.
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time

O
(
n(T − ∆ + 1) · (T (n + 1))O(ε−2)

)
= O

(
(T (n + 1))O(ε−2)

)
,

i. e., the problem admits a PTAS.

Proof. Let G = (G, λ) be a temporal line, on vertices {v1, v2, . . . , vn}, with lifetime

T . We first have to create the range space R = (P, D), where P ⊆ V × [T ] is a set

of vertex appearances and D is a set of 2-admissible regions.

Set P of time vertices consist of vertex appearances (vi, t) for which t ∈ λ(ei) ∪

λ(ei+1). Intuitively, if edges incident to v do not appear at time t, then (v, t) is

not in P . Set D of 2-admissible regions consists of rectangles of 2 different sizes.

For every edge ei that appears in the time window Wt we create one rectangle Rt
i,

that includes all vertex appearances incident to ei in Wt. For example, if edge ei

appears in the time window Wt at times t1 and t2, then the corresponding rectangle

Rt
i contains vertex appearances (vi−1, t1), (vi, t1), (vi−1, t2) and (vi, t2).

It is not hard to see that |P | ≤ |V | · T = (n + 1)T and |D| ≤ |E|(T − ∆ + 1) =

n(T − ∆ + 1).

Formal construction.

Since D will be defined to be a set of 2-admissible regions, the boundary of any two

rectangles we construct should intersect at most 2 times. For this purpose, we use

rectangles, of two different sizes. Let us denote with A the rectangle of size a1 × a2

and with B be the rectangle of size b1 × b2, where a1 > b1 > b2 > a2.

As we said, for every edge ei that appears in the time window Wt we construct

exactly one rectangle. These are the rules we use to correctly construct them.

1. For a fixed time window Wt we construct the rectangles in such a way, that

they intersect only in the case when their corresponding edges ei, ej share the

same endpoint in the underlying graph G. Since G is a path, the intersection

happens only in the case when j = i + 1. We can observe also, that there are

no three (or more) edges sharing the same endpoint and therefore no three

rectangles intersect.
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We require also, that the rectangles corresponding to a pair of adjacent edges

are not the same, i. e., they alternate between form A and B. For an example

see Figure 4.10.

Figure 4.10: Regions in a fixed time window.

2. For any edge ei, rectangles corresponding to two consecutive time windows

Wt, Wt+1 are not the same, i. e., they alternate between the form A and B.

For an example see Figure 4.11a.

(a) Alternating regions for an edge. (b) Regions for an edge with shift,
when ∆ = 4. Each region Wi starts
at same horizontal position as Wi−4.

Figure 4.11: Creating regions for one edge.

When the time windows are of size ∆, there are at most ∆ rectangles inter-

secting at every time-step t. This holds, because if the edge ei appears at time

t it is a part of the time windows Wt−∆+1, Wt−∆+2, . . . , Wt.

Since the constructed rectangles are of two sizes, if ∆ ≥ 3 we create intersec-

tions with an infinite number of points between the boundary of some rectan-

gles, if we just “stack” the rectangles upon each other. Therefore, we need to

shift (in the horizontal direction) rectangles of the same form in one ∆ time

window. Since the time window Wt never intersects with Wt+∆, we can shift
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the time windows Wt+1, . . . , Wt+∆−1 and fix the Wt+∆ at the same horizontal

position as Wt . For an example see Figure 4.11b.

Combining both of the above rules we get a grid of rectangles. Moving along the

x axis corresponds to moving through the edges of the path and moving along the

y axis corresponds to moving through the time-steps.

Figure 4.12: Regions for edges e1, . . . , e8 in the time windows W1, . . . , W8, in the
case of 4-TVC.

By Figure 4.10 and Item 2 of the construction above, rectangles alternate between

the form A and B in both dimensions. See figure Figure 4.12 for example. If an

edge ei does not appear in the time window Wt, then we do not construct the

corresponding rectangle Rt
i. The absence of a rectangle from a grid does not change

the pattern of other rectangles. To determine of what form a rectangle corresponding

to edge ei at time-window Wt is, we use the following condition:

Rt
i =


A if i + t ≡ 0 (mod 2),

B else.

Now we define where the points are placed. We use the following conditions.

a. If an edge ei = vi−1vi appears at time t we add vertex appearances (vi−1, t), (vi, t)

to all of the rectangles Rt′
i , where t − ∆ + 1 ≤ t′ ≤ t, if they exist.

Equivalently, we add the vertex appearances (vi−1, t), (vi, t) in the intersection of

the rectangles corresponding to the edge ei in the time windows Wt−∆+1, . . . , Wt.

For an example see Figure 4.13a.
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b. If an edge ei does not appear at time t, then the time vertices (vi−1, t), (vi, t) are

not included in the rectangles Rt′
i (t − ∆ + 1 ≤ t′ ≤ t), if they exist.

c. If two adjacent edges ei, ei+1 appear at the same time t, we add to the intersection

of the rectangles Rt′
i , Rt′

i+1 the vertex (vi, t), where t − ∆ + 1 ≤ t′ ≤ t. For an

example see Figure 4.13b.

(a) Edge ei appearing at time 5 and
the corresponding placement of ver-
tex appearances to the rectangles,
when ∆ = 4.

(b) Edges ei and ei+1 appearing at
time 5 and the corresponding vertex
appearances placement in the rect-
angles, when ∆ = 4.

Figure 4.13: Example of placement of the vertices into the rectangles when ∆ = 4.

It is straightforward to verify that finding the minimum hitting set of the range

space is equivalent to finding the minimum ∆-TVC for G. On the constructed

range space we use the local search algorithm from [105] which proves our result.

Note, that we assume that if a region does not admit any points, then it is trivially

satisfied.

4.4 Algorithms for bounded degree temporal graphs

In this section, we extend our focus from temporal graphs with underlying paths or

cycles to instances of ∆-TVC with more general degree restrictions. In particular,

we present an algorithm that solves ∆-TVC exactly, in time that is exponential in

the number of edges of the underlying graph. We then use this algorithm to give

a (d − 1)-factor approximation algorithm (where d is the maximum vertex degree

in any time-step) and finally give an FPT-algorithm parameterized by the size of a

solution.
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Before we present our algorithms let us define the generalized notion of (sub)instances

of our ∆-TVC problem. We use this notion in the formulation of the exact expo-

nential time algorithm and in the approximation algorithm.

Definition 4.4.1 (Partial ∆-TVC). Let (G, λ) be a temporal graph. An instance

of Partial ∆-TVC is given by (G, λ, ℓ, h), where ℓ : E(G) → [T ] and h : E(G) →

[T ] map each edge to the starting time of its lowest uncovered time window and

highest uncovered time window respectively. The task is to find a temporal vertex

subset C of minimum size, such that for every edge e and every time window Wi

with ℓ(e) ≤ i ≤ h(e) if e ∈ E[Wi] there is some (v, t) ∈ C[Wi] where v ∈ e, t ∈ λ(e).

Intuitively, Partial ∆-TVC of (G, λ, ℓ, h) is a ∆-TVC of (G, λ), where each

edge e ∈ E(G) has to be covered only in time windows Wl(e), Wl(e)+1, . . . , Wh(e).

Obviously, if ℓ(e) = 1 and h(e) = T − ∆ + 1 for all e ∈ E(G) then a solution of

Partial ∆-TVC on (G, λ, ℓ, h) is also a valid solution of ∆-TVC on (G, λ).

4.4.1 Exact algorithm

In the following we denote by dG the degree of the underlying graph G of the consid-

ered instances (G, λ, ℓ, h) of Partial ∆-TVC. We provide a dynamic programming

algorithm with running time O(T∆O(|E(G)|)), as the next theorem states.

Theorem 4.4.2. For every ∆ ≥ 2, a solution to Partial ∆-TVC can be computed

in O(TcO(|E(G)|)) time, where c = min{2dG , ∆} and T is the lifetime of the temporal

graph in the instance.

Intuitively, our algorithm scans the temporal graph ∆ time-steps at a time and

for each edge, ei calculates the optimal vertex appearance that covers it. Since a

time-edge (ei, t) can appear at each time with a different combination of time-edges

incident to it (we call this a configuration of edges), it is not always the best to

simply cover the last appearance of ei in the observed time window. To overcome

this property we show that it is in fact enough to consider the latest appearance of

each configuration of ei, which drastically reduces the search space of our algorithm.

Let us now proceed with the detailed proof of Theorem 4.4.2.
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Proof. Let (G, λ, ℓ, h) be an instance of Partial ∆-TVC. We denote with m the

number of edges in the underlying graph G and with T the lifetime of the input

instance, more precisely T ∈ Wt, where t = maxe∈E(G)(h(e)). For (G, λ, ℓ, h) we

define a dynamic programming table f , that is indexed by tuples (t, x1, . . . , xm),

where t ∈ [T − ∆ + 1] and xi ∈ [0, ∆] for all i ∈ [m]. We store in f(t, x1, . . . , xm) the

size of a minimum Partial ∆-TVC of a sub-instance (G, λ, ℓ′, h) with ℓ′(ei) = t+xi,

i. e., we modify the lowest uncovered time window of each edge. We call such a

minimum solution a witness for f(t, x1, . . . , xm). Whenever no solution exists we

keep f(t, x1, . . . , xm) empty.

The following observation is an immediate consequence of the definition and the

fact that t + xi = (t + 1) + (xi − 1).

Observation 4.4.3. If for all i, xi ≥ 1 then:

f(t, x1, x2, . . . , xm) = f(t + 1, x1 − 1, x2 − 1, . . . , xm − 1).

We introduce the notion of configurations of edges, that we use to recursively fill

the dynamic programming table. Let v, w ∈ V (G) be the endpoints of edge ei. An

edge configuration of time-edge (ei, t) at endpoint v (resp. w) consist of all time-

edges that are incident to (v, t) (resp. (w, t)). Formally, γ(ei, t)v = {e ∈ E(G) | v ∈

ei ∩e, t ∈ λ(e)} is a configuration of edges incident to time-edge (ei, t) at endpoint v.

With γ(ei)v = {γ(ei, t)v | t ∈ [T ], t ∈ λ(ei)} we denote the set of all configurations

of edge ei ∈ (G, λ) at endpoint v. Note, since each vertex in G is of degree at

most dG it follows that ei is incident to at most 2(dG − 1) edges in G (dG − 1 at

each endpoint) and therefore appears in at most 2dG different edge configurations,

i. e. |γ(ei)vi
| + |γ(ei)wi

| ≤ 2dG for all viwi = ei ∈ E(G). The applicability of edge

configurations is presented by the following claim.

Claim 4.4.4. Suppose that the edge vw = ei is optimally (temporally) covered in

every time window up to Wt. Then, to determine a temporal vertex cover of ei in the

time window Wt, that is a part of an optimum temporal vertex cover, it is enough

to check only the last appearance of every edge configuration of ei in Wt.

Proof. Suppose that the configuration of ei at time t1 is the same as the configuration
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of ei at time t2 (i.e. γ(ei, t1)v = γ(ei, t2)v and γ(ei, t1)w = γ(ei, t2)w), where t ≤ t1 <

t2 ≤ t + ∆ − 1. Let C be an optimum temporal vertex cover of G that covers edge

ei at time t1 with the vertex appearance (v, t1). Now let C ′ = {C \ (v, t1)} ∪ (v, t2).

Since C ′ and C differ only in the time window Wt all edges in configuration γ(ei, t1)v

remain optimally (temporally) covered in all time windows up to Wt. Since (v, t2)

temporally covers the same edges as (v, t1) in the time window Wt, it follows that C ′

is also a ∆-TVC. Clearly C ′ is not bigger than C. Therefore, C ′ is also an optimum

solution.

Using the properties presented above we are ready to describe the procedure that

computes the value of f(t, x1, x2, . . . , xm).

Case 1. If for all i it holds xi > 0, then f(t, x1, x2, . . . , xm) = f(t + 1, x1 − 1, x2 −

1, . . . , xm − 1).

Case 2. There is at least one xi = 0. Let i be the smallest index for which this holds

and let viwi = ei be its corresponding edge. Now, to temporally cover ei in

the time window Wt we check the last appearance of all edge configurations

of ei at vi, wi in the time window Wt, and choose the one that minimizes the

solution. Namely, if we cover ei at time ti using vertex vi we add (vi, ti) to the

solution, set the new value of xi to ti − t + 1 and also the value xj of every

edge ej in γ(ei, t)vi
to ti − t + 1. We then recursively continue the calculation

of f . At the end, we select such ti (such edge configuration) that minimizes

the value f(t, x1, x2, . . . , xm).

Running Time. It is straightforward to see that the number of table entries is

bounded by T∆|E(G)| which also bounds the complexity of computing them.

A second bound can be established by noticing that each entry of f , that is filled

during the dynamic program, is uniquely determined by configurations of each edge.

Together both bounds yield the desired complexity.

The above algorithm solves Partial ∆-TVC in O(TcO(|E(G)|)), where c =

min{2dG , ∆}. Note, that the following parameterized complexity result of ∆-TVC
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follows directly from our algorithm above.

Corollary 4.4.5. For every ∆ ≥ 2, ∆-TVC can be solved in time in O(TcO(|E(G)|))

where c = min{2O(|E(G)|), ∆}, and thus ∆-TVC is in FPT parameterized by |E(G)|.

4.4.2 Approximation ratio better than d

In this section, we focus on approximation algorithms. In [5], the authors present

the d-factor approximation algorithm (where d is the maximum vertex degree in any

time-step), which uses the following idea. First optimally solve the ∆-TVC for each

edge separately, which can be done in polynomial time, and then combine all the

solutions. In the worst case, it may happen that the solution includes all d neighbors

of a specific vertex appearance (v, t), instead of just (v, t), which is how the bound

is obtained. We try to avoid this situation by iteratively covering paths with two

edges (P3-s) instead of single edges. With this approach, we force the middle vertex

(called central vertex) to be in the temporal vertex cover, which gives us an error

of at most d − 1. Based on this idea we can formulate our (d − 1)-approximation

algorithm. Note in our case we require that d ≥ 3.

Description of the algorithm

Let G = (G, λ) be an instance of ∆-TVC. We iteratively extend an initially empty

set X to a ∆-TVC of G in the following way. While there is an edge e ∈ E(G) that

is not covered in some time window of G we have to extend X ; otherwise X is a

∆-TVC which we can return. We proceed in two phases:

1. While there is a 3-vertex path P that appears at some time step t and whose

underlying edges are uncovered by X in some time window Wi with t ∈ Wi, we

build an instance of the Partial ∆-TVC in the following way. Let S be the

set of all time-steps t in which both edges of P appear and for which there are

time windows containing that time-step in which each edge of P is uncovered.
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More specifically,

S = {t ∈ [T ] | P appears at t and for every e ∈ E(P )

there is a Wi such that t ∈ Wi and e is uncovered in Wi}.

We subdivide S into subsets S1, . . . Sk with k ≤ T such that there is a gap

of at least ∆ between the last element of Si and the first element of Si+1

(for all i ∈ [k − 1]). Now we iteratively consider each Si and construct the

Partial ∆-TVC instance H given by (P, λ′P
i , ℓi(P ), hi(P )) with λ′P

i defined

as a mapping of each edge of P to Si, ℓi(P ) is the smallest value t such that

(P, min Si) is not covered in time window Wt by X , and hi(P ) is the smallest

value t such that (P, max Si) is not covered in time window Wt by X . We use

the algorithm from Section 4.4.1 to solve such an instance, extend X by the

union of this solution, and continue with Si+1.

Note that these are the instances that bring the crucial advantage compared

to the known d-approximation. To ensure our approximation guarantee, we

also need to allow the inclusion of appearances of a single underlying edge in

different P3 instances for an example see Figure 4.14. This is why we restrict

the temporal extent of each P3 instance to time-steps which are impacted by

the actual appearances of the respective P3.

2. When there is no such P3 left, we set F to be the set of edges e ∈ E(G)

that are not yet covered in some time window of G. For e ∈ F , let Se be the

set of all time-steps in which e appears and is not covered. We subdivide Se

into subsets Se
1, . . . Se

k with k ≤ T such that there is a gap of at least 2∆ − 1

between the last element of Se
i and the first element of Se

i+1 (for all i ∈ [k −1]).

Now we consider the Partial ∆-TVC instance given by ({e}, λ′e
i , ℓi(e), hi(e))

with λ′e
i defined a mapping of e to Se

i , ℓi(e) is the smallest value t such that

(e, min Se
i ) is not covered in time window Wt, and hi(e) is the largest value t

such that (e, max Se
i ) is not covered in time window Wt. We use the algorithm

from Section 4.4.1 to solve these instances and extend X by the union of the

solutions.
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Figure 4.14: An example of a temporal graph with ∆ = 3 and two of the Par-
tial ∆-TVC instances H1 = (P1, λ1, ℓ1, h1) and H2 = (P2, λ2, ℓ2, h2), gener-
ated by our algorithm. Here, H1 is defined as P1 = (u, m, v), S1 = {1, 3, 5},
ℓ1 = 1, h1 = 3, λ1(um) = λ1(mv) = S1. Also, H2 is defined as P2 = (w, u, m),
S2 = {9, 10, 12, 13, 15}, ℓ2 = 7, h2 = 13, λ2(wu) = λ2(um) = S2. Note that
H1 ∩ H2 = ∅, i.e. H1 and H2 are two disjoint Partial ∆-TVC instances, while the
edge um is present in both underlying paths P1 and P2.

Intuitively, these instances just take care of whatever remains after the first

phase. We split them up temporally, just for compatibility with the input for

the algorithm from Section 4.4.1.

It follows from the above construction that the produced set X of vertex appear-

ances is a ∆-TVC of G.

Running time and the approximation ratio (d − 1).

The number of instances considered in Phase 1 is bounded by the number of com-

binations of two edges in E(G) multiplied by T . Similarly, the number of instances

considered in Phase 2 is bounded by the number of edges in E(G) multiplied by

T . To find an optimal solution for each instance we use the algorithm from The-

orem 4.4.2. Since each instance has at most 2 edges and the maximum degree is

at most 2, the algorithm requires O(T ) time to solve it optimally. Therefore, the

overall running time lies in O(|E(G)|2T 2).
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Now we argue the claimed approximation guarantee. For this we denote with

H the set of all Partial ∆-TVC instances created by our algorithm. Let C be

a minimum ∆-TVC for G, and X be the temporal vertex set computed by our

algorithm. A Partial ∆-TVC instance H ∈ H is of form H = (H, λ′
H , ℓH , hH),

where H is either a P3 (Phase 1 instance) or an edge (Phase 2 instance).

Let us now define the set A as the set of triples (v, t, H), where (v, t) ∈ C is

a vertex appearance from the optimum solution C, and H = (H, λ′
H , ℓH , hH) ∈

H is such Partial ∆-TVC instance, created by our algorithm, that the vertex

appearance (v, t) covers one appearance of an edge of H in a time window between

WℓH
and WhH

. More precisely,

A = {(v, t, H) |(v, t) ∈ C, H ∈ H∧

(v, t) covers an appearance of e ∈ E(H)

at some time t′ ∈ λ(e)

in Wi with ℓH(e) ≤ i ≤ hH(e)}

From the definition of X and A it follows that

|X | ≤ |A|, (4.3)

as our algorithm optimally covers every Partial ∆-TVC instance H ∈ H, and,

in case vertex appearances in the optimal solution (v, t) ∈ C differ from the ones

chosen by our algorithm, we may need more of them to cover each H.

To show the desired approximation guarantee we give a double-counting argu-

ment for the cardinality of A. Counting from one side we distinguish vertices in the

optimal solution C based on what kind of Partial ∆-TVC instances H ∈ H they

cover time-edges in. To count the number of elements in A from the other side we

distinguish the Partial ∆-TVC instances H ∈ H by the number of vertices in a

fixed optimal solution C, that cover the edges appearing in H. We either use the

optimal amount of vertices in C to cover H or we have to use more.

More specifically, on one side we want to associate Partial ∆-TVC instances
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H with vertex appearances (v, t) ∈ C. For this, we define the following set

H(v, t) = {H ∈ H |(v, t) ∈ C covers an appearance

of e ∈ E(H) at time t′ ∈ λ(e)

in Wi with ℓH(e) ≤ i ≤ hH(e)}.

On the other side, we want to associate vertex appearances (v, t) ∈ C with the

Partial ∆-TVC instances H. For this, we define the following set

C(H) = {(v, t) ∈ C |(v, t) covers an appearance

of e ∈ E(H) in Wi with

ℓH(e) ≤ i ≤ hH(e)}.

Intuitively, one can think of the sets of form H(v, t), for some vertex appearance

(v, t), as the collection of Partial ∆-TVC instances “touching” (v, t), and C(H),

for some Partial ∆-TVC instance H, as the set of vertex appearances “touching”

H. For an example see Figure 4.15.

v3 v4 v5
1
2
3
4
5
6
7
8
9
10
11

v1 v2

X

Y

H2

H1

Figure 4.15: An example of a temporal graph with ∆ = 3 and two of the Par-
tial ∆-TVC instances H1 = (P1, λ1, ℓ1, h1) and H2 = (P2, λ2, ℓ2, h2), generated by
our algorithm. Here, H1 is defined as P1 = (v3, v4, v5), S1 = {1, 3, 5}, ℓ1 = 1,
h1 = 3, λ1(v3v4) = λ1(v4v5) = S1. Also, H2 is defined as P2 = (v1, v2, v3),
S2 = {5, 6, 8, 9, 11}, ℓ2 = 3, h2 = 9, λ2(v1v2) = λ2(v2v3) = S2. We have two
vertex appearances X = (v3, 5) and Y = (v3, 11) from C, and their corresponding
sets H(X) = {H1, H2}, H(Y ) = {H2}, C(H1) = {X}, C(H2) = {X, Y }.

For brevity, when speaking of a Partial ∆-TVC instance H constructed by
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our algorithm and a vertex appearance (v, t), we say that (v, t) subcovers an edge

e ∈ E(H) if (v, t) covers an appearance of e in Wi with ℓH(e) ≤ i ≤ hH(e).

We can now begin with counting the number of elements in A. From the defini-

tion, it follows that

|A| =
∑

(v,t)∈C
|H(v, t)|.

We can split the sum into two cases, first where one vertex appearance subcovers

one edge (or even a P3) of at most d − 1 different Partial ∆-TVC instances, and

the second when one vertex appearance subcovers one edge (or a P3) of more than

d − 1 different Partial ∆-TVC instances.

|A| =
∑

(v,t)∈C
|H(v,t)|≤d−1

|H(v, t)| +
∑

(v,t)∈C
|H(v,t)|>d−1

|H(v, t)|

By the construction of the Partial ∆-TVC, it follows that if (v, t) has a temporal

degree k, it subcovers edges in at most k different Partial ∆-TVC instances.

Moreover, if a vertex appearance (v, t) subcovers two edges of a single Partial ∆-

TVC instance H (i. e., H is a Phase 1 instance with a P3 as the underlying graph and

v is a central vertex of P3), then (v, t) can subcover time-edges in one less Partial

∆-TVC instance. More specifically, if we assume that (v, t) with temporal degree

k is a central vertex of at least one Partial ∆-TVC instance (i. e., subcovers both

edges of at least one instance), then (v, t) can subcover edges in at most k − 1

different instances. Note that, since the degree of each vertex is at most d, by our

assumption, this means that for all vertex appearances (v, t) ∈ C that subcover both

time-edges of some Phase 1 Partial ∆-TVC instance it holds that |H(v, t)| ≤ d−1.

Therefore, for the second case to happen vertex appearance (v, t) ∈ C must subcover

exactly one underlying edge of d different Partial ∆-TVC instances. For brevity
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we denote D := {(v, t) ∈ C | |H(v, t)| = d} Hence the following holds

|A| ≤ (d − 1)(|C| − |D|) +
∑

(v,t)∈D

|H(v, t)|

≤ (d − 1)|C| +
∑

(v,t)∈D

(d − (d − 1))

= (d − 1)|C| + |D|. (4.4)

Let us now count the number of elements in A from the other side. Again by the

definition, we get that

|A| =
∑
H∈H

|C(H)|.

Since |A| ≥ |X | (see Equation (4.3)), we can divide A into two parts. The first one,

where the solution for the partial instances computed by our algorithm coincide (in

terms of cardinality) with the ones implied by C, and the second where C implies

suboptimal solutions. For this we define X (H) as the optimal solution for Partial

∆-TVC instance H calculated by our algorithm. From the construction it holds

that |X | = ∑
H∈H |X (H)|. We get the following

|A| = |X | +
∑
H∈H

(|C(H)| − |X (H)|) . (4.5)

Combining Equations (4.4) and (4.5) we obtain

|X | +
∑
H∈H

(|C(H)| − |X (H)|) ≤ (d − 1)|C| + |D|.

Now, to prove our target, namely that |X | ≤ (d − 1)|C|, it suffices to show that

|D| ≤
∑
H∈H

(|C(H)| − |X (H)|) . (4.6)

Recall that |H(v, t)| > (d − 1) holds only for vertex appearances (v, t) ∈ C, with

temporal degree d, that cover appearances of exactly one edge from every Partial

∆-TVC H ∈ H(v, t). Furthermore, it turns out that at most one Partial ∆-TVC

H ∈ H(v, t) is a Phase 2 (a single edge) instance.
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Lemma 4.4.6. Let (v, t) ∈ C. There is at most one Phase 2 (single edge) Partial

∆-TVC instance H1 ∈ H(v, t).

Proof. Suppose this is not true. Then there are two different time-edges (e, t), (f, t)

incident to (v, t), that belong to Phase 2 Partial ∆-TVC instances H1 and H2,

respectively. W.l.o.g. suppose that our algorithm created instance H1 before H2. By

construction the algorithm creates a Phase 2 Partial ∆-TVC instance whenever

there is no uncovered P3 left in the graph. But, when creating H1 both time-edges

(e, t), (f, t) are uncovered in some time windows We and Wf , respectively, where

t ∈ We ∩Wf . Therefore (e, t), (f, t) form an uncovered P3 path at time-step t, which

would result in the algorithm combining them into one single Phase 1 Partial

∆-TVC instance.

We now proceed with the proof of Equation (4.6).

Lemma 4.4.7. For D and ∑H∈H (|C(H)| − |X (H)|) defined as above the following

holds

|D| ≤
∑
H∈H

(|C(H)| − |X (H)|) . (4.7)

Proof. We show the statement by modifying the solutions implied by C on Phase 1

partial ∆-TVC instances (paths of length 3). More specifically, for each (v, t) ∈

D and every Phase 1 partial ∆-TVC instance H ∈ H(v, t), we find a vertex

appearance in C(H) which is “disposable in the solution”. We refer to a set of vertex

appearances including (v, t) as disposable in the solution of H ∈ H(v, t) if we can

modify the solution C(H) by decreasing its size by the size of that set. In our process

we not only show that (v, t) is disposable in the solution of H, but that the set of all

vertex appearances of v in C(H) (meaning all vertex appearances of form (v, ti)) are

disposable in the solution of H. To produce a solution C̃(H) of H which proves that

certain vertex appearances are disposable in the solution C(H) of H we perform the

following three steps. Firstly, we modify the solution C(H) to only include vertex

appearances at time-steps when the entire P3 underlying H appears. Secondly, we

ensure that the included vertex appearance corresponds to the central vertices of the

P3 underlying H. Thirdly, we remove unnecessary vertex appearances, producing

the desired solution. The process is depicted in Figure 4.16. While determining
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Figure 4.16: An illustration of a modification of a solution C(H) presented in
Lemma 4.4.7.
The figure represents a partial ∆-TVC instance H, where the vertex appearance
(v, t4) ∈ C. We first modify the solution C(H) by replacing (v, t4) with (v, t1), and
then further replace it with the central vertex (m, t1).

disposable vertex appearances does not correspond to an injection on D we ensure

that no single disposable vertex appearance is used for more than two elements of

D, which proves to be sufficient in demonstrating the desired bound.

We start by inspecting vertex appearances (v, t) ∈ D in an order increasing with

t. Recall that (v, t) ∈ D implies that there is no Phase 1 Partial ∆-TVC instance

in H(v, t) in which the associated temporal graph contains two edge appearances

incident to v at t, because otherwise |H(v, t)| ≤ d − 1. Since d − 1 ≥ 2, together

with Lemma 4.4.6 this implies that there are at least two Phase 1 Partial ∆-TVC

instances in H(v, t) for each of which v is incident to only one of the underlying

edges. Notice that here it is important that d ≥ 3.

Let H be a Phase 1 subinstance from H(v, t). W.l.o.g. we denote with P =

(u, m, v) the underlying path of H, and let ℓP and hP be the lowest and the highest

time-steps in the definition of H, respectively. Note that vertex appearances in the

intersection C(H) ∩ D are of the form (v, ti), (u, tj) for some ti, tj (if they exist).

Suppose that there are kv ≥ 1 vertices of form (v, ti) in C(H). Our goal is to create

the modified solution C̃(H) of H where |C̃(H)| ≤ |C(H)| − kv. We start by setting

C̃(H) = C(H). We first iterate through every vertex appearance (u, t′) ∈ C(H)

(increasingly in t′), and do the following. We set TH = [ℓP , hP + ∆ − 1] ∩ [t′ − ∆ +

1, t′ + ∆ − 1] to be the interval of time-steps t′′ for which H is defined, such that

|t′′ − t′| ≤ ∆. By the construction of Phase 1 subinstances, both edges um and mv

appear at some time step t∗ in TH. We chose t∗ ∈ TH to be maximal such that (x, t∗)
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covers an appearance of the edge um in the earliest time window t∗ ∈ Wi of H, where

the edge um is not yet covered by vertex appearances in C̃(H) \ (u, t′). Intuitively,

when removing (u, t′) from C̃(H) we may get some time-windows Wi, Wi+1, Wi+2 . . . ,

where the edge um is not yet covered. We now set t∗ to be the maximum value in

Wi when both um and mv appear. If such a (u, t∗) exists we replace (u, t′) by (u, t∗),

otherwise we identify (u, t′) as disposable in the solution for H. We then further

modify C̃(H) by replacing each (u, t∗) from the previous step with (m, t∗). We now

repeat the same procedure for all (v, t′) ∈ C̃(H). After the first two steps are finished

C̃(H) consists only of the vertex appearances of the central vertex m of P . We now

continue with the final step and iterate through the vertex appearances (m, t) in the

order of increasing t, delete unnecessary vertices from the solution C̃(H) for H and

mark them as disposable. This happens if (m, t) has been added to C̃(H) multiple

times, when considering different vertex appearances, or it can be removed from

C̃(H) without changing the fact that it is a solution. In both cases, any appearance

of the vertex v from the set D which is associated with the unnecessary vertex

appearance (m, t∗) is disposable in the solution for H.

We now have to show that C̃(H) is indeed a solution for H. To prove this we have

to make sure that exchanging each vertex appearance (u, t′) ∈ C(H) (resp. (v, t′) ∈

C(H)) with (u, t∗) (resp. (v, t∗)) and then finally with (m, t∗) in the first two steps

of the modification returns a valid solution. Suppose for the contradiction that the

edge mv appears at time t and that there is a time window with t ∈ Wi where mv is

uncovered in Wi by our final solution C̃(H). Using the definition of H and the fact

that C̃(H) contains only the appearances of the central vertex of P it follows that

also um appears at time t and is uncovered in Wi. In the initial solution, um and mv

were both covered in Wi. If they were both covered by the same vertex appearance,

it must have been the appearance of the central vertex which would remain in our

final solution. Therefore, the edges are covered by two different vertex appearances.

Denote them with (u, tu) and (v, tv), respectively. Note that tu, tv ∈ Wi. Therefore,

|tv − tu| ≤ ∆. In our procedure we first considered (u, tu) that was replaced by

(u, t∗
u) and then by (m, t∗

u), where the edge um was uncovered by C̃(H) \ (u, tu) in

a time window W u
j . It also holds that t∗

u is the maximum value of W u
j when both
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um and mv occur. Since um and mv are uncovered in Wi it must be true also that

t∗
u /∈ Wi, even more t∗

u < i. Next, the procedure considered (v, tv), and replaced it by

(v, t∗
v) and then further by (m, t∗

v). Note here that t∗
v is the maximum value in some

time window W v
j where both um and mv appear and are uncovered by the modified

solution C̃(H) \ (v, tv), where C̃(H) already includes the vertex appearance (m, t∗
u).

This implies that t∗
v /∈ W u

j and furthermore, since tu, tv ∈ Wi and tu − t∗
u ≤ ∆ it

follows that t∗
v ∈ Wi. Therefore, um and mv cannot be uncovered in Wi.

What remains to show is that our modified solution is of the correct size. Namely

|C̃(H)| ≤ |C(H)| − kv, where kv is the number of vertex appearances of v in C(H).

We show this by proving that each vertex (v, ti) ∈ C(H) ∩ D is disposable in the

solution of H. Remember, our process first inspects all the vertex appearances of

form (u, tu) ∈ C(H) and replaces them with the corresponding (m, t∗
u). Since in the

original solution C(H) the whole underlying path P of H was covered, it follows

that after performing the first two steps for the vertices (u, tu) the edge um remains

covered in H. Even more, because each (u, tu) was exchanged by a corresponding

appearance of the central vertex m at time t∗
u when both um and mv appear, it

follows that the edge mv is covered in H. Therefore, we can denote all (v, ti) ∈ C(H)

as disposable in the solution of H.

Overall, this means that for every vertex appearance (v, t) ∈ D and each of

at least two Phase 1 Partial ∆-TVC instances in H ∈ H(v, t), we can find one

disposable vertex appearance in C(H). On the other hand, these found disposable

vertex appearances coincide for at most two vertex appearances in D (this is true

as D can admit vertex appearances of both endpoints of the underlying path of a

Partial ∆-TVC instance H). By Hall’s theorem [72] this means we can match

each vertex appearance in D to a disposable vertex appearance in C, yielding that

|D| is upper-bounded by ∑H∈H (|C(H)| − |X (H)|) as desired.

All of the above shows the desired approximation result.

Theorem 4.4.8. For every ∆ ≥ 2 and d ≥ 3, ∆-TVC can be (d − 1)-approximated

in time O(|E(G)|2T 2).
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4.4.3 An FPT algorithm with respect to the solution size

Our final result settles the complexity of ∆-TVC from the viewpoint of parameter-

ized complexity theory [34, 39, 108] with respect to the standard parameterization

of the size of an optimum solution.

Theorem 4.4.9. For every ∆ ≥ 2, ∆-TVC can be solved in O((2∆)kTn2) time,

where k is the size of an optimum solution. In particular ∆-TVC is in FPT param-

eterized by k.

Proof. The algorithm starts by selecting an edge e ∈ E(G) with an uncovered

appearance in an arbitrary ∆-time window Wt and selects one of (at most) ∆ vertex

appearances of either endpoint to cover it. By covering one edge at some time point,

we also cover some other edges in some other time windows, these are also excluded

from the subsequent search. This step is repeated until after k-steps the algorithm

stops and checks if selected vertices form a sliding ∆-time window temporal vertex

cover of G.

The algorithm builds at most (2∆)k sets, for each of which checking if it is

a temporal vertex cover takes O(Tn2) time. Therefore the running time of the

algorithm is O((2∆)kTn2).

4.5 Concluding remarks

In this chapter, we presented a comprehensive analysis of the complexity of temporal

vertex cover in small-degree graphs. We showed that ∆-TVC is NP-hard on the

underlying paths (and cycles) already for ∆ = 2, while TVC on these underlying

graphs can be solved in polynomial time. An open question that arises is for which

values of k we have that (T − k)-TVC is polynomial-time solvable, where T is the

lifetime of the given temporal graph.

Additionally, we provided a Polynomial-Time Approximation Scheme (PTAS)

for ∆-TVC on temporal lines and cycles, complementing the hardness result. We

present also an exact dynamic programming algorithm, that we then use in the

d − 1 approximation algorithm (where d is the maximum vertex degree in any time
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step), which improves the d-approximation algorithm presented by Akrida et al. [5].

Furthermore, we settled the complexity of ∆-TVC from the viewpoint of parame-

terized complexity theory, showing that ∆-TVC is fixed-parameter tractable when

parameterized by the size of an optimum solution.

4.5.1 Experimental results

In the academic year 2022/2023, Sophia Heck, then a master’s student at Heidelberg

University and currently a PhD student at the University of Vienna, worked on her

master’s thesis titled Approximation Algorithms for the Minimum (Sliding Window)

Temporal Vertex Cover Problem. She successfully implemented our d−1 approxima-

tion algorithm and compared it to the d-approximation algorithm from Akrida et al.

As expected, the d − 1 approximation algorithm outperforms the d-approximaiton

one. Her thesis is accessible on the following website: schulzchristian.github.io.
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CHAPTER 5

The Complexity of Computing Optimum Labelings for

Temporal Connectivity

This chapter is based on a joint work with George B. Mertzios, Hendrik Molter and

Paul G. Spirakis. The preliminary results were presented in the Proceedings of the

47th International Symposium on Mathematical Foundations of Computer Science

(MFCS) 2022 [87]. The full paper, containing our detailed results, is accessible as a

preprint on ArXiv [88]. As of Autumn 2023, it is also under the submission process

in the Journal of Computer and System Sciences (JCSS).

The major part of the proof for Theorem 5.4.2 was contributed by Hendrik

Molter; therefore, I have chosen not to present it in detail in this chapter. The

complete proof, including all the details, is available in our full paper, while I provide

the main ideas also here.

5.1 Introduction

Motivated by the need to restrict the spread of the epidemic, Enright et al. [42]

studied the problem of removing the smallest number of time-labels from a given

temporal graph such that every vertex can only temporally reach a limited number
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of other vertices. Deligkas et al. [36] studied the problem of accelerating the spread

of information for a set of sources to all vertices in a temporal graph, by only using

delaying operations, i. e., by shifting specific time-labels to a later time slot. The

problems studied by Deligkas et al. [36] are related but orthogonal to our temporal

connectivity problems.

The time-labels of an edge e in a temporal graph indicate the discrete units of

time (e.g., days, hours, or even seconds) in which e is active. However, in many real

dynamic systems, e.g., in synchronous mobile distributed systems that operate in

discrete rounds, or in unstable chemical or physical structures, maintaining an edge

over time requires energy and thus comes at a cost. One natural way to define the

cost of the whole temporal graph (G, λ) is the total number of time-labels used in

it, i. e., the total cost of (G, λ) is |λ| = ∑
e∈E |λe|. In this chapter, we study temporal

design problems of undirected temporally connected graphs, where a temporal graph

is temporally connected if there exists a temporal path between each pair of vertices.

The basic setting of these optimization problems was introduced by Mertzios et al.

[98] and is as follows: given an undirected graph G, what is the smallest number |λ|

of time-labels that we need to assign to the edges of G such that (G, λ) is temporally

connected? As it turns out, this basic problem can be optimally solved in polynomial

time, thus answering a conjecture made by Akrida et al. [4]. However, by exploiting

the temporal dimension, the problem becomes more interesting and meaningful in

its following variations, which we investigate in this chapter. First, we consider the

problem variation where we are given along with the input also an upper bound of

the allowed age (i. e., maximum label) of the obtained temporal graph (G, λ). This

age restriction is sensible in more pragmatic cases, where delaying the latest arrival

time of any temporal path incurs further costs, e.g., when we demand that all agents

in a safety-critical distributed network are synchronized as quickly as possible, and

with the smallest possible number of communications among them. Second, we

consider problem variations where the aim is to have a temporal path between any

pair of “important” vertices which lie in a subset R ⊆ V , which we call the terminals.

For a detailed definition of the studied problems, we refer to Section 5.2.

Here it is worth noting that the latter relaxation of temporal connectivity re-
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sembles the problem Steiner Tree in static (i. e., non-temporal) graphs. Given

a connected graph G = (V, E) and a set R ⊆ V of terminals, Steiner Tree asks

for a smallest-sized subgraph of G which connects all terminals in R. Clearly, the

smallest subgraph sought by Steiner Tree is a tree. As it turns out, this property

does not carry over to the temporal case. Consider for example an arbitrary graph

G and a terminal set R = {a, b, c, d} such that G contains an induced cycle on four

vertices a, b, c, d; that is, G contains the edges ab, bc, cd, da but not the edges ac or

bd. Then, it is not hard to check that the only way to add the smallest number of

time-labels such that all vertices of R are temporally connected is to assign one label

to each edge of the cycle on a, b, c, d, e.g., λ(ab) = λ(cd) = 1 and λ(bc) = λ(cd) = 2.

The main underlying reason for this difference with the static problem Steiner

Tree is that temporal connectivity is not transitive and not symmetric: if there

exist temporal paths from u to v, and from v to w, it is not a priori guaranteed that

a temporal path from v to u, or from u to w exists.

Temporal network design problems have already been considered in previous

works. Mertzios et al. [98] proved that it is APX-hard to compute a minimum-cost

labeling for temporally connecting an input directed graph G, where the age of the

graph is upper-bounded by the diameter of G. This hardness reduction was strongly

facilitated by the careful placement of the edge directions in the constructed instance,

in which every vertex was reachable in the static graph by only constantly many

vertices. Unfortunately, this cannot happen in an undirected connected graph, where

every vertex is reachable by all other vertices. Later, Akrida et al. [4] proved that it is

also APX-hard to remove the largest number of time-labels from a given temporally

connected (undirected) graph (G, λ), while still maintaining temporal connectivity.

In this case, although there are no edge directions, the hardness reduction was

strongly facilitated by the careful placement of the initial time-labels of λ in the input

temporal graph, in which every pair of vertices could be connected by only a few

different temporal paths, among which the solution had to choose. Unfortunately,

this cannot happen when the goal is to add time-labels to an undirected connected

graph, where there are potentially multiple ways to temporally connect a pair of

vertices (even if we upper-bound the largest time-label by the diameter).
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Summarizing, the above technical difficulties seem to be the reason why the

problem of adding the minimum number of time-labels with an age-restriction to

an undirected graph to achieve temporal connectivity remained open until now. In

this work, we overcome these difficulties by developing a hardness reduction from a

variation of the problem Max XOR SAT (see Theorem 5.3.6 in Section 5.3) where

we manage to add the appropriate (undirected) edges among the variable-gadgets

such that simultaneously (i) the distance between any two vertices from different

variable gadgets remains small (constant) and (ii) there is no shortest path between

two vertices of the same variable gadget that leaves this gadget.

Our contribution and road-map. In the first part of this chapter, in Sec-

tion 5.3, we present our results on Min. Aged Labeling (MAL). This problem

is the same as ML, with the additional restriction that we are given along with the

input an upper bound on the allowed age of the resulting temporal graph (G, λ). Us-

ing a technically involved reduction from a variation of Max XOR SAT, we prove

that MAL is NP-complete on undirected graphs, even when the required maximum

age is equal to the diameter dG of the input static graph G.

In the second part of this chapter, in Section 5.4, we present our results on the

Steiner tree versions of the problem, namely on Min. Steiner Labeling (MSL)

and Min. Aged Steiner Labeling (MASL). The difference of MSL from ML

is that, here, the goal is to have a temporal path between any pair of “important”

vertices which lie in a given subset R ⊆ V (the terminals). In Section 5.4.1 we prove

that MSL is NP-complete by a reduction from Vertex Cover, the correctness of

which requires showing structural properties of MSL. Here it is worth recalling that,

as explained above, the classical problem Steiner Tree on static graphs is not a

special case of MSL, due to the requirement of strictly increasing labels in a temporal

path. Furthermore, we would like to emphasize here that, as temporal connectivity

is neither transitive nor symmetric, a straightforward NP-hardness reduction from

Steiner Tree to MSL does not seem to exist. For example, as explained above,

in a graph that contains a C4 with its four vertices as terminals, labeling a Steiner

tree is sub-optimal for MSL.

In Section 5.4.2 we prove that MASL is W[1]-hard even with respect to the
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number of time-labels of the solution. This also implies that MASL is W[1]-hard

with respect to the number |R| of terminals, since the number of time-labels in the

solution is a larger parameter than the number |R| of terminals.

Finally, we complete the picture by providing some auxiliary results in our pre-

liminary Section 5.2. More specifically, in Section 5.2.1 we prove that ML and the

analogue minimization versions of ML and MAL on directed acyclic graphs are

solvable in polynomial time.

For an easier overview of the area, we also outline all of the known and new

results in Table 5.1.

Graph restrictions Age non-restricted Age restricted

Directed graphs open APX-hard [98]

Directed acyclic
graphs

poly. time solvable poly. time solvable
(see Theorem 5.2.6) (see Theorem 5.2.6)

Undirected cycles poly. time solvable poly. time solvable
(see Theorem 5.2.5) (see Lemma 5.2.2)

Undirected graphs poly. time solvable NP-hard
(see Theorem 5.2.5) (see Theorem 5.3.6)

Steiner labeling, NP-complete, FPT w.r.t. |R| W[1]-hard w.r.t. |λ|, |R|
undirected graphs (see Theorems 5.4.1 and 5.4.2) (see Theorem 5.4.3)

Table 5.1: An overview of previously known results, our results, and open problems.

5.2 Preliminaries and notation

As we mentioned in the introduction, a temporal graph (G, λ) is temporally connected

if, for every pair of vertices u, v ∈ V (G), there exists a temporal path P1 from u

to v and a temporal path P2 from v to u. Furthermore, given a set of terminals

R ⊆ V (G), the temporal graph (G, λ) is R-temporally connected if, for every pair

of vertices u, v ∈ R, there exists a temporal path from u to v and a temporal path

from v to u; note that P1 and P2 can also contain vertices from V \ R. Now we

provide the formal definitions of the four studied decision problems.
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Min. Labeling (ML) [98]

Input: A static graph G = (V, E) and

k ∈ N.

Question: Does there exist a tempo-

rally connected temporal graph (G, λ),

where |λ| ≤ k?

Min. Aged Labeling (MAL) [98]

Input: A static graph G = (V, E)

and two integers a, k ∈ N.

Question: Does there exist a tempo-

rally connected temporal graph (G, λ),

where |λ| ≤ k and α(λ) ≤ a?

Min. Steiner Labeling (MSL)

Input: A static graph G = (V, E),

a subset R ⊆ V and k ∈ N.

Question: Does there exist a tem-

porally R-connected temporal graph

(G, λ), where |λ| ≤ k?

Min. Aged Steiner Labeling

(MASL)

Input: A static graph G = (V, E), a

subset R ⊆ V , and integers a, k ∈ N.

Question: Does there exist a tem-

porally R-connected temporal graph

(G, λ), where |λ| ≤ k and α(λ) ≤ a?

Note that, for both problems MAL and MASL, whenever G is not connected

or the input age bound a is strictly smaller than the diameter d of G, the answer is

NO. Thus, we always assume in the remainder of the chapter that G is a connected

graph and a ≥ d, where d is the diameter of the input graph G. For simplicity of

the presentation, we denote by κ(G, d) the smallest number k for which (G, k, d) is

a YES instance for MAL.

Observation 5.2.1. For every graph G with n vertices and diameter d, we have

that κ(G, d) ≤ n(n − 1).

Proof. For every vertex v of G = (V, E), consider a BFS tree Tv rooted at v, while

every edge from a vertex u ̸= v to its parent in Tv is assigned the time-label dist(v, u),

i. e., the length of the shortest path from v to u in G. Note that each of these time-

labels is smaller than or equal to the diameter d of G. Clearly, each BFS tree Tv

assigns in total n − 1 time-labels to the edges of G, and thus the union of all BFS

trees Tv, where v ∈ V , assign in total at most n(n − 1) labels to the edges of G.

The next lemma shows that the upper bound of Observation 5.2.1 is asymptot-

ically tight as, for cycle graphs Cn with diameter d, we have that κ(Cn, d) = Θ(n2).
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Similar results are already known for the directed cycles [98].

Lemma 5.2.2. Let Cn be a cycle on n vertices, where n ̸= 4, and let d be its

diameter. Then

κ(Cn, d) =


d2, when n = 2d

2d2 + d, when n = 2d + 1.

Proof. Let V (Cn) = {v1, v2, . . . , vn} be the vertices of Cn. In the following, if not

specified otherwise, all subscripts are considered modulo n. We distinguish two

cases, depending on the parity of n.

Case 1: n is odd. Let n = 2d + 1. Then, for each vertex vi ∈ V (Cn), there are

exactly two distinct vertices vi+d and vi−d at distance d from vi. In particular, there

exists a unique path of length d from vi to vi+d, and thus the only way that a temporal

path (with labels at most d) can exist from vi to vi+d is that the jth edge (for every

j = 1, . . . , d) of the unique path of length d from vi to vi+d contains the label j. Due

to symmetry, by just considering every vertex vi of Cn, it follows that every edge of

Cn must contain each of the labels 1, 2, . . . , d. Therefore κ(Cn, d) ≥ nd = 2d2 + d.

Conversely, in the labeling of Cn, where every edge contains every label in

{1, 2, . . . , d}, clearly the age of the temporal graph is d and there exists a temporal

path from every vertex to every other vertex. Therefore κ(Cn, d) ≤ nd = 2d2 + d,

and thus κ(Cn, d) = 2d2 + d when n = 2d + 1.

Case 2: n is even. Let n = 2d. Then, for each vertex vi ∈ V (Cn), there is exactly

one vertex vi+d at distance d from vi, and exactly two distinct vertices vi+d−1 and

vi−d+1 on distance d − 1 from vi. In particular, there exists a unique path of length

d − 1 from vi to vi+d−1, and thus the only way that a temporal path (with labels at

most d) can exist from vi to vi+d−1 is that the jth edge (for every j = 1, . . . , d − 1)

of the unique path of length d − 1 from vi to vi+d−1 contains the label j or the label

j + 1.

We will now prove that, without loss of generality, for every two consecutive edges

vi−1vi and vivi+1, the total number of labels of these two edges is at least d, i. e.,

|λ(vi−1vi)|+ |λ(vivi+1)| ≥ d. Suppose otherwise that |λ(vi−1vi)|+ |λ(vivi+1)| ≤ d−1.

Then there exists some a ∈ {1, 2, . . . , d} such that neither of the edges vi−1vi and
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vivi+1 contains label a. First, let a = 1. Then any temporal path from vi to vi+d

will have to start with the label at least 2, and thus cannot arrive at vi+d by time

d, a contradiction. Second, let a = d. Similarly, any temporal path from vi+d to vi

will have to arrive at vi by time d − 1 at the latest. However, this is not possible,

as the distance between vi+d and vi in Cn is d, a contradiction.

Now let 2 ≤ a ≤ d − 1. Then, the only way that a temporal path (with labels

at most d) can exist from vertex vi−a to vertex vi−a+d−1 is that the edges vi−1vi and

vivi+1 contain the label a + 1 and the label a + 2, respectively, as both these edges

cannot contain label a by assumption. Similarly, the only way that a temporal path

(with labels at most d) can exist from vertex vi−a+1 to vertex vi−a+d is that the

edges vi−1vi and vivi+1 contain the label a − 1 and the label a + 1, respectively. By

symmetry it follows that edge vivi+1 also contains label a − 1 (by just considering

vertices vi+a to vertex vi+a−d+1). That is, for the two consecutive edges vi−1vi and

vivi+1 we have that

a − 1, a + 1 ∈ λ(vi−1vi) ∩ λ(vivi+1) (5.1)

Summarizing, consider two consecutive edges vi−1vi and vivi+1. The union

λ(vi−1vi) ∪ λ(vivi+1) of their labels always contains labels 1 and d. The only pos-

sibility that this union is missing some label a is that both λ(vi−1vi) and λ(vivi+1)

contain both labels a − 1 and a + 1. Furthermore, it follows that it is not possible

that two consecutive labels a, a+1 miss from the union λ(vi−1vi)∪λ(vivi+1). There-

fore |λ(vi−1vi)| + |λ(vivi+1)| ≥ d. Thus, as there are n
2 disjoint pairs of consecutive

edges, it follows that κ(Cn, d) ≥ n
2 d = d2.

Conversely, consider the labeling where, for every i = 1, . . . , d, the edge v2i−1v2i

(resp. the edge v2iv2i+1) contains all the odd (resp. all the even) labels within the

set {1, 2, . . . , d}. It is straightforward to check that, with this labeling, there exists

a temporal path (with the maximum label at most d) from every vertex to every

other vertex. Therefore κ(Cn, d) ≤ n
2 d = d2, and thus κ(Cn, d) = d2.
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5.2.1 Polynomial-time algorithms for ML

As a first warm-up, we study the problem ML, where no restriction is imposed on

the maximum allowed age of the output temporal graph. It is already known by

Akrida et al. [4] that any undirected graph can be made temporally connected by

adding at most 2n − 3 time-labels, while for trees 2n − 3 labels are also necessary.

Moreover, it was conjectured that every graph needs at least 2n − 4 time-labels [4].

Here we prove their conjecture true by proving that, if G contains (resp. does not

contain) the cycle C4 on four vertices as a subgraph, then (G, k) is a YES instance

of ML if and only if k ≥ 2n−4 (resp. k ≥ 2n−3). The proof is done via a reduction

to the gossip problem [23] (for a survey on gossiping see also [75]).

The related problem of achieving temporal connectivity by assigning to every

edge of the graph at most one time-label, has been studied by Göbel et al. [69],

where the relationship with the gossip problem has also been drawn. Contrary to

ML, this problem is NP-hard [69]. That is, the possibility of assigning two or more

labels to an edge makes the problem computationally much easier.

In the gossip problem, we have n agents from a set A. In the beginning, every

agent x ∈ A holds its own secret. The goal is that each agent eventually learns the

secret of every other agent. This is done by producing a sequence of unordered pairs

(x, y), where x, y ∈ A and each such pair represents one phone call between the

agents involved, during which the two agents exchange all the secrets they currently

know. There are different variations of the gossiping problem. We are interested

in the following one: an agent can place a call only to a specific subset of agents

from A. We can represent this problem using a graph G = (V, E), where for each

agent x ∈ A we introduce a vertex vx ∈ V and for every allowed phone call between

agents x and y we add an edge vxvy to the set of edges E of G. We then want to

find a sequence of edges of minimum length, where the ℓ-th element e = vxvy in

the sequence represents the ℓ-th phone call in our gossiping problem, during which

agents x and y exchange all the information they posses. The end goal is that after

all the calls occur all agents know all the secrets.

The above gossip problem is naturally connected to ML. The only difference

between the two problems is that, in gossip protocols, all calls are non-concurrent,
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while in ML we allow concurrent temporal edges, i. e., two or more edges can appear

at the same time slot t. Therefore, in order to transfer the known results from gossip

to ML, it suffices to prove that in ML we can equivalently consider solutions with

non-concurrent edges (see Lemma 5.2.4).

From the graph G corresponding to a gossip problem, and a sequence of calls

C = c(1), c(2), . . . , c(m) we build a temporal graph GC = (G, λ) using the following

procedure. For every phone call c(i) ∈ C between its two corresponding agents xi, yi

we add the label i to the edge (vxi
vyi

) of GC. In the end, the labeling λ is completely

determined by the sequence of phone calls.

Observation 5.2.3. If the sequence c(1), c(2), . . . , c(m) of m phone calls results in

all agents knowing all secrets, then the above construction produces a temporally

connected temporal graph GC = (G, λ) with |λ| = m.

Now note that the temporal graph GC produced by the above procedure has

the special property that, for every time-label t = 1, 2, . . . , m, there exists exactly

one edge labeled with t. In the next lemma, we prove the reverse statement of

Observation 5.2.3.

Lemma 5.2.4. Let (G, λ) be an arbitrary temporally connected temporal graph with

|λ| = m time-labels in total. Then there exists a sequence c(1), c(2), . . . , c(m) of m

phone calls that results in all agents knowing all secrets.

Proof. For each time step t ∈ {1, 2, . . . , α(G, λ)} we order edges from Et in an

arbitrary way, so we get et
1, et

2, . . . , et
kt

, where et
i ∈ Et. We then combine all the

orders into an ordering OE = E1, E2, . . . , Eα(G,λ) = e1
1, e1

2, . . . , e1
k1 , e2

1, . . . , e
α(G,λ)
kα(G,λ)

of

all temporal edges. We now create a new labeling λ′ of G, where the i-th edge in

the ordering OE receives the label i. This results in a temporal graph (G, λ′), where

each label occurs in exactly one edge. Note that every temporal path in (G, λ)

corresponds to a temporal path in (G, λ′) with the same sequence of edges, and vice

versa.

Finally, we create the required sequence of phone calls as follows: for every

i = 1, 2, . . . , m, if (G, λ′) contains the edge e with time-label i, we add a phone

call c(i) between the two endpoints of the edge e. Since both (G, λ) and (G, λ′)
87



are temporally connected, it follows that the sequence c(1), c(2), . . . , c(m) of calls

results in every agent knowing every secret.

Now denote with f(n) the minimum number of calls needed to complete gossiping

among a set A of n agents, where only a specific set of pairs of agents B ⊆
(

A
2

)
are

allowed to make a direct call between each other. Let G0 = (A, B) be the (static)

graph having the agents in A as vertices and the pairs of B as edges. Then it is known

by Bumby [23] that, if G0 contains a C4 as a subgraph then f(n) = 2n − 4, while

otherwise f(n) = 2n − 3. Therefore the next theorem follows by Observation 5.2.3

and Lemma 5.2.4 and by the results of Bumby [23].

Theorem 5.2.5. Let G = (V, E) be a connected graph. Then the smallest k ∈ N

for which (G, k) is a YES instance of ML is:

k =


2n − 4, if G contains C4 as a subgraph,

2n − 3, otherwise.

In a C4-free graph with n vertices, an optimal solution to ML consists in assigning

in total 2n − 3 time-labels to the n − 1 edges of a spanning tree. In such a solution,

one of these n − 1 edges receives one time-label, while each of the remaining n − 2

edges receives two time-labels. Similarly, when the graph contains a C4, it suffices

to span the graph with four trees rooted at the vertices of the C4, where each of

the edges of the C4 receives one time-label and each edge of the four trees receives

two labels. That is, a graph containing a C4 can be temporally connected using

2n − 4 time-labels. An example of a labeling achieving the bounds is presented

in Figure 5.1.

As a second warm-up, we show that the minimization analogues of ML and

MAL on directed acyclic graphs (DAGs) are solvable in polynomial time. More

specifically, for the minimization analogue of ML we provide an algorithm which,

given a DAG G = (V, A) with diameter dG, computes a temporal labeling function

λ which assigns the smallest possible number of time-labels on the arcs of G. We do

this by first computing the Transitive reduction G′ of G (introduced by Aho et al.

[2]), which is a subgraph of G with the same vertex set and the following property:
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(a) An example of a labeling that tempo-
rally connects a graph that contains a C4,
where the C4 edges receive one label and all
other edges of a spanning tree receive two
labels.

(b) An example of a labeling that tempo-
rally connects a graph that does not contain
a C4, where one edge receives one label and
all other edges of a spanning tree receive
two labels.

Figure 5.1: An example of labeling meeting bounds from Theorem 5.2.5 for a graph
containing a C4 (Figure 5.1a) and a graph without a C4 (Figure 5.1b). We mark
the edges of a spanning tree or a spanning tree with a C4 with a solid line and all
other edges with a dashed line.

for every two vertices u, v ∈ V (G), there exists a directed path from u to v in G′ if

and only if there exists a directed path from u to v in G. We then assign one label to

each edge E(G′) ⊆ E(G) which results in the existence of a directed temporal path

in (G, λ) from a vertex u to v, whenever there is a directed path from u to v in G.

Moreover, the age α(G, λ) of the resulting temporal graph is equal to dG. Therefore,

this immediately implies a polynomial-time algorithm for the minimization analogue

of MAL on DAGs. As a contrast, Mertzios et al. [98] proved that MAL is APX-hard

on general directed graphs. The more relaxed version of the problem on directed

graphs, where the age is unbounded, still remains open.

Theorem 5.2.6. Let G = (V, E) be a DAG with n vertices and m arcs. Then

ML(G) and MAL(G) can be both solved in polynomial time.

Proof. We have to specify labeling λ of G that would make (G, λ) temporally con-

nected while assigning the least number of labels to the edges of G. We start by

creating the transitive reduction G′ of G. We then collect all source vertices of G′ to

a set S1 and assign the label 1 to all arcs in (G, λ) incident to the vertices in S1. We

remove all vertices of S1 from G′ together with all of their incident arcs and repeat

the above while increasing the label for 1. We proceed until there are no more arcs

in G′. At the end (G, λ) is a temporally connected graph. Moreover, the largest
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label used is the diameter dG of G, which follows directly from the definition of the

transitive reduction. If the input k is smaller than |λ|, or if the input age restriction

a is smaller than the diameter of G, our algorithm returns No, else returns Yes.

It is known that the transitive reduction is constructed in polynomial time

(see [2]). All other operations need polynomial time too, therefore the whole al-

gorithm is executed in polynomial time.

Let us now prove the correctness of our procedure. By the definition E ′ = E(G′)

is the minimum collection of arcs of G that preserve the reachability of G. This

means that removing any arc from E ′ disconnects the graph. Therefore, λ has to

assign at least one label to each arc from E ′ in order for (G, λ) to be temporally

connected. Our algorithm assigns exactly one label to each arc in E ′, therefore |λ|

is of the smallest possible size. Now, to show that (G, λ) is temporally connected,

let u, v be two arbitrary vertices in G, where there exists a directed path from u to

v in G. We will show that there is also a directed temporal path from u to v in the

resulting temporal graph (G, λ). Since there is a directed path from u to v in G, there

is also a directed path from u to v in G′. Denote it as P = (u = w0, w1, . . . , wk = v),

where k ≥ 1. Let us observe any two consecutive arcs (wi−1, wi) and (wi, wi+1)

from the path P . Our algorithm will label the first arc (wi−1, wi) with a label that

is strictly smaller than the label of the second arc (wi, wi+1). This is true as the

second arc gets labeled, when wi will be a source vertex in the modified G′ and all of

its incoming arcs, including (wi−1, wi), are labeled and removed from G′. Therefore,

(P, λ) temporally connects the vertex u to vertex v.

5.3 MAL is NP-complete

In this section, we prove that it is NP-hard to determine the number of labels in an

optimal labeling of a static, undirected graph G, where the age, i. e., the maximum

label used, is equal to the diameter d of the input graph. It is worth noting here

that, for any x ≥ 1, the complexity of MAL remains open in the case where the age

is allowed to be at most d + x. For a full picture of problem complexity, we would

like to remind the reader that the directed analogue of the problem (the case when
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the input graph G is a directed graph), was shown to be APX-hard, even when the

maximum length of a directed cycle is 2, see [98], while we show that the problem

is polynomial-time solvable for DAGs, see Theorem 5.2.6.

To prove the NP-hardness we provide a reduction from the problem Monotone

Max XOR(3) (or MonMaxXOR(3) for short). This is a special case of the

classical Boolean satisfiability problem, where the input formula ϕ consists of the

conjunction of monotone XOR clauses of the form (xi ⊕ xj), i. e., variables xi, xj

are non-negated. If each variable appears in exactly r clauses, then ϕ is called a

monotone Max XOR(r) formula. A clause (xi ⊕ xj) is XOR-satisfied (or simply

satisfied) if and only if xi ̸= xj. In Monotone Max XOR(r) we are trying to

compute a truth assignment τ of ϕ which satisfies the greatest possible number of

clauses.

Max-Cut on cubic graphs reduces to MonMaxXOR(3) using the following

reduction. Given a cubic graph G for each vertex v ∈ V (G) create a variable xv

in the MonMaxXOR(3) formula ϕG. For every edge uv ∈ E(G), add the clause

(xv⊕xu) to ϕG. It is easy to see that computing a maximum cut in G (i. e., a partition

of V (G) into two sets A and A such that the number |{uv ∈ E(G) : u ∈ A, v ∈ A}|

of edges between A and A is maximized), is equivalent to computing a maximum

number of satisfied clauses in ϕG. Since Max-Cut is known to be NP-hard [6], we

conclude the following.

Theorem 5.3.1 ([6]). MonMaxXOR(3) is NP-hard.

We now describe our reduction from MonMaxXOR(3) to the problem Mini-

mum Aged Labeling (MAL), where the input static graph G is undirected and

the desired age of the output temporal graph is the diameter d of G. Let ϕ be

a monotone Max XOR(3) formula with n variables x1, x2, . . . , xn and m clauses

C1, C2, . . . , Cm. Note that m = 3
2n, since each variable appears in exactly 3 clauses.

From ϕ we construct a static undirected graph Gϕ with diameter dϕ = 10, and prove

that there exists a truth assignment τ which satisfies at least k clauses in ϕ, if and

only if there exists a labeling λϕ of Gϕ, with |λϕ| ≤ 7n2 + 49n − 8k labels, where the

maximum used label is dϕ.
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High-level construction For each variable xi, 1 ≤ i ≤ n, we construct a variable

gadget Xi that consists of a “starting” vertex si and three “ending” vertices tℓ
i

(for ℓ ∈ {1, 2, 3}); these ending vertices correspond to the appearances of xi in

three clauses of ϕ. In an optimum labeling λϕ, in each variable gadget, there are

exactly two labelings that temporally connect starting and ending vertices, which

corresponds to the True or False truth assignment of the variable in the input

formula ϕ. For every clause (xi ⊕xj) we identify corresponding ending vertices of Xi

and Xj (as well as some other auxiliary vertices and edges). Whenever (xi ⊕ xj) is

satisfied by a truth assignment of ϕ, the labels of the common edges of Xi and Xj in

an optimum labeling coincide (thus using few labels); otherwise, we need additional

labels for the common edges of Xi and Xj.

Detailed construction of Gϕ For each variable xi from ϕ we create a variable

gadget Xi (for an illustration see Figure 5.2), that consists of a base BXi on 11

vertices, BXi = {si, ai, bi, ci, di, ei, ai, bi, ci, di, ei}, and three forks F 1Xi, F 2Xi, F 3Xi,

each on 9 vertices, F ℓXi = {tℓ
i , f ℓ

i , gℓ
i , hℓ

i , mℓ
i , fi

ℓ
, gi

ℓ, hi
ℓ
, mi

ℓ}, where ℓ ∈ {1, 2, 3}.

Vertices in the base BXi are connected in the following way: there are two paths

of length 5: siaibicidiei and siaibicidiei, and 5 extra edges of form yiyi, where y ∈

{a, b, c, d, e}. Vertices in each fork F ℓXi (where ℓ ∈ {1, 2, 3}) are connected in the

following way: there are two paths of length 4: tℓ
im

ℓ
ih

ℓ
ig

ℓ
i f

ℓ
i and tℓ

imi
ℓhi

ℓ
gi

ℓfi
ℓ, and

4 extra edges of form yiyi
ℓ, where y ∈ {m, h, g, f}. The base BXi of the variable

gadget Xi is connected to each of the three forks F ℓXi via two edges eif
ℓ
i and eifi

ℓ,

where ℓ ∈ {1, 2, 3}.

For an easier analysis, we fix the following notation. The vertex si ∈ BXi is

called a starting vertex of Xi, vertices tℓ
i (ℓ ∈ {1, 2, 3}) are called ending vertices

of Xi. Vertices ai, bi, ci, di, ei, f ℓ
i , gℓ

i , hℓ
i , mℓ

i (resp. ai, bi, . . . mi
ℓ) are called the left

(resp. the right) vertices of Xi. A path connecting si, tℓ
i that passes only through

the left (resp. the right) vertices is called the left (resp. right) si, tℓ
i-path. The left

(resp. right) si, tℓ
i-path is a disjoint union of the left (resp. right) path on vertices

of the base BXi of Xi, an edge of form eif
ℓ
i (resp. eifi

ℓ) called the left (resp. right)

bridge edge and the left (resp. right) path on vertices of the ℓ-th fork F ℓXi of Xi. The
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edges yiyi, where y ∈ {a, b, c, d, e, f ℓ, gℓ, hℓ, mℓ}, ℓ ∈ {1, 2, 3}, are called connecting

edges.

Figure 5.2: An example of a variable gadget Xi in Gϕ, corresponding to the variable
xi from ϕ.

Connecting variable gadgets There are two ways in which we connect two

variable gadgets, depending on whether they appear in the same clause in ϕ or not.

1. Two variables xi, xj do not appear in any clause together (for an illustration

see Figure 5.3). In this case we add the following edges between the variable

gadgets Xi and Xj:

• from ei (resp. ei) to f ℓ′
j and fj

ℓ′
, where ℓ′ ∈ {1, 2, 3},

• from ej (resp. ej) to f ℓ
i and fi

ℓ, where ℓ ∈ {1, 2, 3},

• from di (resp. di) to dj and dj.

We call these edges the inter-variable edges.
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Figure 5.3: An example of two non-intersecting variable gadgets and inter-variable
edges among them.

2. Two variables appear in a clause together (for an illustration see Figure 5.4).

Let C = (xi ⊕ xj) be a clause of ϕ, that contains the r-th appearance of the

variable xi and r′-th appearance of the variable xj. In this case we identify

the r-th fork F rXi of Xi with the r′-th fork F r′
Xj of Xj in the following way:

• tr
i = tr′

j ,

• {f r
i , gr

i , hr
i , mr

i } = {fj
r′

, gj
r′

, hj
r′

, mj
r′} respectively, and

• {fi
r
, gi

r, hi
r
, mi

r} = {f r′
j , gr′

j , hr′
j , mr′

j } respectively.

Besides that, we add the following edges between the variable gadgets Xi and

Xj:

• from ei (resp. ei) to f ℓ′
j and fj

ℓ′
, where ℓ′ ∈ {1, 2, 3} \ {r′},

• from ej (resp. ej) to f ℓ
i and fi

ℓ, where ℓ ∈ {1, 2, 3} \ {r},

• from di (resp. di) to dj and dj.

This finishes the construction of Gϕ. Before continuing with the reduction, we prove

the following structural property of Gϕ.
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Figure 5.4: An example of two intersecting variable gadgets Xi, Xj corresponding
to variables xi, xj, that appear together in some clause in ϕ, where it is the third
appearance of xi and the first appearance of xj.

Lemma 5.3.2. The diameter dϕ of Gϕ is 10.

Proof. We prove this in two steps. First, we show that the diameter of any variable

gadget is 10 and then show that there exists a path of length at most 10 between any

two vertices from two different variable gadgets, which proves the desired bound.

Let us start with fixing a variable gadget Xi. A path from the starting vertex si to

any ending vertex tℓ
i (ℓ ∈ {1, 2, 3}) has to go through at least one of the vertices from

each of the following sets {ai, ai}, {bi, bi}, {ci, ci}, {di, di}, {ei, ei}, {f ℓ
i , fi

ℓ}, {gℓ
i , gi

ℓ},

{hℓ
i , hi

ℓ}, {mℓ
i , mi

ℓ}, before reaching the ending vertex. The shortest si, tℓ
i path will

go through exactly one vertex from each of the above sets, therefore it is of length

10. A path between any two ending vertices tℓ1
i , tℓ2

i (where ℓ1, ℓ2 ∈ {1, 2, 3} and

ℓ1 ̸= ℓ2), has to go through at least one of the vertices from each of the following

sets {mℓ1
i , mi

ℓ1},{mℓ2
i , mi

ℓ2}, {hℓ1
i , hi

ℓ1},{hℓ2
i , hi

ℓ2}, {gℓ1
i , gi

ℓ1},{gℓ2
i , gi

ℓ2}, {f ℓ1
i , fi

ℓ1},

{f ℓ2
i , fi

ℓ2}, {ei, ei}. Similarly, as before, the shortest path uses exactly one vertex

from each set and is of size 10. It is not hard to see that the distance between any

other vertex v ∈ Xi \ {si, tℓ
i} (where ℓ ∈ {1, 2, 3}) and the starting vertex or one

of the ending vertices is at most 9, as vertex v lies on one of the shortest (si, tℓ
i) or
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(tℓ1
i , tℓ2

i ) paths (where ℓ1, ℓ2 ∈ {1, 2, 3} and ℓ1 ̸= ℓ2), but it is not an endpoint of it.

By similar reasoning there exists a path between any two vertices u, v ∈ Xi \ {si, tℓ
i}

(where ℓ ∈ {1, 2, 3}), of distance at most 9. Therefore, the diameter of Xi is 10.

Now we want to show that the distance between any two vertices from different

variable gadgets is at most 10. Let us start with the case where two variable gadgets

Xi and Xj share no fork (i. e., xi and xj do not appear in the same clause of ϕ). A

path between si and tℓ
j (for ℓ ∈ {1, 2, 3}) travels through at least one of the vertices

from the following sets {ai, ai}, {bi, bi}, . . . , {ei, ei}, {f ℓ
j , fj

ℓ}, {gℓ
j, gj

ℓ}, . . . , {mℓ
j, mj

ℓ}.

The shortest path goes through exactly one vertex in each of the sets, therefore it

is of length 10. From this, it also follows that there exists a path between any base

vertex v ∈ BXi and fork vertex u ∈ FXj of length at most 10. Next, observe a

path between si and sj that goes through at least one of the vertices from each of

the following sets {ai, ai}, {bi, bi}, {ci, ci}, {di, di}, {dj, dj}, {cj, cj}, {bj, bj}, {aj, aj}.

Again, the shortest path will use exactly one vertex in each set and is of dis-

tance 9. Therefore, all of the a, b, c, d vertices from Xi and Xj are on the dis-

tance at most 9 from each other. Since the path (ei, f 1
j , ej) is of length 2 and

(ei, di, dj, cj, bj, aj, sj) is of length 6 it follows that ei is at distance at most 3 from

ej and 6 from sj. Therefore, all of the vertices from BXi and BXj are on the

distance at most 9 from each other. Lastly, a path between tℓ1
i and tℓ2

j (where

ℓ1, ℓ2 ∈ {1, 2, 3}) travels through at least one of the vertices from the following sets

{mℓ1
i , mi

ℓ1}, {hℓ1
i , hi

ℓ1}, {gℓ1
i , gi

ℓ1}, {f ℓ1
i , fi

ℓ1}, {ei, ei}, {f ℓ2
j , fj

ℓ2}, {gℓ2
j , gj

ℓ2}, {hℓ2
j , hj

ℓ2},

{mℓ2
j , mj

ℓ2}. Since the shortest path visits exactly one vertex from each set, it is

of length 10. Similarly, as before, it follows that there is a path between any two

vertices u ∈ F ℓ1Xi and v ∈ F ℓ2Xj (where ℓ1, ℓ2 ∈ {1, 2, 3}) of distance at most 10.

Therefore, we get that the diameter of a subgraph of Gϕ that contains any two vari-

able gadgets that do not share a fork is 10. In the case when two variable gadgets

Xi and Xj share a fork, it is not hard to see that the shortest path among any two

vertices u ∈ Xi and v ∈ Xj does not become greater than in the case when two

variable gadgets do not share a fork.

Altogether it follows that the distance among any two vertices in Gϕ is at most

10.
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Lemma 5.3.3. If OPTMonMaxXOR(3)(ϕ) ≥ k then OPTMAL(Gϕ, dϕ) ≤ 7n2+49n−8k,

where n is the number of variables in the formula ϕ.

Proof. Let τ be an optimum truth assignment of ϕ, i. e., a truth assignment that

satisfies at least k clauses of ϕ. We will prove that there exists a temporal labeling

λϕ of Gϕ which uses |λϕ| ≤ 7n2 + 49n − 8k labels, such that (Gϕ, λϕ) is temporally

connected and α(Gϕ, λϕ) = dϕ = 10. Recall that since ϕ is an instance of Mon-

MaxXOR(3) with n variables it has m = 3
2n clauses. We build the labeling λϕ

using the following rules. For an illustration see Figure 5.5.

1. If a variable xi from ϕ is set to True by the truth assignment τ , we label the

edges in Xi in the following way:

• all three left (si, tℓ
i)-paths, for all ℓ ∈ {1, 2, 3}, get the labels 1, 2, 3, . . . , 10,

one on each edge,

• similarly, all left (tℓ
i , si)-paths, get the labels 1, 2, 3, . . . , 10, one on each

edge,

• all connecting edges (i. e., edges of form yiyi, where y ∈ {a, b, c, d, e, f ℓ, gℓ,

hℓ, mℓ}) get the labels 1 and 10.

If a variable xi from ϕ is set to False by the truth assignment τ , we label the

edges in Xi in the following way:

• all three right (si, tℓ
i)-paths, for all ℓ ∈ {1, 2, 3}, get the labels 1, 2, 3, . . . , 10,

one on each edge,

• similarly, all right (tℓ
i , si)-paths, get the labels 1, 2, 3, . . . , 10, one on each

edge,

• all connecting edges get the labels 1 and 10.

Labeling λϕ uses 10 labels on the left (resp. right) path of the base BXi, 10

labels on the left (resp. right) path of each fork F ℓXi, where ℓ ∈ {1, 2, 3} and

10 + 3 · 8 labels on the connecting edges. All in total λϕ uses 74 labels on the

variable gadget Xi.
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We now need to prove that there exists a temporal path among any two vertices

in Xi. Suppose xi is set to True in the truth assignment τ of ϕ (the case of

xi being False is analogous). By the construction of λϕ, there are temporal

paths from si to any of the tℓ
i , where ℓ ∈ {1, 2, 3}, and vice versa. Labeling λϕ

of Gϕ gives rise to the following temporal paths. There is a temporal path from

the starting vertex si to the ending vertex tℓ
i , where ℓ ∈ {1, 2, 3}, which uses

the left path of Xi, and labels 1, 2, . . . , 10. Similarly it holds for the temporal

(tℓ
i , si)-path. The temporal path connecting two ending vertices tℓ1

i , tℓ2
i (where

ℓ1, ℓ2 ∈ {1, 2, 3} and ℓ1 ̸= ℓ2), uses first the left path of the fork F ℓ1Xi, with

labels 1 to 5, to reach ei, and then continues on the left path of the fork F ℓ2Xi

using labels 6 to 10. Since the temporal paths among starting and ending

vertices use the left path of the gadget Xi it follows that all vertices on the

left path reach all starting and ending vertices, and consequently, they also

reach each other. Any remaining vertex, i. e., a vertex on the right path of

the gadget Xi, can reach the starting vertex using first their corresponding

connecting edge at time 1, and then the remaining part of the temporal path

from tℓ
i (for ℓ ∈ {1, 2, 3}) to si. Similarly, it holds for the temporal paths

towards all of the ending vertices. In the case of temporal paths from si (or tℓ
i)

to the vertices on the right side of Xi, the temporal paths start with the edges

of the left path of Xi at time 1 and finish using the corresponding connecting

edge at time 10. Lastly, temporal paths among two vertices from the right

path of Xi use as a first and last edge the corresponding connecting edge at

time 1 and 10 respectively, and a part of the (si, tℓ
i) or (tℓ

i , si)-temporal path.

This proves that the labeling λϕ of Xi admits a temporal path among any two

vertices in Xi.

2. If two variable gadgets Xi and Xj do not share a fork, i. e., variables xi and

xj are not in the same clause in ϕ, and are both set to True by τ , then we

label the inter-variable edges as follows:

• the edge didj, connecting the left path of BXi with the left path of BXj,

gets labels 5 and 6,
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• three edges of the form eif
ℓ′
j (ℓ′ ∈ {1, 2, 3}) that connect the left path of

BXi to the left paths of F ℓ′
Xj get labels 5 and 6,

• three edges of the form ejf
ℓ
i (ℓ ∈ {1, 2, 3}) that connect the left path of

BXj to the left paths of F ℓXi get labels 5 and 6.

We have assigned 14 labels to 7 inter-variable edges that connect both variable

gadgets, while the number of labels assigned to each variable gadget remains

the same. Note that the other three combinations (xi, xj are both False,

one of xi, xj is True and the other False) give rise to the labeling λϕ that

uses the same number of labels on both variable gadgets and inter-variable

edges, where the labeled inter-variable edges are chosen appropriately. For an

example see Figure 5.5a.

Since labeling inter-variable edges does not change the labeling on each variable

gadget, we know that there is still a temporal path among any two vertices

from the same variable gadget. We need to prove now that there is a temporal

path among any two vertices from Xi and Xj. First observe that there is

a unique temporal path from si to tℓ
j (for ℓ ∈ {1, 2, 3}), that first uses the

left path of the base of Xi with labels 1, 2, 3, 4, 5, the inter-variable edge eif
ℓ
j

with label 6 and continues to tℓ
j using the left path of the fork F ℓ

j with labels

7, 8, 9, 10. The reverse (tℓ
j, si)-temporal path uses the same edges with labels

1, 2, . . . , 10, as defined by λϕ. From the above, it follows that there exists a

temporal path from any vertex in the base of BXi to any vertex in a fork F ℓ
j

and vice versa (note, if any of the starting/ending vertices are not on a left

path of Xi or Xj we use corresponding connecting edges at time 1 or 10). Next,

we show that there is a temporal path between two ending vertices tℓ1
i ∈ Xi

and tℓ2
j ∈ Xj (where ℓ1, ℓ2 ∈ {1, 2, 3}). More specifically, the (tℓ1

i , tℓ2
j )-temporal

path first uses the left side of the fork F ℓ1
i with labels 1, 2, 3, 4, 5 to reach the

vertex ei ∈ Xi and then uses the bridge edge eif
ℓ2
j at time 6 and continues on

the left side of the fork F ℓ2
j with labels 7, 8, 9, 10 to reach tℓ2

j . Thus it holds

that any vertex in any of the forks of Xi can reach any vertex in any of the

forks of Xj. Note that the last temporal path proves also that ei ∈ Xi reaches
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all of the vertices in all of the forks of Xj (and vice versa). Let us now show

that ei reaches also all the vertices in the base of Xj (and vice versa). First, the

(ei, ej)-temporal path is of length 2, starts with the bridge edge eif
ℓ2
j at time

5 and finishes with the edge f ℓ2
j ej at time 6. Second, ei reaches vertex sj using

the temporal path that travels through vertices ei, di, dj, cjbj, aj, sj with labels

5, 6, 7, 8, 9, 10 on the respective edges. Conversely, the (sj, ei)-temporal path

travels through the same vertices sj, aj, bj, cj, dj, di, ei with labels 1, 2, 3, 4, 5, 6

on the respective edges. From the above three temporal paths, it follows that

ei in fact does temporally reach all of the vertices in the base of Xj and vice

versa. Lastly, we want to prove that all of the remaining base vertices of

Xi (i.e. vertices of form a, b, c, d) reach all of the remaining base vertices in

Xj. To do so we just have to provide a temporal path from si to sj. This

temporal path travels through the vertices si, ai, bi, ci, di, dj, cj, bj, aj, sj using

labels 1, 2, 3, 4, 5, 7, 8, 9, 10 on the respective edges. All of the above proves

that there exists a temporal path among any two vertices in Xi and Xj, when

Xi and Xj share no fork.

3. If two variable gadgets Xi and Xj share a fork, i. e., variables xi and xj are in

the same clause, are both set to True and F rXi = F r′
Xj, then we label the

following inter-variable edges:

• the edge didj connecting the left path of BXi and BXj gets labels 5 and

6,

• two edges of the form eif
ℓ′
j (ℓ′ ∈ {1, 2, 3}\{r′}) that connect the left path

of BXi to the left paths of F ℓ′
Xj get labels 5 and 6,

• two edges of the form ejf
ℓ
i (ℓ ∈ {1, 2, 3} \ {r}) that connect the left path

of BXj to the left paths of F ℓXi get labels 5 and 6.

We have assigned 10 labels to 5 inter-variable edges that connect both variable

gadgets. Note that the three other combinations (xi, xj are both False, one

of xi, xj is True and the other False) give rise to the labeling λϕ that uses

the same number of labels on inter-variable edges, where the labeled edges are

chosen according to the truth values of xi and xj. The only difference is in
100



the labeling of the shared fork F rXi = F r′
Xj. There are two possibilities, one

when the truth value of xi and xj is the same and one when it is different, i. e.,

xi = xj or xi ̸= xj.

(a) Let us start with the case when xi ̸= xj. Then the labeling λϕ of F rXi

coincides with the labeling of F r′
Xj. Therefore λϕ uses 16 less labels on

the shared fork.

(b) In the case when xi = xj. The fork F rXi = F r′
Xj gets labeled from

both sides, i. e., all edges in the fork get 2 labels. Therefore λϕ uses 8 less

labels on the shared fork.

Identifying two forks F rXi = F r′
Xj and labeling them using the union of both

labelings on each fork, clearly preserves temporal paths among all the vertices

from Xi (resp. Xj). What remains to check is that all vertices in Xi reach

all the vertices in Xj. This follows from the same proof as in the previous

case, where the paths between the two variable gadgets use the appropriate

inter-variable edges. Note, since the fork F rXi = F r′
Xj is in the intersection,

the inter-variable edges from Xi (resp. Xj) to F rXi = F r′
Xj do not exist.

Therefore, the labeling λϕ admits a temporal path among any two vertices

from the variable gadgets Xi, Xj, that have a fork in the intersection.

Summarizing all of the above we get that the labeling λϕ uses 74 labels on each

variable gadget and 14 labels on inter-variable edges among any two variables, from

which we have to subtract the following:

• 4 labels for each pair of inter-variable edges between two variables that appear

in the same clause,

• 16 labels for the shared fork between two variables, that appear in a satisfied

clause,

• 8 labels for the shared fork between two variables, that appear in a non-satisfied

clause.
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(a) xi and xj do not appear together in any clause.

(b) xi and xj appear together in a clause, where xi appears with its third and xj with its
first appearance.

Figure 5.5: Example of the labeling λ on variable gadgets Xi, Xj and inter-variable
edges between them, where xi is True and xj False in ϕ. Note that edges that are
not labeled are omitted, F 3Xi = F 1Xj and t3

i = t1
j .
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Altogether this sums up to 74n + 14n(n−1)
2 − 4m − 16k − 8(m − k). As a result,

given that τ satisfies a minimum of k clauses of ϕ, the labeling λϕ admits at most

7n2 + 49n − 8k labels.

Before proving the statement in the other direction, we have to show some struc-

tural properties. Let us fix the following notation. Every temporal path from si to

tℓ
i (resp. from tℓ

i to si) of length 10 in Xi is called an upward path (resp. a downward

path) in Xi. Any part of an upward (resp. downward) path is called a partial upward

(resp. downward) path. Note that, for any ℓ, ℓ′ ∈ {1, 2, 3}, ℓ ̸= ℓ′, a temporal path

from tℓ
i to tℓ′

i of length 10 is the union of a partial downward path on the fork F ℓ
i

and a partial upward path on F ℓ′
i . If a labeling λϕ labels all left (resp. right) paths

of the variable gadget Xi (i. e., both bottom-up from si to t1
i , t2

i , t3
i and top-down

from t1
i , t2

i , t3
i to si with labels 1, 2 . . . , 10 in this order), then we say that the vari-

able gadget Xi is left-aligned (resp. right-aligned) in the labeling λϕ. Note that if

at least one edge on any of these left (resp. right) paths of Xi is not labeled with

the appropriate label between 1 and 10, then the variable gadget is not left-aligned

(resp. not right-aligned). The following technical lemma will allow us to prove the

correctness of our reduction.

Lemma 5.3.4. Let λϕ be a minimum labeling of Gϕ. Then λϕ can be modified in

polynomial time to a minimum labeling of Gϕ in which each variable gadget Xi is

either left-aligned or right-aligned.

Proof. Let λϕ be a minimum labeling of Gϕ that admits at least one variable gadget

Xi that is neither left-aligned nor right-aligned (i.e. Xi does not admit all left

upward and downward paths, or all right upward and downward paths).

First, we will prove that there exists a fork F ℓXi of Xi that admits at least three

partial upward or downward paths, i. e., it either has two partial upward paths (one

on each side of the fork) and at least one partial downward path, or vice versa. For

the sake of contradiction, suppose that each of the forks F 1Xi, F 2Xi, F 3Xi contains

at most two partial paths. Then, since λϕ must have in Xi at least one upward and

at least one downward path between si and tℓ
i , ℓ ∈ {1, 2, 3}, it follows that each fork

F ℓXi has exactly one partial upward and exactly one partial downward path.
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Assume that each of the forks F 1Xi, F 2Xi, F 3Xi has both its partial upward and

downward paths on the same side of Xi (i. e., either both on the left or both on the

right side of Xi). If all of them have their partial upward and downward paths on

the left (resp. right) side of Xi, then Xi is left-aligned (resp. right-aligned), which is

a contradiction. Therefore, at least one fork (say F 1Xi) has its partial upward and

downward paths on the left side of Xi and at least one other fork (say F 2Xi) has its

partial upward and downward paths on the right side of Xi. But then there is no

temporal path from t1
i to t2

i of length 10 in λϕ, which is a contradiction. Therefore

there exists at least one fork F ℓXi (say, F 1Xi w.l.o.g.), in which (w.l.o.g.) the partial

upward path is on the right side and the partial downward path is on the left side

of Xi.

Since the partial downward path of F 1Xi is on the left side of Xi, it follows

that the partial upward path of each of F 2Xi and F 3Xi is on the left side of Xi.

Indeed, otherwise, there is no temporal path of length 10 from t1
i to t2

i or t3
i in λϕ, a

contradiction. Similarly, since the partial upward path of F 1Xi is on the right side

of Xi, it follows that the partial downward path of each of F 2Xi and F 2Xi is on the

right side of Xi. But then, there is no temporal path of length 10 from t2
i to t3

i , or

from t3
i to t2

i in λϕ, which is also a contradiction. Therefore at least one fork F ℓXi

(say F 3Xi) of Xi admits at least three partial upward or downward paths.

W.l.o.g. we can assume that the fork F 3Xi has two partial downward paths and

at least one partial upward path which is on the left side of Xi. We distinguish now

the following cases.

Case A. The fork F 3Xi has no partial upward path on the right side of Xi. Then

the base BXi has a partial upward path on the left side of Xi. Furthermore, each

of the forks F 1Xi, F 2Xi has a partial downward path on the left side of Xi. Indeed,

if otherwise F 1Xi (resp. F 2Xi) has no partial downward path on the left side of Xi,

then there is no path with at most 10 edges from t1
i (resp. t2

i ) to t3
i , a contradiction.

Case A-1. The base BXi of Xi has no partial downward path on the left side of Xi;

that is, there is no temporal path from vertex ei to vertex si with labels “6,7,8,9,10”.

Then the base BXi of Xi has a partial downward path on the right side of Xi, as

otherwise there would be no temporal path of length 10 from any of t1
i , t2

i , t3
i to si.
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For the same reason, each of the forks F 1Xi, F 2Xi has a partial downward path on

the right side of Xi.

Case A-1-i. None of the forks F 1Xi, F 2Xi has a partial upward path on the left

side of Xi. Then each of the forks F 1Xi, F 2Xi has a partial upward path on the

right side of Xi, as otherwise there would be no temporal path of length 10 from

si to t1
i or t2

i . For the same reason, the base BXi has a partial upward path on

the right side of Xi. Therefore we can remove the label “5” from the left bridge

edge eif
3
i of the fork F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a

contradiction.

Case A-1-ii. Exactly one of the forks F 1Xi, F 2Xi (say F 1Xi) has a partial upward

path on the left side of Xi. Then the fork F 2Xi has a partial upward path on the

right side of Xi. Furthermore the base BXi has a partial upward path on the right

side of Xi, since otherwise there would be no temporal path of length 10 from si to

t2
i . In this case we can modify the solution as follows: remove the labels “1,2,3,4,5”

from the partial right-upward path of BXi and add the labels “6,7,8,9,10” to the

partial left-upward path of the fork F 2Xi. Finally, we can remove the label “5” from

the right bridge edge eifi
3 of the fork F 3Xi, thus obtaining a labeling with fewer

labels than λϕ, a contradiction.

Case A-1-iii. Each of the forks F 1Xi, F 2Xi has a partial upward path on the

left side of Xi. In this case, we can modify the solution as follows: remove the

labels “10,9,8,7,6” from the partial right-downward path of BXi and add the same

labels “10,9,8,7,6” to the partial left-downward path of the base BXi. Finally, we

can remove the label “5” from the right bridge edge eifi
3 of the fork F 3Xi, thus

obtaining a labeling with fewer labels than λϕ, a contradiction.

Case A-2. The base BXi of Xi has a partial downward path on the left side of Xi;

that is, there is a temporal path from vertex ei to vertex si with labels “6,7,8,9,10”.

Case A-2-i. None of the forks F 1Xi, F 2Xi has a partial upward path on the left side

of Xi. Then the base BXi and each of the forks F 1Xi, F 2Xi have a partial upward

path on the right side of Xi, as otherwise there would be no temporal paths of length

10 from si to t1
i , t2

i . Moreover, as none of F 1Xi, F 2Xi has a partial left-upward path,

it follows that each of F 1Xi, F 2Xi has a partial downward path on the right side
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of Xi. Indeed, otherwise, there would be no temporal paths of length 10 between

t1
i and t2

i . In this case, we can modify the solution as follows: remove the labels

“1,2,3,4,5” from the partial left-upward path of BXi and add the labels “6,7,8,9,10”

to the partial right-upward path of the fork F 3Xi. Finally, we can remove the label

“6” from the left bridge edge eif
3
i of the fork F 3Xi, thus obtaining a labeling with

fewer labels than λϕ, a contradiction.

Case A-2-ii. Exactly one of the forks F 1Xi, F 2Xi (say F 1Xi) has a partial upward

path on the right side of Xi. Then the fork F 2Xi has a partial upward path on the

left side of Xi. Furthermore the base BXi must have a partial right-upward path, as

otherwise there would be no temporal path from si to t2
i . In this case, we can modify

the solution as follows: remove the labels “1,2,3,4,5” from the partial right-upward

path of BXi and add the labels “6,7,8,9,10” to the partial left-upward path of the

fork F 2Xi. Finally, we can remove the label “5” from the right bridge edge eifi
3 of

the fork F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a contradiction.

Case A-2-iii. Each of the forks F 1Xi, F 2Xi has a partial upward path on the

right side of Xi. Then we we can simply remove the label “5” from the right bridge

edge eifi
3 of the fork F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a

contradiction.

Case B. The fork F 3Xi has also a partial upward path on the right side of Xi. That

is, F 3Xi has partial upward-left, upward-right, downward-left, and downward-right

paths.

Case B-1. The base BXi of Xi has no partial downward path on the left side of Xi.

Then the base BXi of Xi has a partial downward path on the right side of Xi, as

otherwise there would be no temporal path of length 10 from any of t1
i , t2

i , t3
i to si.

For the same reason, each of the forks F 1Xi, F 2Xi has a partial downward path on

the right side of Xi.

Note that Case B-1 is symmetric to the case where the base BXi of Xi has no

partial right-downward (resp. left-upward, right upward) path.

Case B-1-i. None of the forks F 1Xi, F 2Xi has a partial upward path on the left

side of Xi. This case is the same as Case A-1-i.

Case B-1-ii. Exactly one of the forks F 1Xi, F 2Xi (say F 1Xi) has a partial upward
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path on the left side of Xi. Then both the base BXi and the fork F 2Xi have a

partial right-upward path, as otherwise there would be no temporal path of length

10 from si to t2
i . In this case, we can always remove the label “6” from the left bridge

edge eif
3
i of the fork F 3Xi (without compromising the temporal connectivity), thus

obtaining a labeling with fewer labels than λϕ, a contradiction.

Case B-1-iii. Each of the forks F 1Xi, F 2Xi has a partial upward path on the left

side of Xi. That is, each of F 1Xi, F 2Xi has a partial left-upward and a partial

right-downward path. The following subcases can occur:

Case B-1-iii(a). None of the forks F 1Xi, F 2Xi has a partial right-upward path.

Then each of the forks F 1Xi, F 2Xi has a partial left-downward path since otherwise

there would not exist temporal paths of length 10 between t1
i and t2

i . Furthermore,

the base BXi has a partial left-upward path, since otherwise there would not exist

a temporal path of length 10 from si to t1
i and t2

i . In this case, we can remove the

label “6” from the right bridge edge eifi
3 of the fork F 3Xi, thus obtaining a labeling

with fewer labels than λϕ, a contradiction.

Case B-1-iii(b). Exactly one of the forks F 1Xi, F 2Xi (say F 1Xi) has a partial

right-upward path. Then the base BXi has a partial left-upward path since otherwise

there would not exist a temporal path of length 10 from si to t2
i . Similarly, the

fork F 1Xi has a partial left-downward path since otherwise there would not exist a

temporal path of length 10 from t1
i to t2

i . In this case, we can modify the solution

as follows: First, remove the labels “10,9,8,7,6” from the partial right-downward

path of BXi and add the labels “10,9,8,7,6” to the partial left-downward path of

BXi. Second, remove the labels “5,6” from each of t two right bridge edges eifi
1 and

eifi
3 of the forks F 1Xi and F 3Xi, respectively. Third, remove the label “5” from

the right bridge edge eifi
1 of the fork F 2Xi. Finally, add the five labels “5,4,3,2,1”

to the partial left-downward path of the fork F 2Xi. The resulting labeling λ∗
ϕ still

preserves the temporal reachabilities and has the same number of labels as λϕ, while

the variable gadget Xi is aligned.

Case B-1-iii(c). Each of the forks F 1Xi, F 2Xi has a partial right-upward path. In

this case, we can always remove the label “5” from the left bridge edge eif
3
i of the

fork F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a contradiction.
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Case B-2. The base BXi of Xi has partial left-downward, right-downward, left-

upward, and right-upward paths. Then, due to symmetry, we may assume w.l.o.g. that

the fork F 1Xi has a left-upward path. Suppose that F 1Xi has also a left-downward

path. In this case, we can modify the solution as follows: remove the labels

“1,2,3,4,5” and “10,9,8,7,6” from the partial right-upward and right-downward paths

of BXi and add the labels “6,7,8,9,10” and “5,4,3,2,1” to the partial left-upward and

left-downward paths of the fork F 2Xi. Finally, we can remove the label “6” from

the right bridge edge eifi
3 of the fork F 3Xi, thus obtaining a labeling with fewer

labels than λϕ, a contradiction.

Finally, suppose that F 1Xi has no partial left-downward path. Then F 1Xi has

a partial right-down path since otherwise there would not exist any temporal path

of length 10 from t1
i to si. Similarly, the fork F 2Xi has a partial right-upward path

since otherwise there would not exist any temporal path of length 10 from t1
i to

t2
i . In this case, we can modify the solution as follows: First, remove the labels

“1,2,3,4,5” and “10,9,8,7,6” from the partial left-upward and left-downward paths

of BXi. Second, add the labels “6,7,8,9,10” to the partial right-upward path of the

fork F 1Xi and add the labels “5,4,3,2,1” to the partial right-downward path of the

fork F 2Xi. Finally remove the label “6” from the left bridge edge eif
3
i of the fork

F 3Xi, thus obtaining a labeling with fewer labels than λϕ, a contradiction.

Summarizing, starting from an optimum λϕ of Gϕ, in which at least one variable

gadget is neither left-aligned nor right-aligned, we can modify λϕ to another labeling

λ∗
ϕ, such that λ∗

ϕ has one more variable-gadget that is aligned and |λϕ| = |λ∗
ϕ|. Note

that this modification can only happen in Case B-1-iii(b); in all other cases, our

case analysis arrived at a contradiction. Note here that, by making the above mod-

ifications of λϕ, we need to also appropriately modify the bridge edges (within the

variable gadgets) and the inter-variable edges (between different variable gadgets),

without changing the total number of labels in each of these edges. Finally, it is

straightforward that all modifications of λϕ can be done in polynomial time. This

concludes the proof.

Lemma 5.3.5. If OPTMAL(Gϕ, dϕ) ≤ 7n2+49n−8k then OPTMonMaxXOR(3)(ϕ) ≥ k,

where n is the number of variables in the formula ϕ.
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Proof. Recall that dϕ = 10 (by Lemma 5.3.2). Let λϕ be an optimum solution

to MAL(Gϕ, 10), which uses at most 7n2 + 49n − 8k labels. We will prove that

there exists a truth assignment τ that satisfies at least k clauses of ϕ. Lemma 5.3.4

implies that every variable gadget of Gϕ is either left-aligned or right-aligned in λϕ.

Throughout the proof, we consider an arbitrary variable gadget Xi, and we assume

w.l.o.g. that Xi is left-aligned.

First, we count the minimum number of labels needed in λϕ, so that all temporal

paths among vertices of Xi exist. Observe that si is at distance 10 from any tℓ
i , where

ℓ ∈ {1, 2, 3}, and that tℓ
i is at distance 10 from any tℓ′

i , where ℓ′ ∈ {1, 2, 3} \ {ℓ}.

Therefore, any temporal path connecting any two of the vertices in {si, t1
i , t2

i , t3
i } is

of length 10 and must use labels 1, 2, 3, . . . , 10 along its edges (in this order). As

Xi is left-aligned, some of these temporal paths overlap, and thus there must exist

at least 5 · 2 = 10 labels on the base BXi, at least 4 · 2 = 8 labels on each fork

F ℓXi, and at least 2 labels on each left-bridge edge eif
ℓ
i . That is, we have at least

10 + 3 · (8 + 2) = 40 labels to temporally connect the vertices {si, t1
i , t2

i , t3
i } (and also

all vertices within the paths among them at the left side of the variable gadget Xi).

Furthermore, we need at least two labels for each vertex y at the right side of Xi such

that there is a temporal path to and from y in Xi, i. e., we need at least 17 · 2 = 34

more labels in total. That is, within the whole variable gadget Xi we need in total

at least 40 + 34 = 74 labels in λϕ.

Now, let Xj be a variable gadget in Gϕ that does not share a fork with Xi.

W.l.o.g. we can assume that Xj is right-aligned (all other cases are symmetric). As

noted previously, temporal paths among vertices of one variable gadget do not use

the inter-variable edges. Therefore, the inter-variable edges must be labeled in a

way that ensures a temporal path among vertices from different variable gadgets.

Observe that the starting vertex si of Xi is at distance 10 from the ending vertices

tℓ′
j (ℓ′ ∈ {1, 2, 3}) of Xj. Therefore, there must be a temporal path using all labels

from 1 to 10, to connect them. This path must use the inter-variable edge of the

form eifj
ℓ′
, as any other path is longer than 10. Since the path must be traversed

in both directions, each edge eifj
ℓ′

(ℓ′ ∈ {1, 2, 3}) must have at least 2 labels. The

same holds for the (sj, tℓ
i)-paths (ℓ ∈ {1, 2, 3}) and the edges ejf

ℓ
i (ℓ ∈ {1, 2, 3}).

109



These temporal paths ensure that all of the fork vertices in F ℓXj are reachable by

the vertices of the base BXi, and vice versa.

The existence of a temporal path from si to sj requires a label on the edge didj,

as any other (si, sj)-path is longer than 10. Thus, at least one additional label must

be assigned to the edge didj. Furthermore, since si is at distance 4 to di and dj is

at distance 4 to sj, label on the edge didj must be 5 or 6. Since these temporal

paths do not pass through any of the e vertices of BXi and BXj, we still need to

ensure that there is a temporal path from ei to ej and sj, and vice versa (because

of the symmetry this is enough to argue that all of the base vertices of BXi and

BXj reach each other). Note that ei is at distance 5 from si and any of the tℓ
i in

Xi, and it is on a shortest (si, tℓ
i) and (tℓ

i , si)-temporal path. The same holds for

the shortest (temporal) path between si and tℓ
j. Therefore, the edges eidi, eif

ℓ
i and

eifj
ℓ must have labels 5 and 6. Similarly, the edges ejdj, eifj

ℓ and eif
ℓ
i must have

labels 5 and 6. From the above, we get that there is a temporal path from ei to

ej, namely a path through vertices ei, fj
ℓ
, ej that uses the labels 5 and 6. Similarly

there is a temporal path from ej to ej using vertices ej, fj
ℓ
, ei with labels 5 and 6.

What remains to show is that there must be at least one extra label, to ensure the

existence of (ei, sj) and (sj, ei)-temporal paths.

Observe that there are two potential types of paths from ei to sj, each of length

at most 10. The first type of path that uses one of the f vertices (either f ℓ
i in Xi

or fj
ℓ in Xj), and then continues through ej, dj, . . . , sj. The second type of path

uses the edge didj. For the first possibility, suppose w.l.o.g. that the temporal path

from ei to sj travels through vertices ei, f 1
i , ej, dj, . . . , sj. We know that the part

of this temporal path that travels from ej to sj, must be labeled with 6, 7, 8, 9, 10.

Since edges eif
1
i and f 1

i ej have labels 5 and 6, we see that there must be at least 1

more label, so that ei reaches sj via this path (indeed if the edge eif
1
i has a label

4 or less, then there is a temporal path from ei to sj). Now, for a temporal path

from sj to ei, of the same form, there must be at least one extra label (indeed, if

the edge f 1
i ei admits a label 7 or more, there is a temporal path from sj to ei).

For the second possibility of a path from ei to sj (i. e., a path from ei to sj that

uses the edge didj), we get that the (ei, sj)-temporal path travels through vertices
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ei, di, dj, cj, . . . , sj. Note that the edge eidi must have labels 5 and 6 and that the

part of the path from dj to sj must have labels 7, 8, 9, 10, respectively. Now if the

edge didj is labeled with 6, there is a temporal path from ei to sj. Using the same

argument for the (sj, ei)-temporal path, we conclude that the edge didj must be

labeled also with 5. That is, didj must be labeled with both 5 and 6. To sum up,

to ensure the existence of a temporal path among two vertices from two variable

gadgets that do not share a fork, a labeling must use at least 2 · (3 + 3) + 2 = 14

extra labels on the inter-variable edges.

Lastly, let Xj be a variable gadget in Gϕ that shares a fork with Xi. W.l.o.g. we

can suppose that F 1Xi = F 1Xj. By the construction of Gϕ, there exists a temporal

path between all vertices in the fork F 1Xi = F 1Xj and all vertices in Xi and Xj. As

observed, these paths do not use the inter-variable edges. Using the same arguments

as in the case when Xi and Xj do not share a fork, we get that a minimum labeling

must use at least 2 · (2 + 2) + 2 = 10 labels on the inter-variable edges.

The only thing left to study now is what happens in the intersecting fork. We

distinguish the following two cases.

• The variable gadget Xj is right-aligned. Then, by the construction of Gϕ, the

fork F 1Xi = F 1Xj is labeled using the same labeling as in the variable gadget

Xi. This “saves” 16 labels from the total number of labels used on variable

gadgets Xi and Xj.

• The variable gadget Xj is left-aligned. In this case, each edge in the fork

F 1Xi = F 1Xj admits two labels. This “saves” only 8 labels from the total

number of labels used on variable gadgets Xi and Xj.

From the labeling λϕ of Gϕ, we construct a truth assignment τ of ϕ as follows.

If a variable gadget Xi is left-aligned, we set xi to True and if it is right-aligned,

we set xi to False.

Suppose that the labeling λϕ satisfies exactly k∗ clauses. As previously noted,

λϕ uses at least 74 labels on each variable gadget. Whenever two variable gadgets

Xi, Xj do not appear in the same clause we need at least 14 extra labels on the

inter-variable edges, and whenever Xi, Xj appear in the same clause we need at
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least 10 labels on the inter-variable gadgets. In the case where Xi, Xj appear in the

same clause and both Xi and Xj are left-aligned (i.e. clause of ϕ is not satisfied)

the common fork results in 8 less labels, while in the case where Xi is left-aligned

and Xj is right-aligned (i.e. clause of ϕ is satisfied), the common fork results in 16

less labels. Consequently,

|λϕ| ≥ 74n + 14
(

n

2

)
− 14m + 10m − 8(m − k∗) − 16k∗

= 67n + 7n2 − 12m − 8k∗

= 7n2 + 49n − 8k∗.

In the above derived equation, we used the fact that ϕ has m = 3
2n clauses. Since

|λϕ| = OPTMAL(Gϕ, dϕ) ≤ 7n2 + 49n − 8k by the statement of the lemma, it follows

that k∗ ≥ k, i. e., λϕ satisfies at least k clauses of ϕ.

MAL is clearly in NP since temporal connectivity can be checked in polynomial

time [84]. Hence, the next theorem follows directly from Theorem 5.3.1 and Lem-

mas 5.3.3 and 5.3.5.

Theorem 5.3.6. MAL is NP-complete on undirected graphs, when the required

maximum age is equal to the diameter of the input graph.

5.4 The Steiner-tree variations of the problem

In this section, we investigate the computational complexity of the Steiner-Tree

variations of the problem, namely MSL and MASL. We start by proving that the

age-unrestricted problem MSL remains NP-hard, using a reduction from Vertex

Cover. Finally, using a parameterized reduction from Multicolored Clique,

we prove that the age-restricted version MASL is W[1]-hard with respect to the

number k of labels, even if the maximum allowed age is a constant.

5.4.1 Computational hardness of MSL

In this section, we prove that MSL is NP-complete.
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Theorem 5.4.1. MSL is NP-complete.

Proof. MSL is contained in NP, since temporal connectivity can be checked in

polynomial time [84]. To prove that the MSL is NP-hard we provide a polynomial-

time reduction from the NP-complete Vertex Cover problem [80].

Vertex Cover

Input: A static graph G = (V, E), a positive integer k.

Question: Does there exist a subset of vertices S ⊆ V such that |S| = k and

∀e ∈ E, e ∩ S ̸= ∅.

Let (G, k) be an input of the Vertex Cover problem and denote |V (G)| =

n, |E(G)| = m. We assume w.l.o.g. that G does not admit a vertex cover of size

k−1 [80]. We construct (G∗, R∗, k∗), the input of MSL using the following procedure

(for an illustration see Figure 5.6). The vertex set V (G∗) consists of the following

vertices:

• two starting vertices N = {n0, n1},

• a “vertex-vertex” corresponding to every vertex of G: UV = {uv | v ∈ V (G)},

• an “edge-vertex” corresponding to every edge of G: UE = {ue | e ∈ E(G)},

• 2n + 2m(6k + m) “dummy” vertices.

The edge set E(G∗) consists of the following edges:

• an edge between starting vertices, i. e., n0n1,

• a path of length 3 between a starting vertex n1 and every vertex-vertex uv ∈ UV

using 2 dummy vertices, and

• for every edge e = vw ∈ E(G) we connect the corresponding edge-vertex ue

with the vertex-vertices uv and uw, each with a path of length 6k+m+1 using

6k + m dummy vertices.

We set R∗ = {n0} ∪ UE and k∗ = 6k + 2m(6k + m + 1) + 1. This finishes the

construction. Note that G∗ is a graph with 3n + m + 2m(6k + m) + 2 vertices and
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Figure 5.6: Illustration of the MSL instance produced by the reduction presented
in the proof of Theorem 5.4.1.

1 + 3n + 2m(6k + m + 1) edges. It is not hard to see that the described construction

can be performed in polynomial time.

We claim that (G, k) is a YES instance of the Vertex Cover if and only if

(G∗, R∗, k∗) is a YES instance of the MSL.

(⇒): Assume (G, k) is a YES instance of the Vertex Cover and let S ⊆ V (G)

be a vertex cover for G of size k. We construct a labeling λ for G∗ that uses k∗

labels and admits a temporal path between all vertices from R∗ as follows.

For the sake of easier explanation, we use the following terminology. A temporal

path starting at n0 and finishing at some ue is called a returning path. Contrarily, a

temporal path from some ue to n0 is called a forwarding path.

Let US be the set of corresponding vertices to S in G∗. From each edge-vertex

ue there exists a path of length 6k + m + 1 to at least one vertex uv ∈ US, since S is

a vertex cover in G. We label exactly one of these paths, using labels 1, 2, . . . , 6k +

m+1. Doing this for all vertices ue ∈ UE we use m(6k +m+1) labels. Now we label

a path from each v ∈ US to n1 using labels 6k + m + 2, 6k + m + 3, 6k + m + 4. Each

path uses 3 labels, and since S is of size k we used 3k labels for all of them. At the

end, we label the edge n0n1 with the label ℓ∗ = 6k + m + 5. Using this procedure

we have created a forwarding path from each edge-vertex ue to the start vertex n0

and we used 3k + m(6k + m + 1) + 1 labels.

To create the returning paths, we label paths from n1 to each vertex in US with
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labels ℓ∗ + 1, ℓ∗ + 2, ℓ∗ + 3. Now again, we label exactly one path from vertices in US

to each edge-vertex ue, using labels ℓ∗ + 4, ℓ∗ + 5, . . . , ℓ∗ + 4+ 6k + m. We used extra

3k + m(6k + m + 1) labels and created a returning path from n0 to each vertex in

UE.

Altogether, the constructed labeling uses k∗ = 6k + 2m(6k + m + 1) + 1 labels.

What remains to show is that there exists a temporal path between any pair of

edge-vertices ue, uf ∈ UE. We can construct a temporal walk W (possibly visiting

the same vertex multiple times) from ue to uf as follows. Starting at ue, we go along

the forwarding path from ue to n0 until we reach n1. By construction, we arrive at

n1 at time ℓ∗ − 1. Now consider the returning path from n0 to uf . This path goes

through n1 and, by construction, arrives at n1 at time ℓ∗. Hence, we can extend the

temporal walk W from n1 to uf by following the returning path from u1 onward.

(⇐): Assume that (G∗, R∗, k∗) is a YES instance of the MSL. We construct a

vertex cover of size at most k for G as follows.

Consider the temporal paths connecting n0 to the vertices in UE. By the con-

struction of G∗ each temporal path from n0 to a vertex in UE passes through the

set UV . Hence, for each vertex ue ∈ UE there is some vertex uv ∈ UV such that uv is

temporally connected to ue. Now consider the temporal paths connecting the ver-

tices in UE to n0. Similarly to the argument above, by the construction of G∗ each

temporal path from a vertex in UE to n0 passes through the set UV . Hence, each

vertex ue ∈ UE needs to be temporally connected to some vertex in uv ∈ UV . Fix

some ue ∈ UE. We can conclude that there is a uv ∈ UV such that ue is temporally

connected to uv by a temporal path of length 6k + m + 1. Furthermore, there is an

uv′ ∈ UV such that u′
v is temporally connected to ue by a temporal path of length

6k + m + 1. If uv ̸= uv′ , then we attribute 12k + m + 2 labels to vertex ue. However,

if uv = uv′ , then the temporal path of length 6k + m + 1 from ue to uv and the

temporal path of length 6k + m + 1 from uv to ue may share one time edge: Let Pve

be the unique path in G∗ of length 6k + m + 1 that connects uv and ue. Then the

(uv, ue)-temporal path (resp. (ue, uv)-temporal path) traverses the edges of Pve from

uv (resp. ue) to ue (resp. uv), where the edges of Pve are labeled strictly increasingly.

Hence the two temporal paths may share at most one time edge. Therefore, in this
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case, we attribute at least 12k + 2m + 1 labels to ue. Overall, we attribute at least

m(12k + 2m + 1) labels to the vertices in UE.

For a vertex ue ∈ UE, we call a temporal path from ue to some uv ∈ UV of length

6k + m + 1 a forwarding path Fe for ue. Similarly, we call a temporal path from

some uv′ to ue of length 6k + m + 1 a returning path Re for ue. For every ue we

have exactly one forwarding path and one returning path. This is true since every

additional path would require at least an additional 6k + m labels on the edges

between UV and UE, and then at most 1 label could be placed on the remaining

edges, which would result in no temporal paths between {n0, n1} and UV .

This allows us to make the following observation. We define a partial order <label

on the set P = {Fe, Re | e ∈ E} of forwarding and returning paths as follows. For

two paths P, Q ∈ P , we say that P <label Q if all labels used in P are strictly smaller

than the smallest label used in Q. We can observe that for any two e, e′ ∈ E with

e ̸= e′ we have that Fe <label Re′ since in order for ue to reach ue′ , the path Fe needs

to be used before the path Re′ . It follows that there is at most one edge e ∈ E such

that Re <label Fe or Re and Fe are incomparable with respect to <label, otherwise we

would reach a contradiction to the above observation. From this we we can deduce

that we attribute 12k + 2m + 2 labels to each of the edges e ∈ E with Fe <label Re,

since Fe and Re cannot share any label. Furthermore, there is at most one edge to

which we can attribute 12k + 2m + 1 labels, since, as argued earlier, if Fe and Re

are incomparable with respect to <label, they can share at most one time edge. It

follows now that we attribute at least m(12k + 2m + 2) − 1 labels to the vertices in

UE.

We now conclude that there are at most 6k+2 labels used on the edges connecting

the sets N and UV . Next, we identify two (potentially intersecting) subsets of UV .

We specify U+
V ⊆ UV such that uv ∈ U+

V if and only if there exists a returning path

Re for some e ∈ E that starts in uv. Similarly, we specify U−
V ⊆ UV such that

uv ∈ U−
V if and only if there exists a forwarding path Fe for some e ∈ E that ends in

uv. Assume that |U+
V | ≤ |U−

V | (the case where |U+
V | > |U−

V | is symmetric). We claim

that S = {v | uv ∈ U+
V } is a vertex cover of size at most k for G. It is straightforward

to see that S is a vertex cover for G: By the definition of U+
V , for every e ∈ E there
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is a returning path Re starting in a vertex uv such that v is one of the two endpoints

of e. Hence, for every edge e ∈ E, one of its endpoints is contained in S. In the

remainder, we show that |S| ≤ k.

To this end, consider the temporal connections from n1 to the vertices in UE.

Every edge-vertex ue ∈ UE is temporally reachable from exactly one vertex-vertex

uv ∈ UV through the returning path Re. Hence, there needs to be a temporal path

from n1 to uv that arrives in uv sufficiently early, such that it can be extended to ue

via the returning path Re. We call this path from n1 to uv the short returning path

R′
e of e. Similarly, consider the temporal connections from the vertices in UE to n1.

Every edge-vertex ue ∈ UE can reach exactly one vertex uv ∈ UV via a forwarding

path Fe. In order to reach n0, there needs to be a temporal path from uv to n1 that

starts sufficiently late, such that it can extend the forwarding path from ue. We call

this path from uv to n1 the short forwarding path F ′
e of e.

Analogous to before, we define a partial order <label on the set P ′ = {F ′
e, R′

e | E ∈

E} ∪ P of (short) forwarding and (short) returning paths. For two paths P, Q ∈ P ′,

we say that P <label Q if all labels used in P are strictly smaller than the smallest

label used in Q. Now consider two edges e, f ∈ E such that the forwarding path

Fe ends in uv and the returning path Rf starts in uv′ with v ̸= v′. Then, by the

construction of G∗, there must be a temporal path P from uv to n1 and a temporal

path P ′ from n1 to uv′ , such that Fe, P , P ′, and Re can be concatenated to a

temporal path from ue to uf . We can assume w.l.o.g. that P = F ′
e and P ′ = R′

f . It

follows that we must have Fe <label F ′
e <label R′

f <label Rf whenever the end vertex

uv of Fe is different from the start vertex uv′ of Rf . Next, we categorize the short

forwarding and short returning paths by their start and end vertices, respectively.

Define F ′
v = {F ′

e | F ′
e starts at uv} and R′

v = {R′
e | R′

e ends at uv}. From what we

proved above it follows that for any P ∈ F ′
v and Q ∈ R′

v′ , where v ̸= v′, we must

have P <label Q.

Assume now for contradiction that |S| > k which means that |U+
V | > k and

|U−
V | > k. We analyze the case where for all uv ∈ U−

V we have |F ′
v| = 1 and for all

uv ∈ U+
V we have |R′

v| = 1 and show that already this case yields a contradiction.

From here on we denote F ′
v = {F ′

v} and R′
v = {R′

v}. Similarly, as in arguments we
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Figure 5.7: An example of an optimal labeling of an MSL instance, where the
temporal (sub)-graph connecting terminal vertices R = {a, e} is neither a tree nor
a tree with a C4. Note that this is not a solution to ML, as for example there is no
temporal path from c to a or to g. Now, we can remove the labels from the edges
bg, gf, fe and add them (in the same order) to the edges bc, cd, de, respectively. This
way, we obtain an optimal solution, where the subgraph which has labeled edges is
a tree (in this case even a path).

made before, we have that for at most one v ∈ V we can have that R′
v <label F ′

v

or R′
v and F ′

v are incomparable with respect to <label. Hence, at most one pair of

paths, R′
v and F ′

v can share a time edge. Since |U+
V | > k and |U−

V | > k implies that

there are at least 2k + 2 paths, we have that 2k paths need three labels each and at

most one pair of paths needs five labels in total. However, this yields a number of

at least 6k + 5 labels, which is more than the 6k + 2 labels available for these paths.

Hence, the assumption that |S| > k leads to a contradiction, which proves that S

really is a vertex cover of size at most k.

5.4.2 Parameterized hardness of MSL and MASL

In this thesis we skip the detailed proof of the following result, and invite the inter-

ested reader to check the full paper [88].

Theorem 5.4.2. MSL is in FPT when parameterized by the number |R| of termi-

nals.

The main idea of the proof is as follows. From Theorem 5.2.5 and Bumby [23] we

know that an optimal solution for ML is a spanning tree, and potentially one further

edge that forms a C4 with the edges of the spanning tree. Note however that, in the

case of MSL, we have a weaker requirement on labelings, namely that only terminal
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vertices need to be temporally connected, instead of all vertices as in the case of

ML. Therefore, in MSL we have an additional difficulty: can the abundance of

non-terminal vertices (i. e., of vertices that do not need to be temporally connected)

lead to a solution for an MSL instance that is neither a tree nor a tree with a C4,

but still has fewer labels than any solution that is either a tree or a tree with a C4?

As we prove in [88], this cannot happen, i. e., also in the case of MSL it suffices

to search for solutions that have this special topological structure. To do so, we

specify how an arbitrary optimal solution for MSL (see the example of Figure 5.7

for an illustration) can be transformed into another optimal solution that is a tree

or a tree with a C4. This insight allows us to use an FPT-algorithm for Steiner

Tree parameterized by the number of terminals [40] to reveal a subgraph of the

MSL instance that we can optimally label using Theorem 5.2.5. Since the number

of terminals in the created Steiner Tree instance is larger than the number of

terminals in the MSL instance by at most a constant, we obtain an FPT-algorithm

for MSL parameterized by the number of terminals.

Note that, since MASL generalizes both MSL and MAL, NP-hardness of MASL

is already implied by both Theorems 5.3.6 and 5.4.1. We now prove that MASL is

W[1]-hard when parameterized by the number k of labels, even if the restriction a on

the age is a constant. Note that the number of terminals can be upper-bounded by a

function of the number of labels, since by Theorem 5.2.5 we know that to temporally

connect |R| at least 2|R| − 4 labels are necessary. Hence, our results also imply that

MASL is W[1]-hard when parameterized by the number |R| of terminals, even if

the restriction a on the age is a constant.

To show our parameterized hardness result, we provide a parameterized reduction

from Multicolored Clique. This, together with Theorem 5.4.2, implies that

MASL is strictly harder than MSL (parameterized by the number |R| of terminals),

unless FPT=W[1].

Theorem 5.4.3. MASL is W[1]-hard when parameterized by the number k of labels,

even if the restriction a on the age is a constant.

Proof. To prove that the MASL is W[1]-hard when parameterized by the number

of labels, even if the restriction on the age is a constant, we provide a parame-
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terized polynomial-time reduction from Multicolored Clique parameterized by

the number of colors, which is W[1]-hard [48].

Multicolored Clique

Input: A static graph G = (V, E), a positive integer k, a vertex-coloring

c : V (G) → {1, 2, . . . , k}.

Question: Does G have a clique of size k including vertices of all k colors?

Let (G, k, c) be an input of the Multicolored Clique problem and denote

|V (G)| = n, |E(G)| = m. We construct (G∗, R∗, a∗, k∗), the input of MASL using

the following procedure (for an illustration see Figure 5.8). The vertex set V (G∗)

consists of the following vertices:

• a “color-vertex” corresponding to every color of V (G): C = {ci | i ∈ {1, 2, . . . , k}},

• a “vertex-vertex” corresponding to every vertex of G: UV = {uv | v ∈ V (G)},

• an “edge-vertex” corresponding to every edge of G: UE = {ue | e ∈ E(G)},

• a “color-combination-vertex” corresponding to a pair of two colors of V (G):

W = {ci,j | i, j ∈ {1, 2, . . . , k}, i < j}, and

• 2n + 4m + 5m + 11
8 (k4 − 2k3 − k2 + 2k) + 11

2 (k3 − 3k2 + 2k) “dummy” vertices.

The edge set E(G∗) consists of the following edges:

• a path of length 3 (using 2 dummy vertices) between a color-vertex ci, corre-

sponding to the color i, and every vertex-vertex uv ∈ UV , where v is of color i

in V (G), i. e., c(v) = i,

• for every edge e = vw ∈ E(G), where c(v) = i and c(w) = j, we connect the

corresponding edge-vertex ue with

- the vertex-vertices uv and uw, each with a path of length 3 (using 2

dummy vertices),

- the color-combination-vertex ci,j, with a path of length 6 (using 5 dummy

vertices),
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Figure 5.8: Illustration of the MASL instance produced by the reduction presented
in the proof of Theorem 5.4.3. For better readability, some paths among the vertices
in W and paths among ci ∈ C and cj,k ∈ W (i ̸= j ̸= k), are not depicted.

• a path of length 12 (using 11 dummy vertices), between each pair of color-

combination-vertices, and

• a path of length 12 (using 11 dummy vertices), between all pairs of color-

vertices ci and color-combination-vertices cj,k, where i /∈ {j, k}, i. e., we connect

the color-vertex of color i with all color-combination vertices of pairs of color

that do not include i.

We set R∗ = C ∪ W , a∗ = 12 and k∗ = 6k + 6(k2 − k) + 6(k2 − k) + 3(k4 − 2k3 − k2 +

2k)+12(k3 −3k2 +2k). Note that k∗ ∈ O(k4), hence the parameter number of labels

of the MASL instance is upper-bounded by a function of k. Furthermore, observe

that the restriction on the age is a constant. This finishes the construction. It is not

hard to see that this construction can be performed in polynomial time. At the end

G∗ is a graph with 3n + 10m + 1
2(k2 + k) + 11

8 (k4 − 2k3 − k2 + 2k) + 11
2 (k3 − 3k2 + 2k)

vertices and 3n + 12m + 3
2(k4 − 2k3 − k2 + 2k) + 6(k3 − 3k2 + 2k) edges.

We claim that (G, k, c) is a YES instance of the Multicolored Clique if and

only if (G∗, R∗, a∗, k∗) is a YES instance of the MASL.

(⇒): Assume (G, k, c) is a YES instance of the Multicolored Clique. Let
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S ⊆ V (G) be the set of vertices that form a multicolored clique in G. We construct

a labeling λ for G∗ that uses k∗ labels, which are not larger than a∗ = 12, and admits

a temporal path between all vertices from R∗ as follows.

Let US be the set of corresponding vertices to S in G∗. For each v ∈ S of color i

we label the three edges connecting ci to uv with labels 1, 2, 3, one per each edge, in

order to create temporal paths starting in ci and with labels 12, 11, 10, one per each

edge, in order to create temporal paths that finish in ci. For every edge vw = e ∈ E

with endpoints in S we label the path from both of its endpoint vertex-vertices

uv, uw to the edge-vertex ue with labels 4, 5, 6, one per each edge, and with labels

9, 8, 7, one per each edge. This ensures the existence of both temporal paths between

ci and cj. More precisely, (ci, cj)-temporal path (resp. (cj, ci)-temporal path) uses

labels 1, 2, 3 to reach uv (resp. uw), from where it continues with 4, 5, 6 to ue, then

with 7, 8, 9 reaches uw (resp. uv) and finally with 10, 11, 12 it finishes in cj (resp. ci).

Note that since S is a multicolored clique then each vertex v′ ∈ S is of a unique color

i′ and all vertices in S are connected. Therefore, using the above construction for all

vertices in S, vertex ci reaches and is reached by every other color vertex cj through

the vertex-vertex uv. Even more, since there is an edge e connecting any two vertices

v, w ∈ S, there is a unique edge-vertex ue (and consequently a unique path), that is

used for both temporal paths between vertex-vertices uv, uw and their corresponding

color-vertices. The above construction clearly produces a temporal path (of length

12) between any two color-vertices. This construction uses 2 ·3 labels between every

color-vertex ci and its unique vertex-vertex uv, where v ∈ S and c(v) = i, and 2 · 6

labels from each edge-vertex ue to both of its endpoint vertex-vertices, where e is

an edge of the multicolored clique formed by the vertices in S. All in total we used

6k + 12
(

k
2

)
= 6k + 6(k2 − k) labels, to connect all edge-vertices corresponding to

edges formed by S with their endpoints vertex-vertices.

Now, let ci,j and ci′,j′ be two arbitrary color-combination-vertices. By the con-

struction of G∗ there is a unique path of length 12 connecting them, which we label

with labels 1, 2, . . . , 12 in both directions. This labeling uses 2 · 12 labels for each

pair of color-combination-vertices, hence all together we use 24 |W |(|W |−1)
2 labels, since

|W | =
(

k
2

)
this is equal to 3(k4 − 2k3 − k2 + 2k).
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Finally, let ci′ and ci,j be two arbitrary color and color-combination-vertices,

respectively. In the case when i′ /∈ {i, j} there is a unique path of length 12 in G∗

between them (that uses only the dummy vertices). We label this path with labels

1, 2, . . . , 12 in both directions. This procedure uses 2 · 12 labels for each pair of such

vertices, hence all together we use 24k
(

k−1
2

)
labels, which equals 12(k3−3k2+2k). In

the case when i′ ∈ {i, j} (w.l.o.g. i′ = i) we connect the vertices using the following

path. In S there exists a unique vertex of color i, denote it v. By the definition of

S there is also vertex w ∈ S of color j, which is connected to v with some edge,

denote it e. Therefore, to obtain a (ci, ci,j)-temporal path, we first reach uv from ci

with labels 1, 2, 3, then continue to ue, using labels 4, 5, 6, from where we continue

to ci,j using the labels 7, 8, . . . , 12. The (ci,j, ci)-temporal path uses the same edges,

with labels in reversed order. This construction introduced 2 · 6 new labels on the

path of length 6 between the edge-vertex ue and the color-combination-vertex cij

and reused all labels on the (ci, ue)-temporal paths. Repeating this for every color-

combination-vertex we use 2 · 6|W | new labels, since |W | =
(

k
2

)
this is equal to

6(k2 − k).

All together λ uses 6k+6(k2−k)+6(k2−k)+3(k4−2k3−k2+2k)+12(k3−3k2+2k)

labels.

(⇐): Assume that (G∗, R∗, a∗, k∗) is a YES instance of the MASL and let λ be

the corresponding labeling of G∗. Before we construct a multicolored clique for G,

we prove that the distance between any two terminal vertices from R∗ in G∗ is 12.

Case A. Let ci, cj ∈ C be two arbitrary color-vertices and let e be an edge in G

with endpoints of color i and j, i. e., e = vw ∈ E(G) and c(v) = i, c(w) = j. There

are two options on how to reach cj from ci. One when the path connecting them

passes through the set UE and the other when it passes through the set W .

Case A-1. If the path passes through the set E, we must first go through a vertex-

vertex uv, then we go to the edge-vertex ue, continue to the vertex-vertex uw and

finish in cj. Since all these vertices are connected with a path of length 3, we get

that the distance of the whole (ci, cj)-path is 12.

Case A-2. If the path passes through the set W , then we must go through the

color-combination-vertex ci,j. Since the path between any color-vertex and color-
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combination-vertex is of length 12 (we prove this in the following paragraph), the

whole (ci, cj)-path is of length 24.

Therefore, the shortest path connecting two color-vertices is of length 12 and

must go through the appropriate edge-vertex.

Case B. Let ci,j and ci′ be two arbitrary vertices from the color-combination-vertices

and color-vertices. We distinguish two cases.

Case B-1. First, when i′ /∈ {i, j}. Then, by the construction of G∗, there exists a

direct path of length 12, connecting them. Any other (ci′ , ci,j)-path must either go

from ci′ to some color-combination-vertex ci′,j′ , which is then connected with a path

of length 12 to the ci,j, or go to one of the color-vertices and then continue to the

ci,j. In both cases, the constructed path is strictly longer than 12.

Case B-2. Second, when i′ ∈ {i, j}. Let c(v) = i and vw = e ∈ E(G) be such that

c(w) = j. Then there is a path from ci to ci,j that goes through the vertex-vertex uv

(using a path of length 3), continues to the edge-vertex ue (using a path of length

3), which is connected to the color-combination-vertex ci,j (using a path of length

6). Hence the constructed (ci, ci,j)-path is of length 12. There exists also another

(ci, ci,j)-path, that goes through some other ci,j′ color-combination-vertex, but it is

longer than 12.

Case C. Let ci,j and ci′,j′ be two arbitrary color-combination-vertices. By construc-

tion of G∗, there is a path of length 12 connecting them. Any other (ci,j, ci′,j′)-

path, must use at least one vertex-vertex, which is at a distance 9 from the color-

combination-vertices (therefore the path through it would be of length at least 18),

or a color-vertex, which is at a distance 12 from the color-combination-vertices. In

both cases, the constructed path is strictly longer than 12.

It follows that the distance between any two terminal vertices in R∗ is 12, hence a

temporal path connecting them must use all labels from 1 to 12. Using this property

we know that any labeling that admits a temporal path among each pair of terminal

vertices must use all labels 1, 2, . . . , 12 on the temporal paths between any two

color-combination-vertices ci,j and ci′,j′ , and between a color-vertex ci′ and a color-

combination-vertex ci,j, where i′ /∈ {i, j}. This is true as by construction there are
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unique paths of length 12 connecting each pair of them. For these temporal paths we

must use 2 ·12 |W |(|W |−1)
2 labels (since |W | =

(
k
2

)
this is equal to 3(k4 −2k3 −k2 +2k))

and 2 · 12k
(

k−1
2

)
labels (which equals 12(k3 − 3k2 + 2k)). Therefore, the labeling λ

can use only 6k + 6(k2 − k) + 6(k2 − k) labels to connect all other terminals.

Let us now observe what happens with the temporal paths connecting the re-

maining temporal vertices. To create a temporal path starting in a color-vertex

ci and ending in some other color-vertex (or color-combination-vertex), λ must la-

bel at least 3 edges to allow ci to reach one of its corresponding vertex-vertices

uv. Similarly, it holds for a temporal path ending in ci. Since the path connecting

ci to some other terminal is of length 12, the labels used on the temporal paths

starting and ending in ci cannot be the same. In fact, the labels must be 1, 2, 3

for one direction and 12, 11, 10 for the other. Therefore, λ uses at least 6k labels

on edges between vertices of C and UV . Extending the arguing from above, for ci

to reach some (suitable) edge-vertex ue (where v is one of the endpoints of e) the

path needs to continue from uv to ue and must use the labels 4, 5, 6 (or 9, 8, 7 in

case of the path in the opposite direction). From ue the path can continue to the

corresponding color-combination-vertex ci,j where it must use the labels 7, 8, . . . , 12,

or to the vertex-vertex uv′ corresponding to the other endpoint of edge e (the edge

e is between v and v′). This finishes the construction of the temporal path from a

color-vertex to the color-combination-vertex and the temporal paths among color-

vertices. It remains to connect a color-combination-vertex with its corresponding

color-vertices. The temporal path must go through some edge-vertex ue, that is at

distance 6 from it, therefore the labeling must use the labels 1, 2, . . . , 6. From ue

the path continues to the suitable vertex-vertex and then to the color-vertex. Using

the above labeling we see that λ must use at least 2 · 6|W | labels (which equals

6(k2 − k) labels) on the edges between the color-combination-vertices in W and the

edge-vertices in UE and at least 2 · 6
(

k
2

)
labels (which equals 6(k2 − k) labels) on

the edges between the edge-vertices in UE and vertex-vertices in UV . Since all this

together equals k∗, all of the bounds are tight, i. e., labeling cannot use more labels.

We still need to show that for every color-vertex ci there exists a unique vertex-

vertex uv connected to it such that all temporal paths to and from ci travel only
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through uv. By the argument on the number of labels used, we know that there

can be at most two vertex-vertices that lie on temporal paths to or from ci. More

precisely, one that lies on every temporal path starting in ci and the other (possibly

the same) that lies on every temporal path that finishes in ci. Let now uv, uv′ be

two such vertex-vertices. Suppose that uv lies on all temporal paths that start in ci

and uv′ on all temporal paths that end in ci. Now let ue be the edge-vertex on a

temporal path from ci to cj, and let uw be the vertex-vertex connected to cj and ue.

Therefore the (ci, cj)-temporal path has the following form: it starts in ci, uses the

labels 1, 2, 3 to reach uv, then continues to ue with 4, 5, 6, then with 7, 8, 9 reaches uw

and with 10, 11, 12 ends in cj. To obtain the (ci, ci,j)-temporal path we must label

the edges from ue to ci,j with the labels 6, 7, . . . , 12, since the edge-vertex ue is the

only edge-vertex connected to the color-combination-vertex ci,j that can be reached

from ci (if there would be another such edge-vertex, then the labeling λ would use

too many labels on the edges between UV and UE). Now, for the color-vertex cj

to be able to reach the color-combination-vertex ci,j, it must use the same labels

between ue and ci,j (using the same reasoning as before). Therefore the path from

cj to ue (through) uw uses also the labels 1, 2, . . . , 6. But then for cj to reach ci

the temporal path must use the vertex-vertex uw, even more it must use the edge-

vertex ue and consequently the vertex-vertex uv, from where it would reach ci. This

implies that we must have that uv = uv′ . Therefore, every color-vertex ci admits a

unique vertex-vertex uv that lies on all (ci, cj) and (cj, ci)-temporal paths. For the

conclusion of the proof, we claim that all vertices v corresponding to these unique

vertex-vertices uv of color-vertices ci, form a multicolored clique in G. This is true

as, by construction, a temporal path between two vertex-vertices uv, uw corresponds

to the edge vw = e ∈ E(G). Since every vertex-vertex is connected to exactly

one color-vertex, this corresponds to the vertex coloring of V (G). In G∗ there is

a temporal path among any two color vertices, therefore the vertex-vertices used

in these temporal paths can be reached among each other, which means that they

really do form a multicolored clique.
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5.5 Concluding remarks

In this chapter, we studied four natural temporal labeling problems. We considered

the settings where we have an age restriction on the labeling or not. Furthermore,

we investigated settings where the labeling has to temporally connect every vertex

pair and settings where only a given set of terminal vertices have to be pairwise

temporally connected. One variant (ML) is polynomial-time solvable, whereas the

three other variants (MAL, MSL, and MASL) turn out to be NP-hard. For the

latter two, we also give parameterized complexity results with respect to the number

of labels and to the number of terminals as parameters. Our work spawns several

future research directions.

Recall that a labeling λ satisfying MAL with the age restriction being the di-

ameter of the graph, is of the size O(n2) (see Observation 5.2.1). In Lemma 5.2.2,

we show that on cycles, the labeling uses Θ(n2) labels. Therefore, it would be in-

teresting to study, for which graph classes the optimal labeling uses o(n2) or O(n)

labels. We show that MAL is NP-complete when the upper age bound is equal to

the diameter d of the input graph G. On the other hand, if the upper age bound is

2r, where r is the radius of G, MAL can be computed in polynomial time. Indeed,

using the results of Section 5.2.1, it easily follows that if G contains (or does not

contain) a C4, then the labeling consists of 2n − 4 (or 2n − 3) labels. An interest-

ing question that arises now is: For which values of an upper age bound a, where

d ≤ a ≤ 2r, can MAL be solved efficiently? Furthermore, it would be interesting

to analyse the parameterized complexity of MAL. A canonical starting point would

be to consider the number of time labels as a parameter.

Our results for MSL and MASL also leave some open questions and several

natural future research directions. Recall that the number k of labels is a larger

parameter than the number of terminals. Hence, the parameterized complexity

with respect to those two parameters of MSL is resolved. For MASL it remains

open whether we can obtain an XP algorithm for those parameters.

More generally, it would be interesting to investigate structural parameteriza-

tions for all NP-hard problem variants of this work. We conjecture that all problem

variants are polynomial-time solvable if the input graph G is a tree. Consequently,
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parameters that measure tree-likeness, such as treewidth, are promising candidates

for obtaining FPT results.
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CHAPTER 6

Realizing Temporal Graphs From Fastest Travel Times

This chapter is the result of a collaborative work with George B. Mertzios, Hendrik

Molter, and Paul G. Spirakis.

The full paper, containing our detailed findings, is available as a preprint on

ArXiv [89]. The preliminary results were presented in the Proceedings of the 2nd

Symposium on Algorithmic Foundations of Dynamic Networks (SAND) 2024 [90].

The major part of the proof for Theorem 6.2.2 was contributed by Hendrik

Molter; therefore, I have chosen not to present it in this chapter. The complete

proof, including all the details, is available in our full paper.

6.1 Introduction

The (static) graph realization problem with respect to a graph property P is to

find a graph that satisfies property P , or to decide that no such graph exists. The

motivation for graph realization problems stems both from “verification” and from

network design applications in engineering. In verification applications, given the

outcomes of some experimental measurements (resp. some computations) on a net-

work, the aim is to (re)construct an input network which complies with them. If
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such a reconstruction is not possible, this proves that the measurements are in-

correct or implausible (resp. that the algorithm which made the computations is

incorrectly implemented). One example of a graph realization (or reconstruction)

problem is the recognition of probe interval graphs, in the context of the physical

mapping of DNA, where one wants to reconstruct relative positions of fragments of

DNA along the genome from certain pairwise overlap information (for more details

see [96,97] and [64, Chapter 4]). In network design applications, the goal is to design

network topologies having a desired property [10,66]. Analyzing the computational

complexity of the graph realization problems for various natural and fundamental

graph properties P requires a deep understanding of these properties. Among the

most studied parameters for graph realization are constraints on the distances be-

tween vertices [13, 14, 20, 30, 33, 71], on the vertex degrees [12, 45, 63, 65, 70], on the

eccentricities [11,15,77,95], and on connectivity [29,55–57,59,65], among others.

In the simplest version of a (static) graph realization problem with respect to

vertex distances, we are given a symmetric n × n matrix D and we are looking for

an n-vertex undirected and unweighted graph G such that Di,j equals the distance

between vertices vi and vj in G. This problem can be trivially solved in polynomial

time in two steps [71]: First, we build the graph G = (V, E) such that vivj ∈ E if

and only if Di,j = 1. Second, from this graph G we compute the matrix DG which

captures the shortest distances for all pairs of vertices. If DG = D then G is the

desired graph, otherwise there is no graph having D as its distance matrix. Non-

trivial variations of this problem have been extensively studied, such as for weighted

graphs [71, 111], as well as for cases where the realizing graph has to belong to a

specific graph family [13, 71]. Other variations of the problem include the cases

where entries of the input matrix D may contain a range of consecutive permissible

values [13,113,121], or even an arbitrary set of acceptable values [14] for the distance

between the corresponding two vertices.

In this chapter, we consider periodic temporal graphs, i. e., temporal graphs in

which the temporal availability of each edge of the underlying graph is periodic.

Many natural and technological systems exhibit periodic temporal behaviour. For

example, in railway networks, an edge is present at a time step t if and only if a train
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is scheduled to run on the respective rail segment at time t [8]. Similarly, a satellite,

which makes pre-determined periodic movements, can establish a communication

link (i. e., a temporal edge) with another satellite whenever they are sufficiently

close to each other; the existence of these communication links is also periodic. In a

railway (resp. satellite) network, a fastest temporal path from u to v represents the

fastest railway connection between two stations (resp. the quickest communication

delay between two moving satellites). Furthermore, periodicity appears also in (the

otherwise quite complex) social networks which describe the dynamics of people

meeting [94,115], as every person follows mostly a weekly routine [8].

Although periodic temporal graphs have already been studied (see [26, Class 8]

and [8, 47, 103, 104]), we make here the first attempt to understand the complexity

of a graph realization problem in the context of temporal graphs. Therefore, we

focus in this work on the most fundamental case, where all edges have the same

period ∆ (while in the more general case, each edge e in the underlying graph has a

period ∆e). As it turns out, the periodic temporal graph realization problem with

respect to a given n × n matrix D of the fastest duration times has a very different

computational complexity behaviour than the classic graph realization problem with

respect to shortest path distances in static graphs.

Formally, let G = (V, E) and ∆ ∈ N, and let λ : E → {1, 2, . . . , ∆} be an

edge-labeling function that assigns to every edge of G exactly one of the labels from

{1, . . . , ∆}. Then we denote by (G, λ, ∆) the ∆-periodic temporal graph (G, L),

where for every edge e ∈ E we have L(e) = {i∆ + x : i ≥ 0, x ∈ λ(e)}. In this case,

we call λ a ∆-periodic labeling of G; see Figure 6.1 for an illustration. When it is

clear from the context, we drop ∆ from the notation and we denote the (∆-periodic)

temporal graph by (G, λ). To avoid confusion, we would like to point out that the

notation for the labeling function in this chapter is slightly different to the one we

used so far. What was in the previous chapters denoted as a temporal graph (G, λ)

is equivalent to our notation (G, L). And, whenever we use and talk about the

labelling λ in this chapter, we mean the ∆-periodic labeling λ that assigns a single

value from {1, 2, . . . , ∆} to each edge.

131



v1 v2 v3 v4 v5

10t + 7 10t + 3 10t + 5 10t + 1

Figure 6.1: An example of a ∆-periodic temporal graph (G, λ, ∆), where ∆ = 10
and the 10-periodic labeling λ : E → {1, 2, . . . , 10} is as follows: λ(v1v2) = 7,
λ(v2v3) = 3, λ(v3v4) = 5, and λ(v4v5) = 1. Here, the fastest temporal path from
v1 to v2 traverses the first edge v1v2 at time 7, the second edge v2v3 a time 13, the
third edge v3v4 at time 15 and the last edge v4v5 at time 21. This results in the
total duration of 21 − 7 + 1 = 15 for the fastest temporal path from v1 to v5.

Our contribution. We initiate the study of naturally motivated graph re-

alization problems in the temporal setting. Our target is not to model unreliable

communication, but instead to verify that particular measurements regarding fastest

temporal paths in a periodic temporal graph are plausible (i. e., “realizable”). To

this end, we introduce and investigate the following problem, capturing the setting

described above:

Simple periodic Temporal Graph Realization (Simple TGR)

Input: An integer n × n matrix D, a positive integer ∆.

Question: Is there a graph G = (V, E) with vertices {v1, . . . , vn} and a ∆-

periodic labeling λ : E → {1, 2, . . . , ∆} such that, for every i, j, the

duration of the fastest temporal path from vi to vj in the ∆-periodic

temporal graph (G, λ, ∆) is Di,j?

Given the matrix D, refereed to also as the duration matrix, it is easy to observe

that, similarly to the static case, if Di,j = 1 then vi and vj must be connected by an

edge. This uniquely defines the graph G, which we call the underlying graph of D.

In our work we focus on exact algorithms. We start by showing the NP-hardness

of the problem (Theorem 6.2.1), even if ∆ is a small constant. To establish a

baseline for tractability, we show that Simple TGR is polynomial-time solvable if

the underlying graph is a tree (Theorem 6.3.1).

Building upon these initial results, we explore the possibilities to generalize

our polynomial-time algorithm using the distance-from-triviality parameterization

paradigm [49, 67]. That is, we investigate the parameterized computational com-

plexity of Simple TGR with respect to structural parameters of the underlying

graph that measure its “tree-likeness”.
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We obtain the following results. We show that Simple TGR is W[1]-hard

when parameterized by the feedback vertex number of the underlying graph (The-

orem 6.2.2). Note that our parameterized hardness result rules out fixed-parameter

tractability for several popular graph parameters such as treewidth, degeneracy,

cliquewidth, distance to chordal graphs, and distance to outerplanar graphs. We

complement this hardness result by showing that Simple TGR is fixed-parameter

tractable (FPT) with respect to the feedback edge number k of the underlying graph

(Theorem 6.3.2). This result also implies an FPT algorithm for any larger parameter,

such as the maximum leaf number. A similar phenomenon of getting W[1]-hardness

with respect to the feedback vertex number, while getting an FPT algorithm with

respect to the feedback edge number, has been observed only in a few other temporal

graph problems related to the connectivity between two vertices [27, 44,58].

Our FPT algorithm works as follows on a high level. First, we distinguish O(k2)

vertices which we call “important vertices”. Then, we guess the fastest temporal

paths for each pair of these important vertices; as we prove, the number of choices

we have for all these guesses is upper bounded by a function of k. Then we also need

to make several further guesses (again using a bounded number of choices), which

altogether leads us to specify a small (i. e., bounded by a function of k) number of

different configurations for the fastest paths between all pairs of vertices. For each of

these configurations, we must then make sure that the labels of our solution will not

allow any other temporal path from a vertex vi to a vertex vj have a strictly smaller

duration than Di,j. This naturally leads us to build one Integer Linear Program

(ILP) for each of these configurations. We manage to formulate all these ILPs by

having a number of variables that is upper-bounded by a function of k. Finally, we

use Lenstra’s Theorem [92] to solve each of these ILPs in FPT time. In the end, our

initial instance is a Yes-instance if and only if at least one of these ILPs is feasible.

The above results provide a fairly complete picture of the parameterized compu-

tational complexity of Simple TGR with respect to structural parameters of the

underlying graph which measure “tree-likeness”. To obtain our results, we prove

several properties of the fastest temporal paths, which may be of independent in-

terest.
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Related work. There are some problem settings that share similarities with

ours, which we discuss now in more detail.

Several problems have been studied where the goal is to assign labels to (sets of)

edges of a given static graph in order to achieve certain connectivity-related proper-

ties [4,43,87,98]. The main difference to our problem setting is that in the mentioned

works, the input is a graph and the sought labeling is not periodic. Furthermore, the

investigated properties are temporal connectivity between all vertices [4,87,98], tem-

poral connectivity among a subset of vertices [87], or reducing reachability among

the vertices [43]. In all these cases, the duration of the temporal paths has not been

directly considered.

Preliminaries and notation. Let P = (u = v1, v2, . . . , vp = v) be a path

from u to v in G. Recall that, in this chapter, every edge has exactly one time label

in every period of ∆ consecutive time steps. Therefore, as we are only interested

in the fastest duration of temporal paths, many times we refer to (P, λ, ∆) as any

of the temporal paths from u = v1 to v = vp along the edges of P , which starts

at the edge v1v2 at time λ(v1v2) + c∆, for some c ∈ N, and then sequentially visits

the rest of the edges of P as early as possible. We denote by d(P, λ, ∆), or simply

by d(P, λ) when ∆ is clear from the context, the duration of any of the temporal

paths (P, λ, ∆); note that they all have the same duration. For a pair of vertices

u, v ∈ V (G) we denote by d(u, v) the duration of the fastest temporal path from

u to v in (G, λ). Whenever we use the term label of an edge e, we actually mean

λ(e) ∈ [∆]. Note that for a given path (P, λ, ∆) that passes through the edge e,

the label used by P at that edge is λ(e) + c∆, for some c ≥ 0. Many times we also

refer to a path P = (u = v1, v2, . . . , vp = v) from u to v in G, as a temporal path in

(G, λ, ∆), where we actually mean that (P, λ, ∆) is a temporal path with P as its

underlying (static) path.

We remark that a fastest path between two vertices in a temporal graph can

be computed in polynomial time [22, 130]. Hence, given a ∆-periodic temporal

graph (G, λ, ∆), we can compute in polynomial time the matrix D which consists

of durations of the fastest temporal paths among all pairs of vertices in (G, λ, ∆).
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6.2 Hardness results for Simple TGR

In this section, we prove that in general, it is NP-hard to determine a ∆-periodic

temporal graph (G, λ) respecting a duration matrix D, even if ∆ is a small constant.

Theorem 6.2.1. Simple TGR is NP-hard for all ∆ ≥ 3.

Proof. We present a polynomial-time reduction from the NP-hard problem NAE

3-SAT [116]. We are given a formula ϕ that is a conjunction of so-called NAE (not-

all-equal) clauses, where each clause contains exactly 3 literals (with three distinct

variables). A NAE clause evaluates to true if and only if not all of its literals are

equal, that is, at least one literal evaluates to true and at least one literal evaluates

to false. We are asked whether ϕ admits a satisfying assignment.

Given an instance ϕ of NAE 3-SAT, we construct an instance (D, ∆) of Simple

TGR as follows.

We start by describing the vertex set of the underlying graph G of D.

• For each variable xi in ϕ, we create three variable vertices xi, xT
i , xF

i .

• For each clause c in ϕ, we create one clause vertex c.

• We add one additional super vertex v.

Next, we describe the edge set of G.

• For each variable xi in ϕ we add the following five edges: {xi, xT
i }, {xi, xF

i },

{xT
i , xF

i }, {xT
i , v}, and {xF

i , v}.

• For each pair of variables xi, xj in ϕ with i ̸= j we add the following four edges:

{xT
i , xT

j }, {xT
i , xF

j }, {xF
i , xT

j }, and {xF
i , xF

j }.

• For each clause c in ϕ we add one edge for each literal. Let xi appear in c. If

xi appears non-negated in c we add edge {c, xT
i }. If xi appears negated in c

we add edge {c, xF
i }.

This finishes the construction of G. For an illustration see Figure 6.2.

We set ∆ to some constant larger than two, that is, ∆ ≥ 3. Next, we specify

the durations in the matrix D between all vertex pairs. For the sake of simplicity
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Figure 6.2: Illustration of the temporal graph (G, λ) from the NP-hardness re-
duction, where the NAE 3-SAT formula ϕ is of the form ϕ = NAE(x1, x2, x3) ∧
NAE(x1, x2, x4). To improve the readability, we draw edges between vertices xT

i and
xF

j (where i ̸= j) with grey dotted lines. Presented is the labeling of G correspond-
ing to the assignment x1 = x2 = true and x3, x4 = false, where all unlabeled
edges get the label 2.

we write Du,v as d(u, v), where u, v are two vertices of G. We start by setting the

value of d(u, v) = 1 where u and v are two adjacent vertices in G.

• For each variable xi in ϕ and the super vertex v we specify the following

durations: d(xi, v) = 2 and d(v, xi) = ∆.

• For each clause c in ϕ and the super vertex v we specify the following durations:

d(c, v) = 2 and d(v, c) = ∆ − 1.

• Let xi be a variable that appears in clause c, then we specify the following

durations: d(c, xi) = 2 and d(xi, c) = ∆. If xi appears non-negated in c we

specify the following durations: d(c, xF
i ) = 2 and d(xF

i , c) = ∆. If xi appears

negated in c we specify the following durations: d(c, xT
i ) = 2 and d(xT

i , c) = ∆.

• Let xi be a variable that does not appear in clause c, then we specify the

following durations: d(xi, c) = 2∆, d(c, xi) = ∆+2 and d(c, xT
i ) = d(c, xF

i ) = 2,

d(xT
i , c) = d(xF

i , c) = ∆.

• For each pair of variables xi ̸= xj in ϕ we specify the following durations:

d(xi, xj) = 2∆ + 1 and d(xi, xT
j ) = d(xi, xF

j ) = ∆ + 1.
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• For each pair of clauses ci ̸= cj in ϕ we specify the following durations:

d(ci, cj) = ∆ + 1.

This finishes the construction of the instance (D, ∆) of Simple TGR which can

clearly be done in polynomial time. In the remainder, we show that (D, ∆) is a

Yes-instance of Simple TGR if and only if NAE 3-SAT formula ϕ is satisfiable.

(⇒): Assume the constructed instance (D, ∆) of Simple TGR is a Yes-

instance. Then there exists a label λ(e) for each edge e ∈ E(G) such that for each

vertex pair u, w in the temporal graph (G, λ, ∆) we have that a fastest temporal

path from u to w is of duration d(u, w).

We construct a satisfying assignment for ϕ as follows. For each variable xi, if

λ({xi, xT
i }) = λ({xT

i , v}), then we set xi to true, otherwise we set xi to false.

To show that this yields a satisfying assignment, we need to prove some properties

of the labeling λ. First, observe that adding an integer t to all time labels does not

change the duration of any temporal paths. Second, observe that if for two vertices

u, w we have that d(u, w) equals the distance between u and w in G (i. e., the duration

of the fastest temporal path from u to w equals the distance of the shortest path

between u and w), then there is a shortest path P from u to w in G such that the

labeling λ assigns consecutive time labels to the edges of P .

Let λ({xi, xT
i }) = t and λ({xi, xF

i }) = t′, for an arbitrary variable xi. If both

λ({xT
i , v}) ̸= t+1 and λ({xF

i , v}) ̸= t′+1, then d(xi, v) > 2, which is a contradiction.

Thus, for every variable xi, we have that λ({xT
i , v}) = t + 1 or λ({xF

i , v}) = t′ + 1

(or both). In particular, this means that if λ({xi, xF
i }) = λ({xF

i , v}), then we set xi

to false, since in this case λ({xi, xT
i }) ̸= λ({xT

i , v}).

Now assume for a contradiction that the described assignment is not satisfying.

Then there exists a clause c that is not satisfied. Suppose that x1, x2, x3 are three

variables that appear in c. Recall that we require d(c, v) = 2 and d(v, c) = ∆ − 1.

The fact that d(c, v) = 2 implies that we must have a temporal path consisting of two

edges from c to v, such that the two edges have consecutive labels. By construction

of G there are three candidates for such a path, one for each literal of c. Assume

w.l.o.g. that x1 appears in c non-negated (the case of a negated appearance of x1 is

symmetrical) and that the temporal path realizing d(c, v) = 2 goes through vertex
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xT
1 . Let us denote with t = λ({xT

1 , v}). It follows that λ({xT
1 , c}) = λ({xT

1 , v})−1 =

t−1. Furthermore, since d(c, x1) = 2 we also have that λ({xT
1 , c}) = λ({x1, xT

1 })−1.

Therefore λ({x1, xT
1 }) = λ({xT

1 , v}) = t. This implies that x1 is set to true. Let us

observe paths from v to c. We know that d(v, c) = ∆−1. The underlying path of the

fastest temporal path from v to c, that goes through xT
1 is the path P = (v, xT

1 , c).

Since λ({xT
1 , c}) > λ({xT

1 , v}) we get that the duration of the temporal path (P, λ)

is equal to d(P, λ) = (∆ + t − 1) − t + 1 = ∆. This implies that the fastest temporal

path from v to c is not (P, λ) and therefore does not pass through xT
1 . Since there

are only two other vertices connected to c, we have only two other edges incident to

c, that can be used on a fastest temporal path v to c. Suppose now w.l.o.g. that also

x2 appears in c non-negated (the case of a negated appearance of x2 is symmetrical)

and that the temporal path realizing d(v, c) = ∆ − 1 goes through vertex xT
2 . Let

us denote with t′ = λ({xT
2 , v}). Since the fastest temporal path from v to c is of

the duration ∆ − 1, and the edge xT
2 c is the only edge incident to vertex c and edge

{xT
2 , v}, it follows that λ({xT

2 , c}) ≥ λ({xT
2 , v}) − 2 = t′ − 2. Since d(x2, v) = 2 it

follows that λ({x2, xT
2 }) = λ({xT

2 , v}) − 1 = t′ − 1. Knowing this and the fact that

d(x2, c) = 2, we get that λ({xT
2 , c}) must be equal to t′ − 2. Therefore the fastest

temporal path from v to c passes through edges {xT
2 , v} and {xT

2 , c}. In the above

we have also determined that λ({x2, xT
2 }) ̸= λ({xT

2 , v}), which implies that x2 is set

to false. But now we have that x1, x2 both appear in c non-negated, where one of

them is true, while the other is false, which implies that the clause c is satisfied,

a contradiction.

(⇐): Assume that ϕ is satisfiable. Then there exists a satisfying assignment for

the variables in ϕ.

We construct a labeling λ as follows.

• All edges incident with a clause vertex c obtain label one.

• If variable xi is set to true, we set λ({xF
i , v}) = 3.

• If variable xi is set to false, we set λ({xT
i , v}) = 3.

• We set the labels of all other edges to two.
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For an example of the constructed temporal graph see Figure 6.2. We now verify

that all durations are realized.

• For each variable xi in ϕ we have to check that d(xi, v) = 2 and d(v, xi) = ∆.

If xi is set to true, then there is a temporal path from xi to v via xF
i of

duration 2, since λ({xi, xF
i }) = 2 and λ({xF

i , v}) = 3. For a temporal path

from v to xi, we observe the following. The only possible labels to leave the

vertex v are 2 and 3, which take us from v to xT
j or xF

j of some variable xj.

The only two edges incident to xi have labels 2, therefore the fastest path from

v to xi cannot finish before the time ∆ + 2. The fastest way to leave v and

enter to xi would then be to leave v at edge {xF
i , v} with label 3, and continue

to xi at time ∆ + 2, which gives us the desired duration ∆.

If xi is set to false, then, by similar arguing, there is a temporal path from

xi to v via xT
i of duration 2, and a temporal path from v to xi, through xF

i of

duration ∆.

• For each clause c in ϕ we have to check that d(c, v) = 2 and d(v, c) = ∆ − 1:

Suppose xi, xj, xk appear in c. Since we have a satisfying assignment at least

one of the literals in c is set to true and at least one to false. Suppose xi

is the variable of the literal that is true in c, and xj is the variable of the

literal that is false in c. Let xi appear non-negated in c and is therefore

set to true (the case when xi appears negated in c and is set to false is

symmetric). Then there is a temporal path from c to v through xT
i such that

λ({xT
i , c}) = 1 and λ({xT

i , v}) = 2. Let xj appear non-negated in c and is

therefore set to false (the case when xj appears negated in c and is set to

true is symmetric). Then there is a temporal path from v to c through xT
j

such that λ({xT
j , v}) = 3 and λ({xT

j , c}) = 1, which results in a temporal path

from v to c of duration ∆ − 1.

• Let xi be a variable that appears in clause c. If xi appears non-negated in c

we have to check that d(c, xi) = d(c, xF
i ) = 2 and d(xi, c) = d(xF

i , c) = ∆.

There is a temporal path from c to xi via xT
i and also a temporal path from
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c to xF
i via xT

i such that λ({xT
i , c}) = 1 and λ({xi, xT

i }) = λ({xT
i , xF

i }) = 2,

which proves the first equality. There are also the following two temporal

paths, first, from xi to c through xT
i and second, from xF

i to c through xT
i .

Both of the temporal paths start on the edge with the label 2, as λ({xi, xT
i }) =

λ({xT
i , xF

i }) = 2 and finish on the edge with label 1, as λ({xT
i , c}) = 1.

If x appears negated in c we have to check that d(c, xi) = d(c, xT
i ) = 2 and

d(xi, c) = d(xT
i , c) = ∆.

There is a temporal path from c to x via xF and also a temporal path from

c to xT via xF such that λ({c, xF }) = 1 and λ({x, xF }) = λ({xT , xF }) = 2,

which proves the first inequality. There are also the following two temporal

paths, first, from xi to c through xF
i and second, from xT

i to c through xF
i .

Both of the temporal paths start on the edge with the label 2, as λ({xi, xF
i }) =

λ({xT
i , xF

i }) = 2 and finish on the edge with label 1, as λ({xF
i , c}) = 1. Which

proves the second equality.

• Let xi be a variable that does not appear in clause c, then we have to check

that first, d(c, xT
i ) = d(c, xF

i ) = 2, second, d(xT
i , c) = d(xF

i , c) = ∆, third,

d(c, xi) = ∆ + 2, and fourth d(xi, c) = 2∆.

Let xj be a variable that appears non-negated in c (the case where xj appears

negated is symmetric). Then there is a temporal path from c to xT
i via xT

j

and also a temporal path from c to xF
i via xT

j such that λ({xT
j , c}) = 1 and

λ({xT
j , xT

i }) = λ({xT
j , xF

i }) = 2, which proves the first equality. Using the

same temporal path in the opposite direction, i. e., first the edge xT
j c and then

one of the edges {xT
j , xF

i } or {xT
j , xT

i } at times 2 and ∆ + 1, respectively,

yields the second equality. For a temporal path from c to xi, we traverse the

following three edges {xT
j , c}, {xT

j , xF
i }, and {xF

i , xi}, with labels 1, 2, and 2

respectively (i. e., the path traverses them at time 1, 2 and ∆+2, respectively),

which proves the third equality. Now for the case of a temporal path from xi to

c, we use the same three edges but in the opposite direction, namely {xF
i , xi},

{xT
j , xF

i }, and {xT
j , c}, again at times 2, ∆+2, and 2∆+1, respectively, which

proves the last equality. Note that all of the above temporal paths are also
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the shortest possible, and since the labels of the first and last edges (of these

paths) are unique, it follows that we cannot find faster temporal paths.

• For each pair of variables xi ̸= xj in ϕ we have to check that d(xi, xj) = 2∆+1

and d(xi, xT
j ) = d(xi, xF

j ) = ∆ + 1.

There is a path from xi to xj that passes first through one of the vertices xT
i

or xF
i , and then through one of the vertices xT

j or xF
j . This temporal path is

of length 3, where all of the edges have label 2, which proves the first equality.

Now, a temporal path from xi to xT
j (resp. xF

j ), passes through one of the

vertices xT
i or xF

i . This path is of length two, where all of the edges have label

2, which proves the second equality. Note that all of the above temporal paths

are also the shortest possible, and since the labels of the first and last edges (of

these paths) are unique, it follows that we cannot find faster temporal paths.

• For each pair of clauses ci ̸= cj in ϕ we have to check that d(ci, cj) = ∆ + 1.

Let xk be a variable that appears non-negated in ci and xℓ the variable that

appears non-negated in cj (all other cases are symmetric). There is a path

of length three from ci to cj that passes first through vertex xT
k and then

through vertex xT
ℓ . Therefore the temporal path from ci to cj uses the edges

{xT
k , ci}, {xT

ℓ , cj}, and {xT
k , xT

ℓ }, with labels 1, 2, and 1 (at times 1, 2, and

∆ + 1), respectively, which proves the desired equality. Note also that this is

the shortest path between ci and cj, and that the first and the last edge must

have the label 1, therefore it follows that this is the fastest temporal path.

Lastly, observe that the above constructed labeling λ uses values {1, 2, 3} ⊆ [∆],

therefore ∆ ≥ 3.

When investigating the parameterized computational hardness of Simple TGR

with respect to structural parameters of the underlying graph, it turns out that

Simple TGR is W[1]-hard when parameterized by the feedback vertex number of

the underlying graph. The feedback vertex number of a graph G is the cardinality

of a minimum vertex set X ⊆ V (G) such that G − X is a forest. The set X is called

a feedback vertex set.
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Theorem 6.2.2. Simple TGR is W[1]-hard when parameterized by the feedback

vertex number of the underlying graph.

The proof of this result can be found in [89].

6.3 Algorithms for Simple TGR

In this section, we provide several algorithms for Simple TGR. By Theorem 6.2.1

we have that Simple TGR is NP-hard in general, hence we start by identifying re-

stricted cases where we can solve the problem in polynomial time. We first show in

Section 6.3.1 that if the underlying graph G of an instance (D, ∆) of Simple TGR

is a tree, then we can determine desired ∆-periodic labeling λ of G in polynomial

time. In Section 6.3.2 we generalize this result. We show that Simple TGR is

fixed-parameter tractable when parameterized by the feedback edge number of the

underlying graph. Note that our parameterized hardness result (Theorem 6.2.2) im-

plies that we presumably cannot replace the feedback edge number with the smaller

parameter feedback vertex number, or any other parameter that is smaller than the

feedback vertex number, such as, e.g. the treewidth.

6.3.1 Polynomial-time algorithm for trees

We now provide a polynomial-time algorithm for Simple TGR when the underlying

graph is a tree. The main idea behind the algorithm utilizes the fact that there exists

a unique path among each pair of vertices in a tree, therefore we know the exact

durations of all paths. We start by determining the structure of the tree from the

matrix D, if possible. We then assign a label 1 to an arbitrary edge and from there

extend a labeling to a path of length two, that has one labeled and one unlabeled

edge. We do this by using the definition of the duration of a path (more precisely,

the duration of a path of length two is the value of the last label minus the value of

the first label plus one). We repeat this process until all edges have been labeled. At

the end we check if the labeled temporal graph satisfies the fastest path durations

from the matrix D.
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Theorem 6.3.1. Simple TGR can be solved in polynomial time on trees.

Proof. Let D be an input matrix of Simple TGR of dimension n × n. Let us

fix the vertices of the corresponding graph G of D as v1, v2, . . . , vn, where vertex

vi corresponds to the row and column i of matrix D. At the same time, we also

check if Di,i = 0, for all i ∈ [n]. When G is constructed we run the DFS algorithm

on it and check that it has no cycles. If at any step we encounter a problem, our

algorithm stops and returns a negative answer.

Having computed G, our algorithm proceeds as follows. We pick an arbitrary

edge h and give it label 1, that is, λ(h) = 1. Now we push all edges adjacent with h

into a (initially empty) queue. We repeat the following as long as the queue is not

empty:

• Pop edge e = {u, v} from the queue. Since e was pushed into the queue,

there is an edge e′ incident with e that already obtained a label. Let w.l.o.g.

e′ = {v, w}. Then we set λ(e) = (λ(e′) − Du,w + 1) mod ∆.

• Push all edges incident with e that have not received a label yet into the queue.

When the queue is empty, all edges have received a label. Iterate over all vertex

pairs u, v and check whether the fastest path from u to v in (G, λ) has duration

Du,v. If this check succeeds for all vertex pairs, output yes, otherwise abort.

It is easy to see that the described algorithm runs in polynomial time. In the

remainder, we prove that it is correct.

(⇒): Since the algorithm checks at the end whether all durations specified in

D are realized by the corresponding fastest paths, we clearly face a yes-instance

whenever the algorithm outputs a labeling.

(⇐): Assume we face a yes-instance, then there exists a labeling λ⋆ that realizes

all durations specified in D. Let e⋆ denote the edge initially picked by our algorithm.

For all edges e let λ(e) = (λ⋆(e) − λ⋆(e⋆) + 1) mod ∆. Clearly, the labeling λ also

realizes all durations specified in D since λ is obtained by adding the constant

(1 − λ⋆(e⋆)) modulo ∆ to all labels of λ⋆ which does not change the duration of any

temporal path, that is all durations in (G, λ⋆) are the same as their counterparts in

(G, λ). We claim that our algorithm computes and outputs λ.
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We prove that our algorithm computes λ by induction on the distance of the

labeled edges to e⋆, where the distance of two edges e, e′ is defined as the length of

a shortest path that uses e as its first edge and e′ as its last edge.

Initially, our algorithm labels e⋆ with 1, which equals λ(e⋆). Now let e be an edge

popped off the queue by the algorithm in some iteration, that is on the distance i

from e⋆. Let e′ be the edge incident with e that is on the distance i − 1 from e⋆.

Since G is a tree e′ has already been considered by the algorithm and thus already

has a label. By induction, we have that the algorithm labeled e′ with λ(e′). Assume

that e = {u, v} and e′ = {v, w}. Since G is a tree there is only one path from

u to w in G and it uses edges e and e′. It follows that λ(e′) − λ(e) + 1 = Du,w if

λ(e′) > λ(e), and λ(e′)−λ(e)+∆+1 = Du,w otherwise. Our algorithm labels e with

(λ(e′)−Du,w +1) mod ∆. It is straightforward to verify that the label of e computed

by the algorithm equals λ(e). It follows that the algorithm computes λ.

6.3.2 FPT-algorithm for feedback edge number

Recall that the main reason, for which Simple TGR is straightforward to solve on

trees, is twofold:

• between any pair of vertices vi and vj in the tree T , there is a unique path P

in T from vi to vj, and

• in any periodic temporal graph (T, λ, ∆) and any fastest temporal path P =

((e1, t1), . . . , (ei, ti), . . . , (ej, tj), . . . , (eℓ−1, tℓ−1)) from v1 to vℓ we have that the

sub-path P ′ = ((ei, ti), . . . , (ej−1, tj−1)) is also a fastest temporal path from vi

to vj.

However, these two nice properties do not hold when the underlying graph is not

a tree. For example, in Figure 6.3, the fastest temporal path from u to v is Pu,v

(depicted in blue) goes through w, however, the sub-path of Pu,v that stops at w is

not the fastest temporal path from u to w. The fastest temporal path from u to w

consists only of the single edge uw (with label 9 and duration 1, depicted in red).

Nevertheless, we prove in this section that we can still solve Simple TGR

efficiently if the underlying graph is similar to a tree; more specifically we show
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Figure 6.3: An example of a temporal graph (with ∆ ≥ 9), where the fastest
temporal path Pu,v (in blue) from u to v is of duration 7, while the fastest temporal
path Pu,w (in red) from u to a vertex w, that is on a path Pu,v, is of duration 1 and
is not a subpath of Pu,v.

the following result, which turns out to be non-trivial.

Theorem 6.3.2. Simple TGR is in FPT when parameterized by the feedback edge

number of the underlying graph.

From Theorem 6.2.2 and Theorem 6.3.2 we immediately get the following, which

is the main result of the chapter.

Corollary 6.3.3. Simple TGR is:

• in FPT when parameterized by the feedback edge number or any larger pa-

rameter, such as the maximum leaf number.

• W[1]-hard when parameterized by the feedback vertex number or any smaller

parameter, such as: treewidth, degeneracy, cliquewidth, distance to chordal

graphs, and distance to outerplanar graphs.

Before presenting the structure of our algorithm for Theorem 6.3.2, observe that,

in a static graph, the number of paths between two vertices can be upper-bounded

by a function f(k) of the feedback edge number k of the graph [27]. This is true as

any such path can traverse 0, 1, 2, . . . k feedback edges in different order. Therefore,

for any fixed pair of vertices u and v, we can “guess” the edges of the fastest temporal

path from u to v (by guess we mean enumerate and test all possibilities). However,

for an FPT algorithm with respect to k, we cannot afford to guess the edges of

the fastest temporal path for each of the O(n2) pairs of vertices. To overcome this

difficulty, our algorithm follows this high-level strategy:

• We identify a small number f(k) of “important vertices”.
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• For each pair u, v of important vertices, we guess the edges of the fastest

temporal path from u to v (and from v to u).

• From these guesses we can still not deduce the edges of the fastest temporal

paths between many pairs of non-important vertices. However, as we prove,

it suffices to guess only a small number of specific auxiliary structures (to be

defined later).

• From these guesses we deduce fixed relationships between the labels of most

of the edges of the graph.

• For all the edges, for which we have not deduced a label yet, we introduce a

variable. With all these variables, we build an Integer Linear Program (ILP).

Among the constraints in this ILP, we have that, for each of the O(n2) pairs

of vertices u, v in the graph, the duration of one specific temporal path from

u to v (according to our guesses) is equal to the desired duration Du,v, while

the duration of each of the other temporal path from u to v is at least Du,v.

• Each specific configuration of fastest temporal paths among all pairs of vertices

corresponds to a specific ILP instance. By exhaustively trying all possible

fastest temporal paths configurations it follows that our instance of Simple

TGR has a solution if and only if at least one of these ILPs has a feasible

solution. As each ILP can be solved in FPT time with respect to k by Lenstra’s

Theorem [92] (the number of variables is upper bounded by a function of k),

we obtain our FPT algorithm for Simple TGR with respect to k.

For the remainder of this section, we fix the following notation. Let D be the

input matrix of Simple TGR, i. e., the matrix of the fastest temporal paths between

all pairs of n vertices, and let G be its underlying graph, on n vertices and m

edges. With F we denote a minimum feedback edge set of G, and with k the

feedback edge number of G. We are now ready to present our FPT algorithm. For

easier readability, we split the description and analysis of the algorithm into five

subsections. We start with a preprocessing procedure for graph G, where we define

a set of interesting vertices which then allows us to guess the desired structures.
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Next, we introduce some extra properties of our problem, that we then use to create

ILP instances and their constraints. At the end, we present how to solve all instances

and produce the desired labeling λ of G, if possible.

Preprocessing of the input

From the underlying graph G of D we extract a (connected) graph G′ by iteratively

removing vertices of degree one from G, and denote with

Z = V (G) \ V (G′).

Then we determine a minimum feedback edge set F of G′. Note that F is also

a minimum feedback edge set of G. Lastly, we determine sets U , of vertices of

interest, and U∗ of the neighbors of vertices of interest, in the following way. Let T

be a spanning tree of G′, with F being the corresponding feedback edge set of G′.

Let V1 ⊆ V (G′) be the set of leaves in the spanning tree T , V2 ⊆ V (G′) be the set

of vertices of degree two in T , that are incident to at least one edge in F , and let

V3 ⊆ V (G′) be the set of vertices of degree at least 3 in T . Then |V1| + |V2| ≤ 2k,

since every leaf in T and every vertex in V2 is incident to at least one edge in F ,

and |V3| ≤ |V1| by the properties of trees. We denote with

U = V1 ∪ V2 ∪ V3

the set of vertices of interest. It follows that |U | ≤ 4k. We set U∗ to be the set of

vertices in V (G′) \ U that are neighbors of vertices in U , i. e.,

U∗ = {v ∈ V (G′) \ U : ∃u ∈ U, v ∈ N(u)}.

Again, using the tree structure, we get that for any u ∈ U its neighborhood is of

size |N(u)| ∈ O(k), since every neighbor of u is the first vertex of a (unique) path

to another vertex in U . It follows that |U∗| ∈ O(k2).

From the construction of Z (i. e., by exhaustively removing vertices of degree

one from G), it follows that G[Z] (the graph induced in G by Z) is a forest, i. e.,
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Figure 6.4: An example of a graph with its important vertices: U (in blue), U∗ (in
green) and Z∗ (in orange). Corresponding feedback edges are marked with a thick
red line, while dashed edges represent the edges (and vertices) “removed” from G′

at the initial step.

consists of disjoint trees. Each of these trees has a unique neighbor v in G′. Denote

by Tv the tree obtained by considering such a vertex v and all the trees from G[Z]

that are incident to v in G. We then refer to v as the clip vertex of the tree Tv. In

the case where v is a vertex of interest, we define also the set Z∗
v of representative

vertices of Tv, as follows. We first create an empty set Cw for every vertex w that

is a neighbor of v in G′. We then iterate through every vertex r that is in the first

layer of the tree Tv (i. e., vertex that is a child of the root v in the tree Tv), check

the matrix D and find the vertex w ∈ NG′(v) that is on the smallest duration from

r. In other words, for an r ∈ NTv(v) we find w ∈ NG′(v) such that Dr,w ≤ Dr,w′

for all w′ ∈ NG′(v). We add vertex r to Cw. In the case when there exists also

another vertex w′ ∈ NG′(v) for which Dr,w′ = Dr,w, we add r also to the set Cw′ .

In fact, in this case, Cw′ = Cw. At the end we create |NG′(v)| ∈ O(k) sets Cw,

whose union contains all children of v in Tv. For every two sets Cw and Cw′ , where

w, w′ ∈ NG′(v), we have that either Cw = Cw′ , or Cw ∩ Cw′ = ∅. We interpret each

of these sets {Cw : w ∈ NG′(v)} as an equivalence class of the neighbors of v in

the tree Tv. Now, from each equivalence class Cw, we choose an arbitrary vertex

rw ∈ Cw and put it into the set Z∗
v . We repeat the above procedure for all trees Tu

with the clip vertex u from U , and define Z∗ as

Z∗ =
⋃

v∈U

Z∗
v . (6.1)

Since |U | ∈ O(k) and for each u ∈ U it holds |NG′(u)| ∈ O(k), we get that |Z∗| ∈

O(k2). Finally, the set of important vertices is defined as the set U ∪ U∗ ∪ Z∗. For

an illustration see Figure 6.4. Note that determining sets U, U∗ and Z∗ takes linear

time.

148



Recall that a labeling λ of G satisfies D if the duration of a fastest temporal path

from each vertex vi to each other vertex vj equals Dvi,vj
. In order to find a labeling

that satisfies this property we split our analysis into nine cases. We consider the

fastest temporal paths where the starting vertex is in one of the sets U, V (G′)\U, Z,

and similarly the destination vertex is in one of the sets U, V (G′) \ U, Z. In each

of these cases, we guess the underlying path P that at least one fastest temporal

path from the vertex vi to vj follows, which results in one equality constraint for the

labels on the path P . For all other temporal paths from vi to vj we know that they

cannot be faster, so we introduce inequality constraints for them. This results in

producing f(k) · |D|O(1) constraints, where |D| = n2. Note that we have to do this

while keeping the total number of variables upper-bounded by some function in k.

For an easier understanding and analysis of the algorithm, we give the following

definition.

Definition 6.3.4. Let U ⊆ V (G′) be a set of vertices of interest and let u, v ∈ U . A

path P = (u = v1, v2, . . . , vp = v) with at least two edges in graph G′, where all inner

vertices are not in U , i. e., vi /∈ U for all i ∈ {2, 3, . . . , p − 1}, is called a segment

from u to v, which we denote as Su,v.

Note from Definition 6.3.4 that Su,v ̸= Sv,u since we consider paths to be di-

rected. It is also worth emphasizing that Sv,u is essentially the reverse path of Su,v.

Furthermore, it’s important to observe that a temporal path in G′ between two ver-

tices of interest is either a segment or consists of a sequence of segments. Moreover,

any inner vertex vi in the segment Su,v (vi ∈ Su,v \ {u, v}) is part of precisely two

segments: Su,v and Sv,u. Given that we have at most 4k interesting vertices in G′,

we can deduce the following crucial result.

Corollary 6.3.5. There are O(k2) segments in G′.

Guessing necessary structures

Once the sets U, U∗ and Z∗ are determined, we are ready to start guessing the nec-

essary structures. Note that whenever we say that we guess the fastest temporal
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path between two vertices, we mean that we guess the underlying path of a repre-

sentative fastest temporal path between those two vertices. To describe the guesses,

we introduce the following notation. Let u, v, x be three vertices in G′. We write

u ; x → v to denote a temporal path from u to v that passes through x, and then

goes directly to v (via one edge or a unique path in G′). In other words, if the fastest

path between two vertices is not uniquely determined we denote it by ;, while if it

is unique we denote it by →. We guess the following paths.

G-1. The fastest temporal paths between all pairs of vertices of U . For a pair u, v

of vertices in U , there are kO(k) possible paths in G′ between them. Therefore,

we have to try all kO(k) possible paths, where at least one of them will be a

fastest temporal path from u to v, respecting the values from D. Repeating

this procedure for all pairs of vertices u, v ∈ U we get kO(k3) different variations

of the fastest temporal paths between all pairs of vertices in U .

G-2. The fastest temporal paths between all pairs of vertices in Z∗, which by similar

arguing as for vertices in U , gives us kO(k5) guesses.

G-3. The fastest temporal paths between all pairs of vertices in U∗. This gives us

kO(k5) guesses.

G-4. The fastest temporal paths from vertices of U to vertices in U∗, and vice versa,

the fastest temporal paths from vertices in U∗ to vertices in U . This gives us

kO(k4) guesses.

G-5. The fastest temporal paths from vertices of U to vertices in Z∗, and vice versa.

This gives us kO(k4) guesses.

G-6. The fastest temporal paths from vertices of U∗ to vertices in Z∗, and vice versa.

This gives us kO(k5) guesses.

With the information provided by the described guesses, we are still not able to

determine all fastest paths. For example consider the case depicted in Figure 6.5.

Therefore, we introduce additional guesses that provide us with sufficient informa-

tion to determine all fastest paths. We guess the following structures.

150



v1
3

v2

5

v3

6

v4

7

v5

11

v6

17

v7

14

v8

10

v9

9

v10

8
v11

5

w
P Q

Figure 6.5: In the above graph vertices v1, v11, w are in U , while v2, v10 are in U∗.
Numbers above all vi represent the values of the fastest temporal paths from w to
each of them (i. e., the entries in the w-th row of matrix D). From the basic guesses,
we know the fastest temporal path P from w to v2 (depicted in blue) and the fastest
temporal path Q from w to v10. From the values of durations from w to each vi we
cannot determine the fastest paths from w to all vi. More precisely, we know that w
reaches v2, v3, v4, v5 (resp. v10, v9, v9, v7) by first using the path P (resp. Q) and then
proceeding through the vertices, but we do not know how w reaches v6 the fastest.
Therefore we have to introduce some more guesses.

G-7. Inner segment guess I. Let Su,v = (u = v1, v2, . . . , vp = v) and Sw,z = (w =

z1, z2, . . . , zr = z) be two segments in G′. We want to guess the fastest tempo-

ral path v2 → u ; w → z2. We repeat this procedure for all pairs of segments.

Since there are O(k2) segments in G′, there are kO(k5) possible paths of this

form.

Recall that Su,v ̸= Sv,u for every u, v ∈ U . Furthermore note that we did not

assume that {u, v} ∩ {w, z} = ∅. Therefore, by repeatedly making the above

guesses, we also guess the following fastest temporal paths: v2 → u ; z → zr−1,

v2 → u ; v → vp−1, vp−1 → v ; w → z2, vp−1 → v ; z → zr−1, and

vp−1 → v ; u → v2. For an example see Figure 6.6a.

G-8. Inner segment guess II. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment

in G′, and let w ∈ U ∪ Z∗. We want to guess the following fastest tempo-

ral paths w ; u → v2, w ; v → vp−1 → · · · → v2, and v2 → u ; w,

v2 → v3 → · · · v ; w.

For fixed Su,v and w ∈ U ∪ Z∗ we have kO(k) different possible such paths,

therefore we make kO(k5) guesses for these paths. For an example see Fig-

ure 6.6b.

G-9. Split vertex guess I. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G′,

and let us fix a vertex vi ∈ Su,v \ {u, v}. In the case when Su,v is of length

4, the fixed vertex vi is the middle vertex, else we fix an arbitrary vertex
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vi ∈ Su,v \ {u, v}. Let Sw,z = (w = z1, z2, . . . , zr = z) be another segment in

G′. We want to determine the fastest paths from vi to all inner vertices of Sw,z.

We do this by inspecting the values in matrix D from vi to inner vertices of

Sw,z. We split the analysis into two cases.

(a) There is a single vertex zj ∈ Sw,z for which the duration from vi is the

biggest. More specifically, zj ∈ Sw,z \{w, z} is the vertex with the biggest

value Dvi,zj
. We call this vertex a split vertex of vi in the segment Swz.

Then it holds that Dvi,z2 < Dvi,z3 < · · · < Dvi,zj
and Dvi,zr−1 < Dvi,zr−2 <

· · · < Dvi,zj
. From this it follows that the fastest temporal paths from vi

to z2, z3, . . . , zj−1 go through w, and the fastest temporal paths from vi

to zr−1, zr−2, . . . , zj+1 go through z. We now want to guess which vertex

w or z is on a fastest temporal path from vi to zj. Similarly, all fastest

temporal paths starting at vi have to go either through u or through v,

which also gives us two extra guesses for the fastest temporal path from

vi to zj. Therefore, all together we have 4 possibilities on how the fastest

temporal path from vi to zj starts and ends. Besides that, we want to

guess also how the fastest temporal paths from vi to zj−1, zj+1 start and

end. Note that one of these is the subpath of the fastest temporal path

from vi to zj, and the ending part is uniquely determined for both of

them, i. e., to reach zj−1 the fastest temporal path travels through w, and

to reach zj+1 the fastest temporal path travels through z. Therefore we

have to determine only how the path starts, namely if it travels through

u or v. This introduces two extra guesses. For a fixed Su,v, vi and Sw,z we

find the vertex zj in polynomial time, or determine that zj does not exist.

We then make four guesses where we determine how the fastest temporal

path from vi to zj passes through vertices u, v and w, z and for each of

them two extra guesses to determine the fastest temporal path from vi

to zj−1 and from vi to zj+1. We repeat this procedure for all pairs of

segments, which results in producing kO(k5) new guesses. Note, vi ∈ Su,v

is fixed when calculating the split vertex for all other segments Sw,z.

(b) There are two vertices zj, zj+1 ∈ Sw,z for which the duration from vi is
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the biggest. More specifically, zj, zj+1 ∈ Sw,z \{w, z} are the vertices with

the biggest value Dvi,zj
= Dvi,zj+1 . Then it holds that Dvi,z2 < Dvi,z3 <

· · · < Dvi,zj
= Dvi,zj+1 > Dvi,zj+2 > · · · > Dvi,zr−1 . From this it follows

that the fastest temporal paths from vi to z2, z3, . . . , zj go through w, and

the fastest temporal paths from vi to zr−1, zr−2, . . . , zj+1 go through z. In

this case, we only need to guess the following two fastest temporal paths

vi ; w → z2 and vi ; z → zr−1. Each of these paths we then uniquely

extend along the segment Sw,z up to the vertex zj, resp. zj+1, which give

us fastest temporal paths from vi to zj and from vi to zj+1. In this case

we introduce only two more guesses. We repeat this procedure for all

pairs of segments. which results in creating kO(k5) new guesses.

For an example see Figure 6.6c.

G-10. Split vertex guess II. Let w ∈ U ∪Z∗, and let Su,v = (u = v1, v2, . . . , vp = v)

be a segment in G′. We want to determine the split vertex of w in Su,v, and

guess the fastest temporal path that reaches it. We again have two cases, first

one where vi is a unique vertex in Su,v that is furthest away from w, and the

second one where vi, vi+1 are two incident vertices in Su,v, that are furthest

away from w. All together we make two guesses for each pair w, Su,v. We

repeat this for all vertices in U ∪ Z∗, and all segments, which produces kO(k5)

new guesses. For an example see Figure 6.6d.

There are two more guesses G-11 and G-12 that we make during the creation of

the ILP instances, we explain these guesses in detail in Section 6.3.2. We will prove

that, for all guesses G-1 to G-12, there are in total at most f(k) possible choices,

and for each one of them we create an ILP with at most f(k) variables and at most

f(k) · |D|O(1) constraints. Each of these ILPs can be solved in FPT time by Lenstra’s

Theorem [92].

Properties of Simple TGR

In this section we study the properties of our problem, which then help us create

constraints of our ILP instances. Recall that with G we denote our underlying
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u=v1 v2 vp−1 vp=v

w=z1 z2 zr−1 zr=z

(a) Example of an Inner segment guess I (G-
7), where we guessed the fastest temporal
paths of the form v2 → u ; w → z2 (in
blue) and v2 → u ; z → zr−1 (in red).

u=v1 v2 vp−1 vp=v

w

(b) Example of an Inner segment guess II
(G-8), where we guessed the fastest tempo-
ral paths of the form w ; u → v2 (in blue)
and w ; v → vp−1 → v2 (in red).

u=v1 v2 vi vp−1 vp=v

w=z1 z2 zj−1 zj zj+1 zr−1 zr=z

(c) Example of a Split vertex guess I (G-
9), where, for a fixed vertex vi ∈ Su,v,
we calculated its corresponding split vertex
zj ∈ Sw,z, and guessed the fastest paths of
the form vi → vi−1 → · · · → u ; z →
zr−1 · · · → zj (in blue) and vi → vi+1 →
· · · → v ; w → z2 → · · · → zj−1 (in red).

u=v1 v2 vi vi+1 vp−1 vp=v

w

(d) Example of a Split vertex guess II
(G-10), where, for a vertex of interest w,
we calculated its corresponding split vertex
vi ∈ Su,v, and guessed the fastest paths of
the form w ; u → v2 → · · · → vi (in blue)
and w ; v → vp−1 → · · · → vi+1 (in red).

Figure 6.6: Illustration of the guesses G-7, G-8, G-9, and G-10.

graph of D. We want to determine labeling λ of each edge of G. We start with

empty labeling of edges and try to specify each one of them. Note, that this does

not necessarily mean that we assign numbers to the labels, but we might specify

labels as variables or functions of other labels. We say that the label of an edge f

is determined with respect to the label of the edge e, if we have determined λ(f) as

a function of λ(e).

We first start with defining certain notions, that will be of use when solving the

problem.

Definition 6.3.6 (Travel delays). Let (G, λ) be a temporal graph satisfying condi-

tions of Simple TGR. Let e1 = uv and e2 = vz be two incident edges in G with
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e1 ∩ e2 = v. We define the travel delay from u to z at vertex v, denoted with τuz
v , as

the difference of the labels of e2 and e1, where we subtract the value of the label of

e1 from the label of e2, modulo ∆, if the labels are different, or we set it to ∆. More

specifically:

• if λ(e1) ̸= λ(e2) we have

τuz
v ≡ λ(e2) − λ(e1) (mod ∆), (6.2)

• if λ(e1) = λ(e2) we have

τuz
v = ∆.

Intuitively, the value of τuz
v represents how long a temporal path waits at vertex

v when first taking edge e1 = uv and then edge e2 = vz.

From the above definition and the definition of the duration of the temporal path

P , we get the following two observations.

Observation 6.3.7. Let P = (v0, v1, . . . , vp) be the underlying path of the temporal

path (P, λ) from v0 to vp. Then d(P, λ) = ∑p−1
i=1 τ vi−1vi

vi
+ 1.

Proof. For the simplicity of the proof denote ti = λ(vi−1vi), and suppose that ti ≤

ti+1, for all i ∈ {1, 2, 3, . . . , p}. Then

p−1∑
i=1

τ vi−1vi
vi

+ 1 =
p−1∑
i=1

(ti+1 − ti) + 1

= (t2 − t1) + (t3 − t2) + · · · + (tp − tp−1) + 1

= tp−1 − t1 + 1

= d(P, λ)

Now in the case when ti > ti+1 we get that τ vi−1vi+1
vi

= ∆ + ti+1 − ti. In the end, this

still results in the correct duration as the last time we traverse the path P is not

exactly tp but kλ + tp, for some k.

We also get the following.
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Observation 6.3.8. Let (G, λ) be a temporal graph satisfying conditions of the

Simple TGR problem. For any two incident edges e1 = uv and e2 = vz on vertices

u, v, z ∈ V , with e1 ∩ e2 = v, we have τ zu
v = ∆ − τuz

v (mod ∆).

Proof. Let e1 = uv and e2 = vz be two edges in G for which e1 ∩ e2 = v. By the

definition τuz
v ≡ λ(e2)−λ(e1) (mod ∆) and τ zu

v ≡ λ(e1)−λ(e2) (mod ∆). Summing

now both equations we get τuz
v + τ zu

v ≡ λ(e2) − λ(e1) + λ(e1) − λ(e2) (mod ∆), and

therefore τuz
v +τ zu

v ≡ 0 (mod ∆), which is equivalent as saying τuz
v ≡ −τ zu

v (mod ∆)

or τ zu
v = ∆ − τuz

v (mod ∆).

In our analysis, we exploit the following greatly, which is why we state it as an

observation.

Observation 6.3.9. Let P be the underlying path of a fastest temporal path from

u to v, where e1, ep ∈ P are its first and last edge, respectively. Then, knowing the

label λ(e1) of the first edge and the duration d(P, λ) of the temporal path (P, λ), we

can uniquely determine the label λ(ep) of the last edge of P . Symmetrically, knowing

λ(ep) and d(P, λ), we can uniquely determine λ(e1).

The correctness of the above statement follows directly from ??. This is because

the duration of (P, λ) is calculated as the difference of labels of last and first edge

plus 1, where the label of the last edge is considered with some delta periods, i. e.,

d(P, λ) = pi∆ + λ(ep) − λ(e1) + 1, for some pi ≥ 0. Therefore d(P, λ) (mod ∆) ≡

(λ(ep) − λ(e1) + 1) (mod ∆). Note that if λ(e1) and λ(ep) are both unknown, then

we can determine one with respect to the other.

In the following, we prove that knowing the structure (the underlying path) of a

fastest temporal path P from a vertex of interest u to a vertex of interest v, results

in determining the labeling of each edge in the fastest temporal path from u to v

(with the exception of some constant number of edges), with respect to the label

of the first edge. More precisely, if path P from u to v is a segment, then we can

determine labels of all edges as a function of the label of the first edge. If P consists

of ℓ segments, then we can determine the labels of all but ℓ−1 edges as a function of

the label of the first edge. For the exact formulation and proofs see Lemmas 6.3.10

and 6.3.11.
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Lemma 6.3.10. Let u, v ∈ U be two arbitrary vertices of interest and suppose that

P = (u = v1, v2, . . . , vp = v), where p ≥ 2, is a path in G′, which is also the

underlying path of a fastest temporal path from u to v. Moreover, suppose also that

P is a segment. We can determine the labeling λ of every edge in P with respect to

the label λ(uv2) of the first edge.

Proof. We claim that u reaches all of the vertices in P the fastest, when travelling

along P (i. e., by using a subpath of P ). To prove this suppose for the contradiction

that there is a vertex vi ∈ P \ {u, v}, that is reached from v on a path different than

Pi = (u, v2, v3, . . . , vi) faster than through Pi. Since the only vertices of interest of

P are u and v, it follows that all other vertices on P are of degree 2. Then the only

way to reach vi from u, that differs from P , would be to go from u to v using a

different path P2, and then go from v to vp−1, vp−2, . . . , vi. But since P is the fastest

temporal path from u to v, we get that d(P2) ≥ d(P ) and d(P2 ∪ (v, vp−1, . . . , vi)) >

d(P ) > d(Pi).

Now, to determine the labeling λ of the path P we use the property that the

fastest temporal path from u to any vi ∈ P is a subpath of P . We set the label of

the first edge of P to be a constant c ∈ [∆] and use Observation 6.3.9 to label all

remaining edges, where the duration from u to vi equals to Du,vi
. This gives us a

unique labeling λ of P where the label of each edge of P is a function of c.

Lemma 6.3.11. Let u, v ∈ U be two arbitrary vertices of interest and suppose that

P = (u = v1, v2, . . . , vp = v), where p ≥ 2, is a path in G′, which is also the

underlying path of a fastest temporal path from u to v. Let ℓu,v ≥ 1 be the number of

vertices of interest in P different to u, v, namely ℓu,v = |{P \ {u, v}} ∩ U |. We can

determine the labeling λ of all but ℓu,v edges of P , with respect to the label λ(uv2) of

the first edge, such that the labeling λ respects the values from D.

For the proof of the above lemma, we first prove a weaker statement, for which

we need to introduce some extra definitions and fix some notations. In the fol-

lowing we only consider wasteless temporal paths. We call a temporal path P =

((e1, t1), . . . , (ek, tk)) a wasteless temporal path, if for every i = 1, 2, . . . , k − 1, we

have that ti+1 is the first time after ti that the edge ei+1 appears.
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Let u, v ∈ V , and let t ∈ N. Given that a temporal path starts within the period

[t, t+∆ − 1], we denote with At(u, v) the arrival of the fastest path in (G, λ) from u

to v, and with At(u, v, P ), the arrival along path P in (G, λ) from u to v. Whenever

t = 1, we may omit the index t, i. e., we may write A(u, v, P ) = A1(u, v, P ) and

A(u, v) = A1(u, v).

Suppose now that we know the underlying path Pu,v = (u = v1, v2, . . . , vp = v)

of the fastest temporal path between vertices of interest u and v in G′. Let vi ∈ U

with u ̸= vi ̸= v be a vertex of interest on the path Pu,v. Suppose that vi is reached

the fastest from u by a path P = (u = u1, u2, . . . , uj−1, vi). We split the path

Pu,v into a path Q = (u = v1, v2, . . . , vi) and R = (vi, vi+1, . . . , vp = v) (for details

see Figure 6.7).

From the above, we get the following assumptions:

1. d(u, vi) = d(u, vi, P ) ≤ d(u, vi, Q), and

2. d(u, vp) = d(u, vp, Q ∪ R) ≤ d(u, vp, P ∪ R).

In the remainder, we denote with δ0 the difference d(u, vi, Q) − d(u, vi) ≥ 0. Let

tv2 ∈ [∆] be the label of the edge uv2, and denote by tu2 the appearance of the

edge uu2 within the period [tv2 , tv2 + ∆ − 1]. Note that 1 ≤ tv2 ≤ ∆ and that

tv2 ≤ tu2 ≤ 2∆. From Assumption 1 we get

δ0 = d(u, vi, Q) − d(u, vi) = Atv2
(u, vi, Q) − Atv2

(u, vi, P ) + (tu2 − tv2)

and thus

Atv2
(u, vi, P ) − Atv2

(u, vi, Q) = tu2 − (tv2 + δ0). (6.3)

We use all of the above discussion, to prove the following lemma.

Lemma 6.3.12. If tu2 ̸= tv2, then δ0 ≤ ∆ − 2 and tu2 ≥ tv2 + δ0 + 1.

Proof. First assume that δ0 ≥ ∆ − 1. Then, it follows by Equation (6.3) that

Atv2
(u, vi, P ) − Atv2

(u, vi, Q) ≤ tu2 − tv2 − ∆ + 1 ≤ 0, and thus Atv2
(u, vi, P ) ≤

Atv2
(u, vi, Q). Therefore, since we can traverse path P from u to vi by departing

at time tu2 ≥ tv2 + 1 and by arriving no later than traversing path Q, we have
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Figure 6.7: An example of the situation in Lemma 6.3.11, where we assume that the
fastest temporal path from u to v is Pu,v = (u = v1, v2, . . . vp), and the fastest tem-
poral path from u to vi is P = (u, u2, u3, . . . , vi). We denote Q = (u = v1, v2, . . . , vi)
and R = (vi, vi+1, . . . , vp = v).

that d(u, vp, P ∪ Q) < d(u, vp, Q ∪ R), which is a contradiction to the second initial

assumption. Therefore δ0 ≤ ∆ − 2.

Now assume that tv2 +1 ≤ tu2 ≤ tv2 +δ0. Then, it follows by Equation (6.3) that

Atv2
(u, vi, P ) ≤ Atv2

(u, vi, Q) which is, similarly to the previous case, a contradiction.

Therefore tu2 ≥ tv2 + δ0 + 1.

The next corollary follows immediately from Lemma 6.3.12.

Corollary 6.3.13. If tu2 ̸= tv2, then 1 ≤ Atv2
(u, vi, P ) − Atv2

(u, vi, Q) ≤ ∆ − 1 − δ0.

We are now ready to prove the following result.

Lemma 6.3.14. d(u, vi−1, P ∪ {vivi−1}) > d(u, vi−1, Q \ {vivi−1}).

Proof. Let e ∈ [∆] be the label of the edge vi−1vi, and let f ∈ [e + 1, e + ∆] be

the time of the first appearance of the edge vivi+1 after time e. Let Atv2
(u, vi, Q) =

x∆ + e. Then Atv2
(u, vi+1, Q ∪ {vivi+1}) = x∆ + f . Furthermore let g be such that

Atv2
(u, vi, P ) = x∆ + g.

Case 1: tu2 ̸= tv2 . Then Corollary 6.3.13 implies that e+1 ≤ g ≤ e+(∆−1−δ0).

Assume that g < f . Then, we can traverse path P from u to vi by departing at time

tu2 ≥ tv2 + 1 and by arriving at most at time x∆ + f − 1, and thus d(u, vp, P ∪ R) <

d(u, vp, Q ∪ R), which is a contradiction to the second initial assumption. Therefore

g ≥ f . That is,

e + 1 ≤ f ≤ g ≤ e + (∆ − 1 − δ0).

Consider the path P ∗ = P ∪ {vivi−1}. Assume that we start traversing P ∗ at
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time tu2 . Then we arrive at vi at time x∆ + g, and we continue by traversing edge

vivi−1 at time (x + 1)∆ + e. That is, d(u, vi−1, P ∗) = (x + 1)∆ + e − tu2 + 1.

Now consider the path Q∗ = Q \ {vivi−1}. Let h ∈ [1, ∆] be such that

Atvi
(u, vi−1, Q∗) = x∆ + e − h. That is, if we start traversing Q∗ at time tv2 , we

arrive at vi−1 at time x∆ + e − h, i. e., d(u, vi−1, Q∗) = x∆ + e − h − tv2 + 1.

Summarizing, we have:

d(u, vi−1, P ∗) − d(u, vi−1, Q∗) = ∆ + h − (tu2 − tv2)

≥ ∆ + h − (∆ − 1) > 0,

which proves the statement of the lemma.

Case 2: tu2 = tv2 . Then, it follows by Equation (6.3) that Atv2
(u, vi, P ) =

Atv2
(u, vi, Q) − δ0 ≤ Atv2

(u, vi, Q). Therefore g ≤ e. Similar to Case 1 above,

consider the paths P ∗ = P ∪ {vivi−1} and Q∗ = Q \ {vivi−1}. Assume that we start

traversing P ∗ at time tu2 = tv2 . Then we arrive at vi at time x∆+g, and we continue

by traversing edge vivi−1, either at time (x + 1)∆ + e (in the case where g = e) or

at time x∆ + e (in the case where g ̸= e). That is, d(u, vi−1, P ∗) ≥ x∆ + e − tv2 + 1.

Similarly to Case 1, let h ∈ [1, ∆] be such that Atvi
(u, vi−1, Q∗) = x∆ + e − h.

That is, if we start traversing Q∗ at time tv2 , we arrive at vi−1 at time x∆ + e − h,

i. e., d(u, vi−1, Q∗) = x∆ + e − h − tv1 + 1. Summarizing, we have:

d(u, vi−1, P ∗) − d(u, vi−1, Q∗) ≥ h ≥ 1,

which proves the statement of the lemma.

From the above it follows that if P is a fastest path from u to v, then all vertices

of P , with the exception of vertices of interest vi ∈ P \ {u, v}, are reached using the

same path P . We use this fact in the following proof.

Proof of Lemma 6.3.11. For every vertex of interest vi ∈ U ∩ (P \ {u, v}) we have

two options. First, when the fastest temporal path P ′ from u to vi is a subpath of

P . In this case, we determine the labeling of P ′ using Lemma 6.3.10. Second, when

the fastest temporal path P ′ from u to vi is not a subpath of P . In this case, we
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know exactly how to label all of the edges of P , with the exception of edges from

vi−1vi, that are incident to vi in P .

Lemma 6.3.15. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment in G. If Su,v is

of length at least 5 (p > 5) then it is impossible for an inner edge f = vivi+1 from

Su,v \ {u, v} (where f is an edge that is not incident to a vertex from U) to not be

a part of any fastest temporal path, of length at least 2 between vertices in Su,v. In

other words, there must exist a pair vj, vj′ ∈ Su,v s. t., the fastest temporal path from

vj to vj′ passes through f . If Su,v is of length 4 then all temporal paths of length

2 avoid the inner edge f if and only if f has the same label as both of the edges

incident to it, while the label of the last remaining edge is determined with respect

to λ(f).

Proof. For an easier understanding and better readability, we present the proof for

Su,v of length 5. The case where Su,v is longer easily follows from the presented

results.

Let Su,v = (u = v1, v2, v3, v4, v5, v6 = v). We distinguish two cases, first when

f = v2v3 (note that the case with f = v4v5 is symmetrical), and the second when

f = v3v4. Throughout the proof we denote with ti the label of edge vivi+1. Suppose

for the contradiction, that none of the fastest temporal paths between vertices of

Su,v traverses the edge f .

Case 1: f = v2v3. Let us observe the case of the fastest temporal paths between

v1 and v3. Denote Q = (v1, v2, v3) and P ′ = (v3, v4, v5, v6). From our proposition, it

follows that

• the fastest temporal path P + from v1 to v3 is of the following form P + = v1 ;

v6 → v5 → v4 → v3, and

• the fastest temporal path P − from v3 to v1 is of the following form P − = v3 →

v4 → v5 → v6 ; v1.

It follows that d(v1, v3, P +) ≤ d(v1, v3, Q), and d(v3, v1, P −) ≤ d(v3, v1, Q). Note

that d(v1, v3, P +) ≥ 1 + d(v6, v3, P ′), and by the definition d(v6, v3, P ′) = 1 + (t4 −

t5)∆ + (t3 − t4)∆, where (ti − tj)∆ denotes the difference of two consecutive labels
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ti, tj modulo ∆. Similarly it holds for d(v1, v3, P +). Summing now both of the above

equations we get

d(v1, v3, P +) + d(v3, v1, P −) ≤ d(v1, v3, Q) + d(v3, v1, Q)

1 + d(v6, v3, P ′) + 1 + d(v3, v6, P ′) ≤ d(v1, v3, Q) + d(v3, v1, Q)

3 + (t4 − t5)∆ + (t3 − t4)∆ + 1 + (t4 − t3)∆ + (t5 − t4)∆ ≤ 1 + (t2 − t1)∆ + 1 + (t1 − t2)∆

(t4 − t5)∆ + (t5 − t4)∆ + (t4 − t3)∆ + (t3 − t4)∆ + 2 ≤ (t2 − t1)∆ + (t1 − t2)∆.

(6.4)

Note that if ti ̸= tj we get that the sum (ti − tj)∆ + (tj − ti)∆ equals exactly ∆,

and if ti = tj the sum equals 2∆. This follows from the definition of travel delays

at vertices (see Observation 6.3.8). Therefore we get from Equation (6.4), that the

right part is at most 2∆, while the left part is at least 2∆ + 1, for any relation of

labels t1, t2, . . . , t5, which is a contradiction.

Case 2: f = v3v4. Here we consider the fastest paths between vertices v2 and

v4. By similar arguments as above we get

(t5 − t1)∆ + (t4 − t5)∆ + (t5 − t4)∆ + (t1 − t5)∆ + 2 ≤ (t3 − t2)∆ + (t2 − t3)∆,

which is impossible.

In the case when Su,v is longer, we would get an even bigger number on the

left-hand side of Equation (6.4), so we conclude that in all of the above cases, it

cannot happen that all fastest paths of length 2, between vertices in Su,v, avoid edge

f .

Let us observe now the case when Su,v = (u = v1, v2, v3, v4, v5 = v) is of length

4. Let f = v2v3 (the case with f = v3v4 is symmetrical). Suppose that the fastest

temporal paths between v1 and v3 do not use the edge f . We denote with R+ the

fastest path from v1 to v3, which is of the form u ; v → v4 → v3, and similarly

with R− the fastest path from v3 to v1, which is of the form v3 → v4 → v ; u. We
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denote R′ = (v3, v4, v5) and S = (v1, v2, v3). Again we get the following.

d(v1, v3, R+) + d(v3, v1, R−) ≤ d(v1, v3, S) + d(v3, v1, S)

1 + d(v5, v3, R′) + 1 + d(v3, v5, R′) ≤ d(v1, v3, S) + d(v3, v1, S)

(t3 − t4)∆ + (t4 − t3)∆ + 2 ≤ (t2 − t1)∆ + (t1 − t2)∆.

The only case when the equation has a valid solution is when t1 = t2 and t3 ̸= t4,

as in this case the left hand side evaluates to ∆ + 2, while the right side evaluates

to 2∆. Repeating the analysis for the fastest paths between v2 and v4, we conclude

that the only valid solution is when t2 = t3 and t1 ̸= t4. Altogether, we get that f

is not a part of any fastest path of length 2 in Su,v if and only if the label of edge f

is the same as the labels on the edges incident to it, while the last remaining edge

has a different label. Note now that the fastest temporal path from v2 to v4 must

first use the edge uv2 and finish with the edge v4v5, and it has to be of duration

Dv2,v4 . Using Lemma 6.3.10 we determine the label of the edge v4v5 with respect to

λ(f).

We now present some properties involving the vertices from Z, that form the

trees in G[Z].

Lemma 6.3.16. Let v ∈ V (G′) be a clip vertex of the tree Tv in G[Z ∪ {v}], and let

z ∈ NTv(v) be an arbitrary child of v in Tv. Among all neighbors of v in G′, let w

be the one that is on the smallest duration away from z with respect to the values of

D. In other words, w ∈ NG′(v) such that Dz,w ≤ Dz,w′ for all w′ ∈ NG′(v). Then,

the path P ∗ = (z, v, w) represents the unique fastest temporal path from z to w.

Moreover, we can determine all labels of the tree Tv with respect to the label λ(vw).

Proof. Suppose for contradiction that there exists a path P ∗∗ ̸= P ∗ from z to w

such that d(P ∗∗, λ) ≤ d(P ∗, λ). By the structure of G, it follows that P ∗∗ passes

through the clip vertex v of Tv (as this is the only neighbor of z in G′), continues

through a vertex w′ ∈ NG′(v) \ {w}, and through some other vertices u1, u2, . . . , uj

in G (j ≥ 0) before finishing in w. Therefore, P ∗∗ = (z, v, w′, u1, u2, . . . , uj, w).

Now, since Dz,w ≤ Dz,w′ by assumption, the first part of P ∗∗ from z to w′ takes at

least Dz,w′ time, and thus it takes at least Dz,w time. Since w ̸= w′, we need at
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least one more time-step (one more edge) to traverse from w′ to reach w. Therefore,

d(P ∗∗, λ) ≥ Dz,w + 1 which implies that P ∗∗ is not the fastest temporal path from z

to w. Therefore, the only fastest temporal path from z to w is P ∗ = (z, v, w).

For the second part, knowing that the duration of P ∗ is Dz,w, we can determine

the label of the edge zv with respect to the label λ(vw) (see Observation 6.3.9). Fur-

thermore, using the algorithm for trees (see Theorem 6.3.1), we can now determine

all the labels on the edges of Tv with respect to the same label λ(vw).

Lemma 6.3.17. Let x ∈ V (G′) be a clip vertex of the tree Tx in G[Z ∪ {x}], where

x /∈ U . Let v1 and v2 be the two neighbors of x in G′. Then the labels of the tree Tx

can be determined with respect to λ(v1x) and λ(xv2).

Proof. First observe that since x is not a vertex of interest it must be a part of some

segment Su,w, where u, v ∈ U and x ̸= u ̸= v. Therefore, x is of degree 2 in G′. Let

z ∈ V (Tx) be a child of x in Tx, i. e., a vertex in the first layer of the tree Tx. We

observe the values Dz,v1 , Dz,v2 and distinguish the following cases.

First, Dz,v1 = Dz,v2 Then, using Lemma 6.3.16 we conclude that the fastest

temporal paths from z to v1 and from z to v2 are of length two. We know that

these two paths consist of the edge zx and xv1, xv2, respectively. This allows us to

determine the label of the edge zx (and consequently all other edges of Tx) with

respect to λ(xv1) and λ(xv2).

Second, Dz,v1 ̸= Dz,v2 . Let us denote with t1 = λ(xv1), t2 = λ(xv2) and t3 =

λ(zx). W.l.o.g. suppose that min{t1, t2, t3} = t3, and that Dz,v1 > Dz,v2 (the other

case is analogous). It follows that t1 > t2. We want to now prove that the inequality

Dv1,z < Dv2,z holds. Suppose for the contradiction that the inequality is false. Then

Dv2,z < Dv1,z ≤ (∆+ t3 − t1). This implies that the fastest temporal path from v2 to

z cannot use the path (v1, x, z), and is therefore of form (v2, x, z). By the definition,

the duration of this path is Dv2,z = ∆ + t3 − t2 + 1. But since t1 > t2 it follows that

(∆ + t3 − t2) + 1 > (∆ + t3 − t1) + 1. We also know that Dv1,z ≤ (∆ + t3 − t1) + 1.

This implies that Dv2,z > Dv1,z, a contradiction.

Knowing Dz,v1 > Dz,v2 we can determine the label of edge zx (and consequently all

other edges of Tx) with respect to λ(xv2), and similarly knowing Dv1,z < Dv2,z we

determine the label of edge zx (and all other edges of Tx) with respect to λ(xv1).
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Figure 6.8: An example of the situation in Lemma 6.3.18. We have two paths Q
(in blue) and P (in red) from u to y. We assume that the fastest temporal path
from z1 to y is P1 = {z1u} ∪ P , and the fastest temporal path from z2 to y is
Q2 = {z2u} ∪ Q. We denote with Q1 = {z1u} ∪ Q another temporal path from z1
to y, with P2 = {z2u} ∪ P another temporal path from z2 to y. The labels on the
edges z1u, z2u are t1, t2, respectively. Similarly, the labels of the last edges of paths
P and Q are tp, tq, respectively.

Remember, in the case where the clip vertex u of the tree Tu in G[Z ∪ {u}] is a

vertex of interest, we split the vertices in the first layer of Tu into at most |NG′(u)|

equivalence classes (as explained in Section 6.3.2). Let us now show the following

important property of these equivalence classes.

Lemma 6.3.18. Let u ∈ V (G′) be a clip vertex of the tree Tu in G[Z ∪ {u}], where

u ∈ U , and let z1, z2 ∈ V (Tu) be in the same equivalence class of the tree Tu. Then,

the fastest temporal paths from z1 and from z2 to any other vertex in G′ coincide on

the edges in G′. Similarly, the fastest temporal paths from any other vertex in G′ to

z1 and to z2 coincide on the edges in G′.

Proof. Let y ̸= u be a vertex in V (G′). Denote with P1 the underlying path of the

fastest temporal path from z1 to y, which consists of the edge z1u and the path P

from u to y. Similarly, let Q2 be the underlying path of the fastest temporal path

from z2 to y, consisting of the edge z2u together with the path Q from u to y. Define

P2 as the second path from z2 to y that first uses the edge z2u and then the path

P . Similarly, Q1 represents the second path from z1 to y that first uses the edge

z1u and then the path Q. Our objective is to demonstrate that either P = Q or

that d(P1, λ) = d(Q1, λ) (and d(P2, λ) = d(Q2, λ)). This implies that z1 and z2 use

temporal paths that coincide on the vertices of V (G) \ V (Tu) to reach y. For an

illustration see Figure 6.8.

Let us set the label of the edge z1u to t1, the label of z2u to t2, the label of the
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last edge of the path P as tp and the label of the last edge of the path Q as tq.

By the definition, since P1 represents the fastest temporal path form z1 to y we get

that Dz1,y = tp − t1 + cp∆, where cp ∈ N. Similarly, for the path Q2 it holds that

Dz2,y = tq − t2 + cq∆ with cq ∈ N. Note that the difference between the first label

of P (resp. Q) with t1 and t2 is smaller than ∆, or the difference (with at least one

t1, t2) is ∆ if and only if the first label of P and the first label of Q are the same.

This observation is crucial in our arguing below.

We want to first show that cp = cq. Let us assume, for the sake of contradic-

tion, that this is not the case, and suppose that cp > cq (the case with cq > cp

is analogous). Then cp ≤ cq + 1. Now, since z1 and z2 are in the same equiv-

alence class and by the definition of the duration of a temporal path we get that

d(P2, λ) = tp−t2+cp∆ ≤ tp−t2+(cq −1)∆. Because Q2 is the fastest path from z2 to

y we have also that d(P2, λ) ≥ Dz2,y, which gives us tp −t2 +(cq −1)∆ ≥ tq −t2 +cq∆.

This is equivalent to tp ≥ tq+∆, but since tp, tq ∈ [∆] this cannot happen. Therefore,

we conclude that cp = cq.

Now, we want to show also, that tp = tq. Let us assume, for the sake of contra-

diction, that this is not the case, and suppose that tp > tq (the case with tq > tp

is analogous). Then the duration of the path Q1 is d(Q1, λ) = tq − t1 + cq∆ since

cq = cp. Above we proved that cp = cq. We also know that d(Q1, λ) ≥ d(P1, λ) as

P1 is the fastest path from z1 to y. All of this results in tq − t1 + cp∆ ≥ tp − t1 + cp∆

implying tq ≥ tp, a contradiction. Therefore, tp = tq.

We proved that either P and Q are the same, or if they are different then P1

and Q1 are of the same duration and are both fastest paths from z1 to y (the same

holds for z2).

Proof for the fastest temporal paths in the other direction, namely starting at y

and reaching z1 and z2, is done analogously.

Observation 6.3.19. Let v ∈ V (G′) be a clip vertex of the tree Tv in G[Z ∪ {v}],

z ∈ NTv(v) be a child of v in Tv, and let z′ be a descendant of z in Tv. Let x ∈

V (G) \ V (Tv) be an arbitrary vertex. Denote by Pz and Pz′ the underlying paths of

the fastest temporal paths from z and from z′ to x, respectively, and denote by Q the

(unique) path between z and z′ in Tv. Then Pz and Pz′ differ only in the edges of Q.
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The correctness of the above observation is a consequence of Lemma 6.3.18 and

of the fact that Pz and Pz′ leave the tree Tv using the same edge zv.

Adding constraints and variables to the ILP

We start by analyzing the case where we want to determine the labels on fastest

temporal paths between vertices of interest. We proceed in the following way. Let

u, v ∈ U be two vertices of interest and let Pu,v be the fastest temporal path from u

to v. If Pu,v is a segment we determine all the labels of edges of Pu,v, with respect to

the label of the first edge (see Lemma 6.3.10). In the case when Pu,v is a sequence

of ℓ segments, we determine all but ℓ − 1 labels of edges of Pu,v, with respect to

the label of the first edge (see Lemma 6.3.11). We call these ℓ − 1 edges, partially

determined edges. After repeating this step for all pairs of vertices in U , the edges

of fastest temporal paths from u to v, where u, v ∈ U , are determined with respect

to the label of the first edge of each path or are partially determined. If the fastest

temporal path between two vertices u, v ∈ U is just an edge e, then we treat it

as being determined, since it gets assigned a label λ(e) with respect to itself. All

other edges in G′ are called the not yet determined edges. Note that the not yet

determined edges are exactly the ones that are not a part of any fastest temporal

path between any two vertices in U .

Now we want to relate the not yet determined segments with the determined

ones. Let Su,v and Sw,z be two segments. At the beginning, we have guessed the

fastest path from vi to all vertices in Sw,z (see guess G-9). We did this by determining

which vertices zj, zj+1 in Sw,z are furthest away from vi (remember we can have the

case when zj = zj+1), and then we guessed how the path from vi leaves the segment

Su,v (i. e., either through the vertex u or v), and then how it reaches zj (in the case

when zj ̸= zj+1 there is a unique way, when zj = zj+1 we determined which of the

vertices w or z is on the fastest path). W.l.o.g. assume that we have guessed that

the fastest path from vi to zj passes through w and zj−1. Then the fastest temporal

path from vi to zj+1 passes through z. And all fastest temporal paths from vi to any

zj′ ∈ Sw,z use all of the edges in Sw,z with the exception of the edge zjzj+1. Using

this information and Observation 6.3.9, we can determine the labels on all edges,
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with respect to the first or last label from the segment Su,v, with the exception of

the edge zjzj+1. Therefore, all edges of Sw,z but zjzj+1 become determined. Since

we repeat that procedure for all pairs of segments, we get that for a fixed segment

Sw,z we end up with a not yet determined edge zjzj+1 if and only if this is a not yet

determined edge in relation to every other segment Su,v and its fixed vertex vi. We

repeat this procedure for all pairs of segments. Each specific calculation takes linear

time. Since there are O(k2) segments, the whole calculation takes O(k4) time.

From the above procedure (where we were determining labels of edges of segments

with each other) we conclude that all of the edges ei = vivi+1 of a segment Su,v =

(u = v1, v2, . . . , vp = v) are in one of the following relations. First, where all of

the edges are determined with respect to each other. Second, where there are some

edges e1, e2, . . . ei−1, whose label is determined with respect to the label λ(e1), there

is an edge f = ei = vivi+1 which is not yet determined, and then there follow

the edges ei+1, ei+2, . . . , ep−1, whose labels are determined with respect to λ(ep−1).

Third, where the first e1, . . . , ei−1 edges are determined with respect to the λ(e1)

and all of the remaining edges ei, ei+1 . . . , ep−1 are determined with respect to the

λ(ep−1). We want to now determine all of the edges in such segment Su,v with

respect to just one edge (either the first or the last one). In the second case, we

use the fact that at least one of the temporal paths between vi−1 and vi+1 has to

pass through f , to determine λ(f) with respect to λ(ei−1) (and consequently λ(e1)),

and similarly, one of the temporal paths between vi and vi+2 has to pass through f ,

which determines λ(f) with respect to λ(ei+1) (and consequently λ(ep−1)). In the

third case, knowing the temporal paths between vi−1 to vi+1 results in determining

the label of λ(ei−1) with λ(ei), which consequently relates labels of all of the edges

of the segment against each other. To determine the desired paths we proceed as

follows.

G-11. Let Su,v = (u = v1, v2, . . . , vp = v) be a segment of length at least 4. If there is

a not yet determined edge vivi+1 = f in Su,v then we guess which of the fastest

temporal paths: from vi−1 to vi+1, from vi+1 to vi−1, from vi to vi+2, from vi+2

to vi pass through the edge f . If there are two incident edges e = vi−1vi and

f = vivi+1 in Su,v, that are determined with respect to λ(v1v2) and λ(vp−1vp),
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respectively then we guess which of the fastest temporal paths: from vi−1 to

vi+1, from vi+1 to vi−1 pass through the edges e, f .

We create O(1) guesses for every such segment Su,v, and O(k2) new guesses in

total, as there are at most O(k2) segments.

Note that the condition for segment length of at least four comes from Lemma 6.3.15.

We now conclude the following.

Corollary 6.3.20. Let Su,v be an arbitrary segment in G′. If Su,v is of length 3 or 2

then it has at most 3 or 2 not yet determined edges, respectively. If Su,v is of length

at least 4 then the labels of all its edges are determined with respect to the first edge.

At this point G′ is a graph, where each edge e has a value for its label λ(e) that

depends on (i. e., is a function of) some other label λ(f) of edge f , or it depends

on no other label. We now describe how we create variables and start building our

ILP instances. For every edge e in G′ that is incident to a vertex of interest, we

create a variable xe that can have values from {1, 2, . . . , ∆}. Besides that, we create

one variable for each edge that is still not yet determined on a segment. Since each

vertex of interest is incident to at most k edges in G′, and each segment has at most

one extra not yet determined edge, we create O(k2) variables. At the end, we create

our final guess.

G-12. We guess the permutation of all O(k2) variables. So, for any two variables

xe and xf , we know if xe < xf or xe = xf , or xe > xf . This results in

O(k2!) = kO(k2) guesses and consequently each of the ILP instances we created

up to now is further split into kO(k2) new ones.

We have now finished creating all ILP instances. From Section 6.3.2 we know

the structure of all guessed paths, to which we have just added also the knowledge

of permutation of all variables. We proceed with adding constraints to each of our

ILP instances. First, we add all constraints for the labels of edges that we have

determined up to now. We then continue to iterate through all pairs of vertices

and start adding equality (resp. inequality) constraints for the fastest (resp. not

necessarily fastest) temporal paths between them.
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We now describe how we add constraints to a path. Whenever we say that the

duration of a path gives an equality or inequality constraint, we mean the following.

Let P = (u = v1, v2, . . . , vp = v) be the underlying path of a fastest temporal path

from u to v, and let Q = (u = z1, z2, . . . , zr = v) be the underlying path of another

temporal path from u to v. Then we know that d(P, λ) = Du,v and d(Q, λ) ≥ Du,v.

Using Observation 6.3.7 we create an equality constraint for P of the form

Du,v =
p−1∑
i=2

(λ(vivi+1) − λ(vi−1vi))∆ + 1, (6.5)

and an inequality constraint for Q

Du,v ≤
r−1∑
i=2

(λ(zizi+1) − λ(zi−1zi))∆ + 1. (6.6)

In both cases we implicitly assume that if the difference of (λ(zizi+1) − λ(zi−1zi)) is

not positive, for some i, we add the value ∆ to it (i. e., we consider the difference

modulo ∆), therefore we have the sign ∆ around the brackets. Note that we can

determine if the difference between two consecutive labels is positive or negative. In

the case when two consecutive labels are determined with respect to the same label

λ(e) the difference between them is easy to determine. If consecutive labels are not

determined with respect to the same label, both labels are considered undetermined

and are assigned a variable for which we know in what kind of relation they are

(see guess G-12). Therefore, we know when ∆ has to be added, which implies that

Equations (6.5) and (6.6) are calculated correctly for all paths.

We iterate through all pairs of vertices x, y and make sure that the fastest tem-

poral path from x to y produces the equality constrain Equation (6.5), and all other

temporal paths from x to y produce the inequality constraint Equation (6.6). For

each pair, we argue how we determine these paths.

Fastest paths between u, v ∈ U . Let u, v ∈ U , i. e., both u, v are vertices

of interest. For the path from u to v (resp. from v to u) in G′, which we guessed

that it coincides with the fastest in G-1, we introduce an equality constraint. We

then iterate over all other paths from u to v (resp. from v to u) in G′, and for each
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one we introduce an inequality constraint. There are kO(k) possible paths from u to

v in G′. Therefore we add kO(k) inequality constraints for the pair u, v.

Fastest paths from u ∈ U to x ∈ V (G′) \ U . From the guesses G-8 and

G-10 we know the fastest temporal paths from u to all vertices in a segment Sw,v.

In this case, we create an equality constraint for the fastest path and we iterate

through all other paths, for which we introduce the inequality constraints. There

are kO(k) possible paths of the form u ; w (resp. u ; v), and a unique way how

to extend these paths from w (resp. v) to reach x in Sw,v. Therefore we add kO(k)

inequality constraints for the pair u, x.

Fastest paths from x ∈ V (G′) \ U to u ∈ U . Let x be a vertex in the

segment Sw,z = (w = z1, z2, . . . , zr = z), and let u ∈ U . If Sw,z is of length 3 or less,

then we already know the fastest temporal path from every vertex in the segment

to u (since Sw,z has at most 2 inner vertices, we determined the fastest temporal

paths from them to u in guess G-4).

Assume that Sw,z is of length at least 4. From Corollary 6.3.20 we know that

the labels of all the edges in Sw,z are determined with respect to the label of the

first edge. Moreover, this gives us the knowledge of the exact differences among two

consecutive edge labels, which is enough to uniquely determine travel delays at all

of the inner vertices zi ∈ Sw,z (see Definition 6.3.6).

From the matrix D we can easily determine the two vertices zi, zi+1 ∈ Sw,z\{w, z}

for which the fastest temporal path from zi to u has the biggest duration. Let us

denote with P + the fastest temporal path of the form z2 → z ; u, and with P −

the fastest temporal path of the form zr−1 → w ; u (we know these paths from

guess G-8). It follows that all vertices zj in Sw,z \ {zi, zi+1} that are closer to w than

zi, zi+1 reach u the fastest using the path (zj → zj−1 → · · · → z2) ∪ P + and all the

vertices zj in Sw,z \ {zi, zi+1} that are closer to z than zi, zi+1 reach u the fastest

using the path (zj → zj+1 → · · · → zr−1) ∪ P −. Since the first part of the above

path is unique, and we know that the second part is the fastest, it follows that these

paths indeed represent the fastest temporal paths to u. What remains to determine

is the fastest temporal paths from zi, zi+1 to u. We distinguish the following two
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options.

(i) zi ̸= zi+1. Then the fastest temporal path from zi to u is (zi → zi−1 → · · · →

z2)∪P +, and the fastest temporal path from zi+1 to u is (zi+1 → zi+2 → · · · →

zr−1) ∪ P −.

(ii) zi = zi+1, i. e., let zi be the unique vertex, that is furthest away from u in Sw,z.

In this case, we have to determine if the fastest temporal path from zi to u,

travels first through vertex zi−1 (and then through w), or it travels first through

zi+1 (and then through z). Since we know the values Dzi−1,u, Dzi+1,u, and we

know the value of the waiting time τ vi,vi−2
vi−1

at vertex vi−1 when traveling from vi

to vi−2, we can uniquely determine the desired path. We set c = Dzi−1,u+τ vi,vi−2
vi−1

and compare c to the value Dzi,u. If c < Dzi,u we conclude that our ILP has no

solution and we stop with calculations if c = Dzi,u then the fastest temporal

path from zi to u is of the form (zi → zi−1 → · · · → z2) ∪ P +, if c > Dzi,u

then the fastest temporal path from zi to u is of the form (zi → zi+1 → · · · →

zr−1) ∪ P −.

Once the fastest temporal path from x to u is determined, we introduce an equality

constraint for it. For each of the other kO(k) paths from x to u (which correspond to

all paths of the form w ; u and z ; u, together with the unique subpath on Sw,z),

we introduce an inequality constraint. Therefore we add kO(k) inequality constraints

for the pair x, u.

Fastest paths between x, y ∈ V (G′) \ U . Let x, y ∈ V (G′) \ U . There are

two options.

(i) Vertices x, y are in the same segment Su,v = (u, v1, v2, . . . , vp, v). If the length

of Su,v is less than 4 then we know what is the fastest path between vertices,

as x, y ∈ U∗. Suppose now that Su,v is of length at least 4 and assume that x

is closer to u in Su,v than y. Then we have two options; either the path from

x to y travels only through the edges of Su,v, denote such path as Px,y, or it is

of the form x → v1 → u ; v → vp → y, denote is as P ∗
x,y. Note that we can

determine P ∗
x,y as it is a concatenation of a unique path from x to v2, together
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with the fastest path from v2 to vp, that travels through u and v (we know this

path from G-7), and the unique path from vp to y. Because of Corollary 6.3.20

we can determine c = d(Px,y, λ). If c > Dx,y we set the fastest path to be P ∗
x,y,

if c = Dx,y then the fastest path is Px,y, and if c < Dx,y we conclude that our

ILP has no solution and we stop with calculations.

(ii) Vertices x and y are in different segments. Let x be a vertex in the segment

Su,v = (u = v1, v2, . . . , vp = v) and let y be a vertex in the segment Sw,z = (w =

z1, z2, z3, . . . , zr = z). By checking the durations of the fastest paths from x to

every vertex in Sw,z \ {w, z} we can determine the vertex zi ∈ Sw,z, for which

the duration from x is the biggest. Note that if there are two such vertices zi

and zi+1, we know exactly how all fastest temporal paths enter Sw,z (we use

similar arguing as in case (i) from above, where we were determining the fastest

path from x ∈ V (G′) to u ∈ U). This implies that the fastest temporal paths

from x to all vertices z2, z3, . . . , zi−1 (resp. zi+1, zi+2, . . . , zr−1) pass through w

(resp. z). Now we determine the vertex vj ∈ Su,v \{u, v}, for which the value of

the durations of the fastest paths from it to the vertex y is the biggest. Again,

if there are two such vertices vj and vj+1 we know exactly how the fastest

temporal paths, starting in these two vertices, leave the segment Su,v. We use

similar arguing as in case (i) from above when we were determining the fastest

path from x ∈ V (G′) to u ∈ U . Knowing the vertex vj implies that the fastest

temporal paths from the vertices v2, v2, . . . , vj−1 (resp. vj+1, vj+2, . . . , vp−1) to

the vertex y passes through u (resp. v). Since we know the following fastest

temporal paths (see guess G-7) z2 → w ; u → v2, z2 → w ; v → vp−1,

zr−1 → z ; v → vp−1 and zr−1 → z ; v → vp−1, we can uniquely determine

all fastest temporal paths from x ̸= vj to any y ∈ Su,v \ {zi}.

In case when x = vj and y = zi and the segments are of length at least 4, we

can uniquely determine the fastest path from vj to zi, using similar arguing

as in case (ii) from above, when we were determining the fastest path from

x ∈ V (G′) to u ∈ U . If at least one of the segments is of length 3 or less, we

can again uniquely determine the fastest path from vj to zi, using the same

approach, and the knowledge of fastest paths to (or from) all vertices of the
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segment of length 3 (as we guessed them in guess G-7).

Once the fastest path is determined we introduce the equality constraint for it and

iterate through all other paths, for which we introduce inequality constraints. To

enumerate all these non-fastest temporal paths, we just consider all possible paths

u ; w, where u and w are the vertices of interest that are the endpoints of segments

to which x and y belong; once the correct segment is reached, there is a unique path

to the desired vertex x (resp. y). Therefore we introduce kO(k) inequality constraints

for each pair of vertices x, y.

Fastest paths for vertices in Z. All of the above is enough to determine

the labeling λ of G′. We have to extend the labeling to consider also the vertices

of Z = V (G) \ V (G′) that we initially removed from G.

Recall that G[Z] consists of disjoint trees and that each of these trees has a

unique neighbor (clip vertex) v in G′. We then define the tree Tv in G[Z ∪ {v}]

as the collection of trees from G[Z] with a clip vertex v, together with the root v.

Determining the fastest temporal paths between any two vertices in the same tree is

a straightforward process (see Theorem 6.3.1), therefore we exclude this case from

our upcoming analysis. From Observation 6.3.19 it follows that knowing temporal

paths between any y ∈ V (G′) and all vertices in the first layer of the tree Tv (i. e.,

children of the root v), it is enough to determine the fastest temporal paths between

y and all other vertices in Tv. Therefore, in the upcoming analysis, we focus only

on the vertices in the first layer of each tree Tv. During the process of determining

the fastest paths from and to the vertices in Z, we use the fact that we have already

identified the fastest paths among all vertices in G′.

We split our analysis into two cases. First, when the clip vertex v of tree Tv is not

a vertex of interest, and second when the clip vertex is also a vertex of interest in G′.

In the first case, we use the fact that v has only two edges e, f incident to it in G′,

and that we can determine all the labels of the tree edges with respect to λ(e), λ(f)

(see Lemma 6.3.17). This turns out to be enough for us to determine the fastest

temporal paths among any vertex r in the first layer of the tree Tv and an arbitrary

vertex in V (G) \ V (Tv). In the second case, we cannot determine the labeling of the

174



tree with respect to the labels of all edges incident to the clip vertex. Therefore, we

split the vertices in the first layer of Tv into equivalence classes, and use the fact

that the fastest temporal paths between two vertices in the same equivalence class

coincide on the edges outside of Tv.

Fastest paths from r ∈ Z to y ∈ U ∪ U∗. Let x ∈ V (G′) be a clip vertex

of the tree Tx in G[Z ∪ {x}] with r ∈ V (Tx) being a vertex in the first layer of Tx.

We distinguish the following two cases.

(i) The clip vertex x = u ∈ U is a vertex of interest. In this case, we can w.l.o.g.

assume that r is a representative vertex in its equivalence class among the

first layer vertices of Tu. From the guesses G-5 and G-6 we know the fastest

temporal path from r to y.

(ii) The clip vertex x ∈ U is not a vertex of interest. Then x = vj is a part

of some segment Su,v = {u = v1, v2, . . . , vp = v), where j ̸= 1 ̸= p. Using

Lemma 6.3.17 we can determine all the edge labels of Tx with respect to the

label λ(vj−1vj) and with respect to the label λ(vjvj+1). Using the calculations

of fastest temporal paths among vertices in G′ and the performed guesses

we know the exact structure (i. e., the sequence of vertices and edges) of the

following paths:

• path P ∗
xy which is the fastest temporal path from the vertex x to the

vertex y,

• path P u
xy which is the fastest temporal path from the vertex x to the

vertex y, that passes through the vertex u,

• path P v
xy which is the fastest temporal path from the vertex x to the

vertex y, that passes through the vertex v.

Note that P ∗
xy is either equal to the path P u

xy or to the path P v
xy. More precisely,

from the guesses performed we know the structure of the fastest path from v2

through u, which then continues to any other vertex of interest, and any other

neighbor of the vertex of interest (see guesses G-7 and G-8). This path can
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then be easily (uniquely) extended to start from x = vi, as there is a unique

(temporal) path starting at x and finishing at u or v.

Suppose now that P ∗
xy = P u

xy. Since the labels of Tx are determined with

respect to λ(vi−1x) we can calculate the value c = Dx,y + |λ(vi−1x) − λ(rx)|.

We then compare c to Dr,y and get one of the following three options. First

c = Dr,y, in this case, the fastest temporal path from r to y uses first the

edge rx and then continues to y using the edges and vertices of P ∗
xy. Second

c > Dr,y, in this case, the fastest temporal path from r to y uses first the edge

rx and then continues to y using the vertices and edges of P v
xy. Third c < Dr,y,

in this case, we stop the calculation and return false, as it cannot happen that

a temporal path has a smaller duration than the corresponding value in the

matrix D.

In both cases, we introduce an equality constraint for the determined fastest tem-

poral path and inequality constraints for all the other kO(k) paths.

Fastest paths from r ∈ Z to y ∈ V (G) \ (U ∪ U∗). The proof in this case

is similar to the one above. We still split the analysis into two parts, one where the

clip vertex x of a tree Tx that includes r is in U and one where it is not in U . The

difference is that in some cases we need to also extend the ending part of the path

(which can be done uniquely, using the same arguments as in the above analysis).

Once we determine the fastest temporal path from r to y we introduce an equality

constraint for it and for all other kO(k) paths we introduce inequality constraints.

The procedure produces one equality constraint (for the fastest path) and kO(k)

inequality constraints.

Fastest paths from y ∈ V (G) to r ∈ Z. The process of determining fastest

temporal paths from any vertex in the graph G to a vertex r that is a vertex in the

first layer of a tree Tx ∈ G[Z ∪ {x}], where x ∈ V (G′), is similar to the one above,

but performed in the opposite direction.
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Solving ILP instances

All of the above finishes our construction of ILP instances. We have created f(k)

instances (where f is a double exponential function), each with O(k2) variables and

O(n2)g(k) constraints (again, g is a double exponential function). We now solve each

ILP instance I, using results from Lenstra [92], in the FPT time, with respect to k.

If none of the ILP instances gives a positive solution, then there exists no labeling λ

of G that would realize the matrix D (i. e., for any pair of vertices u, v ∈ V (G) the

duration of a fastest temporal path from u to v has to be Du,v). If there is at least

one I that has a valid solution, we use this solution and produce our labeling λ,

for which (G, λ) realizes the matrix D. We have proven in the previous subsections

that this is true since each ILP instance corresponds to a specific configuration of

fastest temporal paths in the graph (i. e., considering all ILP instances is equivalent

to exhaustively searching through all possible temporal paths between vertices).

Besides that, in each ILP instance, we add also the constraints for durations of all

temporal paths between each pair of vertices. This results in setting the duration of

a fastest path from a vertex u ∈ V (G) to a vertex v ∈ V (G) as Du,v, and the duration

of all other temporal paths from u to v, to be greater or equal to Du,v, for all pairs

of vertices u, v. Therefore, if there is an instance with a positive solution, then this

instance gives rise to the desired labeling, as it satisfies all of the constraints. For

the other direction, we can observe that if there is a labeling λ meeting all duration

requirements specified by D, then this labeling produces a specific configuration of

fastest temporal paths. Since we consider all configurations, one of the produced

ILP instances will correspond to the configuration implicitly defined by λ, and hence

our algorithm finds a solution.

To create the labeling λ from a solution X, of a positive ILP instance, we use

the following procedure. First we label each edge e, that corresponds to the variable

xe by assigning the value λ(e) = xe. We then continue to set the labels of all other

edges. We know that the labels of all of the remaining edges depend on the label of

(at least one) of the edges that were determined in the previous step. Therefore, we

easily calculate the desired labels for all remaining edges.
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6.4 Concluding remarks

We have introduced a natural and canonical temporal version of the graph realization

problem with respect to distance requirements, called Simple periodic Tempo-

ral Graph Realization. We have shown that the problem is NP-hard in general

and polynomial-time solvable if the underlying graph is a tree. Building upon those

results, we have investigated its parameterized computational complexity with re-

spect to structural parameters of the underlying graph that measure “tree-likeness”.

For those parameters, we essentially gave a tight classification between parameters

that allow for tractability (in the FPT sense) and parameters that presumably do

not. We showed that our problem is W[1]-hard when parameterized by the feedback

vertex number of the underlying graph, and that it is in FPT when parameterized by

the feedback edge number of the underlying graph. Note that most other common

parameters that measure tree-likeness (such as the treewidth) are smaller than the

feedback vertex number.

We believe that our work spawns several interesting future research directions

and builds a base upon which further temporal graph realization problems can be

investigated.

Further parameterizations. There are several structural parameters which

can be considered to obtain tractability which are either larger or incomparable to

the feedback vertex number.

• The vertex cover number measures the distance to an independent set, on

which we trivially only have no-instances of our problem. We believe this is a

promising parameter to obtain tractability.

• The tree-depth measures “star-likeness” of a graph and is incomparable to

both the feedback vertex number and the feedback edge number. We leave

the parameterized complexity of our problem with respect to this parameter

open.

• Parameters that measure “path-likeness” such as the pathwidth or the vertex

deletion distance to disjoint paths are also natural candidates to investigate.
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Furthermore, we can consider combining a structural parameter with ∆. Our NP-

hardness reduction (Theorem 6.2.1) produces instances with constant ∆, so as a

single parameter ∆ cannot yield fixed-parameter tractability. However, in our pa-

rameterized hardness reduction (Theorem 6.2.2) the value for ∆ in the produced

instance is large. This implies that our result does not rule out e.g. fixed-parameter

tractability for the combination of the treewidth and ∆ as a parameter. We be-

lieve that investigating such parameter combinations is a promising future research

direction.

Further problem variants. There are many natural variants of our problem

that are well-motivated and warrant consideration. In the following, we give two

specific examples. We believe that one of the most natural generalizations of our

problem is to allow more than one label per edge in every ∆-period. A well-motivated

variant (especially from the network design perspective) of our problem would be to

consider the entries of the duration matrix D as upper-bounds on the duration of

fastest paths rather than exact durations. Our work gives a starting point for many

interesting future research directions such as the two mentioned examples.
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CHAPTER 7

Conclusion

In this dissertation, we explored the complex domain of temporal graphs, with

the central goal of contributing to the development and understanding of the fast-

growing field of temporal graphs. We achieved this by presenting a detailed study

of four different problems.

We started by addressing the problem of finding temporally disjoint paths in a

temporal graph with an underlying graph forming a path or a tree. We proved that

the problem is NP-hard in general, but admits an FPT algorithm when parameter-

ized by the desired number of disjoint paths. Restricting the problem even further,

focusing on the case where the disjoint paths must traverse all the vertices of the

underlying path graph, we provided a polynomial-time algorithm for this specific

scenario. Our work left interesting research questions unanswered, which were fur-

ther explored and addressed by Kunz et al. [91], providing valuable insights into

the parameterized computational complexity of the problem.

The next problems we studied were problems Temporal Vertex Cover

(TVC) and Sliding-Window Temporal Vertex Cover (∆-TVC), which rep-

resent natural extensions of the classic Vertex Cover problem. Our work was

built on the initial results of Akrida et al. [5]. We showed that ∆-TVC is NP-hard
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already when the underlying graph of the input temporal graph is a path or cycle,

and provided a Polynomial-Time Approximation Scheme (PTAS) for it. This pro-

vided a sharp contrast to the more tractable TVC in similar scenarios. We presented

also an exact algorithm for ∆-TVC with exponential running time dependency on

the number of edges of the underlying graph. This algorithm was then used as

a subroutine in our polynomial-time (d − 1)-approximation algorithm, where d is

the maximum vertex degree at any time-step of the input temporal graph. This

result improves the d-approximation algorithm proposed by Akrida et al. [5], and

answered an open question the authors posed. We finished our study by present-

ing a fixed-parameter tractable algorithm, with respect to the size of an optimum

solution.

The third set of problems we explored were temporal design problems for ensur-

ing connectivity in undirected temporally connected graphs. The core objective of

these optimization problems was: given an undirected graph G, what is the smallest

number |λ| of time-labels needed to assign to the edges of G such that (G, λ) is

temporally connected (i. e., there is a temporal path among each pair of vertices)?

We presented scenarios where this task is computationally challenging and other

ones where it demonstrates a more tractable behaviour, which led us to investigate

the complex connection between time and structure in these graphs. We showed

that the unrestricted problem, called Min. Labeling (ML) can be solved in poly-

nomial time. We then continued with the NP-hardness of MAL when the required

maximum age is equal to the diameter dG of the input static graph G. We prove

that MSL is NP-hard and provide a fixed-parameter tractable algorithm for it, with

respect to the size of the labeling and number of terminals.

Our final problem explored temporal graph realization and serves as an initiation

of this study in the field of temporal graphs. In our work, we attempted to extend

the idea of the graph realization problem with respect to vertex distances in the

context of temporal graphs. We focused our study on periodic temporal graphs, i. e.,

temporal graphs in which the temporal availability of each edge of the underlying

graph is periodic. In the Simple TGR problem, we were given a matrix of the

fastest path durations between all vertices and were tasked with determining the
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labeling of a periodic temporal graph that would realize these durations. We showed

that while this problem is generally hard (NP-hard already for a small constant

∆), it became more manageable when the underlying structure resembled a tree

(polynomial-time solvable if the underlying graph G is a tree and fixed-parameter

tractable, with respect to the feedback edge number of G).

Altogether, this dissertation contributes to the development of techniques for

analyzing and solving problems involving temporal graphs. Through this work, we

offer some valuable perspectives for managing the complexities of graphs evolving

over time, encouraging further exploration in this dynamic field.
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