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Machine learning applied to threat detection and galaxy formation
Makun Madar

Abstract

We present findings from several projects across the industrial and academic domains,
with a common thread of using machine learning techniques. This work sees a collaboration
effort between the security, medical and nuclear imaging company Kromek Group PLC, and
the Institute of Computational Cosmology at Durham University. Within the three industrial
projects, we present novel threat detection techniques in security and medical imaging. My
research and development work on these projects has been utilised and implemented into
products in specific fields. The academic project has a global aim concerning predictions for
the recently launched Euclid satellite.

Kromek related - redacted

The academic phase of this thesis sees the prediction of Hα number counts and cluster-
ing bias for calibration of the Euclid survey using updated observations. We compare two
approaches to the generation of number counts and luminosity functions using the GALFORM

semi-analytical galaxy formation model, the full lightcone method and the less computation-
ally intensive interpolative method. We find significant improvements in computational speed
using the interpolative method over the lightcone method, without sacrificing accuracy. We
then take our findings to generate 3000 GALFORM models to use to train a machine learning
algorithm (again an artificial neural network) to create an emulator. We then use this emulator
in an MCMC parameter search of an eleven-dimensional parameter space, to find a best-fitting
model to a calibration dataset that includes local data, and, for the first time, higher redshift
data, namely to the number counts of Hα emitters relevant to the Euclid mission.

Supervisors: Prof. Carlton Baugh and Dr Difu Shi
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Preface

The thesis presented here represents the culmination of several years of dedicated research and
exploration in the fields of physics and astronomy. Undertaking a doctoral journey is a profound
intellectual and personal endeavour, and this document is the manifestation of countless hours of
inquiry, reflection and collaboration.

The PhD was conducted under the auspices of the Science and Technology Facilities Council
(STFC) Collaborative Awards in Science and Engineering (CASE) studentship. This studentship
program uniquely integrates industrial and academic perspectives by collaborating with non-
academic partners on projects that fall within the STFC core science program (such as astronomy)
and aims to apply technologies or techniques developed within the industrial settings into the
academic environment, or vice versa. In my case, the industrial partner was Kromek Group PLC,
a key player in the nuclear, security and medical imaging solutions sectors. The central theme of
this research lies in the utilization of machine learning and intelligent algorithm methodologies to
address challenges and opportunities in both academic and industrial contexts.

The STFC CASE studentship was structured to encompass two distinct yet somewhat inter-
connected phases, splitting the duration of my PhD in half. Starting with the industrial phase, I
immersed myself in the practical implementation of machine learning for computer vision tasks to
address specific challenges identified by Kromek, collaborating with their artificial intelligence (AI)
team. Due to the nature of industry deadlines, I was involved in multiple different projects during
my placement at Kromek, however, I was unable to see a whole project from start to finish due to
my time constraints. Transitioning to the academic phase, the focus shifted towards the applications
of machine learning in the field of computational cosmology. This phase utilised the knowledge
gained during my industrial phase while also exposing me to new concepts and practices I was
unable to obtain within an industrial setting. The collaboration with Kromek not only enriched
the research process with industry insights but also contributed to the development of machine
learning solutions with immediate practical impact. The academic project exploited the expertise
I had gained at Kromek in the design and application of machine learning methods. Here my main
contributions were to devise an emulator of a complex scientific simulation code, GALFORM, and to
use this in an extensive exploration of the model parameter space.

In presenting his work, I hope that it will inspire further inquiry and innovation in the
intersection of academia and industry. I am immensely grateful for the opportunity to engage in
this unique experience, and I look forward to the continued exploration of machine learning in both
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Nomenclature

academic and practical realms.

This thesis is split into two halves, with the first half presenting the work from my time at
Kromek, and the second half presenting the academic work with Durham University and the ICC.
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Machine learning background

We live in a data-rich age, where large portions of our lives are played out digitally. It is no surprise
that the amount of data generated is increasing day by day. According to the latest estimates, in
the year 2023, on average 328.77 million terabytes (328.77×109 Gigabytes) of data were created
each day (Statista, 2023) (where the word created refers to newly generated, captured, copied or
consumed data). This number has grown year-on-year since 2010 such that 90% of the world’s data
was generated in the last two years. In the year 2010 just 2 zettabytes (2×1012 Gigabytes) of data
was generated, in 2023 this number rose 60× to 120 zettabytes and this yearly amount is expected
to increase by over 150% in the year 2025. Therefore, there is an urgent need to extract useful
knowledge and insights from this data. This has led to the rise of AI, one of the key technologies
of the Fourth Industrial Revolution (or Industry 4.0) (Ross & Maynard, 2021), growing rapidly
in recent years in the context of data analysis and computing. Another factor in the rise of AI
is computing power. Famously, Moore’s Law states that the number of transistors in computer
chips doubles approximately every two years (Moore, 1965). Current data suggests this law is still
holding up today, and on top of this the energy use of computers has halved every 1.5 years over
the last 60 years, and the price of computer memory and storage is falling every year. Coupling the
advances in computing with the amount of data generated means AI has become very widespread,
including in research.

It has become common to use the terms AI, machine learning (ML) and deep learning (DL)
interchangeably but there are key differences that distinguish these terms. Starting with AI, this
is a loose term that describes any intelligent program which aims at imitating human behaviour
and cognitive functions in problem-solving and learning. There is no generally accepted definition
of the concept of AI (Russell & Norvig, 2010). ML, meanwhile, is a subset of AI which uses
algorithms trained on data to learn and enhance solutions of a task automatically, i.e. without
specific knowledge of the underlying model behind the data being analysed. Samuel (1959) states
that ML algorithms enable computers to learn from data, and even improve themselves, without
being explicitly programmed. Among the different ML algorithms, DL is a subset of ML that
uses deeper, more complex algorithms to recognize patterns in data. In today’s world, when AI is
referenced it is often specifically referring to DL.

The first manually operated, general-purpose computer system was the Electronic Numerical
Integrator and Computer (ENIAC) in 1946 (Goldstine & Goldstine, 1996). This was the spark for
a revolution in computer science that has led to the state of intelligent algorithms today. The term

3



Nomenclature

"machine learning" was coined by Samuel (1959) while programming a computer to play a better
game of checkers than the person who wrote the program. The origin of ML in the modern sense
is usually associated with Frank Rosenblatt, who developed algorithms based on the work of the
human nervous system. He created a machine for recognizing the letters of the alphabet called
the perceptron in 1957 (Rosenblatt, 1958). It became the prototype for modern artificial neural
networks (ANN).

We can divide ML and DL into three forms: supervised, unsupervised, and reinforcement
learning. In supervised learning, a program is fed labelled data and an algorithm is trained on
the labelled dataset and then tested to see if it can correctly apply the labels to new data (Sheikh
et al., 2023). This type of learning is the major variant we will employ throughout this thesis.
Unsupervised learning has no training step. The algorithm is trained to search for patterns within
the data by itself, such as clusters of characteristics in the training data that will form clusters in the
future. Supervised learning is ideal when researchers know what is being searched for. If, however,
it is not known what patterns are hiding within the data and we want to uncover hidden connections,
then unsupervised learning is more appropriate. Reinforcement learning is an approach whereby an
algorithm is trained by being rewarded for following certain strategies and decisions (Arulkumaran
et al., 2017). As mentioned, we will focus on supervised learning in this thesis. Within supervised
learning, there are two main classes of ML and DL algorithms: classification and regression.
In short, the most significant difference between regression and classification is that regression
predicts a continuous quantity/ set of quantities based on an input, while classification predicts
discrete class labels. The main goal of a regression model is to estimate a mapping function based
on the labelled input and output datasets provided during the training phase. Classification is a
predictive model that also approximates a mapping function from a set of input variables to identify
discrete output variables, which can be labels or categories. We will explore specific classification
algorithms for the Kromek section of this thesis in (Kromek related - redacted), and regression
models will be the main focus for the academic part of this thesis in chapter 8.

DL is not without its challenges. For starters, it is extremely data-hungry, demanding ex-
tensively large amounts of data to achieve a well-behaved performance model. A general rule of
thumb is an increase in data relates to a more reliable performance model. However, not every
situation has the benefit of large data sets available, and sometimes there is a shortage of data.
In these cases augmentation could be employed to artificially scale up the data sets available, for
example for image processing tasks, or fine-tuning existing algorithms. The data available may be
imbalanced where the data used for training a model is heavily biased to one type. For example, in
some sequential biological data, there may be an abundance of one type of sample over another. In
this scenario, down-sampling the larger classes or up-sampling the smaller classes would help, or
using a relevant loss evaluation (the definition of loss can be found in Kromek related - redacted).
Another problem that arises from the more complex DL algorithms is a vast number of parameters
can lead to overfitting. This is when a model is too specific to the data it has trained on and fails
on data it has not seen before, therefore it needs to be more general. This can also come from
insufficient training. There are remedies for this e.g. Zhang & Sabuncu (2018); Xu et al. (2019,
2020); Sharma et al. (2020).

It is common to think of ML and DL techniques as black boxes that are difficult to interpret.
However, they are interpretable. However, there are examples of interpreting models to obtain
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patterns recognized by the model, for example in bioinformatics (Li et al., 2019). For reviews on
DL, including its challenges see Alzubaidi et al. (2021); Sheikh et al. (2023).

In today’s world, we encounter all kinds of applications of AI in our everyday lives, for
predictive analysis, image processing, language and speech, and for the performance of physical
tasks. In this thesis, predictive analysis and image processing are the most prominent applications.
The ability to use data to make better-informed estimates about the future has huge potential in
a vast array of commercial and research areas. Google’s DeepMind has developed an AI system
that takes climate forecasts and data to predict the inflow of energy from wind farms 36 hours in
advance (DeepMind, 2019). Computer vision relates to image-based recognition, automating the
observation, analysis and interpretation of visual information. Examples of where this is deployed
are in clinical medicine in the form of image-based diagnostics, with research finding evidence
that DL systems perform similarly to that of a human medical professional (Yu et al., 2018; Liu
et al., 2019). It is no surprise that ML techniques are used in astronomy both for computer vision
and predictive analysis. Baron (2019) overviews the practicalities of ML in astronomy including
specific algorithms and applications.

In this thesis, I will present a variety of machine-learning concepts and show how they can be
applied in both industrial and research tasks.
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Kromek industrial placement
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Kromek related - redacted
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Kromek related - redacted
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Kromek related - redacted
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Kromek related - redacted
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Chapter 6

Introduction

The science goal of my academic research project is to predict the abundance and clustering of
the galaxies that will be mapped in the redshift survey to be carried out by the European Space
Agency’s (ESA) Euclid mission. These quantities are the starting point for forecasting the accuracy
with which the various cosmological probes will be able to constrain the dark energy equation
of state. Even though Euclid has now launched and the main survey has started, it may still be
necessary to change the survey strategy. The predictions presented here will allow the impact of
any such changes on the mission objectives to be quickly assessed.

This chapter sets the scene for this part of the thesis and introduces a range of concepts. The
chapter is split up into the following parts: we discuss the scientific background and characteristics
of Euclid mission in §6.1, as well as presenting some background on the Hα emission line in
§6.2; in §6.3 we give an overview of the GALFORM semi-analytical galaxy formation model and
the N-body simulation that we use throughout this part of the thesis, and in §6.4 we present the
currently available observations of the abundance of Hα galaxies over the redshift window that is
relevant to Euclid.

6.1 ESA’s Euclid mission: the emission line galaxy redshift survey

Euclid (Laureĳs et al., 2011; Racca et al., 2016) is a mission designed to understand the origin of
the Universe’s accelerating expansion by surveying just over 13000 deg2 of the sky. Launched in
July 2023, the payload consists of a 1.2m Korsch telescope that directs light to two instruments, the
visual instrument (VIS) camera and the near-infrared instrument (NISP) which contains a slitless
spectrometer, both with a field of view of ∼0.5 deg2. Euclid will perform two main wide-field
surveys with these instruments. These surveys will be used for a variety of cosmological probes.
There will also be a deep survey of around 50 sq degrees which will have a significant legacy value.

The VIS instrument will image the sky in a wide filter, providing shape measurements of
the accuracy previously obtained with the Hubble Space Telescope but for more than two billion
galaxies. These shape measurements will allow weak gravitational lensing to be measured, which
depends on the clustering in the dark matter distribution. When combined with photometric
redshift estimates, the clustering in the matter distribution can be measured in a series of slices
(tomography); the evolution of the matter fluctuations between these shells depends on the dark
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6.1. ESA’s Euclid mission: the emission line galaxy redshift survey

energy. This cosmological probe potentially has the most constraining power on the dark energy
equation of state, but will not be discussed further in this thesis.

The slitless spectrometer is predominantly sensitive to Hα ELGs over the redshift range
redshift 0.9 ≤ z ≤ 1.82, with the aim of reaching a flux limit of 2×10−16 erg s−1 cm−2 (Euclid
Collaboration et al., 2022). NISP should be able to determine spectroscopic redshifts for at least
1700 galaxies deg−2 on average according to Pozzetti et al. (2016). (This is one of the numbers that
we will revisit in this part of the thesis.) There is a compromise to be made in terms of going deeper
and potentially increasing the surface density of galaxies, but at the expense of a likely reduction in
the redshift measurement success rate, due to the confusion in associating overlapping spectra with
galaxies. The redshift success rate is also likely to be density-dependent, which could lead to an
impact on the measured clustering. To help identify spectra of galaxies, two "exposures" of each
field will be made with the spectrograph, following a rotation, and reference will be made to galaxy
positions in theH-band image of the same part of the sky. The spectral resolution of a spectrograph
is a measure of its ability to resolve features across a wavelength range, given by λ/∆λ, the finer
the resolution, the narrower the wavelength range. Given the spectral resolution of Euclid, of
around R ∼ 300, the emission will be measured from a combination of the Hα (λ = 6563 Å) and
N[II] (λ = 6584 Å) lines; resolving these lines would require R > 6584/21 = 313.

A number of cosmological probes can be applied to the redshift survey to investigate the
nature of dark energy, dark matter and gravity using observational tracers to measure signatures of
these quantities and forces imprinted on the geometry of the universe and on the cosmic structure
formation history. One of the primary cosmological probes that will be used on Euclid’s redshift
survey is galaxy clustering (GC) using the Baryonic Acoustic Oscillations (BAO) feature (Cole
et al., 2005; Eisenstein et al., 2005). BAOs arise from matter sound waves caused by a gas
pressure differential in the early universe (before recombination) between the highly dense plasma
collapsing due to gravitational forces, and the matter heating up causing outward pressure, leading
to oscillations. The maximum distance that these sound waves can travel before matter-radiation
decoupling is the horizon scale at the epoch of decoupling called the sound horizon scale. This
scale has been accurately measured by the Planck cosmic microwave background (CMB) mission
to around 0.3 per cent accuracy (Planck Collaboration et al., 2020). The BAO fluctuations in
the matter (and galaxy) clustering are much lower amplitude than, for example, in the CMB
temperature fluctuation spectra, because for the former the fluctuations are damped by the coupling
of the baryons to the dark matter (through gravity). Nevertheless, the BAO scale can be measured
with a large enough redshift survey, that is with bin sizes large enough to encompass the ∼100
Mpc BAO scale and a signal-to-noise strong enough to overcome the shot noise. The BAO acts as
a standard ruler, and so its apparent size in the galaxy distribution acts to measure the distance-
redshift relation, which constrains dark energy since the relation is cosmology dependent (for a
review of BAOs as a standard ruler see Bassett & Hlozek 2010).

Galaxies are used as tracers of the BAO and so quantifying this scale in the three-dimensional
galaxy distribution in terms of its imprint on the power spectrum (or correlation function) becomes
important for probing the cosmological expansion and the growth of structure across several
redshift bins over the time interval when dark energy becomes dynamically important. Euclid will
accurately determine the relationship between the spatial distribution of galaxies and the underlying
dark matter density field, known as the galaxy bias. This relationship will be determined by Euclid
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by combining the fluctuation maps of the luminous and dark matter distributions produced using
the redshift survey and weak lensing probes (e.g. Reyes et al., 2010; Bernstein & Cai, 2011). As
mentioned, the weak lensing tomography from VIS and the NISP measurements of the BAO are two
different cosmology probes. If individually they reach the same constraints on the cosmology, then
the systematic errors are well understood and under control. The sample variance errors on these
measurements are small due to the large sample size, they will be comparable to the systematic
errors hence the need to minimise the systematic errors. The galaxy bias affects the signal-to-noise
of the correlation function/power spectrum measurement which impacts the extraction of the BAO
scale. The clustering bias is defined as the square root of the ratio of the galaxy correlation function
to the correlation function of the dark matter (Kaiser, 1984). Galaxies are assumed to form within
dark matter halos (White & Rees, 1978), and so galaxies can be used as a proxy in studying the
location of dark matter. However, estimating a region’s dark matter density by multiplying the
region’s galaxy abundance by a single ratio is merely a rough estimate, and the clustering ratio
between galaxies and dark matter could vary with scale. We expect the scale dependence of galaxy
bias to be fairly weak on the BAO scale (Angulo et al., 2008, 2014) due to the relationship between
galaxies and the underlying dark matter density field tending towards linearity as the fluctuations
in the density field are getting smaller.

Euclid aims to map the angular diameter distance, DA(z), and the Hubble parameter, H(z),
as a function of redshift. The combination of radial and transverse distance measurements depends
on the assumed cosmology. Euclid will measure the BAO signal in the power spectrum of galaxies
(Seo & Eisenstein, 2007) in redshift shells of volume V . The primary concern is the error on the
clustering measurement in each redshift shell, encapsulated in the expression for fractional error
on the power spectrum derived by Feldman et al. (1993):

σ

P
∝ 1√

V

(
1 + 1

n̄P

)
, (6.1)

where σ is the error on the power spectrum P , V is the volume of the redshift shell and n̄ is the
number density of galaxies within the shell. The main determinant of the fractional error on a
clustering measurement is the volume, so maximizing the survey volume increases the number of
independent k modes in the power spectrum. The 1/

√
V term is similar to a Poisson noise on the

mode counting or a density of states argument, i.e. how many wavevectors k are sampled by the
volume? However, the power spectrum is measured using a finite number of galaxies, therefore
there is an associated discreteness noise known as shot noise (represented by the second term,
1/n̄, in Eqn. 6.1). Due to the flux limit of surveys, the number density of galaxies drops rapidly
with increasing redshift, increasing the shot noise. Once the shot noise is comparable to the power
spectrum amplitude, it is difficult to measure the signal from galaxy clustering. If n̄P ≫ 1, then
the shot noise term becomes much smaller and the full benefit of adding a shell of volume V is
felt in the measurements. To achieve this, a tracer is required with either a large bias factor (or
equivalently a large power spectrum P ) or a high number density n̄. If n̄P ≪ 1, the clustering of
galaxies in this shell contributes nothing to the statistical power of the survey due to the shot noise
term dominating the error. Increasing the survey volume by adding a new shell in this regime will
not contribute any new information.

Hence to determine how well Euclid will be able to measure the BAO (and other clustering
probes) we need to predict the number of objects Euclid will see in the redshift survey and the
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clustering bias of these objects, so we can predict the errors in the power spectrum measurement
for each redshift bin. As mentioned, Euclid will use Hα emission line galaxies as tracers of the
large-scale structure. The emission line Hα is used as its signal lies within the redshift window
that Euclid operates. Furthermore, Hα traces the outer regions of galaxy clusters where the
clustering signal is weaker, therefore, more object detections are required to offset the weaker
clustering. In this thesis, we model the number counts and clustering of Hα emitters using the
semi-analytic model GALFORM (refining the work conducted by Orsi et al. 2010 by using up-to-date
Hα observations and using these to calibrate the model parameters). We wish to develop an
automatic way of constraining GALFORM model parameters to achieve the objective of this work. It
is worth noting that the calculations conducted for Euclid can be readily adapted for other wide-
field galaxy surveys, such as the Nancy Grace Roman Space Telescope (formerly WFIRST) (Green
et al., 2012; Spergel et al., 2015; Bailey et al., 2023) which, when launched, will work in synergy
with Euclid’s Hα redshift survey.

We discuss the challenge of making predictions for Euclid’s redshift survey in two chapters.
First in chapter 7 we discuss techniques for mock galaxy catalogue generation where we compare
the commonly used lightcone method with an interpolative method to compute the number counts
and redshift distribution of emission line galaxies. Then in chapter 8 we build an ML algorithm
to emulate GALFORM outputs in order to efficiently sample a large subset of the parameter space to
find an improved model for emission line galaxy catalogue predictions. Finally in chapter 9 we
discuss the impact of our academic work and look to future projects that could build on our results.

6.2 Hα emission line galaxies

Some of the most utilised and observed emission lines in astrophysics are the Balmer series lines
that arise from recombination to the n = 2 level of hydrogen, the most abundant element in the
Universe. In particular, the transition from n = 3 to n = 2 produces the Hα emission line. Hα is
located at the rest-frame wavelength of λ = 6563Å, in the optical, and its emission is powered by
hydrogen ionizing photons from hot, massive young stars (Faisst et al., 2019; Kewley et al., 2019).
Because the stars that are hot enough to produce the ionising radiation are short-lived, the emission
lines act as a probe of the current star formation activity in a galaxy. Therefore, Hα sheds light on
the variability of the star formation rate (SFR) in galaxies by tracing the conditions in the ionized
gas in star-forming HII regions. For galaxies at z > 0.5, this line is redshifted out of the optical
and into the NIR section of the electromagnetic spectrum (Thompson et al., 1996; McCarthy et al.,
1999; Hopkins et al., 2000; Shim et al., 2009). Hα can measure the SFR locally and out to a
redshift of z∼2.5. Compared to other emission lines such as Lyα, OII , OIII , Hβ or Hγ, Hα has a
longer wavelength and therefore is not as attenuated by dust, or as sensitive to metallicity and the
ionization state of the gas. Hence, Hα is a more direct tracer of actively star-forming galaxies (e.g.,
see the review of Kennicutt Jr, 1998) and is a robust tracer choice of the large-scale structure (LSS)
of the Universe. It is worth noting that dust attenuation from emission lines can be greater than the
attenuation experienced by the stellar continuum; this is because emission lines can be attenuated
by the gas cloud that new stars are made in as well as the diffuse dust in a galaxy.

Historically, measuring the abundance of Hα emitters by spectroscopy could only be done
at low redshift through ground-based spectroscopic surveys working in the optical (e.g. Gallego
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et al., 1995; Tresse et al., 2002). Even once NIR spectrographs were developed, the intense airglow
at ground level made NIR spectroscopic searches for emission line galaxies at higher redshifts
impractical. However, it is feasible to target Hα emitters using slitless spectroscopy onboard space-
based telescopes, such as onboard Hubble Space Telescope (HST) or Euclid. Euclid specifically
will observe a patch of the sky and take two spectra readings of objects with a flux limit of
f ≥ 2×10−16 erg s−1 cm−2, with a rotation of the NISP spectrograph (Euclid Collaboration et al.,
2022). It will then use H-band imaging to match the spectra to galaxies in the H-band image. In
§6.4 we give a brief description of alternative Hα surveys (HiZELS and WISP), explaining their
detection methodologies.

6.3 Theoretical Model

In this section, the semi-analytical galaxy formation model GALFORM is briefly introduced (§6.3.1)
in conjunction with the dark matter-only N-body simulation in which it is implemented in this thesis
(§6.3.2). The basic physical model of cosmology employed is the ΛCDM model that describes
the primary components of the Universe as dark matter, dark energy, and baryonic matter. Within
this model, galaxies form through a hierarchical process, from small density fluctuations in the
early Universe that grow via gravitational instability to form dark matter halos. These halos merge,
attracting baryonic matter via gravity. Galaxies are believed to form within dark matter halos as
gas cools (White & Rees, 1978).

6.3.1 GALFORM

GALFORM is a physically motivated semi-analytical model for hierarchical galaxy formation (Cole
et al., 2000; Bower et al., 2006; Lacey et al., 2016), modelling ab initio from the distribution
of cold dark matter (DM) and following the evolution of the baryonic component using a set of
coupled differential equations. GALFORM populates the DM haloes at the earliest branches of the
merger tree with hot baryonic gas and models the main physical processes governing the formation
and evolution of galaxies: (i) the collapse and merging of DM haloes, (ii) the shock-heating and
radiative cooling of gas inside DM haloes, which leads to the formation of galactic discs, (iii)
quiescent star formation in galactic discs, (iv) feedback from SNe, active galactic nuclei (AGN),
and photo-ionization of the inter-galactic medium, (v) chemical enrichment of stars and gas and
(iv) dynamical friction driven by mergers of galaxies within DM haloes, forming spheroids and
triggering starbursts. Full descriptions of these physical processes are given in a series of papers:
Cole et al. (2000); Bower et al. (2006); Lacey et al. (2016) as well as the reviews by Baugh (2006)
and Benson (2010).

The star formation histories are convolved with a simple stellar population (SSP) model, which
gives the light emitted as a function of age by a population of stars produced with a given stellar
initial mass function and metallicity, allowing for the prediction of a composite spectral energy
distribution (SED) for each galaxy (see the review by Conroy 2013). This can be sampled with
various filters to predict the rest or observer frame magnitudes in the UV, optical, NIR and far-
infrared bands. Dust is assumed to be mixed with the stars in the disk of a galaxy in two phases: in
clouds and in a diffuse component (Granato et al., 2000). Properties of the dust are assumed and
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combined with the predicted scalelengths of the disk and bulge allowing for the optical depth and
attenuation of the starlight to be calculated as a function of wavelength.

GALFORM distinguishes between central and satellite galaxies within their host dark matter
halo, with some of the physical processes being affected by this designation. Central galaxies are
placed at the centre of most massive sub-halo and are the focus of all the gas that is undergoing
cooling. Halo merger events choose the central galaxy of the main (most massive) progenitor halo
as the central galaxy of the descendant halo with other galaxies becoming satellites. In the default
gas cooling model (see Font et al. 2008 for an alternative model), satellite galaxies are stripped of
their hot gas as soon as they become satellites, hence quenching any further cooling and stopping
any long-term star formation. The satellite is assumed to follow the motion of the sub-halo.
Eventually, the sub-halo may no longer be resolved within the simulation; some authors refer to
this as an orphan galaxy. When this happens we calculate an analytical timescale for the satellite
galaxy to merge with the central (Simha & Cole, 2017). Merger time scales are calculated based
on the initial energy and angular momentum of the satellite’s orbit at the point that the sub-halo is
lost (these distributions are measured from N-body simulations and sampled by the model), and
the mass of the satellite and halo hosting both the satellite and central galaxy. It is expected that
after this time the effects of dynamical friction will have caused the satellite to merge with the
central galaxy. However, the merger time scale of a satellite is calculated every time a satellite’s
host halo merges into a sub-halo of a more massive halo (Cole et al., 2000; Simha & Cole, 2017).

Here we give an overview of the processes in GALFORM that are relevant to this thesis.

6.3.1.1 Quiescent star formation in discs

The quiescent mode of star formation takes place in the disk following the accretion of cooled
gas from the hot halo. The star formation rate (SFR) in the disk is calculated using the empirical
law inferred from observations by Blitz & Rosolowsky (2006) (as implemented in GALFORM by
Lagos et al. 2011; see also Fu et al. 2010 and Popping et al. 2014 for the incorporation of similar
schemes into other semi-analytical models) which is based on observations of nearby star-forming
disc galaxies. The SFR is assumed to be proportional to the mass of the molecular component of
the gas in the disk Mmol,disk

ψdisk = νSFMmol,disk, (6.2)

where νSF is the value of the SFR coefficient, which controls the rate of conversion of the molecular
gas into stars in quiescent galaxy disks. This is an adjustable parameter set within the range inferred
from observations by Bigiel et al. (2011). The mass of molecular gas depends on the gas pressure
in the mid-plane of the disk.

6.3.1.2 Supernova feedback

Supernova explosions eject gas from galaxies and their host dark matter halos. These ejections are
mainly due to type II supernovae from the deaths of short-lived, massive stars. The model therefore
assumes the rate of gas ejection due to supernova feedback is proportional to the instantaneous
SFR ψ, with a mass loading factor that is dependent on the galaxy circular velocity, Vc, as a power
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law:
Ṁeject =

(
Vc

VSN

)−γSN

ψ, (6.3)

where γSN and VSN are adjustable parameters. We can further split the VSN term into VSN, disk and
VSN, burst to distinguish the feedback contributions in quiescent star formation in disks from star
formation in bursts. Most previous studies have assumed that these two velocity normalisation
parameters are equal (e.g. Gonzalez-Perez et al. 2014 and Lacey et al. 2016). However, recent
versions of the model have relaxed this restriction (e.g. Benson & Bower, 2010; Elliott et al., 2021).

Gas ejected from the galaxy due to SN feedback is assumed to gather in a reservoir beyond the
virial radius of the host dark matter halo. The gas gradually returns to the hot gas reservoir within
the virial radius at a rate of

Ṁreturn = αret
Mres

τdyn, halo
, (6.4)

where τdyn, halo is the halo dynamical time,Mres is the mass of the reservoir beyond the virial radius,
and αret is an adjustable free parameter (Bower et al., 2006).

6.3.1.3 Galaxy mergers

It is assumed when galaxies merge there may be a burst of star formation and destruction of the
galactic disks. To define the types of mergers we set two thresholds, fellip and fburst. These
thresholds are compared to the baryonic masses of the central galaxy, Mb,cen, and the merging
satellite galaxy, Mb,sat through the ratio Mb,sat/Mb,cen. For the case where Mb,sat/Mb,cen ≥ fellip,
the merger is classified as a major merger. After a major merger, the disk component of the primary
galaxy is destroyed and forms a spheroid. We assume the cold gas in the disk is used up in a burst
of star formation which also adds stars to the spheroid. The case for which Mb,sat/Mb,cen<fellip

is designated as a minor merger. Following a minor merger, the disk survives. For the cold gas
in the disk to be consumed in a starburst after a minor merger, the following condition must be
met, Mb,sat/Mb,cen ≥ fburst. Both fellip and fburst are treated as free parameters. We use the new
prescription of Simha & Cole (2017) to compute the time for a galaxy merger to take place.

6.3.1.4 Disk instabilities

Disk instabilities can trigger star formation. When a galaxy is dominated by rotational motion
the disk is unstable to bar formation through sufficient self-gravitation. We assume that disks are
dynamically unstable to bar formation if the following condition is met (Efstathiou et al., 1982)

Fdisk ≡ Vc(rdisk)
(1.68GMdisk/rdisk)1/2 < Fstab, (6.5)

where Mdisk is the total disk mass and rdisk is the disk half-mass radius. The quantity Fdisk

describes the contribution of disk self-gravity to its circular velocity, with larger values equating to
lower self-gravity and greater disk stability. Predictions of Fdisk have produced varied results from
different methods; Efstathiou et al. (1982) found Fdisk ≈ 1.1 for a suite of exponential stellar disk
models, while Christodoulou et al. (1994) found Fdisk ≈ 0.9 for gaseous disks. For a completely
self-gravitating stellar disk, Fdisk = 0.61. Fstab is a model parameter.
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If the disk instability conditionFdisk<Fstab is met we assume the disk forms a bar which evolves
into a spheroid (Combes et al., 1990; Debattista et al., 2006). We assume that an unstable disk is
disrupted by bar instabilities on a sub-resolution timescale thus all the mass is instantly transferred
to the spheroid and any gas present is used in a burst of star formation.

6.3.1.5 Starbursts

We assume the rate at which bursts of star formation form stars in a hot spheroid is

ψburst = νSF,burstMcold,burst = Mcold,burst

τ* burst
, (6.6)

where the timescale τ* burst is

τ* burst = max[fdynτdyn,bulge, τ* burst,min]. (6.7)

Here the bulge dynamical time is defined in terms of the half-mass radius and circular velocity of
the bulge, τdyn,bulge=rbulge/Vc(rbulge). We treat τ* burst,min as an adjustable parameter, and we fix
fdyn=20 (Lacey et al., 2016).

6.3.1.6 SMBH growth and AGN feedback

Supermassive black holes can inject energy into the halo gas disrupting the gas cooling. Multiple
instances can lead to black hole growth; hot halo accretion, BH-BH mergers, and starbursts (Bower
et al., 2006; Fanidakis et al., 2011; Griffin et al., 2019). In the starburst scenario, mass accreted
onto the SMBH is a constant fraction of the mass of stars formed, fSMBH, where fSMBH is an
adjustable parameter. AGN heating of the hot gas halo is assumed to occur if two conditions are
met: (1) the gas halo is in quasi-hydrostatic equilibrium, i.e. meeting the condition

τcool/τff > 1/αcool, (6.8)

where τcool is the gas cooling time, τff is the free-fall time, and αcool is an adjustable parameter;
(2) The AGN power required to balance the radiative cooling luminosity is less than the fraction
of Eddington luminosity of the SMBH, fEdd.

6.3.2 N-body simulation

When GALFORM is coupled with an N-body simulation, the simulation is used to provide merger
histories for the dark matter halos required by the model and the semi-analytical model provides
predictions for the spatial distribution of galaxies (Benson et al., 2000).

We run GALFORM on the Plank Millennium N-body simulation (hereafter PMILL) (Baugh
et al., 2019), the latest in the ‘Millennium’ series of simulations carried out by the Virgo Con-
sortium. The PMILL has a similar but 1.43× larger volume (after accounting for differences in
the Hubble parameters) than the simulation described by Gao et al. (2009) (hereafter WM7). The
PMILL parameters correspond to the best-fitting cold dark matter model for the first year Planck
cosmic microwave background data and measurements of the large-scale structure in the galaxy
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distribution (Planck Collaboration et al., 2014); these parameters have been updated in the final
Planck dataset (Planck Collaboration et al., 2020). The specifications and cosmological parameters
used correspond to a flat universe, and are listed here for completeness:

(i) Present day matter density, ΩM (in units of critical density): 0.307

(ii) Baryon density parameter, Ωb: 0.04825

(iii) Spectral index of the primordial density fluctuations, nspec: 0.9611

(iv) Reduced Hubble parameter, h = H0/(100 km s−1 Mpc−1): 0.6777

(v) Normalisation of the density fluctuations at the present day, σ8: 0.8288

(vi) Simulation box length, Lbox(h−1 Mpc): 542.16

(vii) Number of particles, Np: 50403

(viii) Particle mass, Mp (h−1 M⊙): 1.06×108

(ix) Halo mass limit corresponding to 20 particles, Mp (h−1 M⊙): 2.12×109.

These cosmological parameters listed for PMILL are the same parameters as those used in the
EAGLE simulations of Schaye et al. (2015).

The use of 128 billion particles (50403) to represent the matter distribution gives the PMILL
an order of magnitude better mass resolution than the MSI or WM7 simulations. Coupling this
with the volume used, PMILL has an intermediate resolution between MSI (Springel, 2005) and
MSII (Boylan-Kolchin et al., 2009). The number of outputs also increases from MSI to PMILL,
with PMILL storing 271 redshifts of halos and subhalos compared with only 60 used in MSI.

The friends-of-friends (FoF) percolation algorithm is first run on the PMILL output snapshots
to identify structures that can be considered as virialised dark matter halos. SUBFIND (Springel
et al., 2001) is then run on the FOF particles to identify subhalos, self-gravitating over-densities
within the FoF halos, to construct the dark matter halo merger trees using the DHALOS algorithm
described in Jiang et al. (2014) (see also Merson et al. (2013)). The (sub)halos are retained
if they have a minimum particle count of 20, which corresponds to a minimum halo mass of
2.12×109 h−1M⊙. The full particle data is only stored for a selection of redshift snapshots for
storage efficiency. If the full particle and halo data is stored at all 271 redshift outputs the dataset
size would be 1Pb. We run GALFORM on the PMILL simulation using the COSMA-5 machine of
the DiRAC installation at Durham.

6.4 A summary of existing Hα observations

As described in §6.1, Euclid’s wide field survey will observe Hα ELGs over the redshift range of
0.9 ≤ z ≤ 1.82 down to a flux limit of 2 × 10−16 erg−1cm−2s−1. Several prior observations have
complemented Euclid’s survey from ground- and space-based satellites, which have been used to
predict how many ELGs Euclid will see. We review these here to give the context for the Hα data
that we will use to calibrate a new GALFORM model.
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The Hi-Z Emission Line Survey (HiZELS) (Geach et al., 2008; Sobral et al., 2009, 2012,
2013) is a ground-based, narrow-band NIR survey using observations obtained with the Wide Field
CAMera (WFCAM; Casali et al. 2007) on the United Kingdom Infrared Telescope (UKIRT) that
surveys emission-line objects over several square degrees of the Cosmological Evolution Survey
Field (COSMOS; Scoville et al. 2007), sampling Hα star-forming galaxies at z = 0.4, 0.84, 1.47
and 2.23 using broad- and narrow-band filters in the z′, J,H and K bands. Samples of candidate
Hα emitters at various redshifts are selected using a combination of broad-band and narrow-band
colours (colour-colour selections) and photometric redshifts (where available). The narrow-band
filters trace Hα at the specified redshifts, while the broad-band photometric imaging is used to
estimate and remove the background contribution to the continuum. This selection criterion is
coupled with a spectroscopic follow-up. Objects with lines with a rest-frame equivalent width (EW)
of at least EW0=25 Å are retained to guarantee a clean selection of line emitters and ensure the
samples of Hα emitters are selected down to the same restframe EW allowing for evolution across
cosmic time to be quantified. Additionally, spectroscopically confirmed sources are included. See
Table 3 of Sobral et al. (2013) for the number of sources, including spectroscopically confirmed
ones, for each field at each redshift surveyed.

Space telescopes such as the Hubble Space Telescope (HST) have also been used to measure
the Hα emission line number counts and luminosity functions. Colbert et al. (2013) presented
near-infrared emission line counts and luminosity functions from the Hubble Space Telescope Wide
Field Camera 3 (WFC3) Infrared Spectroscopic Parallels (WISP) program (Atek et al., 2010, 2011)
with both the G102+G141 slitless grism filters. A grism is the combination of a diffraction grating
and a prism, used to separate otherwise overlapping orders of diffraction spectra and increase the
resolving power. This survey selects emission line galaxies with EW greater than 40 Å for a faint
flux limit of (3 − 5) × 10−17 erg−1cm−2s−1 which is deeper than the expected flux limit of Euclid.
They present projections for Euclid-like cumulative number counts between the redshift range
0.7 ≤ z ≤ 1.5 for a survey size of 10 000 deg2 for an Hα flux of 2 × 10−16 erg−1cm−2s−1. To
address false detections, visual inspection and comparison from team members are used, leading
to no consensus being reached for just 5% of emission line objects. These uncertain emission lines
were removed from the final sample, and errors involving visual inspection were accounted for in
the completeness correction derivation. Colbert et al. (2013) quotes a completeness of 90%-95%
even for high signal-to-noise ratio lines (S/N > 100). In total, WISP extracts 1960 emission lines
with Hα being detected in 996 galaxies and 226 galaxies with an overlap of both Hα and [OIII]
across their 29 fields covering 0.037 deg2. They find their high-redshift (z=0.9-1.5) counts are in
agreement with the high-redshift (z=1.47) HiZELS survey but underpredict their z=0.84 results
with their low-redshift luminosity function (z=0.3-0.9). The factors explaining the discrepancy
between the two surveys could include differences in completeness methods, sample selection and
sample variance from the different survey sizes.

An update to the observations carried out by Colbert et al. (2013) was provided by Bagley et al.
(2020) who combined the spectroscopic data from three HST grism programs: the WISP survey,
3D-HST (Brammer et al., 2012; Skelton et al., 2014; Momcheva et al., 2016), and A Grism H-Alpha
SpecTroscopic Survey (AGHAST) (Weiner, 2009). All of these programs utilise the near-infrared
slitless spectroscopic observations using the WFC3 IR grisms: G102 and G141. The observations
compiled by Bagley et al. (2020) cover a total area of 0.56 deg2 which is approximately equal to

22



6.4. A summary of existing Hα observations

Euclid’s NISP field of view. The completeness corrections from Colbert et al. (2013) were adopted
for the 3D-HST+AGHAST catalogues, while simulations were used to determine the completeness
of the updated line-finding procedure that created the WISP catalogue. On top of this, an EW lower
limit of 40 Å and S/N > 5 is used. From the full WISP+3D-HST catalogue, a wide sample of ELGs is
selected to match the Euclid-wide survey. Sources are selected with f ≥ 2×10−16 erg−1cm−2s−1

and λobs ≥ 1.25 µm, resulting in a Hα coverage from 0.9 ≤ z ≤ 1.6 for the wide field. Note,
that given the spectral resolution of the Euclid spectra, Hα+[N II] will be blended for most source
spectra, Bagley et al. (2020) does not correct the observed Hα for the contribution from [N II]. The
wide survey here consists of 3266 Hα+[N II] emitters deg−2 below redshift z ≤ 2.5 when correcting
for incompleteness. The errors on their number counts come from a Monte Carlo process creating
200 realizations of the full WISP+3D-HST emission-line catalogue and measuring the distribution
on the number counts.

Pozzetti et al. (2016) constructed empirical models of the Hα luminosity function spanning
the range of redshifts and line luminosities relevant to the redshift surveys proposed by Euclid
and other upcoming space missions such as the Nancy Grace Roman telescope. They consider
various surveys but prioritise those that are within the sensitivity ranges of Euclid and Nancy Grace
Roman, these being the HiZELS survey, WISP survey and HST+NICMOS survey (Shim et al.,
2009). They construct three models for the Hα luminosity function evolution by applying fits to
the observations, smoothing between the observed data points. It is worth emphasising that the
models produced by Pozzetti et al. (2016) were not physically motivated. The first uses a Schechter
(1976) parametrization for the luminosity functions and an evolutionary form similar to Geach
et al. (2010). The second model adopts a similar approach with the Schechter function for the LFs
but modifies the evolutionary form for L⋆. The final model is a combined fit to HiZELS, WISP
and NICMOS using an Monte Carlo Markov Chain (MCMC) to explore the Schechter function
parameter space. The fit parameters can be found in Table 2 of Pozzetti et al. (2016).

A visualisation of a selection of the observed luminosity function estimated can be found in
Fig. 7.1 in the next chapter. Here we compare the latest ELG number counts from Bagley et al.
(2020) with the empirical models from Pozzetti et al. (2016) in Fig. 6.1, which is extracted from
the panels that make up fig. 7 from Bagley et al. (2020). The Bagley et al counts agree best
with the ‘pessimistic’ empirical model 3 from Pozzetti et al. (2016). Covering the redshift range
0.9 < z < 1.8 to a flux limit of 2×10−6 erg s−1 cm−2, the Pozzetti et al. predictions of the
number of Hα emitters/deg2 have a large uncertainty. They quote a predicted range of 2000-4800
Hα emitters/deg2 (which is equivalent to 30-72 million emission sources mapped by a 15,000
deg2 Euclid wide survey). A new prediction is needed with a smaller uncertainty to allow more
useful forecasts to be made for Euclid. The GALACTICUS lines in Fig. 6.1 are from a similar
model to the GALFORM model used here. The different curves show different assumptions about
dust extinction.

The most recent ‘new release’ of GALFORM was produced in Lacey et al. (2016) which extends
on previous versions of GALFORM (e.g. Cole et al., 2000; Baugh et al., 2005; Bower et al., 2006;
Font et al., 2008; Lagos et al., 2011; Gonzalez-Perez et al., 2014) using the Millennium-WMAP7
cosmological N-body simulation (Komatsu et al., 2011; Merson et al., 2013; Jiang et al., 2014).
Here, the primary observational constraints for the model were: the optical and near-IR luminosity
function at z = 0, HI mass function at z = 0, morphological fractions at z = 0, black hole - bulge
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Figure 6.1: Number counts (top) and redshift distribution of ELGs, adapted from fig. 7 of Bagley
et al. (2020). The blue symbols show the Hα + [NII] data from Bagely et al. The purple lines
show the three empirical models from Pozzetti et al. (2016). The cyan lines show the predictions
of another semi-analytical model, with the different lines showing different assumptions about dust
extinction. The other lines and symbols will not be discussed.
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mass relation at z = 0, evolution of near-IR luminosity function, sub-mm galaxy number counts
and redshift distributions, far-IR number counts, and far-UV luminosity functions of Lyman-break
galaxies, along with several secondary observational constraints. The best-fitting model to the
constraints given was found by running small, targetted grids of models and visually comparing the
results, rather than using automated procedures, such as MCMC (see e.g. Elliott et al. 2021). The
parameters varied and their ranges are given in Table 1 of Lacey et al. (2016). These parameter
ranges are set through a mixture of theoretical considerations and independent observational
constraints. This model has great success modelling the number counts of sub-millimetre galaxies
at z ∼ 1 - 3 and the evolution of the bright end of the rest-frame K-band luminosity function of
galaxies at z ∼ 0 - 3. However, it is a generalized model and as such its parameters are not tuned
to accurately recreate the number count for Hα emission line galaxies within the parameters for
the Euclid wide-field survey, as we will see in the next chapter.

In the following chapters, we construct a new semi-analytical model for Euclid-like predictions,
improving on the work conducted by Pozzetti et al. (2016) by using more up-to-date observational
constraints from Bagley et al. (2020), and, for the first time, employing these directly in the
calibration of GALFORM. This will allow us to make an explicit connection between the calibration
data and the range of acceptable models. Furthermore, compared with empirical models which
only give the abundance of ELGs, our model will also predict the clustering of ELGs and can be
used to make predictions for other experiments, such as WFIRST.
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Chapter 7

Testing methods for predicting the

number counts of Hα emitting

galaxies

7.1 Motivation

In the next chapter, we will perform an MCMC search over an 11-dimension parameter space,
calculating the number counts of Hα emitting galaxies for each set of parameters. This exercise
could involve somewhere in the order of 200,000 calculations of the counts, e.g. if we use 20
MCMC chains of 10,000 steps each in the parameter search. In model calibration exercises like the
one carried out by Elliott et al. (2021), the predictions for the target datasets can be calculated from
a single output redshift, using a sample of halos from the full N -body simulation. For the number
counts, many output redshifts are required. Due to the way the GALFORM code is structured, each
output redshift requires a separate run of the model, so the computational overhead is increased by
a factor equal to the number of redshifts needed. GALFORM was first developed for single redshift
research. GALFORM does not store the spectrum of the galaxy, instead it stores the mass-to-light
ratios in a set of pre-specified bands. The definition of the mass-to-light ratio in the observer
frame is redshift-dependent. At the time this choice was made on memory grounds because we
expected to be looking at a few filters rather than storing the whole spectrum that could be running
to thousands of numbers. Even if we use an emulator to search the model parameter space (as in
the next chapter), a large number of expensive full runs of the model could be needed to train an
emulator for the number counts.

In this chapter, we compare two methods for calculating the number counts of galaxies. Both
methods are approximate. The first method is to construct a lightcone mock catalogue from the
output snapshots of the simulation, once they have been populated with galaxies (see Merson et al.
2013). This method uses all of the simulation outputs within a specified redshift range. This
approach is approximate because we generally do not see the full simulation volume at a given
redshift in the observer’s past lightcone; instead the solid angle specified cuts through a fraction
of the full simulation volume. Furthermore, we do not need to run the GALFORM model for all of
the files that make up a snapshot (see later for a discussion of how the files are organised); we can
run a sparse sampling of the ‘full’ galaxy density and adjust for this sampling when computing
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the number counts. The lightcone method could be considered as a Monte Carlo approach which
makes a realisation of the number counts. The second approach involves estimating the luminosity
function at a select number of redshifts, and then using this to compute the number counts.
This method is approximate for two reasons: 1) we may not use the full simulation to estimate
the luminosity function, which could make the estimate inaccurate for rare, bright galaxies. 2)
The method uses interpolation to generate the luminosity function in between the chosen output
snapshots. If the luminosity function evolves in a complicated way e.g. if it goes up and down
between the available snapshots, this behaviour will not be captured by the interpolation scheme
adopted. We call this second approach the interpolative method. This method is much cheaper
computationally than the lightcone approach.

Here we present calculations of the number counts of Hα emitting galaxies made using both
approaches. We treat the lightcone calculation as the benchmark and degrade the inputs (i.e.
number of subvolumes and output redshifts used) in the interpolative method to test what is the
minimum computational expense that we need to incur to make an accurate prediction.

7.2 Number counts prediction methods

Here we outline the two methods used to generate number count predictions; the lightcone and
interpolation methods. We adopt the Lacey et al. (2016) version of the GALFORM semi-analytical
model for galaxy formation implemented in the PMILL N-body simulation, as recalibrated by
Baugh et al. (2019), and described in chapter 6.

7.2.1 Building a lightcone catalogue to obtain the number counts

We first run the GALFORM model on halo merger trees from the PMILL simulation (described in
Chapter 6) to generate a galaxy population that is used to build a lightcone catalogue. GALFORM is
designed so that we have to run the model for every epoch available from the N-body simulation
from redshift z = 0 up to a specified maximum redshift. The properties of the galaxy population
in the simulation box are stored at a discrete set of fixed snapshot epochs within the redshift range
of interest. The lightcone is built by interpolating the galaxy magnitudes and positions between
the values of all the discrete redshifts available, using the redshift at which the galaxy crosses the
observer’s lightcone, following the procedure described in Merson et al. (2013). We define the
observer position inside the simulation box and choose a line-of-sight direction for the mid-point
of the survey, and a solid angle. It is good practice to avoid a line-of-sight that does not coincide
with one of the axes of the simulation box. Due to the size of the P-MILL simulation box, using
this volume on its own we would only be able to probe to redshifts up to z ≈ 0.19. Hence, to cover
the volume sampled by Euclid we tile replicate the simulation box to fill the much larger volume
needed, exploiting the periodic boundary conditions of the simulation. There are no translations
or rotations, structures are preserved and repeated on box size scales and interpolated smoothly
between the snapshots. Galaxies are placed according to the epoch at which they first cross the
observer’s lightcone, which is equivalent to the location at which the light emitted from the galaxy
reaches the observer at z = 0. Different interpolation procedures are applied for central and
satellite galaxies to minimise the artificial jumps in the correlation function measured from the
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lightcone. Central galaxies are assumed to be at the centre of mass of the host dark matter halo,
so tracking the motion between snapshots can be done by a simple linear interpolation. Satellite
galaxies follow a more complex path, as they can enter the observer’s lightcone either before or after
their associated central galaxy. Therefore, a more sophisticated treatment is required to compute
its position about the central (see Fig. 2 of Merson et al. (2013)).

We follow Merson et al. (2013) and Manzoni et al. (2023) for the handling of galaxy properties
between the distinct snapshots using the procedure by Kitzbichler & White (2007). For any galaxy
that enters the lightcone, we assign the intrinsic property it had at the snapshot immediately before
the epoch, z, at which it entered the lightcone, i.e. the snapshot i with the smallest redshift, zi,
for which zi > z. Using the methods described above, we build a mock catalogue which covers
approximately 100 deg2 for the redshift range 0 < z < 2.23, which extends to the highest redshift
at which we have H-α observations to compare against.

We compute the luminosity function of Hα ELGs, number counts and redshift distributions
separately from the lightcone mock by simply counting the number of galaxies in a volume and
creating a histogram – this can be viewed as a Monte Carlo realisation of the number counts. For
the cumulative number counts and redshift distribution, we consider galaxies inside the lightcone
that have a redshift of 0 < z < 2.23 from the observer and create the respective histogram plots
that trace the distributions per square degree. When calculating the number counts here, we take
into account factors such as bin size, viewing radius and the total number of N-body snapshot files
(or subvolumes) used when creating the lightcone mock (which is explained further in §7.3.1).

For the luminosity function, we process the galaxies in the lightcone that fall within an annulus
about a desired redshift, z. Lightcone galaxy mocks output the properties of galaxies relative to
the observer, therefore we must convert the Hα emission line flux into luminosity using:

dL(z) ≡

√
L

4π S , (7.1)

as the redshift of the source is known. We then count the galaxies within a thin shell between
redshifts z and z + δz and volume

Ωs

∫ z+δz

z
dz

dV
dz
, (7.2)

where Ωs is the solid angle of the survey from the view radius, and dV/dz is the cosmological
volume element which depends on the geometry of the model universe. Using this, we can create
a luminosity function histogram at any specified redshift.

7.2.2 Using interpolation to compute the number counts

Similar to the lightcone method described above, we run GALFORM on the PMILL to generate a
galaxy population. However, we do this at a handful of discrete redshift snapshots that cover the
desired redshift range. We use a fraction of the total number of halos available in the PMILL
simulation just as we do for lightcone building. The number counts of galaxies can be computed
from the galaxy luminosity function, as a complementary approach to using the lightcone output.

The differential number counts of galaxies in the magnitude range m to m+ δm are given by

dN(m)
dm

= Ωs

∫ ∞

0
dz

dV
dz

∫ L2

L1
dLϕ(L, z), (7.3)
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where Ωs is the solid angle of the survey, dV/dz is the cosmological volume element, which
depends upon the geometry of the universe, and ϕ(L, z) is the galaxy luminosity function at
redshift z. The integral over luminosity gives the space density of galaxies at redshift z in the
magnitude range m to m + δm, by integrating over the luminosity function at this redshift. The
luminosity limits L1 and L2 correspond to the apparent magnitudes m and m+ δm respectively.
The apparent magnitude m is related to the absolute magnitude M through the distance modulus:

m = (M − 5 log10 h) + 5 log10

(
dL/h

−1Mpc
)

+ k(z) + 25. (7.4)

Luminosity and magnitude are related through the standard definition:

M1 −M2 = −2.5 log10

(
L1
L2

)
. (7.5)

In practice, we estimate the luminosity function from the GALFORM model output at a handful
of redshifts, z, over the redshift range of interest. For a general calculation of the galaxy number
counts, the redshift will in effect vary from 0 to ∞. In our application to the number counts of
emission line galaxies seen by a particular instrument, the redshift range is set by the sensitivity
of the instrumentation. In the integral to compute the number counts, the luminosity function can
be obtained at any redshift by a linear interpolation in redshift between these outputs. Typically
the number counts are dominated by the luminosity function around the exponential break, so we
need to ensure that the model predictions are robust around this luminosity range.

7.3 Results

7.3.1 Lightcone and integration comparison

For both methods of mock catalogue construction, we use 11 PMILL files or ‘subvolumes’ out
of the 1024 in total used to store each simulation snapshot. The accuracy of the number counts
calculation depends on how well we know the luminosity function around the break; we will see
later in this chapter that the number counts calculation has converged using 11 subvolumes. Of
course, our knowledge of the bright end of the LF may improve on processing a larger number of
subvolumes, but the impact on the number counts predictions will be minimal. Hence we do not
run all 1024 subvolumes to make predictions for the full simulation volume. Note that whilst we
refer to the files the simulation halo merger histories are split into subvolumes, they correspond to a
random sample of all the merger histories (without replacements). Hence, each subvolume covers
the full simulation volume but at a reduced number density, roughly 1/1024 of the full number
density. For this reason, the sampling noise associated with a single subvolume is much less than
it would have been if the subvolume files represented spatial subvolumes with all of the halos (i.e.
fully sampled) within the subvolume. Hence, even though we are using 1 per cent of all the merger
histories available in the simulation (with our 11 subvolumes), we have a higher chance of picking
up cluster mass halos than when using the spatial subvolumes employed in earlier simulations.
The estimate using the luminosity function from 11/1024 subvolume files will be less noisy than
the lightcone version because we are using the full simulation volume, whereas the lightcone only
accesses a fractional of the full simulation volume. Using the term subvolume to refer to the files
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in which the halo merger histories are stored can be confusing, as early developments of GALFORM
did split the simulation up into spatial subvolumes. This has since changed to subsampling the
merger histories, however, the subvolume name has stuck.

The mock catalogues are constructed over a redshift range that encompasses the redshift range
over which Euclid is expected to detect Hα emission line galaxies (see previous chapter). For all
lightcone-generated catalogues, model universes are simulated from present-day (z = 0) up to a
maximum redshift, which here is set to be zmax = 2.23. For the number counts results using the
interpolative method we can choose individual redshift snapshots to generate mock catalogues.
We choose snapshots that cover the redshift range 0.4 < z < 2.23 using 9 redshift snapshots
that are closest to redshifts at which the Hα emission line luminosity function was estimated from
WISP (Colbert et al., 2013) and HiZELS (Sobral et al., 2009, 2013). These redshift snapshots are
z = 0.400, 0.583, 0.692, 0.843, 1.144, 1.460, 2.002, and 2.223.

We begin by assessing the quality of the interpolated galaxy luminosity functions by comparing
the GALFORM z = 0.843 Hα luminosity function with the output of linearly interpolating between
the z = 0.583 and z = 1.144 luminosity functions. Each redshift snapshot luminosity function is
simulated using 11 P-MILL (Baugh et al., 2019) subvolumes. We present these results in Fig. 7.1
along with the HiZELS z = 0.843 and WISP low redshift (0.3 < z < 0.9) surveys. We present the
luminosity functions used for interpolation as red dotted and dashed lines for redshifts z = 0.583
and z = 1.144 respectively, and we show both z = 0.843 luminosity functions as solid lines.
We see good agreement between the exact and interpolated luminosity functions up to the high
luminosity end where the data becomes noisy. The interpolated luminosity function replicates
the features of the exact output well, including the high luminosity end. From these results, we
are confident that the interpolation method to estimate the GALFORM outputs works as intended.
We also see, from the HiZELS and WISP, that the Lacey et al. (2016) model does not accurately
replicate the observed Hα luminosity function, motivating the requirement to improve the model,
which we present in chapter 8. This is not a detailed fitting of the observed data sets, but rather a
test of the interpolation method. The HiZELS and WISP data act as a clarification that the results
presented here are consistent.

To compare the interpolated Hα emission line galaxy luminosity function to the lightcone
generated luminosity function, we analyse the results for a single redshift, choosing z = 0.4. For
the interpolative method, we simulate 11 P-MILL subvolumes using GALFORM at the specified
redshift and a luminosity function is calculated for each subvolume calculated from the galaxy
counts in a simulation box of length 542.16 Mpc. A final luminosity function of the Hα emission
line galaxies is taken as the summation of the 11 subvolume luminosity functions.

The lightcone luminosity function calculation is slightly more involved. Lightcone galaxies
are generated using all redshifts continuously between 0 and the maximum redshift of interest. We
use 11 GALFORM subvolumes for lightcone generation and create a lightcone by stitching together
all snapshot redshifts from 0 to 2.23 (with a view to computing the number counts of galaxies that
will be seen by Euclid). This requires us to specify a direction and solid angle for the lightcone.
From the completed lightcone, we count the number of galaxies within a shell, dV , centred on
redshift z = 0.4 with a thickness of ∆z = 0.1 using a solid angle with an aperture radius of 10
degrees. From this, the luminosity function of the shell approximates the luminosity function of
the lightcone at z = 0.4 for Hα emission line galaxies.
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Figure 7.1: Comparing the exact (solid black line) and interpolated (solid red line) GALFORM Hα
emission line luminosity function at z = 0.843. We interpolate between the z = 0.583 (red dotted
line) and z = 1.144 (red dashed line) GALFORM Hα emission line luminosity functions (based on
photo ionization models, see §6.2

). We use 11 subvolumes for each redshift snapshot seen. We compare the results with the
equivalent Sobral et al. (2013) HiZELS z = 0.84 survey (blue points) and Colbert et al. (2013)

WISP low redshift survey (green points).

The results of the two calculations are presented in Fig. 7.2, where we show the direct or
interpolation method luminosity function as a solid line, and the lightcone luminosity function as a
histogram. (Note in this example we use the luminosity function output directly at z = 0.4, rather
than an interpolation.) We plot beyond the luminosity resolution limit of GALFORM which is just
below LHα=10−2 × 1040erg s−1 to more completely show the trends of the luminosity function.
We have also plotted the Euclid luminosity limit at redshift z = 0.4, calculated from the flux limit
of 2 × 10−16erg s−1 cm−2 (shown by the vertical dot-dashed line). The GALFORM resolution limit
is well below the limit that is relevant for the Euclid selection. At higher redshifts, the Euclid
flux limit will move to brighter luminosities, whereas the luminosity at which the resolution limit
of GALFORM becomes apparent does not change much. Hence, it is more challenging to model
galaxies visible to Euclid at low redshift. In this case, the model can resolve galaxies well below
the Euclid flux limit, so the model predictions are complete and accurate at all redshifts. We see
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Figure 7.2: Comparing two different approaches to estimating the Hα luminosity function. The
smooth solid blue curve shows the luminosity function generated from a single snapshot, and
the blue histogram displays the luminosity function estimated from a shell of the lightcone. The
lower bound of the luminosity axis corresponds to the resolution limit of the GALFORM simulation
(−3 < Log10(LHα)/1040h−2erg/s < −2); here the luminosity function turns over artificially,
whereas in a hierarchal model, without any mass resolution concerns, we would expect the number
of emitters to keep increasing as the luminosity gets fainter. We also plot the Euclid flux limit
as a vertical grey dashed line. For the lightcone LF, we have counted the galaxies in a shell with
thickness ∆z = 0.1.

a very good agreement between the two predictions. We notice some noise at the bright end of
the luminosity function coming from the interpolation method. This is due to the relatively small
number of subvolumes used; this noise would be reduced if more subvolumes were processed
through GALFORM.

For the cumulative number counts and redshift distribution results, we require galaxy meas-
urements across a range of redshifts. The number count predictions for the lightcone method are
generated by selecting the galaxies in the lightcone volume between 0.4 ≤ z < 2.23 and binning
them according to their fluxes. With the interpolation method, we have only 9 redshift snapshots
available therefore we interpolate over the luminosity function estimated at each snapshot and use
this to calculate the number counts of galaxies across the entire redshift range. A comparison of the
cumulative number counts for Hα emitters is shown in Fig. 7.3. The interpolative number counts
are shown as a solid blue line and the lightcone-generated number counts are shown as a dashed
blue line. We calculate the cumulative number counts between a redshift range of 0.4 ≤ z < 2.23,
corresponding to the redshift range of the Euclid wide field survey (Laureĳs et al., 2011, 2012;
Bagley et al., 2020) for Hα emitters. The two number count predictions are in very close agreement
with one another. This version of GALFORM predicts 5130 Hα emitters deg−2 with a flux above
the Euclid flux limit, f ≥ 2 × 10−16 erg s−1 cm−2, in the wide survey redshift range for both
the interpolation and lightcone methods (seen by where the lines cross the y-axis at the flux limit
in Fig. 7.3). The divergence seen at the bright flux end between the two methods is likely to be
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Figure 7.3: Cumulative number counts comparison plot between an interpolative method (solid
blue curve) and the baseline lightcone method (dashed blue line) between a redshift range of
0.4 ≤ z < 2.23. We see the interpolation method replicates the lightcone method well up to high
flux values.

related to the same noise at the bright end of the luminosity function in Fig. 7.2, due to the lack of
galaxies measured in this flux range for the number of subvolumes we have used for this task.

The redshift distribution is calculated in the lightcone by selecting all galaxies within the
lightcone that have a flux above the Euclid flux limit f , inside a volume of redshift range 0.4 ≤
z < 2.23 as viewed with a view radius of 10 degrees. We then plot a histogram as a function of
redshift from the selected galaxies. Following the interpolative method to predict number counts,
we interpolate between the single redshift snapshots and select all of the galaxies that have a flux
above the Euclid limit, f . We use Eqn. 7.3 to compute the number density of galaxies visible to
Euclid as a function of redshift (i.e. removing the integral over redshift, but integrating over all
fluxes brighter than the Eucid limit). We present the redshift distribution results in Fig. 7.4 where
we compare the two methods. We see good agreement between the two where the interpolative
counts follow the same main features from the base lightcone counts. There is an argument to be
made that there is some overestimation of the counts from the interpolative method, but as with
the results from the luminosity function (Fig. 7.2) and cumulative number counts (Fig. 7.3), the
deviation is low and within acceptable bounds. We are producing counts for all galaxies above the
Euclid threshold, therefore there will be small variations in the number of bright galaxies for each
volume causing noise in the results.

The primary advantage of using the interpolation method for number count predictions is to
decrease the computational expense when generating mock catalogues. The lightcone method
requires all snapshots from zero to the maximum redshift in our chosen range, in this case,
zmax = 2.23. This equates to 135 snapshot outputs for the P-MILL N-body simulation. Whereas
the alternative method requires a fraction of the snapshot outputs and applying a postprocessing
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Figure 7.4: Comparison between the interpolation method (solid blue curve) and lightcone (blue
histogram) for redshift distribution between the redshift range 0.4 ≤ z < 2.23 and for galaxies
brighter than the Euclid flux threshold f ≥ 2 × 10−16 erg s−1 cm−2. There is good agreement
between the two curves.

script to generate the number count predictions based on interpolation. We find a 97.3% decrease
in running time when using the interpolation method when compared to the lightcone method
generating the same number of subvolumes, 11, and redshift range.

7.3.2 How much can we reduce the computational cost?

We can find further performance increases for the interpolative number counts method by reducing
the number of snapshot and subvolume outputs used. We have already discussed the speed increase
obtained by moving from the lightcone to the interpolation method when we use the same number
of subvolumes in both. Here, we aim to find the minimum number of snapshots and subvolumes
used to generate the GALFORM luminosity functions used in the number counts that still replicate the
lightcone results accurately. The fewer redshift snapshots and subvolumes we interpolate between,
the fewer calculations are performed which increases computational efficiency when compared
to running a full lightcone. When reducing the number of subvolume files used there are fewer
galaxies available with which to make a reliable estimate of the luminosity function. Similarly,
when reducing the number of snapshots used, the interpolation is over larger gaps in the redshift so
there is less information available and the errors could be larger if the model luminosity function
evolves in a complicated manner.

Beginning with the number of subvolumes and redshift snapshots used so far in this thesis, we
gradually reduce these two quantities to their lowest values, that being one single subvolume and
two redshift snapshots at z = 0.4 and z = 2.23. We cannot produce a mock catalogue from the
interpolation of a single snapshot redshift output (which would be extrapolation). We can reduce
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the number of subvolumes down to one subvolume, this generates a luminosity function based on
∼ 0.1% of the available GALFORM DM merger tree history.

For each test, we run the following redshift snapshots and subvolume amounts:

(i) redshifts 0.400, 0.583, 0.692, 0.843, 1.144, 1.460, 1.60, 2.002, 2.223, with 11 subvolumes

(ii) redshifts 0.400, 0.692, 0.843, 1.460, 2.223, with 5 subvolumes

(iii) redshifts 0.400, 0.843, 2.223, with 3 subvolumes

(iv) redshifts 0.400, 2.223, with 1 subvolume.

We present the results of reducing the number of redshift snapshot outputs against the base lightcone
outputs in Fig. 7.5. In the left column, we show the cumulative number counts and in the right
column, we show the redshift distribution. There is a gentle deviation from the lightcone results
as the number of redshifts is cut down as we see the cumulative number counts and redshift
distribution both tend towards over-estimation. For the cumulative number counts (Fig. 7.5(a)) the
slope of the interpolation method gradually decreases with a decrease in the number of snapshots
used, showing that there are overestimations in the number of higher flux emission line galaxies.
In the redshift distribution plots (Fig. 7.5(b)) we notice the slope flattening compared to the base
lightcone results, with the drop off in number counts up to z ∼ 1.00 weakens. Surprisingly, the
degradation of both results is subtle until the final set of tests (bottom row of Fig. 7.5) where we use
the minimum number of redshift snapshots and subvolumes leading to a significant offset between
the baseline and the reduced interpolative number counts.

We use a by-eye analysis to determine the most appropriate number of redshift snapshots
and subvolumes for the interpolative method to accurately replicate the base lightcone results
(which used 9 snapshots and 11 subvolumes). From our results, we conclude that using a set of 5
redshift snapshots and 5 subvolumes (ii) is an optimum solution to balancing accurate results when
compared to a lightcone, and computational efficiency.

7.4 Conclusions

In this chapter, we have discussed an efficient method of generating Hα luminosity function
and number counts outputs using GALFORM. By utilising interpolation, we can output accurate
calculations that match the traditional lightcone method, but with less computational power as
fewer redshift snapshots and subvolumes are required for the results. We go further by finding
at what point the predictions from the two methods deviate by gradually reducing the number of
redshift snapshots and subvolumes used to produce the interpolative predictions. As the number of
snapshots and subvolumes reduces, the interpolative method overestimates the cumulative number
counts and redshift distribution of emission line galaxies when compared to the base lightcone
results. Surprisingly, the level of overestimation against the lightcone base number counts was
relatively subtle until the minimum number of redshift snapshots and subvolumes was used (bottom
plots of Fig. 7.5). When interpolating between the lowest number of snapshots, with minimum
amounts of data, the interpolation method recovers some of the cumulative number counts and
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Figure 7.5: Results from reducing the number of redshift snapshots and volumes for the interpol-
ative method when compared to the baseline lightcone method for Hα galaxy number counts (a)
and redshift distribution (b). The sets of redshifts used in each test are given in §7.3.1.

redshift distribution trends. The over-prediction comes from noise associated with a lower number
of samples and redshifts to interpolate between. We find using 5 redshift snapshots between the
redshift range 0.4 ≤ z < 2.23 is an acceptable balance of replicating the lightcone number counts
and conserving computational costs.

The combination of these results is particularly beneficial as we lead onto the next chapter,
where we create almost 100,000 GALFORM models and use this interpolative method of generating
an improvement on the Lacey et al. (2016) number counts predictions for a Euclid-like survey.
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Chapter 8

A new GALFORM model calibrated to

predict the number of Hα emitters

8.1 Introduction

Forecasting the expected performance of deep, wide-field cosmological surveys, such as the ESA-
led Euclid mission (Laureĳs et al., 2011; Racca et al., 2016) is essential. The ultimate figure-of-
merit of various cosmological probes is dependent upon the observed number density and clustering
strength of the type of galaxies being targeted. Therefore, prior knowledge of the number density
and clustering of different galaxies, as a function of redshift, is crucial. This is still relevant for
Euclid post-launch, as the performance of the various detectors is assessed in situ and changes are
made to the survey strategy. For example, the mitigation of stray light on the VIS detector has
required a tilt in the telescope at the expense of a small reduction in the total area to be scanned
in the wide survey, bringing it closer to 13 000 sq deg; the impact of such compromises for the
science objectives can be readily assessed if the characteristics of the galaxy population are known
accurately. There are two routes to making this characterisation: exploiting existing studies of the
target galaxy population or using physically motivated models.

Pozzetti et al. (2016) attempted to describe the Hα luminosity function estimates available
at the time (and hence number counts) using empirical models (as described in §6.4). Three
different empirical models were fit to the Hα luminosity functions measured by WISP, HiZELS and
NICMOS. The resulting simple functional forms for the Hα LF and its evolution with redshift can
be integrated numerically to get the number counts. The uncertainty at the time was considerable,
with the predicted surface density of Hα emitters varying by more than a factor of two. The
uncertainties are intrinsic to the different surveys used in this work, with one being ground-based
and one being space-based. WISP has no pre-selection criteria and no S/N cut, which allows for
more faint galaxy measurements but comes at the cost of a greater risk of objects being missed
from completeness. Conversely, HiZELS does have a flux limit and S/N cut.

Recently, with the addition of further space based data, the situation has improved somewhat,
and there have been many new efforts to estimate the number of Hα emitters that Euclid (and other
upcoming similar surveys such as the Nancy Grace Roman Telescope (Green et al., 2012; Spergel
et al., 2015; Bailey et al., 2023) are likely to observe (e.g. Colbert et al., 2013; Mehta et al., 2015;
Pozzetti et al., 2016; Valentino et al., 2017; Merson et al., 2018; Zhai et al., 2019; Wang et al.,
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2022; Zhai et al., 2021).∗ Bagley et al. (2020) constructed a new data sample of line emitters from
several HST surveys and forecast the properties of Hα (and [OIII]) emission line galaxies for future
surveys such as the Euclid and the Nancy Grace Roman missions. The new results from Bagley
et al. (2020) show a clear preference for the so-called ‘pessimistic’ model 3 from Pozzetti et al.
(2016), which predicted the lowest surface density of ELGs.

In addition to forecasting using available observational data, numerical simulations have been
used to produce realistic mock catalogues. With a physical model, it is possible to predict the
clustering of the galaxies as well as their abundance (see, for example, Orsi et al. 2010; Merson
et al. 2019). Examples of such efforts include Merson et al. (2018), where the authors applied the
Galacticus (Benson, 2012) semi-analytical model (SAM) of galaxy formation to produce galaxy
catalogues and forecast the number densities of Hα emitters using a variety of dust attenuation
models. Merson et al. (2018) predict 3900-4800 emitter per sq degree for the Euclid selection.
However, in this case, Galacticus was calibrated to reproduce a variety of observational constraints
with particular emphasis on the observations of the population in the local Universe, without any
explicit reference to ELGs. This situation was rectified in Zhai et al. (2019), in which the Galacticus
SAM was recalibrated using a new N-body simulation suite, UNIT (Chuang et al., 2019) and a
different suite of calibration data. They did not limit their model calibration to the local universe,
instead, they focused on observational data relevant to the Euclid and Nancy Grace Roman redshift
range, in particular, choosing the Hα luminosity function from HiZELS (Geach et al., 2008; Sobral
et al., 2009, 2013).

Efficient calibration and exploration of SAMs has been investigated in several previous works,
typically in two forms: a direct exploration of the model parameter space, running the full simulation
for each set of parameters, and emulation, in which the full calculation is mimicked by a cheaper
process that outputs estimations of the full simulation using far less computational power. Despite
SAMs being vastly cheaper to run than hydrodynamic simulations, direct exploration of their
parameter space is still computationally expensive due to the vast number of model configurations
required for a proper search. Unless the parameters are being turned to a small number of datasets,
this search will take an excessive length of time. Direct exploration has been investigated in
several previous papers. Kampakoglou et al. (2008) used the MCMC technique to calibrate a SAM
to multiple datasets. MCMC was used again in Henriques et al. (2009) to calibrate their SAM
(DLB07) to several datasets, where they found the choice of dataset the values of the best-fitting
parameters, pointing to deficiencies in their model. Lu et al. (2011, 2012) constrained the parameter
space for their SAM using Bayesian inference to achieve acceptable fits to the K-band luminosity
function (LF), this was expanded to include the HI mass function in Lu et al. (2014). Ruiz et al.
(2015) employed a stochastic technique called particle swarm optimization (Kennedy & Eberhart,
1995) to calibrate the SAM SAG (Springel et al., 2001; Cora, 2006; Lagos et al., 2008; Padilla
et al., 2014; Gargiulo et al., 2015) to the K-band LF. This process can be visualised as a swarm
of particles exploring iteratively the multidimensional parameter space, exchanging information
as they do so. The second class of SAM calibration involves building a statistical emulator of the
SAM which can be evaluated orders of magnitude faster than running the full SAM, the drawback
with this method is it is approximate by nature. Bower et al. (2010) and Vernon et al. (2010)
constructed a Bayesian approximation technique (as described in Goldstein & Wooff (2007)) to

∗The Dark Energy Spectroscopic Instrument Survey targets [OII] emitters in its ELG survey; this line is shifted
firmly into the visible part of the spectrum for the target redshift range.
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the GALFORM model that can be rapidly evaluated at any point in parameter space to constrain the
parameter space which can provide reasonable fits to the K- and bJ -band LFs. The work was
extended in Benson & Bower (2010) to explore how adaptable this reduced parameter space was
to fit further observational datasets, and in Rodrigues et al. (2017) to calibrate the GALFORM SAM
to the galaxy stellar mass function in the local Universe. More recently, Elliott et al. (2021) used
a deep learning algorithm to emulate GALFORM across a range of output statistics to promising
accuracy. They were able to run many simple MCMC chains to explore the parameter space and
investigated how calibration to different datasets constrained the model parameters. The emulation
method of model calibration can cope with a big parameter space.

Here, we aim to improve on current calibrations of the GALFORM SAM to forecast the Hα
number counts and galaxy bias as seen by the Euclid satellite by fitting to recent relevant Hα
observations from Bagley et al. (2020). We emulate a version of GALFORM code implemented in
the Planck Millenium N-body simulation (Baugh et al., 2019), which uses an improved galaxy
merger scheme (devised by Simha & Cole (2017) and was first implemented in GALFORM by
Campbell et al. (2015)). We focus specifically on using deep learning to build our emulator. Deep
learning allows users to build flexible function approximators that can reveal non-linear relations
within data without the need for a strongly pre-defined model. There have been many successful
uses in astronomy (e.g. Ravanbakhsh et al., 2016; Schmit & Pritchard, 2018; Perraudin et al., 2019;
He et al., 2019; Cranmer et al., 2019; Ntampaka et al., 2019; Zhang et al., 2019; de Oliveira et al.,
2020). Here, we demonstrate the accuracy that deep learning algorithms have when emulating
SAMs over a range of model outputs useful for number count predictions for Euclid. We use a
relatively small number of training examples to achieve good accuracy when compared to other
calibration methods previously outlined. As a deep learning emulator can be evaluated orders of
magnitude more rapidly than running GALFORM in full, we can run many simple MCMC chains to
explore the parameter space and identify the range of parameters that fit our calibration datasets.
We achieve this by minimizing the absolute error between our emulator output and the observation
datasets we wish to fit to, employing a heuristic weighting scheme to the different observational
datasets which mimic the process employed by model practitioners. This automation of the
calibration process will exhaustively search the parameter space of the model.

Although non-emulation approaches with MCMC and particle swarm optimization offer
powerful ways to quantify parameter uncertainty and fit models to particular observables, they
are limited in their exploring due to the significant computational expense that comes with running
a full SAM for each parameter iteration. Previous approaches that use emulation have focused on
reducing the parameter space based on measures of implausibility (that is, incorporating inform-
ation about the emulator prediction, and the target data with their variances to rule out regions
of parameter space). These iterative methods ‘zoom in’ on parameter space regions which could
plausibly contain good fits to a predefined set of a small number of observables. Here, we aim
to emulate the GALFORM model across the entire parameter space. Allowing for the exploration
of the full parameter space means we can fit to a more diverse combination of observables. We
take the method developed in Elliott et al. (2021) and modify it for a more specific need of galaxy
number counts by aiming to fit recent redshift distribution observations as well as local Universe
LFs. The work presented in this chapter is relevant as the Euclid satellite has launched, and the
Nancy Grace Roman mission is coming up. The Hα data has been improved since Pozzetti et al.
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(2016)’s study with the observations from the likes of Bagley et al. (2020) therefore we present
automated techniques for model parameter space searches including different calibration data.

The layout of this chapter is as follows. In §8.2 we give a brief review of the deep learning
approach and describe the emulator design, and in §8.3 we discuss how we find best-fitting
parameters using MCMC. In §8.4 we outline the generation of training and testing data for our
emulator and describe the observational constraints under consideration. In §8.5 we present our
results. In §8.5.1 we review the generation of our training and testing data, in §8.5.2 we review
the predictive performance of the emulator, in §8.5.3 we show the results of our model exploration
and calibration and the results for our Euclid number counts and galaxy bias predictions. Finally,
in §8.6 we review the merits of our methods and outline potential future avenues of work.

8.2 Deep learning emulator

Here we describe the construction of an efficient emulator of GALFORM using the tensorflow

deep learning platform (Abadi et al., 2016). This is a supervised learning problem (also known
as associative learning) in which the network is trained by providing it with inputs and matching
output patterns. We define the input vector x to represent a set of GALFORM model parameters
and predict an output vector y, which consists of the binned statistical properties of the resulting
synthetic galaxy population, for example, the galaxy luminosity function. The emulator aims
to map the input vector x to the output vector y via an unknown function f̂(.) which replaces
running the full GALFORM model at a fraction of the computational cost. The emulator allows us to
thoroughly search a multi-dimensional model parameter space. The problem is one of regression
where the outputs are binned floats rather than the probabilities that might be found in classification
problems.

The general structure of a multi-layer neural network was shown in Fig.(Kromek related -
redacted). The first layer (in black) is the input layer with a size equal to the number of entries or
components in x. In our case, this is the number of GALFORM input parameters or features used
to make the predictions, with one neuron per feature. Note that these input parameters are the
subset that is being varied; the full parameter space of the model is larger than the 11 parameters
that we vary here, but the other parameters are held fixed (for the full list of parameters see Table
1 in Lacey et al. 2016). The final layer is the output layer with one neuron per prediction value.
Here the number of output neurons is the total number of bins across all of the chosen statistics.
The middle layers of the network are known as hidden layers. The neurons in these layers extract
features for mapping an input to an output and the network is trained by evaluating the hidden
layer neurons using labelled examples, i.e. with the output from runs of GALFORM. Networks with
multiple hidden layers are known as deep learning networks. The connections between each neuron
have an associated weight, w, and each neuron has a bias, θ. A neural network learns by adjusting
these weights and biases from exposure to the training examples according to some learning rule.
Each neuron is a simple mathematical function taking a vector of inputs and calculating an output.
The i-th neuron in the j-th layer contains a vector of adjustable weights wij and an adjustable
bias θij . The vector wij contains all the weights linking a neuron i to each neuron in the previous
layer, j − 1. The data flow from the input to output neurons is strictly passed forward and every
neuron in each layer is connected to every neuron in the following layer in what is known as a fully
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connected network. Note there are no connections within a layer. The total input of neuron i in
layer j is a function of the outputs from each neuron in layer j−1, yj−1, the neuron vector weights
wij , and the bias of the neuron θij . An activation function F(.) takes the total input of the neuron
to produce an output,

yij = F(wij · yj−1 + θij). (8.1)

The activation function is often a non-decreasing function of the total input of the neuron, intro-
ducing non-linearity to the whole network and allowing for complex representations and functions
to develop, which is not possible with a simple linear input-output model. The activation function
transforms the output value of the neuron to within certain limits, modified based on the applica-
tion of the model. If unrestricted by the activation function, the outputs of neurons can explode
in magnitude in deeper networks. Generally, some sort of non-linear threshold function is used
for this purpose, such as a sigmoid or hyperbolic tangent function. The outputs of the neurons,
yij , are passed to the following layers of neurons repeatedly until the final layer is reached. The
output from the final layer is the network predictions y from inputs x. An activation function is
still applied to the final layer but this is usually a linear function in the case of regression.

To adjust the weights assigned to hidden neurons we use the back-propagation learning rule
(Rumelhart et al., 1986). During training the predictions from the output layer are compared to
the true values and the errors between these two are back-propagated from the output layer to the
hidden layers and their weights are adjusted accordingly to minimize an error function. We follow
Elliott et al. (2021) by choosing to minimize the mean absolute error function (MAE) between the
emulator’s predictions of the GALFORM outputs and the true outputs

MAE = 1
n

n∑
k=1

|ŷk − yk|, (8.2)

where ŷk is the emulator prediction for the k-th sample out of n and yk are the values conputed by
GALFORM for the same parameter values. The MAE is also known as the cost function and reveals
how badly (or how well) the network is performing.

The neural network is trained iteratively over many epochs. One epoch is equivalent to the
network cycling through every sample in the training set once, and the number of epochs used to
train the network is a user choice. An optimizer algorithm is used to change the weights and biases
of the neural network by seeking minima on the error surface space, often via a form of gradient
descent. The optimizer also specifies the size of steps taken during the gradient descent towards
the local minima, known as the learning rate. At the end of each epoch, the adjusted model is tested
on a validation sample, which is a subset of the data that has not been used during the training to
ensure the model is generalisable to completely unseen data. The number of training epochs is
fixed by plotting the MAE against the epoch; this curve flattens off after some number of training
epochs so that the precise choice of the number of epochs used is not important once this flat part
of the MAE curve has been reached (see e.g. Fig. 8.1).

The final model set-up is tested on a hold-out set of samples to carry out a performance analysis
on completely unseen data.
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Table 8.1: The GALFORM parameter space investigated assuming a uniform range for each parameter.
See § 6.3.1 for an explanation of how each process is modelled and the equations which involve
each parameter. The first column gives the parameter name (and units if relevant), the second
column gives the range over which the parameter is allowed to vary and the third column lists the
process to which the parameter relates.

Parameter Range Process
νSF [Gyr−1] 0.1 - 4.0 Quiescent star formation

VSN, disk [kms−1] 10 - 800 SN feedback
VSN, burst [kms−1] 10 - 800 SN feedback

γSN 1.0 - 4.0 SN feedback
αret 0.2 - 3.0 SN feedback
Fstab 0.5 - 1.2 Disk instability
fellip 0.2 - 0.5 Galaxy mergers
fburst 0.01 - 0.3 Galaxy mergers

τ* burst,min [Gyr] 0.01 - 0.2 Starbursts
fSMBH 0.001 - 0.05 SMBH growth
αcool 0.0 - 4.0 AGN feedback

8.2.1 Inputs and outputs

We aim to develop an emulator to map an input vector x, which is the subset of GALFORM parameters
that are allowed to vary, onto an output vector y, which corresponds to the statistical galaxy
properties we wish to predict. Our choice of the input parameters that are allowed to vary is made
through a combination of physical motivation and informed choices from previous analyses (see
§ 8.4.2). These parameters and their ranges are shown in Table 8.1. We tune the emulator to predict
three statistical galaxy properties calculated from the output of GALFORM to calibrate a model to
make accurate predictions for Euclid. These statistics are the redshift distribution of Hα emitters
between 0.69 ≤ z ≤ 2.00, and the luminosity functions in the r andK-bands at z = 0 (see § 8.4.2
for more information about these datasets). Each dataset is weighted equally in the metric when
the emulator is being constructed.

8.2.2 Network architecture

The final neural network architecture was determined by testing individual hyperparameter config-
urations one at a time. We take inspiration from Elliott et al. (2021) by starting with an architecture
with two hidden layers, each hidden layer containing 512 neurons with the sigmoid activation func-
tion, and linear activations on the output layer. Here, we test modifying the choice of activation
function, the width of the network (the number of neurons per layer), and the depth of the network
(the number of hidden layers). All networks are trained with the same training dataset. We track
the MAE loss against the validation dataset at each epoch during training and display the results in
Figs. 8.1, 8.2 and 8.3. The network architecture that has the lowest validation MAE loss relative to
the other architectures after fine-tuning is the one chosen moving forward. It is worth noting there
is a caveat with these tests due to the stochastic nature of training a neural network; an identical
network architecture trained on identical training data can display a small variability in its final
validation score, so we take this into account when deciding the final network.
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Figure 8.1: Testing a variety of activation functions for the hidden layers of the network architecture.
We plot the MAE loss on the validation dataset against the training epoch. A different colour is
used for each choice of activation unit, as indicated by the key. Each network has the same
architecture of 2 hidden layers, with 512 nodes and a linear output activation function. We display
a zoomed-out inset to show the poor loss attained with a linear activation function. The sudden
drop in loss value exhibited in all cases, when the curves also appear to become smoother, is due
to the fine-tuning stage of training (see text for further details).

Starting from the architecture used in Elliott et al. (2021), we then modify the activation
functions, testing a linear function, Logistic Sigmoid, Tanh, Rectified Linear Unit (ReLU) (Nair &
Hinton, 2010; Sun et al., 2015), Leaky ReLU (LReLU) (Maas et al., 2013; Xu et al., 2015), and
Exponential Linear Unit (ELU) (Clevert et al., 2015), with the results displayed in Fig. 8.1 (for
a full review of the many activation functions available see Dubey et al. (2022)). We found that
modifying the activation function to a type of rectifier unit was the best option.

Going forward from this point, we test both the ReLU and LReLU activation functions, while
modifying the width of our network but keeping the number of hidden layers at two. We vary
the width between 200, 512, and 1000 neurons per hidden layer. We want to see if there is a
positive trend in terms of a reduction in the MAE when increasing the number of neurons per layer.
In Fig. 8.2 we plot the results from both the LReLU (solid line) and the ReLU (dotted) network
activation functions. There are training speed benefits to using a thinner network: the percentage
increase in training speed for the network to reach epoch 350, between the thinnest network (width
200) and the widest network (width 1000) is ∼ 190% for both the ReLU and LReLU versions. We
do see that for both cases the 200-width network does not perform as well as the wider networks as
it consistently achieves a higher MAE validation loss after fine-tuning. However, there is no clear
gain in performance to support increasing the width of the network beyond 512 neurons. Therefore
we will use hidden layer widths of 512 to optimise the performance and training speed.

Finally, we test the depth of the network, that is, the number of hidden layers our network
contains. Once again we train two identical networks, one with a LReLU activation function,
and the other with the ReLU activation function, shown in Fig. 8.3 as solid and dashed lines
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Figure 8.2: Measuring the MAE loss on the validation dataset during training, when altering
the hidden layer widths of our network for two activation functions, ReLU (dashed) and LReLU
(solid). Each network has two hidden layers and a linear output activation function. There are no
significant benefits to increasing the width of our network beyond 512 neurons per layer.

respectively. An interesting observation is the improvements seen with the LReLU network when
more layers are included. In Fig. 8.1 we saw the ReLU activation function performs best when two
hidden layers were used, but as the number of hidden layers increases the performance increase
with the LReLU network puts it ahead of all of the ReLU performances. Furthermore, we do
see performance gains when increasing the number of hidden layers up to a certain number when
they start to converge on a minimum MAE loss. We find, that for both activation functions, once
there are five hidden layers, there are no further significant gains in network performance against
the validation set when more layers are used. Computational speed again is a factor here, with
the percentage increase in the training time needed between a network with one hidden layer and
a network with eight hidden layers being ∼ 217%. Our final network architecture, based on the
results presented here, is six hidden layers, each with 512 neurons and LReLU activation functions.

Having made this choice, we can explain in a bit more detail the difference between a ReLU
and a Leaky ReLU (LeLU). A Leaky ReLU builds from the original ReLU by modifying the
handling of negative input values. The original ReLU returns an output of zero for a negative input,

F(sij) = max(0, sij), (8.3)

whereas a Leaky ReLU assigns a non-zero slope on the negative end,

F(sij) = max(αsij , sij). (8.4)

In Eqn. 8.4 α is a hyperparameter generally set to 0.01, and sij is the total input to neuron i
in the jth layer. The Leaky ReLU solves the ‘dying’ ReLU problem (Lu et al., 2019), where a
standard ReLU can become inactive and only output zero for any input value. In this case, it can
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Figure 8.3: MAE validation loss during training when modifying the number of hidden layers
in the network, with different colours indicating different numbers of layers, as shown by the
legend. We keep the width of the network fixed at 512 and show results for two activation function
regimes, LReLU (solid) and ReLU (dashed). We see the LReLU function has greater potential
for improvement than the ReLU networks. An increase in depth does improve the performance
of our network up to a depth of five or six layers. Beyond this number, there is only a modest
improvement in the MAE at the expense of an increase in the computational cost.

never recover and can lead to network regions becoming ‘inactive’. We find using a Leaky ReLU
instead of ReLU improves the MAE performance during training on the validation set, reducing
the average MAE loss by ∼ 29%.

We make use of the Adaptive Momentum Estimation (Adam) optimiser which is a popular
momentum-based gradient descent optimization algorithm (Kingma & Ba, 2014; Reddi et al.,
2019) and set the learning rate to 0.005. We add the AMSGRAD variation (Tran et al., 2019)
which aims to improve the performance of Adam around the minima on the error surface using a
stochastic method, which evaluates the weights after every mini-batch iteration (mini-batches are
small subsets of the whole training set). At the end of each epoch, we save the model weights if the
performance on the validation set has improved (as measured by Eqn. 8.2) and continue training
until there is no improvement for 30 epochs at which point training is stopped. Then the learning
rate is reduced to 10−5 for a fine-tuning stage with the RMSprop optimizer (Tieleman & Hinton,
2012), allowing us to take small gradient steps towards the minima of the error surface. RMSprop
uses stochastic gradient descent and assumes the error surface is a quadratic bowl. This method
boosts the performance of our emulator as we can descend into fine local minima, and we measure
improvements to our network by tracking the MAE of the validation samples throughout training.
We see evidence of this in Figs 8.1, 8.2 and 8.3 where the gradient rapidly drops when the network
transitions into fine-tuning training mode.
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8.2.3 Ensembling

Before training, the weights of a network are often initialized according to some distribution, often
random. We use an initializer described in Glorot & Bengio (2010). Due to the stochastic nature
of the training process training a single network is insufficient since the error surface is likely to
contain many local minima and one network is unlikely to traverse enough of the weight space to
find the best possible mapping. Over-fitting is also a potential problem due to the large number
of parameters especially as more layers are added. One solution to these issues is ensembling
multiple network predictions. This involves training several identical networks with different
weight initializations and shuffling the validation and training sets between each model in the
ensemble so the models are distributed from input to output. This should allow for a more robust
final prediction. We average over the predictions of each model to negate any over- or under-fitting
to different features of the data. Ensemble refers to the stack of identical neural network models
that we average over to produce a final prediction.

Using this method, we train 5 separate networks as described above, each with the same model
architecture. The final emulator prediction is the average of the predictions from the ensemble
of models. Ensembling is a rich avenue for exploration with reviews for popular ensembling
methods available (e.g. Opitz & Maclin, 1999; Sagi & Rokach, 2018; Ganaie et al., 2022). There
is scope in the future to improve on this method via a method called stacking (Wolpert, 1992)
where the ensemble networks themselves are the inputs to a single network with generalizes the
outputs for improved results. However, this works best where the ensemble networks are varied
and provide different information, such as different architectures or combining different types of
machine learning algorithms.

8.3 Parameter fitting

We aim to use our emulator for inference on target datasets; that is, fitting our model to given
datasets. We employ a Markov-Chain Monte Carlo (MCMC) sampler to compare our generated
models against the observed datasets with the goal of sampling from a set of parameters that
produces the models that best fit the observables. The Metropolis-Hastings algorithm (Robert et al.,
2004) is a common and simple method of executing an MCMC, generating serially correlated draws
from a sequence of probability distributions, eventually converging to a given target distribution.
The means of convergence comes from the minimization of the absolute error between the emulator
output and the observational constraints. We note that as we are minimizing the absolute error
between multiple data sets, we do not take into account their associated errors. We do wish to
weight certain datasets over others to allow us to investigate the effect of requiring better fits to some
datasets and how this affects the reproduction of other datasets, as well as see how the optimal
parameter choices change as a result. We therefore introduce a modified version of the MAE
(introduced in Eqn 8.2) which includes a vector of heuristic weights, W, to vary the contribution
of the residuals from constraint i to the total error,

MAEobs(y, ŷ) = 1
nobs

nobs∑
i=1

Wi

nobs
i

|yi − ŷi|
σi

, (8.5)

46



8.4. Datasets

where ŷi is the predicted value of the i-th observable constraint, and yi is the corresponding
observable value across nobs

i datapoints. Due to ŷi and yi being vector quantities, the modulus
represents the L1 norm. σi is a vector of errors corresponding to yi. We sum over the nobs

observable constraints. The different observational datasets contain different numbers of data
points, therefore we divide the i-th dataset’s weighted absolute error by the number of data points,
nobs

i , for equal contribution to the mean error result. In later sections, we refer to Eqn 8.5 as the
mean absolute error (MAE).

The Metropolis-Hastings procedure for updating a Markov Chain compares the likelihoods
from the current parameter location or state to a proposed (new) state. Assuming uniform priors
throughout, each chain is initialized on a random point in the parameter space which is assigned as
the current state, x. Then we sample a proposed state, x′, from independent Laplacian proposal
distributions about x, L(x′|µ,b) = (1/2b) exp(−|x′ −µ|/b) where µ=x and the scale parameter
vector b is set as 1/20th of the parameter ranges given in Table 8.2. The proposed state must
satisfy the condition that the proposal lies within the defined parameter bounds given in Table 8.2.
We decide whether the proposed state is accepted or not by measuring the likelihood improvement
of emulator predictions to the observational data from the current to the proposed state using a
Laplacian likelihood with scale parameter bobs = 0.005. Taking the ratio of likelihoods at states x′

and x is known as the acceptance ratio, α,

α = L(f∗(x′)|µ, bobs)
L(f∗(x)|µ, bobs)

, (8.6)

where µ represents the vector of observable values, f∗(·) is the emulator and the scale parameter
bobs = 0.005. In technicality, we could use a ratio of errors as an acceptance ratio in our MCMC,
however, doing so may not align with the principles of Bayesian inference and so could have
implications on the accuracy and efficiency of our algorithm. The likelihood is often used in
Bayesian inference due to its probabilistic interpretation, as it provides a measure of how well the
model explains the observed data given a set of parameters. The acceptance ratio is compared to an
acceptance criterion, u, which is a random uniform number u∈ [0, 1]; a proposed state is accepted
if α ≥ u, in which case x = x′ and the next sample is drawn from a Laplacian centred on the new
state, or a proposed state is rejected if α < u for which case we sample again from the original
Laplacian centred on x. Using this method, if the error between the emulator predictions and the
observables is improved when moving from state x to x′ the sample is always accepted, else we
accept the proposed state x′ with a probability α. We expect the density of accepted samples to
trace the regions in the parameter space which give the best fits to the observational data. At the
start of the chain, there will be a burn-in phase as the accepted samples tend towards local maxima
in parameter space so we discard the first 50% of accepted samples removing this burn-in phase.
Testing multiple chain lengths we find chains converge to local MAE minima (given by Eqn. 8.5)
within the first 5,000 samples and so we choose the chain length as 7,500 (after accounting for the
burn-in phase).

8.4 Datasets

Our decision as to which GALFORM input parameters to vary comes from a combination of physical
motivation and informed choices from previous analyses, largely that of Elliott et al. (2021). We
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differ from their parameter choices by focusing more on the contribution from quiescent galaxies
and less on galaxies experiencing a starburst. For a Euclid-type instrument observing Hα galaxies,
we find burst galaxies only affect the extremely bright end of the luminosity function and would
have little impact on the overall number counts (see for example the predictions from Lacey et al.
2011 for the number counts of galaxies in the UV, which is also sensitive to recent star formation).
Close to the Euclid flux limit quiescent galaxies are the dominant type. Burst galaxies do, however,
dominate the high flux tail of the Hα emitter counts, but this is not important for the overall
clustering measurement.

Below we outline the process of obtaining our training and testing data and list the calibration
and comparison datasets.

8.4.1 Training and testing data

This work uses a supervised machine-learning method to emulate running a computationally
expensive model, GALFORM. Training the emulator requires running the full model. Generally, the
more samples used during training, the better the output predictions should be. However, to create
the large number of parameter examples required for this work GALFORM is too expensive to run
at every snapshot in the redshift range of interest (see chapter 7). Instead, we chose to interpolate
between the outputs at a select number of redshifts; in Chapter 7 we demonstrated the number of
redshifts and the fraction of the simulation volume that need to be modelled to produce accurate
predictions for the number counts.

Despite the computational gains made with the interpolation method for computing number
counts and redshift distributions that was explained and tested in Chapter 7, we are still limited
by how many evaluations of GALFORM we can perform. Nevertheless, we aimed to produce 3000
model runs for different parameter combinations to satisfy the training and testing of the deep
learning emulator. Model parameters were generated via Latin hypercube sampling for even and
efficient spacing between the parameter values (as described in Loh, 1996; Bower et al., 2010).
Latin hypercubes are particularly useful when exploring multiple input variables that may have
some interaction. A Latin hypercube works by dividing the range of each input variable into
equally probable intervals, and then randomly selecting from each interval. The result is a grid-
like structure of a diverse set of samples. The parameter ranges sampled are given by Table 8.2; the
choice of the subset of parameters to be varied was influenced by previous parameter explorations
by Lacey et al. (2016) and Elliott et al. (2021).

The Latin hypercube sampler generated 3000 sets of the 11 parameters which iteratively
replaced the corresponding input parameters in the base Lacey et al. (2016) model. This resulted in
3000 GALFORM outputs, each with appropriate Hα redshift distribution and z = 0 r and K−band
LFs made using the interpolation method described. The GALFORM inputs and outputs created the
input-output vector pairs, (xi, yi) for the deep learning emulator, where xi is the ith set of Latin
hypercube model parameters and yi is the corresponding output vector of the redshift distribution
and LFs. The python package sci-kit learn allows for the separation of the samples randomly
into three sets: the training set, the validation set, and the holdout set. The training and validation
set is used during the training of the emulator, and the hold-out set will be kept separate for
evaluating performance on unseen data. The ratio of training samples to hold-out test samples
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was 29:1 and for each network trained, 20% of the training samples were randomly chosen as the
validation data.

8.4.2 Calibration and comparison datasets

Using several datasets, we will use our emulator to calibrate GALFORM for Euclid-like mocks.
Traditionally, GALFORM has been calibrated mostly using local data, as these have been the meas-
urements with the smallest errors (see Lacey et al. 2016). We continue this trend by using the r
and K−band LFs measured from the GAMA survey (Driver et al., 2012); here, these data replace
the older bJ and K-band LFs typically used to calibrate GALFORM. This choice has the advantage
that the same team has done the data reduction and made the assumptions about the k-correction
and any evolutionary corrections. In addition, we use the Hα redshift distribution measured by
(Bagley et al., 2020). Using calibration datasets at different redshifts greatly reduces the volume
of the viable parameter space.

The full list of calibration and comparison datasets and their respective selection criteria are
as follows:

(i) For the Hα redshift distribution, we calibrate our emulator to the redshift distribution from
Bagley et al. (2020). They used measurements from a combination of two slitless spectro-
scopic WFC3-IR datasets, 3D-HST+AGHAST and the WISP survey (Atek et al., 2010) to
construct a Euclid-like sample. They detect Hα+[NII]-emitting galaxies in the redshift range
0.9 ≤ z ≤ 1.6 with line fluxes ≥ 2 × 10−16erg s−1cm−2.

(ii) For the z = 0 K-band and r−band luminosity functions, we make use of data from Driver
et al. (2012) who used the Galaxy and Mass Assembly Survey (GAMA) dataset, combined
with GALEX, SLOAN Digital Sky Survey (SDSS) and UKIRT) Infrared Deep Sky Survey
(UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in
multiple bands.

We also compare our best-fitting models to the previous local LF calibration data (the K−
band LF measured by Cole et al. 2001 and the bJ measured by Norberg et al. 2002). This is to see
if the new local calibration datasets still give good fits to the old calibration data; this is an indirect
way of seeing (through a model) if these observational LFs are consistent with one another.

8.5 Results

8.5.1 GALFORM runs for training and testing

We draw 3000 samples from the parameter ranges presented in Table 8.1 using a Latin hypercube
sampler (Loh, 1996). We visualise the distribution of samples for three of the parameters in
Fig. 8.4 as a corner plot, presenting three parameters that influence the SN feedback. We show
histograms of the distribution for each parameter along the diagonal. We see that this sampling
method produces a uniform distribution across the parameter ranges, meaning there is little bias
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Figure 8.4: A visualisation of the distribution of the 3000 Latin hypercube generated samples
across 11 parameters. We present six parameters out of the 11, four relating to SN feedback; αret,
VSN,disk, VSN,burst, and γSN , plus νSF relating to the star formation of quiescent galaxies, and
αcool for AGN feedback. These plots show a uniform, unbiased sampling of the parameter ranges.

towards any particular range of values for any parameter. This is consistent across the 11 parameters
sampled.

The 3000 parameter sets are combined into a data frame that GALFORM automatically reads to
generate a model from each set. Due to the large computational expense of generating this many
models, we choose the interpolation technique for Hα number count calculations as this means we
can get away with running fewer redshift snapshots and subvolumes and still accurately replicate the
number count outputs from the much more expensive lightcone method (see chapter 7). We remind
the reader that the term subvolume refers to the random sampling of all merger histories (without
replacement), each subvolume covered the full simulation volume but at a reduced number density
(see §7.3.1). We start with the Lacey et al. (2016) model and replace the parameters highlighted in
Table 8.1 before running GALFORM with five redshift snapshots (plus z = 0) and five subvolumes
each. The number of snapshots and subvolumes needed was determined in §7.3.2. The redshifts
chosen are z = 0.69, 0.90, 1.14, 1.60, 2.00. These were selected to cover the redshift range probed
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by the Bagley et al. (2020) Hα redshift distribution, which matches well the expectations for
the Euclid space mission (Laureĳs et al., 2011; Racca et al., 2016). We also generate an extra
redshift snapshot at z = 0 (with the same number of subvolumes) as we wish to fit the K− and
r−band luminosity function outputs to the Driver et al. (2012) luminosity functions. In total, 3000
GALFORM models were produced, each with six redshift snapshots, which themselves contain five
subvolumes, equating to 90000 individual GALFORM runs.

Out of the 3000GALFORM submissions, all but one were completed successfully. However, there
are examples where one or more of a model’s subvolumes for a particular redshift snapshot failed
to complete. In these cases, the required outputs are calculated from the remaining subvolumes.
We note that for the cases where one or more subvolumes failed to complete, a small number of
those model parameters had values at the extremities of the prior ranges. We noticed that a lot
of the models that failed had a γSN parameter towards the upper boundary of the prior range.
For the model that had zero completed subvolumes for any redshift snapshot, the parameter γSN

had a value of 3.99 which is at the peak of this parameter range. In view of the predictions from
the nearby models which did complete, it is unlikely that the best-fitting model for our chosen
calibration datasets will have parameter values close to those of the small number of models that
failed. In the case where some subvolumes were successful, we simply took this into account when
calculating the model predictions. Despite this, we were able to produce 2999 Hα number count
outputs and the corresponding model K− and r−band luminosity functions at z = 0.

The completed GALFORM models were examined to see if any models provided good fits to
the redshift distribution and luminosity function calibration datasets. If any models happen to
give a good fit to the calibration datasets then the objective of this project will have been met,
without further optimisation being necessary. For each model, we use Eqn. 8.5 to calculate the
error to compare to the observables of Bagley et al. (2020) and Driver et al. (2012) for the redshift
distribution and z = 0 luminosity functions respectively. For each statistic, we compare to recent
GALFORM parameter exploration efforts from Lacey et al. (2016) and Elliott et al. (2021). We
present the best fitting models for the redshift distribution, K− and r−band z = 0 luminosity
functions in Figs. 8.5, 8.6 and 8.7 respectively, showing the model that fits best to the redshift
distribution observables as a solid purple line, and the best-fit model to the luminosity functions as
a solid red line. We also plot the Lacey et al. (2016) data as a dashed blue line and the Elliott et al.
(2021) data as a dashed green line. We did individually find the best models for each statistic and
found that the same model that best fits theK−band luminosity function observation, also best fits
the r−band luminosity function observation, hence we label this the best fit ϕ model.

In Fig. 8.5 we present the predictions from the best fitting GALFORM model (purple) to the
redshift distribution data of Bagley et al. (2020) out of the 2999 models available in the Latin
hypercube sampling of the model parameter space. This model is a very good fit for the observed
data, with an MAE of 0.083. There is some degree of overprediction at low redshift but the model
prediction is still within the error bounds for most of the data points. This model represents a
significant improvement over the redshift distributions produced by the Lacey et al. (2016) and
Elliott et al. (2021) models as they achieve an MAE score of 0.263 and 0.425 respectively. They fail
to recreate the trend of the observed distribution, underpredicting the number counts as a function
of redshift at low to medium redshift values. We also plot the model which is the best fit to the
z = 0 K− and r−band Driver et al. (2012) luminosity functions. It is clear that this model, also,
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Figure 8.5: Best fitting GALFORM model (purple) from the 2999 Latin hypercube sampled models
when compared to the Bagley et al. (2020) Hα redshift distribution data (symbols with errorbars).
Note that no optimisation has been performed in this comparison; we are simply plotting the
best-fitting model from the Latin hypercube sampling of the parameter space. We also plot the
best fitting GALFORM model when compared to Driver et al. (2012) luminosity functions alone (red)
and previous GALFORM models by Lacey et al. (2016) (blue dashed) and Elliott et al. (2021) (green
dashed), which used mostly local data in their calibration.

does not suitably fit the observed redshift distribution data underpredicting the number of galaxies
out to the higher redshifts.

When fitting individually to the observed z = 0 K− and r−band Driver et al. (2012)
luminosity functions, the best fitting GALFORM model (red) for each band was the same. The
K−band luminosity function results are shown in Fig. 8.6 and r−band luminosity function results
are shown in Fig. 8.7. We once again plot the luminosity functions for both the Lacey et al. (2016)
and Elliott et al. (2021) models and the GALFORM model that best fits the redshift distribution
observations (purple). For the K−band luminosity function, the model has an MAE score of
0.175, and for the r−band a score of 0.150. This is compared to the Lacey et al. (2016) model
scoring 0.204 for theK-band, and 0.247 for the r-band, and the Elliott et al. (2021) model scoring
0.210 and 0.304 for the K- and r-band respectively. The model performs well in predicting the
turnover magnitude of both luminosity functions, where the Lacey et al. (2016) model predicts a
slightly brighter magnitude turnover, and Elliott et al. (2021) predicts a slightly fainter turnover
magnitude; this is more prominent in the K−band luminosity function plot (Fig. 8.6). The
previous predictions by Lacey et al. (2016) and particularly Elliott et al. (2021) do well at fitting
to the data therefore any improvements we can find will be more subtle compared to the redshift
distribution. We use this data to add further constraints to our final model when predicting the
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Figure 8.6: Best fitting GALFORM model (red) from 2999 Latin hypercube samples models when
compared to the Driver et al. (2012)K−band luminosity function data. This is the same best-fitting
model when fit to the Driver et al. (2012) r−band luminosity function. We also plot the best fitting
GALFORM model when fit to the Bagley et al. (2020) redshift distribution (purple) (Fig. 8.5) and the
Lacey et al. (2016) (blue dashed) and Elliott et al. (2021) (green dashed) models. Note that these
latter two models were calibrated against mostly local data, but different LFs than the one shown
here.

redshift distribution. The reason for this is explained when looking at the GALFORM model that
is the best fit to the redshift distribution data of Bagley et al. (2020), seen in Fig. 8.5. Although
this model fits very well with the redshift distribution data, it performs very poorly against the
luminosity function, outputting an unrealistic luminosity function. This model over-predicts the
number of galaxies at faint magnitudes and then massively under-predicts galaxies at the bright end.
This validates our efforts to improve on existing GALFORM models by finding a set of parameters
that maximises the compromise between fitting the redshift distribution and luminosity functions
via MCMC methods; we need to explicitly include all three observational calibration datasets in
the metric assessing model performance and to optimize other the model parameter space. The
results presented above give us some hope that the GALFORM model can reproduce each of the
calibration datasets; we need to perform an optimisation to further tune the parameters to attain
agreement for all datasets from a single model.

The 2999 successful GALFORM model outputs will serve as the training and testing data for our
emulator development.
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Figure 8.7: Best fitting GALFORM model (red) from 2999 Latin hypercube sampled models when
compared to the Driver et al. (2012) r−band luminosity function data. This is the same model
seen in Fig. 8.6. We also plot the best fitting GALFORM model when fit to the Bagley et al. (2020)
redshift distribution alone (purple) (Fig. 8.5) and the Lacey et al. (2016) (blue dashed) and Elliott
et al. (2021) (green dashed) models for reference.

8.5.2 Emulator performance

The development of the architecture for the individual networks of the emulator is described in
§8.2. During the architecture training phase, we only ran our networks up to a training epoch of
350. For the final network, we chose not to limit the epochs but instead included an early stopping
clause which stopped and saved the network at its lowest training MAE validation loss score. On
average the networks found their lowest loss score between 500 and 700 epochs. We also took
inspiration from Elliott et al. (2021) by ensembling multiple networks of equal architecture and
averaging over the outputs to produce a final result which is our emulator result. Elliott et al. (2021)
averaged over ten equal networks. We tested an ensemble of five and ten networks and found little
to no improvement in the performance of the emulator against the hold-out set when ten networks
were used over averaging across five networks. Note that going from one network to an ensemble
of five gives roughly a ten percent reduction in the MAE. Furthermore, the more networks to be
averaged over, the greater the computational time which becomes important as we run an MCMC
across a substantial amount of walkers each with on the order of 10,000 steps. Therefore, our
emulator consists of five equal architecture networks (described in § 8.2). We want to evaluate
the emulator’s ability to output GALFORM at new points in the parameter space. Our set of 2999
GALFORM outputs was split up with 96.67 per cent of the outputs used for training our emulator
as described in § 8.2 (equating to 2899 parameter combinations) and the remaining 3.33 per cent
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(100 parameter combinations) being used as unseen outputs for testing purposes (hold-out set).
This split maximises the number of training samples and provides an appropriate range of unseen
test samples to evaluate the network reliably. During the training of each network, we randomly
split the 2899 parameter output combinations into a training set and a validation set with 20 per
cent going towards validation (580 parameter combinations). For each network version trained in
the emulator ensemble, the training and validation sets were shuffled.

In the top panel of Fig. 8.8 we show the emulator predictions against the hold-out set outputs
from the corresponding full GALFORM runs. A perfect emulator would follow the y = x line
(dotted) with no scatter. In general, we see the emulator following a tight relation to the diagonal
across the three statistics, indicating that the emulator is accurately predicting GALFORM output for
the holdout set parameters, without any significant biases and a reasonably small scatter. Out of the
three statistics, the redshift distribution predictions appear to have a greater uncertainty than theK
and r-band luminosity functions. However, this is largely an artefact of these predictions spanning
a smaller dynamic range than the other statistics, so this scatter plot is ‘zoomed-in’ compared to the
others (covering just over 4.5 decades in scales as opposed to six decades in the other panels). In
the lower panel of Fig. 8.8 we show the performance of the emulator across the three statistics on
a sample of the holdout set parameters, plotting the emulator outputs as dashed lines and the true
GALFORM outputs as solid lines. The parameter samples drawn from the holdout set were chosen to
reflect the range of emulator performances, including parameters that the emulator most struggled
with for each statistic. Each colour across the three panels is the same combination of parameters
from the holdout set. The luminosity function plots display the ability of the emulator to predict
beyond the resolution of GALFORM when the true model was generated with a finite sample of
the subvolumes of the simulation, which can result in some luminosity bins being empty at the
bright end. The lower panel of Fig. 8.8 reveals some sources of inaccuracies in the predictions,
particularly the redshift distribution, which is more prone to exhibiting noisy behaviour for some
choices of parameters, for example, the low redshift distribution (orange line) is poorly predicted.
The error bars for the redshift distribution predictions are fairly even across the redshift bins and
this is reflected in the lower panel plots where the majority of predictions follow the shape of
the true GALFORM output but with a varying degree of offset. The main source of errors for the
luminosity function predictions is seen at low values of ϕ. We do see that at the bright end of the
luminosity function plots the predictions can become noisy but the overall shape is well captured.

The majority of emulator predictions for the redshift distribution are reasonably close to the
GALFORM predictions, but we do come across cases with substantial discrepancies between the true
and predicted outputs (as exhibited by the orange line in the bottom row of Fig. 8.8). We see far
fewer cases like this within the holdout set of poor predictions of the true GALFORM outputs when
it comes to both luminosity functions, with the largest discrepancy seen in the blue parameter
set. These poor predictions are usually indications that the training data did not contain sufficient
examples of this behaviour as these examples appear to be extreme cases of the output and so are
less common. The emulator constructs a function f∗(·) by fitting it to the training examples, where
f∗(·) can interpolate between the points in the parameter space. However, the interpolation is less
reliable in the sparser regions of the space, such as at the extremities of our parameter bounds.

We can see that at the bright ends of the K- and r-band luminosity functions in Fig. 8.8,
the emulator tends to slightly over-predict the GALFORM output, seen by the distribution of points
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Figure 8.8: Emulator performance across the three calibration statistics computed with the holdout
parameter sets. The top row shows the emulator output (y-axis) against the true GALFORM output
(x-axis). Black error bars indicate the 10-90th percentile range of the residuals. The bottom row
shows a draw of emulator outputs (dashed lines) and true GALFORM outputs (solid lines) for selected
parameter sets. In these panels, different colours denote different parameter sets.

curving towards the prediction side. This is a consequence of using a sub-region of the full P-
MILL simulation volume ( 0.6% of the full volume). This leads to noisy data at low galaxy number
densities, and, as seen in the bottom row of Fig. 8.8, cut-offs at different luminosities for different
choices of parameters, for example, the true green parameter set cuts off well before the true red
parameter set for both the K- and r-band luminosity function plots. Our emulator has to output a
fixed number of bins, therefore during training, we mask any luminosity bins which contain zero
galaxies when computing the loss. This leads to the emulator having fewer brighter luminosity
bins to fit which are biased towards having higher values of ϕ in these brighter bins. This causes
more cases of over-prediction at these luminosities. This problem is minor since the Driver et al.
(2012) luminosity function data does not sample ϕ to very low number densities. These issues
could be resolved by evaluating GALFORM on a larger fraction of the P-MILL simulation volume,
although this would be more computationally expensive with little gain.

We also evaluate the performances of the emulator against an existing GALFORM model by
Lacey et al. (2016). The emulator’s predictions across the three statistics with the original Lacey
et al. (2016) GALFORMmodel are shown in Fig. 8.9, where the original GALFORMmodel run is shown
as a solid line, and the emulator predictions are shown as dashed lines. We generate the redshift
distribution of emission line galaxies for the Lacey et al. (2016) model using the interpolation
method described in chapter 7, using nine redshift snapshots between 0.69 ≤ z ≤ 2.00 and 11
subvolumes of the P-MILL simulation volume. We see an overall good fit to the true model,
with the redshift distribution overpredicting the true GALFORM model by a small amount. This
coincides with our findings of the emulator performance on the holdout set above. For the redshift
distribution, our emulator can still accurately identify the shape of the true model. Both the
K- and r-band luminosity functions do well at matching the true GALFORM model, with the only
deviation seen around the turnover point at magnitudes ∼-22 for the K-band and ∼-21 for the
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Figure 8.9: Emulator predictions (dashed lines) using the Lacey et al. (2016) GALFORM parameters
compared with the true GALFORM outputs (solid lines). We predict the redshift distribution (left),
and the z = 0 K- (middle) and r-band (right) luminosity functions.

r-band. Our emulator is unable to recreate the dipped features around these magnitudes which
indicates a deficiency of these types of parameters within our training set. The possible changes we
could make to the emulator’s training set that we highlighted before would improve our predictions
against the Lacey et al. (2016) parameter set.

8.5.2.1 Scaling with training set size

To illustrate the scaling of emulator performance with the number of full GALFORM calculations,
we train three emulators with 900, 1900 and 2899 samples of training parameters respectively (in
each case split with 20 per cent of the samples going towards validation). The emulators consist of
an ensemble of five identical networks each trained on the same (shuffled) training and validation
sets, and the performance is evaluated on the same 100 holdout parameter samples as has been
used so far. We present our findings in Fig. 8.10 where the emulator performance in terms of the
MAE computed for the holdout set is plotted against the number of full model runs used to train
the emulator. The dashed line shows the average performance of the individual networks, and
the solid line shows the performance of the ensemble. The top panel displays the average MAE
score of the holdout set across the three statistics and the second, third and fourth panels show the
average redshift distribution, K- and r-band luminosity function MAEs of the holdout parameters
respectively. The emulator shows a clear reduction in the MAE with increasing numbers of training
samples, and using an ensemble of models provides a near-consistent improvement in performance
compared to using a single model. The performance of the emulator is improved by almost ∼ 12%
by averaging over an ensemble of neural networks, rather than just using one network. We find
that when using more than 5 networks in the ensemble, the performance increase of adding more
networks saturates. This plot also gives insight into the contributions to the overall performance of
our emulator as we see the redshift distribution MAE score consistently higher than the luminosity
functions, pushing the average across the three statistics higher. This provides useful insight when
we aim to fit parameters to observations and how we manage the errors. The MAE results give us
confidence that the model can learn a function which provides a good approximation to GALFORM

across the full parameter space.

The results shown display the potential of the emulator given sufficient training resources.
We have chosen to investigate the model over a significant number of parameters covering large
ranges (Table 8.1). Therefore the emulator will benefit greatly from more full GALFORM examples.
However, this comes with a computational cost of generating said GALFORM output samples.
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Figure 8.10: Mean absolute error (MAE) of a single (dotted lines) and ensembled (solid lines)
emulator trained with increasing numbers, N , of full GALFORM runs. The networks were trained
on 900, 1900, and 2899 parameter samples and performance was evaluated on the same holdout
set containing 100 samples.
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8.5.3 Parameter fitting on the calibration data - model optimisation

Here we apply the methods described in § 8.3 to calibrate the model to the datasets introduced
in §8.4.2. We begin by investigating the tensions between the three statistics by adjusting the
weightings applied to the residuals between our emulator prediction and each dataset (given by
Eqn. 8.5) and then performing an MCMC parameter search to see how the best-fitting parameter
choices respond. In Fig. 8.11 we show the emulator predictions for the best-fitting parameters
found from five MCMC chains using a number of different weighting schemes. To achieve
accurate predictions for Euclid we need to fit closely to the redshift distribution data of Bagley
et al. (2020). However, to reduce the overall model parameter space, it is also important to constrain
the model to reproduce the local universe luminosity functions. Hence we need to find an effective
balance of fits between the two. When the weighting to the redshift distribution data is low, for
example, a weighting of one or two (blue and orange lines in Fig. 8.11 respectively), we see poor
accuracy reproduction of the redshift distribution data and strong performance with the luminosity
functions, particularly around the LF break. As the redshift distribution weighting increases, we
notice increasing deviation at the bright- and faint ends of the luminosity functions, but an improved
fit to the redshift distribution data, with the predicted distributions being within the error bounds
of the observations. When evaluating the fits to the luminosity functions, a weighting of four to the
redshift distribution (green line) constraint finds the exponential L∗ break magnitude well and stays
just as tight to the high redshift data points in the redshift distribution plot as the weighting of six
(purple line). The spread across the luminosity functions for the different weightings is surprisingly
low given that the spread in the redshift distribution fits is large in comparison. This could be
an early indicator that there are multiple regions in the parameter space that can fit these models,
according to the emulator. This likely arises from the error of the emulator outputs, particularly
for the redshift distribution predictions. It is worth noting that these parameter fits come from
a low number of MCMC chains and, therefore we expect to see improvements in the best-fitting
parameters when we evaluate 100 MCMC chains.

We are unable to find a set of parameters that can reproduce all of the constraints effectively
with equal weighting. Therefore we need to give more weight to the constraint with the highest
importance, which is the redshift distribution function. We have seen that there are trade-offs or
tensions to consider when aiming to find the best-fitting model. Fitting with a greater emphasis on
the redshift distribution degrades the fit to the K- and r-band luminosity functions, as expected.
With these considerations in mind, we choose heuristic weights such that the redshift distribution
is strongly weighted while retaining appropriate fitting to the luminosity functions, particularly
minimizing the over-prediction of the bright ends. Ideally, the precise choice of weight should not
matter, so long as it is within some range. Therefore, we weight the redshfit distribution constraint
four times higher than the luminosity functions when calculating the MAE given by Eqn. 8.5. That
is, we set Wi = 4 for the redshift distribution constraint, and apply a single weighting to both K-
and r-band luminosity function constraints.

With the weighting scheme between the three statistics fixed, we re-calibrate the GALFORM

model across the three constraints to produce an estimate of the best-fitting parameters. We run
100 MCMC chains with our emulator, each with 7,500 steps in length after the burn-in phase
(which is 7,500 steps). The residual of each sample is computed using the emulator and our
modified weighted MAE function and we find that the minimum MAE obtained with each chain
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Figure 8.11: Best MCMC fits across five different weighting schemes, increasing the weighting
towards the redshift distribution to display the tensions between the constraints. We show a redshift
distribution weight value W of one (blue), two (orange), three (red), four (green) and six (purple),
plotted with the Bagley et al. (2020) Hα redshift distribution and Driver et al. (2012) z = 0 K-
and r-band luminosity functions.
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lies in the range ∼ 0.25−0.28. As we have seen in §8.5.2, our emulator outputs have an associated
error, so we can not confidently discern which parameter sets give the best fit to the observational
data with the emulator alone. Hence, we evaluate the parameters that gave the lowest MAE value
from each of the 100 MCMC chains with the GALFORM code.

In Fig. 8.12 we illustrate the regions in the parameter space that are most sampled with our
MCMC using 20 MCMC chains. The shaded regions represent the accepted samples from our
chains, each 7500 steps long after discarding the burn-in. The shading indicates the density
of the accepted samples, with the darker regions corresponding to the more favoured regions
of the parameter space in this weighting scheme. We contour the density such that the darkest
region corresponds to the 25th percentile, then the 50th percentile and the lightest region is the
75th percentile. Also shown in Fig. 8.12 are 1D histograms of the density of accepted samples.
From our findings, for some parameters, a reasonably large range of parameter values results in
acceptable fits across our constraints. However, though as plotted in one or two dimensions the
space appears widely sampled, when moving to a higher dimension the acceptable regions are
reduced significantly. This is the effect of high dimensionality of the parameter space, as described
in Bower et al. (2010). We see that to fit the three statistics using the weighting scheme described,
the fits prefer high values of γSN ∼ 4.0 possibly beyond the sampling parameter boundary. We have
the option to extend our parameter space, but doing so will explore parameters beyond the known
space used to train our emulator. This could result in more uncertain predictions. Furthermore, we
do not want to extend our parameter ranges to extremes so they represent unphysical choices for
the processes being modelled. We also observe a bimodal distribution for the VSN, burst parameter
which tends towards the lower and upper boundary of our parameter range at ∼ 10kms−1 and
∼ 800kms−1 respectively. In contrast, the parameters fellip, fburst, and τ*burst,min display little
importance in the one dimension shown to the fitting as they show almost uniform sampling,
whereas the parameters that contribute to the SN and AGN feedback are more tightly bound.

Out of the lowest MAE parameters from the 100 MCMC chains, we plot the best 50 sets of
parameters as evaluated with the GALFORM code in Fig. 8.13. These runs cover a range of weighted
MAE, between 0.25 − 0.31, with the remaining runs extending to a weighted MAE of 0.64. We
indicate the run with the lowest weighted MAE as a solid red line, and the remaining top 49 runs as
solid blue lines. These 50 best-fitting runs all generalise the constraining datasets well and confirm
the effectiveness of our MCMC and emulator while also indicating the scale of uncertainty present
with our method. We isolate the run with the lowest MAE in Fig. 8.14, along with the emulator
prediction for the same set of parameters (red dashed line) to observe the difference, along with the
statistical galaxy properties of the model presented in Lacey et al. (2016) as the solid grey line. We
see that there is a spread of possible parameters. Therefore the best-fitting parameters presented
are just one realization of many possible choices due to the effects of calibrating to multiple data
sets with tensions between them and the degeneracies between the parameters.

The spread across the 50 best MCMC chains as evaluated by GALFORM is tight across the
K- and r-band LFs and there is somewhat more variance about the redshift distribution outputs
particularly as we get to higher redshifts. Our best set of parameters is within the error bound of
most of the Bagley et al. (2020) data points. Due to the tensions between the redshift distribution of
ELGs and the local LFs, the general trend of fits the LFs is to over-predict the luminosity function
at the bright end. This is particularly evident for the z = 0 r-band luminosity function, although
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Figure 8.12: Accepted samples from 20 MCMC chains for fits to the redshift distribution, K-
and r-band LFs. The first 50% of samples were discarded to allow for burn-in. The histograms
show the marginalised distribution of the parameters. The ranges on each axis are the same as
those quoted in Table 8.1. The shading corresponds to the density of chain steps, with darker
colours corresponding to more densely sampled regions. The darkest regions correspond to the
25th percentile and the lighter regions to the 50th and 75th percentiles.
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Figure 8.13: The GALFORM evaluations of the best-fitting parameters found with 100 MCMC chains,
each 7,500 samples in length, using the constraint weightings described in the text. Here we plot
a sample of the best 50 runs, as measured by weighted MAE (Eqn. 8.5). The red line indicates the
parameter set with the lowest weighted MAE. The remaining 49 runs are plotted in blue. The data
described in §8.4.2 is shown in cyan.
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Figure 8.14: The predictions for the calibration data from the lowest MAE parameter set as evaluated
by GALFORM (solid red) compared with the equivalent parameters evaluated by our emulator (red
dashed) with the calibration data described in §8.4.2. The grey line shows the corresponding
predictions made with the Lacey et al. (2016) model.

our parameters do well to replicate the turnover feature. There is greater uncertainty with our fits
about the z = 0 K-band LF and our lowest weighted MAE parameter set predicts a far smoother
turnover compared to the observed data from Driver et al. (2012). In Table 8.2 we show the set of
parameters with the lowest weighted MAE to the observational data (corresponding to the red line
in Figs. 8.13 and 8.14), the parameter range of the best 50 parameter sets, and compare with the
parameters presented in Lacey et al. (2016) (hereafter named Lacey16). We note that the ranges
shown in Table 8.2 do not lead to an equivalent fit for any choice of parameters within these ranges
as the value of one parameter will constrain the choices of the other parameters, therefore we also
present the best-fitting set of parameters as an example. We find that certain parameters, such as
VSN,disk and γSN are constrained to a tight range of values, whereas parameters such as VSN,burst,
fburst, and τ∗burst,min can be drawn from a large proportion of the explored range. Although we do
see some models that have a large proportion of their parameter spaces sampled, it is not always
a uniform distribution. The νSF parameter appears to cover a very large range, however, when
looking at the corner plot of Fig. 8.12 we see that the majority of the sampling occurs at the
high values of νSF but there is a small sub-region sampled at ∼ 1.0. These bimodal distributions
explain the parameter range of VSN,burst presented in Table 8.2. The parameter fSMBH sampling
distribution is skewed left which extends the accepted parameter range.

We compare the weighted mean absolute error of our best-fitting model with the Lacey16
model, using the same procedure described in §8.5.3, which is using the same weighting scheme
we have been using up to this point. Using this metric, the new model is a better fit for the data.
Over the three datasets, the new best fit found in this work achieves a weighted MAE of 0.25 and
the weighted MAE of the Lacey16 model is 0.50. The MAE for the Lacey16 model is outside the
range of the minimum MAE reached by our 50 best MCMC chains but within the range of the
100 MCMC chains. The improved MAE of the new best-fitting model (and indeed the majority
of our MCMC-found models) is mainly due to the large improvements in the fits to the redshift
distribution, while the fits of the new model to the K- and r-band LFs are at a similar to that of
the Lacey16 model. The new model fits closer to the faint end of the observed LFs, whereas the
Lacey16 model is closer to the Driver et al. (2012) datapoints at the bright end. This is particularly
true for the r-band. The main source of error with the Lacey16 model is due to the poor fit to
the redshift distribution predictions, whereas our model more accurately describes the drop off in
number counts beyond z ∼ 1.4. We can prove this by breaking down the errors per statistic, using
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Table 8.2: Results from the 50 best-fitting MCMC parameters (as measured by the weighted MAE
in Eqn. 8.5) found using our emulator. In the second column, we present the parameters for the
best fit seen in Fig. 8.14, and in the third column, we indicate the parameter ranges of the 50 best
runs of the 100 MCMC chains. The Lacey et al. (2016) model parameters are referenced in the
final column.

Parameter This work Range Lacey16
νSF 3.97 1.00 − 3.97 0.74

VSN, disk [kms−1] 201.30 195.31 − 313.43 320
VSN, burst [kms−1] 785.64 34.77 − 798.83 320

γSN 3.98 3.83 − 4.00 3.40
αret 0.27 0.21 − 1.70 1.00
Fstab 0.85 0.77 − 1.18 0.90
fellip 0.22 0.21 − 0.50 0.30
fburst 0.083 0.012 − 0.296 0.05

τ* burst,min [Gyr] 0.032 0.012 − 0.192 0.10
fSMBH 0.039 0.013 − 0.048 0.005
αcool 0.79 0.41 − 2.61 0.80

a standard MAE error calculation (Eqn. 8.2). Our fit to the redshift distribution data of Bagley et al.
(2020) is statistically more improved when compared to the fit by Lacey16; we can fit with an MAE
of 0.09 whereas the previous model is far worse with a score of 0.26. This is not a surprise when
observing the fits by eye as the Lacey16 model fails to replicate the trend of the data set very clearly.
This is likely due to the Lacey16 matching to the redshift distribution of submillimeter galaxies
instead of Hα emission line galaxies, both are star-forming galaxies, however, the submillimeter
sources tend to reside at higher redshifts than emission line galaxies seen with Euclid. Although by
eye the fits to theK-band luminosity functions are similar between our new model and the Lacey16
model, the MAE calculations indicate that our new model fits better to the Driver et al. (2012) data
than the Lacey16 model. Our model achieves an MAE score of 0.17, whereas the Lacey16 model
achieves 0.20. This is likely due to closer fits at the faint end contributing to a higher proportion
of the MAE score. The fitting of the bright end is very similar but the Lacey16 model has a much
sharper turnover of its luminosity function. We can break down the K-band LF MAE calculation
further by only focusing on the bright half of the observable data points. As we have mentioned
the Lacey16 model has a closer fit to the observable data points at the bright end as measured by
eye, this is confirmed as the MAE of the bright half for the Lacey16 model is 0.11 and for our new
model is 0.14. Finally, our model performs slightly better statistically than the Lacey16 model
when predicting the r-band LF, scoring an MAE of 0.23 vs 0.25 for the Lacey16 model. This
is likely for similar reasons as the K-band, where our model predicts closer to the Driver et al.
(2012) data at the faint end. It is clear that the Lacey16 model is slightly better at predicting the
luminosity function from the exponential break to the bright end as our model over-predicts, we
achieve a lower MAE simply because there are fewer data points at the bright end contributing to
the MAE calculation. If we focus only on the bright half of the luminosity function the Lacey16
model is a closer fit to the observed data compared to our model, with an MAE of 0.10 vs 0.16 for
our model. Even so, our model still provides an adequate estimation of the luminosity functions
as we are able to reasonably estimate the L∗ break in the data.

Due to the tensions between the statistics, better fits to the redshift distribution data would come
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at the expense of more severe over-predictions for the bright-end luminosity functions as previously
discussed, and as shown by the lines when increasing the weighting in Fig. 8.11. Similarly, if we
try to improve the fits to the LFs, we cause a significant overestimation of the high redshift number
counts.

8.5.3.1 Number counts predictions for Euclid

Galaxies emitting Hα(+N[II]) are the main target for the dark energy science conducted by Euclid,
tracing large-scale structures at z ∼ 1 − 2. Therefore we consider the number of emission line
galaxies that meet the selection criteria for the Euclid wide survey. Satisfied with the best fitting
parameters from the MCMC using our emulator as evaluated on GALFORM, we can use these models
to predict the number of galaxies seen by a Euclid-like survey. The cumulative number counts
are shown in Fig. 8.15, along with the recent WISP+3D-HST data from Bagley et al. (2020) in
the redshift range 0.9 ≤ z ≤ 1.6. The corrected number counts from Bagley et al. (2020) for
the WISP+3D-HST data is 3266+157.7

−174.8 Hα+N[II] emitters deg−2. Our models predict the galaxy
density in the redshift range 0.9 < z < 1.8, matching that of the Euclid wide survey. From our 50
models, the spread in emission-line number counts estimates for galaxies with a flux greater than
the Euclid limit (f ≥ 2 × 10−16 erg−1 s−1 cm−2) is 2962-4331 deg−2, with our best model to the
calibration data outputting a number count of 3462.5 deg−2, corresponding to ∼ 52 million sources
mapped by Euclid’s 15,000 deg2 wide-field survey. Our best-fitting model comfortably lies within
the accepted limits of the Bagley et al. (2020) Hα+N[II] number counts. The number counts range
between the 10th and 90th percentiles of the distribution of predicted counts is 3158-3952 deg−2

which mostly fits within the accepted limits of the observations, with our models tending towards
a small over predictions. Looking at the cumulative number counts curve in Fig. 8.15 we see
the majority of our models fitting well with the observed data, with our best model following the
trend closely. We compare our number count predictions with those of Pozzetti et al. (2016) who
empirically fit luminosity functions to several surveys, HiZELS, WISP and HST+NICMOS. We
briefly outline the work by Pozzetti et al. (2016) in §6.4. Covering the redshift range 0.9 < z < 1.8
to a flux limit of 2 × 10−16 erg−1 s−1 cm−2, they expect about 2000-4800 Hα emitters deg−2,
therefore estimating in total 30-72 million sources will be mapped by Euclid. It is worth noting that
the Pozzetti et al. (2016) predictions are in terms of observed Hα flux, i.e. they include intrinsic
dust extinction in the Hα line luminosity and are corrected for [NII] contamination whereas our
results blend Hα+N[II] to match the results of Bagley et al. (2020). At the resolution of Euclid,
these two lines will be partially blended, meaning the Pozzetti et al. (2016) results are somewhat
conservative.

In fig 7 of Bagley et al. (2020) (part of which is reproduced in Fig. 6.1) we see the observed
cumulative number counts along with fits from various models including the three models from
Pozzetti et al. (2016). For the purposes of this comparison, Bagley et al. (2020) has converted the
Hα counts from the three Pozzetti et al. (2016) empirical models to Hα+[NII] counts using a fixed
[NII]/Hα line ratio: Hα=0.71 (Hα+[NII]), the same conversion as used in Section5 of Pozzetti
et al. (2016) while comparing the model counts to observations. Out of their three models, the
only model that fits the 0.9 ≤ z ≤ 1.6 observations well is Model 3 which shows a similar fit to
our best fitting model shown in Fig. 8.15. fig.7 from Bagley et al. (2020) also shows the redshift
distribution predictions from Pozzetti et al. (2016), where once again Model 3 is the best fit to the
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Figure 8.15: Number counts predictions from our 50 best MCMC parameters for galaxies between
0.9 < z < 1.8 (blue lines), where we have highlighted our best set of parameters as evaluated by
GALFORM in red. We plot this against the Bagley et al. (2020) 0.9 < z < 1.6 number counts (black
points). The Euclid flux limit at f ≥ 2 × 10−16 erg−1 s−1 cm−2 is indicated as a vertical dashed
grey line.

observed redshift distribution. However, the fits are only good for the first five data points before
the drop off in counts observed z ∼ 1.4. As seen in Fig. 8.14, our best model is a better fit to the
observed redshift distribution data points as we represent more closely the trends beyond redshift
1.4.

8.5.3.2 Galaxy bias evolution predictions for Euclid

Complementing the number counts predictions for a Euclid-like survey, we can also use GALFORM
to predict the average or effective clustering bias as a function of redshift. The clustering bias
is a direct input into the calculation of the effective volume of a galaxy survey, which quantifies
the statistical utility of the sample. In hierarchical clustering models with Gaussian distributed
primordial fluctuations, the clustering of high peaks in the density field (which corresponds to rare
and high-mass dark matter halos) can be described as an amplified version of the mass clustering
(Kaiser, 1984). The galaxy bias is computed by taking the ratio between the correlation functions
of galaxies and dark matter.

In order to measure the linear bias, we do not need to compute the non-linear two-point
correlation function (ξ(r)) of dark matter directly. Instead, we will use the bias-halo mass relation,
which has been predicted using theoretical models (as in Kaiser 1984) and is well measured from
simulations, which allows for empirical extensions to the simple theoretical models (e.g. Tinker
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et al. 2010). We choose to omit measurements of the correlation function due to time-saving
reasons. To get an accurate measurement of the correlation function we would need to run all
1024 subvolumes to get the full galaxy catalogue. Although it is possible to randomly sub-sample
the full galaxy catalogue and still get similar results for the bias (which is equivalent to running
GALFORM on a subset of the simulation subvolume files), this would introduce more noise on scales
affected by the shot noise. Hence, we would require more than the number of subvolumes we have
been using so far, we would require a significant fraction of the full sample. On top of this, the
calculation of ξ(r) is a lengthy process. We instead choose to calculate the asymptotic effective
bias in real space using the halo mass directly, calculating the effective bias using the COLOSSUS

package (Diemer, 2018) using the numerically calibrated bias model from Tinker et al. (2010) for
the bias-mass fit, and a virial mass definition. The Tinker et al. (2010) model was calibrated for a
range of overdensities concerning the mean density of the universe.

In Fig. 8.16 we plot the results for the average effective linear bias (beff) for individual redshift
bins as a function of redshift. We average across every halo for each redshift bin simulated by
the GALFORM code, filtering to only include galaxies which have luminosities above the Euclid
flux limit. We present the results from our 50 best MCMC models as blue lines, and the effective
bias of our best model described previously as a red line. We see a tight relation between our 50
best models up to redshift ∼ 1.4 where we see some noise between our models. This is because,
at higher redshifts, the number of galaxies seen by Euclid reduces, causing greater noise in the
average bias calculations. The dashed and dotted grey lines show the Merson et al. (2019) models
of the linear bias evolution with a WISP-calibrated lightcone and HiZELS-calibrated lightcone
respectively. Clearly, their models show the evolution of beff as a linear relation beff = mz + c,
where z is the redshift of the galaxy sample, m is the gradient, and c is the intercept. Due to the
mass-bias model chosen, our effective bias evolves with redshift as we see the ratio increase for
larger redshifts. It could be argued that at low redshifts, the function is linear. We also see our
model predicts a lower bias up to a redshift of ∼ 1.8 than Merson et al., at which point the gradient
of most of our models overtakes the fit of Merson et al. (2019). Some of the disparity in the bias
predictions between the Merson et al models and our models can be traced to differences in the
number of galaxies predicted. A difference in the number of predicted Hα ELGs per deg2 and
its dependence on redshift alters the number of galaxies and haloes within the model to calculate
the bias. Unfortunately, Merson et al. (2019) does not explicitly reveal their number counts
predictions for a Euclid-like survey. Merson et al also calibrates their dust extinction specifically
to Hα luminosity functions compared to the integrated models involved with the GALFORM code.
Modifying the dust extinction changes the distribution of galaxies between halos, hence changing
the number of galaxies that are observed within the sample. Finally, differences in the choice of
cosmologies (Merson et al uses a cosmology identical to the Millenium Simulation of Springel
(2005)) and bias-halo mass relations will cause slight discrepancies. Our predicts are instead more
in line with those predicted by Orsi et al. (2010) (Fig. 11)with their Hα sample defined by a limiting
flux of log(FHα erg s−1 cm−2])>-16 and EWobs>100Å. A lower bias equates to a lower galaxy
power spectrum, leading to larger errors in the clustering measurements (see §6.1).
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Figure 8.16: The effective clustering bias of our 50 best models as a function of redshift, evaluated
using GALFORM and the Colossus routines for computing bias and a function of host halo mass.
We have highlighted our best-fitting model to the calibration dataset as a red line. We also plot
the bias from Merson et al. (2019) when adopting a WISP-calibrated lightcone (grey dashed line)
and a HiZELS-calibrated lightcone (grey dotted line). These authors fitted straight lines to their
measured bias-redshift curves.

8.5.3.3 Comparison to older calibration datasets

We have shown that our best-fitting model gives a good reproduction of the Driver et al. (2012)K-
and r-band luminosity functions. Therefore we have expanded the comparison datasets to include
an older K-band dataset from Cole et al. (2001) which was used in the calibration of many of
the older GALFORM variants. In Fig. 8.17 we plot our best GALFORM model z = 0 K-band LF,
found using our emulator-based MCMC calibrated on the Driver et al. (2012), and compared this
with the Cole et al. (2001) K-band LF data. We also plot the Driver et al. (2012) K-band LF
data for comparison. We see that the Cole et al. (2001) and Driver et al. (2012) data reasonably
well, particularly for bright galaxies. The consistency between the new local calibration data and
the old calibration data indicates that the two observational LFs are consistent with one another.
Therefore, our GALFORM prediction agrees as well with the Cole et al. (2001) data as it does for the
Driver et al. (2012) data, up to faint galaxies where the Cole et al. (2001) data has lower number
counts and is noisier. The Cole et al. (2001) LF estimate overlaps mainly with the brighter end of
the Driver et al. (2012) data (as expected given the greater depth of the GAMA survey compared
with the 2dFGRS and 2MASS data used in the analysis by Cole et al.), and as we have seen in our
previous analyses, the weighting scheme compromises our new model at the bright end. Therefore,
the new model achieves poorer fits at the bright end when compared to the Lacey16 model for the
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Figure 8.17: The prediction of the new model GALFORM variant introduced here (red line) for the
z = 0 K-band LF compared with the Driver et al. (2012) (orange) and Cole et al. (2001) (blue)
data sets. We also plot a previous GALFORM model by Lacey et al. (2016) (grey line), which was
calibrated by hand to a collection of datasets including the Cole et al. LF. We calibrate our model
to the Driver et al. (2012) data.

Cole et al. (2001) calibration data also. Our model across all data points scored an MAE of 0.27,
this is worse than the Lacey16 model which achieves an MAE of 0.23. Our model scores worse
for similar reasons as previous analysis on the Driver et al. (2012) data; over-prediction at the very
bright end, and a much shallower turn-over. Nevertheless, our model is still a good approximation
to the Cole et al. (2001) data.

8.6 Discussion and Conclusions

In this chapter, we have presented a method for efficiently exploring and calibrating the GALFORM
semi-analytical model across a wide range of outputs. We have used data at intermediate redshifts,
as well as local data in the model calibration. As a consequence, we have discovered underlying
tensions between the three statistics as we are unable to find equally good fits to the Hα redshift
distribution, and z = 0K- and r-band luminosity function constraints when all data sets are equally
considered in our MCMC (as seen in Fig. 8.11). The weight given to the redshift distribution
constraint was increased, moving to a different region of parameter space which modified the
fits to the K- and r-band LFs, leading to discrepancies between our model and the observational
datasets. For example, again in Fig. 8.11, we see that increasing the weighting towards the redshift
distribution degrades the LF fits somewhat, leading to over-prediction at the bright ends. This

69



8.6. Discussion and Conclusions

could suggest the drop off in number counts at high redshifts for the Bagley et al. (2020) data,
in reality, is less sharp compared to what is observed as we find better fits to local LFs when the
slope of the redshift distribution is shallow. Another suggestion is the treatment of higher redshift
number counts in GALFORM needs to be revised. However, the struggle to find a set of parameters
that reproduce all of the constraints effectively (with equal weighting) speaks more to the data from
Bagley et al. (2020) and Driver et al. (2012) than the GALFORM model itself.

The emulation method presented here takes inspiration from previous explorations by Elliott
et al. (2021). we have focused on maximizing the accuracy of our GALFORM emulator across the
whole parameter space defined. We aim to build an emulator which allows us to explore calibration
datasets relevant to current and upcoming galaxy surveys. As shown in Fig. 8.8, our emulator
performs reasonably well for the constraint from the redshift distribution of ELGs. From Fig. 8.10
we have shown that the performance of the emulator scales with the number of training samples
it is exposed to; therefore we can improve our emulator to better predict the redshift distribution
constraint by increasing the number of training samples. This increases the computational expense
of the process, so another solution could be to reduce the parameter space using the knowledge
gained from this study or to use a system of weights to alter the contributions from the calibration
datasets. We can produce high-accuracy parameter estimates for fits to datasets by increasing the
training samples or using ‘zoom-in’ training samples as in previous work (e.g. Bower et al. 2010)
to focus on a more concentrated region of parameter space which is thought to give acceptable
fits to the containing datasets. This method would come at the cost of human intervention where
as increasing the number of training samples to create a more accurate emulator would not. Our
method described is more reproducible allowing for more uses, whereas Bower et al. (2010) is
more subjective to the underlying physics.

In §8.5.3 we calibrated our model to the three sets of observational data under consideration
(explained in §8.4.2). However, we did not consider the observational error bars during the model
exploration. Instead, we used an absolute error metric to compare the distance between the emulator
and the full model calculations. Hence, it is difficult to provide meaningful uncertainty around our
estimations of the best-fitting parameters quoted in Table 8.2. Previous calibration efforts for semi-
analytical models make trade-offs between certain observational constraints resulting in a poorly
defined best-fitting model. We have attempted to reproduce and clarify this process automatically
using heuristic weights on the constraints. There is scope in the future for a more robust calibration
analysis with an improvement to the treatment of observational errors.

Similarly, we have not considered the uncertainties associated with our emulator. Therefore
our approach could be extended to include a more robust measure of our emulator’s uncertainty in
reproducing GALFORM outputs. There are two types of uncertainty to account for when emulating
a set of model outputs, the uncertainty with the emulator’s parameters (that is the weights of the
neural network), and the uncertainty inherent in the data generation process (for example, the
sampling noise on the GALFORM outputs). The network hyperparameter error space was explored
using a trial-and-error process to justify the choice of our network architecture. We further reduce
uncertainties relating to our emulator’s weights by averaging several individual network estimates
within our ensemble. When averaging over the estimations from the individual networks, we may
be rejecting regions of the GALFORM parameter space which may contain reasonable fits to the
data as the average may be away from the best fit. However, regions in the parameter space that
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are most difficult for our emulator to model are regions that GALFORM outputs that are ‘unusual’
or ‘undesirable’ (for example, LFs without a clear exponential break, seen in the bottom panel of
Fig. 8.8) which are unlikely to be good matches to the observations. It would be ideal for our
emulator to return an estimate of its prediction uncertainty, calculated from the emulator’s weights
and uncertainty inherent in the data-generation process. Despite GALFORM being a deterministic
code, we are still limited by the noise associated with sampling from a fraction of the total volume of
the PMILL simulation. Approaches exist that incorporate the uncertainties discussed into a deep
learning framework, for example, Bayesian neural networks (Bishop, 1997) which incorporate
epistemic and aleatoric uncertainty into a deep learning framework, and deep kernel learning
approaches where a deep neural network transforms the input to the kernel of a Gaussian process
regression (Wilson et al., 2016; Patacchiola et al., 2020). These may be a promising line of inquiry
to combine the strengths of various processes to outperform current basic methods such as plain
Gaussian process models and deep neural networks, as well as provide more robust uncertainty
estimates and analysis.

In Fig. 8.10 we showed that we can improve the performance of our emulator by as much as
12% by averaging over five neural networks, instead of using just one. There is a rich avenue of
ensembling techniques that could be beneficial in these tasks. Our method used a simple average
of the five network predictions, but if a collection of machine learning algorithms can give better
fits to certain examples than others (i.e. errors that are not strongly correlated), it may be possible
to use a more sophisticated approach to combine the respective advantage of a variety of different
algorithms (see e.g. Wolpert, 1992; Opitz & Maclin, 1999; Sagi & Rokach, 2018; Ganaie et al.,
2022).

We trained an ensemble of deep learning algorithms to approximate the full GALFORM model
using 2999 evaluations of GALFORM (spread across training, validation and testing sets). We use
our emulator to explore the GALFORM parameter space and to calibrate the model parameters to a set
of three observations. Typical, the exploration of a model parameter space and the determination
of a best-fitting set of parameters traditionally requires more than 3000 explicit full calculations of
the semi-analytical model. Given the number of parameters and their ranges, our emulator can be
considered accurate, particularly in the regions of GALFORM parameter space where the full model
outputs closely match the observed Universe.

We have discovered that the majority of variance in the output of our model is due to a
few key parameters, which leads to tensions when trying to calibrate to multiple observational
datasets. The tensions between the observable datasets were explored, using our MCMC algorithm
to fit the emulator output to the constraints, eventually finding the weighting scheme for a global
fit to the observations. With this, our techniques find a set of parameters which provides an
improved fit to the redshift distribution data as compared with an earlier version of a GALFORM

model presented in Lacey et al. (2016). We go further by producing number count predictions for a
Euclid-like survey using our best model, improving on previous empirical models by Pozzetti et al.
(2016) by using more recent and complete datasets from Bagley et al. (2020). For a flux limit of
2 × 10−16 erg−1 s−1 cm−2 between the redshift range 0.9 < z < 1.8, our 50 best models predict
2962-4331 Hα emission-line sources deg−2, with 3158-3952 sources deg−2 between the 10th and
90th percentile. Our best-fitting model estimates 3462.5 sources deg−2, which is comparable to the
Bagley et al. (2020) observation. The predictions we produce for the number of galaxies estimated
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to be seen from the Euclid wide field are more constrained than previous models and are better in
line with the observed number counts of WISP+3D-HST.

Our bias predictions follow a similar trend to that of Merson et al. (2019), but with some
differences in detail, with Merson et al. fitting the bias to a linear function, whereas we find a
more non-linear relation at high redshifts. This could be down to the choices of dust extinction
models, bias-halo mass relation models and cosmologies, as well as differences in the number
counts predictions for a Euclid-like survey. Merson et al. (2019) does not identify some of these
choices or values, meaning we can only speculate. A lower bias measurement equates to larger
uncertainties with a clustering measurement. At low redshifts, we see a reduced bias estimate,
compared to previous work. However, at the redshift where Euclid can see Hα ELGs we see
comparable bias calculations to previous works (e.g. Orsi et al., 2010; Merson et al., 2019; Zhai
et al., 2021).

The emulation approach is intended to calibrate GALFORM using the observed galaxy redshift
distribution (plus local luminosity function data) to generate a mock catalogue for the Euclid survey
(Laureĳs et al., 2011; Racca et al., 2016) to predict the abundance and clustering of galaxies. This
requires model outputs over a large number of redshifts (see the lightcone method described in
chapter 7), which makes running GALFORM computationally expensive. Calibrating the model
across a large redshift range would be immensely more expensive for direct MCMC methods, and
is a very difficult task to achieve by eye. Therefore, this method reduces the required number of
model evaluations as much as possible. We have demonstrated that the number of runs needed to
achieve good emulator accuracy is a fraction required for manual direct calibration methods, and
we can emulate over a wide range of outputs.

We believe the methods presented can optimise the process of accurately exploring and
calibrating semi-analytical models intuitively and inexpensively, acting as an alternative to other
emulation techniques in the literature. This method is an invaluable tool for the rapid assessment
of the implications of changes to the underlying model.
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Chapter 9

Final thoughts on the academic

project

Throughout this academic part of the thesis, we have introduced a variety of novel techniques as
we aimed to predict up-to-date Hα number counts and clustering bias calculations for the Euclid
survey. The research and methods presented are not constrained to the tasks outlined here, rather
they provide opportunities for gains in the wider field of astronomy.

We have outlined a more rapid method for generating a large number of GALFORM models
compared to the literature standard of generating a lightcone. Instead of running every snapshot
redshift between z = 0 and the target redshift, it is possible to run only a reduced sample of
snapshots and interpolate between the luminosity functions to produce accurate counts. Similarly,
we do not need to run the full N-body simulation volume as sampling only 1% of the volume still
outputs effective outputs with acceptable noise. We have shown how this method can be used to
output cumulative number counts and redshift distribution results. However, this method is not
limited to these outputs. It is possible to tailor the interpolative method to generate any output from
the GALFORMmodel, and could even be introduced into alternative SAMs. GALFORM already has the
capability to interpolate between redshift snapshots to output a range of statistics, including galaxy
morphology, mass, gas fraction and star formation rates, to name a few. The benefits of this method
are clear, as long as an appropriate number of redshift snapshots and simulation subvolumes is
used, the computational time and power required to run a SAM can be greatly reduced.

Along the same lines, the benefits from the advancements we have made in GALFORM model
emulation and optimisation are not limited to the contexts presented in this thesis. We have proved
the effectiveness of emulating specific outputs of a SAM using a relatively simple ensemble of deep
networks, predicting the redshift distribution and local Universe luminosity functions to a high
degree of accuracy. The pipeline presented here can be modified with ease to fit any emulation task
of a SAM such as GALFORM. The requirements for an emulator to predict accurate outputs come
down to using an appropriate number of training samples which is correlated to the number of input
parameters and their ranges, a large number of parameters with large ranges leads to more training
samples required to cover the parameter space. Evidence from our work and previous works
(such as Elliott et al. 2021) shows the number of statistics the emulator predicts has little effect on
performance. Therefore this technique could be used to predict a greater variety of SAM outputs
than the ones presented here. As mentioned in chapter 8, there is promising scope in the future to
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use more advanced methods of ensembling. The benefits of using an emulation method such as this
one are clear, tremendously reducing the time taken to generate SAM samples compared to the full
traditional methods. Combining emulation with MCMC leads to rapid sampling of a parameter
space for the calibration of a model. If we wish to improve our work, we would introduce better
quantification of uncertainty with our emulator predictions and MCMC samples.

We believe the work presented in this thesis will lead to rapid advancements in the field
of computational cosmology, as the utilisation of machine learning becomes more prominent in
the academic realm, there is less dependence on running full cosmology simulations to obtain
predictions of our Universe. Instead, the same outcome could be achieved in a matter of seconds.
The downfall of this method is machine learning is simply a mapping function from an input to
an output with no understanding of the physical properties that achieve the output. Hence, using
machine learning in conjunction with full SAMs is key to uncovering improved fits to observed
datasets, as well as uncovering hidden tensions between constraints.
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