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Abstract

Anomalies are samples which differ significantly from ordinary appearance or be-
haviours to such a degree that they lay outside what is considered standard in a
given task. Deviations may be due to defective or broken regions of a sample, or
due to foreign objects present in samples. Detecting such deviations in samples is
the task of anomaly detection. In the task of X-Ray Security Scanning or Factory
Line Inspection, missing the detection of anomalous instances, especially in the for-
mer, can cause catastrophic impact to safety. Missing anomalies within tasks such
as Plant Disease Detection or Wind Turbine Blade Fault Detection are likely to
cause increased detriment to the assets of these tasks if they are not caught soon
enough. The work presented in this thesis aims to push towards automation of the
detection of anomalies in such critical tasks. Firstly, an extensive review is con-
ducted into prior approaches and paradigms which have been presented for anomaly
detection. As most tasks in visual anomaly detection do not have the luxury of
having copious and diverse anomalous samples, if any, methods have since shifted to
semi-supervised learning whereby training is conducted solely across non-anomalous
samples. An obvious problem with such training is the detection of subtle anomalies
(deviations which vary only slightly from normality) in a given task. This was the
motivation behind the PANDA architecture, a generative semi-supervised method
presented in this thesis. This method, specifically designed to detect subtle and
coarse anomalies obtains state-of-the-art results in AUC score across a substantial
pool of challenging datasets. Following from this, a trend in anomaly detection
has seen denoising approaches obtaining state-of-the-art and robustness to the task,
however, such noising approaches are manually defined and random by nature. This
thesis presents a method to add optimised, custom noise for any given anomaly
detection task. The results of this method show that even a very basic architecture
can obtain close to state-of-the-art performance when using this unique noising ap-
proach. Finally, an approach to detect faults in wind turbine blades is introduced
in the form of a two-stage detection approach which first establishes a more accu-
rate method of blade detection and extraction compared with prior object detection
approaches, and then uses off-the-shelf anomaly detection methods to perform suc-
cessful defect detection of super-pixel sub-regions of the detected blades.
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CHAPTER 1

Introduction
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The work in this thesis contributes to the field of reconstruction-based anomaly

detection applied to real-world tasks. On a high level, anomaly detection is the task

of recognising samples of a given dataset which deviate significantly from established

normality and as such, represent unexpected eventualities or outliers in the scope of

a given task. Anomaly detection is a challenging task because of the broad range of

variational forms which anomalies may present, representing an unbounded (open-

set) distribution of possible deviations from normality. Anomalies may present as

defective objects within samples, or as incongruous events during inference. As

such, anomaly detection methods must recognise and detect such unseen out-of-

distribution samples during inference by learning effective knowledge obtained from

seen in-distribution examples during training.

Figure 1.1 illustrates some of the real-world anomaly detection tasks used in the

course of this thesis. In the task of X-Ray Security Scanning or Factory Line In-

spection, missing the detection of anomalous instances, especially in the former, can

cause catastrophic impact to safety. For this reason, human operators who are tasked

with detecting anomalous items within these tasks have to be rigorously trained and

examined in order to perform their job. Deep anomaly detection approaches could

act as a tool for human operators to assist in the detection of anomalous samples; To

essentially act as a ‘second pair of eyes’, both reassuring the human operators that

they have not made a mistake during categorisation and catching anything that may

have slipped past the operator. Such a system may assist in detecting anomalous

instances which may be missed more frequently by human operators during busy

periods, or while fatigued at the end of a long shift. Missing anomalies within tasks

such as Plant Disease Detection or Wind Turbine Blade Fault Detection are likely

to cause increased detriment to the assets of these tasks over time if they are not

caught soon enough. To this end, the sooner these anomalies are caught, then the

less costly they will be to rectify. Success at this task relies on detecting subtle

anomalies which deviate only slightly from normality. Approaches should be able to

detect diseased regions, or cracks in turbine blades forming to enable the eradication

of the disease so as to not let the entire crop become affected in the former, and

2



repairing small cracks in turbine blades is far cheaper than replacing the entire wind

turbine blade due to the crack spreading throughout the full blade in the latter.

1 2

3 4

Figure 1.1: Visual samples from anomaly detection tasks: (1)Plant Village, (2)
UCSDPed1, (3)MVTEC, (4)Durham Threat Item X-Ray dataset. With each seg-
ment illustrating both normal, non-anomalous samples (top row), together with
their anomalous counterparts (bottom row) across the tasks

For meaningful real-world application of anomaly detection methods the type

I and type II errors or commonly referred false-positive and false-negative errors

respectively, must be reduced. Given the null hypothesis, stated as ‘the presented

sample is non-anomalous’. Type I error occurs when this correct null hypothesis is

erroneously rejected such that a normal sample is categorised as anomalous. The

type II error is the failure to reject the false null hypothesis leading to anomalous

samples being categorised as normal.

Classes within tasks which have high intra-class variance between examples of

the normal class can pose a challenge to detect as the features of the instances do

not correlate well to one another and so meaningful representation is more difficult
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to obtain. The severe diversity in appearance of normal class instances can lead

to increased chance of type I error due to such normal class objects being diver-

gent enough to severely increase the given anomaly score, resulting in a wrongful

anomalous categorisation. Low inter-class variance occurs in a given task between

the normal and anomalous class when the presented anomalies are visually subtle

and the distinction between normal and anomalous instances is challenging. This

can lead to increased chance of type II errors in categorisation such that anomalous

samples are incorrectly classified as normal.

This difficulty is illustrated visually in Figure 1.2. The tomato class within the

Plant Village dataset [1] is shown containing samples which have both high intra-

class and low inter-class variance. The normal class contains high variability in

shape, colour, and texture, whereas the anomalous examples are visually subtle and

hardly noticeable. This is especially true when observing the instance containing

Bacterial Spot disease where the leaf looks indistinguishable from the healthy leaf.

Our work proposes methods to improve both the detection capability and ro-

bustness of reconstruction-based anomaly detection methods. We also evaluate the

approaches over datasets of significant importance which can benefit from automa-

tion to ease the burden of human operators.

1.1 Motivation

Humans have intuitive skill to recognise deviations from normality in the real world

even when never exposed to specific anomalous examples. Deeply rooted through

primal instinct, the ability acts as a defence mechanism to avoid danger, triggering

the fight or flight response in abnormal situations. A deep knowledge and visual

understanding of the world allows us to notice when something seems peculiar. For

certain tasks, however, such as factory line inspection or X-Ray security scanning,

they require intense training of operators in order to gain expert level knowledge.

Human operators within aviation X-Ray security scanning are required to pass

the rigorous X-Ray Competency Assessment Test (X-RAY CAT) [22] under Euro-
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Figure 1.2: Examples from the Plant Village dataset [1] illustrating the low inter-
class and high intra-class variance present between samples in certain classes of
visual anomaly detection tasks.

pean Civil Aviation Conference document 30 [23] as well as ICAO Annex 17 [24]

and EC300 Article 10 [25]. The test conducted by the Federal Aviation Authority

in 1987 showed that human operators missed 20% of threat items presented [26].

A further test in 2002 by the Transport Security Administration conducted at Los

Angeles Airport showed that security operators failed to detect weapons in 41%

of cases [27]. This, together with human operators suffering from fatigue on long

shifts [28] motivates the need for automation in such tasks. Of particular interest is

the detection of threats concealed inside electronic devices such as laptops [3]. These

threat items are far more obfuscated by the visually complex inner electronics of the

laptops compared to more coarse threats present in common baggage and as such

will have a lower chance of detection than those reported in the aforementioned

tests [27,28]. Examples of this obfuscation is illustrated in Figure 1.3. The weapons

from the University X-Ray Baggage Anomaly dataset on the top row stand out con-

siderably within the baggage even in more challenging orientations. Observing the

threat items concealed within the large electronics on the bottom row, however, are

visually very difficult to detect.

5



It is the goal of anomaly detection methods to be able to detect anomalous

instances with these properties as they pose as a more difficult task than merely

detecting strong outliers such as those present in leave-one-out tasks [7, 8].

Chapter 2 outlines more motivation in the specific tasks of X-Ray aviation se-

curity in large electronics [3], plant leaf disease detection [1], pedestrian footpath

monitoring [10], factory line inspection [9], and wind turbine blade fault detec-

tion [29] as to the need for assistive automation to better detect visual anomalies in

these tasks.

Benign Laptop Anomalous Laptop
(Concealed Knife) 

Anomalous Laptop
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Anomalous Laptop
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Figure 1.3: Examples from the University (X-Ray) Baggage Anomaly dataset [2]
(top) and the Laptop X-Ray dataset [3](bottom) showing the relative difficulty of
detecting threat items concealed within large electronics devices (bottom) compared
to detecting handguns (top) within baggage. Bounding boxes show location of threat
items in each image.
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1.2 Thesis Contributions

The contributions of this thesis are as follows:

• A novel method for the semi-supervised detection of anomalies in visual data

with increased focus on capturing visually subtle anomalies in real-world ex-

ample tasks (Chapter 3. We utilise an asymmetric autoencoder generator

architecture (Section 3.2.1), trained adversarially with a novel ‘fine-grained’

discriminator module (Section 3.2.2. Our modifications to improve perfor-

mance include residually connected dual level feature extractors within the

generator module and a perceptual loss function (Section 3.2.3).

• An application of semi-supervised methods to the task of detecting visual sur-

face faults in glass-fibre turbine blades (Chapter 5). Our approach is a dual-

stage architecture to firstly, extract blade parts (Section 5.2.1)from a given

image with better detection and mask prediction accuracy than prior meth-

ods [18–20]. Secondly, the detection of faults is performed with a collection

of well-established methods of semi-supervised anomaly detection as well the

introduction of U-GANomaly 5.2.4), an upgrade to Skip-GANomaly [6] by util-

ising a U-Net [30] discriminator [17]. Our experiments show that U-GANomaly

outperforms prior methods for semi-supervised anomaly detection.

• A novel approach to training a more robust autoencoder with the use of an

adversarial training scheme whereby a denoising autoencoder is challenged

to reverse the impact of added learned adversarial noise and corruption to

the original data (Chapter 4). We show in our experiments that this train-

ing method Significantly improves the performance of the vanilla autoencoder

model across real-world tasks and outperforms [31–35] across the task of novel

leave-one-out anomaly detection.
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1.3 Publications

Work presented in this thesis has been subject to peer review and subsequently ac-

cepted for publication in well-established proceedings and outlined in the respective

chapters of this thesis as follows:

• Evaluation of a Dual Convolutional Neural Network Architecture

for Object-wise Anomaly Detection in Cluttered X-ray Security

Imagery, Y.F.A. Gaus, N. Bhowmik, S. Akcay, P.M. Guillen-Garcia, J.W.

Barker, T.P. Breckon, In Proceedings of the International Joint Conference on

Neural Networks, IEEE, 2019. (Introductory research to the task of anomaly

detection. Contributes to the problem definition in Chapter 1).

• On the Impact of Object and Sub-component Level Segmentation

Strategies for Supervised Anomaly Detection within X-ray Security

Imagery, N. Bhowmik, Y.F.A. Gaus, S. Akcay, J.W. Barker, T.P. Breckon, In

Proceedings of the Conference on Machine Learning and Applications, IEEE,

2019, pp. 986-991. (Contributing to Chapter(s) 3)

• PANDA: Perceptually Aware Neural Detection of Anomalies, J.W.

Barker, T.P. Breckon, In Proceedings of the International Joint Conference on

Neural Networks, IEEE, 2021. (Contributing to Chapter(s) 3,5)

• Semi-Supervised Surface Anomaly Detection of Composite Wind

Turbine Blades From Drone Imagery, J.W. Barker, N. Bhowmik, T.P.

Breckon, In Proceedings of the International Conference on Computer Vision

Theory and Applications, 2022. (Contributing to Chapter(s) 5)

• Robust Semi-Supervised Anomaly Detection via Adversarially Learned

Contrastive and Continuous Noise Generation, J.W. Barker, N. Bhowmik,

Y.F.A. Gaus, T.P. Breckon, In Proceedings of the International Conference on

Computer Vision Theory and Applications, 2023. (Contributing to Chapter(s)

4)
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1.4 Thesis Scope and Structure

Chapter 2 provides a thorough review of the literature within deep visual anomaly

detection in images outlining works within the paradigms of probabilistic (Section

2.2), classification (Section 2.3), and reconstruction based approaches (Section 2.3).

We then provide an overview of denoising approaches applied to denoising autoen-

coder methods (Section 2.4.2) which sets the stage for the work presented within

Chapter 4 of this thesis. We provide an overview of prior works up until current

state-of-the-art within visual anomaly detection.

The work presented in this thesis tackles the challenging and on-going task of

accurate detection of anomalous instances within real-world tasks. Of particular

interest is the detection of visually subtle anomalies which deviate minimally from

normality. Chapter 3 presents a semi-supervised adversarially trained autoencoder

architecture bespoke to the detection of such anomalies, achieving state-of-the-art

performance during extensive evaluation across a wide array of multi-spectral, multi-

modal datasets.

Chapter 4 introduces a novel approach of training a simple denoising autoencoder

by adding continuous adversarially learned global noise to images prior to denoising.

This work improves on the performance of prior state-of-the-art methods [31, 32,

36] in applying noise methods to denoising autoencoders while being significantly

simpler to implement. Our method of continuous global adversarial noise production

leads to the creation of a more robust denoising autoencoder and improves anomaly

detection capability as shown in our results.

Chapter 5 presents an architecture to the task of detecting surface faults in glass-

fibre turbine blades. This solution features a two stage process in which blade parts

are initially extracted from input images with high accuracy (Section 5.2.1). These

blade parts are then processed with a suite of semi-supervised anomaly detection

methods (Section 5.2.3). We also introduce a new anomaly detection architecture

(Section 5.2.4) in this chapter which achieves state-of-the-art performance when

compared to prior methods in our experiments.
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CHAPTER 2

Literature Review
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2.1 Introduction

Anomaly detection is the task of recognising deviations from pre-established normal-

ity in presented examples in a given task or domain. Accurate and efficient detection

of anomalous deviations is crucial for oftentimes critical tasks. Tasks such as factory

line quality control inspection or X-ray security screening require specialist rigorous

training of human operators to conduct. Automation of anomaly detection in these

tasks would be an invaluable tool for current human operators who can suffer from

fatigue, boredom or common human error while working long shifts.

In visual data, anomalies may present as defects or deviations in objects from

the trained domain, or may instead present as foreign objects which are out-of-

distribution from the prior training domain. Examples from the former case as seen

in the MVTEC dataset [9] can either feature 1) prominent deviations in which large

sections of the objects are either corrupted to a significant degree or are missing

leading to visually obvious anomalies or 2) visually subtle deviations which vary

slightly from normality and as such lay close to the decision boundary between

normal and anomalous categorisation; such samples are challenging to differentiate

from training data, increasing the chance of type 1 and type 2 errors occurring

during categorisation. Examples of such figures are illustrated in Figure 2.1.

Tasks which instead feature foreign objects as anomalous instances such as X-ray

security scanning [3, 37] and pedestrian area monitoring [10] contain more open-set

variability of both the normal and anomalous data, making the distinction between

normal and anomalous samples a challenging task. Due to this, normal items in X-

ray baggage scans which appear strange, but pose no threat and are permitted may

be wrongfully flagged as anomalous. The set of anomalous items which pose a threat

are a subset region of the open-set distribution of anomalous space and without post-

categorising anomalous examples, many false positives would be flagged. This makes

these tasks notoriously difficult for anomaly detection methods.

Anomaly detection methods generally train solely across normal data as in many

real-world tasks, anomalies are rare occurrences with potential high visual variance.
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1

2

Figure 2.1: Defect examples from MVTEC across Toothbrush, Transistor, Wood
and Pill classes illustrating, Row 1: Visually obvious defects, and Row 2: Visually
subtle defects.

The collection of normal data is cheap and far more similar to a human approach

whereby a human can recognise deviations from normality after being subjected to

a set of normal examples [2].

Prior work in anomaly detection can be generally categorised into three cate-

gories: probabilistic approaches, classification approaches, and reconstruction ap-

proaches [38,39].

This chapter reviews prior literature primarily in the field of reconstruction-based

generative anomaly detection to fit with the research presented in this thesis. A brief

overview of works featuring distributional and classification-based approaches will

also be provided to give an overview of the field of visual anomaly detection as a

whole.

2.2 Probabilistic Approaches

Probabilistic approaches [40] are based on estimating a generative probabilistic

model of the underlying data [41]. This involves estimating the Probability Den-

sity Function (PDF) of the data during training [42] whereby test samples with low
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probabilistic likelihood are likely to be abnormal [43] when measured against this

learned distribution established during training. It is expected that abnormal sam-

ples presented during inference will not meet such a distribution and as such will

be classified as anomalous. Approaches can be split into two paradigms: Paramet-

ric approaches such as Gaussian Mixture Models (GMM) [44] and non-parametric

Kernel Density Estimators [45–47]; It is, however, well-established that these ap-

proaches frequently become highly sensitive across high-dimensional spaces due to

the problem of the ‘curse of dimensionality’ [48]. In visual anomaly detection across

high-dimensionality images, this means that any input sample could be a rare event

with low probability to observe and as such be flagged as anomalous by a model [49].

Frequently, this is overcome by performing density estimation in feature space across

an embedded latent space representation following encoding [50–52] as feature space

is considerably easier to conform with the probabilistic assumption [39] of the data

and offers more freedom for the model to categorise than sparsely-distributed raw

image pixel data [53]. This method of encoding to feature space initially required

a two-stage process of first performing dimensionality reduction and then perform-

ing density estimation on this low-dimensional latent space [54]. The Deep Au-

toencoding Gaussian Mixture Model (DAGM) [48] jointly performs these stages to

perform both low-dimensionality mapping and distribution modelling in the same

stage. Cohen et al. [55] state that an approach implementing nearest neighbours can

be described as a density estimation approach; they propose the SPADE [55] ap-

proach which performs K-nearest neighbours using the Euclidean distance between a

learned memory-bank of nominal image-level feature representations and extracted

features of test query images. Although successful at both detection and segmenta-

tion of anomalies, the linear complexity of the KNN algorithm increases in time and

space complexity as the dataset grows [56]. This issue is overcome by the PaDiM

approach [56] by modelling deep features collected at different depths of a pretrained

network of image patches as a multivariate Gaussian distribution which models cor-

relations between semantic levels of the pretrained network. The PatchCore [57]

approach extends the work of PaDiM and SPADE by still using a memory-bank of

13



non-anomalous feature representations, but implements local neighbourhood aggre-

gation across features to increase receptive field and robustness. PatchCore further

implements what they call a ‘greedy coreset’ approach to reduce the memory-bank

size while retaining effective sampling to allow for faster inference speed. The above

mentioned methods all have the issue of features which are biased towards large

datasets without adaption. The method Coupled-hypersphere-based Feature Adap-

tation (CFA) [58] solves this induced bias by performing transfer learning on the

target dataset to dilute features from a pre-trained model.

The PatchCore approach obtains such a high state-of-the-art value that it prac-

tically solves the MVTEC [9] dataset. To this end, we must propose new anomaly

detection tasks which pose significant difficulty and variability that is prevalent in

the real-world. The MVTEC dataset, although challenging is visually sterile in terms

of camera position, object location and lighting which is all kept as fixed as possible.

This is seldom true in the real-world and a new task reflecting this and taking this

into account would step towards generalisability and improved incorporation of such

methods in everyday life.

2.3 Classification-Based Approaches

Although classification-based approaches implementing a binary classification-based

approach [3,37] have gained superior results in the task of visual anomaly detection,

certain tasks do not always have the luxury of containing an abundance of abnormal

samples during training. This is primarily why approaches implementing a one-class

classification paradigm in which classifiers are trained solely across the nominal class

were introduced [39,55].

Initially, One-Class Support Vector Machines (OC-SVM) [59,60] and Replicator

Neural Networks [61] were proposed for this task. For SVM-based approaches, a

hyperplane is located in feature space which maximally separates the data from the

origin. The application of Support Vector Machines (SVM) for one-class classifica-

tion was first proposed in [60]. This approach utilises a kernel expansion function
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to approximate the hyper-plane to evaluate whether a given sample lays within the

learned distribution of normality, or is novel enough to be categorised as anoma-

lous. The Support Vector Data Description (SVDD) [62] extends this work by using

a hyper-sphere which offers more flexible descriptions than a conventional hyper-

plane [62,63].

As well as SVM-based approaches, Replicator Neural Networks (RNN) [61] have

also been introduced to one-class classification-based anomaly detection [61,64,65].

RNN which are neural networks similar to autoencoders whereby the function of

the RNN is optimised to replicate the input data pattern at the output layer iden-

tically to conventional autoencoders. The main difference is that RNN incorporate

a staircase-like activation function in the latent layers which quantises the vector of

the given layer outputs to a pre-determined number of clusters [66]. The method

outlined in [64] propose a method for visual one-class anomaly detection using RNN.

However, their approach seems to be identical to reconstruction-based autoencoder

methods featured later in this chapter (Section 2.4).

In-addition to SVM and RNN-based approaches, recently, work has implemented

Extreme Learning Machines (ELM) [67] to the task of one-class visual anomaly de-

tection [65, 68, 69]. The ELM method utilises a single-hidden-layer feed-forward

neural network (SLFN) [68]. However, unlike conventional SLFN, where all weights

in the network are updated via back-propagation, ELM models only update the

output weights during training [65], allowing for faster learning speed and good

generalisation performance [70–72]. The One-Class ELM (OC-ELM) approach pro-

posed in [73] demonstrates the advantage of using ELM over many conventional

one-class classifiers. [69]. The single layer ELM architecture has since been ex-

tended to a multi-layer framework via a number of approaches including stacked

autoencoders [69, 74], sparse representation-based hierarchy [75], deep weights [76],

and multi-layer kernel [77]. More recently, the work by Hashmi et al. [65] propose

speeding up the training of Replicator Neural Networks (RNN), previously men-

tioned in this section, by using an ELM which significantly outperforms K-nearest

neighbours and SVM-based approaches.
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It is well-established that SVM-based approaches struggle with more complicated

tasks requiring non-linear representations [78–80]. Deep learning methods such as

neural networks have proven significantly better at modelling such high-dimensional

data and improved the performance of anomaly detection approaches [80, 81]. Al-

though deep learning methods can successfully model higher-dimensional data, they

struggle with singular class classification tasks [82]. However, methods have been

introduced to counter this issue [80, 83, 84]. Deep methods can be split into two

paradigms for one-class anomaly detection: Generative (autoencoders, GAN) [83,85]

and Discriminative models [80]. The former, explained further in this chapter in Sec-

tion 2.4 rely on either using reconstruction error as a direct score of abnormality, or

utilising the discriminator module (in GAN-based approaches) as the novelty detec-

tor [83]. The later paradigm, discriminative methods, implement an aforementioned

‘hybrid’ approach which utilises a method similar to the one outlined in Section

2.2 whereby the high-dimensional data is encoded to feature space where it is then

processed by a second stage of classification such as SVM. The work by Ruff et al.

propose the hybrid approach Deep-SVDD [86] of applying deep neural networks to

a hyper-sphere of minimum volume. This work is further used in the work of [64]

where SVDD is used as a post-training step to fine-tune the model. The authors

show in their results, that this improves performance of the model for the task of

anomaly detection. The work by Chalpathy et al. [80] combines the hybrid approach

with autoencoder methods by implementing a classification head with a neural net-

work calling this approach the One-Class Neural Network (OC-NN). Building off

this, the One-Class Convolutional Neural Network (OC-CNN) [82] which utilises a

CNN feature extractor to embed images to feature space, and then jointly intro-

duces zero-centred Gaussian noise into the latent space by concatenating it with

the feature vector to act as a ‘pseudo-anomaly class’. A neural network, just as

in [80] is then used to categorise the samples as anomalous or normal based on

Binary Cross-Entropy. The work by Perera et al. [87] differ from this and instead

use an external reference dataset to represent the anomalous class. Self-supervised

learning can greatly improve the classification-capability of neural networks in one-
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class classification tasks by learning features which are more useful for detecting

anomalies [88]. Self-supervised learning is achieved through learning via a pretext

task. Such pretext tasks could be geometry-based, or style-based (contrastive). Rot-

Net [89] is a geometric-based pretext task where predicting rotations in images is

used as a pretext task to learn image representations. This has been proven effective

at the task of one-class classification [90]. Another geometry-based task relies on

predicting the relative global image position of a given patch of an image [91]. Golan

et al. [88] propose a geometric approach in which a multi-class model is trained to

discriminate between many geometric transformations applied on all images. This

in turn learns a better representation in which to categorise between known and

unknown classes given only the known class. They demonstrate a huge increase

in performance compared with prior state-of-the-art methods. The Classification-

based Anomaly Detection for General Data method [39], named GOAD by the au-

thors further improves this method by unifying state-of-the-art methods and works

by initially transforming data into sub-spaces to learn a feature space such that

inter-class separation is larger than intra-class separation. This enables the distance

from the cluster center within features to be directly correlated with the likelihood

of the given sample being anomalous.

Within style-based pretext tasks, the work by Zhang et al. [92] propose using

colourisation as a technique whereby mono (black and white) images are provided

to the model which is tasked with colourising them. The state-of-the-art method

within one-class classification for anomaly detection [93] argue that naively apply-

ing methods such as rotation, or contrastive methods is sub-optimal for detecting

defects. As such, Li et al. utilise the CutPaste [93] method in which the pretext

task takes a random patch from a given image and places it elsewhere in the image

which produce spatial irregularity to serve as more realistic pseudo defects. The

results of this demonstrate a notable increase in performance compared with the

methods [89,91,92].
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2.4 Reconstruction-Based Approaches

Reconstruction-based methods train solely across normal, non-anomalous data and

as such must learn meaningful feature representations to model the manifold of

normality [94]. Such learned feature representations successfully reconstruct normal

data, but fail to reconstruct anomalous data, hence allowing the reconstruction

error to be a continuous measure of deviation from normality [80]. Models can

generalise well to general feature representations and as such, leading trained models

to be able to extrapolate and to reconstruct anomalous parts in presented samples,

despite no exposure to such during training. This essentially equates to convergence

to an identity function in which the input is approximately equal to the output.

This leads to low reconstruction errors for anomalous inputs which can affect the

discrimination between normal and abnormal samples during inference [38, 95, 96].

This can, however, be overcome by regularisation in the form of denoising.

Common reconstruction-based architectures utilise methods such as Autoen-

coders (Section 2.4.1) and Generative Adversarial Networks (GAN) (Section 2.4.3)

as these can well-represent features fitting to the distribution of singular class data.

The work presented in this thesis is primarily centred around reconstruction-

based approaches to anomaly detection. Justifications for using this paradigm are

such that 1) using only non-anomalous data during training is cheaper to obtain

than a wide variety of anomalous examples and 2) such approaches offer explain-

ability as to the magnitude and location of the anomalies present by taking raw-pixel

differences between the input and the output reconstruction.

2.4.1 Autoencoder Methods

Autoencoders were introduced in 1987 [97] initially as a Multi-Layer Perceptron

(MLP) which consists of two components, the encoder and the decoder trained in

series to map an input image to itself with as little distortion as possible [98]. The

encoder component maps the input image data to a compressed latent representation

z which the decoder then is tasked to map back into an output image. Due to the
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compressed nature of z, the architecture is forced to learn a condensed representation

of the input in z. A loss function such as Mean Squared Error (MSE) or L1 loss

between the input and the output is typically used to train model weights which

minimise the distance between the input and output [99].

Convolutional Autoencoders (CAE) [100] replace the dense perceptron layers

with sparsely connected convolutional layers together with pooling to take advantage

of the local spatial coherence within image input [100]. The introduced stacked

convolutional layers can learn more meaningful representations of pixel interactions

in a neighbourhood using information in the higher-order features from previous

layers in the architecture. They are also more efficient at modelling images due to

sparsely connected features rather than the densely connected MLP model.

Due to the unsupervised nature in which CAE learn accurate feature representa-

tions across their input, they are well-suited to the task of anomaly detection when

trained solely across the normal dataset. Many works have applied CAE architec-

tures to anomaly detection tasks [101–103]. In fully-trained models, the representa-

tions of normality are learned such that all normal parts of the input are included

in the reconstructed output. The trained network will attempt to encode and de-

code anomalous regions at test time using representations over the normal data;

As such, the network will produce normal outputs on anomalous parts [104]. Due

to this, taking the reconstruction error acts as a continuous measure of anomalous

deviation [2, 6].

Autoencoders, however, if large enough, tend to overfit to an identity function

in which the representations are learned such that the input is close to equal to

the output [105,106]. This is a form of memorisation for the network meaning that

each element within the training set maps perfectly to itself and as such, meaningful

learned representations are not learned [107]. Due to this being a near-zero solu-

tion to the loss function, regularisation must be introduced to deter such learning

convergence. This overfitting is not ideal for the task of anomaly detection because,

as previously mentioned, autoencoders must ‘repair’ anomalous regions in a given

image back to normal in order for the reconstruction error to be effective at de-
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tecting the deviation from normality [32]. To summarise, a model overfitting too

close to the identity function will allow anomalous artifacts to be included in the

reconstructions, hence the signal of anomalous deviation will be far weaker and the

ability of such models to detect anomalies is reduced significantly [108].

To combat this issue, many regularisation techniques have been introduced in-

cluding L2-norm regularisation [107, 109–111] and denoising approaches including

image dropout [112,113] and other noising approaches [105,108,114,115]. This the-

sis will primarily focus on regularising through the use of denoising to align with

the work of Chapter 4. One of the main contributors to the work of denoising is the

Denoising Autoencoder (DAE) [105, 108, 116] which introduces a simple, yet effec-

tive [108] solution of regularisation by adding purposeful noise by randomly setting

some pixels in the input images to zero and then tasking the autoencoder to recon-

struct the non-corrupted input image from the noisy image [107]. We expand more

on this topic in the following subsection.

2.4.2 Denoising Autoencoder

Denoising Autoencoders (DAE) are effective regularisers against overfitting to a

identity function. Such noise could be dropping out randomly selected pixels from

the input image [105], as purposeful noise [117, 118] to the image, or adding noise

to the hidden feature vectors in a given architecture during training [110]. Methods

utilising image dropout are, as argued by Wager et al. [109], theoretically emulating

L2-regularization. This has been established as a well-tested approach to prevent

unwanted fitting to the identity function as when image pixels are dropped out or

corrupted in the input image, the DAE must reconstruct pixel information based on

the information of the surrounding pixels in order to be successful at reconstructing

the input faithfully [119]; The identity function would allow such dropped out pixels

to appear in the output. Recently, the work [107] defines this as partially correct,

however; It will not fully prevent DAE from overfitting to identity functions; instead,

it is more accurate to say that offering more rigorous noising can prevent overfitting

more often [119].
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Differing from this notion of predicting the value of the dropped out image pixels

and offering a more robust method of image dropout is the Reconstruction by In-

painting for Anomaly Detection (RIAD) [106] method which sets randomly selected

patches of a given image to zero and then tasks an autoencoder to reconstruct an

output such that it produces original image content in the zeroed out regions and

zeros everywhere else. This method is similar to the work of Adey et al. [103] which

uses a similar training scheme of learning the inverse, or pixel shifts in the noised

regions of the corrupted input. Instead of setting select pixel tiles in the image to

zero, each tile is instead corrupted using a randomly selected noising approach (salt,

salt and pepper, Gaussian blur, Gaussian Noise, rectangle, line, ellipse arc, shading,

erosion, or dilation). This method must learn the inverse of the noised image so that

when this is added to the noised image, it results in the original image. Kascenas

et al. [120] utilise a similar scheme of applying randomly generated Gaussian noise

to the foreground pixels of the input image. They report that this significantly in-

creases the precision of reconstruction of the DAE module. At the same time, the

work by Salehri et al., Adversarially Robust Training of Autoencoders (ARAE) [31]

trains an autoencoder to reconstruct crafted adversarial examples which are per-

ceptually similar to the input sample, but the distance in the latent representation

is maximised such that the error between the reconstruction and the input image

is minimised. This is the first such method that does not use hand-crafted noise

to corrupt the input images, instead utilising backpropagation to optimise for the

best noise in which to use to satisfy the aforementioned noise selection criteria

of their task. Extending this is the One-Class Learned Encoder-Decoder Network

(OLED) [32] which further improves on the performance of ARAE by implementing

masking with a binary mask based on the activation of a prior autoencoder network

named the mask module. The mask module is trained to maximise the reconstruc-

tion error which produces optimal obfuscation of the input images. Unlike [103,106],

however, OLED [32] and ARAE [31] do not reconstruct the inverse of the anomaly

mask, instead opting for the classical full-image reconstruction approach. These

methods fit closely with the work in Chapter 4 in which we train a denoising au-
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toencoder with a GAN-like noise generator module which is trained to increase the

reconstruction error much like in the work of [32], but surpassing it in performance,

obtaining the current state-of-the-art in this field of research.

2.4.3 GAN-based methods

Generative Adversarial Networks (GAN) [121] are powerful latent variable models

that can be used to learn complex real-world distributions in such a way that it

is possible to generate high-fidelity synthetic examples following successful train-

ing [122]. GANs consist of two co-trained modules: the generator and the dis-

criminator. The generator module is trained to produce synthetic examples from

either input noise [121,123] or input data [2,4,6,124] and the discriminator module

is trained to differentiate between such synthetically generated examples and real

data. Training is performed as a mini-max zero-sum game between the two com-

ponents; The generator must produce examples which reduces the certainty of the

prediction of the discriminator, and the discriminator must find discriminative parts

within the synthetically generated examples which do not adhere to the domain of

the real data. The convergence of this adversarial training objective is theoretically

achieved when equilibrium between the generator and discriminator is reached [125]

(Nash Equilibrium) meaning the accuracy of the discriminator to distinguish be-

tween normal and anomalous samples is 0.5.

The Deep Convolutional GAN (DCGAN) [125] is a method which is more stable

than the original GAN architecture [121] proposed prior which can suffer from mode-

collapse, catastrophic forgetting, or non-convergence [126,127]. These improvements

include: 1) replacing pooling layers with strided convolutions in the discriminator,

and fractional-strided convolutions in the generator module. 2) the use of Batch

Normalisation [128] in both modules, 3) the use of ReLU [129] activation for all

layers excluding the last layer which uses Tanh in the generator and LeakyRelu

activation across all discriminator module layers. These changes allow for stable

GAN-based training.

GAN-based approaches [2, 4, 6, 124] used in semi-supervised anomaly detection
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Figure 2.2: Visual comparison of prior methods of GAN-based semi-supervised
anomaly detection. A) AnoGAN [4], B) EGBAD [5], C) GANomaly [2], D) Skip-
GANomaly [6]

are trained solely across normal, non-anomalous data in a problem. The rarity of

anomalies presents an issue of class imbalance as well as little to non-coverage of

less-common anomalous instances in a given task [2] which is why training over

normal samples is desirable in anomaly detection. As anomaly detection is the

task of recognising deviations from normality, then obtained knowledge about the

visual appearance of normal examples is relevant to distinguish anomalies in a given

task [130]. This following section outlines some patterns observed in the field of

visual anomaly detection using GAN and what they implement to improve their

anomaly detection capabilities.

The first such work applying an adversarial generative approach to anomaly de-

tection is AnoGAN [4] shown visually in Figure 2.2A. This method trains a GAN

in the traditional way by decoding an input noise vector z to a synthetically gen-

erated image G(z) which visually matches closely with the distribution domain of

the dataset x. The discriminator enforces that the generator produces samples G(z)

that are indistinguishable from X. Following convergence of training, the mapping

from z → X is learned. In order to assign an anomaly score to new samples x̂
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presented to AnoGAN, the latent space must be searched in order to find the value

in the latent space ẑ such that G(ẑ) ≈ x̂. In order to find this optimal value of ẑ,

a computationally demanding and time consuming process is required. AnoGAN

is inherently slow, but subsequently showed that it is possible to conduct anomaly

detection using GAN-based approaches. At a similar time, the Training Adversarial

Discriminators (TAD) [131] was introduced to detect abnormal events in crowds.

This method uses an image-to-image Conditional GAN (CGAN) [132] which takes

input images and random noise as input to generate synthetic reconstructions which

should be sufficient to reduce the classification ability of the discriminator module.

Soon thereafter, the same authors released a followup paper in which the same ar-

chitecture from [85] is trained with optical flow between the current frame and the

next frame in the video computed using the method presented in [133].

Following from AnoGAN, the method Efficient GAN-Based Anomaly Detection

(EGBAD) [5], illustrated in Figure 2.2B, overcomes the issue of compute and time

efficiency present in AnoGAN [4] by learning the mapping from x to z while si-

multaneously training the generator and discriminator modules. This enables the

avoidance of the computationally expensive step of finding the latent representa-

tion ẑ for a new sample x̂ at test time. The authors implement a BiGAN [134]

architecture for this task which utilises a conventional GAN in the same way as

AnoGAN [4] to learn the mapping from z to x as well as an additional encoder (E)

which is used to simultaneously learn the mapping from x to z. The pairs (G(z), z)

and (E(x), x) are fed into the discriminator module so that the generator can learn

accurate mappings from z to x as well as the encoder module learning to map x

to z with high aptitude. The results of this work show improved efficiency as well

as improved anomaly detection performance [135]. Later, Zenati et al. present an

improvement to the EGBAD architecture, the Adversarially Learned Anomaly De-

tection (ALAD) [136] architecture. ALAD is a bi-directional GAN based on the

theory of ALICE [137] which incorporates reconstruction errors as a measure of ab-

normality based on adversarially learned features obtained during training of the

bi-directional GAN [134].
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Pidhorskyi et al. introduce the Generative Probabilistic Novelty Detection (GPND)

[138] which also leverage a GAN which utilises reconstruction error as well as one-

class classification but use two discriminators to take a more probabilistic approach

to anomaly detection. The first discriminator distinguishes between real and syn-

thetically generated images while the second takes the latent representation pro-

duced by the encoding of the input sample along with the distribution prior (a

normal distribution with 0 mean and standard deviation of 1) as input. At a similar

time, Haloui et al. [139] introduce the method of Wasserstein GAN [140] (WGAN)

which is an approach to encourage the generator module to better approximate

the distribution of the input data by reducing the Kantorovich–Rubinstein (Earth-

Movers) distance between the distributions of the input and the generated images.

WGAN better solves the vanishing gradient and mode collapse issues with DC-

GAN [125], but is slower than DCGAN to train [141].

Schlegl et al. utilise this Wasserstein distance [140] to speed up their AnoGAN

approach to present the F-AnoGAN [124] architecture. A two stage training pro-

cess is introduced where firstly, the WGAN [140] is trained in the same way as

AnoGAN [4] in which noise is decoded with the generator module to image space and

then a discriminator is used to train the generator adversarially. The second stage

takes the generator and discriminator from the WGAN and includes them as the

decoder and discriminator respectively of the autoencoder architecture in the next

stage while freezing the weights. An encoder module is introduced and is trained

using the reconstruction error and a latent loss which is inspired by the loss function

in [2]. At a similar time, the GANomaly [2] method shown visually in Figure 2.2C

proposes an adversarial autoencoder architecture built using DCGAN [125]. The

architecture produces synthetic images which are used as input into the discrim-

inator module. However, following generation, a further encoder module is used

to re-encode the synthetic images back into a second latent representation. This

constrains the latent priors to not be entirely reliant upon the input images. This

approach is shown to greatly out-perform the work in [124]. A further improvement,

Skip-GANomaly [6] (illustrated in Figure 2.2D) is introduced as an extension to the
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GANomaly architecture [2], introducing residual (skip) connections [142] between

layers in the encoder to reflected layers in the decoder in the generator module in the

same way as U-Net [30]. Sparse-GAN [143] extends from this and utilises a similar

method to GANomaly whereby the synthetically generated images are re-encoded

by a secondary encoder. However, it does not only use this process for training like

in [2], but predicts anomalies based on the latent space rather than the image space.

Following on from this, the One-Class Latent Regularised Networks (OCLRN) [144]

suggests that the training of adversarial autoencoder based methods can be sta-

bilised with the use of a dual autoencoder network in the generator. As such, an

initial autoencoder reconstructs the input x to the synthetic reconstruction x′. A

secondary autoencoder then reconstructs x′ to a secondary reconstruction. A loss is

calculated between the latent representation output of the encoders of the first and

second autoencoder similar to [2].

Some of these methods [6, 139] suffer from successfully passing through anoma-

lous parts into the reconstructed image during inference. As previously mentioned

in this thesis, the anomaly score will be lower if anomalous parts can be successfully

reconstructed by the network. The One-class GAN (OCGAN) [34] combats this

potential issue by using a denoising autoencoder generator together with two dis-

criminators. The first discriminator enforces the latent representation of a CGAN

to only produce examples of the input class and not copy visually similar features of

anomalous input into the reconstruction. The Anomaly Detection with Adversarial

Dual Autoencoders (ADAE) [36] approach combats this by using an autoencoder

generator twinned with an autoencoder discriminator which is trained to fail to

reconstruct the inputs if they belong to the generated distribution and succeed oth-

erwise. The output of the discriminator is then used for anomaly scoring against

input queries at inference.

Class Activation Maps (CAM) are a technique that offer explainability as to

model predictions by showing a saliency map of the most important regions of a

given input. They are computed as the score of the output of an activation within

a given layer and the respective class of the input. CAM as a means of guiding
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networks towards being more attentive to anomalous parts has been experimentally

introduced to the field in a couple of recent works. Both utilise Gradient-weighted

CAM (Grad-CAM) [145] which is an approach which can localise important class-

specific regions of the image. It differs from regular CAM by computing the gradient

of the classification score with respect to the convolutional features determined by

the network in order to outline which parts of the image are most important for

classification.

The Convolutional Adversarial Variational Autoencoder with Guided Attention

(CAVGA) [146] uses a variational autoencoder that incorporates computed atten-

tion for anomaly localisation. The network uses an ‘Attention Expansion Loss’ to

supervise the attention illustrated by Grad-CAM on the last layer of the encoder

module to spatially localise anomalies. A similar approach is performed in Adversar-

ial Discriminative Attention for Robust Anomaly Detection [147] (DARAD). In this

work, grad-CAM is used to guide training to localise on anomalous regions. How-

ever, the CAM are generated from the gradients of the discriminator module and

not the generator. A visualisation of how CAM can be used for guiding anomalous

decision can be seen in Figure 2.3, from the work of [3]. It can be seen on the left in

column A, that the CAM-based classification approaches can localise to anomalies,

offering some explainability, but in column B, the CAM seem to be randomly dis-

persed around the image. Although classification-based, or CAM-guided methods

perform well, it is far better to use a reconstruction-based approach as illustrated

in C and D for better model prediction explainability of which parts exactly are

anomalous in a presented sample during inference.

The Old is Gold [148] method redefines the task of the discriminator from iden-

tifying between input and synthetically generated images to instead distinguishing

between good and bad quality reconstructions. It accomplishes this by training the

generator module together with a frozen low epoch state (old version) of the gen-

erator which generates notably lower quality reconstructions. The discriminator is

trained with both of these as the input together with pseudo-anomalous data which

is the pixel-wise average of two randomly selected input images.

27



Grad CAM-Based  Reconstruction-Based

A B C D

Figure 2.3: Visualisation of anomalous localisation using CAM-based and recon-
struction based approaches across the X-Ray Laptop dataset [3]. Images A and B
feature GradCAM from the fine-grained classification module in [3] trained with
sub-component and object-level components respectively. Images C and D feature
anomaly masks produced by the PANDA method in Chapter 3.

Sabokrou et al. propose the Adversarially Learned One-Class Classifier (ALOCC)

[83] method which tackles the problem with the previously mentioned method of

TAD [85] in its inability to reconstruct parts of novel inputs which can subsequently

categorise normal images as anomalous. ALOCC also uses a CGAN, like TAD,

but trains it as a One-Class Classifier (OCC) in which the network is trained with

the target class label of normality in conjunction to the reconstruction error which

helps improve the performance of the model across all test images. The Generative-

discriminative Feature Representations for Open-set Recognition [149] (GDFR) also

trains a one-class classifier using a GAN, however, uses a closed-set classifier on the

final stage of categorisation paired with self-supervised training using RotNet [89],

which has been explained in the previous section. RotNet is also implemented in

the Discriminative-Generative Anomaly Detection (DGAD) [150] while training a

GAN to reconstruct input images. The discriminator module not only measures

image reconstruction quality, but also outputs a parameter based on image rotation
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to encourage the generator to produce a normal angle image.

The issue with the aforementioned methods in this section is that anomaly de-

tectors are task specific [151, 152] and may gain high AUC values between the task

specific normal and abnormal class. However, when the normal class is evaluated

against vastly out-of-distribution anomalous examples (from a different dataset), the

AUC can drop to near random guessing. As such Multiple Class Novelty Detection

Under Data Distribution Shift (MCNDDS) [151] is presented to tackle this limita-

tion. Like the previously mentioned method, ALOCC, MCNDDS trains a one-class

classifier. However, the GAN architecture uses two decoder networks to reconstruct

the source and target input independently. Both decoders sample from the same

latent space to enforce domain invariant feature representations. The AnoSeg ap-

proach [152] also applies self-supervision to better train a generative method by

implementing ‘Hard Augmentation’ to input image patches with methods such as

rotation, perm, color jitter and CutPaste [93]. CutPaste works by replacing a patch

of a given input image with a patch from another image to create synthetically

anomalous input data. AnoSeg is trained to accurately segment such augmented re-

gions as anomalous thus enabling the generation of accurate anomaly segmentation

results at inference.

At a similar time, the Discriminatively Trained Reconstruction Embedding (DRAEM)

[153] approach was introduced which also implements self-supervised training based

on hard augmentation to create synthetic anomaly masks applied to the input data.

Such synthetic anomaly masks are produced by a thresholded Perlin noise [154]

similar to [103], which is then multiplied by an anomaly source image (sampled

from an out-of-distribution dataset) to produce the anomaly mask. DRAEM is

then challenged with reconstructing the clean input images from the noised ones

through an autoencoder. A subsequent autoencoder then reconstructs an anomaly

mask which is trained to match the thresholded binary Perlin noise mask. Puzzle-

AE [155] is a GAN-based method using a U-Net [30] generator in which patches

of input are shuffled and the generator is optimised to produce a non-shuffled ver-

sion of the input. Recently, the Self-supervised Predictive Convolutional Attentive
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Block (SSPCAB) [38] which constructs a self-supervised block which incorporates

reconstruction-based functionality and masking which, when applied to DRAEM,

gains a substantial performance increase.

2.5 Anomaly Detection Datasets

The many datasets used in the process of evaluating anomaly detection methods vary

significantly both in difficulty (location, size and frequency of anomalous instances)

and from being cross-spectral (Visual, X-ray). Difficulty ranges from visually trivial

problems such as classic leave-one-out anomaly detection tasks across MNIST [7]

and CIFAR-10 [8] which are akin to vastly out of distribution examples which are

unrealistic in real-world tasks. More challenging datasets are real-world anomaly

detection tasks which feature both out-of-distribution examples as well as more

visually subtle anomalies which lay on the boundary of normal and anomalous.

Such examples include factory line inspection [9], agricultural plant leaf disease

detection [1], X-ray aviation security scanning [2, 6] and closed circuit public space

monitoring [10].

2.5.1 Leave-one-out tasks

Leave-one out anomaly detection is the process of training across a dataset, typically

MNIST [7] or CIFAR-10 [8] in such a way that one or many select classes are omitted

from the training set and all instances of these classes are assigned as anomalous

during inference time [5]. The task is to distinguish between the classes included in

the training set and the anomalous classes which has been left out.

The ultimate challenge of anomaly detection models is effectiveness and efficiency

during deployment to real-world tasks where the accurate and fast detection of

anomalies is crucial [156–158]. By contrast, themodus operandi of anomaly detection

evaluation in the literature is to solely demonstrate model performance across trivial

and unrealistic ‘leave one out’ tasks on general datasets such as MNIST [7] or CIFAR-

10 [8] in which one class from the dataset is labelled as anomalous and all other
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Figure 2.4: Visualisation of the two protocols we used for the MNIST [7] and CIFAR-
10 [8]. Above is protocol 1 whereby 9 classes are selected as normal training data and
one class is left out as anomalous. Protocol 2 below shows protocol 2 where 1 class
is selected as the normal training data and the remaining 9 classes are anomalous.

classes as normal. This evaluation methodology is highly unrealistic as not only are

these datasets not intended for anomaly detection, but the act of directly comparing

between classes present in the datasets in this way is unlikely to occur in real-world

anomaly detection tasks. The relative simplicity of such tasks impose ambiguity to

real-world applicability of methods proven effective solely over leave-one-out tasks.

Such tasks evaluate the capability of the model to detect vastly out-of-distribution

examples which as previously stated are seldom present in real-world tasks. On the

other hand, anomalies occurring within real-world problems can be subtle, localised

to a small sub-region of the image, exhibit high variance or even be the result of

subterfuge by an adversary [1,3,9,10] thus are significantly more challenging. Classic

leave-one-out anomaly detection tasks do offer some advantages, however, namely

due to the aforementioned rarity of vastly out-of-distribution examples in real-world

tasks as well as the simplicity and lightweightedness of the datasets, such tasks

can be used as ‘toy’ tasks which can be used to quickly test performance during

development, requiring significantly less compute. Their use as a sole evaluation

criteria should be strongly discouraged, however, and a diverse set of real-world
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datasets should be used to truly evaluate a methods capability.

Prior methods [2, 5, 6] implement a scheme in which one class is omitted from

the training set and the models are trained across all nine remaining classes. A

80:20 split is conducted between training and testing respectively. Methods [31,32],

implement the inverse of this paradigm. They instead opt to omit nine classes out

of the training set and instead train solely across one select class. The performance

of the latter training paradigm is arguably significantly easier than the prior due to

models only having to learn representations over one class. This is reflected in the

accuracies of methods across each respective paradigm with the latter having higher

average AUC scores.
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2.5.2 MVTEC AD

The MVTEC Anomaly Detection dataset is a visual benchmark task with a focus

on recognising and detecting faults in factory line products. Detecting such faults

is important not only for quality control of the products being produced, but also

for the safety of the consumer. Certain anomalous instances such as contaminants

within beverage or food products (bottle and hazelnut), or errors such as incorrect

pill type, or misprint of text on a pill could be detrimental to the health of the

consumer. Detecting such anomalies with high accuracy has been a recent major

area of focus for anomaly detection methods. The dataset itself contains 15 classes

of objects, each containing both instances of non-defective (normal) samples as well

as a selection of common defects which present frequently for a given class. The

details of this dataset are outlined in Table 2.5.2 which gives the amount of data

samples that each class contains, together with the image resolution of samples in

each class as well as an outline of the defects included in each class of the dataset.
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Figure 2.5: Example samples from the MVTEC Anomaly Detection dataset [9]
featuring 5 out of 15 classes (Bottle, Screw, Transistor, Capsule, Grid).
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Class Train Images
Test Images
(normal)

Test Images
(defective)

Image Resolution
(squared)

Contained Defects

Textures

Carpet 280 28 89 1024 Colour, Cut, Hole, Metal Contamination, Thread
Grid 264 21 57 1024 Bent, Broken, Glue, Metal Contamination, Thread

Leather 245 32 92 1024 Colour, Cut, Fold, Glue, Poke
Tile 230 33 84 840 Crack, Glue Strip, Grey Stroke, Oil, Roughness
Wood 247 19 60 1024 Colour, Hole, Liquid, Scratch

Objects

Bottle 209 20 63 900 Broken (large), Broken (small), Contamination

Cable 224 58 92 1024
Bent Wire, Cable Swap, Cut Inner Insulation,
Cut Outer Insulation, Missing Cable, Missing Wire

Capsule 219 23 109 1000 Crack, Faulty Imprint, Poke, Scratch, Squeeze
Hazelnut 391 40 70 1024 Crack, Cut, Hole, Print Error
Metal Nut 220 22 93 700 Bent, Colour, Flip, Scratch

Pill 267 26 141 800
Colour, Contamination, Crack, Faulty Imprint,
Pill Type, Scratch

Screw 320 41 119 1024
Manipulated Front, Scratch (head), Scratch (neck),
Thread (side), Thread (top)

Toothbrush 60 12 30 1024 Contamination, Frayed Bristles, Missing Bristles
Transistor 213 60 40 1024 Bent Leg, Cut Leg, Damaged Case, Misplaced

Zipper 240 32 119 1024
Broken Teeth. Fabric (border/interior), Rough,
Split Teeth, Squeezed Teeth

Table 2.1: Details of the MVTEC AD dataset taken from [9] outlining per-class
amount of training and test images, image resolution, and textual description of
defects.

2.5.3 UCSDPed

The University of California, San Diego Pedestrian (UCSDPed) dataset [10] ad-

dresses the task of detecting anomalous actions and objects occurring on crowded

public pedestrian walkways using a single channel common closed circuit televi-

sion camera. Anomalies featured in this dataset include pedestrians riding on bikes,

pedestrians riding on skateboards, pedestrians venturing off the designated footpath,

or small vehicles driving on the pedestrian walkway.

The data itself is split into two subsets corresponding to two separate scenes.

UCSDPed1 contains 34 training samples and 36 testing samples taken from a cam-

era which is parallel to the direction of travel of the pedestrian walkway. As such

it captures people walking towards and away from the camera, adding perspective

distortion to the problem. UCSDPed2, the second subset places the camera perpen-

dicular to the direction of travel of pedestrians on the walkway. This contains 16

training samples and 12 testing samples.
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UCSDPedI

UCSDPedII Pedestrian Riding Bicycle Pedestrian Riding Skateboard Vehicle Driving on Pedestrian Path

Figure 2.6: Example images from the UCSDPed dataset [10] featuring non-
anomalous example (left) and anomalous examples thereafter to the right, namely:
Pedestrian Riding Bicycle, Pedestrian Riding Skateboard, Vehicle Driving on Pedes-
trian Footpath; For both UCSDPed1 (top) and UCSDPed2 (bottom).

2.5.4 Plant Leaf Disease

The UN Department of Economic and Social Affairs (DESA) predicts that the hu-

man population size will increase to over 9.7 billion in 2050 [159]. To sustain this

population, the World Resources Institute estimates that food production must in-

crease by an estimated 56% [160]. A key contributing factor for potential yield losses

up to 16% globally is caused by plant pathogens [161]. The early detection and re-

moval of diseased plants will help to minimise disease spreading to other plants in

close proximity and hence maximise the potential yield loss [1].

The Plant Village dataset [1] (outlined in Table 2.5.4) focuses on detecting visual

diseases in agricultural leaves caused by pathogens. The dataset contains segmented

images of leaves across six crops (Cherry, Potato, Corn, Strawberry, Grape, Tomato)

each containing normal (healthy) leaves as well as a selection of leaves with visual

diseases common to the respective crop. The diseases vary from visually obvious

with vivid discolourations and missing leaf parts, to visually subtle diseases which

are almost indistinguishable from their healthy counterparts.
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Figure 2.7: Example images from the Plant Village dataset [11] with both healthy
and diseased samples from each of the 6 classes: Cherry, Corn, Grape, Potato,
Strawberry, Tomato.

Class Train Images
Test Images
(normal)

Test Images
(defective)

Leaf Diseases Included

Cherry 684 170 170 Powdery Mildew

Corn 930 232 232
Cercospora Grey Spot, Common Rust,
Northern Blight

Grape 338 85 85 Black Rot, Black Measles, Isariopsis Blight
Potato 122 30 30 Early Blight, Late Blight

Strawberry 365 91 91 Leaf Scorch

Tomato 429 318 318
Bacterial Spot, Early Blight, Late Blight, Leaf Mold,
Septoria Spot, Spider Mites, Target Spot,
Yellow Leaf Curl Virus, Mosaic

Total 2868 926 926

Table 2.2: Overview of the Plant Village [1] dataset outlining the split between
the train and test sets. Examples of class-specific diseases are included in the final
column.

2.5.5 University (X-Ray) Baggage Anomaly (UBA)

The UK Civil Aviation Authority states that 31.4 million passengers flew between

January and March of 2022, a decrease of 42% from the same period in 2019 (be-

fore the COVID-19 pandemic) at 44.6 million [162]. Even with such a decrease in

passengers during 2022, 606,375 tonnes of cargo was carried in and out of the UK

between this period. With so much luggage being moved in and out of the coun-

try, it is becoming increasingly difficult to accurately and quickly security screen

cargo manually with a human operator. As such, there is a lot of interest in solving

this problem of real-time treat item detection in X-Ray baggage data [2,6] both for

increased throughput during peak times in airports while retaining high detection
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accuracy of threats.

Firearm Firearm PartBenign Baggage Knife

Figure 2.8: Examples from the University Baggage Anomaly (UBA) Dataset [2]
outlining one normal sample (left) followed by three samples from anomalous classes:
Knife, Firearm, Firearm Part.

The University Baggage Anomaly (UBA) dataset [2] contains 230,275 X-ray

images of traveller hand-luggage which is either benign or contains a threat in the

form of: Knives, Firearms or Firearm Parts. Imagery is extracted via an overlapping

sliding window from a full X-ray image, constructed using single conventional X-

ray imagery with associated false color materials mapping from dual-energy [163].

The dataset contains 230,275 benign baggage images and 45,855, 13,452 and 63,496

anomalous images containing Firearms, Firearm Parts and Knives respectively.

Laptop X-Ray

Benign Laptop Knife Scissors Illicit Substance

Figure 2.9: Examples of samples from the Laptop X-ray dataset [3] featuring a
benign laptop (left) followed by sample images of laptops with concealed threat
items: Knife, Scissors, Illicit Substance.
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Of particular interest are threat items concealed within large electronic devices

such as laptops. Threat items such as illicit drugs, explosives, gun components could

be obfuscated by the visual complexity of the X-Ray image produced by scanning

such electronic devices. It is for this reason that many airports globally require

passengers to remove large electronic items from baggage prior to scanning so that

operators can view them without risking obfuscation of malicious parts by other

items within the bag. The dataset proposed in the work [3] presents X-Ray scans of

normal, benign laptops together with their anomalous counterparts which contain

specially engineered inert contraband consisting of plastic explosive, cocaine, and

pills of illicit drugs hidden within the electronics of the laptops. Such items are

incredibly difficult to detect within the complex structure of the underlying circuitry

and interior components of such large electronic items.

2.6 Wind Turbine Inspection Datasets

The task outlined in Chapter 5 focuses on detecting visual surface defects of Glass-

Fibre Reinforced Plastic (GFRP) turbine blades. This is an inherently difficult task

even for humans to perform [164]. Some real-time blade inspection still requires a

human engineer to dangerously abseil down a wind turbine blade to manually inspect

the blade for damage [165]. A safer technique has recently been introduced which

utilises Unmanned Aerial Vehicles (UAV) or drones for better safety. However, such

drones cannot get as close to the blades as human operators. This is trivial given

that wind turbines are likely to be in areas with high wind speeds and getting too

close to the blade could cause the drone to crash into a blade, causing damage. Even

though the onboard cameras of the drone are super high-resolution, it is still harder

to spot anomalies in wind turbine blade surfaces from drone imagery [166].

This is especially true when considering the subtle nature in which some visual

defects may present on the blade as well as the lack of visual features on some parts

of the blade. They may be missed by a human operator sifting through the masses of

data manually. As such, the aim of this task is to automate this process of detecting
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visual defects on wind turbine blades using models trained to detect them so that

they can act as a tool for human engineers to reduce the workload by reducing the

amount of inspection images to sift through. This thesis applies a more in-depth

explanation of this task in Chapter 5.

This task contains two datasets the Danish Technical University NordTank Wind

Turbine Inspection and the Ørsted Offshore Turbine Blade Inspection
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Figure 2.10: Example images taken from the Wind Turbine Blade Inspection
Datasets: DTU NordTank [12] (top) and the Ørsted Offshore Wind Turbine Blade
[13] (bottom).

2.6.1 Danish Technical University NordTank Wind Turbine

Inspection

The Danish Technical University (DTU) NordTankWind Turbine Inspection dataset

[12] contains 1170 images of onshore wind turbines captured at the DTU National

Laboratory for Sustainable Energy at Risø, Denmark, from an Unmanned Aerial

Vehicle (UAV) mounted camera. The images themselves are of resolution 5280

× 2970 and were initially devoid of any prior annotation; As such, we manually

annotated all turbine blades featured in the images of the dataset in the form of

polygon segmentations and bounding box annotations.

We did not use this dataset for detecting anomalies in the blades due to the

ambiguity of the defects in this dataset. We did not have expert annotators to give

us an indication that a defect was present in the blade, as such, we could not assume

that the given blade had a presented defect.
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2.6.2 Ørsted Offshore Turbine Blade Inspection

The Ørsted Offshore Turbine Blade Inspection dataset [29], in contrast to the DTU

NordTank dataset [12], consists of blade inspection images of offshore wind turbines

collected by a UAV mounted camera. The data is collected from the Hornsea 1

offshore wind farm and consists of 2637 non-annotated images of resolution 6720

× 4480. The images themselves mostly consist of a background of sky which is

beneficial as it is mostly featureless compared to the diversity in background of the

images within the DTU Nord Tank dataset previously mentioned.

We then computed super pixel segmentations of the blades using the SLIC (Sec-

tion 5.2.2) approach. These super-pixel segmentations were then categorised into

two categories {normal, anomalous} depending on whether they contained any vis-

ible defects in them and supported by the rough annotations supplied to us by

Ørsted engineers. This process was incredibly labour intensive, but following this,

we obtained an anomaly dataset for turbine blade defect detection.

Examples of the defects in this dataset are illustrated in Figure 5.13 in which

anomalous regions are present in the super-pixel regions of the turbine blades.

2.6.3 Evaluation Criteria

Calculating Average Precision (AP) of the object detection method requires Preci-

sion (P) and Recall (R) as the culmination of True Positive (TP), True Negative

(TN), False Positive (FP), and False Negative (FN) in the formulas:

P =
TP

TP + FP
(2.1)

R =
TP

TP + FN
(2.2)

Intersection Over Union (IOU) quantifies how well the predicted bounding box

overlaps with the ground truth of the object. This is illustrated in the diagram in

Figure 2.11 in which the predicted detection of the turbine blade is measured against
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the ground truth. Note that a higher IOU value demonstrates a closer fit to the

ground truth. IOU is measured in the following formula:

IOU =
Area of Overlap

Area of Union
(2.3)

Prediction

IOU=0.578

Area of Overlap

Area of UnionGroundtruth

Groundtruth

Prediction

IOU=0.909

Figure 2.11: Visualisation of how the Intersection Over Union value is calculated
for a predicted bounding box by evaluating with respect to the ground truth.

It is common in prior object detection work [18,167–170] to use an IOU threshold

of 0.5 as a means of removing those bounding boxes which offer poor detection

capability.

A precision-recall graph is constructed from precision (Equation 2.1) and recall

(Equation 2.2) as a function of precision with respect to recall. A correct prediction

for a given object is correct iff IOU ≥ 0.5. AP is calculated as the area underneath

this obtained curve as:

AP =

∫ 1

0

P (R)dR (2.4)
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2.7 Anomaly Detection Metrics

Throughout this thesis, we use a number of metrics to evaluate the performance of

anomaly detection methods. In this section, we will explain each of them and how

to interpret their results.

The Receiver Operating Characteristic or ROC, is a plot of the True Positive

Rate (TPR) = TP
TP+FN

an the False Positive Rate (FPR) = FP
FP+TN

for a binary

classification at each threshold setting. The Area Under Curve (AUC) is the area

of the space underneath this ROC curve. A higher AUC score indicates better

performance as the curve will be pushed higher into the top left corner due to better

separability in the two prediction distributions. Conversely, an AUC value of 0.5

indicates that there is no separability of the two distributions and the model is

randomly guessing the predictions for new samples.

Within anomaly detection, the Area Under Curve (AUC) of the Receiver Opera-

tor Characteristic (ROC) is used due to it being classification threshold-invariant. It

is calculated using the precision (Equation 2.1) and recall (Equation 2.2). This pro-

duces an ROC curve of False Positive Rate (FPR) with respect to True Positive Rate

(TPR). Integrating this line using equation 2.5 yields the Area Under Curve (AUC)

value between [0.5, 1) for a given set of predictions. The lower bound of 0.5 implies

that the model is randomly guessing the prediction and as such the distributions

are near equal. Conversely, the upper bound of ∼ 1 implies perfect categorisation

of given samples due to absolute distinction between the two distributions. Figure

2.12 illustrates the relationship between distribution overlap and AUC score.

AUC =

∫ 1

0

FPR(TPR)dTPR (2.5)
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Figure 2.12: The distribution of anomaly score (left) together with their correspond-
ing ROC Curve (right). The above distribution shows a meaningful separation be-
tween the distributions and as such obtains an AUC of 0.89 whereas the bottom
distribution overlaps massively leading to an AUC of 0.5

2.8 Conclusion

This chapter reviews approaches in visual anomaly detection across three main

paradigms in this field namely: probabilistic, classification-based and reconstruction-

based approaches; outlining the modus operandi of each paradigm and illustrating

crossovers which demonstrate that they are not entirely mutually exclusive with

how they contribute to solving the task of visual anomaly detection. A strong fo-

cus is given to reconstruction-based methods as these are the focus of the anomaly

detection approaches presented within Chapters 3, 4 and 5. The justification for

choosing reconstruction-based approaches over the other such paradigms is that they

not only exhibit strength in predictability during inference, but also that they offer

more explainability to their predictions than probabilistic and classification-based
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approaches as evidenced in Figure 2.3. As recent methods within reconstruction-

based anomaly detection have seen success by including the use of denoising into

their training schemes, we evaluate these techniques and build off this to produce

the work presented in Chapter 4.

Further to this, we also evaluate all synthetic leave-one-out (MNIST and CIFAR-

10) and real-world (MVTEC, Plant Leaf Disease, UCSDPed and X-ray) visual

anomaly detection datasets which are used to thoroughly benchmark anomaly de-

tection methods to show their capability to detect anomalies in real-world tasks.
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CHAPTER 3

PANDA
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3.1 Introduction

Anomaly detection methods have had varying degrees of success across datasets

of real-world tasks including, but not limited to: retinal diagnosis [4, 124] where

accuracy (effectiveness) is preferred, factory line inspection [9] where the speed of

detection is important (efficiency), and airport security scanning [2, 3, 6, 37] where

both effectiveness and efficiency must be maximised. However, methods presented

to solve these tasks can often attribute their limited success to being domain-specific

and are not applied across multiple, diverse (multi-spectral; cross-domain) datasets.

It is unclear how well anomaly detection methods trained in these domains ac-

tually perform in the real-world scenarios, but the datasets are set up to give a close

indication of how methods would perform ‘in-the-wild’.

Figure 3.1: Top: Leaves from Plant Village [1] featuring visible diseases. Bottom:
Anomalous instance segmentation masks generated by PANDA for the respective
diseased leaves.

Whilst supervised methods [3,37] by binary classification approaches have proven

to obtain superior performance across anomaly detection benchmark tasks, often by

following a simplistic anomaly detection by classification paradigm with discrete

classes, they require large, labeled-datasets for training. These can be both expen-

sive to obtain, unbalanced in nature, and will always struggle to provide sufficient

coverage of rare, low-occurrence anomalies given the potential open-ended scope of

the anomalous class space. These challenges of training data adequacy could lead
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to misclassification by potential adversarial example attacks against such meth-

ods [171,172].

By contrast, generative semi-supervised methods [2, 6, 124, 173, 174] overcome

this issue by learning a close approximation to the true distribution manifold ex-

clusively over the non-anomalous (normal) data samples [4]. Such techniques use

generative methods in order to approximate this distribution of normality [2, 6].

Such prior anomaly detection methods are overly focused on more general features

to aid in categorising visually obvious anomalies [2,4] akin to the flawed evaluation

methodology of ‘leave-one-out tasks’, meaning they do not perform overly well with

detecting visually subtle anomalies. Methods such as [1, 4, 124] all suffer from slow

inference speed as well, which can hinder their real-world applicability in scenarios

where high-throughput processing is required. Furthermore, methods such as [2,124]

exhibit vastly differing accuracy with each training run over the same dataset due

to instability during training leading to a wider confidence interval as demonstrated

in our experiments. GANomaly [2] also suffers from high variation in AUC perfor-

mance during inference across the same dataset using the same weights. We assume

this is due to implemented batch normalisation between layers, however, this needs

to be explored further. This problem further impedes real-world applicability due

to unpredictable detection behaviour at inference.

In this chapter, we introduce PANDA, an Autoencoder Generative Adversarial

Network (AE-GAN) based architecture to combat the task of detecting subtle fine-

grained anomalies present in real-world anomaly detection applications whilst also

retaining time-efficiency at inference. PANDA includes three novel proposals:

• A Fine-Grained Visual Categorisation Discriminator Network (FGVC): to

combat the problem of detecting visually subtle, low inter-class variance anoma-

lies present in real-world anomaly detection problems and to provide a harsher

critic during training for the GAN generator module.

• A residually connected dual-feature extractor implementation within our gen-

erator module that carries lower-level features in given images forward and
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combines them residually with higher-level, later features in the architecture.

• A perceptual loss function based on feature error instead of raw pixel-error;

Originally used in Style Transfer tasks [175], perceptual loss has not yet been

applied to the task of generative anomaly detection.

This work represents the first instance of these techniques being jointly applied

to semi-supervised anomaly detection.

3.2 Approach

Our proposed method applies a unique adversarially trained autoencoder architec-

ture to the task of anomaly detection. Our method is visually outlined in Figure

3.2. Our asymmetric generator module (Section 3.2.1) encodes input images to

both a low-level (zlow) and a high-level (zhigh) latent representation with the use of

encoders ({E0
low, E

0
high}). zhigh is decoded to zϕ before being residually combined

through skip-connections with zlow before being decoded back to image space. This

allows strong consideration of both high-order and low-order features during the

decoding process. Secondary encoders E1
low and E1

high are implemented to re-encode

the output of both the bottom D0
low and top-level D0

high decoders respectively. This

idea is inspired from the GANomaly [2] approach which uses one extra encoder

which re-encodes the decoded (reconstructed image) output back to a latent rep-

resentation and minimises a latent loss between the original encoding and the re-

encoding during training. We optimise the secondary encoders in our approach

using: ∥(zlow + zϕ)− E1
low(x

′)∥2 ≃
∥∥zhigh − E1

high(zϕ)
∥∥
2
≃ 0 which constitutes our

latent error term in our overall loss function outlined in Equation 3.1.

While prior methods [4, 5, 124] solely utilise the reconstruction error between

the input image x and the reconstruction x′, in this work we experiment using a

perceptual loss function. This is explained further in Section 3.2.3. Our justification

for using perceptual loss is due to its proven success in style transfer [175] and

super-resolution [176] tasks where taking perceptual distances between activations
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of a given layer are more beneficial than using raw pixel differences. Perceptual

loss is able to better reconstruct fine details compared to methods trained with

per-pixel loss [175] as such, we theorise that it should be better at approximating

fine-grained details of the images in the normal training distribution and apply this

during inference.

We train our generator module adversarially with a unique fine-grained discrim-

inator network (Section 3.2.2) which is optimised to assign a true probability that

a presented image is normal and not synthetically generated. This fine-grained

discriminator module can detect subtle discriminating features between the input

images and the synthetic images during training, offering a harsher critic for the gen-

erator module and forcing the generator to produce higher-fidelity reconstructions

with emphasis on detail. We also use a weighted output of the FGVC discriminator

model during inference while performing anomaly scoring (Equation 3.3) due to the

ability to recognise key discriminative regions present in normal samples obtained

while training.

3.2.1 Generator Network

Our generator autoencoder model is trained adversarially which produces an Ad-

versarial Autoencoder (AAE) model which remains stable during training meaning

that high-fidelity reconstructions are obtained to preserve fine-grained details unlike

those produced by vanilla autoencoder-based models. AAE differ from traditional

GANs because whereas the latter has a random noise vector as the input, an AAE

uses images from the training dataset as input. AAE do not exhibit training diffi-

culties such as mode collapse or non-convergence are avoided which occur frequently

while training traditional GAN-based architectures [121].

The architecture for our architecture is inspired by the VQ-VAE-2 [177, 178], a

generative approach in which a low and high level latent representation is computed

and assigned to a discrete code book which is then sampled using an auto regressive

approach during inference to produce new images. In their results, they show, per-

ceptually, that this dual latent representation results in higher-fidelity generations
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Figure 3.2: Proposed model architecture featuring our PANDA-GAN architecture
with the generator network (upper) and the discriminator network (lower) together
with the perceptual loss network used for reconstruction.

during inference.

Input images x are fed into an encoder to gather low-level features after being

encoded through E0
low. We call this representation zlow and it has shape Batch×128×

64 × 64 after encoding. The top-level encoder E0
high then further encodes zlow to a

feature embedding space we call zhigh. This top-level latent representation has shape

Batch×128 × 32 × 32 before being decoded by the top-level decoder D0
high to zϕ

which has the same dimensions as zlow. We only implement one higher-order latent

representation due to memory constraints and to keep our method more efficient

during inference. We show that our method obtains state-of-the-art performance by

utilising just one higher-order latent representation. We then residually combine zϕ

with zlow by adding them to preserve the information from both low and high-level

features during decoding. The anatomy of our generator module is outlined in figure
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3.3.

Our generator module is asymmetric as it contains more encoder layers (con-

volutional components) than decoder layers (transpose convolutional components)

which is implemented in prior work [179–181]. The justification for this model asym-

metry is that it increases memory efficiency due to the reduction of parameters in

decoding components which also reduces the chance of the model overfitting during

training. The rationale behind having increasing the number of encoder layers as

opposed to the decoder layers is because it decreases the chance of artifacts in the

final reconstruction. [180].

Additionally, we also utilise two secondary encoders, {E1
high, E

1
low} during train-

ing exclusively to re-encode the decoded respective latent representations zϕ and

x′ back into the latent spaces of z′high and z′low respectively. This approach was

employed in GANomaly [2] to yield better performance, but on the single latent

representation in this architecture. We implement a similar scheme in our archi-

tecture on the latent representations in the hope that it yields better performance.

Encoders {E1
high and E1

low} are solely required during training and so are not enabled

during inference time to increase throughput efficiency at deployment time.

Overall our learning objective seeks to minimise over ∀x ∈ X:

LAE = Lrec(x, x
′) + Ldiscriminator(x, x

′) + Lz[0] + Lz[1] (3.1)

51



In
pu

t I
m

ag
e

Bx
3x

25
6x

25
6

R
eL

U

R
eL

U

C
on

v(
3,

 6
4,

 4
, 2

, 1
)

C
on

v(
12

8,
 1

28
, 3

, -
, 1

)

R
eL

U

C
on

v(
12

8,
 6

4,
 4

, 2
, 1

)

C
on

v(
12

8,
 6

4,
 4

, 2
, 1

)

R
es

id
ua

l B
lo

ck
R

es
id

ua
l B

lo
ck

C
on

v(
12

8,
 1

28
, 3

, -
, 1

)

R
es

id
ua

l B
lo

ck

R
eL

U

C
on

vT
(1

28
, 1

28
, 4

, 2
, 1

)

C
on

v(
12

8,
 1

28
, 3

, -
, 1

)

R
es

id
ua

l B
lo

ck

R
eL

U
R

eL
U

R
eL

U

C
on

vT
(1

28
, 6

4,
 4

, 2
, 1

)

R
eL

U

C
on

vT
(6

4,
 3

, 4
, 2

, 1
)

+

C
on

v(
64

, 1
28

, 4
, 2

, 1
)

G
en

er
at

ed
Im

ag
e 

Bx
3x

25
6x

25
6

ReLU

ReLU

x2
Residual Block

Conv(128, 32, 3, -, 1)

Conv(32, 128, 1, -, -)

+

Encoder E

Encoder E Decoder D 

Decoder D 0
low

0
low

0
high

0
high

Figure 3.3: In-depth overview of the architecture of the generator module of PANDA.

Lrec is either the raw reconstruction error between the pixels of x and x′ (

∥x− x′∥2), or the perceptual (feature) distance (Section 3.2.3) between the acti-

vations of layer 14 in a pretrained VGG19 [182] network. The second component in

this loss is the discriminator loss obtained from the discriminator module (Section

3.2.2) This assigns a probability that a given sample x′ belongs to the dataset con-

taining x. The final component of this loss is the latent loss Lz[i] =
∥∥∥E1

[i] − E0
[i]

∥∥∥
2
, i =

{high, low} between the latent representations zhigh and zlow + zϕ of the generator,

and the secondary encodings produced by E1
high and E1

low respectively.

3.2.2 Discriminator Network

In contrast to prior works in generative anomaly detection which utilise conventional

discriminators [2, 4, 6, 124, 183], in this work we incorporate a Fine-grained Visual

Categorisation (FGVC) discriminator. In general, FGVC is for use in obtaining

specific sub-class classification of objects (e.g. species of bird or model of car) [184].

Typical FGVC datasets are inherently difficult to classify due to highly localised and

visually subtle distinguishing features between classes. Within real-world anomaly
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detection problems, there exist varying levels in which an anomaly may present rang-

ing from visually obvious to negligibly subtle. Our FGVC discriminator outlined in

this work is optimised to detect more subtle anomalies during inference by recog-

nising the discriminating regions within presented images. It also acts as a harsher

critic to our generator module during training, promoting emphasis on high-fidelity

generation of object parts in detail rather than settling with an approximation of

the fine details of objects.

Our discriminator is inspired by the Weakly Supervised Data Augmentation

Network (WS-DAN) architecture [185], a proven method in FGVC which obtains

superior categorisation performance in the task of FGVC [185].

The WS-DAN architecture contains attention layers which allow the network to

focus upon both detailed features and key discriminative object parts during in-

ference when categorising anomalous data. This mechanism also allows attention

guided data augmentation within the network leading to higher information gain

and optimised augmentation of non-anomalous samples during training. The result-

ing attention maps are combined with feature representations via Bilinear Attention

Pooling (BAP). This combined feature representation is then fed into a discrimina-

tive filter bank of 1×1 convolutions followed by a Global Max Pooling (GMP) [186]

layer on the resulting feature matrix to reduce dimensionality in the output, and

results in a 1× 1 patch in the output which is the area of highest discrimination for

the discriminator network.

This allows our generator module to refine these areas in the next iteration

and thus enable the overall PANDA architecture to reduce the reconstruction error

substantially. The final layer of the discriminator module issues a continuous prob-

ability score for a presented image through the use of a Sigmoid activation layer.

The value of the probability represents the likelihood that a presented sample is an

element of the real dataset and not synthetically generated. To prevent vanishing

gradients, which is common with logistic functions, we use the residual network,

ResNet-50 [142] as our main backbone architecture. ResNets do not suffer from

vanishing gradient as the residual connections present in the network allows the
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gradient a path to flow to earlier components in the network prior to the logistic

function. The pair of real, non-anomalous data examples (x) and the generated,

synthetic examples (x′) from x are fed into the discriminator to obtain a probability

score that each of the images is an element of X.

Overall, the discriminator seeks to optimise:

LC = −log(C(x))− log(1− C(x′)) (3.2)

where C represents the discriminator, or critic network. The pair (x, x′) obtains

probability outputs C(x) and C(x′) respectively. Lc represents Pr(x ∈ X|(x, x′)).

3.2.3 Perceptual Loss Function

We introduce the notion of perceptual loss (PL) to calculate feature error rather

than pixel-wise error during reconstruction. Previously introduced to the task of

Style Transfer [175], we introduce its usage into the task of Anomaly Detection as

a replacement for conventional Pixel-Wise Loss (PWL).

While PWL computes raw-pixel differences between x and x′ on low-level and

literal pixel value information, PL takes the advantage of taking the error between

high-level activation features [175] obtained from pre-trained Convolutional Neural

Network (CNN) based classifiers. Feeding the pair (xi, x
′
i), ∀xi ∈ X through a pre-

trained conventional CNN classifier (f()) obtains differing activations (f(xi), f(x
′
i))

of a given convolutional feature extraction layer. PL is then calculated as ∥f(xi), f(x
′
i)∥2.

The PANDA architecture uses a pretrained VGG19 [182] network as the Perceptual

Loss model and uses the error between the activations of the 14th layer. We utilise

two variants on perceptual loss:

• General Perceptual Loss (PLg()) : Weights obtained by pre-training a CNN

across ImageNet [187].

• Problem-specific Perceptual Loss (PLps()) : Weights obtained from pre-training

a CNN over non-anomalous samples from the specific anomaly detection task

dataset.
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Justification for using a problem specific loss network is that rather than using

general features from ImageNet, we can learn a set of bespoke features unique to our

problem set. Across image queries from visually unique datasets such as those in

the X-Ray Security Electronics anomaly detection task [3] featured in this work, the

queries possess little perceptual similarity to the images featured in the ImageNet

dataset. As such, a perceptual loss model trained across ImageNet may only be

useful to compare shallow features such as edges whereas deeper features such as

textures, patterns or object information will cause a weak and faint perceptual

activation signal due to null-exposure of such image features during training. Fine-

tuning the perceptual loss model prior to training PANDA across only the normal

(non-anomalous) images of a given task causes deeper higher-order features to be

learned so that the activation signal becomes stronger. This gives a stronger loss

signal to backpropagate during training of the generator module.

Fine-tuning comes with a small added computational overhead, but as our ex-

perimental results demonstrate, it isn’t always necessary to fine-tune the perceptual

loss function if the dataset shares visual similarity to ImageNet. Fine-tuning the

perceptual loss function doesn’t require much computation; In our experiments we

obtained convergence of the loss function after as few as 5 epochs using the hyper-

parameters outlined in Section 3.3.1.

3.2.4 Anomaly Scoring

Anomaly scoring is the process of categorising samples as anomalous or non-anomalous

via a continuous score of deviation from normality by the gained approximation to

the manifold over X (normal samples) based on the knowledge and learned repre-

sentations of normality that the network has obtained during training.

Anomalous samples will be reconstructed by the generator model from the nor-

mal latent representation producing normal (e.g repaired or different class) ap-

pearing sample outputs. This allows us to infer a distribution of anomaly scores

N i
anomaly score ∼ N(µi, σ

2
i ) where i = {normal, anomalous} over both normal and

anomalous samples respectively. N i
anomaly score is formed via a weighted sum of the
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distributions of the two discriminator scores across both the input samples N i
C(x)

and the synthetically generated samples N i
C(x′) together with the distribution of

reconstruction error N i
Lrec(x,x′) using the following formula:

N i
anomaly score = β0 ·N i

Lrec(x,x′) + β1 ·N i
C(x) + β2 ·N i

C(x′) (3.3)

where {β0, β1, β2} are real-valued weighting terms for each error component.

This allows us to impose varying categorisation power to individual scores during

the final anomaly scoring process. The final anomaly score values ai ∈ Ai|Ai =

N i
anomaly score are negligibly small for both normal and anomalous samples (1e−7 <

ai < 1e−6) which can make the two distributions difficult to separate; to rectify this,

we normalise ∀ai ∈ Ai to values 0≪ ai < 1 via Equation 3.4.

Ai
normalised = ∀ai ∈ Ai,

ai − Ai
min

Ai
max − Ai

min

(3.4)

Once we obtain the distributions Ai
normalised, an anomaly score can be assigned to

any sample presented to the model. Figure 3.7 outlines the distribution of anomaly

scores across classes of the Plant Village dataset [1]. Note that generally the model

will reconstruct normal samples with more precision than anomalous samples and

will assign them a lower anomaly score. As the samples deviate more from nor-

mality, the model fails more to reconstruct them and the assigned anomaly score

increases accordingly. Both the normal and anomalous distributions approximate

to normal distributions with separate means and standard deviations. On average,

the distributions of anomaly scores of anomalous samples exhibit a larger variance

and mean value than their normal anomaly score distribution counterparts which

are more tightly bound with a lower mean value. The boundary between A0
normalised

and A1
normalised across the validation or test set can be calculated as a trivial solution

to the quadratic equation a(x) = ax2+ bx+ c where a, b, c are defined in formula 3.5

using the mean and standard deviation pairs (µ1, σ1) and (µ2, σ2) obtained from the

distribution over normal (A0
normalised ∼ N(µ1, σ1)) and the distribution over anoma-

lous (A1
normalised ∼ N(µ2, σ2) data respectively. The solution from this formula can
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Figure 3.4: Visualisation of anomaly decision boundary ([A0
normalised−A1

normalised] =
a(x) = 0) between A0

normalised and A1
normalised using Equation 3.5

be used to categorise subsequent presented samples as anomalous or otherwise nor-

mal based on the principle of maximum likelihood.

a =
σ2
2 − σ2

1

σ2
1 · σ2

2

, b =
σ2
1 · µ2 − σ2

2 · µ1

σ2
2 · σ2

1

, c =
σ2
2 · µ2

1 − σ2
1 · µ2

2

σ2
1 · σ2

2

− log(
σ2

σ1

) (3.5)

3.3 Evaluation

We exhaustively evaluate our PANDA approach against prior works [2, 4–6, 14, 21,

85, 124, 188–192] across a series of challenging tasks [1, 3, 7–10] both quantitatively

and qualitatively.

3.3.1 Experimental Setup

The experimental setup comprises of the following dataset configurations:

We use the dataset split for {train : validate : test} as following: {13,593 : 2,589

: 12,661} for Plant Village [1], {229 : 25 : 125} for X-ray Security Electronics [3].

The {train : test} split for MNIST and CIFAR-10 is {80% : 20%} across both

datasets as was performed in prior work [2, 5, 6]. We utilise the default train/test

split for the MVTEC task [9]. The hyper-parameters and data configurations are

fine-tuned by systematic grid search in order to obtain the best results across the
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Table 3.1: AUPRC results across trivial MNIST [7] and CIFAR-10 [8] leave-one-out
tasks.

MNIST Class
0 1 2 3 4 5 6 7 8 9 Avg

AnoGAN [4] 0.61 0.3 0.54 0.44 0.43 0.42 0.48 0.36 0.4 0.34 0.43
EGBAD [5] 0.78 0.29 0.67 0.52 0.45 0.43 0.57 0.4 0.55 0.35 0.5
GANomaly [2] 0.89 0.65 0.93 0.8 0.82 0.85 0.84 0.69 0.87 0.55 0.79
IGMM-GAN [194] 0.96 0.9 0.93 0.82 0.83 0.9 0.93 0.9 0.78 0.57 0.85
ADAE [174] 0.95 0.82 0.95 0.89 0.83 0.91 0.89 0.80 0.93 0.63 0.86
PANDA 0.83 0.99 0.88 0.86 0.93 0.89 0.9 0.91 0.85 0.92 0.9

CIFAR-10 Class
Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Truck Avg

AnoGAN [4] 0.51 0.49 0.41 0.4 0.34 0.39 0.34 0.41 0.56 0.51 0.44
GANomaly [2] 0.63 0.63 0.51 0.59 0.59 0.63 0.68 0.61 0.62 0.62 0.61
Skip-GANomaly [6] 0.8 0.95 0.45 0.61 0.60 0.62 0.93 0.79 0.66 0.91 0.73
DADUGT [88] 0.75 0.96 0.78 0.72 0.88 0.8 0.83 0.96 0.93 0.91 0.85
CSI [195] 0.89 0.99 0.93 0.86 0.94 0.93 0.95 0.99 0.98 0.96 0.94
SSOE [196] 0.78 0.97 0.87 0.81 0.93 0.9 0.91 0.97 0.95 0.93 0.9
PANDA 0.95 0.85 1 0.92 0.92 0.9 0.9 0.91 0.89 0.86 0.81

problems presented in this work. Pixel values in input images are normalised to

a mean and a standard deviation of 0.5. All models use ADAM momentum [193]

except our Perceptual Loss model which uses Stochastic Gradient Descent (SGD)

with momentum 0.9. Learning rates used are: 7 × 10−6 - Generator, 1 × 10−5 -

Discriminator, and 1× 10−4 - Perceptual Loss model. Training is performed on an

Nvidia 1080TI GPU using a batch size of 15.

3.4 Results and Discussion

In this section we present both the qualitative and quantitative results of our

PANDA method against prior methods of Semi-Supervised anomaly detection.

The AUPRC statistical score across the classical ‘leave-one-out’ anomaly detec-

tion tasks (MNIST / CIFAR-10) are outlined in Table 3.1 where it can be observed

that our approach (PANDA) performs competitively with prior state-of-the-art ap-

proaches on these seminal, albeit unrealistic benchmark tasks. The qualitative re-

sults outlined in Table 3.1 provide further evidence against the comparison of model

performance solely across these trivial ‘leave-one-out’ MNIST / CIFAR-10 based

anomaly detection tasks. It can be seen that model performance is becoming de-

creasingly informative due to potential performance saturation among competing

approaches. It can also be seen in this table, that methods get vastly different
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Table 3.2: Results of models across Leaf disease [1] and X-ray Laptop Anomaly
detection [3] image datasets as well as results across UCSDPed1 [10] pedestrian
detection and crowd control video dataset using frame-level comparison [21].

Model Loss

Image Dataset
Plant Village [1] Laptop X-ray [3]

AUC
95% CI
(AUC)

Average
Rec Err

Average
Adv Err

I/t(ms) AUC
95% CI
(AUC)

Average
Rec Err

Average
Adv Err

I/t(ms)

AE [14] - 0.65 (0.60, 0.70) 0.56 - 6.9 0.21 (0.19, 0.23) 0.80 - 9.4
AnoGAN [4] - 0.65 (0.65, 0.66) 0.45 0.88 7151 0.41 (0.39, 0.42) 0.4 0.92 7223
EGBAD [5] - 0.70 (0.65, 0.67) 0.40 0.92 87 0.47 (0.42, 0.43) 0.41 0.94 89
GANomaly [2] - 0.73 (0.68, 0.73) 0.39 0.75 28 0.49 (0.41, 0.51) 0.34 0.78 273
f-AnoGAN [124] - 0.77 (0.65, 0.78) 0.12 0.72 65 0.50 (0.49, 0.53) 0.1 0.72 86
Skip-GANomaly [2] - 0.77 (0.74, 0.77) 0.13 0.74 123 0.51 (0.48, 0.58) 0.11 0.68 112

PWL 0.78 (0.77, 0.78) 0.01 0.99 15.2 0.42 (0.30, 0.48) 0.052 0.987 16.8
PANDA-GAN PLg() 0.74 (0.73, 0.75) 0.40 0.99 20 0.45 (0.29, 0.52) 0.02 0.66 36

PLps() 0.75 (0.76, 0.78) 0.20 0.99 20.8 0.51 (0.48, 0.55) 0.045 0.78 30

Model Loss
Video Dataset

UCSDPed1 [10]
AUC EER

SF [188] - 0.68 31
MPPCA [189] - 0.77 40
MDT [190] - 0.82 25
SRC [191] - 0.86 19
AMDN [192] - 0.92 16
PCA-NET GMM [21] - 0.93 11.2
AED-GAN [85] - 0.97 8

PWL 0.95 35
PANDA-GAN PLg() 0.95 75

PLps() 0.93 96

Table 3.3: AUPRC results across MVTEC [9] dataset.
Model

Classes
Bottle Cable Capsule Carpet Grid Hazelnut Leather Metal Nut Pill Screw Tile Toothbrush Transistor Wood Zipper AUCavg

AnoGAN [4] 0.8 0.48 0.44 0.34 0.87 0.26 0.45 0.28 0.71 1 0.40 0.44 0.69 0.57 0.72 0.56
GANomaly [2] 0.8 0.71 0.72 0.82 0.74 0.87 0.81 0.69 0.67 1 0.72 0.7 0.81 0.92 0.74 0.78
Skip-GANomaly [6] 0.94 0.67 0.72 0.8 0.66 0.91 0.91 0.79 0.76 1 0.85 0.69 0.81 0.92 0.66 0.81
DA-GAN [197] 0.98 0.67 0.69 0.90 0.87 1 0.94 0.82 0.77 1 0.96 0.95 0.79 0.98 0.78 0.87
U-Net [198] 0.86 0.64 0.67 0.77 0.86 1 0.87 0.68 0.78 1 0.96 0.81 0.67 0.96 0.75 0.82
PANDA-GAN 0.83 0.68 0.98 0.95 0.95 0.92 0.75 0.79 0.95 1 0.85 0.66 0.9 0.68 0.62 0.83

results across the classes. This could be due to overfitting by the models on a rela-

tively simple dataset, or could be the effect of this data being more noisily sampled

for inference. Random sampling is performed to obtain the test set, so it is not

controlled in the same way as other datasets in this thesis.

Across the MNIST task, our PANDA method obtains state-of-the-art results

across 40% of classes and obtains performance close to the other prior methods

across the other classes while exhibiting uniform performance across all classes. Most

noticeably is the result across the digit 9 whereby PANDA is close to 0.3 AUPRC

higher than the next best performing prior method (ADAE [174]). Across CIFAR-

10, our method obtains state-of-the-art in 30% of classes and matches closely with

other such methods (DADUGT [88], CSI [195], and SSOE [196]) while also obtaining

close to uniform performance across all classes.

By contrast, Table 3.2 outlines quantitative results across the challenging real-
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world benchmark datasets of Plant Village [1], Laptop X-ray [3], and UCSDped1 [10]

providing numerous statistical comparatives including Area Under Curve (AUC),

the 95% confidence interval of the AUC, inference time (I/t, ms) per image. These

datasets [1, 3] feature particularly subtle anomalies by nature and as such pose as

challenging tasks for semi-supervised anomaly detection models.

PANDA obtains the highest AUC value across both image based datasets (Plant

Village: 0.78- using Pixel-Wise Loss (PWL); Laptop X-ray: 0.51- using Problem

Specific Perceptual Loss(PLps)) in comparison to leading state-of-the-art methods

[2, 4–6, 14, 124, 182] (Table 3.2). Over multiple evaluations, PANDA also obtains

tighter confidence-intervals, which are calculated over 5 consecutive training sessions

per model, compared to prior semi-supervised work illustrating our PANDA method

can produce more stable and reliable results across the same dataset while other such

approaches can suffer from sporadic performance at inference (Table 3.2). Observing

the I/t(ms), the PANDA method is also significantly faster than prior methods.

While using the Plant Village dataset in our experiments, we combine all classes

from this dataset into a binary categorisation with classes {Healthy, Diseased} and

achieve the aforementioned AUC score of 0.78. This is unrealistic as farms generally

tend to stay with fixed cycles of the same crop(s), so it would make sense to separate

the individual leaf classes {Cherry, Potato, Corn, Strawberry, Grape, Tomato} and

train across each of them independently. The results of this experiment are quanti-

tatively outlined in Figure 3.7 which together with the obtained AUC value, shows

the distributions of anomaly score for each class. Overall PANDA gains the follow-

ing AUC values: Cherry:0.93, Potato:0.96, Corn:0.99, Strawberry:0.99, Grape:0.99

and Tomato:0.77. This shows that, for certain classes of leaves, the performance

can increase to near-perfect categorisation of visual leaf disease when focusing on

one particular leaf while training. All distributions of anomaly score show that the

Healthy class distributions have a smaller mean and standard deviation than the

Diseased counterparts, providing more confidence upon normal samples through the

learned representations of normality than in diseased samples. Of particular interest

is the performance over the Corn class where the distributions over the normal and
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anomalous anomaly score are noticeably separable with the diseased distribution

having a much larger mean and standard deviation than the normal scores. Across

the Cherry class, the distributions tend to overlap more and the separation between

the two distributions is difficult. The distribution over normal samples across the

Tomato class has a dual peak and is not as classically ‘normally’ distributed like the

other classes; This is the worst performing class with an AUC of 0.77 and could be

due to the vast differences between the shapes of leaves which deviate significantly

between samples within the dataset.

Figure 3.6 illustrates the anomaly segmentation masks generated by PANDA,

outlining where visual disease features upon leaves. For each of the independent

models trained on their respective class, we demonstrate the segmentation across

both normal, healthy leaves (above) as well as diseased leaves (below) to demonstrate

the stark difference in the appearance of the anomaly masks between both normal

and diseased leaves. Overall, the healthy samples show little to no noise implying

that no disease is present in the leaves. For their diseased counterparts, however,

PANDA is able to detect the diseased regions with high accuracy. In particular

across the Cherry class, the disease appears visually subtle, yet PANDA is still

able to accurately detect it. Across the Tomato class, the worst performing class,

the diseased parts are segmented, but also on some occurrences, the outline of the

leaves (shape) are included in the anomaly segmentation, cementing the previous

assumption that the ‘double peaked‘ normal anomaly score distribution and thus the

reduced AUC performance could be due to the non-uniform geometry appearance

of healthy Tomato leaves within the dataset.

In Table 3.3, the quantitative AUC results across the MVTEC dataset can be

observed. This is a challenging dataset due to the large variation in appearance of

anomalies present in textures and objects. Some objects (carpet, hazelnut, screw)

exhibit visually obvious anomalies, but other objects (wood, metal nut, toothbrush)

feature subtle anomalies which are hard to detect. This is reflected in the results of

various methods across this dataset with PANDA obtaining superior AUC perfor-

mance across 6 classes.
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Figure 3.5: Illustration of the difference in detail preservation during reconstruction
within the Carpet class of MVTEC [9] between the Variational Autoencoder (VAE)
[14] and our PANDA architecture.

During the detection of subtle anomalies, it is important to preserve fine-grained

details when reconstructing images. Approximating such details of the inputs pro-

duce coarse reconstructions with missing fine-grained image details which will result

in inaccurate anomaly detection. Figure 3.5 illustrates this by presenting an im-

age from the Carpet class of MVTEC [9] which is zoomed to 200% and cropped to

show the details of the threads in the weave within the carpet. The example above

shows a coarse reconstruction of the input image produced by a novel Autoencoder

(AE) [14] model which appears to opt to almost uniformly place threads in a grid

pattern within the reconstruction. Conversely, Figure 3.5 shows that our PANDA

approach preserves the details of all the threads in the weave in the reconstruction.

The preservation of these details is vital to detecting subtle errors which, in this

class would be missing or damaged threads in a given carpet sample which could be

vital for the quality and longevity of a given final product.

Figure 3.8 shows the qualitative results of PANDA with regards to the detection

and segmentation of anomalous parts across different classes of the MVTEC dataset.
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Within this figure, we show defective samples from 6 classes of the MVTEC dataset,

namely {Hazelnut, Bottle, Capsule, Toothbrush, Screw, Wood} featuring a range

from both visually obvious to visually subtle anomalies. Analysis of each class is as

follows:

• Hazelnut: defects such as holes or missing parts are detected in the segmen-

tation mask. The fourth image includes text that is also correctly detected as

anomalous by PANDA.

• Bottle: chipped regions are detected in each example, however, key emphasis

is put on the difference in light intensity caused by the chipped parts of the

glass reflecting light differently as well as the chipped regions within the glass.

• Capsule: The faults in this class range from subtle such as the first and second

image, up to being more visually obvious in the fourth image where a severe

hole is detected. PANDA is able to detect all defective parts of the capsule.

However on the third image, the text on the capsule is mistaken as anomalous.

• Toothbrush: Faults occur predominantly on the bristles of toothbrushes and

as such are profoundly subtle by nature and difficult to spot due to the small

size of the bristles. PANDA is able to locate the anomalous parts present in

the toothbrushes. However, some noise is also included within the detection.

• Screw: The anomaly detections of this class are very noisy. Although our

approach detects the anomalous regions such as the bent tip in the first image

and the scratches in the other two, there is a lot of noise particularly around

the corkscrew ridges. This seems strange as the Screw class gained the highest

AUC of 1 during inference.

• Wood: The random grain patterns of the wood twinned with the visually

subtle nature of the anomalies in these examples makes the Wood class in-

credibly difficult. Our approach does detect the pinholes in the wood, but the

segmentations are faint, giving indication of low confidence in anomaly score.
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Figures 3.10 and 3.9 show the anomaly mask produced over the Bottle and Hazelnut

class of MVTEC [9], respectively. GANomaly [2] generates noisy detections over

both classes with a lot of noise. The anomalous regions are successfully detected

in both classes however, but it is difficult to pinpoint due to the noisy detection.

on the other hand, Skip-GANomaly [6] and PANDA (Chapter 3) obtain very clean

detections however, some of the underlying shape, especially the outline of the bottle

is still visible in the anomaly mask. Across the Hazelnut examples, the outline of the

object is however, not present in the anomaly mask, possibly due to it being a softer

edge than the bottle edge. In both classes, both Skip-GANomaly and PANDA are

able to successfully isolate the anomalous region however, detection is not perfect

as there is still noise present.

3.4.1 Ablation Study

Our ablation study (Table 3.4) produces evaluation over individual components to

our novel architecture with respect to variations in both loss function, our network

architecture components (E0
high∩D0

high, E
1
high, E

1
low) and our choice of discriminator

architecture across two of the more challenging real-world anomaly detection task

datasets. For comparison we include the DCGAN [125] discriminator architecture

from GANomaly / Skip-GANomaly [2,6], which is the next best performing approach

in terms of AUC across the same datasets (Table 3.2) to compare against our FGVC-

based discriminator architecture choice.

Table 3.4: Ablation Study of PANDA-GAN across Plant Village [1] and Laptop
Anomaly [3].

Model

Dataset
Plant Village Laptop Anomaly

Loss Network Architecture Loss Network Architecture
PWL PL(g) PL(ps) E0

high ∩D0
high E1

high E1
low PWL PL(g) PL(ps) E0

high ∩D0
high E1

high E1
low

PANDA-GAN

0.75 0.75 0.76 ✗ - ✗ 0.38 0.42 0.43 ✗ - ✗

0.75 0.74 0.75 ✗ - ✓ 0.42 0.44 0.45 ✗ - ✓

0.75 0.74 0.74 ✓ ✗ ✗ 0.46 0.47 0.48 ✓ ✗ ✗

0.76 0.75 0.76 ✓ ✗ ✓ 0.46 0.44 0.43 ✓ ✗ ✓

0.77 0.76 0.78 ✓ ✓ ✗ 0.50 0.52 0.50 ✓ ✓ ✗

0.78 0.74 0.77 ✓ ✓ ✓ 0.42 0.45 0.51 ✓ ✓ ✓
PANDA-GAN
DCGAN Discriminator 0.77 0.75 0.74 ✓ ✓ ✓ 0.41 0.42 0.47 ✓ ✓ ✓

From the results of Table 3.4, it can be observed that synergy exists between
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components of our generator network obtaining the highest AUC value only when all

three of our novel components are activated. Generally we see that the more com-

ponents we activate in our architecture, the better the performance obtained during

our ablation study. Overall, the problem-specific perceptual loss (PLps) performs

better across the Laptop X-ray dataset by a clear margin from the other loss func-

tions tested against. Across the Plant Village dataset, there is negligible difference

between the pixel-wise loss and the problem specific perceptual loss. Both per-

formed almost identically and gained a clear advantage over the general perceptual

loss function (PLg).
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3.5 Conclusion

This chapter provides a thorough overview of the PANDA architecture. This is a

method which is bespoke for the task of real-time detection of subtle visual anoma-

lies present in real-world tasks which is still a difficult ongoing problem in the field

of anomaly detection. Our method is an Adversarially trained Autoencoder based

architecture which is able to reconstruct input with high-fidelity while remaining

stable during training. We introduce three novel concepts to this method which

include (1) A Fine-grained Visual Categorisation (FGVC) discriminator network to

provide a harsher critic to the generator while training which promotes the genera-

tion of finer details of the image. (2) A residually connected dual feature extraction

method within our generator module which carries low-level and high-level features

forward in the architecture. (3) A perceptual loss function which captures differ-

ences in activation pattern between images and their reconstructions produced by

the generator module.

Our exhaustive experimentation in this work show state-of-the-art performance

across both real-world datasets and trivial leave-one-out anomaly detection tasks

across MNIST [7] and CIFAR-10 [8] obtaining a state-of-the art AUC score across

40% and 30% of classes of the respective leave-one-out datasets. We also experiment

on more realistic tasks namely: Plant Village [1], Laptop X-ray [3], UCSDped1 [10]

and the MVTEC [9] datasets. Across Plant Village, our method is able to outperform

all prior methods with an AUC score of 0.78. However, when splitting the individual

leaf classes and training on them independently, we are able to obtain near-perfect

anomaly categorisation of presented leaves. The Laptop X-Ray dataset is challenging

due to the complexity of the images present in this task. PANDA is still able to gain

the best performance with an AUC of 0.51, even though this result is only just better

than random guessing. Across the UCSDped1 video task, PANDA gains competitive

performance with an AUC of 0.95 compared to prior methods, illustrating the cross-

domain ability of PANDA across video data. PANDA is able to gain state-of-the-

art performance across 40% of classes of the MVTEC dataset. We also show that
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PANDA is able to generate clean anomaly segmentation masks indicating where in

given samples is anomalous with high precision as evidenced in Figures 3.6 and 3.8.
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Figure 3.6: Anomaly segmentation masks across classes of the Plant Village [11]
dataset outlining both healthy and diseased examples.
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AUC: 0.927

AUC: 0.989

AUC: 0.986

AUC: 0.96

AUC: 0.986

AUC: 0.773

Figure 3.7: Anomaly score distributions together with AUC results of PANDA across
classes of the Plant Village dataset.
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Hazelnut Toothbrush

Bottle Screw

Capsule Wood

Figure 3.8: Anomaly segmentation masks obtained from PANDA of defective sam-
ples from classes (Hazelnut, Bottle, Capsule, Toothbrush, Screw and Wood) within
the MVTEC dataset [9].
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Figure 3.9: Comparison of anomaly mask quality between GANomaly [2], Skip-
GANomaly [6] and PANDA (Chapter 3 across the Hazelnut class of the MVTEC
dataset [9].
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Figure 3.10: Comparison of anomaly mask quality between GANomaly [2], Skip-
GANomaly [6] and PANDA (Chapter 3 across the Hazelnut class of the MVTEC
dataset [9].
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CHAPTER 4

Adversarially Learned Contrastive Noise for Robust Generative

Semi-Supervised Anomaly Detection
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4.1 Introduction

The task of anomaly detection is challenging due to deviations from normality being

continuous and sporadic by nature. Anomalous space is an open-set continuous,

infinite distribution of possible deviations from normality; meaning that strictly

supervised classifiers, although performing well across tasks in anomaly detection

[3,37] are restricted by their limited exposure to abnormal examples during training.

As such, it is impossible for datasets to contain every possible deviation in the

anomalous data thus, supervised (classification-based) approaches cannot generalise

to the continuous nature in which anomalous samples may deviate from normality,

meaning that there will always exist anomalous deviations in anomaly space which

present as adversarial examples to such supervised methods.

Generative-based anomaly detection methods [2,4–6,124] train solely across nor-

mal examples in order to approximate the underlying distribution of normality. They

work by learning meaningful features to solely represent normal samples which will

cause a relatively small reconstruction error after decoding; conversely, the model

will fail to reconstruct anomalous samples fully due to null exposure of the anoma-

lous parts during training. As such, the reconstruction error between input and

output provides a sound metric to measure anomalous deviation of presented sam-

ples. The benefit of this (semi-supervised) training is that normal (non-anomalous)

data is often relatively inexpensive and plentiful to obtain within real-world anomaly

detection tasks [2, 3]

Autoencoders (AE) are well-suited to the approximation of the underlying data

distribution. They exhibit stability during training unlike their Generative Adver-

sarial Network (GAN) [199] based counterparts which exhibit training difficulties

such as mode-collapse or convergence instability [200]. Although AE are stable, they

risk converging to a pass-through identity function (1) [15] for which the mapping

from input x to output x′ is a null function such that limy→0 y = L(x, x′)⇒ x ≃ x′

where L is the reconstruction error. Although this can still learn underlying in-

formation about the distribution of the training data, this over-fitting negatively
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affects performance in tasks such as semi-supervised anomaly detection.

Such functions allow a pass-through of features within presented samples which

may not have been seen during training. The power of semi-supervised genera-

tive anomaly detection methods is obtained from their ability to fail to reconstruct

anomalous parts of a sample as well as the normal parts [2, 201]. This repairing of

anomalous parts causes severe shifts in pixel values of a given sample in anomalous

samples, allowing the amount that the pixels shift between input and reconstruction

to act as a meaningful way in which to measure anomaly score of a presented sam-

ple. During overfitting to an identity function. However, anomalous regions will be

mapped through to the reconstructions by the model, meaning that the pixel shifts

will only vary slightly and the anomaly scores will be lower for anomalous samples

at inference.

To prevent this, Denoising Autoencoders (DAE) [15] are trained to produce un-

perturbed reconstructions from purposefully noised input. This applies a level of

regularisation to the AE such that it cannot easily converge to a trivial solution and

allows an AE to become invariant of noise in the input as well as yielding more robust

and meaningful representations across normality [31, 32]. Bengio et al. [15] states

that corrupting an observed random variable X into X̂ using conditional distribu-

tion C(X̂|X) is actually training the denoising autoencoder to estimate the reverse

conditional P (X|X̂). The noising process can be defined as a conditional distribu-

tion process which corrupts a given input X into a noisy version X̂. Examples of

corruption include Gaussian noise [120, 202, 203], or masking noise such as dropout

applied to pixel values of the input [106]. Such methods add notable and proven

regularisation to denoising autoencoders, but are stochastic by nature and thus offer

randomly assigned noise during training without considering the input distribution

with which the denoising autoencoder is being trained to reconstruct. Subsequently,

these methods do not tailor the added noise to the problem set trained on, instead

opting for a ‘one-size-fits-all’ approach with arbitrarily added noise. If the task is

to denoise certain pixel-level occurring noise such as speckle or artifacts from com-

pression within an image, then methods implementing randomised pixel-level noise
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perform well [203–205]. Within reconstruction-based anomaly detection, however,

anomalous instances seldom feature at the individual pixel level and instead tend

to cluster into local regions of anomalous pixels. As such, a reconstruction-based

approach needs to be able to reconstruct out-of-distribution neighbourhoods of pix-

els such that the final image represents a non-anomalous ‘repaired’ version of the

anomalous sample.

Adding noise to input images in the task of semi-supervised anomaly detection

has been explored previously [31, 32, 206]. The Adversarially Robust Autoencoder

(ARAE) [31] works by forcing perceptually similar samples closer in their latent

representations by crafting adversarial examples during training by perturbing sam-

ples in the dataset that are constrained with respect to the input samples to be 1)

perceptually similar to the input, but have 2) maximally distant latent encodings.

Although results of ARAE are competitive with prior methods [4,33,34,59] despite

having a simpler architecture, producing perturbations which fit with such tight

requirements is very computationally demanding and as such, ARAE requires more

compute overhead during training.

One-Class Learned Encoder-Decoder (OLED) [32] dynamically corrupts the in-

put data during each step within training by masking through the use of a second

network called the mask module. OLED works similarly to the Context Autoencoder

(CAE) [206] where instead of being corrupted by noise, patches of the input images

are randomly masked and the CAE must learn to inpaint this randomly masked re-

gion in conjunction with the reconstruction task [32, 206]. OLED, however, tackles

the disadvantage of CAE whereby random patches are masked during training hence

maximally important regions of the image are not consistently masked leading to

sub-optimal representations [32].

The OLED mask module creates masks that mask important regions of the input

by maximising the reconstruction error of the sequential denoising module placed

after the masking module. This enables consistently optimal masking of the input

through the output of the masking module in order to enable the later denoising

module to reconstruct masked regions based on the context of non-anomalous sur-
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rounding features. The produced masks from the OLED mask module are, however,

discrete due to thresholding the output activations of the mask module with a step

function. This produces masks which appear the same across every dataset and are

not tailored to the input dataset being trained on, also masking important regions

as zeros removes all information from important regions in the image. As such,

the denoising module will have significantly lower exposure to such regions during

training which may be required during inference.

In this chapter, we extend the notion of denoising perturbed input for use in

reconstruction-based anomaly detection and overcome disadvantages present in prior

approaches by using a simple denoising module Gdenoise which is tasked to classi-

cally reconstruct perturbed input corrupted through adversarially learned patches

of noise which are additively applied to the input. Such patches are produced

through the noise generator module Gnoise which is trained to produce optimal and

continuous-valued obfuscation to the input during training. At each training step,

Gnoise is updated with the gradients of the input to produce bespoke noise masks

which obfuscate the input as to maximally increase the error between the input x

and the denoised reconstruction x′ produced by the denoising module. Conversely,

the denoising module Gdenoise is tasked to reduce the error between x and x′ from

perturbed input, hence to create denoised output from the corrupted input.

The Gnoise module is only ever exposed to the gradients of the input and not

the raw input itself to prevent it from fitting to the identity of each input image,

producing zeros or ones everywhere in the input into Gdenoise which would trivially

destroy all information in the input making it impossible for Gdenoise to reconstruct

individual inputs faithfully. The noise produced by Gnoise is additively applied to

the input via a weighted sum so that the relative pixel intensities cannot be used

to discriminate between clean and obfuscated image parts by the model. Further

theories of why the Gnoise model does not produce noise that completely destroys

the image is that the example produced, may cause a more damaging effect in the

weights ofGdenoise, meaning that the network is maximally disrupted by these masks,

however, after further refinement and exposure to these, the Gdenoise model actually
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improves the robustness.

4.2 Approach

Common autoencoders (Figure 4.1 A) simply map a given image x to a compressed

representation, and then use this representation to map back into a reconstruction

of the original image x′. Conventional autoencoders suffer from overfitting when the

mapping from x→ x′ ∼ 1, thus x ∼ x′.
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Figure 4.1: Comparison between prior methods (A [14], B [15]) and ours (C).

To prevent this, Denoising Autoencoders (DAE) (Figure 4.1 B) initially corrupt

the input images x to x+noise. The DAE then reconstructs x→ x′ from x+ noise.

The noise in these methods is typically drawn from a Gaussian, Speckle or Random

distribution. Methods implementing such denoising schemes into reconstruction-

based anomaly detection have offered insights into how useful this noise is to the

task of reconstruction-based anomaly detection. The work by Adey et al. [201]

utilises a suite of noising approaches for use in their unique denoising approach. It

can be seen in their results, however, that using Gaussian and Speckle noise actually

negatively impacts the ability of the anomaly detection. This could be due to the

aforementioned issues with pixel-level noising approaches within anomaly detection

whereby anomalous regions seldom present as pixel-level deviations and instead

present as neighbourhoods of anomalous pixels within images.

The method presented in this chapter, the Adversarially Learned Continuous

Noise (ALCN) (outlined in Figure 4.1 C) utilises a unique continuous adversarially
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learned noise which maximally obfuscates the input at each step prior to training the

denoising module. This training method allows the simultaneous training of both

modules so that the noise module can add continuous increasingly bespoke noise to

the input while the denoising module increases in knowledge of how to reconstruct

clean images from such noise.

The proposed method within this chapter is outlined in Figure 4.2. In our

approach, we utilise a Denoising Autoencoder Generator (Gdenoise) network which

takes noisy images as input and outputs clean images, together with a GAN-like

Noise Generator (Gnoise) network which takes random samples from a Gaussian

distribution as input and outputs the noise mask which maximally increases the

reconstruction error when added via weighted sum to the input.

These modules are adversarially trained concurrently using Algorithm 1. In a

given step, the weights of Gnoise are updated first with gradient ascent with respect

to the reconstruction error of Gdenoise from the previous training step so that at

the next step, Gnoise updated to produce a noise mask which maximally increases

the reconstruction error for the Gdenoise to then reconstruct via gradient descent on

the reconstruction error. The level of corruption in the current step differs only

slightly from the corruption from the previous step. Additionally, over time, the

noise produced by Gnoise fits closer to the style of the input distribution, producing

more bespoke noise for a given task.

Training across dataset x ∈ RB×C×H×W ∈ X where {B,C,H,W} represent the

batch size, number of channels, height and width respectively, starts by training

the noise generator Gnoise. A linear vector of size B × 256 random variables ϕ is

sampled from a standard Gaussian normal distribution ϕ ∼ N(µ : 0, σ : 1). We tried

other sizes of input linear vector, namely, {64,128,256,512} and found that 256 was

the best performing size in our experiments. This vector is fed through Gnoise to

produce noise n of shape RB×C×H×W . The added Sigmoid layer ( 1
1+e−l ) on the final

layer of Gnoise binds the noise values continuously between [0, 1]. We combine the

noise mask n to the input image x using a weighted sum by using the linear blending

operator xperturbed = α(x) + (1 − α)(n) where α is randomly sampled on each step
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Figure 4.2: Overview of adversarial noise learning architecture featuring: top-Noise
Generator Module GNoise, bottom- Denoising module (Gdenoise).

within bounds α → [0.2, 0.9] ∈ R+. Figure 4.3 illustrates how differing values of

α affect the visibility of the added noise. The linear blend operator ensures that

the magnitude of the values of xperturbed match with the pixel intensities of x and n.

Values of x are normalised with 0 mean and unit variance meaning that the values

of xperturbed are such that Gdenoise is prevented from discriminating between the noise

corrupted pixels and the original image pixels based on differing pixel intensity.

Although setting alpha to be static during training could allow Gnoise to theoret-

ically perfectly optimise the generated noise n to destroy all information in image

x ∈ X such that all values in xperturbed are set to 1 such that n = (1−α·x
1−α

). This

would be very rare, as Gnoise does not have access to the input data at any point,

only the gradients of the input with respect to the reconstruction error. However,

it is interesting to think about this aspect within a theoretical situation.

The xperturbed cannot converge to all zeros where n = −( α·x
1−α

) due to the logical

argument that the values of noise n produced by Gnoise are bound to [0,1] ∈ R+

because of the Sigmoid layer on the output of Gnoise and x is such that ∀xi ∈ x →

{0, 1},∃xi ∈ x |xi = 1 implying that if (xi ∈ x = 1) then n = −α
1−α
⇒ n < 0 ∀α ∴

n /∈ R+. Put simply, there are values of 1 within the images such that if noise n were
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Algorithm 1 Adversarial Noise Training

W{G} ← init ▷ Initialise G randomly
W{NG} ← init ▷ Initialise NG randomly
Train One Epoch:
for mini-batch: x ⊂ X do

weights{NG} ← True
weights{G} ← False
α← [0.2, 0.9] ▷ Randomly select α

z← N(µ = 0, σ = 0.5) ▷ |z| = {|x|, 256}
output← G((1− α)NG(z) + αx)

W{NG}
backpropagate←−−−−−−−− OptimNG

(−L(x, output))
weights{NG} ← False
weights{G} ← True
output← G(NG(z) + x)

W{G} backpropagate←−−−−−−−− OptimG(L(x, output))
end for

to produce all zeros after adding, then the value of noise would have to be negative

and this is not possible with a Sigmoid function.

To ensure convergence to such a trivial hypothetical solution of convergence

n = (1−α·x
1−α

) is even more unlikely, randomness can be applied to certain components

in the architecture: 1) setting the value of α to be randomly continuously sampled for

each step during training will allow for no solution to the hypothetical convergence;

and 2) the input of Gnoise being sampled from a Gaussian distribution N(0, 1) which

applies some level of randomness during sampling of the noise.

The xperturbed is then used as input to Gdenoise to reconstruct x from xperturbed,

reversing the corruption caused by Gnoise. The corrupted image noisex,n is encoded

to the latent vector z and then subsequently decoded into a synthetic reconstruction

x′.

Adversarial learning is accomplished by the mini-max optimisation between the

Gdenoise and Gnoise modules. Weights of Gdenoise are optimised to minimise L, the

reconstruction error between x and x′ whereas the weights of Gnoise are conversely

optimised to maximise L. Loss terms in the overall loss are given scalar regular-

isation terms λ0 and λ1 for losses LGdenoise
and LGnoise

respectively. The overall

optimisation function in this work is:
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argmin argmax

Gdenoise Gnoise

= LGdenoise
(x, x′)λ0 + LGnoise

(x, x′)λ1 (4.1)

0.25 0.5 0.75 0.90.2

Figure 4.3: Visualisation of the output of the linear blend operator between a sample
Bottle from the MVTEC [9] and the corresponding adversarial noise at increasing
levels of α.

This method of training encourages the noise generator to produce masks which

optimally corrupt the input. Such optimal noise makes the denoising process more

difficult as the denoising module must not only learn meaningful features of the

input data, but also how to reconstruct maximally corrupted out-of-distribution

parts within the input into clean input. It encourages the denoising module to not

carry forward out-of-distribution (anomalous) features to the reconstruction during

inference which is important for the task of reconstruction-based anomaly detection.

Our experiments show a clear improvement in performance while using this training

scheme with adversarially learned noise.

4.3 Implementation Details

Our method is compared across the MNIST [7] and CIFAR-10 [8] datasets due to

their inherent simplicity while training as well as giving sufficient bench-marking

for the evaluation between the techniques included in this work. Evaluation is

conducted in two protocols following from established methods for ‘leave-one-out’

anomaly detection tasks. During protocol 1 (1 vs. rest), one class is regarded

as anomalous and remaining classes are normal as performed by: [2, 4–6, 13, 124].

Protocol 2 (rest vs. 1) as performed by: [31–35] is the opposite in that one class is
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normal and the nine remaining classes are anomalous.

The split ratio for the data is 80 : 20 for training and testing respectively as

conducted by [2,5]. During training, the Adam optimiser is used for bothGdenoise and

Gnoise with learning rates 1×10−5 and 8×10−3 respectively, we chose these learning

rates by hyper-parameter optimisation during training. An image resolution of

28×28 is implemented throughout ‘leave-one-out’ anomaly detection tasks [7,8]. We

implement a larger resolution of 256×256 across MVTEC [9] and Plant Village [11].

A batch size of 4096 is employed across MNIST and CIFAR-10 and a batch size of

16 is used across MVTEC and Plant Village during training on an Nvidia GTX

1080 TI GPU. We evaluate our method using the Area Under Receiver Operator

Characteristic (AUROC) metric.

4.4 Results

Extensive comparison of the results of our method compared to prior methods are

outlined in Tables 4.1, 4.2, 4.3, 4.4. Tables 4.1 and 4.2 outline the quantitative

results of the ALCN method applied to the DAE model across both MNIST [7] and

CIFAR-10 [8] ‘leave-one-out tasks’ across both protocol 1 (9 normal/1 anomalous)

and protocol 2 (1 normal/9 anomalous). Across the real-world anomaly detection

tasks outlined in this paper [9, 11], Table 4.3 outlines the quantitative results of

our method across the MVTEC-AD [9] industrial inspection dataset and Table 4.4

presents the results across the Plant Village dataset [11].

4.4.1 Leave One Out Anomaly Detection

Protocol 1: Table 4.1 outlines the results of each approach across the MNIST and

CIFAR-10 datasets. We begin by comparing our vanilla DAE approach without any

noise regularisation and this results in an AUCavg of 0.69 across MNIST and 0.61

across CIFAR-10. The performance of the DAE is weak compared to other methods

in the table. This result acts as a control to show how our adversarial noising

approach can help to gain better anomaly detection capability during inference.
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Figure 4.4: Overview of the appearance of different noising techniques implemented
in this work, namely A) Speckle noise, B) Gaussian Noise

Other controls in this experiment involve applying Gaussian noise which obtains an

AUCavg of 0.70 on MNIST and 0.57 on CIFAR-10 as well as Random Speckle noise for

which the DAE architecture obtains an AUC avg of 0.68 and 0.60 across MNIST and

CIFAR-10 respectively. It can be seen that both of these noising approaches hardly

impact performance of the DAE model. This could be attributable to the fact that

the Gaussian and Random Speckle noise act on a pixel level. As the DAE is unlikely

to perform a pixel-perfect reconstruction of input features, there will always be some

level of blurring in the synthetic reconstruction produced by the DAE. For this

reason, such noised pixels may not carry enough significance through the backward

gradients of the network implying that the pixel-level noise negligibly impacts the

convergence of the DAE during training. This can be observed qualitatively in

Figure 4.4 which shows in rows A and B for Speckle and Gaussian respectively, the

resulting image + noise sample shows little to no perceptual deviation from the
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input image.

Our ALCN approach applied to the DAE architecture achieves the best AUC

score across 90% of the classes with an average AUC of 0.89 and produces the best

scores on 60% of classes of CIFAR-10 with an average AUC score of 0.67. This shows

that our adversarial method of learning synthetic noise and applying it to the train-

ing scheme can assist in improving anomaly detection capability across the trivial

tasks of MNIST and CIFAR-10 used for their relative aforementioned simplicity to

act as a sanity check and initial benchmarking for our approach compared to other

techniques.

Protocol 2: Table 4.2 presents the results across the protocol 2 variant (1

normal/9 anomalous) across both MNIST and CIFAR-10. This inference paradigm

is used in a number of works on denoising techniques for reconstruction-based leave-

one-out anomaly detection. However, it offers an easier challenge than Protocol

1. The performance across methods [31–35] on this protocol are approaching the

performance ceiling of the task and thus, comparisons of model performance are not

as useful as protocol 1; despite this, as methods tailored to denoising-based anomaly

detection [31,32] are inferred using this protocol, we too evaluate across this protocol

for direct comparison.

In Table 4.2, it can be seen that the DAE + ALCN method obtains an AUCavg

of 0.989 across MNIST and an AUCavg of 0.742 across CIFAR-10, outperforming

all prior methods including the next best model OLED [32] which uses discrete,

thresholded noise, as previously stated in this work. This gives illumination as to

the benefit of using continuous contrastive noise while training over using discrete

univariate masking of maximally important regions within the input images. The

noise produced by our approach also acts as a masking for important image re-

gions, but also takes into account the nature of the input distribution while crafting

continuous valued noise.
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Model
MNIST [7]

0 1 2 3 4 5 6 7 8 9 AUCavg

VAE [14] 0.55 0.10 0.63 0.25 0.35 0.30 0.43 0.18 0.50 0.10 0.34
AnoGAN [4] 0.61 0.30 0.54 0.44 0.43 0.42 0.48 0.36 0.40 0.34 0.43
EGBAD [5] 0.78 0.29 0.67 0.52 0.45 0.43 0.57 0.40 0.55 0.35 0.50
GANomaly [2] 0.89 0.65 0.93 0.80 0.82 0.85 0.84 0.69 0.87 0.55 0.79
ADAE [174] 0.95 0.82 0.95 0.89 0.82 0.91 0.89 0.80 0.93 0.63 0.86
DAE 0.84 0.97 0.79 0.64 0.53 0.61 0.66 0.55 0.71 0.57 0.69
DAE+Random Noise 0.84 0.93 0.66 0.66 0.52 0.62 0.72 0.56 0.75 0.53 0.68
DAE+Gaussian Noise
∼ N(0, 0.5)

0.88 0.97 0.77 0.66 0.55 0.62 0.75 0.55 0.71 0.57 0.70

DAE + ALCN 0.97 0.97 0.96 0.89 0.85 0.88 0.92 0.80 0.93 0.76 0.89

Model
CIFAR-10 [8]

Plane Car Bird Cat Deer Dog Frog Horse Ship Truck AUCavg

VAE [14] 0.59 0.40 0.52 0.44 0.46 0.50 0.38 0.51 0.64 0.49 0.49
AnoGAN [4] 0.51 0.49 0.41 0.40 0.34 0.39 0.34 0.41 0.56 0.51 0.44
EGBAD [5] 0.58 0.52 0.39 0.45 0.37 0.49 0.36 0.54 0.42 0.55 0.47
GANomaly [2] 0.63 0.63 0.51 0.58 0.59 0.62 0.68 0.61 0.62 0.62 0.61
ADAE [36] 0.63 0.73 0.55 0.58 0.50 0.60 0.60 0.61 0.62 0.67 0.61
DAE 0.50 0.68 0.61 0.55 0.69 0.53 0.62 0.60 0.63 0.71 0.61
DAE+Random Noise 0.63 0.53 0.54 0.54 0.65 0.59 0.64 0.55 0.66 0.63 0.60
DAE+Gaussian Noise
∼ N(0, 0.5)

0.57 0.68 0.57 0.54 0.65 0.54 0.55 0.52 0.57 0.53 0.57

DAE + ALCN 0.77 0.71 0.62 0.57 0.72 0.62 0.72 0.60 0.66 0.69 0.67

Table 4.1: Quantitative results (class name indicates AUC, AUCavg of all classes) of
models across MNIST [7] (upper) and CIFAR-10 [8] (lower) datasets (Protocol 1).

MNIST CIFAR-10
Method AUCavg AUCavg

DSVDD [35] 0.948 0.648
OCGAN [34] 0.975 0.733
LSA [33] 0.975 0.731
ARAE [31] 0.975 0.717
OLED [32] 0.985 0.671
DAE + ALCN 0.989 0.742

Table 4.2: Quantitative results (AUCavg) of models across MNIST [7] (left) and
CIFAR-10 [8] (right) datasets (Protocol 2).

4.4.2 Real-world Tasks

Next we review the performance of the DAE+ALCN approach across challenging,

fine-grained real-world tasks which act as a more realistic environment in which to

evaluate and compare the performance of models.
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MVTEC-AD Industrial Inspection Dataset

In this experiment we compare our DAE + ALCN method against prior semi-

supervised anomaly detection methods across the MVTEC-AD task [9] which is

a task where the complexity and variability of the anomalies present in this dataset

vary dramatically from both visually obvious to visually subtle between examples.

We use this dataset for this reason. The goal is to not only reconstruct small

anomalies such as blemishes or scuffs, but also have the ability to reconstruct entire

missing, or damaged parts of the anomalous object in question. For this reason,

it offers the perfect environment to test the experiment of whether the adversarial

denoising (ALCN) approach could enable the DAE to reconstruct both of these

such anomalous instances while not carrying the anomalous parts through to the

reconstruction following decoding.

The results of this experiment are shown in Table 4.3. It can be observed that

DAE + ALCN obtains the highest average AUC score of 0.83, outperforming all

other methods on 10 out of the 15 classes in MVTEC-AD. Although we have a

significantly simpler architecture than the prior methods outlined in this table, our

method still improves the anomaly detection capability significantly such that we

are able to surpass the performance of such methods.
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Table 4.3: Quantitative results (class name indicates AUROC, AUCavg of all classes)
of models across MVTEC-AD [9] dataset.
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Plant Village Dataset

The Plant Village dataset [11] is challenging due to the large intra-class variance

present in this dataset. Leaves of a given plant can vary vastly in appearance

with respect to shape and colour, meaning it is challenging to map the underlying

distribution. Establishing meaningful features of healthy leaves which are invariant

to the diverse geometry and colour differences of healthy leaves while still being

able to detect anomalies present in diseased leaves as severe leaf discolouration and

missing leaf parts make this task challenging. As a result, producing robust features

which can leave healthy parts of the leaf unchanged while reconstructing severe

deviations back into healthy parts would enable better success with this task.

With this in mind, it would be optimal for the noise generator of our network

to somehow distort the geometry and discolour the images to severely obfuscate the

leaf in the image. This would enable the denoising module to be robust against

severe obfuscation while learning to reconstruct the underlying leaf geometry as it

is supposed to be. This is the case and can be observed in Figure 4.4 where the

noise attempts to heavily distort the geometry of the leaf (at the bottom left of the

leaf) as well as adding a vivid tone of green to the image to attempt to heavily

obfuscate the colour and geometry of the leaf. Our DAE network is then forced

to reconstruct the original leaf geometry and colour from the obfuscated leaf which

leads to increased robustness with reconstructing presented anomalous instances at

inference.

The quantitative results of methods across this dataset are presented in Table

4.4. Our DAE + ALCN method obtains an AUCavg of 0.77 which is the same as that

of Skip-GANomaly [6]. Both methods surpass prior methods across this dataset.

Figure 4.5 illustrates the results of an input which is an out-of-distribution ex-

ample through both the Skip-GANomaly [6] and DAE+ALCN into models trained

on only another specific class singular (Figure 4.5, left label). The objective being

that Skip-GANomaly [6] and DAE+ALCN should reconstruct out-of-distribution

examples within the original class distribution. However, it can be seen in Figure

4.5 that Skip-GANomaly [6] successfully reconstructs an out-of-distribution exam-
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Cable

Anomaly Score: 0.15

Bottle

Skip-GANomaly DAE+Adversarial Noise

Input Output Input Output

Training 
Class 

Anomaly Score: 0.07Anomaly Score: 0.05

Anomaly Score: 0.12

Figure 4.5: Comparison between Skip-GANomaly [6] and DAE+Adversarial Noise
of feeding vastly out-of-distribution (Hazelnut and Grid) examples through models
trained on a different class (Cable and Bottle). Anomaly Score in this figure is
computed as the Mean Squared Error of the input and the output.

ple, giving weight to the conclusion that it has converged to a near pass-though

identity function and copies information from input to output (i.e. hazelnut/grid

observed in both input + output), despite the fact the model has never been ex-

posed to these class examples during training. For Skip-GANomaly, this leads to

low anomaly scores of 0.05 and 0.12 for Cable and Bottle respectively. By contrast,

our DAE+ALCN architecture, manages to reconstruct such out-of-distribution ex-

amples back into the training classes thus resulting in the anomaly scores 0.07 for

Cable (0.02 larger than Skip-GANomaly [6]) and 0.15 for Bottle (0.03 higher than

Skip-GANomaly [6]). This shows that given vastly out-of-distribution examples,

the DAE+ALCN network is more robust to misclassification and less prone to a

pass-through identity-like reconstruction output.

We have also included the results of the individual classes of the Plant Village

dataset in order to show the performance of the model on a more realistic scenario.

The results of this are outlined in Table 4.5. The results show that the ALCNmethod

is able to perform competitively to the PANDA approach by obtaining higher on the

cherry class at 0.967 compared with the 0.927 exhibited by PANDA, however, falls

short on all other classes. The resulting average AUC for this experiment resulted

in 0.937 for PANDA and 0.903 for the ALCN approach.
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Overall these experiments show that using our adversarial noise as a regularisa-

tion technique can enable even a simple architecture such as the Denoising Autoen-

coder outlined in Figure 4.2 to obtain competitive results than more complex model

architectures.

Model
Plant Village [11]
AUCavg

AE [14] 0.65
AnoGAN [4] 0.65
EGBAD [5] 0.70
GANomaly [2] 0.73
Skip-GANomaly [6] 0.77
ALCN 0.77

Table 4.4: Quantitative results (AUCavg) of models across Plant Village [11] dataset.

4.4.3 Model Complexity

An outline of model complexity together with inference time per batch is outlined

in Table 4.6. The DAE+ALCN architecture has 9.87 Million parameters which is

slightly larger than EGBAD [5] which is at 8.65 Million but still orders of magnitude

smaller relative to that of AnoGAN [4]. The magnitude of our model comes from the

noise generation module in addition to the DAE module required during training.

Our DAE+ALCN architecture has an inference speed of 4 milliseconds per batch

which is significantly faster than the other methods, but is trivially not faster than

the sole DAE architecture.

Qualitative Results

Figure 4.7 shows the evolution of the adversarial noise produced by the Noise Gener-

ator over training across the Plant Village [11] dataset. It can be seen that the noise

Class Cherry Corn Grape Potato Strawberry Tomato AVG
PANDA 0.927 0.989 0.986 0.96 0.986 0.773 0.937
ALCN 0.967 0.984 0.957 0.891 0.97 0.649 0.903

Table 4.5: Quantitative results of AUC across the Plant Village individual classes.
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Model
DAE AnoGAN EGBAD GANomaly DAE+ALCN

Parameters (Million) 1.12 233.04 8.65 3.86 9.87

Inference Time/Batch MNIST [7] 2.36 667 8.02 9.7 4.54
(Millisecond) CIFAR-10 [8] 2.73 611 9.55 10.53 5.23

Table 4.6: Comparison of model complexity (number of parameters (millions)) and
inference time (milliseconds).

starts off as a green square with little to no resemblance of the plant data. As train-

ing continues, the noise that is generated becomes similar to the input distribution

and bares visual similarity.

Figure 4.6 illustrates the qualitative results of DAE + ALCN across different

datasets. The first column for each example shows the input images to the model.

The second column illustrates the adversarial noise which is added to the input

resulting in those images (3rd column). This adversarial noise + input is then

fed into DAE and the resulting output after denoising (4th column); Of particular

interest are the noise examples across the MNIST [7] and Plant Village [11] datasets

in which the noise produced is perceptually very similar to the style/shape of the

input data of the respective task. The adversarial noise of the digit 2 from the

MNIST dataset especially appears perceptually like a digit 2. This gives light on the

nature of the maximal obfuscation noise produced by the optimised noise generator

such that it attempts to obscure the shape of the objects within the class. In

Plant Village, the examples are the same colour of the leaves, but bear hardly any

similarity to the geometry of the leaves themselves giving a different nature of noise

that is used on this task. For the noise produced on the MVTEC and CIFAR-10

task, the noise produced appears random and not stylised to the task dataset so

although the noise can be tailored to the input training set distribution, the noise

produced may also produce randomised noise that bears no similarity.

Despite the severe perceptual obfuscation that can be seen in the Image+Noise

column of Figure 4.6, the DAE component of the architecture is able to successfully

reconstruct the original input images that resemble the original unperturbed input

images as illustrated in the Output column of Figure 4.6.
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4.5 Conclusion

The work outlined in this chapter presents a novel approach of regularisation by

adding adversarially learned noise to input images while training a denoising au-

toencoder to perform reconstruction-based anomaly detection. Replacing the prior

stochastic, individual pixel approaches of obfuscating images such as Gaussian and

Random Speckle noise during the task of semi-supervised anomaly detection has

been explored in recent literature. However, the work presented in this chapter

resolves weaknesses within prior work.

Such weaknesses include constructing computationally expensive adversarial noise

examples during training as performed in ARAE [31]. Our ALCN method by con-

trast, optimises the noise during training gradually on each iteration so that it

remains dynamic and efficient. Due to the noise being produced by a Generative Ad-

versarial Network (GAN) which is trained in conjunction with the denoising autoen-

coder, the noise produced between two consecutive iterations is updated smoothly

while the α value in the weighted sum can vary the corruption of the noise subtly

or severely at random during each step. The noise hence forces a semi-maximal

feature distance in the DAE latent representation while the perceptual appearance

of the image has changed negligibly (under a large α value). This is what the ARAE

method obtains during training, but introduces strict requirements for such noise

during each step in training, as previously stated.

Although the OLED [32] method produces noise which is dynamic at each step

and inpaints the optimally important regions in the image with a mask, the mask

is singular valued and discrete. Although this method achieves results better than

the ARAE approach on the MNIST dataset, the performance is significantly lower

than ARAE across the CIFAR-10 dataset. It could be that the MNIST task benefits

from the uni-valued mask due to itself being singular valued. However, applying the

same such noise on the CIFAR-10 dataset may not be optimal due to not taking

into account the task-specific appearance of the input training data. The ALCN

approach in this chapter combats this disadvantage by producing dynamic noise
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tailored to the distribution of the input data. It can be seen in Figure 4.6 under

the MNIST row(s) that our ALCN approach produces noise which is perceptually

similar to the noise that OLED [32], giving further evidence that perhaps the noise

that OLED produces is optimal for the MNIST task, but not the CIFAR-10 task.

This is further evidenced in the results presented in Table 4.2 where OLED achieves

0.99 across MNIST and 0.67 across CIFAR-10 whereas the ALCN approach achieves

0.99 (similar to OLED) across MNIST and 0.74 (surpassing the result of OLED)

across CIFAR-10. As such, a one-size-fits-all noising approach such as OLED will

produce noise which is not optimal to all tasks which ALCN combats.

The study presented in this chapter provides evaluation across numerous datasets

ranging from trivial and unrealistic leave-one-out anomaly detection across MNIST

and CIFAR-10 achieving results which surpass prior work [2, 4, 5, 36] with vastly

more complex architectures and parameter counts as well as against the DAE archi-

tecture with both Gaussian and Random Speckle noise. Achieving the best results

across 90% and 60% of the classes across both MNIST and CIFAR-10 respectively

across protocol 1 and AUCavg values of 0.89 and 0.67 across the respective tasks. As

previously mentioned, we surpass the performance of prior methods in denoising ap-

proaches [31–35] applied to reconstruction-based anomaly detection across protocol

2 of MNIST and CIFAR-10 achieving AUCavg values of 0.99 and 0.74 respectively.

Across real-world datasets, MVTEC-AD and Plant Village the 256 × 256 resolu-

tion DAE+ALCN method achieved the best result in 66.6% of classes in MVTEC,

but achieved the best AUCavg score of 0.83 surpassing the next best performing

approach of Skip-GANomaly at 0.80 in the same metric. Across the Plant Village

dataset, DAE+ALCN achieved an AUC of 0.77 which is on-par with the result

obtained by Skip-GANomaly.

This chapter presents the DAE+ALCN approach, a relatively simple yet effec-

tive method of regularisation applied to a simple off-the-shelf denoising autoencoder

model which uses a GAN-like module which produces tailored continuous adversar-

ial noise at each iteration during training. When this noise is added to the input,

the DAE has to not only be able to reconstruct the input features, but also fix by re-
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construction, corrupted input parts obfuscated by the noise. The analysis produced

in the results section show that this is an effective method to boost performance of

even a simple method to bypass performance of more complex architectures.

4.6 Limitations and Further Improvements

Although the noise produced by the DAE+ALCN approach improves performance

of a simple denoising autoencoder, the noise affects the entire input images and the

user has very little control over this currently. It could be advantageous to only

select the most important parts of the image for noise to be applied to or limit

the noise to few regions to further tailor the noise to the distribution of the types

of anomalies likely to present to the model at inference; for example, if examples

are likely to be small, then the threshold could be set to high so that noise is only

applied to maximally important and thus more focused regions.

This could be performed by a thresholding approach applied to the output of the

noise generator module similar to that of the step-wise thresholding function within

OLED [32]. The issue with thresholding this way would be that low-valued noise

applied to important regions could be thresholded by the function and as such would

not be applied to the respective input. A method of attention-guided noise would

tackle this problem; the generated attention map would be thresholded instead of

the noise and then this thresholded attention map could be directly multiplied by

the adversarial noise. This would allow maximally important regions of the input

to be maximally obfuscated by the noise at each step.

The approach by Adey et al [103] utilises an effective approach of training a de-

noising module to reconstruct intentionally corrupted image patches In using a filter

bank of noising approaches. Instead of the DAE reconstructing the image, however,

it is optimised to produce the output A, which is an anomaly map which can be

thought of as the pixel-shifts that are required to repair the noise. The reconstruc-

tion I ′ = A + In is compared to the unperturbed input I. This approach achieved

superior results across the MVTEC-AD textures dataset as it is far more efficient to
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produce the inverse of the noise rather than the entire image during reconstruction.

With this in mind, the user-defined filter bank of noising approaches as used in the

work by Adey could be replaced by the ALCN noise generator approach in this work.

In essence, the denoising module would have to ‘repair’ the obfuscation caused by

the noise produced by the ALCN noise generator module by the DAE producing

the direct inverse of the noise. This would directly connect both the DAE and the

ALCN to truly adversarially train them together using Algorithm 1.

A disadvantage of the DAE+ALCN method is that it adds a significant com-

pute and space overhead to current models during training due to it containing a

secondary network (Noise Generator) to be trained jointly with the autoencoder.
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Figure 4.6: Examples of generated adversarial noise together with the output after
denoising this noise.
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the Plant Village [11] dataset.

98



CHAPTER 5

Semi-Supervised Surface Anomaly Detection of Composite

Wind Turbine Blades From Drone Imagery
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5.1 Introduction

Global energy demand is increasing significantly. Between 1971 to 2010, demand

for energy increased 2.4 fold (+134%) and is predicted to increase by +204% by the

year 2030 [207]. The ‘1992 - Kyoto Protocol’, introduced by the United Nations

Framework Convention on Climate Change (UNFCCC), entered into force in 2005.

The Kyoto Protocol regulates 192 member countries to limit and reduce Greenhouse

Gas (GHG) emissions in line with agreed individual targets. Fundamental to reduc-

ing GHG emissions is to transition from fossil fuels such as coal, oil, and natural gas

to renewable sources of energy such as nuclear, wind, solar and tidal to name only

a few. Renewable energy sources emit negligible CO2 emissions and can supply for

the increase in demand for power.

The Global Wind Energy Council (GWEC) estimates a 17-fold increase in wind

power generation, providing as much as 25−30% of global electricity by the year 2050

[208], equating to 123 petawatt-hours (PWh) of electricity annually [209]. Unlike the

reliability of fossil fuel-based energy sources to produce energy on demand, however,

wind energy is temperamental. Low wind speeds do not provide sufficient lift forces

for turbine blades to rotate whereas high wind speeds exceeding > 25m/s (90km/h),

commonly force many modern turbines to shut down as a safety measure [210].

Few locations provide reliable and sufficient supply of wind to meet energy de-

mands. Offshore wind farms are now favoured due to factors which include: the

availability of large continuous areas suitable to major projects, and the reduction

of visual or noise impact. This promotes construction of broad, widespread wind

farms featuring multitudinous, larger turbines at offshore sites which generate sig-

nificantly more power than their smaller, onshore counterparts. An example as to

the scale of modern offshore wind farms is the Hornsea 1 wind farm which contains

174 turbines spread across an area of 407km2. Due to exhaustive usage and weather-

related degradation, such turbine installations including the exposed turbine blades

must be routinely inspected for damage. A common cause of failure is turbine blade

damage such as: erosion, kinetic foreign object collision, lightning or other weather

100



related phenomenon, and delamination to name only a few.

Wind Turbine Blades are typically made from fibre-reinforced composites due

to such materials exhibiting heterogeneous [211] and anisotropic properties [212].

Typically they are constructed from Glass Fibre Reinforced Plastic (GFRP) ma-

terials [211]. GFRP offers the material properties of being both strong (able to

withstand an applied stress without failure), and ductile (able to stretch without

snapping). These properties are desirable for wind turbine blades due to the strain

of operational forces (constant torque forces from lift and rotation) as well as nat-

ural forces from weather fronts and foreign object collision during operation. Over

time, these forces can cause damage to the blades which may require a turbine to

halt operation for a period of time, or even necessitate operational cessation of the

turbine, which are both costly. This is why they must be routinely and regularly

inspected in order to prevent such events [213]. In the example of the Hornsea 1

farm, each turbine on the farm has 3 blades equating to 522 total blades each with

an approximate surface area of 600 m2. Due to the sheer area, quantity, and size

of turbines in new offshore wind farms, engineers and inspectors experience tremen-

dous challenges in inspecting turbine blades for damage to prevent subsequent costly

failures.

Within commercial wind energy generation, the monitoring and predictive main-

tenance of wind turbine blades in-situ is a crucial task, for which remote monitoring

via aerial survey from an Unmanned Aerial Vehicle (UAV) is commonplace [12].

Turbine blades are susceptible to both operational and weather-based damage over

time, reducing the output energy efficiency of turbines. In this study, we address

automating the otherwise time-consuming task of both blade detection and extrac-

tion, together with visual surface fault detection within UAV-captured turbine blade

inspection imagery. We propose BladeNet, an application-based, robust dual archi-

tecture to perform both unsupervised turbine blade detection and extraction, fol-

lowed by super-pixel generation using the Simple Linear Iterative Clustering (SLIC)

method to produce regional clusters of visually similar parts. These clusters are

then processed by a suite of semi-supervised detection methods to detect visual sur-
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face anomalies on the blade. Our dual architecture detects surface faults of glass

fibre composite material blades with high aptitude while requiring minimal prior

manual image annotation. BladeNet produces an Average Precision (AP) of 0.995

across our Ørsted blade inspection dataset for offshore wind turbines and 0.223

across the Danish Technical University (DTU) NordTank turbine blade inspection

dataset. BladeNet also obtains an AUC of 0.639 for surface anomaly detection

across the Ørsted blade inspection dataset. We compare our segmentation-driven

U-Net [30] approach to common-place object detection methods: Mask RCNN [18],

YOLACT [19] and Cascade Mask RCNN [20]. We note in our findings that these

prior methods do not produce segmentation masks which tightly bind to the edges

of the turbine blade, opting instead to oscillate and miss important details such as

the vortex generators and blade tip. As the edges of the blades are more susceptible

to damage, it is vital that they are included in the detection. BladeNet is able to

capture a tight fit to the Ørsted turbine blades which leads to successful detection

of surface abnormalities in the second stage of the architecture.

 A B C D

Figure 5.1: Transfer detection of an out-of-dataset turbine blade illustrating the
robust ability of our method A) Image of wind turbine with marked region on the
blade and nacelle, B) Cropped region of turbine blade, C) Raw model output, D)
Threshold model output producing final blade detection.

5.2 Approach

Our approach is two-stage with the operations of: 1) Blade detection and extraction

and 2) Semi-supervised surface anomaly detection. The first stage, The BladeNet

U-Net detection pipeline is outlined in Figure 5.2 and performs blade detection and
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extraction (Section 5.2.1) to solely obtain turbine blade parts from a given image.

Figure 5.1 outlines this detection process step by step starting from a given image

through to obtaining a mask solely containing blade parts in the data. Extracted

blades are then subsequently processed with the Simple Linear Iterative Clustering

(SLIC) [16] method (Section 5.2.2) which is illustrated in Figure 5.7 to generate

super-pixel clusters which are used as input to the second stage which performs semi-

supervised anomaly detection via a suite of well-established approaches to detect

visible surface anomalies present on the blade (Section 5.2.3).

5.2.1 Blade Detection and Extraction

Accurate detection and extraction of turbine blades in any given image is crucial

to the success of the semi-supervised anomaly detection approaches downstream

[2, 6, 13, 124] (Section 5.2.3). If background or any such artifact in the image is

introduced, then it could corrupt the learned representations over normal blade

data obtained by the semi-supervised methods. Example cases are:

• If the predicted mask is too big and includes the sky around the blade, if there

are artifacts in the sky around the turbine blade such as birds or aircraft,

then the images could be flagged as anomalous even though the blade itself is

healthy, thus leading to false positives during inference.

• The opposite implies that parts of a given blade are missed from the extraction

and not included within the normal class training data. This would mean that

the semi-supervised anomaly detection methods may not have exposure to

adequate amounts of certain blade parts leading to missing representations

during training. Such missing blade parts would also miss being classified

during inference time leading to ambiguity as to the health of the blade part.

When detecting large objects such as turbine blades in high-resolution (6720

× 4480) drone imagery, conventional instance segmentation models [18–20] output

masks which appear wavy when placed over the object in the original image. This

is outlined qualitatively in Figures 5.11 and 5.10. The masks of Mask R-CNN [18],
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Figure 5.2: Outline of the BladeNet UNet segmentation module which returns the
instance segmentation mask of blades in the input images to match the opening
operator.

YOLACT [19] and Cascade Mask R-CNN [18] all exhibit oscillating detection bound-

aries around the straight edges of the blades as well as fail to capture important

sections of the blade such as the tip and triangular edges of the blades which are

more prone to damage and as such have more potential to feature anomalies. This

oscillation of the segmentation masks is due to the resizing of the predicted mask

which is 15 × 15 for (Cascade) Mask R-CNN and 138 × 138 for YOLACT up to

the full resolution which exacerbates the loose fit of the mask boundary due to the

exaggeration of edges in the small mask. Detection methods also use discrete poly-

gon annotations for objects which under-sample the true outline curves of an object

which can fail to capture them with enough precision.

Our approach extracts turbine blade parts from a given image and discards

background and unwanted artifacts by utilising a Fully Convolutional (FCN) U-Net

[30] architecture for one-class instance segmentation. This architecture is outlined

in Figure 5.2. Five convolutional encoders are used to encode images to a latent

representation of shape 1024×8×8. This latent representation is then decoded using

Five convolutional transpose layers connected in series as well as residual connections

from their encoder counterparts. The output is a 1-channel mask outlining a pixel-
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wise segmentation of where a blade is present in a given image. This process is

illustrated in Figure 5.1. Firstly, fixed image patches are taken from the original

image (Figure 5.1: A and B). These patches are then used as input into the U-Net

module to produce a raw pixel-wise mask outlining maximal activation on blade

parts (Figure 5.1: C). A threshold value is then applied to this raw output, producing

a clean and denoised segmentation mask (Figure 5.1: D) of turbine blade parts in

the original patch.

To create ‘pseudo ground truth’ for our model, we utilise morphological operators

and negative example sampling. Using our Ørsted turbine blade inspection dataset

Xb; for each xb ∈ Xb where xb ∈ RB×3×H×W , the Opening Morphology Operator

xb ◦ S =
⋃

s∈S({z ∈ E|Sz ⊆ xb}) as a combination of erosion xb ⊖ S followed by

dilation xb ⊕ S provides pseudo ground truth for ∀Xb which closely approximates

the true edges of the wind turbine blades in Xb. Figure 5.3 illustrates successful

pseudo-ground truth segmentation masks which closely match the Ørsted turbine

blades in the given imagery.

Figure 5.3: Top Row: Original images from Ørsted turbine blade dataset. Bottom
Row: Pseudo-ground truth after applying Opening operator on the original images
in the top row. Note that the red circle on the turbine blade on the left-most image
of the turbine blades (above), is considered normal by the Ørsted and these circles
are put on the turbine blades on purpose, the authors have not included the circle
on this image.

This method of generating ground truth offers a fast and efficient way to segment

the turbine blades. However, the Opening operator is fragile and very sensitive to
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.

Figure 5.4: Top Row: Original images from Ørsted turbine blade dataset. Middle
Row: Incorrect pseudo-ground truth after applying Opening operator on the origi-
nal images in the top row. Bottom Row: Correct segmentation of turbine blades
via the trained U-Net detection module of BladeNet.

Figure 5.5: Top Row: Images from the NordTank turbine blade dataset which do
not feature turbine blade parts (negative samples). Bottom Row: Raw output
from BladeNet showing null detection of the image above.

changes in the images. Due to the fragility of the operator, the pseudo ground-truth

must be manually screened ahead of training to remove unsuccessful cases from

the training set. Figure 5.4 illustrates failure cases of the operator which must be

removed prior to training as they feature high levels of noise in the detection and
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missing blade parts. The fully trained U-Net segmentation model trained on clean

ground truth obtains clean detection of these failure cases, however.

Negative class examples xn /∈ Xb consisting of images of sky and ground are

introduced during training with a ground truth tensor of zeros of shape RB×3×H×W ,

indicative of no blade presence in the image. Figure 5.5 shows the negative sampling

of both ground and sky images together with their detection output. By performing

this, BladeNet learns what it must pay attention to, and ignore in a given image

and also makes the model more robust to background artifacts.

5.2.2 Superpixel Extraction

In this work, we implement Simple Linear Iterative Clustering (SLIC) [16] for gen-

erating sub-region patches of the full blade rather than using conventional sliding

window patches.

Approximately n clusters of neighbouring pixels are generated by stepping over

an image of resolution N = X × Y with an interval I = |
√

N
|n| | and taking a

set of |n| centre points C = ∀n ∈ I, {xn, yn}. Each centre cn ∈ C is refined by

taking the best matching pixels from the neighbourhood of 2S2 < X × Y |S ∈ N

surrounding pixels utilising euclidean distance upon both the pixel colour vector

(L×a×b) and the pixel coordinates as: Ds =
√

(ln − li)2 + (an − ai)2 + (bn − bi)2+

m
S

√
(xn − xi)2 + (yn + yi)2 where m is the spatial proximity factor of the method.

SLIC patches contain pixels which share visual characteristics to other pixels

belonging to the same super-pixel. Super-pixels increase the likelihood that an

anomalous region in the image, or key region of interest for a given blade will not

likely be situated across the edge of two neighbouring patches. If an anomalous

region is split across two patches, then it not only decreases the size of region by

the size of the overlap, but the edge of the patch restricts the features of the area

surrounding the anomalous region to only the edge of the image hence the model

will not be fully utilising the spatial information of the anomalous region.

The patches generated by SLIC are likely to contain the full defect, or no defects

at all due to the technique of clustering together similar neigbourhood values of
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B

Figure 5.6: Example of Simple Linear Iterative Clustering (SLIC) [16] Superpixel
Segmentation across flower (A) and Durham (B) using σ=5 with number of seg-
ments as 100, 200, and 300 (1, 2, 3)

0 1 2

Input  Images Extracted Turbine Blade SLIC Superpixel Segmentation

Figure 5.7: left: original input image from the NordTank dataset. centre: The
extracted blade parts after detection and instance segmentation. right: SLIC super-
pixel regions with sigma=5 and number of segments set to 100 across the extracted
blade.

pixels. This is illustrated in Figure 5.13. This makes it easy to sift through the

images, and quickly decide which are normal and which contain defects. This task

would be a bit more difficult to perform with the sliding window approach due to the

fact that the anomalous region could be on the boundary between two neighbouring

windows, minimising the size of the anomalous region by half and making it harder

for the model to detect such anomalies.
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5.2.3 Anomaly Detection

Semi-supervised anomaly detection is performed by using super-pixel regions which

have no visible defects present to train well-established anomaly detection models.

These work by generatively mapping normal images to a latent representation such

that when a visual defect presents itself, the representation will differ from normality

and the presented example will be flagged as anomalous.

In this work, we utilise the self-supervised anomaly detection algorithms AnoGAN,

GANomaly, Skip-GANomaly and PANDA [2,4, 6, 13] to provide benchmark perfor-

mance across this task of detecting surface faults in composite blade materials due

to their proven success across prior anomaly detection tasks. We propose the novel

semi-supervised anomaly detection approach of U-GANomaly outlined in Section

5.2.4 which outperforms the benchmark performance across this task.

5.2.4 U-GANomaly

The introduction of residual (skip) connections to the generator of GANomaly [2]

produces the Skip-GANomaly architecture. Identical to the GANomaly architecture

with the exception of extending the Generator module into a U-Net [30] with the

use of residually combining information from the prior encoders with the respective

decoders. This ensures that early low-level features in the encoding process are

carried forward while decoding which better models normal representations. The

limitation of Skip-GANomaly, however, is the use of the discriminator from the Deep

Convolutional Generative Adversarial Networks (DCGAN) method [125]. As this is

a novel classifier-based approach, it suffers from learning a representation that is able

to penalise the Generator based solely on the most discriminative differences between

the real and synthetic data [17]. As such the discriminator focuses on either global

structure or local details [17]. This limitation is tackled in the work by Schonfeld

et al. [17] by introducing a decoder module to the discriminator architecture which

decodes the representation prior to categorisation into a 1 channel map outlining

a pixel-wise discrimination score map for a given input image. This resulting map
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produces a continuous per-pixel discrimination score which is used in conjunction

with the classification after encoding to feedback more information to the Generator

during training. By introducing this U-Net discriminator to Skip-GANomaly, we

create a fully residual, double U-Net network for semi-supervised anomaly detection.

Our experiments show that this approach outperforms all benchmarks produced by

prior methods. The anatomy of this approach is outlined in Figure 5.8. We choose

to implement this approach into the GANomaly [2] because, this architecture has

been proven to be effective in the literature on a number of tasks and the repository

is easy enough and robust enough to implement such changes to accommodate for

this new architecture.

(64,128, 128)

(128, 64, 64)

(256, 32, 32)

(512, 16, 16)

(1024, 8, 8)

1024

real/fake

(64,128, 128)

(128, 64, 64)

(256, 32, 32)

(512, 16, 16)

(512, 8, 8)

d(X')x x'

Generator Discriminator

Figure 5.8: Overview of the U-GANomaly architecture featuring the dual U-Net
architecture featuring the Generator module from Skip-GANomaly [6] and U-Net
Discriminator module from [17].

5.3 Experimental Setup

We evaluate the performance of the BladeNet architecture by individually compar-

ing each component. We start with evaluating the capability of the blade detection

and extraction (Section 5.4.1) component and then compare the anomaly detec-

tion methods across the extracted blades to detect anomalous regions on the blade

surfaces (Section 5.4.2).

The two datasets used in this chapter are the Ørsted turbine blade inspection
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dataset and the DTU NordTank blade inspection dataset. The Ørsted turbine blade

inspection dataset consists of drone inspection imagery of offshore wind turbine

blades from the Hornsea 1 wind farm. It contains 3941 images of offshore turbine

blades from varying perspectives in differing weather and backdrop with resolution

6720 × 4480. The DTU NordTank dataset is supplied by [12] and contains 701 high

resolution (5280 × 2970) images captured by a drone of “Nordtank” wind turbines

located at the DTU Wind Energy onshore test site at Roskilde, Denmark.

We evaluate BladeNet against established benchmark methods. We train our

detection method solely across the Ørsted turbine blade inspection dataset with the

pseudo-ground truth together with negative image samples. In total, 1310 images

were rejected due to having poor ground-truth (Figure 5.4) leaving us with 2631

Ørsted images (33.2 % reduction) for training. We use a 20:80 split for testing

and training respectively. After training, we report the performance after inferring

across both the Ørsted dataset and DTU NordTank dataset separately using the

same learned model parameters to demonstrate the robustness of the BladeNet

detection approach.

All training was performed on a Titan X GPU. The hyper-parameters of the

experiment are taken from the original work by [18–20]. Binary Cross Entropy

(BCE) with logits loss with a learning rate of 0.001 was utilised for the U-Net blade

detector along with RMS Prop optimiser with weight decay of 1e−8 and momentum

of 0.9. Image scaling by 0.2 was also performed to preserve memory usage with a

batch size of 10. Data augmentation is performed via rotation (degrees 90, 180,

270), flipping with probability 0.5, and random crop. The hyper-parameters of

prior anomaly detection methods are taken from the original work by [2,4,6,13,14].

The Generator module of U-GANomaly uses the same hyper-parameters as Skip-

GANomaly [6]. The hyper-parameters of the Discriminator module are also taken

from the original Skip-GANomaly [6] implementation but, an additional BCE loss

term is implemented upon the decoded output produced by the U-Net Discriminator

[17, 30]. The Adam optimiser with learning rate of 2e−4 and epsilon of 1e−8 was

used across a batch size of 64 during training.
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5.4 Evaluation

We gauge the performance of our method in two parts; first, by evaluating the blade

detection and extraction capability (Section 5.4.1) and then assessing the efficacy of

semi-supervised anomaly detection (Section 5.4.2) across the extracted blade parts.

5.4.1 Blade Detection and Extraction

The quantitative performance outlined in Table 5.1 shows that Mask R-CNN per-

formed equally in Average Precision (AP) with YOLACT at 0.983 across the Ørsted

dataset. However, YOLACT obtained a greater AP value of 0.023 on the transfer to

the DTU NordTank dataset. Cascade Mask R-CNN surpassed the performance of

YOLACT across the Ørsted dataset and achieved the best time efficiency of 520.12

ms of all models in the study, but performs worse than Mask R-CNN across the

DTU NordTank dataset with AP of 0.002. Our method, BladeNet performs the

best quantitatively, obtaining an AP of 0.995, 0.1 higher than the next best per-

forming (Cascade Mask R-CNN) and an AP of 0.223 on the transfer DTU NordTank

dataset, far out-performing all prior methods. Although it outperforms however, this

does not in any way deem the method suitable for real-world application, only that,

compared with the other metrics in this chapter, the bladenet approach performs

better, as illustrated by the detections in Figures 5.10 and 5.11.

BladeNet produces clean and sharp masks which fit the blades closely and man-

age to detect the sharp triangular parts of the mid-body blade and the blade tip

with high precision. These masks can be seen in Figures 5.12 where clean segmen-

tation masks are produced which fit closely to the edges of the blades additionally,

Figures 5.11 and 5.10 show that when zooming in on the edge of the mask predic-

tions, BladeNet remains tight with the true edge of the blade, missing only slight

parts on the inside of the blade; As the edges are accurately captured, they can be

used to extract the blade instead of the multiplication operation and still include

these missing parts in the extracted blade whereas other methods such as Mask

R-CNN and Cascade Mask R-CNN fit the turbine blades poorly, exhibiting waving
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Figure 5.9: BladeNet output of turbine blade detection using inference of U-Net
semantic segmentation module trained on data obtained from Ørsted turbine blade
inspection showing both blade detections (left), and negative images containing no
turbine blades (right).

segmentation mask predictions over the same images which miss out important sec-

tions of the blade edge and tip which are more prone to anomalies (edge erosion).

Using these methods would impose null-categorisation of such parts of the blade

in the next stage and hence impose false-negative error due to anomalous regions

going undetected. Figure 5.12 further shows the capability of BladeNet at detect-

ing numerous Ørsted turbine blade parts from different poses and angles with high

accuracy.

In Figure 5.9, detection across both the Ørsted and DTU NordTank dataset

is illustrated. BladeNet is able to detect the blades from the Ørsted dataset with

high-aptitude, but the detections across DTU Nordtank have noisier detections. It

is interesting that for the negative sample on the DTU NordTank dataset, BladeNet

mistakenly predicts that the metal corrugated roof of the building is a turbine blade

due to the colour and straight edges of the roof, resembling that of a turbine blade.
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Table 5.1: Average precision (AP) at IoU = 0.5, number of parameters in Millions.
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Figure 5.10: Instance segmentation mask quality comparison across the Ørsted
Drone Inspection Dataset between Mask R-CNN [18], YOLACT [19], Cascade Mask
R-CNN [20] and BladeNet.
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Figure 5.11: Instance segmentation mask quality comparison across the DTU Blade
Inspection Dataset between Mask R-CNN [18], YOLACT [19], Cascade Mask R-
CNN [20] and BladeNet.
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Figure 5.12: Examples of high accuracy instance segmentation and bounding box
prediction of Ørsted turbine blades using BladeNet.
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5.4.2 Anomaly Detection of Surface Defects

We include a quantitative study of Semi-Supervised anomaly detection approaches

over the extracted SLIC super-pixel data of turbine blades. It can be seen in Table

5.2 that the U-GANomaly approach gains the highest Area Under Curve (AUC)

value of 0.65 with a 95% Confidence Interval (CI) between 0.65 and 0.66. The

performance of PANDA at AUC 0.64 is comparatively close to the performance

of Skip-GANomaly which obtains 0.63. However, these models suffer from slower

relative inference time compared to that of the Autoencoder which obtained 0.62,

but only took 8.61 milliseconds compared with U-GANomaly at 96.34ms. AnoGAN

exhibits sluggish inference speed of over 300ms for prediction and obtains the lowest

AUC value of 0.61. However, the 95% CI is similar to that of the AE architecture.

The qualitative anomaly detection localisation results of U-GANomaly across

the SLIC super pixels of the blade data can be seen in Figure 5.13. This shows that

U-GANomaly can detect and segment surface faults in composite blade imagery

with high accuracy even when such blade segments are small. Observing the results

of this method, it is clear that the performance of the model would warrant it of

little use in the real-world, however, we wish to show that we can benchmark these

methods on this dataset as a building block for future research. We hope that future

methods will increase this performance and result in a commercial product to be

used in the real-world application.

Table 5.2: Area Under Curve (AUC) of ROC curve, inference time per image in
Milliseconds (I/t(ms)) across semi-supervised anomaly detection methods.

Model AUC
95% CI
(AUC)

I/t/(ms)

AE 0.62 (0.61, 0.63) 8.61
AnoGAN 0.61 (0.61, 0.63) 302
GANomaly 0.63 (0.61, 0.63) 48.36
Skip-GANomaly 0.63 (0.62, 0.64) 97.21
PANDA 0.64 (0.63, 0.65) 50.3
U-GANomaly 0.65 (0.65, 0.66) 96.34
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Figure 5.13: Turbine blade SLIC superpixel segmentations containing surface faults
together with their corresponding anomaly masks produced by the U-GANomaly
architecture.
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5.5 Conclusion

Within this chapter we propose a method for accurately detecting and segmenting

visual surface faults present in Glass Fibre Reinforced Plastic (GFRP) turbine blade

structures. We use official visual turbine blade inspection data collected from the

onboard camera of an Unmanned Aerial Vehicle (UAV) across both onshore (DTU

Nord Tank [12]) and offshore (Ørsted [29]) wind turbines. We propose BladeNet,

a dual-stage architecture to first detect and extract turbine blade parts from given

imagery and then to categorise these blade parts as normal or otherwise anomalous

while requiring minimal manual annotation in the training process.

We make use of the opening morphological operator to produce pseudo groundtruth

for the Ørsted dataset. This process gives accurate pixel-perfect annotations blade

detections for a vast amount of turbine blade images for free, but is very fragile as

the contrast between the detections in Figure 5.3 and Figure 5.4 illustrates. Due to

this instability, we train a U-Net [30] architecture across this pseudo groundtruth

together with negative samples (Illustrated in Figure 5.5) which then manages to

cleanly segment the failure cases of the operator. We chose to use this U-Net seman-

tic segmentation approach as it gives very accurate, pixel-perfect instance segmen-

tation masks for blade edges while conventional Object Detection methods [18–20]

give oscillating edges (as shown in Figures 5.10 and 5.11) on their predicted masks

which can fail to capture the leading edge or blade tip which are regions which are

most prone to damage [12]. The quantitative results outlined in Table 5.1 show that

our U-Net detection method gains vastly superior detection performance, obtaining

an Average Precision of 0.995 across the Ørsted dataset and 0.223 when transferred

across to the DTU Nordtank dataset while utilising fewer (17.3 million) parame-

ters. One limitation is slow throughput of 3439.21ms per image, however, which

could render the real-time, in-situ deployment of this method infeasible. Another

limitation is that the turbine blade images in our datasets have singular instances

hence allowing us to use a semantic segmentation model for object detection; In the

eventuality that the task contains multi-instance objects per image, our method will
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not be able to distinguish between the different instances and as such will have to

be paired with a detection method capable of multi-instance detection to give the

individual categorisation of blades.

The accurate blade extractions are then split into patches by the SLIC method

(Section 5.2.2) checked for damage by a suite well established architectures [2,4,6,13,

14] for semi-supervised anomaly detection, the best performing of which, PANDA

[13] obtains an AUC of 0.64. We also introduce U-GANomaly (Section 5.8), a

fully residual modification of Skip-GANomaly where we replace the DCGAN [125]

discriminator module with a U-Net discriminator [17] which obtains a state-of-the-

art AUC value of 0.65. We also demonstrate the capability of U-GANomaly to

accurately segment the anomalous regions of the turbine blade subsections in Figure

5.13.
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CHAPTER 6

Conclusion

Visual anomaly detection is an inherently difficult task even for humans to perform

effectively. The open-set nature of anomalous samples means that they may present

in any style or shape and as such, effectively representing the anomalous class is

difficult and often are rare occurrences in real-world tasks. An example is the task

of detecting threat items in x-ray baggage scans; Anomalies may present very rarely,

but the security operators will still have to accurately detect them. This can lead to

severe class imbalance, or no anomalous class entirely in anomaly detection tasks.

This is why it is preferable to train solely across the normal data (Semi-supervised)

to essentially detect how deviant from normality a given sample is during inference

using the knowledge of normality established during training.

Work in semi-supervised anomaly detection which assumes no access to anoma-

lous data during training can all be broadly categorised into three paradigms: prob-

abilistic, classification-based and reconstruction-based. Although probabilistic and

classification-based approaches gain superior results in anomaly detection capability,

they often struggle with explainability during inference as to why a given sample is

anomalous or otherwise normal. The later, classification-based approaches are also
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prone to adversarial examples, which some anomalies in visual tasks with a lesser

degree of uniformity may present as normal to these models. As such, the work

in this thesis primarily focuses on reconstruction-based approaches which have ob-

tained significant traction lately. As the reconstruction error is a pixel-wise direct

score of abnormality, it can be used to explain, to some degree, the regions which are

anomalous in a given image which is illustrated at multiple times throughout this

thesis. Of particular interest, however, are samples which deviate only slightly from

normality and as such, pose a significant challenge to anomaly detection methods.

To address this problem with accurately detecting subtle anomalies, this thesis

introduces a method to perform fine-grained anomaly detection via a number of be-

spoke components. This method is proven through rigorous evaluation across many

challenging datasets, to be superior to other such anomaly detection approaches

in the literature. Further to this, the thesis then applies this model and others to

the task of detecting faults in Glass Fibre Reinforced Plastic (GFRP) wind tur-

bine blades by using a two-stage process consisting of blade detection, followed by

anomaly detection. The detection approach not only detects turbine blades with

more accuracy, but also segments the edges of the turbine blades with more pre-

cision whereas other methods exhibit oscillating detections. The following section

outlines the contributions contained in this thesis in more detail.

6.1 Contributions

The work within this thesis begins by outlining, in Chapter 2, a comprehensive

review of literature into previously proposed methods in anomaly detection with a

direct focus on state-of-the-art methods utilising reconstruction-based approaches.

The Perceptually-Aware Neural Detection of Anomalies (PANDA) method is in-

troduced in Chapter 3 and is a model proposed to better detect fine-grained (visually

subtle) anomalies within visual data. The PANDA method applies an adversarially

trained autoencoder which is inspired from the VQ-VAE architecture [177] together

with a unique and bespoke fine-grained discriminator module. Through the exhaus-
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tive qualitative and quantitative evaluation of this method outlined in this chapter,

it is evident that the PANDA approach out-performs prior state-of-the-art meth-

ods [2, 4–6] and manages to detect subtle, as well as severe anomalies within visual

samples presented at inference as illustrated in Figures 3.6 and 3.8.

While autoencoder methods are inherently more stable than GAN-based ar-

chitectures during training for reconstruction-based anomaly detection, they are

still prone to unintentionally fitting to the identity function [214, 215]. One way

to circumvent this is to use a denoising approach [105] as this forces the autoen-

coder to learn the reconstruction of a reference pixel solely using the information

of the surrounding pixels when the reference pixel is masked. Prior methods of

denoising utilise manually defined noise such as Gaussian noise [216, 217], image

masking [218], or a combination of noise [201, 219] and have shown improved re-

sults, especially in the task of reconstruction-based anomaly detection. Methods

implementing learned noise have been proposed in the task of reconstruction-based

anomaly detection [31, 32, 206]. However, they suffer from downfalls which are out-

lined in the chapter. Such weaknesses include:

• Sampling pre-defined adversarial examples prior to training which maximise

latent distance, but minimise perceptual distance [31]. This does not take into

account the dynamic nature of the latent representation during training; if it

did, it would be very computationally expensive and would increase training

latency significantly.

• Singular valued masking [32] which does not tailor the noise to the particu-

lar task being trained on, instead opting for a ‘one-size-fits-all’ approach to

masking.

The work presented in Chapter 4 proposes an approach that tackles these limita-

tions within prior works by introducing adversarial training between a noise genera-

tor module and a denoising autoencoder. The noise generator is trained to maximise

the loss of the reconstruction while the denoising autoencoder is conversely trained

to reduce it. This results in optimally difficult, bespoke and continuous noise being
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applied to the images and thus leads to more a more robust denoising autoencoder

during inference. The results outlined in this chapter suggest strongly that this

method performs better than these prior methods.

Lastly, Chapter 5 outlines an approach to detecting flaws in the surface of GFRP

wind turbine blades using non-annotated visual drone imagery data. The pipeline

initiates by accurately extracting turbine blades using a semantic segmentation U-

Net [30] approach trained on pseudo-ground truth masks generated from morphology

operators to separate the sky from the turbine blade in some cases. Some of the

blade regions extracted in this way would not be accurate, so the best images are

manually selected and used for training of the U-Net together with negative samples

containing images of ground and sky. This creates a more robust segmentation model

that can rectify the annotation of sub-optimal blade extractions to be more accurate,

as demonstrated in Figures 5.4 and 5.3. These accurately extracted blade parts are

then processed using the SLIC [16] algorithm to generate super-pixel sub-regions

of the larger blade. Each superpixel is then processed using a suite of anomaly

detection approaches [2, 4, 6] including the method from Chapter 3 [13] as well as a

new architecture which we propose in this chapter, U-GANomaly, which utilises a U-

Net generator, and then takes inspiration from [17] to utilise a U-Net discriminator

which gives pixel-level feedback (rather than a classification loss feedback) to the

generator module during training. It is shown in our quantitative experiments that

this approach is competitive to all prior methods of anomaly detection featured.
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6.2 Limitations and Future Work

This section will discuss the limitations of the work presented in this thesis as

well as any potential for future work to be built from the approaches presented.

Although much of the work achieves substantial improvement over prior work, there

are certainly limitations of such work. This enables the research process to continue

in exploring these limitations and further improving methods to obtain even better

results than the ones presented within this thesis.

6.2.1 Limitations of Approaches

The goal of the PANDA method in Chapter 3 was to produce an approach which

would accurately detect subtle anomalies while reducing the number of false posi-

tives. Although the PANDA approach obtains superior results at detecting anoma-

lies, it comes at the cost of added complexity of the model. This is particularly

evident in the fine-grained classifier discriminator module which features intricate

parts, most of which are inspired from prior work in the task of Fine-Grained Im-

age Categorisation (FGVC) [185, 186]. This complexity can make it difficult to

debug when trying alterations to the architecture especially during experimenta-

tion. This chapter is the first to propose a fine-grained classifier discriminator to

the task of reconstruction-based anomaly detection. This discriminator approach

improves performance of our method as demonstrated in Table 3.2 and enables a

lower reconstruction error than other prior work compared with that of the DCGAN

discriminator [125] as used in [2, 6]. It will be interesting to observe if any future

work will adopt this discriminator paradigm to other such areas of computer vision

such as image generation or semantic segmentation. It is interesting within our

study that we show that Perceptual Loss [175] does not make a significant difference

to the performance of our reconstruction-based approach and even damages perfor-

mance in some tests which we performed experimentally, even though it achieves

highly promising results in style transfer tasks.

The adversarial noising approach (ALCN) featured in Chapter 4, although per-
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forming well at increasing performance of a novel autoencoder denoising network,

there are improvements which could help to further boost performance of the model.

The first would be to implement a scheme similar to the work by Adey et al. [201]

in which the full image is not reconstructed, but rather a mask which when applied

to the noised input, creates the original input. This has shown to improve per-

formance, however, in [201] the authors utilise user-defined noise and so the hope

is that adding the ALCN adversarial noising technique could enable better perfor-

mance than each method separately. Another change could be to guide the noising

via attention-based methods which would corrupt the maximally important regions

rather than globally across the image. Although the ALCN method shows that it

is possible to increase performance with adversarially learned noise, it also has a

large parameter overhead, so optimisations may be required to reduce the size of

the model.

Chapter 5 presents an approach utilising a two-stage process to detect faults in

Glass-Fibre Reinforced Plastic (GFRP) materials. As mentioned in the Conclusion

of this chapter, the U-Net segmentation model does not utilise instance segmenta-

tion, and rather performs semantic segmentation. As the turbine blades are typi-

cally inspected close-up and on a one-by-one basis by the unmanned aerial vehicle,

a semantic segmentation method can be used in this given use-case. However, if

there are multiple blades in a given image, then each blade will be categorised as

the same blade and faults on blades may be mixed up if the model is focusing on

another blade while running the inspection on a different blade. The other such

object detection methods utilised in this work [18–20] succeeded at object detection

of each blade. However, the segmentation masks were sub-optimal (as illustrated

in Figure 5.10). To this end, perhaps a solution implementing an efficient detection

and segmentation (hybrid approach) could be effective for multi-blade detection and

segmentation in super high-resolution imagery. Further to this, the act of splitting

each blade into super-pixel sub-regions and processing each of them separately is

also time-consuming. It would be better to run an anomaly detection algorithm

on the full-scale blades, or fixed-shape sliding window patches so as to avoid the
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anomalous misclassification of the edges of the superpixels as evidenced in Figure

5.13.
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6.2.2 Limitations of Data

On the whole, the datasets used for training and evaluating the presented methods

within this thesis offer a rigorous and controlled way in which to benchmark and

compare the performance to other such methods. This is with the minor exception

of the Ørsted Turbine Blade dataset featured in Chapter 5. This dataset came from

engineers at Ørsted who annotated flaws with the turbine blades in-situ during

inspection. Annotations contained within the Ørsted dataset are shown visually in

Figure 6.1. The annotations are severely limited in that: Neither bounding box

nor polygon segmentations of blade outlines were included in the data, annotations

of the location of blade damage are rarely accurate such that they contain singular

coordinates for large damage regions (Figure 6.1C) or miss the blade entirely (Figure

6.1D).

A B C D

Figure 6.1: Visualisations of blade damage location annotations within the Ørsted
Turbine Blade dataset. The centre of each red circle outlines a coordinate annotation
of blade damage supplied in the dataset. A and B show the annotations close to
the blade damage. C shows that a singular coordinate point is supplied for damage
across a large region. D shows the annotations laying off the turbine blade all-
together.

The dataset by Shihavuddin [12] was also missing sufficient annotation. Although

the authors of the work [12] used the segmentation of damaged parts, they did not

publicly release such annotations. As a result we annotated the 1170 images of

this dataset with polygon segmentations outlining where the blades are in given

images. This allowed the method presented in Chapter 5 to be adequately measured

on out-of-distribution examples. We could not, however, annotate the damaged

region of the blades due to the technical skill and knowledge required to perform

this evaluation; As such, the performance of the anomaly detection stage of the
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approach is limited across this dataset. In order to properly evaluate and benchmark

our method, accurate and detailed annotations of defective blade parts are required

across this dataset. This may be costly, however, due to the aforementioned technical

knowledge required to carry this out and the time-consuming nature of such a task.

130



Bibliography
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