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Abstract

This thesis explores the use of machine learning in financial derivatives, particularly stock options,

to improve understanding and prediction of option pricing. It includes three empirical chapters.

Chapter 1 evaluates machine learning models that integrate various firm characteristics to predict

stock option prices. It introduces two semi-parametric models: a variant of Andreou, Charalam-

bous, and Martzoukos (2010) generalized parametric function model (GPF) and Lajbcygier and

Connor (1997)’s hybrid model (HBD), applied to U.S. stock options from 1996 to 2021. The GPF

model consistently outperforms the HBD model, with specific firm characteristics emerging as key

predictors of option prices. Chapter 2 explores the predictive capacity of option market characteris-

tics, especially implied volatility and Greeks, in forecasting extreme stock returns of the underlying

assets. The study employs the LightGBM algorithm, which significantly outperforms traditional

logistic regression in predicting stock market trends, emphasizing the value of a comprehensive

approach to option dynamics. Chapter 3 builds upon the insights from Chapter 1, focusing on an

in-depth analysis of option Greeks and specific firm characteristics within three semi-parametric

frameworks: GPF, HBD, and AFFT (Almeida, Fan, Freire, and Tang, 2023). This chapter also

explores how these three frameworks maintain consistency with various input features throughout

the Pandemic period. Notably, the GPF framework shows exceptional resilience and adaptability

when integrated with option Greeks and firm characteristics during the Pandemic. Overall, this

thesis underscores the efficacy of incorporating firm characteristics and option Greeks in option

pricing and stock return prediction, highlighting the superiority and adaptability of machine learn-

ing models in volatile market scenarios.

Keywords: Machine learning; Option pricing; Stock extreme return; Firm characteristics; Op-

tion Greeks; Pandemic analysis; Portfolio management.
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Chapter 0

Chapter 0

Introduction

0.1 Introduction

With the advent of machine learning techniques, the field of finance, particularly option

pricing, is evolving rapidly. Traditional models like the Black-Scholes (BS) model, though

foundational, have been challenged by the complex realities of financial markets, including

the non-normality of stock returns and time-varying volatility. The incorporation of machine

learning in this context offers a novel perspective, addressing the limitations of traditional

parametric models by capturing nonlinear and intricate relationships between option prices

and their underlying factors.

This thesis aims to explore the integration of machine learning methods in the realm

of financial derivatives, focusing on stock options. The objective is threefold: to assess the

effectiveness of machine learning models in pricing options, to explore the predictive power

of option characteristics (such as implied volatility and Greeks) for stock returns, and to

evaluate the performance of machine learning structures in option pricing during periods of

heightened market volatility, like the Pandemic.

1



Chapter 0

0.1.1 Introduction of ‘Stock options pricing via machine learning combined

with firm characteristics’

Option valuation is a pivotal area in finance, attracting both academic and practitioner

interest. The Black-Scholes model, despite its limitations like assuming constant volatility

and normal distribution of stock returns, remains a cornerstone in this field. However, models

accommodating the non-normality of returns and time-varying volatility, such as those by

Heston (1993) and Corrado and Su (1996), provide more realistic assumptions.

Traditional option pricing has evolved from models like Black-Scholes (Black and Sc-

holes, 1973) and binomial models (Cox, Ross, and Rubinstein, 1979) to more complex ones

like the LSM algorithm (Samimi, Mardani, Sharafpour, and Mehrdoust, 2017) and Markov

chain techniques (Duan and Simonato, 2001). However, these often struggle with real-world

market behaviours due to their reliance on rigid assumptions that may not align with the

dynamic and unpredictable nature of financial markets. Machine learning offers an alterna-

tive, adaptable approach to option pricing by providing data-driven, non-parametric models

(as introduced by Hutchinson, Lo, and Poggio (1994)) and semi-parametric models that

integrate machine learning with traditional parametric models, thereby offering a dual ad-

vantage. Semi-parametric models like the GPF (Andreou et al., 2010) and HBD (Lajbcygier

and Connor, 1997) structures use machine learning to enhance traditional models’ inputs

or correct pricing errors. Recent machine learning advancements have shown promise in

derivative pricing, with models like generative Bayesian learning (Jang and Lee, 2018) and

support vector regression (Madhu, Rahman, Mukherjee, Islam, Roy, and Ali, 2021) improv-

ing accuracy and efficiency.

Moreover, a growing body of research underscores the impact of firm characteristics on

option pricing. Research by Rubinstein (1983) and Figlewski (1989) note how individual

asset risks, including firm debt and dividend policy, and market imperfections like uncertain

volatility and transaction costs, affect option pricing. Subramanian (2004) extend this to

options in mergers and acquisitions, suggesting firm-specific events significantly influence

2



Chapter 0

pricing. Recently, Trigeorgis and Lambertides (2014); Andreou (2015); Vasquez and Xiao

(2023); Chen, Guo, and Zhou (2023) demonstrate the influence of firm characteristics on as-

set dynamics and option values. Factors such as firm-specific business volatility, managerial

flexibility, market default risk, firm leverage, asset volatility, and firm fundamentals signifi-

cantly shape option valuation and implied volatility curves. Additionally, Zhan, Han, Cao,

and Tong (2022) highlights the correlation between firm characteristics and delta-hedged

equity option returns, emphasizing the relevance of these factors in predicting market be-

haviour and informing investment strategies. These findings inspire our exploration of an

option pricing model that extends beyond standard variables to include a broad set of firm

characteristics, potentially indicative of a firm’s financial health and future performance.

In this chapter, we incorporate a wide range of firm characteristics into option pricing

models, using advanced machine learning algorithms, with the objective of utilizing historical

data, such as realized volatility and other relevant factors, to accurately determine current

option prices. Specifically, we compare two semi-parametric methods - a generalized para-

metric function (GPF) model Andreou et al. (2010) and a hybrid (HBD) model Lajbcygier

and Connor (1997) - against a parametric benchmark model. Our data comprises 15.2 mil-

lion U.S. stock options from 1996 to 2021, with 111 firm characteristics (Jensen, Kelly, and

Pedersen, 2021) considered.

We find that semi-parametric models outperform the benchmark even before incorpo-

rating firm characteristics. Moreover, adding firm characteristics further enhances their

performance. Notably, conditional skewness, Dimson Beta, dividend yield, one-year-lagged

annual stock return, and downside beta are among the most important firm characteristics

in option pricing.

Our research makes significant contributions by integrating a wider range of firm char-

acteristics into option pricing models than has been previously done, and by evaluating the

performance of machine learning-based models on individual stock options. By addressing

challenges in parametric models and leveraging machine learning, we provide a comprehen-

3



Chapter 0

sive and nuanced framework for option pricing in modern financial markets. To make the

model more practical, our study demonstrates that a model incorporating the five most cru-

cial firm characteristics within the GPF framework significantly improves root mean square

error by 15%, approaching the 19% improvement seen with models that use a compre-

hensive set of 111 characteristics. Although models with fewer characteristics are not as

accurate, they are simpler to implement and reduce uncertainties associated with data col-

lection. Furthermore, we observe that pricing performance remains stable even when the

training/validation dataset is limited by option type, maturity, and moneyness. Smaller

datasets not only expedite the training time of machine learning algorithms but also speed

up the entire pricing process.

0.1.2 Introduction of ‘Can option characteristics provide leading informa-

tion about stocks’ extreme returns?’

This study investigates the potential of option-implied volatility and Greeks (Delta,

Gamma, Theta, and Vega) in predicting stock returns using machine learning. It builds

on extensive research suggesting that option characteristics, particularly implied volatility,

contain relevant information for forecasting stock returns. Studies like Bates (1991) and

Ofek, Richardson, and Whitelaw (2004) indicate that higher implied volatilities in options,

especially out-of-the-money puts, often precede significant market movements. Moreover,

the Greeks serve as vital tools in risk management and portfolio optimization, with research

by Cao and Han (2013) and Zhan et al. (2022) indicating their influence on stock returns.

Our research utilizes U.S. stock and option market data from January 1996 to December

2022, focusing on the predictive power of these option characteristics for stock returns. We

categorize stocks as experiencing jumps, crashes, or normal conditions and create portfolios

based on these predictions. Machine learning, particularly the gradient-boosting LightGBM

model, is employed to analyze the data, exploring the intricate relationships between option

characteristics and stock market returns. This approach is compared against traditional

4
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logistic regression and control variables used in prior studies like Chen, Hong, and Stein

(2001) and Jang and Kang (2019).

The results indicate that implied volatility and Greeks are significantly useful features

for predicting extreme returns. Statistically, the LightGBM model, which integrates con-

trol variables, implied volatility, and Greeks (LGBM-SDGTV ), outperforms the control

variable-only benchmarks (LGBM-B) in forecasting extreme stock returns, demonstrating

higher accuracy with impressive AUCs of 0.766, and 0.755 for jumps, and crashes, respec-

tively, compared to the benchmark’s AUCs of 0.687, and 0.672. Financially, portfolios based

on the LightGBM model’s predictions significantly outperform traditional market portfolio

benchmarks in Sharpe ratio and average annual return, with the LGBM-SDGTV model

achieving Sharpe ratios of 1.42 and 1.58, and average annual returns of 33% and 31% for

value-weighted and equal-weighted portfolios, respectively, compared to the benchmark port-

folio’s more modest Sharpe ratios of 0.75 and 1.22 and returns of 20% and 23%.

In summary, this chapter highlights the critical role of option characteristics in forecasting

extreme stock returns. It shows that machine learning, especially models like LightGBM,

can effectively harness these indicators, offering significant advancements in stock market

prediction. Our findings not only confirm the predictive power of option market indicators

but also open new possibilities for integrating machine learning in financial analysis and

portfolio management. In terms of practical application, Our method for standardizing

option characteristics examines all market options, effectively avoiding selection bias (Byun

and Kim, 2016; Zhan et al., 2022; Bali, Beckmeyer, Moerke, and Weigert, 2023). However,

given our portfolio’s emphasis on extreme returns, higher standard deviations and maximum

drawdowns are inevitable.
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0.1.3 Introduction of ‘Comparative analysis of stock option pricing: Ma-

chine learning and Pandemic impact’

In this chapter, we extend the discussion of ‘Stock options pricing via machine learning

combined with firm characteristics, focusing on a comparative analysis of three distinct

machine learning architectures: GPF (Andreou et al., 2010), HBD (Lajbcygier and Connor,

1997), and AFFT (Almeida, Fan, Freire, and Tang, 2022). We examine each architecture

through four submodels that incrementally integrate various inputs: basic factors, option

sensitivities (Greeks), firm characteristics, and a combination of these elements. A key part

of our analysis is the assessment of the resilience of these pricing models during the Pandemic,

characterized by extreme market volatility, specifically evaluating their effectiveness and

accuracy in adapting to rapid market changes and providing reliable predictions during this

tumultuous period.

Our exploration revolves around the incorporation of option Greeks and firm character-

istics into semi-parametric option pricing models. We test the three aforementioned semi-

parametric models against a parametric benchmark model (PARA) using a dataset of U.S.

stock options belonging to the stocks listed in the SP500. The primary focus is on evaluating

how the inclusion of option Greeks (Delta, Gamma, Theta, Vega) and firm characteristics

(based on the criteria set by Jensen et al. (2021)) can enhance the predictive accuracy of

these models.

We find that all semi-parametric models outperform the benchmark model, with im-

provements in their root mean squared errors (RMSEs) when option Greeks and firm char-

acteristics are incorporated. The GPF model, in particular, shows the best performance,

especially during the Pandemic. This could be due to the narrower range of implied volatil-

ity compared to the option price residual, leading to more stable predictions. The models’

performance is consistent across various subsets of options and stocks with different return

patterns, although stocks with extremely high or low returns show a higher mean absolute

percentage error (MAPE).
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In practical terms, beyond the elements discussed in Chapter 1, integrating option Greeks

into the model enhances its applicability for short-term option pricing. The daily updates of

option Greeks improve access and the model’s ability to reflect current market conditions.

Using only option Greeks as features in the machine learning algorithm can greatly decrease

training time, though their time-sensitive nature may sometimes limit their effectiveness.

This research enhances semi-parametric option pricing models by incorporating option

Greeks and firm characteristics, and evaluating their effects on pricing predictions over differ-

ent timeframes. It compares the GPF and AFFT models, emphasizing the superior efficiency

of the GPF. The models utilize daily updates of option Greeks for real-time market dynamics

and firm characteristics for in-depth asset analysis, aiming to boost accuracy under diverse

market conditions. The study aims to provide a comprehensive tool for option pricing that

merges the immediate relevance of option Greeks with insights from firm characteristics,

improving model selection and applicability across various market situations.

0.1.4 Introduction to the machine learning methods used in the thesis

In this thesis, we utilize LightGBM (Ke, Meng, Finley, Wang, Chen, Ma, Ye, and Liu,

2017), a gradient-boosting framework that uses decision trees for both classification and re-

gression tasks. Its advantages, especially in finance, include speed and low memory require-

ments (Chang, Chang, and Wu, 2018; Basak, Kar, Saha, Khaidem, and Dey, 2019; Sun,

Liu, and Sima, 2020; Ivas,cu, 2021). LightGBM’s unique leaf-wise tree growth leads to faster

convergence and less resource use, making it ideal for managing large and complex datasets

common in options research. Additionally, its default hyperparameters simplify replication

and generalization, while advanced tuning can further adapt the model to specific needs.

Previous studies have primarily employed deep neural networks (DNNs) (Hornik, Stinch-

combe, and White, 1989), support vector machines (SVMs) (Hearst, Dumais, Osuna, Platt,

and Scholkopf, 1998), and random forests (RFs) (Breiman, 2001), demonstrating their ef-

fectiveness in financial analysis (Tay and Cao, 2001; Feng, He, Polson, and Xu, 2018; Gu,
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Kelly, and Xiu, 2020; Han, 2021; Bali et al., 2023; Chen, Pelger, and Zhu, 2024). However,

each method has limitations for this thesis’s specific context. DNNs, while adept at de-

tecting complex data patterns, require significant computational power and large datasets,

and are prone to overfitting with extended training durations. SVMs, although effective in

classification and regression, struggle with large-scale financial data, increasing computa-

tional demands. RFs are reliable for similar tasks but are comparatively slower and more

memory-intensive than alternatives like LightGBM, with their level-wise tree growth leading

to longer training periods.

Selecting LightGBM for this thesis considers factors like model complexity, computational

speed, and handling large datasets typical in option markets. LightGBM excels in quickly

processing extensive financial data and managing complex, non-linear relationships. It also

effectively addresses multicollinearity in datasets by choosing the most relevant features dur-

ing tree splitting, minimizing redundancy and overfitting. This ability improves LightGBM’s

accuracy and reliability with highly correlated data, such as firm characteristics, providing

a balanced approach to sophisticated modelling within computational and data complexity

constraints.
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Chapter 1

Stock options pricing via machine

learning combined with firm

characteristics

Abstract

This paper proposes machine learning-based option pricing models that incorporate firm char-

acteristics. We employ two semi-parametric models, one that uses machine learning to predict the

implied volatility and a hybrid that corrects the pricing error of the binomial model, and use 111

firm characteristics as well as option-related variables as the input features. Our empirical analysis

is conducted using a sample including 15,247,956 stock option observations in the period January

1996 to December 2021. We find that both semi-parametric models outperform the parametric one

even without firm characteristics, whilst firm characteristics significantly enhance the performance

of these models. Conditional skewness, Dimson Beta, dividend yield, one-year-lagged annual stock

return, and downside beta are found to be the most important features.

Keywords: Option pricing; Semi-parametric; Firm characteristics; Machine learning.
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1.1 Introduction

Option valuation has garnered significant attention in the field of finance, both from theoretical

and practical perspectives. Academics are intrigued by the potential for a robust option pricing

model to shed light on financial market operations, while market makers aim to use an efficient

pricing model to determine prices in the derivatives market. The Black-Scholes (BS) model (Black

and Scholes, 1973) is the earliest and most well-known model for pricing the European options.

Despite its simplicity, it provides a good estimate of option prices and remains as one of the most

important option pricing models. The BS model relies on the assumption that stock returns are

normally distributed and have constant volatility over time. However, there is abundant evidence

that stock returns have a fat-tailed distribution and exhibit time-varying volatility. To account for

the non-normality of stock returns, Corrado and Su (1996) augment the BS model with skewness and

kurtosis. To account for the time-varying volatility, Heston (1993) and Hagan, Kumar, Lesniewski,

and Woodward (2002) propose stochastic volatility models, which assume the volatility to be a

random variable. These models allow a more realistic representation of the underlying asset’s

volatility and provide more accurate pricing of options. For American options, which face premature

exercise and dividend payment issues, tree-based (Cox et al., 1979; Boyle, 1986) or Monte Carlo

simulation-based (Broadie and Glasserman, 1997; Longstaff and Schwartz, 2001; Andersen and

Broadie, 2004) methods have been proposed. A closed-form solution can also be obtained for an

American option in case of known absolute dividends (Roll, 1977; Geske, 1979; Whaley, 1981),

or for options with short or long maturity (Barone-Adesi and Whaley, 1987), or for options with

proportional dividends (Villiger, 2006).

The majority of option pricing research including those mentioned above adopts a parametric

method, i.e., they assume a certain distribution for the underlying asset return and derive the

fair price of the option under the no-arbitrage condition. While parametric models are preferable

as they are established on a solid economic foundation and often allow an analytic option pricing

formula, the reality could deviate from their underlying assumptions, and parametric models often

fail to accurately fit the actual option prices observed in the market.

More recently, machine learning-based models have been proposed as an alternative approach.
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These models have the ability to capture the nonlinear and complex relations between option prices

and their underlying factors, making them more flexible than traditional parametric models. Ma-

chine learning-based models can be categorized into two types: non-parametric and semi-parametric

models. Ruf and Wang (2019) provide a comprehensive review of the application of neural networks

on option pricing.

Non-parametric models are agnostic about the economic theory behind option pricing and

predict the option price by learning purely from the data the relations between the input variables

and the option price. One of the earliest studies in this category is the work of Hutchinson et al.

(1994), which treats option pricing as a regression problem. They demonstrate that the learning

network is superior to traditional parametric methods in option valuation. With advances in

machine learning algorithms, researchers have proposed ways to improve the generalization of non-

parametric methods, such as Bayesian adjustment, early stopping, and bagging, which allow more

robust pricing of options (Gençay and Qi, 2001). For example, Gradojevic, Gençay, and Kukolj

(2009) use modular neural networks to improve prediction performance, while Liang, Zhang, Xiao,

and Chen (2009) use a combination of neural networks and support vector regression to reduce

pricing errors in traditional option pricing methods such as Monte Carlo simulation, binomial

trees, and finite difference methods. Park, Kim, and Lee (2014) demonstrate that the Gaussian

process model significantly outperforms parametric methods in both in-sample and out-of-sample

pricing of KOSPI 200 Index options. Liu, Oosterlee, and Bohte (2019) introduce an Artificial

Neural Network (ANN)-based, data-driven method to accelerate financial option valuation and

implied volatility calculations, demonstrating through testing on various solvers that the trained

ANN significantly reduces computation time. Buehler, Gonon, Teichmann, and Wood (2019) apply

reinforcement learning to price and hedge derivative contracts, including options. Ruf and Wang

(2022) propose a neural network designed to generate a hedging strategy for options, focusing on

minimizing hedging errors rather than pricing errors.

Whilst non-parametric models can fit the data flexibly without making any assumptions about

the function underlying option price, the very flexibility can be toxic and expose the models to the

risk of overfitting. Semi-parametric models address this risk by combining a parametric model with

machine learning. Guided by economic theory, a semi-parametric model can fit the data with a
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more parsimonious structure. One approach is to employ machine learning to predict unobservable

variables such as implied volatility, which are then used as input to a parametric model. Andreou,

Charalambous, and Martzoukos (2006) and Andreou et al. (2010) predict volatility for the BS model

and volatility, skewness, and kurtosis for Corrado and Su (1996)’s model via a neural network and

use them as input to the corresponding parametric option pricing model. Wang (2009) apply a

novel hybrid approach, merging the grey forecasting model with GARCH, to estimate volatility

in a neural network option-pricing model, demonstrating that this hybrid method can effectively

forecast derivative securities prices and outperforms other approaches in the neural network option-

pricing model. Audrino and Colangelo (2010) introduce a semi-parametric technique for predicting

implied volatility surfaces, utilizing a regression tree as the foundational model and progressively

reducing the difference between model predictions and actual values by incorporating additional

trees. Zheng, Yang, and Chen (2019) introduce a gated deep neural network model for predicting

implied volatility surfaces, incorporating conventional financial conditions and empirical volatility

evidence, demonstrating superior performance over the commonly used surface stochastic volatility

model. Lajbcygier and Connor (1997) employ neural networks to correct the pricing error of the

BS model.

An advantage of machine learning is that it can accommodate any features that potentially

carry information about the option price. The conventional theory suggests that option prices are

primarily determined by standard variables; however, emerging research indicates that additional

factors, such as investor sentiment and firm characteristics, also play a critical role.

The impact of firm characteristics on option pricing within an arbitrage-free framework is an

intricate area of financial study. Several research papers provide insights into this topic. Rubin-

stein (1983) develop an option pricing formula considering the risk of individual assets of the firm,

encompassing differential riskiness and effects of firm debt and dividend policy. Figlewski (1989)

highlight that market imperfections, such as uncertain volatility and transaction costs, limit the

practical application of arbitrage in option pricing. This underscores the potential impact of firm-

specific factors, like financial stability and market behaviour, on option prices in reality, beyond

idealized arbitrage-based models. Subramanian (2004) develop an arbitrage-free framework for

pricing options on stocks of firms in mergers and acquisitions, accounting for discontinuous impacts
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on stock prices. This model outperforms the Black-Scholes model in explaining observed option

prices, indicating that firm-specific events like mergers can significantly influence option pricing in

an arbitrage-free context. Recently, Trigeorgis and Lambertides (2014); Andreou (2015); Vasquez

and Xiao (2023); Chen et al. (2023) demonstrate the significant influence of firm characteristics on

underlying asset dynamics and option values. Trigeorgis and Lambertides (2014) emphasize the

importance of firm-specific business volatility and managerial flexibility in growth option assess-

ment. Market default risk, as shown by Andreou (2015), and firm leverage and asset volatility, as

highlighted by Vasquez and Xiao (2023), are directly linked to option pricing. Chen et al. (2023)

document how firm fundamentals shape the implied volatility curve, crucial in option valuation.

Additionally, Zhan et al. (2022) illustrate the significant correlation between firm characteristics

and delta-hedged equity option returns, further underscoring the relevance of these factors not

only in option pricing but also in predicting market behaviour and investment strategies. These

findings inspire our exploration of an option pricing model that extends beyond standard variables

to include a broad set of firm characteristics, potentially indicative of a firm’s financial health and

future performance.

Our research pioneers the integration of an extensive array of firm characteristics with advanced

machine learning algorithms to ascertain their utility in option pricing. We are among the first to

systematically analyze and test a wide spectrum of firm characteristics to determine which are most

predictive of option values by using semi-parametric methods. This innovative approach not only

underscores the significance of firm characteristics in option valuation but also sets a precedent for

future explorations into more sophisticated and nuanced financial models.

We employ two semi-parametric methods to employ firm characteristics. The first model is

based on Andreou et al. (2010)’s generalized parametric function (GPF) model, which employs ma-

chine learning for the prediction of implied volatility. The second model is based on Lajbcygier and

Connor (1997)’s hybrid (HBD) model, which employs machine learning for pricing error correction.

These models are compared against a parametric benchmark model. We select the binomial model

with lag-implied volatility (BI) as our benchmark, as it utilizes the same input variables as the

semi-parametric methods.

We evaluate the models using 15,247,956 U.S. stock options from January 1996 to December
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2021. As to the firm characteristics, we choose 111 firm characteristics from Jensen et al. (2021)

after removing firm characteristics with many missing values. Specifically, we exclude firm char-

acteristics with missing values greater than 20% over the sample period. We first find that the

semi-parametric models, GPF and HBD, outperform the benchmark, BI, even before incorporating

firm characteristics. The root mean squared errors (RMSEs) of GPF and HBD are respectively

1.701 and 1.710, whereas that of BI is 2.023. Second, firm characteristics can further improve the

performance of GPF and HBD: the RMSEs of the two models are reduced to 1.376 and 1.459,

respectively. GPF consistently renders a smaller error than HBD. We conjecture that this is be-

cause the range of implied volatility is narrower than the range of option price residual, making

a more stable prediction possible. We assess the models with various subsets of options defined

by the option type, time-to-maturity, and moneyness, and find that the models perform consis-

tently across these options groups. The usual option features such as time-to-maturity, strike price,

lagged implied volatility and underlying price are the most important features for pricing options,

but firm characteristics are also deemed to play a non-trivial role. Firm characteristics collectively

have a feature importance score of 49.19 out of 100 in GPF. In particular, conditional skewness,

Dimson Beta, dividend yield, year-1-lagged annual return, and downside beta turn out to be the

most important firm characteristics in option pricing.

The study on using firm characteristics in machine learning models for option pricing, partic-

ularly with the GPF framework, reveals that including key firm features—conditional skewness,

Dimson Beta, dividend yield, one-year-lagged annual return, and downside beta—enhances model

accuracy by 15% in root mean square error. This is close to the 19% improvement seen with

models that incorporate a wider set of 111 firm characteristics. These results suggest that models

can be simplified effectively without major loss in predictive accuracy, balancing complexity and

operational efficiency. However, limiting firm characteristics can neglect important details that

might impact option pricing in certain markets or options, potentially overlooking critical market

dynamics.

The model’s flexibility with smaller, specific datasets—sorted by option type, maturity, and

moneyness—highlights its effectiveness and efficiency. Training the algorithms on focused datasets

ensures accurate pricing predictions and speeds up computation. However, this method may com-
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promise dataset representativeness, as using limited data might not fully reflect market dynamics,

challenging the accuracy of option price predictions in volatile markets. Operational issues arise

due to reliance on accurate and complete data collection about firm characteristics. Faulty or par-

tial data can distort model results, highlighting the need for strict data management. Moreover,

although using smaller datasets can improve efficiency, it may restrict the model’s learning ability

and its capacity to perform well across various market conditions. Future efforts should aim to

refine these models, broaden the scope of firm characteristics examined, and improve data handling

techniques. Tackling these challenges is crucial for enhancing model robustness and adaptability in

dynamic market environments.

Above all, the first contribution of our paper is the integration of an extensive and diverse

set of firm characteristics into option pricing models, using 111 firm characteristics compared to

previous studies like Zhan et al. (2022) which employ 10 firm characteristics and Chen et al. (2023)

which employ 94 firm characteristics. This extensive range of characteristics offers a more nuanced

understanding of the factors influencing option pricing, extending beyond traditional models. Our

second contribution lies in evaluating the performance of machine learning-based models for in-

dividual stock options. We underscore the challenges in pricing stock options with parametric

models, notably due to their inability to fully capture the nuances of investor perspectives on firm

growth and the impact of firm-specific factors. Our methodology is aligned with the work of Chen

et al. (2023), who employed machine learning tools to document the influence of firm fundamen-

tals on the shape of the option implied volatility curve, both economically and statistically. They

utilized a LASSO approach to select relevant firm fundamentals from a large set, thus avoiding

overfitting issues common in such analyses. Inspired by their methodology, we utilize LightGBM, a

highly efficient algorithm in managing multicollinearity, as it employs a histogram-based approach

during training, enabling independent consideration of features and reduced sensitivity to multi-

collinearity. This choice enhances our ability to dissect the complex relationships in financial data,

potentially offering a more nuanced understanding of how firm fundamentals impact the implied

volatility curve. Our research advances the understanding of option pricing by incorporating a

broader range of firm characteristics than has been previously considered. By leveraging machine

learning techniques and addressing the complexities introduced by default risk and firm-specific
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factors, we provide a more nuanced and comprehensive framework for option pricing that aligns

with current financial market complexities.

This paper is structured as follows. Section 1.2 describes the option pricing models used in this

study, Section 1.4 details the data and methodology for the empirical analysis, Section 1.5 presents

the empirical results, Section 1.6 presents robustness tests, and Section 1.7 concludes.

1.2 Models

1.2.1 Parametric model

The binomial option pricing model (Cox et al., 1979) is a widely used method for calculating

the fair value of an option (Rubinstein, 1994; Broadie and Detemple, 1996; Jiang and Dai, 2004).

It is based on the assumption that the underlying asset price can only move up or down by a

fixed percentage at each time step. The model is widely used for pricing European-style options

(exercisable only at expiration), it can also be adapted for American-style options, which can be

exercised at any point before expiration.

In the case of American-style options, the binomial option pricing model requires a modification

to account for the possibility of early exercise. At each time step, the option holder has the option

to exercise the option and receive the intrinsic value of the option, which is the difference between

the current underlying asset price and the strike price. The option holder may choose to exercise

the option if the intrinsic value is greater than the current value of the option as determined by

the binomial tree model.

To calculate the fair value of an American option using the binomial model, we follow the

following steps provided by Cox et al. (1979):

1. Calculate the size of each time step (dt) using the following formula:

dt =
T

M
, (1.1)

where T is the maturity, M is the total number of time steps1.

1 For the purpose of saving computation time, we set the value of M to 100.
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2. Calculate the up factor (u) and the down factor (d) using the following formulas:

u = exp(σ ×
√
dt) (1.2)

d =
1

u
, (1.3)

where σ is the volatility of the underlying asset.

3. Calculate the probability of an up move (p) using the following formula:

p =
r × dt− d

u− d
, (1.4)

where r is the risk-free interest rate, q is the dividend yield.

4. Calculate the value of the option at expiration for each possible price of the underlying asset.

For an underlying asset price S with dividend rate q 2 and strike price X at a given point

in time, the price of a call option is equal to max(S · (1− q)−X, 0), and the price of a put

option is equal to max(X − S · (1− q), 0).

5. Working backwards from expiration, calculate the value of the option at each time step for

each possible price of the underlying asset using the following formulas:

Priceu =
p× Priceuu + (1− p)× Priceud

1 + rf
, (1.5)

Priced =
p× Pricedu + (1− p)× Pricedd

1 + rf
, (1.6)

where Priceuu, Priceud, Pricedu, and Pricedd are the option values if the underlying asset

price goes up twice, up then down, down then up, and down twice, respectively.

6. At each time step, the option’s value is determined by choosing the higher of the two: the

immediate payoff from exercising the option (intrinsic value3) or the expected value of holding

2 We adopt the Cox et al. (1979) framework for extending the binomial tree model to dividend-paying
stocks, assuming that the stock exhibits a constant yield, denoted as q, on each ex-dividend date.

3 The intrinsic value of a call option is equal to max(S −X, 0), and the intrinsic value of a put option is
equal to max(X − S, 0)
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the option (theoretical value 4). This choice accounts for the flexibility American options offer

in terms of early exercise. This evaluation is key due to the option’s early exercise feature.

We assess at each step whether exercising the option for its intrinsic value is preferable over

retaining it for potential future value, considering the risk-free rate and the likelihood of price

movements.

To find the market implied volatility for option i on t, σmrk
i,t , we solve an optimization problem

that has the following form:

σmrk
i,t = arg min

σmrk
i,t

[Pmrk
i,t −BI(σmrk

i,t , Si,t, Xi,t, Ti,t, rfi,t)]
2, (1.7)

where Pmrk
i,t is the market price for option i on t, BI(σmrk

i,t , Si,t, Xi,t, Ti,t, rfi,t) is the binomial model

that employs the parameters Si,t, Xi,t, Ti,t, and rfi,t, which are the stock price, the strike price,

the maturity, and the risk-free rate for option i on t.

To estimate the price of option i on day t, we use the binomial model that employs σavg
t as our

benchmark model (BI), where σavg
t is the average of the implied volatilities of all the options with

the same underlying asset in the period from t− 10 to t− 1 (i.e., over the past 10 trading days) as

Equation (1.8).

σavg
i,t =

1

10

j=10∑
j=1

σimp
i,t−j , (1.8)

where the σavg
i,t−j is the implied volatility of option i on day t− j where j ∈ [1, 2, 3, 4, 5, 6, 7, 8, 9, 10].

1.2.2 GPF model

Andreou et al. (2010) propose a semi-parametric option pricing model (GPF model) and show

that it exhibits an enhanced pricing performance when applied to index options. The GPF model

predicts unobservable option variables (volatility for the BS model and volatility, skewness, and

kurtosis for the Corrado and Su (1996) model) via a neural network and uses them as input to the

corresponding parametric option pricing model. An advantage of the GPF model is that it combines

the benefits of both parametric and non-parametric methods. The parametric model provides a

4 p·Priceu+(1−p)·Priced
1+rf
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theoretical framework for option pricing, while the machine learning algorithm generates a more

accurate prediction of the input variables. By combining these two approaches, the GPF model can

effectively address the limitations of traditional parametric and non-parametric methods in option

pricing. The GPF model is flexible and can be adapted to meet the needs of different option pricing

scenarios, making it a versatile tool for option pricing research.

For our study, we leverage the inherent flexibility of the GPF by employing firm characteristics

into the prediction process as Equation (1.9).

P pre
GPF = BI(σpre, S,X, T, q, rf), (1.9)

where P pre
GPF is the predicted price through the GPF structure, S is the close price of the underlying

asset, X is the strike price, T is the maturity, q is the dividend rate, rf is the risk free rate, and σpre

is the predicted implied volatility obtained through Equation (1.11). The function BI(·) represents

the process of the binomial tree model.

The original GPF model employs a one-step method, training the machine learning algorithm

to minimize option pricing error through a loss function defined by the mean squared error of the

option prices. In our approach, tailored to accommodate the extensive dataset of stock options,

we optimize the loss function based on implied volatility. This refined focus allows for a faster and

more relevant minimization of pricing errors, particularly suited to the scale and nature of the data

we handle. The loss function we optimize in the GPF is shown in Equation (1.10).

Loss(GPF )t = min
N∑
i=1

(σmrk
i,t − σpre

i,t )2, (1.10)

where t is the date of the training, i is the i-th observation, N represents total observations on t.

σmrk
i,t represents the market implied volatility of option observation on t, and the σpre

i,t represents

the predicted implied volatility of option observation i on t.

The estimation of the σpre can be summarized as follow:

σpre
i,t = LightGBM(Fi,t; θ), (1.11)
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where, σpre
i,t is the predicted implied volatility for the i-th observation on t, as determined by the

LightGBM model. Fi,t represents the vector of input features for the i-th observation, such as the

moneyness (S/X), close price (S), strike price (X), maturity (T ), σavg, and firm characteristics. θ

denotes the set of parameters of the LightGBM model.

Our study enhances the GPF by incorporating firm characteristics, leveraging its ability to

integrate relevant features and enriching its practicality. We replace the neural network with

LightGBM, a gradient-boosting method known for its superior performance in diverse machine-

learning applications, thus evolving the GPF into a more comprehensive and precise predictive

tool. The schematic structure of our GPF model is depicted in Figure 1.1.

Figure 1.1. GPF model structure.

1.2.3 Hybrid model

The hybrid model (HBD model) proposed by Lajbcygier and Connor (1997) also combines the

advantages of a parametric option pricing model and machine learning to improve option pricing

accuracy. However, it is different from GPF in that it predicts the pricing error of a parametric

model via machine learning. HBD first calculates the option price using a parametric model such

as the binomial model (We use the lagged implied volatility as an input to the binomial model

as a parametric model for the HBD.). This model price is then contrasted with the market price

to obtain the pricing error (residual). A machine learning algorithm is then employed to predict

the residual. The final option price is the sum of the model price and the predicted residual. We

summarize the HBD as follows.

P pre
HBD = Respre +BI(σavg, S,X, T, q, rf), (1.12)
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where P pre
HBD is the predicted price through the HBD structure, S is the close price of the underlying

asset, X is the strike price, T is the maturity, q is the dividend rate, and rf is the risk free rate.

The function BI(·) represents the process of the binomial tree model, σavg is the average implied

volatility according to Equation (1.8).

The loss function we optimize in the HBD is shown in Equation 1.13).

Loss(HBD)t = min
N∑
i=1

(Resmrk
i,t −Resprei,t )

2, (1.13)

where i is the i-th observation, N represents total observations on t. Resmrk represents the

residual between the market option price and the binomial tree-based option pricing5, Respre is

residual that the HBD model seeks to predict.

The estimation of the Respre is summarized as follow:

Resprei,t = LightGBM(Fi,t; θ), (1.14)

where, Resprei,t is the predicted residuals for the i-th observation on t, as determined by the Light-

GBM model. Fi,t represents the vector of input features for the i-th observation, such as the

moneyness (S/X), close price (S), strike price (X), maturity (T ), σavg, and firm characteristics. θ

denotes the set of parameters of the LightGBM model.

We extend the HBD model by incorporating firm characteristics and employing LightGBM

instead of a neural network. Figure 1.2 describes the schematic structure of the HBD model.

Figure 1.2. HBD model structure.

5 Pmrk −BI(σavg
i,t , Si,t, Xi,t, Ti,t, rfi,t)
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1.3 LightGBM

The machine learning algorithm we employ is LightGBM proposed by Ke et al. (2017). Light-

GBM is a gradient-boosting framework that employs decision tree-based learning algorithms for

both classification and regression tasks. It is designed for efficiency and scalability when dealing

with large datasets. Here is an outline of the algorithm and the key formulas for using LightGBM

for regression:

1. Initialize the model: Start with an initial model, which is usually the average of the target

variable values for regression tasks. Mathematically, the initial model can be represented as:

F0(x) = argmin
c

∑
L(yi, c) (1.15)

where L(yi, c) is the loss function for the target variable yi corresponding to observation xi

and the constant value c.

2. Gradient boosting: Iteratively construct weak learners (decision trees) and combine them to

create a strong learner. For each iteration k = 1, 2, ...,K:

(a) Calculate the gradients gi and Hessians hi for each observation xi in the dataset:

gi =
∂L(yi, F (xi))

∂F (xi)
(1.16)

hi =
∂2L(yi, F (xi))

∂F (xi)2
(1.17)

where F (xi) is the current model’s prediction for observation xi.

(b) Build a new decision tree to fit the negative gradients: Fit a new decision tree fk(x)

using the dataset (xi, gi, hi). In LightGBM, the decision tree is built using the ‘leaf-

wise’ strategy with depth limitation, which splits the tree node with the highest loss

reduction first.
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(c) Determine the optimal learning rate (shrinkage factor) ηk:

ηk = argmin
η

∑
[L(yi, F (xi) + η × fk(xi)] (1.18)

Utilize line search or another optimization method to find the learning rate that mini-

mizes the loss function.

(d) Update the model:

Fk(x) = Ft−1(x) + ηk × fk(x) (1.19)

3. Final model: After K iterations, the final model can be represented as:

F (x) = F0(x) +

K∑
k=1

ηk × fk(x) (1.20)

1.4 Data and Methodology

1.4.1 Option data

Options data are obtained from OptionMetrics’ IvyDB US and cover the period in the U.S.

from January 1996 to December 2021. We use the first 365 calendar days of the sample to train

the machine learning-based models and set the out-of-sample period to be from January 1997 to

December 2021. Following Dumas, Fleming, and Whaley (1998), we define the option price as

the midpoint of the bid and ask prices to reduce the estimation noise of implicit parameters. The

underlying stocks’ prices (Si,t) are collected from the Securities table in OptionMetrics’ IvyDB US,

and the 3-month Treasury bill rate, which is used as a proxy for the risk-free rate (rfi,t), is obtained

from the St. Louis Federal Reserve Economic Data. Following Bakshi, Cao, and Chen (1997) and

Andreou et al. (2010), we filter the option data using the following criteria.

1. Options with a trading volume of less than 100 contracts are eliminated as they are deemed

to be illiquid and their prices may not represent the actual market price.

2. The time to maturity should be at least six days and no longer than 365 calendar days as

options near expiration may induce liquidity-related biases.
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3. Options with price quotes less than 0.1 U.S. dollars are eliminated.

4. The moneyness (S/X) of an option should be between 0.8 and 1.2.

5. Observations that violate the usual no-arbitrage condition are dropped.

After filtering, the final data set contains 15,247,956 observations. Sample characteristics of

the dataset are reported in Table 1.1 and 1.2. Table 1.1 shows that there are more observations of

out-of-the-money options than in-the-money options and more observations of call options than put

options. The volatility smile is observed in all maturity groups and it is more pronounced in the

near-term options. Table 1.2 reports the number of options per underlying stock year by year. The

number of options per stock has increased over time. On average, the average number of options

increases from 2 in 1996 to 11 in 2021. However, the median number of options remains small at 2

even in 2021, while the maximum number of options increases to 298, implying that there are only

a handful of stocks with many options and the rest have only a few options associated with them.

1.4.2 Firm characteristics

Integrating firm characteristics into option pricing is supported by substantial evidence showing

their significant impact on the dynamics of underlying assets and option values. For instance,

Andreou (2015) demonstrate that factors like market default risk, derived from firm-level financial

health, significantly influence the risk-neutral moments of major index options such as volatility and

skewness. Vasquez and Xiao (2023) confirm the effect of default risk on the returns of delta-hedged

equity options, directly linking firm leverage and asset volatility to option pricing.

Chen et al. (2023) document how firm fundamentals, such as profitability and market power,

shape implied volatility curves and influence option prices. Their findings suggest that an array of

firm-specific attributes, such as profitability and market power, substantially influence the cross-

sectional variation in option prices. Additionally, Trigeorgis and Lambertides (2014) emphasize

the value of firm-specific business volatility and managerial flexibility in assessing growth options,

further advocating for the incorporation of such characteristics in option pricing models. Zhan et al.

(2022) also show that delta hedged option portfolio is inversely related to factors such as stock price

profit margin and firm profitability, while being positively correlated with cash holdings, cash flow
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Table 1.1. Characteristics of option data. This table describes the characteristics of
the option data. The data is obtained from OptionMetrics’ IvyDB US and covers the stock
options in the US market from January 1996 to December 2021. ‘Price’, ‘Implied volatility’,
and ‘Observations’ respectively refer to the average price, average implied volatility, and the
number of observations in each subset.

Panel A. Call options

Moneyness DOTM OTM JOTM ATM JITM ITM DITM

S/X 0.80-0.90 0.90-0.95 0.95-0.99 0.99-1.01 1.01-1.05 1.05-1.10 1.10-1.20

Near-term (6-60 days)
Price 1.522 1.783 2.574 4.327 5.581 7.383 10.196
σmrk 0.533 0.446 0.365 0.345 0.393 0.466 0.529
Observations 584,412 1,214,045 1,737,246 928,081 916,704 457,736 261,016

Mid-term (60-180 days)
Price 2.393 3.110 4.541 6.753 7.364 8.740 11.085
σmrk 0.427 0.343 0.323 0.331 0.352 0.391 0.449
Observations 638,112 577,593 518,574 227,643 277,091 178,228 153,012

Long-term (181-365 days)
Price 3.964 5.007 6.840 9.277 9.772 11.028 13.488
σmrk 0.359 0.316 0.311 0.322 0.338 0.360 0.399
Observations 242,411 168,113 134,848 58,920 74,444 54,149 55,433

Panel B. Put options

Moneyness DOTM OTM JOTM ATM JITM ITM DITM

S/X 1.10-1.20 1.05-1.10 1.01-1.05 0.99-1.01 0.95-0.99 0.90-0.95 0.80-0.90

Near-term (6-60 days)
Price 1.636 1.951 2.720 4.215 5.303 7.658 17.488
σmrk 0.509 0.442 0.374 0.352 0.400 0.440 0.521
Observations 548,159 884,809 1,185,264 662,459 579,464 93,865 22,592

Mid-term (60-180 days)
Price 2.692 3.479 4.566 6.044 6.449 7.916 11.028
σmrk 0.417 0.369 0.347 0.347 0.369 0.427 0.469
Observations 367,382 292,084 284,545 144,687 181,842 75,981 19,482

Long-term (181-365 days)
Price 4.759 5.745 7.065 8.889 8.805 10.113 14.641
σmrk 0.374 0.351 0.342 0.344 0.358 0.394 0.456
Observations 135,843 88,731 79,142 40,563 55,304 32,431 15,516
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Table 1.2. Number of options per stock. This table describes the average number of
firms per year and the descriptive statistics (Mean, Std, Min, 25%, 50%, 75% and Max) of
the number of options per stock in each year in the sample period.

Year No. firms Mean Std Min 25% 50% 75% Max

1996 147 2 3 1 1 1 3 26
1997 170 3 4 1 1 1 3 34
1998 180 3 5 1 1 1 4 32
1999 188 4 5 1 1 1 4 36
2000 196 4 5 1 1 2 4 35
2001 206 4 4 1 1 2 5 28
2002 207 4 5 1 1 2 5 29
2003 230 4 5 1 1 2 6 28
2004 262 5 5 1 1 2 6 28
2005 286 5 5 1 1 3 7 34
2006 317 5 6 1 1 3 8 43
2007 352 6 7 1 1 3 8 55
2008 342 6 7 1 1 3 7 58
2009 340 6 8 1 1 3 8 62
2010 334 7 9 1 1 3 9 72
2011 339 8 13 1 1 3 10 146
2012 313 8 16 1 1 3 10 236
2013 346 8 15 1 1 3 9 210
2014 363 8 17 1 1 2 8 251
2015 356 7 17 1 1 2 6 235
2016 358 7 15 1 1 2 6 172
2017 402 7 16 1 1 2 6 170
2018 446 8 19 1 1 2 6 195
2019 450 8 19 1 1 2 6 190
2020 492 10 24 1 1 2 7 278
2021 611 11 27 1 1 2 7 298

variance, new shares issuance, total external financing, distress risk, and the dispersion of analysts’

forecasts.

In our research, we use 111 firm characteristics6 that include accounting ratios, momentum

features, stock return volatility, and other characteristics related to the firm’s operation, growth,

risk, and performance. These characteristics are selected from the comprehensive list of firm char-

acteristics in Jensen et al. (2021) after eliminating firm characteristics with more than 20% missing

values. We fill the remaining missing values with the cross-sectional median value following Gu

et al. (2020). The list of the firm characteristics with their description can be found in the ap-

pendix. The exact definitions of the firm characteristics can be found in Jensen et al. (2021) or the

references therein. To avoid any forward-looking bias, we align the firm characteristics from six

months prior with the option data from the current month.

6 These firm characteristics are generated using PyAnomaly, a powerful Python library for firm characteris-
tics generation and asset pricing study. https://pyanomaly.readthedocs.io/en/latest/index.html The package
provides easy access to various financial data sources and ensures data accuracy and consistency.
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1.4.3 Model specifications and evaluation metrics

We evaluate the out-of-sample option pricing performance of five models: the binomial model

(BI), the GPF model with standard features (GPF), the GPF model enhanced with firm character-

istics (GPFF ), the HBD model with standard features (HBD), and the HBD model incorporating

firm characteristics (HBDF ).

The models are evaluated using the metrics root mean squared error (RMSE), mean absolute

error (MAE), and mean absolute percentage error (MAPE) as follows:

RMSE =

√√√√ 1

L

L∑
l=1

(zl − ẑl)2, (1.21)

MAE =
1

L

L∑
l=1

|zl − ẑl|, (1.22)

MAPE =
1

L

L∑
l=1

∣∣∣∣zl − ẑl
zl

∣∣∣∣ , (1.23)

where L represents the number of observations in the dataset, zl is the market price of the l-th

option, and ẑl is the predicted price for the l-th option, as given by the model.

We use the Model Confidence Set (MCS) method, a statistical technique designed for model

comparison and selection in time series analysis, to evaluate a group of predictive models. In-

troduced by Hansen, Lunde, and Nason (2011), the MCS helps identify models with statistically

comparable performance. Our research implements MCS through a series of defined steps.

1. Selection of Prediction Models: Initiate the MCS procedure by selecting models based

on their mean square error (MSE) for comparison.

2. Null Hypothesis Formulation: Assume no significant MSE differences among models and

test this assumption.

3. Loss Differential Analysis: Create a matrix of MSE differences between models for sta-

tistical analysis.

4. Statistical Testing: Apply statistical tests to assess if MSE differences are significant.
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5. Interpreting p-values: Analyze p-values using a 1% significance threshold to determine

model inclusion in the MCS.

1.4.4 Implementation Details

In our study using the LightGBM gradient boosting method, we apply it to regression tasks

with default hyperparameters such as number of leaves, tree depth, and learning rate, choosing a

conservative setup without extensive tuning. The loss function selected is MSE.

The GPF model operates daily by first calculating the average implied volatility (σavg), using

it along with standard option features and firm characteristics to feed into LightGBM. The model

trains on the past year’s data, with the most recent 30 days as the validation set. This trained

model predicts the next day’s implied volatility, which is then input into a binomial tree model to

forecast the option price.

The HBD approach calculates the option price via a binomial tree, then determines the price

residuals—differences between the market and model prices. These residuals serve as targets for

LightGBM training. The output is used to adjust the next day’s binomial model-based option

price.

For validation, models are assessed using out-of-sample metrics to identify the one with the

lowest MSE through the MCS method, indicating the most accurate option pricing performance.

1.5 Empirical Analysis

We evaluate the out-of-sample performance of the models using the evaluation metrics defined

in the previous section. We first compare the pricing errors of all options and then examine the

pricing errors of different subsets defined by option type, moneyness, and maturity to validate

the consistency of the pricing performance. We also identify informative firm characteristics by

analyzing feature importance.
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1.5.1 Pricing performance

1.5.1.1 All options

Table 1.3 reports the pricing performance of the models evaluated using all options. First,

comparing the three models that do not incorporate firm characteristics, BI, GPF, and HBD, we

find that GPF performs best, followed by HBD. The RMSEs of GPF, HBD, and BI are 1.701, 1.710,

and 2.023, respectively. The superiority of GPF is also reflected in the other evaluation metrics. It

is notable that the machine learning-based models can reduce the pricing error of BI by 15%. This

result suggests that employing machine learning can effectively reduce pricing error, and the GPF

architecture is more effective than that of HBD.

When firm characteristics are incorporated, both GPF and HBD yield smaller pricing errors:

the RMSEs of GPFF and HBDF are respectively 1.376 and 1.459, which are considerably smaller

than those of GPF and HBD. Firm characteristics improve the pricing performance of both GPF

and HBD by about 19.11% and 14.68%, respectively, making GPFF the best performer among all

five models, followed by HBDF . The MCS results indicate that GPFF is the only model that is

included in the MCS.

The reason for the superior performance of GPF over HBD appears to be related to the way

it integrates machine learning. GPF predicts implied volatility via machine learning while HBD

predicts residual. The same error in implied volatility can lead to an error of different magnitudes

in option price depending on the moneyness and the maturity of the option. This added complexity

makes the prediction of pricing residual more challenging.

Table 1.3. Pricing performance for all options. This table presents the out-of-sample
pricing errors of each model for all the options in the sample. The out-of-sample period
is from January 1997 to December 2021. RMSE, MAE, and MAPE refer to the root mean
squared error, the mean absolute error, and the mean absolute percentage error, respectively.
MCS-p refers to the p-value of the model confidence set (MCS) test, where a high p-value
indicates a model is more likely to be part of the MCS. The details of each model can be
found in Section 1.4.3.

BI GPF HBD GPFF HBDF

RMSE 2.023 1.701 1.710 1.376 1.459
MAE 0.566 0.470 0.473 0.381 0.385
MAPE 0.208 0.178 0.186 0.144 0.156

MCS-p 0.000 0.000 0.000 1.000 0.015
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1.5.1.2 Call vs put options

Table 1.4 reports the pricing performance of the models for call options (Panel A) and put

options (Panel B), separately. It shows that the differences in pricing errors between call options

and put options are almost negligible, and GPFF and HBDF remain as the best performers for both

types of options. For instance, the RMSEs of GPFF , HBDF , GPF, and HBD for call options are

1.365, 1.453, 1.700, and 1.702, respectively, while the RMSEs for put options are 1.394, 1.468, 1.717,

and 1.722. These models significantly outperform BI for both option types, whose RMSE is 2.065

for call options and 1.954 for put options. This result suggests that machine learning can enhance

the pricing performance for both option types and the performance can be further improved by

incorporating firm characteristics. The smaller MAPE of put options can be attributed to the

fact that the prices of out-of-the-money put options are higher than the prices of out-of-the-money

call options in our sample, as shown in Table 1.1. Out-of-the-money options are cheaper and bear

larger percentage errors. The higher prices of out-of-the-money put options result in smaller overall

percentage errors.

Table 1.4. Pricing performance for call and put options. This table presents the
out-of-sample pricing errors of each model for call and put options. The out-of-sample period
is from January 1997 to December 2021. RMSE, MAE, and MAPE refer to the root mean
squared error, the mean absolute error, and the mean absolute percentage error, respectively.
MCS-p refers to the p-value of the model confidence set (MCS) test, where a high p-value
indicates a model is more likely to be part of the MCS. The details of each model can be
found in Section 1.4.3.

BI GPF HBD GPFF HBDF

Panel A. Call options (9,379,625 observations)

RMSE 2.065 1.700 1.702 1.365 1.453
MAE 0.561 0.465 0.467 0.372 0.379
MAPE 0.212 0.180 0.189 0.143 0.157

MCS-p 0.000 0.000 0.000 1.000 0.015

Panel B. Put options (5,775,718 observations)

RMSE 1.954 1.717 1.722 1.394 1.468
MAE 0.574 0.480 0.483 0.394 0.396
MAPE 0.201 0.175 0.182 0.145 0.154

MCS-p 0.000 0.000 0.000 1.000 0.009
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1.5.1.3 Different moneyness options

It is well known that implied volatility differs across moneyness, the phenomenon known as

volatility smile, and moneyness can have a significant impact on option pricing performance. For

instance, in-the-money options may require larger price adjustments compared to out-of-the-money

options as the former is more likely to be exercised prior to maturity, whereas the latter may be

held to maturity. To examine the impact of moneyness on option pricing, we analyze the models’

performances for different moneyness options.

Table 1.5 reports the pricing errors for each moneyness group. GPFF is the best performer for

all moneyness groups7 with the lowest RMSEs: 1.148 for DOTM, 1.253 for OTM, 1.468 for JOTM,

1.735 for ATM, 1.404 for JITM, 1.117 for ITM, 1.046 for DITM. It is notable that the benchmark BI

model has larger errors for all moneyness groups, whereas the proposed models perform consistently

across all moneyness groups. Moreover, the performance improvement by firm characteristics is

particularly evident when pricing DOTM options. This result suggests that firm characteristics

can explain volatility smile to some extent. Given the larger trading volume of out-of-the-money

options and the fact that investors commonly use these options as a form of protection due to their

lower cost, accurate pricing of these options is of greater significance than that of in-the-money

options. Out-of-the-money options are also more difficult to price due to volatility smile. Both

GPFF and HBDF exhibit greater performance improvement when pricing these options.

1.5.1.4 Different maturity options

Table 1.6 reports the pricing performance of the models for different maturity groups. Again,

GPFF performs best in all maturity groups in terms of RMSE, followed by HBDF , GPF, and

HBD. The errors tend to increase with time to maturity for BI, where the RMSE of BI increases

dramatically from 1.816 (near-term) to 3.050 (long-term). In contrast, the proposed models perform

consistently throughout the maturity groups. For instance, the RMSE of GPFF for near-term,

mid-term and long-term are 1.470, 1.1077, and 1.352, respectively. Moreover, firm characteristics

appear to have a more significant impact on options with longer maturities. For near-term options,

7 DOTM stands for deep out-the-money; OTM stands for out-the-money; JOTM stands for just out-the-
money; ATM stands for at-the-money; JITM stands for just in-the-money; ITM stands for in-the-money;
DITM stands for deep in-the-money. The specific definition of the moneyenss can be found in Table 1.1.
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Table 1.5. Pricing performance for different moneyness options. This table presents
the out-of-sample pricing errors of each model for different moneyness options.

BI GPF HBD GPFF HBDF

Panel A. Deep out-the-money (2,501,427 observations)

RMSE 2.115 1.449 1.456 1.148 1.242
MAE 0.603 0.426 0.427 0.316 0.330
MAPE 0.329 0.245 0.266 0.185 0.211

MCS-p 0.000 0.000 0.000 1.000 0.003

Panel B. Out-the-money (3,203,805 observations)

RMSE 1.904 1.573 1.576 1.253 1.347
MAE 0.545 0.440 0.449 0.350 0.359
MAPE 0.283 0.245 0.260 0.196 0.215

MCS-p 0.000 0.000 0.000 1.000 0.010

Panel C. Just Out-the-money (3,918,073 observations)

RMSE 1.996 1.827 1.830 1.468 1.552
MAE 0.571 0.494 0.494 0.403 0.404
MAPE 0.223 0.199 0.203 0.165 0.173

MCS-p 0.000 0.000 0.000 1.000 0.016

Panel D. At-the-money (2,052,942 observations)

RMSE 2.339 2.102 2.154 1.735 1.816
MAE 0.657 0.556 0.566 0.474 0.470
MAPE 0.145 0.134 0.135 0.114 0.117

MCS-p 0.000 0.000 0.000 1.000 0.008

Panel E. Just in-the-money (2,071,177 observations)

RMSE 1.970 1.640 1.698 1.404 1.472
MAE 0.533 0.475 0.484 0.404 0.405
MAPE 0.085 0.086 0.087 0.072 0.076

MCS-p 0.000 0.000 0.000 1.000 0.008

Panel F. In-the-money (882,661 observations)

RMSE 1.765 1.338 1.347 1.117 1.182
MAE 0.456 0.404 0.418 0.345 0.351
MAPE 0.054 0.057 0.059 0.047 0.052

MCS-p 0.000 0.000 0.000 1.000 0.014

Panel G. Deep in-the-money (517,296 observations)

RMSE 1.760 1.223 1.237 1.046 1.101
MAE 0.430 0.375 0.377 0.306 0.317
MAPE 0.039 0.040 0.043 0.033 0.039

MCS-p 0.000 0.000 0.000 1.000 0.009
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the RMSE of GPF is reduced by 18.92% when firm characteristics are incorporated, whereas it

is reduced by 20.30% for mid-term options and by 21.94% for long-term options. Similarly, the

RMSE of HBD is reduced by 14.74% for near-term options, by 15.42% for mid-term options, and

by 17.85% for long-term options.

The pricing performance of long-term options is likely to be improved more when firm char-

acteristics are taken into account. Toft and Prucyk (1997) argue that long-term options are more

closely related to a firm’s financial traits, like its capital structure and leverage. This connection

suggests that considering these aspects can lead to more accurate option pricing. Similarly, Kahle

and Shastri (2005) find a significant link between long-term debt ratios, a key firm characteristic,

and the value of long-term options, highlighting the importance of these factors in option pricing.

Bakshi, Cao, and Chen (2000) observe that long-term options contain vital information about the

firm, which can be used to improve the accuracy of pricing models for these options. In summary,

considering firm characteristics in pricing long-term options is essential for better performance, as

these factors significantly impact long-term returns, risk/reward profiles, and strategic decisions.

Table 1.6. Pricing performance for different maturity options. This table presents
the out-of-sample pricing errors of each model for different maturity options.

BI GPF HBD GPFF HBDF

Panel A. Near-term (10,004,961 observations)

RMSE 1.816 1.813 1.825 1.470 1.556
MAE 0.522 0.480 0.481 0.395 0.398
MAPE 0.220 0.202 0.212 0.167 0.181

MCS-p 0.000 0.000 0.000 1.000 0.006

Panel B. Mid-term (3,905,431 observations)

RMSE 2.118 1.389 1.401 1.107 1.185
MAE 0.582 0.426 0.431 0.330 0.336
MAPE 0.184 0.136 0.140 0.101 0.110

MCS-p 0.000 0.000 0.000 1.000 0.008

Panel C. Long-term (1,228,960 observations)

RMSE 3.050 1.732 1.737 1.352 1.427
MAE 0.866 0.537 0.543 0.423 0.435
MAPE 0.180 0.119 0.122 0.090 0.097

MCS-p 0.000 0.000 0.000 1.000 0.009
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1.5.1.5 Year-by-year performance

Table 1.7 reports the MAPEs of each model year by year over the out-of-sample period. We

report MAPE instead of RMSE or MAE because both option prices and (absolute) errors increase

with time and therefore it is difficult to compare the performance across years with absolute eval-

uation metrics. As before, GPFF and HBDF outperform GPF and HBD, respectively, and BI

performs the worst. The proposed models perform particularly well in comparison to BI in re-

cent years when there are significantly more options in the market. For instance, the MAPEs of

GPFF and BI in 1997 are 0.131 and 0.153, respectively, whereas those in 2021 are 0.146 and 0.190.

The improved performance in recent years can be attributed to the increased volume of the training

set. Machine learning algorithms learn patterns from historical data and having a large amount of

data for training is critical to avoid overfitting and make more accurate predictions.

The increasing trend of pricing errors corresponds to the growth of trading volume. As more

participants engage in the options market and trading activity intensifies, prices can swing more

due to more frequent changes of demand and supply dynamics. Increased liquidity also allows

for quicker transactions and increased price sensitivity to new information. These factors can

contribute to the increasing trend of pricing errors.

1.5.2 Importance of firm characteristics

The LGBM evaluates the importance of input features through two methods: Frequency (Num-

ber of Splits) and Gain (Split Importance). The Frequency counts the total number of times a

feature is used to split the data across all trees in the model. Features used more often in the tree

construction process are considered more important. The Gain measures the total improvement in

the loss function that results from each split based on a particular feature. A higher gain indicates

that the feature is more important for making accurate predictions. We assess feature importance

using the Gain method as it quantifies the actual contribution of each feature. To determine the

overall importance of a feature, we compute its importance in each month and use the time-series

average.

Figure 1.3 and 1.4 present the 20 most important features in GPFF and HBDF , respectively.
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Table 1.7. Pricing performance in each year. This table presents the MAPE of each
model year by year. The out-of-sample period is from January 1997 to December 2021. The
details of each model can be found in Section 1.4.3.

Year BI GPF HBD GPFF HBDF Obs.

1997 0.153 0.153 0.158 0.131 0.134 153,229
1998 0.172 0.157 0.163 0.133 0.136 181,157
1999 0.133 0.124 0.128 0.105 0.107 199,367
2000 0.134 0.128 0.132 0.101 0.103 220,678
2001 0.161 0.132 0.135 0.098 0.100 213,662
2002 0.191 0.137 0.139 0.099 0.102 232,965
2003 0.168 0.122 0.123 0.099 0.100 280,989
2004 0.151 0.121 0.120 0.101 0.102 334,722
2005 0.168 0.140 0.140 0.117 0.118 388,334
2006 0.157 0.135 0.135 0.114 0.117 474,555
2007 0.171 0.146 0.149 0.118 0.123 561,669
2008 0.184 0.162 0.167 0.122 0.128 558,326
2009 0.163 0.122 0.125 0.103 0.106 598,001
2010 0.178 0.137 0.141 0.109 0.113 632,137
2011 0.204 0.152 0.158 0.127 0.135 733,218
2012 0.214 0.154 0.161 0.130 0.141 676,854
2013 0.209 0.171 0.180 0.139 0.159 743,229
2014 0.218 0.201 0.213 0.162 0.177 765,182
2015 0.244 0.212 0.227 0.172 0.183 717,363
2016 0.265 0.215 0.226 0.175 0.193 685,442
2017 0.250 0.213 0.226 0.178 0.191 775,183
2018 0.244 0.221 0.233 0.175 0.195 954,575
2019 0.273 0.231 0.248 0.189 0.208 1,000,970
2020 0.232 0.225 0.237 0.169 0.188 1,323,542
2021 0.190 0.177 0.185 0.146 0.162 1,749,994

The scores in the figures are the average scores of all monthly training results. Although not

reported here, we find that the importance scores are stable over the sample period, which illustrates

that the most important features consistently aid in predicting option prices.
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Figure 1.3. Feature importance score of the 20 most important features in GPFF .
The scores in the figure are the average scores of all monthly training results extracted from
the LightGBM algorithm. A higher score means the feature is used more often in the tree
construction process and the feature is considered more important. T , S/X, σavg, S, and
X, are the most important features and take about 50.81% of total importance. Conditional
skewness (coskew 21d), Dimson Beta (beta dimson 21d), dividend yield (div12m me), One-
year-lagged annual stock return (seas 1 1an), and downside beta (betadown 252d) are the
most important firm characteristics.

Figure 1.3 demonstrates that option-related variables, including T , S/X, σavg, S, andX, are the

most critical, accounting for 50.81% of the total feature importance. This aligns with expectations

since the target of the algorithm in GPFF is implied volatility, and these parameters are crucial for

its calculation in the binomial model. S/X helps the model assess option moneyness, potentially

enhancing volatility smile detection.

The remaining 49.19% of feature importance is attributed to firm characteristics such as condi-

tional skewness (coskew 21d), Dimson Beta (beta dimson 21d), dividend yield (div12m me), one-

year-lagged annual stock return (seas 1 1an), and downside beta (betadown 252d). These features’

predictive capabilities are further discussed in Section 1.6.

Conditional skewness (coskew 21d) significantly impacts option pricing by affecting the return

of the underlying asset, with a notable influence score of 0.86%. Our model, based on a binomial

distribution, considers both increases and decreases in the underlying asset’s price at each time
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step. Incorporating the distribution details of the asset into our machine learning algorithm has

proven beneficial for addressing volatility smiles more effectively. Other option pricing researches

also show that the skewness of stock could help the prediction of option price. For instance,

Corrado and Su (1996) extend the Black-Scholes model to include the skewness of the underlying

asset, highlighting its value in option pricing. Studies also indicate that option implied volatility

skewness (Bates, 1991; Doran, Peterson, and Tarrant, 2007; Van Buskirk, 2009; Xing, Zhang, and

Zhao, 2010) the stock skewness (Chen et al., 2001; Byun and Kim, 2016; Jang and Kang, 2019) can

predict the underlying stock return, making it reasonable to assume that the skewness also helpful

for the option price prediction since the value of a call (put) option is a positive (negative) function

of the stock price (Byun and Kim, 2016).

As for the Dimson beta (beta dimson 21d) proposed by Dimson (1979) has an important value

of 0.81%. Dimson (1979) argues that the traditional beta estimate (the sensitivity of stock returns

to market returns) may be biased in thinly traded markets because of infrequent trading. To adjust

for this, Dimson (1979) suggests using a model that incorporates leading and lagging factors in the

calculation of beta. The adjustment of Dimson Beta can indirectly affect the binomial option

pricing model through the estimation of volatility. If we assume that the beta adjustment more

accurately reflects the risk of a given stock, it may lead to a more accurate estimate of the stock’s

future price volatility, which is an important input in the binomial option pricing model. Since we

use machine learning to predict implied volatility, Dimson beta can be valuable in the prediction

process.

Figure 1.4 reveals that the option-related variables are also the most important features in

HBDF . Their importance scores are higher and firm characteristics play a less important role,

with an aggregate score of 40.93% in HBDF . This is because the machine learning algorithm in

HBDF predicts the residuals from the BI model that may have more noise in the price dimension,

and the option-related variables are directly related to the option price, which is at the same

dimension of the residual.

Conditional skewness (coskew 21d), Dimson Beta (beta dimson 21d), firm age (age), One-year-

lagged annual stock return (seas 1 1an) and dividend yield (div12m me) are the most important

features among firm characteristics. The fact that these firm characteristics are identified as impor-
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tant features in both models implies that they are not picked by chance but do contain information

about the option price.

Figure 1.4. Feature importance score of the 20 most important features in HBDF .
The scores in the figure are the average scores of all monthly training results extracted from
the LightGBM algorithm. A higher score means the feature is used more often in the tree
construction process and the feature is considered more important. T , S/X, σavg, S, and
X, are the most important features and take about 59.07% of total importance. Conditional
skewness (coskew 21d), Dimson Beta (beta dimson 21d), firm age (age), One-year-lagged
annual stock return (seas 1 1an) and dividend yield (div12m me)

From an economic standpoint, firm characteristics that affect stock performance, such as prof-

itability, leverage, market value, and volatility, are inherently linked to the company’s financial

health and growth prospects. These characteristics influence investors’ perceptions and expecta-

tions, which are generally reflected in the stock price movements and, by extension, in the pricing

of options on those stocks. For example, the most important skewness condition in firm charac-

teristics measures the skewness of stock returns. Several studies (Chen et al., 2001; Dennis and

Mayhew, 2002; Conrad, Dittmar, and Ghysels, 2013; Boyer and Vorkink, 2014; Byun and Kim,

2016; Del Viva, Kasanen, and Trigeorgis, 2017; Schneider, Wagner, and Zechner, 2020) show that

the skewness could relate to the stock returns. The call (put) option price is a positive (negative)

function of the stock price, the change in the stock returns could affect the call (put) option price.

Thus, the factors that are related to stock return performance could also related to the option

38



Chapter 1

price prediction. This is consistent with the finding in Byun and Kim (2016) that high-skewness

stocks usually have higher stock returns and overpriced call options. On the other hand, several

measures of beta also have high characteristic importance. Beta is a measure of the riskiness of a

stock’s performance relative to certain benchmark returns. It also affects the expectation of future

stock returns (Latane and Rendleman, 1976; Chang, Christoffersen, Jacobs, and Vainberg, 2012;

Boloorforoosh, Christoffersen, Fournier, and Gouriéroux, 2020) and thus the expectation of option

prices. As for dividend yield and annual yield with a one-year lag, they are both measures of op-

tion profitability, where dividend yield correlates with option value because option holders are not

eligible for dividends, and annual yield gives some momentum insight into the stock, which may

make investors prefer options on high-momentum stocks and thus affect the option price (Byun

and Kim, 2016).

The price of call (put) options is positively (negatively) influenced by stock prices, though these

relationships are typically nonlinear. Parametric models often restrict the source of nonlinearity to

standard variables like volatility, maturity, strike price, closing price, and risk-free rate. Corrado

and Su (1996) expands these variables to include skewness and kurtosis. Machine learning models,

particularly semi-parametric ones discussed in the thesis, effectively incorporate both standard and

additional variables, blending the strengths of parametric and machine learning approaches. These

semi-parametric models retain the structure of parametric models while leveraging machine learning

to address nonlinearities and firm characteristics. They also manage multicollinearity, allowing for

a wider exploration of firm characteristics, including operational aspects, as noted by Gu et al.

(2020); Han (2021); Bali et al. (2023). This capability enables models like LightGBM to select the

most relevant features for modelling, even among correlated characteristics.

1.6 Robustness tests

1.6.1 Training models by the most important firm characteristics

The results presented in Table 1.8 detail the iteration variations of the GPF, each progressively

integrating additional firm characteristics. The initial model, GPF 1
f , incorporates conditional
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skewness (coskew 21d). Successive versions build on this by adding Dimson Beta (beta dimson 21d)

in GPF 2
f , then dividend yield (div12m me) in GPF 3

f , followed by one-year-lagged annual stock

return (seas 1 1an) in GPF 4
f , and culminating with downside beta (betadown 252d) in GPF 5

f .

Each additional firm characteristic aims to test the balance of complexity and predictive accuracy.

The greatest RMSE reduction is seen with the inclusion of the coskew 21d, dropping from 1.701

to 1.532. The next significant improvement comes from adding beta dimson 21d, further reducing

RMSE to 1.487. The smallest reduction occurs with the fifth characteristic, bringing the RMSE

down from 1.453 to 1.446. These findings indicate that the first two characteristics significantly

improve prediction accuracy, with subsequent characteristics offering progressively lesser benefits.

Table 1.8. Pricing performance for all options. This table presents the out-of-sample
pricing errors of each model for all the options in the sample. The out-of-sample period
is from January 1997 to December 2021. RMSE, MAE, and MAPE refer to the root mean
squared error, the mean absolute error, and the mean absolute percentage error, respectively.
MCS-p refers to the p-value of the model confidence set (MCS) test, where a high p-value
indicates a model is more likely to be part of the MCS. The details of each model can be
found in Section 1.4.3.

GPFF GPF 5
f GPF 4

f GPF 3
f GPF 2

f GPF 1
f GPF

RMSE 1.376 1.446 1.453 1.463 1.487 1.532 1.701
MAE 0.381 0.401 0.404 0.409 0.417 0.430 0.470
MAPE 0.144 0.151 0.152 0.153 0.157 0.161 0.178
MCS-p 1.000 0.000 0.000 0.000 0.000 0.000 0.000

1.6.2 Training models for each option group

As shown in Table 1.1, the distribution of the sample is highly imbalanced across different

option groups, e.g., there are significantly more near-term options than long-term options. The

imbalance in the training set can lead to a biased result as the algorithm may prioritize minimizing

the pricing error of near-term options over long-term options. If the relations between the input

and the output are different between these two option groups, training one model for all options

will result in a relatively poor performance for long-term options. On the other hand, training a

machine algorithm individually for each option group can suffer from a small data problem, which

can cause overfitting. The small data problem can be particularly severe in the early years of the

sample, where available options are significantly fewer. To test the trade-off between the data
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imbalance problem and the small data problem, we train the models individually for each option

group and compare the results with those from the previous one-model-fits-all case. The results

are presented below. Overall, it appears that the relationship between input characteristics and

option prices for different types of options is not so obvious, so instead of training separate models

for each group of options, one model for all types of options is sufficient.

1.6.2.1 Call vs put options

Table 1.9 reports the pricing performance of the models that are separately trained on call

and put options. The proposed models yield slightly smaller errors when trained individually. For

call options, the RMSEs of GPFF and HBDF are reduced from 1.365 to 1.335 and from 1.453 to

1.433, respectively, and for put options, the RMSEs are reduced from 1.394 to 1.365 and from 1.468

to 1.449. Although the improvements are minor, the result suggests that it is worth training the

models separately for each option type.

Table 1.9. Pricing performance of individual models for call and put options.
This table presents the out-of-sample pricing errors of the models that are trained on call
and put options individually. The out-of-sample period is from January 1997 to December
2021. RMSE, MAE, and MAPE refer to the root mean squared error, the mean absolute
error, and the mean absolute percentage error, respectively. MCS-p refers to the p-value of
the model confidence set (MCS) test, where a high p-value indicates a model is more likely
to be part of the MCS. The details of each model can be found in Section 1.4.3.

BI GPF HBD GPFF HBDF

Panel A. Call options (9,379,625 observations)

RMSE 2.065 1.685 1.696 1.335 1.433
MAE 0.561 0.448 0.450 0.346 0.356
MAPE 0.212 0.169 0.184 0.132 0.147

MCS-p 0.000 0.000 0.000 1.000 0.000

Panel B. Put options (5,775,718 observations)

RMSE 1.954 1.687 1.689 1.365 1.449
MAE 0.574 0.453 0.451 0.367 0.371
MAPE 0.201 0.167 0.177 0.135 0.146

MCS-p 0.000 0.000 0.000 1.000 0.209

1.6.2.2 Different moneyness options

Table 1.10 reports the pricing performance of the models that are trained on different moneyness

groups individually. The results of training the model alone were better in the DOTM group, but
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in the other groups, the results were mixed, and even worse in the DITM group. It appears that

dividing the sample into many groups results in not enough sample size for each group and the

benefit of specifying a model for each group cannot dominate the small data problem.

1.6.2.3 Different maturity options

Table 1.11 reports the pricing performance of the models that are trained on different maturity

groups individually. The models perform slightly better for near-term and mid-term options, e.g.,

the RMSEs of GPFF and HBDF are respectively 1.448 and 1.532 for near-term options when trained

individually, whereas they are 1.470 and 1.556 when trained using the entire sample. However, the

models perform worse for long-term options when trained individually. The poor performance can

be attributed to the small sample size of long-term options.

1.6.3 Black-Scholes model-based machine learning models

In this section, we replace the binomial model in the GPF and HBD with the BS model to test

whether machine learning in the BS model setting helps improve pricing accuracy and whether firm

characteristics help predict option prices. In addition, we seek to test whether machine learning

can address the early exercise of American options that cannot be explained by the BS model.

The implied volatilities calculations, the inputs to the GPF and HBD, and the hyperparameters of

the machine learning model based on the BS model are the same as those of the machine learning

model based on the binomial model. The benchmark model is the deterministic volatility function

(DVF) proposed by Dumas et al. (1998) and extensively tested by Andreou, Charalambous, and

Martzoukos (2014), where the DVF is an ad-hoc BS whose volatility is estimated using the function

equation:

σDV F = max(0.01, a0 + a1K + a2K
2 + a3T + a4T

2 + a5KT , (1.24)

where K = S/X, S is the close price, and T is the maturity.

Specifically, we tested five models: the DVF model (DVF), using lagged implied volatility as

input to the BS model; the GPF, GPFF , HBD, and HBDF , replacing the binomial model with

the BS model in the GPF and HBD structures (described in 1.4.3). Table 1.12 reports the pricing
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Table 1.10. Pricing performance of individual models for different moneyness
options. This table presents the out-of-sample pricing errors of the models that are trained
on different maturity options individually.

BI GPF HBD GPFF HBDF

Panel A. Deep out-the-money (2,501,427 observations)

RMSE 2.115 1.324 1.416 1.055 1.256
MAE 0.603 0.394 0.403 0.301 0.328
MAPE 0.329 0.235 0.256 0.182 0.210

MCS-p 0.000 0.000 0.000 1.000 0.000

Panel B. Out-the-money (3,203,805 observations)

RMSE 1.904 1.426 1.520 1.256 1.368
MAE 0.545 0.425 0.428 0.346 0.360
MAPE 0.283 0.236 0.253 0.195 0.216

MCS-p 0.000 0.000 0.000 1.000 0.012

Panel C. Just Out-the-money (3,918,073 observations)

RMSE 1.996 1.636 1.753 1.461 1.581
MAE 0.571 0.475 0.478 0.398 0.408
MAPE 0.223 0.192 0.201 0.163 0.175

MCS-p 0.000 0.000 0.000 1.000 0.002

Panel D. At-the-money (2,052,942 observations)

RMSE 2.339 2.002 2.126 1.721 1.802
MAE 0.657 0.563 0.566 0.498 0.508
MAPE 0.145 0.133 0.136 0.120 0.130

MCS-p 0.000 0.000 0.000 1.000 0.035

Panel E. Just in-the-money (2,071,177 observations)

RMSE 1.970 1.637 1.702 1.488 1.589
MAE 0.533 0.466 0.467 0.408 0.417
MAPE 0.085 0.081 0.084 0.072 0.078

MCS-p 0.000 0.000 0.000 1.000 0.002

Panel F. In-the-money (882,661 observations)

RMSE 1.765 1.461 1.553 1.278 1.470
MAE 0.456 0.403 0.410 0.359 0.377
MAPE 0.054 0.053 0.057 0.048 0.056

MCS-p 0.000 0.000 0.000 1.000 0.000

Panel G. Deep in-the-money (517,296 observations)

RMSE 1.760 1.465 1.499 1.306 1.478
MAE 0.430 0.374 0.375 0.338 0.351
MAPE 0.039 0.038 0.041 0.035 0.042

MCS-p 0.000 0.000 0.000 1.000 0.000
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Table 1.11. Pricing performance of individual models for different maturity
options. This table presents the out-of-sample pricing errors of the models that are trained
on different maturity options individually. The out-of-sample period is from January 1997 to
December 2021. RMSE, MAE, and MAPE refer to the root mean squared error, the mean
absolute error, and the mean absolute percentage error, respectively. MCS-p refers to the
p-value of the model confidence set (MCS) test, where a high p-value indicates a model is
more likely to be part of the MCS. The details of each model can be found in Section 1.4.3.

BI GPF HBD GPFF HBDF

Panel A. Near-term (10,004,961 observations)

RMSE 1.816 1.611 1.675 1.448 1.532
MAE 0.522 0.452 0.454 0.384 0.395
MAPE 0.220 0.195 0.210 0.166 0.184

MCS-p 0.000 0.000 0.000 1.000 0.011

Panel B. Mid-term (3,905,431 observations)

RMSE 2.118 1.396 1.419 1.135 1.191
MAE 0.582 0.427 0.437 0.340 0.348
MAPE 0.184 0.139 0.141 0.105 0.113

MCS-p 0.000 0.000 0.000 1.000 0.002

Panel C. Long-term (1,228,960 observations)

RMSE 3.050 1.801 1.805 1.355 1.544
MAE 0.866 0.545 0.544 0.436 0.463
MAPE 0.180 0.121 0.128 0.099 0.111

MCS-p 0.000 0.000 0.000 1.000 0.019

performance of the models evaluated using all options.

Firstly, when comparing three models that do not incorporate firm characteristics (DVF, GPF,

and HBD), GPF demonstrates the best performance, followed by HBD. The RMSEs for GPF,

HBD, and DVF are 3.396, 3.536, and 3.743, respectively. The superiority of GPF is evident across

other evaluation metrics as well.

Incorporating firm characteristics, both GPF and HBD exhibit smaller pricing errors compared

to their counterparts. The RMSEs for GPFF and HBDF are 1.449 and 1.755, respectively, which are

lower than the RMSEs of GPF and HBD at 3.396 and 3.536. The inclusion of firm characteristics

enhances the pricing performance of both GPF and HBD, making GPFF the top-performing model

among all five. The MCS p-value confirms that GPFF is the only model included in the MCS.

Significantly, the GPF models outperform the HBD models and BS in the BS-based models.

This implies that GPF exhibits greater stability than HBD when utilizing different parametric

models. However, it should be noted that the accuracy of the pricing error prediction method is

heavily reliant on the accuracy of the parametric model, such as HBD.
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Table 1.12. Pricing performance for all options (BS models). This table presents
the out-of-sample pricing errors of each model for all the options in the sample. The out-
of-sample period is from January 1997 to December 2021. RMSE, MAE, and MAPE refer
to the root mean squared error, the mean absolute error, and the mean absolute percentage
error, respectively. MCS-p refers to the p-value of the model confidence set (MCS) test,
where a high p-value indicates a model is more likely to be part of the MCS. The details of
each model can be found in Section 1.4.3.

BI GPF HBD GPFF HBDF

RMSE 3.743 3.396 3.536 1.449 1.755
MAE 1.125 0.995 1.041 0.412 0.500
MAPE 0.620 0.567 0.578 0.174 0.201

MCS-p 0.000 0.000 0.000 1.000 0.019

1.7 Conclusion

This paper proposes machine learning-based option pricing models that incorporate firm char-

acteristics. Individual stock option prices can be affected by the prospects of the underlying firm

and our aim is to assess whether firm characteristics can enhance the pricing of stock options. We

employ two semi-parametric models, a variant of Andreou et al. (2010)’s generalized parametric

function model (GPF) and a variant of Lajbcygier and Connor (1997)’s hybrid model (HBD), and

evaluate them using individual stock options in the US market in the period from 1996 to 2021.

The results suggest that both GPF and HBD are effective in pricing American options and firm

characteristics can significantly improve the performance of these models. Between the two models,

GPF consistently performs better. Among the firm characteristics, conditional skewness, Dimson

Beta, dividend yield, one-year-lagged annual return, and downside beta are found to be the most

important features in predicting option prices. We contribute to the option pricing literature by

making the first attempt to incorporate firm characteristics into option pricing and demonstrating

its effectiveness.
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Appendices

.1 Firm characteristics

Abbreviation Description Author Year Journal

age Firm age Jiang, Lee, and Zhang 2005 RAS

aliq at Asset liquidity to book assets Ortiz-Molina and Phillips 2014 JFQA

ami 126d Illiquidity Amihud 2002 JFM

at be Book leverage Fama and French 1992 JF

at gr1 Asset growth Cooper, Gulen, and Schill 2008 JF

at me Assets-to-market Fama and French 1992 JF

at turnover Capital turnover Haugen and Baker 1996 JFE

be gr1a Change in common equity Richardson et al. 2005 JAE

be me Book-to-market Rosenberg, Reid, and

Lanstein

1985 JF

beta dimson 21d Dimson Beta Dimson 1979 JFE

betadown 252d Downside beta Ang, Chen, and Xing 2006 RFS

bev mev Book-to-market enterprise value Penman, Richardson, and

Tuna

2007 JAR

bidaskhl 21d High-low bid-ask spread Corwin and Schultz 2012 JF

capx gr1 CAPEX growth Xie 2001 AR

cash at Cash-to-assets Palazzo 2012 JFE

chcsho 12m Net stock issues Pontiff and Woodgate 2008 JF

coa gr1a Change in current operating assets Richardson et al. 2005 JAE

col gr1a Change in current Operating liabilities Richardson et al. 2005 JAE

cop at Cash-based operating profitability Ball et al. 2016 JFE

cop atl1 Cash-based operating profits to lagged assets Ball et al. 2016 JFE

coskew 21d Coskewness Harvey and Siddique 2000 JF

cowc gr1a Change in net non-cash working capital Richardson et al. 2005 JAE

dbnetis at Net debt finance Bradshaw, Richardson,

and Sloan

2006 JAE

debt me Debt to market Bhandari 1988 JFE

dgp dsale Gross margin growth to sales growth Abarbanell and Bushee 1998 AR

div12m me Dividend yield Litzenberger and Ra-

maswamy

1979 JF

dolvol 126d Dollar trading volume Brennan, Chordia, and

Subrahmanyam

1998 JFE

dolvol var 126d Volatility of dollar trading volume Chordia, Subrahmanyam,

and Anshuman

2001 JFE

Continued on the next page
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dsale drec Sales growth to receivable growth Abarbanell and Bushee 1998 AR

ebit bev Return on net operating assets Soliman 2008 AR

ebit sale Profit margin Soliman 2008 AR

ebitda mev Enterprise multiple Loughran and Wellman 2011 JFQA

emp gr1 Employment growth Belo, Lin, and Bazdresch 2014 JPE

eqnetis at Net equity finance Bradshaw, Richardson,

and Sloan

2006 JAE

eqnpo 12m Composite equity issuance Daniel and Titman 2006 JF

eqnpo me Net payout yield Boudoukh et al. 2007 JF

eqpo me Payout yield Boudoukh et al. 2007 JF

f score Piotroski F-score Piotroski 2000 AR

fcf me Cash flow-to-price Lakonishok, Shleifer, and

Vishny

1994 JF

fnl gr1a Change in financial liabilities Richardson et al. 2005 JAE

gp at Gross profits-to-assets Novy-Marx 2013 JFE

gp atl1 Gross profits-to-lagged assets Novy-Marx 2013 JFE

inv gr1a Inventory change Thomas and Zhang 2002 RAS

iskew capm 21d Idiosyncratic skewness (CAPM) Bali, Engle, and Murray 2016 BOOK

iskew ff3 21d Idiosyncratic skewness (FF3) Bali, Engle, and Murray 2016 BOOK

iskew hxz4 21d Idiosyncratic skewness (q-factor) Bali, Engle, and Murray 2016 BOOK

ivol capm 21d Idiosyncratic volatility (CAPM) Ang et al. 2006 JF

ivol capm 252d Idiosyncratic volatility Ali, Hwang, and Trombley 2003 JFE

ivol ff3 21d Idiosyncratic volatility (FF3) Ang et al. 2006 JF

ivol hxz4 21d Idiosyncratic volatility (q-factor) Ang et al. 2006 JF

lnoa gr1a Change in long-term net operating assets Fairfield, Whisenant, and

Yohn

2003 AR

lti gr1a Chagne in long-term investments Richardson et al. 2005 JAE

market equity Market equity Banz 1981 JFE

mispricing mgmt Mispricing factor: Management Stambaugh and Yuan 2016 RFS

mispricing perf Mispricing factor: Performance Stambaugh and Yuan 2016 RFS

ncoa gr1a Change in non-current operating assets Richardson et al. 2005 JAE

ncol gr1a Change in non-current operating liabilities Richardson et al. 2005 JAE

netdebt me Net debt-to-price Penman, Richardson, and

Tuna

2007 JAR

netis at Net external finance Bradshaw, Richardson,

and Sloan

2006 JAE

nfna gr1a Change in net financial assets Richardson et al. 2005 JAE

ni be Return on equity Haugen and Baker 1996 JFE

ni inc8q Number of consecutive quarters with earnings

in...

Barth, Elliott, and Finn 1999 JAR

Continued on the next page
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ni me Earnings to price Basu 1983 JFE

niq at Quarterly return on assets Balakrishnan, Bartov, and

Faurel

2010 JAE

niq at chg1 Change in quarterly return on assets Balakrishnan, Bartov, and

Faurel

2010 JAE

niq be Return on equity (quarterly) Hou, Xue, and Zhang 2015 RFS

niq be chg1 Change in quarterly return on equity Balakrishnan, Bartov, and

Faurel

2010 JAE

niq su Earnings surprise Foster, Olsen, and Shevlin 1984 AR

nncoa gr1a Change in net non-current operating assets Richardson et al. 2005 JAE

noa at Net operating assets Hirshleifer et al. 2004 JAE

noa gr1a Change in net operating assets Hirshleifer et al. 2004 JAE

oaccruals at Operating accruals Sloan 1996 AR

oaccruals ni Percent operating accruals Hafzalla, Lundholm, and

Van Winkle

2011 AR

ocf at Operating cash flow to assets Bouchard et al. 2019 JF

ocf at chg1 Change in operating cash flow to assets Bouchard et al. 2019 JF

ocf me Operating Cash flows to price Desai, Rajgopal, and

Venkatachalam

2004 AR

op at Operating profits-to-assets Ball et al. 2016 JFE

op atl1 Operating profits-to-lagged assets Ball et al. 2016 JFE

opex at Operating leverage Novy-Marx 2011 JFE

prc highprc 252d 52-week high George and Hwang 2004 JF

qmj prof Quality minus Junk: Profitability Asness, Frazzini, and Ped-

ersen

2018 RAS

qmj safety Quality minus Junk: Safety Asness, Frazzini, and Ped-

ersen

2018 RAS

resff3 12 1 12 month residual momentum Blitz, Huij, and Martens 2011 JEF

resff3 6 1 6 month residual momentum Blitz, Huij, and Martens 2011 JEF

ret 1 0 Short-term reversal Jegadeesh 1990 JF

ret 12 1 Momentum (12 month) Jegadeesh and Titman 1993 JF

ret 12 7 Intermediate momentum (7-12) Novy-Marx 2012 ROF

ret 3 1 Momentum (3 month) Jegadeesh and Titman 1993 JF

ret 6 1 Momentum (6 month) Jegadeesh and Titman 1993 JF

ret 9 1 Momentum (9 month) Jegadeesh and Titman 1993 JF

rmax1 21d Maximum daily return Bali, Cakici, and Whitelaw 2011 JFE

rmax5 21d Highest 5 days of return Bali, Brown, and Tang 2017 JFE

rmax5 rvol 21d Highest 5 days of return to volatility Assness et al. 2020 JFE

rskew 21d Return skewness Bali, Engle, and Murray 2016 BOOK

rvol 21d Return volatility Ang et al. 2006 JF

Continued on the next page
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sale bev Asset turnover Soliman 2008 AR

sale gr1 Annual sales growth Lakonishok, Shleifer, and

Vishny

1994 JF

sale me Sales to price Barbee, Mukherji, and

Raines

1996 FAJ

saleq su Revenue surprise Jegadeesh and Livnat 2006 JFE

seas 1 1an Year 1-lagged return, annual Heston and Sadka 2008 JFE

seas 1 1na Year 1-lagged return, nonannual Heston and Sadka 2008 JFE

sti gr1a Change in short-term investments Richardson et al. 2005 JAE

taccruals at Total accruals Richardson et al. 2005 JAE

taccruals ni Percent total accruals Hafzalla, Lundholm, and

Van Winkle

2011 AR

tangibility Tangibility Hahn and Lee 2009 JF

tax gr1a Tax expense surprise Thomas and Zhang 2011 JAR

turnover 126d Share turnover Datar, Naik, and Radcliffe 1998 JFM

turnover var 126d Volatility of share turnover Chordia, Subrahmanyam,

and Anshuman

2001 JFE

zero trades 126d Zero-trading days (6 months) Liu 2006 JFE

zero trades 21d Zero-trading days (1 month) Liu 2006 JFE

zero trades 252d Zero-trading days (12 months) Liu 2006 JFE
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Chapter 2

Can option characteristics provide

leading information about stocks’

extreme returns?

Abstract

This study examines the predictive ability of option-implied volatility and Greeks via machine

learning model (LightGBM) to forecast stock extreme returns. We analyze U.S. stock market data

from January 1996 to December 2022. Our findings reveal that option characteristics significantly

enhance prediction accuracy. The LightGBM model surpasses logistic regression in forecasting

stock extreme returns. We also construct investment portfolios that notably outperform in Sharpe

ratios and average returns, demonstrating the value of option characteristics in predicting extreme

stock returns and advancing market prediction strategies. This research enriches financial market

analysis and suggests areas for further enhancement.

Keywords: Option Greeks; Multi-class; Stock Extreme Returns; Machine Learning.
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2.1 Introduction

Studies have demonstrated that valuable insights about future stock returns can be obtained

from the options market (Chiras and Manaster, 1978; Bates, 1991; Claessen and Mittnik, 2002;

Ofek et al., 2004; Xing et al., 2010; Cremers and Weinbaum, 2010). Investors seek to maximize

profits by trading options when they anticipate significant price changes in the underlying asset.

Such investment activities can lead options to contain information about their underlying stock’s

extreme return. We examine whether option characteristics (implied volatility and Greeks) can

predict jumps and crashes of the underlying stocks.

Studies have shown that the implied volatilities of options contain leading information about

stock prices. Bates (1991) finds that out-of-the-money put options became abnormally expensive

prior to the 1987 crash. Doran et al. (2007) demonstrate that the option-implied volatility skew

can predict short-term stock performance, with the put volatility skew being particularly useful in

forecasting short-term market declines. Ni, Pan, and Poteshman (2008) find evidence to support

the hypothesis that option traders trade on volatility information, which has implications for the

stock market. Specifically, they find that the demand for volatility in the options market predicts

the future realized volatility of the underlying stock. They also propose that investors trade on

volatility information in the options market, which is subsequently reflected in the underlying stock.

Van Buskirk (2009) investigate the relationship between the firm-level option-implied volatility

skew and the probability of extreme negative events and finds that negative jumps in earnings

announcements during short-window periods can be predicted when the option-implied volatility

skew is high. Xing et al. (2010) also find that the shape of the volatility smirk is a strong predictor

of future stock returns and that stocks with steep option volatility smirks perform worse than those

with flatter option volatility smirks. Ofek et al. (2004) conduct a study to examine the put-call

parity under no-arbitrage conditions and with restrictions on short sales. They find that the extent

of the violation of put-call parity and the cost of short selling provide valuable predictive power

for future stock returns. Similarly, Cremers and Weinbaum (2010) propose that the deviation

of put-call parity can be used to forecast stock returns. Bali and Hovakimian (2009) investigate

the relationship between implied volatility and expected stock returns. They first demonstrate a
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negative and significant relationship between expected returns and the realized-implied volatility

spread, which can be viewed as a proxy variable for volatility risk. They also show evidence of a

significant positive link between expected returns and the call-put option implied volatility spread,

which can be viewed as a proxy for jump risk. These studies suggest that option-implied volatility

can be a valuable predictor of future stock returns.

Besides implied volatility, option Greeks may contain additional information about future stock

returns. As illustrated in Section 2.2, when stocks experience jumps or crashes in the subsequent

month, their options exhibit notably different implied volatility and Greeks compared to those

associated with stocks performing normally. The implied volatilities of both calls and puts are

significantly higher when the underlying stock jumps or crashes in the next month. Specifically,

the average implied volatilities of the call and put options of jump stocks are respectively 0.70 and

0.72, whereas those of crash stocks are 0.73 and 0.77. In contrast, the average implied volatilities

of the call and put options of normal stocks are respectively 0.44 and 0.45 and are statistically

significantly lower than those of jump or crash stocks. These observations are consistent with

Bates (1991), who finds that out-of-the-money put options were overly expensive before the 1987

crash. Bakshi and Kapadia (2003) also note that investors tend to pay higher prices for options

under volatile market conditions. The deltas of call (put) options are significantly higher (lower)

when their underlying stocks jump or crash. The delta of a call (put) option increases (decreases)

with the volatility and this result can be partially attributed to the higher implied volatility of jump

and crash stocks. The gammas of both call and put options associated with jump or crash stocks

are significantly higher than the gammas of the options associated with normal stocks. Theta’s

lower value in options for stocks that experience jumps or crashes in the next month, relative to

normal stocks, indicates they suffer less time decay before such events. Increased market interest

and trading in volatile stocks may lead to more options trading, potentially mitigating the impact

of time decay. Stocks experiencing jumps or crashes in the coming month typically have lower Vega

values, suggesting their option prices are less affected by underlying stock volatility changes. This

may be because their higher implied volatilities already account for significant inherent volatility

due to natural price instability. Therefore, the impact of additional volatility shifts on these stocks’

option prices is relatively muted.
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Given the notable difference in implied volatility and option Greeks across stocks experiencing

jump, crash, and normal, our objective is to predict the jump and crash of a stock, exploiting the

information drawn from its options’ characteristics. To address the nonlinearities between option

characteristics and the underlying stock’s price, We employ a nonlinear multi-class classification

algorithm, LightGBM (LGBM), which is a gradient-boosting algorithm developed by Microsoft.

We also employ a logit model as a benchmark, following Jang and Kang (2019). The details of

these algorithms are described in Section 2.2.

Our results demonstrate that the gradient-boosting machine learning model (LightGBM in our

research) outperforms traditional logistic regression. The outperformance can be seen from both

the model-based benchmark models (LGBM-B and Logit-B) which only contain control variables as

well as the combined models (LGBM-SDGTV and Logit-SDGTV ) which contain control variables

and option characteristics. Based on the raw probabilities of jump and crash, the benchmark

LGBM model (LGBM-B) predicts jumps and crashes with AUCs of 0.687 and 0.672, respectively,

while the benchmark Logit model (Logit-B) predicts the corresponding with AUCs of 0.667 and

0.650, respectively. In addition, the AUCs of jumps and crashes under the LGBM-SDGTV model

are 0.766 and 0.755, while the AUCs of jumping and crashing under the Logit-SDGTV model are

0.693 and 0.703, respectively. After reclassification using the probability difference between the

probability of jump and crash, the benchmark LGBM model (LGBM-B) yields AUCs of 0.523 and

0.536 respectively for jump and crash, whereas the benchmark Logit model (Logit-B) yields AUCs

of 0.498 and 0.522 for the corresponding predictions. The AUCs for jump and crash are respectively

0.523 and 0.568 under LGBM-SDGTV , whereas they are 0.478 and 0.549 under Logit-SDGTV .

In addition, the financial performance of LGBM-SDGTV is outstanding: the Sharpe ratio

of the value-weighted long/short portfolio of LGBM-SDGTV is 1.42, with an annualized return

of 33% (t-statistic = 3.7), and that of the equal-weighted long/short portfolio is 1.58, with an

annualized return of 31% (t-statistic = 3.34). These figures greatly exceed the non-model based

benchmarks1, which have Sharpe ratios of 0.62 (value-weighted) and 0.52 (equal-weighted), with

corresponding average annual returns of 10% and 11%.

The methods outlined in this chapter effectively use option trading features, such as implied

1 Take long positions in all available stocks.

53



Chapter 2

volatility and Greeks, to predict significant stock returns. Utilizing all available market options

avoids selection bias, offering a comprehensive view and capturing diverse market dynamics. The

application of machine learning, notably the LightGBM model, to this extensive data set under-

scores the methods’ practicality. These models, with their superior predictive capabilities and

financial performance over logit models, provide a strong framework for forecasting stock market

trends, benefiting investors and analysts (Byun and Kim, 2016; Zhan et al., 2022; Bali et al., 2023).

However, the study also acknowledges certain limitations. A primary concern is the inherent risk

associated with portfolios focused on extreme return investments, as indicated by higher standard

deviations and maximum drawdowns, emphasizing the importance of cautious investment and

robust risk management. Additionally, using extensive options data reduces selection bias but

raises issues with data handling and model complexity. Accurate and timely data is essential for

model effectiveness. Furthermore, as Conrad, Kapadia, and Xing (2014); Jang and Kang (2019);

Andreou, Andreou, and Lambertides (2021) demonstrate, varying definitions of market jumps and

crashes can affect model performance based on the thresholds set.

Our study makes two contributions to stock market forecasting. First, we demonstrate the role

of option Greeks in predicting extreme stock returns, providing a new perspective on the options

market. Second, we illustrate the effectiveness of machine learning in predicting extreme stock

returns. By combining option characteristics with the firm characteristics used in Jang and Kang

(2019), the long-short portfolio of our approach produces a Sharpe ratio of 1.42, which exceeds Jang

and Kang (2019)’s 0.80. In summary, we have made a first attempt to demonstrate the predictive

potential of option Greeks, and we expect future advances in feature engineering to produce even

more impressive results.

Given the potential financial implications of extreme stock market movements, it is crucial to

accurately predict stock jumps and crashes. By doing so, investors can strategically avoid stocks

predicted to crash, thereby mitigating potential losses. Conversely, identifying stocks likely to

experience a jump can present lucrative investment opportunities. Therefore, the ability to accu-

rately forecast these market movements is not just beneficial but essential for informed investment

decision-making. This predictive capability can be enhanced through the use of sophisticated ana-

lytical tools and algorithms, which can analyse market trends and other relevant data to generate
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more reliable predictions. By integrating these tools into their investment strategies, investors can

navigate the market more effectively, maximising gains and minimising losses.

The structure of the study is as follows: Section 1 provides an overview of the research. In

Section 2, the methodology is explained. In Section 3, the model construction process is detailed.

Section 4 illustrates the main findings of the analysis on the predictive power of the option charac-

teristics and robustness checks. Finally, Section 5 concludes the study.

2.2 Data and methodology

Our objective is to predict the jump and crash of a stock using the information drawn from the

stock’s options as well as other predictors in the literature. We employ two multi-class classification

algorithms, Logit and LightGBM (LGBM). We choose LGBM because the option’s price and other

characteristics are nonlinear functions of the underlying stock’s price. There can also be nonlinear

interactions between the input features. The logit model has been widely used in the literature and

is chosen as a benchmark. Based on the predicted probabilities of jump and crash, we construct

jump, crash, and jump-minus-crash portfolios and evaluate their performance.

The operational workflow of our model, encompassing the entire process from data input to

portfolio construction and performance evaluation, is illustrated in the flowchart presented in Figure

2.1.

2.2.1 Data

We obtain option data from OptionMetrics and it covers the period from January 1996 to

December 2022. The data includes information on call and put options of exchange-listed US

stocks, such as the end-of-day bid and ask prices, volume, implied volatility, Delta, Gamma, Theta,

and Vega. OptionMetrics employs a binomial tree model to determine the implied volatility and

Greeks of the options.

We gather stock price and accounting data from the Center for Research in Security Prices

(CRSP) and Compustat. Our sample comprises common stocks that are listed on NYSE, Amex,

or Nasdaq and have traded options. We exclude stocks with a closing price below one dollar at the
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Figure 2.1. The flowchart illustrates the prediction procedure. It involves operating
a multi class classification model using either multinomial logit regression or LightGBM. This
model produces three raw probabilities corresponding to jump, crash, and normal scenarios.
The probability difference (ProbDiff) is used for reclassification and is equal to the Jump
probability minus the Crash probability. The ProbDiff sorting results are used to generate
stock portfolios, where a higher ProbDiff means a higher probability of a jump and a lower
ProbDiff means a higher probability of a crash. In each month, the jump portfolio contains
long positions in stocks with higher ProbDiff, and the crash portfolio contains long positions
in stocks with lower ProbDiff. The jump-crash portfolio is a long-short portfolio that contains
long positions in the jump portfolio and short positions in the crash portfolio.

end of the previous month to avoid extremely illiquid stocks. The three-month Treasury bill rate

from the St. Louis Federal Reserve Economic Data is used as a proxy for the risk-free rate.

Following Zhan et al. (2022), we focus exclusively on options that do not expire till the end of the

following month and have a positive trading volume in order to ensure that the options are active

and hold potential significance in the market during the period of interest. In addition, we apply

the following filters to the option data. First, to avoid biases related to market microstructure, we

only retain options, of which the trading volume and bid quote are positive, the bid price is strictly

smaller than the ask price, and the mid-point of the bid and ask quote is at least 0.1 US dollar.

Second, we exclude all the options that violate obvious no-arbitrage conditions.2 Third, We only

select options with maturity between 31 and 60 days at the end of the month t to ensure that the

options do not expire during the prediction period. Fourth, we only retain stocks that have at least

one call and one put option after filtering. Finally, We only select the last observation for each

optionid for each month that meets the above requirements.

Our final sample comprises a total of 397,048 stock-month observations, with an average of

2 For instance, we exclude anomalies such that an out-of-the-money option is more expensive than the
underlying stock or an in-the-money option.
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1,229 stocks per month. Table 2.1 reports the number of options per stock year by year. The

number of options per stock has increased over time. On average, the number of call options has

increased from 3 in 1996 to 11 in 2022, while the number of put options has increased from 2 to

11. Nevertheless, the minimum number of options remains at 1 throughout the sample period and

the median number has increased only moderately (from 3 to 6 in case of call and 2 to 5 in case

of put). In contrast, the maximum number has increased from 16 to 363 (call) and from 14 to 376

(put). This result implies that except for a handful of stocks with many associated options, the

number of options of a stock has not increased significantly and is usually under 10.

Table 2.2 reports the implied volatility and Greeks of the options. We first group stocks into

jump, crash, and normal, and calculate the implied volatilities and Greeks of the option as described

in. The implied volatilities of both calls and puts are significantly higher when the underlying stock

jumps or crashes in the next month. Specifically, the average implied volatilities of the call and

put options of jump stocks are respectively 0.70 and 0.72, whereas those of crash stocks are 0.73

and 0.77. In contrast, the average implied volatilities of the call and put options of normal stocks

are respectively 0.44 and 0.45 and are statistically significantly lower than those of jump or crash

stocks. These observations are consistent with Bates (1991), who finds that out-of-the-money put

options were overly expensive before the 1987 crash. Bakshi and Kapadia (2003) also note that

investors tend to pay higher prices for options under volatile market conditions. The deltas of call

(put) options are significantly higher (lower) when their underlying stocks jump or crash. The

delta of a call (put) option increases (decreases) with the volatility and this result can be partially

attributed to the higher implied volatility of jump and crash stocks. The gammas of both call and

put options associated with jump or crash stocks are significantly higher than the gammas of the

options associated with normal stocks. Theta’s lower value in options for stocks that experience

jumps or crashes in the next month, relative to normal stocks, indicates they suffer less time decay

before such events. Increased market interest and trading in volatile stocks may lead to more options

trading, potentially mitigating the impact of time decay. Stocks experiencing jumps or crashes in

the coming month typically have lower Vega values, suggesting their option prices are less affected

by underlying stock volatility changes. This may be because their higher implied volatilities already

account for significant inherent volatility due to natural price instability. Therefore, the impact of
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additional volatility shifts on these stocks’ option prices is relatively muted.

Table 2.1. Number of options per stock. This table displays the average annual stock
count (in the ‘Obs.’ column) and descriptive statistics—Mean, Standard Deviation, Mini-
mum (Min), 25th (25%), 50th (50%), and 75th (75%) percentiles, and Maximum(Max)—for
the number of options per stock over the sample period. The last row, ‘Avg.’, reports the
average value for each column.

Call Put

YEAR MEAN STD MIN 25% 50% 75% MAX MEAN STD MIN 25% 50% 75% MAX OBS

1996 3 2 1 2 3 4 16 2 2 1 1 2 3 14 362
1997 3 2 1 2 3 4 17 2 2 1 1 2 3 14 485
1998 3 2 1 2 3 4 21 3 2 1 1 2 3 18 585
1999 4 4 1 2 3 4 38 3 3 1 1 2 4 33 617
2000 5 5 1 2 4 6 44 4 4 1 1 2 5 40 628
2001 4 3 1 2 3 5 23 3 3 1 1 2 4 24 638
2002 3 2 1 2 3 4 15 3 2 1 1 2 4 16 669
2003 3 2 1 2 3 4 15 3 2 1 1 2 4 14 690
2004 3 2 1 2 3 4 24 3 2 1 1 2 4 22 800
2005 3 3 1 2 3 4 37 3 2 1 1 2 4 26 874
2006 4 3 1 2 3 5 45 3 3 1 1 2 4 38 1,008
2007 4 3 1 2 3 5 40 3 3 1 2 3 4 35 1,187
2008 5 4 1 2 3 6 54 5 5 1 2 4 6 56 1,247
2009 4 4 1 2 3 5 40 5 5 1 2 3 5 43 1,243
2010 5 4 1 2 3 6 50 4 4 1 2 3 6 46 1,260
2011 6 5 1 2 4 7 64 5 5 1 2 4 7 60 1,232
2012 5 6 1 2 4 7 107 5 6 1 2 4 7 97 1,192
2013 6 7 1 2 4 7 114 5 7 1 2 3 7 108 1,351
2014 7 11 1 2 4 8 148 7 10 1 2 3 7 136 1,439
2015 8 12 1 2 4 8 162 8 12 1 2 4 8 145 1,501
2016 7 11 1 2 4 8 156 7 11 1 2 3 8 155 1,558
2017 8 11 1 2 4 8 169 7 11 1 2 3 7 157 1,741
2018 9 14 1 2 4 9 309 8 14 1 2 4 8 282 1,917
2019 9 15 1 2 4 10 280 8 14 1 2 4 9 288 1,929
2020 12 21 1 3 6 12 363 11 20 1 2 4 11 376 2,024
2021 12 20 1 3 6 12 340 10 18 1 2 4 10 325 2,622
2022 11 18 1 2 5 11 299 11 19 1 2 5 11 312 2,287

AVG. 6 7 1 2 4 7 111 5 7 1 2 3 6 107 1,225

2.2.2 Input variables

2.2.2.1 Control variables

To account for relevant factors affecting stock returns, we include control variables following

Jang and Kang (2019). These variables are firm age (AGE), detrended turnover (DTURN), past

individual return in excess of the market return (EXRET ), tangible asset (TANG), total skewness

(TSKEW ), total volatility (TV OL), past market return (RM12), sales growth (SG), and firm

size (SIZE). They are also motivated by the research of Chen et al. (2001), Hutton, Marcus, and

Tehranian (2009), Boyer, Mitton, and Vorkink (2010) and Conrad et al. (2014). Variables that are
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Table 2.2. Cross-sectional descriptive statistics of the implied volatility and
Greeks. The stocks are categorized by monthly log-returns: above 20% as jumps, below
-20% as crashes. There are 18,908 jumps, 25,064 crashes, and 352,665 normal observations
in the total sample period, averaging 59 jumps, 78 crashes, and 1,092 normal monthly. The
columns belonging to Call, Put, and Spread are the descriptive status of calls, puts, and
the difference between calls and puts, respectively. The row t1 in each Panel reports the
t-statistic of jump versus normal in the Jump column and of crash versus normal in the
Crash column. The row t2 in each Panel reports the t-statistic of Jump versus Crash.

Call Put

Jump Crash Normal Jump Crash Normal

Sigma
MEAN 0.70 0.73 0.44 0.72 0.77 0.45
t1 40.24 38.19 38.53 38.63
t2 -3.13 -4.82

Delta
MEAN 0.56 0.56 0.54 -0.44 -0.44 -0.46
t1 31.56 31.66 34.31 35.55
t2 -2.91 -4.40

Gamma
MEAN 0.14 0.14 0.11 0.14 0.13 0.11
t1 10.60 12.13 10.46 12.07
t2 0.97 1.99

Theta
MEAN -8.53 -8.63 -9.73 -8.12 -8.38 -9.23
t1 6.46 5.66 5.89 4.32
t2 0.38 1.04

Vega
MEAN 3.96 3.94 7.14 3.94 3.92 7.12
t1 -25.48 -26.36 -25.63 -26.46
t2 0.17 0.19
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updated on a monthly basis; AGE, DTURN , EXRET , TSKEW , TV OL, RM12, and SIZE,

are matched with the monthly stock returns with a one-month lag, and those that are updated

quarterly or annually; TANG and SG, are matched with the returns with a six-month lag. The

definitions of these variables are provided in the Appendix. We fill the missing values with the

cross-sectional median value following Gu et al. (2020).

2.2.2.2 Option related variables

Previous studies find that implied volatility embeds valuable information for predicting stock

returns (Ofek et al., 2004; Cremers and Weinbaum, 2010). We explore the predictive power of

not only implied volatility but also option Greeks. Stocks have different numbers of options with

varying degrees of moneyness. This poses a problem when we are to use option characteristics as

input variables for the classification algorithms as they require the same number of input variables

and every observation of an input variable should have the same meaning. For instance, if a stock

has only an at-the-money option and another stock has only an in-the-money option, their Deltas

should not be used as the same input variable as they have different implications. We need to

define common input variables for all stocks through some sort of standardization. We address

this challenge by assuming hypothetical at-the-money options. Specifically, for each option, we fix

the implied volatility and recalculate the Greeks assuming the moneyness is 1.3 We then calculate

the average implied volatility and Greeks of all call options available in a month. We repeat the

same procedure for put options. Consequently, there are ten option-related variables: the average

implied volatility and Greeks (Delta, Gamma, Theta, and Vega) of call options and those of put

options. The input variables are defined as the five call option characteristics and the spreads of

the five characteristics between the call and put options. We use the spreads instead of the put

option characteristics to avoid the multicollinearity problem while retaining the information from

both options.

3 The details can be found in the Appendix.
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2.2.3 Definitions of jump and crash

We classify stock returns into three groups: jump, normal, and crash. Inspired by the method

proposed in Jang and Kang (2019), We define stocks with monthly log returns above 20% as jumps

and stocks below −20% as crashes. In-between returns are classified as normal. This classification

method assigns approximately 5% of all stock returns to jump and crash groups, respectively, which

are similar to the distribution pattern observed in Jang and Kang (2019). Further supporting our

threshold selection, the study by Andreou et al. (2021) indicates that the average crash return was

−17.56% (equivalent to a log return of −19.31%) for the period from 1990 to 2018. This empirical

evidence further satisfies the appropriateness of our chosen thresholds of 20% and −20% for defining

jump and crash in our analysis. In addition, previous studies such as Conrad et al. (2014) and Jang

and Kang (2019) have shown that the results remain robust even when different threshold values

are used. Therefore, slight variations in the threshold levels are not expected to impact the findings

significantly (We test this in the robust tests.).

As a robustness check, we also explore dynamic thresholds for jump and crash, where a return

is classified as jump (crash) if it is above (below) the 95th (5th) percentile of all stock returns over

the past 24 months. Using these dynamic thresholds, we aim to capture extreme stock returns

based on their relative performance within the market.

Table 2.3 reports the descriptive statistics of the returns of jump and crash stocks during

the sample period. When the market is bullish, e.g., the dotcom bubble in 2000 and the stock

market rally during the pandemic in 2020, the proportion of jump stocks exceeds 10%, whereas

when the market is bearish, e.g., the burst of the dotcom bubble in 2001 and the global financial

crisis in 2008, the proportion of crash stocks exceeds 10%. When the proportion of jump stocks is

high, the proportion of crash stocks tends to be also high, which implies that the market becomes

more volatile and stocks jump and crash more frequently in both bullish and bearish periods. By

definition, the maximum returns of jump stocks (107% on average) are greater in magnitude than

the minimum returns of crash stocks (-55% on average). Nevertheless, the proportion of crash

stocks in a bearish market (maximum 15.50% in 2008) usually exceeds the proportion of jump

stocks in a bullish market (maximum 10.87% in 2020), which implies that stocks tend to move

more synchronously in a bearish market.
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Table 2.3. Descriptive statistics of the jump and crash from 1996 to 2022. The
table provides an overview of descriptive statistics for jump and crash between 1996 and 2022,
categorized using a threshold where log-returns exceeding 20% over the next one month are
considered jumps, and those below −20% over the next one month are classified as crashes.
‘%’ denotes the percentage of the number of jumps or crashes to the total observations.
‘Mean’ and ‘Median’ refer to the average and median monthly returns, respectively. ‘Std’
indicates the standard deviation of the monthly returns, while ‘Min’ and ‘Max’ represent
the minimum and maximum monthly returns. The last row, ‘Avg.’, reports the average
value for each column. All these values are calculated from monthly observations for the
corresponding years.

Jump Crash

YEAR % MEAN 50% STD MIN MAX % MEAN 50% STD MIN MAX OBS

1996 4.81 0.34 0.30 0.11 0.24 0.62 5.27 -0.26 -0.23 0.07 -0.43 -0.19 362
1997 5.83 0.32 0.29 0.09 0.23 0.63 5.48 -0.25 -0.23 0.07 -0.48 -0.19 485
1998 8.38 0.34 0.30 0.13 0.23 0.88 10.37 -0.26 -0.24 0.07 -0.48 -0.18 585
1999 9.85 0.37 0.31 0.20 0.22 1.50 6.66 -0.27 -0.24 0.08 -0.55 -0.18 617
2000 10.59 0.38 0.32 0.18 0.22 1.13 15.45 -0.29 -0.27 0.10 -0.61 -0.18 628
2001 8.56 0.34 0.30 0.14 0.23 0.93 12.17 -0.29 -0.26 0.09 -0.60 -0.19 638
2002 4.32 0.32 0.28 0.10 0.23 0.63 10.78 -0.29 -0.25 0.11 -0.68 -0.18 669
2003 4.80 0.33 0.29 0.12 0.23 0.73 2.29 -0.26 -0.23 0.08 -0.46 -0.19 690
2004 2.79 0.30 0.28 0.07 0.23 0.55 3.24 -0.25 -0.23 0.06 -0.40 -0.18 800
2005 2.16 0.30 0.28 0.07 0.23 0.46 2.63 -0.25 -0.24 0.07 -0.44 -0.19 874
2006 2.49 0.31 0.27 0.08 0.23 0.54 2.26 -0.26 -0.22 0.08 -0.48 -0.19 1,008
2007 2.17 0.32 0.28 0.12 0.22 0.74 3.43 -0.26 -0.23 0.09 -0.55 -0.18 1,187
2008 3.96 0.34 0.30 0.12 0.22 0.83 15.50 -0.27 -0.24 0.09 -0.64 -0.18 1,247
2009 9.01 0.36 0.30 0.18 0.23 1.29 6.18 -0.27 -0.25 0.08 -0.56 -0.19 1,243
2010 3.78 0.30 0.28 0.09 0.23 0.71 3.08 -0.27 -0.26 0.08 -0.48 -0.20 1,260
2011 3.68 0.32 0.27 0.12 0.23 0.73 5.77 -0.25 -0.23 0.07 -0.49 -0.18 1,232
2012 2.69 0.34 0.28 0.15 0.23 0.87 3.21 -0.26 -0.23 0.09 -0.55 -0.18 1,192
2013 2.81 0.34 0.29 0.15 0.22 0.98 2.04 -0.27 -0.24 0.10 -0.59 -0.18 1,351
2014 2.28 0.36 0.27 0.19 0.23 0.92 3.89 -0.27 -0.23 0.10 -0.61 -0.18 1,439
2015 2.90 0.34 0.30 0.13 0.22 0.86 4.73 -0.27 -0.24 0.10 -0.67 -0.18 1,501
2016 4.03 0.33 0.29 0.14 0.22 0.92 4.58 -0.28 -0.24 0.11 -0.67 -0.18 1,558
2017 2.68 0.35 0.29 0.18 0.22 1.18 2.56 -0.26 -0.24 0.08 -0.57 -0.18 1,741
2018 2.97 0.34 0.29 0.17 0.22 1.08 6.13 -0.26 -0.23 0.09 -0.62 -0.18 1,917
2019 4.57 0.35 0.30 0.19 0.22 1.47 5.09 -0.28 -0.24 0.11 -0.69 -0.18 1,929
2020 10.87 0.42 0.32 0.35 0.22 3.42 9.09 -0.28 -0.25 0.11 -0.71 -0.18 2,024
2021 5.55 0.38 0.31 0.26 0.22 2.70 6.98 -0.26 -0.23 0.09 -0.73 -0.18 2,622
2022 5.43 0.39 0.31 0.22 0.22 1.52 13.07 -0.28 -0.25 0.10 -0.78 -0.18 2,287

AVG. 4.96 0.34 0.29 0.15 0.23 1.07 6.37 -0.27 -0.24 0.09 -0.57 -0.18 1,225
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2.2.4 Classification algorithms

2.2.4.1 Logit

We predict a total of three classes: normal (class 0), jump (class 1) and crash (class 2). The

reference class is assumed to be the normal class (class 0). The multinomial logistic regression is

summarized as follows:

ln
P1,t

P0,t
= a1 +

J∑
j=1

b1,jXj,t−1, (2.1)

ln
P2,t

P0,t
= a2 +

J∑
j=1

b2,jXj,t−1, (2.2)

P0,t + P1,t + P2,t = 1, (2.3)

where a1 and a2 refer to the intercepts for jump and crash prediction, respectively. Xj,t−1 denotes

the feature j known at month t − 1, b1,j is the coefficient of the feature j for jump, b2,j is the

coefficient of the feature j for crash. P0,t, P1,t, and P2,t represent the probabilities for normal, jump

and crash at month t, respectively. J represents the total number of the features.

2.2.4.2 LGBM

The machine learning algorithm we employ is LGBM proposed by Ke et al. (2017). LGBM

is a gradient-boosting framework that employs decision tree-based learning algorithms for both

classification and regression tasks. It is designed for efficiency and scalability when dealing with

large datasets. An outline of the algorithm for multi-class classification follows:

1. Initialize the model: The initial model can be represented as:

F0(x) = argmin
c

∑
L(yi, c) (2.4)

where L(yi, c) is initial loss function for the target label yi corresponding to observation i

and the constant value c.

2. Gradient boosting: Iteratively construct weak learners (decision trees) and combine them to
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create a strong learner. For each iteration t = 1, 2, ..., T :

(a) Compute the gradients gi for each observation i and each class k:

gi = −∂L(yi, F
k(xi))

∂F k(xi)
(2.5)

where L(yi, Fk(xi)) is the loss function, yi is the true label of observation i, and F k(xi)

is the current prediction for observation i and class k.

(b) A decision tree ft(x) is fit using (xi, gi, hi), where xi is the feature vector, gi the gradient,

and hi the Hessian for observation i. The fitting process is as follows:

i. Split Selection: Splits are chosen to maximize the gain in loss reduction, calculated

as:

Gain =
1

2


(∑

i∈IL gi

)2∑
i∈IL hi + λ

+

(∑
i∈IR gi

)2∑
i∈IR hi + λ

−
(∑

i∈I gi
)2∑

i∈I hi + λ

− γ

where IL and IR are the sets of indices of observations in the left and right splits,

and λ, γ are regularization parameters 4.

ii. Leaf-wise Growth: The tree grows leaf-wise by repeating the split process, aiming

to maximize Gain.

(c) Update the model:

Ft(x) = Ft−1(x) + ηt × ft(x) (2.6)

3. Final model: After T iterations, the final model can be represented as:

F (x) = F0(x) +

T∑
t=1

ηt × ft(x) (2.7)

In our research, the multi-log loss is chosen as the loss function. The LGBM includes many

hyperparameters that can be tuned to optimize the performance of the model, such as the number of

leaves, the depth of the tree, and the learning rate. In our study, to address the issue of unbalanced

4 In LightGBM for multi-class prediction, λ helps smooth the model by penalizing large leaf weights, while
γ controls tree complexity by imposing a cost on adding more leaves, both aiming to reduce overfitting and
improve generalization. We keep the regularization parameters as default to keep conservative.
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distribution, we adjusted the parameter for class sampling to ensure a balanced representation of

different classes. We retained the default values for all other hyperparameters in LGBM to assess

the model from a conservative standpoint.

2.2.5 Prediction evaluation

2.2.5.1 Statistical measures

We use the area under curve (AUC) as our statistical measure to evaluate the performance of

the predicted models. Since we are doing a multi-class classification task, the AUC is computed

using the One-vs-Rest (also known as One-vs-All) strategy. The One-vs-Rest strategy and the

calculation of AUC for multi-class classification using this strategy allow for the assessment of

model performance in scenarios where there are more than two classes.

The AUC is the area under the receiver operating characteristic (ROC) curve and represents the

average predictive power of the model (Hanley and McNeil, 1982). The ROC curve is a graphical

interpretation of the classifier’s true positive rate (TPR) and the false positive rate (FPR). The

TPR is the number of true positive samples divided by the sum of true positive and false negative

samples, also known as sensitivity. The FPR is the number of false positive samples divided by the

sum of false positive and true negative samples. The ROC curve represents a compromise between

the TPR and FPR for different classifier performances at different decision thresholds. Each point

on the curve represents the corresponding threshold in the classifier’s decision function. The AUC

represents the mean value, which can objectively reflect the ability to predict positive and negative

samples in aggregate and consider the effect of removing sample skew, especially for unbalanced

data. In addition, AUC can better describe the learning effect of the model when the sample data

requires attention to cost sensitivity. A value of 1.0 for AUC means that the model is a perfect

classifier. In contrast, 0.5 implies a random classifier.

To calculate the AUC for multi-class classification using the One-vs-Rest strategy, the following

steps are typically followed:

1. A separate binary classifier is trained for each class, where the objective is to predict whether

an instance belongs to that particular class or not. The training data for each classifier
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comprises instances from the positive class (the specific class of interest) and instances from

the negative class (the remaining classes).

2. Predicted probabilities or scores are generated after training the binary classifiers. These

probabilities or scores reflect the model’s confidence in assigning an instance to the positive

class (the specific class) or the negative class (the rest of the classes).

3. The AUC is computed for each class by comparing the predicted probabilities or scores of

that class with the scores of the negative class. A commonly used method for this calculation

is the binary classification AUC computation, such as the ROC curve.

4. To obtain an overall measure of the multi-class AUC, the AUC scores for each class are

averaged. This average provides an indication of the model’s discriminative ability across all

classes, summarising its performance in distinguishing between different classes.

2.2.5.2 Financial measures

We test the financial performance of the portfolios we proposed in Section 2.2.6. Five metrics

are employed to assess the financial performance of the portfolio: average return (MEAN), standard

deviation (Std), Sharpe ratio (SR), cumulative return (Cum), and maximum drawdown (MDD).

The Sharpe ratio and maximum drawdown are calculated based on the following equations.

SR =
excess return

standard deviation
, (2.8)

MDD = the maximum observed loss from a peak to a trough. (2.9)

Our study primarily emphasizes the performance of value-weighted investments, with equal-

weighted investments being reported in the robustness check for comparison. Given our strategy

involves monthly re-balancing, transaction costs are an inevitable part of the process. These costs

are taken into account and tested in our robustness check to ensure the validity of our findings.
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2.2.6 Implementation details

We train the models every month starting from January 1997 using all available data on the

training date and use them to predict the returns in the subsequent month: To predict the returns

in January 1997, the models are trained using the data from January 1996 to December 1996; and

for the returns in February 1997, they are trained with the data from January 1996 to January

1997, and so on. Logit models use all the samples in the training set to estimate the parameters,

whereas LGBM models use the first 80% of the set for training and the rest for validation.

Table 2.4 describes the input variables and the models. The input variables are cross-sectionally

normalized by subtracting the cross-sectional mean and dividing by the cross-sectional standard

deviation. The models that start with ‘Logit’ are logit-based models and those that start with

‘LGBM’ are LGBM-based models. For each classification algorithm, we consider seven variants.

The ‘B’ denotes a benchmark model that employs only the control variables; ‘SDGTV’ denotes a

model that employs the control variables and all the option-related variables; and ‘S’ (‘D’, ‘G’, ‘T’,

‘V’) denotes a model that employs the control variables and the implied volatility (Delta, Gamma,

Theta, Vega).

LGBM has many hyperparameters that can be tuned to optimize the model’s performance,

such as the number of leaves, the depth of the tree, and the learning rate. To assess the models

from a conservative standpoint, we opt to retain the default values for all the hyperparameters

except class weight, which we set to ‘balanced’ to address the imbalanced data issue: the number

of jump and crash stocks being significantly smaller than that of normal stocks.

The models predict the probabilities for jump, crash, and normal. Then a stock is classified as

jump (crash) when its jump (crash) probability is the highest. Instead of following this conventional

method, we use the probability difference between jump and crash (ProbDiff), as suggested by Han

(2021). Han (2021) points out that a stock with a high jump probability often has a high crash

probability. If a stock’s jump, normal, and crash probabilities are respectively 40%, 21%, and 39%,

the conventional method will classify the stock into jump, although it is equally likely to crash.

Using ProbDiff avoids such misclassification.5

5 Jang and Kang (2019) rely solely on the crash probability to categorize stocks. Such a method does not
fully exploit all the predictive information.
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Table 2.4. Model specifications. This table presents the specifications of the test models.
Panel (a) lists the input features of the models, and panel (b) lists the models tested in the
empirical study.

(a) Input features

Call features

σc The average implied volatility of call options.
∆c The average Delta of call options.
Γc The average Gamma of call options.
Θc The average Theta of call options.
Vc The average Vega of call options.

Spread features

σs σc − σp

∆s ∆c −∆p

Γs Γc − Γp

Θs Θc −Θp

Vs Vc − Vp

Control Variables

financial leverage (LEV ), return of asset (ROA), market-to-book ratio (MB), firm
size (SIZE), past market return (RM12 VW ), firm age (AGE), past individual re-
turn in excess of the market return (EXRET12), total volatility (TV OL), total skew-
ness (TSKEW ), tangible asset (TANG), sales growth (SG) and detrended turnover
(DTURN)

(b) Test models

Model Input features Algorithm

Logit-B Controls Logit
Logit-SDGTV Controls + All option features Logit
Logit-S Controls + σc + σs Logit
Logit-D Controls + ∆c + ∆s Logit
Logit-G Controls + Γc + Γs Logit
Logit-T Controls + Θc + Θs Logit
Logit-V Controls + Vc + Vs Logit

LGBM-B Controls LGBM
LGBM-SDGTV Controls + All option features LGBM
LGBM-S Controls + σc + σs LGBM
LGBM-D Controls + ∆c + ∆s LGBM
LGBM-G Controls + Γc + Γs LGBM
LGBM-T Controls + Θc + Θs LGBM
LGBM-V Controls + Vc + Vs LGBM
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We create three types of portfolios based on the ProbDiff measure. A jump portfolio consists

of the top 5% stocks in terms of ProbDiff, a crash portfolio consists of the bottom 5% stocks,

and a jump-crash portfolio is a long-short portfolio that buys a jump portfolio and shorts a crash

portfolio. Each portfolio is rebalanced every month.

2.3 Empirical results

In this section, we evaluate the predictive power of the proposed models using various measures

and focusing on the informativeness of the option-related variables. All the results presented in

this section are out-of-sample results.

2.3.1 Statistical Performance

Table 2.5 reports the statistical performance measures of the models. Both LGBM and Logit

models demonstrate predictive power for stocks’ jump and crash, as evidenced by the AUCs sig-

nificantly greater than 0. Between LGBM and Logit, LGBM outperforms Logit across all the

sub-models. It also shows that adding option-related variables increase the AUC under both mod-

els.

Before reclassification, the benchmark LGBM model (LGBM-B) predicts jumps and crashes

with AUCs of 0.687 and 0.672, respectively, while the benchmark Logit model (Logit-B) predicts

the corresponding with AUCs of 0.667 and 0.650, respectively. In addition, the AUCs of jumps

and crashes under the LGBM-SDGTV model are 0.766 and 0.755, while the AUCs of jumping and

crashing under the Logit-SDGTV model are 0.693 and 0.703, respectively.

After reclassification, the benchmark LGBM model (LGBM-B) yields AUCs of 0.523 and 0.536

respectively for jump and crash, whereas the benchmark Logit model (Logit-B) yields AUCs of

0.498 and 0.522 for the corresponding predictions. The AUCs for jump and crash are respectively

0.523 and 0.568 under LGBM-SDGTV , whereas they are 0.478 and 0.549 under Logit-SDGTV .

While reclassification reduces accuracy, it provides more valuable insights for forecasting. Re-

classification is based on the sorting of ProbDif, which internally assigns stocks with a high proba-

bility of a jump or crash to the normal group, whereas the raw probabilities assign such stocks to
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both the jump and crash groups. It is true that the reclassification method will move some stocks

that actually jump or crash to the normal group, but this method is meaningless if we categorize

a stock into both the jump and crash groups, as it does not provide valuable insights for portfolio

construction.

Among the sub-models, the models containing all option-related variables (LGBM-SDGTV

and Logit-SDGTV ) perform best before and after reclassification. Among the sub-models using

a single option feature, all option features provided useful information for predicting jumps and

crashes before reclassification and useful information for predicting crashes after reclassification.

In conclusion, the above data suggests that Option-related variables can improve jump and

crash performance, and the improvement is more significant under LGBM.

2.3.2 Financial performance

2.3.2.1 Overall financial performance

Table 2.6 reports the financial performance of the value-weighted portfolios formed by the

LGBM and Logit models over the out-of-sample period from January 1997 to December 2022. In

the table, VW refers to a value-weighted portfolio that invests in all the stocks in the sample.

As we are mainly interested in the informativeness of the option characteristics, we calculate the

t-statistics of the mean return against the benchmark models, LGBM-B and Logit-B.

The LGBM-based models consistently outperform the Logit-based models across all sets of input

variables in terms of the Sharpe ratio, and the difference becomes more evident when option-related

variables are included. For instance, the jump-crash portfolios of LGBM-B and LGBM-SDGTV

respectively yield annualized Sharpe ratios of 0.75 and 1.42, whereas those of Logit-B and Logit-

SDGTV yield annualized Sharpe ratios of 0.21 and 0.49. The Sharpe ratio of the Logit-B and

-SDGTV are even lower than that of the market portfolio VW, which is 0.62.

The results from the LGBM models reveal that all the models incorporating option character-

istics outperform the benchmark LGBM-B. The most prominent one is LGBM-SDGTV , which

achieves a Sharpe ratio of 1.42 and a mean return of 33% (t-statistic = 3.7). These values are

higher than the Sharpe ratio and mean return of LGBM-B, which are 0.75 and 20%, respectively.
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Table 2.5. Accuracy of jump and crash predictions. The table presents the statistical
performance of various models over the test period of January 1997 to December 2022. The
results are presented regarding the AUCs of jump and crash stocks for LGBM (Panel A)
and Logit (Panel B), respectively. The dataset contains 18,908 jumps, 25,064 crashes, and
352,665 normal observations within the out-of-sample period. PPV: Positive predictive value
(precision) FDR: False discovery rate

Panel A. Before reclassification

B SDGTV S D G T V

LGBM
Jump AUC 0.687 0.766 0.754 0.749 0.703 0.704 0.716

PPV 0.129 0.156 0.148 0.152 0.133 0.138 0.133
FDR 0.106 0.154 0.147 0.152 0.120 0.120 0.128

Crash AUC 0.672 0.755 0.741 0.742 0.676 0.681 0.698
PPV 0.143 0.210 0.200 0.204 0.153 0.152 0.162
FDR 0.095 0.121 0.119 0.123 0.098 0.095 0.098

Logit
Jump AUC 0.667 0.693 0.699 0.690 0.667 0.666 0.668

PPV 0.200 0.178 0.192 0.197 0.200 0.197 0.200
FDR 0.220 0.244 0.246 0.237 0.216 0.220 0.222

Crash AUC 0.650 0.703 0.708 0.704 0.651 0.646 0.655
PPV 0.189 0.248 0.258 0.257 0.193 0.186 0.189
FDR 0.267 0.260 0.264 0.255 0.263 0.261 0.264

Panel B. After reclassification

B SDGTV S D G T V

LGBM
Jump AUC 0.523 0.523 0.523 0.518 0.531 0.529 0.532

PPV 0.123 0.151 0.141 0.144 0.133 0.134 0.129
FDR 0.107 0.140 0.135 0.140 0.114 0.116 0.120

Crash AUC 0.536 0.568 0.559 0.568 0.540 0.548 0.549
PPV 0.149 0.201 0.194 0.197 0.151 0.151 0.160
FDR 0.086 0.113 0.112 0.113 0.091 0.088 0.091

Logit
Jump AUC 0.498 0.478 0.483 0.488 0.498 0.497 0.492

PPV 0.149 0.141 0.152 0.156 0.152 0.150 0.144
FDR 0.143 0.166 0.149 0.142 0.142 0.152 0.149

Crash AUC 0.522 0.549 0.555 0.559 0.526 0.520 0.529
PPV 0.155 0.210 0.227 0.227 0.159 0.154 0.163
FDR 0.220 0.241 0.248 0.242 0.222 0.214 0.221
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Table 2.6. Performance of Value-Weighted Portfolios. The table presents the an-
nually measured financial performance of the models from January 1997 to December 2022.
The performance metrics include average return (MEAN), standard deviation (Std), Sharpe
ratio (SR), and maximum drawdown (MDD). The Newey-West tests (column t1 and t2)
serve as significant test for return, with B as the benchmark (t1) and VW as the benchmark
(t2). The dataset contains 18,908 jumps, 25,064 crashes, and 352,665 normal observations
within the test period.

Panel A. LGBM models

Jump Crash Jump-Crash
Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD

VW 0.10 0.16 0.62 -0.51 0.10 0.16 0.62 -0.51 0.10 0.16 0.62 -0.51
B 0.20 (2.29) 0.30 0.65 -0.57 -0.00 (-2.51) 0.33 -0.01 -0.84 0.20 (1.49) 0.26 0.75 -0.47
SDGTV 0.22 (0.54) (2.44) 0.34 0.64 -0.72 -0.12 (-3.25) (-4.6) 0.34 -0.34 -0.99 0.33 (2.67) (3.7) 0.23 1.42 -0.47
S 0.18 (-0.28) (1.99) 0.32 0.57 -0.70 -0.08 (-1.88) (-3.84) 0.37 -0.23 -0.99 0.27 (1.2) (2.92) 0.26 1.04 -0.47
D 0.19 (-0.04) (2.1) 0.32 0.60 -0.73 -0.03 (-0.74) (-2.76) 0.37 -0.08 -0.95 0.22 (0.57) (1.99) 0.26 0.88 -0.47
G 0.21 (0.5) (2.74) 0.32 0.67 -0.65 0.03 (1.2) (-2.03) 0.29 0.10 -0.76 0.18 (-0.33) (1.64) 0.22 0.84 -0.51
T 0.20 (0.2) (2.23) 0.31 0.66 -0.63 -0.01 (-0.23) (-2.88) 0.31 -0.04 -0.90 0.21 (0.31) (1.9) 0.23 0.92 -0.36
V 0.17 (-0.71) (1.6) 0.32 0.52 -0.70 -0.02 (-0.45) (-3.01) 0.32 -0.06 -0.90 0.19 (-0.25) (1.56) 0.22 0.87 -0.33

Panel B. Logit models

Jump Crash Jump-Crash
Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD

VW 0.10 0.16 0.62 -0.51 0.10 0.16 0.62 -0.51 0.10 0.16 0.62 -0.51
B 0.16 (1.24) 0.32 0.50 -0.75 0.09 (-0.23) 0.28 0.34 -0.82 0.07 (-0.47) 0.32 0.21 -0.90
SDGTV 0.17 (0.14) (1.54) 0.30 0.56 -0.60 0.02 (-2.75) (-1.84) 0.31 0.07 -0.94 0.14 (1.56) (0.55) 0.30 0.49 -0.62
S 0.17 (0.48) (1.38) 0.33 0.52 -0.75 -0.01 (-2.83) (-2.53) 0.33 -0.03 -0.92 0.18 (2.5) (1.02) 0.33 0.54 -0.63
D 0.14 (-0.65) (0.83) 0.34 0.42 -0.78 0.02 (-1.98) (-2.01) 0.34 0.05 -0.90 0.13 (1.37) (0.36) 0.32 0.39 -0.76
G 0.17 (0.51) (1.43) 0.32 0.52 -0.73 0.09 (-0.42) (-0.39) 0.29 0.30 -0.80 0.08 (0.64) (-0.3) 0.32 0.25 -0.78
T 0.18 (1.01) (1.93) 0.30 0.60 -0.55 0.11 (0.76) (0.3) 0.25 0.44 -0.78 0.07 (0.18) (-0.43) 0.30 0.25 -0.80
V 0.17 (0.35) (1.49) 0.32 0.53 -0.71 0.06 (-1.42) (-1.34) 0.27 0.22 -0.84 0.11 (1.11) (0.08) 0.31 0.35 -0.73
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A separate examination of the performance of the jump and crash portfolios reveals that the supe-

rior performance of LGBM-SDGTV can be attributed to both jump and crash components while

mostly from the crash side.

All the models that incorporate a single option characteristic increase the Sharpe ratio com-

pared to the benchmark model, which suggests that each option characteristic provides valuable

information about the underlying stock’s future return. However, they do not quite measure up

to LGBM-SDGTV that combines all the option characteristics. This result suggests that each

option characteristic carries different information from each other. Among these models, LGBM-S

emerges as the top performer with a Sharpe ratio of 1.04, followed by LGBM-T (Sharpe ratio =

0.92), LGBM-D (Sharpe ratio = 0.88), LGBM-V (Sharpe ratio = 0.87), and LGBM-G (Sharpe

ratio = 0.84).

Unlike the LGBM-based models, the gain from the option characteristics is marginal in the

Logit-based models. The Logit-S yields the highest Sharpe ratio of 0.54 and mean return of 0.18,

while the Logit-SDGTV yields the second highest Sharpe ratio of 0.49 and mean return of 0.14.

Only Logit-S has significant improvement over Logit-B, whose Sharpe ratio and mean return are

0.21 and 0.07, but has insignificant improvement over VW, whose Sharpe ratio and mean return

are 0.62 and 0.10. This underwhelming result has been anticipated because option characteristics

are nonlinear functions of the underlying stock’s price. It appears that a linear model cannot fully

exploit the information contained in the option characteristics.

The long-short portfolios based on LGBM are formed using only a small portion of stocks

that are predicted to yield extreme returns. As a result, the portfolios have the potential for

substantial gains, but they are inherently less diversified and more volatile than the market portfolio.

Nevertheless, their maximum drawdowns (MDD) are smaller than or comparable to that of the

market portfolio, indicating that these portfolios do not suffer from extreme losses.

Figure 2.2 displays the log-scale cumulative returns of selected long-short portfolios. It shows

that LGBM-SDGTV long-short portfolio grows steadily throughout the sample period without any

significant and prolonged losses. Especially in the later stages, as the amount of data increases,

which is beneficial for the machine learning algorithm, the performance gradually stabilizes. While

the performance of many machine learning-based prediction models declines in recent years, it is
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impressive that the log-scale cumulative return of LGBM-SDGTV increases almost linearly until

the last day of the sample period. It is also notable that LGBM-SDGTV is not affected by the

global financial crisis in 2007. In contrast, LGBM-B and Logit-based models suffer significant losses

in this period.

Figure 2.2. Cumulative returns (logarithmic scale) of the value-weighted long-
short portfolios. This figure compares the cumulative returns (logarithmic scale) of the
value-weighted long-short portfolios obtained from the LGBM- and Logit-based models. VW
represents a benchmark portfolio invested in all available stocks each month.

2.3.2.2 Financial performance by year

Table 2.7 reports the Sharpe ratios of the LGBM models in each year over the out-of-sample

period. LGBM-SDGTV performs consistently throughout the sample period yielding positive

Sharpe ratios in 24 out of 26 years. The other LGBM-based models also perform well yielding
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positive Sharpe ratios in most years.

For example, in 2022, the implied volatility-based LGBM model (LGBM-S) had a negative

Sharpe ratio (-0.38), while the Vega-based LGBM model (LGBM-V ) had a positive Sharpe ratio

(1.78). Taking advantage of the combination of option features, the Sharpe ratio of LGBM-SDGTV

reaches 1.98. In comparison, in 2021, the Sharpe ratios of LGBM-S and LGBM-V are 1.10 and -0.29,

respectively, and the Sharpe ratio of LGBM-SDGTV is 0.51. This suggests that each option feature

provides different information for the prediction according to the market, and the combination of

option features captures more comprehensive information in the option features.

Table 2.7. Performance of value-weighted portfolios for LGBM-based models by
year. The table displays annual Sharpe ratios for LGBM models applied to jump-crash
portfolios between 1997 and 2022 in Panel A, and monthly return skewness and kurtosis in
Panel B. “Skew”, and “Kurt” labels in the rows refer to the skewness and kurtosis of each
model’s monthly return distribution, respectively.

Year VW B SDGTV S D G T V

Panel A. Sharpe ratios by year

1997 1.78 2.74 2.23 1.45 0.76 2.06 2.50 1.43
1998 1.33 -0.78 1.17 1.83 0.46 1.74 0.26 -0.61
1999 1.59 0.94 1.55 -0.27 1.83 0.37 1.08 0.64
2000 -0.12 1.89 3.33 3.08 2.18 2.06 2.19 2.02
2001 -0.41 0.21 0.29 -0.34 -0.30 0.37 -0.03 -0.44
2002 -1.08 0.54 -0.66 -0.16 -0.39 -0.20 1.25 1.05
2003 2.49 0.68 2.23 1.53 0.74 0.10 0.64 0.57
2004 1.37 -0.03 3.64 2.85 1.27 0.96 0.71 1.00
2005 0.83 1.35 1.37 1.39 2.45 -0.16 0.43 0.36
2006 2.40 1.88 0.54 0.99 1.15 1.63 1.80 0.23
2007 0.94 -0.09 2.64 2.97 0.27 -0.07 1.82 1.21
2008 -1.90 0.51 1.98 1.45 2.07 -0.20 1.16 1.33
2009 1.25 0.91 1.56 1.30 1.53 0.97 2.43 1.73
2010 0.86 1.83 1.62 0.91 2.46 0.20 0.55 0.98
2011 -0.00 0.85 2.31 2.85 2.54 1.08 1.86 1.38
2012 1.38 1.92 3.09 2.63 1.99 3.08 3.63 3.09
2013 3.19 -1.37 -0.04 0.44 -1.21 -0.25 0.21 0.80
2014 1.11 -0.01 1.26 1.62 0.53 0.87 0.74 1.57
2015 -0.03 1.69 2.88 2.57 2.34 1.50 1.52 0.56
2016 1.06 0.52 1.78 1.33 1.40 2.51 0.49 0.88
2017 5.44 2.56 0.37 1.84 0.85 2.77 1.65 0.83
2018 -0.32 1.34 1.62 2.14 2.08 2.59 2.17 0.95
2019 2.01 1.20 2.37 4.19 2.13 2.32 1.25 1.17
2020 0.88 1.16 1.45 0.75 2.19 1.08 0.80 1.35
2021 2.14 0.34 0.51 1.10 -0.01 0.82 0.37 -0.29
2022 -0.82 0.93 1.98 -0.38 -0.09 0.52 -1.39 1.78

Panel B. Distributions of the monthly returns

Skew -0.53 0.28 1.74 1.08 0.31 0.83 0.75 0.72
Kurt 0.93 5.74 9.40 8.94 8.51 6.24 4.27 2.58

Support jump 25,498 crash 29,464 normal 433,629
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2.3.2.3 Factor regression

To investigate if systematic risk factors account for returns of long-short portfolios, we use three-

factor and five-factor models on value-weighted portfolios from LGBM-based models, focusing on

the top-performing LGBM-SDGTV. Table 2.8 lists the models used: Fama and French’s three-

factor model (FF3) Fama and French (1996), FF3 with momentum (FF3m) (Carhart, 1997), and

their five-factor models (FF5 and FF5m) Fama and French (2015) 6. These factors are obtained

from the Fama-French Portfolios & Factors dataset via Wharton Research Data Services.

The FF5m model, exhibiting the highest R2 values, indicates significant alphas for jump-crash,

jump, and crash portfolios. The jump-crash portfolio shows a monthly alpha of 2.7% (t-statistic

of 5.880), the jump portfolio 1.2% (t-statistic of 3.296), and the crash portfolio -1.7% (t-statistic

of -5.372). These findings imply that differences in returns among these portfolios cannot be

explained solely by traditional risk factors, highlighting the potential for abnormal returns through

our investment strategy. The effectiveness of different factor regression models further supports

these conclusions.

2.3.3 Features sensitivities

2.3.3.1 Feature importance of LGBM

The LGBM evaluates the importance of input features through two methods: Frequency (Num-

ber of Splits) and Gain (Split Importance). The Frequency counts the total number of times a

feature is used to split the data across all trees in the model. Features used more often in the tree

construction process are considered more important. The Gain measures the total improvement in

the loss function that results from each split based on a particular feature. A higher gain indicates

that the feature is more important for making accurate predictions.

We assess feature importance using the Gain method as it quantifies the actual contribution of

each feature. To determine the overall importance of a feature, we compute its importance in each

month and use the time-series average.

6 Mktrf is the market factor, SMB is the small minus big, HML is the high minus low, RMW is the robust
minus weak, and CMA is the conservative minus aggressive.
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Table 2.8. Factor regressions. This table reports the factor regression results of the
LGBM-based value-weighted jump-crash portfolio. FF3, FF3m, FF5, and FF5m respectively
denote the Fama-French three factors, FF3 plus momentum, Fama-French five factors, and
FF5 plus momentum. The sample period is from January 1997 to December 2021.

Intercept Mktrf SMB HML RMW CMA Momentum R2

Panel A. LGBM-SDGTV (jump-crash)

FF3 0.027 -0.175 0.173 0.111 0.017
(6.211) (-1.745) (1.278) (0.785)

FF3m 0.027 -0.134 0.158 0.150 0.101 0.023
(6.002) (-1.252) (1.161) (1.030) (1.138)

FF5 0.028 -0.194 0.168 0.120 -0.039 -0.077 0.018
(6.016) (-1.619) (1.058) (0.608) (-0.186) (-0.271)

FF5m 0.027 -0.161 0.144 0.185 -0.067 -0.102 0.106 0.023
(5.880) (-1.305) (0.898) (0.899) (-0.318) (-0.361) (1.182)

Panel B. LGBM-SDGTV (jump)

FF3 0.007 1.463 0.853 -0.013 0.650
(2.046) (17.497) (7.574) (-0.106)

FF3m 0.009 1.393 0.879 -0.079 -0.172 0.658
(2.365) (15.793) (7.835) (-0.652) (-2.345)

FF5 0.011 1.264 0.622 0.163 -0.729 -0.251 0.675
(3.113) (13.103) (4.869) (1.025) (-4.303) (-1.103)

FF5m 0.012 1.221 0.653 0.081 -0.693 -0.218 -0.136 0.680
(3.296) (12.384) (5.097) (0.496) (-4.086) (-0.961) (-1.888)

Panel C. LGBM-SDGTV (crash)

FF3 -0.021 1.640 0.682 -0.128 0.738
(-6.776) (22.607) (6.981) (-1.247)

FF3m -0.020 1.527 0.724 -0.234 -0.277 0.758
(-6.356) (20.521) (7.646) (-2.303) (-4.476)

FF5 -0.018 1.460 0.456 0.039 -0.687 -0.177 0.759
(-5.613) (17.557) (4.146) (0.283) (-4.705) (-0.901)

FF5m -0.017 1.382 0.513 -0.110 -0.622 -0.118 -0.246 0.774
(-5.372) (16.683) (4.763) (-0.793) (-4.363) (-0.617) (-4.071)
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Figure 2.3 depicts the feature importance. In each model, RM12 (past market return) consis-

tently emerges as the top feature with larger than 20% importance except model S where σc is the

top importance feature with importance 24.43% while RM12 ranks second with importance 20.14%.

The second important feature varies across models: TVOL (total volatility) leads in models B, G,

T, and V, while σc takes precedence in model SDGTV, ∆c in model D, and RM12 in model S.

Figure 2.3. The feature importance of LGBM-based models.

Apparently, the inclusion of σ and ∆ significantly reduces the importance of TVOL, which

decreases from 20.56% to 5.97% in Model S when σc and σspread are considered, and from 20.56%
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to 9.39% in Model D when ∆c and ∆spread are considered. In Models S and D, the spreads of σ and

∆ rank third after the values of σ and ∆ for call options, implying that there is useful information

in both call and put options. The above indicates that σ and ∆ reveal more information of the

underlying stock than TVOL. To illustrate this, Table 2.9 presents the relationships between σc,

σspread, ∆c, ∆spread and TVOL.

Panel A of Table 2.9 reports the results of sorting based on TVOL, where σc and ∆c are

positively correlated with TVOL, while σspread and ∆spread are negatively correlated. Meanwhile,

sorted by TVOL, next-month returns (re) show a U-shaped pattern, with stocks located at both

the low and high ends of the distribution receiving relatively higher returns. This suggests that

TVOL does not adequately address bimodality.

Focusing on the sorting results based on the σc in Panel B of Table 2.9 reveals a consistent pos-

itive relationship between the σc and TVOL, with the monthly return relationship appearing more

linear. Specifically, stocks with higher σc typically show higher monthly returns, while those with

lower σc show lower returns. This suggests that the σc can not only provide a risk measurement

that is both similar to and potentially more informative than TVOL but also partially solves the

bimodality issue. The reason is that higher implied volatility in options indicates market expecta-

tions of larger stock price movements, leading to higher returns as compensation for increased risk.

In contrast, stocks associated with options of lower implied volatility are expected to see smaller

price movements, and thus lower returns, reflecting the lower risk. Unlike TVOL, which relies on

historical volatility, the implied volatility of options directly reflects investor expectations for the

stock, capturing speculative and insurance activities. This makes implied volatility a more precise

measure of risk, as it encompasses expectations not readily apparent from historical volatility data.

Panel C of Table 2.9 reports the sorting results based on the σspread
7. σspread reflects different

risk perceptions among investors. Call and put options facilitate both speculations on stock price

movements and protection against unfavourable price changes. When investors anticipate notable

price fluctuations, they may utilize calls or puts to hedge or capitalize on these expectations,

influencing the spread in implied volatilities. Furthermore, a greater absolute difference in implied

volatility between call and put options, associated with higher TVOL and returns, suggests that

7 call’s σ - put’s σ
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Table 2.9. Feature relations by decile. The table shows relationships based on decile
sorting of TVOL, σc, σspread, ∆c, ∆spread, and re. TVOL represents the stock total volatility.
σc and σspread denote the implied volatility of call options and the implied volatility spread
between call and put options, respectively. ∆c, ∆spread denote the Delta of call options and
the Delta spread between call and put options, respectively. re refers to the monthly stock
return. Groups 1 to 10 are organized by ascending values of the variable specified at the top
of each panel.

1 2 3 4 5 6 7 8 9 10
Panel A. TVOL

TVOL 0.011 0.015 0.018 0.020 0.022 0.025 0.028 0.032 0.040 0.061
σc 0.229 0.292 0.353 0.371 0.403 0.455 0.506 0.574 0.665 0.898
σspread 0.006 0.000 -0.004 -0.005 -0.005 -0.006 -0.005 -0.003 -0.008 -0.031
∆c 0.525 0.529 0.532 0.534 0.537 0.540 0.543 0.548 0.554 0.570
∆spread 1.005 1.003 1.002 1.002 1.002 1.001 1.001 1.001 1.000 0.998
re 0.008 0.005 0.007 0.005 0.005 0.000 0.008 0.008 0.010 0.022

Panel B. σc

TVOL 0.014 0.017 0.019 0.021 0.023 0.026 0.029 0.033 0.039 0.050
σc 0.191 0.249 0.292 0.333 0.377 0.428 0.491 0.578 0.714 1.094
σspread -0.015 -0.011 -0.009 -0.009 -0.007 -0.007 -0.007 -0.006 -0.005 0.016
∆c 0.523 0.526 0.529 0.531 0.534 0.538 0.542 0.548 0.557 0.584
∆spread 1.004 1.003 1.002 1.002 1.001 1.001 1.001 1.000 1.000 1.001
re 0.007 0.007 0.007 0.006 0.008 0.008 0.008 0.009 0.008 0.010

Panel C. σspread

TVOL 0.037 0.029 0.026 0.024 0.024 0.023 0.024 0.025 0.027 0.032
σc 0.657 0.469 0.416 0.390 0.376 0.377 0.394 0.433 0.501 0.734
σspread -0.190 -0.056 -0.034 -0.022 -0.012 -0.003 0.007 0.021 0.049 0.181
∆c 0.554 0.540 0.537 0.535 0.535 0.535 0.536 0.538 0.543 0.559
∆spread 0.987 0.998 1.000 1.001 1.002 1.002 1.003 1.004 1.005 1.014
re -0.001 0.009 0.010 0.009 0.008 0.007 0.008 0.008 0.011 0.011

Panel D. ∆c

TVOL 0.016 0.018 0.020 0.022 0.025 0.027 0.028 0.029 0.037 0.050
σc 0.228 0.282 0.321 0.351 0.403 0.456 0.465 0.497 0.663 1.080
σspread -0.014 -0.010 -0.009 -0.008 -0.007 -0.008 -0.008 -0.006 -0.004 0.016
∆c 0.512 0.523 0.528 0.532 0.536 0.541 0.546 0.551 0.559 0.585
∆spread 1.000 1.000 1.001 1.001 1.001 1.001 1.003 1.004 1.002 1.002
re 0.009 0.010 0.009 0.007 0.005 0.008 0.007 0.008 0.007 0.009

Panel E. ∆spread

TVOL 0.037 0.030 0.027 0.025 0.025 0.025 0.025 0.025 0.025 0.027
σc 0.660 0.490 0.431 0.412 0.415 0.424 0.429 0.441 0.454 0.589
σspread -0.173 -0.049 -0.028 -0.015 -0.006 0.001 0.010 0.022 0.040 0.140
∆c 0.549 0.539 0.535 0.534 0.535 0.537 0.539 0.543 0.547 0.555
∆spread 0.984 0.996 0.998 0.999 1.000 1.002 1.003 1.005 1.007 1.022
re 0.002 0.010 0.009 0.009 0.008 0.007 0.007 0.007 0.010 0.010
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increased options trading activity occurs in anticipation of significant stock movements, leading to

greater implied volatility discrepancies. Byun and Kim (2016) observe that options associated with

lottery-like stocks exhibit deviations from put-call parity, indicating unique trading behaviours and

risk assessments by traders of these options. Bali and Hovakimian (2009) also point out that the

implied volatility spread is highly repeated to the stock returns.

Sorting results by the ∆c in Panel D of Table 2.9 reveals a positive relationship between TVOL

and the ∆c, yet only options with the highest ∆c correspond to higher monthly returns. This

suggests ∆c may reflect TVOL trends to some extent and with additional information. A higher

∆c indicates greater sensitivity of the option price to changes in the underlying stock, a condition

we attribute to assumed moneyness equal to 1. This sensitivity likely results from increased trading

activity, signalling investor expectations.

For the sorting results based on ∆spread
8 in Panel E of Table 2.9, values less than 1 indicate

that the ∆ of call options is lower than the absolute value of the delta of put options. Conversely,

a delta spread greater than 1 suggests the call option’s delta exceeds the absolute value of the put

option’s delta. These patterns may arise from trading preferences among investors for either call

or put options, influencing the respective option’s price sensitivity to changes in the stock price.

Analysis of sorting results by ∆spread reveals that higher ∆spread are associated with potentially

greater stock returns.

Overall, σ and ∆ offer insights beyond TVOL, with the σ of call options mirroring TVOL

trends but demonstrating clearer relationships with stock returns thus reducing the bimodality

phenomenon. The other three features each contribute unique insights into TVOL’s representation,

offering different perspectives. These unique insights of option-related features could be explained

by their nature to reflect more current market sentiments than TVOL, which captures a longer time

range past stock volatility. These option-related features are grounded in recent one-month option

trading activities and are influenced by the options’ maturity, requiring investors to make more

considered decisions. Consequently, option features present more immediate information compared

to TVOL. Similarly, Bali et al. (2023) also show that the σ and ∆ are two of the most important

option features combined with the variance risk premium when predicting the return of delta-

8 call’s ∆ - put’s ∆
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neutral option portfolios. Our results provide more details regarding why σ and ∆ could be more

helpful when predicting stock-related returns.

Regarding the Γ, Θ, and V of call options, they rank third in each of the sub-models (G, T,

and V), followed by the spreads of these three features. However, when used in conjunction with

σ and ∆, these three option features are less important but still provide some unique importance.

For example, Θ measures the rate of time decay in option value, highlighting the impact of option

maturity. This factor reminds investors to account not just for potential changes in option value

or profits from excising options but also for the time-sensitive nature of options, where value

decreases over time. However, in scenarios where investors anticipate significant stock movements

in the future, the concern over time decay might be secondary to the potential profits. Bali et al.

(2023) also identify Θ as an important feature for predictions of the returns of delta-neutral option

portfolios.

2.3.3.2 Logit regression results

Table 2.10 shows the in-sample estimation results of the Logit models. To account for the

correlation between observations across both firms and time, we cluster standard errors by firm

and month following Petersen (2008) and Thompson (2011) and set the normal predictions as the

reference class.

In B containing only control variables, all control variables are highly significant at the 5%

level except for the SG (sales growth) for the jump prediction. The estimated coefficients on the

control variables indicate that stocks that are younger, have lower de-trended turnover, have lower

past excess returns, are more tangible, have lower skewness, have increased volatility, have reduced

past market returns, have increased sales growth, and are smaller are more prone to extreme future

returns in both directions. However, for both jump and crash predictions, all coefficients have the

same sign, implying that jump and crash stocks generally have the same firm characteristics, which

may explain the presence of bimodal phenomena in the classification task mentioned in Han (2021).

Our results are different compared to Jang and Kang (2019). There are three reasons for this. First,

the time horizon of our dataset is from 1996 to 2022, while that of Jang and Kang (2019) is from

1952 to 2014. Second, we keep only option stocks that meet the filtering rules. This may reduce
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the number of observations by more than half compared to Jang and Kang (2019). Third, our

predictions are based on one month into the future, while Jang and Kang (2019) predicts returns

for the next 12 months. We use the same definition as Jang and Kang (2019), which could give the

same results.

Regarding the coefficients of option features, σc and ∆c are positively significant for predicting

both jumps and crashes, whether applied individually or combined. Conversely, σspread and ∆spread

are negatively significant for predicting both jumps and crashes, whether applied individually or

combined. Γc has positively significant coefficients when used alone for jump and crash prediction,

but switches to negatively significant for jump predictions and becomes insignificant for crashes

when combined. Γspread coefficients are insignificant for both jumps and crashes. Θc transitions

from insignificance when solo to negative significance in combination for both types of predictions.

Θspread maintains positive significance for jump predictions alone or combined, and only negatively

significant for crash predictions when used solo. V egac is negatively significant for predicting both

jumps and crashes, whether applied individually or combined. V egaspread only positively significant

for jump predictions when used solo or combined.

In the comprehensive model SDGTV , which includes both control variables and option charac-

teristics, most control variables continue to exhibit significant and directional influence. However,

the significance of TSKEW changes, with its coefficients being positive and significant for jump

and crash predictions in model B but becoming insignificant in SDGTV , S, and D. Similarly, the

coefficients of TVOL for predicting jumps and crashes decrease substantially in SDGTV , S, and

D, while they remain stable in G, T , and V . These changes underscore that option features, par-

ticularly σ and ∆, provide valuable information about the skewness and volatility of the underlying

stock, aligning with findings from feature importance analyses in LGBM.

Furthermore, the value of R2 improves from 0.068 in the control-only B model to 0.112 in the

SDGTV , and in S, the addition of σ alone improves R2 to 0.107, while in D, the addition of ∆

improves R2 to 0.103.

Overall, the most stable relationships among the option features are seen with σ and ∆, both

showing consistent and significant effects whether applied individually or in combination. Other

option features display less stable relationships, likely due to their different interactions with stock
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returns, where simple linear relationships may not adequately capture their dynamics.

2.3.4 Robustness check

To ensure the robustness of our findings, we conduct a host of robustness checks. These include

evaluating the performance of equally weighted portfolios, analyzing the impacts of transaction

costs, examining dynamic thresholds for jumps and crashes, testing outcomes across portfolios

with varying numbers of stocks, exploring the efficacy of different classification methods, and using

alternative data filtering rules. Given the superior performance of the LGBM-SDGTV model, we

conduct the robustness checks using only LGBM-SDGTV .

2.3.4.1 Equal-weight portfolios

Table 2.11 reports the financial performance of equally weighted portfolios and Figure 2.4

displays their cumulative returns. Prior studies, e.g., Gu et al. (2020); Han (2021); Han, He,

and Toh (2023), equally weighted portfolios outperform value-weighted portfolios in terms of the

Sharpe ratio and mean return. Our results are partly consistent with them. For instance, the

Sharpe ratio of LGBM-SDGTV jump-crash portfolio improves from 1.42 to 1.58, while the mean

return decreases from 0.33 to 0.31. The difference in our results compared to prior studies could be

attributed to the stock selection criteria. Previous research typically utilizes all available stocks,

while our analysis focuses exclusively on stocks with available options, which are generally larger

firms. These larger firms tend to exhibit more synchronous performance patterns. Although the

value-weighted portfolio does make some adjustments to the final performance, these adjustments

are relatively minor.

2.3.4.2 Transaction costs

Panel A of Table 2.12 reports the financial performance of the LGBM-SDGTV portfolios under

the assumption of transaction costs of 30 basis points. The annualized return of the jump-crash

portfolio is reduced from 33% to 26% but remains statistically significant. The Sharpe ratio is also

reduced but is still significant at 1.11.
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Table 2.11. Performance of Equal-Weighted Portfolios. The table presents the
annually measured financial performance of the models from January 1997 to December
2022. The performance metrics include average return (MEAN), standard deviation (Std),
Sharpe ratio (SR), and maximum drawdown (MDD). The Newey-West tests (column t1
and t2) serve as significant tests for return, with B as the benchmark (t1) and EW as the
benchmark (t2). The dataset contains 18,908 jumps, 25,064 crashes, and 352,665 normal
observations within the out-of-sample period.

Panel A. LGBM models

Jump Crash Jump-Crash
Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD

EW 0.11 0.21 0.52 -0.55 0.11 0.21 0.52 -0.55 0.11 0.21 0.52 -0.55
B 0.26 (4.35) 0.31 0.82 -0.51 0.03 (-2.67) 0.34 0.08 -0.86 0.23 (1.94) 0.19 1.22 -0.25
SDGTV 0.24 (-0.54) (3.55) 0.34 0.71 -0.56 -0.07 (-3.8) (-5.0) 0.35 -0.20 -0.98 0.31 (2.9) (3.34) 0.20 1.58 -0.26
S 0.24 (-0.99) (4.06) 0.32 0.73 -0.54 -0.04 (-3.85) (-4.72) 0.36 -0.12 -0.95 0.28 (2.0) (2.99) 0.18 1.53 -0.23
D 0.23 (-0.99) (4.1) 0.32 0.73 -0.54 -0.03 (-2.6) (-3.91) 0.37 -0.09 -0.94 0.26 (1.3) (2.57) 0.20 1.31 -0.40
G 0.23 (-1.08) (3.98) 0.32 0.71 -0.55 0.02 (-0.19) (-3.09) 0.31 0.08 -0.80 0.21 (-0.78) (1.75) 0.18 1.15 -0.32
T 0.25 (-0.48) (3.94) 0.32 0.77 -0.52 -0.00 (-1.63) (-4.55) 0.31 -0.00 -0.83 0.25 (0.78) (2.46) 0.18 1.38 -0.20
V 0.22 (-1.36) (4.03) 0.32 0.70 -0.55 -0.00 (-1.48) (-3.85) 0.34 -0.00 -0.86 0.22 (-0.18) (2.08) 0.17 1.31 -0.24

Panel B. Logit models

Jump Crash Jump-Crash
Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD

EW 0.11 0.21 0.52 -0.55 0.11 0.21 0.52 -0.55 0.11 0.21 0.52 -0.55
B 0.18 (1.73) 0.34 0.52 -0.70 0.13 (0.48) 0.30 0.42 -0.70 0.05 (-0.85) 0.29 0.18 -0.69
SDGTV 0.16 (-0.82) (1.34) 0.32 0.50 -0.65 -0.00 (-4.46) (-2.6) 0.36 -0.00 -0.94 0.16 (2.71) (0.65) 0.30 0.54 -0.76
S 0.17 (-0.52) (1.53) 0.33 0.51 -0.68 0.01 (-4.14) (-2.31) 0.38 0.02 -0.94 0.16 (2.9) (0.65) 0.31 0.52 -0.83
D 0.16 (-0.81) (1.4) 0.33 0.50 -0.67 0.02 (-3.43) (-1.96) 0.38 0.06 -0.92 0.14 (2.37) (0.42) 0.30 0.48 -0.78
G 0.19 (1.63) (2.05) 0.34 0.56 -0.67 0.09 (-3.66) (-0.63) 0.31 0.29 -0.72 0.10 (3.72) (-0.11) 0.28 0.36 -0.70
T 0.21 (1.92) (2.24) 0.35 0.59 -0.70 0.12 (-0.43) (0.35) 0.29 0.42 -0.72 0.08 (1.97) (-0.36) 0.30 0.29 -0.67
V 0.18 (0.38) (1.84) 0.33 0.56 -0.70 0.11 (-1.59) (-0.02) 0.31 0.35 -0.77 0.07 (1.14) (-0.51) 0.30 0.25 -0.70
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Table 2.12. Performance of Value-Weighted Portfolios. The table presents the
annually measured financial performance for LGBM-based models from January 1997 to De-
cember 2022. The performance metrics include average return (MEAN), standard deviation
(Std), Sharpe ratio (SR), and maximum drawdown (MDD). The Newey-West tests (column
t1 and t2) serve as significant tests for return, with B as the benchmark (t1) and VW as the
benchmark (t2).

Jump Crash Jump-Crash
Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD

Panel A. Transaction cost
VW 0.07 0.16 0.40 -0.53 0.07 0.16 0.40 -0.53 0.07 0.16 0.40 -0.53
B 0.16 (2.29) 0.30 0.53 -0.58 -0.04 (-2.51) 0.33 -0.12 -0.92 0.13 (0.94) 0.26 0.48 -0.50
SDGTV 0.18 (0.54) (2.44) 0.34 0.53 -0.73 -0.15 (-3.25) (-4.6) 0.34 -0.44 -1.00 0.26 (2.67) (3.12) 0.23 1.11 -0.51

Panel B. Dynamic threshold
B 0.17 (1.71) 0.32 0.55 -0.73 0.05 (-1.21) 0.31 0.16 -0.88 0.12 (0.34) 0.22 0.56 -0.51
SDGTV 0.21 (1.07) (2.02) 0.36 0.59 -0.71 -0.08 (-3.86) (-4.33) 0.32 -0.25 -0.98 0.29 (3.3) (3.39) 0.24 1.23 -0.26

Panel C. Invest in the top and bottom 50 stocks
B 0.19 (2.11) 0.31 0.61 -0.62 0.02 (-1.96) 0.34 0.05 -0.81 0.17 (1.18) 0.27 0.65 -0.48
SDGTV 0.19 (0.01) (1.96) 0.33 0.57 -0.61 -0.12 (-4.02) (-4.57) 0.35 -0.33 -0.99 0.30 (2.85) (3.21) 0.25 1.24 -0.34

Panel D. Invest in the top and bottom 2.5% stocks
B 0.19 (1.73) 0.34 0.55 -0.72 -0.01 (-2.19) 0.38 -0.03 -0.92 0.20 (1.4) 0.32 0.62 -0.71
SDGTV 0.21 (0.4) (1.9) 0.36 0.57 -0.73 -0.17 (-3.47) (-4.61) 0.40 -0.42 -1.00 0.37 (2.51) (3.71) 0.29 1.28 -0.32

Panel E. Invest in the top and bottom 10% stocks
B 0.17 (1.98) 0.27 0.63 -0.62 0.04 (-2.06) 0.29 0.13 -0.75 0.13 (0.61) 0.22 0.62 -0.49
SDGTV 0.20 (1.23) (2.45) 0.31 0.64 -0.60 -0.05 (-3.51) (-3.82) 0.31 -0.16 -0.94 0.25 (3.24) (2.47) 0.23 1.11 -0.32

Panel F. Invest based on the probability of jump only
B 0.15 (1.1) 0.33 0.46 -0.76 0.10 (0.17) 0.13 0.79 -0.40 0.05 (-1.2) 0.28 0.17 -0.69
SDGTV 0.11 (-1.26) (0.08) 0.37 0.29 -0.79 0.10 (-0.47) (-0.09) 0.13 0.75 -0.35 0.01 (-1.1) (-1.89) 0.33 0.02 -0.85

Panel G. Invest based on the probability of crash only
B 0.11 (0.24) 0.13 0.82 -0.33 0.07 (-0.68) 0.35 0.21 -0.80 0.04 (-0.86) 0.30 0.11 -0.86
SDGTV 0.11 (0.47) (0.52) 0.13 0.84 -0.37 -0.11 (-3.93) (-4.06) 0.37 -0.30 -0.99 0.22 (3.83) (1.35) 0.31 0.71 -0.62

Panel H. Invest based on the probability of jump and crash, respectively
B 0.15 (1.1) 0.33 0.46 -0.76 0.07 (-0.68) 0.35 0.21 -0.80 0.08 (-0.44) 0.22 0.37 -0.55
SDGTV 0.11 (-1.26) (0.08) 0.37 0.29 -0.79 -0.11 (-3.93) (-4.06) 0.37 -0.30 -0.99 0.22 (2.41) (2.0) 0.20 1.05 -0.30
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Figure 2.4. Cumulative returns (logarithmic scale) of the equal-weighted long-
short portfolios. This figure compares the cumulative returns (logarithmic scale) of the
equal-weighted long-short portfolios obtained from the LGBM- and Logit-based models. EW
represents a benchmark portfolio invested in all available stocks each month.

2.3.4.3 Dynamic thresholds for jump and crash

Previously, we define jump as a log return over 20% and crash as a log return below -20%.

Here we examine alternative definitions: jump is defined as a return in the top 5% and crash as a

return in the bottom 5% of all returns over the past 24 months. These dynamic thresholds aim to

capture extreme returns based on their relative performance within the market. Panel B of Table

2.12 reports the financial performance of the portfolios constructed using the dynamic thresholds.

LGBM-SDGTV continues to outperform LGBM-B: the annualized return and the Sharpe ratio of

the jump-crash portfolio are respectively 29% and 1.23.

88



Chapter 2

2.3.4.4 Sensitivity to the investment percentile

In our primary analysis, we concentrate on the highest and lowest 5% of stocks according to

their ProbDif, aligning with the observation that jumps and crashes make up about 5% of all

cases. We assess portfolio outcomes across different percentiles to verify if returns are consistently

advantageous. The results, as shown in Table 2.12 Panels C to E, are based on portfolios created

using LGBM models with investment thresholds of the top and bottom 50 stocks, 2.5%, and 10%

based on ProbDif ranking. Specifically, the LGBM-SDGTV model demonstrates Sharpe ratios

of 1.24, 1.28, and 1.11 for Value-weighted portfolios at the 50 stocks, 2.5%, and 10% thresholds,

respectively. Across all investment thresholds, the LGBM-SDGTV model outperforms the LGBM-

B model and VW consistently.

2.3.4.5 Different classification criteria

In the primary analysis, we sort stocks on ProbDiff (probability of jump - probability of crash)

to address bimodality, following Han (2021). ProbDiff has the advantage of utilizing information

from both the jump and crash probabilities. In this part, we test three alternative sorting criteria:

jump probability (Panel F in Table 2.12), crash probability (Panel G in Table 2.12), and jump

probability for jump portfolio and crash probability for crash portfolio (Panel H in Table 2.12). All

three criteria underperform ProbDiff: When only the jump probability is used, the Sharpe ratio is

mere 0.02, when only the crash probability is used, it is 0.71, and when both probabilities are used,

it is 1.05. In comparison, the Sharpe ratio from ProbDiff is 1.42. The superior performance when

using both probabilities can be attributed to the fact that some stocks that are included in the

jump portfolio have high crash probabilities and are also included in the crash portfolio, effectively

removing the stocks that have both high jump and crash probabilities from the long-short portfolio.

2.3.4.6 Using only ATM options

In this section, we extract option characteristics from only one ATM call option and one ATM

put option at the end of the month, following Zhan et al. (2022). As this approach requires at least

one ATM call and one ATM put for each stock, the sample size is reduced to 282,371. Table 2.13

and 2.14 report the performance of the portfolios under this approach. The performance is slightly

89



Chapter 2

worse than using all available options in the month. The inferior performance can be attributed to

i) loss of information contained in ITM and OTM options and ii) smaller sample size.

Table 2.13. Accuracy of jump and crash predictions. The table presents the statistical
performance of various models over the test period of January 1997 to December 2022. The
results are presented regarding the AUCs of jump and crash stocks for LGBM (Panel A)
and Logit (Panel B), respectively. The dataset contains 14,459 jumps, 10,669 crashes, and
257,243 normal observations within the out-of-sample period. PPV: Positive predictive value
(precision) FDR: False discovery rate

Panel A. Before reclassification

B SDGTV S D G T V

LGBM
Jump AUC 0.683 0.773 0.767 0.718 0.706 0.708 0.715

PPV 0.092 0.136 0.131 0.111 0.111 0.107 0.112
FDR 0.094 0.149 0.146 0.113 0.108 0.113 0.115

Crash AUC 0.667 0.749 0.734 0.689 0.668 0.676 0.692
PPV 0.106 0.168 0.158 0.126 0.117 0.120 0.126
FDR 0.087 0.115 0.118 0.093 0.083 0.084 0.087

Logit
Jump AUC 0.669 0.706 0.710 0.671 0.667 0.668 0.668

PPV 0.203 0.195 0.201 0.199 0.201 0.194 0.200
FDR 0.226 0.257 0.263 0.230 0.223 0.227 0.226

Crash AUC 0.645 0.700 0.705 0.647 0.643 0.642 0.647
PPV 0.182 0.247 0.252 0.181 0.184 0.179 0.182
FDR 0.264 0.268 0.275 0.263 0.263 0.261 0.262

Panel B. After reclassification

B SDGTV S D G T V

LGBM
Jump AUC 0.484 0.500 0.494 0.507 0.522 0.512 0.515

PPV 0.089 0.125 0.122 0.108 0.110 0.107 0.108
FDR 0.094 0.133 0.134 0.107 0.100 0.107 0.110

Crash AUC 0.520 0.555 0.544 0.535 0.526 0.531 0.533
PPV 0.116 0.159 0.148 0.120 0.110 0.116 0.122
FDR 0.078 0.106 0.109 0.085 0.078 0.080 0.082

Logit
Jump AUC 0.440 0.448 0.441 0.450 0.456 0.464 0.455

PPV 0.122 0.141 0.138 0.127 0.135 0.129 0.124
FDR 0.149 0.169 0.157 0.151 0.153 0.159 0.148

Crash AUC 0.502 0.537 0.525 0.522 0.528 0.527 0.518
PPV 0.158 0.207 0.222 0.147 0.162 0.150 0.159
FDR 0.206 0.220 0.235 0.196 0.192 0.202 0.202

2.4 Conclusion

Our study conclusively demonstrates that employing advanced machine learning techniques,

specifically the LightGBM model, significantly enhances the predictive accuracy of stock market

movements by leveraging option characteristics like implied volatility and Greeks. This approach
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Table 2.14. Performance of Value-Weighted Portfolios. The table presents the
annually measured financial performance of the models from January 1997 to December
2022. The performance metrics include average return (MEAN), standard deviation (Std),
Sharpe ratio (SR), and maximum drawdown (MDD). The Newey-West tests (column t1
and t2) serve as significant tests for return, with B as the benchmark (t1) and VW as the
benchmark (t2). The dataset contains 14,459 jumps, 10,669 crashes, and 257,243 normal
observations within the out-of-sample period.

Panel A. LGBM models

jump crash jump-crash
Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD

VW 0.10 0.16 0.63 -0.50 0.10 0.16 0.63 -0.50 0.10 0.16 0.63 -0.50
B 0.19 (2.02) 0.30 0.63 -0.66 -0.01 (-2.3) 0.32 -0.04 -0.94 0.20 (1.56) 0.24 0.85 -0.40
SDGTV 0.20 (0.25) (2.35) 0.31 0.64 -0.61 -0.07 (-1.46) (-3.82) 0.32 -0.22 -0.97 0.27 (1.2) (2.8) 0.24 1.13 -0.24
S 0.16 (-0.94) (1.37) 0.33 0.48 -0.79 -0.05 (-0.95) (-3.18) 0.32 -0.15 -0.95 0.21 (0.19) (1.91) 0.24 0.88 -0.59
D 0.22 (0.99) (2.68) 0.31 0.71 -0.58 -0.02 (-0.14) (-2.91) 0.30 -0.06 -0.93 0.23 (0.79) (1.98) 0.24 0.97 -0.33
G 0.21 (0.8) (2.83) 0.30 0.71 -0.62 0.04 (1.71) (-1.73) 0.29 0.15 -0.69 0.17 (-0.76) (1.39) 0.22 0.78 -0.34
T 0.25 (1.96) (3.33) 0.29 0.85 -0.58 0.02 (0.6) (-2.15) 0.30 0.05 -0.80 0.24 (0.67) (2.41) 0.22 1.06 -0.38
V 0.15 (-1.26) (1.29) 0.30 0.50 -0.68 -0.06 (-1.34) (-3.92) 0.31 -0.20 -0.96 0.21 (0.21) (2.19) 0.24 0.90 -0.44

Panel B. Logit models

jump crash jump-crash

Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD Mean t1 t2 Std SR MDD
VW 0.10 0.16 0.63 -0.50 0.10 0.16 0.63 -0.50 0.10 0.16 0.63 -0.50
B 0.16 (1.27) 0.32 0.51 -0.79 0.15 (1.26) 0.30 0.49 -0.72 0.01 (-1.26) 0.34 0.04 -0.92
SDGTV 0.15 (-0.38) (1.09) 0.30 0.49 -0.66 0.02 (-3.41) (-1.76) 0.31 0.08 -0.88 0.13 (1.99) (0.33) 0.32 0.39 -0.64
S 0.13 (-1.35) (0.47) 0.33 0.38 -0.80 0.06 (-2.91) (-0.89) 0.34 0.17 -0.86 0.07 (1.37) (-0.46) 0.35 0.19 -0.87
D 0.14 (-1.12) (0.85) 0.32 0.44 -0.79 0.07 (-2.96) (-0.95) 0.28 0.24 -0.79 0.08 (1.96) (-0.37) 0.32 0.24 -0.81
G 0.14 (-1.15) (0.65) 0.33 0.42 -0.76 0.12 (-1.15) (0.44) 0.30 0.40 -0.71 0.02 (0.07) (-1.18) 0.34 0.05 -0.91
T 0.19 (0.93) (1.88) 0.31 0.62 -0.58 0.14 (-0.43) (0.95) 0.28 0.50 -0.66 0.05 (0.98) (-0.75) 0.32 0.16 -0.77
V 0.18 (0.38) (1.48) 0.32 0.54 -0.72 0.10 (-1.36) (0.03) 0.28 0.37 -0.74 0.07 (1.16) (-0.43) 0.35 0.20 -0.82
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substantially outperforms traditional logistic regression models, achieving strikingly higher Sharpe

ratios and average annual returns in both value-weighted and equal-weighted portfolio construc-

tions. The integration of multiple option characteristics into the LightGBM framework proved

particularly effective, suggesting that a comprehensive view of option dynamics is crucial for accu-

rate market predictions.

These findings highlight the critical role of daily option characteristics fluctuations in under-

standing and anticipating market trends. They also underscore the superiority of machine learning

methods over traditional models in capturing complex patterns inherent in option data, thus of-

fering more effective tools for forecasting stock returns. This research opens avenues for further

refinement in stock market prediction strategies, especially through advanced feature engineering

of option characteristics, cementing the value of machine learning in financial market analysis.
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Appendices

.1 Control variables

• AGE: Firm age is the number of months since the firm’s first appearance on the CRSP

monthly stock file.

• DTURN : Detrended turnover is the six-month average of monthly share turnover subtracted

by the prior 18-month average.

• EXRET : Past individual return in excess of the market return, measured for each stock at

the end of month t as the log return on the stock from month t - 11 to month t, in excess of

the same return on the CRSP value-weighted index.

• TANG: Tangible assets at the end of June in year t to May in year t + 1 are property, plant,

and equipment (Compustat annual item PPEGT) divided by total assets (item AT) for the

end of year t - 1.

• TSKEW : Total skewness at the end of month t is calculated using daily log returns from

month t - 5 to month t. We exclude stocks with fewer than 50 daily log returns during the

six-month period.

• TV OL: Total volatility at the end of month t is the standard deviation of daily log returns

from month t - 5 to month t. We exclude stocks with fewer than 50 daily log returns during

the six-month period.

• RM12: Past market return. Measured at the end of month t as the log return of the CRSP

value-weighted index from month t - 11 to month t.

• SG: Sales growth at the end of June in year t to May in year t + 1 is the log difference

between sales (Compustat annual item SALE) at the end of year t - 1 and sales at the end

of year t - 2.

• SIZE: The natural logarithm of the firm’s market capitalization.
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.2 Binomial tree option pricing model and hypothetical greeks

The Binomial option pricing model is a widely used method for calculating the fair value of an

option. It is based on the assumption that the underlying asset price can only move up or down by

a fixed percentage at each time step. The model is widely used for pricing European-style options,

which can only be exercised at expiration. However, it can also be adapted to price American-style

options, which can be exercised at any time before expiration.

In the case of American-style options, the Binomial option pricing model requires a modification

to account for the possibility of early exercise. At each time step, the option holder has the option

to exercise the option and receive the intrinsic value of the option, which is the difference between

the current underlying asset price and the strike price. The option holder may choose to exercise

the option if the intrinsic value is greater than the current value of the option.

To calculate the fair value of an American option using the Binomial model, we follow the

following steps:

1. Calculate the size of each time step (∆t) using the following formula:

∆t =
T

N
, (10)

where T is the maturity, N is the total number of time steps9.

2. Calculate the up factor (u) and the down factor (d) using the following formulas:

u = exp(σ ×
√
∆t) (11)

d =
1

u
, (12)

where σ is the volatility of the underlying asset.

3. Calculate the probability of an up move (p) using the following formula:

p =
exp(r − q)×∆t− d

u− d
, (13)

9 For the purpose of saving computation time, we set the value of N to 100.
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where r is the risk-free interest rate, q is the dividend yield.

4. Calculate the value of the option at expiration for each possible price of the underlying asset.

For an underlying asset price S and strike price X at a given point in time, the price of a call

option is equal to max(S −X, 0), and the price of a put option is equal to max(X − S, 0).

5. Working backwards from expiration, calculate the value of the option at each time step for

each possible price of the underlying asset using the following formulas:

Priceu =
p× Priceuu + (1− p)× Priceud

1 + rf
, (14)

Priced =
p× Pricedu + (1− p)× Pricedd

1 + rf
, (15)

where Priceuu, Priceud, Pricedu, and Pricedd are the option values if the underlying asset

price goes up twice, up then down, down then up, and down twice, respectively.

6. The fair value of the American option is the maximum of the intrinsic value and the calculated

value at each time step.

With respect to the Greeks, the binomial tree model provides discrete approximations.

Delta: Delta measures the change in the option price for a unit change in the underlying asset

price, which can be calculated according to:

Delta =
Priceu − Priced

S × (u− d)
(16)

Gamma: Gamma measures the change in Delta for a unit change in the underlying asset price,

which can be calculated according to:

Gamma =
∆u −∆d

S × (u− d)
(17)

Theta: Theta measures the change in the option price for a unit change in time, which can be

calculated according to:

Theta =
PriceT+∆t − PriceT

∆t
(18)
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Vega: Vega measures the sensitivity of the option price to changes in volatility. To approximate

Vega in a binomial model, we perturb the volatility (increase it slightly, say by 0.01) and then

compute the difference in the option price as follows:

V ega =
Price(σ + 0.01)− Price(σ)

0.01
(19)
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Chapter 3

Comparative analysis of stock option

pricing: Machine learning and

Pandemic impact

Abstract

This study evaluates machine learning models’ effectiveness in stock option pricing during the

Pandemic’s market challenges. It explores three architectures, integrating basic factors, historical

Greeks, and firm characteristics to improve accuracy. The research contrasts traditional parametric

methods with adaptable machine learning approaches. Analyzing data from over 10 million U.S.

stock options for SP500 stocks from 2014 to 2022, it demonstrates these models’ superior perfor-

mance in volatile markets. Contributions include incorporating Greeks and firm characteristics

into pricing models, identifying models that maintain robustness in turbulence, and revealing how

stock return patterns impact accuracy. The findings highlight machine learning’s crucial role in

advancing option pricing under challenging conditions.

Keywords: Option pricing; Option Greeks; Firm characteristics; Machine learning.
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3.1 Introduction

In the fluctuating financial market, robust option pricing models are essential, particularly in

variable conditions such as those presented by the Pandemic, which has significantly increased

options trading activity as shown in 3.1. This study evaluates the efficacy of machine learning

methods in pricing stock options during the Pandemic, exploring three different architectures and

their four respective submodels. The first submodel incorporates basic elements like option type and

asset metrics. The second adds historical sensitivities of options (Greeks) for improved precision.

The third integrates firm characteristics to broaden the market analysis, and the fourth combines all

elements, providing a thorough approach to option pricing in a market impacted by the Pandemic.

Figure 3.1. Yearly statistics. Candlestick charts give yearly observational statistics for
options with a daily trading volume of more than 100 contracts. Statistics are calculated
based on monthly observations for each year. The mean and median monthly trading volumes
have increased substantially since the beginning of the pandemic (2020) and begin to decline
in 2022, but are still higher than in previous years.
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3.1.1 Traditional parametric approaches

The Black-Scholes (BS) model, introduced by Black and Scholes (1973), is a foundational ap-

proach for pricing European options. Despite its simplicity and reliance on assumptions like nor-

mally distributed stock returns with constant volatility, it remains a critical model in option pricing.

However, given that stock returns often exhibit fat tails and variable volatility, enhancements such

as the incorporation of skewness and kurtosis by Corrado and Su (1996) and stochastic volatility

models by Heston (1993) and Hagan et al. (2002) have been developed to more accurately reflect

underlying asset volatility. For American options, which require considerations for early exercise

and dividends, methods like tree-based algorithms (Cox et al., 1979; Boyle, 1986), finite difference

method (Crank and Nicolson, 1947), and Monte Carlo simulations (Broadie and Glasserman, 1997;

Longstaff and Schwartz, 2001; Andersen and Broadie, 2004) have been proposed, alongside closed-

form solutions like the Barone-Adesi and Whaley model (BAW) (Barone-Adesi and Whaley, 1987)

for handling the early exercise feature.

Recent advancements continue to enhance precision and speed, with methods like the accel-

erated binomial model (Breen, 1991) and Markov chain techniques within the GARCH frame-

work (Duan and Simonato, 2001). The regime-switching models proposed by Duan, Popova, and

Ritchken (2002) further refine the understanding of volatility’s asymmetric response to market

changes. These address the limitations of traditional models, offering robust, adaptable solutions

for modern financial markets. Innovations such as the de-Americanization method (Burkovska,

Gaß, Glau, Mahlstedt, Schoutens, and Wohlmuth, 2018) reflect the ongoing effort to reconcile the-

oretical models with the volatile nature of actual markets, broadening the analytical tools available

for option pricing.

3.1.2 Machine learning in option pricing

Parametric methods use predetermined asset return distributions to determine an option’s fair

value under the no-arbitrage principle. While economically robust and sometimes offering direct

pricing formulas, these models often falter when confronted with real-world market data deviations.

In contrast, machine learning-based models provide a more flexible approach by excelling in cap-
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turing complex relationships between option prices and influencing factors. These models diverge

into non-parametric and semi-parametric types. Non-parametric models, highlighted in seminal

works like those by Hutchinson et al. (1994), are purely data-driven, freeing them from conven-

tional economic constraints but also making them prone to overfitting. Advances such as neural

network-based pricing by Gençay and Qi (2001) and combined neural networks and support vector

regression techniques by Gradojevic et al. (2009) and Liang et al. (2009) showcase the potential of

modular neural networks.

Semi-parametric models merge the economic rationale of parametric models with the flexibility

of machine learning, offering a balanced approach exemplified by the Generalized Pricing Framework

(GPF) (Andreou et al., 2010) and the Hybrid (HBD) (Lajbcygier and Connor, 1997) models as well

as the model in Almeida et al. (2022) (AFFT). These models integrate machine learning predictions

with parametric frameworks, effectively addressing the drawbacks of each method in isolation.

Recent advances in machine learning have also propelled developments in option pricing tech-

niques. Works like De Spiegeleer, Madan, Reyners, and Schoutens (2018) on Gaussian process

regression, Gan, Wang, and Yang (2020) on a model-free approach for pricing mean options, and

Jang and Lee (2018) on generative Bayesian models for American options, demonstrate the field’s

ongoing evolution, highlighting machine learning’s capacity to improve prediction accuracy and

computational efficiency in derivative pricing.

3.1.3 Motivations and contributions

The Greeks provide investors with references to different dimensions of risk management for

option pricing in addition to implied volatility. Papahristodoulou (2004) propose a Linear Program-

ming approach that utilizes key Greek variables from the Black-Scholes equation, such as delta,

gamma, theta, rho, and kappa, to ascertain the most effective hedging strategy. Gao (2009) sug-

gest a broad linear programming framework that adjusts risk limits for all Greeks, demonstrating

that widening these limits enhances potential returns, thus facilitating a customizable risk-return

equilibrium. Chen, Lee, and Shih (2010) utilizes the Greek letters for call and put options on

dividend-paying stocks and non-dividend-paying stocks, suggesting that the Greek letters reflect

various types of risk and are valuable for risk management. Given the usefulness of the Greeks for
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risk management, combining the Greeks with machine learning-based option pricing models that

extract potential information from the Greeks may generate more accurate option pricing models.

As for firm characteristics, the impact of firm characteristics on option valuation in the absence

of arbitrage is a complex research topic in finance. Many academic papers have provided valu-

able insights into this area. Rubinstein (1983) construct an option pricing formula that takes into

account the risk associated with an individual firm’s assets, incorporates varying degrees of risk

and considers the effects of the firm’s debt and dividend policies. Figlewski (1989) emphasize that

market imperfections, such as unpredictable volatility and transaction costs, limit the practical

application of arbitrage in option valuation. This emphasizes the potential impact of firm-specific

factors (e.g., financial stability and market behaviour) on real-world option prices beyond idealized

models based on arbitrage. Subramanian (2004) establish an arbitrage-free framework for pricing

stock options for firms in mergers and acquisitions that takes into account discontinuous effects on

stock prices. The model outperforms the Black-Scholes model in explaining observed option prices,

suggesting that specific events such as corporate mergers and acquisitions can have a significant

impact on option pricing in the absence of arbitrage. Recently, Trigeorgis and Lambertides (2014);

Andreou (2015); Vasquez and Xiao (2023); Chen et al. (2023) demonstrate the profound impact

of firm characteristics on the dynamics of the underlying asset and option values. Trigeorgis and

Lambertides (2014) emphasize the importance of firm-specific business volatility and managerial

flexibility in growth option valuation. As shown by Andreou (2015), market default risk as well as

firm leverage and asset volatility as emphasized by Vasquez and Xiao (2023), are directly related

to option pricing. Chen et al. (2023) document how firm fundamentals shape the implied volatility

curve, which is crucial in option valuation. In addition, Zhan et al. (2022) illustrates the significant

correlation between firm characteristics and delta-hedged stock option returns, further emphasizing

the relevance of these factors not only to option pricing but also to predicting market behaviour and

investment strategies. Andreou, Han, and Li (2023) also demonstrates that some firm characteris-

tics can improve the accuracy of stock option pricing predictions when utilizing machine learning

models.

Motivated by the interconnection between option Greeks and firm characteristics with option

pricing, along with the strengths of machine learning algorithms and the adaptability of semi-
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parametric option pricing models, this study broadens the scope of semi-parametric option pricing.

We extend Andreou et al. (2023) to include Greek as novel input features and test the stability of

different semi-parametric models under volatile market conditions.

Specifically, We begin with fundamental input variables closely linked to the parametric model,

including factors like the moneyness (S/X), asset price (S), strike price (X), maturity (T ), option

type (c/p), and past implied volatility (σavg). We then expand our focus to include option Greeks

and firm characteristics, examining their effectiveness in predicting option prices. We employ three

semi-parametric methods to employ the additional input features. The first model is based on

Andreou et al. (2010)’s GPF model, which employs machine learning for the prediction of implied

volatility. The second model is based on Lajbcygier and Connor (1997)’s HBD model, which

employs machine learning for pricing error correction. The third model is based on Almeida et al.

(2022)’s AFFT model, which employs machine learning for implied volatility error correction. These

models are compared against a parametric benchmark model. We select the binomial model with

past implied volatility (σavg) as our benchmark (PARA).

We have also focused on the pricing performance of the above models during the Pandemic

period. The impact of a global pandemic outbreak brings unprecedented market volatility and

challenges the established norms of financial markets. The economic uncertainty during this period

provided a rare opportunity to critically evaluate the performance and resilience of our machine-

learning models. The pandemic causes a significant increase in financial market risk, and the stock

market’s response varies according to the intensity of the outbreak, thus increasing volatility and

unpredictability (Baek, Mohanty, and Glambosky, 2020; Zhang, Hu, and Ji, 2020). By examining

the pricing performance of the models we test during pandemics, we aim to gain insights into the

predictive accuracy, adaptability, and overall robustness of these models in the face of unexpected

market disturbances. In particular, we seek to understand how these models withstand the stress

of such black swan events under different input configurations (Zhan, Fang, and Xu, 2017).

We evaluate the models using 10,110,377 U.S. stock options from January 2014 to December

2022. These options are associated with companies listed in the SP 500 index. Regarding the option

Greeks, our focus is on Delta, Gamma, Theta, and Vega. Concerning the firm characteristics, we

select 111 attributes as delineated in Jensen et al. (2021), excluding any characteristic that exhibits
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a substantial amount of missing data. Specifically, we exclude firm characteristics with missing

values greater than 20% over the sample period.

We first find that all semiparametric models, i.e., GPF, HBD, and AFFT, outperform the

benchmark model, PARA, even before incorporating additional features. The root mean square

errors (RMSEs) for GPF, HBD, and AFFT are 2.100, 2.017, and 2.139, respectively, compared to

2.567 for PARA. Second, option Greeks improve the performance of GPF, HBD, and AFFT by

reducing their RMSEs to 1.673, 1.723, and 1.733, respectively. Third, firm characteristics further

improve the performance of GPF, HBD, and AFFT by reducing their RMSEs to 1.624, 1.688, and

1.678, respectively. Lastly, the combination of option Greeks and firm characteristics improves the

performance of GPF, HBD, and AFFT the most: the RMSEs of the three models are reduced to

1.535, 1.622 and 1.580, respectively. The GPF model consistently outshines the others, particularly

during the Pandemic. Our study also indicates that the precision of option valuation varies among

stocks with different return distributions. Specifically, stocks with extremely high or low returns

exhibited a higher mean absolute percentage error (MAPE) than those with more moderate returns.

Using option Greeks and firm characteristics in machine learning models for stock option pricing

improves their accuracy and usability. Option Greeks enable real-time applications, especially in

short-term pricing, by reflecting daily market fluctuations. This makes the models more responsive

to current market conditions. Moreover, prioritizing option Greeks as key features can significantly

reduce the training time for these algorithms by simplifying the data processed. Incorporating

both option Greeks and firm characteristics into the model enhances its predicting accuracy but

lengthens the training time. Managing a wide range of inputs requires substantial computational

resources and time, particularly with the need for regular updates to reflect current market con-

ditions. Consequently, this frequent retraining may strain computational capabilities, hindering

real-time or near-real-time predictions for certain users or applications. To balance these detailed

insights with the practicality of model deployment, developers face the challenge of managing model

complexity without compromising computational efficiency. Mitigating strategies may involve se-

lecting only the most influential option Greeks and firm characteristics, employing more streamlined

machine learning algorithms, or adopting incremental learning methods to minimize the need for

comprehensive retraining. In summary, including option Greeks and firm characteristics in stock
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option pricing models enhances precision. In the GPF framework, incorporating option Greeks

reduces the RMSE from 2.100 to 1.673, and adding firm characteristics further reduces it to 1.624.

Combining both factors decreases the RMSE to 1.535. However, adding more variables increases

computational demands. Careful selection of variables is essential for accuracy and practicality.

Our research makes contributions to the field of option valuation in four ways. First, it breaks

new ground by combining option Greeks with machine learning methods, demonstrating the unex-

plored potential of option Greeks in stock option valuation. Second, it combines firm characteristics

with option Greeks to construct a more efficient and resilient option pricing framework. Third, by

examining three distinct machine-learning-based semi-parametric option valuation models during

the Pandemic, this study identifies the model that is most adept at volatile markets. Finally, it

enriches the existing knowledge in this area by emphasizing the critical impact of stock return

distributions on option pricing effectiveness.

This paper is structured as follows. Section 3.2 describes the option pricing models used in this

study, Section 3.3 details the data and methodology for the empirical analysis, Section 3.4 presents

the empirical results, and Section 3.5 concludes.

3.1.4 Upgrades in this chapter compared to Chapter 1

This study builds on Chapter 1 by exploring the integration of option Greeks and firm char-

acteristics into machine learning-enhanced semi-parametric option pricing models. Option Greeks,

updated daily, are pivotal for short-term option price predictions, reflecting current market sen-

timents and risk assessments. In contrast, firm characteristics, which change less frequently, are

crucial for long-term predictions, offering insights into the underlying asset’s health and prospects.

We also investigate the distinct impacts of option Greeks and firm characteristics on pricing

performance and assess the consistency of three semi-parametric models’ performance before and

during the pandemic to identify the most stable model for practical selection. Specifically, we

examine the GPF and AFFT models, both predicting implied volatility but differing in complexity.

The GPF model, predating the AFFT, employs a simpler mechanism that we hypothesize to be

more efficient than the AFFT’s addition of implied volatility residuals, which increases model

complexity.

104



Chapter 3

By combining option Greeks and firm characteristics, the models enhance prediction accuracy

across short-term market fluctuations and long-term fundamental changes. This synergy between

daily updated Greeks and the more stable firm characteristics creates a comprehensive tool for

option pricing, beneficial for rapid decision-making by traders and analysts.

Another extension in Chapter 3, as compared to Chapter 1, is the examination of two additional

parametric models for pricing equity options. These models are tested to see how they compare

with the binomial tree approach, providing a broader perspective on the methodologies available for

option pricing. This exploration allows for a more comprehensive comparison and understanding of

how different models handle the integration of option Greeks and firm characteristics, potentially

leading to improved prediction accuracy and practical application in varying market environments.

Overall, this study aims to demonstrate that a balanced approach, leveraging the immediate

relevance of option Greeks and the depth of firm characteristics, improves the applicability and

accuracy of machine learning models in option pricing, offering valuable insights for model devel-

opment and selection in varying market conditions.

3.2 The option pricing models

3.2.1 Binomial tree method

The binomial option pricing model, as described by Cox et al. (1979), is a common approach

for determining the fair market value of an option, further supported by studies like Rubinstein

(1994); Broadie and Detemple (1996). This model assumes that the price of the underlying asset

changes in a fixed proportion at each interval. Primarily applied to European-style options, which

are exercisable only at their expiry, it is also adaptable for American-style options that can be

exercised anytime before their expiration.

For American options, the binomial model incorporates adjustments to consider early exercise.

At every interval, the investor has the choice to exercise the option, receiving its intrinsic value -

the difference between the current price of the underlying asset and the strike price. Exercising is

favourable if the intrinsic value surpasses the option’s present value.
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To estimate the fair value of an American option using the binomial approach, we employ the

methodology outlined by Cox et al. (1979).

1. Calculate the size of each time step (dt) using the following formula:

dt =
T

M
, (3.1)

where T is the maturity, M is the total number of time steps1.

2. Calculate the up factor (u) and the down factor (d) using the following formulas:

u = exp(σ ×
√
dt) (3.2)

d =
1

u
, (3.3)

where σ is the volatility of the underlying asset.

3. Calculate the probability of an up move (p) using the following formula:

p =
r × dt− d

u− d
, (3.4)

where r is the risk-free interest rate, q is the dividend yield.

4. Determine the option’s value at its expiry for each potential price of the underlying asset.

Considering an asset with price S and a constant dividend rate q, as expanded in Cox et al.

(1979) for dividend-paying stocks, and a strike price X at a specific time, the value of a call

option is the max(S · (1− q)−X, 0). Similarly, for a put option, the value is the greater of

max(X − S · (1− q), 0).

5. Working backwards from expiration, calculate the value of the option at each time step for

each possible price of the underlying asset using the following formulas:

Priceu =
p× Priceuu + (1− p)× Priceud

1 + rf
, (3.5)

1 For the purpose of saving computation time, we set the value of M to 100.
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Priced =
p× Pricedu + (1− p)× Pricedd

1 + rf
, (3.6)

where Priceuu, Priceud, Pricedu, and Pricedd are the option values if the underlying asset

price goes up twice, up then down, down then up, and down twice, respectively.

6. At each time step, the option’s value is determined by choosing the higher of the two: the im-

mediate payoff from exercising the option (intrinsic value2) or the expected value of holding

the option(theoretical value3). This decision considers the advantage of early exercise avail-

able in American options. Such evaluation is crucial because of the possibility of exercising

the option early. At every stage, we determine whether it’s more beneficial to exercise the

option for its current intrinsic value rather than holding onto it for potential future gains,

taking into account the risk-free interest rate and the probability of price changes.

To find the market implied volatility for option i on t, σmrk
i,t , we solve an optimization problem

that has the following form:

σmrk
i,t = arg min

σmrk
i,t

[Pmrk
i,t − PARA(σmrk

i,t , Si,t, Xi,t, Ti,t, rfi,t)]
2, (3.7)

where Pmrk
i,t is the market price for option i on t, PARA(σmrk

i,t , Si,t, Xi,t, Ti,t, rfi,t) is the binomial

model that employs the parameters Si,t, Xi,t, Ti,t, and rfi,t, which are the stock price, the strike

price, the maturity, and the risk-free rate for option i on t.

For the Greeks of option i on t, we follow the following equations under the binomial tree model:

Delta (∆): The delta of an option measures the sensitivity of the option’s price to changes in

the underlying asset’s price. It can be calculated as follows:

∆ =
Priceu − Priced

S · (u− d)
. (3.8)

Gamma (Γ): The gamma of an option measures the rate of change of delta concerning changes

2 The intrinsic value of a call option is equal to max(S · (1 − q) −X, 0), and the intrinsic value of a put
option is equal to max(X − S · (1− q), 0)

3 p·Priceu+(1−p)·Priced
1+rf
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in the underlying asset’s price. It can be calculated as follows:

Γ =
∆u −∆d

S × (u− d)
. (3.9)

Theta (Θ): The theta of an option measures the rate of change of the option’s price concerning

time decay. It can be calculated as follows:

Θ =
Pricet+dt − Pricet

dt
. (3.10)

Vega (V ): The vega of an option measures the sensitivity of the option’s price to changes in

implied volatility. It can be calculated as follows:

V =
Price(σmrk + 0.01)− Price(σmrk)

0.01
. (3.11)

To estimate the price of option i on day t, we use the binomial model that employs σavg
t as our

benchmark model (PARA), where σavg
t is the average of the implied volatilities of all the options

with the same underlying asset in the period from t − 10 to t − 1 (i.e., over the past 10 trading

days) as Equation (3.12).

σavg
i,t =

1

10

j=1∑
j=10

σmrk
i,t−j , (3.12)

where the σmrk
i,t−j is the market implied volatility of option i on t− j.

We apply the same process to calculate the average Greeks:

Gavg
i,t =

1

10

j=1∑
j=10

Gmrk
i,t−j , (3.13)

where the Gmrk
i,t−j is the implied Greeks of option i on t− j and G ∈ [∆,Γ,Θ, V ].

3.2.2 Machine learning structures

The binomial option pricing model is extended by three machine learning structures: GPF,

HBD and AFFT.
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3.2.2.1 GPF structure

Andreou et al. (2010) introduce a semi-parametric option pricing model known as the GPF

model, demonstrating its superior ability to price index options. This model utilizes a neural

network to estimate unseen variables critical for option pricing (such as volatility in the Black-

Scholes model and volatility, skewness, and kurtosis in the Corrado and Su (1996) model) and then

integrates these predictions into established parametric option pricing models. The strength of

the GPF model lies in its synthesis of parametric and non-parametric techniques: the parametric

component provides a foundational theoretical structure for pricing options, while the machine

learning aspect enhances the accuracy of predicting input variables. This approach allows the GPF

model to effectively overcome the shortcomings inherent in solely parametric or non-parametric

methods. Additionally, its adaptability makes the GPF model a valuable and flexible asset in

various option pricing contexts.

In our research, we utilize the adaptable nature of the GPF by employing firm characteristics

in the forecasting model, as shown in Equation (3.14).

P pre
GPF = PARA(σpre, S,X, T, q, rf), (3.14)

where P pre
GPF is the predicted price through the GPF structure, S is the close price of the underlying

asset, X is the strike price, T is the maturity, q is the dividend rate, and rf is the risk free rate.

The function PARA(·) represents the process of the binomial tree model, and σpre is obtained

through Equation (3.16).

The initial GPF model uses a single-step process, wherein it trains a machine learning algorithm

to reduce the error in option pricing. This reduction is measured using a loss function based on

the mean squared error of the option prices. In our modified approach, designed specifically for the

large-scale stock options dataset, we recalibrate the loss function to focus on implied volatility. This

adjustment enables a quicker and more relevant reduction in pricing errors, particularly effective for

the size and characteristics of our dataset. Our GPF model’s loss function is presented in Equation

(3.15):

Loss(GPF )t = min

N∑
i=1

(σmrk
i,t − σpre

i,t )2, (3.15)
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where t is the date of the training, i is the i-th observation, N represents total observations on t.

σmrk
i,t represents the market implied volatility of option observation on t, and the σpre

i,t represents

the predicted implied volatility of option observation i on t.

The estimation of the σpre can be summarized as follow:

σpre
i,t = LightGBM(Fi,t;ϕ), (3.16)

where, σpre
i,t is the predicted implied volatility for the i-th observation on t, as determined by

the LightGBM model. Fi,t represents the vector of input features for the i-th observation, such

as the moneyness (S/X), close price (S), strike price (X), maturity (T ), σavg, Greeks, and firm

characteristics. θ denotes the set of parameters of the LightGBM model.

This equation represents how LightGBM utilizes input variables (F ) to estimate implied volatil-

ity, which is a crucial component in the GPF model. The variables can encompass several pertinent

elements such as moneyness (S/X), prices of the underlying asset (S), strike prices (X), maturity

(T ), metrics from option Greeks, and additional corporate factors. Throughout its training phase,

the parameters of the LightGBM model (ϕ) are refined to reduce the loss function previously

detailed as Equation (3.15).

Our research extends the adaptability of the GPF by incorporating firm characteristics into its

predictive mechanism, as shown in Equation (3.14). This advancement utilizes the GPF’s profi-

ciency in integrating extra, pertinent variables smoothly. The inclusion of firm characteristics is

intended to augment the GPF model, allowing it to encompass a wider array of data that may

influence option pricing. This expansion of the GPF model retains its inherent accuracy in op-

tion valuation while broadening its capability to incorporate a variety of data points, enhancing

the model’s predictive accuracy. Instead of a neural network, our modified version employs Light-

GBM, a gradient-boosting framework noted for its exceptional efficacy in diverse machine-learning

scenarios. The conceptual diagram of our revised GPF model is illustrated in Figure 3.2.
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Figure 3.2. Schematic description of the GPF structure. In the GPF-based models,
the option value is provided by a parametric model. Input features denote the set of all
input parameters for the LightGBM model. S, X, T , q, and rf are directly passed to the
binomial tree model.

3.2.2.2 HBD structure

The hybrid (HBD) model, introduced by Lajbcygier and Connor (1997), also merges the

strengths of a parametric approach and machine learning to enhance the precision of option pricing.

This model differs from the GPF by focusing on predicting the price residual of a parametric model

using machine learning techniques. Initially, HBD utilizes a parametric model like the binomial

tree model, with past implied volatility as an input, to calculate the option’s price. This calculated

price is then compared with the market price to determine the pricing residual. Subsequently, a

machine learning algorithm predicts this residual. The final value of the option is determined by

adding the predicted residual to the model’s price. The process of the HBD model can be outlined

as follows.

P pre
HBD = Respre + PARA(σavg, S,X, T, q, rf), (3.17)

where P pre
HBD is the predicted price through the HBD structure, S is the close price of the underlying

asset, X is the strike price, T is the maturity, q is the dividend rate, and rf is the risk free rate. The

function PARA(·) represents the process of the binomial tree model, σavg is the average implied

volatility according to Equation (3.12).

The loss function we optimize in the HBD is shown in Equation (3.18) and (3.19).

Loss(HBD)t = min
N∑
i=1

(ResP,mrk
i,t −ResP,prei,t )2, (3.18)
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ResP,mrk
i,t = Pmrk

i,t − PARA(σavg
i,t , Si,t, Xi,t, Ti,t, rfi,t), (3.19)

where t is the date of the training, i is the i-th observation, N represents total observations

on t. Resmrk represents the residual between the market option price (Pmrk) and the binomial

tree-based option pricing, Respre represents the residual that the HBD model seeks to predict.

The estimation of the Respre can be summarized as follow:

ResP,prei,t = LightGBM(Fi,t;ϕ), (3.20)

where, ResP,prei,t is the predicted price residuals for the i-th observation on t, as determined by

the LightGBM model. Fi,t represents the vector of input features for the i-th observation, such

as the moneyness (S/X), close price (S), strike price (X), maturity (T ), σavg, Greeks, and firm

characteristics. θ denotes the set of parameters of the LightGBM model.

This equation demonstrates how the LightGBM technique uses a set of features, denoted as

F , to predict the price deviation, termed as (Respre), a crucial element in the HBD model. The

feature set, F , may include various relevant data points like the moneyness (S/X), the prices of

the underlying assets (S), strike prices (X), maturity (T ), various option Greeks, and additional

company-specific attributes. During the training process, LightGBM’s parameters, represented by

ϕ, are adjusted to reduce the loss outlined in Equation (3.18).

We enhance the HBD model by adding firm characteristics and using LightGBM instead of a

neural network. Figure 3.3 presents a diagrammatic representation of the HBD model’s structure.

Figure 3.3. Schematic description of the HBD structure. In the HBD-based models,
the option value is provided by the combination of binomial tree model-based price and
estimated price adjustment. Input features denote the set of all input parameters for the
LightGBM model. S, X, T , q, rf , and σavg are directly passed to the binomial tree model.
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3.2.2.3 AFFT structure

The AFFT Structure, as referenced in Almeida et al. (2022), serves as an alternative to the

HBD structure. Unlike the HBD, which employs a machine learning model to forecast the residual

of option price in a parametric model, the AFFT focuses on predicting the residual of implied

volatility. It begins by determining the implied volatility residual through a comparison between

the past implied volatility used in the parametric model (σavg) and the market’s implied volatility

(σmrk). This residual is then used as the target for the machine-learning model. Once we have a

trained model, it predicts the implied volatility residual. This predicted residual, combined with

past implied volatility data, aids in calculating the predicted implied volatility. This predicted value

is then fed into the parametric model to generate the option price. The AFFT can be outlined in

the following manner.

P pre
AFFT = PARA(σavg +Resσ,pre, S,X, T, q, rf), (3.21)

where P pre
AFFT is the predicted price through the AFFT structure, σavg is the average implied

volatility provided by Equation (3.12), Resσ,pre is the predicted σ residual, S is the price of the

underlying asset, X is the strike price, T is the maturity, q is the dividend rate, and rf is the risk

free rate. The function PARA(·) represents the process of the binomial tree model, σavg is the

average implied volatility according to Equation (3.12).

The loss function we optimize in the AFFT is shown in Equation (3.22) and (3.23).

Loss(AFFT )t = min

N∑
i=1

(Resσ,mrk
i,t −Resσ,prei,t )2, (3.22)

Resσ,mrk
i,t = σmrk

i,t − σavg
i,t , (3.23)

where t is the date of the training, i is the i-th observation, N represents total observations on

t. Resσ,mrk represents the residual between the market implied volatility provided by the Equation

(3.7) (σmrk) and the average implied volatility given by the Equation (3.12), σavg represents the

residual that the AFFT model seeks to predict.

113



Chapter 3

The estimation of the Resσ can be summarized as follow:

Resσ,prei,t = LightGBM(Fi,t;ϕ), (3.24)

where, Resσ,prei,t is the predicted implied volatility residuals for the i-th observation on t, as deter-

mined by the LightGBM model. Fi,t represents the vector of input features for the i-th observation,

such as the moneyness (S/X), close price (S), strike price (X), maturity (T ), σavg, Greeks, and

firm characteristics. θ denotes the set of parameters of the LightGBM model.

This equation demonstrates how LightGBM uses the feature set F to estimate the implied

volatility residual, (Resσ,pre), a key element in the AFFT model. The feature set F may include

a range of relevant data points, such as moneyness (S/X), prices of the underlying asset (S),

strike prices (X), maturity (T ), option Greeks, and other firm characteristics. During its training

process, LightGBM’s parameters, ϕ, are optimized to reduce the specified loss function, as detailed

in Equation (3.22).

The AFFT framework is enhanced by adding option Greeks and firm characteristics into its

model and applying the LightGBM technique. The architectural layout of the AFFT is depicted

in Figure 3.4.

Figure 3.4. Schematic description of the AFFT structure. In the AFFT-based
models, the option value is provided by the binomial tree model. Input features denote the
set of all input parameters for the LightGBM model. S, X, T , q, and rf , along with the
combination of σavg and the estimated σ adjustment, are directly passed to the binomial tree
model.

3.2.3 LightGBM

In our study, we utilize the LightGBM machine learning algorithm, introduced by Ke et al.

(2017). LightGBM. LightGBM stands for Light Gradient Boosting Machine and is a framework

that uses decision tree algorithms for both classification and regression problems. It is specifically
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crafted to be effective and scalable for large datasets. Below, we provide a summary of the algorithm

and the essential formulas for implementing LightGBM in regression tasks.

1. Initialize the model: Start with an initial model, which is usually the average of the target

variable values for regression tasks. Mathematically, the initial model can be represented as:

F0(x) = argmin
c

∑
L(yi, c) (3.25)

where L(yi, c) is the loss function for the target variable yi corresponding to observation xi

and the constant value c.

2. Gradient boosting: Iteratively construct weak learners (decision trees) and combine them to

create a strong learner. For each iteration k = 1, 2, ...,K:

(a) Calculate the gradients gi and Hessians hi for each observation xi in the dataset:

gi =
∂L(yi, F (xi))

∂F (xi)
(3.26)

hi =
∂2L(yi, F (xi))

∂F (xi)2
(3.27)

where F (xi) is the current model’s prediction for observation xi.

(b) Build a new decision tree to fit the negative gradients: Fit a new decision tree fk(x)

using the dataset (xi, gi, hi). In LightGBM, the decision tree is built using the ‘leaf-

wise’ strategy with depth limitation, which splits the tree node with the highest loss

reduction first.

(c) Determine the optimal learning rate (shrinkage factor) ηk:

ηk = argmin
η

∑
[L(yi, F (xi) + η × fk(xi)] (3.28)

Utilize line search or another optimization method to find the learning rate that mini-

mizes the loss function.
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(d) Update the model:

Fk(x) = Fk−1(x) + ηk × fk(x) (3.29)

3. Final model: After T iterations, the final model can be represented as:

F (x) = F0(x) +

K∑
k=1

ηk × fk(x) (3.30)

3.3 Data and methodology

3.3.1 Option data

Options data are obtained from OptionMetrics’ IvyDB US and cover the options in the US

market from January 2014 to December 2022. We use the first 365 calendar days of the sample

to train the machine learning-based models and set the out-of-sample period to be from January

2015 to December 2022. Following Dumas et al. (1998), we define the option price as the midpoint

of the bid and ask prices to reduce the estimation noise of implicit parameters. The underlying

stocks’ prices are collected from the Securities table in OptionMetrics’ IvyDB US, and the 3-month

Treasury bill rate, which is used as a proxy for the risk-free rate, is obtained from the St. Louis

Federal Reserve Economic Data. Following Bakshi et al. (1997) and Andreou et al. (2010), we filter

the option data using the following criteria.

1. Options with a trading volume of less than 100 contracts are eliminated as they are deemed

to be illiquid and their prices may not represent the actual market price.

2. The time to maturity should be at least six days and no longer than 365 calendar days as

options near expiration may induce liquidity-related biases.

3. Options with price quotes less than 0.1 U.S. dollars are eliminated.

4. The moneyness (S/X) of an option should be between 0.8 and 1.2.

5. Observations that violate the usual no-arbitrage condition are dropped.
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After filtering, the final data set contains 10,110,377 observations. The characteristics of this

dataset are detailed in Tables 3.1 and 3.2. Table 3.1 indicates a higher count of out-of-the-money

option observations compared to in-the-money option observations and a greater number of call

options relative to put options. Across all maturity groups, a volatility smile pattern is evident,

with a more distinct presence in options with shorter maturities. Table 3.2 presents the annual

distribution of options per underlying stock. Stocks in the SP500 with a daily options trading

volume exceeding 100 contracts have risen from 265 in 2014 to 303 in 2022. Concurrently, the

average number of options associated with each stock has grown over the years, from an average of

12 in 2014 to 20 in 2022. Despite the median number of actively traded options remaining relatively

low at 5 in 2022, there’s a slight increase from 4 in 2014. Moreover, the peak number of options

has escalated from 254 in 2014 to 351 in 2022.

Between January 2020 and December 2022, coinciding with the Pandemic period, there was a

notable increase in options trading, demonstrated by the escalated average daily trading volume

of options as well as the peak numbers reached on certain days. This heightened trading activity

likely indicates the market’s response to the global uncertainties and evolving investment prospects

brought about by the Pandemic.

Furthermore, the fact that the peak trading volumes of options far exceed the average suggests

that a small selection of stocks have a disproportionately large number of options, while the majority

are associated with fewer options.

3.3.2 Firm characteristics

The integration of firm characteristics into option pricing is supported by extensive research

demonstrating their significant impact on the behaviour of underlying assets and, consequently, on

the value of options. The relationship between characteristics unique to a firm and overall market

trends is vital. This is shown by Andreou (2015), who discovered that the market’s perception

of a firm’s default risk profoundly affects the risk-neutral characteristics, such as volatility and

skewness, of SP 500 Index options. Vasquez and Xiao (2023) also point out the influence of default

risk on the expected returns of delta-hedged equity options, thus establishing a direct connection

between a firm’s debt levels, asset volatility, and option pricing. Chen et al. (2023) further this
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Table 3.1. Characteristics of option data. This table describes the characteristics of
the option data. The data is obtained from OptionMetrics’ IvyDB US and covers the stock
options in the US market from January 2014 to December 2022, with out-of-sample data
covering the period January 2015 to December 2022. “Price”, “Implied volatility”, “Obs
(Total)” and “Obs (Out)” respectively refer to the average price, average implied volatility,
the number of total observations, and the number of out-of-sample observations in each
subset.

Moneyness DOTM OTM JOTM ATM JITM ITM DITM

Panel A. Call options

S/X 0.80-0.90 0.90-0.95 0.95-0.99 0.99-1.01 1.01-1.05 1.05-1.10 1.10-1.20

Near-term (6-60 days)
Price 1.977 2.320 3.007 4.875 7.063 11.097 17.457
Implied Volatility 0.389 0.352 0.321 0.309 0.318 0.333 0.341
Obs (Total) 330,559 671,159 1,304,056 800,659 592,793 196,766 98,343
Obs (Out) 321,891 639,602 1,211,439 733,610 538,122 180,286 91,229
Mid-term (60-180 days)
Price 2.176 2.548 3.214 4.813 7.051 12.246 25.063
Implied Volatility 0.386 0.358 0.337 0.329 0.345 0.372 0.400
Obs (Total) 352,923 542,265 908,281 571,124 389,568 113,081 48,747
Obs (Out) 340,772 511,163 836,955 521,703 354,768 105,769 46,696
Long-term (181-365 days)
Price 3.283 3.911 5.636 8.774 9.534 11.872 15.874
Implied Volatility 0.351 0.317 0.307 0.306 0.308 0.310 0.316
Obs (Total) 284,259 321,380 319,067 139,373 150,835 79,712 57,664
Obs (Out) 269,715 291,437 281,316 122,348 131,915 70,462 51,435

Panel B. Put options

S/X 1.10-1.20 1.05-1.10 1.01-1.05 0.99-1.01 0.95-0.99 0.90-0.95 0.80-0.90

Near-term (6-60 days)
Price 3.644 4.484 5.899 7.965 9.307 11.905 18.327
Implied Volatility 0.348 0.333 0.331 0.334 0.344 0.355 0.378
Obs (Total) 190,281 169,882 175,963 87,902 92,948 41,780 25,502
Obs (Out) 174,963 151,357 155,687 77,721 82,720 37,719 23,720
Mid-term (60-180 days)
Price 7.405 8.256 10.693 14.039 14.521 16.114 18.984
Implied Volatility 0.335 0.316 0.314 0.312 0.315 0.314 0.318
Obs (Total) 193,858 134,855 115,069 52,050 64,241 45,476 48,158
Obs (Out) 178,932 120,538 101,927 45,722 56,317 39,740 42,256
Long-term (181-365 days)
Price 7.677 9.323 11.800 14.772 16.354 18.829 28.609
Implied Volatility 0.338 0.336 0.339 0.343 0.355 0.366 0.381
Obs (Total) 127,894 79,447 69,379 33,855 39,544 25,476 24,203
Obs (Out) 115,566 71,556 62,399 30,310 35,517 23,081 22,299
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Table 3.2. Number of options per stock. This table describes the descriptive statistics
of the number of options per stock per day in the sample period.

Year No. firms No. options
Mean Std Min 25% 50% 75% Max

2014 265 12 21 1 2 5 13 254
2015 262 12 21 1 1 4 13 243
2016 281 11 18 1 1 4 13 179
2017 290 12 20 1 1 4 13 172
2018 312 14 25 1 2 4 14 213
2019 308 14 24 1 1 4 15 202
2020 313 17 33 1 1 4 18 316
2021 314 20 40 1 2 5 20 349
2022 303 20 41 1 2 5 19 351

idea by showing how a firm’s basic financial health shapes the implied volatility curve, a crucial

factor in determining option prices. Their research indicates that various firm-specific aspects

like profitability and market dominance significantly affect the differences in option prices across

different firms. In a similar vein, Trigeorgis and Lambertides (2014) highlight the importance of a

firm’s specific business volatility and the adaptability of management in evaluating growth options,

reinforcing the need to consider these factors in option pricing models. Firm characteristics are also

key in studies on predicting the returns of options. Research has found links between these traits

and the returns of delta-hedged equity options. Zhan et al. (2022) show that the expected returns

from selling delta-hedged call options are inversely related to elements like stock price profit margin

and firm profitability, but positively associated with factors such as cash reserves, variability in cash

flow, issuing new shares, total external financing, risk of financial distress, and the range of analysts’

forecasts. This underlines the significant role that specific firm attributes play in option returns,

emphasizing their relevance not only in pricing options but also in forecasting market behaviour

and shaping investment strategies.

Our study utilizes 111 firm characteristics that include accounting ratios, momentum features,

stock return volatility, and other characteristics related to the firm’s operation, growth, risk, and

performance by following Jensen et al. (2021). To be more practical and consistent, these firm

characteristics are collected using the PyAnomaly Python library, which is designed for creating

firm characteristics and aiding in asset pricing research4. We exclude any firm characteristic with

over 20% missing observations. We address the remaining gaps in data by replacing missing values

4 This tool is accessible at [https://pyanomaly.readthedocs.io/en/latest/index.html]. PyAnomaly offers
straightforward access to a range of financial datasets, ensuring both accuracy and consistency in data.
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with the cross-sectional median value following Gu et al. (2020). A detailed list and description

of these firm characteristics are available in the appendix. Jensen et al. (2021) and other cited

references offer complete definitions of these characteristics. To prevent any forward-looking bias,

we align the firm characteristics from six months prior with the option data from the current month.

3.3.3 Model specifications and evaluation metrics

We have organized our inputs into three main categories. The first, the basic group, encompasses

variables such as Moneyness (S/X), S (close price), X (strike price), T (maturity), c/p (a binomial

indicator with 0 for call option and 1 for put option), and σavg. The second category, the Greeks

group, includes ∆avg, Γavg, Θavg, and V avg. The third, the firm characteristics group, encapsulates

111 firm characteristics.

Our research assesses the accuracy of different models in predicting out-of-sample option prices.

We begin with the binomial model, labeled PARA. We then examine various configurations of the

GPF structure. These variations are: GPF, using only the basic group; GPFG, which combines

the basic group with the Greeks group; GPFF , merging the basic group with firm characteristics;

and GPFGF , integrating all three groups. Similarly, we evaluate the HBD structure: HBD, focused

on the basic group; HBDG, including both basic and Greek groups; HBDF , blending the basic

group with firm characteristics; and HBDGF , employing all three groups. Lastly, we consider the

AFFT structure: AFFT uses only the basic group; AFFTG includes the Greeks along with the basic

inputs; AFFTF combines the basic group with firm characteristics; and AFFTGF integrates all three

groups. Each model’s pricing performance is compared to determine which input combination most

accurately reflects market prices.

Table 3.3 summarizes the combinations of input features and the tested models in the empirical

analysis.

The evaluation metrics of the models include root mean squared error (RMSE), mean absolute

error (MAE), root mean squared percentage error (RMSPE), and mean absolute percentage error
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Table 3.3. Model specifications. This table presents the specifications of the test models.
Panel A lists the input features of the models, and panel B lists the models tested in the
empirical study.

Panel A. Input features

Basic group Moneyness (S/X), S (close price), X (strike price), T (maturity), c/p (a binomial indicator
with 0 for call option and 1 for put option), and σavg (past implied volatility)

Greeks group ∆avg , Γavg , Θavg , V avg

Firm characteristics 111 firm characteristics six months prior.

Panel B. Test models

Model Input features Structure

GPF Basic group GPF
GPFG Basic group + Greeks Group GPF
GPFF Basic group + Firm characteristics GPF
GPFGF Basic group + Greeks Group + Firm characteristics GPF

HBD Basic group HBD
HBDG Basic group + Greeks Group HBD
HBDF Basic group + Firm characteristics HBD
HBDGF Basic group + Greeks Group + Firm characteristics HBD

AFFT Basic group AFFT
AFFTG Basic group + Greeks Group AFFT
AFFTF Basic group + Firm characteristics AFFT
AFFTGF Basic group + Greeks Group + Firm characteristics AFFT

(MAPE) as detailed in Equations (3.31), (3.32), (3.33), and (3.34).

RMSE =

√√√√ 1

L

L∑
l=1

(zl − ẑl)2, (3.31)

MAE =
1

L

L∑
l=1

|zl − ẑl|, (3.32)

RMSPE =

√√√√ 1

L

L∑
l=1

(
zl − ẑl
zl

)2

, (3.33)

MAPE =
1

L

L∑
l=1

∣∣∣∣zl − ẑl
zl

∣∣∣∣ , (3.34)

where L represents the number of observations in the dataset, zl is the actual value of the j-th

observation, and ẑl is the predicted value for the l-th observation, as given by the model.

We use the Model Confidence Set (MCS) method, a statistical technique designed for model

comparison and selection in time series analysis, to evaluate a group of predictive models. In-
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troduced by Hansen et al. (2011), the MCS helps identify models with statistically comparable

performance. Our research implements MCS through a series of defined steps.

1. Selection of Prediction Models: Initiate the MCS procedure by selecting models based

on their mean square error (MSE) for comparison.

2. Null Hypothesis Formulation: Assume no significant MSE differences among models and

test this assumption.

3. Loss Differential Analysis: Create a matrix of MSE differences between models for sta-

tistical analysis.

4. Statistical Testing: Apply statistical tests to assess if MSE differences are significant.

5. Interpreting p-values: Analyze p-values using a 1% significance threshold to determine

model inclusion in the MCS.

3.3.4 Implementation Details

In our research, we employ the LightGBM gradient boosting method for regression tasks, using

default hyperparameters such as the number of leaves, tree depth, and learning rate to maintain

simplicity. The mean squared error is chosen as the loss function.

For the GPF model, we daily compute the average implied volatility, σavg, and integrate it with

basic group features to form the input for LightGBM. Additional features like Greeks and firm

characteristics are included in variations of the GPF model. LightGBM is trained on data from the

365 days, using the last 30 days for validation and the earlier period for training, and then used

to estimate the next day’s implied volatility, which feeds into a binomial tree model to determine

option prices.

The HBD approach calculates option prices using a binomial tree, then derives the price resid-

uals—differences between market and parametric model-derived prices—which serve as training

targets for LightGBM. The output is an estimated price residual used to adjust the parametric

model-based option price.
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Similarly, the AFFT approach calculates the implied volatility residual, which is then used as a

target for training LightGBM. The resulting estimated implied volatility residual is added to σavg

to compute the predicted implied volatility for option pricing.

All models are evaluated using out-of-sample metrics, with the MCS approach employed to com-

pare their performance and identify the model with the lowest MSE and highest p-value, indicating

significant superior accuracy.

3.4 Empirical analysis

3.4.1 Pricing performance for all options

3.4.1.1 Overall performance

Table 3.4 shows the performance of four option pricing models: PARA, GPF, HBD, and AFFT,

tested across all options.

Table 3.4. Pricing performance for all options. This table shows the out-of-sample
pricing errors for each model for the period January 2015 to December 2022 for all the
options, containing a total of 9,302,680 observations. RMSE, MAE, RMSPE, and MAPE
respectively refer to the root mean squared error, the mean absolute error, the root mean
squared percentage error, and the mean absolute percentage error. MCS-p refers to the
p-value of the model confidence set test. Columns labelled “%” indicate the proportion of
months during the entire forecast period in which each model ranked first according to the
error metric specified in the previous column.

RMSE % MAE % RMSPE % MAPE % MCS-p

GPF 2.100 0.000 0.648 0.000 0.367 0.000 0.186 0.000 0.000
GPFG 1.673 2.083 0.528 0.000 0.297 12.500 0.152 0.000 0.000
GPFF 1.624 16.667 0.483 10.417 0.303 5.208 0.141 1.042 0.001
GPFGF 1.535 34.375 0.458 63.542 0.281 62.500 0.132 83.333 1.000

HBD 2.017 0.000 0.635 0.000 0.414 0.000 0.199 0.000 0.000
HBDG 1.723 2.083 0.532 0.000 0.361 0.000 0.164 0.000 0.000
HBDF 1.688 7.292 0.500 3.125 0.372 0.000 0.157 0.000 0.001
HBDGF 1.622 14.583 0.477 16.667 0.341 0.000 0.146 0.000 0.004

AFFT 2.139 0.000 0.654 0.000 0.370 0.000 0.187 0.000 0.000
AFFTG 1.733 0.000 0.536 0.000 0.303 7.292 0.152 0.000 0.000
AFFTF 1.678 3.125 0.493 2.083 0.307 3.125 0.142 0.000 0.000
AFFTGF 1.580 20.833 0.469 9.375 0.287 18.750 0.134 30.208 0.002

PARA 2.567 0.000 0.858 0.000 0.418 0.000 0.250 0.000 0.000

Focusing solely on RMSE and excluding Greeks and firm characteristics, HBD is the best with a

2.017 RMSE, followed by GPF (2.100), AFFT (2.139), and PARA (2.567). This order is the same
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for MAE, confirming HBD’s top accuracy. For MAPE, a relative error metric, GPF leads with

0.186, closely followed by AFFT (0.187), HBD (0.199), and PARA (0.250). The variation across

these metrics underscores the importance of a comprehensive evaluation approach to understand

each model’s strengths and limitations. All machine learning models improve RMSE and MAPE

by over 20% compared to PARA, indicating their effectiveness in reducing pricing errors.

Incorporating option Greeks significantly enhances all models: GPFG, HBDG, and AFFTG,

with GPFGshowing superior performance across all error metrics. Their RMSE values (1.673,

1.723, 1.733) and MAPE values (0.152, 0.164, 0.152) are considerably lower than those of GPF,

HBD, and AFFT. The improvement is more notable in GPFG, and AFFTG, which focus on implied

volatility, whereas HBDG, which targets pricing residuals, shows lesser but still notable benefits.

Adding firm characteristics further reduces errors in GPFF , HBDF , and AFFTF , with GPFF leading

in all metrics. Their RMSEs (1.624, 1.688, 1.678) and MAPEs (0.141, 0.157, 0.142) also surpass

their Greek-inclusive counterparts, except in RMSPE, indicating higher relative errors in lower-

priced options.

Combining both firm characteristics and option Greeks further boosts model performance in

GPFF , HBDF , and AFFTF , with GPFFwith RMSEs 1.535, 1.622, 1.580, respectively. The overall

best performance model is GPFGF , which shows the smallest RMSE (1.535) and also stands out

in MCS results.

The GPF structure’s superior performance across various feature combinations stems from its

structural differences with HBD and AFFT. Unlike the HBD structure’s focus on predicting pricing

residuals, and the AFFT structure’s focus on predicting implied volatility residuals, GPF targets

directly implied volatility prediction. The differences significantly influence the complexity and

effectiveness of each model.

Predicting implied volatility, as done by GPF, is inherently less complex than predicting its

residual, as in AFFT. Implied volatility is an extracted metric, that captures essential market

expectations about option price. By directly predicting implied volatility, the GPF model utilizes a

simpler, more direct metric that has filtered out many of the confounding factors in option prices.

This approach balances the complexity of the model with the ability to capture the underlying

market dynamics. In contrast, the AFFT model adds a layer of complexity by focusing on the

124



Chapter 3

residuals of implied volatility. The residuals represent deviations from the expected values, which

requires the model to first understand and predict the difference from the baseline. This additional

complexity can create challenges for accurate modelling, especially when integrating additional

features such as option Greeks and firm characteristics.

On the other hand, HBD models directly predict price residuals, which is intuitive but intro-

duces more noise. Implied volatility prediction models in option pricing, such as GPF and AFFT,

effectively reduce noise through the use of implied volatility, which is a metric extracted from

parametric models that inherently takes into account different option characteristics such as mon-

eyness, maturity, and option type (call/put). In contrast, a pricing residual model like HBD, which

directly predicts price residuals, may introduce more noise due to the poor filtering nature of its

methodology, which does not effectively separate these specific option attributes.

Overall, GPF’s method of predicting implied volatility strikes a balance, being complex enough

to incorporate additional valuable information, such as option Greeks and firm characteristics,

without being overly complicated. Table 3.4 also illustrates the consistent superiority of the

GPFGF model over others, with its performance leading most of the time. Specifically, GPFGF ranks

first in approximately 34.38% of the months for RMSE, 63.54% for MAE, 62.5% for RMSPE, and

an impressive 83.33% for MAPE. This dominance is observed across all error measures, indicating

the overwhelming advantage of GPFGF over competing models.

Figure 3.5 further shows the month-by-month MAPE performance for all models over the entire

out-of-sample period. We choose to present MAPE rather than RMSE because option prices and

their absolute errors tend to grow over time, making it challenging to fairly compare year-over-year

performance using absolute error metrics. For other error measures, please check the Appendix.

Over time, GPFGF has been the dominant model, with the lowest MAPE in 80 out of 96 months,

and maintaining the second lowest MAPE in the remaining 16 months. This was followed by

AFFTGF , which has recorded the best MAPE in 29 out of 96 months5 and the second-best in

63 months. When considering other metrics such as RMSPE, RMSE and MAE, GPFGF also

continues to impress. This highlights GPFGF ’s ability to consistently provide stable and accurate

pricing predictions.

5 In some cases, GPFGF and AFFTGF share the same MAPE.
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Figure 3.5. Monthly MAPEs and rankings are presented for each model. The
legend indicates the corresponding colour for each model’s rank in every month. Within each
rectangle, the displayed number represents the MAPE for that specific month and model.
The GPFGF model consistently proved to be the most accurate, achieving the lowest MAPE
in 80 out of 96 months and securing the second-lowest MAPE for the remaining 16 months.
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3.4.1.2 The pricing performance before and during the Pandemic

In terms of overall performance, GPFGF performs best over the entire forecasting period. In

this section, we further check whether the GPFGF model can continue to perform best over the

Pandemic period when the market is facing great turbulence.

Table 3.5 reports the pricing performance before and during the Pandemic period. It’s note-

worthy that the GPFGF consistently outperforms PARA and other models, especially during the

Pandemic period from 2020 to 2022. Before and during the Pandemic period, the RMSEs for

GPFGF are 1.068 and 3.691, HBDGF are 1.183 and 4.131, AFFTGF are 1.136 and 3.907, PARA

are 2.845 and 10.466, respectively. Regarding MAPE before and during the pandemic: GPFGF is

0.133 and 0.131, HBDGF is 0.146 and 0.147, AFFTGF is 0.135 and 0.132, while PARA is 0.260 and

0.240.

Table 3.5. The pricing performance before and during the Pandemic. The table
presents a comparison of various option pricing models’ performance, specifically before
and during the Pandemic, covering January 2015 to 2019.12 (Before) and January 2020
to December 2022 (During), respectively. Key performance metrics such as RMSE, MAE,
RMSPE, and MAPE. The total number of observations in the study amounts to 9,302,680,
with 4,731,816 of these recorded before the Pandemic and 4,570,864 during the Pandemic
period.

RMSE MAE RMSPE MAPE
Before During Before During Before During Before During

GPF 1.702 7.213 0.454 0.849 0.129 0.141 0.184 0.188
GPFG 1.299 4.349 0.385 0.675 0.094 0.083 0.154 0.149
GPFF 1.143 4.184 0.341 0.631 0.098 0.084 0.140 0.142
GPFGF 1.068 3.691 0.328 0.591 0.087 0.070 0.133 0.131

HBD 1.624 6.601 0.451 0.825 0.164 0.179 0.196 0.202
HBDG 1.316 4.677 0.389 0.680 0.130 0.131 0.166 0.163
HBDF 1.230 4.528 0.355 0.651 0.129 0.149 0.154 0.160
HBDGF 1.183 4.131 0.344 0.614 0.120 0.113 0.146 0.147

AFFT 1.837 7.408 0.461 0.854 0.132 0.142 0.185 0.189
AFFTG 1.436 4.625 0.393 0.683 0.098 0.086 0.155 0.150
AFFTF 1.233 4.456 0.349 0.643 0.102 0.087 0.142 0.143
AFFTGF 1.136 3.907 0.338 0.604 0.091 0.074 0.135 0.132

PARA 2.845 10.466 0.634 1.091 0.182 0.167 0.260 0.240

The heightened RMSE and MAE observed in option pricing during the Pandemic are largely

attributable to the increased volatility and unpredictability that characterized financial markets

during this period. The Pandemic brought in a level of uncertainty not seen in previous times,

leading to rapid and often drastic fluctuations in stock prices. These circumstances present a
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significant challenge to predictive models used in option pricing. Typically, these models rely on

historical data and established market trends to predict future prices. However, the Pandemic

disrupted these trends, making historical data less reliable for predictions. As a result, the absolute

pricing errors, as measured by RMSE and MAE, which quantify the magnitude of prediction errors

without considering the direction, were notably higher. This reflects the difficulty models face in

accurately predicting option prices in the face of sudden market changes and increased volatility.

Conversely, the relative error metrics like MAPE and RMSPE did not show a proportional

increase during the Pandemic. This discrepancy arises from the intrinsic nature of these metrics as

relative measures of error, which consider the size of the actual values when assessing errors. During

periods of high volatility, like the Pandemic, the actual values of options can undergo significant

changes. In such scenarios, even if the absolute errors (as captured by RMSE and MAE) are large,

the relative errors might not increase to the same extent. This is because these relative errors are

normalized by the actual values, which were also experiencing substantial fluctuations.

The enhanced pricing performance of machine learning-based models over the PARA model

can largely be attributed to the size of their training datasets (The findings in robust test 3.4.4.2

also support this.). Machine learning models are particularly effective when they have access to

extensive historical data, as this allows them to identify and learn from underlying patterns more

efficiently. A larger dataset not only reduces the risk of overfitting - a common issue where a

model learns the details and noise in the training data to the extent that it negatively impacts

the performance of the model on new data - but also significantly improves the model’s ability to

make accurate predictions. This abundance of data is a key factor in the superior performance of

machine learning models in option pricing compared to the PARA model, which may not utilize as

extensive a dataset for its predictions.

3.4.2 Pricing performance for different groups

3.4.2.1 Call vs put options

Table 3.6 presents the models’ pricing performance separately for call options (as shown in Panel

A) and put options (as shown in Panel B). The results show that the variation in pricing errors
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between these option types is insubstantial. The GPFGF consistently emerges as the top performer,

followed by AFFTGF and then HBDGF . For call options, the RMSEs of GPFGF , HBDGF , and

AFFTGF are 1.541, 1.642, and 1.584, respectively. For put options, the RMSEs of GPFGF , HBDGF ,

and AFFTGF are 1.526, 1.592, and 1.574, respectively. These RMSEs are well below the RMSEs

of PARA, which are 2.587 for calls and 2.538 for puts.

The superiority of GPFGF , HBDGF , and AFFTGF is also evident across other measures, in-

cluding MAE, RMSE, and MAPE. Notably, GPFGF dominates in all error metrics. These findings

emphasize the potential of machine learning to improve the accuracy of call and put option pricing.

This accuracy can be further improved if firm characteristics and option Greeks are integrated into

the model.

3.4.2.2 Different moneyness options

The well-established observation that implied volatility varies with moneyness, a phenomenon

referred to as the volatility smile, is pivotal in recognizing that moneyness significantly influences

option pricing performance. Specifically, ITM options may necessitate more significant price al-

terations than OTM options. This is because ITM options are more prone to be exercised before

their expiration, while OTM options are often retained until maturity. To provide insight into how

moneyness affects option pricing, we evaluate the pricing performance of various models across

different moneyness groups.

As presented in Table 3.7, the results detail the pricing errors associated with each moneyness

group6. Among all groups, GPFGF consistently emerges as the superior performer, recording the

lowest values in RMSE, MAE, RMSPE, and MAPE. Specifically, for GPFGF , the RMSE is 1.312

for DOTM options, 1.413 for OTM options, 1.590 for JOTM options, 1.791 for ATM options,

1.607 for JITM options, 1.330 for ITM options, and 1.240 for DITM options. RMSE of 1.240

for DITM options. What is particularly striking is that the benchmark PARA model has a large

margin of error across all moneyness groups. In contrast, the proposed model maintains consistent

performance regardless of moneyness. An important observation is that Greek letters and firm

6 DOTM stands for deep out-the-money; OTM stands for out-the-money; JOTM stands for just out-the-
money; ATM stands for at-the-money; JITM stands for just in-the-money; ITM stands for in-the-money;
DITM stands for deep in-the-money. The specific definition of the moneyenss can be found in Table 3.1.
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Table 3.6. Pricing performance for call and put options. This table shows the
out-of-sample pricing errors for each model for the period January 2015 to December 2022
for call and put options. RMSE, MAE, RMSPE, and MAPE respectively refer to the root
mean squared error, the mean absolute error, the root mean squared percentage error, and
the mean absolute percentage error. MCS-p refers to the p-value of the model confidence
set test. Columns labelled “%” indicate the proportion of months during the entire forecast
period in which each model ranked first according to the error metric specified in the previous
column.

RMSE % MAE % RMSPE % MAPE % MCS-p

Panel A. Call options (5,520,239 observations)

GPF 2.112 0.000 0.644 0.000 0.379 0.000 0.189 0.000 0.000
GPFG 1.685 1.042 0.525 1.042 0.305 9.375 0.154 0.000 0.000
GPFF 1.625 15.625 0.475 7.292 0.306 3.125 0.141 0.000 0.019
GPFGF 1.541 37.500 0.450 68.750 0.285 60.417 0.132 83.333 1.000

HBD 2.023 0.000 0.632 0.000 0.432 0.000 0.204 0.000 0.000
HBDG 1.747 0.000 0.532 0.000 0.373 0.000 0.169 0.000 0.000
HBDF 1.698 5.208 0.496 2.083 0.383 0.000 0.159 0.000 0.019
HBDGF 1.642 13.542 0.473 9.375 0.354 0.000 0.149 0.000 0.019

AFFT 2.156 0.000 0.651 0.000 0.382 0.000 0.189 0.000 0.000
AFFTG 1.753 0.000 0.533 0.000 0.312 8.333 0.155 0.000 0.000
AFFTF 1.681 4.167 0.485 1.042 0.312 4.167 0.142 0.000 0.003
AFFTGF 1.584 23.958 0.461 17.708 0.293 20.833 0.134 31.250 0.019

PARA 2.587 0.000 0.885 0.000 0.471 0.000 0.276 0.000 0.000

Panel B. Put options (3,782,441 observations)

GPF 2.082 0.000 0.654 0.000 0.349 0.000 0.182 0.000 0.000
GPFG 1.654 3.125 0.531 0.000 0.286 13.542 0.149 0.000 0.001
GPFF 1.622 14.583 0.495 8.333 0.298 4.167 0.141 1.042 0.002
GPFGF 1.526 35.417 0.468 54.167 0.275 47.917 0.132 78.125 1.000

HBD 2.009 0.000 0.640 0.000 0.386 0.000 0.193 0.000 0.000
HBDG 1.686 4.167 0.531 0.000 0.343 1.042 0.158 0.000 0.000
HBDF 1.675 5.208 0.507 2.083 0.356 0.000 0.154 0.000 0.004
HBDGF 1.592 16.667 0.482 26.042 0.322 0.000 0.143 3.125 0.057

AFFT 2.113 0.000 0.660 0.000 0.352 0.000 0.183 0.000 0.000
AFFTG 1.702 0.000 0.538 0.000 0.290 9.375 0.149 0.000 0.000
AFFTF 1.674 4.167 0.505 1.042 0.301 0.000 0.142 0.000 0.000
AFFTGF 1.574 18.750 0.479 13.542 0.279 20.833 0.134 34.375 0.045

PARA 2.538 0.000 0.820 0.000 0.325 12.500 0.213 0.000 0.000
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characteristics significantly improve performance when pricing options with deeper moneyness.

Such outcomes imply that option Greeks and firm characteristics can provide insights into the

volatility smile to a certain degree.

3.4.2.3 Different maturity options

Table 3.8 summarizes the performance of various pricing models in different maturity groups.

Among them, GPFGF performs the best in all maturity groups, taking into account the metrics

RMSE, MAE, RMSPE and MAPE. It is closely followed by AFFTGF and HBDGF .

The RMSEs of the PARA model increase with time to maturity, where the RMSE jumps from

2.204 for the near-term options to 2.504 for the mid-term options, and then rises sharply to 4.359

for the long-term options. This is in contrast to the performance of the proposed model, which

is stable across maturity groups. For example, the RMSEs for GPFGF are 1.604 (near-term),

1.242 (mid-term), and 1.598 (long-term), respectively. On examining the MAPE, a relative error

measure, a decline is observed with increasing time to maturity for PARA, showcasing values of

0.263 (near-term), 0.222 (mid-term), and 0.217 (long-term). This decreasing trend is even more

pronounced for the proposed models. Specifically, the MAPEs for GPFGF are 0.161 (near-term),

0.076 (mid-term), and 0.052 (long-term), respectively. One potential explanation for this is that

with time to maturity increase, the time value of the option increases causing the absolute value

of the option to increase. This could cause the absolute measure, like the RMSE, to increase with

time, and cause the relative measure, like MAPE, to decrease with time.

The results also suggest that firm characteristics are more indicative of long-term options, while

option Greek letters are more helpful for short-term options. This can be seen in the difference

in improvement between GPF and GPFG and between GPF and GPFF in terms of short-term

performance and long-term performance. For short-term options, the RMSEs for GPF, GPFG, and

GPFF are 2.133, 1.696, and 1.707, respectively; for long-term options, the RMSEs for GPF, GPFG,

and GPFF are 2.400, 1.916, and 1.645, respectively. Regarding the MAPE, for short-term options,

the MAPEs for GPF, GPFG, and GPFF are 0.218, 0.178, and 0.172, respectively; for long-term

options, the MAPEs for GPF, GPFG, and GPFF are 0.093, 0.074, and 0.053, respectively.
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Table 3.8. Pricing performance for different maturity options. This table shows the
out-of-sample pricing errors for each model for the period January 2015 to December 2022
for different maturity options. RMSE, MAE, RMSPE, and MAPE respectively refer to the
root mean squared error, the mean absolute error, the root mean squared percentage error,
and the mean absolute percentage error. MCS-p refers to the p-value of the model confidence
set test. Columns labelled “%” indicate the proportion of months during the entire forecast
period in which each model ranked first according to the error metric specified in the previous
column.

RMSE % MAE % RMSPE % MAPE % MCS-p

Panel A. Near-term (6,434,005 observations)

GPF 2.133 1.042 0.647 0.000 0.414 0.000 0.218 0.000 0.000
GPFG 1.696 3.125 0.530 1.042 0.336 19.792 0.178 1.042 0.005
GPFF 1.707 13.542 0.513 8.333 0.352 4.167 0.172 0.000 0.001
GPFGF 1.604 31.250 0.482 51.042 0.326 51.042 0.161 76.042 1.000

HBD 2.108 0.000 0.646 0.000 0.471 0.000 0.235 0.000 0.000
HBDG 1.766 4.167 0.541 0.000 0.413 0.000 0.194 0.000 0.000
HBDF 1.759 6.250 0.527 5.208 0.431 0.000 0.191 0.000 0.003
HBDGF 1.672 21.875 0.498 21.875 0.395 0.000 0.177 1.042 0.019

AFFT 2.192 0.000 0.654 0.000 0.418 0.000 0.219 0.000 0.000
AFFTG 1.760 2.083 0.539 0.000 0.343 9.375 0.179 0.000 0.000
AFFTF 1.766 2.083 0.522 2.083 0.357 2.083 0.174 0.000 0.000
AFFTGF 1.648 16.667 0.491 17.708 0.333 13.542 0.162 34.375 0.005

PARA 2.204 0.000 0.764 0.000 0.424 4.167 0.263 0.000 0.000

Panel B. Mid-term (1,922,515 observations)

GPF 1.811 0.000 0.580 0.000 0.222 0.000 0.126 0.000 0.000
GPFG 1.449 1.042 0.466 0.000 0.177 0.000 0.101 0.000 0.000
GPFF 1.296 16.667 0.383 16.667 0.141 15.625 0.079 21.875 0.018
GPFGF 1.242 39.583 0.368 56.250 0.136 69.792 0.076 71.875 1.000

HBD 1.663 0.000 0.556 0.000 0.242 0.000 0.133 0.000 0.000
HBDG 1.466 0.000 0.460 0.000 0.199 0.000 0.108 0.000 0.000
HBDF 1.371 7.292 0.404 2.083 0.186 0.000 0.092 0.000 0.017
HBDGF 1.347 19.792 0.389 15.625 0.170 0.000 0.087 0.000 0.018

AFFT 1.843 0.000 0.586 0.000 0.222 0.000 0.126 0.000 0.000
AFFTG 1.517 0.000 0.473 0.000 0.178 0.000 0.101 0.000 0.000
AFFTF 1.337 6.250 0.394 3.125 0.145 3.125 0.081 5.208 0.003
AFFTGF 1.288 10.417 0.381 9.375 0.140 31.250 0.078 31.250 0.018

PARA 2.504 0.000 0.846 0.000 0.382 0.000 0.222 0.000 0.000

Panel C. Long-term (946,160 observations)

GPF 2.400 0.000 0.795 0.000 0.243 0.000 0.093 0.000 0.000
GPFG 1.916 1.042 0.634 0.000 0.192 1.042 0.074 0.000 0.000
GPFF 1.645 25.000 0.483 23.958 0.139 30.208 0.053 42.708 0.292
GPFGF 1.598 31.250 0.471 54.167 0.135 37.500 0.052 76.042 1.000

HBD 2.044 0.000 0.724 0.000 0.242 0.000 0.094 0.000 0.000
HBDG 1.899 1.042 0.616 0.000 0.206 0.000 0.077 0.000 0.000
HBDF 1.783 2.083 0.517 2.083 0.160 1.042 0.061 0.000 0.014
HBDGF 1.784 9.375 0.509 9.375 0.159 2.083 0.059 0.000 0.031

AFFT 2.326 0.000 0.794 0.000 0.243 0.000 0.093 0.000 0.000
AFFTG 1.946 0.000 0.638 0.000 0.196 0.000 0.074 0.000 0.000
AFFTF 1.688 11.458 0.499 2.083 0.137 15.625 0.054 12.500 0.091
AFFTGF 1.651 18.750 0.490 11.458 0.133 35.417 0.053 29.167 0.292

PARA 4.359 0.000 1.528 0.000 0.447 0.000 0.217 0.000 0.000
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3.4.2.4 Pricing performance for the stocks with different returns

In this section, we will further analyze how different return profiles of the underlying stock affect

the pricing of the underlying option. To achieve this, we categorize stocks into 10 groups based on

their cross-sectional daily return distributions. Each group represents 10 percentile stock returns,

ranging from the lowest returns (0-10th percentile) to the highest returns (90-100th percentile).

This categorization allows us to analyze and compare the pricing performance of options linked to

stocks with different return percentiles.

We report the MAPEs of the models for stocks with different return profiles in Table 3.9, 3.10,

3.11, and 3.12. Table 3.9 provides a report for all options; Table 3.10 categorizes the data by call

and put options; Table 3.11 groups the performance based on moneyness, and Table 3.12 presents

the results organized by maturity.

Table 3.9. Pricing performance for all options with different stock returns
(MAPE). This table presents the out-of-sample pricing errors of each model for all options.
The out-of-sample period is from January 2015 to December 2022. The columns represent
groups categorized according to percentile returns, ranging from the lowest 10 percentile (10)
to the highest 10 percentile (100). The observations (Obs) are given in thousands.

10 20 30 40 50 60 70 80 90 100

GPF 0.212 0.187 0.179 0.181 0.177 0.177 0.177 0.181 0.182 0.210
GPFG 0.180 0.151 0.146 0.146 0.142 0.142 0.143 0.145 0.147 0.177
GPFF 0.175 0.140 0.133 0.134 0.129 0.129 0.129 0.131 0.135 0.174
GPFGF 0.166 0.131 0.125 0.124 0.121 0.121 0.120 0.123 0.127 0.166

HBD 0.227 0.200 0.194 0.194 0.189 0.189 0.190 0.193 0.196 0.223
HBDG 0.197 0.165 0.158 0.158 0.155 0.153 0.153 0.157 0.162 0.189
HBDF 0.194 0.157 0.149 0.150 0.146 0.144 0.145 0.146 0.152 0.190
HBDGF 0.185 0.145 0.138 0.139 0.135 0.134 0.133 0.137 0.142 0.178

AFFT 0.213 0.188 0.180 0.181 0.177 0.177 0.178 0.182 0.183 0.211
AFFTG 0.182 0.152 0.146 0.147 0.143 0.142 0.143 0.145 0.148 0.179
AFFTF 0.178 0.141 0.135 0.135 0.130 0.130 0.130 0.133 0.136 0.177
AFFTGF 0.169 0.132 0.126 0.127 0.122 0.122 0.122 0.124 0.128 0.169

PARA 0.243 0.244 0.252 0.261 0.259 0.258 0.256 0.252 0.240 0.238

Obs 935,370 936,367 936,142 936,386 936,545 935,984 936,179 936,349 936,160 937,199

In Table 3.9, it’s evident that the GPFGF model demonstrates the best overall performance

across all stock return profiles, followed by AFFTGF and HBDGF . When comparing models that

incorporate either firm characteristics, option Greeks, or neither, we find that models based on firm

characteristics generally outperform those based on option Greeks. They all outperform models

that include neither firm characteristics nor option Greek letters. In addition, all of these models
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Table 3.10. Pricing performance for call and put options with different stock
returns (MAPE). This table presents the out-of-sample pricing errors of each model for
the call and put options. The out-of-sample period is from January 2015 to December 2022.
The columns represent groups categorized according to percentile returns, ranging from the
lowest 10 percentile (10) to the highest 10 percentile (100). The observations (Obs) are given
in thousands.

10 20 30 40 50 60 70 80 90 100

Panel A. Call options

GPF 0.228 0.196 0.188 0.187 0.182 0.179 0.178 0.179 0.178 0.197
GPFG 0.194 0.158 0.152 0.151 0.146 0.144 0.144 0.143 0.143 0.166
GPFF 0.186 0.144 0.137 0.136 0.131 0.129 0.129 0.129 0.131 0.159
GPFGF 0.176 0.136 0.128 0.127 0.122 0.121 0.120 0.121 0.122 0.152

HBD 0.250 0.213 0.205 0.203 0.196 0.193 0.193 0.192 0.192 0.209
HBDG 0.216 0.175 0.167 0.166 0.161 0.158 0.156 0.157 0.158 0.178
HBDF 0.211 0.165 0.156 0.156 0.150 0.146 0.146 0.145 0.147 0.175
HBDGF 0.202 0.153 0.145 0.145 0.140 0.136 0.134 0.135 0.138 0.165

AFFT 0.229 0.197 0.188 0.188 0.182 0.180 0.179 0.180 0.179 0.198
AFFTG 0.195 0.159 0.153 0.152 0.147 0.144 0.144 0.144 0.145 0.167
AFFTF 0.189 0.146 0.139 0.138 0.132 0.130 0.130 0.130 0.132 0.162
AFFTGF 0.180 0.137 0.130 0.129 0.124 0.122 0.122 0.122 0.124 0.155

PARA 0.277 0.276 0.285 0.295 0.291 0.286 0.281 0.273 0.254 0.242

Obs 516,912 530,848 538,130 543,127 552,178 556,869 563,053 572,151 583,644 599,040

Panel B. Put options

GPF 0.191 0.174 0.168 0.173 0.170 0.173 0.175 0.184 0.189 0.233
GPFG 0.164 0.142 0.137 0.139 0.137 0.139 0.140 0.147 0.152 0.196
GPFF 0.162 0.133 0.128 0.130 0.126 0.129 0.130 0.136 0.143 0.200
GPFGF 0.153 0.125 0.120 0.121 0.118 0.121 0.121 0.128 0.134 0.190

HBD 0.200 0.183 0.178 0.182 0.179 0.183 0.185 0.195 0.202 0.248
HBDG 0.173 0.151 0.145 0.147 0.145 0.147 0.147 0.156 0.168 0.208
HBDF 0.173 0.146 0.139 0.142 0.140 0.141 0.142 0.149 0.159 0.216
HBDGF 0.165 0.135 0.129 0.130 0.129 0.130 0.131 0.139 0.149 0.200

AFFT 0.192 0.175 0.168 0.173 0.170 0.174 0.175 0.185 0.190 0.234
AFFTG 0.165 0.143 0.138 0.140 0.137 0.139 0.140 0.146 0.153 0.199
AFFTF 0.164 0.135 0.129 0.131 0.127 0.130 0.131 0.137 0.144 0.204
AFFTGF 0.156 0.126 0.121 0.123 0.119 0.121 0.122 0.128 0.135 0.193

PARA 0.200 0.201 0.207 0.214 0.215 0.217 0.217 0.220 0.217 0.229

Obs 418,458 405,519 398,012 393,259 384,367 379,115 373,126 364,198 352,516 338,159
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Table 3.12. Pricing performance for different maturity options with different
stock returns (MAPE). This table shows the out-of-sample pricing errors for each model
for the period January 2015 to December 2022 for different maturity options. The columns
represent groups categorized according to percentile returns, ranging from the lowest 10
percentile (10) to the highest 10 percentile (100). The observations (Obs) are given in
thousands.

10 20 30 40 50 60 70 80 90 100

Panel A. Near-term

GPF 0.247 0.219 0.211 0.214 0.208 0.207 0.207 0.211 0.212 0.241
GPFG 0.214 0.178 0.171 0.172 0.167 0.167 0.167 0.169 0.171 0.206
GPFF 0.216 0.171 0.163 0.163 0.157 0.158 0.158 0.160 0.164 0.213
GPFGF 0.204 0.159 0.151 0.151 0.146 0.147 0.146 0.149 0.153 0.202

HBD 0.267 0.237 0.229 0.231 0.223 0.223 0.224 0.227 0.230 0.258
HBDG 0.235 0.195 0.186 0.187 0.182 0.181 0.180 0.184 0.190 0.220
HBDF 0.239 0.191 0.180 0.183 0.176 0.174 0.175 0.176 0.183 0.230
HBDGF 0.227 0.176 0.167 0.167 0.163 0.161 0.160 0.164 0.171 0.214

AFFT 0.248 0.221 0.211 0.214 0.208 0.208 0.208 0.212 0.213 0.242
AFFTG 0.216 0.179 0.172 0.173 0.168 0.167 0.167 0.170 0.173 0.209
AFFTF 0.220 0.172 0.164 0.165 0.158 0.158 0.158 0.161 0.165 0.217
AFFTGF 0.208 0.160 0.152 0.153 0.147 0.147 0.147 0.150 0.154 0.205

PARA 0.257 0.258 0.267 0.277 0.274 0.273 0.270 0.264 0.252 0.246

Obs 653,681 647,822 645,338 641,194 640,560 641,871 643,049 647,998 655,742 663,038

Panel B. Mid-term

GPF 0.141 0.124 0.121 0.123 0.120 0.121 0.122 0.123 0.123 0.141
GPFG 0.113 0.099 0.099 0.099 0.098 0.097 0.098 0.098 0.097 0.112
GPFF 0.090 0.079 0.077 0.078 0.076 0.076 0.076 0.076 0.076 0.088
GPFGF 0.087 0.076 0.075 0.075 0.074 0.073 0.073 0.073 0.074 0.086

HBD 0.148 0.131 0.129 0.130 0.129 0.128 0.128 0.130 0.128 0.147
HBDG 0.119 0.107 0.106 0.106 0.105 0.104 0.104 0.104 0.104 0.120
HBDF 0.102 0.091 0.090 0.091 0.090 0.088 0.088 0.088 0.088 0.102
HBDGF 0.097 0.087 0.085 0.086 0.085 0.084 0.083 0.084 0.084 0.098

AFFT 0.142 0.124 0.121 0.122 0.121 0.121 0.122 0.123 0.123 0.142
AFFTG 0.113 0.100 0.100 0.099 0.098 0.097 0.098 0.098 0.098 0.113
AFFTF 0.092 0.081 0.078 0.080 0.078 0.077 0.077 0.077 0.077 0.091
AFFTGF 0.089 0.077 0.076 0.077 0.076 0.075 0.075 0.075 0.075 0.089

PARA 0.212 0.213 0.222 0.230 0.231 0.228 0.227 0.226 0.213 0.214

Obs 189,143 192,664 193,505 196,238 197,048 196,507 195,653 194,356 190,266 188,021

Panel C. Long-term

GPF 0.108 0.091 0.086 0.087 0.086 0.086 0.088 0.092 0.093 0.115
GPFG 0.084 0.073 0.071 0.071 0.071 0.069 0.070 0.073 0.074 0.089
GPFF 0.060 0.052 0.051 0.051 0.051 0.050 0.050 0.052 0.052 0.062
GPFGF 0.058 0.052 0.050 0.050 0.050 0.049 0.049 0.051 0.051 0.061

HBD 0.108 0.092 0.089 0.089 0.087 0.087 0.088 0.092 0.093 0.116
HBDG 0.086 0.076 0.073 0.073 0.074 0.072 0.072 0.076 0.076 0.095
HBDF 0.069 0.060 0.059 0.059 0.059 0.058 0.057 0.060 0.059 0.074
HBDGF 0.067 0.058 0.057 0.057 0.057 0.056 0.055 0.058 0.058 0.073

AFFT 0.108 0.092 0.086 0.087 0.086 0.086 0.088 0.091 0.093 0.116
AFFTG 0.083 0.073 0.071 0.071 0.071 0.069 0.070 0.072 0.073 0.090
AFFTF 0.061 0.054 0.052 0.053 0.052 0.051 0.052 0.053 0.053 0.064
AFFTGF 0.059 0.053 0.051 0.052 0.051 0.050 0.051 0.052 0.052 0.063

PARA 0.206 0.211 0.215 0.221 0.221 0.218 0.219 0.225 0.212 0.223

Obs 92,546 95,881 97,299 98,954 98,937 97,606 97,477 93,995 90,152 86,140
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outperform the PARA model. This pattern also can be seen for different types of options (call and

put), different moneyness and different maturities from Table 3.10, 3.11 and 3.12, which implies

that the good performance of GPFGF is consistent for different groups of options.

Another key observation is that while PARA shows relatively uniform MAPEs across stocks with

varying returns, the machine learning-based models exhibit a smile pattern in their distribution.

This pattern indicates higher MAPEs for stocks at the extreme ends of returns - both lowest and

highest. For example, for the GPFGF model, the MAPE is 0.166 for the 0-10th percentile model,

0.166 for the 90-100th percentile model, and 0.121 for the 40-50th percentile and 50-60th percentile

models. This pattern exists for other machine learning-based models. The smile pattern in pricing

errors, more pronounced for stocks with very low or high returns, arises mainly due to their higher

volatility and the market’s reaction to them. Stocks at these extremes are more unpredictable due to

factors like speculative trading, market news, or significant events, leading to abrupt price changes.

High-return stocks might be overvalued due to market optimism, while low-return stocks could be

undervalued or face negative sentiment, both leading to discrepancies between model predictions

and actual prices. Moreover, machine learning models, reliant on historical data, may not accurately

predict these outliers, as extreme returns are less represented in typical market conditions. While

machine learning models generally enhance pricing accuracy, their effectiveness varies with the

stock’s return profile, being more accurate for stocks with moderate, predictable returns and less so

for those with extreme returns. This highlights the need for continuous refinement of these models

to improve forecasting accuracy for different return profiles.

In Table 3.10, the smile pattern is evident in both call and put options, with a more pronounced

effect in call options, particularly for stocks with the highest and lowest returns. For example,

For the GPFGF model, the MAPEs for call options are 0.176 (0-10th percentile), 0.152 (90-100th

percentile), 0.122 (40-50th percentile), and 0.121 (50-60th percentile), while for put options, they are

0.153 (0-10th percentile), 0.190 (90-100th percentile), 0.118 (40-50th percentile), and 0.121 (50-60th

percentile). This pattern exists for other machine learning-based models. The higher MAPE for

call options in these extreme return categories can be attributed to several factors. For stocks with

high returns, call options may carry inflated expectations of continued upward movement, leading

to overvaluation and larger pricing errors. Conversely, for stocks with low returns, the pessimism
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surrounding these stocks might result in the underpricing of call options, again causing larger errors.

Additionally, call options inherently carry more risk and uncertainty in extreme market conditions

compared to put options, as they represent a right to buy in a potentially volatile market. This

increased uncertainty in predicting future prices of stocks with extreme returns leads to higher

MAPEs for call options compared to put options.

In Table 3.11, the smile pattern observed across all moneyness categories of options can be

largely attributed to the characteristics of machine learning algorithms and the nature of option

moneyness. Machine learning models excel at capturing patterns in data, but their performance

can vary based on the complexity and volatility of the underlying asset. For each moneyness

group, stocks with either lower or higher returns exhibit higher MAPE compared to those with

mid-range returns. This trend is more pronounced in options further out-of-the-money (DOTM

and OTM, both with MAPE above 0.20), and gradually lessens as we move towards options that

are DITM (with MAPE around 0.028). This variation in MAPE can be attributed to the increasing

predictability and stability of options as they move from being more speculative (DOTM) to more

intrinsic-value-based (DITM). Machine learning algorithms are more effective in situations where

the pricing dynamics are stable and predictable, as seen in the lower MAPEs for ITM and DITM

options. In contrast, the higher volatility and less predictable behaviour of DOTM and OTM

options make it more challenging for these algorithms to accurately predict pricing, resulting in

a higher MAPE. This overall smile pattern across different moneyness categories underscores the

sensitivity of machine learning-based option pricing models to the inherent risks and volatility

associated with the underlying assets’ returns.

In Table 3.12, the smile pattern is also observed across different maturities of options, being

more pronounced in near-term options and less evident in long-term options. One reason for this

is the larger sample size of near-term options compared to mid-term and long-term options, which

impacts the performance of machine learning algorithms. Machine learning models are data-driven;

they excel when they have more data to learn from. A larger dataset for near-term options provides

these models with more information, enabling them to capture and learn from the nuances and

complexities of short-term market movements more effectively. This leads to a more pronounced

smile pattern as the models can detect and reflect the volatility and pricing errors more accurately
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in these options. On the other hand, long-term options tend to lean more towards their intrinsic

value over time. This intrinsic value is often less volatile and more predictable, which may explain

why the smile pattern is less evident in these options. Moreover, long-term options’ pricing is

less influenced by short-term market fluctuations and more by the underlying asset’s fundamental

value, which machine learning models might capture with less variability.

3.4.3 Feature importance

LightGBM provides two methods to calculate the importance of each input feature: Frequency

(Number of Splits) and Gain (Split Importance). The Frequency counts the total number of

times a feature is used to split the data across all trees in the model. Features used more often

in the tree construction process are considered more important. The Gain (Split Importance)

measures the total improvement in the loss function that results from each split based on a particular

feature. A higher gain indicates that the feature is more important for making accurate predictions.

LightGBM’s default method for feature importance is Frequency, we only report the importance

of features given by Frequency. For comparison purposes, we calculate the importance of each

feature as a percentage of the importance of all features per day and finally derive the average of

all samples for each feature.

Figure 3.6 presents the feature importance for each model. For the models using firm character-

istics, we first report the total feature importance of the firm characteristics during the prediction

process, and then give the detailed feature importance of each firm characteristic in Figure 3.7.
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Figure 3.6. Feature importance for each model. The scores in the figure are the
average scores of all monthly training results extracted from the LightGBM algorithm. A
higher score means the feature is used more often in the tree construction process and the
feature is considered more important. The specifications of each model can be found in Table
3.3.
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Figure 3.7. Feature importance of the firm characteristics. The definitions of the
firm characteristics are outlined in the Appendix. The ranking of these characteristics is
determined based on their feature importance within the GPFGF model, identified as the
top-performing model overall.

Firm characteristics play an important role in understanding the performance of firms and

their prospective growth. As shown in our previous research Andreou et al. (2023), the firm

characteristics can help to increase the prediction accuracy of the option price for all stocks. The

firm characteristics still show their help in the period between January 2015 to December 2022 for

the SP500 stocks, and the prediction power exists in all pricing structures (GPF, HBD, and AFFT).
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The option Greeks also show their help in the pricing process. Furthermore, the combination of

the option Greeks and firm characteristics further increases the pricing accuracy.

In Figure 3.6, the GPFGF demonstrates that the basic variables, namely Moneyness, S, X,

T and c/p, have importance values of 15.02, 3.73, 4.49, 19.12, and 4.30, respectively. The σavg

holds an importance of 5.94. Meanwhile, the Greek groups: ∆avg, Γavg, Θavg, and V avg, possess

respective importance scores of 7.40, 3.30, 3.64, and 2.92; the firm characteristics group accounts

for 30.15 importance in total.

When we compare the feature importance of GPF and GPFG models, we observe that σavg

has a heightened importance of 25.16 in the GPF. However, in the GPFG, the importance of the

σavg, ∆avg, Γavg, Θavg, and V avg, are 10.94, 11.75, 7.97, 8.54, and 6.86, respectively. The superior

performance of the GPFG over GPF, suggests that the option Greeks contain additional critical

information not solely captured by the σavg. It has been shown that this additional information

helps to predict option prices. The efficacy of the Greeks in option pricing isn’t restricted to the

GPF structure alone; it’s also evident within the HBD and AFFT structures. However, the GPF

structure stands out, indicating its proficiency in harnessing the nuanced information embedded

within the option Greeks. Furthermore, when analyzing the importance of the variable S, we

find an interesting phenomenon. In GPF, the importance of S is 19.28. However, in GPFG,

this importance decreases to 6.88. The decrease in importance implies that option Greeks may

contain some predictive power originally associated with S, revealing interdependencies in the

input features.

The importance of firm features is prominent in all models, not only evident in the GPF struc-

ture but also in the HBD and AFFT structures. It is noteworthy that when we examine the

GPFGF in depth, the combined importance of the firm features reaches 30.15, which exceeds the

impact of any individual feature. However, a closer look at Figure 3.7 reveals an interesting phe-

nomenon: when evaluated individually, the importance of each firm characteristic is relatively low

(below 0.5). In the field of machine learning, particularly with tree-based models like LightGBM,

feature importance reveals the role of each input in the model’s decisions. LightGBM, a gradi-

ent boosting framework, excels in handling datasets with both categorical and continuous features

and is adept at navigating multicollinearity—where features are interrelated, a challenge for linear
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models. LightGBM in GPFGF efficiently captures the synergy between firm characteristics, illus-

trating how combined features can significantly impact the pricing accuracy, even if they seem

minor individually.

3.4.4 Robustness tests

3.4.4.1 Pricing performance for different parametric models

We examine the robustness of our findings by comparing the pricing performance of the GPF,

HBD and AFFT structures under other parametric models. These parametric models include the

Crank-Nicolson model and the Barone-Adesi and Whaley model (BAW). Details of each model are

provided in the Appendix.

Table 3.13 provides a comparison of the performance of the Crank-Nicholson and BAW models

with the binomial model. For the Crank Nicolson-based models, the RMSEs for GPFGF , HBDGF ,

and AFFTGF are 1.537, 1.624, and 1.564, respectively. The BAW models have RMSEs for GPFGF ,

HBDGF , and AFFTGF are 1.542, 1.627, and 1.568, respectively. These values are similar to those

of the binomial-based models, where the RMSEs for GPFGF , HBDGF , and AFFTGF are 1.535,

1.622, and 1.580, respectively. The RMSEs of the PARA models for each parametric approach are

also similar: 2.562 for the Crank-Nicholson model, 2.566 for the BAW model, and 2.567 for the

binomial model.

This highlights the robustness of our findings. This suggests that the choice of parametric model

- be it Crank Nicolson, BAW or binomial - does not have a significant impact on the overall error

profile. This applies not only to the benchmark PARA model, but also to the proposed structures

(GPF, HBD, and AFFT), suggesting that their effectiveness in option pricing is not affected by

changes in the underlying parameter modelling approach

.

3.4.4.2 Training models for each return percentile

Table 3.14, 3.15, 3.16, and 3.17 illustrate a smile pattern in option pricing performance across

stocks from different return profiles. The smile pattern is consistent across different types of options,
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Table 3.13. Pricing performance for all options. This table presents the out-of-sample
pricing errors of each model for all the options. The out-of-sample period is from January
2015 to December 2022 and encompasses 9,302,680 data points. RMSE, MAE, RMSPE, and
MAPE respectively refer to the root mean squared error, the mean absolute error, the root
mean squared percentage error, and the mean absolute percentage error. MCS-p refers to
the p-value of the model confidence set test. Columns labelled “%” indicate the proportion
of months during the entire forecast period in which each model ranked first according to
the error metric specified in the previous column.

RMSE % MAE % RMSPE % MAPE % MCS-p

Panel A. Crank-Nicolson model

GPF 2.108 0.000 0.649 0.000 0.366 0.000 0.186 0.000 0.000
GPFG 1.674 3.125 0.527 0.000 0.297 15.625 0.151 0.000 0.000
GPFF 1.630 15.625 0.484 11.458 0.303 3.125 0.141 0.000 0.001
GPFGF 1.537 38.542 0.457 61.458 0.280 55.208 0.132 78.125 1.000

HBD 2.014 0.000 0.635 0.000 0.414 0.000 0.199 0.000 0.000
HBDG 1.728 3.125 0.532 0.000 0.366 0.000 0.164 0.000 0.000
HBDF 1.691 4.167 0.501 1.042 0.372 1.042 0.157 0.000 0.001
HBDGF 1.624 16.667 0.476 16.667 0.341 0.000 0.146 0.000 0.011

AFFT 2.135 0.000 0.653 0.000 0.370 0.000 0.187 0.000 0.000
AFFTG 1.735 0.000 0.536 0.000 0.303 9.375 0.152 0.000 0.000
AFFTF 1.667 4.167 0.493 1.042 0.309 2.083 0.142 0.000 0.000
AFFTGF 1.564 17.708 0.467 12.500 0.286 31.250 0.134 39.583 0.011

PARA 2.562 0.000 0.857 0.000 0.417 0.000 0.250 0.000 0.000

Panel B. Barone-Adesi and Whaley model

GPF 2.093 0.000 0.647 0.000 0.365 0.000 0.186 0.000 0.000
GPFG 1.684 3.125 0.527 0.000 0.297 12.500 0.151 0.000 0.000
GPFF 1.638 19.792 0.484 12.500 0.304 1.042 0.141 0.000 0.000
GPFGF 1.542 35.417 0.458 58.333 0.282 54.167 0.132 79.167 1.000

HBD 2.014 0.000 0.635 0.000 0.414 0.000 0.199 0.000 0.000
HBDG 1.732 1.042 0.533 0.000 0.367 0.000 0.165 0.000 0.000
HBDF 1.691 6.250 0.501 1.042 0.372 1.042 0.157 0.000 0.000
HBDGF 1.627 16.667 0.477 14.583 0.343 0.000 0.146 0.000 0.004

AFFT 2.143 0.000 0.654 0.000 0.370 0.000 0.187 0.000 0.000
AFFTG 1.718 3.125 0.534 0.000 0.303 6.250 0.152 0.000 0.000
AFFTF 1.667 2.083 0.492 1.042 0.309 1.042 0.142 0.000 0.000
AFFTGF 1.568 15.625 0.468 16.667 0.288 31.250 0.134 37.500 0.052

PARA 2.566 0.000 0.858 0.000 0.418 0.000 0.250 0.000 0.000
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moneyness, and maturities. However, due to the nature of machine learning, the unbalance of the

training datasets can lead to biased outcomes. Typically, these algorithms may focus more on

minimizing pricing errors for stocks in middle return percentiles (10 to 90) compared to those at

the extremities (0-10 and 90-100). This bias arises if the relationship between input factors and

output pricing differs significantly among various stock return percentiles. Training a single model

for all options could result in suboptimal performance for stocks at the extremes. On the flip

side, creating individual machine learning models for each option group poses its own challenges,

particularly the risk of overfitting due to limited data in each specific category. To evaluate this

balance between the issues of data unbalance and limited data availability, we trained models for

each stock return percentile separately. We then compared these results to those obtained from a

more generalist, one-model-fits-all approach.

Table 3.14 presents the option pricing performance for each stock return percentile based on

models trained individually on these percentiles. The results show that the proposed model exhibits

a higher MAPE compared to the results presented in Table 3.9. All machine learning-based models

show an increase in MAPE except for the PARA model, which is unaffected due to its insensitivity

to sample size limitations. It is worth noting that the best performing GPFGF , identified in both

the previous analysis and Table 3.14, has a MAPE of approximately 0.190 when trained on the

segmented stock return group; however, this MAPE drops to between 0.120 and 0.166 when the

model is trained to include all available options. This significant difference could be due to the

limitations imposed by the smaller sample size, which limits the ability of the machine learning

model to capture the full range of information compared to the more inclusive primary analysis.

Comparing the results from Tables 3.9 and 3.14, it becomes evident that training machine

learning algorithms on non-extreme stocks enhance the pricing performance for extreme return

stocks. This improvement suggests a stable internal relationship between option pricing and input

variables, effectively captured by these algorithms when provided with sufficient data. This finding

indicates that the variations in the relationship between input features and option pricing across

different option types are not substantial enough to necessitate separate models for each group.

Consequently, a unified model approach for all types of options seems to be sufficient and effective.

Despite inferior pricing performance in Table 3.14 compared to Table 3.9, machine learning
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Table 3.14. Pricing performance for all options with different stock returns
(MAPE) - Robust test. This table presents the out-of-sample pricing errors of each
model for all options. The out-of-sample period is from January 2015 to December 2022.
The columns represent groups categorized according to percentile returns, ranging from the
lowest 10 percentile (10) to the highest 10 percentile (100). The observations (Obs) are given
in thousands.

10 20 30 40 50 60 70 80 90 100

GPF 0.227 0.214 0.210 0.211 0.210 0.206 0.204 0.207 0.207 0.211
GPFG 0.211 0.202 0.200 0.200 0.199 0.197 0.195 0.197 0.197 0.200
GPFF 0.202 0.194 0.192 0.191 0.190 0.188 0.186 0.189 0.188 0.192
GPFGF 0.199 0.192 0.190 0.189 0.189 0.187 0.184 0.187 0.187 0.190

HBD 0.252 0.239 0.233 0.233 0.233 0.228 0.227 0.228 0.228 0.238
HBDG 0.233 0.223 0.222 0.222 0.222 0.217 0.216 0.216 0.217 0.224
HBDF 0.251 0.234 0.241 0.235 0.233 0.229 0.227 0.226 0.227 0.234
HBDGF 0.238 0.223 0.229 0.225 0.225 0.218 0.218 0.217 0.220 0.225

AFFT 0.230 0.213 0.211 0.209 0.209 0.205 0.204 0.206 0.205 0.214
AFFTG 0.212 0.200 0.199 0.198 0.198 0.195 0.193 0.195 0.194 0.202
AFFTF 0.211 0.195 0.193 0.191 0.191 0.189 0.186 0.189 0.190 0.199
AFFTGF 0.206 0.193 0.191 0.189 0.189 0.187 0.185 0.186 0.188 0.197

PARA 0.243 0.244 0.252 0.261 0.259 0.258 0.256 0.252 0.240 0.238

Obs 935,370 936,367 936,142 936,386 936,545 935,984 936,179 936,349 936,160 937,199

models consistently outperform the PARA across all return profiles, demonstrating their effective-

ness even with limited sample sizes. However, this effectiveness is constrained. Furthermore, the

presence of the smile pattern in these models, where stocks with extreme returns exhibit higher

MAPEs than those with non-extreme returns, underscores the influence of stock returns on pricing

performance.

These observations are further supported by Tables 3.15, 3.16, and 3.17, which show perfor-

mance metrics across different option types, moneyness, and maturities. These results collectively

highlight the impact of limited sample sizes and emphasize the importance of using sufficient data

for training machine learning algorithms.

3.5 Conclusion

This paper proposes machine learning-based option pricing models that incorporate firm char-

acteristics and option Greeks. We aim to assess whether firm characteristics and option Greeks

can enhance the pricing of stock options. We employ three semi-parametric models, a variant of

Andreou et al. (2010)’s generalized parametric function model (GPF), a variant of Lajbcygier and
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Table 3.15. Pricing performance for call and put options with different stock
returns (MAPE) - Robust test. This table presents the out-of-sample pricing errors of
each model for the call and put options. The out-of-sample period is from January 2015 to
December 2022. The columns represent groups categorized according to percentile returns,
ranging from the lowest 10 percentile (10) to the highest 10 percentile (100). The observations
(Obs) are given in thousands.

10 20 30 40 50 60 70 80 90 100

Panel A. Call options

GPF 0.247 0.227 0.220 0.219 0.216 0.209 0.205 0.205 0.203 0.200
GPFG 0.228 0.214 0.209 0.208 0.205 0.201 0.196 0.195 0.193 0.189
GPFF 0.218 0.204 0.200 0.197 0.194 0.190 0.187 0.186 0.183 0.179
GPFGF 0.214 0.203 0.197 0.195 0.193 0.189 0.185 0.184 0.182 0.177

HBD 0.279 0.257 0.249 0.247 0.245 0.235 0.232 0.228 0.225 0.226
HBDG 0.257 0.241 0.238 0.235 0.233 0.224 0.221 0.216 0.213 0.212
HBDF 0.275 0.251 0.255 0.247 0.244 0.236 0.231 0.226 0.224 0.220
HBDGF 0.260 0.239 0.243 0.237 0.235 0.225 0.222 0.217 0.215 0.212

AFFT 0.250 0.226 0.221 0.218 0.215 0.208 0.205 0.205 0.201 0.202
AFFTG 0.229 0.213 0.209 0.206 0.203 0.198 0.194 0.193 0.190 0.190
AFFTF 0.227 0.206 0.201 0.198 0.195 0.191 0.187 0.186 0.184 0.185
AFFTGF 0.222 0.203 0.199 0.196 0.193 0.189 0.185 0.183 0.182 0.183

PARA 0.277 0.276 0.285 0.295 0.291 0.286 0.281 0.273 0.254 0.242

Obs 516,912 530,848 538,130 543,127 552,178 556,869 563,053 572,151 583,644 599,040

Panel B. Put options

GPF 0.204 0.198 0.197 0.199 0.201 0.201 0.202 0.210 0.214 0.231
GPFG 0.189 0.186 0.187 0.190 0.191 0.193 0.193 0.199 0.205 0.220
GPFF 0.183 0.181 0.182 0.182 0.184 0.186 0.186 0.194 0.198 0.216
GPFGF 0.180 0.179 0.179 0.181 0.183 0.185 0.184 0.192 0.196 0.213

HBD 0.220 0.215 0.211 0.215 0.217 0.217 0.219 0.227 0.232 0.258
HBDG 0.203 0.200 0.201 0.204 0.206 0.206 0.208 0.215 0.224 0.244
HBDF 0.222 0.212 0.222 0.218 0.218 0.219 0.220 0.226 0.233 0.258
HBDGF 0.212 0.202 0.212 0.209 0.210 0.209 0.212 0.218 0.227 0.250

AFFT 0.206 0.197 0.197 0.197 0.200 0.200 0.202 0.209 0.213 0.235
AFFTG 0.191 0.185 0.186 0.187 0.189 0.190 0.191 0.198 0.202 0.222
AFFTF 0.191 0.181 0.183 0.183 0.185 0.186 0.185 0.193 0.199 0.223
AFFTGF 0.187 0.179 0.181 0.181 0.183 0.184 0.184 0.191 0.197 0.221

PARA 0.200 0.201 0.207 0.214 0.215 0.217 0.217 0.220 0.217 0.229

Obs 418,458 405,519 398,012 393,259 384,367 379,115 373,126 364,198 352,516 338,159
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Table 3.17. Pricing performance for different maturity options with different
stock returns (MAPE) - Robust test. This table shows the out-of-sample pricing errors
for each model for the period January 2015 to December 2022 for different maturity options.
The columns represent groups categorized according to percentile returns, ranging from the
lowest 10 percentile (10) to the highest 10 percentile (100). The observations (Obs) are given
in thousands.

10 20 30 40 50 60 70 80 90 100

Panel A. Near-term

GPF 0.260 0.246 0.243 0.244 0.242 0.238 0.235 0.238 0.237 0.238
GPFG 0.242 0.231 0.230 0.232 0.229 0.228 0.224 0.226 0.226 0.226
GPFF 0.238 0.227 0.226 0.225 0.223 0.222 0.219 0.222 0.220 0.224
GPFGF 0.234 0.224 0.223 0.223 0.221 0.220 0.217 0.219 0.219 0.220

HBD 0.292 0.277 0.271 0.272 0.271 0.265 0.263 0.264 0.263 0.271
HBDG 0.271 0.260 0.259 0.260 0.259 0.254 0.252 0.251 0.252 0.257
HBDF 0.293 0.273 0.282 0.275 0.273 0.269 0.265 0.263 0.263 0.269
HBDGF 0.279 0.260 0.270 0.265 0.265 0.257 0.256 0.254 0.256 0.261

AFFT 0.264 0.246 0.244 0.243 0.241 0.238 0.235 0.237 0.235 0.242
AFFTG 0.244 0.231 0.231 0.230 0.229 0.227 0.223 0.225 0.224 0.229
AFFTF 0.248 0.228 0.227 0.225 0.224 0.222 0.219 0.221 0.222 0.230
AFFTGF 0.241 0.225 0.224 0.223 0.221 0.220 0.216 0.217 0.219 0.228

PARA 0.257 0.258 0.267 0.277 0.274 0.273 0.270 0.264 0.252 0.246

Obs 653,681 647,822 645,338 641,194 640,560 641,871 643,049 647,998 655,742 663,038

Panel B. Mid-term

GPF 0.162 0.151 0.149 0.148 0.149 0.145 0.145 0.146 0.144 0.152
GPFG 0.148 0.141 0.142 0.141 0.141 0.137 0.138 0.139 0.136 0.143
GPFF 0.129 0.127 0.127 0.126 0.127 0.124 0.124 0.124 0.122 0.125
GPFGF 0.129 0.127 0.126 0.125 0.126 0.124 0.123 0.124 0.122 0.124

HBD 0.174 0.162 0.161 0.161 0.160 0.156 0.156 0.156 0.154 0.165
HBDG 0.156 0.148 0.149 0.150 0.149 0.146 0.146 0.145 0.143 0.151
HBDF 0.166 0.157 0.161 0.161 0.156 0.154 0.154 0.152 0.152 0.155
HBDGF 0.154 0.148 0.151 0.149 0.148 0.144 0.145 0.144 0.143 0.145

AFFT 0.163 0.148 0.147 0.146 0.148 0.143 0.144 0.145 0.142 0.153
AFFTG 0.147 0.137 0.138 0.137 0.138 0.135 0.135 0.135 0.133 0.142
AFFTF 0.137 0.129 0.128 0.127 0.127 0.125 0.124 0.125 0.124 0.131
AFFTGF 0.135 0.127 0.128 0.126 0.126 0.124 0.124 0.125 0.123 0.130

PARA 0.212 0.213 0.222 0.230 0.231 0.228 0.227 0.226 0.213 0.214

Obs 189,143 192,664 193,505 196,238 197,048 196,507 195,653 194,356 190,266 188,021

Panel C. Long-term

GPF 0.132 0.126 0.122 0.120 0.125 0.120 0.120 0.125 0.121 0.133
GPFG 0.120 0.120 0.116 0.115 0.118 0.114 0.115 0.119 0.115 0.125
GPFF 0.100 0.101 0.097 0.098 0.101 0.098 0.097 0.100 0.097 0.103
GPFGF 0.099 0.103 0.097 0.097 0.102 0.099 0.097 0.101 0.098 0.103

HBD 0.136 0.132 0.129 0.127 0.131 0.127 0.128 0.131 0.129 0.140
HBDG 0.123 0.124 0.121 0.120 0.123 0.119 0.120 0.124 0.121 0.131
HBDF 0.129 0.126 0.126 0.125 0.125 0.120 0.122 0.126 0.126 0.133
HBDGF 0.121 0.120 0.118 0.118 0.121 0.115 0.115 0.120 0.118 0.127

AFFT 0.132 0.123 0.120 0.117 0.122 0.117 0.118 0.122 0.119 0.132
AFFTG 0.119 0.116 0.113 0.111 0.115 0.110 0.111 0.116 0.111 0.123
AFFTF 0.106 0.102 0.100 0.099 0.102 0.099 0.098 0.101 0.099 0.107
AFFTGF 0.105 0.102 0.100 0.098 0.102 0.099 0.098 0.101 0.099 0.107

PARA 0.206 0.211 0.215 0.221 0.221 0.218 0.219 0.225 0.212 0.223

Obs 92,546 95,881 97,299 98,954 98,937 97,606 97,477 93,995 90,152 86,140
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Connor (1997)’s hybrid model (HBD), and a variant of Almeida et al. (2022)’s machine learning

based model (AFFT). We evaluate them using individual stock options belonging to the SP500

index in the period from 2014 to 2023. The results suggest that all GPF, HBD, and AFFT are ef-

fective in pricing American options, and the combination of firm characteristics and option Greeks

can significantly improve the performance of these models. Among the three models, the GPF

structure consistently performs better, especially during the Pandemic period. Our analysis also

reveals that option pricing performance varies among stocks with different return profiles. Specifi-

cally, stocks at the extreme percentiles of returns exhibit higher MAPE compared to those within

the middle return percentiles.

This study makes four contributions to the literature on option pricing. Firstly, we pioneer

the combination of option Greeks with machine learning techniques to demonstrate the potential

of option Greek in stock option pricing. Secondly, we combine option firm characteristics and

option Greeks to develop a more efficient and robust option pricing model. Thirdly, through a

comparative analysis of three distinct machine learning-based option pricing structures during the

Pandemic period, our research identifies the model best suited for coping with such turbulent market

conditions. Lastly, the study emphasizes the pivotal role of stock return profiles in determining

the effectiveness of option pricing, adding a new dimension to the current understanding of this

domain.
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Appendices

.1 Yearly statistic for positive trading options

Figure 8. Yearly statistic for positive trading options. Candlestick charts give
yearly observational statistics for options with a positive daily trading volume. Statistics
are calculated based on monthly observations for each year. The mean and median monthly
trading volumes have increased substantially since the beginning of the pandemic (2020) and
begin to decline in 2022, but are still higher than in previous years.

.2 Crank-Nicolson model

The Crank-Nicolson method is a finite difference method used to solve partial differential equa-

tions (PDEs). It’s an implicit method and it’s known for its high accuracy and stability as it’s

unconditionally stable. Applying the Crank-Nicolson method to the discretized Black-Scholes PDE

involves a combination of explicit and implicit methods 7. It takes an average between the ex-

7 The explicit Euler method, also known as the Forward Euler method, is known as a “first-order” method
because it provides a numerical approximation to the exact solution of the ODE that is accurate to terms
of the first order in the size of the time step. This method is also explicit, meaning that the value of the
function at a given time step is expressed explicitly in terms of the value at previous time steps. The Implicit
Euler method, also known as the Backward Euler method, is a first-order numerical procedure for solving
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plicit and implicit approximations at each time step, offering a good balance between accuracy and

stability.

To use the Crank-Nicolson model to price American options, first, we need to consider the

Black-Scholes differential equation:

∂V

∂t
+ 0.5σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (35)

where V is the option price, S is the underlying asset price, t is the time to expiration, σ is the

volatility of the underlying asset, r is the risk-free interest rate.

Then, we denote V n
j as the price of the option at time step n and spot price j. Then we

discretize the asset price and time, and express the equation in finite difference form using the

Crank-Nicolson method as follows:

V n
j =V n+1

j

− 0.5dt
(
σ2j2(V n

j+1 − 2V n
j + V n

j−1) + rj(V n
j+1 − V n

j )− rV n
j

)
− 0.5dt

(
σ2j2(V n+1

j+1 − 2V n+1
j + V n+1

j−1 ) + rj(V n+1
j+1 − V n+1

j )− rV n+1
j

)
(36)

for n = 0, 1, 2, ..., N − 1 and j = 0, 1, ..., J , where: dt is the time step size, σ is the volatility of the

underlying asset, r is the risk-free interest rate, V n
j+1 and V n

j−1 are the option prices at the next

time step and neighbouring spot prices.

This is a system of linear equations. At each time step, we must solve this system to find V n+1
j .

The Crank-Nicolson method is unconditionally stable and second-order accurate in time, making

it a good choice for this type of problem.

For American options, we also need to consider early exercise. Specifically, we use theQuantlib.PlainVanillaPayoff

handles the payoff structure of the American option and the Quantlib.AmericanExercise to handle

the early exercise of the American option. In addition, we use theQuantlib.BlackScholesMertonProcess

to construct the BS process and use the Quantlib.FdBlackScholesVanillaEngine as the pricing en-

ordinary differential equations (ODEs) with a given initial value. It is more stable than the explicit Euler
method, as it is unconditionally stable.
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gine and specify the method as the Crank Nicolson8 to price the American option.

.3 Barone-Adesi and Whaley model

The Barone-Adesi and Whaley (BAW) model provides an approximation to the pricing of

American options. It uses an analytical formula, which improves computational efficiency compared

to methods that require a binomial or trinomial tree.

The BAW method assumes that the early exercise feature is valuable, and that this value can

be calculated separately. It combines the Black-Scholes model with an adjustment for the early

exercise feature, which is assumed to behave as a binary option with a strike at a critical asset

price.

The BAW model computes the price of an American option as a sum of the European option

price and an early exercise premium. The formulas for the option prices are given as:

American call option price:

C = CBS −Bc +Ac(1−N(d1))

(
S

qc

) 2r
σ2

, (37)

American put option price:

P = PBS −Bp +Ap(1−N(d1))

(
S

qp

) 2r
σ2

, (38)

where CA and PA are the American call and put option prices, CBS and PBS are the Black-

Scholes prices for European call and put options, Bc and Bp are the present value of the strike price

X for call and put options, Ac and Ap are the adjustment coefficients for the call and put options,

N() is the standard normal cumulative distribution function, and d1 =
ln( S

X
)+(r−q+σ2

2
)T

σ
√
T

.

The parameters qc, qp, Ac, and Ap are found by solving a system of non-linear equations.

The parameters qc and qp are the roots of the following equations respectively:

For qc (calls):

f1(x) = 1 +
2r

σ2

(
x

1− x
− log(1− x)

)
− X

S
, (39)

8 Quantlib.FdmSchemeDesc.CrankNicolson()
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For qp (puts):

f1(x) = 1 +
2r

σ2

(
x

1− x
− log(1− x)

)
− S

X
, (40)

In these equations, r is the risk-free interest rate, σ is the volatility of the underlying asset, S

is the spot price of the underlying asset, and X is the strike price.

For Ac (calls):

Ac = − S

q1c
N(d1)(1−N(d2)), (41)

For qp (puts):

Ap = − S

q1p
N(−d1)(1−N(−d2)), (42)

where N() denotes the cumulative distribution function of standard normal distribution, d1 =

ln( S
X )+

(
r−q+σ2

2

)
T

σ
√
T

, and d2 = d1 − σ
√
T .

This is a rough outline of the calculations. The full calculation is a bit more complex and

involves some iterative processes. In our research, we use the Quantlit to employ the BAW model.

Specifically, we use the Quantlib.PlainVanillaPayoff handles the payoff structure of the American

option and the Quantlib.AmericanExercise to handle the early exercise of the American option.

In addition, we use the Quantlib.BlackScholesMertonProcess to construct the BS process and use

the Quantlib.BaroneAdesiWhaleyApproximationEngine as the pricing engine to price the American

option.

.4 Month by month performances

Figure 9, 10, and 11 show the month-by-month performance of all the models along with the

rankings for each month.
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Figure 9. Monthly RMSEs and rankings are presented for each model. The
legend indicates the corresponding colour for each model’s rank in every month. Within
each rectangle, the displayed number represents the RMSE for that specific month and
model. The GPFGF model consistently proved to be the most accurate, achieving the lowest
RMSE in 33 out of 96 months and the second-lowest RMSE in 26 months.
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Figure 10. Monthly MAEs and rankings are presented for each model. The
legend indicates the corresponding colour for each model’s rank every month. Within each
rectangle, the displayed number represents the MAE for that specific month and model. The
GPFGF model consistently proved to be the most accurate, achieving the lowest MAE in 61
out of 96 months and the second-lowest MAE in 17 months.
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Figure 11. Monthly RMSPEs and rankings are presented for each model. The
legend indicates the corresponding colour for each model’s rank in every month. Within
each rectangle, the displayed number represents the RMSPE for that specific month and
model. The GPFGF model consistently proved to be the most accurate, achieving the lowest
RMSPE in 60 out of 96 months and the second-lowest RMSPE in 19 months.
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Chapter 4

Conclusion and future research

directions

The key finding of this thesis includes three aspects. First, the integration of machine

learning with traditional option pricing models has shown notable improvements in accuracy.

Firm characteristics and option Greeks, when combined with machine learning techniques,

provide a more nuanced view of option valuation, reflecting the complex interplay of market

factors. Second, option characteristics, particularly implied volatility and Greeks, possess

significant predictive power for extreme stock returns. The use of machine learning models,

such as LightGBM, has demonstrated superior performance in utilizing these characteristics

to predict extreme stock returns. Third, the Pandemic period provided a unique testing

ground for machine learning models in option pricing. The study reveals the resilience and

adaptability of these models under extreme market conditions, with certain models like the

GPF structure showing consistent good performance.

While the thesis successfully integrates machine learning with option pricing and demon-

strates its effectiveness, questions remain about the models’ performance under varying mar-

ket conditions other than the Pandemic. In addition, the precise impact of individual firm

characteristics and their interactions in option pricing is not fully explored due to the limi-
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tations of machine learning algorithms, leaving room for deeper analysis.

This thesis also lays the groundwork for various future research directions. One potential

area is testing the scalability and generalizability of the proposed models in different mar-

kets, including currency and commodities. Another avenue involves integrating diverse data

types, like high-frequency trading data or social media sentiment, to augment the models’

predictive capabilities. Additionally, exploring advanced machine learning architectures like

reinforcement learning and generative adversarial networks could lead to more sophisticated

approaches in option valuation and stock return prediction. Last but not least, merging

behavioural finance with machine learning presents a promising approach to asset pricing

and stock return prediction, combining psychological insights on investor behaviour with the

analytical power of machine learning for more accurate and comprehensive financial models.
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