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Abstract

This thesis centres on the design, processing, and fabrication of tunable optical

metamaterials. It incorporates physics-based simulation, deep learning (DL), and

thin film fabrication techniques to offer a comprehensive exploration of the field

of optical metamaterials. Placing stiff resonators on a flexible substrate is a com-

mon type of mechanically tunable metasurface, whose optical responses are tuned

by dynamically adjusting the spacing between resonators by applying mechanical

force. However, the significant modulus mismatch between materials causes stress

concentration at the interface, leading to crack propagation and delamination at

lower strain levels (20-50%), and limiting the optical tunability of the structure. To

address this challenge, we propose two designs to manipulate stress distribution.

Under mechanical force, the structure enables localised deformation, redirecting

stress from critical areas. This mechanism minimises the accumulation of stress

in the interface, thereby diminishing the risk of material failure and improving

stretchability up to 120% compared to traditional designs. This extreme stretcha-

bility leads to a 143 nm resonance shift, which is almost twice as large as that of

conventional geometry. A universal machine learning (ML)-based approach was

developed to optimise the metasurface design across three key aspects: geometric

parameters, material development, and free-form shape configuration. In design

parameters optimisation, a fully connected neural network (FCNN) was developed

with a mean absolute error (MAE) of 0.0051, recommending a single geometry

with a 104 order of magnitude decrease in computational time when compared to

finite element method (FEM) simulations used for data generation. The suggested

structure provides extensive coverage of the colour space, encompassing 27.65%

of the standard RGB (sRGB) space. For the materials development part, an inverse

design (ID) network was combined with effective medium approximation (EMA),

navigating infinite materials composition space to identify new compositions for

custom applications. The last network was tasked to explore boundless free-form

shape space to propose the one for the on-demand optical properties with MAE of

0.21. The accuracy of all networks was experimentally validated.
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1.1 Chapter Overview

This chapter provides a short introduction to metasurfaces by highlighting their re-

cent applications. It also introduces the concept of "active" metasurfaces capable

of altering their function post-production. Furthermore, it discusses the primary

challenges associated with the limited stretchability of mechanically active meta-

surfaces and outlines the thesis’s plan to address them. The chapter also outlines

the objectives of the thesis and offers a brief overview of its structure.

1.2 Motivation and Objectives

Recent advances in nanophotonics have sparked a lot of interest in our ability

to control how light interacts with matter on a very small scale, even smaller than

the light’s wavelength. Making nanophotonic elements smaller has given us a new

category of compact and flat optical components known as "metasurfaces". These

1
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are precisely designed, artificially created surfaces that act as alternatives to the

old, bulky optical elements [1]. Metasurfaces, made of tiny blocks (called "meta-

atoms"), can manipulate electromagnetic waves in terms of their colour, timing, or

location with incredibly precise control, all at a scale much smaller than what was

previously possible [1]. This level of control has enabled and accelerated critical

developments in fields such as flat optics [2, 3, 4], quantum communications [5],

and holography [6].

An active metasurface refers to a type of metasurface engineered to exhibit dy-

namic and controllable interaction with the incident electromagnetic wave [7].

Unlike passive counterparts, which have fixed properties determined during fab-

rication, active metasurfaces can change their behaviour or characteristics in re-

sponse to external stimuli like magnetic field [8], thermal fluctuations [9], optical

excitation [10], electrochemical tuning [11], mechanical force [12, 13], electrical

actuation [14], and chemical reactions [15].

Active metasurfaces typically involve the ordered or random arrangement of stiff

components, such as resonators or meta-atoms, on a flexible substrate. However,

a significant challenge arises from the limited flexibility of this structure, typically

falling within the range of 10-50% [16]. This narrow range is significantly lower

than the maximum strain that the elastomer can endure, often exceeding 200%.

Consequently, this limitation constrains the tunability range of active metasur-

faces, particularly those dependent on mechanical forces for operation [17]. The

primary objective of this thesis is to investigate the reasons for the limitation in

the flexibility of mechanically active metasurfaces. Subsequently, the thesis aims

to propose geometries, Kirigami-inspired and pillar-based, that can effectively en-

hance the flexibility of such metasurfaces. Although various forms of Kirigami-

inspired patterns have been considered in various similar research fields like flex-

ible electronics [18, 19], the pillar-based one is quite novel in the development of

active metasurfaces.

Another equally important challenge of optical metasurfaces is the optimisa-

tion process. Conventional optimisation methods rely on intuition, trial and error,

numerical simulations to solve Maxwell’s equations, and extensive experimenta-
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Figure 1.1: Schematic process of conventional materials design methods using
iterative simulation and mass experiment optimisation. These methods are unable
to find the design parameters and even the right pure elements or compounds
fitting for a custom application directly.

tion [20]. There are two main challenges in the existing iterative simulation and

mass experiment optimisation process which have left a substantial design space

mostly unexplored (cf. Figure 1.1). Firstly, the current methods typically begin

with theoretical concepts and computationally intensive simulations.

This initial phase is then followed by extensive experiments and model optimi-

sation techniques. However, this process follows a "one-way" route (forward de-

sign) that often struggles to identify key design parameters for a custom photonic

structure with predetermined optical responses.

Another challenge is the absence of a systematic approach to explore all possible

material compositions and geometry space. The vast array of material combi-

nations and ratios leads to an incredibly expansive compositional space, which
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grows exponentially with the introduction of new materials. For example, re-

cent studies on multi-component inorganic materials composed of more than one

chemical element, have shown that even with constraints like charge neutrality,

the design space for four-component materials exceeds 1010 combinations, while

the five-component space surpasses 1013 [21]. Similarly, exploring the infinite ge-

ometry space to find the desired free-form geometry with a non-restricted shape

in real space, allows for more diverse forms beyond traditional straight lines and

polygons [22]. Navigating this extensive space is further complicated by the di-

verse processing parameters, where different synthesis methods produce varying

material states, microstructures, and properties. As a result, it becomes impracti-

cal to systematically explore the practically infinite compositions solely through

conventional numerical methods and extensive experimentation [23]. This thesis

aims to address this limitation by developing a series of deep learning (DL)-based

universal algorithms that enable the inverse design (ID) process. This method fa-

cilitates the design process by determining critical design parameters for custom

structures with an order of 104 faster than the conventional methods. In addition,

the optimised algorithm investigates the infinite space of accessible materials and

geometries to find the ones which meet the requested optical properties.

1.3 Research Hypothesis

The hypothesis of this thesis is around the integration of rigid components into

soft materials while keeping the overall materials’ properties flexible via stress

engineering and materials development. Two geometries including a high-relief

pillar-based geometry and a kirigami-inspired geometry are considered to imple-

ment the hypothesis. Machine learning (ML)-based algorithm as a data-driven

approach is used to optimise the developed structure in three main domains in-

cluding geometric design parameters, material development, and freeform shape

configurations.
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1.4 Aims of the Thesis

The primary objective of this thesis is to comprehensively address the design, fab-

rication, and optimisation of a mechanically reconfigurable metasurface. This aim

encompasses a series of specific objectives:

1. Geometrical Parameters and Stress Redistribution: This research begins by

modelling various potential geometries to redistribute stress concentration in me-

chanically tunable metasurfaces effectively. A thorough examination of critical

geometrical parameters is conducted to understand their impact.

2. Optimised Geometries and Optical Performance: The project proceeds by

selecting the optimised parameters. These selected geometries are then studied

to assess their optical performance. This evaluation involves a combination of

mechanical and optical simulations to create metasurfaces that are not only me-

chanically tunable but also possess outstanding optical tunability.

3. Forward Machine Learning for Data Analysis: To enhance the project’s data

analysis capabilities, a forward ML algorithm is implemented. This advanced

algorithm is used to analyse simulation data and generate additional data where

needed, contributing to a more comprehensive understanding of the metasurface’s

behaviour.

4. Inverse Design Network for Structural Colours: The fourth objective focuses

on training an ID network, particularly for a structural colour system. This demon-

strates the advantages of optimised geometry by providing a single kirigami-

inspired design that can produce a wide range of colours.

5. Inverse Design and Material Discovery Networks: To address the limitation

of conventional methods in the design of nanophotonic structures, two sequential

networks are trained. The first is an ID network, which specifies the thickness of

each layer as well as the refractive indices of layers in the multilayer structure.

The second one, the material discovery network, proposes amorphous metamate-

rials. This extends the possibilities for applications that require specific optical

properties that cannot be achieved with pure materials.

6. Free-form Geometry Discovery Networks: An infinite design space is navi-

gated by a developed algorithm to discover a free-form geometry that provides
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custom optical behaviours.

7. Sample Fabrication and Network Validation: A series of experimental works

are carried out to validate the performance and accuracy of the neural network

(NN)s and their ability to translate theoretical designs into real-world outcomes.

1.5 Thesis Outline and Structure

This PhD thesis is organised into seven chapters as follows:

Chapter 1 provides a general introduction to the background of the thesis along

with the research hypothesis and the motivation of this research.

Chapter 2 provides the definitions of metamaterials, metasurfaces, and active

metasurfaces. Additionally, the chapter outlines the main tuning techniques

and discusses the main challenges associated with the flexibility of mechan-

ically tunable metasurfaces.

Chapter 3 introduces the concepts of ML and DL, providing a comprehensive

overview of their general applications and classifications. It critically re-

views the latest advancements of artificial intelligence (AI) in nanophoton-

ics, focusing on three primary sections: design and optimisation, inverse

design, and material selection. Additionally, it outlines the current limi-

tations and gaps in harnessing the full potential of AI in each application

area.

Chapter 4 presents two innovative geometries designed to achieve a high level of

flexibility. This chapter discusses the details of the three-dimensional (3D)

mechanical simulation for engineering stress redistribution at the interface

between rigid resonators and flexible substrates. The optimised parameters

are then used for the 3D optical simulation techniques to demonstrate the

tuning potential of the ultra-stretchable designs. Furthermore, three appli-

cations of the device are discussed in the latter part of the chapter as proof

of concept. Additionally, this chapter covers the details of data generation

through simulation.
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Chapter 5 introduces the developed DL networks for optimisation, inverse de-

sign, materials discovery, and free-form geometry discovery. It provides

comprehensive details on each algorithm, including the data generation pro-

cess, training procedures, challenges, and their accuracy. Additionally, a

detailed comparison of the performance of the developed models with other

reported works is presented, with a particular emphasis on the potential of

the developed models.

Chapter 6 comprehensively reports the fabrication process and experimental pro-

cedures employed in this study to validate the achieved result in the previ-

ous chapters. Additionally, it discusses the main reasons for the observed

mismatch between the properties achieved from the fabricated samples and

those predicted by the DL algorithms.

Chapter 7 presents the thesis hypothesis and key conclusions drawn from the

research undertaken. The chapter also outlines the main contributions made

throughout the thesis, offering a comprehensive summary of the findings.
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2.1 Chapter Overview

This chapter provides a comprehensive overview of general background of meta-

materials. The discussion then transitions to metasurfaces, a subclass of metama-

terials that have garnered significant attention in recent years. A brief history of

metasurfaces is provided, tracing their evolution from the foundational concepts

to their current state of the art. The main classifications and types of metasurfaces

are outlined, highlighting their diverse functionalities and applications across dif-

ferent wavelengths and domains.

Moreover, the concept of active metasurfaces is discussed and the main tuning

techniques are outlined in detail. A significant portion of the discussion centres

on mechanically tunable metasurfaces, one of the most studied types of active

metasurfaces. Despite their potential, mechanically tunable metasurfaces pose

11



2.2. Background 12

certain limitations, which are explained in the last part of the chapter.

2.2 Background

The fundamental interaction between electromagnetic waves and different mate-

rials is the basis for almost all optical phenomena, playing a crucial role in how

we perceive light [1]. Numerous natural materials have been studied throughout

scientific history, leading to the development of innovative designs with a variety

of applications, from energy to healthcare. However, sometimes the ever-growing

demands of humanity in the 21st century are not met by conventional structures

or materials. When nature is insufficient in such situations, scientists turn to the

technique of molecularly altering materials to create whole new compounds with

precisely specified properties [2]. For example, natural materials have a limited

optical refractive index (RI), from 1 to 3, which has limited the advancement in

the development of fast-responding computer chips [3].

An alternative approach for developing materials and structures with unique prop-

erties in nanophotonics is to purposefully design the components at the sub-wavelength

scale. Even though these synthetic particles are larger than the atomic or molecu-

lar sizes of typical materials, their inhomogeneities are lower than the wavelength

of interest, enabling to be defined in terms of "effective" parameters. These man-

made materials are commonly known as "metamaterials" [4, 5].

The prefix "meta," which derives from the Greek word for "beyond", accurately

describes these novel materials with properties beyond that of natural materi-

als [6]. The word "metamaterial" was initially used in a study published by

Smith et al. [7] in 2000. This study proposes a structured material having neg-

ative permittivity and permeability at microwave frequencies. Soon after this his-

toric accomplishment, the subject of metamaterials experienced rapid expansion,

attracting scientists from a wide range of research fields, including electrical en-

gineering, physics, photonics, chemistry, and materials science.

The scientific community is still debating the exact definition of metamaterials.

While some try to characterise their uniqueness using terms like "properties not
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found in naturally developed components" or "absent in nature” [8], these defi-

nitions frequently fail to capture the wide range of properties that make metama-

terials unique and set them apart from other artificially fabricated structures like

photonic crystals. Cai’s foundational work provides a more thorough, though not

conclusive, definition: "Metamaterials are synthetic structures whose characteris-

tics come from the structure of their units rather than the component materials.

Their electromagnetic response is expressed through homogenised material prop-

erties, and they exhibit inhomogeneity on a scale much lower than the wavelength

of interest” [9]. This definition notes the revolutionary potential of metamaterials

which use engineered design to develop materials that go beyond what nature can

provide.

Based on this definition, three levels of inhomogeneities are graphically repre-

sented in Figure 2.1, which exhibits distinct behaviours [10]. Starting with the

smallest dimension, the subwavelength level is where the idea of metamaterials is

first developed. Meta-atoms are the basic building components of metamaterials.

Each meta-atom is smaller than the wavelength under consideration. The macro-

scopic inhomogeneity of the metamaterial is attributed to the subwavelength range

of separation between these meta-atoms. This characteristic allows us to essen-

tially view the metamaterial as a "material" rather than a specific device [11].

At a larger scale, photonic crystals exhibit inhomogeneity [12], influencing

phenomena like diffraction and interference. Their periodic arrangements at or

exceeding the wavelength scale provide optical bandgaps [13]. In contrast, con-

ventional materials, with even larger inhomogeneities, follow the classical geo-

metrical optics [11].

Metamaterials are often defined by a few constraints, primarily related to size [14].

In most cases, these materials consist of regularly arranged meta-atoms. However,

there are examples where metamaterials are organised randomly, and they exhibit

intriguing properties [10]. Artists have historically harnessed the distinctive qual-

ities of metamaterials for creative purposes, even predating a comprehensive un-

derstanding of the associated physical principles. For example, the Lycurgus Cup

is a remarkable ancient Roman glass chalice known for its unique optical proper-
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Figure 2.1: Optical material inhomogeneities at different levels. A light wave with
two peaks separated by a wavelength is represented by red patterns.

ties and beautiful craftsmanship. This cup which dates to the fourth century AD

and is currently kept in the British Museum, is made from a dichroic glass, which

contains tiny amounts of random-sized gold and silver nanoparticles randomly

dispersed in the structure [15]. What makes this cup particularly fascinating is its

ability to change colour when illuminated from different angles. It appears green

in reflected light, but when light passes through the glass, it turns reddish-brown,

as Figure 2.2 illustrates [16].

While the term "metamaterial" was officially coined in 2000, microwave engi-

neers had been studying the fundamental idea of using artificial dielectrics made

of periodic configurations of subwavelength metallic wires, spheres, or plates

for nearly seven decades. [18, 19]. Furthermore, several components, including

split-ring resonators [20, 21], arrayed frequency filters [22], bi-anisotropic materi-

als [23], and chiral materials [24], had been developed before the formal establish-



2.2. Background 15

Figure 2.2: The colour of Lycurgus Cup in the a) reflected, and (b) transmitted
mode. Reprinted by permission from Royal Society of Chemistry [17], Copyright
(2012).

ment of the metamaterial field. This historical context highlights the longstanding

exploration of metamaterial-like structures and components even before the field

was officially recognised.

In the beginning, left-handed materials were the main focus of the majority of

metamaterials research [25], also known as negative RI materials. Contemporary

studies go well beyond materials with negative refraction. By adjusting the size,

form, and composition of structural parts as well as their morphology, scientists

are continuously pushing the boundaries to provide unique capabilities for a vari-

ety of applications. [26, 27, 28].

Metamaterials, initially developed for microwaves, have now been extended to

the optical range of the electromagnetic (EM) spectrum, providing exceptional

characteristics when exposed to visible light frequencies [29]. Progress in pho-

tonic metamaterial research has been made possible by modern nanofabrication

techniques and enhanced capabilities for three-dimensional (3D) simulations [30].

Metamaterials bring a new approach to optical design. Instead of relying solely

on the properties of materials, metamaterials are designed at a scale lower than

the light wavelengths they interact with. This approach opens new possibilities
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for controlling and manipulating electromagnetic waves, benefiting various ar-

eas of photonic engineering [30]. These applications include innovative waveg-

uides [31], compact antennae [32], optical sensing [33], subwavelength imag-

ing [34], and photonic circuits [35].

Several challenges have restricted the practical applications of optical metama-

terials [36]. One of the primary obstacles lies in the 3D and large-scale fabri-

cation process, particularly at the nanoscale. Achieving the precise and intricate

structures required for metamaterials can be technically demanding and costly, of-

ten necessitating advanced nanofabrication techniques that are not always readily

accessible. Additionally, these materials often exhibit properties that are highly

sensitive to their structural parameters, adding further complexity to the design

and manufacturing process [36]. Moreover, practical issues related to the loss of

energy in metamaterials and their operational limitations in the optical spectrum

also pose a significant challenge.

"Metasurfaces" are two-dimensional (2D) forms of metamaterials, possessing

distinct properties and functionalities as schematically illustrated in Figure 2.3.

By arranging subwavelength structures in a planar configuration, metasurfaces

can precisely manipulate electromagnetic waves, offering novel properties and

applications beyond conventional materials. Metasurfaces have relatively simple

designs compared to 3D metamaterials, making them suitable for the fabrication

of higher efficient miniaturised devices [36].

2.3 Metasurfaces: History, Classification, and Ap-

plications

Optical metasurfaces consist of engineered 2D arrays of subwavelength scatter-

ers, known as meta-atoms (Figure 2.3). These meta-atoms are precisely designed

to induce modifications in various characteristics of light, such as intensity, po-

larisation, phase, and wavelength. As a result, through the strategic choice of

these meta-atoms, it becomes possible to finely control how light interacts with the

structure. This interesting ability is widely used to introduce various planar func-
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tional devices at a wide frequency range from microwave to terahertz (THz) [37]

to visible light [38]. Furthermore, metasurfaces are often fabricated using such

standard manufacturing methods as lithography and nanoimprinting, which are

simpler than the fabrication of the counterpart metamaterials [39].

The concept behind metasurfaces has been observed by scientists long before

the term itself was coined [40]. When Francis Hopkinson was staring through

a thin silk handkerchief at a streetlamp in 1785, he spotted dark dots. Rittenhouse

subsequently clarified this phenomenon by stating that white light is filtered into

particular wavelength bands. This spectral filtering procedure was subsequently

improved in the concept of diffraction gratings, which involves breaking down

polychromatic light into its spectral components through a decomposition pro-

cess [41].

Figure 2.3: Schematic representation of meta-atom and its arrangement in a 1D
chain, 2D metasurface and 3D metamaterials. Reprinted by permission from
MDPI [42], Copyright (2016).

One of the earliest ideas in this field was to create metasurfaces with spatially

varying optical responses. The Pancharatnam-Berry phase was first proposed by

Hasman et al. [43] in the early 2000s to control light’s polarisation state in space.

They were able to manipulate light wavefronts by the fabrication of gratings made

of metal-dielectric nanoparticles. This observation was completely overlooked by

the optical scientific world for nearly ten years. In 2011, the generalised law of
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refraction, which is based on optical surfaces that change spatially was introduced

by Capasso’s group [44]. This marked a significant turning point in the develop-

ment and recognition of metasurfaces.

Like metamaterials, metasurfaces can achieve functionalities that are unattainable

with standard optical elements. Conventional optical components, where phase

changes accumulate as light propagates through various materials, follow Snell’s

classical law which explains the bending of light as it passes through different ma-

terials, such as air, glass, or water, leading to phenomena like refraction of light

when it enters or exits a medium with a different RI (cf. Figure 2.4 (a)) [45]. The

law is typically stated as:

ni sin(θi) = nt sin(θt),

θr= θt

(2.3.1)

Where θi and ni correspond to the angle of incidence of the incident light and

RI of the first medium, respectively. However, θt and nt are in the transmission

(second) medium.

Figure 2.4: Illustration of Snell’s Law: (a) traditional refraction in different me-
dia, and (b) extended law with phase gradient at media interface. θi, θt , and θr
correspond to the incident angles, transmitted, and reflected beam, respectively.
ni and nt represent the RI of the first and second media.

Conventional optical components follow traditional Snell’s law, which ex-

plains how these variables relate to the angle of reflection, θr. But metasurfaces
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provide a clear benefit by allowing sudden variations in the characteristics of in-

cident light beams, which results in phase gradients at the two-media interface as

shown in Figure 2.4 (b). In 2011, a generalised version of Snell’s law was pro-

posed to consider phase gradients and demonstrate the transformative capability

of metasurfaces in altering optical interactions [44]. The generalised Snell’s law

can be expressed as:

ntsinθt−nisinθi =k0
−1 ∇θ

sinθr− sinθi =ni
−1 k0

−1 ∇θ

(2.3.2)

where θi, θt , and θr stand for the incident angles, transmitted, and reflected

beam, respectively. The phase gradient is represented by ∇θ , while the wavenum-

ber in free space is represented by k0.

The generalised Snell’s law states that by adjusting the phase gradient each meta-

atom introduces, it is possible to intentionally create unique far-field light patterns.

Consequently, metasurfaces have the potential to control EM waves in novel ways

that go beyond the limitations of traditional optical components [46, 35]. For

example, the field of flat optics was developed to study how metasurfaces can be

used to create small, low-profile optical components because of the great degree of

control they provide over the characteristics of reflected or transmitted light [47].

Numerous perspectives exist for categorising optical metasurfaces. Each one fo-

cuses on a distinct facet of their operation. One crucial perspective to consider is

the classification from a materials point of view, which considers the composition

of the meta-atoms used in metasurface design into two main types: "plasmonic"

and "dielectric" as shown in Figure 2.5. Plasmon metasurfaces are unit structures

made of materials (mainly noble metals) that support plasmon, and the particles’

optical behaviour determines the plasmon resonances of the structure. Conduction

electrons in metallic particles depart from their balanced state with respect to the

core ions when they interact with an electric field. This displacement results in

the polarisation of the particle and the creation of a depolarising field [48]. This

collective motion inside the metallic particle can be compared to a Lorentzian

oscillator when it is exposed to a time-varying external field. This oscillator’s dis-
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placement amplitude peak, which is usually found at the resonance frequency, is

its defining feature. Additionally, it is followed by a phase shift of π throughout

the resonance’s spectral width [48].

However, dielectric metasurfaces are normally made of materials with high RI

like silicon and germanium. These dielectric particles provide both electric dipole

(ED) and magnetic dipole (MD) responses, primarily based on Mie resonances

[49]. These dielectric particles show MD (first Mie resonance) and ED (second

Mie resonance) excitation when exposed to light waves with frequencies at or

below the bandgap frequency of the material [42]. As a result, these Mie reso-

nances enhance the MD and ED at the centre of the dielectric particle at optical

frequencies, and this enhancement is closely tied to the inherent characteristics

of the particles [50]. Therefore, the properties of their unit structures (e.g. ar-

rangements, sizes, and materials) have a significant impact on how plasmonic and

dielectric metasurfaces respond. By precisely selecting such parameters for each

unit structure within the metasurfaces, it becomes possible to manipulate the EM

field of the scattered light wave, thus enabling precise control over the metasur-

face’s optical properties [51].

Figure 2.5: Various types, fabrication processes, and applications of optical meta-
surfaces. Reproduced by permission from MDPI [42], Copyright (2016).

Fabrication methods for optical metasurfaces vary in terms of precision, scal-

ability, and cost-effectiveness [52]. The most effective strategy depends on the
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particular application, including the required resolution and the resources that are

available. Researchers are continually exploring new fabrication techniques and

combinations of existing methods such as electron beam lithography (EBL) [53],

atomic layer deposition (ALD) [54], focused ion beam (FIB) [55], interference

lithography [56], and nanoimprint lithography (NIL) [57].

The unique properties of metasurfaces and the evolution of nanofabrication tech-

niques have led to their application in diverse fields, including flat optics [47, 58],

nonlinear effects [59, 60], photonic Hall effects [61], perfect absorber [62], elec-

tromagnetically induced transparency [63], cloaking [64], and more as shown in

Figure 2.6. For example, in flat optics, metasurfaces have found applications in

creating anomalous wave plates, controlling reflection and refraction, designing

flat lenses, and developing mirrors, holograms, filters, optical vortex generation,

and polarisation beam splitters, among other functions [65, 66]. However, the

nonlinear effects of metasurfaces have been used in the second and third-harmonic

generation and enhanced light absorption [67]. These diverse applications under-

score the wide-ranging potential and significance of metasurfaces in advancing

optical and photonic technologies [68].

As explained in the previous section, metasurfaces have shown impressive po-

tential in the development of compact, high-performance, and cost-effective opti-

cal devices, sparking significant interest in the nanophotonics community. How-

ever, progress in this field has mostly focused on "passive metasurfaces". This

class of metasurfaces have predefined properties that cannot be changed after they

are fabricated. Essentially, they have been customised for specific applications,

and designed with complex details to suit target purposes. The demand for flexi-

bility and adaptability has led to a pioneering field of research centred on “active

metasurface” or “tunable metasurfaces” [75]. The following parts explain the ad-

vancements, potential applications, and key challenges of active metasurfaces.

2.3.1 Tunable Metasurfaces

Traditional optical metasurfaces offer static and predefined optical functions that

are primarily controlled by the shape, size, geometry, and arrangements of meta-
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Figure 2.6: Some common applications of metasurfaces; (a) holography,
Reprinted by permission from Nature [69], Copyright (2016), (b) lens, Reprinted
by permission from Nature [70], Copyright (2013), (c) sensing, Reprinted by per-
mission from Nanophotonics [71], Copyright (2020), (d) beam steering, Reprinted
by permission from Optica [72], Copyright (2013), (e) absorber, Reprinted by per-
mission from MDPI [73], Copyright (2018), (f) cloaking, Reprinted by permission
from Nature [74], Copyright (2018).

atoms [76]. Nevertheless, achieving dynamic control over the interaction of elec-

tromagnetic waves and nanostructures has been a long-standing challenge in op-

tics [77, 78]. Optical tuning can be achieved by relocating the resonators’ spatial

position since the optical response is dependent on their location as schematically

illustrated in Figure 2.7 [79]. A tunable metasurface allows for changes to two or

more pre-defined states, such as focal lengths and deflection angles whereas a pas-

sive metasurface keeps its function constant. A continuously tunable metasurface

refers to the continuing adjustment of a certain property within a predetermined

range, such as changing focal length or deflection angle. Lastly, a freely tunable

metasurface allows for unrestricted and continuous adjustment of property, exem-

plified by the 3D modification of the structure [80].

Various external stimuli-responsive systems like magnetic field [81], thermal
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Figure 2.7: Metasurfaces go from passive to active (adaptive). An example of a
continuously adjustable, freely tunable, passive, switchable metasurface is used to
fabricate a metalens. Reprinted by permission from Wiley [80], Copyright (2019).

fluctuations [82], optical excitation [83], electrochemical tuning [84], mechan-

ical force [85, 86], electrical actuation [87], and chemical reactions [88], etc.,

have been employed to make this tuning possible. The dielectric characteristics

or physical dimensions of metasurface elements are altered by these external in-

fluences, which makes it possible to modulate the amplitude and phase responses

of the structure. This ability to actively and dynamically vary metasurface prop-

erties opens the door to dynamic holograms and adaptive focusing lenses with

adjustable focal lengths [89, 90, 91].

2.4 Tuning Techniques

Regardless of the type of stimuli used for parameter tuning, progress in active

metasurface development includes diverse innovative techniques broadly clas-

sified into material-based techniques, geometry-based methods, and hybrid ap-

proaches.

2.4.1 Material-based Techniques

Materials-based techniques focus on exploiting the properties of specific materi-

als such as phase change materials (PCMs) [92], ferroelectrics [93], 2D materials

like graphene and MoS2 [94], liquid metals (LMs) [95], and transparent conduc-

tive polymers [96] to achieve dynamic control over metasurface functionalities.
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These materials possess a unique combination of properties that make them par-

ticularly attractive for metasurface engineering.

For example, PCMs, which consist of alloys of Germanium (Ge), Antimony (Sb),

and Tellurium (Te), may change from a disordered-amorphous form to an ordered-

crystalline one when heated or exposed to other stimuli [97]. To achieve this tran-

sition, the chalcogenide material is heated above its glass transition temperature

(Tg) using a laser pulse or electronic excitation, which initiates a thermal transition

process involving nucleation and crystallisation growth. Reverting to the amor-

phous state is accomplished by heating the material above its melting temperature

(Tm), followed by rapid cooling. The significant contrast in optical and electronic

properties between the two states is a result of the phase change that happens in

the material [98]. Metasurfaces containing PCMs enable control over the reflected

or transmitted phase of incident waves, leading to applications in tunable lenses,

absorbers [92], holography, reflectors [99] and information encryption [97].

The PCMs have been used for the development of infrared radiation (IR) active

metasurface, as demonstrated by Gholipour et al. [100]. They developed a non-

volatile, all-optical modulation of resonance in the IR spectrum through a broad-

band switch (cf. Figure 2.8 (a-d)). They demonstrated that combining nanostruc-

tured plasmonic metamaterials with phase-change medium chalcogenide glass al-

lows for this modulation. The hybrid metamaterial devices underwent a homoge-

nous phase shift over sizable regions upon single-pulse laser activation, which

profoundly altered their optical transmission and reflection properties.

Germanium Antimony Telluride (GST), as a common example of PCMs, was also

used to fabricate an active metasurface wherein a non-volatile tuning of Au nan-

odisk resonance was accomplished across a wide spectral range spanning 500 nm

by introducing a thin layer of GST as a RI-tunable medium (cf. Figure 2.8(e)).

Figure 2.8(f) shows the transmission spectra of the hybrid plasmonic crystal at

various intermediate phases. The phase-change thin film exhibited a red shift in

the lattice resonance with increasing baking time, resulting in a more metal-like

part. In particular, after 20 minutes of baking, the transmittance rises from 96%

(black curve) to 72% (blue curve) at a wavelength of 1.89 µm [101].
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While these examples highlight dynamic tuning of the intensity of physical re-

sponse like scattered light, there are some active metasurfaces in which the mod-

ulation of the phase of scattered light through external control has been discussed.

Various materials like vanadium dioxide (VO2) and GST, which undergo phase

transitions, allow for extensive index modulation [102]. However, they suffer

from limitations in switching speed [103] and typically demand higher power con-

sumption [104] when compared to field-effect modulation techniques. Addition-

ally, when using external stimuli such as optical pumping, the range for altering

the RI depends on the size of the stimuli. For example, a concentrated laser spot

leads to a rather vast area that limits accurate control of individual metasurface

components [105].

2.4.2 Geometry-based Techniques

Geometry-based methods rely on a local large but low-energy deformation that

renders the collective transformations like Kirigami, Origami, and other shape-

shifting strategies. Such strategies have been used to develop tunable metalenses

[106], strain-multiplexed meta-holograms [107], and the active management of

structural colouration [108]. This technique normally benefits from flexible sub-

strates with higher levels of deformability. For instance, J. Reeves et al. [109] used

a series of simulation and experimental techniques to propose geometrically con-

trollable optical metasurfaces using a microelectromechanical systems (MEMS)-

based stencil lithography technique. In this research, metallic meta-atoms were

placed on a deformable microstructured polymer (Polydimethylsiloxane (PDMS))

scaffold, where the mechanical deformation of the substrate alters metasurface re-

flectivity in the mid-IR region. This geometry provided just a displacement in the

direction normal to the applied force.

Origami, the art of paper folding, has inspired metasurface design by enabling

the creation of complex 3D structures from 2D ones [85]. Researchers have used

origami principles to fold metasurface sheets into various configurations, allowing

dynamic tuning of optical properties. These folded structures can alter the meta-

surface’s geometry to change its resonant frequency, polarisation, and dispersion
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Figure 2.8: a) The structural features of the developed meta-switch layer thick-
nesses (left), and the scanning electron microscopy (SEM) image of the unit cell
(right). Reprinted by permission from Wiley [100] Copyright (2013), b,c) the
transmission and reflection curves of the hybrid device structure for the GST
layer’s crystalline and amorphous phases (as labelled). d) The transmission and
reflection modulation contrast spectrum dispersion linked to the meta-device’s
chalcogenide phase switching. Reprinted by permission from Wiley [100], Copy-
right (2013). (e) a 3D schematic of an array of Au nanodisks on a thin layer of
GST, (f) transmission spectra of continuous tuning at different baking time dur-
ing the crystallisation process. Reprinted by permission from Optica Publishing
Group [101], Copyright (2013).

characteristics. However, Kirigami is a technique that involves cutting patterns

into materials. In metasurfaces, kirigami is used to introduce tailored cuts that
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can be manipulated to control the propagation of electromagnetic waves. By se-

lectively cutting metasurface elements, researchers have developed metasurfaces

capable of reconfigurable wavefront manipulation, tunable absorption, and beam

shaping [110].

For example, Wang et al. [111] located split-ring resonator (SRR) on a foldable

Miura-ori unit as a common origami-based pattern to produce a programmable

optical metasurface as shown in Figure 2.9 (a). Simulation results demonstrated

that the 2D-to-3D transformation of flexible structure along the third dimension

changes the spatial location of net ED and MD resonators parallel or anti-parallel

to each other, providing a strong chiral response. This model is inherently unable

to provide a wide range of displacement in two directions.

In another study, X. Liu et al. [112] fabricated a flexible optical metasurface com-

prising two-layered gold nanoribbon (340 nm) arrays on PDMS using EBL. In this

approach, an out-of-plane design was employed to dynamically control the energy

of surface plasmon polariton (SPP) in the visible to near-IR wavelength range. As

shown in Figure 2.9 (b), the coupling characteristics between nanoribbons can be

programmed by stretching the PDMS substrate. Moreover, they showed that res-

onance mode shifts to a lower frequency by increasing the incident angle.

Although various geometries have been developed to dynamically manipulate the

inter-particle space in an active structure, designing a geometry without getting

caught in a bifurcation which provides a more prominent frequency shift through

resonator displacement in more than one direction, is a challenge. To address this

challenge, Yan et al. [113] introduced the concept of self-folding. Figure 2.9 (c)

shows the continuous and reversible 2D-to-3D shape transformation of a simple

self-foldable structure guided by a unidirectional compressive buckling. In this

study, they employed both theoretical modelling methods and experimental tech-

niques to build an autonomic deployable origami-based 3D structure through an

out-of-plane mechanical buckling.

Moreover, the implementation of nanoscale reconfigurable optical metasurfaces

has rarely been considered due to the fabrication challenges associated. Another

equally important remaining challenge in developing a polymer-supported con-
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Figure 2.9: Reconfigurable optical metasurface guided by a 2D-to-3D shape trans-
formation structure. a) a 2D origami-based pattern with two positive and negative
folding(top), and transmission spectra at different folding angles. Reprinted by
permission from Wiley [111], Copyright (2017). b) a schematic pattern (left) and
simulated field intensity (right) of the out-of-plane soft metasurface. Reprinted
by permission from ACS Publications [112], Copyright (2018). c) a schematic
illustration of the continuous and reversible 2D-to-3D shape transformation of a
simple self-foldable structure guided by a unidirectional compressive buckling.
Reprinted by permission from Wiley [113], Copyright (2016).

tinuous metal film is controlling the rupture of structures when they are stretched,

which is strongly dependent on the interfacial properties between substrate and

film. It is reported that the ductility and flexibility of polymer-supported metal

films improve as the interfacial strength increases, however, this increasing trend

is generally affected by the interfacial stiffness [79].

2.4.3 Hybrid Techniques

Hybrid methods combine elements of both geometry-based and materials-based

techniques to create metasurfaces with enhanced functionalities [114]. These ap-

proaches leverage the strengths of each method, resulting in metasurfaces that are

highly versatile and adaptive.
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2.5 Limitation of Mechanically Tunable Metasurfaces

The choice of stimulus depends on the requirements of the application, the level

of tunability needed, and the compatibility with the surrounding environment.

Among various systems, mechanically tunable ones have received substantial at-

tention and are the subject of extensive research due to their high degree of tun-

ability and versatility, offering low power consumption [115]. By applying con-

trolled mechanical stress or strain, researchers can induce significant changes in

the metasurface’s geometry or structure. This versatility enables metasurfaces to

adapt to a wide range of applications, making them a preferred choice for many

research endeavours. The compatibility of mechanically tunable methods with

existing technologies is another compelling reason for their popularity. Integrat-

ing mechanical tuning into established infrastructures and devices is relatively

straightforward, making these metasurfaces more accessible for real-world appli-

cations [116].

One of the most well-known and extensively researched categories of me-

chanically tunable optical metasurfaces involves the placement of resonators on

flexible substrates. In this configuration, the substrate’s flexibility serves to dy-

namically alter the distances between resonators, consequently tuning the optical

responses, including transmission and reflectance [108, 118, 119].

However, there exists a fundamental limitation with such bi-material structures.

The significant disparity between the maximum range of elasticity of the elas-

tomeric substrate and that of the resonators, such as metals and high RI dielectrics,

severely constrains the stretchability of these devices. In ideal crystalline metals,

the theoretical elastic strain limit can reach up to 10% [120]. However, most bulk

metals exhibit elastic strain limits of less than 7% due to factors like inelastic

relaxation involving defects such as dislocation, stress-induced phase transforma-

tions, and deformation twinning [121]. The elastic strain limits of common rigid

components used in tunable metasurfaces are as follows: Copper (2.8%), Gold

(1.9%), Silicon (2%), and Aluminium (1.27%) [122, 123, 124]. These values un-

derline the practical limitations imposed by the materials themselves, which can

hinder the achievable degree of stretchability in such resonator-substrate configu-
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Figure 2.10: Schematic illustration of the general deformation under mechani-
cal strains of a) freestanding, b) bi-material, and c) bi-layer structures with stiff
metallic film and soft substrate. Typical failure modes are shown in d) cracking
mode, e) shearing-induced delamination under tensile load, and f) delamination
under compression load. Reprinted by permission from AIP Publishing [117],
Copyright (2023).

rations.

Figure 2.10 (a) illustrates a comparison of the mechanical deformation in a metal-

lic film, both in a free-standing structure and a bi-material one where the film

adheres to a flexible substrate. In the case of the free-standing structure, when

subjected to strain beyond its elastic limit, localised necking occurs, resulting in

permanent deformation. However, when analysing the mechanical deformation

and fracture behaviour of a bi-material structure under an external load, the situa-

tion becomes more complex. This complexity arises from the interplay of various

phenomena, including cracking, necking, buckling, and delamination [125].

In a substrate-bonded film under tensile strain, the limited space for plastic de-

formation leads to a delocalised strain field in the metal film. This enables the

film to undergo permanent deformation at a lower strain level, significantly ex-
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tending the rupture point of the film compared to that of a freestanding film [126].

A bi-material structure can deform in various ways, as depicted in Figure 2.10

(d-f), and the specific mode of deformation depends on the shape, dimensions,

and mechanical properties of both the rigid film and the soft substrate. In the first

mode, when the applied uniaxial stress exceeds the point where further homoge-

neous deformation is not possible, strain-induced cracks form perpendicular to the

applied stress (cf. Figure 2.10 (d)). These cracks propagate, ultimately causing

the structure to fracture [127]. The second mode involves shearing stress at the

interface due to a difference in the normal stress level. Delamination occurs when

this shearing stress reaches the maximum shearing strength of the interface (See

Figure 2.10(e)). In the third mode, a rigid/soft structure experiences compres-

sion, leading to the buckling of the rigid film. While high bonding strength can

delay massive buckling, a wavelike buckling pattern on the surface is inevitable

(See Figure 2.10 (f)) [128]. These deformation modes are prevalent in various

rigid-soft materials, including metamaterials. Consequently, the deformability of

metamaterials is intrinsically limited by the properties of their resonators. Res-

onators, being in direct contact with flexible substrates, are directly affected by

external forces. Therefore, even in flexible metamaterials, elongations rarely ex-

ceed 30%, which falls well below the maximum elastic deformation of constituent

elastomers as presented in Table 2.1 [108, 86, 86, 129, 130].

Despite achievements in the design of stretchable devices involving both rigid

and soft components, such as serpentine or horseshoe geometries [131], nanocomposite-

based structures [109], and ultrathin flexible substrates [129], devising a suitable

structure to prevent the emergence of substantial cracks within a certain strain

range, typically falling within 20%-50%, remains a significant challenge [132].

The performance of various geometries is provided in Table 2.1 The maximum

reported strain is limited to 36%, which is by far below the maximum elasticity of

the flexible substrates.
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Table 2.1: Comparison of various types of stretchable optical MMs. Reprinted by
permission from AIP Publishing [117], Copyright (2023)

Materials Shape of resonator Dimensions (nm) Arrangment Maximum Strain (%) Ref.
Al/PDMS rectangular Pa400-Wb100-Lc130-Hd35 squared 32 [108]
Al/PDMS disk P320-De200-H100 squared 31.6 [119]
Au/PDMS split ring L1=L2=2.4 µ m - 5 [109]

TiO2/PDMS squared P300-W230-H480 squared 30 [86]
Au/PDMS rectangular W100-L240-H70 Triangular 30 [129]
Si/PDMS disk P490-D305-H480 squared 36 [131]

Au-PS/PDMS sphere D1500 hexagonal 20 [132]
Au/PDMS sphere D11 close-packed 20 [133]

Silver/PDMS grating P665 - 23 [130]
a Periodicity; b Width; c Length; d Thickness; e Diameter of resonator.

2.6 Conclusion

Metasurfaces are a 2D version of metamaterials, comprising subwavelength com-

ponents that can manipulate electromagnetic wave properties like phase, ampli-

tude, polarisation, or direction of propagation. This chapter provided a compre-

hensive overview of the theory of metamaterials and metasurfaces, highlighting

their importance and classifications. Unlike classical passive metasurfaces, whose

features are set based on their design and composition, active metasurfaces may

dynamically control their electromagnetic properties.

Tuning techniques employed for achieving tunability in active metasurfaces were

generally classified into three main groups including geometry-based, material-

based, and hybrid-based methods. The latest advancements in the methods and

their limitations were discussed in this chapter.

Finally, despite the advancements of the mechanically active metasurfaces as the

most straightforward tunable devices, their limitation in providing a higher level

of stretchability in the commonly developed designs was discussed. The signifi-

cant mismatch between the maximum elasticity of the elastomeric substrate and

that of the resonators leads to a stress concentration in the interface of the struc-

ture. This localised stress causes plastic deformation and cracks formation in the

metasurface. The proposed research hypothesis focuses on innovative geometries

to redistribute the stress accumulation and enhance the stretchability of the device

accordingly.
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3.1 Chapter Overview

This chapter explores the effectiveness of artificial intelligence (AI) in the design

of photonic materials, devices, and structures where conventional design methods

prove impractical or ineffective. The chapter starts with a general introduction

to the significance of AI in nanophotonics before outlining the details of the un-

derpinning concept of machine learning (ML) models and advancements in deep

learning (DL). Subsequently, model architectures commonly used in the design

of metamaterials, plasmonic nanostructures, and tunable metasurfaces are dis-

cussed. These include the fundamental multilayer perceptron (MLP), sophisti-

cated deep neural network (DNN), and hybrid models with additional optimisa-

tion techniques. Finally, the chapter discusses the current limitations of this mul-

48



3.2. Conventional Design Approaches 49

tidisciplinary field, which has the potential to revolutionise research and practical

applications in nanophotonics.

3.2 Conventional Design Approaches

The prediction of light-matter interactions is critically dependent on the design

of nanophotonics devices. A precise design is essential whether they are simple

like a two-layer thin film or complicated like three-dimensional (3D) metama-

terials and photonic crystals made up of rows of metallic or dielectric building

blocks. This process demands a comprehensive consideration of various parame-

ters, including material properties, geometric configurations, and even fabrication

constraints. Precise control over the composition of the material and the fabrica-

tion parameters is usually required to adjust its key properties, and this process

can be time-consuming, expensive and difficult. However, optimising the vast

topological design space of nanophotonic structures offers a variety of features

without the need to directly alter the material composition. Moreover, one of the

long-standing challenges in nanophotonics is understanding how best to config-

ure both material properties and nano- or micro-scale structures to achieve custom

functionalities like reflectance and transmittance [1].

The nanophotonics structures have been designed and optimised using two tradi-

tional methods. The first approach is "physics-based methods" which comprise

scientific intuition, data from prior or related procedures, and generalised analyt-

ical models [2, 3]. For instance, the Mie theory accurately describes dielectric

and metallic nanoparticles with basic shapes like core-shell structures or spherical

nanoparticles. Multipolar resonances, both magnetic and electric, are used to cal-

culate their scattering, absorption, and extinction responses [4]. The concept of

split-ring resonators, proposed by John Pendry in the 1990s [5], was built upon the

principles of electrical circuit theory and electromagnetics. To do this, changing

the external magnetic fields creates a magnetic dipole (MD) and a current loop,

which are then amplified around the resonance frequency set by the resonator’s

properties like inductance and internal capacitance [6]. Photonic crystals (PCs)
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are another example of physics-based design methods motivated by comprehend-

ing the movement of electrons in the solid state periodic potential [7]. PCs allow

the creation of ’photonic semiconductors’ with complete bandgaps, preventing

the propagation of light in the ’forbidden band’ [7]. Despite providing essential

guidelines, finding the appropriate structures for desired photonic properties be-

comes important, particularly as the geometry and spatial arrangements become

more complex.

The second approach involves electromagnetic (EM) modelling through “numer-

ical simulation methods”, using various commercial software tools like COM-

SOL Multiphysics, Lumerical solutions, ANSOFT, and CST Microwave Studio

[8]. Typically, these computational techniques address the design problem by

discretising Maxwell’s equations spatially and temporally, starting from specific

initial boundary conditions [8]. The optical characteristics of a given structure

can be precisely calculated by arranging enough meshes and iteration steps. Us-

ing numerical algorithms like finite-difference time-domain (FDTD) and the finite

element method (FEM) facilitates finding the optimised structure and predicts

how light reacts to different conditions [9, 10]. However, achieving the desired

responses often requires fine-tuning the geometry through iterative simulations.

Only a restricted set of design parameters can be modified to discover the ideal

structure thanks to simulation power and the time-consuming nature of the pro-

cess [11]. For instance, in the early stage of a metasurface design, a unit cell

model with periodic boundary conditions (PBCs) is simulated. The simulated

data library is then used to help design the whole metasurface device by giving

the phase or transmission responses for different structure parameters.

Parametric sweeps in the simulation process are often used to discover the impor-

tance of design parameters and optimise the nanophotonic devices accordingly.

These are guided by physical models for classical functions. However, paramet-

ric sweeps may not be sufficient when dealing with extremely complex device

functions or a large design space for random shapes of structures. Furthermore,

the optimisation process with current numerical design techniques needs previous

knowledge of the particular combination of materials and key design parameters
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in the studied structure [12]. Therefore, a single, integrated solution that con-

currently optimises across geometries and materials has not yet been achieved.

Furthermore, the inverse design process is significantly more difficult since it in-

cludes directly retrieving the right structure and materials for the target optical

performance, which involves exploring a far greater degree of freedom (DOF) in

the design process [11].

The advent of AI techniques represents a paradigm shift in the design of nanopho-

tonic devices. ML, a subset of AI, can learn and adapt from data, enabling a more

efficient exploration of vast design spaces. ML techniques facilitate navigating

complex patterns and nonlinear relationships within nanostructures and optical

performance. This data-driven approach allows for the discovery of novel designs

and optimisation strategies that may be challenging to achieve through discussed

conventional methods [13].

3.3 Fundamentals of Machine Learning

ML is a subset of AI that empowers computers to learn from data, identify pat-

terns, and make decisions with minimal human intervention. Its applications span

across a multitude of domains such as industrial production, data security, educa-

tion, medical diagnosis, transport, and economic analysis [14]. Unlike traditional

rule-based programming, where explicit instructions dictate how a system should

behave, ML systems learn directly from data. This data-driven approach allows

machines to improve their performance over time without being explicitly pro-

grammed for every scenario. By recognising patterns and extracting insights from

vast datasets, ML algorithms can uncover hidden relationships, predict future out-

comes, and automate complex tasks with remarkable accuracy. Moreover, the

model can make insightful predictions on data that has not been seen before [15].

During the model’s training or use in ML, a deep understanding of the specific

problem’s physical or mathematical intricacies is often beneficial but not always

required. This lack of requirement makes ML methods versatile and suitable for

various tasks such as classification, regression, clustering, and structured predic-
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tion. Generally, a greater quantity and higher quality of data lead to more precise

predictions. Although collecting and training with a large dataset demands con-

siderable time and effort, the subsequent use of the model proves to be convenient

and fast [16].

The history of ML can be linked to the 1940s when Donald Hebb explored neural

cell interaction in his book "The Organisation of Behavior" [17]. In the 1950s,

IBM researcher Arthur Samuel pioneered ML in gaming by creating software for

checkers [18]. He introduced a scoring function based on piece placements, em-

ploying a minimax approach, and termed his innovative method "rote learning".

He proposed the term "machine learning" for the first time in 1952. The per-

ceptron, combining Hebb’s and Samuel’s ideas, was created in 1957 but faced

challenges in image recognition, leading to an "AI winter" [19]. The second wave

of research on ML in the 1980s led to the introduction of artificial neural network

(ANN). A significant milestone was the paper published by Rumelhart, Hinton,

and Williams in 1986, modifying the back-propagation algorithm [20]. Geoffrey

Hinton’s work in 2006 turned DL into a modern era, demonstrating the effec-

tiveness of training DNN [21]. The popularity of DL has significantly increased

as researchers have trained networks with greater depth, highlighting the crucial

role of model depth. Driven by the increasing volume of data, DL is currently

the dominant focus of AI research, regularly surpassing prior models and even

beating human performance.

3.3.1 Classification of Machine Learning Algorithms

ML algorithms can be classified based on the training approach into three main

categories as described in the following parts.

Supervised Learning

In this approach, the algorithm is presented with input examples, each accom-

panied by an associated output label, forming a set of training data. Supervised

learning algorithms aim to learn patterns, relationships, or mappings between the

input features and the corresponding output labels [22].
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During the training process, the algorithm iteratively adjusts its internal param-

eters, guided by the labelled examples. The adjustment is performed to min-

imise the difference, or error, between its predictions and the actual output labels.

Through this iterative refinement, the algorithm endeavours to capture the under-

lying patterns within the data, enabling it to make accurate predictions on new,

unseen instances [22].

Supervised learning comprises of various tasks, with two prominent categories

being classification and regression. In terms of classification tasks, the algorithm

learns to categorise input data into predefined classes or labels. For instance,

it might distinguish between spam and non-spam emails or identify objects in

images. On the other hand, regression tasks involve predicting numerical val-

ues, such as estimating house prices based on relevant features. The advantages

of supervised learning lie in its ability to generalise from the labelled training

data, allowing the model to make informed predictions on new, previously unseen

data. This method has broad applications in a variety of fields, such as financial

forecasting, picture recognition, medical diagnosis, and natural language process-

ing [23].

In nanophotonics, supervised learning has been employed for tasks such as ma-

terial selection and topology optimisation, where a model was trained on la-

belled data corresponding to the optical responses of various nanophotonic ma-

terials [24].

Unsupervised Learning

Unsupervised learning tasks involve extracting patterns, structures, or relation-

ships within the data without explicit guidance in the form of labelled outputs [25].

In unsupervised learning, the algorithm explores the inherent characteristics of

the data to uncover hidden structures or groupings. The absence of labelled out-

puts challenges the algorithm to identify intrinsic patterns independently. This

approach is particularly valuable in scenarios where obtaining labelled data is im-

practical or costly [25].

Unsupervised learning, known for its versatility, finds applications in diverse re-
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search areas. It excels in clustering similar data points, detecting anomalies,

discovering associations between variables, and reducing dimensionality for en-

hanced data visualisation [26]. Unsupervised learning is also used in neural net-

works, particularly in learning efficient data representations through models like

autoencoders. Additionally, K-Means Clustering is widely used for partitioning

data points into distinct clusters based on similarities [27].

Unsupervised learning has been widely used in nanophotonics for inverse design

problems, clustering meta-atom structures, and geometry optimisation [28, 29].

Unsupervised learning is also used to minimise a loss function in the implemen-

tation of generative neural network (NN)s like variational autoencoders (VAEs)

and generative adversarial networks (GANs) in the nanophotonics optimisation

process. These approaches discover new patterns from a massive dataset and use

that information to generate new structures with better attributes [30, 31].

Semi-supervised learning is a technique which benefits from both supervised and

unsupervised learning. This algorithm is valuable in situations where generating

a sufficient amount of labelled data is expensive. In this approach, an algorithm

combines both labelled and unlabeled datasets. The smaller labelled dataset is

used to guide the classification process, providing explicit examples for the algo-

rithm to learn from. Simultaneously, the algorithm is trained by the larger un-

labeled dataset to extract features and identify patterns, enhancing its ability to

generalise and make accurate predictions on new data [32].

Reinforcement Learning

Reinforcement learning (RL) is the process through which an agent gains decision-

making skills via interaction with its surroundings. Reward or penalty points are

given to the agent based on activities taken in the environment. The agent’s ob-

jective is to learn a strategy or policy, that maximises the cumulative reward over

time [33].

A classical example of RL is training an autonomous robot to navigate a maze.

In this scenario, the maze environment is the setting, and the states are the var-

ious positions within the maze. The robot, acting as the agent, can take actions
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like moving in different directions (left, right, forward, and backward). As the

robot explores the maze, it receives feedback based on its actions. For instance,

successfully reaching the exit might yield a positive reward, while hitting a wall

could result in a negative penalty. The goal is for the robot to learn a strategy for

deciding its actions in different states to efficiently navigate the maze and max-

imise its cumulative reward [34]. RL has been widely used in the optimisation of

metasurfaces. For example, Seo et al. [35] proposed a global optimisation process

for a Si-based beam deflector with a design space as large as ≈ 1017.

3.4 Deep Learning

ML has advanced by developing classical algorithms like support vector ma-

chines, decision trees, and Bayesian classifiers, and DL (cf. Figure 3.1). Among

these, DL, particularly based on multilayer ANN, has found successful applica-

tions in various fields such as voice recognition, machine translation, and au-

tonomous driving [36].

In biological NNs, neurons are the fundamental units connected to each other

[37]. When a neuron’s electrical potential surpasses a threshold, it activates and

transmits chemicals to connected neurons, altering their electrical potential as

shown in Figure3.2 (a). ANN is a mathematical model that mimics the behaviour

of biological NN, carrying out information processing in a distributed parallel

manner. NN models involve connected neurons sending input signals to neurons,

which are then conveyed via weighted connections and added to the total input

value [3]. This total value is then compared with the neuron’s threshold and pro-

cessed through an activation function to generate the neuron’s output [37]. Most

common DL models can be classified into three main types: ANN, convolutional

neural network (CNN), and recurrent neural network (RNN).

3.4.1 Artificial Neural Networks

As shown in Figure 3.2 (b), an ANN typically consists of an input layer, an output

layer, and multiple hidden layers [38]. The input layer neurons receive external
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Figure 3.1: The relationship between AI, ML, and DL.

data, which undergoes processing through the hidden layers and then output ones.

The final prediction value is produced by the output layer’s neurons. The train-

ing process involves applying a substantial amount of data to iteratively adjust

the weights of connections between neurons [3]. Several methods like the error

back-propagation algorithm are used in this continuous adjustment until the neural

network’s output aligns with the target values. Following training, the ANN can

accurately map inputs to the desired outputs. Figure 3.2 (b) illustrates the basic

architecture of an ANN featuring two hidden layers.
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Figure 3.2: (a) A schematic of biological neurons, (b) a diagrammatic representa-
tion of a ANN consisting of two hidden layers.

Often referred to as feedforward neural networks, ANN processes inputs ex-

clusively in the forward direction. The network’s layers consist of nodes, each

designed to emulate the behaviour of neurons in the brain (cf. Figure 3.2 (a)).

The primary neurons of the brain are networked and communicate with one an-

other through electrical impulses to support mental processes. Similarly, in ANN

models, these neurons serve as nodes facilitating the flow of data and computa-

tions. These nodes receive input signals, originating from either the raw dataset

or neurons in the preceding layer of the neural network. For each signal, the neu-

ron calculates the sum after multiplying it by its corresponding weight and then
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passes the result through an activation function. This output is subsequently trans-

mitted to the next layer via a feedforward algorithm, as depicted in Figure 3.2 (b).

Equation 3.4.1 elucidates the artificial neuron depicted in Figure 3.3, where θ

represents a linear or nonlinear activation function.

x(l)j = θ(s(l)j ) = θ(ω0, j +
n

∑
i=1

ω
l
i, jx

(l−1)
j ) (3.4.1)

In this equation, x(l−1)
i and x(l)j denote the ith node at layer (l−1) and the jth

node at layer (l), respectively. The weight on the connecting node i at layer (l−1)

to node j at layer (l) is denoted as ωi, j. ω0, j is the bias term for node j. Non-

linear activation functions, such as hyperbolic tangent, softmax, rectified linear

unit (ReLU), and sigmoid are applied in this context. These functions enable the

NN to generalise and adapt to diverse data, distinguishing between different out-

put scenarios. ANN is recognised as a universal function approximator because

it possesses the capability to learn any nonlinear function, employing a range of

activation functions [38].

Figure 3.3: A visual depiction of an artificial neuron.
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3.4.2 Convolutional Neural Networks

CNNs form a specific class of NN models designed for the analysis of two-

dimensional (2D) image data. Nevertheless, they can be adjusted for applications

involving one-dimensional and 3D data. The core element of CNN is represented

by the convolutional layers, where a filter kernel systematically applies to input

data using a simple convolution process. The mathematical expression for 2D

convolution is given by equation 3.4.2, where g(x,y) represents the filtered image,

f (x,y) is the original image, and ω denotes the filter kernel.

g(x,y) = ω ∗ f (x,y) =
a

∑
dx=−a

b

∑
dy=−b

ω(dx,dy) f (x−dx,y−dy) (3.4.2)

Each filter kernel’s componnet is taken into account within the ranges -a <

dx < a and -b < dy < b. A feature map is produced by repeatedly applying the

same filter—one that is smaller than the original image—to the input data. This

process is visually depicted in Figure3.4. The resulting feature map indicates both

the locations and significance of detected features within the input image. CNNs

possess the distinctive capability to autonomously learn multiple filters tailored to

the training dataset and the specific problem like image classification [38].

Figure 3.4: A schematic of a filter-based convolution process.
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3.4.3 Recurrent Neural Networks

RNNs were proposed to address the limitations of ANNs and CNNs, which are

only capable of processing current inputs and cannot discern sequential patterns

in data or retain the memory of past inputs [39]. RNNs operate by maintain-

ing internal memory, making them appropriate for applications such as natural

language processing and time series analysis. There is a conventional forward

path in which the desired output is connected to the original inputs. A feedback

loop, on the other hand, also exists and returns each layer’s output to its input.

By doing this, it enhances the predictive outcomes for the subsequent probable

situation [40].

3.4.4 Activation Function

Activation functions determine the activation status of a neuron by assessing the

weighted sum and incorporating a bias (cf. Fig 3.3). These functions are differ-

entiable operators, introducing non-linearity to the model and transforming input

signals into corresponding outputs. The training convergence speed and total net-

work performance in a given task are significantly influenced by the choice of

activation function. Nonlinear, differentiable activation functions are commonly

used due to their adaptability to complex datasets and their compatibility with

backpropagation for NN training. Some common activation functions, including

Sigmoid, tanh, ReLU [41], and hyperbolic tangent are briefly outlined for refer-

ence.

Sigmoid Function

The sigmoid function, usually referred to as the logistic function, is a commonly

employed activation function in NN. It maps any real-valued number onto a range

spanning from 0 to 1. The sigmoid function can be represented by the following

mathematical expression:

θ(z) =
1

(1+ e−z)
(3.4.3)
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where e represents the base of the natural logarithm, and z is the input to the

function. As shown in Figure 3.5 (a), the sigmoid function is S-shaped and has

the characteristic of mapping large positive or negative inputs to values close to 1

or 0, respectively. It is useful in binary classification problems, where the output

needs to be interpreted as a probability [42].

Rectified Linear Unit Function

ReLU creates non-linearity by directly outputting positive input; otherwise, it out-

puts zero as shown in Figure 3.5 (b). The mathematical expression for the ReLU

function is defined as:

θ(z) = max(0,z) =

0 if z < 0

z if z≥ n
(3.4.4)

where z represents the input to the function. The ReLU functions help address the

vanishing gradient problem associated with some other activation functions [42].

Leaky Rectified Linear Unit Function

An alternative to the ReLU function is the LeakyReLU activation function, de-

noted as θ(z) = max(α , z), where θ(z) represents the output. In LeakyReLU, a

little subset of the input, defined by the parameter, is mapped to negative values 0

< α < 1 (e.g., α = 0.1), as illustrated in Figure 3.5 (c). Unlike ReLU, LeakyReLU

allows neurons with zero input to produce a nonzero output, enabling them to

contribute nonzero gradients during weight updates in training. Although the use

of LeakyReLU may sacrifice convergence speed, it permits more neurons in the

network to contribute, potentially enhancing overall performance.

Hyperbolic tangent (tanh) Function

The hyperbolic tangent function, often denoted as tanh, is another common acti-

vation function in the training process of a NN. Like the sigmoid function, tanh

squashes input values to a specific range, but in this case, it ranges between -1 and
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Figure 3.5: Common activation functions used in neural networks: (a) sigmoid,
(b) ReLU, and (c) LeakyReLU, (d) tanh.

1 (cf. Figure 3.5 (d)). The mathematical expression for the hyperbolic tangent

function is:

θ(z) =
ez− e−z

ez + e−z (3.4.5)

Where z is the input to the function. The tanh function is zero-centred, meaning

that its output has a mean close to zero. This can be advantageous for certain

optimisation algorithms during training [42].

Similar to the sigmoid function, the tanh functions suffer from the vanishing gra-

dient problem for very large positive or negative inputs. However, it generally has

the advantage of producing outputs in the range of -1 to 1, making it more conve-
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nient for training neural networks that might benefit from values centred around

zero [42].

3.4.5 Neural Network Training

Following the input of training data into the NN in the feedforward direction,

the network generates an initial output prediction. This predicted output initially

deviates significantly from the target labels in the training dataset due to the un-

adjusted weights of the network. To align the predicted result with the real val-

ues, the network receives feedback, leading to an iterative process for updating

its weights [40]. A widely adopted strategy for training neural networks involves

backpropagation. This method entails propagating the gradients of a defined loss

function concerning the network’s weights in the backward direction. As shown

in Figure 3.2 (b), the "gradient backward propagation" process enables the

network to systematically adjust its weights to minimise the overall loss. How-

ever, diverse methods exist for training NNs, offering alternative approaches to

weight adjustment. Difference target propagation [20] involves modifying the

network’s weights based on the disparities between the predicted and target out-

puts. Decoupled neural interfaces using synthetic gradients take a unique route by

independently training specific parts of the network, reducing reliance on direct

gradient backpropagation [38].

Backpropagation

To understand the adjusting process, let’s break down the backpropagation pro-

cess step by step, using a simple NN with one hidden layer as an example. The

network has an input layer (X), a hidden layer (H), and an output layer (Y). The

error between the predicted output and the actual output is represented by a loss

function (L).

• Forward Pass: The forward pass involves calculating the predicted output

by propagating the input through the network.
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H = σ(X .ωin +bin) (3.4.6)

Y = σ(H.ωout +bout)

Here,

– X is the input data.

– ωin and bin are the weights and biases of the input layer.

– σ is the activation function.

– ωout and bout are the weights and biases of the output layer.

• Loss Calculation: Calculate the loss (L) between the predicted output (Y)

and the actual output (Ytrue).

L = Loss(Y,Ytrue) (3.4.7)

• Backward Pass (Gradient Calculation): Calculate the gradients of the

loss concerning the weights and biases. It computes the error term for each

node in the output layer:

δ
(L)
j =

∂C

∂ z(L)j

·σ ′(z(L)j ) (3.4.8)

Here, σ ′(z(L)j ) represents the gradient function. It computes the error terms

for each node in the hidden layers recursively using the chain rule:

δ
(l)
j = ∑

k
δ
(l+1)
k ·ω(l+1)

k j ·σ ′(z(l)j ) (3.4.9)

∆ω
(l)
i j =−α ·δ (l)

j · x
(l−1)
i (3.4.10)

∆b(l)j =−α ·δ (l)
j
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• Weight Update: Update the weights and biases using an optimisation al-

gorithm, such as gradient descent.

ωout ← ωout−α∇ωout L (3.4.11)

bout ← bout−α∇bout L

ωin← ωin−α∇ωinL

bin← bin−α∇binL

where α corresponds to the learning rate. This is a hyperparameter that

controls the weight updates’ step size. This process is continued iteratively

for several epochs until the model converges to a point where the loss is

minimised, and the network accurately predicts unseen data.

Gradient Update Rules

Gradient update rules, also known as optimisation algorithms, dictate how the

parameters (weights and biases) of a neural network are adjusted in the training

process [38]. The primary goal is to find the optimum set of parameters that min-

imise the loss function. Various optimisation algorithms exist. The selection of the

accurate algorithm often depends on such characteristics as the size of the dataset

and computational resources [38]. Hyperparameters such as the learning rate, mo-

mentum terms, and decay rates need to be tuned for optimum performance. Here

are some commonly used gradient update rules:

• Adam Optimiser: Adam combines ideas from momentum and root mean

squared propagation (RMSprop). It adapts the learning rates for each pa-

rameter based on their past gradients and squared gradients. The update
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rule is given by:

mt = β1 ·mt−1 +(1−β1) ·gt (3.4.12)

vt = β2 · vt−1 +(1−β2) ·g2
t

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

θt+1 = θt−
η√

v̂t + ε
· m̂t

where mt−1 and vt−1 are estimates of the first moment (the mean) and the

second moment (the uncentered variance) of the gradients respectively, m̂t

and v̂t are bias-corrected estimates of mt and vt , β1 and β2 are decay rates

(typically close to 1). η represents the learning rate, and ε is a small con-

stant to avoid division by zero.

• Stochastic Gradient Descent: Stochastic gradient descent (SGD) is a fun-

damental optimisation algorithm used in neural network training. It updates

the parameters according to the gradient of the loss with respect to the pa-

rameters for each data point. The update rule for a parameter w is given

by:

θt+1 = θt−η∇J(θt) (3.4.13)

Where ∇J(θt) represents the loss function’s gradient with respect to θt .

• Mini-Batch Gradient Descent: Mini-batch gradient descent is a compro-

mise between SGD and batch gradient descent. Instead of updating param-

eters for each data point, it computes the gradient on a small random subset

(mini-batch) of the training data. The update rule is similar to SGD but

involves the average gradient over the mini-batch:

θt+1 = θt−η
1
|B|∑i∈B

∇J(θt ;x(i),y(i)) (3.4.14)

Where |B| is the size of the mini-batch, and (x(i),y(i)) are the input and target
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of the i-th example in the mini-batch.

3.4.6 Hyperparameters

In NNs, hyperparameters are parameters that are not learned during the training

process but are set before the training begins. They play a crucial role in deter-

mining the architecture and behaviour of the NN. For example, the number of

layers and neurons per layer are the hyperparameters which change the architec-

ture of the NN. They influence the model’s capacity to learn complex patterns

and its ability to generalise to unseen data. Activation functions, another set of

hyperparameters, introduce non-linearity into the network and affect its ability to

approximate complex functions [43].

Selecting optimal hyperparameters is crucial for achieving good performance and

generalisation in NN. Several techniques are commonly employed for hyperpa-

rameter optimisation.

• Grid Search: Grid search involves exhaustively evaluating model perfor-

mance for all possible combinations of predefined hyperparameters. While

thorough, this approach can be computationally intensive, especially for

models with numerous hyperparameters or large search spaces [44].

• Random Search: Random search is a more computationally efficient al-

ternative to grid search, randomly sampling hyperparameter values from

predefined ranges. Despite not exploring all combinations, it often yields

satisfactory results.

• Bayesian Optimisation: Bayesian optimization is a method for efficiently

optimising hyperparameters by building a probabilistic model of the objec-

tive function and selecting the next hyperparameter configuration to evalu-

ate based on past observations. It balances exploration and exploitation to

converge to the optimal configuration with fewer evaluations compared to

brute-force methods. While efficient and flexible, it requires careful model

selection and tuning and may converge to local optima [45].
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• Cross-Validation: Cross-validation partitions the training data into subsets,

enabling the estimation of model performance across different hyperparam-

eter configurations. It aids in selecting hyperparameters that generalise well

to unseen data [46].

3.5 Machine Learning in Nanophotonics

The advent of ML in nanophotonic research dates back to the 1990s, when the

MLP, a basic form of a feedforward NN, used as a computer-aided design (CAD)

instrument for rapidly prototyping microwave devices [47, 40].

The initiation of ML research in microwave domains has a couple of reasons.

Firstly, most microwave device designs could be broken down into optimising spe-

cific parameters for a given target, conveniently expressed through a few variables.

Given the well-developed physics, powerful simulation tools, and few challenges

in data collecting, establishing relationships between these parameters was more

straightforward for a MLP model. Furthermore, the scientific community had lit-

tle understanding of more sophisticated photonic designs such as silicon photonic

devices and metamaterials which were still in the early phases of development.

Such devices with extensive design space and complex optical behaviour, posed

challenges for the shallow NNs model prevalent at that time [40].

Following these early explorations into integrating data-driven methods in photon-

ics research, deep MLP models with complex architectures and improved train-

ing strategies have been widely used in design of various devices like metama-

terials [48, 49, 50], metagrating [51], beam splitters [52], structural colour sys-

tems [53, 54, 55], and plasmonic devices [56] (cf. Figure ??).

3.5.1 Potential Applications

The main applications of ML in nanophotonics, especially metamaterials and

metasurface, can be broadly categorised into three main sections: design and op-

timisation (forward design), inverse design, and materials discovery. The details

of each category are discussed in the following sections.
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Design and Optimisation of Structures

Conventional physics-based optimisation navigates the design space through pre-

defined strategies for each case. However, DL seeks to comprehensively charac-

terise the entire design space using training data as representative samples. This

allows DL, with its generalisation capability within a specified design space, to

generate rapid and precise designs without relying on case-specific and time-

intensive numerical calculations. This concept is referred to as "Forward De-

sign" in the literature [57, 11].

Forward design benefits from algorithms to predict and optimise the performance

of nanophotonic devices before they are physically constructed. This process in-

volves analysing data, selecting relevant features, training ML models, and then

using these models to find the best design parameters for desired device prop-

erties. For example, core-shell nanoparticles provide fascinating phenomena,

including multifrequency super scattering, directional scattering, and Fano-like

resonance [58]. However, their increased DOF poses challenges in the design

process. Peurifoy et al. [59] developed a MLP that predicts the scattering cross-

section of a nanoparticle featuring silicon dioxide (SiO2)/titanium dioxide (TiO2)

multilayered structures, as depicted in Figure3.6 (a, b). The network was trained
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on 50,000 spectra obtained through the transfer matrix method (TMM). Results

indicated that the developed network accurately computed spectra even when the

input structure extended beyond the training data. This suggests that the DL goes

beyond simple data fitting, uncovering underlying patterns and structures in the

input and output data. However, this model architecture cannot achieve the in-

verse design of materials, and there are certain limitations on design freedom.

Figure3.6 (c) illustrates a typical forward design network for optimisation of a su-

percell all-dielectric metasurface [49]. Each unit-cell cylinder in the metasurface

is defined by two parameters: radius and height, resulting in an 8-dimensional

input vector. The effective simulation settings were established to calculate the

scattering parameters as output. To prevent biasing the network towards specific

geometries, the training set was constructed by randomly sampling the entire ge-

ometric hyperspace. The combination of all values provides approximately 138

million possible geometries. However, the mean squared error (MSE) was eval-

uated to reduce the training set to around 21,000 spectra. Consequently, a total

dataset of this size was employed for the investigation, with 3,000 randomly se-

lected pairs serving as a validation dataset. The training dataset comprised 18,000

pairs, representing only about 0.0022% of all possible geometries. The spac-

ing between these values was carefully chosen to capture spectral variability ade-

quately without introducing substantial redundancy among geometries with near

structural features [49].
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Figure 3.6: a) The neural network architecture takes the thickness of each shell
of the nanoparticle as input and produces the scattering cross section at various
wavelengths of the scattering spectrum as output, b) the accuracy of the inverse
design NN for an eight-shell nanoparticle. Reprinted by permission from Op-
tica Publishing Group [59], Copyright (2019). c) architecture of NN to pre-
dict the transmittance spectra of an all-dielectric metasurface with an array of
cylindrical resonators with random height and radius. Reprinted by permission
from Science [49], Copyright (2018). d) a complex-valued neural network with
5 fully connected hidden layers to learn the relationship between input (optical
constants, dimension of cylindrical nanodisks, and wavelength of operation) and
output (complex reflection or transmission coefficients). Reprinted by permission
from Optica Publishing Group [60], Copyright (2021).

While most NN models for forward design were initially dedicated to pas-

sive metasurfaces, advancements have been made by incorporating the tunable

optical properties of phase change materials (PCMs) as input in complex-valued

NNs [60]. For example, as shown in Figure3.6 (d), a five-layer neural network was

developed to learn the relationship between the input (optical constants, dimen-

sion of cylindrical nanodisks, and wavelength of operation) and output (complex

reflection or transmission coefficients). This model predicts the output parameters

with errors of less than 6.2× 10−3 in 99% of the data. Given that optical prop-



3.5. Machine Learning in Nanophotonics 72

erties involve complex numbers, complex-valued NNs are well-suited to address

data error and accuracy challenges.

Inverse Design Problems

While the advancements of ML in photonics design and optimisation have been

notable, current research is constrained to developing two-dimensional layouts for

a single type of metasurface or nanophotonic structure. In addition, the analysis of

these structures often maintains constant material characteristics and out-of-plane

factors, such as layer thicknesses. The fundamental challenge that remains for op-

timisation processes using forward design models is a prior understanding of the

specific capabilities offered by a particular category of design parameters [57].

However, relying on human intuition to select the optimised nanostructure, the

starting point for numerical optimisation can be misleading when conflicting de-

sign goals arise.

Recently, the concept of "Inverse Design" has emerged in the literature to address

these challenges. inverse design (ID) in nanophotonics refers to a methodology

where ML techniques are employed to create novel and optimised nanophotonic

structures or devices based on custom functionalities. Unlike forward design ap-

proaches, ID begins with defining the desired performance characteristics or func-

tionalities and then uses algorithms to generate the corresponding structure and

materials [61].

Malkiel et al. [62] introduced a fully connected bidirectional NN designed for pre-

dicting the geometries of metasurfaces based on the far-field responses and vice

versa. As illustrated in Figure 3.7 (a), the focal structure is an H-shaped metallic

structure characterised by eight geometrical parameters consisting of three contin-

uous parameters corresponding to the rotation angle and length of each arm, and

five discrete parameters corresponding to the arms. The main objectives consist

of two reflection spectra when illuminated with light polarised along the horizon-

tal or vertical direction. To reduce the number of input values, each reflection

spectrum was discretised into 43 data points. In addition, the permittivity of the

indium tin oxide (ITO) adhesion layer and hosting materials, were reduced to a
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vector consisting of 25 parameters. The model was composed of two networks:

a geometry-predicting network with eight group layers and a spectrum-predicting

network with six layers. These networks were trained on a dataset consisting of

18,000 samples. This design enables the model to have dual functionality. Firstly,

it serves as a rapid simulator, predicting the transmission of the structure for var-

ious geometries. Secondly, it acts as an ID tool, allowing the extraction of meta-

surface geometrical parameters based on the measured or desired transmission

spectrum. The accuracy of the networks is shown in Figure 3.7 (b,c).

Upon further advancement of the design domain of core-shell nanoparticles,

discussed in the previous section, an ID approach was developed to simultane-

ously determine the optical material and structural thickness based on the on-

demand scattering spectra [24]. This was achieved by incorporating both clas-

sification and regression simultaneously, as illustrated in Figure 3.7 (d, e). The

classification aspect determined the materials of each layer, while regression pre-

dicted the thickness of layers. The spectrum loss was computed through the MSE

between target values of the spectra and the predicted ones generated by deep

learning [24].

The "one-to-many" problem, where a single target optical response can be achieved

by multiple solutions or designs, is a typical challenge faced in machine learning-

aided ID. Novel training approaches, such as tandem networks [11, 54], and mix-

ture density models [63], have been proposed to address this issue. For example,

a metasurface configuration comprises arrays of metal disks suspended by poly-

meric pillars (Polydimethylsiloxane (PDMS)) with a metal (Al) back reflector,

strategically designed for structural colour generation (cf. Figure 3.7 (f)) [11].

This geometry showed high interaction between the disk and hole arrays in the

presence of hybridised reflectance modes. The parameter design space encom-

passes materials, pillar pitch (P), pillar diameter (d), pillar height (h), and metal

thickness (t). The inverse model is trained using a tandem auto-encoder based

on a pre-trained forward model. The generated dataset for self-learning was em-

ployed, resulting in an approximate 15% enhancement in the network’s accuracy.

The constrained inverse model enabled the instantaneous design of metasurfaces,
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Figure 3.7: Examples of ID networks in nanophotonics. a) The bidirectional
network’s processing diagram encompasses two phases. b, c) A comparison of
the transmission curves for samples derived from fabrication, simulation, and the
DNN is presented, Reprinted by permission from Nature [62], Copyright (2018).
d) the DL model to predict design parameters based on extinction spectra, e) the
network’s performance on the spectra of user-drawn values (solid lines) for the
electric dipole (ED) (red) and MD (black) modes, and scattering radiation patterns
at resonant wavelengths. Reprinted by permission from ACS Publications [24],
Copyright (2019). f) a fully connected DNN with l hidden layers and n neurons
in each hidden layer. The simulated metamaterials’ range of spectral colours is
represented on the Commission on Illumination (CIE) 1931 gamut, g) the accu-
racy of the model. Reprinted by permission from AIP Publishing [11], Copyright
(2021).
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achieving a precision of over 86% when targeting a desired colour as shown in

Figure 3.7 (g) [11]. The suggested methodology is suitable for finding the most

suitable parameters in the ID process. However, during the network training pro-

cess, some solutions or solution spaces are either rejected or remain unreachable,

which poses a serious challenge known as solution degeneracy [64].

To address this challenge, Dai et al. [64] developed a conditional generative ad-

versarial network (cGAN). This approach enabled the generation of an average of

3.58 solution groups for a given ID of a transmissive colour filter. This network

with various solutions empowers the selection of the best design for each colour,

resulting in a record-high accuracy with an average index colour difference ∆E

of 0.44. The effectiveness of the cGAN is experimentally verified through the in-

verse design of RGB colour filters [64].

In addition to the above-listed applications, ML has been used in the design of

complex devices, including metagratings [65, 66], broadband highly reflective

metasurfaces [67], multi-mode converters [68], multi-layer thin film [69], chiral

metamaterials [70], and photonic crystals [71].

Material Selection

Materials selection is a critical aspect in the ID of metamaterials, particularly in

the context of optical metamaterials and metasurfaces. The properties of these

materials, such as refractive index (RI), play a critical role in determining the per-

formance and functionality of the designed structures. Expanding the materials

library for the NN-assisted design of nanostructures in metamaterials requires the

consideration of more complex architectures. Moreover, a vast amount of data is

necessary for training networks [72].

The materials library used for training these networks often involves indexed ma-

terials using integer or binary numbers represented by numerical values. These

numerical indices simplify the training process, allowing for efficient handling of

complex data. The fixed material in the library corresponds to a set of properties,

including RI, that contribute to the overall performance of the metamaterial. The

ID process typically involves selecting the most suitable material from the defined
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library for a given set of specifications. The inverse problem is a combination of

both classification and regression problems. It involves a classification problem to

discover the appropriate material, and a regression one, seeking to determine the

design parameters [24].

For example, an IDNN was trained with a dataset comprising 90,000 samples

to predict the continuous and discrete design parameters of a typical multi-layer

structure [73]. This structure involved the repetition of two different dielectrics

(a random selection between Al2O3, Si3N4, and SiC) for N periods, as illustrated

in Figure 3.8 (a). The combination of periods (N) with values of 4, 6, and 8, and

the materials Al2O3, Si3N4, and SiC, leading to a total of 9 structure types. These

structures were indexed with 0 and 1 for classification purposes. To explore the

feasibility of ID with a reduced dataset and mitigate the time cost, three smaller

datasets of 4,500, 9,000, and 18,000 samples were considered. The solid line in

Figure 3.8 (b, c) represents the target spectrum, while the dashed lines show the

proposed spectra of different models, each trained with a different dataset size.

Qiu et al. proposed an innovative multi-scenario training method to address

imbalanced datasets in the inverse design of diverse multilayer nanoparticles and

nanofilms [74] (cf. Figure 3.9 (a)). Optical scenarios with varying dataset sizes,

some at the scale of 103 and others at the scale of 104, were considered. Com-

pared to other methods, this approach used imbalanced datasets that were nearly

four times smaller. The advantages of employing imbalanced datasets became

increasingly pronounced with the expansion of the material library. Knowledge

transfer learning was incorporated, involving the transfer of knowledge from a

source scenario to a target scenario. The study employed a combination of four

metals (Ag, Au, Cu, and Al) and four dielectric materials (TiO2, SiC, Si3N4, and

SiO2) to create 16 optical scenarios. Distinct combinations of discrete 0s and

1s represented the materials in these scenarios, using a binary system to denote

the two different materials (m1 and m2) in each case. For example, the scenario

with Ag and TiO2 was represented as "00," Au and SiC as "01," Cu and Si3N4

as "10," and Al and SiO2 as "11." They implemented a multi-step process, train-

ing a base network (BaseNet) using the imbalanced multi-scenario method in the
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Figure 3.8: a) The materials a and b alternate placed to form a 1D photonic crystal
structure. The first material thickness is d1 and the second material thickness is
d2. b) The inverse design network updates M (materials) and N (periods) in the
design process, c)Inverse design for few training samples. The solid line is the
target spectrum, while the dashed lines are the three models’ planned spectra.
Reprinted by permission from Science Direct [73], Copyright (2021).

source scenario. Subsequently, part of the weights and biases from the hidden

layers of BaseNet was transferred to a transfer network (TransferNet), which un-

derwent fine-tuning using target scenario datasets (cf. Figure 3.9 (b)). Randomly

selecting one, two, or three scenarios from the set of 169,000 samples were taken

from these selected scenarios, while 900 samples were extracted from the remain-

ing scenarios to create imbalanced datasets. The DNN model was then trained

using the back-propagation algorithm with these imbalanced datasets. The accu-

racy of the ID network was validated through successful predictions and designs

of nanophotonic structures as shown in Figure 3.9 (c) [74].

3.6 Limitations of Integrating AI in Nanophotonics

3.6.1 Data Collection

Due to the vast number of parameters in DNN, a large number of labelled data

is typically required for effective training. However, generating such data often
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Figure 3.9: a) DNN for approximating multilayer nanoparticle transmittance spec-
tra. The discrete inputs correspond to the material types, and the continuous values
are nanostructure structural parameters. b) The genetic operation encoding form
and DNN-recognised value of material and thickness parameters, c) the perfor-
mance of the network in the design of a 3-layer nanoparticle structure. Reprinted
by permission from Optica Publishing Group [74], Copyright (2021).

involves physical simulations or experimental measurements, making the collec-

tion of a massive dataset impractical in some situations [75]. Unsupervised and

semi-supervised learning techniques can be employed to overcome this challenge

by reducing the workload associated with data collecting. Unsupervised learning

algorithms require only a small number of labels [40]. They provide efficient solu-

tions to reduce the dimension and data clustering. These networks reveal the most

significant design parameters, enabling the NN to recognise critical design data

without unnecessary data collection [30, 31]. However, in the high-dimensional

parameter spaces of the nanophotonic structures, the trained models with specific

datasets may struggle to generalise to unseen data or different device geometries.

Ensuring the transferability of trained models across various design scenarios with

imbalanced datasets is a challenge.

Another approach to mitigate the challenge of massive data collection involves

integrating physics-based deep learning (PBDL) models. The main idea behind

PBDL is to integrate domain-specific knowledge of physical laws and equations



3.6. Limitations of Integrating AI in Nanophotonics 79

into the design and training of NN. By doing so, PBDL models can capture un-

derlying physical principles, enabling them to make accurate predictions and gen-

erate meaningful insights [29]. Moreover, less reliance on data can result from

understanding the underlying laws of physical processes. In this strategy, DL is

often used to predict parameters from limited data for the regression of a few

parameters that parametrise the models or equations of the system. PBDL mod-

els can also be used to generate solutions satisfying certain partial differential

equations [76]. While these algorithms offer solutions for reducing reliance on

extensive datasets, they encounter fundamental challenges when applied to multi-

physics problems, such as optimising mechanically tunable metasurfaces. Multi-

physics problems often involve nonlinear and coupled equations, leading to com-

plex model architectures. Designing and training DL models that effectively cap-

ture these complexities while maintaining computational efficiency is a significant

challenge [77].

3.6.2 Materials Discovery for Custom Structures

The discovery and advancement of new compositions play a significant role in

driving technological progress, like the transformative impact of silicon on the mi-

croelectronics industry. Notably, advancements in critical technological domains,

including sustainable energy, hinge on the capability to design and realise mate-

rials with optimised properties [78]. The process of discovering and designing

materials requires synergistic cooperation between materials prediction, synthe-

sis, and characterisation. The integration of computational tools, the generating

of extensive materials databases, and advancements in experimental techniques

have efficiently accelerated these endeavours [79].

In this research area, the concept of "materials by design" approaches has emerged

to minimise the transition of materials from computer simulations to laboratory

experimentation and practical consumer products [72]. The fundamental prin-

ciple of the US Materials Genome Initiative revolves around the concept of the

rational design of materials through the effective utilisation of data-driven meth-

ods [80, 81].
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The initial incorporation of ML into materials science was highlighted by the gen-

eration of large databases primarily through computational methods and experi-

ments. However, in recent years, an alternative approach has gained attention,

leveraging less conventional ML tools like RL [82]) to expand small experimen-

tally generated databases into larger sets and predict novel materials [78].

Up to now, optical technologies have primarily engaged in photonic optimisation

within a restricted design space, mainly focused on structural topology (geome-

try) and shape. This optimisation approach frequently overlooks comprehensive

feedback from other key design aspects, such as characterisation constraints and

fabrication variables [83]. This challenge limits the application of current opti-

misation methods, preventing them from delivering efficient, globally optimised

solutions. For example in multiphysics problems like phase-change platforms,

the optical behaviour is closely connected to both the composition of materials

and the fabrication procedures. The further development of advanced hybrid opti-

misation strategies is essential to address these optimisation challenges and inves-

tigate potential solutions for achieving the maximum performance of a photonic

device [84].

By integrating pre-existing material knowledge into the training process, the de-

sign space can be enlarged to cover more complex compositions. In addition, by

adding linear and nonlinear optical characteristics into the data generation process,

it becomes feasible to optimise more features including the free-form geometry,

or even the optimised deposition parameters of the target material [85].

3.7 Conclusion

Designing nanophotonic devices poses a significant challenge due to their com-

plex and multifaceted nature. This chapter presented an overview of two tradi-

tional design processes, physics-based and numerical simulation methods, under-

lining their fundamental limitations such as high computational cost and reliance

on trial-and-error procedures.

To address these challenges, the chapter introduced the concept of ML as a power-
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ful tool capable of uncovering nonlinear relationships between design parameters

and optical performance. It reviewed significant findings regarding the utilisation

of ML-based algorithms in the design and optimisation of nanophotonic struc-

tures.

However, the current ML-based methods still face challenges, particularly in the

training data generation, inverse design, and optimisation of mechanically tunable

metasurfaces with infinite design space. Overcoming these challenges requires

the development of innovative training approaches such as transfer learning, and

the development of composite multifunctional models that are trained with a small

dataset.
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4.1 Chapter Overview

This chapter presents the simulation results carried out for this thesis, having two

main goals: First, numerical simulation is used to find new structures that can

provide higher levels of stretchability, which is important for designing mechan-

ically tunable metasurfaces. In addition, the initial datasets required for training

the machine learning (ML) algorithms were generated using simulations. The

chapter starts with the mechanical simulation section that explores several geome-

tries to determine which ones can achieve improved stretchability by redistributing

stress concentration. The subsequent optical simulations evaluate reflectance lev-

els as an optical characteristic, which informs the choice of effective designs.

Two primary geometries, including pillar-based and kirigami-inspired patterns
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that provide high stretchability and deformability potential, are introduced in this

chapter. Then the effects of key geometrical parameters on mechanical stress dis-

tribution are presented with considerations of different resonators’ arrangements.

The optimised geometry achieved by mechanical simulations, is then combined

with the optical simulations to determine its performance. The last part of the

chapter presents the three-dimensional (3D) simulations used in dataset genera-

tion.

4.2 Mechanical Simulation

Despite the successful fabrication of various 3D structures with different geo-

metrical and material configurations, their mechanical behaviour under applied

loads remains largely unexplored. In this section, the mechanical responses of

two distinct flexible 3D polymer-based structures are discussed through mechani-

cally guided deformation.

4.2.1 Pillar-based Geometry

The primary challenge of mechanically tunable metasurfaces is their limited abil-

ity to undergo reversible stretching and relaxation through the application or re-

moval of mechanical force. Typically, these structures adopt a bilayer system, in-

tegrating mechanically disparate materials—soft and rigid—within a single struc-

ture. The substrate commonly consists of elastic or viscoelastic polymers such

as Polydimethylsiloxane (PDMS) or rubber, characterised by low elastic modulus

(E < 10 MPa), high elasticity (elongation at break > 100%), Poisson’s ratio (ν)

close to 0.5, and thickness ranging from 10 µm to 1 mm [1]. In contrast, res-

onator materials, often used in thin films, exhibit stiffness (E in the GPa range),

brittleness (fracture strain <5%), and thickness<100 nm. This large mismatch in

material properties leads to a significant challenge [1].

Most mechanically tunable metasurfaces are designed by placing rigid resonators

directly on flexible substrates as presented in Figure 4.1 (a, b). Here, the flexibility

of the substrate is used to tune the optical responses (transmission and reflectance)
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by dynamically adjusting the distances between the resonators. When force is ap-

plied to conventional rigid island geometries, stress accumulation occurs at the

interface, leading to permanent deformation, cracking, or delamination, as dis-

cussed in Section 2.5.

In contrast to common "rigid island" geometries [2, 3, 4], the pillar-based geom-

etry (Figure 4.1 (c)) is created with an engineered substrate’s structure indicated

by elevated areas referred to as "pillars", which possess adjustable geometrical

parameters. For the majority of modes of deformation, the mechanical strain en-

countered by the pillars is significantly reduced in comparison to the strain applied

to the entire substrate.

Figure 4.1: Schematic illustration of common bi-materials metasurfaces. The
"rigid island approach" where the rigid materials characterised by higher Young’s
modulus are placed directly on the elastomeric substrate. These rigid regions can
either be a) embedded within the substrate or b) deposited on it. c) our proposed
geometry with an engineered substrate featuring high-pillar structures and rigid
components on the top of the pillars.

Figure 4.2 illustrates the general pillar-based geometry, which includes a pat-

terned substrate with a square arrangement of pillars (blue sections) and resonator

discs (yellow sections) positioned on top of the pillars.

The finite element method (FEM) mechanical simulation was conducted us-

ing COMSOL Multiphysics. The primary structure, composed of PDMS, was

assumed to exhibit linear elasticity. The material properties of PDMS, includ-

ing Young’s modulus, Poisson’s ratio, and density, were set in accordance with
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Figure 4.2: Schematic of the modelled geometry. Ts, Tr, Tp correspond to the
thickness of the continuous substrate, the thickness of the resonator, and the pil-
lars’ height, respectively. D and p represent the diameter of the resonators and the
pitch size.

literature references [5]. Additionally, the elastic modulus (E) and Poisson’s ra-

tio of aluminium nanodisks, considered as resonators, were specified as EAl = 69

GPa and νAl = 0.34, respectively. To model the elastomeric substrate, a Mooney

Rivlin hyper-elastic model was employed, with parameters C10 = 0.06757 MPa,

C01 = 0.01689 MPa, and C11 = 0.48 MPa [6]. This model provides a good bal-

ance between accuracy and simplicity for describing the mechanical behaviour of

elastomers and rubber-like materials. It calculates the nonlinear stress-strain re-

lationships under large deformations [7]. The convergence of the mesh size was

carefully ensured to maintain computational accuracy throughout the simulation

process.

The initial findings illustrate the capabilities of pillar-based geometries in effec-

tively redistributing stress concentrations within samples subjected to either uni-

axial or biaxial tension. By strategically optimising various parameters, such as

the pillar’s height (cf. Figure 4.3 (a, b), it becomes feasible to minimise stress at
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the interface between rigid and soft materials.

Figure 4.3: The comparison of the stress distribution in the simulation of a) rigid
island and b) pillar-based geometries under bi-axial force. Increasing the height
of the pillar reduces the stress on the stiff components, as observed from a top
view of the pillar surface. Two stress bars are the same for both simulations.

To enhance the overall system’s stretchability, a comprehensive understanding

of how different parameters influence stress redistribution and minimise surface

strain on the pillars is important. The modulation of geometrical parameters in

various sections of the proposed geometry, including resonator, pillar, and sub-

strate is systematically considered, as outlined in Table 4.1.

The structure is subjected to three levels of bi-axial strain (10%, 20%, and

30%) in the x-y plane. Two perpendicular sides of the substrate experience strain

in the x-direction and y-direction, respectively. The remaining sides are fixed and

cannot move or rotate. Additionally, a “stress ratio”, defined as the ratio of stress

on the surface of the pillar to the stress at the bottom of the pillar, serves as a

non-unit parameter for assessing the impacts of these parameters (cf. Figure 4.4



4.2. Mechanical Simulation 97

Table 4.1: List of different geometric design parameters for simulation with a
range of values

Section Parameter Symbol Values (nm)

Substrate Length/Width Ls 1000
Thickness Ts 100

Pillar Diameter Dp 50,100, 150, 200
Thickness Tp 0, 10, 100, 150, 250
Periodicity P 200, 300, 400, 600

Resonator Diameter Dr 50,100, 150, 200
Thickness Tr 25

(a)). A lower stress ratio indicates greater stretchability of the structure, thereby

contributing to the flexible characteristics of the system.

Figure 4.4: a) two-dimensional (2D) schematic of the of the proposed geometry.
Stress ratio as a function of b) pillar’s height, c) periodicity, and d) diameter of
pillars in three different strain levels.
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Figure 4.4 (b-d) show the effects of pillar height, periodicity, and diameter on

the stress ratio. Notably, pillar height emerges as a key parameter to minimise the

stress ratio. The results demonstrate that increasing pillar height, from 0 (conven-

tional geometries) to 150 nm, substantially reduces the stress ratio by almost 80%

(cf. Figure 4.4 (b)). As the pillar height continues to increase beyond 150 nm, the

rate of decrease in the stress ratio diminishes and the minimum stress ratio of 0.15

was observed at a pillar height of 250 nm. This non-linear relationship between

pillar height and stress ratio highlights a critical threshold in finding the optimised

geometry. It was found that the h/d ratio (height-to-diameter ratio) higher than

1 leads to pillar collapse similar to previous reports. In Figure 4.4 (c), the sig-

nificance of periodicity is demonstrated, indicating that minimum pillar-to-pillar

distance results in an increased stress ratio due to stress accumulation in the gap,

while an optimum periodicity, exceeding 300 nm, is identified. Excessive period-

icity can adversely affect optical properties, which will be discussed in the optical

simulation section. Lastly, Figure 4.4 (d) shows the stress ratio’s dependency on

diameter variations. While an increase in diameter generally diminishes the stress

ratio, its influence is comparatively less than the other parameters.

Considering all investigations to design the optimised geometry, the maximum

strain (120%) was achieved with a PDMS-based structure that has a total thick-

ness of 200 nm. It consists of a 2D array of pillars, each with a diameter and

height of 200 nm. The distance between each pillar is 400 nm. The resonators in

the optimum geometry possess a thickness of 50nm and a diameter of 200nm.

In Figure 4.5 (a), the maximum stress level is depicted as a function of varying

pillar height on the interface, illustrating the mechanical deformation of the sam-

ple under a uni-axial load. This configuration is particularly relevant for applica-

tions where asymmetric strain is applied. Figure 4.5 (a, b) further demonstrates the

impact of loading in a single direction (the y-axis), resulting in a notably higher

strain level in the load direction (approximately 140%) and a comparatively lower

strain in the perpendicular direction (x-axis), reaching around 38%.
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Figure 4.5: a) Effects of pillar’s height on the maximum displacement in x-y
directions, and stress concentration in the interface, b) stress distribution in the
sample under uniaxial load.

4.2.2 Kirigami-inspired Geometry

Kirigami is a Japanese art similar to origami but involving both folding and cut-

ting. It has emerged as a novel strategy to enhance the stretchability of various

materials ranging from polymers to metals [8]. Unlike unpatterned materials,

kirigami introduces localised stress concentrations at the cuts or notches in the
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material. When the material is subjected to mechanical forces, these stress con-

centrations help distribute the strain more evenly throughout the structure. This

redistribution of stress prevents the accumulation of localised strain in any one

area, thus allowing the material to deform more easily without experiencing plas-

tic deformation and failure [9].

Moreover, the cuts in kirigami structures enable certain regions of the material to

relax their strain while others are being stretched. This strain relaxation mecha-

nism further contributes to the material’s ability to accommodate larger deforma-

tions without undergoing structural damage. Additionally, the presence of cuts or

notches enhances the flexibility of the material, enabling it to bend and twist more

easily in response to external forces. Furthermore, the geometric arrangement of

cuts in kirigami patterns can be used to adjust the mechanical properties of the

tunable metasurface [9].

Figure 4.6 (a) shows the kirigami architecture developed in this study. The

configuration comprises an arrangement of aluminium nanodisks organised in a

square lattice on a polymeric substrate based on kirigami principles. A flexi-

ble PDMS ribbon connects each nanodisk to its four adjacent counterparts. The

entire assembly is placed on a pre-strained continuous elastomeric substrate that

provides support. The nanodisks move in the x-y plane by relieving the substrate’s

strain as shown in Figure 4.6 (b). The substrate’s elasticity, a crucial characteristic

for material shaping and forming, relies on geometric factors such as width ratio

and thickness ratio. To fabricate an "infinitely deformable optomechanical meta-

material", the width ratio (w/d, representing the width of interconnections to the

diameter of disks) was adjusted to control local bending stiffness.

A 3D FEM was conducted to model the controlled mechanical buckling of the

structure when subjected to compressive forces. The objective is to explore and

find the optimised structure which provides the maximum stretchability. ABAQUS,

a commercial software, was employed for simulating structures. Four-node shell

elements were used to simulate the structures, while eight-node 3D stress elements

were employed for the elastomer substrate. Mesh size convergence was ensured

for computational accuracy. The elastomeric Kirigami structures were assumed
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Figure 4.6: a) a schematic representation of the geometry, where thin and bendable
ribbons made of PDMS connect a 2D array of Al nanodisks situated on a flexible
site. Resonators fixed to the bottom substrate are indicated by the yellow sites,
which move in both x and y directions. A continuous substrate is used to support
the entire structure. b) The geometry’s unit cell in the rest (left) and extreme (right)
states. Reprinted by permission from AIP Publishing [10], Copyright (2023).

to exhibit linear elasticity. Similar to the previous geometry, the Mooney Rivlin

hyper-elastic model was applied to represent the elastomeric substrate, with the

same reported parameters.

As the bi-axial pre-strain is released, stress concentrates in the middle and both

ends of the flexible ribbons. These regions have lower bending stiffness relative

to the sections that hold the resonator (cf. Figure 4.7). The stress redistribution

in the buckled structure leads to a 2D-to-3D shape transformation, changing the

interparticle distance in a controllable manner. The buckling-induced strain must

remain below the maximum strain limit for the elastomer connections as detailed

in the reference [11].

The optimised design comprises nanodisks with a thickness of 100 nm and a di-

ameter of 200 nm. The unit cell exhibits a period of p = 280 nm. For a more

comprehensive comparison, two distinct modes were identified: the rest mode

and the extreme mode. In the rest mode, characterised by a minimum gap of 80
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nm (ε=0%), and in the extreme mode, identified by a maximum gap of 420 nm

(ε=120%), these values respectively represent the states of maximum and mini-

mum released strain.

Figure 4.7 (a, b) illustrate the Von-Mises stress and strain distribution of the opti-

mised geometry subjected to a biaxial strain of extreme mode. In contrast to con-

ventional rigid island geometries where the rigid resonators are directly placed on

a continuous polymeric substrate, the stress concentration now shifts away from

the interface to the ribbon-membrane connections. Figure 4.7 (c) shows the stress

distribution in various strains from 0% to 120%. The significantly expanded range

of stretchability is attributed to the minimised stress level at the rigid-soft inter-

face, facilitating the spatial displacement of resonators over a greater distance.

This enhances the optical tunability achieved by providing unprecedented degrees

of freedom. Moreover, this design allows for highly adaptable resonators in both

two and even three directions, enabling the use of plasmonic hybridisation and

polarisation sensitivity to their fullest extent.

4.2.3 Alternative Arrangements

To generalise the concept, the arrangement of resonators was modified to demon-

strate the geometry’s ability in stress redistribution and strain-induced lattice de-

formation in other periodic metasurfaces. For example, Figure 4.8 (a, b) shows a

diagonal arrangement of disks, where the central disk is free to move in all direc-

tions, while the other disks are fixed on PDMS-based pillars bonded to a contin-

uous substrate. Applying strain to the main structure (by releasing the pre-strain

of the continuous substrate) induces a biaxial compressive force that accumulates

along the x and y directions. The kirigami-based pattern provides both in-plane

and out-of-plane displacement as shown in Figure 4.8 (c).
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Figure 4.7: a) Von-Mises stress b) strain distribution of the original pattern in
the extreme mode of the buckling process, and c) stress distribution in various
strain levels. The minimum gap of 80 nm (ε=0%) and the maximum gap of 420
nm (ε=120%), respectively, represent the rest and extreme states. Reprinted by
permission from AIP Publishing [10], Copyright (2023).

Figure 4.8: A schematic representation of the geometry with a diagonal arrange-
ment in a) rest mode and b) deformed mode. The structure comprises a 2D array
of Al nanodisks positioned on a flexible site and connected with thin, bendable
ribbons made of PDMS. The blue sites indicate the location of out-of-plane res-
onators, which are free to move in the x, y, and z directions, while the yellow sites
allocate in-plane resonators fixed on the bottom substrate, allowing movement
only in the x and y directions. The entire structure is situated on a continuous sub-
strate, with the disks having a thickness of 20 nm. The unit cell’s period is p=160
nm, and it consists of five Al nanodisks, each with a diameter d=60 nm, arranged
in a diagonal lattice. The width of flexible connections is 5 nm (w/d=8.3%). c),
the in-plane and out-of-plane displacement is illustrated, d) the Von-Mises stress
and e) strain distribution of the pattern during the buckling process. Reprinted by
permission from AIP Publishing [10], Copyright (2023).
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This compressive force acts as an upward trigger force on the flexible ribbons.

Once the compressive load surpasses the elastic buckling strength, a threshold is

reached, causing the interconnections to buckle. Simultaneously, the stress con-

centration shifts from the central parts to both ends. As depicted in 4.8 (d), in

the extreme mode, stresses are predominantly distributed in the middle and both

ends of the interconnections, with the disks experiencing negligible stress. This

observation confirms the stability of this 3D structure.

According to our models, a minimum width ratio, defined as the width of the

interconnection ribbon to the diameter of the resonator, (w/d ≥ 0.05) is neces-

sary to induce an out-of-plane deformation in the interconnections; otherwise, the

ribbons deform within the plane (2D). For instance, in Figure 4.9, the geometry

with a width ratio of 0.04 is depicted. When the biaxial strain is released along

a planar direction of the substrate, the localised stress at both ends of the flexible

ribbons causes elastic bending of the connections, resulting in a reduction of the

interparticle distance within the plane. The optimum geometry has a width ratio

of 0.1.

Figure 4.9: a) Von-Mises stress, b) strain distribution of a geometry with a width
ratio of 0.04. Reprinted by permission from AIP Publishing [10], Copyright
(2023).

4.3 Optical Simulation

Both discussed geometries in the previous sections exhibit a substantial stretcha-

bility range attributed to stress redistribution from the interface between rigid and
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soft components to elastomer parts. This section focuses on reporting the optical

behaviour of these geometries across different strain levels.

The optical simulation was conducted using COMSOL Multiphysics. The sub-

strate (PDMS) was characterised by a thickness and refractive index of 100 nm

and 1.45, respectively [12]. Al was employed as the metal, and its dielectric con-

stant was determined from Palik’s data [13].

Figure 4.10 (a) illustrates the schematic of a FEM model developed for the unit

cell analysis. Floquet periodic boundary conditions (PBCs) is applied to the lateral

faces to simulate an infinite array of elements. Perfectly matched layer (PML)s

are positioned at the top and bottom boundaries to prevent reflections from the

ports. Reflections were calculated for different periodicities (p) under normal in-

cident light. The entire structure is meshed using triangular elements with a mesh

size of 0.8 nm in the x and y directions. Elements from the x and y dimensions

are projected to create the meshing in the z direction. The maximum mesh size is

set in the air to reduce the simulation time. The nanodisks were specified with a

diameter (d) of 200 nm and a thickness (h) of 100 nm.

The reflectance spectra of the geometry under different strains are shown in Fig-

ure 4.10 (b). The applied biaxial strain along a planar direction of the substrate

changes the period of the unit cell in both the x and y directions. This adjustment

consequently shifts the surface plasmon resonances in the kirigami-inspired pat-

tern.

Resonator reflectance spectra are highly sensitive to gap size as shown in Figure

4.10 (b). When the gap size is less than 192 nm (ε ≤ 40%), two distinct re-

flectance peaks merge to form a single broad peak. By minimising the gap, The

TM polarised incidence induces the bonding electric-electric dipole interaction by

excitation of electric dipole (ED) along the disk dimer axis, which is similar to the

plasmonic dimer situation [14].
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Figure 4.10: a) Schematic of a single simulation unit COMSOL. b) shows the
reflectance curve as a function of strain level. Reprinted by permission from AIP
Publishing [10], Copyright (2023).

The interaction has a significant impact on the energy of the exciting ED,

causing a red-shift of the resonant wavelength of the electric mode (left peak),

as depicted in Figure 4.10 (b). Simultaneously, the magnetic dipole (MD)s are

excited in each particle but in a direction perpendicular to the dimer axis. The

magnetic mode’s energy level is raised by the repulsive force between the particle

poles, which causes the resonant wavelength to move blue (right peak). These

opposing peak shifts result in a single wide resonance centred at λ = 508 nm. This

resonance is attributed to the plasmonic hybridisation of two modes with different

local fields in the z-direction, as illustrated in Figure 4.10 (b) [15]. The single

resonance closely aligns with the localised surface plasmon (LSP) resonance of a

single disk, as observed in previous studies [16].

The reflectance spectra of the structure in the extreme mode, rest mode, and

common island geometry’s strain threshold reported in the literature are compared

in Figure 4.11 (a). The two narrow resonance peaks at λ = 440 nm and λ = 651 nm
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Figure 4.11: a) Reflection spectra of metasurface at (ε = 0, 36, 120%). The unit
cell is comprised of Al nanodisks with a height of 100 and a diameter of 200 nm.
b) The electric field distribution at the rest mode (ε = 0%) and in λ =508 nm
resonant wavelength with the period p = 280 nm. c) The electric field distribution
at the extreme mode (ε = 120%) and in λ =440 nm and (d) λ=651 nm resonant
wavelengths with the period p = 620 nm. Reprinted by permission from AIP
Publishing [10], Copyright (2023).

in the extreme mode, where the periodicity is highest, correspond to weakly hy-

bridised LSP modes. It is worth highlighting that the strain threshold in literature

is roughly 36%, leading to the 70-nm peak shift, however; the kirigami-inspired

design may take a strain as high as 120%. In the extreme mode, this causes a peak

shift of 143 nm (from 508 nm to 651 nm), which is nearly twice as great as the

peak shift seen in the normal geometry.

According to Figure 4.11 (b), the electric field is located at the interface between

the metal and dielectric and the corner of the metallic nanoparticles when the pe-

riod (p) is 280 nm. Increasing the periodicity leads to isolating nanodisks, which

provides stronger LSP resonances. As shown in Figure 4.11 (c), the electric field

at the bottom corner of the first detected resonance (λ = 440 nm) gradually drops

while increasing on both sides at p = 620 nm (ε = 120%). On the other hand, a

greater electric field is focused in the disks’ corner in the second detected reso-

nance (λ = 651 nm), which is consistent with LSPR (Figure 4.11(d)).
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Figure 4.12: a) Contour map of the reflectance spectra as a function of strain,
b) full width at half maximum (FWHM) values as a function of applied strain.
The red dashed line represents the calculated FWHM (171 nm) at the maximum
strain level (36%) in the conventional geometry, c) Electric field and magnetic
field distribution in the xy plane for nanodisks at incident wavelengths of 440nm
and 651 nm, corresponding to peaks revealed in simulation results. Reprinted by
permission from AIP Publishing [10], Copyright (2023).

Figure 4.12(a) shows a contour map of the reflectance and a clear picture of

the relative contributions from distinct phenomena, like localised surface plasmon

resonance (LSPR) and surface plasmon resonance (SPR), which are related to dif-

ferent metal-substrate interfaces. When the smallest gap (strain) occurs, SPR is

the predominant mechanism, producing a spectrum with a wide bandwidth [17].

The FWHM at different strain levels is shown in Figure 4.12(b). The FWHM

was extracted from the reflection profiles that were fitted to a Gaussian function

for this investigation. The results show that at greater strain levels, the suggested

design can produce sharper peaks. FWHM, for example, drops to 33.1±0.1 nm at

ε=120%, which is 5.1 times lower than the conventional counterparts at ε=36%.
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Figure 4.12 (c) shows the distribution of the magnetic field. Within each nanodisk,

the MD-induced electric field is primarily circulating. The magnetic field inten-

sity within the Al nanodisks increases to ε = 40% at λ =440 nm, after which it

decreases due to an increase in the strain level (gap size).

4.4 Exploring the Potential of Design

By redistribution of stress in the proposed geometries, their optical tunability in-

creases significantly. This enhances their potential, giving them high-precision

dynamic control, multifunctionality, and higher performance than conventional

designs. Here, as a proof of concept, three applications of ultra-stretchable meta-

surface are discussed. Although these samples were not fabricated in this project,

each example has great potential for further investigation.

Re-programmable Metadevice

Structural coloration has progressed significantly thanks to the extraordinary ad-

vancement in optoelectronic fields. However, the absence of a wide real-time

tunability and rewritable colouration schemes has slowed down the progression

in some relevant areas, especially the customised and reprogrammable optoelec-

tronic devices [18]. So far, a series of optical devices have been created based on

liquid crystals [19], micro/nanomechanical metamaterials [20, 21], phase-transition

materials [22], and stimuli-responsive metasurface [23, 24] with critical draw-

backs namely; a limited range of tunability, low efficiency, high fabrication /re-

configuration cost, and limited working temperature [25, 26].

The first application of the developed mechanically active metasurface is the

design of a re-programmable and dynamic structural colour. Unlike conventional

structural colour systems, the proposed one produces a wide range of colours from

white to green and red to blue in a reversible manner. A single device that pro-

duces the colour from white to red and back to white is not easily possible with

common designs, as they need to survive higher (>80%) strain levels as shown

in Figure 4.13. Such optical devices may result in new kinds of gadgets with
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Figure 4.13: Deciphering embedded domain by strain. The presence of slight
traces of the character on the left panels (ε= 0%) can be attributed to the interrup-
tion of the engineered periodic structure of the Al lattice, which can be deliber-
ately designed to alleviate or eliminate the effect.

rewritable functions and optical multitasking. Moreover, high-resolution projec-

tors, optical encryption, and real-time 3D displays might all employ them.

The variation in absorption and reflection is caused by the square lattices’ in-

creased periodicity upon stretching. Information is decoded when this strain-

induced difference creates a sharp contrast between it and the background. For

instance, we embedded a pattern of “A” character in a 50 × 50 µm2 region created

by a square lattice of Al nanodisks with a height of 100nm, diameter of 200 nm,

and periodicity of 320 nm on a white background. The sample was stretched, and

the evolution of the square area was used to measure the colour change. A signif-

icant contrast in the reflection spectrum was observed once the strain reached ap-

proximately 25%. Notably, the letter was observed against a whitish background

in reflection mode under bi-axial strain. In addition, in contrast to the previously

reported devices which worked mainly in red to near-infrared regions with limited

contrast and tunability, the proposed system presents a strong contrast form after

stretching with a strain >25% under the reflected, offering a wide range of colour

change in the presence of mechanical force (cf. Figure 4.13).

Plasmonic Sensors

Another application of mechanically tunable metasurface with high flexibility

is plasmonic biosensing. Despite impressive achievements in designing tunable

plasmonic sensors with high accuracy for refractive index (RI) sensing using

phase change materials (PCMs), operating based on an unprecedented non-volatile

change in their RI upon transition between amorphous and crystalline states, there
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is still room for proposing a materials-independent solution to design similar sen-

sors [27, 28, 29].

Figure 4.14: Calculated FOM* as a function of wavelength in various media at
ε=120%.

As previously mentioned, LSP resonance strongly depends on the geometrical

parameters, shape, and surrounding dielectric environment of nanostructures [30].

So, we have simultaneously adjusted both periodicity (by altering the strain level)

and the surrounding medium to open a route toward RI sensing enabling the detec-

tion of small concentrations of target molecules. Furthermore, this sensor could

be a practical solution for crucial challenges of the classical sensing methods like

low resolution, limited dynamic range, and low efficiency of the reconfiguration

process [31, 32].

Unlike common LSPR sensors which detect the spectral resonance shift upon
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a RI change of various surrounding medium, the proposed one measures a rel-

ative intensity change at a fixed wavelength induced by a RI change. A figure

of merit (FOM*), which is introduced by J. Becker et al. [33], can be calculated

according to Equation 4.4.1, where dI(λ )/I(λ ) is the relative intensity change at

a fixed wavelength induced by a RI change dn. λo is chosen where FOM* has a

maximum value.

FOM∗ = max
∣∣∣∣dI(λ )/dn(λ )

I(λ )

∣∣∣∣ (4.4.1)

The variation of the RI of the surrounding medium in the extreme mode gives

rise to nonzero reflectance and consequently provides the extremely sensitive de-

tection of the intensity variation in reflectance at a specific frequency. Figure 4.14

presents the calculated FOM* of the sensor in various media with different refrac-

tive indexes ranging from n=1 (air) to n=1.5 (common organic molecules). The

reflectance reaches a minimum of 0.001 at 637 nm in air. The maximum achieved

FOM* is around 431 by measuring the variation of intensity with different dielec-

tric materials (n=1 (air) and n=1.13). Moreover, the FOM* for water (n=1.312)

is almost four times larger than the previous sensor, where a passive plasmonic

sensor was designed to operate in the near-infrared regime. This design was de-

veloped by placing gold disks with a diameter of 352 nm and a thickness of 20 nm

on a multi-layered structure consisting of MgF2 spacer, gold, and glass [34]. In

the calculation of the FOM*, the reflectance difference between various mediums

(Imedium (λ )) and air (Iair (λ )) was taken for the derivative in Equation 4.4.1.

Switchable Reflector/Absorber

Last but not least, the potential of developed ultra-stretchable metasurfaces in the

design of a switch from a high reflector to a high absorber in the visible regions

was theoretically demonstrated. The proposed metasurface operates in a wide

range of strains, in which the exciting ED and MD are coupled, and form hy-

bridised modes. The high absorption and high reflection arise from destructive

multipolar interferences in the opposite directions, respectively through the gen-

eralised Kerker effect [35]. The energy level of the hybridised modes can be
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dynamically controlled by the strain level, allowing these metasurfaces to have

anisotropic optical responses.

Figure 4.15: a) Reflection and Transmission spectra of metasurface at the different
strain levels. The unit cell is comprised of Au nanodisk with a height of 25 and a
diameter of 200 nm.

Figure 4.15 shows the reflectance and transmission of a new stretchable meta-

surface based on a square array of Au nanodisks at extreme mode (ε=120%).

Here, the unit cell is comprised of an Au nanodisk with a height of 25 and a di-

ameter of 200 nm. As shown in Figure 4.15, the proposed design can support

reflection/absorbtion occurring at different wavelengths through multipolar inter-

ference. More interestingly, the operational wavelength can be altered by tuning

the strain level with no change in the shape and dimension of resonators.

In the extreme mode (cf. Figure 4.15), the maximum reflectance occurs in λ =

695nm where the transmission is almost 20%. However, when the strain level

hits the maximum (ε=120%), the transmission reaches 96%. This huge difference

can be used to design an absorption switch. In addition, they can be fine-tuned
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to the point where the wavelengths of reflection and absorption nearly coincide.

So, the metasurface switches from a highly reflective state to a highly transparent

one. For instance, a low reflection (lower than10%) was observed in a wide wave-

length range of 400–651 nm with a minimum of 0.05 at 443 nm. However, the

transmission value changes in the range of 90% to 100% in the same range with

a maximum of 97.6% at 447 nm. As a result, strong transparency is supported in

this wavelength range.

4.5 Conclusion

In this result chapter, the focus shifted towards overcoming the limitations of con-

ventional mechanically tunable metasurfaces by introducing two main geometries:

pillar-based and kirigami-inspired patterns. These designs aim to achieve ultra-

stretchable metasurfaces, pushing the maximum stretchability from the typical

10-35% range to an impressive 120%. The key strategy involves relocating stress

concentration from the interface of rigid-soft materials to safer parts of the struc-

ture. Mechanical simulations were conducted to explore alternative arrangements

of resonators, facilitating a combination of in-plane and out-of-plane deformation,

leading to 2D-to-3D shape transformations.

In the pillar-based structures, it was found that the height of pillars significantly

influences stress redistribution. Increasing pillar height from 0 to 150 nm can re-

duce the stress ratio by almost 80%. Conversely, in kirigami-inspired geometries,

a minimum width ratio (w/d ≥ 0.05) is essential to induce out-of-plane deforma-

tion in the interconnections, otherwise, the ribbons deform within the plane (2D).

The optimised structure with maximum stretchability underwent optical simula-

tion, revealing a peak shift of 143 nm (from 508 nm to 651 nm), nearly twice

that of the normal geometry. This extensive tunability enhances the potential of

these geometries in various applications discussed, such as rewritable metade-

vices, plasmonic sensors with high accuracy, and Switchable reflector/absorber

systems.

Furthermore, optical simulations were utilised for generating datasets to train ma-
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chine learning algorithms discussed in Chapter 5. Parameter optimisation resulted

in a minimal dataset for training the geometry optimisation network, which was

then applied for structural colour design and optimisation.
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5.1 Chapter Overview

This chapter presents the results of machine learning (ML) algorithms. The ini-

tial section focuses on the optimised neural network (NN) employed for the design

and optimisation of kirigami-inspired ultra-stretchable metasurfaces as introduced

in Chapter 4. Detailed discussions include the complexity of data generation, the

training process, and the model’s performance. The accuracy of the NN is checked

for the design and optimisation of a structural colour as a practical application of

ultra-stretchable metasurfaces where one single geometry can provide a broad

range of colours in various levels of strain.

Unlike the first network that fixed the properties of the material by considering a

thin layer of one pure material for the optimisation of a structural colour system,

the subsequent part of this chapter focuses on the optimisation of materials in a

120
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more complex structure. Here, a six-layer multilayer structure is considered to

develop a universal algorithm for the inverse design (ID) and material discovery

for a custom amorphous metasurface. Detailed information on data-generating

techniques and an analysis of the accuracy of these networks are discussed. The

ID network was trained to predict refractive indices of materials as the most sig-

nificant material properties, enabling the design of multilayer metamaterials with

customised optical properties with a 104 order faster than the simulation tech-

nique. The material discovery network simultaneously explores an infinite ma-

terial space to propose new compositions for creating amorphous metamaterials

with unique properties. In addition, a comparison study is done by comparing the

model created in this thesis with other networks described in existing literature.

The last section of this chapter reports the details of the NN algorithm that was de-

veloped to optimise the structure in the third domain which focuses on free-form

geometry. This network was trained with a small dataset generated by simulation

on a common geometry with a random free-form shape which is coated with two

random materials. Two forward and inverse design networks were trained in this

part. The former was used for data augmentation, and the latter was tasked to

search an infinite design space to propose the geometry to achieve a custom op-

tical property. This comparative analysis highlights the significant potential and

effectiveness of the developed networks, establishing them as valuable additions

to the field of metamaterials and metasurfaces.

5.2 Optimisation of Geometric Design Parameters

The optimisation of the kirigami-based geometry (introduced in Chapter 4) can

unlock a new generation of active structural colour. Traditional design optimi-

sation methods such as numerical simulations typically demand either laborious

data collection or intricate reconstruction algorithms for data processing. This

challenge makes them inadequate for complex calculations where adjustment of

both mechanical and optical variables is necessary.

The research methodology involved the development of a fully connected deep
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neural network (DNN) designed to predict and optimise structural colour param-

eters. This encompassed tuning key geometrical parameters, including the diam-

eter of the Al disk (D), the thickness of the resonator (H), and the mechanically

induced deformation (ε), as outlined in Figure 5.1. The DNN was initially trained

using a limited dataset generated through a validated finite element simulation

model. This training process aimed to teach the network the complex nonlinear re-

lationship between displacement induced by strain releases in a kirigami-inspired

geometry and the corresponding design parameters, serving as a proof of concept.

Subsequently, the trained network was tasked with generating a more extensive

dataset to reduce parameter sweeping steps to a reasonable time. As reported in

Table 5.1, the input values for this network are H, D, and ε , and the output val-

ues are two structural colour parameters (X, Y). The augmented dataset was then

used to identify the optimised "single geometry" capable of providing the widest

colour gamut and an efficient structural colour system.

Figure 5.1: Schematic of a fully connected DNN which extracts the complex rela-
tionship between mechanical and geometrical parameters (D: diameter, H: height,
and ε: strain level) and structural colour parameters (X, Y) plotted on Interna-
tional Commission on Illumination (CIE) 1931 gamut. Reprinted by permission
from AIP Publishing [1], Copyright (2023).

Table 5.1 presents the range of variables considered for both the training and

optimisation phases in this study. The small dataset comprising 2100 data points

was extracted through a combination of optical and mechanical simulations, en-

abling the generation of a diverse array of colours for training the network. This

small-scale data was carefully generated to guarantee sufficient variation for net-

work training, while simultaneously encapsulating enough comparable data to en-
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able complete input-to-output mapping. As discussed in Chapter 4, the proposed

kirigami-inspired pattern operated within a maximum strain level of 120%, es-

tablishing this as the upper limit for the strain with a step range of 20%. Initial

findings showed the significance of the resonator’s thickness over the diameters,

prompting the choice of steps at 10 and 20nm, respectively.

Table 5.1: Range of variables for training DNN, and optimisation

Variables Training Optimisation
Range Step No. of samples Range Step No. of samples

Strain (ε) % 0-120 20 7 0-120 10 13
Height of Al (H) (nm) 5-145 10 15 5-145 5 29

Diameter of Disk (D) (nm) 10-295 20 20 10-295 5 58
Total 2100 21866

For the training of the network, the dataset was divided into three distinct

subsets: 80% for training, 10% for validation, and 10% for testing purposes. The

hyperparameters governing the network architecture, including the number of lay-

ers, the number of neurons in each layer, and the choice of activation functions,

were chosen through a process of trial and error. The optimised network archi-

tecture is composed of four hidden layers, with each layer using Leakyrectified

linear unit (ReLU) activation functions to connect batch-normalised input values

to the desired output. The final layer incorporates a sigmoid activation function to

constrain prediction values within the range of 0 and 1. The mean absolute error

(MAE) was selected as the loss function, and the Adam optimiser was employed

for training. Notably, the initial learning rate was set at 0.01 and logarithmically

reduced whenever the validation loss plateaued for more than 10 epochs, with a

minimum threshold of 1×10−6. This configuration ensures a robust and efficient

training process, allowing the network to adapt its parameters effectively during

optimisation.

In Figure 5.2 (a), the convergence of both training and validation curves is evident

at a significantly higher level. This convergence results in a MAE of 0.0051 for

the test dataset and 0.0038 for the training dataset. This accuracy is accompanied

by a remarkable order of magnitude decrease in computational time, specifically

by a factor of 104, when compared to finite element method (FEM) simulations

traditionally employed in conventional design workflows.
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Figure 5.2: a) The learning curve of the DNN model for training and validation
cost as a function of epochs, b) Comparison of the prediction accuracy of 14
random target structural colours. Reprinted by permission from AIP Publishing
[1], Copyright (2023).

A qualitative analysis is presented in Figure 5.2(b) which illustrates the accuracy

of the model in predicting 14 random modes. The model accurately predicts a

diverse range of colours. The outcomes of the qualitative and quantitative analy-

sis demonstrate the model’s potential in accurately interpolating the relationship

between the geometrical parameters of the optomechanical metamaterials and the

resulting colour across various levels of strain. We also considered more 50 ran-

dom samples to check the accuracy of the network by comparing it with the data

calculated by the simulation. In all samples, the colours were predicted accurately.

The trained model was then used to expand the dataset by predicting the structural
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colour parameters (X, Y) for 21866 samples as presented in Table 5.1.

Figure 5.3: CIE chromaticity diagrams of the samples derived from FEM (or-
ange) and ML (grey).Reprinted by permission from AIP Publishing [1], Copyright
(2023).

Figure 5.3 presents the scattering patterns of samples obtained through FEM

and ML. The orange dots on the plot represent the 2100 samples employed for

training the model, while the grey dots correspond to the 21866 geometries gener-

ated by the model. As demonstrated, the sweeping of key parameters with smaller

steps enables the identification of previously missing geometries, leading to a

wider colour gamut. This effect is particularly noticeable in the green and blue

regions, highlighting the efficacy of the ML approach in discovering novel and

diverse colour possibilities in the structural design space.

The optimised single geometry is characterised by an Al nanodisk with a thick-

ness of 130 nm and a diameter of 200 nm. This configuration provides the broadest

areal colour space coverage, encompassing 27.65% of the standard RGB (sRGB)

space (cf. Figure 5.4(a)). The scattering pattern of structural colour parameters

(X, Y) for all examined samples is available in video format within the supple-

mentary document of the published work [1].
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Figure 5.4: a) The optimised geometry, featuring an Al nanodisk with a thickness
(H) of 130 nm and a diameter (D) of 200 nm, showcases a notable 27.65% cov-
erage of the sRGB colour space. b) CIE 1931 chromaticity diagrams of the TiO2
nanodisks with optimised geometry and varied strain (H=130 nm, D= 200 nm).
Reprinted by permission from AIP Publishing [1], Copyright (2023).

The universal single-geometry demonstrates significant potential for expand-

ing the colour coverage within dielectric-based structural colour systems. By sub-

stituting the plasmonic component with a high-dielectric material, such as TiO2,

a diverse range of colours is achievable in the CIE 1931 chromaticity diagram.

Figure 5.4(b) visually represents the versatility of the proposed kirigami-inspired

design, showcasing a comprehensive colour palette spanning from white to red,

green, and blue. This observation substantiates the universal characteristics of the

design, indicating its applicability to both plasmonic and Mie resonators.

5.3 AI-assisted Materials Development

A comprehensive design of an active metasurface needs consideration of both ge-

ometric parameters and structural material properties. In the previous phase, the

geometric parameters of the proposed mechanically tunable metasurface were op-

timised for a structural colour as a proof of concept. However, during this process,

the material properties remained fixed, relying on conventional materials typically

used in metasurface development. This section shifts focus to optimising material

properties, specifically the refractive index (RI) values, within a more complex
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multilayer thin film structure. By integrating these optimised material properties

with previously optimised geometric parameters, the potential of the proposed ac-

tive metasurface can be significantly expanded.

The general structure is a six-layer metamaterial, where layers are systematically

composed of a pair of randomly selected materials. The materials are chosen

from a material library comprising 33 distinct materials categorised into four main

groups, as outlined in Table 5.2. Although the fabrication possibility of various

combinations of all main classes of materials was experimentally reported [2], the

possibility of fabricating random samples was not considered in dataset genera-

tion. This structured configuration is situated on an infinite glass substrate and

exposed to normally incident light waves. The thickness of each layer varies in

the range of 10 to 100 nm. The resulting reflectance spectrum is calculated within

the visible light wavelength range, as schematically illustrated in Figure 5.5 (a, b).

This comprehensive approach allows for the exploration of a diverse array of ma-

terial combinations and layer thicknesses to understand the optical characteristics

of the multilayer metamaterial under consideration.

Figure 5.5: a) Schematic of the randomly designed thin-film structures consisting
of two different materials, which are arranged periodically with each other. d1
to d6 corresponds to the thickness of the first and last layer respectively. b) Re-
flectance spectra calculated within the visible light wavelength range.

5.3.1 Data Generation

The selection of materials for fabricating multilayer thin films is diverse and de-

pends on the specific application requirements. Materials are systematically clas-



5.3. AI-assisted Materials Development 128

sified into four main groups, each designated by a two-digit binary code (cf. Table

5.2):

1. Metals (00): Metals are commonly used in multilayer thin metamaterials due

to their high reflectivity and electrical conductivity. Silver (Ag), aluminium (Al),

and gold (Au) are common choices for applications like mirrors, optical filters,

and electrodes [3].

2. Dielectrics and Oxides (01): Dielectric materials find extensive use in multi-

layer thin films owing to their high refractive indices, low absorption coefficients,

and minimal scattering losses. Silicon dioxide (SiO2), titanium dioxide (TiO2),

and tantalum pentoxide (Ta2O5) are examples employed in mirrors, filters, and

antireflection coatings [4].

3. Fluoride-Based Materials (10): This group offers unique properties, including

a high refractive index, low dispersion, and excellent transparency in the UV and

IR regions. For instance, CaF2-based multilayer thin films find applications in

antireflection coatings, beam splitters, optical filters, and mirrors [5, 6].

4. Polymers (11): The combination of flexibility, cost-effectiveness, ease of pro-

cessing, and the ability to tailor properties makes polymers a versatile and widely

used choice in the fabrication of multilayer thin film structures across various

industries. Polyimide, polyethylene terephthalate (PET), and polycarbonate are

examples used to create coatings, barriers, and adhesives [7].

Table 5.2: Classified materials library with a binary coding system

Metals Oxides Fluorides Polymers
00 01 10 11
Ag KTaO3 CaF2 PC
Au MoO3 BaF2 PMMA
Bi SiO2 MgF2 PET
Co Ta2O5 PVC
Fe Al2O3 PS
Mg GeO2 PVA
Mn MgO
Mo Nb2O5
Ni Sc2O3
Ta TiO2
Zn ZnO
Pt ZrO2
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As shown in Figure 5.6, the methodology has two interconnected neural net-

works: the "inverse design" and "materials discovery" networks. These networks

were trained using distinct datasets to capture geometrical and material parame-

ters. The initial network, the inverse design, was trained with a dataset generated

by the transfer matrix method (TMM). Initially, 70,000 random six-layer meta-

material structures were created, with layer thicknesses constrained to multiples

of 10 nm. A 36-point discretisation of the reflectance spectrum is represented by

Figure 5.6: Schematic illustration of the process flow.

the input array R36 = {R400,R410, . . . ,R750}. However, the output array has 150

elements that represent the materials and geometry of a layered construction. It

provides details on each layer’s thickness and reflectance at various wavelengths:

• The first six elements of the array correspond to the thickness of each layer

• The following elements, after thicknesses in the output array, represent the

refractive indices of each layer for wavelengths ranging from 400 to 750 nm

with a step size of 10 nm. Extinction coefficients represented by Ki, which

specifies the order of the corresponding material, and RIs, represented by

Ni, were extracted from an online RI database for wavelengths ranging from
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400 to 750 nm. The refractive indices at each wavelength are specifically

listed in the following order: N1, K1, N2, K2, N1 and K1. The RI and extinc-

tion coefficient of the first layer are represented by N1 and K1, respectively,

and the RI and extinction coefficient of the second layer are represented by

N2 and K2, which are chosen from every 36 points in the input.

However, the second network—materials discovery—was trained with a dataset

produced by effective medium approximation (EMA). Here, the considered com-

posites were simplified to consist of just two materials to streamline the problem.

This method is a theoretical model in optics that is used to describe the behaviour

of light in materials that are composed of a mixture of two or more different types

of particles or structures. EMA assumes that the material can be approximated as

a homogeneous medium with effective optical properties that depend on the prop-

erties of the individual components and their spatial arrangement. There are sev-

eral approximations, but two of the most common ones are the Maxwell–Garnett

(MG) approximation and the Bruggeman approximation.

• Maxwell-Garnett Approximation:

The MG approximation is a widely used effective medium approximation

in optics and material science. It is used to calculate the effective optical

properties of composite materials consisting of a host medium and small,

homogeneously distributed inclusions with a different dielectric constant.

The MG approximation assumes that the inclusions are small compared to

the wavelength of light and that their spatial arrangement is random [8].

The MG approximation provides an explicit formula for the effective dielec-

tric constant of the composite material, which can be related to the refractive

index of the material through the relation n2
e f f = εe f f . Therefore, the MG

approximation can be used to calculate the effective RI of a composite ma-

terial. The effective dielectric constant in the MG approximation is given

by:

εe f f = εm[1+(εi− εm)ϕ/(εi +2εm)] (5.3.1)

where εm and εi are the dielectric constants of the matrix and the inclusion,
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respectively, and ϕ is the volume fraction of the inclusions.

While the MG approximation is a powerful tool for calculating the effective

optical properties of composite materials, it has some limitations. For exam-

ple, it assumes that the inclusions are small compared to the wavelength of

light and that they are randomly distributed in the host medium. In addition,

the MG approximation is only valid for low-volume fractions of inclusions,

typically less than 10% [9]. For higher volume fractions, the MG approxi-

mation can overestimate the effective dielectric constant, and more complex

models, such as the Bruggeman approximation, may be needed.

• Bruggeman Approximation:

Bruggeman approximation is another commonly used theory for estimating

the effective RI of a composite material, which is a material made up of two

or more different components with different refractive indices. The effective

RI is the one that a composite material would have if it were a homogeneous

material with the same optical properties [10].

Bruggeman approximation assumes that the composite material is randomly

distributed and that the size of the different materials in the composite is

much smaller than the wavelength of the light being used. The effective

dielectric constant of the material can be calculated using the Bruggeman

approximation as follows:

(εe f f − εi)/(εe f f +2εi) = ϕ ∗ (εi− εm)/(εi +2εm) (5.3.2)

where εe f f is the effective dielectric constant of the material, εi and εm are

the dielectric constants of the inclusion and matrix respectively, and ϕ is the

volume fraction of the inclusion. The effective refractive index, (ne f f ), can

then be calculated from the effective dielectric constant using the relation

n2
e f f = εe f f .

The advantages of the Bruggeman approximation are that it is relatively sim-

ple to use and does not require detailed information about the microstructure of



5.3. AI-assisted Materials Development 132

the composite material. It is also a useful tool for predicting the optical properties

of composite materials, which can be important in a variety of applications.

However, the Bruggeman approximation has some limitations. For example, it as-

sumes that the composite material is randomly distributed and that the size of the

different materials in the composite is much smaller than the wavelength of the

light being used, which may not be true for all composite materials. Additionally,

the approximation may not be accurate for materials with large volume fractions

of one of the materials or materials with complex microstructures.

Using two materials from a material library, we created 70,000 random datasets

for this investigation. We then used these two models to determine the effective

RI for various volume fractions. Since the MG model implies that the composite

is composed of scattered spherical inclusions in a homogenous medium, it was

applied to volume fractions less than 0.5%. We employed the Bruggeman model,

which accounts for the inclusions’ random distribution and their interfacial inter-

actions with the surrounding medium, for volume fractions ranging from 0.5% to

30%. Although this model can explain a greater range of volume fractions than

the MG model, it is not without limits, especially in cases when the inclusions are

very irregular or exhibit notable differences in size and shape. The second net-

work then used the complex RI of each layer that the ID network had predicted as

its input. The result was two materials (matrix and inclusion) together with their

corresponding volume fractions (F1 and F2). The data imbalance was checked

by examining the distribution of class labels within the dataset. This involved

analysing the frequency of each class to determine if there were disproportion-

ately more instances of certain classes compared to others. Additionally, common

techniques such as visualisations, class distribution plots, and calculating class

frequencies were considered to gain insights into the imbalance. These assess-

ments helped us understand if any class was underrepresented or overrepresented,

enabling us to address potential biases during model training and evaluation.
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Figure 5.7: Detailed process flow for the inverse design of multilayer metamate-
rial. Inputting the desired reflectance spectrum leads to outputs comprising the
refractive indices of each layer and the structural parameters of nanostructures.
The material discovery network, employing the EMA, determines the composi-
tions of layers in this schematic process.
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5.3.2 Methodology

Figure 5.7 shows the proposed learning methodology consisting of two sequential

networks: the inverse design network (comprising two sub-networks) and the ma-

terials discovery network. Similar to the previous network, in the training process

of the following networks, the dataset was split into 80% for network training,

10% for validation, and 10% for testing.

Forward Model

A five-layered fully connected neural network (FCNN) was implemented, with

a batch normalisation layer to enhance convergence. The input and output layers

contained 10 and 71 neurons respectively, representing the thicknesses and refrac-

tive indices of the randomly selected materials, and the reflectance values. Like

the previous study [11], the MAE loss function was selected to address the regres-

sion task. Moreover, the Adam optimiser was chosen for its expedited conver-

gence rate. The learning rate was initially set to 0.01 and was decreased logarith-

mically whenever the validation loss remained stagnant for more than 10 epochs

until it reached 1×10−6. The LeakyReLU activation function is used for all layers,

except the output one, which uses a sigmoid function to constrain the predictions

between 0 and 1. The hyperparameters governing the network architecture, in-

cluding the number of layers, the number of neurons in each layer, and the choice

of activation functions, were chosen through a process of grid search.

The learning curves for both training and dataset are presented in Figure 5.8. The

MAE for the training and the test dataset is 0.00071, and 0.00075 respectively.

Inverse Design Network

The objective of the ID network is to predict the suitable refractive indices, rep-

resented as N36
1 , and N36

2 for two consecutive layers, along with the correspond-

ing extinction coefficients denoted as K36
1 and K36

2 . Additionally, the network

aims to predict the thickness of their respective layers (denoted as d1 to d6).

These predictions are made based on a given array of reflectance spectra (i.e.,
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Figure 5.8: Learning curve of the forward model in prediction of reflectance val-
ues.

R36 = {R400,R410, . . . ,R750}). As mentioned earlier, the dimensions of the input

and output for this network are 36 and 150, respectively, as per our previous ex-

planation. Our initial attempts to train a convolutional neural network (CNN) on

the produced data using the Bayesian optimisation method for hyper-parameter

tuning revealed a difficult learning task within a reasonable amount of time (24

hours) and a reasonable number of epochs (10,000) with a desired validation and

test error. To address this challenge, we divided the prediction task into three

stages, each of which was based on a combination of feedforward and CNN neu-

ral networks. The proposed ID network comprises two subsequent sub-networks.

The first sub-network aims to predict the thicknesses of six layers (denoted by

D6 = {d1,d2, . . . ,d6}) and classes of two corresponding materials, based on the

given array of reflectance spectrum (i.e., R36). All possible combinations of pairs

of alternative layers using the binary codes of metals (00), oxides (01), fluo-

rides(10), and polymers (11) are categorised into 16 groups which are listed in

Table 5.3. Each pair will have a unique four-digit binary code based on the com-

bination of the individual layer binary codes and its decimal number presents the

group number (classes of materials).
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Table 5.3: Coding system of all available classes

First layer + Second layer Binary Code Group Number
Metal + Metal 0000 0
Metal + Oxide 0001 1

Metal + Fluoride 0010 2
Metal + Polymer 0011 3
Oxide + Metal 0100 4
Oxide + Oxide 0101 5

Oxide + Fluoride 0110 6
Oxide + Polymer 0111 7
Fluoride + Metal 1000 8
Fluoride + Oxide 1001 9

Fluoride + Fluoride 1010 10
Fluoride + Polymer 1011 11

Polymer + Metal 1100 12
Polymer + Oxide 1101 13

Polymer + Fluoride 1110 14
Polymer + Polymer 1111 15

As a classification task, this subnetwork uses a distinct number, C, that cor-

responds to the 4-digit binary number, an integer ranging from 0 to 15, to make

predictions about these two classes. This sub-network produces one-hot encoded

output for the class number, which consists of 16 binary outputs, only one of

which is 1 and the rest are zeros. As a result, this network completes a regres-

sion job and a classification task simultaneously. The objective of classification

is to predict the classes of materials, while the task of regression is to predict the

thicknesses. The mean squared error (MSE) in the regression task and the sparse

categorical entropy in the classification task are added to form the training pro-

cess’s loss function. The loss functions of two different tasks operated separately

without sharing the neutrons and weights. Then, the input and output layers of the

first sub-network were connected to the input layer of the second sub-network.

The second sub-network aims to predict the refractive indices and extinction co-

efficients at each wavelength for two materials.

Subsequently, the combined network was trained end-to-end, using the initial

weights obtained from the two trained sub-networks. This training process was

successful, leading to the convergence of the network within a reasonable time-
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frame and a number of epochs, along with achieving the desired validation and

test error. By dividing the network into two sub-networks, the task becomes more

manageable: the first network predicts thickness values, while the second predicts

refractive indices. Furthermore, training the sub-networks allowed for obtaining

initial weights, which were then frozen for the subsequent end-to-end training pro-

cess. The loss functions of two different tasks operated separately without sharing

the neutrons and weights.

Materials Discovery Network

The material discovery network is designed to predict two materials (denoted by

C1 and C2) and their respective fractions (where their sum equals one) within a

composite material. This prediction is based on the provided refractive indices

and extinction coefficients of a specific material at each wavelength. Similar to

the ID network, this network combines both CNN and feedforward NN. It simul-

taneously performs three learning tasks: one regression and two classifications.

The regression task aims to predict the fraction value (denoted by F) of one ma-

terial, with the fraction of the second material in the composite being one minus

this obtained value. The two classification tasks involve classifying the materials

in the composite among 32 materials (CF. Table 5.2). The network employs the

same loss functions as the inverse design network, using MSE for the regression

task and sparse categorical entropy for the classification tasks.

5.3.3 Networks Performance

Predicting a multilayer metamaterial’s refractive indices, thicknesses, and mate-

rial classes involves both classification and regression, all of which are critical

to the accurate design and best possible enhancement of its optical properties.

With an F1-score of 0.391 for the classification part and an root mean square error

(RMSE) of 0.135 for the regression section, the sub-networks created in this study

show promising results. With a score of 0.904, the ROC-AUC-curve with one ver-

sus rest also shows excellent performance for the classification task. ROC-AUC

measures the area under the receiver operating characteristic curve, which plots
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the true positive rate (sensitivity) against the false positive rate (1 - specificity) at

various threshold settings. It provides a comprehensive evaluation of the model’s

ability to discriminate between classes across all possible thresholds. ROC-AUC

is particularly useful when the relative costs of false positives and false negatives

are not known or when you want to assess the model’s performance across differ-

ent decision thresholds.

Spearman’s correlation coefficient (SCC) was employed to measure the relation-

ship between two variables (the target and predicted values) among all samples.

This non-parametric technique has no assumptions about the data distribution.

Instead, it reports how closely two variables’ ranks are related to one another lin-

early [12]. To compute the SCC, each variable should be ranked separately, from

smallest to largest. Then, the differences between the ranks for each observation

on each variable are calculated. Finally, the correlation between the two sets of

ranks is investigated. The SCC spans from -1 to 1. A value of -1 signifies a per-

fect negative correlation, meaning as one variable increases, the other decreases.

A correlation-free state is indicated by a value of 0, while a value of 1 indicates

a perfect positive correlation, signifying that as one variable increases, the other

variable also increases. The closer the coefficient is to -1 or 1, the stronger the

correlation between the two variables. The formula for the SCC, denoted as "ρ",

is:

ρ = 1−6∑d2/n(n2−1) (5.3.3)

where ∑d2 is the sum of the squared differences between the ranks of the

two variables and n is the number of observations (or data points). Figure 5.9

compares the SCC for all available combinations.
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Figure 5.9: SCC graph to compare the refractive indices of target values and pre-
dicted ones among all samples.

As can be seen in Figure 5.9, the SCC values demonstrate a strong positive

correlation between the target values of N1, N2, K1, and K2 and the predicted ones

with the ID network. This indicates that the predicted values closely follow the

trend of the target values, suggesting a high level of accuracy in the prediction

model (i.e., the median in all box plots is higher than 0.995, in addition to the

first quartile higher than 0.87 for N1, K1, and K2). Additionally, the results of this

measurement for all possible combinations of pairs of alternative layers, using

the binary codes of metals (00), oxides (01), fluorides (10), and polymers (11),

are presented in Figure 5.10. As shown, a strong positive correlation is evident

among most combinations of layers. However, a noteworthy disparity in SCC

values is observed in the vice-versa combination. This implies that the trained

network tends to grasp the underlying pattern more effectively in one of these

combinations. For instance, groups numbered 1 and 4 represent a combination of

“metal and oxide” with different subsequent layers. Nevertheless, the accuracy of

prediction in group 4 significantly outperforms its counterpart. This observation

underscores the intricate nature of the ID in this particular problem, indicating the

challenges posed by the complexity of the underlying patterns.
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Figure 5.10: SCC values for each combination of materials.
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5.4 Related Works

Optimising both structural and material parameters is a common challenge in

combinatorial optimisation. Previous research, as outlined in Table 5.4, has mostly

used ML algorithms to extract geometrical parameters and materials for multi-

layer metamaterials, resulting in diverse optical performance metrics. Although

this is not a fair way to compare the performance of various models, Table 5.4

represents the input values, range of data, and complexity of the output. However,

the model developed in this study differs from prior works in several key aspects.

Firstly, while earlier research explored a limited number of materials, the materi-

als library used in this project has expanded to 33 items, treating them as discrete

variables, marking it as the most extensive reported in the literature. Furthermore,

none of the prior studies attempted to predict the RI of layers as a continuous vari-

able dependent on wavelength. Moreover, whereas earlier works relied on limited

pre-existing material, my model explores practically infinite composition space to

propose amorphous metamaterials.

Another notable difference is the optimisation approach. Most previous research

employed global optimisation methods, such as genetic algorithm (GA) or par-

ticle swarm optimisation, to find the optimum designs. However, the method

proposed in this thesis adopts a more local optimisation approach, employing a

gradient-based technique to iteratively enhance designs. This facilitates a more

focused exploration of the design space and may provide greater efficiency in

discovering desired solutions. Additionally, while prior works concentrated on

achieving specific optical performance metrics, such as reflectance or transmit-

tance, the method proposed in this paper adopts a more comprehensive optimisa-

tion approach. Specifically, my model optimises the overall spectral response of

the multilayer structure by considering both the optical extinction coefficient and

refractive index. This approach surpasses what can be achieved by solely focusing

on individual performance metrics.
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Table 5.4: Comparison to state-of-the-art related works
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5.5 Optimisation of Free-form Shape Configuration

Up to now, two critical domains of design and optimisation have been completed

using developed NN. However, another aspect of the proposed tunable metasur-

face is the shape of the pillars or kirigami-based patterns. While the previous

networks focused on general geometries involving structures with non-continuous

disk-shaped features, the design space for shape optimisation is virtually infinite.

This section aims to benefit from the potential of artificial intelligence (AI) to

inversely discover shapes without restrictions, allowing for the customisation of

structures.

Here another ML-based algorithm was developed to discover the free-form struc-

ture. The concept of a global freeform design strategy has allowed the exploration

of design candidates that were previously unattainable [20]. Freeform nanopho-

tonic structures are essential components that possess a non-restricted geometric

shape in real space, allowing for more diverse forms beyond traditional straight

lines and polygons [21]. Freeform structures enable the exploration of limitless

design possibilities that are difficult to attain with traditional rigid devices [21].

However, finding an optimised nanophotonic structure in the infinite design space

that increases exponentially with the number of freeform geometries has been a

long-standing challenge [22].

The studied geometry is presented in Figure 5.11 (a,b), depicting a common layer-

ing configuration consisting of a photoresist atop a bottom anti-reflective coating

(BARC) layer, both positioned on a silicon wafer. Within this structure, a di-

verse nanohole array emerges in the photoresist layer, featuring circles, elliptical

shapes, and exotic configurations. Subsequently, the entire structure undergoes

random combinations of coating layers including no coating layer, a single layer,

and double-layered metallic materials. The base of the various nanoholes is gen-

erated through a comprehensive approach using a two-dimensional (2D) origin

circle as shown in Figure 5.11(c). A line passing through 12 strategically placed

points, defined by coordinates along the x and y axes, shapes this circle. Introduc-

ing a crucial parameter denoted as "d", representing displacement, adds a dynamic

element to the geometry. By considering the random value of "d", the positions
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of these points undergo variation in the x-y plane, resulting in the formation of

an array of infinite symmetrical shapes (cf. Figure 5.11 (c)). Subsequently, this

newly generated shape serves as the basis for a three-dimensional (3D) electro-

magnetic simulation, where optical performance metrics such as reflectance. This

innovative geometry generator facilitates a comprehensive exploration of diverse

shapes with a high degree of freedom, leading to finding the optimised geometry.

As shown in Figure 5.11 (d), the algorithm is developed to explore the infinite

design space associated with a well-studied geometry comprising nanoholes of

varied shapes. Its goal is to identify the structure capable of delivering customised

optical performance. Initially, a compact dataset was carefully generated using 3D

FEM to facilitate the swift training of a forward NN. This network serves as a tool

for rapidly expanding the dataset, effectively augmenting its size. Subsequently,

the new dataset is used to train the ID Network. Here, the network leverages the

on-demand reflectance curve as its primary input to predict key design parameters

such as shape, material composition, and layer thickness.

Table 5.5: Data training and data generation values

Variables Training Optimisation

Range Step No. of samples Range Step No. of samples

Materials - First layer (M1) Al, Au, Pt, Ni, Ti - 5 Al, Au, Pt, Ni, Ti - 5

Materials - First layer (M1) Al, Au, Pt, Ni, Ti - 5 Al, Au, Pt, Ni, Ti - 5

Displacement (d) (nm) 0-102 34 4 0-320 5 65

Size of pitch (p) 400, 500, 600, 800 - 4 400-800 100 5

Thickness – Second layer (T1) 0, 30, 50 - 3 0-60 10 7

Thickness – First layer (T2) 0, 30, 50 - 3 0-60 10 7

Total 3,600 284,375

The problem at hand involves the determination of a material specification

capable of producing a predefined reflectance spectrum (R36). This specification

pertains to a two-layer structure and encompasses various parameters, namely:

(i) material composition of the first layer, (ii) material composition of the second

layer, (iii) pitch size, (iv) displacement value, (v) thickness of the first layer, and

(vi) thickness of the second layer as shown in Table 5.5.



5.5. Optimisation of Free-form Shape Configuration 145

Figure 5.11: a) The 3D and b) side view of the general structure. c) multiple
symmetric nanoholes’ bases are created by altering the in-plane positions of the
12 connecting points, achieved by applying a random displacement parameter
denoted as "d". d) The inputs represent the desired reflectance spectrum, and the
output is the materials and thickness of each layer and the nanohole’s shape, e)
the schematic of the inverse design network.
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To establish the relationship between the reflectance values and the aforemen-

tioned specifications, a supervised machine learning approach is employed. The

data for this approach consists of supervised data, i.e., the desired reflectance

spectrum corresponding to a specific specification. Given the impracticality of

physically constructing all possible specifications, a series of simulations are con-

ducted to gather reflectance spectrums for a subset of specifications.

The proposed methodology comprises two networks, namely the data augmenta-

tion network, and an ID network as shown in Figure 5.11 (d, e).

5.5.1 Data Augmentation

The simulation process for data collection is time-intensive and typically takes

from 5 to 8 minutes per unit cell. The variables used for the creation of the train-

ing dataset are detailed in Table 5.5. These parameters include layer thickness (T1

and T2), coating materials (M1 and M1), size of the pitch (p), and displacement

(d). The careful generation of this small-sized dataset aimed to provide a balance,

ensuring diversity for robust network training while incorporating sufficient simi-

lar data to provide a comprehensive mapping of input-output relationships.

The forward neural network (FNN) is developed to generate additional data sam-

ples, as illustrated in Figure 5.11 (d). The input for this network comprises the

values of specifications from the initial dataset. In preparation for the FNN, the

following pre-processing steps are undertaken:

• Normalisation of Input Data: The values of pitch, displacement, and thick-

ness of the first and second layers are (Min-Max) scaled and denoted as S4.

The significance of data normalisation is elaborated upon in [23].

• Encoding Categorical Material Information: Given that the materials of the

layers are categorical, they are encoded using the leave-one-out method.

The importance of encoding categorical features is discussed in [24]. The

leave-one-out method in cross-validation is beneficial for assessing the per-

formance and generalisation of a generative model. The process entails

training the model on all data points except one, after which its performance
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is assessed on the excluded point. For every data point in the dataset, this

procedure is carried out again. The advantage lies in maximising the use of

available data for training while still providing a comprehensive evaluation,

which can lead to a more robust model [24]. In this research, materials cate-

gories are replaced with the average reflectance spectrum (R̄36) for instances

that share the same material category for their layers. For instance, if the

material categories for the first and second layers are 2 and 3, respectively,

these categories are substituted in the dataset with the average reflectance

spectrum of all other specifications with material categories 2 and 3 for their

first and second layer, respectively.

After the preparation of input features in the initial dataset, the FNN is trained

to predict the reflectance spectrum (R̂36). The MSE of the trained network on the

validation data (10% of the training data) is 0.004.

5.5.2 Feature Importance

In the data augmentation model, it is essential to find the differential impact of

various specifications on the predicted reflectance spectrum. A state-of-the-art

metric for elucidating the contribution of each input feature to the predicted out-

come of a neural network is the Shapley value, as outlined in [25]. Consequently,

this measure can be effectively employed to ascertain the impact share of indi-

vidual specifications. However, it is pertinent to note that our modelling involves

multiple input features for each specification, exemplified by the presence of 36

input features serving as proxies for the used materials in the structure.

Given this complexity, adopting the Shapley value to explicate the data augmen-

tation model based on specifications requires establishing a mapping from the

impact share of input features to the higher abstraction level of each specifica-

tion [26]. This mapping is accomplished through the following mechanisms:

• The impact share of the material of layers is explicated by the summation of

Shapley values of features within the corresponding input vector, denoted

as R̄36.
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• The impact share of the thickness of layers is elucidated by the summation

of Shapley values associated with thickness input features for each layer.

Through this mapping process, the influences of specifications on the reflectance

spectrum can be understood in terms of material composition, thickness, displace-

ment, and pitch size. Notably, given that displacement and pitch size serve as two

input features of the neural network, no additional mapping is required for these

parameters.

Figure 5.12: Feature importance in the studied dataset.

Figure 5.12 presents the scaled Shapley values for these specifications, ensur-

ing that their cumulative sum equals 1. The outcomes of this analysis lead to the

observation that material composition and displacement exert the most significant

effects on the reflectance spectrum in our initial dataset (0.723 and 0.273, respec-

tively). In contrast, the impact shares of pitch size and the thickness of layers

are deemed negligible (0.002 for each of them). Nonetheless, the impact share of

thickness and pitch size on the reflectance are quite similar.
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5.5.3 Inverse Design

The objective in this phase is to devise a model for material structure specifica-

tions grounded in the reflectance spectrum, effectively employing an approach

inverse to the earlier elucidated data augmentation methodology. To achieve this,

we propose a NN architecture that integrates CNN and FCNN, as illustrated in

Figure 5.11 (e). The tuning of hyper-parameters, such as the number of layers

and neurons, was conducted through experimental procedures employing heuris-

tics for selecting feasible configurations and Bayesian optimisation techniques.

This NN is designed to undertake three distinct learning tasks based on its input,

which is the reflectance spectrum (R36). Specifically, these tasks consist of one

regression and two classifications. The regression task focuses on predicting the

values of four specifications denoted as D̂4: (i) pitch size, (ii) displacement, (iii)

thickness of the first layer, and (iv) thickness of the second layer. Simultaneously,

the two classification tasks aim to predict the materials of the first and second lay-

ers denoted as Ĉ1 and Ĉ2, respectively.

In the training and testing of this learning model, the initial dataset derived from

simulation with around 3600 data records, and the dataset generated by the data

augmentation model, totalling approximately 284,375 data records. Subsequently,

the new dataset was randomly split with ratios of 0.8 and 0.2 for the training/validation

and testing datasets, respectively. Furthermore, the data designated for train-

ing/validation underwent additional random splits, with ratios of 0.8 and 0.2 for

training and validation, respectively.

The model’s performance on the test data is evaluated through the Mean Average

Error (MAE) for the regression task, yielding a value of 0.21. Additionally, the

F1-scores for the model’s classification of the materials of the layers are 0.70 and

0.90 for Ĉ1 and Ĉ2, respectively. These metrics collectively provide insights into

the effectiveness and accuracy of the proposed neural network model in predicting

material structure specifications based on the reflectance spectrum.
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5.6 Conclusion

This result chapter of the thesis focused on the development and implementation

of universal ML algorithms for optimisation of the proposed tunable metasurface

in three main domains:

Optimisation of Geometrical Design Parameters: This section introduces a FCNN

trained to optimise the parameters of a kirigami-inspired metasurface for structural

colour generation. The FCNN efficiently predicts the optimised structural param-

eters for a specific geometry, achieving high accuracy with a MAE of 0.0051 for

the test dataset and 0.0038 for the training dataset. This algorithm significantly re-

duces computational time compared to traditional methods like FEM simulations

by a factor of 104. The proposed optimised single geometry was characterised by

an Al nanodisk with a thickness of 130 nm and a diameter of 200 nm. This config-

uration provides the broadest areal colour space coverage, encompassing 27.65%

of the sRGB space.

Optimisation of Materials Properties: Another set of networks was trained us-

ing a dataset generated by TMM to optimise parameters and materials for custom

structures. These subsequent networks, including ID and material discovery net-

works, predict thickness values and material’s RI for a six-layer structure based on

the desired reflectance spectrum. Predicting a multilayer metamaterial’s refractive

indices, thicknesses, and material classes involves both classification and regres-

sion. The results showed promising performance for the ID network including an

F1-score of 0.391 for the classification part and an RMSE of 0.135 for the regres-

sion section. The materials discovery was combined with the EMA to predict the

classes of two materials and their respective fractions within a composite mate-

rial. This prediction was based on the provided refractive indices and extinction

coefficients of a specific material at each wavelength.

Optimisation and Discovery of Free-from Geometry: The final network was

tasked to discover optimised geometries meeting on-demand optical property re-

quirements. This network combines data augmentation and ID networks to learn

nonlinear relationships between structural parameters, geometrical features, and

reflectance spectra. The augmentation network revealed that the material compo-
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sition and shape of the unit cell have the greatest effects on reflectance spectra,

with 72% and 27%, respectively. The ID model showed a MAE of 0.21 for the

regression task, and the F1-scores of 0.90 for the classification task.
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6.1 Chapter Overview

The last result chapter outlines the experimental methodologies employed for the

fabrication and characterisation of the structures offered by the inverse design

(ID)neural network (NN) and materials discovery NN in Chapter 5. In the exper-

imental phase, three distinct samples were fabricated to ascertain the accuracy of

the networks. The first device was fabricated to verify the ID network, in which

a custom optical filter was made according to the design parameters and pure ma-

terials suggested by the network. The material discovery network’s predictions

were then used to create an on-demand perfect reflector with an amorphous meta-

155
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surface that operates in the visible spectrum. Finally, a free-form structure was

fabricated to verify the performance of the machine learning (ML)-based algo-

rithm developed for geometry optimisation. Every sample was characterised, and

the mismatch between the properties of the fabricated prototypes and the expected

ones is discussed.

6.2 Fabrication Process

6.2.1 Sample Preparation

The samples used to validate the ID and material discovery networks were grown

on glassware (cover slides) that was purchased from VWR (Leicestershire, UK).

Before any film deposition, the substrates were cleaned with the common wet

processing procedure. It involved subjecting all glassware to ultrasonic treatment

for 2 minutes in an acetone solution, followed by another 2 minutes in isopropanol

to remove residual organics and contaminants. The glass substrates were dried

using N2 gas. The entire processing time, including film deposition and cleaning,

was less than thirty minutes.

6.2.2 Magnetron Sputtering

Magnetron sputtering is a physical vapour deposition technique, in which the

atoms released from the target (the material that is the source of the thin film to be

deposited) travel through the vacuum chamber until they encounter a surface (sub-

strate), where they condense. As time progresses, additional atoms accumulate on

the surface, gradually forming the desired thin film [1]. Figure 6.1 illustrates a

simplified overview of the sputtering process. The target material in a vacuum

chamber is negatively charged, while the other parts stay grounded. When argon

(Ar) gas is injected into the chamber, it undergoes ionisation. This means that

some of the argon atoms in the gas become positively charged ions (Ar+). The

cathode, which is usually the desired target material to sputter, becomes exposed

to these ionised argon ions. This energy transfer is forceful enough to dislodge or
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Figure 6.1: A schematic representation of the sputtering system. This chamber
includes other equipment that is depicted (refer to Figure 6.2).

eject atoms from the surface of the target material. The ejected atoms become part

of the sputtered material that travels through the vacuum chamber and eventually

deposits onto a substrate, forming a thin film.

The sputter head’s magnets, featuring alternating polarity, generate a potent mag-

netic field near the target surface. A plasma forms close to the target when the

primary and secondary electrons rotate within the magnetic field. This concen-

trated increase in electron density speeds up the deposition rate by increasing the

rate at which the argon gas surrounding the negatively charged cathode ionises.

While a direct current (DC) bias effectively charges electrically conductive tar-

get materials, insulating materials rapidly accumulate a positive charge on their

surface, rendering DC bias impractical. To address this, a radio frequenc (RF)

source, typically operating at 13.56 MHz, is employed to facilitate the dissipation

of the positive charge build-up.

A fully automated MiniLab 060 (Moorfield Nanotechnology Ltd.) sputtering

system with up to three independent and symmetrical water-cooled magnetron

sources for 3 inches of circular targets (Figure 6.2) was used in this research. The

substrate holder is located in the centre of the 30° sputter cannons’ field of view.
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Figure 6.2: (a) MiniLab 060 sputtering system overview, (b) a close-up view of
the magnetron sputtering chamber.

The machine is divided by a gate valve into two chambers: the main chamber

on the right and the load-lock on the left. The load-lock achieves its base vac-

uum pressure in approximately three hours, a significant improvement compared



6.3. Characterisation Techniques 159

to the one day required for the main chamber, owing to its smaller volume. Con-

sequently, the presence of the load-lock enhances the efficiency of sample fabri-

cation.

As suggested by the material discovery network, TiO2 (99.99%) and Au (99.95%)

targets were inserted into the target sites to fabricate the composite layer. TiO2

was sputtered using an RF magnetron system, while Au was sputtered using a DC

magnetron sputter source. The sputtering rates of TiO2 and Au for the proposed

composition were 0.36 Å/s and 0.6 Å/s, respectively. The distance between the

target and the substrate was kept at 90 mm. The standard base vacuum pressure

is 5× 10−6 Torr, with a deposition Ar gas pressure of 1× 10−3 Torr. Each sput-

ter head is equipped with a target shutter, which prevents the target from cross-

contamination.

6.3 Characterisation Techniques

6.3.1 Reflectivity

X-ray reflectometry (XRR) is a technique used to study the structural character-

istics of thin films and layered structures. It is a non-destructive method that

provides information about the thickness, density, and roughness of thin films by

analysing the reflection of X-rays incident on the sample. In XRR, a monochro-

matic X-ray beam is directed at the sample at a specific angle of incidence [2].

The X-rays penetrate the sample and undergo multiple reflections at the interfaces

between different layers within the film. The resulting interference pattern is then

recorded as a function of the angle of incidence. XRR is often employed alongside

other microscopic characterisation and analytical methods to provide a compre-

hensive characterisation of thin film structures [3].

The electrons in a material’s atomic shell oscillate at the identical frequency as the

incident photons when the substance is exposed to X-rays. This oscillation serves

as a source of radiation, producing an X-ray known as Thomson scattering that

has the same energy as the input photon [4, 5]. XRR measurements analysed by

considering reflection and transmission coefficients at the interfaces of materials
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with different refractive index (RI). The Fresnel equations for transmission (t) and

reflection (r) define these coefficients as follows:

r =
n1 cos(θi)−n2 cos(θt)

n1 cos(θi)+n2 cos(θt)
(6.3.1)

t =
2n1 cos(θi)

n1 cos(θi)+n2 cos(θt)
(6.3.2)

where n1 and n2 are the refractive indices of the incident and transmitted me-

dia respectively, θi is the angle of incidence, and θt is the angle of transmission. In

Equation 6.3.1, n1(1) denotes the RI of the incoming medium, and θi(t) represents

the incident angle of the transmitted beam. Given the very small angle, the ex-

pression sin(θ ) = θ is applicable. The transmitted and reflected beams’ intensities

are determined using |r|² and |t|², respectively. Although the proposed equations

hold for the transmission and reflection at a single interface, real samples involv-

ing multiple interfaces require additional complexity to be taken into account. For

example, a single-layer thin film provides air/film and film/substrate interfaces. In

this structure, the initial reflection and further reflections of the initially transmit-

ted wave make up the overall reflected intensity, as depicted in Figure 6.3.

Employing the approach proposed by Als-Nielsen [6], the overall reflectivity

(rtotal) can be measured as follows:

rtotal =

∣∣∣∣∣ r12 + r23ei2β

1+ r12r23ei2β

∣∣∣∣∣
2

(6.3.3)

where r12 and r23 are the reflection coefficients at the interfaces of the single layer,

and β is the phase difference between consecutive interfaces. While Equation

6.3.3 holds for a single layer, its generalisation to encompass any two distinct

layers is possible. Similarly, in a multi-layered thin film, the overall reflectivity

can be calculated using Paratt’s method [7], where the reflection at the lowest

interface is calculated initially, progressively moving through each film interface:
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Figure 6.3: A schematic representation of the multiple paths of reflected and trans-
mitted X-rays within a single-layer film.

rtotal =

∣∣∣∣∣rn + rn+1ei2β1rn+2ei2β2

1+ rnrn+1ei2β1ei2β2

∣∣∣∣∣
2

(6.3.4)

where rn, rn+1, rn+2 are the reflection coefficients at the interfaces of the two

layers, β1, β2 are the phase differences between consecutive interfaces within each

layer.

Rough Interfaces

Equations 6.3.1-6.3.4 compute the reflection from perfect and sharp interfaces.

However, in reality, all interfaces have imperfections. These imperfections can be

characterised by an interface width, denoted as σ . This roughness significantly

affects the optical performance, particularly the reflection properties of the de-

vice. XRR is capable of determining the interface width, however; it is unable to

differentiate between intermixing and interface roughness as shown in Figure 6.4.
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Figure 6.4: The schematic illustrates contributions to the overall interface width
from a) interfacial roughness and b) intermixing.

A series of completely flat intermediate layers can be used to simulate both

interfaces, with the chemical gradient following a Gaussian distribution with a

width σ . The total interface reflectivity is calculated by integrating the reflectivity

of each intermediate layer over the full interface width, provided that the thickness

of these intermediate layers is much less than the overall interface width. This

approach is extendable to cover the entire film, as illustrated in Figure 6.5 [8].

A Debye-Waller-like factor for the interface reflectivity is produced when a finite

interface width is introduced. This factor is expressed as follows:

Rrough = Rsmoothe(−σ2q2
z ) (6.3.5)

where σ is the root mean square (RMS) roughness of the interface and qz is

the component of the scattering vector perpendicular to the interface. Rocking

curve measurement is a technique to distinguish between interface roughness and

intermixing. This technique involves scanning the sample angle while keeping the

angle between the X-ray source and detector fixed (i.e., θi + θr = constant). This

type of measurement is also referred to as off-specular. The distorted-wave Born

approximation was initially developed by Sinha et al. [9] to model the resulting

reflectivity profile. This model was then refined by Wormington [10].

All XRR measurements were carried out by a Bede D1 Diffractometer, as

depicted in Figure 6.6. Using the Cu-Kα1 spectral line, the device produces X-

rays with a wavelength of 1.54 Å. The generated ray is collimated two sequential

slits. The sample holder has the capability to move along the three axes and rotate
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Figure 6.5: An example of discretising a sample depth (z) in a non-uniform film
with density profile (ρ). Employing Paratt’s recursive method, the reflectivity is
initially computed at the lower j = 1 interface, followed by an iterative process
through each subsequent j + 1 interface. Reprinted by permission from Royal
Society of Chemistry [8], Copyright (2023).

within all three planes, providing a maximum of six degrees of freedom. A second

set of collimating slits is located right before the detector as shown in Figure 6.6.

In the XRR measurements, the incident angle and reflected beam one should

be equal. Firstly, the sample is positioned in line with the beam, guaranteeing that

it is level in relation to the beam’s shape and located precisely in the centre of the

beam. The beam profile is generally rectangular due to the slit size of 0.5 mm

× 15 mm. To confirm that the sample surface is level with the extended axis of

the beam envelope, scans are carried out along each axis. During the process of

aligning the sample, a half-cut is made. This means that the intensity detected at

a detector angle of 0° is exactly half of what it would be if the sample was not

present. This guarantees that the sample’s surface is positioned precisely in the

centre of the shorter axis of the envelope. The angle representing the sample is

symbolised as θ , while the angle representing the detector is double the value of

θ . XRR measurements typically entail scanning the 2θ angle within the range of

0° to 10°, using step increments of 0.01°.
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Figure 6.6: Different parts of the Bede D1 Diffractometer used in this project.

Data modelling

The model for each dataset was optimised using GenX, an open-source software.

Nicholson’s PhD thesis offers a detailed methodology for the fitting procedure [5],

which mirrors the approach employed in this thesis and is outlined below.

The initial model was constructed using nominal structural details, where input

parameters were categorised into three primary groups based on their initial spec-

ifications. Material parameters, such as density and scattering factors, were as-

signed values from existing literature. Instrument parameters, like the size of the

sample and beam width, were obtained through direct measurement. Sample pa-

rameters, which encompassed factors like interface width and thickness, were ini-

tially assigned their nominal values. Typically, the category to which a parameter

belonged determined the allowable range for its variation. In this thesis, measured

values such as sample length and incident X-ray intensity were restricted to a ±
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5% range to maintain stability.

Following the optimisation of the original model, the results were checked visu-

ally to ensure accuracy. Subsequent models were then hypothesised, which may

include surface oxide layers and intermediate interface layers. Following addi-

tional optimisation, the nominal model and these models were contrasted. To dis-

cover the best answer, it may be necessary to include elements outside the nominal

structure and allow for a wide range of parameters while optimising the model.

6.3.2 Microscopy Analysis

Atomic Force Microscopy

Throughout this thesis, the roughness of surfaces was assessed using an atomic

force microscopy (AFM). In this technique, a sharp probe is meticulously scanned

across a surface, with the probe height recorded to generate surface images. Typi-

cally, the probe tip is fixed to the cantilever’s end, which undergoes deflection due

to interatomic force interactions with the surface. Various forces, such as Van der

Waals interactions and capillary effects, contribute to the tip-sample forces. De-

flection sensors measure the cantilever’s deflection by projecting a laser beam onto

a position-sensitive detector and having it reflect off the cantilever as schemati-

cally shown in Figure 6.8 [11].

Figure 6.7: a) The AFM instrument used in this project, b) schematic diagram of
a typical AFM set-up.

AFM operates in various modes including contact mode, non-contact mode,

or tapping mode. In contact mode, the tip of the instrument makes gentle phys-
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ical contact with the sample, encountering repulsive forces in the process. This

operation mode is prone to surface damage, particularly for soft materials. In non-

contact mode, the tip-sample separation is relatively large, and the probe experi-

ences weak attractive forces. The cantilever oscillates at its resonant frequency,

and changes in force alter the oscillating frequency, providing a feedback signal

for surface imaging. Tapping mode (the mode that I used in this thesis) com-

bines aspects of both contact and non-contact modes [12]. The AFM analysis was

carried out using Oxford Instruments Asylum Research’s MFP-3D Infinity AFM

machine (cf. 6.7 (a,b)).

Scanning Electron Microscopy

Scanning electron microscopy (SEM) is an imaging method that provides de-

tailed information about the morphology and composition of a sample at the mi-

cro/nanoscale. In this technique, a tungsten filament electron cannon is used to

generate an electron beam, which is then accelerated to an energy of 0.2–40 keV.

This electron beam is systematically scanned over the sample through the use

of electromagnetic deflection coils, and the signal detected at each point is as-

signed as a pixel value to form the image. The use of electrons allows for smaller

wavelengths compared to optical microscopes, enabling SEM to achieve highly

impressive resolutions. The electron beam interactes with the surface and scatter

from atoms inside an interaction volume that is shaped like a teardrop and spans

several hundred nanometers. This scattering is then detected by the detector [13].

In this study, high-magnification SEM images of sample intersections were cap-

tured using a ZEISS Sigma 300 after meticulous preparation with a focused ion

beam (FIB). These SEM images served to measure the thickness of developed

multi-layer metamaterials.

Transmission Electron Microscopy

Transmission electron microscopy (TEM) is a powerful imaging technique that

uses transmitted electrons to achieve high spatial resolution in the nanometer

range. It enables the visualisation of fine details within a specimen, providing



6.3. Characterisation Techniques 167

insights into its structural and morphological features at a scale not easily attain-

able by other microscopy methods. The high-resolution capabilities of TEM allow

researchers to discern the arrangement of atoms and study the crystallography of

amorphous thin films. This detailed analysis contributes to a deeper understanding

of the microstructure, defects, and composition of thin films, essential for optimis-

ing their properties in various applications [14].

In this project, TEM was specifically employed to study the dimensions and dis-

persion of particles within a matrix in the amorphous layer. TEM samples with

a thickness of 10 nm were sputtered onto holey carbon grids. High-resolution

images and elemental maps of the composite layer were captured using a JEOL

2100F field emission gun TEM operating at 200 kV. The elemental maps repre-

sent the spatial distribution of specific chemical elements within the nanocompos-

ite layer. This map provides information about the elemental composition and its

variation across different regions of the specimen at a high spatial resolution.

UV-VIS Spectroscopy

UV-VIS spectrophotometer is an analytical technique to measure the reflectance/

transmittance of electromagnetic radiation through a material within the UV-Vis

spectrum. The fundamental principle involves irradiating a material with a beam

of light at a specific wavelength and intensity. The structure absorbs a certain

amount of light through the excitation of electrons, while some light is reflected

at the material’s surfaces, and some is scattered, preventing it from reaching the

detector. The remaining light passes through the material and reaches the detector

on the opposite side. Reflectance/transmittance is then determined by the ratio of

the light intensity reflecting (or reaching the detector) to the emitted light inten-

sity [15].

To measure the reflectivity within the visible wavelength range, the Ocean Op-

tics FLAME-UV-VIS spectrometer was used. The initial measurements involved

recording the spectrum of a reference sample, which approximates a near-perfect

mirror within the visible light spectrum. The reflectance of each sample was then

determined as the ratio of its spectrum to the reference spectrum.
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6.4 Validation of Inverse Design Network

To demonstrate the accuracy of the ID network as a practical solution for real-

world applications, I tasked the optimised network with predicting the optical

properties of a custom sample. This sample was an optical filter designed to se-

lectively filter light with wavelengths below 550 nm, as illustrated in Figure 6.8

(a). The input values for the network are the reflectance spectrum of the target fil-

ter (depicted by the black dashed line). This input was used to find the refractive

indices for two distinct layers along with their corresponding thicknesses. Sub-

sequently, the predicted refractive indices were matched to available materials,

resulting in the proposed structure characterised by alternating layers of SiO2 and

Au. The final configuration of the multi-layer metamaterial comprised six layers

with thicknesses of 28, 24, 20, 34, 26, and 38 nm, respectively, as shown in Figure

6.8 (b).

The proposed structure was fabricated using the magnetron sputtering system.

The sputtering rates for the Au and SiO2 layers were 0.03 Å/s and 0.5 Å/s, respec-

tively. The spectrometer was employed to measure the reflectance curve of the

created sample, and it is depicted by the red line in Figure 6.8(a). Despite some

mismatch between the predicted and actual results, there is an overall alignment

with the anticipated trend, validating the effectiveness of the proposed inverse de-

sign methodology. The successful implementation of the custom-designed optical

filter demonstrates the approach’s ability to translate theoretical predictions into

actual structures with the appropriate optical properties.
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Figure 6.8: A custom optical filter consisting of six alternating layers. a) The
reflectance spectrum of the fabricated filter (red line) and the predicted filter (black
dashed line) by the inverse design network. b) predicted metamaterial consisting
of SiO2 and Au for odd and even layers with thicknesses of 28, 24, 20, 34, 26, and
38 nm.

The XRR measurements are presented in Table 6.1. The density of Au and

SiO2 were manually inserted in the model based on the literature [16, 17]. Figure

6.9 presents the best-fit XRR model to the developed sample.
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Table 6.1: Results of the best-fit model with the XRR measurement

Layer Density (g/cm3) Thickness (nm) Interface width (nm)
Au 19.3 36 5.47

SiO2 2.64 28 1.16
Au 19.3 31 4.63

SiO2 2.64 22 2.66
Au 19.3 26 4.98

SiO2 2.64 26 1.14
Substrate (glass) - - -

Figure 6.9: The best-fit models (dashed lines) with the XRR results.

The analysis of the best-fit model revealed that a notable interface width con-

tributed to the deviation between the predicted curve and the actual fabricated one.

This finding was further substantiated by microscopic analysis using SEM images

and AFM. As illustrated in Figure 6.10 (a, b), the AFM results indicate that the

roughness of the gold layers, brighter layers in the SEM images of the sample’s

cross-section, was approximately 5 nm, aligning with the results obtained from

XRR measurements (cf. Table 6.1). This could prove that the observed mismatch

in the predicted and fabricated curves is indeed influenced by the high interface
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width.

Figure 6.10: a) SEM image of the cross-section of the fabricated sample. The
magnification of the image is 15000, and the scale bar indicating 100 nanometers
is provided for reference., b) AFM image of the top layer (Au).

6.5 Validation of the Materials Discovery Network

A filter with a large and selective high reflectance zone extending from 510 nm

to 656 nm in the visible spectrum was targeted as a proof of concept using the

materials discovery network. As shown in Figure 6.11 (a), the custom device has

two reflection dips due to absorption at approximately 439 nm and 717 nm.

By using the optimised material discovery network, the key design parameters

were predicted. The model proposed layer thicknesses of 20, 26, 30, 42, 10, and

32 nm, as well as the composition of amorphous layers that form a pair of Cu

and TiO2-22% Au, with a high degree of accuracy. Figure 6.11 (a) compares the

target reflectance curve (dashed line) with the fabricated one (red line), and Figure

6.11 (b) shows the schematic of the construction. The reflectance of the fabricated

sample fairly matches the target curve, especially when it comes to duplicating the

high reflectance zone and the minimum points. This shows the accuracy of the in-

verse design model.
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Figure 6.11: a) Comparison of the reflectance spectrum of the on-demand filter
(black dashed line) and that of the fabricated (red line) provided by the material
discovery network. The thicknesses of the layers are 20, 26, 30, 42, 10, and 32 nm
respectively, b) Schematic of the optical filter manufactured by the co-sputtering
system. The six-layer structure is made of alternative layers of Cu (green layers)
and TiO2-Au nanocomposite (yellow layers).

There are two primary reasons for the observed mismatch between the custom

design and the fabricated sample. Firstly, a homogeneous dispersion of nanoparti-

cles was assumed by the effective medium theory equations. However, some par-

ticle agglomerations and nonuniformity in the size of gold nanoparticles are seen

in TEM images (cf. Figure 6.12 (a)). These deviations from the ideal dispersion

could lead to variations in the material’s optical properties [18, 19]. Furthermore,

controlling the nanocomposite’s surface roughness—as highlighted in the preced-
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ing section—is seen as a further potential source of error in achieving the intended

result. The surface roughness plays a critical role in influencing interactions be-

tween light and matter, thereby impacting the overall efficacy of the fabricated

structure in comparison to the idealised design.

Figure 6.12: a) The top-view TEM image of the nanocomposite layer consisting
of Au nanoparticles in TiO2, and the elemental map of the nanocomposite layer,
b) Size distribution of the nanoparticles in the nanocomposite layer.

6.6 Validation of the Free-form Discovery Network

To validate the performance of the inverse free-form geometry network, I used the

old samples from previous projects provided by my supervisor. These samples
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were used as a proof of concept due to our lack of access to the equipment for

their fabrication. The samples had a diverse array of nonohole shapes, spanning

from conventional circular shapes to more exotic and complex designs.

The accuracy of the network was evaluated using a random reflectance curve

within the visible range, shown as the black dashed line in Figure 6.13 (a). This

curve represents the desired performance target, aiming for high reflectivity be-

yond 550 nm wavelengths for a sensor application. The network’s input comprised

36 points from the reflectance spectrum, enabling the extraction of design param-

eters and materials. The resulting suggested structure, depicted in Figure 6.13 (b),

features free-form interconnected holes and is coated with a 20-nm single layer

of aluminium. The reflectance curves of the fabricated sample and simulated one

are illustrated by the solid red line with circle marker, and solid green line with

square marker in Figure 6.13 (a), respectively. The top-view SEM image of the

fabricated sample is displayed in Figure 6.13 (c). The residual photoresist portion

exhibits dimensions, with a height of 322 nm and a width of 270 nm.

The fabricated sample remarkably matches the desired curve, showcasing the im-

pressive capabilities of our inverse design network in the prediction of freeform

structures for on-demand applications.
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Figure 6.13: a) Comparison of the reflectance spectrum of the on-demand sample
(black dashed line), simulated sample (solid green line with square), and that of
the fabricated (solid red line with circle) provided by the inverse design network.
c) the top view of the structure with exotic shapes of nanohole, which is coated
by a 20nm Al, c) a top-view SEM image of the fabricated sample based on the
inverse design network prediction.

6.7 Conclusion

The results chapter of this thesis encompasses the experimental validation of the

accuracy of three distinct machine learning algorithms. Firstly, a network aimed at

inversely designing a multilayer metamaterial for a specific optical filter demon-

strated a close fit with predicted values, though some discrepancies arose due to

layer roughness, particularly within metallic layers, which were not accounted

for in the training dataset. Secondly, a material discovery network was evaluated

using an on-demand perfect reflector, suggesting a 6-layer amorphous metama-

terial with varied thicknesses. Although the fabricated sample exhibited similar

performance, minor mismatches were attributed to layer roughness, dispersion

of Au nanoparticles, and particle size uniformity. Lastly, the free-form geometry

designer network was experimentally validated using a high-reflectivity sensor be-

yond 550 nm wavelengths. The network proposed unconventional shapes for the
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unit cell, and the fabricated device closely matched the desired curve, showcasing

promising results.
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7.1 Hypothesis & Chapter Overview

The significant Young’s modulus mismatch between the soft and rigid compo-

nents in a mechanically tunable metasurface leads to stress concentration at the

interface upon mechanical loading, causing such issues as crack propagation, de-

lamination, and plastic deformation at lower levels of strain (20-50%). To address

this challenge, the hypothesis of this project was to explore geometries capable

of redistributing stress concentration away from the interface and towards safer

regions of the substrate. Proposed geometries, including kirigami-based and high-

relief pillar-based designs, provide local large but low-energy deformation that can

be engineered to relocate the stress accumulation. Additionally, machine learning

(ML)-based method was used to optimise the structure across three main domains:

geometric design parameters, material development, and free-form shape config-

uration of the unit cell.

This chapter summarises the most important results achieved in each result chap-

ter and suggests some suggestions for further work.

178
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7.2 Thesis Conclusion

We have proposed (Chapter 4) two universal geometries that allow the pairing of

rigid and soft materials without limitations on stretchability and function. Me-

chanical and optical three-dimensional (3D) finite element method (FEM) simu-

lations demonstrated the potential of pillar-based structures and kirigami-inspired

patterns to minimise stress at the interface between flexible substrates and res-

onators, enabling stretchability over a wide range of strains, even exceeding 120%.

The optimised structure with maximum stretchability provides a peak shift of

143 nm (from 508 nm to 651 nm), nearly twice that of the conventional ge-

ometries where the rigid components directly are located on the polymer. The

potential of this wide range of tunability was shown in various applications like

rewritable metadevices, plasmonic sensors with high accuracy, and switchable re-

flector/absorber systems.

The conventional process of discovery, design, and optimisation of the proposed

structure is computationally expensive and time-intensive, relying on iterative

trial-and-error approaches. In chapter 5 we have presented three deep learning

(DL) algorithms as follow:

Design and optimisation network which determines the nonlinear relationship

between input (geometrical parameters and strain levels) and output (reflectance)

of the ultra-stretchable mechanically tunable metasurface. As a proof of concept,

a structural colour system was designed using the kirigami-inspired pattern. The

optimised single geometry was characterised by an Al nanodisk with a thickness

of 130 nm and a diameter of 200 nm. This configuration provides the broadest

areal colour space coverage, encompassing 27.65% of the standard RGB (sRGB)

space. By substituting the plasmonic component with a high-dielectric material

like TiO2, a diverse range of colours was achieved in the Commission on Illumina-

tion (CIE) 1931 chromaticity diagram, providing a comprehensive colour palette

spanning from white to red, green, and blue.

Inverse design and material discovery networks which proposed the composi-

tion and thickness of each layer in a 6-layer structure for on-demand optical per-

formance. The optimised convolutional neural network (CNN) was trained with
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a dataset generated by the transfer matrix method (TMM) to discover the real

and imaginary parts of refractive index (RI) of each layer and the corresponding

thickness. However, the material discovery was trained by a dataset generated by

effective medium approximation (EMA) to navigate infinite composition space

and discover RI values of compositions providing the desired reflectance. The

network uses EMA to navigate composition space and discover optimal composi-

tions.

Inverse design of a freeform nanophotonic structure was tasked to explore infi-

nite geometry space to propose a free-from geometry which guarantees the design

features of an on-demand reflectance. The mean absolute error (MAE) of the

regression task was 0.21, and the F1-scores for the model’s classification of the

materials of the layers were 0.90.

In the final results section (chapter 6), we have provided the experimental vali-

dations of three DL algorithms developed in Chapter 5. Firstly, a network aimed

at inversely designing a multilayer metamaterial for an optical filter demonstrated

close agreement with predicted values, despite some discrepancies attributed to

the layer roughness, particularly within metallic layers. Secondly, a material dis-

covery network suggested a 6-layer amorphous metamaterial for a perfect reflec-

tor, with minor mismatches in performance linked to layer roughness, dispersion

of Au nanoparticles, and particle size uniformity. Lastly, the free-form geom-

etry discovery network proposed a random shape for a high-reflectivity sensor

beyond 550 nm wavelengths, with the fabricated device closely matching the de-

sired curve, indicating promising results.

To summarise, the thesis addressed the limited stretchability in mechanically tun-

able metasurfaces, where stress concentration at the interface causes plastic de-

formation and cracks. Through geometry engineering, stress has redistributed

from the interface to the substrate, providing a remarkable stretchability exceed-

ing 120%. This interdisciplinary research combined the design, optimisation, and

processing of optical metamaterials, employing physics-based simulation, DL,

and thin film fabrication techniques to discover new compositions and free-form

geometries, along with their corresponding parameters, for custom mechanically
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tunable metasurfaces.

7.3 Further Work and Recommendations

This thesis has advanced the AI-assisted design and optimisation of tunable meta-

surfaces, although further research is needed in this field. Here are some thoughts

and suggestions for future study directions.

Consider Other Types of Stimulus

This research concentrated on mechanically tunable metasurfaces, which repre-

sent a well-studied and commonly explored example in the field as discussed in

Chapter 4. However, it is important to consider certain limitations and complex-

ity associated with mechanically tunable metasurfaces. A significant challenge is

managing the interaction of various applied forces like bending, tension, and com-

pression. Considering the combination of these forces requires a precise model to

investigate the spatial position of the resonators in the out-of-plane deformation

and calculate the optical performance accordingly. In addition, while the potential

of the proposed geometries (pillar-based and kirigami-based structures) was dis-

cussed in detail, future research could focus on investigating the fatigue behaviour

of the structures by subjecting them to cyclic forces [1]. This evaluates the influ-

ence of key parameters on structural integrity and performance over time. More-

over, exploring alternative forms of stimuli, such as electrical actuation, temper-

ature responsiveness, and chemical reactivity, could broaden the scope of tunable

metasurfaces. For instance, investigating the use of electroactive polymers [2]

or phase change materials (PCMs) [3] in the proposed geometry may achieve

higher tunability in metasurfaces. This multidisciplinary approach would facili-

tate a deeper understanding of the design principles and practical applications of

tunable metasurfaces beyond mechanical mechanisms.
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Transfer Learning Method

Although we showed that deep neural network (DNN)s offer advantages over ex-

pensive numerical simulations of Maxwell equations by significantly reducing

overall design time, training DNNs requires large training datasets, which can be

challenging to obtain. The effectiveness of knowledge transfer learning is worth

trying to improve the performance of developed models in different optical sce-

narios [4]. Using a multi-scenario DNN model training approach with imbalanced

datasets which involves training with small datasets (approximately 103 scale) for

some optical scenarios and normal datasets (approximately 104 scale) can signif-

icantly reduce the data generation time [5]. By maintaining a suitable training

dataset size, particularly for scenarios formed by combinations of materials se-

lected from a material library, multi-scenario training can enhance model accuracy

even when trained with small datasets.

Roughness Consideration in Data Generation

In future research, minimising the observed mismatch between reflectance values

predicted by machine learning methods and those achieved by fabricated samples

will be a priority. As highlighted in sections 6.4 and 6.5, surface roughness at layer

interfaces emerged as a significant factor influencing this discrepancy. Surface

roughness is known to significantly impact the external properties of thin films [6].

Therefore, future investigations could incorporate roughness as a parameter in the

dataset generation process. A potential approach could involve using models such

as the sophisticated roughness layer model proposed by Lehmann et al. [7] for

multilayer structures, which uses empirical evaluation of atomic force microscopy

(AFM) measurements and statistical considerations to propose a general model for

various materials with high surface roughness. Integrating such models with EMA

could enhance the accuracy of predicting roughness values at material interfaces,

thereby refining the performance of DL algorithms in the inverse design (ID) and

material discovery for the multilayer structures.
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More Complex Multilayer Structures

A promising direction for further research in my PhD thesis would involve re-

fining the developed algorithms discussed in Chapter 5 to accommodate more

complex scenarios beyond the simplified assumptions of the initial model. While

the algorithms exhibited promising results with general samples, there are some

assumptions to simplify the training of the model. For instance, the basic studied

structure in this thesis was a 6-layer distributed Bragg reflector under a normal

incident light in the visible range wavelength for data generation via the TMM.

Expanding the degree of freedom (DOF) in data generation for the networks could

introduce complexities but also unlock new potential applications. By incorporat-

ing additional variables individually investigated in the previous research such

as random incident angles [8], polarisation states [9], a random number of lay-

ers [10], and a broader range of wavelengths [11] the model could be used in a

wider range of scenarios, thereby enhancing its versatility and effectiveness in op-

tical design tasks. This advancement would enable the integration of the material

discovery concept developed in this thesis with the optimisation of multiple vari-

ables, ultimately improving the performance and adaptability of the algorithms to

real-world applications.
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