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Abstract

This thesis presents a novel technique for the estimation of 3D structural

and material composition of anatomies imaged with X-rays. These estimates

are produced from a single image with associated X-ray detector data. This

method is made possible with access to software for X-ray simulation and

segmentation, both developed by and provided to us by IBEX Innovations.

This work combines existing concepts from optimization and multi-grid meth-

ods to present a novel concept for using domain knowledge to sufficiently

constrain an otherwise unsolvable problem to produce valuable output. Spe-

cifically, it is shown that by transforming knowledge about the shape and

composition of anatomies into regularizing functions, we can produce models

of their internal structure that are accurate enough to simulate X-ray scatter,

and thereby remove noise from the final images in a physics-guided way.

By introducing weighted penalties for results that do not conform to expecta-

tions from domain knowledge, which are informed by IBEX’s neural network

for X-ray segmentation, we can estimate the shape and material composition

of a 3D object from a single image which - in theory - does not contain enough

information to produce such a model.

This work makes use of an X-ray simulation tool and associated data created

by IBEX innovations and provided to us. We have created an optimization

algorithm that iteratively processes this data with the IBEX simulation tool,

then updates the estimated material composition of the imaged anatomy by

imposing regularizing functions that penalize models that do not conform to

our expectations about real anatomies. This is implemented on multi-grid,
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showing improved reconstruction quality and speed by producing coarse mod-

els first, followed by a custom algorithm for optimally selecting coarsening and

refining of the model to produce the most accurate model.

By using IBEX’s simulation algorithm, we show that we can constrain an

otherwise ill-posed problem. These novel tools allow us to solve the problem

of estimating 3D material composition from a single image, by considering

simple features of organic shapes such as continuity and smoothness. We

demonstrate that with access to sufficiently powerful simulation tools, even

simple assumptions about our target facilitate intuitive material estimations.

The algorithm presented in this thesis has certain limitations. We are only

able to produce models of anatomies at low resolutions, constructed of just two

distinct materials, without fully capturing the 3D structure of the anatomy.

Nonetheless, we demonstrate that it is possible to capture enough structural

information to produce an accurate scatter estimate, which would not be pos-

sible without the research we present here. These limitations are imposed to

simplify our solutions such that they can be found using conventional hard-

ware, and to constrain our problem into the scope of feasibility. Furthermore,

the choice to limit our models to 2.5D and just two materials reflects the mod-

els used by IBEX Innovations and their X-ray simulation method, which we

require for our optimization.

To our understanding, no other published work in this field has applied an

approach like ours to X-ray image reconstruction. Inferring from a single image

not just depth information, but also an abstraction of information about the

internal structure, in a way that is physically motivated. We hope that this

concept could be applied to other problems in future, where systems are well

understood but hindered by limited data availability or high capture costs.

Supervisors: Ioannis Ivrissimtzis and Tobias Weinzierl
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Chapter 1

Introduction

1.1 Context

Since their discovery by Wilhelm Röntgen in 1895, X-rays have been a valuable

tool in medicine, thanks to their ability to reveal internal details of the body.

Figure 1.1: The first X-ray published by Wilhelm Röntgen (Röntgen, 1895), of his
wife Anna Bertha Ludwig’s hand, with a ring on her ring finger.
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1.1. Context

Because they can pass through soft organic tissues relatively unobstructed, but are

reflected and absorbed by bone, X-ray imaging has become the first point-of-call

in identifying issues relating to bone health, from fractures to arthritis.

While other, more complex imaging techniques have developed since, the low-cost

and versatility of projectional radiography has kept them relevant in the 100+ years

since their discovery.

In the last 50 years, one more elegant imaging technique that has developed out

of X-ray imaging is Computed tomography (CT), where a series of X-ray images

are taken from a range of angles, then processed computationally to generate a

three-dimensional model of the anatomy or object in question.

While highly valuable, CT scanning comes with associated downsides as well as

benefits. First, with any X-ray imaging process, there is an associated radiation

cost to the patient. An occasional X-ray image is a minor radiation dose. Even on

a highly-absorbing part of the anatomy such as the chest, a planar X-ray will gen-

erally give a patient a radiation dose of approximately 0.02mSv, comparable to the

background radiation one would absorb over the course of 20 days. Comparatively,

a CT scan of the chest will typically expose the patient to around 8mSv, which is

on-the-order of background radiation dosage a typical person will experience over

the course of three years (Wall and Hart (1997)).

Furthermore, CT scans are more time consuming for radiographers, require more

expensive and bulky equipment, and are more stressful for patients (Heyer et al.

(2015)).

There is, evidently, value in the high-quality, three-dimensional imaging that is

possible with CT. But the associated costs and barriers mean that for most pa-

tients, most of the time, planar X-ray projection will be the imaging technique with

which their problems are evaluated.

Thus, it is important to consider the disadvantages of planar X-ray imaging, and

to research the ways in which these downsides can be mitigated, if at all possible.
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1.2. Problem

Figure 1.2: X-ray scan of pelvis phantom, with scatter (left) and with scatter
removed via an ASG. Images taken from Huda et al. (2008)

1.2 Problem

One substantial downside to X-ray imaging is that of scatter. In any kind of

optics, when photons are passing through a non-vacuum medium, there is a chance

for those photons to interact with the substance they are passing through, and

divert course. For photons at X-ray energies, Compton scattering is the dominant

cause of this effect (Kelsey, 1984; Yao and Leszczynski, 2009).

In an imaging setting, these diverted photons represent noise. They have followed

a path that does not directly correspond to their position in the image, so the data

they carry is not valuable. In a bulk effect, this leads to a clouding of the image,

and reduced contrast. This contrast-reducing noise is referred to as scatter. Scatter

is an inherently low-frequency, highly blurred effect. It is the impact of a many

errant photons travelling along unpredictable paths, thus well-defined edges in the

scatter are not only rare, but unrealistic in the majority of cases.

This effect becomes more substantial in an image such as a chest X-ray, where a

medical professional might be trying to discern a fracture in a rib, despite varying

densities in tissues either side of it, and a second layer of ribs above/below. In

this situation, even minor reductions in contrast can make a complex image very

time consuming to evaluate. To further complicate things X-rays passing through a
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1.3. Objectives

larger part of the body (such as the chest, compared to, e.g. the wrist) have more

matter to interact with and scatter off, leading to increased levels of contrast-

reducing scatter.

From this context, we can see that the value that an accurate scatter correction -

one that replicates the effect of an anti-scatter grid, improving readability - can add

to an image is significant. Because of this, techniques have developed over time to

attempt to remove or correct-for scatter in X-ray imaging. These techniques will

be discussed in detail in Section 3.3.2, but we can consider an overview here for

the sake of contextualisation.

1.3 Objectives

Our work seeks to improve the state-of-the-art in X-ray scatter estimation, by

producing a three dimensional model of the anatomy being imaged, from which

Monte Carlo (MC) simulations of X-ray scatter can be produced. Specifically, we

want to include information about the internal structure of the anatomy in these

models, and use knowledge about the approximate structure of typical anatomies

to attempt to resolve this 3D model in an iterative way. This is achieved by con-

structing an optimisation problem that converges towards an accurate model that

closely aligns with the ground truth data, and produces a beneficial and realistic

X-ray image.

In doing this, we more broadly seek to show that an ill-posed problem such as

reconstruction of a 3D body from a 2D measurement is possible through regularized

optimization, and can be used to produce valuable outputs.

Scatter correction as an optimization problem allows us to use the expectations

we have about the model — based on simple anatomical features — to constrain

the problem enough that a solution can be found despite uninformative initial

conditions.
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1.3.1. Challenges

Crucially, our underlying task is to produce models of imaged bodies that are

appropriate for use with the scatter simulation methods provided to us by IBEX

Innovations (as will be further discussed in Chapter 2). In this work we do not

attempt to improve the quality of scatter simulation, instead trying to resolve

models of appropriate type for use with IBEX software in a robust, explainable

way, using inferred knowledge about anatomies.

Finally, we seek to produce these models in as short of a time frame as possible,

so that their outputs (as scatter estimates and, by extension, scatter-corrected

images) can be valuable in a clinical setting. We achieve this through the use of

multi-scale analysis, which makes rapid progress on coarse models before resolving

detail more slowly on finer models.

1.3.1 Challenges

Resolving even coarse 3D models of bodies from single, noisy X-ray images is not a

trivial task. As will be reinforced in Chapter 2, the information contained within an

X-ray image tells us nothing about the spatial distribution of material orthogonal

to the imaging plane.

Part of the way that this issue is combated has been provided to us by IBEX, in

their choice of model. The models that IBEX use to represent an imaged body

and produce simulations from contain no information about the distribution of

materials in the plane orthogonal to the image. These models do parameterise

the depth of the whole object along that imaging vector, but do not make any

estimation of the varying distribution of materials along that dimension. Instead,

varying materials along that vector are homogenised into a single alloy parameter,

which describes the proportional combination of tissue types that occur in that

region. This leads us to the important limitation that though our technique is

seeking to produce a 3D model, this model contains very limited information and

is not comparable to the type of reconstruction produced in CT imaging.
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1.4. Contributions

X-ray
source

X-ray
source

Figure 1.3: X-ray scans of two objects with different material distributions in the
plane orthogonal to the detector will not necessarily produce noticeably different
images. Shading in this image is used to represent optical density/X-ray absorption.
The vertical arrows in this figure represent direct (unscattered) photon paths, and
are aligned orthogonally to the imaging plane.

1.4 Contributions

The product of our research is an algorithm that produces thickness-alloy models

of imaged anatomies, suitable for X-ray simulation and by extension scatter cor-

rection. The models are produced in an iterative method, where inaccurate models

are gradually refined over many iterations, to produce increasingly accurate estim-

ates of thickness and alloy values. Structuring this problem as an optimization

problem — and allowing it to be solved iteratively — is achieved through the de-

velopment of functional regularizers, custom to the problem of resolving structure

of 3D anatomies. Thus, we not only present a technique for resolving models of

X-ray imaged anatomies, but more generally for solving ill-posed problems via in-

jection of functional domain knowledge. Further, we implement this solution in

a multi-scale fashion, and show that further regularization and efficiency can be

6



1.4.1. Novelty

gained through the use of a range of coarse and fine resolutions.

1.4.1 Novelty

To our understanding, no other work has attempted to apply domain knowledge as

regularization to constrain the problem of 3D reconstruction from X-ray images.

Other work has used regularization for improved reconstruction in CT imaging

(Niu et al., 2014), but this is typically based around the expected smoothness of

the output images, as opposed to the reconstructed model itself.

Reconstruction of the surface of an object from a single image is an active area of

research, and has applications in a wide range of areas, such as autonomous vehicles

and robotic sensing. However, such methods typically have fewer limitations than

we see in our problem, making use of photon time-of-flight, multiple viewpoints, or

many sequential images, such as taken from a recorded video. (Niu et al., 2018),

for example, presents a method using Convolutional neural network (CNN)s to

reconstruct a 3D model from an RGB image, with topological understanding as

part of that reconstructed model. (Nguyen et al., 2021) demonstrates accurate 3D

reconstruction from a single image by making use of speckle images. We note here

that part of the novelty of our work is that we seek to reconstruct multiple para-

meters about the object (this can be thought of as a body surface and bone surface

being reconstructed simultaneously), with access to data that contains information

about internal structure.

In the field of scatter correction, recent work has attempted to estimate and remove

scatter from medical X-rays via deep neural networks, and has demonstrated suc-

cess (Lee and Lee, 2019). This work simulates artificial X-ray images (with known

scatter and direct-beam components), and trains CNNs to predict the high- and

low-frequency components of this scatter. This however provides no understanding

of the internal structure of the imaged anatomy, and would need to be retrained

for different detectors and set-ups.
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1.5. Limitations

1.5 Limitations

There are a number of limitations imposed on us by the decision to interface directly

with pre-existing code from an industrial sponsor, alongside self-imposed limita-

tions to prevent the scope of the project expanding beyond the point of achievab-

lility.

First, our 3D models of the imaged bodies will not attempt to capture true inform-

ation about the distribution of materials in three dimensions. This comes down to

the challenge described in 1.3.1, that a two dimensional image does not contain the

required information for full 3D reconstruction in a readily-accessible way. We do,

however, seek to extract as much information about 3D structure as possible from

the individual X-ray images.

Second, we impose a limitation on ourselves that our reconstructed models, and by

extension scatter estimates, will be produced at significantly lower resolutions than

the provided X-ray image. In Chapter 5, we will demonstrate that the computa-

tional cost - defined simply as the amount of CPU time required - of producing a

single simulated image increases polynomially with the number of parameters in

our model. Further, the total number of iterations required to produce an accurate

model also increases with the number of parameters. As our models are inherently

tied to images and their resolutions, the only way to decrease the number of para-

meters is to decrease the resolution of the model and the images it produces. Thus,

we typically try to find models that produce simulated X-ray images at a down-

sample factor of between 100 and 20, compared to the input X-ray. The modelled

anatomy will therefore also be sampled at a lower rate than in the X-ray image.

Third, we seek to produce these down-sampled models in the shortest practical

time. This algorithm ultimately seeks to improve the quality of X-ray images used

in a clinical setting (as well as providing additional information). Thus, the results

of the processing should be available to the clinician as rapidly as possible. This
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1.6. The Structure of the Thesis to Follow

limitation encouraged the work detailed in Chapter 6, where we seek to use the

down-sampled nature of the model to our advantage and reduce run-time.

Fourth, we restrict ourselves to easily available computational hardware for running

the algorithm. This limitation ties into the second, as producing simulated X-ray

images at higher resolutions requires rapidly increasing quantities of RAM on the

device producing the simulated images. While a product consisting of a cloud-

based version of this algorithm is conceivable, what we seek to produce should be

suitable for implementation on devices within clinical settings.

1.6 The Structure of the Thesis to Follow

Here we provide an overview of the chapters that comprise this thesis.

1.6.1 Chapter 2 - Problem outline

In Chapter 2 we describe the specific context for the current problem, in terms of

the work carried out by IBEX Innovations. Our work is designed in conjunction

with industrial research, specifically the IBEX TrueView algorithm. As such, it

is important to make the reader aware of the capabilities and limitations of this

system.

In this chapter we also describe the segmentation method that we make use of,

which was produced for IBEX Innovations specifically, and informs a significant

proportion of our solution to the physics-based material estimation problem.

1.6.2 Chapter 3 - Background

With the industrial context of our work better defined, in Chapter 3 we describe

the state of related work in various areas surrounding our problem space. This

includes the state-of-the-art, as well as the related work surrounding the ideas
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1.6.3. Chapter 4 - Exploratory Research

we make use of. Novel work and seminal textbooks from research on simulators,

optimization, X-ray imaging and scatter dynamics, segmentation, and multi-grid

are all discussed and presented, along with work that fills the niches in their various

crossovers. Finally, we will conclude by re-stating the relevance of these research

areas to our problem, and carving out the outline of the research we are exploring

in this thesis.

1.6.3 Chapter 4 - Exploratory Research

In Chapter 4 we begin to outline the bulk of the experimental work carried out

while researching for this thesis. We begin by describing a toy problem, which

was constructed to allow for rapid testing of several of the key ideas from which

our research began. This toy problem is designed to mimic the relevant and in-

teresting properties of the problem we seek to solve, without the necessarily high

computational cost of true X-ray simulation.

We then explore the concept of regularization as it applies to our problem, and

define a set of functional regularizers based on domain knowledge for implementa-

tion in the exploratory toy problem.

1.6.4 Chapter 5 - Regularized Descent

In of Chapter 5 we translate the exploratory work of Chapter 4 into the TrueView

modality, where the same principles can be applied to the real X-ray imaging prob-

lem, with real images and accurate X-ray simulation. Most importantly, this is

where we detail the functional regularizers we have constructed, as they are ap-

plied to X-ray images of cadavers and anatomical phantoms. Each regularizer is

presented independently, and justified mathematically as well as empirically ac-

cording to the results of ablation studies.

We then present a range of iterative descent method algorithms, explaining why we

opted for the non-conventional one implemented in the experiments presented in
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this chapter. We compare our technique against two standard methods: Stochastic

Gradient Descent and Newton’s method.

1.6.5 Chapter 6 - Multi-scale Methods

In Chapter 6, we discuss how we use ideas from multi-grid analysis to provide

additional regularization and efficiency to our algorithm. We detail the way that

our algorithm is set up to use different resolutions, and the limitations imposed on

us. Crucially, we explain how changing resolution is beneficial to the processing

pipeline we have developed, and how we translate the model developed in chapter

5 between resolution grids that do not necessarily align. We then consider how

these resolutions can be sequentially ordered for most effective use, and how our

regularizers need to be re-considered to be effective across all resolutions.

1.6.6 Chapter 7 - Results

In Chapter 7 we present results to validate our algorithm, by reconstruction the

spatial models of artificial objects designed to resemble human limbs (known as

phantoms), as well as X-ray scans of complex regions of a human cadaver. These

reconstructions allow us to evaluate the successes and limitations of our algorithm’s

results.

We follow these reconstructions with the results of scatter correction, based on

the scatter estimations produced from the models. These corrected X-ray images

show that, in cases where scattered radiation is substantial, there is a noticeable

impact on the final images to reduce haze and bring the whole object into a tighter

intensity range.
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1.6.7 Chapter 8 - Conclusion

Finally, in Chapter 8 we conclude the thesis, with a summary of the work presented

and our proposed steps for future work that would build on this research.

12



Chapter 2

Problem Outline

Fundamentally, we seek to resolve the internal structure of an anatomy based on a

single X-ray image. At its core, this problem is ill-posed, as the data contained in

an X-ray image tell us only how many photons were absorbed along their paths,

and not where along this path the absorption occurred, or what rate this absorption

occurred at. The fundamental idea to this, that we will refer back to is this:

In a single X-ray image, it is impossible to distinguish between a narrow,

highly absorbent material, and a deep, transmissive one.

We are provided with a grey-scale image, with pixel values representing the number

of photons detected at that corresponding point on the detector – typically in the

range 0 to 10000. This tells us only which regions of the object are more opaque

in the X-ray spectrum relative to the plane of the detector, and which regions are

not.

Despite this fact, medical professionals are able to infer complex three-dimensional

information from X-ray images, and do so frequently. This is because they have

access to a significant body of domain knowledge regarding the anatomies being

imaged. A radiologist would likely struggle to accurately predict the shape and

internal structure of a machine part being imaged with X-rays — they are not able

to miraculously solve an ill-posed problem — but they can make accurate inferences

based on the prior understanding of anatomy that they have. Indeed, most human
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2. Problem Outline

observers who have encountered X-rays in their lifetime would be able to make

some basic inferences about the 3D structure of the imaged anatomy, based only

on their experience with human proportions.

In this work, we seek to represent the most simple aspects of this domain knowledge

algorithmically, so that an image processing pipeline could also make reasonable

assessments about the 3D structure of an imaged anatomy, and return them as a

quantified output to the user.

There are two techniques for encoding this domain knowledge, either through a

comparative, learned approach based on many examples, or through a functional

approach, in which the domain knowledge is implemented in the form of an op-

timiser. The first requires substantial training data, consisting of pairs of images

and their 3D model counterparts. A prediction system (such as a convolutional,

deep neural network) could then be trained on these input-output pairs to predict

3D structure for any X-ray image. The downside to this technique is the lack of

explain-ability. The prediction system is treated like a black box, and any end-user

of the output is given no indication of how the final prediction was reached. For

many applications this is a minor issue, but in medical contexts this justification

is crucial. This is an idea that we will return to in Chapter 3.

The second, optimisation-based method requires no training data beyond the image

that is being resolved (i.e it is a single-shot solution), but it does require accurate

models of the physical processes involved in imaging. If the physics is modelled

incorrectly, then the result is not reflective of the real anatomy. We are limited

in availability of X-ray images, but do have access to an accurate X-ray image

simulator, therefore we opted for this second method.

This idea is shown in Figure 2.1. In part A, we have an anatomy being imaged,

producing 2D data from an unknown 3D composition. In part B, we take a simple,

anatomy-like structure, and represent it’s structure with matrices for thickness (the

depth of the object relative to the imaging plane) and alloy (a representation of the
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2.1. Scatter as an Entryway

materials found along a straight line between source and that point on the detector.)

In part C, we feed those matrices, along with simulated X-ray scatter kernels, into

an emulator, to produce a realistic X-ray image of the simple distribution made

in B. Finally, we compare the simulated image against the real, and attempt to

find the simulated distribution which most closely matches the real image. A close

match implies that our simulated distribution is an accurate model of the unknown,

real anatomy that was imaged.

2.1 Scatter as an Entryway

The scatter issue that is intrinsic to X-ray imaging described in the introduction

is where our research begins. X-ray scatter occurs when photons are deflected off

their incident path during the X-ray imaging. This leads to them striking the

detector at a point that does not correspond to a normally-incident, straight line

path, and creating a clouding noise component in the image. This reduces contrast

and readability in the final image, but it also serves to encode a 3D representation

of the object in the final image, albeit a non-intuitive one. Accurately predicting

and removing this scatter component can lead to a clearer image, and can serve as

proof of an accurate model of the anatomy.

This is the problem that IBEX Innovations’ TrueView technology sets out to solve.

By carrying out simulations of the paths of photons through a model of the anatomy

being X-rayed, this technology creates a sufficiently accurate replica of the original

X-ray image. This simulation can then be broken-down to separate the scatter

component from the direct beam component of the image. The scatter estimation

alone can then be subtracted from the original, input X-ray image, creating an

accurate scatter-correction, without loss of fine-grain detail.

Initially, research was focused on profiling and investigating the current algorithm

to identify weaknesses. This was initially done with thought given to reducing pro-

cessing time, in an effort to minimise the time required to produce such a scatter
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correction from a given image. The existing TrueView algorithm was broken down

into its core functions, and each of these was profiled to gather an understanding

of where bottlenecks occurred. The top-level function that connects these general

steps, referred to as the "Main Loop", consisted of a for loop, proceduarally adjust-

ing and evaluating given simulated models, and iteratively making improvements

based on this feedback. It quickly became apparent from the profiling that in a high

proportion of the iterations, the adjustments made were not valuable, and ended

up being dismissed. Furthermore, it was identified that, because each iteration of

this loop is wholly dependant on the one before, there was no potential at that

time for parallelization.

This immediately led to research into ways that the algorithm could be made more

efficient, in terms of making the most use of each step in the iterative process, and

to do so in a parallelizable way.

2.2 The Structure of TrueView

At the beginning of the research period, the existing TrueView algorithm was ana-

lysed and profiled. This algorithm has been developed over the course of several

years by a changing team of developers. As such, understanding the algorithm

comprised of discussions with current members of the development team, as well

as time spent stepping through it individually, notating the processes going on at

any given point. A significant portion of the work underpinning the existing IBEX

software is discussed in detail by Lopez et al. (2018).

First, it is important to consider how the TrueView algorithm achieves its goal

of removing scatter from X-ray images. The algorithm seeks to create a model

of the object being imaged, and simulate the interactions of X-ray photons with

this model. This simulation can be separated into direct and scattered radiation,

and the scattered component can be subtracted from the input image. More in-

formation about the existing TrueView algorithm is published by Targett et al.
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(2022), where the software developed by IBEX is applied to mobile chest X-ray

imaging. Simulating photon interactions with complex anatomies is not a trivial

challenge, and so to achieve this within time-frames that are clinically valuable

(ideally sub-one minute), the complexity of the model must be reduced.

Much of the complexity reduction of the process comes from the choice of model

used to represent the imaged anatomy. Instead of trying to represent the anatomy

as a full three-dimensional , highly detailed model (with many degrees of freedom

for minor, result-altering variation) the model is abstracted in ways the reduce

detail, but preserve the scatter behaviour. The model is voxelised, and is sampled

at a relatively low spatial sampling rate. In other words, while our input X-ray

image maybe hundreds or thousands of pixels in each dimension, the model used

to represent the image’s subject could only be tens of voxels in each dimension.

Furthermore, the model does not truly represent depth, but instead stores only the

thickness of the object (measured at a normal to the imaging plane), and the alloy

of materials along that normal vector between X-ray source and imaging plane.

This alloy is a scalar value, representing the ratio of just two materials: Bone and

soft tissue. If the straight line path between X-ray source and detector passes

through 5cm of bone and 5cm of soft tissue before reaching a given detector pixel,

Ix,y, the model (L)’s voxel would have a thickness of tx,y = 10 (5 + 5), and an

alloy of µx,y = 0.5. If it were 10cm of soft tissue and no bone, then the thickness

would be unchanged, but the alloy would become µx,y = 1, and if it were 10cm of

bone, the alloy would become µx,y = 0. Remember that, because the input image

has been down-sampled considerably, the pixels referred to here (x, y) are not true

pixels on the X-ray detector, but local groups of pixels. These two matrices of

values give us our full model, L(t, µ).

It is important to consider here the limitations of this model. Firstly, it contains no

information about the distribution of materials within the third dimension, ortho-

gonal to the imaging plane. It cannot indicate whether a bone is above a region of

soft tissue or vice versa, only that that cross section contains both of those materi-
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als in a given ratio. This is why we use the term alloy, as it implies a homogeneous

mixing, which is the assumed state of the two materials. This has impacts on the

accuracy of the simulated image, as hard boundaries introduce scattering effects,

and no such hard boundaries can be considered along this dimension. Secondly, it

represents only two types of biological tissue, which is clearly unrepresentative of

real anatomies. If we consider a chest X-ray, for example, the incident photos will

interact with bone, muscle, dense muscle in the heart, air gaps within the lungs and

more. For the sake of reducing the degrees of freedom of the model, any material

other than bone is abstracted as soft-tissue.

Further reduction of the model’s complexity comes during the simulation, and will

be discussed later in this chapter.

The TrueView algorithm iteratively makes alterations to this down-sampled, ab-

stracted model of the imaged anatomy, trying to resolve a model that is an accurate

representation of the real anatomy. The structure of that iteration is as follows:

• All pre-computed data is loaded. This includes pre-simulated databases of

radial scatter kernels, reification data, and the X-ray image(s) in question.

• The segmentation neural network (X-net, Bullock et al. (2019)) is used to

predict bone, soft-tissue, open beam and collimator segments of the input

image(s).

• An initial estimate for thickness and alloy is produced, based on the result of

the segmentation. This assumes a constant thickness across the object, and

a constant alloy in each of the soft tissue and bone regions. The Main Loop

begins.

• The first scatter estimate is produced. To do this:

– For each pixel in the down-sampled X-ray image, I, a ray-tracing al-

gorithm determines the distance to all other pixels, and the combination
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of materials each of these straight-line paths pass through, based on the

model of alloys, µx,y.

– This combination of distance and alloy (i.e. ratio of bone to soft tissue

on the straight line path) is looked up in the database of scatter kernels,

attempting to find the nearest match to those two parameters. This

gives an estimate of the scatter kernel for pixels that have scattered

along that particular path.

– These simulated kernels are combined to form an estimate of scatter for

the entire image.

• A Direct-beam estimate can then also be produced, using a similar method

but without the need for the ray-tracing. Here, for each pixel in the down-

sampled X-ray image Ix,y, the simulated direct-beam intensity is found ac-

cording to the scatter kernel that corresponds to that pixel’s pair of associated

thickness and alloy parameters, (t, µ)x,y.

• These new estimates of scatter and direct-beam are reified, by comparing

against real images taken on the detector. This ensures that the simulated

images more accurately match the output of the particular device and settings

being used.

• A convergence test is carried out, to determine if the current model of the

object is sufficiently accurate to produce reliable scatter and direct beam

estimates. On the first iteration, this is virtually impossible, as no changes

have yet been made to the model from the naive initial estimate.

• If convergence has not yet occurred, and the defined maximum number of

iterations to run through has not been reached, then the algorithm enters

into the process of making modifications to the spatial model.

• A history matching process is carried out, using information from the seg-

mentation of the raw image and a Gaussian process emulator to produce an
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intermediate spatial model, which is the current spatial model with altera-

tions applied.

• A second scatter and direct beam estimate is carried out, using the same

simulation process as in the previous steps, using the new intermediate spatial

model.

• A new convergence test now determines if the intermediate spatial model has

improved upon the one prior.

– If it has, then the spatial model is updated to the values of the inter-

mediate, and a Boolean flag is set such that, on the next iteration, the

first scatter and direct beam estimate is not calculated, since it would

be equivalent to the one that has been used to evaluate the intermediate

spatial model.

– If the convergence test statistic has not been improved by the interme-

diate spatial model, then the outgoing spatial model is updated to the

average of the new intermediate spatial model, and the previous best

estimate (according to the test statistic), with the opposite sign to the

current. This is to say, that if the test statistic determines that the new

intermediate spatial model is an over-estimate of thickness or alloy, then

it will be averaged with the best previous under-estimate.

• The current iteration number increments by one, and the loop continues.

This structure is shown in flowchart form in Figure 2.2.

In this existing algorithm, profiling work quickly identified the scatter estimation

based on the spatial model as the most computationally expensive step. This was

an unsurprising discovery, but informative when combined with the knowledge that

on a significant number of iterations, the spatial model has not improved, and thus

extra scatter computations have to be performed.
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Furthermore, because of the nature of the algorithm’s dependence on the previous

iteration at all times, there was not potential for parallelization.

Further profiling work was carried out to investigate the relationships between

processing-time and the resolution it was carried-out on. Because the scatter estim-

ation technique is based on a simple ray-trace, it scales very poorly with resolution.

This is mitigated by the fact that the scatter is fundamentally low-frequency, and

thus can be accurately derived from a down-sampled version of the input image.

As such, native-resolution X-ray images are never modelled in this work. The scat-

ter estimates are derived from down-sampled copies of the X-ray images, and thus

the model themselves also represent down-sampled models of the real anatomies.

For context, the standard down-sampling factor in use at IBEX when the research

began was a factor of 23. It is under stood that this was chosen empirically. In

some cases a factor of 11 would be used instead, for situations where the value of

the spatial model’s thickness and alloy data were being evaluated.

2.2.1 Simulated Databases

For the TrueView algorithm to function accurately, it relies on pre-computed data-

bases of scatter kernels, created by Geant4 simulations. The databases contain

the 1D radial scatter kernels corresponding to various combinations of materials,

through which simulated X-ray photons pass. The simulated objects through which

simulated photons travel and scatter consist of a core cylinder, with a given thick-

ness and alloy, and a cylindrical shell surrounding the first cylinder, also with its

own thickness and alloy. This allows the simulation process to capture the physics

of scatter in material transitions, where photons are diverted from their path when

travelling from one distinct material to another, after being initially scattered by

the core material.

For estimating scatter, these kernels are down-sampled according to the resolution

desired for the scatter estimate. These kernels are simulated over a range of thick-
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nesses and alloys, but for computational efficiency the database is further expanded

by emulated kernels, interpolated in the ranges between simulated results. While

this produces a less accurate library of kernels than is possible (because not all ker-

nels are strictly the result of simulated physics), it is necessary to reduce the time

and memory costs of loading a large database, storing it in memory, and searching

it for every kernel lookup.

2.3 Segmentation

The ability to accurately segment an X-ray image into regions of bone and soft

tissue is a crucial, underpinning technology of the scatter correction methods in

use at IBEX. It is understood that determining the composition of a material made

of various densities from a single intensity image is ill-posed, as it is impossible to

distinguish a thick, low-absorption material from a thin, high-absorption material.

This ill-posedness is mitigated where we attempt to resolve material information

for an object of a single, known density. The segmentation allows us to make such

an estimate for regions that have been classified as only containing soft tissue. This

confirmed density data can be fed into a history matching algorithm, and compared

against ground truth measurement images taken on the given X-ray imaging device,

to hone in on the most accurate material estimates for the object in question.

For the purposes of my research, this segmentation has been achieved by a CNN,

named XNet, produced by Bullock et al. (2019). This is a network architecture

designed in a collaboration between research students and the business, and as such

is highly optimised to accurately segment images the images IBEX Innovations

typically deal with into the regions of interest to the TrueView algorithm.

Images fed into the segmenting network are monochrome, planar X-ray images,

which are classified into four distinct regions:

• Bone, indicating pixels where some amount of bone is present.
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• Soft tissue, where no bone has been detected, and the organic material is

thus entirely muscle, skin, organs etc.

• Open beam, where no absorbing material is detected at all, and the X-ray

has reached the detector unaffected.

• Collimator, where sheets of metal have been intentionally placed in the path

of the incident X-rays, to narrow the imaged region and minimise dose to

sensitive areas of the body.

This network was trained on hand-labelled images, produced by staff at IBEX

Innovations.

2.4 Data Description

In this section, we clarify details about the data required for this method. The

IBEX TrueView scatter estimation method that our work is built around requires

detector measurements that are taken prior to creating a scatter estimation for an

X-ray image. These measurements only need to be taken once, and can then be

stored and loaded in at run-time whenever a scatter estimation is made for images

captured on that device.

2.4.1 Device Measurements

For an accurate X-ray simulation to be produced, the computational simulation

must be calibrated to the X-ray detection machine it is trying to replicate. Fail-

ure to properly calibrate in this way would lead to scatter simulations that were

consistently over- or under-bright for a given detector, and the simulated scatter

would thus degrade image quality when subtracted from the raw image.

The solution that IBEX have developed for this calibration step is to image a series

of plastic and aluminium plates of known thickness. Simulated scatter kernels
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corresponding to X-rays passing through equivalent blocks of Polymethyl methac-

rylate (PMMA) and aluminium can then be compared against the true imaged

results, and the simulated images can be re-calibrated. By capturing and storing

ground truth detector data, and accessing it during the simulation algorithm, the

simulated X-ray images can be calibrated in a non-uniform way, as opposed to a

calibration applied only to the simulated kernels. By selecting this method, IBEX

have allowed their X-ray simulation to calibrate for bright and dark regions of the

detector, and well as inter-detector variability.

For each of the datasets presented in this thesis, there is an accompanying set

of calibration images, comprising of ten images of aluminium plates, varying in

thickness from 0.5 to 5cm, ten images of PMMA plastic, varying in thickness from

1.5 to 20cm, and one image of the unobstructed detector, with nothing placed

between source and detector. an example of such a calbration image is included in

Figure 2.3.

Example Calibration Image (1.5cm PMMA plastic)

5000

5200

5400

5600

5800

6000

6200

Figure 2.3: Example image from the calibration set for the Full body Phantom
dataset.

Additionally for each dataset we have a required materials database, containing the

simulated scatter kernels through different material combinations at a given down-

sample factor, and a reification database containing statistics about the detector

and imaging setup, such as the distance between the X-ray source and detector,

which is also resolution-specific. Both of these required databases have been pro-
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duced and supplied by IBEX and are essential to their X-ray simulation tool.

Because of the requirement on this device-based data for calibration, we are limited

with the datasets we have access to. The calibration plates, though relatively

simple, have been designed and manufactured by IBEX. This means that, at time

of writing, the only way for this calibration data to be generated is for IBEX staff

to image these calibration plates on a detector of interest.

For my research project, the outcome of this is that I have limited access to datasets

that I can process with my algorithm. Publicly-available datasets published online

will not be suitable, because the IBEX X-ray simulation that is essential to the

algorithm I have produced will not correctly calibrate to images without the ground

truth data. Any material estimations created for such publicly-available datasets

would therefore have biases that cannot be measured, and the results would be

unreliable.

2.4.2 Datasets

Because of these restrictions on the images that can be processed with our al-

gorithm, we discuss here the existing datasets that we have access to for develop-

ment and testing.

Mark II Arm Phantom (M2AP)

The M2AP is a simple construction, designed by IBEX, to mimic the scatter dy-

namics we might expect to observe in a human arm. Made of aluminium and

PMMA, reasonable analogues for the X-ray scatter dynamics of bone and soft-

tissue respectively, the M2AP is expected to display similar amounts of X-ray

scattering that we would expect to observe when imaging the human upper-arm.

The benefit to using this device, as opposed to the phantoms that are discussed

below, is that the M2AP is machined to known dimensions, and is simple to model.

Its uniform thickness along its length make it easy to observe differences in scatter

and detected X-ray intensity at different regions of the image.
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Uncorrected X-ray image

Figure 2.4: X-ray image of Mark II Arm Phantom, designed to approximate the
anatomy of the human upper-arm. No contrast windowing has been applied.

Full body phantom

Unlike the M2AP, phantoms are deigned to more accurately represent the variation

in shape that are observed when imaging the human body. The dataset referred

to as the full body phantom consists of X-ray scans of the upper and lower arms

and legs of this phantom, providing data that should closely mimic the X-ray

interactions with real human limbs. the X-ray scans of the full body phantom are

included below, with some contrast windowing to enhance readability.
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Uncorrected X-ray Image (with contrast windowing) Uncorrected X-ray Image (with contrast windowing)

Uncorrected X-ray Image (with contrast windowing) Uncorrected X-ray Image (with contrast windowing)

Figure 2.5: X-ray images of regions of samples (clockwise from top left: upper-
arm, lower-arm, upper-leg, lower-leg), taken from a phantom designed to replicate
human anatomy. Each of these images has been contrast windowed to maximise
readability.

Cadaver scans

The final dataset we have access to is a set of scans of a human cadaver, acquired

by IBEX for the purpose of assessing scatter correction algorithms. This dataset

contains images of regions of anatomy that are harder to model in a phantom, and

where scatter effects are more significant.

This dataset consists of images of a wrist, shoulder and skull. Images from this

dataset, contrast windowed but without any scatter correction applied, are included

below. Compared to images from the full body phantom dataset, these images, and

the shoulder and skull in particular, are harder interpret. This is primarily the sig-

nificant impact of scattering radiation, which makes it difficult to find a satisfactory
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contrast window that allows us to examine the whole image simultaneously.

Uncorrected X-ray Image (with contrast windowing) Uncorrected X-ray Image (with contrast windowing)

Uncorrected X-ray Image (with contrast windowing)

Figure 2.6: X-ray images of regions of anatomy (clockwise from top left: shoulder,
skull, wrist), taken from a human cadaver. Each of these images has been contrast
windowed to maximise readability.

Because of the complex anatomy of these samples, and the associated challenge of

scatter correction, these samples wil be used to ultimately validate the success of

our material estimation algorithm. This follows teh logic that an accurate material

estimation facilitates accurate simulation of the X-rays (via IBEX’s X-ray simu-

lation algorithm described previously), and accurate X-ray simulation facilitates

meaningful scatter correction of the X-ray images.

In complex images such as these, the effects of successful scatter correction should

be visually clear to the reader, thus in the absence of ground truth material data for

the samples it is this visual improvement from scatter correction that will validate

our success.
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The other alternative for validation of our method’s success would be CT data

collected for the samples in this dataset at the same time as the X-ray images we

will be analysing. Unfortunately, no such CT (or similar) data was made available

for any of the datasets we will be using for our experiments.
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X-ray source

X-ray detector

Traditional Imaging process

Real X-ray image

?

Thickness values
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Physical anatomy

Pre-computed
Geant4 simulation

database

Thickness values

Alloy values

Simulated X-ray image

A
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C

-

Thickness values Alloy values
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Figure 2.1: Diagram showing the broadest structure of the problem we seek to solve.
The goal is to produce an accurate model that represents the real structure and
material makeup of the imaged object, by iteratively comparing the simulated X-
ray images of varying models to the true X-ray image. In (A), we see the traditional
imaging process, where X-rays are projected through an object to produce a image
corresponding approximately to the absorption of the model. (B) shows how we
might represent such an object in our model, where only thickness and alloy can be
encoded. In (C), an example model is used to produce a simulated X-ray image.
Finally, in (D), that simulated image is compared against the real image, and this
difference is used to inform that changes that should be applied to the model. In
the real system, we will iterate through steps (C) and (D) until the simulated image
is a good match to the real.
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Figure 2.2: Flowchart showing the structure of the TrueView algorithm
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Chapter 3

Background

In this chapter we present an overview of the work that has informed our research

direction, and illustrate the niche that we identified where valuable, novel research

could be performed. This chapter includes sections for all the relevant research

areas that our work encompasses, and explains the state-of-the-art that we seek to

build upon with this thesis.

3.1 Simulators

In this section, we investigate the state-of the art around X-ray simulation tech-

niques. The ability to produce a reasonably accurate simulated X-ray image is

essential to our work.

3.1.1 Monte Carlo Simulation

MC methods - named for the gambling culture of the area in Monaco - are based

on the principle of repeated, probabilistic sampling. (Prügel-Bennett, 2020) It

describes how a probabilistic process may be simulated many times in order to

learn more about the properties of that process. This is a technique that is suitable

for the simulation of imaging processes, as the photon interactions with matter can

be described as probabilistic events. In the field of X-ray imaging, this technique
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was employed as early as the late 1990s (Verhaegen et al., 1999), in order to provide

dosimitry data that is otherwise difficult to accurately measure.

Later studies showed how this could be used to produce realistic chest X-ray images

at many tube voltages, at high resolution with realistic noise (Moore et al., 2012).

This research was used to evaluate the quality of images for different body types

and different imaging setups by experienced professionals, and gave indication of

optimal imaging setups and the patient dose associated with them.

3.1.2 Geant4

Geant4 is a simulation toolkit, designed to model the interactions of particles in

many applications (Agostinelli et al., 2003). Originally released in 1998, the Geant4

software was developed in collaboration with CERN, with a goal to produce a ro-

bust physics-based particle simulator in the object-oriented programming language

C++. Development is ongoing, with the most-recent stable release (at time of

writing) on December 10 2021. Geant4 is open-source, and available for free to the

public.

One area that Geant4 is well suited to is the simulation of medical imaging mod-

alities, such as X-ray photon interactions. This toolkit allows highly accurate MC

simulations to be produced from voxel models, such as in di Franco et al. (2020),

where Geant4 is used to produce simulated "clinical-like" mammography images.

One limitation on this is the compute time. With the hardware available, di Franco

et al. were able to simulate 1.4 × 105 photon interactions per second, but acknow-

ledge that around 1010 simulated interactions are needed to simulated realistic

breast CT projections.

In comparison, Alnewaini et al. (2017) uses the Geant4 toolkit to produce real-

time MC estimations of dose to radiology staff during common imaging procedures.

This impressive compute-time for an intensive algorithm such as MC is achieved by
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pre-computing components of the interaction which will not change with imaging

set-up, such as scattered radiation from the floor and ceiling.

3.2 Optimisation

Based on the dynamics of the problem that we seek to solve, which are set out

in Chapters 4 and 5, we understand that we are attempting to optimise an ill-

posed, non-convex, discontinuous function of many dimensions. Specifically, we

seek to find the optimal set of thickness and alloy values in a spatial model that

minimises our cost function, which first and foremost is the difference between a

simulated X-ray image and a real image of the object we are reconstructing. This

can be thought of as a constrained optimization problem, as we are limited in the

selection of values by our simulator, but modifications to our cost function mean

that unconstrained optimization is a better definition (Nemhauser et al., 1989).

In this subsection we will set out what is meant by these terms, and how similar

problems are being solved in recent research. Non-convex optimisation in particular

has taken on renewed research interest in recent years due to its applicability to

common machine learning problems (Jain and Kar, 2017).

3.2.1 Ill-posed Problems

The problem that we seek to solve with the work set out in this thesis is ill-posed,

as it does not have one stable solution according to the (limited) data available

(Kabanikhin, 2011). The ill-posed nature of tomography — that is, the separation

of a 2D image space into 3D components — has been well discussed and researched

at this point (Lavrent’ev et al., 2014), and iterative reconstruction algorithms for

X-ray tomography imaging such as in CT are thought by some to be reaching the

limits of their clinical value (Mileto et al., 2019).
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Using domain knowledge as part of a system for inverting ill-posed problems has

seen recent research, with Maier et al. (2019a). This work reformulates the matrix-

operation inherent in CT imaging and factors them into a neural network, thereby

injecting prior knowledge about the physics of the problem into the solution. This

performs well on CT reconstruction from imperfect data, outperforming other state-

of-the-art algorithms. Similar ideas are applied to Cone-beam computed tomo-

graphy (CBCT) imaging from incomplete data in Würfl et al. (2018).

The novelty that we introduce is the application of iterative, optimisation-based

ill-posed problem-solvers to single-shot, 2D X-ray images. This seeks to produce a

coarse, low-accuracy—but nonetheless valuable—3D reconstruction.

Bakushinsky et al. (2010) outlines a iterative regularization gradient technique for

ill-posed problems.

3.2.2 Regularization

The problem that we seek to solve in this thesis relates to finding the optimal

solution in a high-dimensional space. To attempt to make this problem solve-able,

we seek to reduce the complexity of the cost function we minimise by employing

regularization (Bühlmann and van de Geer, 2011; Engl et al., 1996). This idea is

influenced by work by Carola-Bibiane Schönlieb and Ozan Öktem, where knowledge

about a forward operator or system is encoded into a cost function as a regularizer

(Lunz et al., 2019).

Arridge et al.’s Solving Inverse Problems Using Data-Driven Models (Arridge et al.,

2019) describes a variational approach to solving inverse problems of the form

f = T (u) + n, where we wish to determine u from f , with n denoting noise. This

is done by minimising a convex function that is regularised using knowledge about

the forward-problem and the type of solutions we might expect.

For image reconstruction, these assumptions could consider the sparsity of the

gradients of the image u, such that it is recognised to be generally smooth, with
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harsh gradients only occurring at edges in the image. Generative adversarial net-

work (GAN)s and adversarial networks are considered, and their use is proposed as

a replacement for the regularisation term. This takes the form of a network trained

to recognise poor solutions to the inverse problem and provide a high penalty to

the minimisation function in these cases, allowing a deep neural network to be used

to determine the optimal parameters for the forward function T .

They describe how the use of deep neural networks can be beneficial in cases of

inverse, ill-posed problems where the measurement space and solution space are

different. Though this is not the case in our problem, the concepts of regularised

gradient descent show promise, with the potential for more complex regularisers to

be applied as the problem is scaled up.

Section 6.2 of Arridge et al.’s review has particular relevance to the problem of

scatter correction and materials determination, as it describes the approaches that

can be applied in the cases on non-perfect forward operators. The current phys-

ics engine approach IBEX apply to remove scatter from images is effective, but

too computationally expensive to be viable. To mitigate this, a potential avenue

of research could be to use expensive but accurate scatter corrections to learn a

knowledge-driven, simple analytical model of the forward operator.

Comparable methods have been researched for resolving images based on ill-posed

data, through formulation as an optimization problem regularized via the l1 term

(Birdi et al., 2017). Though this work is focused on astronomical interferometry

images, the underlying principles are applicable to the work presented in this thesis.

Latha and Sahay (2020) seeks to resolve the 3D structure of objects through reg-

ularization from prior knowledge. However, this is achieved through a multi-shot

approach, using many images at different focus points to infer depth information.

Physics-informed techniques also fall under the principle of regularization we intend

to harness, where knowledge about the physics of the underlying system is used to

constrain an optimization (Yang and Perdikaris, 2018; Karniadakis et al., 2021).
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Adler and Öktem (2017) consider a technique for functional regularized reconstruc-

tion of CT data via learned gradients. Not unlike the work presented in this thesis,

Adler and Öktem seek to develop new techniques which use both classical regular-

ization and deep learning. In this work, novel deep-learning techniques are used

to partially-learn the gradient mapping of CT reconstruction from simulated CT

training data. As the work in this article is concerned with imaging data, it par-

ticularly notes the relevance of variations regularization in the ℓ1 norm (Scherzer

et al., 2009), a principle that we consider in Chapters 4 and 5.

Bilal and Arif (2019) present work which seeks to replace traditional functional

regularization in image reconstruction with a CNN based method. Similarly, Lunz

et al. (2019) investigate how traditional functional regularization encoding know-

ledge about the model and forward operator can be learned by a neural network

via an adversarial approach, as is typically seen in GANs. They then successfully

apply this technique to image de-noising in CT.

Some work, such as Gilton et al. (2021), questions the robustness of techniques

that seek to learn the forward operator in inverse problem solving. They propose

a technique for model adaptation, so make the learned models more accurate in

the face of so-called domain drift, where the model the work is validated with

differs slightly from the one it was trained to invert. We too acknowledge this

issue, but instead seek to resolve it by utilising prior knowledge about the expected

distribution of estimated values (via a CNN), as opposed to knowledge about the

forward operator.

Li et al. (2020) proposes a neural network alternative to classical Tikhonov regu-

larization, and applies it to the problem of low-dose, incomplete CT imaging. This

is shown to provide well-posedness to the problem, and is shown to be applicable

to related problems thanks to the data consistency term in the proposed solution.

Baguer et al. (2020) considers a combination of deep, learned regularization tech-

niques and more classical regularization for ill-posed problem solving in medical
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imaging. This seeks to resolve issues with end-to-end learned methods, such as

over-fitting to the training data provided leading to reduced generalizability, while

also providing a stronger theoretical backbone to the solution. This makes use of

the idea of the Deep Image Prior (Ulyanov et al., 2018), a recent, piece of im-

age restoration research that uses deep neural networks without any training for

ill-posed restoration problems.

3.3 X-ray Imaging

3.3.1 Scatter

In X-ray imaging, scattering is a phenomenon that can occur, where photos interact

with the matter they are travelling through and change course. This scattered

radiation generally leads to a clouded effect on the final image, reducing contrast

and making the images less readable by radiology professionals (Dhawan, 2011;

Hsieh, 2003). This scatter is, however, a function of the 3D composition of the

object that is being imaged, and as such can contain formation that is otherwise

inaccessible in a 2D imaging modality (Speller, 1999).

3.3.2 Scatter Removal

Scatter correction in CT imaging, which involves the acquisition of a series of X-

ray images taken from different angles around the patient, is increasingly explored

in scientific literature. This is likely due to the increased effect scatter can have

on CT images, resulting from the different imaging geometry CT requires when

compared with standard X-ray imaging. This generally appears to be done via MC

simulations (Meyer et al., 2009; Zhao et al., 2016; Lee and Chen, 2015), although

neural network based approaches appear to be on the rise (Hansen et al., 2018;

Maier et al., 2018), with Maier et al. combining the computational efficiency of

deep neural networks with the output of a MC Simulation, achieving good scat-
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ter estimates in around 10ms per projection at 384×256 pixels (Maier et al., 2019b).

Non-software based approaches to scatter correction are also important to con-

sider. Any software-based system has to be able to compete with physical scatter

rejection techniques to have value. Physical techniques have limitations, but can

be a convenient solution for existing systems. ASGs, which have already been

mentioned, are the most common of these methods, but an increase in the dis-

tance between the patient and the X-ray detector can also lead to a significant

reduction in scatter in the cases where it is feasible (Sisniega et al., 2013; Persliden

and Carlsson, 1997), as well as the implementation of a bowtie filter (Mail et al.,

2009). Combinations of both software-based methods and physical methods have

also shown promising results (Stankovic et al., 2017), though could incur the in-

creased dosage requirements of ASGs, which would have a negative impact of their

feasibility for medical use when compared to software-only approaches.

Mentrup et al. (2016) compares the scatter-correction capability of an iterative

method based on MC simulations of X-ray beams against an ASG. This work

specifically discusses bedside chest X-ray imaging, which is routine in hospitals for

patients with reduced mobility. They simulate this imaging via a chest phantom,

and evaluate the contrast enhancement by placing discs of aluminium inside the

phantom, which the imaging system will struggle to resolve under noisy conditions.

Their scatter model is based on work by Bertram et al. (2006), where combinations

of simulated X-ray pencil beams are passed through water in spheres of different

thickness. They iteratively adjust this thickness and minimise the error between the

simulated image and the true, then separate the scattered portion of the simulated

radiation to remove it from the true image. They conclude that their (relatively

crude) software-based scatter correction produces grid-like de-scattering, in a way

that is invariant from one patient to the next. Further, it can reduce the patient

radiation dosage when compared to ASG scatter removal.

Related to scatter removal techniques, it is also worth briefly discussing the multi
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absorption plate (MAP) technology developed by IBEX and Nordson Dage for

material estimation in X-ray inspection of manufactured products such as printed

circuit boards (Scott and Krastev, 2017; Cowling et al., 2016). The MAP is a

hardware device that sits between the X-ray source and object in a conventional

inspection set-up. The MAP modulates the incident X-rays in a known spatial

pattern, "act[ing] like a complex colour filter for the X-rays". This modulation of

the rays changes the energy distribution the object experiences, and allows material

information to be extracted in post-processing.

3.4 Segmentation

The term segmentation refers to the process of identifying regions within an image

that belong to particular classes, for the purpose of better image understanding.

Areas of the image can be separated and classified as distinct from one another,

to allow for the identification of objects in a photograph, or valuable data in a

cluttered image (Zhang, 2017; Snyder and Qi, 2004).

Recently machine learning techniques have become the most commonly employed

method for medical image segmentation. This trend appears to have begun through

the rise in classification-based segmentation methods — which segment the image

according to a categorical assignment made to each pixel, based on some training

data (Norouzi et al., 2014) — has now led to a convention of deep learning tech-

niques, such as CNNs and U-nets and their variations (Hesamian et al., 2019; Jha

et al., 2020; Wang et al., 2018).

The most significant caveat to these more modern segmentation techniques is the

aforementioned training data. To be able to train a robust CNN, substantial

volumes of training data are required, requiring many labelled images available

to the segmentation researchers. Sourcing these labelled images can be a time-

consuming, impractical task.
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As such, techniques to reduce the negative impact of small data sets, such as data

augmentation (Zhao et al., 2019) and unsupervised segmentation (Zhang et al.,

2020) have begun to emerge.

Yan et al. (2019) for example uses a GAN to produce realistic but synthetic lung

X-ray images and their segmented counterparts, for the use as training data in

supervised medical image analysis.

3.5 Speed and Efficiency

As will be covered in detail in Chapter 6, we borrow ideas from multi-scale analysis

in an effort to regularize the solution and increase efficiency. Acknowledging that

we attempt to find a reasonable solution for the physical dimensions and internal

structure of part of an anatomy on a discretised grid, we can consider exploring

how changing the frequency of that discretization can affect our solution. In doing

so we can make use of both the error-smoothing and coarse-grid correction that

multi-grid can offer us, as are outlined in Chapter 2 of Trottenberg (2001).

The concepts of algebraic multi-grid described in Stüben (2001) are of interest to

us as well, as they allow us to make better use of the extra information provided

by a segmentation of our image, which will be discussed in more detail in Section

6.3.2.

Comparable techniques are applied to grey scale images in order to better analyse

texture information for classification (Silva and Florindo, 2019). In this work, grey

scale native-resolution images are analysed alongside their down-sampled counter-

parts, as it is recognised that different resolutions will better record data about

different frequency features. This is a technique that we try to harness the value

of as well.

Recent work has been carried out to apply comparable multi-grid techniques for

efficiency in medical image processing, specifically patch-based scatter correction
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in X-ray imaging (Gu et al., 2018). In this work Gu et al. use multi-grid ideas to

process medical images at coarse resolutions before processing at fine ones. This

mean that their computationally expensive technique of correcting X-ray scatter

based on relatively large patch sizes and search areas can be carried out in reas-

onable time. This is one of the same principles we make use of in our multi-scale

analysis.

Hauptmann et al. (2020) uses multi-scale methods in inverse problem solving to

make an unfeasibly slow and memory-intensive problem into a feasible one. Spe-

cifically, this work talks about CT reconstruction and the use of neural networks in

learned iterative reconstruction, where networks incorporate handcrafted features

of domain knowledge, as was in the case in Maier et al. (2019a)

3.6 Explainable Artificial Intelligence

Though Artificial Intelligence has seen wide uptake in recent years , it has his-

torically suffered from criticisms around explain-ability. The application of AI

algorithms in safety critical contexts has led to a developing field of explainable

AI research, which broadly aims to create AI models that can be reviewed and

understood in fields where risk must be minimised. Minh et al. (2022) provides a

comprehensive review of the state of explainable AI circa 2021/2022, and identifies

three key benefits to additional explainability in black-box models: "guaranteeing

fairness during the learning process, such as identifying and removing the bias in

a dataset, improving the system’s robustness by indicating the possible noise that

could afect [sic] the performance, and ensuring that the model uses only the essen-

tial features to infer the output."

Loh et al. (2022) also reviews the state of explainable AI, but focusing specifically on

applications in the medical domain between 2011 and 2021. This review identifies

SHapley Additive exPlanations (SHAP) as the most prevalent from of explainable

AI for identifying relevant features in healthcare data at time of writing, with 45 of
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the 99 studies they consider using SHAP. This review makes clear their view that

explainable AI in healthcare is already being rapidly developed and deployed, even

concluding that "many AI models have achieved operator-like performance but are

still not used because the lack of operator confidence limits them".

Ghassemi et al. (2021) argues against this viewpoint in their paper The false hope

of current approaches to explainable artificial intelligence in health care. In this

work the authors argue that explainable AI methods currently being researched

for healthcare applications do not provide the benefits they claim to hold. More

specifically, the authors present research to demonstrate that popular methods

to make AI explainable, such as saliency maps in imaging applications, are often

vague, difficult to interpret, and victim to confirmation bias.

The authors of this review do not set out a viewpoint that is fundamentally opposed

to explainable AI. Indeed, they cite the value of explainable AI tools for better

understanding bias in datasets and models. They do however make clear their

view that in healthcare contexts, explain-ability is an important goal because it

generates trust in individual patients that their problems have been approached

with sufficient oversight. The author’s problem with this is that current explainable

AI methods do not help patients understand the process behind decision making

on an individual level.

3.7 Depth Estimation and 3D Reconstruction

Also of interest but not related to the sections described above, Sayed et al. (2022)

describes a novel technique for depth estimation - a comparable problem to the one

we seek to solve. This work uses multiple high-quality views of an indoor scene to

estimate depth in the images.

Attempts at 3D reconstruction of anatomy from 2D images have been made in

recent years, often attempting to produce CT-like models. Kasten et al. (2020)

uses deep learning and bilateral views of knee X-rays to reconstruct 3D models of
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the imaged anatomy. This deep neural network is trained using simulated bilateral

X-ray images produced from CT scans, but is intentionally restricted to just images

of the human knee, to allow the network to learn the typical structure, making 3D

reconstruction easier.

Shen et al. (2019) and more recently Tan et al. (2022) each present deep neural

networks for producing CT-like outputs from a single X-ray image. Both of these

works produce good quality CT-like 3D representations of the imaged anatomy,

but require considerable quantities of training data to develop models capable of

such reconstruction.

One of the earliest works to reconstruct 3D volumes from single X-ray images, Hen-

zler et al. (2018) presents a deep learning model which reconstructs bone surfaces

from mammalian X-ray images. This method utilises a multi-scale-like approach, in

which the coarse output of the deep neural network is fused with the high-resolution

images to produce a fine, 3D reconstruction.

3.8 Conclusion

Based on the work that has been described in this chapter, we begin to identify

an area of research with the potential for significant improvements in the field

of algorithmically enhanced X-ray imaging. We have identified value in physically

motivated medical image enhancement, as this provides a degree of trust to medical

professionals who have to make decisions regarding people’s well-being based on

the data we provide.

We have identified regularized optimisation methods as an avenue for solving ill-

posed, inverse problems such as ours, and seen an emergence of machine learning

implemented as part of this regularization pipeline.

The value of MC simulations in X-ray image enhancement has been shown, and

we have seen how they can be used to produce realistic X-ray simulations suitable
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for the construction of an optimiser that iteratively produces more accurate X-ray

images.

Finally, we have seen how techniques from multi-grid analysis have demonstrated

value in image analysis and ill-posed problem solving, where coarse resolutions

allow for faster computation, with the knock-on effect of smoothness regularization

implicit in their application.

Together, this leads us towards a research focus that combines these ideas to

produce a physically motivated, iterative and multi-scale algorithm for efficiently

resolving the material distribution within an imaged anatomy from a single scan.

This optimiser is predicated on an accurate X-ray scatter simulation, but it also

facilitates more accurate scatter estimates, which can be used to reduce the level

of noise in diagnostic images in a clinical setting.

This is achieved through regularization via domain knowledge and CNN prediction,

taking the anatomical understanding that radiologists use every day and reformu-

lating it such that it can be applied mathematically to make an ill-posed problem

solvable.
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Chapter 4

Problem Formulation and

Exploratory Studies

4.1 Formulation as an Optimisation Problem

The principle of transforming the material estimation and scatter correction prob-

lem that IBEX’s software tries to solve into a more classical optimization problem

was rapidly identified as a valuable area of research. The problem is ill-posed (Engl

and Groetsch, 2014), but the human observer can often derive far more information

about an imaged anatomy than this ill-posedness would suggest. By making use of

learned, human experience, it is trivial for even someone with no medical training to

recognise that an X-ray of a human anatomy usually depicts bones surrounded on

all sides by a layer of soft tissue. Just as the history matching — where the current

estimation is compared against previously collected, known data (Astfalk, 1996) —

in the TrueView algorithm uses this knowledge to infer thickness, the human eye

does too. A trained eye can go several steps further, using their understanding of

human anatomy to recognise different organs from soft tissue density (Darby et al.,

2011), tumors from unexpected regions of varying density, or osteoarthritis from

the separation within joints (Piperno et al., 1998).

We determined that valuable research could be performed in this area, as the
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concept of applying domain knowledge to constrain a formally ill-posed problem

has applications across many problem areas (Xian et al., 2012; Crockett et al., 2019;

Liao and Ji, 2009), provided it can be demonstrated to work on this well-defined

problem.

4.2 Exploratory Research

Some initial experiments were proposed to attempt to explore the problem space

and assess the ill-posed quality of the problem. These experiments were supposed

to allow us to design prototypes for our final algorithm, without the more intense

development overhead involved in creating code to interface directly with the ex-

isting scatter correction model. In this section, we present the ideas that we knew

would become part of our final algorithm, so that we can develop and test rapid

prototypes for them.

4.2.1 Simplified Scatter Model

Initially, a highly simplified model of scatter dynamics was developed, allowing the

broad concept of the problem to be explored without the need for any specialised

databases or detector information. It was understood at this time that the scatter

model being tested - and by extension problem dynamics - were incorrect, but

were intended to be a suitable enough abstraction of the real problem to test the

capabilities of optimization techniques.

Based on a system originally developed for experimentation with CT by IBEX

Innovations, the model that was constructed consisted of two layers of voxels, com-

posed of aluminium and PMMA. These materials were chosen as reasonable ana-

logues for bone and soft-tissue, respectively, (Watanabe and Constantinou, 2006),

and combined at different ratios into so-called alloys. This leads to each voxel

having an associated alloy value, µ, between 0 and 100 representing the percentage
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Figure 4.1: Highly simplified model of scatter dynamics, representing the ill-posed
quality of the problem, where the model parameters relating to one pixel influence
the intensities of the other pixels nearby.

of PMMA in a PMMA-aluminium alloy. The X-ray attenuation details of these

materials were sourced from Hubbell and Seltzer (1995). This structure of voxels

with associated alloy values is denoted A.

The two separate layers were designed to replicate the thickness aspect of the object,

as in principle the number of voxels stacked upon each other could be increased or

decreased in different regions to represent non-homogeneous thickness.

In this idealised system, simulated photons of various energies are projected ver-

tically down through each pixel, scattering into neighbouring pixels in the layer

below (shown in Figure 4.1). The scatter and absorption dynamics were determ-

ined by two values, the Linear attenuation coefficient (LAC) and Scatter window

fraction (SWF) of each voxel. This attenuation coefficient and scatter fraction was

found for the nearest integer alloy percentage in a precomputed lookup table.

The result of this simulation process was a matrix image, available as either the

counts in each of the energy bins, or the integral across them, as an intensity value

for each pixel. As our research was focused on non-CT imaging, only the intensity

integral was considered, as this is the output most commonly associated with the

imaging modality.

An example of this simulated imaging, and the input from which it would be

derived, are shown in Figure 4.2.

This gave us a simulated image L(A), as a function of the 3D array of inputs. We
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Figure 4.2: Densities of voxels in a 3 × 3 × 2
setup, and the simulated image generated by that setup.

can then formulate a minimization problem, seeking to find the 3D voxel structure

A corresponding to the point

min |I − L(A)| (4.1)

where I is our input image. In these experiments, where the scatter simulation

process is simplified beyond the point of realism, it is unreasonable to expect the

system to converge to any sort of real X-ray image. Thus, we simplify the models

further to reduce the time required to produce results, and make the relationships

between model and output more clear. The experiments here concern 2D, typically

either 3×3 or 9×9 pixels, depending on the scale of model required to demonstrate

the effect in question. These small images were chosen to minimise the processing

time, while still getting meaningful results. Thus the input images were also the

results of the simulation process, for a pre-set distribution of alloys AT rue.

This reduced the problem’s complexity somewhat, as it was known that a solution

of Eq.4.1 was achievable by the simulator, and no bias would be involved. This, in

effect, represents the problem with access to a perfect X-ray simulator.

With the problem reformulated as an optimization, a selection of algorithms could

be trialled to attempt to recover the known ground truth input data from an ill-

posed output.
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4.2.2 Gradient Descent

A finite-difference gradient descent algorithm which takes some 1D function which

it seeks to minimise the error, y = f(x) .

This algorithm can be applied to multivariate functions, by taking derivatives in

each of the possible dimensions, and combining as vectors. This can be done by

estimating the gradient of each dimension of the multivariate function separately,

following the same process as described above, but estimating a partial derivative

with respect to one of our variables:

∂

∂x
y(x, z) = y∗

0 − y0
x∗

0 − x0
,

∂

∂z
y(x, z) = y∗

0 − y0
z∗

0 − z0

Updates to descend the multivariate function can then be applied either sequen-

tially (estimating a different partial derivative after each) or simultaneously (by

combining updates to each variable into a single change).

Choice of a reasonable damping factor C is essential to efficient convergence. Too

small, and each step will only traverse a small part of the distance to the nearest

minimum, and many steps will be required for any sort of convergence. Too large,

and the step could go past the nearest minimum, leading to a case where the

minimum cannot be reached. Furthermore, it worth emphasising that this method

is only suitable for finding local minima, and its search for a global minimum will

be easily hampered by a local minimum close to the start point.

4.2.3 Stochastic Gradient Descent

Because of the need to calculate many gradients for each iterative step (one for each

dimension of the function being minimised), gradient descent is an inherently costly

algorithm, and becomes prohibitively expensive in high-dimensional problems, such

as the one we are attempting to solve. The solution to this is SGD (Shalev-Shwartz

and Ben-David, 2014).
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4.2.4. Mini-batch Gradient Descent

SGD follows the same basic structure as gradient descent, but where gradient des-

cent take the derivatives across all dimensions (item 4), SGD instead only takes the

derivative with respect to a single dimension, and thus only moves in that direc-

tion. This leads to a higher number of total iterations to converge in multivariate

functions compared to gradient descent, but the reduced cost per-step means that

it can be a more efficient algorithm overall.

The first experiments carried out on the simplified scatter model were done using

this SGD technique, as it was understood from the beginning that even if batched

gradient descent could be cost-efficient for the simplified case, there was no feasible,

foreseeable outcome where batched gradient descent could be appropriate for the

real problem we ultimately intended to solve.

4.2.4 Mini-batch Gradient Descent

Considering the two techniques described above in 4.2.2 and 4.2.3, a natural hybrid

of the two can be imagined, where gradients are taken for some number of the

possible parameters B, such that N > B > 1, where N is the total number of

variable parameters.

This naturally provides a tune-able trade-off between the accuracy of a batched

gradient descent, and the efficiency of a stochastic gradient descent. This is

achieved by defining some number of parameters which are to be investigated in a

given mini-batch, then defining some method the algorithm should use to select this

subset of parameters. In the simplest case, this mini-batch size would be constant,

and the parameters to vary would be selected at random each iteration, though

naturally more elegant choices can be made for both of these if deemed necessary

(Khirirat et al., 2017; Dekel et al., 2012).
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4.2.5 Simulated Annealing

Simulated annealing (SA) is an optimization algorithm inspired by thermodynam-

ics of cooling metals and crystal structures, from condensed matter physics. In

this algorithm, parameters of a function to be optimised are iteratively altered by

random perturbations, which can lead to a result closer or further from the desired

global minimum. (Kirkpatrick et al., 1983)

In the case of deterioration, the updates are accepted with some probability, pro-

portional to a decreasing, iteration/time-dependent temperature function. As more

iterations pass, and the temperature gradually cools, fewer and fewer detrimental

updates are accepted, until a point where only improvements can be made.

One key benefit to this algorithm for us is that, because all updates are random,

small perturbations, there is no need to calculate the derivative on the function

being optimised. For our experiments with gradient descent, the lack of a derivative

requires a numerical gradient be calculated on each iteration and is assumed to be

an accurate estimate of the derivative. SA requires no such assumptions.

The ability of the algorithm to occasionally jump upwards, away from a more

optimal solution, reduces the likelihood of the optimization becoming trapped in

a local minimum. This allows the algorithm to find the global minimum, even in

a problem-space with many local minima that would prevent convergence to the

global minimum of a gradient descent algorithm. The trade-off to this, is that SA

in fundamentally probabilistic, and while it is able to leave local minima and find

a global minimum, it is not guaranteed to do so. As such, even with a reasonably

accurate initial guess, SA could take longer to converge on an accurate solution

than other algorithms, as it will attempt to traverse a wider area of the problem

space, to determine whether the current minimum is the global one.

This is a very valuable property for a optimization algorithm, but given that our

problem case allows us to make a reasonable guess for the final state before any

iterations have been carried out, SA may not be the best-suited method. The

52



4.2.6. Test Cases

decision was nonetheless made to evaluate it on this simple problem, for the sake

of comparison to other techniques.

4.2.6 Test Cases

A series of test-cases were proposed for this simplified model, to assess the response

of each algorithm to different restrictions and initial inputs. These test cases are

as follows:

1. Begin with the ground truth as input, to verify that the algorithm as written

will halt and not diverge when the correct result has been reached.

2. Constrained alterations, where a single parameter is altered by the smallest

possible amount, and changes over the course of the algorithm are restricted

to just this parameter. This aims to verify that the algorithm descends as

expected.

3. Incorrectly constrained alterations. This takes a comparable form to the

previous case, except the one unrestricted parameter is not the same one

that has been altered initially. This verifies that in a 1D case where the

correct solution cannot be reached, other parameters do not diverge.

4. Unconstrained alterations, where a single pixel is altered by the smallest

possible amount as prior, and the algorithm is free to make updates to any

parameter.

5. Added noise. Any pixel can be altered by the algorithm, and the initial state

is the ground truth plus Gaussian noise. A series of tests were performed

with this case, with different levels of noise.

These test cases were applied to the 9 × 9 × 2 model with up to 1000 iterations of

batched gradient descent, as shown in Figures 4.3, 4.4 and 4.5. No figure is shown

for the first test case, as the behaviour was exactly as anticipated, in that the
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Figure 4.3: Results of stochastic gradient descent on test case 2.

algorithm immediately halted with no iterations of descent, as it was recognised

that a minimum had already been reached, and the objective function |I−L(A)| = 0

had already been solved.

The other test cases however yielded results different from the expected perform-

ance. For the second test case (Figure 4.3), the one altered pixel does converge

as expected, but because of the step size, it is unable to reach the exact solution.

This leads to continuous oscillation around the true solution, approaching but not

reaching it. Visual inspection of the values of the voxels shown in the images of

differences at iteration 1000 shows us that the convergence has led in the correct

direction when heavily constrained as it is in this test case.

Test case two, however, showed less desirable behaviour. Because the updates the

algorithm is able to make are constrained to a single pixel, and this pixel is not

the one that is initially altered, the algorithm was unable to correct the alteration.
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Figure 4.4: Results of stochastic gradient descent on test case 3.

The test aimed to investigate how the gradient descent would respond to this, given

the ill-posedness of the problem. As Figure 4.4 shows, the algorithm attempted to

correct the initial difference in the only way it could, but adjusting the available

pixel to compensate. This led to a situation where two pixels were different from

the ground truth by a magnitude of one, at which point the solution began to

oscillate, unable to make any further improvements.

Test case 4 showed a small amount of progress, but was generally limited by the

number of iterations and the relaxation coefficient applied. Here we see the L1

norm increase, but the L2 norm varies around the 1 value, and the max makes

some progress towards zero. Clearly, conclusive results about this test case cannot

be made from so few iterations.
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Figure 4.5: Results of stochastic gradient descent on test case 4.

4.3 Regularization in the Exploratory Setting

From these results, it is clear that the gradient descent, and other optimization

algorithms are functioning as expected, but are insufficient to solve the problem

at hand. This is not an unexpected result, as it makes clear that the problem is

as ill-posed as previously expected, and further work is required to reformulate it

into something that is classically solvable.

Given the research conducted into optimization, and the possibilities it could unlock

with regard to parallelization, the decision was taken to investigate how regulariz-

ation could be used to modify the cost-function of this simple test case, to make

the problem solvable .

This means that a technique had to be investigated, to appropriately inject domain-

56



4.3.1. Simple Segmentation Regularizer

knowledge into this system, such that the same optimization algorithms could

be applied to a new function, which would lead to the optimal parameters for

the original problem. A function had to be constructed which would accurately

represent the behaviour of the original function, but distorted in such a way that

it would be sufficiently convex to be reliably solvable .

4.3.1 Simple Segmentation Regularizer

The most immediately available source of this domain knowledge that is available

for the non-simplified problem of correcting an X-ray image is the segmented image,

as discussed in 2.3. Segmentation provides reliable information about the values

of the alloy of voxels for specific regions of the image, which begins to constrain

the problem considerably, by locking-in one of the two parameters for large regions

of the image. This makes the search-space for those areas 1D instead of 2D, and

therefore much easier to optimise.

However, it is crucial to note that this segmentation is imperfect, and while it

is generally accurate, it is probable that in a real-world, clinical setting, it will

mis-estimate the occasional pixel.

As such, accepting the output of the segmentation as truth and permanently fixing

the alloy parameters according to its estimation is likely to lead to sub-optimal

models. We therefore want to construct a function that respects the output of the

segmentation as advice, rather than strict orders.

It is trivial to add a segmentation to this simple problem, as we are only interested in

its output, and not the means by which it is reached. While the segmentation would

be provided by a CNN in the real problem, for now it can be manually constructed

to accurately reflect the alloy distribution. We simply produce a binary image,

with the same x and y dimensions as the model we are attempting to resolve. We

arbitrarily pick a value for "bone is present" (selected as 1), and let the other value

take the label for "no bone is present" (0 in this case).
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4.3.1. Simple Segmentation Regularizer

Considering the potential knowledge that can be leveraged from the segmentation,

we recognised that inferences can be made about the alloy of any voxel. First, for

pixels classified as "no bone is present", we expect that the alloy of correspond-

ing voxels should be exactly equal to 100, representing 100% soft-tissue. Second,

for pixels classified as "bone is present", we have no estimate for the alloy value,

except that it is not equal to 100, as that would imply there is not a bone. We

cannot however make any estimate for what value the voxels should take, as the

segmentation cannot give us an estimate for how much bone is present.

Quantifying this, we introduce an additional term to the function we are min-

imising, equal to the current alloy of that voxel, for all voxels that have been

segmented as soft tissue (and would therefore be expected to have an alloy of 0).

This contribution is multiplied by a set weighing factor, and added to the current

cost function. This means that the regularizer introduces a penalty for all voxels

that have been classified by the segmentation as soft-tissue, which is proportional

to the difference between the current alloy and expected alloy for that voxel.

First, we re-run the second test case, but with a segmentation regularizer term.

This has a known, predictable outcome and functioned as expected for the unreg-

ularized case, and serves as the benchmark for the regularizers. The result of this

can be seen in Figure 4.6. We see that, as expected, the BGD algorithm converges

towards the know solution, and then stops when the exact solution is reached. This

actually outperforms the unregualrized case somewhat, as the regularizer helps the

algorithm settle in the exact global minimum, instead of oscillating around it as

seen in Figure 4.3.

Figure 4.7 shows test case three, as described previously. Here, a crucial difference

can be seen in contrast to the unregularized case shown in Figure 4.4. Crucially,

the parameter that is permitted to vary now does not alter to its most extreme

allowed value in an effort to compensate for a distant error. This is because the

regularizer encourages behaviour that aligns with our expectations. Instead, the

alterable parameter varies until it is incurring a cost that balances the difference
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Figure 4.6: Results of stochastic gradient descent on test case 2, with an added
regularization term relating to the segmentation.

between the simulated and true images, at which point it stops changing and settles.

The value at which it settles is determined by the weighting of the regularizer, and

can thus be increased/decreased accordingly.

For the setup shown in Figure 4.7, this change provides no additional value. We

have, in effect, introduced an additional parameter set before-hand which determ-

ines the final value of a pixel. Considering this more generally though, a factor has

been added that can and does compensate for erroneous behaviour, leading to a

more accurate solution overall.

Figure 4.8 shows test case 4 with the new regularizer. This too shows significant

improvement on the unregularized case, as the erroneous value converges towards

the true. Unfortunately this is counteracted by the slight deterioration of adja-

cent values, for the same compensation reason as discussed for test case 3. The
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Figure 4.7: Results of stochastic gradient descent on test case 3, with an added
regularization term relating to the segmentation.

important factor to note here is that, because of the values selected for the ground

truth, a small offset of ∼ 0.35 like the one seen in various voxels is functionally

equivalent to the ground truth value. This is because the values selected as ground

truth in this test case are the limits of the acceptable range (1 and 100), and values

reached by the estimator that are outside of this acceptable range are truncated

to be within it for the purposes of the simulation. As such the voxels with slight

differences from zero in the final iterations are incorrect because they are slightly

outside of the valid range, and are treated as the nearest valid value for simulation

purposes. This allows the algorithm to converge on iteration 997, at the point

where all voxels either are, or are treated as, their ground-truth value.

In mathematical terms, we now construct a cost function J(A) of which the image

residuals in 4.1 is just a part. We introduce a term based on segmentation, giving
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Figure 4.8: Results of stochastic gradient descent on test case 4, with an added
regularization term relating to the segmentation

us a new function to minimise:

J(A) = αa|I − L(A)| + αb(((1 − Seg) ⊙ A) − (Seg ⊙ [A < 100])) (4.2)

where ⊙ denotes the Hadamard product (i.e. an element-wise multiplication),

αa, αb represent relative weighting factors for each component that can be manually

tuned, Seg represents the previously described 2D binary segmentation classifier,

repeated through the z dimension , and [A < 100] represents a binary mask matrix

with the same dimensions as A, with values set such that:

[A < 100]x,y,z =


1 where Ax,y,z < 100

0 else
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4.3.2 Simple Smoothness Regularizer

The second regularization term that was devised was linked to the smoothness of the

final model. It had been recognised that one highly spurious estimation could lead

to a cascade effect, where other parameters would be highly under/over-estimated

to compensate for one early mistake. It was identified that constraints on the

smoothness of the solution would limit how far an individual change could modify

a parameter, and reduce the likelihood of this negative feedback loop occurring.

Further, it was recognised that enforcing some expectation of the smoothness was

a reasonable concept, as even in the final algorithm, where we attempt to solve

over real anatomies instead of manually constructed blocks, the organic nature of

the imaged objects implies some degree of smoothness.

To determine a quantity for the current smoothness of the array of alloy values A,

a partial second-derivative, three-tap filter was convolved with the array in x and

y. This takes the form:

[
1 −2 1

]

This filter can be applied at any point of interest in the array along each of the

three dimensions (with replication padding at the edges). This yields three vari-

ables dx, dy, dz which describe the smoothness at the point of interest along each

dimension.

With a bit of thought, we can recognise that this is not a fully accurate represent-

ation of the assumptions we can make from our domain knowledge. Specifically,

we expect sharp changes in the value of A along the boundaries of bones, where

the alloy of the organic material changed sharply from a high percentage of soft-

tissue to a low-percentage of soft-tissue. Further, we know exactly where we should

expect to observe these boundaries within the array, thanks to the segmentation

described in 4.3.1. An edge-detection filter is applied to the segmentation, which
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4.3.2. Simple Smoothness Regularizer

serves as a mask, indicating where this smoothness regularizer should and should

not be applied. The edge-detection is a binary array with the same dimensions as

Seg, where:

EdgeSeg =


1 where an edge is present

0 else
(4.3)

Then we simply introduce (1−EdgeSeg) as a multiplicative term with the smooth-

ness calculation, such that the result is always zero along edges in the segmentation.

Finally, we introduce weighting factors for each of the three dimensions, so that in

future the smoothness along each of the three dimensions can be varied relative to

each other if desired. This is then added to equation 4.2, to give:

J(A) = ... + αcxdx(1 − EdgeSeg) + αcydy(1 − EdgeSeg) + αczdz (4.4)

Note that the edge detection term is not present in the term related to the z

dimension, as the edge detection is derived from the segmentation, which only

carries information about the x and y dimensions.

Finally, some results for test cases two, three and four are included to compare this

regularizer against the segmentation-based one described in the previous section.

Figure 4.9 reconfirms our assumption that the regularizer does not actively inhibit

the convergence of a parameter when the error and permissible updates are confined

to a single dimension of the problem space, with the final result settling in the

optimal value.

In much the same way as with the segmentation regularization shown in Figure 4.7,

Figure 4.10 gives us a tuneable hyper-parameter that can control the divergence

that occurs in test case three, limiting how much non-smoothness is acceptable,

relative to a given residual between real and simulated image.

Figure 4.11 shows how the regularizer can smooth-out a single-voxel error to a

more homogeneous final estimate. Figure 4.12 shows this same setup, but where the

randomly-selected pixel is from the central horizontal band, which has been defined
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Figure 4.9: Results of stochastic gradient descent on test case 2, with an added
regularization term relating to the smoothness.

as the higher-alloy, bone voxels in the segmentation. Part of the reason these two

cases show a difference is because of the restrictions on the smoothness regularizer

in a 3×3 voxel case. In a 3×3 setup when a central band is segmented as different

to the rest, all voxels will be classified as edge along the perpendicular dimension,

meaning the smoothness can only apply along the remaining two dimensions. This

is illustrated further in Figure 4.13, where we present the simulated segmentation

for a 9 × 9 model, as well as the voxels within that model where smoothness along

the vertical axis will be ignored, due to the proximity of a known edge.

4.3.3 Simple Regularizers Combined

This section concludes with some demonstrations of the effectiveness of the two

regularizers combined, on the test cases laid out previously, as well as some others
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Figure 4.10: Results of stochastic gradient descent on test case 3, with an added
regularization term relating to the smoothness.

of interest.

Figures 4.14, 4.15 and 4.16 lay out the results of test cases 2, 3 and 4. As expected

based on the results of subsections 4.3.1 and 4.3.2, these converge without major

issue to an estimate that is closer than the initial state.

Figure 4.17 shows the response of the algorithm to a previously un-investigated

test case, where all voxels have been altered by the same constant value. This is

of interest as it represents a more accurate representation of the initial condition

that the true algorithm will encounter. It is highly unlikely that the initial state

provided to the true gradient descent pipeline will be equal to the ground truth for

all pixels except one. More commonly, the initial state will be set to some constant,

which could be near to but not equal to the true value. This is not to de-value

the other test cases, as these accurately represent the state the true pipeline will
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Figure 4.11: Results of stochastic gradient descent on test case 4, with an added
regularization term relating to the smoothness.

encounter after some number of iterations, where individual voxels differ from their

surroundings. Nevertheless, the algorithm shows capability in converging towards

a more accurate estimation in this setup.

Figure 4.18 shows a case where all voxels have been altered by different values,

representing 1% Gaussian noise. This again represents a scenario that the true

algorithm is likely to encounter, where successive iterations have led to a situation

where none of the voxels are exactly correct, but differ from the ground truth by

varying degrees. Though the max norm increases in this case, the L2 norm shows

that the estimation generally converges towards something more accurate, even if

the values of individual voxels have travelled in the wrong direction to compensate

for each other.
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4.3.3. Simple Regularizers Combined
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Figure 4.12: Results of stochastic gradient descent on test case 4, with an added
regularization term relating to the smoothness. This figure shows the effect for a
central-band, bone pixel instead of an outer-band, soft-tissue pixel. The visible
difference is due to the restriction of smoothness along edges.
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Figure 4.13: Smoothness regularizer applied to test-case 4, on a 9x9x2 voxel grid.
The graphs on the right show the segmentation for this grid setup (above), and
how the edge-detection will respond along one of the three axes (below).
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Figure 4.14: Smoothness and segmentation regularizers applied to test case 2.
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Figure 4.15: Smoothness and segmentation regularizers applied to test case 3.
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Figure 4.16: Smoothness and segmentation regularizers applied to test case 4.
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Figure 4.17: Smoothness and segmentation regularizers applied to a new test case,
where all voxels have been alter by a constant value.
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4.3.3. Simple Regularizers Combined
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Figure 4.18: Smoothness and segmentation regularizers applied to a new test case,
where randomly generated, 1% noise has been added to each voxel.
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Chapter 5

Regularized Descent

Following the development of the prototype algorithm described in Chapter 4, in

this chapter we present the work involved in adapting these ideas into a functioning

material estimation algorithm. This encompasses the physics-based scatter correc-

tion algorithm that we make use of, the form of the regularizers (both existing and

new), and the descent algorithm we choose to find the optimal state.

5.1 Simulation via TrueView

The research carried out up to this point has all helped to show that the principles

of regularized gradient descent could be the key to unlocking the problem at hand,

allowing us to make accurate estimations of the composition of anatomies from

a single, mono-energetic X-ray image. However, without access to an accurate

simulation of the physics involved, we are confined to studying the theory of the

problem, as opposed to attempting to solve it. The Trueview software, provided

by IBEX Innovations, is the more advanced simulator that can allow us to progress

into more accurate simulation.

Based on results of the particle simulator Geant4 (Agostinelli et al., 2003), Trueview

can create an approximation of the X-ray image that would be produced on a given

detector for an anatomy provided to it. Similarly to the model described in 4.2.1,
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5.1. Simulation via TrueView

Trueview uses voxels, each with a given alloy value representing the percentage

of bone in a bone–soft-tissue mixture to describe the density of a voxel. Unlike

the previous model though, it does not use stratified layers of voxels stacked upon

each other, but rather considers the object as being made of a single layer of

voxels, which are in-homogeneous in thickness. This creates a setup where each

pixel in the down-sampled image is assigned a single voxel in the model, and each

voxel is defined by just two parameters: thickness and alloy, defined as t and µ

respectively. Knowledge of this system was the guiding force behind the choice to

begin experimentation with a two-voxel layer system, as it represents the problem

in a similar matter, i.e. two parameters per pixel.

The Trueview algorithm was provided in the form of development source-code used

by the research team at IBEX Innovations to develop and enhance the capabilities

of the tool. This algorithm can produce a simulated X-ray image, divided into scat-

ter and direct-beam components, from a voxel model (referred to from now on as

the spatial model) and databases of Geant4 simulations, to accurately describe the

spread of X-ray photons though materials, and what response that would corres-

pond to on the X-ray detector in question. As with the simplified problem, Geant4

produces simulated scatter kernels for X-ray beams passing through a range of

materials. Instead of PMMA and aluminium, the physics of X-ray attenuation in

human anatomy is more accurately represented here, by simulating the attenuation

of alloys of water and HA400. These materials are reasonably accurate analogues

for general soft-tissue and bone, respectively (Maaß et al., 2011).

The research described from this point on therefore consists of the development

of various functions designed to wrap-around and run alongside the Trueview al-

gorithm. First, providing structure to call the simulation functions in an iterative

manner, and carry out mathematical operations between these function calls to

gradually refine the model into a more accurate estimation.

An important factor to note here is that the advantage of the Trueview simulation

is not its accuracy, but its speed. Figure 5.1 shows the real, down-sampled X-
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5.1. Simulation via TrueView
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Figure 5.1: Down-sampled X-ray image for the Mark II Arm Phantom (left), and
the simulation produced by Trueview for that anatomy (right).

Figure 5.2: Responses in h and max norms to perturbations in thickness and alloy
for single voxels, and all voxels simultaneously.

ray image provided to the algorithm, alongside the simulation that the Trueview

algorithm produces for that anatomy. This is an image of the M2AP, a rounded

block of PMMA with an aluminium rod core designed to approximate the layout

of a human upper-arm, but with a simple, known thickness and density.

It is essential to recognise here that, despite access to ground-truth data, the ap-

proximations that the simulator makes mean that the simulated X-ray image has

distinct differences from the real image. This is explored further in Figure 5.2. In

Figure 5.2 the responses of two different norms over image residuals (I − L(t, µ))

are plotted against the perturbation applied to the model. Each graph shows four

different modes of perturbation, altering the thickness or alloy of a single voxel in

the centre of the model, or altering the thickness or alloy of all voxels at once.
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5.1. Simulation via TrueView

As is immediately apparent from the h-norm (discussed below) graph the minimum

of the norm when all voxels are altered lies not at zero (i.e where the model is exactly

equal to the ground truth), but slightly above or below zero for thickness and alloy,

respectively. This shows that the difference between the real and simulated images

from the M2AP is minimised when either the thickness is slightly overestimated,

or the alloy is slightly underestimated.

This confirms that the simulator runs over-bright. Either increasing thickness

or increasing density (reducing µ) would cause more photons to be absorbed or

scattered, and fewer would reach the detector, leading to a darker image. As both

of these lead to a more accurate simulation, the simulator must be brighter than

it should be by a small amount.

Because alloy value corresponds to the proportion of soft-tissue in an idealised

material composed of just soft-tissue and bone, and bone absorbs more X-rays

than soft tissue, a smaller alloy implies a denser, more X-ray absorbing material.

It is also important to address here the down-sampling factor that has been applied

to both images in Figure 5.1, and to the images used in the calculations for Figure

5.2. The X-ray simulation algorithm developed by IBEX Innovations is based on

a ray-tracing algorithm, where photons are expected to scatter along a range of

possible paths through the model, and the model is used to estimate the density of

the material each of these photon beams will experience along its given path. For

each pixel in the image, a path must be calculated to each other pixel. Thus for

an image with N pixels, N(N − 1) = O(N2) paths must be calculated every time

a simulation is produced.

The native resolution of the X-ray image used in Figure 5.1 is 1719 × 963 pixels,

making N prohibitively large to perform even a single X-ray simulation on conven-

tional hardware. As such, the X-ray images and the databases used to produce the

simulation must be down-sampled. A standard within the company that supplied

the code is a down-sampling factor of 23, chosen by IBEX to accurately represent
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5.1. Simulation via TrueView

scatter physics at high speed, and used in this work to more closely align with their

work. This means that both the x and y dimensions of the (t, µ) model and simu-

lated image will be approximately equal to 1719 × 963 each divided by 23, leading

to an image of 75 × 42. This still requires nearly ten million paths calculated per

simulated image, but thanks to modern graphics-processing hardware optimised

for ray-tracing operations, such simulations are achievable in reasonable time, i.e

seconds, not hours.

This has a knock-on benefit for our algorithm, as stochastic gradient descent re-

quires multiple simulations for each parameter update, and the number of para-

meter updates scales with the number of pixels. If each parameter is incorrect by

some small amount, then the minimum number of iterations required to create a

correct estimate is 4N , leading to O(N3) passes to resolve a single image.

The basic structure of the function we seek to optimise in order to reconstruct the

anatomy being imaged comes from this simulation.

J(t, µ)Unregularized = ∥I − L(t, µ)∥h (5.1)

Where L(t, µ) represents the output of the TrueView simulator, derived from input

matrices (t, µ), and I represents the down-sampled input X-ray image. The h-norm

shown in equation 5.1 is a construction of our own, and is defined as follows:

∥x∥h = θ∥x∥2
fro + (1 − θ)∥x∥2

Max, 0 ≤ θ ≤ 1

This provides a tunable norm (in terms of θ) which represents a combination of

the Frobenius norm, and the max norm over the image residuals. This is used

because it is recognised that there is value in each of these norms for minimising

the difference, as they represent large-area and small-area errors, respectively.

Equation 5.1 represents the unregularized case for our problem. This will be the

jumping-off point for defining the functional regularizers in the sections that follow.
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5.1.1. Comparison against exploratory research

Figure 5.3: ground truth thickness and alloy information for the M2AP

Figure 5.4: Result of five cycles (6500 iterations) of unregularized optimization,
starting from ground truth information.

5.1.1 Comparison against exploratory research

Figure 5.4 shows the equivalent of test case 1 from Chapter 4, where we set off the

optimiser with ground truth information as the initial state (shown for comparison

in Figure 5.3). The early-stopping criteria used in the experiments discussed in

4.2.6 is unavailable to us here, as we understand that the X-ray simulator is good,

but imperfect, and as such we cannot expect an exact match between the simulated

image and the real image, even for the ground truth data.

The result of this absence of early-stopping, combined with the ill-posed nature of

the problem, resulting in the estimate seen in Figure 5.4, where many iterations
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5.1.1. Comparison against exploratory research

Figure 5.5: h-norm of image residuals and Frobenious norms over t and µ for five
cycles (6500 iterations) of unregularized optimization, starting from ground-truth
information.

have been carried out, creating an estimate which is less accurate than the initial

state.

Figure 5.5 illustrates this issue further. In this figure, the norms over the thickness

and alloy residuals (difference between final predicted and ground truth) are shown

alongside the norm over which the unregularized optimiser has minimised. The

problem we face is transparently clear when we recognise that as the image residuals

decrease, the thickness and alloy residuals increase — the exact opposite behaviour

to what we require to solve the problem. We reflect here on the statement of the

problem from the start of Chapter 2:

In a single X-ray image, it is impossible to distinguish between a narrow,

highly absorbent material, and a deep, transmissive one.

Precisely that problem is being observed here. An accurate simulated image is

being produced from an entirely inaccurate model, where thickness is increased

where alloy should be decreased, and vice-versa.

Thus, it is made all the more clear that functional regularization is required. The

form of the function of the problem we are solving needs to be modified and warped

such that the ground truth information represents a minimum in our cost function,

so that further iterations do not lead to divergence.
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5.2. Regularization

Figure 5.6: Thickness and alloy models estimated from unregularized optimization

5.2 Regularization

Because the system that was constructed to explore the problem area should be rep-

resentative of the real problem, the regularizers described in 4.3 should be suitable

application for a problem based on real physics. The segmentation and smoothness

regularizers described in 4.3.1 and 4.3.2 respectively were designed to be relevant

to the real problem, so they are implemented here in more-or-less the same form

as they were set out previously.

Naturally, the implementation has to be written from scratch, as the regularizers

are being applied to a different model representing a comparable physical system.

Those differences are set out in the followings sections.

Figure 5.6 shows the unregularized result we will compare against in the following

sections. This is the result of five cycles — or 6500 iterations — of our iterative

optimiser.

5.2.1 Smoothness

The smoothness regularizer takes a comparable form as previously designed, by

convolving a Gaussian filter with a set of parameters, weighting this in accordance
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5.2.1. Smoothness
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Figure 5.7: Example segmentation of the mark II arm phantom (left), and the
edges along which thickness (middle) and alloy (right) smoothness would not be
active.

with an edge detection, and letting the magnitude of this weighted convolution

determine the appropriate smoothness penalty.

Instead of applying this process to all three dimensions of a 3D model of voxels,

this must be applied along the x and y dimensions of the thickness and alloy

parameters. We had previously reasoned why it would be appropriate to apply

this penalty to alloys (providing the expected edges are preserved), and similar

reasoning can be used to justify its application to thicknesses. Similarly to alloy,

thickness is a representation of a spatial property of an organic object, sampled

at a rate which is generally small compared to the object’s size. This means we

can expect that there will be no sharp changes in the thickness of the object,

except for along the objects boundaries. This limitation on the assumption is the

same as one of the limitations placed on the assumption of alloy smoothness, and

applies to the boundary between open-beam and not-open-beam classifications in

the segmentation of the X-ray image.

In an effort to combat an error that could occur where non-smooth artefacts could

propagate along diagonals, the 1D partial second derivative filter was replaced with

two 2D partial second derivatives of the form

F =


−1 2 −1

−4 8 −4

−1 2 −1


and its transpose, F T , for smoothness along the x and y axes respectively.

The edge detection algorithm was replaced by a similar 1D Gaussian convolution
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5.2.1. Smoothness

to that described in 4.3.2, but applied to the segmentation, and combined with a

second step that takes the ceiling of the normalised result, such that it returns a

Boolean output of 0 where a pixel is surrounded by pixels that have been given the

same classification, and 1 otherwise.

Two different edge detection binary masks were produced here, for the boundaries

of the whole anatomical object, and the boundaries of just the bone region.

Furthermore, in the case of the smoothness of the thickness parameters, it was

reasoned that a sharp on-off binary mask applied as the weighting of the regularizer

for different pixels was not an optimal implementation. This was based on two

principal factors:

1. At high resolutions (or low down-sample factors, if preferred) and for certain

anatomies, the region over which the thickness transitions from near-constant

to zero is likely to be spread over more than one pseudo-pixel. In this case,

limiting the region over which smoothness is de-prioritised to a single (pseudo-

)pixel could stand to reduce the accuracy of the solution near to these edges.

2. If the segmentation (or human labeler, for that matter) has misjudged the

edge of the object, then the identified edge will be meaningless. Nonetheless,

it seems sensible to put faith in the segmentor, and not disregard its output

entirely. Thus, pixels close-to the identified edge should be treated as edge-

like.

This leads us to apply a Gaussian filter to the detected edges, with the intention

of blurring them out. This blurring is then normalised, so that the penalty is

deactivated along the detected edges, and gradually reduced for pixels near to

these edges. A sharp change in thickness will be more heavily penalised the further

it is from a detected edge.

This effect is only applied to the thickness, as the sampling rates and anatomy

scales used make it unlikely that sharp changes in bone-thickness/alloy will take
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5.2.1. Smoothness

place over more than one pseudo-pixel.

The sum of the x and y Gaussian convolutions with the alloys and thicknesses give

us alloy- and thickness-smoothness images respectively, where each pixel represent

an approximate measure for how non-smooth the estimate is at that point. These

smoothness images are then multiplied with the two edge detection masks in the

case of alloy, and with the blurred object edges in the case of thickness, to give us

a measure of smoothness at each pixel, weighted by how relevant that smoothness

is to the problem at hand.

The Frobenius norm is then taken for each of these images, and is squared and

halved in an effort to accurately functionally represent that this is a second-order

derivative. The values are then multiplied by pre-set weighting hyper-parameters,

αD1andαD2 , for thickness and alloy respectively. We use two different weighing

parameters here because we expect the acceptable rate of change of thickness and

alloy to be different. The values for both alloy and thickness smoothness are re-

turned by the function containing the above, and both values are added to the

general cost function, J(t, µ)

Formulating this in relation to equation 5.1 gives us:

J(t, µ)Smoothed = αD1
1 − edge(It)

2 ||∆t||2fro

+ αD2
1 − edge(Iµ)

2 ||∆µ||2fro (5.2)

Adding this to J(t, µ)Unregularized gives us a compound cost-function, containing

domain knowledge as well as an estimate of accuracy from the simulator.

It is important to note that the tuning factor, αD, on this regularizer (and all

other regularizers discussed in this chapter) has to be carefully selected. Naturally,

a value too low will tend towards the unregularized, and therefore unsolveable,

problem. However, a weighting factor too high will prohibit valuable updates to

the model, tending towards a smooth but vastly incorrect estimation.
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5.2.1. Smoothness

Figure 5.8: Result of a failed convergence, hampered by a overly strong regulariz-
ation over the smoothness.

Figure 5.9: Appropriately tuned implementation of the smoothness regularizer,
leading to a more accurate model than the unregularized case

This is shown in Figure 5.8, where the majority of thickness values have been pre-

vented from diverging from their initial value of 7cm, because any such change

would introduce a penalty in the smoothness which is then magnified by a overly-

large weighting factor (105 in this case). The edges, where the regularizer is gradu-

ally re-activated, do however show the appropriate alterations.

By comparison, Figure 5.9 shows a successful implementation of the smoothness

regularizer, with a final model that displays more overall smoothness in thickness,

at a reasonably accurate value. The value of the thickness is not perfectly correct,

as it differs from the true by between 20% and 40%, but it has allowed a more

accurate alloy estimation to be made, by constraining one of the two parameters
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5.2.2. Segmentation

within a reasonable bound, and thereby significantly reducing the ill-posed-ness of

the problem.

5.2.2 Segmentation

The segmentation regularizer follows the structure of the one proposed for the

example problem closely. In principle, the example problem’s mechanics should

match exactly with the real physics for the purpose of this regularizer.

For regions of the image that have been segmented as soft-tissue-only, the regular-

izer will add a penalty proportional to the difference between the model’s alloy in

that region, and the predicted alloy (which will be equal to 1 at these points).

In regions where the segmentation has identified a combination of soft-tissue and

bone, the regularizer will penalise any alloy parameter that has been estimated

outside the valid range 0 ≤ µ < 1. As explained in 4.3.1, the domain knowledge

provided by the segmentation does not provide any estimate for what the alloy

in these regions should be, only what it should not be. Therefore the magnitude

of the penalty term here is constant, not proportional to some difference from an

expected value.

This is achieved functionally as a multiplication of operators applied to the segment-

ation matrix and the alloy matrix of the model. For pixels classified as soft-tissue

by the segmentation, an operator is applied to the segmentation to yield a binary

mask, valued at 1 for pixels given that classification, and zero otherwise. This is

multiplied element-wise by (1 − µ), and multiplied again by an operator applied to

µ, which gives a binary mask valued at 1 where the alloy satisfies (µ < 1).

For pixels classified as a soft-tissue–bone alloy by the segmentation, a matrix is

produced from an element-wise multiplication of two binary masks, one indicating

the pixels classified as soft-tissue–bone alloy, and a second indicating alloys in the

alloy matrix with a value (µ ≥ 1). This second binary mask is denoted by [µ ≥ 1],

and is equal to 1 where the condition in the brackets is satisfied..
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These steps produce two matrices, describing the penalty parameter for a given

pixel in terms of mis-classified soft-tissue and bone, respectively. The Frobenius

norm of each of these matrices is calculated, and each scalar output is multiplied

by a pre-determined weighting factor, αC . The sum of these two scalars is added

to the general cost function, J(t, µ).

J(t, µ)Segmentation = αC

(
||seg1 ⊙ (1 − µ)||fro + ||seg2 ⊙ [µ ≥ 1]||fro

)
(5.3)

Where, as defined in Subsection 4.3.1 ⊙ denotes the Hadamard product, an element-

wise multiplication of two matrices.

When we consider the impact this regularizer has when acting independently of

the others, it’s effect can be visually subtle. Particularly on the example model we

demonstrated the smoothness regularizer on (i.e. Figures 5.6, 5.9), the alloys are

initialised as generally correct values, and there is no initial issue for the regular-

izer to correct. If we instead initialise the model with significantly erroneous alloy

values, then the value the regularizer provides is immediately clear in the conver-

gence of the Frobenius norm over alloy residuals. Exactly these data are presented

in Figures 5.10 and 5.11. It is clear to see in these figures that the accuracy of

the alloy estimation is significantly better thanks to the segmentation regularizer.

Despite the fact that the cost function actually converges less in the regularized

case, the alterations made to that function mean that the overall accuracy of the

result is better.

5.2.3 Physicality

As with the simulator designed for the simple problem-case in 4.2.1, the output of

this, more complex simulator is not defined for model parameter values outside of

an accepted range, and will cause the simulator to fail. Up to now, that issue has

been resolved by just constraining the values to within the valid range. When the
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Figure 5.10: Five cycles of unregularized optimization from highly inaccurate initial
condition. Without the segmentation regularizer, the Frobenius norm over the alloy
residuals is incapable of convergence.
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Figure 5.11: Five cycles of optimization with only the segmentation regularizer act-
ive, from highly inaccurate initial condition. The presence of segmentation-based
regularization has allowed the alloy residuals to converge alongside the thickness
residuals.

alloy was previously restricted to 0 ≤ µ ≤ 100, values of µ < 0 were treated as

equivalent in accuracy as µ = 0, with the same being true for µ > 100 being treated

as µ = 100. The model was constrained when it was provided to the simulator,

but a value outside the valid range was considered acceptable otherwise.

It seems reasonable to recognise, however, that this is a sub-optimal implement-

ation. This is especially true when the smoothness regularization is brought into

consideration. These limits on the range of acceptable values represent further

domain knowledge about the system which can be encoded, and thus should be.
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5.2.3. Physicality

The alloy in the more accurate model is ill-defined in much the same way as in the

exploratory problem, in that only values in the range 0 ≤ µ ≤ 1 will produce a

well-defined output. This makes intuitive sense, as an alloy of two materials cannot

be made up of more than 100% of a given material, nor less than 0%.

The limits on the thickness parameters is less intuitive, but limits are helpfully

provided by the construction of the simulator. Naturally, any thickness value t < 0

represents a physically impossible input, and is thus ill-defined. For the upper-

limit on thickness, one can reason that in practice X-ray detectors have a practical

limit to the size of an object they can image. This upper limit is however very

dependent on the settings and set-up of the detector. The upper limit imposed on

the problem for us is that the database of simulations used to produce a simulated

image only includes entries up to a given value, which becomes the greatest possible

thickness for it to estimate. If a problem-case frequently required estimation of

thicknesses significantly greater than this maximum (in a veterinary application, for

example), increasing the upper-limit is simply a case of pre-computing a wider range

of simulated scatter kernels which can be searched when producing a simulated

image. This will have an associated effect on run-time, as searching a database

with a greater number of entries will take longer.

To balance these impacts, the upper-limit to thickness selected for this implement-

ation is 30 centimeters. As with previous regularizrers, this domain knowledge is

encoded through two matrices, containing the relative penalty of a given pixel for

thickness and alloy respectively.

For the alloy penalty, this penalty matrix is the element-wise sum of two operators

applied to the alloy matrix. First, an element-wise minimum of zero and the

current element min{0, µ}, thereby returning zero for elements that are equal-to or

greater-than zero, and the value of the alloy at that element otherwise. Second, an

element-wise maximum of zero and the alloy at that element minus 1 max{0, µ−1},

returning zero for elements below the allowed maximum, and the magnitude by

which they exceed the maximum otherwise.
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J(t,μ)Unregularized

t,μx,y

J(t,μ)Regularized

t,μx,y = 0

Figure 5.12: Example of how the cost function for a given (t, µ) parameter changes
when this regularizer is introduced. The plateau for values outside the physical
range is removed, creating a slope that can be descended.

The result of this element-wise sum is a matrix where the magnitude of each value

represents how far corresponding element in the alloy matrix is from the valid

range. The sign of these values corresponds to whether they are above or below

the valid range, but this is meaningless since only the Frobenius norm of the matrix

will be considered, which involves taking the square of each element.

The same process is applied to the matrix of thickness values, but with the second

operator taking the maximum of the elements of the thickness matrix and 30,

max{0, t − 30}, to give a comparable output.

The Frobenius norm of each of these operator sums is taken, and summed together.

This scalar is multiplied by a weighting factor αB, and added to the general cost

function.

J(t, µ)Physicality = αB

(
|| min{t, 0} + max{0, t − tmax}||fro

+|| min{µ, 0} + max{0, µ − 1}||fro

)
(5.4)

This alteration is shown graphically for a single parameter in Figure 5.12.

To demonstrate this added value, it is worth presenting the unregularized case in

a different context. Figure 5.13 shows the magnitude of the difference between

the alloy values in the final, unregularized estimation and their nearest physically

valid value. While most of the estimated values are zero here (i.e. within the
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Figure 5.13: Depiction of invalid alloy values after five cycles of unregularized
optimisation.

valid range), there is a significant number that lie outside of this range. With the

regularizer active, there are no non-zero values, for either thickness or alloy.

As a physically invalid value cannot improve the simulated image (due to con-

straints on the simulator), removal of any invalid values can only have a positive

impact on the material estimation.

Pseudocode for this regularizer is included in Appendix A.3.

5.2.4 Continuity

With the combined impact of the regularizers defined in 5.2.1, 5.2.2 and 5.2.3, it was

recognised from experimental work that these three regularizers were insufficient

to accurately estimate realistic anatomies.

Because of the absence of smoothness constraints along edges, these regions were

developing sharp spikes, which then had the potential to propagate away from those

edges.

Given that the smoothness regularized defined in 5.2.1 is analogous to an l2 reg-

ularizer frequently seen in neural networks, it seemed logical to continue with the

analogy, and introduce a regularizer linked to the l1 norm.
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In related applications, l1 regularization seeks to minimise the absolute value of

coefficients of the function being estimated. In our case, the function being es-

timated can be replaced with a function describing how thickness or alloy changes

with respect to the x and y axes. We do not have access to the coefficients de-

scribing this function, but we can approximate the effect by trying to minimise the

derivative of the function.

To achieve this, we introduce a similar convolution to the one described in 5.2.1.

Whereas that regularizer convolved the spatial parameters with a Gaussian func-

tion, this regularizer will convolve with filters to represent the first derivative.

The filters used in this convolution are

[
−1 1 0

]
and

[
0 −1 1

]
to determine continuity along the x dimension, and the transpose of these matrices,

−1

1

0

 and


0

−1

1


to determine continuity along the y dimension.

The two convolution windows are used to look left and right (or up and down, in

the transpose case) of a given parameter, producing two different matrices for each

dimension of each parameter. An element-wise maximum is taken of these two is

taken, such that the most significant contribution from the two is considered.

The x and y components for each parameter are then summed element-wise, produ-

cing a continuity measurement matrix with the same dimensions as the parameter

matrices. Finally, the Forbenius norm of each matrix is multiplied by a weighting

variable, αE , and the two weighted scalars are added to the cost function.

J(t, µ)Continuity = αE

(
||∆ht||fro + ||∆hµ||fro

)
(5.5)

90



5.2.4. Continuity

Figure 5.14: Five cycles of optimization applied to the M2AP, with continuity
regularization over the ℓ1 applied. This reduces sharp changes in either parameter
space, rending a more organic estimate.

As with the smoothness regularizer defined in 5.2.1, the benefit in the continuity

regularizer can be recognised from visual inspection. Figure 5.14 presents the

regularized complement to Figure 5.6, with only the continuity regularizer active.

While the final result is inaccurate, it does nonetheless preserve the appropriate

approximate structure. This is the impact we are hoping for, and when combined

with other regularizers, we can expect an overall more accurate result.

This and the previous subsections have provided us with four regularizers, presented

in Equations 5.2, 5.3, 5.4 and 5.5. These serve to guide -but not constrain - our

optimization algorithm, such that minimizing our cost function J also minimises

teh difference between real and estimated thickness t and alloy µ. Thus, the form

of the cost function J , first defined in Eq. 5.1 is modified to become:

J(t, µ)Regularized = ∥I − L(t, µ)∥h (5.6)

+ J(t, µ)Smoothed

+ J(t, µ)Segmentation

+ J(t, µ)Physicality

+ J(t, µ)Continuity,
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or

J(t, µ)Regularized = ∥I − L(t, µ)∥h (5.7)

+ αD1
1−edge(It)

2 ||∆t||2fro

+ αD2
1−edge(Iµ)

2 ||∆µ||2fro

+ αC

(
||seg1 ⊙ (1 − µ)||fro||seg2 ⊙ [µ ≥ 1]||fro

)
+ αB

(
|| min{t, 0} + max{0, t − tmax}||fro|| min{µ, 0} + max{0, µ − 1}||fro

)
+ αE

(
||∆ht||fro + ||∆hµ||fro

)
.

5.3 Descent methods

The results presented up to this point have been achieved using a custom greedy

algorithm for optimization, as opposed to the SGD algorithm described in Section

4.2.3. In this section, we seek to justify that decision, and explain the algorithm

that was chosen for producing results.

5.3.1 Bi-directional Greedy Descent

First, it is important to re-state that the nature of the problem space in which we

are trying to descend is high-dimensional, non-smooth, and non-convex (Rockafel-

lar, 2015). As such, the assumptions that are made in finite-difference gradient-

estimation and SGD can not necessarily be expected to hold. This resulted in issues

(explored in the subsequent subsections) where SGD and similar methods would

lead to over-stepping of minima, resulting in computational work being wasted,

moving towards less-accurate estimates of the spatial model. The solution to this

problem was to replace the gradient-estimating algorithm with a greedy algorithm

(Edmonds, 2008).
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a b c

J(t,μ)

t,μx,y

Figure 5.15: A single iteration of bi-directional greedy descent, where b, is the
initial value of t, µx,y, and a and c are the modified values in either direction. In
this case, the current best estimate will be updated to a, as it has a lower cost than
c, despite being a local minimum.

a b c

J(t,μ)

t,μx,y

Figure 5.16: A single iteration of bi-directional greedy descent (subsequent to Fig-
ure 5.15), where b, is the initial value of t, µx,y, and a and c are the modified values
in either direction. In this case, the current best estimate will not be updated, as
both a and c have higher associated costs.

For each iteration of this optimization algorithm, a single thickness or alloy para-

meter is randomly selected, and modified by a small random value in both the

positive and negative directions. Each of these modified states is evaluated via

the cost function, and compared against the cost value of the original, un-modified

state, J(t, µ). Whichever of these three states has the lowest cost J is accepted, and

the modification becomes part of the current best-estimate. If neither modification

has a lower cost than the un-modified, then the spatial model remains unchanged.

Finally, the value of the cost function for the accepted state is stored for the sub-

sequent iteration, so that the cost of the un-modified case need-not be calculated

at the next iteration. This process is shown visually in Figure 5.15.

In this way, no alteration can be made to the spatial model which leads to a

worse estimate than on the iteration before, i.e. the cost function can only remain
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a b c

J(t,μ)

t,μx,y

Figure 5.17: A single iteration of bi-directional greedy descent, where b, is the
initial value of t, µx,y, and a and c are the modified values in either direction. In
this case, the current best estimate be updated to c, as c has the lowest associated
cost.

constant or decrease.

It is clear that this algorithm is not robust to local minima (as is the case in

Figure 5.15). Once stuck within a suitable large local well, small changes in either

direction for that parameter will result in higher cost values, and the best-estimate

will remain exactly where it is. Given that we have just clarified that the problem is

non-convex, it would thus be reasonable to question this choice of descent method.

The solution comes from the fact that the problem is high-dimensional, and that

while local minima do exist within that space, we expect that the nature of the

problem and the cost function we have defined mean that a suitable wide local

minima in all dimensions is unlikely to occur with correctly tuned parameters.

Furthermore, we can define the way that the small random modification values are

generated, such that while they are generally small, larger values are rarely selec-

ted, allowing the algorithm to jump out of local minima, with enough iterations.

One could go further here, making the probability distribution of update values

a function of iterations, such that over time fewer and fewer large jumps occur,

leading to an algorithm more akin to simulated annealing, as in 4.2.5.

Pseudocode for this function is included in Appendix A.1.
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5.3.2. Stochastic Gradient Descent

5.3.2 Stochastic Gradient Descent

Before the descent algorithm described in 5.3.1 was developed, more traditional

optimization algorithms were implemented and tested. The first is SGD, imple-

mented in the same way as described in 4.2.3. In this algorithm, a single thickness

or alloy parameter is randomly selected, and altered by a small value, δ. This mod-

ified spatial model is then fed into the simulator, and the simulated image is used

to calculate the modified cost function, J(t + δt
x,y, µ) or, J(t, µ + δµ

x,y) depending

on which parameter was modified. This modified cost function, along with the cost

function of the unmodified case allows us to approximate the gradient of the cost

function with respect to the parameter that was modified, via

∂J

∂tx,y
=

J(t, µ) − J(t + δt
x,y, µ)

δ
. (5.8)

∂J

∂µx,y

=
J(t, µ) − J(t, µ + δµ

x,y)
δ

.

This finite-difference gradient estimation is shown if Figure 5.18.

The value of t, µ is then updated by a quantity proportional to

∂J

∂tx,y
or ∂J

∂µx,y

,

weighted by a pre-defined weighting/relaxation coefficient, ω, usually ω < 1. This

leads to steps along the parameter space in the direction that reduced the value of

the cost at that point, with the steps being longer where the gradient is reducing

rapidly, and shorter where the change is more shallow. The weighting seeks to

prevent over-stepping minima, which can lead to oscillations around a minimum,

instead of convergence.

One substantial failing of the algorithm is that it is not robust to plateaus in the

parameter space, where the value of J(t, µx,y) does not vary with t, µx,y. This

is the case, for example, in the unregularized case for values outside the allowed
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a b

g

J(t,μ)

t,μx,y

Figure 5.18: Example of a finite-difference gradient estimation for SGD. a repres-
ents the initial state, and b some small modification made to that state. Both of
these states are evaluated, and their difference is used to make a first-order approx-
imation of the gradient at a, denoted here by the red dashed line, g.

limits of the simulator. In these cases, the gradient is zero, and no updates can

be made. Furthermore, in a local or global minimum, the direction opposite to

the one tested by δ will be perceived by this algorithm as down-hill, causing the

descent algorithm to erroneously step in a direction that leads to a worse estimate

of t, µx,y.

Figure 5.19 shows five cycles (approximately 6500 iterations) of SGD, applied to the

reconstruction of the spatial model for the M2AP. In this instance, regularization

has not been applied. From the graph of the cost function during the execution

of the algorithm, it can clearly be seen that the shape of J(t, µx,y) cannot be

accurately estimated using a finite-difference gradient estimation method, as the

cost function consistently increases instead of decreasing. Since no convergence is

observed, it is reasonable to assume that the application of regularizers is going

to have no significant, beneficial impact on the quality of the results produced by

SGD.

5.3.3 Newton’s Method

Newton’s method is a technique for finding solutions to equations of the form

f(x) = 0 by following their derivative towards the axis-intersection (Teodorescu

et al., 2013; Levy, 2009). This can be utilised to instead find the minimum of a

function, by trying to find solutions to the function’s first derivative. At these
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Figure 5.19: Normalised Frobenius norms over thickness and alloy residuals (left)
and normalised cost function (right) over five cycles of optimization using stochastic
gradient descent, without regularization.

minima (as well as maxima and saddle-points), the derivative is equal to zero,

f ′(x) = 0.

To find the solution to a function Newton’s method iteratively calculates the tan-

gent line to a function at a given point, then steps to the solution of that tangent

line function. This takes the mathematical form:

xn+1 = xn − f(xn)
f ′(xn)

Therefore, to instead find the point at which f ′(x) = 0, we iterate over:

xn+1 = xn − f ′(xn)
f ′′(xn) (5.9)

In a finite-difference scheme, this is more computationally expensive than SGD,

because it requires an estimation of the second derivative. To approximate the

second derivative an additional point must be evaluated, close to the current value.

In our implementation, we choose x ± δ. As Newton’s method can be thought of

calculating the tangent to a function at a point and attempting to solve it, this

method can be thought of as calculating a parabolic function through the sampled

points, and trying to find the minimum of that parabola.
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b c

J(t,μ)

t,μx,y
a

Figure 5.20: Example of the gradient estimation in Newton’s method for optimiz-
ation. b represents the initial state, and a and c represent small alterations to the
positive and negative of b. These three states are evaluated, and used to estimate
the second-order gradient at b, such as indicated by the red, dashed line.
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Figure 5.21: Normalised Frobenius norms over thickness and alloy residuals (left)
and normalised cost function (right) over five cycles of optimization using Newton’s
method, with all regularizers active. From the divergence over the cost function,
we can infer that gradient-based techniques are unlikely to be successful.

Figure 5.21 shows an attempted convergence over the M2AP, using Newton’s

method and all regularizers active. While the thickness has been able to con-

verge a small amount, the alloy has deteriorated to a far more significant degree.

In some ways even worse to observe is that the cost function has simply not shows

convergence from the initial state. Because of the shape and structure of the func-

tion we are minimising over, using the gradient of that cost function appears to be

non-informative about the location of the global minimum.
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5.4 Conclusion

This chapter has covered the most substantial part of the research presented in

this thesis. We have adapted the ideas introduced in Chapter 4 to realistic X-ray

simulations, then honed our regularizers such that they constrain the real problem

enough to become solveable. Four regularizers were presented in the end, each

covering different aspects of the model’s relationship with real anatomies.

We then explored the different algorithms for optimizing a parametric model ac-

cording to some non-differentiable cost function. Two classical algorithms were

considered and evaluated, to justify our decision to opt for a more hand-crafted

algorithm for optimization.

This leaves us with an algorithm that is capable of achieving our stated goal: we

are now able to produce a model of an imaged anatomy, from which simulations can

be produced to remove scatter. However, we are not able to produce these models

efficiently. In the following chapter, we will investigate what techniques can be

implemented to increase the time-efficiency of the algorithm we have described

here.
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Chapter 6

Multi-scale

Here we outline the time problem, and the solution we propose using many resolu-

tions. We thus need to explain how we move through resolutions. We established

in the previous chapters the need for speed. The algorithm works reasonably well,

but it is very slow to achieve results. Since moving to real anatomies and a true

simulation method, the algorithm has slowed down, as expected.

At the target resolution, creating a simulated X-ray image using IBEX’s X-ray

simulation tool takes on the order of 4 seconds. If our spatial model consists of

2000 variable parameters (as it does for the M2AP), applying a single modifica-

tion to each parameter and evaluating the effect on the cost function cakes more

than 2 hours. Realistically, each parameter will require more than one update,

as the regularizers will reduce the scale of any acceptable modification. Indeed,

when demonstrating the regularizers in the previous chapter, the model has been

optimizing the spatial model for 6000+ iterations.

For our algorithm to have value in a clinical setting without code optimization, we

need to be minimizing the execution time, targeting a value less that a typical work

day (8 hours), at least. Multi-scale is the natural solution to this - processing a

lower resolution image is faster, and requires fewer steps to make the same change.
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6.1 Introduction

When we introduced the physics-based simulation to our algorithm in Section 5.1 of

Chapter 5, we made cursory mention to the down-sample factor at which the images

were being processed. We described how, because of the inherent high-resolution

of the X-ray images, and the ray-tracing nature of the processing algorithm, the

images had to be down-sampled to be processed in reasonable time on consumer

hardware. We further explained that a down-sampling factor of 23 was selected

based on the current best-practise guidelines of the sponsor and provider of the

TrueView software, IBEX Innovations.

In practice, 23 is not the only down-sampling factor used by the company, and that

the optimal value changes depending on the goal of the work it is being used for.

In commercial research and product development, there are times when additional

compute-time can be dedicated to high-quality material estimations, as well as

times when an even-coarser estimate will more-than suffice.

In this chapter, we will be discussing why this value was selected, comparing the

trade-offs involved in varying it, and then exploring how a range of values instead

of a single constant can provide added value to the algorithm in several areas. This

is not a new concept. multi-grid methods have been used for increased efficiency

in many problems before (?). In this chapter, we want to highlight the research

work carried out to apply this concept to our problem of interest.

Before continuing, we introduce a short-hand notation for describing these down-

sampling factors. For a down-sampling factor of 23, for example, we mean that the

x and y pixel dimensions of the input image have each been divided by 23, then

rounded to the nearest whole integer. This algorithmically-reduced image will then

be referred to as a DS23 image, and we will use this shorthand for the rest of the

chapter, with DSN for images that have been reduced by a factor N .
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Figure 6.1: Run-time comparison of a set of down-sample factors for a femur image,
using non-optimised research code. The values on the y axis are not representative
of the values for optimised code, but the relationship between the down-sample
factor and run-time is expected to be representative. Note that this figure includes
additional resolutions (DS67,DS29) to the ones used when processing the images
in our algorithms, as they fall between the factor-two intervals we opted for.

6.2 Resolution-Speed Relationship

Because a set of down-sampling factors have been in use with the software in

question for some time, the concept of exploring how these could be used to our

advantage was one of the first elements considered in our investigation. It is true

that DS23 is used as the default value in most work carried out by the research and

development team at IBEX Innovations, as it produces an accurate approximation

of scatter dynamics in complex images in short time (< 1 minute for optimised

non-research code, at last measurement).

This led us to investigating how the compute time for processing a given image

using standard settings varied with the resolution at which it was processed.

Figure 6.1 shows the relationship between down-sample factor and run-time. As can

be seen, the compute-time impact is relatively imperceptive for coarse resolutions

down to DS45, after which the time to process a given image for the same number

of iterations rapidly increases, approaching 4× the DS45 speed for the standard of

DS23.

The benefits of processing at very coarse resolutions increase as with the number of

evaluations required, i.e as the number of iterations increases, or from descent meth-
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ods that require more evaluations of the cost function, such as Newton’s method.

Nonetheless, it seems apparent that significant time reductions could be made by

only small reductions to the total number of pixels in the image, from a start-point

of DS23.

6.3 Limitations on Resolutions Available

In Figure 6.1, it is clear to see that only a relatively small set of values for the

down-sample factor have been selected, which makes it is important to explain the

choices of DS values. We have stated previously that DS23 is used as an in-house

standard, along with a select set of other down-sample factors. A valid question at

this point is, why? Why not simulate over a more frequently-sampled range, and

why DS23 and not, say, DS20?

This limit on the resolutions that can be processed comes from the simulated

Geant4 databases, upon which the X-ray simulator is constructed. Geant4 produces

scatter kernels for the spread of X-ray beams through a range of materials, sampled

at discrete, regular intervals of 1% ( 0% bone, 1% bone, 2% bone...). These scatter

kernels must then be adapted into a form accepted by the TrueView algorithm

with the expectation that those scatter kernels will be applied to a down-sampled

image. As such, this scatter data is itself down-sampled, so that it is accurate

when applied to an image (or spatial model) where a given physical dimension is

represented by a different given number of pixels (or voxels). These down-sampled

scatter kernel databases are distinct from one another, and not simply re-scaled

versions of each other, as they are required to accurately capture physics at each

scale. As such, we were limited to the databases provided by IBEX Innovations.

As such, in order to avoid massive restructuring of the underlying TrueView code

and creation of a new data format for containing many resolutions, both of which

would be outside the scope of the project, we select a set of resolutions we seek to
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6.3.1. Simulated and Pseudo-pixel Resolutions

Figure 6.2: An example of a single scatter kernel of a simulated image. The x and
y dimensions of this kernel are the same as the image from which it was produced.
To produce a simulated X-ray, the element-wise sum is taken of a stack of these
kernels, with one kernel produced for each scatter centre within the image. The
value on the z axis is a representation of photon-count.

investigate, down-sample the Geant4 data to those various resolutions, and store

them for later use.

One characteristic of this simulation process developed by IBEX, is that the scatter

kernels are developed as a radially symmetric, one-dimensional function, with the

first value representing the centre of the incident photon beam. This means that

the kernel itself will have odd-numbered pixel dimensions in both x and y, to ensure

there is a single, definitive centre. An example of such a scatter kernel, which would

be one term in a sum of kernels to produce a simulated image, is shown in Figure

6.2.

6.3.1 Simulated and Pseudo-pixel Resolutions

For most of the experiments in this thesis, the pre-simulated databases of scatter

information selected are DS11, DS23, DS45 and DS89. Figure 6.3 shows the M2AP

104
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Figure 6.3: M2AP X-ray image, down-sampled to (a) DS89, (b) DS45, (c) DS23,
and (d) DS11.

down-sampled to these four resolutions, to give an idea of how much information

is stored in each.

For each of these resolutions, the speed-up from using coarse estimations comes

from two sources:

1. Each single iteration becomes faster. As the coarser spatial model has fewer

elements, the ray-tracing process of making an X-ray simulation, which is the

bottleneck of our computations, becomes faster.

2. Fewer iterations are required. As there are fewer parameters defining the

output of the simulator, it takes fewer iterations of a stochastic process such

as SGD to converge on a more accurate model.
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6.3.2. Algebraic Re-sampling

There is a trade-off to these benefits, as the coarser resolutions are less capable of

making a sufficiently accurate simulation. Beyond DS89, the ray-tracing process

is not anymore the speed increase of a single iteration is negligible (as seen in

Figure 6.1), and the inaccuracy of the simulation is significant. We can recognise,

however, that this trade-off is inherently tied to the first of these benefits, and not

the second. Put differently, if we reduce the number of alterable parameters in

the model without changing its resolution, the time cost per simulation will not be

changed, but the number of iterations required to optimise that particular model

will decrease, leading to faster computation. This speed increase comes at the cost

of decreased model accuracy, but these coarse parameterizations can be followed

by a small number of iterations at the full parameterization, to recover that lost

accuracy in an overall reduced time-frame.

To implement this idea, we introduce pseudo-pixel resolutions, where the simulation

is carried out at the lowest available data-based resolution (DS89 in this case), but

where many parameters are linked in such a way that they are algorithmically

treated as a single parameter. i.e. they are initialised at the same value, and any

change applied to one is applied to all the linked parameters. For example, we

might construct a pseudo-pixel resolution DS178, which will simulate an image

from a spatial model with the same x and y dimensions as DS89. However, groups

of 4 adjacent parameters are linked into a single parameter, such that the total

number of alterable parameters is 4× smaller than at DS89.

6.3.2 Algebraic Re-sampling

With the idea of pseudo-pixel resolutions laid out in the previous subsection, we

consider how this idea could be taken further, to reduce the number of alterable

parameters in ways besides grouping them into larger and larger patches. This

can make use of information about the structure of the object, obtained from the

segmentation, so that the parameter groupings are more conducive to accurate
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6.3.2. Algebraic Re-sampling

estimates. This borrows from the concept of algebraic multi-grid, as described in

Stüben (2001).

For example, we define an algebraically re-sampled DSInf, in which the entire

spatial model is reduced down to the fewest parameters possible, which in this case

is the following three:

1. A single thickness value assigned to all bone and soft-tissue (as defined by

the segmentation) parameters of the model.

2. An alloy value for all parameters classified as soft-tissue by the segmentation.

3. An alloy value for all parameters of the model classified as bone by the seg-

mentation.

At this DSInf pseudo-pixel resolution, a single stochastic iteration, updating the

single thickness value, applies now to the whole model, and allows us to rapidly

check whether that change results in a more accurate model. Making this kind of

change could be incredibly time consuming in coarse schemes where large blocks

of parameters are grouped together, as the magnitude of the change made to each

one is randomly selected at each iteration. If, as an example, the initial estimate

of thickness is based off the median thickness value in our simulated database —

around 15cm — but the image being resolved is of the fingers, then it will take many

successive iterations to gradually reduce the thickness of the object to a reasonable

point, and the whole while the algorithm will be fighting against the smoothness

regularizer, further reducing the magnitude of the steps that get accepted. With

DSInf, the same change can be made in relatively few iterations.

Further, in an effort to prevent the possibility of artifacts along the transitions

between bone and soft-tissue, we define our other pseudo-pixel resolutions (such

as DS178) in a similarly algebraic way. When we first mentioned DS178 at the

end of Subsection 6.3.1, we described how it could link square patches of four

parameters from the DS89 model. However, this could create issues where those
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2 × 2 patches span one of the aforementioned transitions, and applying the same

alloy adjustment to all four parameters would be inappropriate. Thus, we instead

define the pseudo-pixel resolutions as follows:

First, we divide the image into n horizontal bands, where n = yI( h
h∗), where h

is the down-sample factor at which the model will be simulated, and h∗ is the

pseudo-pixel down-sample factor we are creating. For example, if an model has

x, y dimensions of [8, 8] at DS89, the pseudo-pixel resolution DS178 will first divide

that 8 × 8 model into 4 horizontal bands.

Second, we divide each of those bands according to the segmentation. In the

case of the M2AP, where we observe only one, vertically aligned bone, each of

the horizontal bands would be divided into exactly three vertical components (left

soft-tissue, bone, right soft-tissue). At coarser pseudo-pixel resolutions, the height

of these linked patches will decrease, but the width will not.

This assumes that the bones in the anatomy being imaged are vertically aligned.

In a case such as where the M2AP is perfectly horizontally aligned, this method

will suffer, breaking the model down into n bands with width xI . This is something

we choose not to address, the the majority of images in our test set are vertically

aligned.

6.4 Translating Spatial Models Between Resolutions

Of course, very coarse resolutions such as DSInf described in 6.3.2 and DS178

described in 6.3.1 will not be capable of accurately resolving a spatial model on

their own. While we cannot exclude the possibility that a coarse model will suffice

for accurate simulation of the X-ray, we can assume that in most cases a finer

resolution better, and indeed this is the target for the final output.

In such a multi-resolution scheme, we need to define techniques for converting the

information in the spatial model between these resolutions. The main technical
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6.4.1. Coarsening Resolution

a a'

b b'

Figure 6.4: Graphical depiction of the states involved in down-sampling (coarsen-
ing) a spatial model for the first time. Solid arrows represent resolution transitions,
and dotted lines represent optimization iterations.

challenge is that these resolutions do not necessarily align well. As can be seen

with a keen eye in Figure 6.3 the down-sample factors selected do not perfectly

align with each other, nor do they align well with edges of the object being imaged.

To address this problem, the boundaries of the object and the materials within de-

rived from the segmentation CNN are computed independently at each resolution,

by providing the raw X-ray image at that resolution to the CNN to label. The

complication with this is that if standard image re-scaling algorithms are used, it

is possible that when moving from one resolution to the next, a small area along

a boundary that was previously classified as bone could now be classified as soft-

tissue, for example.

6.4.1 Coarsening Resolution

A high-resolution estimate of the spatial model contains more information than a

coarse one. We nonetheless want to use coarse resolutions for their efficiency, thus

the fine-to-coarse transition algorithm is designed with the understanding that

when we coarsen we will have to go back to the finer resolution later, to recover

lost information. We want to ensure that the information at the fine resolution is

not lost when we move into a coarse resolution, so before the coarsening process

begins, the fine-resolution state (such as a′ in Figure 6.6) is recorded. How this

recorded state will be used is explained in Subsection 6.4.2.
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6.4.2. Refining Resolution

During the description of this algorithm, we will refer to the initial, fine resolution

as the source resolution, and the output, coarser resolution as the target resolution.

In this coarsening process, we begin by determining the work done by the optimiser

so far. The initialization algorithm that produces a raw initial state from the

segmentation is re-run for the current resolution, and is subtracted from the current

estimate for the spatial model. We then initialise the spatial model again, producing

an initial state (as it was prior to any iterations of optimization) based on the

segmentation of the image at the new, target resolution.

The source resolution’s segmentation is then down-sampled to the target resolution

dimensions using nearest-neighbour interpolation. For that we MATLAB’s built-

in image re-scaler (imresize). The down-sampled source segmentation, and the

target segmentation are compared, to identify points where the image re-scaling

algorithm does not align with the native segmentation. This informs us of the

points where re-scaled optimization data will also not align, and have to be re-

scaled separately.

Put differently, this means that where a pixel has been classified as soft-tissue at

the new resolution, but was classified as bone in the previous resolution, it’s value

will be the mean of the values of neighbourhood pixels that are classified as soft-

tissue. This process is applied to thickness values, and soft-tissue and bone alloy

values separately, to reduce artifacts in the re-sampling process.

6.4.2 Refining Resolution

In this subsection, the same nomenclature as in Subsection 6.4.1 will be used, but

reversed, so that the coarser resolution is referred to as the source, and the finer

resolution as the target.

When refining resolution, there are two different schemes that we consider. First

is the case where a new resolution is reached for the first time, in a gradually

increasing scheme, such as the one shown in Figure 6.5. In this case, the thickness
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6.4.2. Refining Resolution

and alloy components of the model are up-sampled as plain, grey-scale images using

MATLAB’s bilinear image resizing algorithm (imresize). This will lead to some

bleeding around known edges, but in a direction that is physically motivated. In

other words, the thickness will reduce at edges, and the proportion of bone will

gradually decrease to zero at the edges of bones. Both of these are approximate

representations of the organic nature of anatomies that we would expect in most

cases.

Second is the case that is shown between b′ and c in Figure 6.6, where we refine

the resolution after temporary processing at a coarser resolution. Here, we can

implement the complimentary half to the algorithm described in Subsection 6.4.1.

In this second case, the recorded state described previously in subsection 6.4.1

comes into consideration. In this situation, instead of calculating a work-done

image based on the differences from the initial state, we can calculate a work done

based on the state the spatial model was in prior to down-sampling. Referring to

Figure 6.6 for labels for the different states, the following steps are taken:

1. b′ is subtracted from b to find an array representing work done at this resol-

ution, ∆b = b − b′

2. ∆b is separated into thickness, bone and soft-tissue components according the

the segmentation, and up-sampled via MATLAB’s built-in image re-scaler,

with nearest-neighbour interpolation.

3. The up-sampled components are smoothed with a segmentation-guided local

average. This process is explained in more detail in 6.4.3.3. In this, each

pixel is given the value of the mean of the similarly-classified values in the

pixel’s 3x3 neighbourhood.

4. The up-sampled components are masked, using the target resolution seg-

mentation, to prevent alterations intended for soft-tissue bleeding into bone

regions and vice-versa.
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6.4.3. Interpolation/Rescaling Methods

a a'

b b'

Figure 6.5: Graphical depiction of the states involved in up-sampling a spatial
model for the first time. Solid arrows represent resolution transitions, and dotted
lines represent optimization iterations.

a a'

b b'

c

Figure 6.6: Graphical description of a coarsening step followed by a refining one (a
V cycle). a, b and c represent the re-scaled states, before any iterations have been
carried out at that resolution. a′ and b′ represent the states at those resolutions
after iterations have been performed. Solid arrows represent resolution transitions,
and dotted lines represent optimization iterations.

5. The masked, target-resolution alloy and thickness work-done images are ap-

plied to the recorded state, a′, to produce c. Iterations at the target resolution

can now occur.

6.4.3 Interpolation/Rescaling Methods

When we described the technique for up-sampling a coarse thickness-alloy model,

we explained the method that we have opted for after much experimentation. In

this section we evaluate various techniques for rescaling a model, assuming we

have recorded before and after data, allowing us to infer the work done on a coarse

resolution and up-sample it. In this section, we will be comparing the techniques

ability to resample the coarse work done images shown below.
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6.4.3. Interpolation/Rescaling Methods
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Figure 6.7: Graphic showing the artifact-preserving process for identifying mis-
alignment between the segmentation at source and target resolutions. In this fig-
ure, the red, crosshatched squares represent the segmentation at a coarse, source
resolution, and the blue, solid squares represent the segmentation at the fine, target
resolution. Part (d) shows areas where the up-sampled source segmentation does
not align with the target segmentation. As such, pixels like the one expanded upon
in (f) will be assigned the value of the mean of adjacent, similarly-classified pixels.
In the case of (f), it’s final value will be (3)+(6)+(7)+(8)+(9)

5
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6.4.3.1. Bilinear Interpolation
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Figure 6.8: Example of an update to thickness and alloy, calculated at a coarse
resolution. For this to be applied to the high resolution model, it needs to be
accurately up-sampled.

6.4.3.1 Bilinear Interpolation

Bilinear Interpolation - Alloy: Bone
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Figure 6.9: Thickness and alloy update from Figure 6.8, re-sampled using a injec-
tion followed by segmentation-guided bilinear interpolation.

Bilinear interpolation is carried out by MATLAB’s built-in imresize function

(MathWorks). In the example here, the coarse model’s alloy data is separated

into bone and soft-tissue components, according to the coarse segmentation. Each

of these components, along with the thickness model data, is up-sampled via the

imresize function. These up-sampled data are then masked with the fine resolu-

tion segmentation, to prevent bleeding, and re-combined. In this implementation,

bleeding of the surrounding values (zeros, in this case) into the meaningful data

will occur, but this impact should be minimal.

Bilinear interpolation is also used when increasing the resolution to a given resol-

ution for the first time, when the model is permanently refined. In this case, the

model is not separated into components, and the thickness and alloy components

are simply treated as grey-scale images.
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6.4.3.2. Nearest Neighbour / Injection

6.4.3.2 Nearest Neighbour / Injection
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Figure 6.10: Thickness and alloy update from Figure 6.8, re-sampled using injec-
tion.

Interpolation by injection is — similarly to the bilinear method in 6.4.3.1 — is

principally achieved via MATLAB’s imresize function (MathWorks), plus some

additional computation. In this case, the imresize is applied with the nearest

neighbour interpolation option (nearest) active. In a case where the coarse and

fine grids perfectly aligned, such as one coarse pixel being divided exactly into

four fine resolution pixels, this method would result in an exact replica of the

coarse model. This thereby sacrifices the additional smoothing regularization that

interpolation can offer in return for guaranteed accuracy of the interpolation.

Unfortunately, as stated previously, our grids do not align perfectly. They are only

approximately doubled in each dimension, and as such, scaling up with injection will

lead to small errors. this is compounded when we consider that the segmentation is

distinct at each resolution, and as such errors will occur along edges if we up-sample

naively. Thankfully, in this case, the segmentation also provides our solution.

By comparing coarse and fine segmentations, we can identify pixels where standard

image rescaling will not accurately predict the shame of the object’s edges. We can

then process these identified sources of error separately, so that minimal artefacts

are produced. In this case, we identify pixels that could cause artefacts, and set

their values to the mean of the non-zero values of similarly classified pixels in the

3 × 3 neighbourhood of the pixel in question. This seeks to introduce minimal
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6.4.3.3. Nearest Neighbour with Local Averaging

smoothing, and only in locations where we have no other meaningful data about

the value that this pixel should take.

6.4.3.3 Nearest Neighbour with Local Averaging
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5 10 15 20 25 30 35

2

4

6

8

10

12

14

16

18

20
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02
Nearest Neighbour + averaging - Alloy: Soft Tissue

5 10 15 20 25 30 35

2

4

6

8

10

12

14

16

18

20

-25

-20

-15

-10

-5

0

5

#10-3

Nearest Neighbour + averaging - Thickness

5 10 15 20 25 30 35

2

4

6

8

10

12

14

16

18

20 -0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 6.11: Thickness and alloy update from Figure 6.8, re-sampled using a injec-
tion followed by segmentation-guided local averaging.

In this method, we try to combine the accuracy of the injection method described in

6.4.3.2 with the regularization that smoothing via 6.4.3.1 provides. This method

takes the same, injection-based interpolation that was described in 6.4.3.2, then

applies a masked averaging filter to that interpolated estimate, which leads to a

final estimate which is smoothed only in the directions that are reasonable, given

the information that the segmentation provides.

After the injection-based interpolation has been classified, every pixel within each

segmentation-based component of the model (thickness, bone-alloy and soft-tissue-

alloy) is assigned the value of the mean of its 3 × 3 neighbourhood, masked via the

segmentation. This will lead to inward blurring of the bone region (for example),

but not outward blurring. Changes applied within this region will be smoothed out

only within that region, and will not bleed out into the surrounding area. Equally

(and more importantly), the zero values that fill the areas outside the region of

interest will not bleed inwards, reducing the magnitude of the changes along the

edges.

This is distinct from the bilinear method from 6.4.3.1, as the values that are as-

signed to the pixels in the re-sampled image are unweighted, in comparison to
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Figure 6.12: Frobenius norm over thickness residuals (left) and alloy residuals
(middle), alongside cost function for each interpolation method (right), over the
course of many iterations at different resolutions. Dotted vertical lines signify
changes in resolutions.

bilinear’s weighted average.

6.4.3.4 Comparison of Results

Figure 6.12 allows the various interpolation methods to be directly compared

against each other, by iteratively coarsening and refining a model, reaching both

coarsest and finest resolution twice within a single run of the iterative optimisation

algorithm.

The significant takeaway from this figure is that the interpolation methods used to

translate coarse data to finer resolutions has only a minor effect on the Frobenius

norms over thickness and alloy residuals. This is an expected result; The difference

in the values of the models will appear only along edges, and will be a relatively

small change. That said, Injection appears to be most effective at reflecting true

alloy residuals, while injection plus averaging is most accurate for thickness. These

differences are so small however, that it is easy to attribute these successes and

failures to noise.

In the cost function however, injection plus averaging is significantly better at pre-

venting sudden spikes in value immediately following coarsening and refinement of

the spatial model. This implies that it is more accurate to the expected distribu-

tion of values in the model, as high cost function values signify that some error

that disagrees with domain knowledge has been introduced. It also removes the
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6.5. Paths Through Resolutions

need for the algorithm to work to correct the spikes (which is what occurs for the

other two interpolation methods), thereby reducing the total number of iterations

needed.

6.5 Paths Through Resolutions

With the resolutions that are viable for use in the algorithm defined, and methods

laid out for transforming a spatial model from resolution to resolution, we can now

consider the way in which we actually want to make use of these available down-

sample factors. We have introduced coarser resolutions than the standard DS23

we worked with in Chapter 5 for the speed of convergence they can provide, as

well as the potential they have to improve the solution, by enforcing smoothness

constraints on the model (in comparison to updating the model at only the finest-

possible resolution). This thereby acts as a regularizer for the model. We start out

the algorithm in the coarse resolutions, so that less time is taken to resolve a greater

number of the final parameters, as opposed to the time taken if all parameters had

to be worked out at the finest-possible resolution. Furthermore, considering the

expectations on the smoothness laid out in 5.2.1, we can see that coarse resolutions

help to preserve overall smoothness. Small areas of significant noise are impossible

to create when only large patches of the image are being altered at any given time.

Beyond the idea that we will start coarse, and gradually refine, how do we traverse

through the available resolutions?

6.5.1 V-Cycles

V-cycles (Stewart, 2014; Braess, 2007) come from multi-grid research, and formalise

the process we have begun to outline in the previous section, where coarse grids

are used as a fast, inexpensive intermediary between more expensive, fine grids.

As we gradually traverse down layers of resolution, from coarse to fine, we try to
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6.5.1. V-Cycles

identify situations in which the refinement is not sufficiently improving the quality

of our estimation. In these situations, a V-cycle can be carried out. In these

V-cycles, the coarsening and refining operators described in subsections 6.4.1 and

6.4.2, respectively, are employed, and the spatial model is translated from the

current, fine resolution through each level that is coarser than that, to the coarsest

resolution, then refining back to the start point. At each of these resolutions

iterations of optimization are carried out, in proportion to the number of effective

parameters that can be altered at that resolution.

We have observed that occasionally models will be degraded by overly-coarse refine-

ment, leading to a worse spatial model post-V-cycle. We therefore also introduce

a process we call blacklisting, where coarse grids are removed from the set that a

V-cycle can access, in response to model degradation. In the event that the al-

gorithm detects significant deterioration of the quality of the simulated image the

coarsest, non-blacklisted grid in the set of all grids is made inaccessible, so that

further V-cycles will not reach that resolution. If significant degradation occurs

more than once, then more than one grid will be blacklisted and made inaccessible.

When one or more grids have been blacklisted, a V-cycle will coarsen the model

through each non-blacklisted grid coarser than the current, then gradually refine

to the grid it began at.

To illustrate this, we can imagine a setup in which the model is intentionally

degraded enough to result in blacklisting at every possible opportunity, as is seen

in Figure 6.13. This will lead to a sequence of V-cycles, each reaching fewer coarse

grids than the previous, and therefore also each containing fewer total iterations.

Eventually, only the current grid will remain in the non-blacklisted set, and any

subsequent V-cycles will not contain any changes in resolution.
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Coarsest grid

Finest grid

V-cycle 1 V-cycle 2 V-cycle 3 V-cycle 4

Figure 6.13: Repeated blacklisting and V-cycles, starting from a fine grid. We can
see that after each V-cycle, a further coarse grid is blacklisted, reducing the number
of grids available in future, and reducing the length of each subsequent V-cycle.

6.5.2 Full Multi-grid

With the concept of the V-cycle established, we use these to produce a full multi-

grid (FMG)-like scheme, in which V-cycles and what we call single cycles (where

only a single grid is iterated on) are sequentially executed. A hand-crafted and

tuned condition set is used to determine the resolution that will be chosen at any

given point in this pipeline, by selecting either a V-cycle or a single cycle at the

current or next-finest grid. This conditional algorithm seeks to utilise V-cycles as

part of a gradual refinement of the spatial model, for optimal speed as well as final

accuracy (Kaltenbacher, 2001).

We define four cycle cases, in which either a V-cycle or single cycle will be carried

out, leading to coarsening or refining of the model. These cases determine how

the algorithm proceeds, in response to the amount by which the simulated X-ray’s

accuracy has improved during the previous cycle case. These cycle cases, and the

improvement factor that determines them, have been found through experimenta-

tion. During a cycle, iterations of optimization are performed on the spatial model

at one or many resolutions. The number of iterations in a cycle is dependent on

the resolutions used by that case.

The four possible cycle cases are listed below, along with a qualitative description

of the level of improvement that should trigger that cycle case. Presented in this

way, the theoretical justification for the cases becomes clear.
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6.5.2. Full Multi-grid

1. Significant improvement has occurred at the current resolution. This informs

us that the current resolution is working well, and has not yet converged. An

additional cycle will be performed at this resolution.

2. Some improvement has occurred, but it is less significant than the first case.

This tells us that complete convergence has not occurred yet, but is likely

approaching. We trigger a V-cycle to try to resolve any large patches that

could be slowing the progress at a fine resolution.

3. No significant improvement or deterioration. We take this as an indicator

that the current resolution has resolved all it can, and refine by one level to

begin process at the next-finest resolution.

4. Significant deterioration has occurred. This informs us that continued work

on this resolution is no-longer beneficial. In this case, we blacklist the coarsest

resolution available in the scheme, and perform a V-cycle. This seeks to avoid

any setbacks that could be being introduced in case 2, and reset the algorithm

to a minor extent.

These qualitative cases are selected according to a quantitative improvement factor,

which is a measure of how much the simulated X-ray image has improved in the

previous cycle. It is calculated by dividing the current image residual, |I − L(t, µ)|

by the image residual prior to the most recent cycle. Thus, a smaller improvement

factor (< 1) indicates that the residual has decreased, and our estimate is better.

A residual of 1 would indicate no change, and a factor > 1 tells us our estimate

is becoming less accurate. This quantitative improvement factor γ is defined as

follows:

γ = |I − L(t, µ)C |
|I − L(t, µ)C−1|

Where C is an integer denoting the current cycle, and L(t, µ)C denotes the spatial

model at the end of cycle C.
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We experimented with different values for the selection thresholds for each of the

four cycle states, and ultimately selected the following for the four states

1. γ < 0.8

2. 0.8 ≤ γ < 0.92

3. 0.92 ≤ γ < 1.05

4. 1.05 ≤ γ

The values selected here are intended to reflect the qualitative thresholds for im-

provement described when we introduced our cycle cases. This selection criteria

means that V-cycles can be implemented when they are most needed (either when

the model has degraded and need to be reset, or when improvement is slowing and

could be pushed further by faster alterations on coarser resolutions), and single-

cycles can be carried out when they are most needed (When the current resolution

is performing well, and when the current resolution has stagnated and needs to be

increase).

6.5.3 Results

We have presented our ideas for the techniques that can be used for moving through

grids already in this section. Here we will justify our decision to use the full

multi-grid described in Subsection 6.5.2, by comparing the model reconstruction

capability of FMG against just a single grid and a gradually increasing scheme.
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6.5.3.1 Single Grid

10 20 30

5

10

15

20 0

10

20

10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20

10 20 30

5

10

15

20
0

0.5

1

10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20
10 20 30

5

10

15

20

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7
Frobenius norms over thickness and alloy residuals

0 2000 4000 6000 8000 10000 12000 14000

4.5

5

5.5

6

6.5

7

7.5
106 Cost function

Figure 6.14: Convergence in the thickness and alloy residual norms (left) and cost
function J (right), reconstructing the M2AP at just the fine-grid level without grid
changes. Only minimal convergence can be seen over the residual norms due to the
small impact of fine-grid changes.

First, we show the convergence at just DS45 in Figure 6.14. Unsurprisingly, only a

very small amount of convergence is observed in the residual norms over thickness

and alloy. When limited to just a fine grid such as this one, the changes that

can be applied to the model can only have a small impact on the cost function,

particularly if the model is significantly different to the ground truth (such as just

after initialization).

Furthermore, the anti-smoothness penalty incurred by alterations is increased at

the fine-grid level, as will be covered in Section 6.6. Because of this, alterations that

make a substantial change to the initially smooth spatial model are significantly

less likely to reduce the overall cost function, and therefore less likely to be accepted

as beneficial changes.

Despite this, we do see an ideal convergence trend in the cost function. Only

small changes can be applied to the model, but these changes are leading to the

optimization that we want.
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6.5.3.2 Refining Grids

In Figure 6.15, we present the success of a multi-grid method that only increases

onto finer grids. Because we initialise the optimization at the coarsest pseudo-pixel

resolution (where all parameters vary in unison), we observe very rapid convergence

in both the thickness residual norm and the cost function J over the first ∼ 10

iterations. In these iterations, global updates to the initial thickness, soft-tissue

alloy and bone alloy are being trialled and accepted where they reduce J . Because

the initial state is significantly different to the ground truth, a high proportion of

these trialled changes will improve the initially-inaccurate spatial model, and thus

be accepted.

At iteration ∼ 3100, we see the model refined onto the finest grid. At this point, we

see a sharp increase in the cost function J , and more minor positive and negative

changes to the thickness and alloy residual norms, respectively. It is essential

to observe here that the sharp change to the cost function that coincides with a

resolution change does not correspond to an equivalent deterioration of the quality

of the model. Instead, this rapid increase is the result of the increased number

of parameters in the model, which the smoothness regularizer is being applied to.

Because the model is larger, the total number of contributions from the smoothness

regularizer is greater. This should in theory be a predictable increase, proportional

to the total number of parameters in the model, but our attempts at normalization

have not resulted in a more continuous value.

Instead we emphasise that the selected descent algorithm (described in Section

5.3.1) only permits updates that reduce the cost function, and that the final state

of the optimization will always be the finest grid reached during the reconstruction,

thus the absolute value of the cost function is not a significant measure of success,

but a continually reducing cost function is.
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Figure 6.15: Convergence in the thickness and alloy residual norms (left) and cost
function J (right), reconstructing the M2AP at multiple grid levels, sequentially
refining from coarse to fine. The first few iterations make a sharp reduction in
both thickness residuals and cost function. The sharp increase in cost function
when refining onto the finest grid (at approximately iteration 3100) comes from an
issue normalizing the cost function at different grid levels, and does not represent
deterioration of the model.
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6.5.3.3 Sequential Coarsening and Refinement
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Figure 6.16: Convergence in the thickness and alloy residual norms (left) and
cost function J (right), reconstructing the M2AP at multiple grid levels, where
refinement and v-cycles of coarsening followed by refinement are implemented in
response to relative changes in the cost function. The initial reduction in the
thickness and alloy norms is slower than in Figure 6.15, but the convergence over
the whole reconstruction run is smoother, and reaches a lower residual norm in
both thickness and alloy.

In Figure 6.16 we present an example run of the multi-grid algorithm that we

ultimately selected for implementation in our work, described in 6.5.2. This run

shows many examples of V-cycles (described in Subsection 6.5.1), where the model

is iteratively coarsen and then re-refined, to regularize and escape local minima in

the cost function.
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Note here that the model is initialised not at the coarsest resolution but at the

coarsest full-simulated resolution, i.e. the coarsest grid that is not one of the

pseudo-pixel resolution described Section 6.3.1. This is to prevent the rapid con-

vergence into particularly common local minima such as the one reached in the

first iterations of Figure 6.15.

6.6 Resolution-dependencies in the Regularizers

The regularizers that were defined in Chapter 5 were developed for use at a single,

pre-determined resolution. As such, minor alterations need to be made to some of

them, to ensure their effectiveness over a range of resolutions.

The smoothness regularizer and the continuity regularizer are both designed to

penalise a sharp change in the value of thickness or alloy from one pixel to another.

When we produce a model on a single grid the weightings of these regularizers

simply need to be tuned appropriately through a process of trial and error. When

appropriately tuned in this way, the regularizers neither under- nor over-smooth the

model, and a continuous and natural-looking shape is reached as the algorithm’s

estimate of the model’s thickness and alloy parameters. However, when the same

model is being processed at many resolutions, the impact on the overall smoothness

of the model following a change in the value of a single noisy pixel is variable. The

appropriate change can be identified by considering that the negative impact on

smoothness of a single parameter being altered by a given amount is inversely

proportional to the area of the image that parameter represents. That is to say, a

small area that is significantly different to the rest of the model is less smooth than

a large significantly different area. Therefore, we make the regularizers’ strength

proportional to the number of pixels in the object we are attempting to resolve.

Phrased differently, the regularizers are less strong on coarser images.

For the segmentation regularizer, the benefit in pushing alloy values towards their

predicted state (that is, the soft-tissue/non-soft-tissue state predicted by the seg-
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6.6. Resolution-dependencies in the Regularizers

mentation) is equally valid at all scales. If an alloy parameter has been predicted as

being 100% soft-tissue by the regularizer, in most cases changing the resolution of

the model will not change this prediction. However, we also know that the objects

we wish to image are imperfectly aligned with the grids we analyse them on, and

that those grids do not align with each other at different resolutions. The edges

of the anatomies, and the bones within those anatomies, will not follow the grid

lines of our model, and the grid lines at one resolution will not be in the same

places at different resolutions. All of this signifies that some alloy parameters will

be trying to describe a region of the model that straddles a material boundary.

On a coarse grid, a parameter may be trying to describe the alloy of a region that

contains some amount of bone alloy and some amount of soft-tissue, and when

this model is translated to a finer grid, those two regions become better (but still

imperfectly) separated. On that coarse grid, we can estimate that one predicted

segmentation-derived state is more accurate than the other, but there will be an

inaccuracy associated with this. Therefore, we also know that the accuracy of the

segmentation is inherently lower on the coarser grids than on the finer. As such,

we make the segmentation regularizer less strong on coarser grids, to reflect the

uncertainty of the segmentation at these coarse resolutions. This is implemented

by multiplying a constant weighting of the regularizer by the square-root of the

number of scattering pixels in the image. We choose this multiplication factor on

the grounds that the uncertainty introduced by the imperfect grid alignment is

inversely proportional to the side-length of the model, as opposed to the area of

the model.

The physicality regularizer, for penalizing values outside the valid range is equally

valid at all resolutions, and is unaffected by the grids and their alignment. As such,

its weighting is invariant with resolution.

This leads to the following, slightly modified forms of equations 5.2,5.3 and 5.5:
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6.6. Resolution-dependencies in the Regularizers

J(t, µ)Smoothed_multi-scale = NαD1
1 − edge(It)

2 ||∆t||2fro

+ NαD2
1 − edge(Iµ)

2 ||∆µ||2fro (6.1)

(described in pseudocode in Appendix A.10),

J(t, µ)Segmentation_multi-scale =
√

NαC

(
||seg1 ⊙ (1 − µ)||fro + ||seg2 ⊙ [µ ≥ 1]||fro

)
(6.2)

(described in pseudocode in Appendix A.8),

J(t, µ)Continuity_multi-scale = NαE

(
||∆ht||fro + ||∆hµ||fro

)
(6.3)

(described in pseudocode in Appendix A.2).

Where N denotes the number of scattering pixels in the down-sampled image, i.e.

the number of pixels in the down-sampled X-ray that are not open beam.

As the physicality regularizer defined in Eq. 5.4 is not resolution-dependent, it

remains un-altered. Thus, the final cost function that is implemented and optimised

over to best-reconstruct a thickness-alloy model is

J(t, µ)Regularized = ∥I − L(t, µ)∥h (6.4)

+ J(t, µ)Smoothed_multi-scale

+ J(t, µ)Segmentation_multi-scale

+ J(t, µ)Physicality

+ J(t, µ)Continuity_multi-scale,

(implemented as pseudocode in Appendix A.3), or
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6.7. Conclusion

J(t, µ)Regularized = ∥I − L(t, µ)∥h (6.5)

+ NαD1
1−edge(It)

2 ||∆t||2fro

+ NαD2
1−edge(Iµ)

2 ||∆µ||2fro

+
√

NαC

(
||seg1 ⊙ (1 − µ)||fro||seg2 ⊙ [µ ≥ 1]||fro

)
+ αB

(
|| min{t, 0} + max{0, t − tmax}||fro|| min{µ, 0} + max{0, µ − 1}||fro

)
+ NαE

(
||∆ht||fro + ||∆hµ||fro

)
.

6.7 Conclusion

In this chapter we have described the final element to our algorithm, a method

for efficient production of spatial models using many grids. We have described

why these additional grids are beneficial, and the two ways that coarser grids can

reduce the time needed to resolve an accurate spatial model. We then described how

additional grids to those produced by the Geant4 simulation can be constructed,

and why this can further reduce the time taken to develop an accurate model.

Following that, we described how spatial models constructed on these grids are

translated between them, using custom operators for coarsening and refining. We

described multiple methods for doing this that were considered and tested, as well

as the final method that was settled upon and why. These operators were then

combined into cycles of refining and coarsening, which are used in sequence to

produce our spatial models. V-cycles, in particular, and how that form part of a

full multi-grid method for our model production were described.

Finally we discussed how the regularizers described in Chapter 5 needed to be

altered, to perform well on all grids, instead of only a single one.
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Chapter 7

Validation on Natural Anatomies

In this chapter we include results demonstrating the effectiveness of the algorithm

that we have described in this thesis by testing them on realistic medical X-ray

scans. We will compare the performance on a range of different anatomies, and

ultimately demonstrate the success of our proposed techniques. The anatomies

examined in this chapter comprise of X-ray scans of a full-body phantom, designed

to accurately replicate human form using synthetic materials, as well as scans of a

cadaver, that were taken by staff at IBEX Innovations.

7.1 Experimental Setup

For all of the models described in this section, the grid was initialised not in its

coarsest state, but in the coarsest real grid (i.e. the coarsest grid that is not a

pseudo-pixel grid). While it is the coarsest pseudo-pixel grid (DSInf) that leads

to the fastest convergence, our testing found that initialising the grid at a resolution

where the curved shape could begin to be resolved led to the best results. In all

cases this was quickly followed by coarsening and the rapid convergence of the

pseudo-pixel grids, and thus we see the fastest rate of convergence normally occurs

in the second or third cycle of the algorithm.

The weighting factors from equations 6.2, 6.1, 5.4 and 6.3, denoted by αB, αC , αD1,
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αD2 and αE are given consistent values throughout the experiments described in

this chapter. These values have been selected empirically, and gradually refined to

the values tabulated below over many experiments refining the algorithm.

Weighting Factor Value

αB 1 × 1012

αC 1 × 109

αD1 0.2

αD2 0.2

αE 1 × 107

All of the experiments discussed in this chapter were left to run for 10 cycles

of optimization, with a variable number of iterations per cycle. The batch size

for these experiments, which is the number of parameters that are adjusted in a

given iteration is 1, as this led to the best results during testing. Furthermore,

the parameters of the model are always updated between every evaluation, which

corresponds to a minibatch size of 1.

7.1.1 Hardware Details and Execution Time

All of the experiments presented in this chapter were carried out on a Windows 10

machine, with an Intel i7-7700 CPU and 32 gigabytes of RAM. All of the code was

written in MATLAB and executed in either MATLAB 2020a or MATLAB 2022b.

The execution time for any given experiment of the ones below was typically in

the order of hours, though this was variable, because of the varying number of

iterations and x, y dimensions of the images being reconstructed.

7.2 Quantitative Analysis - M2AP

As the M2AP is the only imaged object for which we have ground truth data, it

is also the only one for which we can draw meaningful quantitative analysis. The
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results displayed below demonstrate that despite being initialised with an initial

estimate that is only informed by the result of the segmentation, our algorithm was

able to significantly reduce the difference between predicted alloys and thicknesses

and their ground truth values.

For clarification, when we say that the initial estimate is only informed by the

segmentation, what is meant is that the initial values for thickness and alloy from

which the estimate converges are naive guesses based only on the range of values

accepted by the simulator, and the prediction of bone and soft-tissue regions from

the segmentation network. As thickness values from 0cm to 30cm are accepted by

the simulator, we initialise the thickness values at all points in the object at 15cm.

For regions predicted to be soft tissue, we initialise the alloys at 1, in line with

the expected 100% soft tissue. For regions where the segmentation has predicted

a combination of bone and soft-tissue, the alloy values are initialised at 0.5, the

mid-point of the valid range.
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Figure 7.1: Frobenius norm over thickness any alloy residuals against ground-truth
data (upper-left), cost value (upper-right), final estimated thickness (lower-left)
and bone thickness ((1 − µ) ∗ t) (lower-right) for the M2AP, initialised at 15cm
thickness and alloy guided by the segmentation.

Figure 7.1 shows the variation in Frobenius norms of the differences between pre-

dicted and ground-truth thicknesses and alloys, as well as the cost function over

the course of optimization, and the final reconstructed object thickness and bone

thickness. Bone thickness here is calculated by multiplying the bone proportion

of the alloy with the total object thickness. I.e. a alloy of 0.5 (50% soft-tissue)

multiplied by an object thickness of 10cm implies a bone thickness of 5cm.

From Figure 7.1 we can see that the Frobenius norm over difference between pre-

dicted and true object thickness has decreased from an initial Frobenius norm of

6.71 to a final value of 0.69. We find that the average final difference between ground
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7.3. Full Body Phantom

truth and predicted thickness is 26%, and the average final difference between

ground truth alloy and predicted alloy is 25%. The reconstructed alloys have a

mean difference of 0.12 in the region segmented as bone, and a mean difference

of < 0.01 in the region classified as soft-tissue. The reconstructed thickness has a

mean difference from ground truth of 0.998cm.

7.3 Full Body Phantom

In this section we include a series of scans of small sections of the limbs of a full body

human X-ray phantom. In contrast to more complex anatomies we will present

later in this chapter, these are most similar to the M2AP that we have tested the

algorithm against. Here we include the reconstructed surfaces from scans of the

upper and lower arms and legs of the full body phantom. Alongside each of these

surfaces we present the path through the resolutions that was taken to reach the

final surface, the cost function J against number of iterations, and the norms of the

residuals between our material reconstructions and the reconstructions produced

by IBEX Innovations.

For clarification, we reinforce here that the X-ray scans discussed in this section

have come from an artificial model of the human anatomy, known as a phantom,

designed for the purpose of testing and training related to X-ray hardware and

software. We will only be considering scans of the limbs of this phantom, as we

have access to more accurate cadaver data for more complex regions of the anatomy,

which will be discussed in Section 7.4.

Furthermore, our decision to consider limb scans first is guided by the testing that

have been carried out in previous chapters. Up to now, the algorithm has been

tested using the M2AP, an artificial phantom that seeks to simply represent the

anatomy of a human upper-arm. The M2AP however is an oversimplification, as it

exhibits only very small amounts of variation in thickness and bone density across

its surface. This simplicity makes it very easy to gather ground-truth data for.
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We therefore opt to begin the validation of the algorithm over regions of artificial

anatomy that closely resemble the one used for development, as we can expect

reasonable performance on these based on our testing.

7.3.1 Upper Arm

The first set of reconstructions we present come from the phantom’s upper arm,

as this has the highest degree of similarity with the M2AP model we have tested

our algorithm on during development. Because of this, we expect to see good

performance on this region of the anatomy.

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7
Frobenius norms over thickness and alloy residuals

jj7! 7GT jjFro
jjt! tGT jjFro

0 2000 4000 6000 8000 10000 12000 14000

105

106

107
Cost function

Figure 7.2: Frobenius norms over residuals between reconstructed thickness and
alloy values and the reconstructions obtained by IBEX Innovations (left), and the
cost function per iteration during the iterative reconstruction process. (right) Ver-
tical dashed lines represent points where grid resolution was able to change.
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7.3.1. Upper Arm

Figure 7.3: Final estimated thickness (left) and bone thickness ((1 − µ) ∗ t) (right)
for the upper arm phantom, initialised at 15cm thickness and alloy guided by the
segmentation.

Each of the vertical dashed lines in Figure 7.2 represents one of the points in the

iterative process where the conditions for grid change was checked. (I.e. these

vertical dashed lines indicate points where the algorithm selected to either remain

in the current grid, or change). This does not necessarily mean that the grid did

change, only that these were points at which a change could change. Notably, in

the latter half of the iterations, we can see that the model is being constructed on

two grids that are finer than those used in the earlier half. Because these grids

are finer, more iterations are required per grid, and thus the spaces between these

vertical dashed lines increases.

We also see that the cost function is not consistent during these grid changes.

When the model is reconstructed on a finer grid, the cost function corresponding

to that model — despite only small changes introduced during that iteration — is

significantly greater. Despite efforts to compensate for this through normalisation,

this has persisted. It is our assumption that the sharp changes incurred here are

due to the changes to the smoothness regularizer when the total number of voxels is

altered. The smoothness regularizer (discussed in Subsection 5.2.1) has a additive

component for each voxel in our model, thus the contribution changes when the

grid size changes, and the model is made up of more/fewer voxels. However, the
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smoothness contribution resists normalization because it is also deactivated along

the edges. This rate of deactivation — the number of voxels that are not making

a contribution to the smoothness penalty — also varies with the grid size, but

proportional to the square root of the number of voxels.

Analysing the reconstructed surfaces shown in Figure 7.3, we can see that the

overall shape of both object thickness and bone thickness match our expectations

for the anatomy. The most notable exception to this is a sharp ridge at one end of

the bone, where the bone thickness rapidly increases for a single voxel row. This

occurs where the smoothness regularization has been deactivated along the edges

of the model/image, and as such these voxels introduce no penalty for being none-

smooth. While this introduces an artefact, the artefact is minor compared to the

negative impact of enforcing smoothness along the edge of the image. This recurs

in other scans (particularly of the cadaver wrist in Subsection 7.4.3), but as the

change is relatively minor and localised only to a small region at the periphery of

the image, we have determined it does not warrant concern.

7.3.2 Lower Arm

The lower arm region of the same phantom, covering the section between the elbow

and wrist, presents a new challenge to our optimiser. Where all previous examples

used to test our algorithm have been comprised of a single, approximately cyl-

indrical bone, centred within an approximately cylindrical mass of soft-tissue, the

lower arm introduces a far more common feature of real anatomies: multiple bones.

Here we find two bones, each of which is similar to the kind considered in devel-

opment in previous chapters, and an overall object shape and thickness similar to

the upper arm and the M2AP. The reconstructed bone surface ((1 − µ) ∗ t) shown

in Figure 7.4 shows that these two bones have been successfully reconstructed sep-

arately from each other, but the the model has not managed to accurately capture

the cylindrical nature of each bone, instead describing the two bones as getting
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thicker towards their combined centre point. This effect is most prominent in the

centre of the model, and thus could be caused in-part due to the same effect seen

in the overall object thickness.

Additionally, we see that the overall object thickness is noticeably thicker at the

centre than at all the edges, creating a overall surface that is closer to a hemisphere

than a pure semi-cylinder, as we have seen previously. This is not entirely incorrect

— The lower arm does thin along its length, creating an effect that one end is

thinner than the other, but the thinning at both ends appears to be an error. This

could be caused by the imaging set-up, or could be the effect of a failure of the

smoothness regularizer along the edge, as described in the previous section.
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Figure 7.4: Frobenius norm over thickness any alloy residuals against gold-standard
data (upper-left), cost value (upper-right), final estimated thickness (lower-left) and
bone thickness ((1 − µ) ∗ t) (lower-right) for the lower arm phantom, initialised at
15cm thickness and alloy guided by the segmentation.
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7.3.3 Upper Leg

As with the upper arm from Subsection 7.3.1, the upper leg contains only a single

bone. The primary challenge presented here is that we are modelling a larger

region of the anatomy, after testing on a simple phantom of the arm. The principal

challenge for the optimiser here is to reconstruct a surface that is on a different

scale to the examples considered previously.

Of the phantom studies, this is where the algorithm’s performance is worst. The

residual norms shown in Figure 7.5 show that the overall thickness of the reconstruc-

ted model is inaccurate by an average of 2cm when compared to the reconstruction

from IBEX Innovations. Visually inspecting the model, this makes sense. From

our intuition and the cross section of the imaged object, we expect the surface for

this part of the anatomy to have a noticeably greater thickness than for the arm

regions of the previous two subsections. However, the surface is reconstructed at

approximately 8cm, similar to that of the arms. This could present a substan-

tial limitation to the algorithm. For limbs in particular, it would be possible to

repeatedly converge to a generic thickness value around the 8cm mark, and be ap-

proximately correct for any limb scan. More detailed data to test against (such as

CT scans) would prove or disprove this, but scans of more varied anatomies (such

as those presented in Section 7.4) can also help us assess this potential limitation.

The graph of the cost function reflects that the algorithm has struggled to make

an accurate reconstruction. The grid has iterated through several V-cycles, as it

does in the event of stagnating improvement or deterioration.
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Figure 7.5: Frobenius norm over thickness any alloy residuals against gold-standard
data (upper-left), cost value (upper-right), final estimated thickness (lower-left) and
bone thickness ((1 − µ) ∗ t) (lower-right) for the upper leg phantom, initialised at
15cm thickness and alloy guided by the segmentation.

7.3.4 Lower Leg

Finally, we present scans of the lower leg region. This could be considered to be

the most challenging of the studies in this section, as it presents the challenges of

both multiple bones, as in 7.3.2, and the thicker anatomy, as seen in 7.3.3

Despite the intrinsic challenges, Figure 7.6 shows good reconstruction of both the

overall shape of the anatomy, as well as the bones within. The object thickness does

not decrease at the top and bottom edges, and is thicker along it’s entire length
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than in other tests, as we would expect. This accuracy is reinforced by the norms

over the residuals, which are approximately 1cm away from the IBEX estimate, on

average.

On the bone reconstruction, we again see that the optimiser has correctly recon-

structed one bone as thicker than the other. Furthermore, the thicker bone displays

a gradual increase in thickness towards one end, as is typical for this region of the

leg.
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Figure 7.6: Frobenius norm over thickness any alloy residuals against gold-standard
data (upper-left), cost value (upper-right), final estimated thickness (lower-left) and
bone thickness ((1 − µ) ∗ t) (lower-right) for the lower leg phantom, initialised at
15cm thickness and alloy guided by the segmentation.
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7.4 Cadaver

In this section, we present reconstruction of more complex regions of human ana-

tomy, using X-ray scans of a human cadaver. Without access to costly CT scan-

ning technology, we present these results without ground truth or ground truth-like

information such as a reconstruction to compare against courtesy of IBEX Innova-

tions. Instead, we seek to evaluate the algorithm’s performance by considering its

ability to scatter-correct these scans. Because these are generally scans of regions

of the body that induce more scatter than limbs do, successful scatter correction

will have a more noticeable effect, compared to the correction that will be achieved

on scans such as in Section 7.3.

We also clarify here that the scans in this section do not resemble the simple

geometry of the M2AP. These are regions of the body that contain many bones

of varying sizes, as well as a range of tissues, sometimes overlapping each other

multiple times in the scan. It is this complexity that leads to additional scatter, as

well as additional need for its removal.

7.4.1 Skull

The skull is the first part of the anatomy we have attempted to reconstruct which

is connected to the rest of the body at only one end. As such, this is the first

reconstruction where we would expect the object thickness to taper off to zero on

more than just the two parallel sides of the object. Further, this is the first case

where we encounter multiple bones in distinct regions in the anatomy, as the top of

the cadaver’s collarbones are present in the scan. Finally, the skull itself displays

complex changes in thickness across its surface, and is highly different from the

cylinders all of the previous test cases could be approximated as. As such, for a

complex 3D object such as this, the 2.5D reconstruction produced by our model is

going to be less insightful for visually inspecting the quality of the reconstruction,
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compared to the limbs presented in the previous section.

Nonetheless, visually inspecting the surfaces in Figure 7.7, we can see that the

optimiser has succeeded in some of these reconstructions, and failed in others.

Firstly, the overall object thickness looks to be, generally, a successful estimation.

The shape of the head tapers off around its edges in the way that we would expect,

and the body becomes thicker below the neck as it covers the shoulders and top of

the torso.

With regard to the reconstruction of the bone thickness, we can see that the col-

larbones have been successfully reconstructed as a distinct region of bone from the

skull and neck. However, the thickness values estimated for the skull itself does

not hold up so well to visual inspection. The reconstruction indicates that the

volume of the head is almost entirely filled by the bone of the skull, and while it

is appropriate that would indeed fill most of this volume, it is not solid bone. The

skull, particularly at the top, is a thin shell of bone, filled with tissues such as

the brain. Thus, the bone thickness should be considerably lower than the approx.

10cm estimated. Furthermore, there is no indication in the reconstruction of hollow

regions for the eye sockets, which would have been a very encouraging result to see.

Figure 7.7: Reconstructed surfaces of overall object thickness (left) and bone thick-
ness (right) of the cadaver skull.
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7.4.2 Shoulder

Moving on to the visual inspection of the reconstructed surfaces for the scan of

the shoulder shown in Figure 7.8, we again have positive and negative aspects

to discuss. As with the previous study, the overall object thickness matches our

expectations, remaining generally flat with drop-off along the top of the arm, above

the collarbone and around the neck. There is a concerningly low point towards the

centre of the torso, at the corner of the model, which is no doubt incorrect, but

should have a minor impact on the scatter correction due to it being at the edge

of the composition.

The principal challenge of this example is the number of overlapping bones, such

as the ribs, that cross over each other in the X-ray scan composition, in a way that

cannot be accounted for by the algorithm in its current state. This limitation is

explicitly discussed later, in Subsection 8.1.2. In a perfect reconstruction, we would

expect to see several sharp changes in the bone thickness reconstruction, where

two bones overlap each other, and the thickness is suddenly doubled. Instead, we

impose a penalty on just such behaviour, encouraging the reconstructed surface

to be smooth, so as to make the problem at hand solvable, as was discussed in

Subsection 4.3.2 of Chapter 4 and Section 5.2 of Chapter 5.

Furthermore, it is in images such as this one that the highly simplified, two-material

alloy abstraction of real tissues breaks down. In the chest we expect to find a range

of soft-tissue densities, as a result of organs such as the heart and lungs. modelling

these as the same soft-tissue analogue in arms and legs is inaccurate, but a necessary

simplification for the algorithm we have developed.

Finally, this criss-crossing of bones, combined with the possibility of bones being

masked by highly absorbing soft-tissues means that this region is one where we ex-

pect that the segmentation is more likely to fail. This further reduces the expected

quality of the model in this region

Taking these serious limitations into account, the performance of the bone recon-
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struction is surprisingly good. We see a thicker volume of bone in the regions where

we would expect the most overlap, along the spine and outermost edge of the ribs.

The thickness then decreases into the shoulder and along the upper arm, to ap-

proach similar estimates as for the upper arm study in Subsection 7.3.1. Finally,

we see the neck curve off on either side, showing the the optimiser has recognised

this region is distinct from the collarbones just below, which have a near constant

thickness right up to the edge of the scan’s composition.

Figure 7.8: Reconstructed surfaces of overall object thickness (left) and bone thick-
ness (right) of the cadaver shoulder.

7.4.3 Wrist

The final cadaver scan we discuss is of the wrist. This composition covers the entire

hand, as well as a portion of the lower arm, similar to the regions reconstructed in

Subsection 7.3.2. As such, the presents an interesting opportunity for analysis, as

part of the reconstruction should match to previously observed results, while the

remainder of the scan is completely new to the optimiser. The specific challenge

of this reconstruction is the hand, as it is made up of many small bones, most of

which are considerably thinner than anything encountered so far.

On immediate inspection, the most obvious issue with the reconstruction shown in

Figure 7.9 is the sharp peak in one of the corners of the bone thickness (and, to

a less extent, a corresponding peak at the same point in the object thickness.) As
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has been observed in other studies, this is likely due to the decision do deactivate

the smoothness regularizer along the edges of the model. As was discussed in 5.2.1,

the thickness and bone alloy models are penalised so as to encourage smoothness,

except along the edges. As such, in the corner there is no smoothness consideration

for the value of the model, and we can expect to see sharp peaks more often than

along the edges. This is a known issue, but the impact should be minor given that

it affects only a single value at the furthest periphery of the image.

One encouraging aspect of this that we do observe is that the voxels around this

corner peak have not been smoothed towards incorrect values as well. This is good

evidence for why we chose to implement these domain-knowledge as regularizers

instead of hard-coding them in such as way that smoothness (for example) must

always be enforced. If smoothness had been universally enforced, then the voxels

around this one would have been smoothed into incorrect values as well, producing

a higher image residuals and a worse model. Instead, in this region, the voxel values

are only smoothed if it does not lead to a substantial decrease in model quality,

and thus smoothing is not attempted in a case such as this.

Finally, we note that the object thickness and bone thickness both exhibit the

expected gradual decrease from elbow to fingertip, taking accurate values lower

than in previous test studies. Furthermore, in the object thickness reconstruction,

the spaces between the fingers have been identified, with the thickness rising and

falling to capture the fingers and spaces between them.
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Figure 7.9: Reconstructed surfaces of overall object thickness (left) and bone thick-
ness (right) of the cadaver wrist.

As previously stated, the absence of high-quality ground-truth data limits our

ability to quantify the success of our materials estimation algorithm. Access to

technical diagrams of the phantoms studied in Section 7.3, or CT measurements

corresponding to the X-rays provided by IBEX would have facilitated these quan-

tifications. If given access to such data, the logic next step in this experimental

process is to calculate error on our reconstructed models, and compare this against

the image residuals. Furthermore, the total number of parameters correctly estim-

ated to within a given margin could be evaluated and used to quantify the success

of the reconstruction on each dataset.

7.5 Scatter Correction

To finish this chapter, we present the results of scatter correction using the spatial

models presented in the previous sections. These figures seek to demonstrate the

benefit that such reconstruction can have on X-ray scan readability. For each

anatomical region presented so far in this chapter, we will show a side-by-side

comparison of the X-ray scan before and after scatter correction. For each of these

scans, the images presented will be contrast-windowed to make the information as

readable as possible. This means that the intensity values that pure back and white
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correspond to are selected to only span the range with valuable information. This

is shown via a corresponding histogram, showing only the range being displayed in

the image presented. This point is reinforced in the following subsection, where an

unwindowed image is presented for comparison.

7.5.1 Scatter Correction of Phantom Limb Scans

The scatter corrected images from the Full Body Phantom study presented in

7.3 are presented below. The most important thing to highlight here is that for

relatively small body parts such as these, we do not expect to see a significant

scattering effect, and as such the scatter correction impact may only be minimal.

While the changes to the image are not always clear, the histograms are included

to show that the effect on the distribution of intensities is significant in all cases.

This change is generally to reduce the difference in intensity between the soft tissue

region and the bone, such that the two can be seen more clearly in a single contrast

window.
Uncorrected X-ray Image (with contrast windowing) Scatter-corrected X-ray Image (with contrast windowing)
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Figure 7.10: Uncorrected (left) and scatter-corrected (right) X-ray scans of the
phantom upper arm and corresponding histograms, without contrast windowing to
improve readability. It is expected that the reader will struggle to discern visible
differences between the images, particularly if the thesis is viewed in print. This
figure serves to demonstrate the importance of contrast windowing.
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Figure 7.10 shows the uncorrected (left) and scatter-corrected (right) scan of the

upper arm presented in Subsection 7.3.1, without any contrast windowing. We do

not expect the reader to be able to meaningfully distinguish between these two

images (particularly if this thesis is being viewed in print). This is partly due to

the minimal impact of scatter, as is the case with all results in this subsection, but

mostly due to the selected contrast window (or lack thereof) including irrelevant

information, such as the the details of the open beam region on either side of the

phantom, and the collimated region on the left edge of the images.

This colliamted region is of interest to us for analysis, as it demonstrates a recurring

issue with the existing simulation process. In the uncorrected image on the left,

we can see a gradient into a darker shade on the left edge of the image, indicating

that a metal plate has been positioned at the edge of the detector area, to reduce

unnecessary radiation dose to the patient. This is called collimation, and it occurs

frequently in X-ray imaging. The segmentation described in Section 2.3 has iden-

tified this collimation as a material that is distinct from bone or soft tissue, and as

such will be treated differently by the X-ray simulation process. However, because

the collimator actually only occupies a very small area of the full-resolution image,

but the segmentation has been created at a reduced resolution, the region that

the collimator occupies has been over-estimated. This leads to a significant arti-

fact along the scatter-corrected image’s edge, where intensity is reduced because

of the (inaccurate) presence of a collimator. In this instance, the artifact has no

impact on the quality of the output (see Figure 7.11), as the viewer is not interested

in an open-beam region far from the anatomy being imaged, but there are cases

where this collimator crosses the object being imaged, leading to such an artifact

impacting the quality of the X-ray scan.
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Uncorrected X-ray Image (with contrast windowing) Scatter-corrected X-ray Image (with contrast windowing)
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Figure 7.11: Uncorrected (left) and scatter-corrected (right) X-ray scans of the
phantom upper arm and corresponding histograms, with contrast windowing to
improve readability.

Figure 7.11 shows the same X-ray scan as Figure 7.10, with contrast windowing

applied to increase intensity resolution on the regions of interest. As anticipated,

the effect of scatter correction is negligible for such a low-scattering region of the

anatomy. This is a result we see repeated on all scans in this subsection. Nonethe-

less, the histograms show that some change to the image has been applied to the

image. While it is difficult to draw meaningful conclusions from the histograms, it

is encouraging to see that in a simple case such as this one (one narrow, approx-

imately cyclindrical region of anatomy, with a single bone within) the histogram’s

two peaks have become more defined.
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Uncorrected X-ray Image (with contrast windowing) Scatter-corrected X-ray Image (with contrast windowing)
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Figure 7.12: Uncorrected (left) and scatter-corrected (right) X-ray scans of the
phantom lower arm and corresponding histograms, with contrast windowing to
improve readability.

On the scans of the lower arm phantom, contrast between the bones and the tissue

around them appears to have increased, but in this instance it is not clear from the

histograms whether the two distinct peaks in the uncorrected image have become a

single peak in the scatter-corrected because the distance between them has reduced,

or just that a greater number of pixels now have an intensity level between these

peaks.

This can be investigated further by producing similar histograms after masking the

images with the segmentation. Such histograms make clear how the pixels labelled

bone and soft-tissue have changed in intensity relative to each other.
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Uncorrected X-ray Image (with contrast windowing) Scatter-corrected X-ray Image (with contrast windowing)
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Figure 7.13: Uncorrected (left) and scatter-corrected (right) X-ray scans of the
phantom upper leg and corresponding histograms, with contrast windowing to
improve readability.

The scans of the upper leg begin to approach a degree of thickness substantial

enough for meaningful scatter correction. In Figure 7.13 it can be seen that the

scatter removal has increased the range of intensities which the soft-tissue region

pixels occupy. This has led to a case where the edges of the object disappear when

windowed to most clearly show the difference between the bone and soft tissue

(note that the edges are still clear in a differently windowed image.)
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Figure 7.14: Histograms of the uncorrected (left) and scatter-corrected (right)
upper leg scan shown in Figure 7.13, separated according the segmentation of the
original image into bone, soft-tissue and open-beam regions.
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The histograms in Figure 7.13 show that the two distinct peaks have broadened

— in particular the darker, lower-intensity peak corresponding to the bone —

suggesting that the intensity range of the bone has increased. This is confirmed

by Figure 7.14, which separates the histograms in Figure 7.13 according to the

segmentation of the image. Thus we can compare the histograms of pixels classified

as bone against those classified as soft-tissue. Figure 7.14 makes it clear that

the intensity peaks of the bone and soft-tissue have been broadened and brought

closer together by the scatter-correction process, implying to a reduction in contrast

between the bone and the soft-tissue. It is also worth noting though that the darkest

soft-tissue pixels in the uncorrected image are darker than most of the bone pixels,

whereas in the scatter-corrected case, the darkest soft-tissue pixels are no darker

than the intensity at which the bone pixels peak. This implies that the two regions

should be easier to discern, as it is the darkest soft-tissue pixels which will occupy

the region on the border between bone and soft-tissue.

Looking at the uncorrected scan in Figure 7.13 (left), we can visually confirm this.

the darkest soft-tissue pixels can be found along the upper edge of the image.

In this region, it is harder to pick out the bone than in the same region in the

scatter-corrected image (right).

Figure 7.15 highlights a region of interest on the upper leg scans, to give the

reader a clearer view of the impact of scatter correction on contrast. Here we focus

our contrast windowing on a small region of the images, and control the range of

the contrast window to maintain a constant intensity resolution. In the resulting

images, visual inspection indicates better contrast between bone and soft tissue,

and slightly worse contrast between soft tissue and an unmodelled third material,

which could be an internal air gap.
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Figure 7.15: Highlighted region of interest on the uncorrected (left) and corrected
(right) upper leg scan. In this figure, contrast windows for both uncorrected and
corrected scans have been set to have equal range, but centred at different intens-
ities.
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Figure 7.16: Uncorrected (left) and scatter-corrected (right) X-ray scans of the
phantom lower leg and corresponding histograms, with contrast windowing to im-
prove readability.
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The lower leg scans presented in Figure 7.16 present broadly the same story as the

scans already discussed in this subsection. Of note here is that the histogram for the

scatter-corrected image present more distinct peaks than those in the uncorrected.

For an anatomy such as the lower leg, where we see more than one bone present

in the image and the bones have very different thicknesses, we could expect each

bone to have its own distinct peak.

7.5.2 Scatter Correction of Cadaver Scans

Finally, we present in this subsection the original and scatter-corrected X-ray scans

of the cadaver anatomies reconstructed in Section 7.4. In many ways, this can be

viewed as a true validation of the algorithm developed. This is the closest to a real-

world use-case as is applicable to the work developed, and thus success on these

images is a hallmark of a successful anatomy reconstruction and, by extension,

scatter correction.

In the images in this section, we cannot expect to see the same clearly defined

peaks for bone and soft tissue. This is because the anatomy regions in this section

are typically composed of many bones, of a wide range of sizes. Thus, each bone

could have a peak that it contributes, which could have a broad intensity spectrum

if that bone also varies in thickness within the image.
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Uncorrected X-ray Image (with contrast windowing) Scatter-corrected X-ray Image (with contrast windowing)
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Figure 7.17: Uncorrected (left) and scatter-corrected (right) X-ray scans of the
cadaver skull and corresponding histograms, with contrast windowing to improve
readability. Note that the histogram binning in this figure and the equivalent
histograms in Figures 7.18 and 7.20 is chosen arbitrarily. These images are arrays
of float values, and as such there is not a binning that corresponds to the precision of
the images. Instead, we opt to use the same histogram binning across all histograms
in this chapter.

The cadaver skull X-ray scan, presented in Figure 7.17, is one of the cases where

we expect to see a noticeable difference between the corrected and uncorrected

images. From the scans presented, it is clear that the intensity resolution of the

skull itself has increased significantly, and the structure of the skull can be more

clearly discerned in the scatter-corrected image. There is a noticeable difference

between the images in the dark region around the neck in the scatter-corrected

image, above the skull in the composition. A corresponding dark region can be

seen in the uncorrected image, but in the uncorrected scan this neck tissue is only

dark relative to the other soft-tissue in the scan, which is light enough to be outside

the visible intensity range and just rendered as white. In the corrected scan, the

soft-tissue have been brought closer in intensity to the range of the bone, such

that a more significant portion of the soft tissue is visible in a contrast window

optimised for bone.
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7.5.2. Scatter Correction of Cadaver Scans

Uncorrected X-ray Image (with contrast windowing) Scatter-corrected X-ray Image (with contrast windowing)
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Figure 7.18: Uncorrected (left) and scatter-corrected (right) X-ray scans of the ca-
daver shoulder and corresponding histograms, with contrast windowing to improve
readability. To reiterate from the caption of Figure 7.17, the low precision in the
histograms does not indicate low precision in the images.

The shoulder scan presented in Figure 7.18 is the case in which we expect to see

the most significant effect of scatter correction. Images such as this, where we are

viewing a wide angle of a thick region of the body, contain more scattered radiation

due to the greater volume of scattering material. Thus, it is a highly encouraging

result to see the substantial impact of scatter correction in the scan on the right

in Figure 7.18.

The most significant effect of scatter correction on this scan has been to bring

the whole image into a narrower intensity range, such that a single, high intensity-

resolution window can be used to see the majority of the torso and the arm, without

the chest becoming too murky to read. While a second (or even third) contrast

window could be used to retrieve comparable detail on the darker regions of the

chest in the uncorrected scan, the scatter correction allows for almost all of the

anatomy to be viewed clearly in a single contrast window. This is, perhaps, the

most meaningful product of the research presented in this thesis. The readability

of the image has been improved, in a way that requires less input from the viewer
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7.5.2. Scatter Correction of Cadaver Scans

Figure 7.19: Highlighted region of interest on the uncorrected (left) and corrected
(right) shoulder scan. In this figure, contrast windows for both uncorrected and
corrected scans have been set to have equal range, but centred at different intens-
ities.

to read multiple parts of a single, highly complex anatomy.

This is all despite the fact that that the shoulder is also a case which poses known

challenges to our material reconstruction algorithm, as was discussed in Subsection

7.4.2. To reiterate here, we know that there will be many bones that overlap in the

field of view of the X-ray, in a way that is actively penalised from being represented

in the reconstructed model. Furthermore, we know that the composition contains

many different organs, and thus many different tissue densities. This makes es-

timating scatter with a Monte Carlo simulation based on just two materials (bone

analogue, and a general soft-tissue analogue) a known over-simplification.

Figure 7.19 highlights the impact of scatter correction on the shoulder by presenting

a smaller region of interest at a larger scale.
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7.5.2. Scatter Correction of Cadaver Scans

Uncorrected X-ray Image (with contrast windowing) Scatter-corrected X-ray Image (with contrast windowing)
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Figure 7.20: Uncorrected (left) and scatter-corrected (right) X-ray scans of the
cadaver wrist and corresponding histograms, with contrast windowing to improve
readability.

Finally, in Figure 7.20 we present the wrist scan, a case in which we expect to see

only slight improvements from scatter correction. What we do observe however, is

a similar effect to what was discussed on the shoulder scan, that the whole anatomy

has been brought into a narrower intensity spectrum, and thus can all be viewed

more clearly in a single contrast window. This is most noticeable at the tips of

the fingers, which become too light to be visible in the uncorrected image, but

both bone and soft tissue become visible in the scatter-corrected image, without

reducing readability of the rest of the object.
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Chapter 8

Conclusion

In this thesis we have demonstrated the application of multi-grid regularized des-

cent methods to the ill-posed problem of material reconstruction from medical

X-ray images. This reconstructed 2.5D model can then be used to produce scatter-

corrected X-ray images.

This required us to develop novel, physics-based regularization functions that allow

us to constrain the ill-posed problem of single-view material reconstruction. With

these regularizers there is sufficient domain knowledge about the problem encoded

into the optimiser, that the limited data in a single X-ray image can be used to

produce a coarse model of the anatomy.

Recognising the significant computational cost associated with estimating these

thickness and alloy parameters at high resolution, we developed a multi-grid method

for the reconstruction, such that coarse-grid estimates of thickness, alloy could be

quickly produced, then used as a starting point for progressively finer reconstruc-

tion processes. We took into account how such multi-grid algorithm could lead to

cause the optimization to fall into local minima and create challenging artefacts.

To reduce the impact of this, we developed and implemented a grid traversal al-

gorithm that can coarsen and refine the model, in response to the rate of change

to our cost function. As the rate of optimization slows and stagnation begins to

occur, the grid is able to either refine for better quality, or V-cycle through coarse

161



8.1. Future Work

grids back to fine, to regularize the model and escape minima with more significant

model alterations. This grid traversal allows us to balance increased speed with

good accuracy.

Finally, we demonstrated the effectiveness of all of the developed steps on real X-

ray images of phantoms and cadavers, and showed meaningful results in terms of

both the 3D reconstruction of the anatomies and scatter correction of the native-

resolution images.

Reflecting upon the work carried out during the course of this research, the value

of the exploratory work described in Chapter 4 cannot be overstated. It was this

work that allowed us to make rapid progress towards our goal by simplifying the

problem into something easy to understand and rapid to test. Three of the four

regularization functions that were part of the final algorithm were developed for

this simplified model and scattering process. In hindsight, a different approach

to the multi-grid techniques could have proved more valuable in the long run.

It was possible that, instead of requiring pre-computed databases for each grid-

level that we want to model, we instead only required a single, high-quality set of

pre-computed databases, that we then down-sampled at run time. By doing this

instead, a wider range of grid sizes could have been simulated and modelled, as

well as simulating a greater number of grids within this range. However, this was

not possible at the time of development due to the workload increase it would have

involved, relative to the additional capability it would have provided.

8.1 Future Work

With all the ideas considered within the scope of this project discussed and evalu-

ated, we take some time here to recommend research directions that could follow

this work. These are ideas that were deemed outside the scope of the research due

to the time required to implement them and the needs of the industry partner,
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but nonetheless can be beneficial for further enhancing the output or reducing the

compute-time required.

8.1.1 Better ML Informed Prior

First, we consider here the prior that is derived from the segmentation, from which

the algorithm begins optimizing. In the absence of other information, we begin from

a state that is perfectly flat, with the bone and soft-tissue regions assigned different

alloy values, and the same thickness. This constant thickness has generally been set

to the mid-point of the available values (typically t = 15cm), and the bone-region

has been set to the midpoint of allowed alloys (µ = 0.5). While this has been

effective for reducing the number of iterations required to make a good estimate of

the model (when compared to a prior that does not make use of the information

in the segmentation), we can imagine ways to further improve this. Novel research

has shown advances in the field of depth/surface estimation from single images,

and thus we can imagine a second neural network which is trained to predict a

reasonably accurate prior (i.e. something closer to the ground truth than the one

used here), from which the algorithm can converge.

Naturally, the downside to this is that we risk introducing a bias to the final result

of the convergence, which we cannot easily justify to end-users, and is based of the

trained predictions of the neural network.

8.1.2 Predicting Bone Overlap

In many of the X-ray scans we have tried to model, we encounter regions where two

or more bones overlap each other. At these areas, we expect to see sharp discon-

tinuities in alloy, as the thickness of the object is unchanged, but the proportion of

bone suddenly doubles or halves. To account for this better, it could be worthwhile

to retrain the segmentation network to do one of two things. either:
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• Attempt to segment crossover points as an additional class, or

• Attempt to segment each bone independently, such that crossover points

would be regions with multiple classification labels

Creating an additional class would allow us to identify the boundaries along which

sharp changes in alloy are expected, and reduce the strength of the smoothness

regularizer along these boundaries, in much the same way as we do along bone

and object edges, see Section 5.2.1. Alternatively, segmenting each bone as its own

object would gives us a better understanding of how the bones lie above/below each

other, and could provide a way to estimate the amount by which the alloy should

change along those crossing points. This could then be introduced as a further

regularizer to ensure accurate alloy estimation at these bone overlaps.

8.1.3 Additional Material Databases

When resolving models of the most complex regions of the anatomy, such as chest

and shoulder images, the limited materials databases begin to be insufficient. Par-

ticularly in the human chest, we encounter a range of tissues of different dens-

ities, and attempting to abstract these with just generic analogues for bone and

soft-tissue reduces the accuracy of the models, and by extension simulated X-ray

images our model is able to produce. Introducing new materials has a significant

computational cost associated with it, as we now introduce a further dimension to

the parameter space the the optimiser must search, but in select cases it is feasible

that adding new materials to our database, and limiting when and where they can

be used, would be beneficial to the algorithm.

8.2 Final Remarks

The research presented in this thesis seeks to add to the growing body of work

around 3D reconstruction and scatter correction for medical X-ray imaging. Most
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8.2. Final Remarks

significantly, we hope to have shown that through careful mathematical formulation

of domain knowledge, single-shot reconstruction of ill-posed data is possible. While

the reconstruction shown in this research is imperfect — estimating aspects of a

3D model as opposed to a full 3D reconstruction — we have shown how it can

facilitate creation of valuable outputs. Further, this reconstruction method stands

to benefit from traditional efficiency-increasing techniques in optimisation, such as

multi-grid methods.

165



Bibliography

J. Adler and O. Öktem. Solving ill-posed inverse problems using iterative deep

neural networks. Inverse Problems, 33(12):124007, nov 2017. doi: 10.1088/

1361-6420/aa9581. URL https://doi.org/10.1088/1361-6420/aa9581.

S. Agostinelli, J. Allison, K. a. Amako, J. Apostolakis, H. Araujo, P. Arce, M. Asai,

D. Axen, S. Banerjee, G. Barrand, et al. Geant4—a simulation toolkit. Nuclear

instruments and methods in physics research section A: Accelerators, Spectro-

meters, Detectors and Associated Equipment, 506(3):250–303, 2003.

Z. Alnewaini, E. Langer, P. Schaber, M. David, D. Kretz, V. Steil, and J. Hesser.

Real-time, ray casting-based scatter dose estimation for c-arm x-ray system.

Journal of Applied Clinical Medical Physics, 18(2):144–153, 2017. doi: https://

doi.org/10.1002/acm2.12036. URL https://aapm.onlinelibrary.wiley.com/

doi/abs/10.1002/acm2.12036.

S. Arridge, P. Maass, O. Öktem, and C.-B. Schönlieb. Solving inverse prob-

lems using data-driven models. Acta Numerica, 28:1–174, 2019. doi: 10.1017/

S0962492919000059.

G. Astfalk. Applications on advanced architecture computers. Society for

Industrial and Applied Mathematics, 1996. ISBN 9780898713688. URL

166

https://doi.org/10.1088/1361-6420/aa9581
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/acm2.12036
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/acm2.12036


Bibliography

https://portal-igpublish-com.ezphost.dur.ac.uk/iglibrary/search/

SIAMB0000227.html.

D. O. Baguer, J. Leuschner, and M. Schmidt. Computed tomography reconstruc-

tion using deep image prior and learned reconstruction methods. Inverse Prob-

lems, 36(9):094004, 2020.

A. B. Bakushinsky, M. Y. Kokurin, and A. Smirnova. Iterative methods for ill-posed

problems. de Gruyter, 2010.

M. Bertram, J. Wiegert, and G. Rose. Scatter correction for cone-beam computed

tomography using simulated object models. In M. J. Flynn and J. Hsieh, editors,

Medical Imaging 2006: Physics of Medical Imaging, volume 6142, pages 462 –

473. International Society for Optics and Photonics, SPIE, 2006. doi: 10.1117/

12.651027. URL https://doi.org/10.1117/12.651027.

M. Bilal and M. Arif. Multivariate regression cnn for ill-posed inverse recon-

struction of satellite images. Procedia Computer Science, 163:312–318, 2019.

ISSN 1877-0509. doi: https://doi.org/10.1016/j.procs.2019.12.113. URL https:

//www.sciencedirect.com/science/article/pii/S1877050919321520. 16th

Learning and Technology Conference 2019Artificial Intelligence and Machine

Learning: Embedding the Intelligence.

J. Birdi, A. Repetti, and Y. Wiaux. A regularized tri-linear approach for optical

interferometric imaging. Monthly Notices of the Royal Astronomical Society, 468

(1):1142–1155, Feb 2017. ISSN 1365-2966. doi: 10.1093/mnras/stx415. URL

http://dx.doi.org/10.1093/mnras/stx415.

D. Braess. Multigrid Methods, page 225–277. Cambridge University Press, 3 edition,

2007. doi: 10.1017/CBO9780511618635.008.

J. Bullock, C. Cuesta-Lázaro, and A. Quera-Bofarull. Xnet: A convolutional neural

network (cnn) implementation for medical x-ray image segmentation suitable for

small datasets. In Medical Imaging 2019: Biomedical Applications in Molecular,

167

https://portal-igpublish-com.ezphost.dur.ac.uk/iglibrary/search/SIAMB0000227.html
https://portal-igpublish-com.ezphost.dur.ac.uk/iglibrary/search/SIAMB0000227.html
https://doi.org/10.1117/12.651027
https://www.sciencedirect.com/science/article/pii/S1877050919321520
https://www.sciencedirect.com/science/article/pii/S1877050919321520
http://dx.doi.org/10.1093/mnras/stx415


Bibliography

Structural, and Functional Imaging, volume 10953, page 109531Z. International

Society for Optics and Photonics, 2019.

P. Bühlmann and S. van de Geer. Statistics for High-Dimensional Data : Methods,

Theory and Applications. Springer Series in Statistics. Springer Berlin Heidel-

berg, Berlin, Heidelberg, 1. aufl. edition, 2011. ISBN 9783642201929.

J. Cowling, G. Gibson, N. Loxley, P. Scott, P. White, K. Robson, B. Lopez, et al.

Novel x-ray detector technology for quantitative material information in digital

radiography. European Congress of Radiology-ECR 2016, 2016.

C. Crockett, D. Hong, I. Y. Chun, and J. A. Fessler. Incorporating handcrafted

filters in convolutional analysis operator learning for ill-posed inverse problems.

In 2019 IEEE 8th International Workshop on Computational Advances in Multi-

Sensor Adaptive Processing (CAMSAP), pages 316–320, 2019. doi: 10.1109/

CAMSAP45676.2019.9022669.

M. J. Darby, D. Barron, and R. Hyland. Oxford handbook of medical imaging. OUP

Oxford, 2011.

O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online

prediction using mini-batches, 2012.

A. P. Dhawan. Medical image analysis, volume 31. John Wiley & Sons, 2011.

F. di Franco, A. Sarno, G. Mettivier, A. Hernandez, K. Bliznakova, J. Boone,

and P. Russo. Geant4 monte carlo simulations for virtual clinical trials in

breast x-ray imaging: Proof of concept. Physica Medica, 74:133–142, 2020.

ISSN 1120-1797. doi: https://doi.org/10.1016/j.ejmp.2020.05.007. URL https:

//www.sciencedirect.com/science/article/pii/S112017972030123X.

J. Edmonds. Greedy Algorithms, page 225–250. Cambridge University Press, 2008.

doi: 10.1017/CBO9780511808241.018.

168

https://www.sciencedirect.com/science/article/pii/S112017972030123X
https://www.sciencedirect.com/science/article/pii/S112017972030123X


Bibliography

H. Engl and C. Groetsch. Inverse and Ill-Posed Problems. Notes and re-

ports in mathematics in science and engineering. Elsevier Science, 2014. ISBN

9781483272658. URL https://books.google.co.uk/books?id=6pHOBQAAQBAJ.

H. W. Engl, M. Hanke, and A. Neubauer. Regularization of inverse problems,

volume 375. Springer Science & Business Media, 1996.

M. Ghassemi, L. Oakden-Rayner, and A. L. Beam. The false hope of current

approaches to explainable artificial intelligence in health care. The Lancet Digital

Health, 3(11):e745–e750, 2021.

D. Gilton, G. Ongie, and R. Willett. Model adaptation for inverse problems in

imaging. IEEE Transactions on Computational Imaging, 7:661–674, 2021.

Y. Gu, J. Zhang, and P. Xue. Multi-grid nonlocal techniques for x-ray scatter

correction. In E. D. Angelini and B. A. Landman, editors, Medical Imaging

2018: Image Processing, volume 10574, pages 427 – 433. International Society

for Optics and Photonics, SPIE, 2018. doi: 10.1117/12.2293347. URL https:

//doi.org/10.1117/12.2293347.

D. C. Hansen, G. Landry, F. Kamp, M. Li, C. Belka, K. Parodi, and C. Kurz.

Scatternet: A convolutional neural network for cone-beam ct intensity correction.

Medical Physics, 45(11):4916–4926, 2018. doi: 10.1002/mp.13175. URL https:

//aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13175.

A. Hauptmann, J. Adler, S. Arridge, and O. Öktem. Multi-scale learned iterative

reconstruction. IEEE transactions on computational imaging, 6:843–856, 2020.

P. Henzler, V. Rasche, T. Ropinski, and T. Ritschel. Single-image tomography: 3d

volumes from 2d cranial x-rays. In Computer Graphics Forum, volume 37, pages

377–388. Wiley Online Library, 2018.

M. H. Hesamian, W. Jia, X. He, and P. Kennedy. Deep learning techniques for

medical image segmentation: achievements and challenges. Journal of digital

imaging, 32(4):582–596, 2019.

169

https://books.google.co.uk/books?id=6pHOBQAAQBAJ
https://doi.org/10.1117/12.2293347
https://doi.org/10.1117/12.2293347
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13175
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.13175


Bibliography

C. M. Heyer, J. Thüring, S. P. Lemburg, N. Kreddig, M. Hasenbring, M. Dohna,

and V. Nicolas. Anxiety of patients undergoing ct imaging—an underestimated

problem? Academic Radiology, 22(1):105–112, 2015. ISSN 1076-6332. doi: https:

//doi.org/10.1016/j.acra.2014.07.014. URL https://www.sciencedirect.com/

science/article/pii/S1076633214002980.

J. Hsieh. Computed tomography: principles, design, artifacts, and recent advances,

volume 114. SPIE press, 2003.

J. H. Hubbell and S. M. Seltzer. Tables of x-ray mass attenuation coefficients and

mass energy-absorption coefficients 1 kev to 20 mev for elements z= 1 to 92 and

48 additional substances of dosimetric interest. Technical report, National Inst.

of Standards and Technology-PL, Gaithersburg, MD (United . . . , 1995.

W. Huda, J. A. Seibert, K. Ogden, E. Gingold, and R. Schaetzing. Scatter removal

grids | radiology | suny upstate medical university, 2008. URL https://www.

upstate.edu/radiology/education/rsna/radiography/scattergrid.php.

P. Jain and P. Kar. Non-convex optimization for machine learning. arXiv preprint

arXiv:1712.07897, 2017.

D. Jha, M. A. Riegler, D. Johansen, P. Halvorsen, and H. D. Johansen. Doubleu-

net: A deep convolutional neural network for medical image segmentation. In

2020 IEEE 33rd International symposium on computer-based medical systems

(CBMS), pages 558–564. IEEE, 2020.

S. I. Kabanikhin. Inverse and ill-posed problems. de Gruyter, 2011.

B. Kaltenbacher. On the regularizing properties of a full multigrid method for

ill-posed problems. Inverse Problems, 17(4):767–788, jul 2001. doi: 10.1088/

0266-5611/17/4/313. URL https://doi.org/10.1088/0266-5611/17/4/313.

G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, and L. Yang.

Physics-informed machine learning. Nature Reviews Physics, 3(6):422–440, 2021.

170

https://www.sciencedirect.com/science/article/pii/S1076633214002980
https://www.sciencedirect.com/science/article/pii/S1076633214002980
https://www.upstate.edu/radiology/education/rsna/radiography/scattergrid.php
https://www.upstate.edu/radiology/education/rsna/radiography/scattergrid.php
https://doi.org/10.1088/0266-5611/17/4/313


Bibliography

Y. Kasten, D. Doktofsky, and I. Kovler. End-to-end convolutional neural network

for 3d reconstruction of knee bones from bi-planar x-ray images, 2020. URL

https://arxiv.org/abs/2004.00871.

C. A. Kelsey. The physics of radiology, 4th edition edited by h. e. johns and j.

r. cunningham. Medical Physics, 11(5):731–732, 1984. doi: https://doi.org/10.

1118/1.595545. URL https://aapm.onlinelibrary.wiley.com/doi/abs/10.

1118/1.595545.

S. Khirirat, H. R. Feyzmahdavian, and M. Johansson. Mini-batch gradient descent:

Faster convergence under data sparsity. In 2017 IEEE 56th Annual Conference

on Decision and Control (CDC), pages 2880–2887, 2017. doi: 10.1109/CDC.

2017.8264077.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated anneal-

ing. Science, 220(4598):671–680, 1983. doi: 10.1126/science.220.4598.671. URL

https://www.science.org/doi/abs/10.1126/science.220.4598.671.

H. Latha and R. R. Sahay. Joint estimation of depth map and focus image in

sff: an optimization framework by sparsity approach. In 2020 International

Conference on Communication and Signal Processing (ICCSP), pages 0656–0660.

IEEE, 2020.

M. M. Lavrent’ev, S. M. Zerkal, and O. E. Trofimov. Computer modelling in

tomography and ill-posed problems. De Gruyter, 2014.

H. Lee and J. Lee. A deep learning-based scatter correction of simulated x-ray im-

ages. Electronics, 8(9), 2019. ISSN 2079-9292. doi: 10.3390/electronics8090944.

URL https://www.mdpi.com/2079-9292/8/9/944.

J. Lee and J. Chen. A single scatter model for x-ray ct energy spectrum estimation

and polychromatic reconstruction. IEEE Transactions on Medical Imaging, 34

(6):1403–1413, June 2015. ISSN 0278-0062. doi: 10.1109/TMI.2015.2395438.

171

https://arxiv.org/abs/2004.00871
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.595545
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.595545
https://www.science.org/doi/abs/10.1126/science.220.4598.671
https://www.mdpi.com/2079-9292/8/9/944


Bibliography

A. B. Levy. The basics of practical optimization, volume 114. Society for

Industrial and Applied Mathematics, 2009. ISBN 9780898716795. URL

https://portal-igpublish-com.ezphost.dur.ac.uk/iglibrary/search/

SIAMB0000382.html.

H. Li, J. Schwab, S. Antholzer, and M. Haltmeier. Nett: Solving inverse problems

with deep neural networks. Inverse Problems, 36(6):065005, 2020.

W. Liao and Q. Ji. Learning bayesian network parameters under incomplete data

with domain knowledge. Pattern Recognition, 42(11):3046–3056, 2009. ISSN

0031-3203. doi: https://doi.org/10.1016/j.patcog.2009.04.006. URL https://

www.sciencedirect.com/science/article/pii/S0031320309001472.

H. W. Loh, C. P. Ooi, S. Seoni, P. D. Barua, F. Molinari, and U. R. Acharya.

Application of explainable artificial intelligence for healthcare: A systematic

review of the last decade (2011–2022). Computer Methods and Programs in

Biomedicine, page 107161, 2022.

B. Lopez et al. A Bayes Linear Approach to Making Inferences from X-rays. PhD

thesis, Durham University, 2018.

S. Lunz, O. Öktem, and C.-B. Schönlieb. Adversarial regularizers in inverse prob-

lems, 2019.

C. Maaß, E. Meyer, and M. Kachelrieß. Exact dual energy material decomposition

from inconsistent rays (mdir). Medical Physics, 38(2):691–700, 2011. doi: https:

//doi.org/10.1118/1.3533686. URL https://aapm.onlinelibrary.wiley.com/

doi/abs/10.1118/1.3533686.

A. K. Maier, C. Syben, B. Stimpel, T. Würfl, M. Hoffmann, F. Schebesch, W. Fu,

L. Mill, L. Kling, and S. Christiansen. Learning with known operators reduces

maximum error bounds. Nature machine intelligence, 1(8):373–380, 2019a.

J. Maier, Y. Berker, S. Sawall, and M. Kachelrieß. Deep scatter estimation (dse):

feasibility of using a deep convolutional neural network for real-time x-ray scatter

172

https://portal-igpublish-com.ezphost.dur.ac.uk/iglibrary/search/SIAMB0000382.html
https://portal-igpublish-com.ezphost.dur.ac.uk/iglibrary/search/SIAMB0000382.html
https://www.sciencedirect.com/science/article/pii/S0031320309001472
https://www.sciencedirect.com/science/article/pii/S0031320309001472
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3533686
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3533686


Bibliography

prediction in cone-beam ct. In Medical imaging 2018: physics of medical imaging,

volume 10573, page 105731L. International Society for Optics and Photonics,

2018.

J. Maier, E. Eulig, T. Vöth, M. Knaup, J. Kuntz, S. Sawall, and M. Kachelrieß.

Real-time scatter estimation for medical ct using the deep scatter estimation:

Method and robustness analysis with respect to different anatomies, dose levels,

tube voltages, and data truncation. Medical physics, 46(1):238–249, 2019b.

N. Mail, D. J. Moseley, J. H. Siewerdsen, and D. A. Jaffray. The influence of bowtie

filtration on cone-beam ct image quality. Medical Physics, 36(1):22–32, 2009. doi:

10.1118/1.3017470. URL https://aapm.onlinelibrary.wiley.com/doi/abs/

10.1118/1.3017470.

MathWorks. imresize documentation. URL https://uk.mathworks.com/help/

matlab/ref/imresize.html.

D. Mentrup, S. Jockel, B. Menser, and U. Neitzel. Iterative scatter correction for

grid-less bedside chest radiography: performance for a chest phantom. Radiation

protection dosimetry, 169(1-4):308–312, 2016.

M. Meyer, W. A. Kalender, and Y. Kyriakou. A fast and pragmatic approach

for scatter correction in flat-detector CT using elliptic modeling and iterative

optimization. Physics in Medicine and Biology, 55(1):99–120, dec 2009. doi:

10.1088/0031-9155/55/1/007. URL https://doi.org/10.1088%2F0031-9155%

2F55%2F1%2F007.

A. Mileto, L. S. Guimaraes, C. H. McCollough, J. G. Fletcher, and L. Yu. State

of the art in abdominal ct: the limits of iterative reconstruction algorithms.

Radiology, 293(3):491–503, 2019.

D. Minh, H. X. Wang, Y. F. Li, and T. N. Nguyen. Explainable artificial in-

telligence: a comprehensive review. Artificial Intelligence Review, pages 1–66,

2022.

173

https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3017470
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3017470
https://uk.mathworks.com/help/matlab/ref/imresize.html
https://uk.mathworks.com/help/matlab/ref/imresize.html
https://doi.org/10.1088%2F0031-9155%2F55%2F1%2F007
https://doi.org/10.1088%2F0031-9155%2F55%2F1%2F007


Bibliography

C. Moore, G. Avery, S. Balcam, L. Needler, A. Swift, A. Beavis, and J. Saunderson.

Use of a digitally reconstructed radiograph-based computer simulation for the

optimisation of chest radiographic techniques for computed radiography imaging

systems. The British journal of radiology, 85(1017):e630–e639, 2012.

G. Nemhauser, A. Rinnooy Kan, and M. Todd. Preface. In Optimization, volume 1

of Handbooks in Operations Research and Management Science, pages v–ix. El-

sevier, 1989. doi: https://doi.org/10.1016/S0927-0507(89)01001-7. URL https:

//www.sciencedirect.com/science/article/pii/S0927050789010017.

H. Nguyen, T. Tran, Y. Wang, and Z. Wang. Three-dimensional shape re-

construction from single-shot speckle image using deep convolutional neural

networks. Optics and Lasers in Engineering, 143:106639, 2021. ISSN 0143-

8166. doi: https://doi.org/10.1016/j.optlaseng.2021.106639. URL https://www.

sciencedirect.com/science/article/pii/S0143816621001093.

C. Niu, J. Li, and K. Xu. Im2struct: Recovering 3d shape structure from a single

rgb image. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 4521–4529, 2018.

S. Niu, Y. Gao, Z. Bian, J. Huang, W. Chen, G. Yu, Z. Liang, and J. Ma. Sparse-

view x-ray ct reconstruction via total generalized variation regularization. Phys-

ics in Medicine & Biology, 59(12):2997, 2014.

A. Norouzi, M. S. M. Rahim, A. Altameem, T. Saba, A. E. Rad, A. Rehman,

and M. Uddin. Medical image segmentation methods, algorithms, and applic-

ations. IETE Technical Review, 31(3):199–213, 2014. doi: 10.1080/02564602.

2014.906861. URL https://doi.org/10.1080/02564602.2014.906861.

J. Persliden and G. A. Carlsson. Scatter rejection by air gaps in diagnostic ra-

diology. calculations using a monte carlo collision density method and consid-

eration of molecular interference in coherent scattering. Physics in Medicine

174

https://www.sciencedirect.com/science/article/pii/S0927050789010017
https://www.sciencedirect.com/science/article/pii/S0927050789010017
https://www.sciencedirect.com/science/article/pii/S0143816621001093
https://www.sciencedirect.com/science/article/pii/S0143816621001093
https://doi.org/10.1080/02564602.2014.906861


Bibliography

and Biology, 42(1):155–175, jan 1997. doi: 10.1088/0031-9155/42/1/011. URL

https://doi.org/10.1088%2F0031-9155%2F42%2F1%2F011.

M. Piperno, M.-P. H. Le Graverand, T. Conrozier, M. Bochu, P. Mathieu, and

E. Vignon. Quantificative evaluation of joint space width in femorotibal os-

teoarthritis: comparison of three radiographic views. Osteoarthritis and Cartil-

age, 6(4):252–259, 1998. ISSN 1063-4584. doi: https://doi.org/10.1053/joca.

1998.0118. URL https://www.sciencedirect.com/science/article/pii/

S1063458498901182.

A. Prügel-Bennett. Monte Carlo, page 45–58. Cambridge University Press, 2020.

doi: 10.1017/9781108635349.004.

R. T. Rockafellar. Convex Analysis. Princeton University Press, 2015. ISBN

9781400873173. doi: doi:10.1515/9781400873173. URL https://doi.org/10.

1515/9781400873173.

W. C. Röntgen. On a New Kind of Rays. Phys.-med. Gesellschaft, 1895.

M. Sayed, J. Gibson, J. Watson, V. Prisacariu, M. Firman, and C. Godard. Simple-

recon: 3d reconstruction without 3d convolutions. In Proceedings of the European

Conference on Computer Vision (ECCV), 2022.

O. Scherzer, M. Grasmair, H. Grossauer, M. Haltmeier, and F. Lenzen. Variational

methods in imaging. 2009.

P. Scott and E. Krastev. 2d x-ray inspection with materials and thickness identi-

fication. SMT Surface Mount Technology Magazine, 32(6):70–79, 2017.

S. Shalev-Shwartz and S. Ben-David. Stochastic Gradient Descent, page 150–166.

Cambridge University Press, 2014. doi: 10.1017/CBO9781107298019.015.

L. Shen, W. Zhao, and L. Xing. Patient-specific reconstruction of volumetric com-

puted tomography images from a single projection view via deep learning. Nature

biomedical engineering, 3(11):880–888, 2019.

175

https://doi.org/10.1088%2F0031-9155%2F42%2F1%2F011
https://www.sciencedirect.com/science/article/pii/S1063458498901182
https://www.sciencedirect.com/science/article/pii/S1063458498901182
https://doi.org/10.1515/9781400873173
https://doi.org/10.1515/9781400873173


Bibliography

P. M. Silva and J. B. Florindo. Using down-sampling for multiscale analysis of

texture images. Pattern Recognition Letters, 125:411–417, 2019.

A. Sisniega, W. Zbijewski, A. Badal, I. S. Kyprianou, J. W. Stayman, J. J. Vaquero,

and J. H. Siewerdsen. Monte carlo study of the effects of system geometry and

antiscatter grids on cone-beam ct scatter distributions. Medical Physics, 40(5):

051915, 2013. doi: 10.1118/1.4801895. URL https://aapm.onlinelibrary.

wiley.com/doi/abs/10.1118/1.4801895.

W. E. Snyder and H. Qi. Mathematical morphology, page 144–180. Cambridge

University Press, 2004. doi: 10.1017/CBO9781139168229.008.

R. Speller. Tissue analysis using x-ray scattering. X-Ray Spectrometry, 28(4):

224–250, 1999.

U. Stankovic, L. S. Ploeger, M. van Herk, and J.-J. Sonke. Optimal combin-

ation of anti-scatter grids and software correction for cbct imaging. Med-

ical Physics, 44(9):4437–4451, 2017. doi: 10.1002/mp.12385. URL https:

//aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12385.

J. M. Stewart. Case study: multigrid, page 184–204. Cambridge University Press,

2014. doi: 10.1017/CBO9781107447875.010.

K. Stüben. An introduction to algebraic multigrid. Multigrid, pages 413–532, 2001.

Z. Tan, J. Li, H. Tao, S. Li, and Y. Hu. Xctnet: Reconstruction network of

volumetric images from a single x-ray image. Computerized Medical Imaging

and Graphics, 98:102067, 2022. ISSN 0895-6111. doi: https://doi.org/10.1016/j.

compmedimag.2022.102067. URL https://www.sciencedirect.com/science/

article/pii/S0895611122000404.

H. Targett, D. Hutchinson, R. Hartley, R. McWilliam, B. Lopez, B. Crone, and

S. Bonner. Enhanced visualization of mobile chest x-ray images in the intensive

care setting using software scatter correction. Acta Radiologica, 2022.

176

https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4801895
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.4801895
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12385
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1002/mp.12385
https://www.sciencedirect.com/science/article/pii/S0895611122000404
https://www.sciencedirect.com/science/article/pii/S0895611122000404


Bibliography

P. Teodorescu, N.-D. Stanescu, and N. Pandrea. Numerical analysis with applica-

tions in mechanics and engineering. John Wiley & Sons, 2013.

U. Trottenberg. Multigrid. Academic Press, San Diego, Calif. ; London, 2001.

ISBN 012701070x.

D. Ulyanov, A. Vedaldi, and V. Lempitsky. Deep image prior. In Proceedings of the

IEEE conference on computer vision and pattern recognition, pages 9446–9454,

2018.

F. Verhaegen, A. E. Nahum, S. V. de Putte, and Y. Namito. Monte carlo modelling

of radiotherapy kV x-ray units. Physics in Medicine and Biology, 44(7):1767–

1789, jan 1999. doi: 10.1088/0031-9155/44/7/315. URL https://doi.org/10.

1088/0031-9155/44/7/315.

B. Wall and D. Hart. Revised radiation doses for typical x-ray examinations. report

on a recent review of doses to patients from medical x-ray examinations in the uk

by nrpb. national radiological protection board. The British journal of radiology,

70(833):437–439, 1997.

G. Wang, W. Li, M. A. Zuluaga, R. Pratt, P. A. Patel, M. Aertsen, T. Doel, A. L.

David, J. Deprest, S. Ourselin, et al. Interactive medical image segmentation

using deep learning with image-specific fine tuning. IEEE transactions on medical

imaging, 37(7):1562–1573, 2018.

Y. Watanabe and C. Constantinou. Phantom Materials in Radiology. Amer-

ican Cancer Society, 2006. ISBN 9780471732877. doi: https://doi.org/10.1002/

0471732877.emd201. URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/0471732877.emd201.

T. Würfl, M. Hoffmann, V. Christlein, K. Breininger, Y. Huang, M. Unberath, and

A. K. Maier. Deep learning computed tomography: Learning projection-domain

weights from image domain in limited angle problems. IEEE transactions on

Medical Imaging, 37(6):1454–1463, 2018.

177

https://doi.org/10.1088/0031-9155/44/7/315
https://doi.org/10.1088/0031-9155/44/7/315
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471732877.emd201
https://onlinelibrary.wiley.com/doi/abs/10.1002/0471732877.emd201


Bibliography

M. Xian, J. Huang, Y. Zhang, and X. Tang. Multiple-domain knowledge based

mrf model for tumor segmentation in breast ultrasound images. In 2012 19th

IEEE International Conference on Image Processing, pages 2021–2024, 2012.

doi: 10.1109/ICIP.2012.6467286.

W. Yan, Y. Wang, S. Gu, L. Huang, F. Yan, L. Xia, and Q. Tao. The domain shift

problem of medical image segmentation and vendor-adaptation by unet-gan. In

International Conference on Medical Image Computing and Computer-Assisted

Intervention, pages 623–631. Springer, 2019.

Y. Yang and P. Perdikaris. Physics-informed deep generative models, 2018.

W. Yao and K. W. Leszczynski. An analytical approach to estimating the first order

x-ray scatter in heterogeneous medium. Medical Physics, 36(7):3145–3156, 2009.

doi: https://doi.org/10.1118/1.3152114. URL https://aapm.onlinelibrary.

wiley.com/doi/abs/10.1118/1.3152114.

Y. Zhang. 2. image segmentation. In Image Analysis, pages 33–68. De Gruyter,

2017.

Y. Zhang, S. Miao, T. Mansi, and R. Liao. Unsupervised x-ray image segment-

ation with task driven generative adversarial networks. Medical Image Ana-

lysis, 62:101664, 2020. ISSN 1361-8415. doi: https://doi.org/10.1016/j.media.

2020.101664. URL https://www.sciencedirect.com/science/article/pii/

S136184152030030X.

A. Zhao, G. Balakrishnan, F. Durand, J. V. Guttag, and A. V. Dalca. Data aug-

mentation using learned transformations for one-shot medical image segment-

ation. In Proceedings of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition, pages 8543–8553, 2019.

W. Zhao, D. Vernekohl, J. Zhu, L. Wang, and L. Xing. A model-based scatter

artifacts correction for cone beam CT. Medical Physics, 43(4):1736–1753, Apr

2016. doi: 10.1118/1.4943796.

178

https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3152114
https://aapm.onlinelibrary.wiley.com/doi/abs/10.1118/1.3152114
https://www.sciencedirect.com/science/article/pii/S136184152030030X
https://www.sciencedirect.com/science/article/pii/S136184152030030X


Appendix A

Pseudocode

This is the appendix, containing pseudocode for the functions described in the main

body of the thesis.
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A.1. Bi-directional Greedy Descent

A.1 Bi-directional Greedy Descent

This is the algorithm that refines the spatial mode, by applying the changes created

in CreateDelta (A.4), measuring the change to the cost function and preserving

those changes that reduced cost.

Algorithm 1 Descent Algorithm
Result: [L1_Alloy_contribution, L1_Thickness_contribution
J = FindJ(spatial_model, precomputed databases)
if currentRes is pseudo-pixel resolution then

// if we are at a pseudo-pixel resolution, reduce the number of
iterations by the same factor as resolution has been decreased

num_iterations = number of scatter centres / pixels combined to pseudo-pixel
else

num_iterations = number of scatter centres
end
// if num_iterations < 400, increase it to 400 so that some

convergence can be observed at very coarse resolutions
num_iterations = max(num_iterations*2, 400)
for Iteration in num_iterations do

if Iteration = 1 then
initial J = J

end
forward delta = CreateDelta(currentRes, minibatchsize, segmentation)
backward delta = -1 * forward delta
forward gradient = FindDeltaJ(J, forward delta, spatial_model, precomputed
databases)

backward gradient = FindDeltaJ(J, backward delta, spatial_model, precom-
puted databases)

// remove gradient values where cost function has increased
forward gradient[forward gradient > 0] = 0
backward gradient[backward gradient > 0] = 0
// where backward delta reduces cost function more than forward

delta, accept those changes, and vice-versa
update(backward gradient < forward gradient) = backward delta(backward
gradient < forward gradient)

update(forward gradient < backward gradient) = forward delta(forward gradi-
ent < backward gradient)

spatial_model.Thickness = spatial_model.Thickness + update.Thickness
spatial_model.Alloy = spatial_model.Alloy + update.Alloy
J = FindJ(spatial_model, precomputed databases)
final J = J
RETURN spatial_model, initial J, final J

end
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A.2. Continuity regularizer

A.2 Continuity regularizer

This function is the equivalent of Equation 6.3. The addition of the result of this

function to the cost function regularizes the model according to the expected rates

of change of thickness and alloy across the image.

Algorithm 2 L1 Regularizer
Result: [L1_Alloy_contribution, L1_Thickness_contribution
// Evaluate L1/continuity regularizer
initialization
alpha_E = initial alpha_E * Number of scatter centres
Filter_A = [-1, 1, 0]
Filter_B = [0, -1, 1]
Thickness_L1_A_X = convolve(SpatialModel.Thickness, Filter_A)
Thickness_L1_A_X = absolute value(Thickness_L1_A_X)
Thickness_L1_A_Y = convolve(SpatialModel.Thickness, Filter_A.Transpose)
Thickness_L1_A_Y = absolute value(Thickness_L1_A_Y)
Thickness_L1_B_X = convolve(SpatialModel.Thickness, Filter_B)
Thickness_L1_B_X = absolute value(Thickness_L1_B_X)
Thickness_L1_B_Y = convolve(SpatialModel.Thickness, Filter_B.Transpose)
Thickness_L1_B_Y = absolute value(Thickness_L1_B_Y)
Alloy_L1_A_X = convolve(SpatialModel.Alloy, Filter_A)
Alloy_L1_A_X = absolute value(Alloy_L1_A_X)
Alloy_L1_A_Y = convolve(SpatialModel.Alloy, Filter_A.Transpose)
Alloy_L1_A_Y = absolute value(Alloy_L1_A_Y)
Alloy_L1_B_X = convolve(SpatialModel.Alloy, Filter_B)
Alloy_L1_B_X = absolute value(Alloy_L1_B_X)
Alloy_L1_B_Y = convolve(SpatialModel.Alloy, Filter_B.Transpose)
Alloy_L1_B_Y = absolute value(Alloy_L1_B_Y)
Thickness_L1_X = element-wise maximum(Thickness_L1_A_X, Thick-
ness_L1_B_X)

Thickness_L1_Y = element-wise maximum(Thickness_L1_A_Y, Thick-
ness_L1_B_Y)

Alloy_L1_X = element-wise maximum(Alloy_L1_A_X, Alloy_L1_B_X)
Alloy_L1_Y = element-wise maximum(Alloy_L1_A_Y, Alloy_L1_B_Y)
Thickness_L1 = Thickness_L1_X + Thickness_L1_Y
Alloy_L1 = Alloy_L1_X + Alloy_L1_Y
RETURN [Thickness_L1, Alloy_L1]
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A.3. Cost function which the gradient descent aims to minimise

A.3 Cost function which the gradient descent aims to

minimise

The following evaluates the cost function for a given distribution of thicknesses and

alloys. This is the sum of Equations 5.1, 5.4, 6.1, 6.2 and 6.3.

spatial_model stores the current thickness and alloy estimates.
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A.3. Cost function which the gradient descent aims to minimise

Algorithm 3 Cost Function
Result: J, I_Guess,...
// Evaluate cost function J for a given geometry
initialization
J = 0
// Create a scatter estimate for the current geometry
Simulated_X-ray = EstimateScatter(spatial_model)
if GDflag then

// GDflag included for testing purposes, toggles contribution of
image norm differences to J

fro = Frobenius norm((Raw_X-ray - Simulated_X-ray) * Scatter_Centres)
Lmax = max((Raw_X-ray - Simulated_X-ray) * Scatter_Centres)
Combined_Norm = (theta ∗ fro2) + ((1 − theta) ∗ Lmax2)
J = J + Combined_Norm

end
if smoothflag then

// Toggles contribution of smoothness regularizer to J
[SmoothAlloyContribution, SmoothThicknessContribution] = SmoothnessReg-
ulariser(spatial_model, Segmentation)

J = J + SmoothAlloyContribution + SmoothThicknessContribution
end
if segflag then

// Toggles contribution of segmentation regularizer to J
[SegBoneContribution, SegSTContribution] = SegmentationRegular-
izer(spatial_model, Segmentation)

J = J + SegBoneContribution + SegSTContribution
end
if physflag then

// Toggles contribution of regularizer over physically allowed
values to J

alloy_physicality = (min(0, spatial_model.Alloy)) + (max(0, spa-
tial_model.Alloy - 1))

thickness_physicality = (min(0, spatial_model.Thickness)) + (max(0, spa-
tial_model.Thickness - 30))

if max(abs(physicality)) > 0 then
J = J - (alphaB * Norm(alloy_physicality))

end
if max(abs(physicality)) > 0 then

J = J - (alphaB * Norm(thickness_physicality))
end

end
if continuityflag then

// Toggles contribution of continuity regularizer to J
[L1_AlloyCntribution, L1_ThicknessContribution] =
L1Regularizer(spatial_model)

J = J + L1_AlloyContribution + L1_ThicknessContribution
end
RETURN J
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A.4. Perturbation to material estimate

A.4 Perturbation to material estimate

This function is used to generate a Delta, an array which can be added to the

current material estimation to measure gradients in the cost function.

ScatterCentres is a Boolean array with the same shape as the sub-sampled image.

It contains True values for every index that contains scattering material such as

bone or soft tissue. Changes to the thickness and alloy values outside of these

scatter centres would have no effect on the cost function, so only scattering pixels

can be perturbed by delta.

In the final line, the values of delta that will be applied to the thickness estimates

are multiplied by 30, since the valid range of alloy values is 0 - 1 and the valid

range of thickness values is 0 - 30.
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A.4. Perturbation to material estimate

Algorithm 4 CreateDelta
Result: delta
// Create array Delta which will perturb the geometry for

calculating gradient
initialization
[X, Y] = size(ScatterCentres)
delta = zeros(X, Y, 2)
// validIndices are all non-zero entries, which are valid to perturb
validIndices = find(ScatterCentres==1)
validIndices_rand = validIndices(randperm(length(validIndices)))
if Current Resolution = Inf then

// Currently at the Inf pseudo-pixel resolution, same
modification should be applied to each parameter within a
region.

minibatch_size = min(3, minibatch_size)
for pseudo-pixel to modify in minibatch do

if pseudo-pixel to modify = Thickness then
delta.Thickness = delta.Thickness + modification

end
if pseudo-pixel to modify = Bone Alloys then

delta.Alloy[segmentation = bone] = delta.Alloy[segmentation = bone] +
modification

end
if pseudo-pixel to modify = Soft Tissue Alloys then

delta.Alloy[segmentation = soft tissue] = delta.Alloy[segmentation =
soft tissue] + modification

end
end
RETURN delta

end
if Current Resolution = Pseudo-pixel resolution then

for Pseudo-pixel to modify in minibatch do
delta[pseudo-pixel to modify] = delta[pseudo-pixel to modify] + modifica-
tion

end
RETURN delta

end
if Current Resolution is NOT pseudo-pixel resolution then

delta[pixel to modify] = delta[pixel to modify] + modification
RETURN delta

end
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A.5 Selecting the next cycle case

The following begins a cycle with a resolution determined by the recent improve-

ment factor. This is the function responsible for determining which resolution

should be selected at the end of a given cycle.
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A.5. Selecting the next cycle case

Algorithm 5 SelectCycleCase
Result: spatial_model
// Select and execute the appropriate cycle case based on recent

improvement
initialization
// Define the improvement factor thresholds for each case
Case1Limit = 0.8
Case2Limit = 0.92
Case3Limit = 1.05
if First Iteration then

// This is the initialization condition, so that the first cycle
is one pass at the lowest resolution

improvementFactor = Case1Limit*0.9
else

improvementFactor = LatestImprovement/PreviousImprovement
end
if improvementFactor < Case1Limit then

cycleCase = 1
TemporaryImprovement = LatestImprovement
[spatial_model, PreviousImprovement, LatestImprovement...] = SingleCycle()

else if improvementFactor < Case2Limit then
CycleCase = 2
[spatial_model, PreviousImprovement, LatestImprovement...] = VCycle()
TemporaryImprovement = PreviousImprovement

else if improvementFactor < Case3Limit then
cycleCase = 3
if find(resolutions == currentRes) == size(resolutions,2) then

currentRes = resolutions(end)
else

currentRes = resolutions(find(resolutions == currentRes)+1)
end
TemporaryImprovement = LatestImprovement
[spatial_model, PreviousImprovement, LatestImprovement...] = SingleCycle()

else
cycleCase = 4
if size(resolutions, 2) > 1 then

if currentRes == Resolutions(1) then
currentRes = resolutions(find(resolutions == currentRes)+1)

end
resolutions = resolutions(:,2:end)

end
[spatial_model, PreviousImprovement, LatestImprovement...] = VCycle()
TemporaryImprovement = PreviousImprovement

end
PreviousImprovement = TemporaryImprovement
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A.6. Finding the gradient of J numerically for the current material estimation

A.6 Finding the gradient of J numerically for the

current material estimation

Finds the numerical gradient of J with respect to a given parameter by making a

small change to that parameter and measuring the change it causes.

Algorithm 6 Find delta J
Data: spatial_model, Delta
Result: Gradient
spatial_model_Temp = spatial_model
spatial_model_Temp.Thickness = TI_Model.Thickness + Delta.Thickness
spatial_model_Temp.Alloy = TI_Model.Thickness + Delta.Alloy
J_Star = FindJ(spatial_model_Temp)
RETURN J_Star - J
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A.7. Re-scale a thickness alloy model

A.7 Re-scale a thickness alloy model

This function will re-scale a thickness-alloy model of anatomy, from an initial res-

olution to a new, given resolution. This function additionally assumes that if a

thickness-alloy model is being down-sampled then that is taking place during a V-

cycle, and it can thus be assumed that the model will be up-sampled to the initial

resolution later in the execution. This function therefore also stores the model at

each change, and when re-up-sampling this historical data is used to produce a

best estimate.

Algorithm 7 Rescale Spatial Model
Result: RescaledModel
// Change the resolution of a geometry estimate, carrying forward

previous work
initialization
if increasing in V-cycle then

// We’re in a V-cycle and increasing resolution
PreviousTargetModel = RecordedModels[currentRes, ResolutionCounter - 1]
PreviousSourceModel = RescaleModel(PreviousTargetModel,SourceResolution)
// Replicate previous downsampling method
LowResWorkDone = Model - PreviousSourceModel
HighResWorkDone = resize(LowResWorkDone, TargetResolution)
RescaledModel = PreviousTargetModel + HighResWorkDone

else
// InitiateImage creates an estimate according to the current

rules for creating an inital estimate.
coarsePriorSpatialModel = initiateImage(Segmentation, coarseXY)
GDWorkDone.Thickness = SpatialModel.Thickness - coarsePriorSpatialM-
odel.Thickness

// Work done by optimization
GDWorkDone.Alloy = SpatialModel.Alloy - coarsePriorSpatialModel.Alloy
newPriorSpatialModel = initiateImage(Segmentation, newXY)
RescaledModel.Thickness = newPriorSpatialModel.Thickness + imres-
ize(GDWorkDone.Thickness,newXY)

RescaledModel.Alloy = newPriorSpatialModel.Alloy + imres-
ize(GDWorkDone.Alloy,newXY)

end
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A.8. Segmentation regularizer

A.8 Segmentation regularizer

This function is the equivalent of Equation 6.2. The addition of the result of this

function to the cost function regularizes the model according to the expected alloy

values from the segmentation of the image into regions of bone and soft-tissue.

Algorithm 8 Segmentation Regularizer
Result: SegBoneCont, SegSTCont
// Find the contribution to J from the segmentation
alphaC = initialAlphaC * square root(number of scatter centres)
// incorrectBone and Alloy are all the parameters that diverge from

the predicted value
IncorrectBone = (SegmentedImage == Bone) .* (1 - spatial_model.Alloy)
IncorrectST = (SegmentedImage == Soft-Tissue). * (spatial_model.Alloy≥ 1)
// take Frobenius norm, multiply by weighting
SegBoneCont = alphaC * Frobenius norm(IncorrectBone)
SegSTCont = alphaC * Frobenius norm(IncorrectST)
RETURN [SegBoneCont, SegSTCont]
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A.9. Cycle of optimization at a single resolution

A.9 Cycle of optimization at a single resolution

Optimization in our algorithm occurs over a series of cycles, which can include

iterations at many resolutions, or at just one. This function executes a cycle of

optimization at a single resolution, which has been determined by the function

described in Section A.5.

Algorithm 9 SingleCycle
Result: spatial_model, rhn, rh0 ...
// Perform one cycle of iterative optimization at the given

resolution.
initialization
if currentRes precomputed not loaded then

load precomputed databases for currentRes
end
spatial_model = rescale_spatial_model(spatial_model, currentRes)
if batchsize==0 then

batchsize = number of scatter centres
else if batchsize<1 then

batchsize = round(number of scatter centres * batchsize)
end
[spatial_model, initial J, final J] = DescentAlgorithm(spatial_model, currentRes,
precomputed databases)
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A.10. Smoothness regularizer

A.10 Smoothness regularizer

This function is the equivalent of Equation 6.1. The addition of the result of this

function to the cost function regularizes the thickness-alloy model according to our

expectation on the smoothness of organic anatomies.

Algorithm 10 Smoothness Regularizer
Result: SmoothAlloyCont, SmoothThicknessCont, ...
// Find the contribution to J from smoothness
initialization
alphadxi = initial_alphadxi * number of scatter centres
// convolve thickness and alloy with smoothness filters in X and Y
smoothFilter = [-1 , 2 , -1 ; -4 , 8 , -4 ; -1 , 2 , -1]
ThicknessSmoothnessY = convolve(spatial_model.Thickness, smoothFilter)
ThicknessSmoothnessX = convolve(spatial_model.Thickness, smoothFil-
ter.transpose)

AlloySmoothnessY = convolve(spatial_model.Alloy, smoothFilter)
AlloySmoothnessX = convolve(spatial_model.Alloy, smoothFilter.transpos)
// Identify edges in the segmentation
edgesInX = edge detect along X axis applied to Segmentation
edgesInY = edge detect along Y axis applied to Segmentation
// blurred object edges is a blurred version of the bone-air

transition edges, and these are less strongly enforced
blurred object edges = Gaussian filter(edge(segmentation = open beam))
// Total Alloy smoothness is sum of X an Y convolutions multiplied

by (1-edges)
AlloySmoothness = ((AlloySmoothnessY+AlloySmoothnessX) * (1-edgesInX) * (1-
edgesInY))

// Total Thickness smoothness is sum of X an Y convolutions
multiplied by (1-blurred object edges)

ThicknessSmoothness = ((ThicknessSmoothnessY+ThicknessSmoothnessX)*(1 -
blurred object edges))

// contribution to J is half of squared Frobenius norm of these
smoothness images

smoothAlloyContribution = (0.5*(Frobenius norm(AlloySmoothness)2))
smoothThicknessContribution = (0.5*(Frobenius norm(ThicknessSmoothness)2))
SmoothAlloyCont = (alphadxi*0.5*(Frobenius norm(AlloySmoothness)2))
SmoothThicknessCont = (alphadxi*0.5*(Frobenius
norm(ThicknessSmoothness)2))

RETURN [SmoothAlloyCont, SmoothThicknessCont]
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A.11. Cycle of optimization across many resolutions (V-cycle)

A.11 Cycle of optimization across many resolutions

(V-cycle)

Cycle from current resolution, through each currently permitted coarser resolu-

tion, then refine back to current resolution again. At each resolution, iterations of

optimization will be carried out.

Algorithm 11 V Cycle
Result: spatial_model, initial J, final J
// Perform a pass of all resolutions coarser than the current, then

increase to current resolution.
initialization
// Start at the resolution below current (unless current is lowest

allowed), then return to current.
for resolution in -max(currentRes - 2, 0):1:currentRes - 1 do

// prepData loads all of the required prerequisite data from IBEX
files

if precomputed databases at this resolution have not been loaded then
load this resolution precomputed database

end
// Rescale Geometry to preserve work done
spatial_model = rescale_spatial_model(spatial_model, resolution)
if batchsize==0 then

// batchsize = 0 indicates all parameters should be selected,
i.e. the batch size should be the maximum possible

batchsize = number of scatter centres
else if batchsize<1 then

// 0 < batchsize < 1 indicates batchsize should be that fraction
of all parameters, i.e. batchsize = 0.5 means the batch
should contain 50% of all possible parameters

batchsize = round(number of scatter centres * batchsize)
end
[spatial_model, initial J, final J] = DescentAlgorithm(spatial_model, resolu-
tion, precomputed databases)

end
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