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Abstract

This thesis provides arguments to strengthen our understanding of mirror symmetry for man-

ifolds with G2 holonomy, by providing worldsheet arguments to demonstrate the physical

equivalence of topologically distinct geometries. In particular we investigate the worldsheet

superconformal field theories corresponding to manifolds with G2 holonomy obtained by the

quotient of the product of a Calabi-Yau threefold and a circle. The quotient acts on the

Calabi-Yau as an antiholomorphic involution and on the circle by inversion. For such models,

we argue that the Calabi-Yau mirror map implies a mirror map for the associated G2 varieties

by examining how antiholomorphic involutions behave under Calabi-Yau mirror symmetry.

The mirror geometries identified by the worldsheet CFT are consistent with earlier proposals

for twisted connected sum G2 manifolds.

In order to be as self contained and pedagogical as possible, this thesis also provides

a reasonably detailed review of Calabi-Yau manifolds and their associated CFTs. We also

review details on the geometrical constructions of manifolds with G2 holonomy, in order to

explain the geometrical equivalence of our CFT results.
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0 | Introduction

Over the past few decades string theory has been a huge talking point among physicists and

mathematicians alike. String theory, at its core, aims to provide a solution to grand unification

theory, by providing a quantum theory of gravity. In order to obtain a mathematically and

physically consistent theory, string theories (including M -theory and F -theory) require extra

dimensions to our observed 4-dimensional spacetime. In particular, superstrings exist in 10-

dimensions and M -theory in 11-dimensions. Of course we need to address how one goes from

a theory with these dimensions to the observed 4-dimensional reality we live in. The idea is

simply to split the d-dimensional spacetime, Md, into a product

Md = M4 ×Md−4,

where M4 represents 4-dimensional spacetime and Md−4 is the (d− 4)-dimensional internal

space. Letting strings propagate on such a geometry results in effective 4-dimensional physics

at low energies, as in Kaluza-Klein compactifications [1]. That is, we compactify Md−4 down

and study the result this has on the resulting 4-dimensional physics. The geometry is heavily

restricted by requiring reasonable physics in 4D. By "reasonable physics", we mean [2]

1. The geometry of M4×Md−4 to be such that M4 is a maximally symmetric spacetime,

and

2. We should have unbroken N = 1 SUSY in 4D.

These conditions require the variations of the Fermi fields to vanish. The variation of the

gravitino places two important constraints on the geometry. The first is that M4 is required

to be Minkowski spacetime, which we denote by M4. The second condition is that for every

covariantly constant spinor, ∇ξ = 0, on the internal space, we get one copy of the N = 1

SUSY algebra in 4D. The equations of motion can then be shown to imply that Md−4 is Ricci

flat.

The existence of a covariantly constant spinor on Md−4 has important restrictions on the
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geometry. To understand this, we need the notion of holonomy, which we will shortly discuss.

For now we just state that the result is that for the Heterotic string, we require the internal

space to be a complex 3-dimensional Calabi-Yau manifold, while for M-theory we require the

internal space to have holonomy given by the exceptional Lie group G2.

It is no secret that string theory has received its fair share of criticisms over the years,

particularly from those who question how physical the above conditions really are. However,

it is fair to say that from a mathematical point of view, string theory is one of the most

elegant and powerful theories developed in recent history. Part of the beauty of string the-

ory is the dualities and symmetries it possesses. One of the most famous is the AdS/CFT

correspondence [3], which has taken on a life as a whole area of research in itself.

One of the most elegant and profound symmetries in string theory comes from putting on

more of a mathematical viewpoint hat. We can consider compactifying Type IIA/B strings on

our Calabi-Yaus. This gives rise to a 4D theory with N = 2 SUSY, and so feels like a step in the

wrong direction, however the beauty comes from the discovery of mirror symmetry [4–6], which

is a deep connection between Calabi-Yaus: Calabi-Yaus come in pairs (MCY ,M∨
CY ), known

as a mirror pair, such that compactifying Type IIA on MCY gives the same 4D physics as

compactifying Type IIB on M∨
CY . This is really meant as them having the same (isomorphic)

worldsheet superconformal field theories (SCFTs). It is a necessary condition for two Calabi-

Yaus to be mirror that the Hodge numbers h2,1 and h1,1 are swapped. The incredible thing

is that the topologies of MCY and M∨
CY are (in general) considerably different, and so it is

not obvious, a priori, that they would stem from the same CFT.

Since its discovery, mirror symmetry for type II strings on Calabi-Yau manifolds has

quickly evolved into a powerful tool [7] with intricate mathematical implications such as

homological mirror symmetry [8].

This development has been driven by the wealth of examples that can be readily con-

structed and analyzed using techniques from toric geometry [9, 10], and a detailed under-

standing of the worldsheet CFT in which the equivalence for distinct target spaces could be

proven directly [11–13]. Key technical advances in this development were Gepner models

[14, 15], which give direct access to the worldsheet SCFT, as well as the detailed study of

N = (2, 2) models and in particular the correspondence between Calabi-Yau sigma models

and Landau-Ginzburg models [16–20]. Extending the equivalence from the worldsheet theory

to the full string theories, which includes BPS states associated with wrapped branes, not

only vastly extended the scope of this duality, but also led to the geometric idea of mirror

symmetry being T-duality along the fibres of a torus fibration (often referred to as the SYZ

fibration) [21]. This picture becomes particularly clear for toroidal orbifolds [22].
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As stated above, when considering M-theory compactifications, the role of the Calabi-Yau

is replaced by that of a real 7-dimensional manifold with G2 holonomy, MG2 . Again leaning

on the more mathematical interest, one can ask similar questions about compactification of

Type II strings on MG2 , which gives a 3D theory with N = 1 SUSY. In particular, we can

ask whether there is a notion of mirror symmetry here and if so how much can be said about

it.

Indeed, a similar phenomenon in which topologically distinct MG2 lead to isomorphic

worldsheet SCFTs has been conjectured in [23], and has been dubbed ‘G2 mirror symmetry’.

Whereas a necessary condition for a pair of Calabi-Yaus to be mirror is that their complex

cohomologies are swapped, the corresponding condition for a pair of G2 manifolds MG2 and

M∨
G2

is weaker and says merely that the sum of Betti numbers b2 + b3 is preserved.

There has been a significant development in the understanding of G2 mirror symmetry in

terms of the geometry [24–28]. While there has also been a significant development in the con-

structions of SCFTs corresponding to manifolds with G2 holonomy [29–34], the understanding

of G2 mirror symmetry at the SCFT level is still not fully understood.

Organisation Of Thesis

The main aim of this thesis is to provide a detailed and pedagogical account of the existing

material on both Calabi-Yau and G2 mirror symmetry (explaining a lot of the results stated

above) and to then strengthen the understanding of G2 mirror symmetry from the SCFT

point of view, and in particular to provide worldsheet arguments for some of the geometric

mirror constructions that have appeared in the literature. Our approach is based on the work

of [13], which showed how mirror symmetry for Calabi-Yau hypersurfaces in toric varieties

can be demonstrated by using duality in N = (2, 2) gauged linear sigma models (GLSMs).

In order to fully appreciate the significance of the results, a decent amount of time is spent

going over existing results and highlighting important points as we progress. The layout of

the thesis is as follows.

Chapter 1 is a short chapter that formally introduces the notion of holonomy, explains its

significance to compactifications and highlights an important distinction between Calabi-Yaus

and manifolds with G2 holonomy. The main aim of this chapter, particularly Section 1.2, is

to provide a background guiding principal for the following work.

Chapter 2 gives a detailed account of the geometry of Calabi-Yau manifolds while intro-

ducing a lot of concepts that will also be useful in the construction of manifolds with G2

holonomy. The chapter first tackles the problem from a differential geometric point of view,

then motivates and introduces the algebraic (toric) geometry construction. The relevant un-
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derstandings of mirror symmetry are scattered throughout the chapter.

Chapter 3 starts with a general account of N = 2 SCFTs and then moves on to provide a

detailed study of the worldsheet SCFT for a Calabi-Yau target space. Again mirror symmetry

is discussed throughout the chapter and related back to the geometrical understandings from

the previous chapter. It is in this chapter that the results of [13] are presented. The important

case of torodial orbifolds is not included in this chapter, but is instead presented as a detailed

example in Appendix A.

Chapter 4 starts with a brief review of the group G2 and manifolds with holonomy (con-

tained in) G2, before moving on to the explicit constructions. The torodial orbifolds due to

Joyce are briefly discussed (again, these are discussed in detail in Appendix A), but the main

focus is on quotients of Calabi-Yaus and circles and the twisted connected sum (TCS) con-

struction, and how they are related. The chapter is concluded with a discussion of how toric

geometry can be used in the TCS construction along with an understanding of constructing

mirrors. Once more, G2 mirror symmetry is discussed at relevant points, but questions are

raised about the physical significance of these observations.

Chapter 5 then studies the SCFT of manifolds with G2 holonomy. We first provide the

general algebra of Shatashvili-Vafa and then describe how it can be reproduced in analogy

to the geometrical constructions discussed in the previous chapter. Having laid significant

ground work, we finally present the main result of this thesis, showing that what one expects

to be a physically relevant G2 mirror map, is indeed the case. In particular, we demonstrate

that the results of [13] can be used to show that the construction two topologically different

manifolds with G2 holonomy have isomorphic SCFTs and so satisfy the criteria of a G2 mirror

pair, as per [23].

Chapter 6 then concludes the thesis, and provides suggestions for further work.

The thesis also contains three appendices. As mentioned above, Appendix A provides

a detailed account of the example of torodial orbifolds and how they fit into the context of

the thesis. Appendix B provides an account of rational forms and the Griffiths residue, and

provides a link between a result for Gepner model states and the primitive cohomology of the

target space. Appendix C presents a discussion of how one deals with the notion of twisted and

untwisted states in Gepner models corresponding to quotients of Landau-Ginzburg orbifolds.1

1To the authors knowledge, the details of Appendices B and C haven’t been presented formally in any
literature to date, although it is believed a lot of researchers intuitively know them.
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1 | Motivation

We start the main content of the thesis by formally introducing the notion of holonomy and

its relation to the physical symmetry of SUSY. We also provide a motivational discussion

about the similarities and differences between Calabi-Yaus and manifolds with G2 holonomy.

This discussion, particularly the fact that we can use Calabi-Yaus to make manifolds with G2

holonomy, aims to provide a guiding principal for the work that follows, and should be kept

in the back of the ones mind while reading the thesis.

1.1 Holonomy

The existence of a covariantly constant spinor on Md−4 has important restrictions on the

geometry. To understand this, we need the notion of holonomy.

Definition. [Holonomy] Let M be a smooth manifold equipped with some connection ∇
on the tangent bundle, and consider a v ∈ TpM. Let n = dimR M. Now consider a closed

smooth loop γ : [0, 1] → M with γ(0) = γ(1) = p. Now consider parallel transporting

v around γ, the result will be, in general, some other element v′ ∈ TpM. As TpM is an

n-dimensional vector space, we know we can relate v and v′ via some GL(n,R) action,

i.e. Pγ ∈ GL(n,R) where Pγ denotes the parallel transport along γ. We then define the

holonomy group at p ∈ M to be

Holp(∇) := {Pγ ∈ GL(n,R) | γ is a loop based at p ∈ M}. (1.1)

This is a Lie group, where multiplication is given by composition and the inverse is given

by running around the path in the opposite direction.

As the notation suggests, the holonomy is a property of the connection ∇, and so non-

trivial changes of the connection can lead to non-trivial changes in the holonomy. This

is not surprising, as it is the connection that defines what we mean by parallel transport.

If we consider a (pseduo-)Riemannian manifold, then we know that there exists a unique
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connection: the Levi-Civita connection, which is defined by the requirement ∇LCg = 0 and

it being torsion free. Here we have that lengths are preserved under parallel transport and so

our holonomy group clearly restricts to Holp(∇LC) ⊆ O(n). If we further require our manifold

to be orientable, then we get SO(n). Unless otherwise specified, we shall work in this case

going forward.

Now, as we have been careful to indicate, the holonomy seems to depend on the choice of

base point p ∈ M. Of course in general this is true, however if we have a connected manifold

then any two points p, q ∈ M can be connected by some smooth path τ : [0, 1] → M with

τ(0) = p and τ(1) = q, and so we can relate the holonomies at these two points, simply by

Holq(∇) = PτHolp(∇)P−1
τ . (1.2)

This provides an isomorphism between Holp(∇) and Holq(∇) and so it allows us to really

speak about the holonomy of the manifold M itself. We denote this by Hol(M).1 The key

thing to note here is that the holonomoy of a manifold is related to it’s geometric properties,

precisely because parallel transport measures curvature.

Manifolds who’s holonomy is a proper subset of SO(n) are known as special holonomy

manifolds. The set of special holonomy manifolds was classified by Berger in [35]: for a

simply-connected manifold M of real dimension n, that is neither locally a product nor

symmetric, the only allowed special holonomy groups are

U
(n
2

)
, SU

(n
2

)
, Sp

(n
4

)
· Sp(1), Sp

(n
4

)
, G2, Spin(7), and Spin(9) (1.3)

The last three cases are known as the exceptional holonomies. The cases that will be important

to us are U(n/2), SU(n/2) and G2. Manifolds with holonomy U(n/2) and SU(n/2) are

called Kähler and Calabi-Yau, respectively. We note that these manifolds are necessarily

even dimensional. In fact they are complex manifolds, with complex dimension m = n/2.

The Lie group G2 can be defined as the subgroup of SO(7) that preserves the following

3-form

Φ := dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356, (1.4)

where we have used the short hand dxijk := dxi∧dxj ∧dxk. We therefore see that a manifold

with Hol(M) = G2 is a real 7-dimensional manifold.

It follows from the above dimensional arguments, that Kähler and Calabi-Yau manifolds
1Here we have dropped reference to the connection, i.e. we should have written something like Hol(M,∇) ⊆

SO(n). However we will work soley with the Levi-Civita connection, and so drop the ∇. However, it is
important to remember that the holonomy depends crucially on the connection.
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M Tn MCY3 MG2

dimR(X) n 6 7

Hol(X) id ⊂ SU(3) ⊂ G2

Fraction
SUSY

Preserved
1 > 1/4 > 1/8

Table 1.1: Relationship between the holonomy of the internal space Md−4 ∈
{Tn,MCY3 ,MG2} and the fraction of the SUSY preserved under compactification.

with complex dimension m = 3 (i.e. n = 6) are possible internal spaces for superstring

theories. Similarly G2 is a possible internal space for M -theory. This argument followed

purely from the dimensions, and further evidence is needed to substantiate these proposals.

1.1.1 Holonomy & SUSY

We now see the link between the the amount of SUSY that survives in 4D and holonomy of

the internal space. The former is related to the number of covariantly constant spinors on

Md−4, ∇ξ = 0. However, this restricts the holonomy, i.e. the holonomy group has to be

such that ξ is invariant. In particular, the more SUSY we have in 4D, the more restricted

the holonomy. We summarise the important cases in Table 1.1. We note that this provides a

nice connection between the geometrical symmetry of holonomy and the physical symmetry

of SUSY.

Historically, Calabi-Yaus are seen as being physically important for the following reason:

Heterotic string theory is a 10D theory with N = 1, and so has 16 supercharges. This is

equivalent to N = 4 in 4D and so if we instead want N = 1, we must only preserve 1/4 of

the SUSY. This is exactly the case for compactifying on a manifold with SU(3) holonomy,

i.e. a 3-dimensional Calabi-Yau manifold. Similar arguments can be made for M -theory and

G2 holonomy.

One can also consider compactifying Type II strings on Calabi-Yaus. This gives rise to

N = 2 in 4D, and so doesn’t seem interesting from a physical perspective. However, as we

will see, such a compactification process is very interesting mathematically, as it leads to

the notion of mirror symmetry for Calabi-Yaus. It is this mathematical motivation that we

will use in this work, and so we focus on compactifying Type II strings. Indeed we will also

consider compactifying Type II strings down to 3D on a manifolds with G2 holonomy, in

order to look for and demonstrate mirror symmetry for these manifolds.
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1.2 Calabi-Yau vs. G2

This work will be focused almost entirely around Calabi-Yau manifolds and manifolds with

G2 holonomy. The following chapters will deal with each of these in far more detail, but here

we present a brief account of their core features and how they are related. This is done in

order to motivate the following work, and can be referred back to, in order to ground the

overall picture.

Calabi-Yau manifolds contain two important complex differential forms on them. The

first is the Kähler 2-form, J , and the second it the holomorphic 3-form, Ω. Manifolds with G2

holonomy equally have an important real differential form, the associative 3-form, Φ, along

with its dual coassociative 4-form, ⋆Φ.

There is an important difference between Calabi-Yau manifolds and manifolds with G2

holonomy. For the former there exists a theorem by Yau [36] (which proves a conjecture by

Calabi [37]) that guarantees the existence of a Calabi-Yau metric under certain conditions,

while no such theorem exists for manifolds with exceptional holonomy. Yau’s theorem is

incredibly powerful as typically looking for metrics is hard, but finding manifolds with special

holonomy is typically much easier. Yau’s theorem allows us to not worry about finding the

explicit form of the metric and simply lean on the fact that we know one exists.

The absence of an equivalent theorem for manifolds with G2 holonomy, provides a major

hurdle in their study, and limits us to studying specific examples. An important example

is that of Joyce orbifolds [38, 39].2 The idea is to notice that a torus has trivial holonomy,

but taking a quotient will restrict the holonomy. That is, we consider torodial orbifolds of

the form Tn/Γ where Γ is a finite group. The two important examples to us are T 6/Z2
2 with

Z2
2 ⊂ SU(3), and T 7/Z3

2 with Z3
2 ⊂ G2. The former defines a Calabi-Yau, and the Z2

2 acts on

the coordinates (x1, ..., x6) as

α : (x1, x2, x3, x4, x5, x6) 7→ (+x1,+x2,−x3, a4 − x4,−x5, a6 − x6)

β : (x1, x2, x3, x4, x5, x6) 7→ (−x1, b2 − x2,+x3,+x4, b5 − x5, b6 − x6)
(1.5)

where a4, a6, b2, b5 and b6 are each either 0 or 1
2 . The latter defines a G2 manifold and the Z3

2

acts as

α : (x1, x2, x3, x4, x5, x6, x7) 7→ (+x1,+x2,−x3, a4 − x4,−x5, a6 − x6, x7)

β : (x1, x2, x3, x4, x5, x6, x7) 7→ (−x1, b2 − x2,+x3,+x4, b5 − x5, b6 − x6, x7)

σ : (x1, x2, x3, x4, x5, x6, x7) 7→ (x1,−x2, x3,−x4, x5,−x6,−x7),

(1.6)

2A detailed study of Joyce orbifolds and their relation to the work of this thesis is given in Appendix A.
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where again ai and bi are either 0 or 1
2 . Noting that α, β act on the first six coordinates in

the exactly the same way as in the Calabi-Yau case, leads us to think of

T 7

Z3
2

=
(T 6/Z2

2)× S1

Z2
. (1.7)

Indeed this provides insight into an important construction of manifolds with G2 holonomy.

The key observation we need is that SU(3) ⊂ G2, and so it is possible to consider embed-

ding a Calabi-Yau inside a manifold with G2 holonomy. Of course, from simple dimensional

arguments, we need to supplement the Calabi-Yau with a 1-dimensional manifold if we hope

to construct a manifold with G2 holonomy. Given the Joyce example above, the natural can-

didate is S1, and indeed it is well known that we can construct a manifold with G2 holonomy

as the resolution of the quotiented product

Mσ =
MCY × S1

(σ,−)
, (1.8)

where σ acts on the Calabi-Yau as an antiholomorphic involution, i.e.

σ : (J,Ω) 7→ (−J, Ω̄), (1.9)

and (−) is simply inversion on the S1. Denoting the 1-form on S1 by dθ, we then have

Φ = J ∧ dθ +Re(Ω)

⋆Φ =
1

2
J ∧ J + Im(Ω) ∧ dθ,

(1.10)

which we note are indeed invariant under the quotient.

This relationship between Calabi-Yaus and manifolds withG2 holonomy will be our central

guiding point in a lot of what follows, and should be kept in the back of our minds as we

develop the theory of Calabi-Yau manifolds.

10



2 | Calabi-Yau: Geometry

This chapter is dedicated to reviewing, in some detail, the relevant theory of the geometry

of Calabi-Yau manifolds. These are a particular example of a complex manifold, and so we

first start with a summary of the relevant parts of complex manifold theory, and introduce

the important example of a complex projective space. We then introduce Kähler manifolds

and state the conditions that need to be satisfied in order to make a Calabi-Yau manifold.

After introducing the concept of mirror symmetry for compactifications of type II strings

on Calabi-Yaus, we move on to a detailed study of forming Calabi-Yaus as hypersurfaces in

complex projective spaces.

Next, we introduce the relevant tools of algebraic geometry, in particular toric geometry,

and show how these can be used to construct Calabi-Yaus in an almost trivial combinatoric

manner. This not only simplifies constructions, but also allows us to deal with the issues

of singularities in our Calabi-Yaus, as well as introduce a powerful method for constructing

mirror Calabi-Yaus via the Batyrev construction.

The main sources for the material of this chapter are [40, 41] for the differential geometry,

and [42, 43] for the algebraic geometry.

2.1 Complex Manifold Basics

We start with a discussion of the geometry of Calabi-Yau manifolds. As was mentioned in the

last chapter, these are examples complex manifolds and so we start with a brief discussion of

complex manifolds.

The definition of a complex manifold is exactly as we might expect.

Definition. [Complex Manifold] A complex manifold is a manifold M of real dimension

2m, but where our charts are now homeomorphic to Cm, i.e. we have chart maps ψi :

Ui → Cm, with {Ui} being an open cover of M. To get a smooth complex manifold, we

further require that our chart transition maps ψij := ψi ◦ ψj : ψ(Ui ∩ Uj) → ψj(Ui ∩ Uj)
are holomorphic maps from Cm to Cm. We call M a complex manifold of dimension m.
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An important object to define on a complex manifold is the complex structure.

Definition. [Complex Structure] Let M be a smooth manifold, then an almost complex

structure is a tensor field which we view as a map I : TM → TM such that I2 = −1. We

call the pair (M, I) an almost complex manifold. If we introduce the complexified tangent

bundle, TCM := TM⊗C, we can lift the action of I to TCM and induce a decomposition

TCM = TM(1,0) ⊕ TM(0,1), (2.1)

where TM(1,0) is the holomorphic tangent bundle and TM(0,1) the antiholomorphic tangent

bundle. An element v ∈ TM(1,0) obeys Iv = +iv, while v ∈ TM(0,1) obeys Iv = −iv. A

complex structure is called integrable if the Lie bracket of two holomorphic vector fields is

again a holomorphic vector field.

We note here that the notion of an almost complex structure is defined at the level of

the tangent bundle, and so can equally well be defined for a real manifold. However, the

Nirnberg-Newlander theorem (see, e.g., [44] for a discussion) can be used to tell us that a

manifold is a complex manifold if, and only if, the almost complex structure is integrable. As

we will be working with complex manifolds only in this chapter, we always meet this condition

and so we simply refer to an integrable almost complex structure as a complex structure.

Once we have a complex manifold and complex structure, we can apply the usual tech-

niques of tensors and define holomorphic and antiholomorphic tensor fields. The ones we will

be interested in are the complex differential forms.

Definition. [(p, q)-Form] Let M be a complex smooth manifold. We then define a (p, q)-

form to be an element of

Ωp,qM := Γ(Λp,qM), where Λp,qM = ΛpT ∗M(1,0) ⊗ ΛqT ∗M(0,1). (2.2)

Just as in the case of deRham cohomology, we introduce the exterior derivative but now

we have one for holomorphic, ∂, and one for antiholomorphic, ∂̄. We define the Dolbeault

cohomology with respect to either of these, we use ∂̄:

Hp,q

∂̄
=

ker(∂̄ : Ωp,q(M) 7→ Ωp,q+1(M))

Im(∂̄ : Ωp,q−1(M) 7→ Ωp,q(M))
(2.3)

which lead us to the important definition of Hodge numbers:

hp,q := dimCH
p,q

∂̄
(M). (2.4)
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Hodge numbers are just the complex equivalent of Betti numbers, and we can easily relate

the two via

bk =
k∑
j=0

hj,k−j . (2.5)

Recalling that the Euler characteristic is defined by

χ :=

dimR M∑
k=0

(−1)kbk, (2.6)

we obtain an expression for it in terms of the Hodge numbers:

χ =

dimR M∑
k=0

(−1)k
k∑
j=0

hj,k−j . (2.7)

We often display Hodge numbers in a Hodge Diamond (where dimR(M) = 2m)

hm,m

hm,m−1 ... hm−1,m

hm,0 . . . . . . h0,m

h1,0
... h0,1

h0,0

(2.8)

This seems like a lot, however the (m+1)2 Hodge numbers are not independent. The relations

depend on the type of manifold we are considering and what structures it has, but we notice

already that complex conjugation of the tangent spaces gives us hp,q = hq,p. The Hodge star

operator (which acts as we might imagine, namely ⋆ : Ωp,q → Ωm−p,m−q) also tells us that

hp,q = hm−p,m−q.

The notion of Hodge decomposition also carries over to the complex case. Introducing

the codifferential ∂̄† := ∓ ⋆ ∂̄⋆, we define the ∆ = ∂̄∂̄† + ∂̄†∂̄. A harmonic (p, q)-form is then

defined via ∆ω = 0. We denote the space of harmonic (p, q)-forms on M as Hp,q(M). Finally,

as with the real case, there exists an isomorphism

Hp,q(M) ∼= Hp,q

∂̄
(M), (2.9)

i.e. every (p, q)-form can be represented by a harmonic (p, q)-form.
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2.1.1 Chern Classes

So far we have just extended some of the structures/operators defined on real vector bundles

to their complex versions defined on complex vector bundles. We now want to introduce

something very important that doesn’t have a real vector bundle equivalent.

Definition. [Chern Class] Let (E, π,M) be a complex vector bundle,1 and let A be the

connection on E with associated curvature 2-form F = dA + A ∧ A. Then we define the

total Chern class of E as

c(E) := det

(
1 +

i

2π
F

)
(2.10)

If E has complex rank k, then we can expand c(E) in terms of the Chern classes:

c(E) = c0(E) + c1(E) + ...+ ck(E), (2.11)

where the subscript denotes the power of F contained within the expression, namely:

c0(E) = [1],

c1(E) =

[
1

2πi
TrF

]
,

c2(E) =

[
1

2

(
i

2π

)2(
TrF ∧ TrF − Tr(F ∧ F )

)]
...

ck(E) =

[(
i

2π

)k
detF

]
.

(2.12)

The main Chern class that is of interest to us is the first Chern class of the tangent bundle.

The curvature 2-form for T (1,0)M is given by F = −iR, where R is the Ricci curvature. We

therefore have

c1(M) := c1

(
T (1,0)M

)
=

[
1

2π
R

]
, (2.13)

where we have defined what we mean by the first Chern class of a complex manifold. In

particular, note that a Ricci flat complex manifold has vanishing first Chern class.

The other Chern class that will be important to us is the top Chern class. This is a top

form on E. If we again consider E = T (1,0)M, then we note that dimR T
(1,0)M = dimR M,

1Here we use notation (E, π,M) for bundles, where E and M are the total space and base space, respec-

tively, and π : E 7→ M is the projection.
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and so we can integrate the top Chern class over M itself.2 It turns out this top form in M
is actually what is known as the Euler form, and integrating it over M gives you the Euler

characteristic. That is (if dimR M = 2m)

χ =

∫
M
cm(M). (2.14)

Before moving on to study examples of complex manifolds we introduce one last important

concept.

Definition. [Chern Character] Let E be a complex vector bundle or rank r, and express

the total Chern class via c(E) =
∏r
i=1(1 + xi). We define the Chern character to be

ch(E) :=

r∑
i=1

exi . (2.15)

Now the Chern character seems like a strange thing to define, however we now note that

it has the two nice properties that

ch(E1 ⊕ E2) = ch(E1) + ch(E2) and ch(E1 ⊗ E2) = ch(E1)ch(E2). (2.16)

Next we note that if we have a complex line bundle L, then L has rank 1 and so our Chern

class, as defined above, is simply c(L) = (1+x1), but we can compare this to c(L) = 1+c1(L)

and conclude that x1 = c1(L). We therefore have that

ch(L) = ec1(E) =
∞∑
ℓ=0

c1(L)
ℓ

ℓ!
(2.17)

Now, it follows from the expressions above that if E is given by the direct sum of r line

bundles {L1, ..., Lr} then we have

ch(E) = ch(L1 ⊕ ...⊕ Ln) = ch(L1) + ...+ ch(Ln) = ec1(L1) + ...+ ec1(Lr). (2.18)

If we now compare this to the fact that ch(E) =
∑

i e
xi when c(E) =

∏
i(1 + xi) we see that

c(L1 ⊕ ...⊕ Ln) =
(
1 + c1(L1)

)
...
(
1 + c1(Lr)

)
, (2.19)

2More technically we pullback the top Chern form on E to a top form on M.
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and in particular

c(L⊕r) =
(
1 + c1(L)

)r (2.20)

We also have a nice result for the tensor product of line bundles. Let E = L1 ⊗ ...⊗Ln, then

ch(E) = ch(L1 ⊗ ...⊗ Lr) = ch(L1)...ch(Ln) = ex1 ...exn = ex1+...+xn , (2.21)

where xi = c1(Li). Now comes the interesting bit: this is still a line bundle, as dim(V ⊗W ) =

dimV × dimW , so we can compare it to ch(L) = ec1(L) and conclude that

c1(L1 ⊗ ...⊗ Ln) = c1(L1) + ...+ c1(Ln). (2.22)

What will be of particular use to us when trying to construct Calabi-Yau manifolds later will

be the specific case of this result

c
(
L⊗d) = 1 + dc1(L), (2.23)

where L is some line bundle.

2.2 Projective Space

Definition. [Complex Projective Space] Consider Cn+1 with coordinates (z0, ..., zn). Then

we define the complex projective space as

CPn := {(z0, ..., zn) ∈ Cn+1\{0} | (z0, ..., zn) = (λz0, ..., λzn), for λ ∈ C∗}. (2.24)

Note that dimCPn = n. We denote the coordinates on CPn with square brackets and

colons, [z0 : ... : zn]. The charts in CPn are given by the open sets

Ui := {[z0 : ... : zn] | zi ̸= 0} ⊂ CPn. (2.25)

It is clear that the set U := {Ui | i = 0, ...n} forms an open cover of CPn. We call the

coordinates (z0, ..., zn) the homogeneous coordinates of CPn. In what follows we will often

use the shorthand z = z0, ..., zn.

We now want to construct two very important types of line bundle, defined on projective

spaces. We give the definitions in a wordy manor (to avoid being too abstract) but of course

they can be written down very concretely.
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Definition. [Tautological & Hyperplane Line Bundles] Consider the complex projective

space CPn. There is a "natural" line bundle we can construct over this: namely attach

to each point [z1 : ... : zn+1] ∈ CPn the line "projected away", i.e. the line given by

π−1([z0 : ... : zn]) = {(λz0, ..., λzn) |λ ∈ C∗} ⊂ Cn+1. This is known as the tautological

(or canonical) line bundle, and we denote it by OCPn(−1). The dual line bundle is called

the hyperplane line bundle and we denote it OCPn(1). The transition functions for the

hyperplane line bundle are given by gij : Ui ∩ Uj → zi/zj , where Ui, Uj ∈ U . That is

gij([z]) =
zi
zj
[z].

Remark 2.2.1 . As a technical aside, we have been a little sloppy with notation above. We

denoted the tautological/hyperplane line bundles themselves using the O(±1) notation. Re-

ally we should just use L/L−1, and then O(±1) denotes the sheaf of holomorphic sections

Γ(L)/Γ(L−1). However this is standard notation, and we shall use O(±1) to denote both the

bundle itself and sections of the bundle, with the understanding following from context.

Recalling that the product of line bundles is again a line bundle, we introduce the notation

OCPn(d) := ⊗dOCPn(1) and OCPn(−d) := ⊗dOCPn(−1). (2.26)

Now comes an important proposition that we will use later.

Proposition 2.2.2. Any homogeneous polynomial of degree k in CPn can be canonically

identified with the holomorphic sections OCPn(k).

Proof. Consider a polynomial of degree k in the homogeneous coordinates [z0 : ... : zn]

Pk(z) =
∑
|ν|=k

aνz
ν0
0 ...z

νn
n , (2.27)

where aν ∈ C, and the sum is over the vi, subject to the constraint ν0 + ... + νn = k. Now

this is not a polynomial in CPn as it isn’t scale invariant, i.e. Pk(λz) = λkPk(z) but we want

Pk(λz) = Pk(z). This is easily fixed by considering one of the charts Ui ∈ U : we then simply

divide by zki , which we now write in a suggestive manner

si ≡
Pk(z)

zki
=
∑
|ν|=k

aν

(
z0
zi

)ν0
...

(
zn
zi

)νn
. (2.28)

Now this is only defined on Ui (as this is where we are guaranteed zi ̸= 0), but we get a

globally defined polynomial by patching together the different si by multiplying by (zi/zj)
k
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on the overlap Ui ∩ Uj . However we now notice that this is simply k times the hyperplane

line bundle’s transition functions gij :∈ Ui ∩ Uj → zi/zj , so

sj = g−kij si. (2.29)

We can therefore think of the global polynomial as a section of OCPn(k). This map is clearly

bijective, as an element of OCPn(k) is a linear functional from Ck → C, but this is basically

the definition of a polynomial of degree k in CPn, which proves the proposition. ■

There is now an important Lemma associated to the proposition above.

Lemma 2.2.3. The homogeneous coordinates of CPn can be identified as sections of the

hyperplane line bundle.

2.2.1 Chern Classes

We now want to find the Chern classes of CPn, the question is how do we do this? We start

by clarifying what a vector field in T (1,0)CPn is, and in particular what a zero vector is here.

Recall that CPn is defined to be the quotient of Cn+1 \ {0} by λ ∈ C∗. We can define this

in terms of a projection π(z) = [z], i.e. the fibres are given by the lines we project away. Now

we can define a vector field in T (1,0)CPn by pushing down a vector ṽ ∈ T (Cn+1 \ {0}). That

is, consider some open subset U ∈ CPn, then we have an open subset in Cn+1 \ {0} given

by π−1(U). We define our ṽ vector field over π−1(U), and then get a vector field over U as

v([z]) := π∗z ṽ(z) = π∗λz ṽ(λz), where the second equality is our projective condition.

Now we want to ask the question of "what is a zero vector in CPn?" Well, it follows from

above that v([z]) = 0 when π∗z ṽ(z) = 0, i.e. ṽ is an element of the vertical subspace of the

fibre, defined precisely as

Vz(C
n+1 \ {0}) := kerπ∗z, (2.30)

The horizontal subspace, Hz(Cn+1 \{0}), is the remaining orthogonal piece. Finally, recalling

that the fibres are given by scaling the point [z] ∈ CPn, we see that our zero vectors are given

by the push downs of

ṽ = λ

(
z0

∂

∂z0
+ ...+ zn

∂

∂zn

)
= λVE , (2.31)

where we have defined the Euler vector field VE := zi∂zi , and where λ ∈ C.

Ok why is this useful to us? Well we note that we can span our holomorphic tangent

bundle T (1,0)CPn by the push downs of the vectors {si(z) ∂
∂zi

}, where si(z) is a section in
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OCPn(1). In this way, we can define a surjective mapping

φ : OCPn(1)⊕(n+1) → T (1,0)CPn, (2.32)

where surjectivity is understood as we can produce a basis of T (1,0)CPn. However we have

just seen that the kernel of this map is the trivial line bundle C (i.e. the λ appearing in front

of VE), and we can embed this into OCPn(1)⊕(n+1), giving us the short exact sequence3

0 C OCPn(1)⊕(n+1) T (1,0)CPn 0.ι φ (2.33)

Now, given that a short exact sequence of complex vector bundles 0 −→ E1 −→ E −→ E2,

obeys the Chern class relation c(E) = c(E1)c(E2), we conclude

c
(
OCPn(1)⊕(n+1)

)
= c(C) · c

(
T (1,0)CPn

)
. (2.34)

Finally, using that trivially c(C) = 1 and Equation (2.20) with H = c1(OCPn(1)), we conclude

(using c(CPn) ≡ c
(
T (1,0)CPn

)
)

c(CPn) = (1 +H)n+1. (2.35)

2.2.2 Sum Of CPns

We can slightly generalise the result above, by now considering the whole thing again but

now over a sum of complex projective spaces. In other words our base space becomes

CPn1 ⊕ ...⊕ CPnℓ . (2.36)

Basically the whole thing is completely analogous, however now our middle term in the se-

quence is

OCPn1 (1)⊕(n1+1) ⊕ ...⊕OCPnℓ (1)⊕(nℓ+1), (2.37)

and similarly the holomorphic tangent space term changes. However clearly the expression

above is just a Whitney sum of line bundles4 and so we have

c
(
OCPn1 (1)⊕(n1+1) ⊕ ...⊕OCPnℓ (1)⊕(nℓ+1)

)
=

ℓ∏
i=1

(1 +Hi)
ni+1, (2.38)

3This is an example of an Euler sequence.
4Given two vector bundles with the same base space (E1, π1,M) and (E2, π2,M), the Whitney sum is the

vector bundle (E1 ⊕ E2, π12,M), whose fibre over any x ∈ M is the direct sum of vector spaces of the fibres
in E1 and E2.
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where Hi = c1(OCPni (1)), and so we conclude

c
(
CPn1 ⊕ ...⊕ CPnℓ

)
=

ℓ∏
i=1

(1 +Hi)
ni+1. (2.39)

2.2.3 Submanifolds Of Projective Spaces

Although we haven’t proven it, it is hopefully clear that CPn is indeed a complex manifold. It

turns out it is also a compact manifold. This then leads into the following important theorem

of Chow [45], which we word in a language useful to us.5

Theorem 2.2.4 (Chow). Any subspace of CPn constructed by considering the zero locus of a

finite number of homogeneous polynomial equations, is a compact complex submanifold.

We do not prove this theorem, but just clarify that it seems reasonable: a homogeneous

polynomial is a polynomial of the homogeneous coordinates [z0 : ... : zn], and if we construct

a polynomial out of them, and consider the zero locus (i.e. the points at which P (z) = 0)

then we can use this condition to relate one of the coordinates to some of the others. In this

way we reduce the dimension of the manifold we are considering by one. If we take two such

polynomials and consider their mutual zero locus (i.e. the points when both P1(z) and P2(z)

vanish), then we reduce the dimension by 2. This idea clearly generalises to saying that for

every polynomial we introduce, we reduce the dimension by one. We call a manifold produced

by the common zero locus of a finite collection of polynomials a complete intersection. Of

course this does not prove that the resulting space is a compact, complex manifold, but we

accept that as true and move on.

Given Chow’s theorem, we can ask the question "what are the Chern classes of the resulting

complex submanifolds?" The answer to this question will prove immensely useful to us later,

but we shall answer it now.

Let S ⊂ CPn be a smooth hypersurface submanifold given by the zero locus of a homo-

geneous polynomial of degree d, P (z), which we recall can be identified with a section of

OCPn(d). We now define the normal bundle of S to be

NS :=
T (1,0)CPn|S
T (1,0)S

. (2.40)

That is, we consider the holomorphic vectors in CPn, restricted to S, and quotient by vectors
5The technical content of Chow’s theorem is: an analytic subspace of a complex projective space, which is

given by a closed subset, is an algebraic subvariety. This language will be more meaningful to us later, but for
now we just claim it implies what we write.
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p

M

S
T
(1,0)
p S

NpS

Figure 2.1: A pictorial explanation of the normal bundle in two-dimensions.
T

(1,0)
p S (blue) and NpS (red) are holomorphic tangent and normal planes over

S ⊂ M, at a point p ∈ S. The shaded region is then T
(1,0)
p M ∈ T (1,0)M|S , i.e.

the holomorphic tangent plane at p ∈ M. It is given by the span of both NpS and
T

(1,0)
p S. The normal bundle, NS , is then formed in the usual way: the fibres are

the NpS. We then get T (1,0)M|S = T (1,0)S ⊕NS , which can be rearranged to give
a definition of the normal bundle.

that are themselves tangent to S. This clearly only leaves vectors normal to S, hence the

name. We demonstrate this pictorially for an abstract 2-dimensional manifold in Figure 2.1.

Now comes the crucial point: as we mentioned already, we can view S as the zero locus

of our polynomial P (z). However recall that Proposition 2.2.2 told us that a polynomial of

degree d can be identified with a section of OCPn(d), from which we conclude that S should

be identified with the zeros in the fibres of OCPn(d). In fact the normal bundle NS of S is

actually just given by OCPn(d)|S .6 Finally, noting that essentially what we said above about

the splitting of T (1,0)CPn|S into the normal bundle and T (1,0)S is just the statement that

T (1,0)CPn|S = T (1,0)S ⊕NS = T (1,0)S ⊕OCPn(d)|S , (2.41)

we have the (split) short exact sequence

0 T (1,0)S T (1,0)CPn|S OCPn(d)|S 0. (2.42)

If we then use the result for the Chern classes of a short exact sequence, we can compute the
6This is linked to the adjunction formulas. See, e.g., [46] for more details.
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total Chern class of S as

c(S) = c(T (1,0)CP|S)
c(OCPn(d)|S)

=
c(CPn)

c(OCPn(d))
, (2.43)

where we have used that the total Chern class doesn’t depend on whether we restrict to S or

not. So finally recalling Equation (2.35) and Equation (2.23) (which tells us that c(OCPn(d)) =

1 + dH) we finally conclude

c(S) = (1 +H)n+1

1 + dH
. (2.44)

where as always H = c1(OCPn(1)).

Generalising

We can generalise this result to the cases when we consider a complete intersection manifold,

i.e. our submanifold is now given by the common zero locus of multiple homogeneous poly-

nomials. Let’s say there are k polynomials of degrees di, i ∈ {1, ..., k}. Then it is hopefully

intuitively clear that in this case we have that the result NS = OCPn(d)|S generalises to

NS = OCPn(d1)|S ⊕ ...⊕OCPn(dk)|S , (2.45)

i.e. each OCPn(di) term represents the polynomial of degree di, and the direct sum the fact

that we must satisfy all of them. Now recalling that each OCPn(di) is itself a line bundle, we

can use Equation (2.20) to obtain

c(NS) =
k∏
i=1

(1 + diH), (2.46)

which gives us

c(S) = (1 +H)n+1∏k
i=1(1 + diH)

. (2.47)

We can generalise this result further by allowing our base space to be a sum of complex

projective spaces. However we need to be a bit more careful then simply plugging Equa-

tion (2.39) into the numerator of the above expression. The reason is that our polynomials

could have different degrees in the different CPnis. For example, if we had CP2 ⊕ CP3, which

is a complex 5-dimensional manifold, we can produce a complex 2-dimensional manifold by

introducing 3 polynomials. These polynomials can be of different degrees to each other, but

we also have to take into account how the degree of each polynomial is distributed across the

CP2 and CP3. We summarise this information in a configuration matrix. Say, for example,
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our polynomials had degrees (1, 3), (4, 2) and (5, 0), where (i, j) means degree i in the homo-

geneous coordinates of CP2 and degree j in the homogeneous coordinates of CP3, then our

configuration matrix would be
CP2 1 4 5

CP3 3 2 0

∣∣∣∣∣
χ

, (2.48)

where we have also indicated that we normally include the Euler characteristic in the bottom

right, as this is a topological invariant of the space. To be completely clear on what the

polynomials above are, if we denote the homogeneous coordinates of CP2 by [z0 : z1 : z3] and

those of CP3 by [w0 : w1 : w2 : w3], then a particular example would be

P1(z, w) = z0w
2
0w1 + z2w0w2w3,

P2(z, w) = z31z2w1w3,

P3(z, w) = z20z
2
1z3 + z40z3.

(2.49)

Luckily, the result for the total Chern class is relatively simple, given what we already

know: the polynomials above are simply sections in OCP2(1) ⊗ OCP3(3), OCP2(4) ⊗ OCP3(2)

and OCP2(5), respectively. To write down the final result we want, we now consider the

completely general configuration matrix

CPn1 d11 . . . dk
...

...
...

CPnℓ dℓ1 . . . dℓk

∣∣∣∣∣∣∣∣
χ

, (2.50)

we get that the total Chern class of S is given by

c(S) =
∏ℓ
i=1(1 +Hi)

ni+1∏k
r=1(1 +

∑ℓ
s=1 d

s
rHs)

, (2.51)

where Hi = c1(OCPni (1)).

2.3 Kähler Geometry

The final stepping stone needed to introduce Calabi-Yau geometry is Kähler geometry, which

we do briefly now.

Definition. [Hermitian Metric/Manifold/Form] Let (M, I, g) be a complex manifold with

Riemannian metric g and complex structure I. Then we call g Hermitian if g(v, u) =

g(Iv, Iu) for all v, u ∈ TM. M is then called a Hermitian manifold. The Hermitian metric
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can then be used to define the Hermitian form:

J(v, u) = g(Iv, u), (2.52)

for all vector fields u, v. The Hermitian form is a (1, 1)-form, i.e. J ∈ Ω(1,1)M.

Definition. [Kähler Form/Metric/Manifold] Let (M, I, g) be a Hermitian manifold with

Hermitian form J . Then if J is closed we call it a Kähler form. The metric and manifold

are then also called Kähler.

Proposition 2.3.1. The following three conditions are equivalent (here ∇ is the Levi-Civita

connection):

(i) ∇J = 0 (i.e. ∇vJ = 0 for arbitrary vector field v),

(ii) ∇I = 0, and

(iii) dJ = 0.

In particular, the existence of a Kähler form is equivalent to the complex structure being

covariantly conserved.

This proposition is important as it tells us about the holonomy of Kähler manifolds.

Indeed, the fact that the complex structure is covariantly conserved tells us that parallel

transport must respect the decomposition of the tangent bundle into its holomorphic and

antiholomorphic sectors. In other words, the holomony group must preserve Hermiticity,

which gives

Hol(M) ⊆ U(dimC M) (2.53)

for a Kähler manifold M.

Claim 2.3.2 . Complex projective spaces are Kähler manifolds. The metric is given by the

so-called Fubini-Study metric.

We do not prove this claim here, as the details are not directly relevant, but they can be

found in, e.g., [40]. The importance of this claim comes from the following proposition.

Proposition 2.3.3. Any complex submanifold of a Kähler manifold is itself a Kähler mani-

fold.

Proof. We do not prove this in detail, but simply point out that it is reasonable: the Kähler

form is globally defined and closed, so if we restrict it to some submanifold, we will again get
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a closed (1, 1)-form defined over all of our submanifold. A bit more technically, this is seen by

the fact that the exterior derivative commutes with the pullback, and we can pull the Kähler

form back from M onto the submanifold, and so d(φ∗J) = φ∗(dJ) = 0, and so the induced

form is closed. ■

2.3.1 HyperKähler Geometry

Before moving on to the definition of a Calabi-Yau manifold, we quickly introduce hyperKähler

manifolds.

Definition. [HyperKähler Manifold] Let (M, g) be a Riemannian manifold and let

(I, J,K) be a triple of complex structures. We call (M, g, I, J,K) a hyperKähler man-

ifold if (I, J,K) are all Kähler w.r.t. the metric (i.e. define a Kähler manifold) and obey

the quaternionic relations: I2 = J2 = K2 = IJK = −1. HyperKähler manifolds of real

dimension n have holonomy Hol(M) ⊂ Sp(n/4), where Sp(·) is the compact symplectic

group.

Proposition 2.3.4. There is an S2 worth of metric compatible complex structures on a hy-

perKähler manifold.

Proof. If (I, J,K) are the complex structures of our hyperKähler manifold, then it is easy to

check that

aI + bJ + cK where a2 + b2 + c2 = 1 (2.54)

is also a valid complex structure, and is Kähler w.r.t. the metric. ■

2.4 Calabi-Yau Geometry

We are now in a position to formally introduce Calabi-Yau manifolds. These are a particular

kind of Kähler manifold, and as we argued in the last chapter play an important role in string

theory compactifications. We start with a theorem due to Yau [36].

Theorem 2.4.1 (Yau). Let (M, I, g) be a compact Kähler manifold with associated Kähler

form J . Further let R be (1, 1)-form which represents the first Chern class of M, i.e. [R] ∝
c1(M). Then there exists a unique Kähler metric g̃ on M with associated Kähler form J̃

such that [J̃ ] = [J ] ∈ H2
dR(M;R) and the Ricci form associated to g̃ is R.

This theorem is not easy to prove however, recalling that c1(M) ∼ [R], we get the following

important corollary.
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Corollary 2.4.2. Let (M, I, g) be compact Kähler manifold with Kähler form J . Then, if

c1(M) = 0 there exists a unique equivalent Kähler form, [J̃ ] = [J ], such that g̃ is Ricci flat.

The resulting Ricci flat Kähler manifold is called a Calabi-Yau manifold. There are several,

equivalent, definitions of a Calabi-Yau manifold, and we list the ones important to us in the

following definition.7

Definition. [Calabi-Yau Manifold] Let (M, I, g) be a Kähler manifold of real dimension

2m. Then we call it a Calabi-Yau m-fold if any of the following hold:

(i) M is Ricci flat, R = 0;

(ii) The first Chen class vanishes, c1(M) = 0;

(iii) The holonomy group is restricted to Hol(M) ⊆ SU(m);

(iv) The canonical bundle is trivial (i.e. admits a global, non-vanishing section);

(v) M admits a globally defined, nowhere vanishing holomorphic m-form. Will we typi-

cally denote this as Ω ∈ Hm,0.

2.4.1 Hodge Numbers

An important property of Calabi-Yau manifolds are their Hodge numbers. We already saw

that Hodge numbers for a generic complex manifold obey:

• Complex conjugation: hp,q = hq,p, and

• Hodge star duality: hp,q = hm−p,m−q, where m = dimC M

Calabi-Yau manifolds have further restrictions on their Hodge numbers:

• It follows from condition (v) of the definition that hm,0 = 1. That is, Ω is a top

dimensional holomorphic form, and therefore any other (m, 0)-form can be expressed as

α = fΩ, for some holomorphic function f .

• Given a [α] ∈ H0,q(M), we have a unique [β] ∈ H0,m−q(M) such that∫
M
α ∧ β ∧ Ω = 1. (2.55)

7A nice discussion on how these different conditions agree can be found in [40].
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This follows simply from the fact that the integrand is a (m,m)-form and so is (pro-

portional to) the unique volume form. This implies that h0,q = h0,m−q, which can be

paired with complex conjugation to give hp,0 = hm−p,0. This is known as the holomor-

phic duality.

• It can be shown (see, e.g. [47]) that there are no 1-forms h1,0 = 0.8

Calabi-Yau 3-Folds

As we have explained, the case of interest are Calabi-Yau 3-folds, i.e. m = 3. The above

conditions can then be used to simplify the Hodge diamond significantly. In particular we see

that the only undetermined Hodge numbers are h1,1 and h2,1:

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

(2.56)

We can use this, along with the expression for the Euler characteristic, Equation (2.7), to

obtain

χ = 2(h1,1 − h2,1) (2.57)

for a Calabi-Yau 3-fold. The number h1,1 classifies the infinitesimal deformations of the Kähler

structure, while h2,1 classifies the infinitesimal deformations of the complex structure. As we

will see, the latter is generally not too difficult to compute, but the former can be a lot more

challenging. However we are saved by recalling Equation (2.14), i.e. that we can express the

Euler characteristic in terms of the top Chern class. Using this with the above, we then get

the simple relation ∫
M
c3(M) = 2(h1,1 − h2,1) = χ (2.58)

for a Calabi-Yau 3-fold.
8Here we have assumed that our complex dimension is at least m = 2. Otherwise this would clearly

contradict hm,0 = 1 when m = 1.

27



K3 Surfaces

As will become clear later, we will also be interested in the case of Calabi-Yau 2-folds. These

are also known as K3 surfaces, and we will use this name going forward in order to avoid

confusion with our Calabi-Yau 3-folds. At first glance, there is one undetermined Hodge

number, h1,1. However, it turns out that the Euler characteristic for every K3 surface is the

same: χ = 24. In therms of the Hodge numbers we have

χ =

4∑
k=0

(−1)kbk = 4 + h1,1, (2.59)

and so we see that every K3 surface actually has h1,1 = 20 and b2 = 22. This gives insight

into the fact that all K3 surfaces are in fact diffeomorphic as real manifolds to each other

[48].

2.4.2 K3 Surfaces

The majority of the work that follows will be concerned with Calabi-Yau 3-folds, however a

good understanding of K3 surfaces will be important. We therefore spend a little bit of time

here going over some of the important properties of K3 surfaces. In what follows, we shall

denote a K3 surface by the letter S.

Moduli Space

The main thing that will be important to us are notions related to the moduli spaces of

complex structures and Ricci flat metrics (which are related to the Kähler form) for K3

surfaces. The material is based on Sections 2.3 and 2.4 of the great review of Aspinwall [49].

In order to measure the complex structure we introduce periods, which are defined as

integrals of the holomorphic (2, 0)-form Ω over integral 2-cycles in S. We start by defining an

inner product on H2(S,Z) using the oriented intersection number of homology:

α1 · α2 = #(α1 ∩ α2) (2.60)

for α1, α2 ∈ H2(S,Z). This inner product gives H2(S,Z) the structure of a 22-dimensional

lattice, and it can be shown that the signature of this lattice is (3, 19). Let’s denote the basis

of this lattice by {ei}. Next, we can use Poincaré duality to obtain another basis {e∗i } such

that

ei · e∗j = δij , (2.61)
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so that our lattice is self-dual. Lastly, the lattice can be shown to be even:

e · e ∈ 2Z (2.62)

for all 2-cycles e ∈ H2(S,Z).

In total, then, we have that H2(S,Z) is isomorphic to a 22-dimensional even, self-dual

lattice, with signature (3, 19). We shall denote this lattice by Γ3,19. It is known (see [50] for

details) that these conditions completely fix Γ3,19 to be of the form diag(−E8,−E8, U, U, U),

where E8 is the Cartan matrix of E8 and

U ∼=

(
0 1

1 0

)
(2.63)

is the hyperbolic lattice. In what follows, we shall simply write

Γ3,19 = (−E8)
⊕2 ⊕ U⊕3 (2.64)

We then have the following result, which we don’t prove (see [49] for details).

Proposition 2.4.3. Let S be a K3 surface with associated lattice Γ3,19 as above. By consid-

ering H2(S,R) = H2(S,Z)⊗ R, we get Γ3,19 ⊂ R3,19. The choice of a complex structure on S

is then given by an oriented 2-plane Ω = x + iy for x, y ∈ H2(S,R). Changing the complex

structure of S rotates Ω w.r.t. Γ3,19.

Next we consider the set of 2-forms on S. It follows from Poincaré duality that the lattice

of integral cohomology is isomorphic to the lattice of integral homology, i.e. H2(S,Z) ∼=
H2(S,Z). This tells us that the decomposition of H2(S,Z) into self-dual (H+) and anti-self-

dual, (H−) forms,

H2(S,R) = H+ ⊕H−, (2.65)

must obey

dimH+ = 3 and dimH− = 19. (2.66)

Let {s1, s2, s3} ⊂ H2(S,R) be a valid basis for H+ that can be expressed in terms of the

orthonormal frame of the cotangent bundle, {e1, e2, e3, e4} as

s1 = e1 ∧ e2 + e3 ∧ e4

s2 = e1 ∧ e3 + e4 ∧ e2

s1 = e1 ∧ e4 + e2 ∧ e3.

(2.67)
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Then defining dz1 = e1 + ie2 and dz2 = e3 + ie4 we obtain the Kähler form as J = dz1 ∧
dz̄1 + dz2 ∧ dz̄2 = s1 and the holomorphic (2, 0)-form as Ω(2,0) = dz1 ∧ dz2 = s2 + is3. The

key thing is that s2 + is3 takes the form of our Ω above. So, if we denote by Σ the subspace

H+ ⊂ H2(S,R), then we have that Σ is spanned by a choice of complex structure (i.e. an Ω)

along with a direction in H2(S,R) specified by the Kähler form on S.

In particular we notice that rotations of Σ within Γ3,19 can affect what we call the Kähler

form and what we call the complex structure. This tradeable nature of the Kähler form and

complex structure is particular property of K3 surfaces and does not apply to their 3-fold

counterparts.

HyperKähler Structure

The other piece of information we will need later is that K3 surfaces admit a hyperKähler

structure. This comes simply from the fact that SU(2) ∼= Sp(1). Proposition 2.3.4 tells us

that hyperKähler manifolds have a S2 worth of possible complex structures, and above this

is exactly the freedom to rotate Σ. A rotation within this S2 is referred to as a hyperKähler

rotation of the K3, and will be incredibly useful later on.

2.4.3 Mirror Pairs

We can now consider compactifying string theories on Calabi-Yau manifolds. As explained

in the last chapter, the cases of interest to us are the compactification of Type II strings

on Calabi-Yau 3-folds. It can be shown (see, e.g., [51]) that the compactification of Type

IIA strings on a Calabi-Yau 3-fold results in a 4-dimensional theory that contains h1,1 abelian

vector multiplets and (h2,1+1) hypermultiplets. Similarly Type IIB results in a 4-dimensional

theory with h2,1 abelian vector multiplets and (h1,1+1) hypermultiplets. The key observation

is that these two results are symmetric under the exchange of h1,1 and h2,1. We call such a

symmetry of the 4D physics mirror symmetry.

This observation becomes more interesting when noticing that such an exchange would

simply result in mirroring the Hodge diamond along the diagonal. In particular, the resulting

Hodge diamond is a valid Hodge diamond for a new Calabi-Yau with h1,1new = h2,1old and h2,1new =

h1,1old. This new Calabi-Yau would also have reversed Euler characteristic, χnew = −χold. We

call such a pair of Calabi-Yaus a mirror pair. Of course, we are not in general guaranteed

that such mirror pairs exist. However, in [52] Kreuzer & Skarke obtained a list of the Hodge

data of almost half a billion Calabi-Yau 3-folds. This list contains 30108 unique values for

(h1,1, h2,1), which can be used to plot Figure 2.2 which gives strong support of the existence
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of Calabi-Yau mirror pairs.9

Figure 2.2: A plot of h1,1 + h2,1 against χ = 2(h1,1 − h2,1) for the Calabi-Yau
3-folds in Kreuzer-Skarke’s list. We note that there is a close to perfect symmetry
in the diagram, which gives strong support for the existence of mirror pairs of
Calabi-Yau manifolds. Figure taken from [53].

The majority of the rest of this chapter is dedicated to proving the existence of mirror

Calabi-Yau pairs. We stress at this point that the two Calabi-Yaus have vastly different

geometry and it is not a priori obvious that they would be so intimately related.

2.4.4 Lagrangian Submanifolds & The Antiholomorphic Involution

Before going on to how to construct of Calabi-Yaus using complex projective spaces, we first

mention something that will be useful for us when discussing manifolds with G2 holonomy.

Definition. [Lagrangian Submanifold] Let M be a symplectic manifold of dimension 2n

with symplectic form ω. Then a submanifold L ⊂ M is called a Lagrangian submanifold if

(i) ω|L = 0, and
9Historically speaking, the Kreuzer-Skarke list was obtained after significant understanding of mirror sym-

metry was developed. However, a similar plot with less data points (2339 pairs of Hodge numbers) was given
in [6] before the mathematical development of mirror symmetry.
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(ii) dimL = 1
2 dimM = n.

If we view the symplectic manifold as a complex manifold, and denote the volume form by

Ω, then a Lagrangian submanifold is called special if, on top of the above two conditions,

we further have Im(Ω)|L = 0.

Langrangian submanifolds will be of interest to us in the context of fixed points of quotients

of Calabi-Yaus. We recall from Section 1.2 that the important case will be an antiholomorphic

involution, which we define now.

Definition. [Antiholomorphic Involution] Let (M, I, g) be a Calabi-Yau n-fold. Then a

diffeomorphism σ : M → M is called an antiholomorphic involution if it satisfies:

(i) It is an involution; σ2 = id,

(ii) It is an isometry; σ∗(g) = g, and

(iii) It is antiholomorphic; σ∗(I) = −I.

An important consequence is that σ∗(J) = −J and σ∗(Ω) = Ω̄.

Corollary 2.4.4. The fixed point locus of an antiholomorphic involution on a Calabi-Yau

n-fold is a special Lagrangian submanifold.

Proof. This follows simply from the fact that J is a symplectic form and Ω is used for the

volume form. In the fixed point locus Lσ we have J = 0 and Im(Ω) = 0. ■

2.5 Constructing Calabi-Yaus In CPn

Recall that CPn is a Kähler manifold and that any submanifold of a Kähler manifold is

again Kähler. We can therefore ask the question of whether we can use complex projective

spaces to form Calabi-Yaus. The answer is yes, and it is one of the most useful techniques to

constructing them.

The procedure is straight forward: we define a Calabi-Yau manifold as a Kähler manifold

with vanishing first Chern class, and we have a formula for the total Chern class for a hyper-

surface in CPn given by the zero locus of a quasihomogenous polynomial, Equation (2.44).

We can use this to find the degree of the polynomial needed to get vanishing first Chern class.

We start with the general result and then work through some examples. We will then discuss

the case of weighted projective spaces at the end.
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2.5.1 General Result

Let S ⊂ CPn1 ⊕ ... ⊕ CPnℓ be a given by the complete intersection of k polynomials with

degrees dsr. Then the configuration matrix is

CPn1 d11 . . . dk
...

...
...

CPnℓ dℓ1 . . . dℓk

∣∣∣∣∣∣∣∣
χ

, (2.68)

and the total Chern class of S is given by

c(S) =
∏ℓ
i=1(1 +Hi)

ni+1∏k
r=1(1 +

∑ℓ
s=1 d

s
rHs)

. (2.69)

We can expand the numerator and denominator in powers of H, and read the first Chern

class off as the term linear in Hi:

c1(S) =
ℓ∑
i=1

(
ni + 1−

k∑
r=1

dir

)
Hi. (2.70)

Therefore, we get a Calabi-Yau manifold of dimension (
∑ℓ

i=1 ni − k) when

k∑
r=1

dir = ni + 1 ∀i ∈ {1, ..., ℓ}. (2.71)

If we continue the expansion of our total Chern class, we can find the top Chern class, which

if we then integrate over S gives us our Euler characteristic. This is, of course, technically

correct although it is often quite hard to compute in practice. However integrating on CPn

is much simpler, so we ask the question "is there any way we can get the result of
∫
S ctop(S)

as an integral over CPn?" The answer is yes, and it comes from using a modified version of

Poincaré duality, which we state in the next theorem (see, e.g., [54] for more details).

Theorem 2.5.1. Let M be an n-dimensional manifold, and let S ⊂ M be some closed, k-

dimensional submanifold. Then for any closed k-form [τ ] ∈ Hk
dR(M;R) there exists a closed

(n− k)-form [ηS ] ∈ Hn−k
dR (M;R) such that∫

S
τ =

∫
M
τ ∧ ηS . (2.72)

We call ηS the Poincaré dual class to S.
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The Poincaré class can be thought of as a delta function which restricts us to S ⊂ M.

The true use of this comes from considering cases where the normal bundle to S is given

by the restriction of a bundle E over M, as in this case we simply have ηS = cr(E) where

r is the rank of E. This is exactly the case we are considering, e.g. E = OCPn(d) and

NS = OCPn(d)|S . So finally using that for us dimS =
∑ℓ

i=1 ni and dimNS = k (that is each

polynomial increases the dimension of the normal bundle by 1) we have

χ =

∫
CPn1⊕...⊕CPnℓ

c∑ℓ
i=1 ni

(S) ∧ ck(E), (2.73)

where

E =
k⊕
r=1

[
ℓ⊗

s=1

OCPns (dsr)

]
. (2.74)

2.5.2 Determining The Hodge Numbers

As we have seen, the Hodge numbers of a Calabi-Yau play an important role. We there-

fore want some method for computing the Hodge numbers for a Calabi-Yau defined by a

hypersurface in some projective space. For Calabi-Yau 3-folds we have an incredibly useful

method: h2,1 counts the number of allowed monomials in the defining polynomial. This can

be seen using the notion of a rational form and the Griffiths residue,10 which we discuss in

Appendix B.

The remaining undetermined Hodge number, h1,1, is then computed via the Euler char-

acteristic. That is, we use Equation (2.73) to obtain χ, and then Equation (2.57) to get

h1,1.

2.5.3 Quintic In CP4

Let’s start with the simplest case: a single polynomial in CPn. Here we have ℓ = 1 and k = 1

and so Equations (2.70) and (2.71) become

c1(S) = (n+ 1− d)H =⇒ (n− 1)-dimensional Calabi-Yau if d = n+ 1. (2.75)

So if we want to construct a Calabi-Yau 3-fold we have to consider a quintic in CP4. This is a

very important example of a Calabi-Yau manifold and we now explore it in a bit more detail.
10We note here that for other Calabi-Yaus the monomials only count the primitive forms. In such a case,

one usually uses other methods to compute the Hodge numbers, e.g. the Lefschetz hyperplane theorem.
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Denoting the Calabi-Yau by Q and H = OCP4(1), we have that the total Chern class is

c(Q) =
(1 +H)5

1 + 5H
= 1 + 10H2 − 40H3, (2.76)

where the second line follows from expanding and truncating at H3 as dimC(Q) = 3. So we

see that c3(Q) = −40H3. Next we have that our normal bundle NQ = OCP4(5)|Q is a line

bundle and so

ηQ = c1
(
OCP4(5)

)
= 5H, (2.77)

where we have used c(OCPn(d)) = 1 + dH. So we can compute our Euler characteristic via

Equation (2.73)

χ(Q) =

∫
CP4

(−40H3) ∧ (5H) = −200, (2.78)

where we have made use of ∫
CPn

Hn = 1. (2.79)

We can therefore summarise the Calabi-Yau manifold coming from the quintic in CP4 via the

following configuration matrix

Q = CP4|5|−200. (2.80)

We now want to compute the Hodge numbers of the quintic. As explained above, we get

h2,1 by considering the number of allowed monomials in the defining polynomial. The number

of independent degree d monomials in (n + 1) variables is given by the binomial coefficient(
d+ n

n

)
, and so our quintic polynomial starts off with

(
9

4

)
= 126 parameters. However we

need to account for coordinate transformations (i.e. homogeneous linear change of variables)

as well as the scaling. These collectively add up to11 (n+ 1)2 which for us is 52 = 25, which

finally leaves us with h2,1 = 126−25 = 101. We can then use this with our Euler characteristic

to get h1,1:

−200 = 2(h1,1 − 101) =⇒ h1,1 = 1. (2.81)
11Basically the homogeneous linear transformations of (n+1) variables are given by the group PGL(n+1,C),

which is defined to be GL(n+ 1,C) modded out by our scaling, so it has dimension (n+ 1)2 − 1, with the −1
corresponding exactly to our scaling, so when we add this back in we’re just left with (n+ 1)2.
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We can summarise this using the Hodge diamond

1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

(2.82)

2.5.4 Complete Intersections

We now go to the slightly more complicated case where we still only have a single CPn but

now we can use multiple polynomials. Here we have ℓ = 1 and k = n − 3, i.e. we need to

reduce down to an 3-dimensional manifold. Our Calabi-Yau condition is simply

ℓ−3∑
r=1

dr = n+ 1. (2.83)

We now note that we actually require that dr ≥ 2 for all r. Why? Well imagine we

have some CPn and one of our polynomials has degree 1. We can always use a coordinate

transformation such that this polynomial simply sets one of the homogeneous coordinates to

zero, but then this just leaves us with (k − 1) polynomials in CPn−1.

Given this, we can show that there are actually only five solutions. We display them via

their configuration matrices below (without their Euler characteristics)

CP4|5|, CP5|3 3|, CP5|2 4|, CP6|2 2 3| and CP7|2 2 2 2|. (2.84)

For clarity on why we can’t have anymore, let’s imagine we considered CP8. To get a

3-fold, we would need to consider 5 polynomials who’s degrees sum up to 9. However we

cannot do this if we also require that dr ≥ 2 for all r. The same idea applies to higher n. Of

course we can generate other Calabi-Yau 3-folds by allowing our ambient space to be given

by a direct sum of CPns.
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2.6 Weighted Projective Spaces

We now want to discuss weighted projective spaces and how the Calabi-Yau hypersurface story

carries over. These are basically exactly the same as "regular" projective spaces, but now each

homogeneous coordinate has its own weight under scaling. That is, the weighted projective

space WCP(k0,...,kn) is defined the same as a projective space but now with equivalence relation

[z0 : ... : zn] = [λk0z0 : ... : λ
knzn]. (2.85)

It is common to write a weighted projective space as WCPn and then stating the weights as

an (n+ 1)-tuple, i.e. we write "WCPn with weights (k0, ..., kn)". We sometimes also use the

notation WCPnk0,...,kn . We will likely use a combination of all of these.

As we might expect, WCPnk0,...,kn and CPn have a lot in common, however stuff is more

subtle in the former. For example, let’s consider trying to define a polynomial of degree d in

WCPnk0,...,kn . Let’s illustrate some of the subtleties with an example.

Example 2.6.1 . Consider WCP2
1,2. Let’s define the polynomial

P (z0, z1) = z20z1 + z30 , (2.86)

this would be a polynomial of degree 3 in CP2, but for WCP2
1,2 we have

P (λz0, λz1) = (λz0)
2(λ2z1) + (λz0)

3 = λ4z20z1 + λ3z30 ̸= λdP (z0, z1). (2.87)

▲

Definition. [Quasihomogeneous Polynomial] We call a polynomial in WCPnk0,...,kn quasi-

homogeneous of degree d if

P (λz0, ..., λzn) = λdP (z0, ..., zn) (2.88)

for some d ∈ N.

Now, we can still define the tautological line bundle over WCPnk0,...,kn as the line bundle

with fibres

π−1[z0 : ... : zn] = (λk0z0, ..., λ
knzn). (2.89)

We denote the space of holomorphic sections of this space by OWCPn
k0,...,kn

(−1). We then

similarly have the hyperplane line bundle OWCPn
k0,...,kn

(1), given by the dual of the above.
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Note that the transition functions themselves are the same as before, i.e. gij : Ui∩Uj → zi/zj .

The change comes by adapting Proposition 2.2.2:

Proposition 2.6.2. Any quasihomogeneous polynomial of degree d in WCPnk0,...,kn can be

canonically identified with the holomorphic sections OWCPn
k0,...,kn

(d).

The proof follows completely analogously to that of Proposition 2.2.2, however now Lemma 2.2.3

changes to

Lemma 2.6.3. The homogeneous coordinate zi of WCPnk0,...,kn can be identified as sections of

OWCPn
k0,...,kn

(ki).

This is easily understood as Pi([z]) = zi is a quasihomogeneous polynomial of degree ki.

Indeed we can understand Proposition 2.2.2 and Lemma 2.2.3 simply as specialisations of the

above with k1 = ... = kn = 1.

We now proceed as before, and we arrive at an Euler sequence

0 C OWCPn
k0,...,kn

(ki)
⊕(

∑
i) T (1,0)WCPnk0,...,kn 0, (2.90)

from which, recalling c(OWCPn
k0,...,kn

(ki)) = (1 + kiHk0,...,kn), we conclude that

c
(
WCPnk0,...,kn

)
=
∏
i

(1 + kiHk0,...,kn) (2.91)

where, of course, Hk0,...,kn = c1(OWCPn
k0,...,kn

(1)).

There is a very important difference between standard projective spaces and weighted

projective spaces: the former are smooth manifolds, while the latter generically contain sin-

gularities. This singularity structure carries over to the Calabi-Yau hypersurface construction.

Let’s see this with an example.

Example 2.6.4 . Consider the specific case of a single polynomial in WCP4
1,1,1,1,4, which we

coordinatise using [x1 : x2 : x3 : x4 : y]. We have from Equation (2.91) that (using A to

denote our ambient space, i.e. the WCP4
11114)

c1(A) = 8H. (2.92)

So if we want to have some subspace S that is Calabi-Yau, we are going to need a quasiho-

mogenous polynomial of degree 8.

Let’s consider the case y2 = P8(xi), where P8(xi) is some degree 8 polynomial in the xis.

Now say we pick the patch y = 1, that is consider the chart where y ̸= 0 and use the scaling
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to set y = 1. We now note that this scaling is not unique. From the equivalence relation, it

follows that we can change our scaling by any λ ∈ C such that λ4 = 1. However, different

λ will affect the xi values differently. In other words, we conclude that the xis are not free

complex numbers but in fact

xi ∈
C
Z4
. (2.93)

We see that this problem goes away when xi = 0, and we call this point a fixed point. This

type of singularity is known as an orbifold singularity.

We arrive at a similar issue in the context of the hyperplane class. Consider the smooth

point p = [1 : 0 : 0 : 0 : 0], which is defined by the 4 polynomials y = x2 = x3 = x4 = 0, then

we have ∫
p
4H ·H ·H ·H = 1 ⇐⇒ H4 =

1

4
, (2.94)

where the 4H and H factors are just the first Chern classes of the polynomials, and the 1

comes from simply integrating over p. In this way we see that our weighted projective space

has fractional hyperplane class.

It is important to note that this singularity is a property of the ambient space A =

WCP4
11114 itself, not the Calabi-Yau defined inside it. Indeed it is possible to obtain a smooth

Calabi-Yau inside such a space. This is seen simply from the fact that p = [1 : 0 : 0 : 0 : 0] is

not a solution to our defining polynomial. ▲

The issues of orbifold singularities are not as scary as they seem, and are easily dealt with

using the techniques of toric geometry, which we now discuss.

2.7 Toric Geometry

The above discussion has taken place in the language of differential geometry. From a peda-

gogical stand point, this is often a useful approach as it allows us to think about the structures

pictorially and intuitively. However, as we have seen, this sometimes leads us down a path of

reasonably complicated and/or fiddly computations. In particular we have just seen that for

weighted projective spaces the hyperplane class is fractional, and we have orbifold singulari-

ties that we need to deal with. In order to address these points we turn to the closely related

topic of algebraic geometry.

We note that Yau’s theorem plays an important role in this switch: algebraic geometry

will not give us a nice way to compute the metric of our space, but it will give us simple ways

to construct spaces with vanishing first Chern class. It then follows from Yau’s theorem that

such a space has a unique metric, and so it doesn’t matter if we don’t find it.
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2.7.1 Algebraic Varieties & Divisors

Definition. [Algebraically Closed Field] Let K be a field, and denote the ring of polyno-

mials in n-variables by K[x1, ..., xn], i.e. f ∈ K[x1, ..., xn] means f(x1, ..., xn) ∈ K. Then

we call K algebraically closed if any non-constant polynomial over K has a root in K, i.e.

f(x1, ..., xn) = 0 has x1, ..., xn ∈ K.

Example 2.7.1 . The ring of real numbers is not algebraically closed as f(x) = x2+1 has root

x = ±i /∈ R. However the ring of complex numbers is algebraically closed. In what follows we

shall assume we are using the complex numbers everywhere. ▲

Definition. [(Complex) Algebraic Variety] Consider the space Cn,12 and consider the

algebraically closed field C. Labelling the coordinates of Cn by (z1, ..., zn), we have f ∈
C[z1, ..., zn] being a C valued function over Cn. Now consider some set of polynomials

S ⊂ C[z1, ..., zn] and define for their common zero locus

Z(S) := {z ∈ Cn | f(z) = 0, ∀ f ∈ S}. (2.95)

Then a subspace X ⊂ Cn is called a (complex) algebraic set if X = Z(S) for some S. If

we can write X as the union of two proper algebraic sets then we say that X is reducible.

If it is not reducible (and non-empty) it is irreducible. Finally, an irreducible algebraic

set is called a algebraic variety. We can turn X into a topological space by defining our

closed sets to be the algebraic sets. This is known as the Zariski topology. A subspace of

X that is also an algebraic variety is called an algebraic subvariety. We shall simply say

"(sub)variety" to mean "complex (sub)algebraic variety".

Definition. [Birationally Equivalent] Let X and Y be varieties, and assume X is irre-

ducible. Then a rational map is a morphism from a non-empty open subset U ⊆ X into Y ,

denoted f : X 99K Y . A rational map is called birational if there exists a inverse of f that

is rational, f−1 : Y 99K X. We say that X and Y are birationally equivalent. A birational

map is essentially a isomorphism between open subsets of X and Y .

Now note that the dimension of the space X is related to the cardinality of the set

S ⊂ C[z1, ..., zn]. This is simply the statement that each zero condition allows us to relate

one of the zi to some of the others, and so reduces the dimension by one. We therefore see
12We define algebraic varieties more generally in terms of affine spaces, which Cn is an example of.
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that a codimesion 1 subvariety is simply a hypersurface in X given by the zero locus of some

polynomial. This lends itself directly to our construction of Calabi-Yaus as hypersurfaces in

complex projective spaces. Indeed it turns out that for complex manifolds all hypersurfaces

arise in this way, which we say again the following definition.

Definition. [Hypersurface] Given a complex space X, a hypersurface, Y , is a (sub)variety

of codimension 1, i.e. Y ⊂ X and dimY = dimX − 1. A hypersurface is said to be

irreducible if it corresponds to an irreducible (sub)variety. A general hypersurface is given

by the union of its irreducible components, i.e. Y = ∪Yi where Yi are the irreducible

hypersurfaces. If X is compact then any hypersurface has only finitely many irreducible

components.

Divisors

Hypersurfaces in algebraic geometry are best discussed in the language of divisors, which we

now breifly discuss.

Definition. [(Weil) Divisor] A (Weil) divisor, D, on X is a formal linear combination of

irreduicible hypersurfaces, i.e.

D =
∑
i

ai[Yi], where ai ∈ Z. (2.96)

The coefficients ai give the order to which the defining polynomial vanishes, with negative

values corresponding to poles. It is hopefully clear that we can turn this into a group in the

natural way (i.e. by our addition), in this way we define the divisor group of X, Div(X).

Remark 2.7.2 . We should clarify a bit the formal addition defined for Equation (2.96). This

is simply defined in terms of the weightings of the defining polynomials and does not somehow

correspond to "adding" two hypersurfaces together to get a new hypersurface. We can con-

strast this to the addition in homology, by recalling that hypersurfaces can be thought of in

terms of homology (i.e. we can triangulate the hypersurface using simplicies). Homology has

a well defined addition given in the expected way, namely [Y1]homol+[Y2]homol = [Y1+Y2]homol.

Now, let’s imagine that Y1 and Y2 are two different hypersurfaces, but suppose that the cor-

responding elements in homology are in the same class, i.e. [Y1]homol = [Y2]homol. If we

then consider their difference then we get a vanishing result in homology, but the divisor

D = a1[Y1]−a2[Y2] is non-vanishing. In this sense a divisor is a finer notion than a homology

class. In this way we see that the square bracket notation in Equation (2.96) does not mean

the corresponding homology class, however it is standard notation and so we keep it.
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Definition. [Exceptional Divisor] Let f : X 99K Y be a birational map. Then a divisorD ∈
Div(X), which corresponds to the codimension-1 subvariety Z ⊂ X, is called exceptional

if f(Z) has at least codimension-2 in Y .

Example 2.7.3 . The most important example of a exceptional divisor to us is a blowup (see

[46] for a more detailed discussion). Consider C2/Z2 and embed it algebraically in C3 via

g(z0, z1, z2) = z20 + z21 + z22 = 0, (2.97)

where (z0, z1, z2) are the coordinates of our C3. This has an isolated singularity at the origin.13

Let’s denote this space by A ⊂ C3. Now consider CP2 with coordinates [ξ0 : ξ1 : ξ2]. Next

consider the subspace

{(z0, z1, z2), [ξ0 : ξ1 : ξ2] ∈ C3 × CP2 | ξizj = ξjzi, ∀ i, j} ⊂ C3 × CP2 (2.98)

Away from the origin in C3, this condition is solved by ξi = zi. We can therefore take our

space A, excise the origin, replace zi 7→ ξi, and then take the closure of this. This gives the

space

ξ20 + ξ21 + ξ22 = 0 (2.99)

as a subset in CP2. This defines a CP1, and we define Ã = A\{(0, 0, 0)}∪CP1, where the CP1

replaces the origin. We can therefore define a birational map from f : Ã 99K A that "blows

down" the CP1 back to the origin. The CP1 is the exceptional divisor, and is often referred

to as a blowup.14 In this work the word "blowup" shall be used in this sense. ▲

As the definition makes clear, a Weil divisor is defined for any polynomial defined on our

space, however not all polynomials correspond to functions on a space. More technically, they

don’t correspond to sections of the constant sheaf OX := C. As an example, if our ambient

space (i.e. the space we start with) is CPn, we can define a hypersurface, and therefore a

divisor, by z0 = 0. However this equation is not projectively well defined, and so is not a

function on CPn. This leads into the notion of a principal divisor.

Definition. [Principal Divisor] Let f be a meromorphic function on X. Then the divisor

associated to f is

(f) :=
∑

ordY (f)[Y ], (2.100)

13A hypersurface g(z0, ..., zk) = 0 is smooth if and only if ∂g/∂z0 = ... = ∂g/∂zk = g = 0 has no solution.
14We note that one needs not replace a singular point in order to define a blow up. For example (see [49]

for details), we can equally blowup the perfectly smooth C3 at a point p ∈ C3 by replacing it with a CP2.
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where ordY (f) is the order of f on Y , and the sum is done over all irreducible hypersurfaces

of X. We call a divisor of this form principal. We denote the group of principal divisors

Div0(X).

Principal divisors are useful to us in the context of comparing divisors, via the following

definition.

Definition. [Linearly Equivalent Divisor] Let D,D′ ∈ Div(X). We call them linearly

equivalent, denoted D ∼ D′, if D −D′ is a principal divisor.

Definition. [Picard Group] The Picard group of X is given by the isomorphism classes of

line bundles on X, with group operation being the tensor product. We denote the Picard

group of X by Pic(X).

Proposition 2.7.4. There is a group homomorphism given by

Div(X) → Pic(X)

D 7→ O(D),
(2.101)

where O(D) is a line bundle associated to the divisor D. Principal divisors are mapped to the

identity element of Pic(X), and so two linearly equivalent divisors D ∼ D′ give rise to the

same element in Pic(X).

The proof of this proposition requires delving into the world of sheaf cohomology and so

is omitted (see, e.g., [43]). However we note that we saw previously that to a hyperplane we

can define the hyperplane line bundle H. This proposition is simply the algebraic geometry

equivalent of this statement. In particular the OCPn(1) we defined before really should have

been written OCPn(H), where [H] = {z0 = 0} is the hypersurface correspinding to the divisor

H = 1 · [H].15

Corollary 2.7.5. Let Cl(X) := Div(X)/Div0(X), known as the Weil divisor class. Then our

group homomorphism of Proposition 2.7.4 provides an injection

ϕ : Cl(X) → Pic(X). (2.102)

This corollary is important because of the following proposition.
15Note that we could have defined [H ′] = {z1 = 0}, but in CPn these two hypersurfaces differ by a coordinate

redefinition, i.e. by a meromorphic function. It thus follows that H ∼ H ′.
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Proposition 2.7.6. If a line bundle L ∈ Pic(X) admits a global section, it is contained in

the image of the above injection, i.e. there is a nontrivial Weil divisor D ∈ Cl(X) associated

to it.

Proof. The key thing to note is that a global section in a line bundle is a hyperplane of the

line bundle, and so corresponds to some divisor. Let s be such a non-zero global section and

denote by Ds the associated divisor. This establishes a link between the section of a line

bundle and a divisor, what we want is a link between the line bundle itself and Ds. Well, any

line bundle can be defined by its sections, and any two sections are related by a meromorphic

function, which is itself an element in Pic(X) (it’s a section in the sheaf of meromorphic

functions). So if we consider a s̃ = f ⊗ s, then we have, recalling the group structure on each

space,

ϕ([Ds]) = ϕ([Df +Ds]) = f ⊗ s = s̃ = ϕ([Ds̃]), (2.103)

where we have used that Df ∼ 0 as viewed as an element in Cl(X). Then using that our map

is injective, we have Ds ∼ Ds̃, and so we really are talking about the whole line bundle. ■

2.7.2 Toric Varieties, Cones & Fans

We are now in a position to start discussing toric geometry and how it can be used to construct

toric varieties. There are two approaches to toric geometry: the spectrum approach and the

coordinate approach. The former deals with a lot more algebraic geometry directly, while

the latter is probably more intuitive, especially for a first time approach to the subject. For

that reason, we shall focus almost entirely on the latter approach. We start by giving the

important definitions.

Definition. [Algebraic Torus] An algebraic n-torus T is given by the n-fold product of

C∗ := C \ {0}. That is T = (C∗)n, and we regard this as an abelian group.

Definition. [Toric Variety] Let X be a C variety. Then we call X a toric variety if it

contains an n-torus T as a dense open subset, such that the natural action of the torus on

itself (i.e. simply multiplication in (C∗)n) extends to an action of T on the whole of X.

Example 2.7.7 . Perhaps the most important example of a toric variety for us will be CPn and

WCPn. We show here that the former is indeed a toric variety. This is actually very straight

forward: let’s denote the homogeneous coordinates of CPn by [z0 : ... : zn]. Then note that

the open subset

T = {[z] | zi ̸= 0∀i} = (C∗)n+1/C∗ ⊂ CPn (2.104)
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where the quotient C∗ is embedded diagonally into (C∗)n+1, is dense and is clearly isomorphic

to (C∗)n, and so is an algebraic torus. We can have this act on CPn simply by coordinatewise

multiplication, so we see that CPn is a toric variety. We similarly have that WCPn is a toric

variety. ▲

Definition. [Cone] Let N be a rank r lattice, and define NR := N ⊗ R. Then a (strongly

convex, polyhedral) cone σ ∈ NR is a set

σ := {a1v1 + a2v2 + ...+ akvk | ai ≥ 0 ∀i} such that σ ∩ (−σ) = {0}, (2.105)

where {v1, ..., vk} ⊂ NR is a finite set of vectors called the generators of σ. The dimension

of a cone is given by the number of generators with non-zero coefficients. We call the

boundary of a cone a face, and similarly we call a 1D cone an edge or a ray. A cone is

called rational if {v1, ..., vk} ⊂ N , i.e. they are lattice points.

Definition. [Fan] A collection Σ of cones in NR is called a fan if:

(i) each face of a cone in Σ is also a cone in Σ; and

(ii) the intersection of any two cones in Σ is a face in each of the cones.

We denote the set of d-dimensional cones in Σ by Σ(d). In particular, Σ(1) denotes the set

of edges in a fan. A rational fan is one whose cones are all themselves rational. A rational

fan Σ ⊂ Rn can be identified with a set of points in Zn (i.e. the lattice points).

Definition. [Simplical Cone/Fan] A cone σ is called simplical if it can be generated by

a set of vectors {v1, ..., vk} which form a basis for the vector space they span. A fan Σ is

called simplical if all σ ∈ Σ are simplical.

Unless otherwise specified, we will only consider rational and simplical cones and fans in

this work.

Example 2.7.8 . An example of a fan in 2D with 7 generating vectors is the following

The diagram on the left just shows the generating vectors, while the right-hand diagram also

shows the 2D cones, indicated by the shaded regions. This fan contains a total of 14 cones:

the 6 triangular faces, the 7 edges and the origin. ▲
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As it will be important to us later, we also now introduce the dual lattice.

Definition. [Dual Lattice] Given ourN lattice, we define the dual latticeM := hom(N,Z),

and we denote their inner product by ⟨ , ⟩ :M ×N → Z. We also define MR =M ⊗ R.

2.7.3 Constructing Toric Varieties Using Fans

At first glance, it seems like toric varieties and fans are completely independent objects.

However, as we will now see, they are related in a very elegant way. Before doing so, we

stress that it is this link between the borderline trivial combinatorics game of picking points

on a lattice and toric varieties, that gives us immense power when constructing Calabi-Yau

manifolds.

As mentioned at the beginning of the section, we will use the coordinate approach to

toric geometry. The key thing here is the following: given a fan Σ with n generating vectors

{v1, ..., vn}, we have n associated rays ρi = aivi with ai > 0, and to each of these rays we

define a homogeneous coordinate zi ∈ C. A fan with |Σ(1)| = n then has n corresponding

homogeneous coordinates, and we can use these to define our toric variety.

Definition. [Exceptional Set] Let S ⊆ Σ(1) denote any subset that does not span a cone

in Σ. That is {ρ1, ρ2} ∈ S if we do not have a 2D cone given by the face joining ρ1 and

ρ2. Then we define V (S) ⊂ Cn to be the linear subspace defined by setting zρ = 0 for all

ρ ∈ S. Finally we define the exceptional set of Σ to be

Z(Σ) =
⋃
V (S). (2.106)

The final piece we need in order to get a toric variety from our fan is the following map.

ϕ : hom(Σ(1),C∗) → hom(M,C∗), (2.107)

where M is the dual lattice to N . This is a map of maps, and is defined by

ϕ :
(
f : Σ(1) → C∗) 7→ (

m 7→
∏

ρ∈Σ(1)

f(vρ)
⟨m,vρ⟩

)
. (2.108)
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If we work in terms of coordinates, so that vj = (vj1, ..., vjr) we can write ϕ explicitly as

ϕ : (C∗)n → (C∗)r

(t1, ..., tn) 7→
( n∏
j=1

t
vj1
j , ...,

n∏
j=1

t
vjr
j

)
,

(2.109)

where the dimensions follow from the fact that n = |Σ(1)| and N/M are rank r lattices, and

the notation follows from the fact that (C∗)k is a torus. We then define a quotienting group

by

G := ker
(
hom(Σ(1),C∗)

ϕ−→ hom(M,C∗)
)
. (2.110)

We can define an action of G on Cn \ Z(Σ) as follows: from the definition we have G ⊂
hom(Σ(1),C∗), and so given a g ∈ G and a ρ ∈ Σ(1) we can define g(vρ) ∈ C∗. We then use

this to define an action of G on Cn simply by

g(z1, ..., zn) =
(
g(v1)z1, ..., g(vn)zn

)
. (2.111)

Recalling the definition Equation (2.106), it is clear that this action is closed in Cn \ Z(Σ);
that is, Z(Σ) just makes it so that certain elements can’t vanish together, but g(vρ) ̸= 0, and

so this won’t change this behaviour. We now finally arive at the definition of a toric variety

associated to a fan.

Definition. [Toric Variety From Fan] Let Σ be some fan with n = |Σ(1)|, and define Z(Σ)

and G via Equations (2.106) and (2.110), then

XΣ :=
Cn \ Z(Σ)

G
(2.112)

is a toric variety. The dense open torus is simply given by T := (C∗)n/G ⊂ XΣ, and it acts

on XΣ by coordinatewise multiplication. It follows from Equation (2.109) that T has rank

r and XΣ is an r-dimensional toric variety.

It is important to note that the definition Equation (2.112) really is a property of Σ not

just the rays used to generate it. This enters into the fact that the exceptional set Z(Σ)

depends explicitly on all the cones in Σ, not just the edges.

Remark 2.7.9 . We note here that it is also possible to construct a fan from a toric variety. We

do not discuss the details of how this is done here as we will only work in the fan to variety

direction. Details of how this is done can be found in, e.g., [42].
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Example 2.7.10 . Let’s start with something we already know is a toric variety: CPn. For ease

of drawing, we consider CP2. This corresponds to a 2-dimensional lattice with 3 generating

vectors. We claim that this corresponds to the following fan

v1 = (1, 0)

v0 = (0, 1)

v2 = (−1,−1)

where we have only drawn the edges, the rest of the fan is given by the 3 faces given by pairing

two of the edges. Let’s now verify that this is indeed CP2.

Firstly we note that the exceptional set is just point {0, 0, 0}, as the only combination of

edges which doesn’t span a cone is S = {(0, 1), (1, 0), (−1,−1)}. For clarity, this is not a cone

in Σ for two reasons: firstly if we defined σ012 = av0 + bv1 + cv2 then we would fail to satisfy

σ012 ∩ (−σ012) = {(0, 0)}; secondly the intersection of σ012 and σ0116 is σ01, but this is clearly

not a face in σ012. So we have C3 \ Z(ΣCP2) = C3 \ {(0, 0, 0)}.
Next we need to find the group G. From Equation (2.109) we have

ϕ : (C∗)3 → (C∗)2

(t0, t1, t2) 7→ (t−1
2 t1, t

−1
2 t0),

(2.113)

which follows from v0 = (v01, v02) = (0, 1) etc. Then G is defined as the kernel of this map,

i.e. we want the right-hand element to be (1, 1), which clearly requires t0 = t1 = t2. In other

words G = {(t, t, t) | t ∈ C∗} which is clearly isomorphic to C∗, and so G ∼= C∗. We therefore

arrive at

XΣCP2 =
C3 \ {(0, 0, 0)}

C∗ = CP2. (2.114)

Finally note that T = (C∗)3/G = (C∗)3/C∗, where the C∗ is embedded diagonally into C∗,

which is exactly what we had in Example 2.7.7. ▲

Example 2.7.11 . Next let’s look at a weighted projective space. Again for ease of drawing

we consider WCP2
3,2,1. This again corresponds to a 2D lattice with 3 generating vectors. If

we look through the details of Example 2.7.10, we see that the weightings of the coordinates

enters in by the mapping ϕ, which is directly related to the entries of the vectors {v0, v1, v2}.
16Hopefully this notation is clear, but as we will use it a lot going forward, we explain it once: this simply

means the cone with generating vectors v0 and v1.
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We therefore just want to make it so that v2 is three times v0 in one entry and twice v1 in

the other. That is, we consider the diagram

v1 = (1, 0)

v0 = (0, 1)

v2 = (−2,−3)

where again we have only drawn the edges. We leave the rest of this calculation as a nice

exercise. ▲

Example 2.7.12 . Let’s now consider a new space, that will prove very useful to us going

forward. Consider the 2D fan given by v1 = (1, 0), v2 = (0, 1), v3 = (−1,−n) and v4 = (0,−1)

with n > 0. The drawing of the edges is as follows

v1 = (1, 0)

v2 = (0, 1)

v3 = (−1,−n)

v4 = (0,−1)

Now things are little more subtle when we ask the question "what are the 2D cones in this

fan?", as we cannot just take any cone spanned by two edges. Firstly we note that σ24 isn’t

a cone as it doesn’t obey σ24 ∩ (−σ24) = {(0, 0)}. Besides that, note that if we take both

σ13 and σ14, which are both well defined cones, their intersection would be σ14, which is

not a face in σ13. Similarly we can’t have σ13 and σ34. Clearly there are different fans we

can construct from these vectors, but here we want to consider the fan which contains cones

{σ12, σ14, σ34, σ23}, which we try to depict in the following diagram
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σ23 σ12

σ14

σ34

Let’s now find the toric variety associated to this fan.

First, from the arguments above, we have that the exceptional set is given by

Z(Σ) = V (S24) ∪ V (S13) ∪ V (S1234)

= (z1, 0, z3, 0) ∪ (0, z2, 0, z4) ∪ (0, 0, 0, 0)

= (z1, 0, z3, 0) ∪ (0, z2, 0, z4)

(2.115)

where the last line follows from (0, 0, 0, 0) ∈ (z1, 0, z3, 0) ∪ (0, z2, 0, z4), and the notation on

the first line is hopefully clear.

Now we just need to find the group. We have the mapping

ϕ : (t1, t2, t3, t4) 7→
(
t1t

−1
3 , t2t

−n
3 t−1

4

)
, (2.116)

and so G is given by t1 = t3 and t2 = tn3 t4, or in other words G ∼= (C∗)2, which we can view

as the embedding

(C∗)2 ↪→ (C∗)4

(t, s) 7→ (t, tns, t, s).
(2.117)

So our toric variety is given by

XΣ =
C4 \

(
(z1, 0, z3, 0) ∪ (0, z2, 0, z4)

)
(C∗)2

. (2.118)

Finally, the dense torus is given exactly by T = (C∗)4/(C∗)2, where the (C∗)2 is embedded as

written above.

This surface, denoted Fn, is known as the n-th Hirzebruch surface. ▲

Example 2.7.13 . As a final example consider the fan with edges (0, 1) and (n, 1).
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v1 = (0, 1) v2 = (n, 1)

The exceptional set for this fan is empty, as the only options for S are {v1, v2, {v1, v2}}, but

all of these correspond to cones in Σ. To be clear, this is different to the cases for CP2 and

WCP2
321 which had Z(Σ) = {(0, 0, 0)}. The group action is then found from the map

ϕ : (t1, t2) 7→ (tn2 , t1t2) (2.119)

and so G requires tn2 = 1 and t1 = t−1
2 . This is just the group Zn, and so we have

XΣ =
C2

Zn
. (2.120)

The torus is given by T = (C∗)2/Zn. ▲

These final two examples are going to prove very useful for us going forward, especially

when discussing fibrations and singularity blow ups. For this reason, it is important that

these two examples are well understood at this point.

2.7.4 Weightings & Compactness

With the above examples helping ground the definitions that appeared before, we can now

go on to discuss how powerful these fan diagrams actually are.

Weightings

The first thing we want to notice is something that was hopefully made suggestively clear

from the examples: the group G gives us a quoienting corresponding to scaling(s) of the

coordinates directly related to the entries of the vectors. In particular we have

[z1, ..., zn] ∼
[(
λ
Q1

1
1 ...λ

Q1
ℓ

ℓ

)
z1, ...,

(
λ
Qn

1
1 ...λ

Qn
ℓ

ℓ

)
zn

]
, (2.121)

where λα ∈ C∗ and
∑n

i=1Q
i
αvi = 0 for all α = 1, ..., ℓ. In particular, for CP2 we have ℓ = 1

with λ = t and Q0 = Q1 = Q2 = 1, i.e. 1 · (0, 1) + 1 · (1, 0) + 1 · (−1,−1) = 0. Similarly for

WCP2
321 we have ℓ = 1 and Q0 = 3, Q1 = 2 and Q2 = 1. Then for Fn we have ℓ = 2 with

λ1 = t, λ2 = s and Q1
t = 1, Q2

t = n, Q3
t = 1, Q4

t = 0, Q1
s = 0, Q2

s = 1, Q3
s = 0, and Q4

s = 1.

It is notationally convenient to display all this information in the form of a weight system,

which we draw as
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z1 ... zn

Q1
1 ... Qn1

...

Q1
ℓ ... Qnℓ

So for the CP2, WCP2
321 and Fn we have

z0 z1 z2

1 1 1

z0 z1 z2

3 2 1
and

z1 z2 z3 z4

1 n 1 0

0 1 0 1

(2.122)

We haven’t said anything about Example 2.7.13, as this doesn’t have a weight system as there

is no way to get the v1 and v2 to cancel with non-zero Qi. In a way its weight system vanishes,

and so we don’t write anything.

These weight system diagrams are actually incredibly useful as they encode a lot of in-

formation. We will add more to them later, but for now notice that from the weight system

we not only get the scaling weights, we can use them to reconstruct the generating vectors

via
∑n

i=1Q
i
avi = 0. Further we can immediately read off the dimension of the space – it is

simply the number of columns minus the number of rows (excluding the row containing the

zis). This is not hard to see: the number of columns corresponds exactly to the number of

coordinates, i.e. the power n factor appearing in the numerator of Equation (2.112), while

the number of rows corresponds to how many different scalings we have, which corresponds

exactly to the dimension of the group G in the denominator of Equation (2.112). For example,

we see straight away that Fn is 2-dimensional from 4− 2 = 2. The fact that we can read off

the dimension will prove additionally useful later when discussing so-called toric divisors and

their linear relations.

Compactness

Next we want to ask the question "is it possible to read off whether the resulting toric variety

is compact or not from the fan diagram?" The answer is yes, and is the content of the next

proposition.

Proposition 2.7.14. Let XΣ be a toric variety associated to a fan Σ. Then XΣ is compact

iff the fan Σ fills NR.

The proof of this proposition is easier to see when considering constructing a fan from a

toric variety, and so we do not present here. We simply note that in the examples above, only
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Example 2.7.13 is non-compact.

2.7.5 T -Invariant Subvarieties & Toric Divisors

So far we have been able to use fans to construct toric varieties, but we are yet to see how to

construct subvarities and divisors within these spaces. This is something we will clearly need

if we want to construct Calabi-Yaus as hypersurfaces in projective spaces.

First let’s look at our T -invariant subvarieties, where T is the algebraic torus. These are

particularly easy to describe in terms of our homogeneous coordinate description. Let Σ be

a fan and XΣ the associated toric variety. Then consider some σ ∈ Σ which has generating

vectors {v1, ..., vk}. We can associate a codimension k subvariety of XΣ to this cone via

Zσ := {z ∈ XΣ |z1 = ... = zk = 0}, (2.123)

where we see that it is codimension k from the fact that we have k conditions. Now as T

acts on XΣ by multiplication of non-vanishing complex numbers, this subvariety is clearly

T -invariant. Then note that if we have two cones σ, σ̃ ∈ Σ where the generating vectors of σ̃

are contained within those for σ (i.e. σ̃ is a face of σ), then the order of inclusion is flipped

for the T -invariant subvarieties, i.e. Zσ ⊂ Zσ̃. The claim is that these are the only types of

T -invariant subvarieities. Putting this together with the fact that if the cone is not in the fan

then Zσ would correspond to an element of the exceptional set Z(Σ), and so the subvariety

would be empty, we have the following Lemma.

Lemma 2.7.15. There is a one-to-one correspondance between non-empty T -invariant sub-

varieites and cones in fan, given by the ordering reversing mapping σ 7→ Zσ.

It is interesting to note that each Zσ is in fact a toric variety, and we can construct

the lattice and fan from the lattice N and fan Σ for XΣ: simply take the quotient of N

by the sublattice σ ∩ N , and then project every cone in Σ which contains σ as a face onto

Ñ = N/(σ ∩N).

Example 2.7.16 . As an example, we can construct the T -invariant subvarieties of CP2 given
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in Example 2.7.10. We list them below

σ Zσ

{0} CP2

{(0, 1)} z0 = 0

{(1, 0)} z1 = 0

{(−1,−1)} z2 = 0

{(1, 0), (−1,−1)} [1 : 0 : 0]

{(0, 1), (−1,−1)} [0 : 1 : 0]

{(1, 0), (0, 1)} [0 : 0 : 1]

(2.124)

which we can see obeys the order reversing inclusion, e.g. {(0, 1)} ⊂ {(0, 1), (−1,−1)} and

[0 : 1 : 0] ⊂ z0 = 0. ▲

The important case of Lemma 2.7.15 for us is that each one-dimensional cone corresponds

to a hypersurface in XΣ. That is: we have a one-to-one correspondance between edges and

toric divisors. In what follows we shall denote the toric divisor corresponding to zi as Di.

Now recall that Proposition 2.7.4 tells us that to each divisor we can associate some form

of line bundle. For our toric divisors, these correspond to the hyperplane line bundles O(Di).

We can, of course, take a formal sum of our toric divisors to form some new divisor, i.e.

D =
n∑
i=1

aiDi. (2.125)

Let’s see what happens when we consider the case ai = ⟨vi,m⟩ for some m ∈ M , with

M being the dual lattice to N . Then consider the monomial za11 ...z
an
n , which is a section of

O(
∑

i aiDi). Our equivalence relation Equation (2.121) then says that (just considering one

α value for simplicity) our monomial is equivalent to

(
λQ

1
z1
)⟨v1,m⟩

...
(
λQ

n
zn
)⟨vn,m⟩

= λ⟨
∑n

i=1Q
ivi,m⟩z

⟨v1,m⟩
1 ...z⟨vn,m⟩

n . (2.126)

Then recalling that
∑n

i=1Q
ivi = 0, we see that this monomial is completely invariant under

this scaling. This tells us that the monomial is globally well defined on XΣ, and so corresponds

to a globally defined meromorphic section, and so it must correspond to a section in a trivial

line bundle. That is we must have

n∑
i=1

⟨vi,m⟩Di ∼ 0 ∀m ∈M (2.127)
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This gives us a set of linear relations between the divisors. It follows from the fact that

dimM = dimN , that we have dimN such linear relations between our toric divisors, i.e.

m has coordinates m = (m1, ...,mdimN ) and we can consider the linear relations given by

m1 = (1, 0, ..., 0), m2 = (0, 1, 0, ..., 0) etc. This gives us exactly dimN expressions. So in total

we have |Σ(1)| − dimN linearly independent toric divisors.

2.7.6 Singularities & Blowups

We now discuss something that is really important for us: the presence of singularities. We

note, from the definition Equation (2.112), our toric varieties are orbifolds with potential

singularities, depending on what the group G is. We want to see how we can read off whether

a toric variety is singular or not, given its associated fan.

The key point is to note the following: consider some fan Σ and form the toric variety XΣ.

Now consider some cone σ ∈ Σ and form the toric variety Xσ ⊂ XΣ, which we can define as

the subset obtained by setting zρ = 1 for all ρ ∈ Σ(1)\{edges of σ}. We can then patch these

Xσ together to give XΣ =
⋃
σ∈ΣXσ. This is just the statement that a fan is given by the

union of its cones, and so the associated toric variety is given by the union of the subvarieties.

Now we define Σσ ⊂ Σ to be the fan given by σ and all of its faces. From the explanation

above, we have that XΣσ = ∪σ̃∈Σσ
Xσ̃. Putting this together with the fact that there is

clearly an injective embedding of σ̃ ∈ Σσ into σ, simply by definition of Σσ, we have that

∪σ̃∈Σσ
Xσ̃

∼= Xσ. We can therefore conclude that XΣσ
∼= Xσ. Finally note that Z(Σσ) = ∅,

simply by the definition of Σσ: it contains all the possible cones. We then have the following

proposition.

Proposition 2.7.17. Let Σ be a fan and XΣ be the associated toric variety. Then XΣ is

smooth (i.e. non-singular) iff every cone σ ∈ Σ is generated by vectors which form a Z-basis

for σ ∩N .

Proof. We show that the basis condition implies smoothness. Consider any top-dimensional

cone σ ∈ Σ, by assumption this is generated by r linearly independent vectors, and so the

group G acts trivially on XΣσ . This is easiest to see by considering the weight system: there

is no way to have these vectors cancel each other and so all Qiα = 0. Putting this together

with Z(Σσ) = ∅ we have that XΣσ = Cr, and so Xσ
∼= Cr which is smooth. Finally putting

this together with XΣ = ∪σ∈ΣXσ, we conclude that Xσ is the union of smooth varieties, and

so is smooth itself.

The reverse direction, that smoothness implies the basis criteria, is most easily shown

using the spectrum approach, which we do not discuss in this work. We will also only be
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interested in going from the fan to the variety, and so we omit the rest of the proof. ■

For the examples discussed above, we see that:

• CP2 is smooth, which we know to be true,

• WCP2
321 is singular, which again we know to be true,

• Fn is smooth only when n = 1, and

• Example 2.7.13 is smooth only when n = 1.

So we have a condition for when the toric variety is singular, the obvious question for us

to ask is "when does this singularity correspond to an orbifold?"

Proposition 2.7.18. Let Σ be a fan and XΣ be the associated toric variety. Then XΣ is an

orbifold iff Σ is simplical.

Proof. Again we only show the condition =⇒ orbifold direction. Let σ ∈ Σ be a r-

dimensional cone, then by definition of a simplical cone it can be generated by r vectors

{v1, ..., vr} which form a basis for the vector space they span. There is therefore only a finite

number of ways we can get them to cancel each other, and so G is finite. We therefore have

that Xσ ∼ Cr/G and so is an orbifold, which in turn makes XΣ an orbifold. ■

Of course every fan we have considered thus far has been simplical, and so we are dealing

with orbifold toric varieties.

Blowup

Recalling Example 2.7.3, we know that singularities can be dealt with by the procedure of

blowups. We now want to combine this with the result that a toric variety is smooth iff all

the cones are generated by vectors which form a basis for the intersection of σ with N . In

order to do that we need a couple definitions.

Definition. [Fan Morphism] Let Σ ⊂ NR and Σ̃ ⊂ ÑR be fans. Then a fan morphism

from Σ to Σ̃ is a homomorphism ψ : N → Ñ , such that for every cone σ ∈ Σ the image

under ψ ⊗ R is contained in some cone of Σ̃. We say that ψ is compatible with Σ and Σ̃.

Definition. [Toric Morphism] Let Σ ⊂ NR and Σ̃ ⊂ ÑR be fans, and let XΣ and X
Σ̃

be

the associated toric varieties. Then a morphism ϕ : XΣ → X
Σ̃

is called toric if ϕ(T ) ⊆ T̃

(i.e. ϕ maps the torus in XΣ into the torus in X
Σ̃
), and ϕ|T is a group homomorphism.
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It can be shown that a fan morphism can be used to construct a toric morphism and vice

versa (see Theorem 3.3.4 of [43]).

Definition. [Subdividing A Fan] Let Σ ⊂ NR be a fan. Then another fan Σ̃ subdivides Σ

if

(i) Σ(1) ⊂ Σ̃(1), and

(ii) Each σ̃ ∈ Σ̃ is contained in some σ ∈ Σ.

In terms of the toric diagrams, this is very straight forward: we can subdivide a fan Σ by

introducing a new ray which "splits" an existing cone into two cones, as the following diagram

is meant to indicate.

v1 v2 v1 vnew v2

As we explained above, the idea is to take a singular toric variety and subdivide the fan

such that we get a smooth result. In doing this, we introduce more toric divisors into X
Σ̃
.

We then use the fact that the identity map on N if compatible with Σ̃ and Σ and defines a

birational toric morphism f : X
Σ̃
→ XΣ. These divisors are then our exceptional divisors (c.f.

Example 2.7.3), and so correspond to a blowup: we replace the orbifold singularities with a

copy of CP1. The above diagram is clearly related to Example 2.7.13 and we show the full

resolution in the next example.

Example 2.7.19 . Recall that we have the fan

v0 = (0, 1) vn = (n, 1)

where we have suggestively renamed v1 → v0 and v2 → vn. We have shown that this is

a singular space given by XΣ = C2/Zn. To remove this singularity, we need to introduce

new vectors so that every cone is generated by a basis of σ ∩ N , where N is a 2D lattice.

For v0 = (0, 1) the only edge that lies within σ0n that meets this condition is v1 = (1, 1).

However we then have the cone σ1n which gives rise to a singularity if n ̸= 2. However

clearly all we have to do is include v2 = (2, n), and then continue this process until we reach

vn−1 = (n− 1, 1). For n = 3 we get the following subdivided fan
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v0 v1 v2 v3

which gives a smooth toric variety with weight system

z0 z1 z2 z3

1 −2 1 0

0 1 −2 1

(2.128)

This weight system generalises to the general n case, which follows from

vm−1 + vm+1 = (2m, 2) = 2vm. (2.129)

Each of the new rays gives a blowup and corresponds to a CP1, so we have a total of (n− 1)

CP1s. Indeed we already showed in Example 2.7.3 that the blowup of C2/Z2 corresponds to

replacing the origin with a copy of CP1. Here we are just looking at the more general case of

C2/Zn, where a similar calculation to that of Example 2.7.3 can be used to show the blowup

gives rise to (n− 1) exceptional CP1s. Details of this calculation can be found in [49].17 ▲

2.7.7 Calabi-Yau Condition

Recall condition (iv) in the definition of a Calabi-Yau: it is a Kähler manifold with trivial

canonical bundle. The canonical bundle is the line bundle given by the top-dimensional

exterior power of the cotangent bundle. We then have the following proposition (see, e.g.,

[55]).

Proposition 2.7.20. Let X be a nonsingular toric variety with {D1, ..., Dd} being the irre-

ducible toric divisors. Then the canonical divisor is given by DK = −
∑

iDi. That is the

canonical bundle is given by

KX = O

(
−
∑
i

Di

)
. (2.130)

We therefore have that X is Calabi-Yau iff DK ∼ 0. This then gives us the following

proposition.

Proposition 2.7.21. Let XΣ be a toric variety associated to some fan Σ. Then XΣ is Calabi-

Yau iff either of the following, equivalent, conditions apply
17The (1,−2, 1) weight system gives rise exactly to the "(−2)-curves" discussed in this reference. Indeed

the (1, 1) weight system is exactly the weight system of CP1, and the −2 weight is the curve.
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(i) All the generating vectors end on the same affine hyperplane in NR; or

(ii) The weights Qia obey
∑

iQ
i
a = 0 for all a.

Proof. (i) We can define a hyperplane in NR precisely by the condition

HN = {wi ∈ NR | ⟨wi,m⟩ = a} (2.131)

for some fixed m ∈ MR and a ∈ R. So the condition ⟨vi,m⟩ = −1, where vi ∈ Σ(1)

defines a hyperplane in NR that all the generating vectors end on.

(ii) This follows simply from
∑

i⟨vi,m⟩Q1
a = 0 along with ⟨vi,m⟩ = −1.

■

Using Proposition 2.7.14 we then get the immediate corollary.

Corollary 2.7.22. A toric Calabi-Yau manifold is non-compact.

2.7.8 Updating The Weight System

So far we have seen that the weight system of a fan encodes a lot of information, however there

is one important piece missing for the construction of a Calabi-Yau: the defining polynomial.

We now work through how to update the weight system to encode this too.

Recall that we write our weight systems as

z1 ... zn

Q1
1 ... Qn1

...

Q1
ℓ ... Qnℓ

Now, to each coordinate zi we have an associated toric divisor Di, and so we can think of the

columns as representing these toric divisors, i.e. we edit the weight system to look like

z1 ... zn

Q1
1 ... Qn1

...

Q1
ℓ ... Qnℓ

↑ ↑
D1 ... Dn
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Now, recall that the number of linearly independent toric divisors is given by |Σ(1)| −
dimN . Putting this together with the fact that dimN = (number of columns) − (number

of rows), and the fact that |Σ(1)| = (number of columns), we immediately conclude that the

number of linearly independent toric divisors is given by the number of rows. We can label

these independent divisors Hj , and add them to our weight system as

z1 ... zn

H1 → Q1
1 ... Qn1
...

...

Hℓ → Q1
ℓ ... Qnℓ

↑ ↑
D1 ... Dn

Indeed we can write the Dis in terms of the Hjs using the weights, i.e.

Di =
ℓ∑

j=1

QijHj . (2.132)

Next we note that a hypersurface in our toric variety is given exactly by a divisor, i.e. we

can express the defining polynomial, P , as a divisor. Whatever this divisor is, it can be related

to our Hjs by some given weights pj . We can add this polynomial to our weight system too

as

z1 ... zn P

H1 → Q1
1 ... Qn1 p1
...

...
...

Hℓ → Q1
ℓ ... Qnℓ pℓ

↑ ↑
D1 ... Dn

(2.133)

Finally, we recall that the total Chern class of a hypersurface space, S, in some ambient

space, A, is given by

c(S) = c(A)

c(P )
, (2.134)

where P is the defining polynomial. Then, using

c(A) =

n∏
i=1

(1 +Di) and c(P ) = 1 +

ℓ∑
j=1

pjHj , (2.135)
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we can quickly show that if we want a Calabi-Yau hypersurface we require

pj =
n∑
i=1

Qij . (2.136)

2.7.9 Intersection Numbers & Fibration Structure

There are two more important pieces of information that we can understand from the fan of

a toric variety. The first is the intersection number of subvarieties and the second is the idea

of a fibration.

Intersection Numbers

We have shown that each homogeneous coordinate gives rise to a toric divisor, which is a

hypersurface in XΣ. We now want to ask the question "do these hypersurfaces intersect each

other, and do they intersect themselves?" The answer to the latter comes from answering the

former and then using Equation (2.127).

So how do we know if two toric divisors intersect each other? With some thought, it is

clear that this happens only when the corresponding vectors form a cone in the fan. The

most intuitive way to see this is probably just the fact that if they generate a cone in Σ,

then by Lemma 2.7.15 they form a codimension 2 subvariety. This subvariety is formed

exactly as the intersection of the 2 toric divisor hypersurfaces, which follows immediately

from Equation (2.123). From here, we use Equation (2.127) to write the self intersection D2
i

as Di · (−aj)Dj for j ̸= i.

In order to be able to work out the self intersection numbers, we obviously need to know

what the Di · Dj with j ̸= i are. In fact the general k-point intersection Di · Dj · ... · Dk

plays an important role for us. Why? Well recall that when we wanted to compute the Euler

characteristic we first found the top Chern class and integrated that over the space. Before

we just quoted the result that, for CPn,
∫
Dn = 1, or if we were considering CPn1 ⊕ ...⊕CPnm

that
∫
Dn1

1 ...Dnm
m = 1. However we already saw that when you consider weighted projective

spaces you need to be more careful as you get fractional results. So what is going on?

Well Di ·Dj is the intersection of the corresponding hyperplanes. So if Di ·Dj = 0 they

don’t intersect, while if Di · Dj = 1 they intersect exactly once. We then generalise this to

the case of n hypersurfaces intersecting. The key point is that if they only intersect once the

resulting intersection space is smooth. So we conclude that Di ·Dj ... ·Dk = 1 if the generating

vectors {vi, vj , ..., vk} form a basis of a lattice, as per Proposition 2.7.17. This is precisely why

we always took
∫
Dn
i = 1, i.e. CPn is smooth. As Example 2.7.11 shows, weighted projective
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spaces are not smooth (i.e. (v1, v2) do not form a Z basis for σ12 ∩N) and so it follows that

Di · ... ·Dj ̸= 1.

Now note that we also have that Di ·Dj ... ·Dk = 0 if the span of the generating vectors

don’t span a cone in Σ. That is, if {vi, vj , ..., vk} don’t span a cone in Σ then, by definition of

the exceptional set, their common zero locus (which is exactly the intersection of the divisors)

is removed from the toric variety XΣ. So the intersection does not contribute to the integral

over XΣ, or any subspace, i.e. we require Di ·Dj · ... ·Dk = 0.

Fibration Structure

Recalling the fan for the n-th Hirzebruch surface Fn:

v1 = (1, 0)

v2 = (0, 1)

v3 = (−1,−n)

v4 = (0,−1)

If we set n = 0 we would get a fan who’s edges look like two perpendicular copies of the

fan for CP1 (which has v1 = +1 and v2 = −1). That is, if we were to project the cones of F0

horizontially or vertically, we would get copies of the CP1 fan.

F0 CP1

CP1

From this perspective we start to see that the fans naturally encode some kind of fibration

structure, i.e. F0
∼= CP1 × CP1.
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A similar argument can be made for Fn for n > 0. The key difference is when we ask

"do the cones of Fn project into cones of CP1?" For F0 the answer is yes: each quadrant is

mapped to a half line. However for Fn>0 the answer is no: if we project the cone given by

(v2, v3) horizontally, we are left with the full vertical line, but this is not a cone in CP1. The

vertical projection, though, is fine as all cones project into half horizontal lines and so are

cones in the CP1. This failure of σ23 to project into a cone of CP1 tells us that Fn>0 is a

non-trivial CP1 fibration over CP1, with the horizontal CP1 being the base space. In other

words the base space of our fibration must self intersect. We summaries this in the following

table.

Edges Project

Into Edges

Cones Project

Into Cones
Contained Manner

✓ ✓ Product (embedding)

✓ × Twisted (self intersecting inclusion)

The fact that we have a non-trivial fibration can be seen by the fact that the divisors have

non-vanishing self intersection. We have smooth cones generated by {v1, v2} and {v1, v4}, so

D1 ·D2 = D1 ·D4 = 1, (2.137)

Then from Equation (2.127), with m = (1, 0) and m = (0, 1), we have

D1 −D3 ∼ 0 and D2 − nD3 −D4 ∼ 0. (2.138)

It then follows from D1 ∼ D3 and the above intersection relations that

D3 ·D2 = D3 ·D4 = 1. (2.139)

All other non-self intersections vanish, as {v1, v3} and {v2, v4} don’t span cones in Σ.

From here we get the self intersection numbers

D2
1 = D2

3 = 0, D2
2 = n and D2

4 = −n. (2.140)

The important thing to note is the D1 and D3 don’t self intersect: D1 and D3 correspond

to setting z1 = 0 and z3 = 0 and so we are in the [z2 : z4] line, it then follows from

D2
1 = D2

3 = 0 that our fibres are given by [z1 : z3] ∼= CP1. The fact that D2 and D4 self

intersect proportionally to n encodes exactly the non-trivial nature of the CP1-bundle: the
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base space is self intersecting. Note that n = 0 returns that the base space is simply CP1 and

we get F0
∼= CP1 × CP1.

2.7.10 Polytopes

We have seen that in order to define a toric Calabi-Yau we need two peices of information

(Σ,L); Σ is a fan and L is the line bundle that encodes the defining polynomial. As per

Proposition 2.7.6 there is corresponding a divisor DL =
∑

i aiDi for integers ai, where Di are

the divisors corresponding to the ray generators of Σ. The first Chern class of L is then given

by

c1(L) =
∑
i

aiDi. (2.141)

Using Equation (2.135) we see that the first Chern class of the line bundle is given by

c1(L) =
ℓ∑

j=1

pjHj . (2.142)

We then put this together with Equations (2.132) and (2.136) and obtain

c1(L) =
∑
i

Di. (2.143)

Therefore, in order to get a Calabi-Yau we require ai = 1 for all i. There is an object in toric

geometry which actually encodes both of these pieces of information together: a polytope.

Definition. [Polytope] Let MR be some real vector space of dimension d. Consider some

set of points S ⊂MR. Then we can define a polytope by the convex hull of the set S, i.e.

∆ = Conv(S) :=
{∑

i

λimi

∣∣∣ ∑
i

λi = 1, ∀mi ∈ S, and λi ∈ R+
0

}
⊆MR. (2.144)

The dimension of the polytope is equal to the dimension of the smallest affine subspace in

MR that contains ∆. We will focus on the cases where MR =M⊗R for some lattice M . We

then call a polytope ∆ ⊆MR a lattice polytope if the vertices of ∆ are lattice points in M .

We call the ordered set ∆∩M = {m0, ...,mk} the characters of M . Lattice polytopes can

always be made top-dimensional, i.e. dim∆ = dimMR, simply by appropriately reducing

the dimension of M .

An important object in a polytope are its faces.

64



Definition. [Polytope Face] Let (NR,MR) be a set of dual vector spaces and let ∆ ⊆MR

be a polytope. Then given a non-zero vector v ∈ NR and an a ∈ R, we can define

Hv,a := {m ∈MR | ⟨m, v⟩ = a} and H+
v,a := {m ∈MR | ⟨m, v⟩ ≥ a}. (2.145)

Hv,a is clearly a hypersurface in MR, and H+
v,a is the upper half plane associated to this

hypersurface. We call a subset Θ ⊆ ∆ a face of ∆ if there exists a Hv,a and H+
v,a such that

Θ = Hv,a ∩∆, and ∆ ⊆ H+
v,a. (2.146)

We will denote a dimension k face by Θ[k].

This definition is intuitively clear: consider some hypersurface in MR that “touches” ∆,

and then the intersection of this hypersurface with ∆ is a face of ∆. We call a face of

codimension-1 a facet, a face of dimension 1 an edge and a face of dimension 0 a vertex. Note

we can think of a polytope as the convex hull of its vertices. We give a pictorial example of

this for a 2D polytope corresponding to a triangle below.

Hv,a

Θ[1]

∆

Note that a polytope ∆ is given precisely by the intersection of a finite number of half

planes H+
vi,ai , i.e.

∆ =

ℓ⋂
i=1

H+
vi,ai (2.147)

is a polytope. It then follows from the definition of Hvi,ai that the vectors vi are perpendicular

to surfaces Hvi,ai and point into the intersection, as this is exactly what we need to ensure

that ⟨m, vi⟩ ≥ ai for all m ∈ ∆. We give a pictorial example for a 2D polytope with ℓ = 4

below.
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We now note that for a lattice polytope, in which case dim∆ = dimMR = d, each facet

Θ[d−1] has a unique supporting hyperplane. It follows from this that there is a unquie choice

such that v[d−1]
Θ is a primitive lattice point in N , which implies that a[d−1]

Θ is an integer.

H
v
[d−1]
Θ ,a

[d−1]
Θ

= {m ∈MR | ⟨m, v[d−1]
Θ ⟩ = −a[d−1]

Θ }, and

H+
Θ[d−1] = {m ∈MR | ⟨m, v[d−1]

Θ ⟩ ≥ −a[d−1]
Θ }

(2.148)

and our polytope is given by

∆ =
⋂

{Θ[d−1]}

H+
Θ[d−1] = {m ∈MR | ⟨m, v[d−1]

Θ ⟩ ≥ −a[d−1]
Θ , ∀ facets Θ[d−1] ⊂ ∆}. (2.149)

The minus sign appearing in the above expressions is included for later convenience.

The polytope can then be used to define two different fans.

Definition. [Fan Over Faces] Let ∆ ⊆MR be a polytope with vertices {vi}. We can define

the fan over the faces to be the fan who’s generating vectors are given are given by {vi}.
In other words, ∆ ⊆MR is given by the convex hull of the generating vectors of the fan.

We note that this fan is defined in MR. We can also construct a fan in NR as follows.

Definition. [Normal Fan] Let ∆ ⊆MR be a polytope. To any face Θ of ∆, we can associate

a cone

σ̌Θ :=
⋃

r≥0,p∆∈∆,pΘ∈Θ
r · (p∆ − pΘ), (2.150)

and its dual σΘ ⊆ NR, which obeys

⟨σ̌Θ, σΘ⟩ ≥ 0. (2.151)

That is,

σΘ := {v ∈ NR | ⟨pΘ, v⟩ ≤ ⟨p∆, v⟩, ∀ p∆ ∈ ∆ and pΘ ∈ Θ}. (2.152)

Again the collection of such dual cones18 for all faces gives us a fan Σ∆ ⊆ NR. The

generating vectors of the fan are given by the vectors normal to the facets of ∆, and as

such Σ∆ is known as the normal fan of ∆.

An important note is that a k-dimensional face Θ[k] of ∆ is associated to a (n − k)-

dimensional cone in Σ∆, where n is the dimension of Σ∆. In particular the facets in ∆

18It is customary to consider the full ∆ being a face of itself, and the dual cone σ∆ is then the zero-

dimensional cone.
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correspond to the rays in Σ∆. By an appropriate translation of ∆, the ray generators of

the normal fan become equal to the lattice points v[d−1]
Θ . We can then use our polytope

to define not only the normal fan Σ∆, but also the divisor class of a line bundle L on the

associated toric variety XΣ∆
. That is, we identify the a[d−1]

Θ in Equation (2.149) with the ai
in Equation (2.141).

Flipping this on its head: given a fan Σ ⊂ N and line bundle L obeying Equation (2.141),

we can define a polytope, known as the Newton polytope, as

∆Σ = {m ∈MR | ⟨m, νi⟩ ≥ −ai, ∀ νi ∈ Σ(1)}, (2.153)

where Σ(1) denotes the set of all rays in Σ. The group of holomorphic sections in L then has

monomial basis

p(m) =
∏
i

z
⟨m,νi⟩+ai
i , (2.154)

where the zi are the homogeneous coordinates associated to the ray generators νi. In particu-

lar, we note that there is a one-to-one correspondence between the characters {mi} ∈ ∆ and

the monomials in L. We note that the holomorphicity of these sections is guarenteed by the

condition ⟨m, νi⟩ ≥ −ai.
The case that is of interest to us is when the hypersurface defines a Calabi-Yau. This

requires the defining polynomial to be a section of the anticanonical bundle of the ambient

toric variety. This sets ai = 1 for all i in Equation (2.141), and so the Newton polytope is

simply defined by

∆Σ = {m ∈MR | ⟨m, νi⟩ ≥ −1, ∀ νi ∈ Σ(1)}. (2.155)

The Calabi-Yau is then given by the zero locus of

∑
m∈∆

αmp(m) =
∑
m∈∆

αm
∏

νi∈Σ(1)

z
⟨m,νi⟩+1
i , (2.156)

where αm ∈ C. If ∆ is a lattice polytope (i.e. all its vertices are lattice points on M), then

it follows that the νi are all lattice points on the dual lattice N . Taking their convex hull

defines another polytope ∆◦, known as the polar dual of ∆. The two lattices obey

⟨∆,∆◦⟩ ≥ −1. (2.157)

A lattice polytope whose polar dual is also a lattice polytope is called reflexive. It follows

from this, and the fact that (∆◦)◦ = ∆, that (∆,∆◦) are a pair of reflexive polytopes. A
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necessary condition of reflexivity is that the origin is the unique interior point of the polytope.

The faces of ∆ and ∆◦ are related to each other by

⟨Θ[k],Θ◦[n−k−1]⟩ = −1, (2.158)

where n is the dimension of the polytopes. The important thing is that a k-dimensional face

in ∆ is related to a (n− k − 1)-dimensional face in ∆◦.

Of course we could have done this whole construction but now starting with a fan Σ◦

who’s Newton polytope is ∆◦. We would then have that ∆ is given by the convex hull of the

vertices of Σ◦. Indeed in this way we see that the normal fan of one polytope corresponds to

the fan over the faces of the other polytope.

If we now change notation mi 7→ ν∗i , then we see our pair of reflexive Newton polytopes

are defined via

∆Σ = {m ∈MR | ⟨m, νi⟩ ≥ −1, ∀ νi ∈ Σ(1)}

(∆◦)Σ◦ = {n ∈ NR | ⟨n, ν∗i ⟩ ≥ −1, ∀ ν∗i ∈ Σ◦(1)},
(2.159)

which define a pair of Calabi-Yaus (X,X∨), with defining equations

G(zi) =
∑
m∈∆

αm
∏

νi∈Σ(1)

z
⟨m,νi⟩+1
i

G◦(z∨i ) =
∑
n∈∆◦

α◦
n

∏
ν∗i ∈Σ◦(1)

z
⟨n,ν∗i ⟩+1
i

(2.160)

Batyrev Mirror Symmetry

We then have the following result due to Batyrev [9].

Proposition 2.7.23. For a Calabi-Yau 3-fold defined via 4-dimensional reflexive Newton

polytope ∆, the Hodge numbers are given by

h1,1(X∆,∆◦) = ℓ(∆◦)− 5−
∑
Θ◦[3]

ℓ∗
(
Θ◦[3]

)
+

∑
(Θ◦[2],Θ[1])

ℓ∗
(
Θ◦[2]

)
ℓ∗
(
Θ[1]

)
h2,1(X∆,∆◦) = ℓ(∆)− 5−

∑
Θ[3]

ℓ∗
(
Θ[3]

)
+

∑
(Θ[2],Θ◦[1])

ℓ∗
(
Θ[2]

)
ℓ∗
(
Θ◦[1]

) (2.161)

where ℓ(...) denotes the number of lattice points of its argument and ℓ∗(...) only counts the

lattice points in the relative interior of its argument.

We do not prove this result here but make the following comment. As detailed in Ap-
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pendix B, the middle primitive Hodge numbers for Calabi-Yaus defined inside projective

spaces are related to polynomails of set degree. In particular for a 3-fold, h2,1Prim = h2,1 is

given by the number of monomials of the same degree as the defining polynomial, minus the

number of terms in the Jacobi ideal. The formula for h2,1 above can be equally understood:

• ℓ(∆) corresponds exactly to the total number of monomials with the same degree as the

defining polynomial.

• (1+4)+
∑

Θ[3] ℓ∗
(
Θ[3]

)
corresponds to the C∗ scaling (the 1) as well as the automoprhism

group of the toric varieity.19

•
∑

(Θ[2],Θ◦[1]) ℓ
∗ (Θ[2]

)
ℓ∗
(
Θ◦[1]) counts the non-primitive forms, that is it is the non-

polynomial deformations.

Corollary 2.7.24. The two Calabi-Yaus above form a mirror pair, and we use notation

X∆,∆◦ and X∆◦,∆ to denote the pair.

Proof. This follows simply from Proposition 2.7.23 and swapping ∆ ↔ ∆◦. ■

This gives us an incredibly powerful method for constructing Calabi-Yau 3-folds and their

mirror:

(i) Take a fan Σ corresponding to whatever ambient space we want.

(ii) Form the Newton polytope ∆Σ along with its dual polytope ∆◦.20

(iii) Consider ∆◦ → (∆◦)Σ◦ , i.e. interpret ∆◦ as the Newton polytope of another fan Σ◦.

(iv) The pair of Newton polytopes gives a pair of Calabi-Yau hypersurfaces (X,X∨), which

are mirror to each other.

Example 2.7.25 . As an important example, we look at the quintic hypersurface Q ⊂ CP4 and

find it’s mirror. We start with the fan of CP4, which has weight system

z0 z1 z2 z3 z4

1 1 1 1 1
(2.162)

19The automorphism group of a toric variety X has dimension rank(N) + dimR, where R is the set of
Demazure roots, and corresponds exactly to the number of lattice points in the interior of the facets, here
Θ[3]. See [56] for more details.

20We have to ensure that our polytopes are reflexive. Therefore if we end up in a situation where either are
not, we simply go back and pick a different fan.
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The generating vectors are 

ν0

ν1

ν2

ν3

ν4


=



−1 −1 −1 −1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


(2.163)

The Newton polytope is then given by the convex hull of the vectors

ν∗0

ν∗1

ν∗2

ν∗3

ν∗4


=



−1 −1 −1 −1

4 −1 −1 −1

−1 4 −1 −1

−1 −1 4 −1

−1 −1 −1 4


(2.164)

Our dual polytope ∆◦ is given by the convex hull of (ν0, .., ν4).

Using

ℓ(∆) = 125, ℓ(∆◦) = 6, ℓ∗(Θ[3]) = 19, and ℓ∗(Θ◦[i]) = 0 (2.165)

for i = 3, 2, 1 we obtain (h1,1(Q), h2,1(Q)) = (1, 101).

Finally we want to compute the toric variety associated to Σ◦. This has generating vectors

(ν∗0 , ..., ν
∗
4). The exceptional set is again just the origin. Our quotient map is then given as

ϕ :



t0

t1

t2

t3

t4


7→


t−1
0 t41t

−1
2 t−1

3 t−1
4

t−1
0 t−1

1 t42t
−1
3 t−1

4

t−1
0 t−1

1 t−1
2 t43t

−1
4

t−1
0 t−1

1 t−1
2 t−1

3 t44

 (2.166)

The kernel of this map is given by

t5i = 1 and
5∏
i=1

ti = 1. (2.167)

In total this gives that the mirror quintic is given by a degree 5 polynomial in CP4/Z3
5. The
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monomial basis is then given by

p(n) =
∏
i

z
⟨n,ν∗i ⟩+1
i , (2.168)

for n ∈ {ν0, ..., ν4, (0, 0, 0, 0)}. The result is simply

z50 , z51 , z52 , z53 , z54 , and z0z1z2z3z4. (2.169)

We note that there is only one additional monomial compared to the Fermat terms z5i . This

corresponds exactly to the fact that h2,1(Q∨) = 1. ▲

2.7.11 Maximally Projective Crepant Partial (MPCP) Desingularisation

In the above we have skipped over an important detail: a priori we are not guaranteed that

our fans do not contain singularities, and that these singularities don’t hit our Calabi-Yau

hypersurface. Indeed for a fan Σ constructed over the faces of a polytope ∆, we are not

guaranteed that such a fan is even simplical: the toric variety contains bad (i.e. non-orbifold)

singularities, as per Proposition 2.7.18. These bad singularities could be inherited into the

Calabi-Yau and result in a singular space, which we do not want. Luckily, we have the

following theorem for reflexive polytopes [9].

Theorem 2.7.26. Let X be a toric variety associated to a reflexive polytope ∆. Then X

admits at least one partial desingularisation (called a maximal projective crepant partial desin-

gularisation in [9]) defined by a triangulation of ∆.

The key thing is that this desingularisation is only partial, in general. However, it can be

shown that if dim∆ ≤ 4, then this desingularisation is a legitimate resolution and the toric

variety is smooth. In particular, this means any Calabi-Yau defined as a hypersurface inside

a toric variety stemming from a polytope with dimension 4 or less is smooth. This is the

case for all Calabi-Yau 3-folds, and so we are guaranteed a smooth result. The X and X∨

appearing in Proposition 2.7.23 refer to the smooth Calabi-Yaus.
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3 | Calabi-Yau: Conformal Field The-

ory

In this chapter we will review the relevant material on the superconformal field theory (SCFT)

realisations of Calabi-Yau manifolds. It has been shown that the existence of N = 1 spacetime

supersymmetry in heterotic compactifications actually requires the existence of N = (0, 2)

SUSY on the worldsheet [57, 58]. As mentioned before, we are more interested in compactifi-

cations of Type II strings, where the left and right SUSYs are equal, so we require a N = (2, 2)

field theory in (1 + 1)-dimensions. We therefore start with a review of some of the basic con-

cepts and set notations of N = (2, 2) SCFTs. More detailed reviews can be found in [13,

59].

We then move towards nonlinear sigma models and SCFTs with Calabi-Yau target space.

Here we will see that the states of the SCFT are deeply related to the cohomology of the

Calabi-Yau. We then introduce mirror symmetry as an automorphism of the SCFT algebra,

and relate it back to the result of the previous chapter.

Next we introduce the gauged linear sigma model and how it is related to the nonlinear

sigma model of our Calabi-Yau. This leads to a discussion of the Landau-Ginzburg/Calabi-

Yau correspondence, and establishes a link to the construction of Calabi-Yaus as hypersurfaces

in complex projective spaces. We then meet the important construction of Gepner models

and work through a few important examples.

Finally we study mirror symmetry in these models and review the construction of Hori &

Vafa [13], and show how it is related to the Batyrev construction presented in the last chapter.

3.1 N = 2 SCFTs

We have N = 2 SUSY for both the left and right moving sectors, but for now we will just

focus on one side, and assume the other is understood implicitly. We will return to how the

left and right quantum numbers are related later.
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The N = 2 Virasoro algebra contains four generators: the energy-momentum tensor, two

supersymmetry currents and a U(1) current (T,G0, G3, J), respectively. It is common to

work with G± = 1√
2
(G0 ± iG3) instead of G0 and G3, as these have definite charge under the

R-symmetry of J , and we do so here. It can be shown [60] that the U(1) current and one

of the supersymmetry currents stem from the Kähler form in the geometry.1 The algebra is

defined via the mode relations

[Lm, Ln] = (m− n)Lm+n +
c

12
(m3 −m)δm+n,0

[Lm, Jn] = −nJm+n

[Jm, Jn] =
c

3
mδm+n,0

[Lm, G
±
r ] =

(
m

2
− r

)
G±
m+r

[Jm, G
±
r ] = ±G±

m+r

{G+
r , G

−
s } = 2Lr+s + (r − s)Jr+s +

c

3

(
r2 − 1

4

)
δr+s,0

{G±
r , G

±
s } = 0,

(3.1)

where c is the Virasoro central charge. The indices on the supersymmetry operators dictate

whether we are in the Neveu-Schwarz (NS) or Ramond (R) sector, with r, s ∈ Z being R and

r, s ∈ Z + 1
2 being NS.

We have two copies of this algebra, a left- and right-moving sector. We will use notation

where unbarred objects correspond to the left-moving algebra and barred objects correspond

to the right-moving sector.

3.1.1 Chiral & Antichiral States

An important thing to note at this point is that L0 and J0 commute, and so they can be

simultaneously diagonalised. In this way, states in our Hilbert space actually have two labels

|h, q⟩, where h is the conformal weight while q denotes the J0 charge, that is

L0 |h, q⟩ = h |h, q⟩ and J0 |h, q⟩ = q |h, q⟩ . (3.2)
1The general statement is that the existence of a covariantly constant p-form on the target manifold gives

rise to conformal dimension p
2

and p+1
2

currents in the algebra, the latter being the superpartner of the former.
Here the Kähler form is a 2-form and so gives rise to a dimension 1 and dimension 3

2
current, which are the

J and G3, respectively.
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Then, using our anticommutation relation above, we see that for a general state in our N = 2

SCFT Hilbert space, we have (assuming unitarity)

0 ≤ ⟨h, q| {G±
1/2, G

∓
−1/2} |h, q⟩ = ⟨h, q| (2L0 ± J0) |h, q⟩ , (3.3)

which gives us the relation

h ≥ 1

2
|q|. (3.4)

Definition. [Superprimary States] Given a N = 2 SCFT, a state |h, q⟩ is a superprimary

if it obeys

Ln |h, q⟩ = Jn |h, q⟩ = G±
r |h, q⟩ = 0 ∀n, r > 0. (3.5)

Definition. [Chiral State] In the Neveu-Schwarz sector of an N = 2 SCFT, a state |h, q⟩
is called left-chiral if it obeys

G+
−1/2 |h, q⟩ = 0. (3.6)

Similarly it is called left-anti-chiral if

G−
−1/2 |h, q⟩ = 0. (3.7)

We similarly define a right-(anti-)chiral state by replacing G±
−1/2 with G±

−1/2.

Proposition 3.1.1. A state |h, q⟩ in a unitary N = 2 SCFT has h = q
2 if, and only if, it is

a chiral primary field. Similarly if h = − q
2 it is an anti-chiral primary.

Proof. Given a chiral primary, following the steps leading to Equation (3.4), we get the result

h = ± q
2 easily.

Now assume that we have a state |h, q⟩ =
∣∣ q
2 , q
〉
. Now we compute

0 = ⟨h, q| {G+
−1/2, G

−
+1/2} |h, q⟩ =

∣∣G−
+1/2 |h, q⟩

∣∣2 + ∣∣G+
−1/2 |h, q⟩

∣∣2, (3.8)

where we have used the fact that the result vanishes, as per the derivation of Equation (3.4),

along with (G+
−1/2)

† = G−
+1/2. So if we are in a unitary theory, we have positive norms, and

so each term on the right must vanish independently, which, in particular, gives us the chiral

condition G+
−1/2 |h, q⟩ = 0.

We also have the first step of the primary condition, G−
+1/2 |h, q⟩ = 0. To prove the rest,

i.e. G−
n−1/2 |h, q⟩ = 0 n > 0, we show that if such a state didn’t vanish, then it would violate

the general condition Equation (3.4): using the commutation relations, we start by noting
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that

L0Jn

∣∣∣q
2
, q
〉
=

(
q

2
− n

)
Jn

∣∣∣q
2
, q
〉

(3.9)

and so Jn
∣∣ q
2 , q
〉
= 0 for all n > 0, as otherwise we violate our condition h ≥ |q|

2 . Then we

finally note that

[Jn, G
+
−1/2] |h, q⟩ = G+

n−1/2 |q, n⟩ , (3.10)

but the left-hand side vanishes for our state
∣∣ q
2 , q
〉
, so we have a primary field.

The anti-chiral result follows along analogous lines. ■

Corollary 3.1.2. The conditions G−
+1/2 |h, q⟩ = G+

−1/2 |h, q⟩ = 0 are sufficient to prove that

|h, q⟩ is a chiral primary. Similarly G+
+1/2 |h, q⟩ = G−

−1/2 |h, q⟩ = 0 gives an anti-chiral pri-

mary.

Proof. This follows simply from the fact that these conditions impose h = |q|
2 , and so by the

above proposition, we have a (anti-)chiral primary. ■

Proposition 3.1.3. A chiral primary field in a N = 2 SCFT must have conformal weight

h ≤ c
6 . In particular the bound h = c

6 is satisfied if, and only if, G+
−3/2 |h, q⟩ = 0. A similar

result holds for anti-chiral primaries with G+
−3/2 → G−

−3/2.

Proof. This follows simply by computing

⟨h, q| {G+
−3/2, G

−
+3/2} |h, q⟩ ≥ 0, (3.11)

as the left-hand side gives

2h− 3q +
2c

3
= −4h+

2c

3
, (3.12)

where we have used q = 2h for a chiral primary. Again the equality is satisfied only when

G+
−3/2 |h, q⟩ = 0. ■

We will see shortly that there is actually a unique chiral primary state that saturates the

bound h = c
6 , an important consequence of this is that when we have a non-degenerate theory

(so the L0 spectrum is discrete) there are only a finite number of chiral primary operators.

There is also a unique antichiral primary state with h = c
6 .
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Chiral Ring

The fields associated to chiral states play an important role. Consider the OPE between two

chiral fields:

ϕi(z)ϕj(w) =
∑
k

Ckij
Φk(w)

(z − w)hi+hj−hk
(3.13)

for general fields Φk(w). Now, we impose the conservation of our U(1) charge, i.e. of the q

values: qi + qj = qk. Then, using Equation (3.4), which holds for a general field, we have

hk ≥
qk
2

=
qi + qj

2
= hi + hj , (3.14)

where we have used that ϕi and ϕj are chiral primaries. However, if hk > hi + hj , then the

OPE only contains positive powers of (z − w), so in the limit z → w, the right-hand side

vanishes. The exception is precisely when hk = hi + hj = qk
2 , but this makes Φk a chiral

primary, as per Proposition 3.1.1. This allows us to define a closed product between chiral

primaries as

(ϕi · ϕj)(w) := lim
z→w

ϕi(z)ϕj(w) =
∑
k

Ckijϕk(w). (3.15)

This product turns the set of chiral primaries into a ring,2 known as the chiral ring. Obviously

the same story follows for the anti-chiral ring, and equally for the right-(anti-)chiral rings.

So in total a N = (2, 2) SCFT has four chiral rings. We shall denote these four chiral rings

by R(c,c),R(c,a),R(a,c),R(a,a), where c/a stand for chiral/antichiral. Note also that (c, c) and

(a, a) are conjugate to each other, as are (c, a) and (a, c), and so we actually only have two

independant chiral rings, say R(c,c) and R(a,c). We will denote the union of these two rings

as R = R(c,c) ∪R(a,c).

3.1.2 Spectral Flow

The N = 2 algebra contains an incredibly important property, known as spectral flow. We

now show where this comes from and explain it’s significance.

Proposition 3.1.4. The N = 2 superVirasoro algebra contains a continuous automorphism
2Note it really is a ring and not a group, as a chiral primary with h ̸= 0 does not have an inverse, as this

would require h < 0 for some fields, but this is not allowed in a unitary theory.
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given by

Ln 7→ Lηn = Ln + ηJn +
η2

6
cδn,0

Jn 7→ Jηn = Jn +
η

3
cδn,0

G±
r 7→ (Gη)±r = G±

r±η

(3.16)

for continuous parameter η. The important case is when η ∈ Z + 1
2 , as this provides a map

between Ramond and Neveu-Schwarz sectors.

Proof. This follows by simply checking that (Lηn, Jnη , G
±
η ) satisfy the algebra mode relations.

The details are tedious and so are omitted. ■

As Equation (3.16) deforms the generators of our SCFT, it necessarily deforms the Hilbert

space. In other words, η parameterises a flow of the spectrum of our SCFT, hence the name

spectral flow. We should note that the terminology twist is also used to describe this process.

More concretely, denoting the starting Hilbert space by H0 and the resulting Hilbert space

by Hη, we define a unitary operator Uη : H0 → Hη via

Lηm = UηLmU
†
η , Jηm = UηJmU

†
η , and |ϕη⟩ = Uη |ϕ⟩ . (3.17)

This allow us to see that we really do have an automorphism on our theory quite easily:

consider a state |ϕ⟩ = |h, q⟩ in our original theory, then

Lη0 |ϕη⟩ = UηL0U
†
ηUη |ϕ⟩ = UηL0 |ϕ⟩ = h |ϕη⟩ , (3.18)

and similarly Jη0 |ϕη⟩ = q |ϕη⟩, and so the physical results, the conformal weight and J0 charge,

are invariant. We are therefore dealing with the same theory, just in a different labelling. In

fact, we could have defined our superVirasoro algebra to include a parameter η in it to start

of with and built the theory up from there.

What we are more interested in, though, is how the conformal weight and J0 charge

change. That is, we want to calculate the actions3

L0 |ϕη⟩ = hη |ϕη⟩ and J0 |ϕη⟩ = qη |ϕη⟩ (3.19)
3We might question acting on the states |ϕη⟩ with the "non-η" operators L0 and J0. That is, L0 and J0

are defined to act on our original Hilbert space, H0, and although Hη
∼= H0, that does not mean that L0 and

J0 should be able to act on Hη. The fact that we can do this is related to how η effects the modes of our
operators. A nice short discussion of this can be found on pages 45 & 46 of [61].
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and compare hη/qη to h/q. This is easily done:

Lη0 |ϕη⟩ =
(
L0 + ηJ0 +

η2

6
c

)
|ϕη⟩ =

(
hη + ηqη +

η2

6
c

)
|ϕη⟩ (3.20)

and, similarly,

Jη0 |ϕ⟩ =
(
qη +

η

3
c

)
|ϕη⟩ , (3.21)

allowing us to conclude

(h, q) 7→
(
h− ηq +

η2

6
c, q − η

3
c

)
, (3.22)

where c is the central charge and η ∈ R.

As we already said, the case of most interest is η = ±1/2 as this provides a map between

NS and R. The important case to consider is the flow of a chiral primary state:

∣∣∣h0 = q0
2
, q0

〉
NS

η= 1
2−→
∣∣∣h 1

2
=

c

24
, q 1

2
= q0 −

c

6

〉
R
, (3.23)

and we note that the conformal weight in the Ramond sector is completely independent of

which Neveu-Schwarz chiral primary we start from: it is always h 1
2
= c

24 . In this way we see

this Ramond state is degenerate, as it can have multiple J0 charges. Further to this, we claim

that these Ramond states are, in fact, the ground states. This is shown as follows: consider

a general Ramond state |h, q⟩R, and compute

0 ≤
∣∣G+

0 |h, q⟩R
∣∣2 = R ⟨h, q|G−

0 G
+
0 |h, q⟩R

= R ⟨h, q| {G−
0 G

+
0 } |h, q⟩R − R ⟨h, q|G+

0 G
−
0 |h, q⟩R

= 2h− c

12
−
∣∣G−

0 |h, q⟩R
∣∣2 (3.24)

where we have made use of our algebra relations. Finally we use that G−
0 |h, q⟩R = 0 is possible

to note that the smallest h value we can have is h = c
24 , and so these must be our ground

states, i.e. annihilated by all lowering operators. This gives us the Ramond sector condition

h ≥ c
24 , which is just the equivalent of Proposition 3.1.3, which holds in the Neveu-Schwarz

sector.

What we have just shown is that there is a one-to-one correspondence between chiral

primaries and Ramond ground states. As there is a finite number of the latter in a non-

degenerate theory, we have just provided an alternative proof that we only have a finite

number of chiral primaries.

We can similarly consider setting η = 1, which provides a flow from NS to NS. For a chiral
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primary this acts as ∣∣∣h0 = q0
2
, q0

〉
NS

η=1−→
∣∣∣h1 = −q1

2
, q1 = q0 −

c

3

〉
NS

, (3.25)

where we note that we obtain a antichiral primary on the right-hand side. Note that the

vacuum |0, 0⟩ is both a chiral and anti-chiral primary, while the flowed to state is only antichiral

with q1 = − c
3 . By similar calculation, if we set η = −1 then we will obtain a chiral primary

with maximal conformal weight and q = + c
3 . As the Neveu-Schwarz vacuum |0, 0⟩ is unique,

we have just shown that there is a unique chiral primary operator with maximal conformal

weight, which we claimed earlier was true.

h

qc
3

c
6

Neveu-Schwarz
η = 0

h

q− c
6

c
6

Ramond
η = 1

2

h

q− c
3

c
6

Neveu-Schwarz
η = 1

Figure 3.1: Depiction of the spectral flow of chiral primary states. The initial
Neveu-Schwarz chiral primaries (left) flow under η = 1

2 to Ramond states with
h = c

24 (middle). Upon a further η = 1
2 (so η = 1 from the initial states) takes us

back to the NS sector (right) where now all our states are anti-chiral. The colours
on the circles are meant to depict how individual states flow.

3.1.3 Minimal Models

The simplest class of N = 2 SCFTs are the N = 2 minimal models. These are rational

conformal field theories and so contain a finite number of primary fields. They are uniquely

defined by their central charge

c =
3k

k + 2
, (3.26)

where k is an integer known as the level. Note that 0 < c < 3. We will denote the level k

minimal model as MMk. The superconformal primaries in MMk are given by a triple (l,m, s)

where

0 ≤ l ≤ k, s ∼ s+ 4 and m ∼ m+ 2(k + 2). (3.27)
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We identify s = 0, 2 as the NS states while s = ±1 are the R states. The conformal weights

and U(1) charges are given by

hlm,s =
l(l + 2)−m2

4(k + 2)
+
s2

8
and qlm,s = − m

k + 2
+
s

2
. (3.28)

Note that the chiral and antichiral conditions are given by (l,m, s) = (l,∓l, 0), respectively.

Spectral flow maps (l,m, s) 7→ (l,m − 1, s − 1), and so our R ground states are given by

(l,m, s) = (l,∓l − 1,−1) (see [59] for a nice review).

3.2 N=2 SCFTs with Calabi-Yau target

So far we have discussed N = 2 SCFTs in general. We now want to specialise to the worldsheet

of Type II strings compactified on a Calabi-Yau manifold, which is described by a nonlinear

sigma model (NLSM) in 2D.

3.2.1 Nonlinear Sigma Model

A NLSM is a scalar field theory, in which the fields are identified with the coordinates of the

spacetime manifold. For string theory purposes, we focus on NLSMs in 2D. We promote the

whole construction to a supersymmetric theory and look to obtain a SCFT. We usually talk

about a NLSM on a target manifold M.

The NLSM on a Calabi-Yau manifold is, in particular, a NLSM on a Kähler manifold. We

have already seen that Kähler implies N = (2, 2) on the worldsheet, and so this NLSM is a

N = (2, 2) field theory in (1+1)-dimensions. Just as with N = 1 in (3+1)-dimensions, there

is a notion of chiral and antichiral superfields, i.e. fields which obey, respectively,

D̄α̇Φ = 0 and DαΦ̄ = 0, (3.29)

for supercovariant derivatives D̄ and D. Chiral and antichiral superfields are related by

complex conjugation. We label the two coordinates via α̇, α = ±.

The Lagrangian (density) for the NLSM on a Kähler manifold is given by the D-term

Lkin =

∫
d4θK

(
Φi, Φ̄ī

)
. (3.30)

K(Φi, Φ̄ī) is a real function of chiral and antichiral superfields, and defines the Kähler metric

via

gij̄ := ∂i∂j̄K
(
Φi, Φ̄ī

)
. (3.31)
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2D field theories with N = (2, 2) contain two U(1) R-symmetries: U(1)V and U(1)A,

where V stands for vector and A for axial.4 In what follows we shall often work in a different

charge basis, defined by

U(1)L =
U(1)V + U(1)A

2
and U(1)R =

U(1)V − U(1)A
2

, (3.32)

where L/R stands for left/right, respectively. If our NLSM is superconformal, the U(1)L and

U(1)R are generated by J and J̄ , respectively.

For these to be symmetries of our theory, we need to show that the action is invariant

under their action. It is easy to show that the kinetic term is invariant provided K(Φi, Φ̄ī)

has (qV , qA) = (0, 0). We note that if K(Φi, Φ̄ī) = K(|Φi|2), then we can assign any charges

to the individual chiral superfields (the antichiral superfields then have opposite charge).

However this only guarantees classical invariance and we need to check for the existence

of anomalies. It can be shown [42] that U(1)V is not anomalous but that U(1)A can be,

depending on the value of the first Chern class of the target manifold M. In particular it can

be shown that U(1)A is broken to Z2κ where

κ = ⟨c1(M), φ∗[ΣWS ]⟩, (3.33)

where φ : ΣWS → M is a map from the worldsheet to the target spacetime, and [ΣWS ] is

the homology class. From here we have that U(1)A is anomaly free when c1(M) = 0, i.e. it

is a Calabi-Yau. In fact it turns out that U(1)A is anomaly free if, and only if, the target

spacetime is Calabi-Yau. Putting this together with the fact that a N = (2, 2) superconformal

field theory requires both U(1)V and U(1)A to be non-anomalous, we see that the NLSM with

Calabi-Yau target is expected to flow to a N = (2, 2) SCFT.

3.2.2 Ramond Ground States

For a general quantum field theory, the Witten index at inverse temperature β is a modified

partition function:

Tr
[
(−1)F e−βH

]
, (3.34)

where F is the fermion number operator, H is the Hamiltonian of the system and the trace

is taken over the Hilbert space of states. For supersymmetric theories we have that every

non-zero eigenvalue of H (i.e. non-zero energy) contains an equal number of fermions and
4It turns out that a N = (2, 2) theory in (1 + 1) dimensions can be obtained by the dimensional reduction

of N = 1 SUSY in (3+1)-dimensions. The U(1)V is the R-symmetry of the 4D theory and U(1)A corresponds
to rotations in the compactified directions.
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bosons and so give vanishing contributions. In this case, the Witten index simply becomes

χ := Tr(−1)F . (3.35)

This was evaluated in [62] for a N = 1 supersymmetric NLSM, and we briefly summarise the

result here.

The Witten index only receives contributions from the R ground states, as these are the

zero-energy eigenvalues. So, after ignoring modes with non-zero momentum, we are left with a

supersymmetric quantum mechanics problem with a finite number of degrees of freedom. Our

Majorana fermions, in the convienent basis, take the form (ψ,ψ∗)T , with the two components

related by complex conjugation. These components satisfy the Clifford algebra relations

{ψi, ψj} = {ψ∗
i ψ

∗
j } = 0 and {ψi, ψ∗

j } = gij , (3.36)

where gij are the components of the metric. We therefore identify ψ∗
i and ψi as the ith

creation and annihilation operators, respectively. The Hilbert space of states here is rather

straight forward to compute. We start by considering all states that are annihilated by the ψis.

The wavefunction of a state is just an arbitrary function of the bosonic fields in our theory,

which we denote by A(ϕk). We can now excite these states with our creation operators, to

generate wavefunctions Aij...ℓ(ϕk). Due to the fermionic nature of these creation operators,

we must make sure we antisymmetrise the fermionic indices. From here it is easy to make the

connection between these states and the differential forms of the manifold: simply identify

ψ∗
i with wedging by dxi and ψi by removing the form. This gives us the important result:

there is a one-to-one correspondence between Ramond ground states and differential forms.

We clarify at this point that really all we can say is that there is the same number of R ground

states as there are differential forms, the fact that we have been able to pair them so nicely

here is an artifact of our choice of basis.

In our basis, the supersymmetry charges take the neat form

Q = i
∑

ψ∗
i pi and Q∗ = −i

∑
ψipi, (3.37)

where pi is the covariant derivative for the boson associated to the fermion. We then see that

Q adds a fermion index to our state while Q∗ removes an index.

By then considering the action of Q on a generic wavefunction, Aij...ℓ(ϕk), we can show

that Q effectively acts as the exterior derivative on the differential forms. Equally Q∗ acts as
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the adjoint operator d∗. The Hamiltonian in our SUSY theory is given simply by

H = QQ∗ +Q∗Q ∼= dd∗ + d∗d, (3.38)

and so we see ground states, i.e. those that contribute to the Witten index, are related

to harmonic forms on the manifold. Finally, (−1)F is +1 for an even number of fermion

excitations and −1 for an odd number, we arrive at the result

Tr(−1)F =

dimM∑
p=1

(−1)pbp = χ, (3.39)

where bp is the b-th Betti number of M. Here χ is the Euler characteristic of the target

manifold, and so motivates the notational choice of χ in Equation (3.35).

3.2.3 Chiral Rings

It is important to note that, at this level, we cannot identify individual Betti numbers of our

supersymmetric sigma model: all we can say is that there is the same number of Ramond

ground states as there are harmonic forms. If we are to introduce more structure to our target

space, then it is possible to obtain further information and potentially get further topological

relationships. We now look at how this happens for Calabi-Yau targets.

We now want to take the above discussion and look at it in situations where we have (2, 2)

SUSY. The key thing here is that we have access to spectral flow, which allows us to map our

R ground states to states in the NS sector. We will restrict the discussion to theories which

satisfy the relation

qL − qR ∈ Z. (3.40)

As we will see, every state in our Calabi-Yau theory will actually already obey this condition,

and so does not limit the results.

The condition for a R state to be a ground state, and so to contribute to the Witten

index, is that it is annihilated by both G±
0 . This condition is mapped under spectral flow to

the states being chiral or antichiral. In other words, spectral flow maps our R ground states

to elements of our ring R. As the former are related to the differential forms of M, we also

obtain a relationship between R and the forms. Using the fact that spectral flow from R to

NS changes the charges by −c/6, we obtain the following [5]

TrR
[
tJ0 t̄J̄0

]∣∣
G±

0 =Ḡ±
0 =0

= (tt̄)−c/6TrR
[
tJ0 t̄J̄0

]
. (3.41)
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We note that it makes sense to include J0/J̄0 in this trace: the trace is meant to be over

Ramond ground states, which have zero eigenvalue with the Hamiltonian. It follows from the

fact that both J0 and J̄0 commute with the Hamiltonian, that we can include these into the

argument of the trace without changing this condition.

From here we define

PR(t, t̄) := TrR
[
tJ0 t̄J̄0

]
, (3.42)

which was called the Poincaré polynomial for the CFT in [5]. If we denote the number of

states with charges (p, q) by hp,q, we can write the Poincaré polynomial of the CFT as the

sum

PR(t, t̄) =
∑
p,q

hp,qtpt̄q. (3.43)

We can equate this with the Poincaré polynomial of the target manifold M:

P (t, t̄) =
dimM∑
p,q=0

hdimM−p,qtpt̄q, (3.44)

where hm,n are the Hodge numbers of M. We then have the immediate Corollary.

Corollary 3.2.1. There is the same number of states of charge (p, q) in our ring R as

there are (dimM− p, q)-forms on M.5

This result is clearly related to the result of the previous section, however we now note

that we can look at individual Hodge numbers. The fact that we can do this is related directly

to the fact that our algebra has two U(1) charges (i.e. two generators J0 and J̄0). It is crucial

that we have both of these charges. Indeed it can be shown for a theory with only U(1)V (i.e.

a Kähler target) that we would only be able to compute the Hodge numbers hp,q up to a set

value of p − q. The existence of the U(1)A symmetry allows us to compute Hodge numbers

up to set value of p+ q− dimM, and so it is the combination of these two that allowed us to

get the above result. This observation leads to the following important result: we can only

determine the Hodge numbers of the target space up to the ambiguity

hp,q ↔ hdimM−p,q. (3.45)

This is exactly the requirement of mirror symmetry we met before! This shows us that there

is an intimate relationship between the charges of the states and the mirror map, which we

will see more clearly going forward.
5We have changed convention compared to [5], which identifies (p, q) charge with (p, q)-forms. This relation

is given a redefinition of t. We pick this convention for later convenience.
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Of course in order to obtain Corollary 3.2.1, we have also used spectral flow to map the R

ground states to elements in R. As explained above, we actually have two independent rings

in general R(c,c) and R(a,c). We can therefore define two such Poincaré polynomials, one for

each ring:

P(c,c)(t, t̄) := TrR(c,c)

[
tJ0 t̄J̄0

]
and P(a,c)(t, t̄) := TrR(a,c)

[
tJ0 t̄J̄0

]
. (3.46)

States in R(c,c) necessarily have the same sign for the left and right charges, while states in

R(a,c) have charges with different signs.

3.2.4 Odake Algbera

The above discussion holds for any N = (2, 2) NLSM. Here we want to specialise to the case

where our target manifold is a Calabi-Yau. Firstly, we note that, by central charge arguments,

the CFT for our Calabi-Yau must have c = 9: each spacetime dimension contributes 3/2 to

the central charge, so we have a total of c = 15 but the 4-dimensional spacetime takes up

cST = 6 of these.

As a Calabi-Yau is, in particular, a Kähler manifold, the N = (2, 2) SCFT is a good

starting point: the U(1) current gives us the Kähler form. However, it is not sufficient: we

still need the holomorphic (3, 0)-form, which we denote Ω. We account for Ω in the CFT by

extending the N = 2 Virasoro by a field with quantum numbers (h, q)NS = (3/2, 3), where

the subscript indicates that the field lives in the NS sector. The resulting algebra is called an

Odake algebra, and was first written down in [63], and it has the correct central charge.6 We

denote the field in our SCFT also by Ω. It is a complex field, and we write its decomposition

as

Ω = A+ iB (3.47)

The complex conjugate of this field (which is the (0, 3)-form) is denoted Ω∗ = A− iB, and it

has (h, q)NS = (3/2,−3). Note that the uniqueness of Ω and Ω∗ in the SCFT follows from

the fact that they are chiral/antichiral primaries that saturate the bound h ≤ c
6 . This is the

statement that h3,0 = h0,3 = 1.

The superpartner of Ω field is denoted Υ and is decomposed as Υ = 1√
2
(C+iD), such that

(A,C) and (B,D) are superpartner pairs. So, in total, the generators of our Odake algebra

are (T,G0, J,G3, A,B,C,D). The OPEs of these generators can be found in [29, 34]. We

note here that associativity of the algebra only holds modulo an ideal generated by [64] (see
6A generic Odake algebra corresponds to an extension of the N = 2 Virasoro algebra by a (n/2, n) field,

and the central charge is c = 3n. Here we are just considering n = 3 as this is the relevant value for 3-folds.
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also [29, 34])

N1 = ∂A− (JB) and N2 = ∂B + (JA), (3.48)

where (...) stands for normal ordering.

As detailed in the original paper, these theories only admit a finite number of irreducible,

unitary highest weight representations. The key thing for us will be the allowed massless reps,

of which there are three for NS and three for R. As mentioned before, these representations

are linked by spectral flow so that we only need to consider one set. The allowed values in

the NS sector are7

(h, q)NS = (3/2,−3), (1/2, 1), (1/2,−1) and (3/2, 3) (3.49)

which have corresponding R values

(h, q)R = (3/8, 3/2), (3/8,−1/2), (3/8, 1/2) and (3/8,−3/2), (3.50)

respectively. We note at this point that every R ground state has h = 3/8, and so the R

ground states are specified simply by their q values. This result is consistent with a general

result for superconformal field theories that the conformal weight of Ramond ground states is

d/16, where d is the number of Ramond Fermions (i.e. the dimension of the target spacetime).

Here we have only written down the quantum numbers for one side (say the left side) of

our SCFT. The discussion is completely identical for the right hand side, and a general state

is given by a product of two of the above states. As we will see, all the models we consider

actually have qL = ±qR. This restriction gives us an important proposition.

Proposition 3.2.2. The (c, c) ring corresponds to the middle cohomology while the (c, a) ring

gives the diagonal forms.8

Proof. For our Odake algebra, we have that qL,R ∈ {0, 1, 2, 3}.9 So, if qL = qR = q then

(q, q) ∼= α ∈ h3−q,q, (3.51)

i.e. there is a degree (3− q, q) form, as per Corollary 3.2.1. Similarly if qL = −qR = q, then

(q,−q) η=−1−→ (q, 3− q) ∼= β ∈ h3−q,3−q, (3.52)
7The (3/2,±3) states are actually related to a single state, (0, 0), by spectral flow with η = ±1. However,

for future simplicity we treat them as their own fields here.
8By diagonal form, we simply mean an element in hp,p for 0 ≤ p ≤ dimC M.
9The 0, 2 cases are obtained by spectral flow of the −3,−1 cases, respectively.
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where we have used spectral flow in order to ensure our differential form has positive degree.

■

Corollary 3.2.3. An important consequence of Proposition 3.2.2 is that we require both R(c,c)

and R(a,c) to be non-trivial in our theory, as otherwise some of the required Hodge numbers

would vanish.

We finally note that we can also relate the Hodge numbers to the charges in the R sector,

by spectral flow. We simply use Equation (3.22) with η = ±1/2 and c = 9 so that qNS 7→
qR = qNS ∓ 3

2 . From here we can say that to every state with charges (qL, qR)R there is a

(m,n)-form, where these numbers obey

(qL, qR)R =

(
3

2
−m,n− 3

2

)
. (3.53)

We emphasise here that we can only equate the number of these things. That is, if VqL,qR
denotes the vector space of states with charges (qL, qR)R, then

dim
(
V 3

2
−m,n− 3

2

)
= hm,n. (3.54)

It is generally true that a differential form can be represented by some state in the CFT,

however we are not guaranteed that such a state will have definite charge.

3.2.5 Mirror Symmetry

An N = 2 sigma-model with Calabi-Yau target has the following automorphism

MCY : (T,G0, J,G3, A,B,C,D) 7→ (T,G0,−J,−G3, A,−B,C,−D). (3.55)

Note, in particular, that it flips the sign of any state, q 7→ −q. We are dealing with two copies

of the algebra, and we have seen that the charges of the states are related to the degrees of

the forms on the target manifold. In this context, mirror symmetry is understood as applying

Equation (3.55) to one side, say the right side: (qL, qR) 7→ (qL,−qR). Note that this maps

an element in (c, c) to an element of (a, c), and vice versa. From our relation to differential

forms, this recovers the well known hp,q 7→ hp,3−q.

Mirror symmetry thus suggests that two Calabi-Yau manifolds that have widely different

geometry are actually deeply connected and give rise to the same SCFT (up to isomorphism).

Indeed it is a well known fact that we can obtain the same SUSY multiplets in 4D from either

compactifying IIA string theory on one Calabi-Yau or IIB on the mirror Calabi-Yau.
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Although the argument to this point is promising, it is not entirely convincing, and in

order to really appreciate the connection between mirror theories, we need to go to a more

concrete construction.

3.3 Sigma Models

As explained at the beginning of the last section, the SCFT is linked to the spacetime geometry

through the NLSM. The NLSM identifies the fields with coordinates on the target spacetime.

This is done patch by patch, and so this construction is manifestly non-global. As we saw,

the construction only defined the Calabi-Yau as a Kähler manifold with vanishing first Chern

class. Such a definition is very precise, but it doesn’t lend itself well to explicit constructions

of Calabi-Yaus. A more practically useful geometrical construction is that of a hypersurface

in some toric space (e.g. a weighted projective space). We can address both of these issues

by looking at the 2D N = (2, 2) theories in more detail, in particular at gauged linear sigma

models (GLSM). Our discussion will largely follow [20, 42].

3.3.1 Gauged Linear Sigma Model

A GLSM is a N = (2, 2) field theory, written in superspace, with a collection of n chiral

superfields {Φi} along with a U(1) gauge group.10 We introduce a vector superfield V 7→
V + i(Λ− Λ̄), where Λ is a chiral superfield that labels the U(1) action.

The Lagrangian of the GLSM contains four pieces:

L = Lkin + LW + Lgauge + LFI,θ. (3.56)

which are given by

Lkin =

∫
d4θ

∑
i

Φ̄ie
2QiV Φi

LW =

∫
d2θW (Φi) + c.c.

Lgauge = − 1

2e2

∫
d4θΣ̄Σ

LFI,θ =
1

2

(
−
∫
dθ̄−dθ+tΣ+ c.c.

)
.

(3.57)

where W (Φi) is the superpotential, e is the gauge coupling constant and t = r − iθ. Here r

is the FI parameter and θ the theta angle. The gauge field Σ is the field strength and is an
10The generalisation to U(1)s is straight forward.
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example of a twisted chiral superfield, i.e. a field which obeys D̄+Σ = D−Σ = 0. Viewing

Lgauge as the twisted equivalent of Lkin, we can then use LFI,θ to define a linear twisted

superpotential, W̃ (Σ) = −tΣ. Explicit expressions for the component expansions of these

Lagrangians can be found in [20].

We again need to ask about the U(1)V ×U(1)A symmetries and anomaly conditions. The

invariance of Lkin is of course the same as the NLSM discussion and gives the same result.

The F-term, LW , tells us that the superpotential is required to have (qV , qA) = (2, 0). This

constrains the form it can take, namely we require it to be quasi-homogeneous:

W
(
λq

i
V Φi

)
= λ2W

(
Φi
)
. (3.58)

The twisted F-term, LFI,θ, tells us that Σ must have (qV , qA) = (0, 2). The anomaly conditions

again carry over, along with the requirement that the U(1) gauge group charges cancel [13,

42], i.e. ∑
i

Qi = 0. (3.59)

This is required to ensure U(1)A is non-anomalous. In particular if
∑

iQi = p then U(1)A is

broken to Z2p.

Remark 3.3.1 . We note that Equation (3.59) is required in order for our target space to

be Calabi-Yau. Indeed, note that Equation (3.59) takes the same form as condition (ii) of

Proposition 2.7.21. This connection can be made much deeper, but we postpone this discussion

until we have discussed mirror symmetry for this construction.

3.3.2 Connection to NLSM & The LG/CY Correspondence

In order to see the connection between GLSMs and NLSMs, we solve the equations of motion

for the auxiliary fields:

D = −e2
(∑

i

Qi|ϕi|2 − r

)
and Fi =

∂W

∂ϕi
, (3.60)

where the lower case indicates the lowest component of the superfield. Doing this leaves us

with a dynamical theory for the fields (ϕi, σ), which has potential energy

U(ϕi, σ) =
1

2e2
D2 +

∑
i

|Fi|2 + 2|σ|2
∑
i

Q2
i |ϕi|2 (3.61)
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Let MVac denote the vacuum manifold of the GLSM. That is, in the GLSM we identify the

chiral superfields {Φ1, ...,Φn} with coordinates on Cn and then consider the surface defined

via minimising the potential energy. We then have the following proposition

Proposition 3.3.2. The IR limit of a GLSM is the NLSM on MVac.

We do not prove this here (see [42] for more details) but instead work through an important

example.

Example 3.3.3 . Consider a theory of n chiral superfields all with charge Qi = 111 and vanish-

ing superpotential, W = 0. Then we have

U(ϕi, σ) =
∑
i

|σ|2|ϕi|2 +
e2

2

(∑
i

|ϕi|2 − r

)2

. (3.62)

If r > 0 then U = 0 is given by σ = 0 and

n∑
i=1

|ϕi|2 = r. (3.63)

This defines a sphere Sn−1. However we now need to account for the U(1) action, so that in

total the vacuum manifold is

CPn−1 =

{
(ϕ1, ..., ϕn)

∣∣∑
i |ϕi|2 = r

}
U(1)

. (3.64)

By an identical calculation, assigning different charges to the fields will produce a weighted

projective space. ▲

Example 3.3.4 . Let’s now consider a generalisation of the above example: {Φ1, ...,Φn} and

gauge group U(1)k =
∏k
a=1 U(1)a. The charges of the fields are Qi,a, with i = 1, ..., N . Again

we take the superpotential to vanish, which leaves

U =

n∑
i=1

|Qi,aσa|2|ϕi|2 +
k∑
a=1

e2a
2

( n∑
i=1

Qi,a|ϕi|2 − ra

)2

. (3.65)

For the case of ra > 0, the vacuum manifold is then given by

MV ac =

{
(ϕ1, ..., ϕn)

∣∣∑
iQi,a|ϕi|2 = ra, ∀a = 1, ..., k

}
U(1)k

. (3.66)

11Note that this doesn’t obey Equation (3.59), and so the NLSM is anomalous and therefore cannot corre-
spond to a Calabi-Yau.
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The interesting thing then comes from the following argument. Consider (ϕ1, ..., ϕn) to be

coordinates of a copy of Cn. Denote the complexification of the U(1)k gauge group by (C∗)k,

and define Z(ϕi) ⊆ Cn to be the subset such that the (C∗)k orbit doesn’t contain a solution

to
n∑
i=1

Qi,a|ϕi|2 = ra (3.67)

for all a = 1, ..., k. It can then be shown (see [42] for a detailed discussion) that Mvac is

diffeomorphic to the quotient
Cn \ Z(ϕi)

(C∗)k
. (3.68)

Additionally there is a (C∗)n−k holomorphic automorphism that acts freely and transitively

on an open, dense submanifold of the quotient. This is exactly the construction of our toric

varieties from fans introduced before, Equation (2.112). We also note that Z(ϕi) depends on

the values of ra, in the same way that Z(Σ) in Equation (2.112) depends on the fan Σ. This

provides further support for Remark 3.3.1: there is a deep connection between the GLSM and

the construction of Calabi-Yaus using toric geometry. ▲

We now need to account for F -terms, i.e. non-vanishing superpotential. We will now show

that appropriately chosen superpotentials lead to hypersurfaces in the ambient toric spaces.

We focus on the simplest case of a hypersurface in CPn−1, but more general results can be

found in [20].

Example 3.3.5 . Consider a GLSM with n + 1 chiral superfields {P,Φ1, ...,Φn} with gauge

group charges qi = 1 and qP = −n, and superpotential

W = P ·G
(
Φ1, ...,Φn

)
(3.69)

where G(Φ) is a homogeneous polynomial of degree n. We assume G(Φ) is generic, in the

sense that

G =
∂G

∂Φ1
=

∂G

∂Φ2
= ... =

∂G

∂Φn
= 0 =⇒ Φ1 = Φ2 = ... = Φn = 0. (3.70)

The potential energy for this system is given by

U =
∣∣G(ϕi)∣∣2 + |p|2

∑
i

∣∣∣∣ ∂G∂ϕi
∣∣∣∣2 + 1

2e2
D2 + 2|σ|2

(∑
i

|ϕi|2 + n2|p|2
)

(3.71)
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where

D = −e2
(∑

i

|ϕi|2 − n|p|2 − r

)
. (3.72)

The vacuum manifold of this theory is defined by U = 0 and is r dependent. The case r >> 0

requires at least one of the ϕi to be non-zero. From here, the |σ|2
∑

|ϕi|2 term gives σ = 0,

while the |p|2
∑

|∂iG|2 term (along with Equation (3.70)) tells us that p = 0. Finally we

require G = 0. We are thus left in exactly the case as before, but now with the constraint

G = 0. In other words, the GLSM flows to the NLSM on S ⊂ CPn−1, defined by a degree

n homogenous polynomial. These are precisely the conditions for a Calabi-Yau manifold,

S = MCY .

The case r << 0 can similarly be shown to require p ̸= 0 and so the field P picks up a vev,

and breaks the U(1) gauge group to a Zn subgroup: ϕi 7→ e
2πi
n ϕi. This leads to a theory with

superpotential W ′ =
√
−r ·G(ϕi) subject to this Zn action. This defines a Landau-Ginzburg

(LG) orbifold. This recovers the well known Calabi-Yau/Landau-Ginzburg correspondence:

we can view them as two different phases of the same GLSM.

It is important that we have a LG orbifold, as it is known that a LG theory only has non-

trivial R(c,c), while R(a,c) contains just the identity, but we need both to be non-trivial for

strings on Calabi-Yaus. However, as demonstrated in [65], the twisted states in the orbifold

theory give rise to elements in R(a,c) and so save the day.

We can alter the action of the gauge group on this system to account for hypersurfaces in

weighted projective spaces. We can pick QP = −H and Qi = wi, where

wi =
H

ki + 2
and H = lcm(ki + 2), (3.73)

and then the anomaly condition enforces

∑
i

1

ki + 2
= 1. (3.74)

Then we set

G(Φi) = Φk1+2
1 + ...+Φkn+2

n (3.75)

in the superpotential. Our Calabi-Yau is then defined by this degree H Fermat hypersurface

in CPn−1
w1,...,wn

. The LG orbifold is then given by W ′ = Φk1+2
1 + ...+Φkn+2

n with ZH quotient

Φi 7→ e
2πiγ
ki+2Φi. (3.76)

▲

92



3.3.3 Gepner Models

It is known [5] that the IR limit of a LG model with W = Φk+2 is a (2, 2) SCFT with central

charge

c =
3k

k + 2
. (3.77)

which is the level k N = 2 minimal model, MMk. The idea is then that the worldsheet SCFT

(i.e. the nonlinear sigma model) is isomorphic to the SCFT obtained by the IR limit of the

LG orbifold. We can therefore use the minimal models to construct and study the worldsheet

SCFT.

Gepner [15] proposed a method for constructing the CFT of a Calabi-Yau as a direct

product of N = 2 minimal models. At the GLSM level each term in the product corresponds

to a different Φki+2
i in G(Φi).

The idea is to note that the central charge adds under products, and so we could form a

c = 9, N = 2 theory out of a collection of MMs with different levels. That is

(
N = 2

)
c=9

=
r⊗
i=1

(
N = 2

)MM

ci
with

r∑
i=1

ci =
r∑
i=1

3ki
ki + 2

= 9. (3.78)

The remaining part of our CFT corresponds to the 4D spacetime. Working in lightcone gauge,

this is a CFT with central charge c = 3 and consists of two bosons and their accompanying

fermions. The fermions are described by an so(2)1 affine Lie algebra,12 which has four repre-

sentations (O2)h=0,q=0, (V2)h=1/2,q=1, (S2)h=1/8,q=1/2 and (C2)h=1/8,q=−1/2. The NS sectors

are O2 and V2 while S2 and C2 are the R sectors. As we are focusing on the Gepner model

part here, we drop the fermions for now but shall return to them later.

Recall that the superconformal primaries in MMk are defined by the triple (l,m, s) where

the conformal dimension and U(1) charge is given by Equation (3.28). The conformal weights

and charges add under products of different MMk. Therefore all we need to do is account

for the orbifold action. As detailed in [65], at the level of the CFT the orbifold acts as a

projection on the charges via

g = e2πiJ0 . (3.79)
12Given a finite dimensional Lie algebra g, we define the (infinite dimensional) affine Lie algebras (also known

as Kac-Moody algebras) by the central extension of g along with the introduction of a derivative operator. We
denote the affine Lie algebra as gk, where k is known as the level. Affine Lie algebras will appear in several
places throughout the thesis, but the technical details behind them will not be vital to the understanding of
the work. For this reason they are not discussed in detail, but the interested reader is instead directed to [66]
for details.

93



We therefore require our states to have integer charge, and our Gepner model is defined via

(Gep) =
[
MMk1 ,MMk2 , ...,MMkr ]

∣∣
U(1)-projection, (3.80)

where the U(1)-projection enforces

r∑
i=1

[
li

ki + 2

]
= 0, 1, 2, 3, (3.81)

The restriction on the right-hand side follows from Equation (3.74) along with li ≤ ki. The

integrality of the charges is also required to ensure spacetime SUSY (see [11] and references

therein). This result is actually not surprising: we have already seen that our Odake algebra

limits the NS charges to be q = ±3,±1 which are equivalent, via spectral flow, to q = 0, 1, 2, 3.

The above equation is nothing other than the NS charges of our states.

As we are considering an orbifold, we obtain both untwisted and twisted sectors. Let’s

start with the untwisted sector. Here we have qL = qR and the charges of a state are simply

given by the sum of the individual MMk charges. In the R sector (which is where we will

predominantly work), we therefore have the untwisted charges

5∑
i=1

(
li + 1

ki + 2
− 1

2

)
=

5∑
i=1

(
li

ki + 2

)
− 3

2
, (3.82)

where we made use of our anomaly condition, Equation (3.74). If we then impose the Gepner

condition, Equation (3.81), we see that the R charges are restricted to q = ±3
2 ,±

1
2 . This

same result is, of course, obtained by applying spectral flow to the allowed NS charges.

We now note that a chiral field Φ is identified with (l,m, s) = (1,−1, 0), and so the li
value determines the power of Φi. Therefore, a state with

5∑
i=1

li
ki + 2

= 0, 1, 2, 3 (3.83)

correspond, respectively, to degree 0, H, 2H and 3H polynomials, where H = lcm(ki + 2).

In particular the state |li⟩ is identified geometrically with Φlii . Note that li ≤ ki and so we

must set Φki+1
i = 0.13 Using that the right-hand side of the above corresponds to states with

charges −3/2, −1/2, 1/2 and 3/2, respectively, along with Equation (3.53), we get that they

correspond to (3, 0), (2, 1), (1, 2) and (0, 3) forms.
13This is the requirement that we don’t consider terms in the Jacobian ring.
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Remark 3.3.6 . It is interesting to note that this result can be related to the notion of a

Griffiths residue and the primitive cohomology of the Calabi-Yau manifold (see Appendix B).

Let’s now discuss the twisted sectors of our Gepner model. As detailed in [65] these states

have qL = −qR, and the charge of a state depends on which twisted sector we are in:

qνL =
∑

i|ν /∈(ki+2)Z

(
ν

ki + 2
−
[

ν

ki + 2

]
− 1

2

)
, (3.84)

where [...] stands for the integer part of the argument, and ν = 1, ...,H − 1 labels the twisted

sector.

States in the twisted sector can become untwisted when ν ∈ (ki+2)Z, in which case their

charge is computed simply using

qi =
li + 1

ki + 2
− 1

2
. (3.85)

and (qi)L = (qi)R for these factors.

So, in total, a charge of a generic state is given by

qνL =
∑

i|ν∈(ki+2)Z

(
li + 1

ki + 2
− 1

2

)
+

∑
i|ν /∈(ki+2)Z

(
ν

ki + 2
−
[

ν

ki + 2

]
− 1

2

)

qνR =
∑

i|ν∈(ki+2)Z

(
li + 1

ki + 2
− 1

2

)
−

∑
i|ν /∈(ki+2)Z

(
ν

ki + 2
−
[

ν

ki + 2

]
− 1

2

) (3.86)

where the fully untwisted sector is identified with ν = 0. We can write this in a more

symmetric manner by defining l(ν)i + 1 := ν mod (ki + 2), then the two sums above take the

same form. An overall state is considered untwisted if qL = qR and twisted if qL = −qR,

despite what the individual (qi)L and (qi)R obey.

We note that ν = 1 always gives

qL = −qR =

5∑
i=1

(
1

ki + 2
− 1

2

)
= −3

2
, (3.87)

and so corresponds to the (3, 3) form, as per Equation (3.53). Similarly ν = H − 1 gives rise

to the (0, 0) form. The other ν values will give us either a (1, 1) or a (2, 2) form, up to some

exceptions. Suppose that H is even, then we can set ν = H/2 mod (ki + 2). We now claim

that if wi = H
ki+2 is even, then the twist is trivial, i.e. ν = 0. Let’s see this: for some n ∈ Z,
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we can write ν = H/2 as

H

2
+ n(ki + 2) =

(
H

2(ki + 2)
+ n

)
(ki + 2) =

(
wi
2

+ n

)
(ki + 2), (3.88)

but if wi is even, then we can always pick n = −wi
2 , and so ν = 0. When wi is odd, the above

calculation shows us that

l
(H
2
)

i =
ki
2
, (3.89)

in which case the U(1) charges vanish, qL = qR = 0. We are then left with the untwisted

states |li⟩R, which have (qL)i = (qR)i =
li+1
ki+2 − 1

2 , and correspond to (2, 1) or (1, 2) forms.

Example 3.3.7 . Consider the Gepner model with {ki + 2} = (5, 5, 5, 5, 5), from which we see

that H = 5, and we are instantly lead to the conclusion that this is a Calabi-Yau in CP4: we

have w1 = w2 = ... = w5. We first check that we satisfy our central charge condition:

5∑
i=1

3ki
ki + 2

=
5∑
i=1

9

5
= 9. (3.90)

The untwisted ground states are then given by monomials of degree 0, 5, 10 and 15, remember-

ing that we must set X4
i = 0 for all i, i.e. ki = 3 not 5. Clearly there is only one monomial of

degree 0, and the monomial of degree 15 corresponds to X3
1X

3
2X

3
3X

3
4X

3
5 , which again occurs

only once.

We have already computed the degree 5 result back in Section 2.5.3; it is given by((
5

5

))
=

(
9

5

)
= 126. (3.91)

We now need to account for the fact that X4
i = 0 for all i. The terms we need to remove

are X5
i and X4

iXj , where j ̸= i. The former is 5 terms (each i value), while the latter is 20

terms (5× 4, the number of i times number of j). So we are left with h2,1 = 101. As H = 5

is odd, we do not have any further contributions to h2,1, and so we can conclude h2,1 = 101.

We can similarly check the order 10 result, but here we just quote the result that h1,2 = h2,1

and move on.

We now just need to compute the diagonal Hodge numbers. These come from our twisted

states. We have ν = 1, 2, 3, 4, with ν = 1 corresponding to h3,3 and ν = 4 to h0,0. Let’s

consider ν = 2: by direct substitution this gives

qL = −qR = −1

2
, (3.92)
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so corresponds to a (2, 2) form. Similarly, ν = 3 corresponds to a (1, 1) form. So in total we

have the Hodge diamond
1

0 0

0 1 0

1 101 101 1

0 1 0

0 0

1

(3.93)

which is exactly that of the quintic in CP4. ▲

Example 3.3.8 . Here we look at an example with H being even. Consider the Gepner model

with {ki+2} = (8, 8, 4, 4, 4) andH = 8. First we check this meets the central charge condition:

c =
5∑
i=1

3ki
ki + 2

= 2

(
3 · 6
8

)
+ 3

(
3 · 2
4

)
=

9

2
+

9

2
= 9, (3.94)

so we’re good.

The untwisted ground states correspond to monomials of order 0, 8, 16 and 24, subject

to X7
1,2 = X3

3,4,5 = 0. To save space, we simply state that these have multiplicity 1, 83, 83

and 1, respectively. We then have unique twisted states for ν = 1, 2, 3, 5, 6, 7, which give

h0,0 = h3,3 = 1 and h1,1 = h2,2 = 2.

We note that ν = 4 is missing, which is the one we want to study here: the i = 3, 4, 5

terms become untwisted, and the i = 1, 2 terms have

l1 = l2 =
k1,2
2

=
6

2
= 3, (3.95)

and so
5∑
i=1

li
ki + 2

= 2
3

8
+

5∑
i=3

li
4
=

1

4

(
3 + l3 + l4 + l5

)
(3.96)

which we require to be 0, 1, 2 or 3. Using l3,4,5 = 0, 1, 2, the only possible combinations are

l3 + l4 + l5 = 1 and l3 + l4 + l5 = 5. (3.97)

There are 3 ways to produce each of these: both have multiplicity 3 choose 1. We finally see
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that these do indeed contribute to h2,1 and h1,2, respectively, as they correspond to

5∑
i=1

li
ki + 2

= 1, 2, (3.98)

respectively. Then we use the fact that the only (non-vanishing) contributions to the U(1)

charge comes from the untwisted states, we have qL = qR = ∓1
2 , and so they are (2, 1) and

(1, 2) forms, respectively. So in total we have h2,1 = h1,2 = 83 + 3 = 86, and our Hodge

diamond is
1

0 0

0 2 0

1 86 86 1

0 2 0

0 0

1

, (3.99)

which is the Hodge diamond of a Calabi-Yau 3-fold in WCP4
1,1,2,2,2. ▲

3.3.4 Mirror Symmetry

Gepner Models

In [11], Greene and Plesser took the observation made in [67], that the quotient of a Gepner

model by its full symmetry group yields an isomorphic theory, and extended it to more general

quotients. In particular they looked at the geometrical phase of such a duality. We summarise

the relevant content here.

Consider the Gepner model obtained by the minimal model product (k1, ..., kr). Let d

denote the order of g = e2πiJ0 . Then, this model has discrete symmetry group

G =

( r∏
i=1

Zki+2

)/
Zn, (3.100)

where n is the order of g2: n = d for d odd and n = d/2 for d even. The mirror model is

given by quotienting by H ⊂ G defined such that

r∑
i=1

γi
ki + 2

∈ Z, (3.101)
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where γi ∈ Zki+2 represents an element of G. The mirror theory is shown to be isomorphic

to the original Gepner model, but with one of the U(1) charges reversed.

In terms of the corresponding LG orbifold, the statement is: the LG orbifold with super-

potential

W (Φi) =

r∑
i=1

Φki+2
i (3.102)

with orbifold action ZH has a mirror LG orbifold with the same form of the superpotential14

W̃F (Φ
∨
i ) =

r∑
i=1

(Φ∨
i )
ki+2, (3.103)

but now the quotient is by Γ∨ ⊂
∏r
i=1 Zki+2 acting on the fields as

Φ∨
i 7→ e

2πiγi
ki+2 Φ∨

i (3.104)

subject to Equation (3.101). The (2, 1)-forms of this dual theory are then related to the

deformations of this equation. We note that the product Φ∨
1Φ

∨
2 ...Φ

∨
r is always present. In fact,

as we shall see, the mirror theory is actually defined as the LG orbifold with superpotential

W̃ (Φ∨
i ) =

r∑
i=1

(Φ∨
i )
ki+2 + et/H

r∏
i=1

Φ∨
i , (3.105)

where t is the (FI, θ) parameter, as before.

Recall that the geometric phase is given by the Calabi-Yau defined by a hypersurface in

a toric manifold, with defining polynomial given by W (zi) = 0. For example, for (ki +2) = 5

for all i (and r = 5), we recover the quintic and mirror quintic Calabi-Yaus.

We can actually see the generation of this dual superpotential by looking at the states in

the Gepner model. We go to the case of interest, namely r = 5. States with qL = qR (i.e.

elements of R(c,c)) are the untwisted states, while states with qL = −qR (elements of R(a,c))

are the twisted states. Therefore, mirror symmetry acts on the Gepner model by mapping

the twisted and untwisted states to untiwsted and twisted states, respectively. The original

twisted states should now be interpreted as the untwisted states in the mirror model and so, as

per the previous discussion, should be interpreted as monomials of degrees 0, H, 2H and 3H.

We can indeed see that this is the case as follows: we are now essentially mapping ν 7→ −ν.
This follows from the fact that the twisted states come from quotienting by g = e2πiνJ0 , but

if we send J0 7→ −J0 this is the same as sending ν 7→ −ν in g. From here we simply interpret
14The subscript F is to indicate “Fermat type".
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the l(−ν)i as the powers of the corresponding mirror homogeneous coordinates, i.e.∣∣∣l(−ν)i

〉
∼= (Φ∨

i )
l−ν
i . (3.106)

Indeed this ties in nicely with the mirror description in terms of LG models. Let’s look

at the allowed deformations of W∨
F . The monomial Φ∨

1 ...Φ
∨
5 , which is always present (by

construction), would correspond to a state with l(−ν)i = 1 for all i, and it is indeed true that

this state always appears. This is seen simply from

l
(−ν)
i + 1 = −ν mod (ki + 2) =⇒ l

(−H+2)
i = 1 ∀i. (3.107)

Also note that ν = H−2 always gives a (1, 1)-form in the original theory. This follows simply

from

l
(H−2)
i + 1 = H − 2 mod (ki + 2) =⇒ l

(H−2)
i = ki − 1, (3.108)

which together with
5∑
i=1

ki
ki + 2

= 3 and
5∑
i=1

1

ki + 2
= 1 (3.109)

gives
∑

i
l
(H−2)
i
ki+2 = 2, which is qL = −qR = 1

2 and is the criteria for a (1, 1)-form.

For the original untwisted states, we simply take the li values and plug them into li+1 =

−ν mod (ki + 2), and use this. For example, li = 0 for all i is the unique state that always

gives the (3, 0)-form, which should be mirrored to the (0, 0)-form. Under this mirror map,

this would give ν = H − 1 for all i, but we know that this is the unique twist that gives the

(0, 0)-form, as required.

We note that we defined a twisted contribution to a state as one in which ν /∈ (ki + 2)Z,

but that simply mapping ν 7→ −ν wont change this condition. However, the mirror of a

twisted state is meant to be untwisted. The key thing is that it is untwisted w.r.t. the mirror

Gepner model, i.e. we have a ν∨ and a twisted contribution to a state in the mirror Gepner

model obeys ν∨ /∈ (ki+2)Z. This ν∨ must account for the orbifold group of the mirror Gepner

model, and so it is not easy to write down a direct relationship between ν and ν∨. However,

it is in principal not too difficult to obtain the relationship for specific cases. We highlight

how this is done for quotients of the quintic in Appendix C.

Let’s look at the two examples above and compute their mirrors.

Example 3.3.9 . Consider the quintic Gepner model, ki+2 = 5 for all i. The original untwisted

states will simply turn into our diagonal forms. What we want to check is the twisted states,

and check they give the right degree monomials. We have ν = 1, 2, 3, 4 and so, after we send
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ν 7→ −ν, it is easy to show that

l
(−1)
i = 3 l

(−2)
i = 2 l

(−3)
i = 1 and l

(−4)
i = 0 ∀i (3.110)

which give the monomials

(X̃1X̃2X̃3X̃4X̃5)
4−ν , (3.111)

which is exactly what we expect for the quintic. In particular we only have the always present

superpotential deformation X̃1X̃2X̃3X̃4X̃5, corresponding to ν = H − 2 = 3. This returns

exactly the result of Greene and Plesser in [11]. ▲

Example 3.3.10 . Let’s now look for the mirror of the Calabi-Yau inside WCP4
1,1,2,2,2, which

had {ki + 2} = (8, 8, 4, 4, 4). Here we have h1,1 = 2 corresponding to ν = 3, 6. ν = H − 2 = 6

gives us our always present X̃1X̃2X̃3X̃4X̃5, while ν = 3 gives

l
(−3)
1,2 + 1 = −3 mod 8 =⇒ l

(−3)
1,2 = 4

l
(−3)
3,4,5 + 1 = −3 mod 4 =⇒ l

(−3)
3,4,5 = 0

(3.112)

and so we get the deformation X̃4
1X̃

4
2 . ▲

Sigma Models

As we have seen, Gepner models are a particular instance of a phase of a more general theory

of GLSMs. The question is whether the concept of mirror symmetry tracks back up the ladder

into the general construction. The answer is yes and it was demonstrated in [13] (see also

[42]). We outline the results here, and refer the reader to the reference for a more detailed

discussion.

Consider a theory of a vector superfield V , a set of real superfields Bi, and a set of twisted

chiral superfields Yi. The imaginary part of the Yis are periodic in 2π: ϑi = 1
2(Yi − Ȳi). Now

consider the Lagrangian

L′ =

∫
d4θ

∑
i

(
e2QiV+Bi − 1

2

(
Yi + Ȳi

)
Bi

)
, (3.113)

where Qi are positive integers. The idea is to integrate out the fields in different orders.

Fristly consider integrating out Yi: this constrains Bi to obey

D̄+D−Bi = D+D̄−Bi = 0 =⇒ Bi = Ψi + Ψ̄i (3.114)
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for a chiral superfield Ψi. It follows from the periodicity of Yi that the imaginary part of Ψi

is also periodic. Defining Φi = eΨi and plugging this back into L′ then gives

L1 =

∫
d4θ

∑
i

Φ̄ie
2QiV Φi, (3.115)

but this is simply the kinetic term for a set of chiral superfields of charges Qi. Finally, noting

that Lgauge and LFI,θ are independent of Yi and Bi, we can simply add them to both L′ and

L1 without affecting any of the calculation. We therefore end up with the Langrangian

LΦ =

∫
d4θ

(∑
i

Φ̄ie
2QiV Φi −

1

2e2
Σ̄Σ

)
+

1

2

(
−
∫
dθ̄−dθ+tΣ+ c.c.

)
. (3.116)

which is nothing but the GLSM of a set of chiral superfields of charges Qi, with vanishing

superpotential. We have seen that this is related to the NLSM on a weighted projective space.

If we now first integrate Bi out of L′, we obtain

Bi = −2QiV + log

(
Yi + Ȳi

2

)
. (3.117)

Plugging this back into L′, and using the fact that Yi is a twisted chiral superfield, results in

L2 =

∫
d4θ

∑
i

(
−1

2

(
Yi + Ȳi

)
log
(
Yi + Ȳi

))
+

1

2

∑
i

(∫
dθ̄−dθ+QiYiΣ+ c.c.

)
, (3.118)

where Σ = D̄+D−V . Again we can simply add Lgauge and LFI,θ and obtain

L2 =

∫
d4θ

∑
i

(
− 1

2e2
Σ̄Σ− 1

2

(
Yi + Ȳi

)
log
(
Yi + Ȳi

))
+

(∫
dθ̄−dθ+

(
1

2

∑
i

QiYi − t

)
Σ+ c.c.

)
.

(3.119)

We then define the twisted superpotential for this theory as

W̃ =

(∑
i

QiYi − t

)
Σ. (3.120)

The important part is to equate the two expressions for Bi, which results in a relationship

between the chiral superfields Φi and the twisted chiral superfields Yi:

Yi + Ȳi = 2Φ̄ie
2QiV Φi. (3.121)

We can also relate the imaginary part of Yi to the phase of Φi. This is not easily done in
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terms of the superfields, but can be seen if we consider a component expansion of the fields.

If the lowest component of Φi is ϕi = ρie
iψi , then the result is

dϑi = ⋆dψi. (3.122)

This map between chiral and twisted chiral superfields is exactly our mirror map. We now

explain how this is related to the notion of mirror Calabi-Yaus discussed previously.

Solving the equations of motion for the dynamical Σ results in the D-term constraint

∂ΣW̃ = 0 =⇒
∑
i

QiYi = t. (3.123)

Finally, defining

Xi = e−Yi , (3.124)

we see that the twisted superpotential takes the form

W̃ (Xi) =
∑
i

Xi subject to
∏

XQi
i = e−t. (3.125)

A theory of a superfield with (twisted) superpotential is a LG theory. So here we have

a LG theory for the twisted chiral superfields Yi (expressed in terms of Xi) with twisted

superpotential W̃ (Xi) as above.

Let’s now modify this construction slightly by introducing another chiral superfield P to

our set {Φ1, ...,Φn}, and we set the charge of P to be negative, QP = −H. Let P̃ = e−YP be

the dual field to P , then it follows from the constraint above that

P̃−HXQ1
1 ...XQn

n = e−t. (3.126)

Defining

Φ∨
i = X

Qi/H
i , (3.127)

then results in the condition

P̃ = et/H(Φ∨
1 )...(Φ

∨
n). (3.128)

The twisted superpotential then takes the form

W̃ (Φ∨
i ) = (Φ∨

1 )
H/Q1 + ...+ (Φ∨

n)
H/Qn + et/H

n∏
i=1

Φ∨
i . (3.129)
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Note that this twisted superpotential is subject to an orbifold action Γ∨ ⊂
∏
i ZH/Qi

. Specif-

ically it acts on the fields as

Φ∨
i 7→ exp

(
2πiγiQi
H

)
Φ∨
i , subject to

∑
i

γiQi
H

∈ Z. (3.130)

The constraint condition comes from the fact that et/H
∏
iΦ

∨
i ∈ W̃ (Φ∨

i ).

We therefore arrive at the result that the mirror of the NLSM on a weighted projective

space is a LG model with the above superpotential. If we allow for negative charges then we

obtain a LG orbifold. This is not quite what we want: we want to show that the mirror of

a Calabi-Yau is again Calabi-Yau. However we now simply apply the Calabi-Yau/Landau-

Ginzburg correspondence to the LG orbifold side, which gives that the mirror of the NLSM

is a Calabi-Yau.

The first thing we note is that our starting GLSM has no superpotential. However, in

order to get a NLSM on a hypersurface in a weighted projective space, i.e. a Calabi-Yau, we

need a superpotential. This issue is addressed in [13], where they explain that the resulting

mirror LG orbifold is unchanged by introducing the superpotential. The difference between

the two cases is actually encapsulated in what are considered to be the fundamental fields on

the mirror side: for the case with a superpotential the fundamental fields are the Xi while in

the absence of the superpotential the fundamental fields are the Yi. However we have a very

simple relation between the two, and the LG orbifold is changed.

We therefore arrive at mirror symmetry as a map between two Calabi-Yaus. Note that if

we pick the charges as Qi = wi = H/(ki + 2) and QP = −H, then we arrive at the result of

Greene and Plesser. Namely, the mirror of a LG orbifold with Fermat type superpotential is

again a (deformation of) a LG orbifold with the same Fermat type superpotential but now

with a different quotient group. Indeed Equation (3.130) becomes exactly the result of [11].

3.3.5 Mirror Symmetry for Toric Hypersurfaces

The above geometrical mirror map can be generalised to hypersurfaces in a generic toric

variety, akin to the construction of Batyrev [9] discussed in Section 2.7.10.

Consider a GLSM with (h + 1) chiral superfields (Φ1, ...Φh, P ) and gauge group U(1)k.

For each U(1) we have a field strength Σa and associated FI parameter ta. Let Qi,a denote

the charge of Φi under the ath U(1) factor. Set

da :=
h∑
i=1

Qi,a, (3.131)
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and define ti via15

ta =
h∑
i=1

Qi,ati. (3.132)

Note that in order to have a Calabi-Yau we must obey the anomaly condition, Equation (3.59).

This implies that the charges of P under the ath U(1) is −da.
We can again dualise this theory in order to obtain a theory with (h + 1) twisted chiral

superfields (Y1, ..., Yh, YP ) and then define

P̃ := e−YP and Xi := e−Yi . (3.133)

The D-term constraint, Equation (3.123), gives k relations:

h∑
i=1

Qi,aYi − daYP = ta. (3.134)

In terms of the new variables this is( h∏
i=1

XQi,a

)
P̃−da = e−ta (3.135)

It the follows from [13], that in our case the twisted superpotential is actually empty and the

defining hypersurface of the mirror Calabi-Yau is given by the above constraint along with

h∑
i=1

Xi + P̃ = 0. (3.136)

To write the mirror hypersurface equation in terms of mirror fields we now proceed as

follows. The fan of the toric variety underlying the GLSM has h ray generators ni16 sitting

in the N lattice which obey the k relations

h∑
i=1

niQi,a = 0 . (3.137)

Let the superpotential take the form W (Φi, P ) = P · G(Φi), where G(Φi) is a homogeneous

polynomial of degrees {d1, ..., dk} with respect to the U(1)k. Next, let M denote the dual
15The ti are defined up to redefinition of the Qi,a.
16We previously used νi and ν∗

i for the generators. Here we swap to the more convenient notation of ni and
mi.
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lattice to N , and define mℓ such that we can write

G(Φi) =
h∨∑
ℓ=1

h∏
i=1

Φ
⟨mℓ,ni⟩+1
i , (3.138)

where necessarily ⟨mℓ, ni⟩ ≥ −1 for all ℓ and i.

The Calabi-Yau/Landau-Ginzburg story carries over and again we get two phases of the

GLSM: p = 0 gives the nonlinear sigma model on a Calabi-Yau defined by the vacuum

manifold; p ̸= 0 gives a LG orbifold with superpotential W = G(Φi).

We can now introduce {Φ∨
1 , ...,Φ

∨
h∨}, and define

P̃ =
h∨∏
ℓ=1

Φ∨
ℓ and Xi = e−ti

h∨∏
ℓ=1

(
Φ∨
ℓ

)⟨mℓ,ni⟩+1
. (3.139)

Using Equations (3.131), (3.132) and (3.137) we can easily show that these then solve Equa-

tion (3.135). Plugging this into Equation (3.136) then gives the hypersurface equation

h∑
i=1

e−ti
h∨∏
ℓ=1

(
Φ∨
ℓ

)⟨mℓ,ni⟩+1
+

h∨∏
ℓ=1

Φ∨
ℓ = 0 . (3.140)

This is the family of Calabi-Yau hypersurfaces identified by Batryrev’s construction. Note

that the last term here came from the P̃ , and so is the equivalent of the origin of N in the

Batyrev construction.

An important point to note is that h ̸= h∨, in general, and so the number of homogeneous

coordinates defining the mirror (i.e. h∨) need not be the same as the number of homogeneous

coordinates we start with (i.e. h). In the case of hypersurfaces in weighted projective spaces,

it turns out that h = h∨, and so we use notation like Φ∨
i , as before.
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4 | G2: Geometry

In this chapter we move on to a discussion of manifolds with G2 holonomy. We start by

reviewing the basic definitions and concepts of the Lie group G2 and what it takes for a

manifold to have holonomy G2. We introduce the conjecture for G2 mirror symmetry due to

Shatasvilli and Vafa, and then move on providing ways to construct G2s. The main methods

we focus on are quotients of Calabi-Yaus and circles as well as the twisted connected sum

(TCS) construction. Mirror symmetry is discussed for each of these cases as we go, and

we finish with a discussion of toric geometry and how tops can be used to reproduce the

TCS construction. This provides a concrete way to form mirror G2s in analogy to Batyrevs

construction for Calabi-Yaus.

The main references for this chapter are [68] for the background G2 discussion, [69–73] for

the constructions of manifolds with G2 holonomy and how they are related, and [74] for the

discussion of tops and their relationship to the TCS construction.

4.1 G2 Basics

We start by recalling the definition of the Lie group G2.

Definition. [G2 Group] Let {x1, ..., x7} be a set of coordinates on R7. Then define the

3-form1

Φ0 := dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356, (4.1)

where we have used the short hand dxijk := dxi ∧ dxj ∧ dxk. Then the group G2 is the

subgroup of SO(7) that preserves Φ0. G2 also preserves the 4-form

⋆Φ0 := dx4567 + dx2367 + dx2345 + dx1357 − dx1346 − dx1256 − dx1247. (4.2)

Note that, as the notation suggests, Φ0 and ⋆Φ0 are related by Hodge dual.

As it is a subgroup of SO(7), it also preserves the Euclidean metric on R7, g0 =

dx21 + ... + dx27 and the orientation. G2 is a compact, simply-connected, semisimple Lie
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group of dimension 14.

We now claim that there is a SU(3) subgroup of G2 which is defined by the subgroup that

leaves one of the coordinates unchanged, e.g. dx1. A technical account of this can be found

in [75]2. A more quickly accessibly argument is as follows: consider R7 as the product space

R × C3. Then we can consider the action of SU(3) on this whole space as acting trivially on

the R and with the standard action on the C3. The claim is then this action is indeed trivial on

our forms Φ0 and ⋆Φ0. It then immediately follows from the fact that SU(2) ⊂ SU(3) that G2

also contains a SU(2) subgroup. As the SU(2) subgroup of SU(3) is defined by "ignoring one

C factor in C3", we see that this SU(2) subgroup leaves three of the R7 ∼= R3×C2 coordinates

alone, while acts on the C2 in the standard way.

The fact that we have an SU(3) subgroup in G2 will be important going forward. It

gives us a hint that we could somehow embed a Calabi-Yau 3-fold inside our manifold with

holonomy G2.

4.1.1 G2 Structures

As we will see going forward, the forms Equations (4.1) and (4.2) will come up again and

again, and will prove very useful to us. Now clearly the specific forms given in Equations (4.1)

and (4.2) are not the only choices, and indeed we will, in general, have classes of isomorphic

3/4-forms. This gives us the content of the next definition.

Definition. [Associative & Coassociative Forms] Let M be an oriented 7-manifold. Then

at each point p ∈ M, we define P3
pM ⊂ Λ3

pM to be the subset of 3-forms Φ, such that

there exists an oriented isomorphism between TpM and R7 that identifies Φ|p and Φ0|p of

Equation (4.1). A section of Φ ∈ Γ(P3M) can therefore be identified with Φ0 globally. We

call such a 3-form an associative form.3

We similarly define P4
pM ⊂ Λ4

pM and define ⋆Φ ∈ Γ(P4M) to be a 4-form which can

be identified with ⋆Φ0, referring to such forms as coassociative forms.

We then have the definition of a G2 structure.

1We are working with the form convention in [68].
2Here an alternative definition of the G2 group as the automorphism group of the octonions is used.
3[68] uses the terminology "positive" in the place of associative and coassociatvie.
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Definition. [(Oriented) G2 Structure] Let M be an oriented 7-manifold with associative

3-form Φ ∈ P3M. Then consider the frame bundle F over M. By definition, this is the

bundle who’s fibre at p ∈ M is the isomorphisms between TpM and R7, i.e. it is a principal

GL+(7,R)-bundle over M. Then define QΦ ⊂ F to be the subset that identifies Φ with

Φ0, then QΦ is a principal G2-bundle on M. This follows simply from the fact that Φ0 has

G2 invariance. We call QΦ a (oriented) G2 structure on M.

As the notation suggests, QΦ is dependent on which associative 3-form Φ we start with.

With some thought we see that we can actually go in the opposite direction; given a G2

structure Q on M we can define corresponding associative 3-form ΦQ, coassociative 4-form

⋆ΦQ and metric gQ. This follows simply from the fact that, Φ0, ⋆Φ0 and g0 are G2 invariant.4

So we see that we have 1-1 correspondence between G2 structures and associative 3-forms.

In particular, we see that, given a Φ ∈ ΓP3M, we can define an associated ⋆Φ and g. That

is, we use Φ to define QΦ which we then use to define ⋆ΦQΦ
and gQΦ

. There is an important

point to note here: the Hodge dual ⋆ depends on the metric, but we have just shown that our

metric depends on our associative 3-form Φ. We therefore see that the map

Θ : Φ 7→ ⋆Φ (4.3)

is non-linear in Φ.

Notation. From now on we shall refer to the double of an associative 3-form and corresponding

metric, (Φ, g), as a G2 structure. Of course it is actually the corresponding unique principal

G2-bundle which is the G2 structure, but we save a lot of notation this way.

We note that Φ determines a Riemannian metric and so we have a Levi-Civita connection.

This leads to the following definition.

Definition. [Torsion Free G2 Structure] Let M be a oriented 7-manifold with G2 structure

(Φ, g). Also let ∇ be the Levi-Civita connection of g. Then we define the torsion of (Φ, g)

to be ∇Φ, and we say the G2 structure is torsion free if ∇Φ = 0.

4.1.2 G2-Manifolds

We can now define a G2-manifold.

4Technically, in order to get the metric condition we need our G2 structure to be oriented. We will always
assume to be the case, unless otherwise specified.
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Definition. [G2-Manifold] We call the triple (M,Φ, g) a G2-manifold if M is an oriented

7-manifold with torsion free G2-structure (Φ, g), ∇Φ = 0.

We then have the following proposition [68].

Proposition 4.1.1. Let (M,Φ, g) be a 7-manifold with G2-structure (Φ, g). Then the follow-

ing conditions are equivalent:

(i) (Φ, g) is torsion free,

(ii) Hol(M) ⊆ G2, and Φ is the induced 3-form,

(iii) ∇Φ = 0, where ∇ is the Levi-Civita connection of g,

(iv) dΦ = d ⋆ Φ = 0, and

(v) dΦ = dΘ(Φ) = 0.

It is not too hard to see that these are equivalent: clearly (i) and (iii) are related by the

definition of torsion free, similarly (iv) and (v) are related by Equation (4.3). Then in condition

(ii) by "induced 3-form" we simply mean the 3-form that is invariant under parrallel transport

∇Φ = 0, which is (iii). Then to get from (iii) to (iv) you need the differential geometry result

that a torsion free connection obeys

(dω)µ1...µn = (n+ 1)∇[µ1ωµ2...µn], (4.4)

so if ∇Φ = 0 then dΦ = 0, we similarly get d ⋆ Φ = 0.

This proposition gives us five different ways to define a G2-manifold. The two that will

be of most use to us is (ii) and (iv). The key thing we note about (ii) is that the holonomy

only needs to be a subgroup of G2.5 The question becomes "what needs to happen for

Hol(M) = G2?", which gives the next proposition.

Proposition 4.1.2. Let (M,Φ, g) be a compact G2-manifold. Then Hol(M) = G2 if, and

only if, the first fundamental group, π1(M), is finite.

Proof. See Proposition 10.2.2 of [68]. ■

As it will be important later, we also introduce the following definition.

5This is why we have previously always written "a manifold with holonomy G2", rather than "a G2-
manifold".
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Definition. [G2-Involution] Let (M,Φ, g) be a G2-manifold, and ι : M → M be a diffeo-

morphism on M. We call ι a G2-involution if the following two conditions hold:

(i) It is an involution; ι2 = id.

(ii) It preserves the G2-structure; ι∗(Φ) = Φ.

4.1.3 Moduli Space & Mirror Conjecture

The moduli space of torsion-free G2 structures plays an important role when looking for a

notion of mirror symmetry. From a geometrical perspective, one can derive that the dimension

of this moduli space is b3(M) [68], however it turns out that this is not the full story. Indeed,

as noted in [23], there can be additional contributions from the antisymmetric 2-form that

have no geometrical analogue. The dimension of the physical moduli space is then given by

b2 + b3.

We then have the conjecture of generalised mirror symmetry [23, 76]:

Conjecture. The degree of ambiguity left by being unable to decipher all the topological aspects

of the target manifold using the algebraic formulation of quantum field theories is precisely

explained by having topologically inequivalent manifolds allowed by the ambiguity to lead to

the same quantum field theory up to deformation in the moduli of the quantum field theory.

This conjecture is to be understood at the level of the field theory, not just the geometry,

however we use it here to make the following statement. For manifolds with G2 holonomy it

tells us that a necessary condition is that mirror manifolds have the same b2 + b3. That is, if

MG2 and M∨
G2

are mirror, then

b2(MG2) + b3(MG2) = b2(M∨
G2

) + b3(M∨
G2

) (4.5)

which we shall refer to as the Shatashvili-Vafa relation in what follows.

We note that Calabi-Yau manifolds are examples of G2-manifolds and so should also obey

this constraint. This is indeed true:

b2(MCY ) = h1,1 and b3(MCY ) = h3,0 + h2,1 + h1,2 + h0,3 = 2(1 + h2,1), (4.6)

and so b2 + b3 is preserved under the mirror map hm,n → h3−m,n.
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4.1.4 Calibrated Submanifolds

Our associative 3-form, Φ, and coassociative 4-form, ⋆Φ, are examples of calibrations on our

G2-manifolds. We now want to clarify what this means.

Definition. [Calibration & Calibrated Submanifolds] Let (M, g) be an n-dimensional Rie-

mannian manifold. Then, a k-form Φ ∈ ΛkM is called a calbiration if

(a) Φ is closed, dΦ = 0, and

(b) for any p ∈ M, and any k-dimensional orientated subspace S ⊂ M, Φ|TpS is less

than or equal to the volume form on S, i.e. there is an α ≤ 1 such that∫
S
Φ =

∫
S
Φ|TpS = α ·

∫
S

vol(TpS) = αVol(S), (4.7)

where vol(TpS) is the volume form on S. We sometimes write this simply as Φ|TpS =

α · vol(TpS).

If α = 1, then we call S a calibrated submanifold w.r.t. the calibration Φ.

Proposition 4.1.3. Calibrated submanifolds are submanifolds of minimum volume in their

homology class.

Proof. Assume S ⊂ M is a calibrated submanifold w.r.t. calibration Φ. Then assume that S̃

is another submanifold in the same homology class as S, [S] = [S̃]. That is S̃ = S + ∂S′ for

some (k + 1)-dimensional submanifold S′. Then, using Stoke’s theorem,∫
∂X

ω =

∫
X
dω, (4.8)

along with the fact that dΦ = 0, we have

Vol(S) =
∫
S
Φ =

∫
S̃
Φ ≤

∫
S̃

vol(TpS̃) = Vol(S̃), (4.9)

and so S has minimal volume in its homology class. ■

Now, recalling Equations (4.1) and (4.2), we see straight away that Φ0 and ⋆Φ0 act as

calibrations and have calibrated 3-manifolds and calibrated 4-manifolds, respectively. For

example, for Φ0, we see that the 3-dimensional submanifold

S123 = {(x1, x2, x3, 0, 0, 0, 0) |x1, x2, x3 ∈ R} ⊂ R7 (4.10)
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is a calibrated submanifold of Φ0, as vol(S123) = dx123 = Φ0|S123 .6

We then note that an oriented 3-fold, S ⊂ R7, obeys Φ0|S = vol(S) if, and only if,

S = γS123 for some γ ∈ G2. So we have a group of calibrated submanifolds given by γS123.

The same story applies to calibrated submanifolds of ⋆Φ0, but with S123 → S4567, defined in

the obvious way.

Definition. [Associative & Coassociative Submanifolds] We call calibrated submanifolds

w.r.t the Φ0 associative 3-folds, and we similarly define coassociative 4-folds.

Proposition 4.1.4. Let (M,Φ, g) be a G2-manifold, and let σ : M → M be a non-trivial

isometric involution (i.e. a diffeormophism such that σ∗(g) = g and σ2 = idM but σ ̸= idM)

obeying σ∗(Φ) = Φ. Then the fixed point locus

Fσ := {p ∈ M|σ(p) = p} (4.11)

is an associative 3-fold in M. This implies that given any non-trivial γ ∈ G2 that squares to

the identity, the fixed point locus of γ is a associative 3-fold.

Proof. Firstly we note that, from the fact that σ∗(Φ) = Φ, that σ∗ must be in an element in

G2. Now, recalling Equation (4.1),

Φ0 := dx123 + dx145 + dx167 + dx246 − dx257 − dx347 − dx356, (4.12)

we see that there are only two elementally distinct choices for γ ∈ G2 such that our conditions

are met: from σ∗(g) = g we require xi 7→ ±xi only. Then it can be quickly checked that the

only ways to preserve Φ0 are either xi 7→ xi for all i, which is not allowed as it is trivial, or

x1,2,3 7→ x1,2,3 and x4,5,6,7 7→ −x4,5,6,7,

x3,4,7 7→ x3,4,7 and x1,2,5,6 7→ −x1,2,5,6,

x2,5,7 7→ x2,5,7 and x1,3,4,6 7→ −x1,3,4,6, or

x1,4,6 7→ x1,4,6 and x2,3,5,7 7→ −x2,3,5,7.

(4.13)

Clearly all 4 non-trivial choices are isomorphic by simply relabelling, and so we see that σ is

conjugate in G2
7 to

x1,2,3 7→ x1,2,3 and x4,5,6,7 7→ −x4,5,6,7, (4.14)
6From now on we shall just drop the Tp part and just write the submanifold S123 etc.
7Two maps f, g : Rn → Rn are said to conjugate if there exists a homeomorphism h : Rn → Rn such that

h(f(x)) = g(h(x)) for all x ∈ Rn. Here we have f = (x1,2,3 7→ x1,2,3, x4,5,6,7 7→ −x4,5,6,7), g = σ and h = γ for
non-trivial γ.
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the fixed point of which is exactly S123, i.e. Fσ = γS123 for γ ∈ G2. We have done this at a

point p ∈ M (as we are using local coordinates), but this clearly holds for all p, and so we

have an associative 3-fold.

In this manner, we have shown that for any γ ∈ G2 such that γ2 = 1 but γ ̸= 1, the fixed

point locus of γ is an associative 3-fold. ■

Corollary 4.1.5. Let (M,Φ) be a connected, compact G2-manifold. Consider the non-trivial

(i.e. not the identity map) G2-involution ι : M → M with non-empty fixed point locus Fι.

Then Fι is an associative 3-fold. It is also smooth, orientable and compact.

4.2 Constructing G2s

We now recall one of the big differences between Calabi-Yau manifolds and manifolds with

G2 holonomy: there is no version of Yau’s theorem for the latter. This means we do not have

a set of criteria that, once satisfied, guarantee that a 7-dimensional manifold will admit a G2

metric. This limits us to considering specific constructions of manifolds with G2 holonomy,

and we now briefly review the three relevant ones: Joyce orbifolds, Calabi-Yau quotients and

the twisted connected sum construction.

4.2.1 Joyce Orbifolds

The first examples of compact manifolds with G2 holonomy were obtained by Joyce in [38,

39]. This construction looks at the resolutions of orbifold singularities of the quotient of T 7 by

a finite group Γ that preserves the G2 structure. These are considered as a detailed example

of the content of this thesis in Appendix A. Here we just give a quick idea.

Specifically, they consider Γ = Z3
2 with action on the T 7 coordinates as8

α : (x1, x2, x3, x4, x5, x6, x7) 7→ (+x1,+x2,−x3, a4 − x4,−x5, a6 − x6, x7)

β : (x1, x2, x3, x4, x5, x6, x7) 7→ (−x1, b2 − x2,+x3,+x4, b5 − x5, b6 − x6, x7)

σ : (x1, x2, x3, x4, x5, x6, x7) 7→ (x1,−x2, x3,−x4, x5,−x6,−x7),

(4.15)

where ai, bi = 0, 1/2. A particularly interesting case is that of a4 = b6 = 1/2 and all others

vanishing. There are 9 topologically inequivalent smoothings Ml of this orbifold that have a

Ricci flat G2 metric. The interesting thing is that the Betti numbers are given by

b2(Ml) = 8 + l and b3(Ml) = 47− l, (4.16)
8We note that we have picked a different labelling of the coordinates compared to [38, 39]. This is done in

order to make the comparison with the Calabi-Yau T 6/Z2
2 clearer in Appendix A.
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where l is a parameter that keeps track of how one deals with the fixed points of the orbifold.

It is important to note that the sum b2+b3 for all 9 of these smooth G2-manifolds are the same.

We note that these Betti numbers satisfy the Shatashvili-Vafa condition, Equation (4.5), and

so suggests that these 9 manifolds are in some sense mirror to each other. Indeed these

orbifolds were considered in the context of discrete torsion in [77], where they reproduced

the Betti numbers from a free field theory analysis. Importantly, the paper demonstrates the

existence of two types of mirror map:

T3 : IIA/B on Ml → IIB/A on M8−l

T4 : IIA/B on Ml → IIA/B on M8−l
(4.17)

Details of this construction are given in Appendix A.

4.2.2 Calabi-Yau Quotients

The next construction we want to look at is that of the quotient of a Calabi-Yau and a circle.

We already partially motivated back in Section 1.2 that we can form a manifold with G2

holonomy as the resolution of

Mσ =
MCY × S1

(σ,−1)
, (4.18)

where σ : MCY → MCY is an antiholomorphic involution and −1 is inversion on the circle.

We shall now flush out some of the details of this claim.

We start by identifying R7 ∼= C3 ⊕ R by

(x1, ..., x7) ∼= (z1, z2, z3, x7) =
(
(x1 + ix2), (x3 + ix4), (x5 + ix6), x7)

)
. (4.19)

We can use (z1, z2, z3) to define a holonomorphic 3-form and a (1, 1)-form as

Ω = dz1 ∧ dz2 ∧ dz3 and J = dz1 ∧ dz̄1 + dz2 ∧ dz̄2 + dz3 ∧ dz̄3 (4.20)

From here, we can define our associative 3-form and coassociative 4-form as

Φ = J ∧ dx+Re(Ω) and ⋆ Φ =
1

2
J ∧ J + Im(Ω) ∧ dx. (4.21)

Importantly, we can also write down a metric as g = dx2+ gCY , where gCY is the Calabi-Yau

metric.

We now define an SU(3) action that preserves Ω and J , and acts trivially on x. This

defines an inclusion SU(3) ↪→ G2. It then follows that if we define a Calabi-Yau MCY inside
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the C3 who’s (3, 0)-form is Ω and Kähler form is J and a circle S1 ⊂ R with coordinate x,

then MCY × S1 is a G2-manifold with associative and coassociative forms as above.

Importantly, this G2-manifold has holonomy SU(3) ⊂ G2. We want to produce a G2-

manifold with Hol(M) = G2. We now turn to Proposition 4.1.2, which tells us that we get

Hol(M) = G2 iff the first fundamental group is finite. This leads us to considering quotients

of MCY × S1.

Firstly we note that the involution in Mσ above is is in fact a G2-involution (i.e. it

leaves Φ invariant) and so, by Corollary 4.1.5, its fixed point locus is a smooth, orientable

and compact associative 3-fold, provided it is not empty. Recalling Corollary 2.4.4, it follows

that the fixed point locus of Mσ can only be one of two things:

(i) Empty, i.e. σ : MCY → MCY is a free involution.

(ii) Two copies of a Lagrangian submanifold of Lσ ⊂ MCY . We get two copies as −1 :

S1 → S1 as fixed points x = 0, 1/2.

For case (i) the holonomy of the smoothing is not all of G2 but actually only SU(3)⋉Z2,

and were given the name barely G2-manifold in [24]. The Betti numbers are simply given by

the differential forms on MCY × S1 that are invariant under the involution. Using that the

one-form on the S1 is odd, we obtain

b2 = h1,1+ and b3 = h1,1− + h2,1 + 1, (4.22)

where h1,1± denote the (1, 1)-forms that are even and odd under the involution. In particular

we note that

b2 + b3 = 1 + h1,1 + h2,1, (4.23)

which is invariant under the Calabi-Yau mirror map h1,1 ↔ h2,1.

Case (ii) is more interesting, and it was shown in [69] that Mσ can be smoothed to

a manifold with holonomy G2, provided there exists a Z2 bundle Z on Lσ, along with a

nowhere vanishing, harmonic (w.r.t. the Kähler metric on MCY ) one-form λ, valued in Z on

Lσ. The Betti numbers here are given by9

b2(MG2) = b2+(Mσ) + 2b0(Lσ,Z)

b3(MG2) = b2−(MCY ) + b3+(Mσ) + 2b1(Lσ,Z),
(4.24)

9The factors of 2 here is included as we have defined Lσ as the special Lagrangian submanifold in MCY ,
but the fixed point set of σ is two copies of this.
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where bk+(Mσ) counts the cohomology classes of Mσ that are even under the involution, and

bi(Lσ,Z) are the Z-twisted Betti numbers. We note that the hard part of this construction

is not finding a Calabi-Yau 3-fold and antiholomorphic involution with non-empty fixed point

locus. The difficulty lies in showing the existence of the harmonic one-form λ.

Understanding the existence of a mirror for case (ii) is slightly less clear, and is the main

result of this thesis. For now we note the following: Mσ is made using a Calabi-Yau manifold

and a circle. For both of these spaces we have a notion of mirror symmetry (it is simply

T -duality for the S1). We could then use these in order to define a mirror M∨
σ . In fact we

have three options:

(i) Mirror just MCY and leave S1 alone,

(ii) Leave MCY alone and mirror S1, or

(iii) Mirror both.

There is an important detail that needs to be addressed, though: what happens to the invo-

lution (σ,−1)? For example, in the last case we could define

(Mσ)
∨ =

(
MCY × S1

(σ,−1)

)∨
=

M∨
CY × (S1)∨

τ
, (4.25)

where τ is the involution needed in order to give rise to a quotient with equivalent b2 + b3.

The question becomes "does such a τ exist, and if so, what is it?" In particular, is it an

antiholomorphic involution on M∨
CY again? There is also the question of whether there is a

unique τ that does this.

As M∨
CY is a Calabi-Yau, we can define an antiholomorphic involution on it, and it is

not too hard to construct examples such that the involution will give rise to a G2-manifold

with b2 + b3 conserved. However, it is not obvious that this is what the physics tells us we

should do. That is, from a physical point of view, mirror symmetry is a deeper statement

than observing the invariance of cohomology: the full physics should be invariant.

The main result of this thesis is to demonstrate, using sigma model arguments, that

this is indeed the case. That is, the mirror of the antiholomorphic involution is again an

antiholomorphic involution. For now we continue with the development of the geometry and

return to answering this question in Section 5.2.

4.2.3 Twisted Connected Sums

The next important construction of compact manifolds with G2 holonomy are the twisted

connected sum constructions. These were first introduced by Kovalev in [70] and developed
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further in [72] (see [71] for more background). We now briefly review the construction, proofs

of the statements made can be found in the references.

Asymptotically Cylindrical Calabi-Yau 3-Folds & Building Blocks

The logic behind this construction is similar to the quotient construction above:10 constructing

metrics with holonomy G2 is difficult, but constructing metrics with holonomy SU(3) is a lot

easier. We therefore want to use Calabi-Yau 3-folds as a starting point in our construction.

Definition. [Calabi-Yau Cylinder] Let (S, IS , gS) be a K3 surface (i.e. a Calabi-Yau 2-

fold). Then X∞ = R+ × S1 × S along with

I∞ = IC + IS and g∞ = dt2 + dθ2 + gS (4.26)

where (t, θ) are the coordinates of R+ and S1, is known as a Calabi-Yau cylinder. The

Kähler and holomorphic top forms are related by

J∞ = dt ∧ dθ + JS and Ω∞ = (dθ − idt) ∧ ΩS . (4.27)

We then have the following important definitions (see [72] for a more details).

Definition. [Asymptotically Cylindrical 3-Fold] A Calabi-Yau 3-fold, (X, I, g), is called

asymptotically cylinderical (ACyl) if it is diffeomorphic to a Calabi-Yau cylinder, X∞ =

R+ × S1 × S, outside a compact submanifold K ⊂ X. We call X∞ the asymptotic end of

X and (S, IS , gS) the asymptotic K3 surface of X.

Definition. [Building Block] Let Z be a Kähler 3-fold with projection π : Z → CP1, where

a generic fibre is a smooth K3 surface S. Let S0 be a smooth and irreducible fibre, and

consider the natural restriction map

ρ : H1,1(Z,Z) → H1,1(S0,Z) ∼= Γ3,19 = (−E⊕2
8 )⊕ U⊕3, (4.28)

and let N = im(ρ). Then, if:

(i) The anticanonical class −KZ ∈ H2(Z) is primitive11 and obeys [−KZ ] = [S] (i.e.

equal to the class of the fibre),

(ii) The inclusion N ↪→ Γ3,19 is primitive,12 and
10Historically this construction actually came first, though.
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(iii) The group H3(Z,Z) is torsion-free,

then we call Z a building block.

It can be shown that a building block Z has h1,0 = h2,0 = 0. However, we note that a

building block is not a Calabi-Yau 3-fold. This is because c1(Z) = [−KZ ] = [S]. Nevertheless,

we can make a Calabi-Yau 3-fold by simply excising a smooth fibre. That is, consider the

fibre S0 over a point p0 ∈ CP1, then

X = Z \ S0 (4.29)

is a Calabi-Yau 3-fold. It follows from Theorem 3.4 of [72] that X is in-fact an ACyl 3-fold.

Gluing Procedure

The idea of Kovalev [70] was to take a pair of ACyl 3-folds, X±, along with a pair of circles,

S1
±, and glue them together in order to make a manifold with G2 holonomy. In particular, we

can consider the spaces

M± := S1
± ×X± (4.30)

and equip them both with G2-structures in the same manner as our quotient construction

above. That is we have associative and coassociative forms

Φ± = dξ± ∧ J± +Re(Ω±) and ⋆ Φ± =
1

2
J± ∧ J± + Im(Ω±) ∧ dξ±, (4.31)

where ξ± are the coordinates on the new S1
±. As before, these spaces only have holonomy

SU(3). We now give brief details on how to get holonomy G2.

The asymptotic regions of M± are given by

X∞,± × S1 ∼= S± × R+ × S1
b,± × S1

e,±, (4.32)

where the subscript b and e stand for "base" and "external", respectively. That is S1
b,± ⊂ X∞,±

and S1
e,± are the new circles we add with coordinates ξ±. The idea is to truncate M± in the

asymptotic regions and glue the resulting manifolds with boundary together in such a way

that the resulting space has holonomy G2.

It follows from Proposition 4.1.2, that this gluing procedure must be done in such a way

that we obtain a finite first fundamental group. This immediately tells us that we cannot
11See the discussion of Appendix B for a definition.
12Let N be a lattice. Then, a sublattice A ⊂ N is called primitive if any basis of A extends to a basis of N .
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simply glue the spaces together by gluing S1
b,+ to S1

b,− and S1
e,+ to S1

e,−, as this would give a

space with infinite fundamental group. Instead, we consider the gluing procedure that glues

S1
b,± to S1

e,∓. Of course this gluing must also be done in a way that is compatible with the

K3 surfaces S± and the R+ factors. In total we then define a diffeomorphism as follows: fix

T > 0 large enough13 and consider the region t ∈ (T, T + 1) ⊂ R+, then

φ : S+ × R+ × S1
b,+ × S1

e,− → S− × R+ × S1
b,− × S1

e,−(
(z+1 , z

+
2 ), t, θ+, ξ+

)
7→
(
(z−1 , z

−
2 ), 2T + 1− t, ξ−, θ−

) (4.33)

where (z−1 , z
−
2 ) = r(z+1 , z

+
2 ) for hyperKähler rotation r : S+ → S−, i.e.

r∗
(
Im(ΩS−)

)
= − Im(ΩS+), r∗

(
Re(ΩS−)

)
= JS+ and r∗

(
JS−

)
= Re(ΩS+). (4.34)

The claim is that the resulting space does indeed have holonomy G2, and we introduce the

following definition.

Definition. [Twisted Connected Sum G2] Let X± be ACyl Calabi-Yau 3-folds and M± =

S1
± ×X± as above. Then we truncate M± at t = T + 1 and glue the two spaces together

using φ and obtain a manifold with holonomy G2, known as a twisted connected sum

(TCS) G2. If X± come from building blocks, Z±, we use the notation

M(Z+, Z−) :=
(
Z+ × S1

e,+

)
#φ

(
Z− × S1

e,−
)

(4.35)

We define regions II± to be the asymptotic regions of M±, and regions I± to be the

remaining region, see Figure 4.1.

Cohomology

We now want to look at the cohomology of a TCS G2. If we have a TCS coming from

a set of building blocks Z±, each of the building blocks has a restriction map of the form

Equation (4.28), i.e. we have ρ± : H1,1(Z±,Z) → H1,1(S0,±,Z). We define

N± := im(ρ±),

T± := N⊥
± ∈ H2(S0,±,Z),

K± := ker(ρ±)/[S0,±].

(4.36)

13This is meant in the sense of Theorem 3.12 of [72], and is required in order to make sure the resulting
G2-structure is torsion-free.
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X+
S1
b,+

S+

S1
e,+

S1
e,+

Region I+ Region II+

X−
S1
b,−

S1
e,−

S1
e,−

S−

Region I−Region II−

r

Figure 4.1: The TCS construction of a manifold with G2 holonomy. X± are ACyl
Calabi-Yau 3-folds, who’s asymptotic regions are S± × R × S1

b,± for K3 surfaces
S±. An additional circle is attached to each to define M± = X± × S1

e,±. We glue
M± together by identitfying along the arrows, where r is a hyperKähler rotation.

The gluing diffeomorphism φ induces an isomorphism H2(S0,+,Z) ∼= H2(S0,−,Z), and so it

allows us to think of N± and T± as sitting inside the same lattice Γ3,19 = (−E8)
⊕2 ⊕ U⊕.

From here the integral cohomology groups of M(Z+, Z−) can be computed (see Theorem 4.9

of [72]). In this thesis we will work in a simplified case by imposing the orthogonal gluing

condition,

N± ⊗ R = (N± ⊗ R ∩N∓ ⊗ R)⊕ (N± ⊗ R ∩ T∓ ⊗ R). (4.37)

In this case we have

b2 + b3 = 23 + 2
[
|K+|+ |K−|+ h2,1(Z+) + h2,1(Z−)

]
. (4.38)

Following the conjecture that b2 + b3 should be invariant under mirror G2-manifolds,

swapping one (or both) building blocks Z± for new building blocks Z∨
± such that

h2,1(Z∨
±) = |K±| and |K∨

±| = h2,1(Z±) (4.39)

would preserve b2 + b3 and constitute a potential mirror. We again note the interesting fact
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that we have three different mirror options:

(Z+, Z−) → (Z∨
+, Z−)

(Z+, Z−) → (Z+, Z
∨
−)

(Z+, Z−) → (Z∨
+, Z

∨
−).

(4.40)

Mirror Gluing

To define a G2 mirror we not only need to construct appropriate mirror building blocks, but

furthermore need to find an isometry φ∨ to glue the asymptotically cylindrical Calabi-Yau

threefolds X∨
± to a TCS G2 manifold. That such a ‘mirror gluing’ always exists was shown

in [26, 27] by employing the following arguments. For type II strings on a G2 variety M we

not only need to specify the geometry of the target, but furthermore the B-field. If M is

TCS, the B-field in general restricts non-trivially to X± and the asymptotic K3 fibres S0±.

Consistency of the gluing then implies that

B|S0− = B|S0+ . (4.41)

In the asymptotically cylindrical regions of X±, mirror symmetry acting on X± implies that

the K3 fibres S0± are mapped to their mirrors. Mirror symmery for a K3 surface S can be

understood as a linear map acting on JS , Re(Ω2,0
S ), Im(Ω2,0

S ), BS that is specified by a choice

of special Lagrangian fibration of S, and results in a mere reinterpretation of the same point

in the CFT moduli space [78, 79].

Replacing both Z± by Z∨
± then replaces S0± by S∨

0±, which in turn implies that JS∨
0±

,

Ω2,0
S∨
0±

, BS∨
0±

satisfy the relations (4.34) and (4.41), so that the mirror symmetry canonically

identifies a mirror gluing φ∨ that can be used to construct

[M(Z−, S0−, Z+, S0+, φ)]
∨ := M(Z∨

−, S
∨
0−, Z

∨
+, S

∨
0+, φ

∨) . (4.42)

By using a similar logic as in the original SYZ argument, this mirror map is associated with

performing 4 T-dualities along a coassociatve T 4 fibration of M. Here, both Se± are contained

in the coassociatve T 4.

Using a similar analysis one can show that there are gluings φ∧± which allow to construct

[M(Z−, S0−, Z+, S0+, φ)]
∧− := M(Z∨

−, S
∨
0−, Z+, S0+, φ

∧−)

[M(Z−, S0−, Z+, S0+, φ)]
∧+ := M(Z−, S0−, Z

∨
+, S

∨
0+, φ

∧+)
(4.43)
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and that these mirror maps are associated with associative T 3 fibrations. For ∧±, the SYZ

picture implies that S1
e∓ are contained in the associative T 3 fibre, but S1

e± are not.

Besides sharing b2 + b3, the total integral cohomology

H•(M) =
⊕
k

Hk(M,Z) (4.44)

satisfies the stronger condition that

H•(M) = H•(M∨) = H•(M∧±) (4.45)

for any type of gluing, not just orthogonal gluing. Note that this implies that b2+b3+b4+b5 =

2(b2 + b3) is the same for all of these geometries.

Another interesting aspect of these mirror maps is that smooth G2 manifolds can po-

tentially have (geometrically) singular mirrors [27]. A TCS G2 variety necessarily contains

ADE singularities if there is a non-trivial ADE root lattice contained in N+ ∩ N−, which is

a possible realization of non-Higgsable clusters [80] in M-Theory [81]. Whereas a TCS G2

manifold M might be such that N+∩N− contains no roots, this does not necessarily hold for

one of its mirrors. However, the presence of such singularities does not imply a non-abelian

gauge group as there is necessarily a non-trivial B-field along the corresponding CP1s.

4.2.4 Comparing The Two

The quotient construction and the TCS constructions seem to share some similarities. In

particular both consider taking a Calabi-Yau, attaching a circle, and then doing something in

order to get finite fundamental group and so holonomy G2. Of course the two constructions

have big differences, but nevertheless it is reasonable to ask whether there is a way to link

the two constructions.

This question was studied in [73], all be it from a slightly different angle. The paper

uses the known results of a lift of the compactification of Type IIB strings on a Calabi-Yau

orientifold to F -theory as motivation to study the lift of Type IIA orientifolds to M -theory on

a G2. In doing so, they demonstrate an elegant relationship between the quotient construction

using Mσ and the TCS construction. Here we outline the details of their method.

Quotient

We start by noting that the Calabi-Yaus used in the TCS construction necessarily contain

a K3 fibration. We therefore consider a K3 fibred Calabi-Yau, with base space CP1, i.e.
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S ↪→ MCY → CP1
b , where b denotes "base". We denote the homogeneous coordinates of CP1

b

by [z1 : z2]. As σ : MCY → MCY is an antiholomorphic involution, we can pick it to act

as an antiholomorphic involution w.r.t the K3 fibration. This in turn tells us that it acts on

CP1
b as [z1 : z2] 7→ [z̄1 : z̄2].

Claim 4.2.1 . The fixed point locus of σ, restricted to the base space is a circle,

Lσ|CP1
b

∼= S1, (4.46)

and so cuts CP1
b into two halves.

Proof. We have homogeneous coordinates [z1 : z2] on CP1. We now swap to

z′1 = z1 + iz2 and z′2 = z1 − iz2. (4.47)

The involution acts as σ : [z′1; z
′
2] 7→ [z̄′2, z̄

′
1]. We then have that its action on the projectively

well defined coordinate z′ = z′1/z
′
2 is simply z′ 7→ 1/z̄′. The fixed point of this is a circle with

radius |z′| = 1. ■

We now make the assumption that the K3 fibration over the S1 of Equation (4.46) is

trivial, i.e. that MCY |S1 = S1 ×S0 for a smooth K3 surface S0. The cutting of the CP1 into

two halves splits the discriminant locus14 of the fibration into two sets, and our assumption

tells us that the product of the monodromies associated with the degeneration points is trivial

in each of these sets. Our assumption also tells us that the fixed points locus of Lσ takes the

form

Lσ = LS0 × S1, (4.48)

where S1 is as per Equation (4.46), and LS0 is the fixed point locus of the smooth K3 fibre

S0 over the S1. See Figure 4.2.

As we have said, σ : S0 → S0 acts as an antiholomorphic involution, that is:

σ∗ : J(S0) 7→ −J(S0)

σ∗ : Ω2,0(S0) 7→ Ω2,0(S0),
(4.49)

where J(S0) and Ω2,0(S0) are the Kähler form and holomorphic (2, 0)-form of S0. The im-

portant part is that we can now use a hyperKähler rotation, ψ, to change complex structure
14Roughly speaking, the discriminant locus of a projection is the set of points such that the fibre is singular.
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CP1

×

Lσ|CP1 = S1

S0

LS0

S S

Figure 4.2: Pictorial depiction of a K3 fibred Calabi-Yau 3-fold S ↪→ MCY →π

CP1 with antiholomorphic involution, σ, and its fixed points locus Lσ depicted in
blue. The involution cuts the base CP1 in half with Lσ|CP1 = S1. The fibration
around this fixed circle is assumed to be trivial, with smooth fibre S0. The invo-
lution acts in S0 as an antiholomorphic involution that fixes a special Lagrangian
submanifold LS0

. The fixed point locus is thus Lσ = S1 × LS0
. The shaded region

is the fundamental region of the involution. The dots are the degeneration points,
over which the K3 fibre S is singular. The product of the monodromies around
these points in either half of the CP1 is necessarily trivial.

on S0 such that

J(Sψ0 ) = ReΩ2,0(S0) and Ω2,0(Sψ0 ) = J(S0)− i ImΩ2,0(S0). (4.50)

In this new complex structure, σ acts as

σ∗ : J(Sψ0 ) 7→ J(Sψ0 )

σ∗ : Ω2,0(Sψ0 ) 7→ −Ω2,0(Sψ0 ).
(4.51)

Such an involution is known as a non-symplectic involution, and they were classified by Nikulin

[50, 82, 83]. The classification states that we can specify a non-symplectic involution by three

integers (r, a, δ), constrained by 1 ≤ r ≤ 20, 0 ≤ a ≤ 11 and δ = 0, 1. The allowed values all

also obey r − a ≥ 0.

The fixed point locus LS0 is then given by a collection of (f − 1) disjoint CP1s along with
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a genus g surface. The triple (r, a, δ) determines f and g via15

g =
20− r − a

2
+ 1 and f =

r − a

2
+ 1. (4.52)

We are now in a position to compute the Betti numbers b2 and b3 for the resolved MG2

coming from Mσ. In particular we recall Equation (4.24) and use

b0(Lσ) = f and b1(Lσ) = b1(LS0) + b0(LS0) = 2g + f, (4.53)

along with

b2+(Mσ) = h1,1+ (MCY ) and b3+(Mσ) = h1,1− (MCY ) + h2,1(MCY ) + 1, (4.54)

to obtain

b2(MG2) + b3(MG2) = 1 + h1,1(MCY ) + h2,1(MCY ) + 4f + 4g. (4.55)

Recall that the resolution of Mσ requires the existence of a nowhere vanishing, harmonic one-

form λ. The existence of it here follows from our previous assumption that the K3 surface

doesn’t vary over S1 = Lσ|CP1
b
: λ is the volume form on this circle.

TCS

We now want to reproduce the above Betti numbers from a TCS construction. The idea of

[73] was to use the antiholomorphic involution to divide the space into two and show that

these spaces can be realised using building blocks.

The idea is to recall that σ splits the base CP1
b in half, and so the fundamental region is

topologically a bounded disc, D. Letting R denote the radius of D, we can use coordinates

(r, ϕ) with r ≤ R and ϕ ∈ {0, 2π}. By picking an appropriate region of the moduli space of

MCY , we can put all of the singular K3 fibres in a small disc around the origin.

We then split D into two overlapping regions,

D− =

{
(r, ϕ)

∣∣∣ r < 3

4
R

}
D+ =

{
(r, ϕ)

∣∣∣ r > 1

4
R

}
.

(4.56)

If we can show that these two regions give ACyl 3-folds, then we are in business to find a
15There are two exceptional cases: (r, a, δ) = (10, 10, 0) and (r, a, δ) = (10, 8, 0). The former gives empty

LS0 while the latter is two tori.
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TCS construction of our G2. That is, we want to use D± to define M± that decomposes Mσ.

Importantly, the claim of the paper is that this decomposition is respected by the smoothing

to MG2 , and so we get a decomposition of MG2 as a TCS.

The first thing we notice is that the involution σ acts freely on the double cover of D
everywhere except at r = R. Therefore its action for M− is free and we simply have

M− = S1
θ ×X−, (4.57)

where X− is the ACyl 3-fold that asymptotes at r > 1
4R to S0 × S1

ϕ × R+
r . Here we have

S1
e,− = S1

θ , S
1
b,− = S1

ϕ and S− = S0.

The region M+ is more difficult as it contains the fixed points r = R. However, we are

saved by the crucial fact that there is a limit in the moduli space where the K3 fibre over D+

is trivial. We therefore have

M+ =
(S0 × S1

ϕ × Rr)× S1
θ

(σ,−1)
= S1

ϕ ×
(S0 × Rr)× S1

θ

(σ,−1)
(4.58)

where we have used the fact that σ doesn’t change the ϕ coordinate on the disc. We note

that, for r < R, the action is free and we simply get the product S1
θ ×S0×S1

ϕ×R, which looks

like an asymptotic region we want. Namely, we have S1
e,+ = S1

ϕ, S
1
b,+ = S1

θ and S+ = S0.

However, there is an issure: σ acts on S0 by an antiholomorphic involution which destroys

the Calabi-Yau nature.

The solution to this problem is simple: we change complex structure on S0 by using a

hyperKähler rotation, rr,a,δ : S0 7→ S′
0, such that σ acts holomorphically. We can then define

X+ to be the ACyl Calabi-Yau orbifold with asymptotic region S′
0 × S1

θ × R+
r . The required

hyperKähler rotation acts as

r∗r,a,δ
(
Im(ΩS′)

)
= − Im(ΩS), r∗r,a,δ

(
Re(ΩS′)

)
= JS and r∗r,a,δ

(
JS′
)
= Re(ΩS). (4.59)

We immediately note that this hyperKähler rotation is exactly the one needed for the gluing

procedure in our TCS construction, Equation (4.34). Putting this together with the fact that

the two S1s are also swapped between M±, we arrive at a TCS construction of the singular

Mσ.

The next thing we need to do is look to resolve the space and obtain a TCS of MG2 . In

order to do this, we need to find compact building blocks Z± with c1(Z±) = [S0,±] so that

X± = Z± \ S0,±.

The easier one of the two is Z−. The idea is to notice that we could glue together two
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copies of X− and get MCY back. In this sense, we have

MCY = Z−#Z−, (4.60)

which establishes a relationship between the topologies of MCY and Z−. The relations that

will be important to us are

h2,1(Z−) =
1

2

(
h2,1(MCY ) + h1,1(MCY )

)
− 11− |K−|, (4.61)

as well as

h1,1+ (MCY ) = |K−|+ |N+|,

h1,1− (MCY ) = |K−|+ |N−|+ 1.
(4.62)

where K− and N± are as per Equation (4.36).

The construction of Z+ is a little more involved and requires introducing Voisin-Borcea

Calabi-Yau 3-folds [84, 85]. These are Calabi-Yaus formed by the resolution of the quotient

of a K3 surface and a 2-torus by a holomorphic involution:

Yr,a,δ =
˜(
S × T 2

η

)
, (4.63)

where η is a non-symplectic involution on S and acts as inversion on the complex coordinate

of the T 2. As explained in [73], the idea is that Yr,a,δ can be split itself into two ‘Voisin-Borcea

building blocks’,

Yr,a,δ = Υr,a,δ#Υr,a,δ (4.64)

that have topology

h2,1(Υr,a,δ) = 2g and |K(Υr,a,δ)| = 2f (4.65)

where g and f are as per Equation (4.52). The key thing is that Xr,a,δ = Υr,a,δ \ S0 is a

non-compact ACyl 3-fold and so we can set Z+ = Υr,a,δ.

Finally, plugging Equations (4.61) and (4.65) into Equation (4.38) returns

b2(MG2) + b3(MG2) = 1 + h1,1(MCY ) + h2,1(MCY ) + 4f + 4g, (4.66)

which is exactly Equation (4.55), as required. We therefore get that the TCS construction is

given by

MG2 =
(
Υr,a,δ × S1

θ

)
#φr,a,δ

(
Z− × S1

ϕ

)
(4.67)
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where φr,a,δ is the gluing diffeomorphism who’s hyperKähler rotation is rr,a,δ of Equation (4.59).

As pointed out in [73], the nowhere vanishing, harmonic one-form λ needed in the quotient

construction is given by dϕ in the TCS description.

4.3 Toric Geometry: Tops

The construction of our mirror TCS G2 required us to know the mirror building blocks Z∨
±.

The obvious question is "is there a useful method to obtain these mirror building blocks?"

We now recall that language of toric geometry provided a very powerful and borderline com-

binatoric method for constructing Calabi-Yaus and their mirrors. We now want to look to

develop an equivalent construction for manifolds with G2 holonomy.

The key lies in noting that we can form our G2 using a K3 fibred Calabi-Yau. The

Calabi-Yau (and its mirror) are defined by introducing a pair of reflexive polytopes (∆,∆◦).

We now recall that it is possible to probe for a fibration structure by projecting the fan into

a sublattice and asking whether we get a fan again or not. We then consider the following set

up [86–88], which we give in the form of a proposition.

Proposition 4.3.1. Let ∆◦ ⊂ N be a reflexive polytope in a lattice N , and ∆◦
F ⊂ ∆◦ be a

subpolytope, i.e. there exists a sublattice NF ⊂ N such that ∆◦
F = ∆◦∩NF . If ∆◦

F is reflexive,

then the Calabi-Yau X∆,∆◦ admits a fibration by X∆F ,∆
◦
F
. The projection N → N/NF gives

rise to a projection of the hypersurfaces if there is an appropriate triangulation of ∆◦ that

turns this into a toric morphism.

The case that is of interest to us is when the fibration is of codimension 1, i.e. a K3 fibred

Calabi-Yau 3-fold. We therefore want to look at the situations where NF is codimension 1.

Letting m0 denote the primitive normal vector to NF , i.e. ⟨m0, NF ⟩ = 0, allows us to see

the fibration structure nicely [74]. We recall that the monomials for the defining equation are

defined using the lattice points m ∈ ∆:

G(z) =
∑
m∈∆

αm
∏

ni∈∆◦

z⟨m,n⟩+1
n . (4.68)

We therefore introduce an equivalence relation

m ∼ m′ if m−m′ = km0, (4.69)

for integer k. Let M̃ = {[M ]} denote the set of equivalence classes, then the defining equation
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can be rewritten as

G(z) =
∑

[M ]∈M̃

∑
m∈[M ]

αm
∏
n∈∆◦

z⟨m,n⟩+1
n

=
∑

[M ]∈M̃

 ∏
n∈∆◦

F

z⟨m,n⟩+1
n

 ∑
m∈[M ]

αm
∏
n/∈∆◦

F

z⟨m,n⟩+1
n


=

∑
[M ]∈M̃

αFm
∏
n∈∆◦

F

z⟨m,n⟩+1
n ,

(4.70)

where we have defined

αFm :=
∑

m∈[M ]

αm
∏
n/∈∆◦

F

z⟨m,n⟩+1
n . (4.71)

This is, however, the defining equation for a Calabi-Yau X∆F ,∆
◦
F
, where the coefficients of

the monomials, αFm, depend on the remaining coordinates. This is exactly the set up for a

fibration.

Next we note that ∆◦
F separates ∆◦ into two halves:

♢◦
1 := Conv ({n ∈ ∆◦|⟨m0, n⟩ ≥ 0})

♢◦
2 := Conv ({n ∈ ∆◦|⟨m0, n⟩ ≤ 0})

(4.72)

so that

∆◦ = ♢◦
1 ∪ ♢◦

2 ∆◦
F = ♢◦

1 ∩ ♢◦
2 . (4.73)

These two halves were named "top" and "bottom" in [89]. We then have the following

definition.

Definition. [Top] Let ∆◦
F ⊂ ∆◦ be a pair of reflexive polytopes, as above, with dim∆◦

F =

dim∆◦ − 1. Let m0 be the primitive normal vector to NF , ⟨m0, NF ⟩ = 0. Then a top is

defined as the lattice polytope

♢◦ = Conv ({n ∈ ∆◦|⟨m0, n⟩ ≥ 0}) . (4.74)

We will make the simple choice m0 = (0, 0, 0, 1) by exploiting the SL(4,Z) acting on N in

the following.

Definition. [Projecting Top] A top ♢◦ is called projecting if the projection of ♢◦ to NF ⊗R

is contained in ∆◦
F .

Projecting tops can be used to construct building blocks for TCS G2 manifolds in analogy

130



to Batyrev’s construction of Calabi-Yau threefolds [74]. Given a projecting top, we can define

its dual as

⟨♢,♢◦⟩ ≥ −1 ⟨♢, n0⟩ ≥ 0 . (4.75)

where n0 = (0, 0, 0,−1). Using ♢ ⊆MR, the normal fan Σn(♢) can be used in the construction

of toric varities from polytopes discussed before, resulting in a compact hypersurface in the

toric variety XΣn(♢), which in general is not smooth. A fan refinement

Σ̃n(♢) → Σn(♢) . (4.76)

for which all rays introduced have generators which are lattice points on ♢ gives rise to a

crepant partial desingularisation. The associated MPCP then defines a smooth hypersurface

which we denote by Z♢,♢◦ . The defining equation of Z♢,♢◦ is

F (z) =
∑

m∈(♢∪(0,0,0,1))

αmz
⟨m,n0⟩
0

∏
n∈♢◦

z⟨m,n⟩+1
n = 0 . (4.77)

Here zi are the homogeneous coordinates associated with the ray generators ni ∈ ♢◦, note

that n0 is always a ray generator of Σn(♢).

The hypersurface Z♢,♢◦ admits a K3 fibration with base CP1 such that

c1(Z♢,♢◦) = [S0] (4.78)

where [S0] is the cohomology class dual to the divisor class of a generic K3 fibre, i.e. Z♢,♢◦ is

a building block and X♢,♢◦ = Z♢,♢◦ \S0 is an asymptotically cylindrical Calabi-Yau threefold.

The topological data of Z♢,♢◦ required for our purposes can be described by combinators

[74].

Proposition 4.3.2. Denoting k-dimensional faces of ♢ by Θ[k], the Hodge numbers of Z♢,♢◦

are hi,0(Z♢,♢◦) = 0 for all i > 0 and

h1,1(Z♢,♢◦) = −4 +
∑
Θ[3]

1 +
∑
Θ[2]

ℓ∗(σn(Θ
[2])) +

∑
Θ[1]

ℓ∗(Θ[1])ℓ∗(σn(Θ
[1]))

h2,1(Z♢,♢◦) = ℓ(♢)− ℓ(∆F ) +
∑
Θ[2]

ℓ∗(Θ[2])ℓ∗(σn(Θ
[2]))−

∑
Θ[3]

ℓ∗(Θ[3])
(4.79)

where ℓ∗(σn(Θ[k])) counts lattice points on ♢◦ in the relative interior of the normal cone to

Θ[k], and ℓ and ℓ∗ of polytopes/faces are defined as before. The ranks of the lattices N and K
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defined for building blocks are given by

|N(Z♢,♢◦)| = ℓ1(∆F )− 3 +
∑

ve Θ
◦[1]
F

ℓ∗(Θ
◦[1]
F )ℓ∗(Θ

[1]
F )

|K(Z♢,♢◦)| = h1,1(Z♢,♢◦)− |N | − 1

(4.80)

where ℓ1(...) counts points on the one-skeleton, and ve Θ
[1]
F denotes only those one-dimensional

faces of ∆ which are bounding a face of ♢◦ that is ‘vertical’, i.e. parallel to n0.

As for reflexive polytopes, we can interchange the roles played by ♢ and ♢◦ resulting in

another building block, Z♢◦,♢, that satisfies [26]

h2,1(Z♢,♢◦) = |K(Z♢◦,♢)|

h2,1(Z♢◦,♢) = |K(Z♢,♢◦)| .
(4.81)

These are exactly the relations we needed to constitute a mirror in the TCS construction,

Equation (4.39). Furthermore, the lattices N(Z♢,♢◦) and N(Z♢◦,♢) admit a primitive embed-

ding

N(Z♢,♢◦)⊕N(Z♢◦,♢)⊕ U ↪→ Γ3,19. (4.82)

This implies that the K3 fibres of Z♢,♢◦ and Z♢◦,♢ are from algebraic mirror families [78]. The

above relations play a crucial role in the construction of mirror G2 manifolds of TCS type.

Any two projecting tops ♢◦
1 and ♢◦

2, for which ∆◦
1F = ∆◦

2F , can be joined to create a

reflexive polytope ∆◦
12 [89]. A large fraction of the polytopes in the Kreuzer-Skarke list are

of this type, and as their Hodge numbers can be understood from this decomposition as well,

a number of patterns in the plot of Hodge numbers can be explained by this. Conversely,

given a reflexive polytope ∆◦ that can be decomposed into two projecting tops, the Calabi-

Yau threefold X∆,∆◦ admits a stable degeneration limit in which it becomes reducible into

the two building blocks Z♢,♢◦ and Z♢◦,♢ [26]. This limit can be understood as stretching

the base CP1 of the K3 fibration on X∆,∆◦ , separating the singular K3 fibres to its two

ends. Cutting along the stretched base along the middle then decomposes X∆,∆◦ into the

asymptotically cylindrical threefolds X♢1,♢◦
1

and X♢2,♢◦
2
. This is, of course, simply the toric

geometry description of the decomposition of a K3 fibred Calabi-Yau into a TCS considered

above.
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5 | G2: Conformal Field Theory

This chapter discusses the SCFT for G2-manifolds, first presenting the general algebra due

to Shatashvili and Vafa, before moving on to constructions using the Odake algebra. This

allows us to make connections to the geometric constructions from the last chapter. As with

the Calabi-Yau SCFT, we introduce the mirror map as an automorphism of the algebra. We

then introduce the sigma model for a G2-manifold, and ask questions about how we should

think about the action of the antiholomorphic involution in the GLSM. This leads to simple

explanation of how the mirror construction of Hori and Vafa can be nicely extended to the

singular space Mσ. In particular we observe that the conjectured geometrical mirror pair

from the previous chapter, Equation (4.25), do indeed have isomorphic SCFTs and constitute

genuine mirror pairs. We then end with a discussion on how the smoothing process that takes

us from Mσ to MG2 should be understood in the SCFT, and argue that we again obtain a

genuine mirror map for MG2 .

The main references for this chapter are [23] for the general algebra and [29, 34] for the

realisation of the algebra using the Odake algebra. The main result of the thesis, along with

a discussion of how it fits into other known results, is then given from Section 5.2 onwards.

5.1 The Shatashvili-Vafa Algebra

Before discussing mirror symmetry for G2-manifolds, we first want to construct the super-

symmetric sigma model, i.e. we want to study the SCFT. We saw in Chapter 3 that for a

Calabi-Yau manifold, the existence of spacetime SUSY required the SCFT to have N = (2, 2)

SUSY. At the level of the SCFT this was obtained by extending the N = 1 superVirasoro

algebra by a U(1) current, J . We now want to play a similar game for manifolds with G2

holonomy and ask what extension (if any) of the N = 1 superVirasoro we need.

First we make the observation noted in [23]. The U(1) of the Odake algebra can be under-

stood as follows: consider the sigma model with an n-dimensional Kähler target, so that we

have U(n) symmetry. In order to obtain a Calabi-Yau, we need to restrict to SU(n) holonomy,
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and so the part of the U(n) symmetry that remains unbroken is U(1) = U(n)/SU(n). For

manifolds with G2 holonomy we can make a similar argument: we start with SO(7) symmetry

and have holonomy G2. The quotient is not a group, however at the level of the SCFT it is

simply a coset model with central charge 7/10,1 which is the infamous tricritical Ising model

(see, e.g., [66] for a review).

The above observation suggests that we think of the role that the U(1) plays in the Odake

algebra is played by the trictrical Ising model for the G2 SCFT. There is an important thing

missing, though: the U(1) gave us N = 2 SCFT and so gave us access to spectral flow. It

is spectral flow that allows us to map between NS and R states, and so gives rise to the

spacetime SUSY. In order to make the above U(1) −→ (tricitical Ising model) connection, we

need to show that the latter also gives us a way to map NS and R states among each other.

In order to construct the SCFT of the G2-manifold we start by recalling that [60] tells us

that a covariantly constant p-form on the target manifold gives rise to a superpartner pair

of currents with conformal dimensions p
2 and p+1

2 . For the G2-manifold we have two forms,

the associative 3-form and its dual coassosiative 4-form. We therefore expect to add four

currents to our algebra with conformal weights (3/2, 2) and (2, 5/2), which we denote (Φ,K)

and (X,M), respectively.

The OPEs between the generators (T,G,Φ,K,X,M), where (T,G) are the generators of

the N = 1 superVirasoro algebra, are shown to close (see Appendix 1 of [23])2, and so we can

use them to define our G2 SCFT. An important fact about this SCFT is that it possess two,

non-commutative, N = 1 algebras: we have the original one (T,G), and then a new one with

generators TI = −1
5X and GI = i√

15
Φ. The latter has central charge cI = 7

10 , and gives us

the tricritical Ising model that we expected.

The idea is then to split the stress energy tensor into two pieces: T = TI + Tr, where Tr
denotes the part that has vanishing OPE with the TI (i.e. r means "remaining"). This allows

us to give our states two conformal weights, hI and hr.

Recalling that the conformal weight of a Ramond ground state in a SCFT is d/16, where

d is the dimension of the target space, tells us that our Ramond ground states must have

7/16. The key thing is that the tricritical Ising model contains a Ramond ground state with

hI = 7/16, and so our G2 SCFT contains a state

|hI , hr⟩ =
∣∣∣∣ 716 , 0

〉
. (5.1)

1Technically speaking the quotient is of the affine Lie algebra so(7)1 and the (g2)1 algebras, which have
central charges 7/2 and 14/5, respectively.

2It was noted in [29] that there is a typo in the K(z)M(w) OPE.
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The operator corresponding to this state can then be used to provide a map between R and

NS states (see, e.g., [23]). This allows us to really conclude that the trictirical Ising model

plays the role of the U(1) in the Odake algebra.

We shall refer to the above algebra as the Shatashvili-Vafa algebra in what follows. As

pointed out in [29], the algebra obtained in [23] was done in a free field representation, which

guarantees the associativity of the OPEs. However, more abstractly in order to satisfy the

Jacobi-like identities, we need to mod out by an ideal generated by

N = 4(GX)− 2(ΦK)− 4∂M − ∂2G. (5.2)

5.1.1 Moduli Space

We now recall that the Witten index plays an important role in relating the states of the

SCFT to the cohomology of the target spacetime. Here we are dealing with the extension of

an N = 1 algebra, and so we do not have the U(1)A and U(1)V charges that played such a

crucial role in allowing us to determine individual Hodge numbers for Calabi-Yau targets. As

explained in [23], here we are only able to compute either the sum of all even or all odd Betti

numbers, we will use even for concreteness. This means that the SCFT only determines the

target manifold up to manifolds that share the same
∑

i b
2i.

Luckily for manifolds with G2 holonomy this is simplified slightly: the only undetermined

Betti numbers are b2, b3, b4 and b5, but these are related by the Hodge star: b2 = b5 and

b3 = b4. So, from the SCFT perspective, we can only compute the cohomology of the target

space up to manifolds that have the same b2 + b4 = b2 + b3. This is exactly our Shatashvili-

Vafa relationship, Equation (4.5), that we have been using to identify potential mirror G2s.

Indeed in [23] they show using the tricritical Ising decomposition above that they are only

able to determine the value of b2 + b3 from the algebra. In other words, the moduli space of

the Shatashvili-Vafa algebra has dimension b2 + b3

This tells us that, although the two manifolds could have widely different topology, they

share the same SCFT and so correspond to physically equivalent theories. This is the context

in which the generalised mirror conjecture above is understood.

We now move on to constructing the Shatashvili-Vafa algebra by thinking about the

geometrical constructions of G2s from before. We will, however, leave the discussion of mirror

symmetry in these constructions until we have presented our general mirror arguments later.
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5.1.2 From Odake

Now that we have both our Odake and Shatashvili-Vafa algebras, we can ask if we can link

them in a similar fashion to the geometric constructions. We start by noting that the Ramond

ground states of our Odake algebra all had h = 3/8, while the Shatashvili-Vafa algebra requires

h = 7/16. Putting this together with the fact that the SCFT for a circle is given by a single

boson-fermion pair, so that the R ground states have h = 1/16, we can generate the right

conformal dimensions by attaching a copy of the S1 SCFT to the Odake algebra.

Quotient Construction

We first look at the quotient construction

Mσ =
MCY × S1

(σ,−)
, (5.3)

where σ is an antiholomorphic involution on MCY and (−) the inversion on the S1. This was

done nicely in [29], and we summarise the construction here.

Denoting the Odake generators by (TCY, G
0, J,G3, A,B,C,D) and the boson-fermion gen-

erators by (j, ψ), we obtain the Shatashvili-Vafa generators via3

T = TCY + TS1

G = G0 +GS1

Φ = A+ (Jψ)

X = (Bψ) +
1

2
(JJ)− 1

2
(∂ψψ)

K = C + (Jj) + (G3ψ)

M = (Dψ)− (Bj) +
1

2
(j∂ψ)− 1

2
(∂jψ) + (JG3)− 1

2
∂G,

(5.4)

where (...) stands for normal orderings, and

TS1 =
1

2
(jj) +

1

2
(∂ψψ) and GS1 = (jψ). (5.5)

As before, we must take into consideration the ideal N of Equation (5.2). However, we

note that N in fact belongs to the ideal generated by the Odake null fields N1 and N2 in
3The expression for M is corrected for a typo, as per [34].
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Equation (3.48). We therefore obtain a realisation of the Shatashvili-Vafa algebra as

SV ↪→ Od3 × FreeS1

⟨N1, N2⟩
(5.6)

We are dealing with an N = (1, 1) algebra, and so we have two copies of this: the left and

right copies.

Following the geometrical construction of manifolds with G2 holonomy from a quotiented

product of a Calabi-Yau and a circle, we now want to ask how the involution acts on the

generators of the SCFT. Geometrically, an antiholomorphic involution is defined via the action

on the Kähler form, JK 7→ −JK , and on the holomorphic (3, 0) form, Ω3,0 7→ Ω̄3,0. Recalling

that the results of [60] tell us that the Kähler form gives rise to the (J,G3) generators and

that the imaginary parts of Ω3,0 gives rise to (B,D), we conclude that an antiholomorphic

involution inverts the sign of these four generators. We can make similar arguments for the

S1 factor, where we see that the signs of both generators (j, ψ) are changed. So, in total, we

see that an antiholomorphic involution acts on the generators as

(σ,−) : (TCY, G
0, J,G3, A,B,C,D, j, ψ) 7→ (TCY, G

0,−J,−G3, A,−B,C,−D,−j,−ψ) (5.7)

This acts on both the left and right algebras simultaneously. This is clearly an automorphism

of the Shatashvili-Vafa algebra as the generators (T,G,Φ, X,K,M) are all invariant. Indeed

this is one way to obtain the decomposition in Equation (5.4): they generate the subalgebra

of Od3 × S1 fixed by σ.

We note an important point: the antiholomorphic involution does not have a unique

geometrical interpretation. Here we have written its action at the level of the generators of

the algebra, however this does not fix how it acts on individual elements of the Hilbert space.

For example, an involution has the potential freedom to map states with the same quantum

numbers, but the above is insensitive to this map. Geometrically this could correspond to

the difference between sending (z1, z2, ..., ) 7→ (z̄1, z̄2, ....) or (z1, z2, ..., ) 7→ (z̄2, z̄1, ....), etc. In

order to explicitly construct our mirror MG2 , we of course want to be more specific about

which involution we are dealing with. We will be able to answer this question more clearly

when we turn to the GLSM approach later.

TCS Construction

We also want to be able to see the construction of the Shatashvili-Vafa algebra akin to the

TCS construction. This was done in [34] by considering the two regions I vs. II of the TCS
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construction in turn.

For regions I± we are dealing with a product of an ACyl Calabi-Yau 3-fold and a circle.

We therefore are in the realm of the above construction and we simply get Equation (5.6)

again.

Regions II± is slightly more complicated, but not too hard to see. Here we are geometri-

cally looking at the product of a K3 surface, two S1 factors and a copy of R+. The idea is

to find a realisation of Od3 in terms of the K3 surface, one of the S1s and the R+, and then

combine this with the result above to obtain a realisation of the Shatashvili-Vafa algebra.

The result is rather straight forward: we can obtain Od3 as

Od3 ↪→
Od2 × (Free)2S1×R+

⟨N1, N2⟩
(5.8)

where Od2 is the Odake algebra corresponding to the K3 surface. We then simply obtain

SV ↪→
Od2 × (Free)3S1×R+×S1

⟨N1, N2⟩
. (5.9)

The final step of [34] is to check for compatibility of the two realisations at the junctions

between regions: I+∩ II+, II+∩ II− and I−∩ II−. We note that I+∩ II+ and I−∩ II− will have

the same form and so one needs to only check one. This is done by providing maps between

the generators for each region, and checking that the ideals are unaffected. We do not present

the details here, but they can be found in the reference.

5.1.3 Mirror Automorphism

Before looking at the sigma model for manifolds with G2 holonomy, and the geometrical

statements of mirror symmetry, we first observe mirror symmetry as an automorphism on the

Shatashvili-Vafa algebra constructed using the Odake algebra as above.

Besides the antiholomorphic involution automorphism, Equation (5.7), the G2 algebra

contains three other interesting automorphisms (MCY, TS1 ,MG2), who’s actions on the gen-

erators are given in Table 5.1. Contrary to the automorphism associated with antiholomorphic

involutions, these automorphisms only act on one side of the N = (1, 1) algebra, say the right

side.

We note that the first automorphism is nothing other than our Calabi-Yau mirror map

(Equation (3.55)), and the second is simply T -duality on the boson-fermion pair. The final

map is just the composition of these two. Note that the latter acts on the Shatashvili-Vafa
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TCY G0 J G3 A B C D j ψ

MCY + + − − + − + − + +
TS1 + + + + + + + + − −
MG2 + + − − + − + − − −

Table 5.1: Three automorphisms of the G2 algebra formed via the product of
the Calabi-Yau and circle algebras. The action is written via its action on the
generators, with (TCY, G

0, J,G3, A,B,C,D) corresponding to the Calabi-Yau and
(j, ψ) the circle.

generators trivially, i.e.

MG2 : (T,G,Φ, X,K,M) 7→ (T,G,Φ, X,K,M), (5.10)

whereas the other two do not have easily defined action on these generators, e.g.

MCY : Φ = A+ (Jψ) 7→ Φ′ = A− (Jψ). (5.11)

Nevertheless, it is straightforward to show that both MCY and TS1 are automorphisms of

the algebra. This follows simply from the fact that the Calabi-Yau subalgebra does not

speak to the boson-fermion subalgebra, i.e. the OPEs between (TCY, G
0, J,G3, A,B,C,D)

and (j, ψ) all vanish. Therefore if our map is an automorphism of the subalgebras, it must be

an automorphism of the full algebra.

We note that the automorphism given in [77] takes the form

MGK : (T,G,Φ, X,K,M) 7→ (T,G,−Φ, X,−K,M). (5.12)

As pointed out in [34], this automorphism is related to MCY and TS1 via a phase rotation on

the Calabi-Yau generators:

Phπ : (TCY, G
0, J,G3, A,B,C,D) 7→ (TCY, G

0, J,G3,−A,−B,−C,−D). (5.13)

We introduce these here as they will be important when discussing mirror symmetry in the

TCS construction.

Mirror Involutions

We are now in a position to state an important observation: all three mirror automorphisms

commute with the antiholomorphic involution automorphism. It follows from this that for
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every antiholomorphic involution on the original theory we obtain an antiholomorphic involu-

tion in the mirror theory. In other words, the mirror of antiholomorphic involutions are again

antiholomorphic involutions.

We immediately note that this statement has been made simply at the level of the gen-

erators of the algebra. However, as we have said, at this level we are blind to which anti-

holomorphic involution we are doing. This situation is akin to the story of mirror symmetry

in Calabi-Yau manifolds: one can note an automorphism of the algebra, but the story really

becomes interesting once we have methods to dig deeper, in particular the GLSM and Gepner

models.

TCS Construction

Before we look at the problem from the GLSM perspective, we quickly discuss the mirror

map for the SCFT of the TCS construction. This was considered in [34] and gives a beautiful

result. Recall that our TCS algebra can is decomposed into four regions, just as the geometry

in the TCS construction is: regions I± and II±. The idea is to start with a given G2 mirror

involution in region I+ and then trace it through the gluing procedure and check that it defines

a consistent mirror involution on the algebra in each region. In doing this they observe two

different mirror maps. We summarise their results in Tables 5.2 and 5.3.

Region I+ II+ II− I−

Automorphism
decomposition MCY ◦ Tξ MS ◦PhπS ◦Tθ ◦Tξ PhπS ◦MS ◦Tξ ◦Tθ MCY ◦ Tθ

SV automorphism id id id id

Table 5.2: TCS mirror automorphism corresponding to Equation (4.42). That
is, it is associated with performing 4 T-dualities along a coassociative T 4 fibration,
with both S1

e,± being dualised.

Region I+ II+ II− I−

Automorphism
decomposition MCY ◦ Phπ MS ◦ Tθ PhπS ◦ Tθ Phπ ◦ Tθ

SV automorphism MGK MGK MGK MGK

Table 5.3: TCS mirror automorphism corresponding to Equation (4.43). That
is, it is associated with performing 3 T-dualities along an associative T 3 fibration,
with only S1

e,− being dualised. We could also perform this same mirror map but
with + ↔ − exchanged, which gives the other mirror map of Equation (4.43).

The key thing to note is that the mirror map of Table 5.2 corresponds to mirroring both
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building blocks (as well as T -dualising the external circle), whereas the map of Table 5.3

only mirrors the Z+ building block (without T -dualising S1
e,+) and leaves Z− unmirrored (but

T -dualises S1
e,−). Of course this latter type could also be done the other way around: mirror

Z− and leave Z+ unmirrored. We therefore have 3 different mirroring options, corresponding

exactly to Equation (4.40).

5.2 G2 Sigma Models

We recall from our Calabi-Yau discussion that mirror symmetry is most powerfully understood

from the sigma model perspective. In particular, the sigma model encapsulated the notions

of mirror symmetry not only for Gepner models (which are a particular limit of the sigma

model) but also reproduced the results of Greene-Plesser and also could be related to Batyrevs

mirror maps for toric hypersurfaces.

For this reason, we now want to look at the sigma model for a manifold with G2 holonomy

and ask about what we can say about mirror symmetry in this context. We recall that the

question we really want to probe is whether the following geometrical mirror proposal makes

sense:

(Mσ)
∨ =

(
MCY × S1

(σ,−1)

)∨
=

M∨
CY × (S1)∨

τ
, (5.14)

where τ is an involution that gives rise to a quotient with equivalent b2 + b3. In particular

we want to know whether the physics tells us whether such a τ exists, if it is unique and if τ

should be an antiholomorphic involution on the mirror M∨
CY .

The first thing we will need is the sigma model of the product of a Calabi-Yau and a

circle. The key thing here is that this is a metric product, i.e. the metric for the theory is

block diagonal

gCY×S1 = gCY ⊕ gS1 . (5.15)

From the sigma model perspective, this means that our sigma model splits into the sum of

the Calabi-Yau and the circle models. The latter is simply the theory of a boson fermion pair,

and the former we have discussed in detail above. It is known that the sigma model for a

manifold with G2 holonomy is a (1, 1) theory, but here we have a sum of a (2, 2) theory (the

Calabi-Yau) and a (1, 1) theory (the circle). We generate the G2 sigma model by taking the

quotient of these sigma models by the antiholomorphic involution, we therefore need to know

how the involution acts on these two models.

The S1 sigma model is straight forward and it can be shown that the inversion simply acts

as sign conjugation of the boson and fermion, i.e. if j is the boson and ψ the fermion, then the

involution acts as (j, ψ) 7→ (−j,−ψ). The involution for the Calabi-Yau sigma model needs a

141



little bit more thought, and we shall do this in Section 5.2.2 below. As a stepping stone, we

first consider the limit of the GLSM corresponding to a G2 Gepner model and study how the

involution and mirror map work in this context.

5.2.1 G2 Gepner models

The construction of G2 Gepner models have been studied in [30–32]. Under Gepner’s con-

struction the full SCFT (in light-cone gauge) is given by a Gepner model and an so(2)1 affine

Lie algebra, which gives the two fermions in the non-compact directions. It can be shown

using simple current arguments (see [59] for a review), that the NS vs R sectors of the two

parts must agree, i.e. if we have a NS state in our Gepner model, we must take a NS state

from our so(2)1 model. Similarly we can show that the overall U(1) charge of a state must

be an odd integer.

Let’s imagine we have a NS state in our Gepner model, and we want to add back in the

so(2)1 factor. We have two options: O2 and V2. These have (h, q)O = (0, 0) and (h, q)V =

(1/2, 1). Now, we know that the NS states should have total charge being an odd integer,

however we chose our spectral flow such that our Gepner models always had odd integer NS

charge, and so we can only couple to the O2 rep. This is all consistent: if we had taken a state

of the form q = qGep+ qso(2)1 = 2+1, so that we were using the V2 rep, we could use spectral

flow to go to the state with qGep = −1. The spectral flow from NS to R in the so(2)1 theory

is given by either C2 or S2 (depending on which direction you flow). Either way, we are doing

this same spectral flow twice (to go NS to R to NS) and so we are using C2
2 = S2

2 = V2, which

follows from the fusion rules of so(2)1. Putting this together with V2 × V2 = O2, we see that

our V2 rep flows to an O2 rep, as needed. All together, that is

(qGep = 2)× V2 7→ (qGep = −1)×O2. (5.16)

Therefore we can always represent a state in the NS sector as a state in the Gepner model

with odd integer charge along with the O2 rep.

In order to construct our G2 Gepner model, we need to split the so(2)1 factor into two

copies of so(1)1. In other words, we want to treat the two fermions separatly, as one will

remain a non-compact direction, whereas the other will be compactified on our S1. There

are three representations of so(1)1: (O1, V1, S1), which have conformal weights (0, 1/2, 1/16),

respectively. The thing we notice imediately is that the R representation S1 has h = 1/16,

which is exactly the conformal weight required in order to take the R ground states of a

Calabi-Yau CFT and produce R ground states of a G2 CFT, i.e. hG2 = 7/16 = 3/8+ 1/16 =
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hGep + hS1 .

One can form the four reps of so(2)1 out of the three reps of so(1)1 as follows:

O2 = O1O1 + V1V1

V2 = O1V1 + V1O1

S2 = S1S1

C2 = S1S1

(5.17)

The at-face-value equality of S2 and C2 is dealt with via arguments related to fixed points of

simple current orbits in the so(1)1 × so(1)1 theory (see, [30] for details). We can use this to

write our generic NS (Gep)× so(2)1 state in terms of so(1)1 reps, namely(
h =

|q|
2
, q ∈ {±3,±1}

)
⊗
(
O1O1 + V1V1

)
, (5.18)

and similarly for the right states (i.e. tildes everywhere).

Anti-holomorphic Involution

The G2 involution maps the so(1)1 NS reps via (O1, V1) 7→ (O1,−V1).4 As we have seen, it

also maps states in our Gepner models by changing the sign of the U(1) charges. In terms of

the tuples (li,mi, si) of the minimal model factors, the involution acts as

(li,mi, si) 7→ (li,−mi,−si) (5.19)

on the states in the highest weight representation. This actually gives the ‘vanilla’ involution

(i.e. simply complex conjugation), but we can easily generalise this to involutions that swap

homogeneous coordinates that have the same weight. At the Gepner level, this would be a

map that swaps two minimal model factors that have the same level.

Using the general change of sign argument, we see that the states that existed in our

Calabi-Yau Gepner model will split into one even and one odd piece under the involution.

Namely, working in a basis of states with definite charge, our states are paired in their charge

conjugates. We form the even and odd combinations in these pairs: the even ones couple with

O1O1 and survive while the odd ones couple with V1V1 and survive.

Using the equivalence between the charges of the states in a Gepner model and the number

of differential forms, along with identifying the presence of V1 as wedging with dθ (the differ-
4It’s action to S1 is less easily written, but it acts via S2 ↔ C2.
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ential form on the S1), the above reproduces the geometrical argument that the differential

forms that survive give Betti numbers

b0 = b7 = 1 b2 = h1,1+ and b3 = h1,1− + h2,1 + 1. (5.20)

For clarity, b0 = 1 corresponds to the (0, 0) form while b7 = 1 to the (3, 3) ∧ dθ. The b2

come from the even (1, 1) forms, (1, 1)even. Finally, b3 forms come from {(3, 0)+(0, 3), (2, 1)+

(1, 2), (1, 1)odd∧dθ}. These are only the Betti numbers corresponding to the untwisted states

under the involution σ as we have ignored the twisted sectors. Geometrically, this is the

statement that we have the cohomology of Mσ but not of the resolved MG2 .

Mirror Involution

Next we want to look at the action of the mirror map on this construction and demonstrate

that it gives rise to a mirror anti-holomorphic involution. Given the above arguments, this is

straightforward; the key thing is that both maps act as a reversal of charges and commute.

If we denote the mirror minimal model tuples as

(li,mi, si) 7→ (l∨i ,m
∨
i , s

∨
i ), (5.21)

then the charges of the mirror states are given in terms of (m∨
i , s

∨
i ). As the mirror involution

acts as a change of sign, it must act as

(l∨i ,m
∨
i , s

∨
i ) 7→ (l∨i ,−m∨

i ,−s∨i ), (5.22)

which is exactly equivalent to Equation (5.19). This tells us that the mirror involution has

the same geometrical interpretation, namely it is an anti-holomorphic involution.

Note that it would be dangerous at this point to assume that states of definite charge

have a one-to-one correspondence with differential forms by using Equation (3.53). Consider

a state corresponding to a (2, 1)-form in the original Gepner model: under the involution, this

state is mapped to a state who’s corresponding form is of Hodge type (1, 2). Acting with the

mirror map on both of these states we find a (1, 1)-form and a (2, 2)-form. This now seems

to imply that the involution σ on the mirror side has to map a (1, 1)-form to a (2, 2)-form,

which cannot be achieved by an anti-holomorphic involution. One way to see the overly strong

assumption in this argument is to observe that eigenstates of the charge operators do not need

to correspond to forms of fixed degree. This can be made very explicit in orbifold models and

we have treated one example in detail in Appendix A.
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As we have said we expect our G2 to have three different mirrors. In the quotient con-

struction, geometrically these three mirrors correspond to: (i) mirroring the Calabi-Yau but

leaving the circle factor alone, (ii) leaving the Calabi-Yau alone and doing T-duality on the

circle, and (iii) doing both Calabi-Yau mirror and T-duality on the circle. For our Gepner

model here we have only obtained one mirror map, corresponding to case (i). By studying

the interplay of T-duality and the action of the involution on the so(1)1 factor, one should be

able to obtain similar results for the other two mirror maps. We do not do this calculation

here, but claim that this construction exists, and provide evidence of this below.

5.2.2 G2 GLSM

As we have already said, given a Calabi-Yau threefold MCY , a sigma model on the metric

product MCY ×S1 splits into the sum of a (2, 2) theory (the Calabi-Yau) and a (1, 1) theory

(the circle). As manifolds with G2 holonomy are not Kähler, their sigma model is (1, 1) theory,

and we obtain this from the above by an quotienting by an involution. We are interested in

how these G2 involutions act on mirror pairs.

Anti-holomorphic Involution

The key observation which allows us to immediately write down anti-holomorphic involutions

for GLSMs is that the chiral superfields Φi are identified with the homogeneous coordinates

of the toric Calabi-Yau ambient space. Therefore the anti-holomorphic involution acts on

these chiral superfields in exactly the same way that it acts on the coordinates. In particular

the vanilla involution simply maps each chiral superfield to its anti-chiral partner. As the

anti-holomorphic involution furthermore needs to map G± 7→ G∓ it follows that θ± 7→ θ∓

which implies that also the twisted chiral superfields Σa are sent to their complex conjugates.

The vanilla anti-holomorphic involution hence acts as

σv :
Φi 7→ Φ̄i

Σa 7→ Σ̄a
(5.23)

To have a symmetry of the GLSM, and not just the fields, we also need to make sure the

anti-holomorphic involution is a symmetry of the action, Equation (3.56). This means that

we need to restrict the complex parameters in the superpotential such that

W (Φi) =W (Φi) . (5.24)

and furthermore we have to take the parameters ta to be real.
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We note that this condition requires that the coefficients in superpotential be real, but

does not place any further constraints on them. We do not discuss this in detail here but

simply note the following. The topology of the fixed point locus of the involution is, of

course, dependent on what we pick. For example, if we consider the Calabi-Yau defined inside

WCP4
1,1,1,1,4 then the defining equation (i.e. the superpotential) takes the form

α1Φ
8
1 + α2Φ

8
2 + α3Φ

8
3 + α3Φ

8
3 + α4Φ

8
4 + α5Φ

2
5 = 0, (5.25)

where αi ∈ C. By an appropriate choice of anti-holomorphic involution, the real equation is

then given by

±ξ81 ± ξ82 ± ξ83 ± ξ84 ± ξ25 = 0, (5.26)

where ξi are real coordinates. The fixed point locus clearly depends on the choice of sign, in

particular if we take all positive signs then it must be empty!

As the fixed point locus is dependent on the choice, it follows that the twisted sectors in

the SCFT depend on the choice. In this thesis we do not study the twisted sectors, and so

we do not expand further on this point, but simply point the interested reader to [33].

Mirror Involution

We can now trace this through the dualization procedure of [13] to find the action of σ on

the mirror. Dualizing we find that

σv :
Re(Yi) = Φ̄ie

2QiV Φi → Φ̄ie
2QiV Φi = Re(Yi)

Im(Yi) = ϑi → −ϑi = − Im(Yi)
(5.27)

by using Equations (3.121) and (3.122).

For the case of weighted projective spaces we can directly track this action through to an

action on the fields Φ∨
i : We have Φ∨

i = X
Qi/H
i with Xi = e−Yi/H , and so

σv : Φ
∨
i 7→ Φ

∨
i , (5.28)

which is simply the vanilla anti-holomorphic involution on the mirror side again.

In the more general case of toric hypersurfaces (i.e. h ≤ h∨) we have that the fields in the

dual theory are

P̃ =
h∨∏
ℓ=1

Φ∨
ℓ and Xi = e−ti

h∨∏
ℓ=1

(
Φ∨
ℓ

)⟨mℓ,ni⟩+1
. (5.29)
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where Xi are dual variable for the Φi and P̃ is the dual variable of P . We can now simply

change the roles of what is considered the starting point and what is considered the mirror.

That is, we think of the vanilla involution σv as defined on M∨
CY instead of MCY , where it

acts as σ∨v : Φ∨
i → Φ̄∨

i . This then implies immediately that

σv :
Xi 7→ X̄i

P̃ 7→ P̃
(5.30)

and hence

σv :
Φi 7→ Φ̄i

P 7→ P
(5.31)

We finally use that in the mirror theory the superpotential again obeys Equation (5.24), and

hence recover the result that the vanilla involution in the GLSM is mapped to an involution

of the same type for its mirror.

As the number h∨ of dual fields Φ∨
ℓ can be larger than the number h of fields Φi, we cannot

in general solve the above equations for Φ∨
ℓ to directly show that complex conjugation of the

Φi implies complex conjugation (and nothing else) of the Φ∨
ℓ . This does not prevent us from

associating σv with σ∨v . The action of an involution on an isomorphic theory must be unique

up to automorphism, so that any freedom to associate σv with a different involution implies

that this simply gives the vanilla involution in disguise.

A similar argument holds for the action of the involution of the circle part of the sigma

model, where the action of T-duality identifies it with another involution inverting the coor-

dinate on the circle. In summary, we hence have four isomorphic tuples

(
MCY × S1, (σ,−)

)
∼=
(
M∨

CY × (S1)∨, (σ∨,−)
)

∼=
(
M∨

CY × (S1), (σ∨,−)
)

∼=
(
MCY × (S1)∨, (σ,−)

)
(5.32)

As a Gepner model is a particular limit of the GLSM, our proof of the existence of the

three mirror GLSMs also provides a proof of our claim above that there are three mirror maps

for the G2 Gepner model.

Even though we have focused the discussion on the vanilla involution σv, which always

exists, it is clear that analogous results can be obtained for any other anti-holomorphic in-

volution σ. By following through the same analysis investigating the dualisation procedure
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in the GLSM, such an involution σ will also have a mirror σ∨ which acts geometrically on

M∨
CY . An upshot of this realisation is that the set of anti-holomorphic involutions on MCY

is isomorphic to the set of anti-holomorphic involutions of M∨
CY . We expect that this can be

made precise for toric hypersurfaces by relating σ to automorphisms of ∆◦.

5.2.3 G2 Mirrors

Above, we have shown the equivalence of the vanilla anti-holomorphic involutions in the

dual descriptions found after mirror symmetry and/or T-duality for both Gepner models and

GLSMs. Of course, merely specifying the tuple
(
MCY × S1, (σ,−)

)
does not yet define a G2

model as we need to include an appropriate twisted sector, which is in general not unique.

For a given choice of superpotential obeying (5.24), and a choice of real parameters ta,

the mirror map identifies a corresponding superpotential and FI parameters on the mirror.

This in particular means that the fixed loci Lσ and Lσ∨ are completely determined. However,

there will in general be several inequivalent (partial) smoothings of the orbifold singularities

of
(
MCY × S1

)
/(σv,−) by choosing different bundles Z in the construction of [69]. In a TCS

description, this freedom will appear as the freedom to resolve or deform the building block

Υr,a,δ.

Given a point in the moduli space of the worldsheet SCFT of type II strings on MCY ×S1,

our analysis hence implies that pairwise isomorphic worldsheet CFTs must exists among the

four isomorphic sets {
(MCY × S1, (σv,−), Liσ)

}
∼=
{
(M∨

CY × (S1)∨, (σ∨v ,−), L∨
σ
i)
}

∼=
{
(M∨

CY × S1, (σ∨v ,−), L∧−
σ

i)
}

∼=
{
(MCY × (S1)∨, (σv,−), L∧+

σ
i)
}

(5.33)

where we have denoted different twisted sectors by Liσ, L∨
σ
i, L∧−

σ
i, L∧+

σ
i.

It is beyond the scope of this thesis to investigate these sets and the precise identification

between their elements. For specific models, some results can be found in [30, 32, 33].

It is intriguing to compare what we have found here with the mirror maps that were

proposed in [26, 27] for twisted connected sum G2 manifolds. For the three mirror maps found

using the GLSM description, there are obvious candidates for a corresponding geometrical

construction as a TCS, as indicated by the notation used (c.f. Equations (4.42) and (4.43)).

Making this precise requires an in-depth analysis of twisted sectors, and an identification of

the twisted sectors in the GLSM with different TCS realisations.
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5.3 Example

We end with an example that collects and demonstrates the ideas presented in this thesis. The

first thing we need is a K3 fibred Calabi-Yau threefold. Here we will consider the example of

a Weierstrass elliptic fibration over a Hirzebruch surface. Locally this is a fibration of WCP2
321

over Fn. The weight system is given by

y x w z1 z2 z3 z4 P

H1 → 3 2 1 0 0 0 0 6

H2 → 6 + 3n 4 + 2n 0 1 n 1 0 12 + 6n

H3 → 6 4 0 0 1 0 1 12

where [y : x : w] are the homogeneous coordinates of WCP2
321 and [z1 : z2 : z3 : z4] are the

coordinates of Fn. Recalling the weight systems for WCP2
321 and Fn, Equation (2.122), we

can see the the fibration structure: the weights of y and x under H2 and H3 are what make

this fibration non-trivial. A Weiserstrass elliptic fibration is given by the defining equation

y2 = x3 + f(z)xw4 + g(z)w6, (5.34)

from which it follows that f(z) has weights (0, 8+4n, 8) and g(z) has weights (0, 12+6n, 12),

where the three entries correspond to going down the rows in the weight diagram.

For simplicity we consider F0 = CP1 × CP1, and denote the coordinates for the two CP1s

as [u1 : u2] and [z1 : z2]. The defining equation for MCY is then given by

y2 = x3 + f8,8(u, z)xw
4 + g12,12(u, z)w

6, (5.35)

where the subscripts denote the degrees for (u, z). We shall take the base CP1
b = CP1

[z0:z1]
.

The fibration of WCP2
321 over CP1

[u1:u2]
is then a K3 surface, so in total we have a K3 fibration

over CP1
b , as required.

Involution & Fixed Locus

We now want to look at how the antiholomorphic involution acts on MCY and in particular

look at the fixed point locus. As always we focus on the vanilla involution

σ : (y, x, w, u1, u2, z1, z2) 7→ (ȳ, x̄, w̄, ū1, ū2, z̄1, z̄2). (5.36)
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As we have seen before, this action fixes a circle on each of the CP1 factors, so we have a

fixed T 2 ⊂ CP1 × CP1. All that is left to do is look at how it acts on the elliptic fibration

over CP1
u × CP1

z. As explained in [90]5 (see also [73]), the fixed points of σ depend on the

specific choice of f8,8(u, z) and g12,12(u, z). In particular one has to consider the discriminant

locus ∆(u, z) = −(4f3 + 27g2). The values of (u, z) that give vanishing discriminant locus

correspond to singular fibres. If we pick f and g such that these zeros do not lie in the fixed

T 2 the fibration is trivial over this T 2, and then the fixed points locus of σ in the fibres is a

disjoint union of two S1s. So in total, the fixed point locus is Lσ = T 3 ∪T 3. As Lσ|CP1
b
= S1,

we thus have LS0 = T 2 ∪ T 2.

This fixed point locus contributes to the Betti numbers of the resolved G2 as discussed

above. In particular we have

b0(Lσ) = 2 and b1(Lσ) = 6. (5.37)

Polytopes

Using the weight system above, we obtain the following generating vectors of the corresponding

fan 

ν0

ν1

ν2

ν3

ν4

ν5


=



−1 0 0 0

0 −1 0 0

2 3 −1 0

2 3 1 0

2 3 0 −1

2 3 0 1


(5.38)

We immediately note that νw = (2, 3, 0, 0) does not appear above, this is because it lies in the

face connecting νu1 and νu2 (as well as for νz1 and νz2). This is exactly the statement that

we have a fibration structure: our fan is formed by taking the fan for WCP2
321 and adding

generates above and below a set vertex.
5Note in this paper the base is a CP2 rather than CP1 × CP1, but the logic is the same.
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The dual vectors can then be computed as

ν∗0

ν∗1

ν∗2

ν∗3

ν∗4

ν∗5


=



1 −1 0 0

−2 1 0 0

1 1 6 −6

1 1 6 6

1 1 −6 −6

1 1 −6 6


, (5.39)

and our pair of reflexive polytopes (∆,∆◦) are then given by the convex hull of the {ν∗i } and

{νi} vectors, respectively. We can use these polytopes to construct the Calabi-Yau threefold

M∆,∆◦ and compute its Hodge numbers using the Batyrev result, Equation (2.161), to give

(h1,1(M∆,∆◦), h2,1(M∆,∆◦)) = (3, 243).

As a consistency check, we can check that we can reproduce the Hodge number h2,1 = 243

by looking at the number of allowed monomials in the defining equation, Equation (5.35).

These are determined by the allowed terms in f8,8(u, z) and g12,12(u, z). As both [u1 : u2]

and [z1 : z2] are CP1s and they have the same degrees in f we can just work out the number

of allowed monomials in [u1 : u2] and then square that number to account for the [z1 : z2].

The same argument holds for g. For f8(u) we are thus looking at the number of degree 8

monomials in two variables. Recalling that the number of independent degree d monomials

in (n + 1) variables is given by the binomial coefficient

(
d+ n

n

)
, this is simply

(
9

1

)
= 9.

So f8,8(u, z) has 92 = 81 possible monomials. We similarly get that g12,12(u, z) has 132 =

169 possible monomials. This gives a total of 250, which is bigger then the required 243.

However, we need to account for the automorphisms and scalings. Each CP1 has an SL(2,C)

automoprhism group, which removes 3 + 3 = 6, and the final one is removed by an overall

scaling of Equation (5.35). So in total we have h2,1 = 250− 6− 1 = 243.

We now recall that the Betti numbers for the resolved MG2 are given by

b2(MG2) = b2+(Mσ) + 2b0(Lσ) and b3(MG2) = b2−(Mσ) + b3+(Mσ) + 2b1(Lσ). (5.40)

Using the fact that σ is odd on all the (1, 1)-forms on MCY , i.e. b2+(Mσ) = 0 and b2−(Mσ) = 3,

and that b3+(Mσ) = h2,1(MCY ) + 1, along with Equation (5.37), we get

b2(MG2) = 0 + (2× 2) = 4

b3(MG2) = 3 + (243 + 1) + (2× 6) = 259
(5.41)
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so that b2(MG2) + b3(MG2) = 263.

TCS

To see the TCS construction we need to find the building blocks Z±. These are given in [73],

and we summarise the result here.

We recall that

Z+ = Υ(r,a,δ) (5.42)

where (r, a, δ) specify the Nikulin involution. This in turn is specified by LS0 , which here is

two disjoint T 2. This is given by the one of the exceptional cases and has (r, a, δ) = (10, 8, 0)

and has corresponding (f, g) = (2, 2). The relevant topological data of this building block is

|K+| = 2f = 4 and h2,1(Z+) = 2g = 4. (5.43)

For Z− we need a K3 fibration over CP1 such that the first Chern class c1(Z−) is given

by the Poincaré dual of the homology class [S0] = [z1] = [z2]. The defining equation is thus

given by

y2 = x3 + f8,4(u, z)xw
4 + g12,6(u, z)w

6, (5.44)

which is the same as for MCY apart from the order of [z1 : z2] in f(u, z) and g(u, z). The

tops ♢◦ and ♢ then have vertices

♢◦ ∼



−1 0 0 0

0 −1 0 0

2 3 −1 0

2 3 1 0

2 3 0 1


and ♢ ∼



1 −1 0 0

−2 1 0 0

1 1 6 −6

1 1 6 6

1 1 −6 6


(5.45)

which we note are related to the polytope vertices above simply by removing (2, 3, 0,−1) and

(1, 1,−6,−6), respectively.

The building block has |K−| = 0, which we can plug into

h2,1(Z−) =
1

2

(
h2,1(MCY ) + h1,1(MCY )

)
− 11− |K−| (5.46)

which gives h2,1(Z−) = 112.

Of course these numbers can then be used in Equation (4.38) to reproduce b2(MG2) +

b3(MG2) = 263, as per the derivation of Equation (4.67).
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5.3.1 Mirror

We can now form the mirror threefold by swapping the roles of ∆ and ∆◦. We note immedi-

ately that we again have an elliptic fibration over CP1 × CP1: the CP1s are given by (ν∗2 , ν
∗
3)

and (ν∗4 , ν
∗
5). We then note that we have the equivalent of νw above as ν∗w = (1, 1, 0, 0), and

further the linear relation between ν∗0 , ν∗1 , ν∗w is

3ν∗0 + 2ν∗1 + ν∗w = 0,

which is exactly the relation for CP2
321. We are thus dealing with a mirror who’s defining

equation is again of the form

ỹ2 = x̃3 + f̃8,8(ũ, z̃)x̃w̃
4 + g̃12,12(ũ, z̃)w̃

6. (5.47)

where we have denoted the mirror coordinates with a tilde rather than a ∨ in order to lighten

notation slightly. This is consistent with the general GLSM argument, which said that the

mirror superpotential takes the same form. The key difference is that the mirror superpotential

has a different quotient group, which restricts the allowed terms in the deformations of the

defining equation. Here this will restrict the allowed terms in f̃8,8 and g̃12,12.

We can calculate this group using the polytopes (∆,∆◦). A simple calculation6 shows

that the quotient group is Z6 × Z12 and that there is only one allowed term for f̃8,8,

ũ41ũ
4
2z̃

4
1 z̃

4
2 (5.48)

and five terms for g̃12,12,

ũ121 z̃
12
1 , ũ122 z̃

12
1 , ũ121 z̃

12
2 , ũ122 z̃

12
2 , and ũ61ũ

6
2z̃

6
1 z̃

6
2 . (5.49)

The first four of these are clearly related to each other by coordinate transformations and so

only give one independent choice. We therefore get three possible terms, which corresponds

exactly to h2,1(M∨
CY ) = h1,1(MCY ) = 3.

Involution & Fixed Point Locus

We now want to look at the mirror involution and check it gives rise to an isomorphic G2-

manifold. The key thing is that our defining equation takes the same form and that, as per
6The idea is to consider the lattice spanned by the generating vectors {ν∗

0 , ..., ν
∗
5} of ∆ and take the quotient

of the Z4 lattice by this sublattice. From here you can compute the quotient group. This was done using the
Sage programming software.

153



our results, we are again considering the vanilla involution. We again get the same fixed point

locus, as we are still fixing a T 2 in CP1
u × CP1

z, and the zeros of the discriminant locus of the

elliptic curve will still lie outside this fixed T 2. We therefore obtain T 3 ∪ T 3 again and

b0(L∨
σ ) = 2 = b0(Lσ) and b1(L∨

σ ) = 6 = b1(Lσ). (5.50)

We note that the invariance of the fixed point locus under the mirror map tells us that the

Z6 × Z12 quotient group must act as an automorphism on the fixed point locus.

Mirror MG2

We can now compute the Betti numbers for the mirror M∨
G2

and check that it obeys the

Shatashvili-Vafa condition, i.e. b2 + b3 conserved. This is easily shown to be true:

b2(M∨
G2

) + b3(M∨
G2

) = b2(M∨
σ ) + b3+(M∨

σ ) + 2b0(L∨
σ ) + 2b1(L∨

σ )

= h1,1(M∨
σ ) + h2,1(M∨

σ ) + 1 + 2b0(L∨
σ ) + 2b1(L∨

σ )

= h2,1(Mσ) + h1,1(M∨
σ ) + 1 + 2b0(Lσ) + 2b1(Lσ)

= b2(MG2) + b3(MG2),

(5.51)

and so these constitute mirror manifolds with G2 holonomy. However we note that we really

know that these are physically mirror, as we have demonstrated that they come from mirror

GLSMs, and so come from the same SCFT.

TCS

We can confirm that this is indeed a topologically different MG2 by computing the individual

Betti number b2(M∨
G2

) and b3(M∨
G2

). This is easiest done using the TCS decomposition. We

recall that the mirror is given by swapping the roles played by ♢◦ and ♢ and that this, in

particular, results in Equation (4.39). The important point for us is that

|K∨
−| = h2,1(Z−) = 112. (5.52)

Putting this, together with N− = 18 we can use Equation (4.62) to obtain

h1,1−
(
M∨

CY

)
= 112 + 18 + 1 = 131. (5.53)
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From this, and h1,1(M∨
CY ) = h2,1(MCY ) = 243 we get

h1,1+

(
M∨

CY

)
= 243− 131 = 112. (5.54)

Note that this tells us that our K3 fibred Calabi-Yau contains 224 reducible fibres. These

fibres are swapped pairwise under the involution and taking even combinations is what gives

rise to the above result.

We finally use

b2±(M∨
σ ) = h1,1± (M∨

CY ) and b3+(M∨
σ ) = h2,1(M∨

CY ) + 1 (5.55)

along with Equation (5.40) to obtain

b2(M∨
G2

) = 112 + 4 = 116

b3(M∨
G2

) = 131 + 4 + 12 = 147
(5.56)

where we have also made use of Equation (5.50).

So we see that the individual Betti numbers are different, but importantly that the sum

is invariant. This confirms that two topologically different manifolds with G2 holonomy have

isomorphic SCFTs and so constitute a mirror pair.
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6 | Conclusion & Discussion

This thesis presents a detailed review of mirror symmetry for Calabi-Yau manifolds and

uses it to strengthen the understanding of mirror symmetry for G2 manifolds, by providing

worldsheet SCFT arguments, via the GLSM.

In order to be as self contained as possible, we have provided a detailed study of Calabi-

Yau manifolds, from a geometrical perspective in Chapter 2 and from a SCFT perspective in

Chapter 3. The relevant incantations of mirror symmetry for Type II strings on Calabi-Yau

manifolds are presented throughout these chapters. The key construction for the arguments

of this thesis is that of mirror symmetry of GLSMs due to Hori and Vafa [13].

In Chapter 4 we review what we mean by a G2-manifold and the conditions required for

a manifold to have G2 holonomy. Due to the absence of a G2 equivalent of Yau’s theorem

– i.e. there is no set of topological conditions that guarantees the existence of a Ricci flat

metric with holonomy G2 – we are restricted to specific constructions of manifolds with G2

holonomy. The most important one for this thesis is that of a resolution of a quotient of a

Calabi-Yau times a circle:

MG2 = M̃σ with Mσ =
MCY × S1

(σ,−)

where σ acts on MCY as an antiholomorphic involution and (−) is inversion on the circle.

Another important construction is that of a TCS G2, and these are also reviewed, along with

their connection to the quotient construction.

The main result this thesis sets out to demonstrate is that the mirror of MG2 exists and

that it is again given by an antiholomorphic quotient. This is meant not only at the level of

meeting the Shatashvilli-Vafa condition – the conservation of the sum of Betti numbers b2+b3

– but that the different geometries stem from the same (up to isomorphism) SCFT. This is

done in Chapter 5, where we in fact show that there is a family of four different geometries that

all have isomorphic SCFTs. Geometrically the three new geometries correspond to: mirror

the Calabi-Yau and do T-duality on the circle; mirror only the Calabi-Yau and leave the circle
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alone; or leave the Calabi-Yau and do T-duality on the circle.

We now summarise the argument used to show that these distinct geometries have iso-

morphic worldsheet SCFTs.

The worldsheet CFT of Type II strings propagating on the covering space MCY ×S1 enjoys

Calabi-Yau mirror symmetry, as well as T-duality, giving rise to the three distinct duality

maps. In particular, Calabi-Yau mirror symmetry can be shown using classic techniques

such as Gepner models and GLSMs. It hence becomes possible to lift these duality maps to

duality maps for the CFT describing the G2 quotient as well. Given a pair of isomorphic

CFTs and a pair of involutions that are identified under the isomorphism, one must find

isomorphic theories after performing the quotient. What is not immediately obvious however,

is if one can have a geometrical description in terms of a G2 mirror pair on both sides. The

involution which is used to form a G2 variety from MCY × S1 must act geometrically as

an anti-holomorphic involution on MCY . In the context of Calabi-Yau threefolds realized as

toric hypersurfaces, the explicit description of mirror symmetry in terms of a GLSM made

it possible for us to show that the mirror map precisely identifies pairs of anti-holomorphic

involutions, so that Calabi-Yau mirror symmetry identifies pairs of dual quotients realised

geometrically as G2 varieties. This identification agrees with equivalences found using other

techniques, such as a free-field description of toroidal orbifolds and Gepner models, where

these are available.

Specifying an involution of a CFT is not enough to uniquely capture the quotient due to

the presence of twisted sectors. Given a CFT and an involution, the set of possible twisted

sectors must be uniquely determined however, so that our argument really identifies sets

of models. For each possible twisted sector of the quotient CFT, there must be a possible

twisted sector of its mirror. In the context of G2 Gepner models, twisted sectors have received

considerable attention in [30–33], but it remains an interesting question for future study how

to understand the general picture.

The results presented in this thesis are consistent with earlier proposals of G2 mirrors

for twisted connected sum G2 manifolds. Whenever quotients
(
MCY × S1

)
/(σ,−) can be

realised as twisted connected sums, this in particular gives us access to various smoothings

by resolving and/or deforming the building blocks. It would be very interesting to work out

in detail how this approach relates to twisted sectors both before and after mirror symmetry.

Additional Suggestions For Further Work

In this thesis, we have almost exclusively focused on the simplest case of an antiholomorphic

involution: complex conjugation. We have referred to this as the vanilla involution. Although
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we have mentioned along the way how the arguments should hold for more generic involutions,

it would be interesting to demonstrate this explicitly with examples.

Having described a detailed construction of G2 mirror manifolds based on worldsheet

arguments, it would be very interesting to start investigating enumerative problems based on

the equality of effective superpotentials, e.g. along the lines of [24, 90, 91]. This is bound to

be a hard problem with interesting mathematical ramifications [92].

For Spin(7) mirror symmetry [23], we expect that results analogous to the ones presented

here can be found. Spin(7) manifolds can be realised as quotients of Calabi-Yau fourfolds

by anti-holomorphic involutions [93], a construction which can be recast as a gluing of two

simpler pieces analogous to TCS [94]. This was in turn used to propose a mirror construction

in [95] which can be studied using similar techniques as used in this thesis. Spin(7) mirror

symmetry has been studied from the perspective of Gepner models in [96].
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A | Torodial Orbifold

Here we present a detailed analysis of the content of this thesis for the case of a torodial

orbifold. Here we have a lot of control over the content of the theory and so it really helps to

highlight how everything works together.

A.1 Calabi-Yau

Consider the Calabi-Yau formed as the orbifold T 6/Z2
2, where the Z2

2 acts via

α : (x1, x2, x3, x4, x5, x6) 7→ (+x1,+x2,−x3, a4 − x4,−x5, a6 − x6)

β : (x1, x2, x3, x4, x5, x6) 7→ (−x1, b2 − x2,+x3,+x4, b5 − x5, b6 − x6)
(A.1)

where a4, a6, b2, b5 and b6 are either 0 or 1
2 . As different values change the orbifold action,

they have an effect on the twisted sector, i.e. the fixed points. Here we will focus solely on

the untwisted sector as the notions we need are evident in the simpler untwisted sector. We

include them here as it will allow a good connection with the Joyce orbifolds T 7/Z3
2 [38, 39].

As the values of the ai and bi won’t affect our discussion, we set them all to zero. This

orbifold was studied in [22], and then later generalised in [77], in the context of so-called

discrete torsion and its role in mirror symmetry.

Before discussing the states in the CFT, we can use our orbifold action to compute the

expected untwisted cohomology. We note that the values of ai and bi don’t affect this, as

they are simple shifts. Working with complex structure

zj = x2j−1 + ix2j where j = 1, 2, 3, (A.2)
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it is straight forward to check that the invariant forms are the (0, 0)-form along with

dzi+dz̄
i
+

dz1+dz
2
+dz

3
+, dzi+dz

j
+dz̄

k
+, dzi+dz̄

j
+dz̄

k
+, dz̄1+dz̄

2
+dz̄

3
+

dzi+dz̄
i
+dz

j
+dz̄

j
+,

dz1+dz̄
1
+dz

2
+dz̄

2
+dz

3
+dz̄

3
+,

(A.3)

where i, j, k ∈ {1, 2, 3} but i ̸= j ̸= k. From here we see that the non-zero, even Hodge

numbers are h0,0+ = h3,0+ = h0,3+ = h3,3+ = 1 and h1,1+ = h2,2+ = h2,1+ = h1,2+ = 3.

Let’s now turn to the CFT and ask “what are the RR ground states in our CFT?" For each

coordinate xj we have a left- and right-moving Majorana-Weyl spinor ψi and ψ̃j respectively.

Given we are working with the flat metric on T 6, the zero modes obey the anticommutation

relations

{ψi0, ψ
j
0} = {ψ̃i0, ψ̃

j
0} = 2δij and {ψi0, ψ̃

j
0} = 0. (A.4)

We then define the complexified

ψj± =
1

2

(
ψj0 ± iψ̃j0

)
, (A.5)

which can easily be checked to obey the standard creation and annihilation anticommutators

{ψi±, ψ
j
∓} = δij and {ψi±, ψ

j
±} = 0. (A.6)

We then adopt the convention that ψi+ are creation and ψi− are annihilation operators. We

note that these operators are left-right symmetric and so create left-right symmetric states.

Let’s now look at the untwisted sector states, i.e. those states that are invariant under

Equation (A.1). This action was defined on the coordinates xi, but it acts on the fermions in

the same way, as required by SUSY. The invariant states, i.e. the untwisted sector, are then

easiest expressed using the ψi± algebra:

|0⟩

|12⟩ , |34⟩ , |56⟩

|135⟩ , |136⟩ , |145⟩ , |146⟩ , |235⟩ , |236⟩ , |245⟩ , |246⟩

|1234⟩ , |1256⟩ , |3456⟩

|123456⟩ ,

(A.7)

where we have introduced the notation |i...j⟩ := ψi+...ψ
j
+ |0⟩. The twisted sector is straight
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forward to compute, but will not play a role here, instead the interested reader is directed to

[77].

A.1.1 Link To Cohomology

We now want to find a relationship between the above RR states and the cohomology of the

target Calabi-Yau manifold. The identification is very straight forward:

|ij...k⟩ ∼= dxi ∧ dxj ∧ ... ∧ dxk. (A.8)

This is good, but really we want complex differential forms (e.g. the (3, 0)-form Ω). For

this reason we work in a different basis for our creation and annihilation operators. We define

ϕi± =
1

2

(
ψ2i−1
± + iψ2i

±
)

and ϕ̄i± =
1

2

(
ψ2i−1
± − iψ2i

±
)
, (A.9)

which obey

{ϕi±, ϕ̄
j
∓} = δij (A.10)

and all others vanishing. We identify the creation operators via the + subscript: i.e. ϕi+

and ϕ̄i+. This set of operators will create states that are left-right symmetric and also form

complex pairs. We then have

ϕi+ |0⟩ ∼= dzi and ϕ̄i+ |0⟩ ∼= dz̄i. (A.11)

We can now form the cohomology easily: we simply take products of the ϕi+ and ϕ̄i+s and use

the anticommutation properties. Of course we can only keep those that can be formed with

the untwisted states listed above. It is not hard to verify that the only allowed combinations

are
|0⟩

ϕi+ϕ̄
i
+ |0⟩

ϕ1+ϕ
2
+ϕ

3
+ |0⟩ , ϕi+ϕ

j
+ϕ̄

k
+ |0⟩ , ϕi+ϕ̄

j
+ϕ̄

k
+ |0⟩ , ϕ̄1+ϕ̄

2
+ϕ̄

3
+ |0⟩

ϕi+ϕ̄
i
+ϕ

j
+ϕ̄

j
+ |0⟩

ϕ1+ϕ̄
1
+ϕ

2
+ϕ̄

2
+ϕ

3
+ϕ̄

3
+ |0⟩ ,

(A.12)

where i, j, k ∈ {1, 2, 3} but i ̸= j ̸= k. These are, of course, the same results we arrived at in

Equation (A.3).

The question we want to ask is: how do we write these forms in terms of our states |ij...k⟩?
The answer is to simply expand the ϕi+ and ϕ̄i+ in terms of the ψi+s. Let’s first look at the
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0, 2, 4 and 6-forms (i.e. the diagonal forms). These are very straight forward: consider, e.g.,

ϕ1+ϕ̄
1
+ =

1

4
(ψ1

+ + iψ2
+)(ψ

1
+ − iψ2

+)

=
1

2i
ψ1
+ψ

2
+,

(A.13)

so, up to a rescalling, this is simply |12⟩. The same argument applies for all the other forms,

and we get that the states with an even number of ψi+s can simply be replaced with ϕi+ϕ̄
i
+.

We shall call such states the diagonal states.

All that is left are the 3-forms. We compute these in the same manner, and obtain:

Ω = ϕ1+ϕ
2
+ϕ

3
+ = |135⟩ − |245⟩ − |146⟩ − |236⟩+ i

[
|136⟩ − |246⟩+ |145⟩+ |235⟩]

Ω̄ = ϕ̄1+ϕ̄
2
+ϕ̄

3
+ = |135⟩ − |245⟩ − |146⟩ − |236⟩ − i

[
|136⟩ − |246⟩+ |145⟩+ |235⟩]

ω1 = ϕ̄1+ϕ
2
+ϕ

3
+ = |135⟩+ |245⟩ − |146⟩+ |236⟩+ i

[
|136⟩+ |246⟩+ |145⟩ − |235⟩]

ω̄1 = ϕ1+ϕ̄
2
+ϕ̄

3
+ = |135⟩+ |245⟩ − |146⟩+ |236⟩ − i

[
|136⟩+ |246⟩+ |145⟩ − |235⟩]

ω2 = ϕ1+ϕ̄
2
+ϕ

3
+ = |135⟩+ |245⟩+ |146⟩ − |236⟩+ i

[
|136⟩+ |246⟩ − |145⟩+ |235⟩]

ω̄2 = ϕ̄1+ϕ
2
+ϕ̄

3
+ = |135⟩+ |245⟩+ |146⟩ − |236⟩ − i

[
|136⟩+ |246⟩ − |145⟩+ |235⟩]

ω3 = ϕ1+ϕ
2
+ϕ̄

3
+ = |135⟩ − |245⟩+ |146⟩+ |236⟩+ i

[
− |136⟩+ |246⟩+ |145⟩+ |235⟩]

ω̄3 = ϕ̄1+ϕ̄
2
+ϕ

3
+ = |135⟩ − |245⟩+ |146⟩+ |236⟩ − i

[
− |136⟩+ |246⟩+ |145⟩+ |235⟩]

(A.14)

We shall refer to this collection of states as the non-diagonal states from now on. We have

named these for later convenience. We note that the (3, 0)-form has decomposition Ω = A+iB

with

A = |135⟩ − |245⟩ − |146⟩ − |236⟩ and B = |136⟩ − |246⟩+ |145⟩+ |235⟩ . (A.15)

One can use the OPE between two fermions to then check that these expressions do indeed

obey the OPEs required of A and B.

We immediately notice the difference between the diagonal and non-diagonal states: the

former are given by single RR states, whereas the latter are given by a complex linear combi-

nation of all the RR states with three ψi+s. This gives a first hint at a subtly: we know mirror

symmetry is meant to map middle cohomology states to non-middle cohomology states, how-

ever we have just seen that these two classes of states take distinctly different forms. As we

will see in Section A.1.3, the fix to this problem is that our 3-forms don’t simply map to a

single diagonal form, but to a complex linear combination of all the diagonal states. However,
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first it is instructive to compute the charges of our states under our U(1) current.

A.1.2 Charges

In order to compute the charges of our states, we of course need to know the form the U(1)

current takes. For our theory of complex fermions, the left-moving U(1) current takes the

simple form

J = −
3∑
i=1

N
(
ϕiϕ̄i

)
=

3∑
i=1

N
(
ψ2i−1ψ2i

)
(A.16)

where the N(...) stand for normal ordering. We have an analogous result for the right-moving

current, but with tildes everywhere. Note that the current takes the form of a sum over the

Kähler forms for the three T 2s that make up our T 6, i.e. ωi ∼ ψ2i−1ψ2i. To compute the

charges of our states, we need to find the zero mode in the expansion of J :

j0 = −i
∑
r∈Z

3∑
j=1

ψ2j−1
−r ψ2j

r . (A.17)

We now make use of the following fact: the modes ψjr with r > 0 will annihilate the

vacuum, and because j0 contains products of ψ2j−1
−r ψjr , along with the fact that we can anti-

commute the different ψjs and the fact that all our states are simply actions of ψj0s on the

vacuum, means that we can effectively drop all the terms in j0 that don’t have r = 0. That

is, we can instead simply consider the terms

J = −i
(
ψ1
0ψ

2
0 + ψ3

0ψ
4
0 + ψ5

0ψ
6
0

)
∈ j0. (A.18)

The idea now is to express J in terms of the ψi±s, as this will allow us to easily compute the

charges of our states. Using Equation (A.5), we decompose J into two pieces J = Jd+Jn−d
given by

Jd = −i
(
ψ1
+ψ

2
+ + ψ1

−ψ
2
− + ψ3

+ψ
4
+ + ψ3

−ψ
4
− + ψ5

+ψ
6
+ + ψ5

−ψ
6
−
)
. (A.19)

and

Jn−d = −i
(
ψ1
+ψ

2
− + ψ1

−ψ
2
+ + ψ3

+ψ
4
− + ψ3

−ψ
4
+ + ψ5

+ψ
6
− + ψ5

−ψ
6
+

)
. (A.20)

The subscripts come from the fact that Jd is the only part of J that has any effect on the

diagonal states and similarly Jn−d for the non-diagonal states.
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Diagonal States

Let’s start by looking at the diagonal states and using Jd. It is then clear that, up to signs,

this current is going to take our diagonal states and either add two ψi+s or take away two

in the pairs |12⟩ , |34⟩ or |56⟩. Noting that when we remove the creation operators, we must

first anticommute the ψ2j−1
− ψ2j

− in Jd, we see that these states come with a minus sign. For

example

ψ1
−ψ

2
−(ψ

1
+ψ

2
+ |0⟩) = −ψ2

−ψ
1
−ψ

1
+ψ

2
+ |0⟩

= −ψ2
−ψ

2
+ |0⟩+ ψ2

−ψ
1
+ψ

1
−ψ

2
+ |0⟩

= − |0⟩+ ψ2
+ψ

2
− |0⟩ − ψ2

−ψ
1
+ψ

2
+ψ

1
− |0⟩

= − |0⟩ .

(A.21)

where we have used {ψi±, ψ
j
∓} = δij and {ψi±, ψ

j
±} = 0. The same calculation holds for all

other states – note that we can move bilinears in fermions freely, i.e. we can “jump” a ψ3
−ψ

4
−

over the ψ1
+ψ

2
+ in |1234⟩ without the cost of any signs.

So we see our diagonal forms are mapped under Jd in the following way

Jd :

|0⟩ 7→ −i
[
|12⟩+ |34⟩+ |56⟩

]
|12⟩ 7→ −i

[
− |0⟩+ |1234⟩+ |1256⟩

]
|34⟩ 7→ −i

[
− |0⟩+ |1234⟩+ |3456⟩

]
|56⟩ 7→ −i

[
− |0⟩+ |3456⟩+ |1256⟩

]
|1234⟩ 7→ −i

[
− |12⟩ − |34⟩+ |123456⟩

]
|1256⟩ 7→ −i

[
− |12⟩ − |56⟩+ |123456⟩

]
|3456⟩ 7→ −i

[
− |34⟩ − |56⟩+ |123456⟩

]
|123456⟩ 7→ −i

[
− |1234⟩ − |1256⟩ − |3456⟩

]

(A.22)

The important thing to note is that none of these states are eigenstates of our current. We

need to take a linear combination of states in order to get an eigenstate. By considering the

(8×8) matrix defining the action of Jd on our diagonal states, we can compute the eigenvalues

and eigenvectors. The results are presented in Table A.1.

We note at this point that the relative coefficients of these matches those of our non-

diagonal states (Equation (A.14)), i.e. Σ and Ω etc have the same coefficients. We shall

return to this in Section A.1.3.
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Left-Charge Eigenstate
+3 Σ = −

[
|0⟩− |1234⟩− |3456⟩− |1256⟩

]
+ i
[
|56⟩− |123456⟩+ |34⟩+ |12⟩

]
−3 Σ̄ = −

[
|0⟩− |1234⟩− |3456⟩− |1256⟩

]
− i
[
|56⟩− |123456⟩+ |34⟩+ |12⟩

]
+1 σ1 = −

[
|0⟩+ |1234⟩− |3456⟩+ |1256⟩

]
+ i
[
|56⟩+ |123456⟩+ |34⟩− |12⟩

]
−1 σ̄1 = −

[
|0⟩+ |1234⟩− |3456⟩+ |1256⟩

]
− i
[
|56⟩+ |123456⟩+ |34⟩− |12⟩

]
+1 σ2 = −

[
|0⟩+ |1234⟩+ |3456⟩− |1256⟩

]
+ i
[
|56⟩+ |123456⟩− |34⟩+ |12⟩

]
−1 σ̄2 = −

[
|0⟩+ |1234⟩+ |3456⟩− |1256⟩

]
− i
[
|56⟩+ |123456⟩− |34⟩+ |12⟩

]
+1 σ3 = −

[
|0⟩−|1234⟩+ |3456⟩+ |1256⟩

]
+i
[
−|56⟩+ |123456⟩+ |34⟩+ |12⟩

]
−1 σ̄3 = −

[
|0⟩−|1234⟩+ |3456⟩+ |1256⟩

]
−i
[
−|56⟩+ |123456⟩+ |34⟩+ |12⟩

]
Table A.1: Eigenstates of the diagonal left U(1) current Jd, and their corre-
sponding charges.

Non-Diagonal States

We can proceed to compute how Jn−d effects the non-diagonal states in a similar fashion.

Here we have the rule: if the state contains ψ1,3,5
+ then it is replaced with ψ2,4,6

+ and vice versa.

In order to get the minus signs correct, we first write Jn−d with all annihilation operators to

the right

Jn−d = −i
(
ψ1
+ψ

2
− − ψ2

+ψ
1
− + ψ3

+ψ
4
− − ψ4

+ψ
3
− + ψ5

+ψ
6
− − ψ6

+ψ
5
−
)
, (A.23)

so we must replace ψ2,4,6
+ 7→ ψ1,3,5

+ but ψ1,3,5
+ 7→ −ψ2,4,6

+ . As before, we see how each of the

individual |ijk⟩ states are mapped under Jn−d, and from there check that our non-diagonal

states are eigenstates and compute the eigenvalues. We have:

Jn−d :

|135⟩ 7→ −i
[
− |145⟩ − |145⟩ − |136⟩

]
|245⟩ 7→ −i

[
|145⟩+ |145⟩ − |246⟩

]
|146⟩ 7→ −i

[
− |246⟩+ |136⟩+ (156)

]
|236⟩ 7→ −i

[
|136⟩ − |246⟩+ |145⟩

]
|136⟩ 7→ −i

[
− |236⟩ − |146⟩+ |135⟩

]
|246⟩ 7→ −i

[
|146⟩+ (256) + |245⟩

]
|145⟩ 7→ −i

[
− |245⟩+ |135⟩ − |146⟩

]
|235⟩ 7→ −i

[
|135⟩ − |245⟩ − |236⟩

]

(A.24)

Recalling Equation (A.14) we therefore see that our non-diagonal states are our eigenstates

with charges ±3,±1, specifically:

q(ϕ1+ϕ
2
+ϕ

3
+) = 3, q(ϕ̄1+ϕ̄

2
+ϕ̄

3
+) = −3, q(ϕ̄i+ϕ

j
+ϕ

k
+) = 1, and q(ϕi+ϕ̄

j
+ϕ̄

k
+) = −1. (A.25)
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In fact we have been a little careless here: the above charges are what we expect for the

NS states, but here we are dealing with the R states. We go between these via spectral flow

and this maps j0 7→ j0 ± 3
2 , and so these charges should be shifted.

Right-Charge

We should also compute the right charge qR. This comes from a similar derivation but now

with tildes everywhere

J̃ = −i
(
ψ̃1
0ψ̃

2
0 + ψ̃3

0ψ̃
4
0 + ψ̃5

0ψ̃
6
0

)
∈ j̃0. (A.26)

However now we have

ψ̃i0 = −i
(
ψi+ − ψi−

)
, (A.27)

and so we need to carry this factor of −i through along with the relative sign between ψi±.

Everything in J̃ is bilinear, so we are really dealing with (−i)2 = −1. We therefore get

ψ̃1
0ψ̃

2
0 = −

[
ψ1
+ψ

2
+ + ψ1

−ψ
2
− − ψ1

+ψ
2
− − ψ1

−ψ
2
+

]
(A.28)

etc. We therefore see that the signs on the non-diagonal forms cancel, i.e. we simply have

J̃n−d = Jn−d (A.29)

however on the diagonal forms we get a relative sign

J̃d = −Jd (A.30)

In other words, our non-diagonal states will have qL = qR while the diagonal eigenstates have

qL = −qR. This agrees with the result of Section 3.2.3: the non-diagonal states are elements

of the (c, c) ring while the diagonal eigenstates are elements of the (a, c) ring.

A.1.3 Mirror Symmetry

We now want to look at how mirror symmetry acts on our Calabi-Yau. As explained in [77],

in this context mirror symmetry is generated by three T -dualities along the coordinates

(j1, j2, j3) ∈
{
(1, 3, 6), (1, 4, 5), (2, 3, 5), (2, 4, 6)

}
, (A.31)

which are exactly the combinations that appear in the imaginary parts of our 3-forms above.1

1We note that in [77] they also allow for T-dualising along (1, 3, 5), (1, 4, 6), (2, 3, 6) and (2, 4, 5), which
correspond to the real parts of our 3-forms. Here we do not include these as they define the mirror map as one
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We now want to ask how T -duality effects our Clifford algebra: it changes the sign of

the right-moving fermion zero mode, and so it replaces the creation operator ψj+ with the

annihilation operator ψj−. This modifies the definition of the ground state to be in terms of

the mapped operators, namely (
ψi−
)′ |0⟩′ = 0, (A.32)

which is equivalent to

ψi− |0⟩′ = ψj+ |0⟩′ = 0 (A.33)

where j labels the coordinates that are T -dualised and i labels all others. Using that (ψj+)2 =

0, we can then express our dual vacuum state in terms of the original one as

|0⟩′ = ψj1+ψ
j2
+ψ

j3
+ |0⟩ , (A.34)

with (j1, j2, j3) the dualised indices.

We can now ask how states/forms in the T -dual picture relate to states/forms in the orig-

inal picture. The idea is simple: we work with primes everywhere and then simply substitute

in the relations at the end. The untwisted sector is then exactly the same as before, Equa-

tion (A.7), but with primes everywhere. For concreteness, let’s work with T -dualising along

(1, 3, 6). In fact we are going to include a factor of i into our map, for a reason that will be

explained shortly. Then we have

(
ψ2,4,5
±

)′
= ψ2,4,5

± ,
(
ψ1,3,6
±

)′
= ψ1,3,6

∓ and |0⟩′ = i |136⟩ . (A.35)

We now put this together with the anticommutators for the creation/annihilation operators

that maps the right-moving part of Ω to its complex conjugate, but these additional maps map ΩR 7→ −Ω∗
R.

This additional minus sign can be accounted for by an additional automorphism of the algebra that introduces
a phase: ΩR 7→ eiϕΩR, which corresponds exactly to Equation (5.13). In this appendix we will ignore this
additional phase automorphism, and so we ignore these additional maps.
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to obtain our relation. The result is the following

M :

|135⟩ 7→ −i |56⟩

|245⟩ 7→ −i |123456⟩

|146⟩ 7→ i |34⟩

|236⟩ 7→ i |12⟩

|136⟩ 7→ −i |0⟩

|246⟩ 7→ −i |1234⟩

|145⟩ 7→ i |3456⟩

|235⟩ 7→ i |1256⟩

(A.36)

We can easily show from here that the states on the right hand side (i.e. the diagonal states)

are mapped with the opposite sign behaviour. As we introduced the i factor we then get that

T 2 = id, which is required for it to be an involution.

The above allows us to ask the question of how our initial states are mapped. For example,

the (3, 0)-form Ω is mapped as

T (Ω = ϕ1ϕ2ϕ3) = −
[
|0⟩ − |1234⟩ − |3456⟩ − |1256⟩

]
+ i
[
|56⟩ − |123456⟩+ |34⟩+ |12⟩

]
= Σ,

(A.37)

where Σ is as defined in Table A.1. Again note that the factor of i we included is needed

here, i.e. the real part of Ω is mapped to the imaginary part of Σ. A similar calculation

will verify that the non-diagonal states in Equation (A.14) correspond, respectively, to the

diagonal eigenstates in the table, i.e.

T (Ω̄) = T (Σ̄), T (ωi) = σi and T (ω̄i) = σ̄i (A.38)

At the level of the charges, this implies that mirror symmetry maps

M : (qL, qR) 7→ (qL,−qR). (A.39)

So we see that mirror symmetry maps charge eigenstates to charge eigenstates. This is the

result we expected: mirror symmetry maps R(c,c) to R(a,c) and vice versa. As we see, such a

map takes a 3-form and maps it to a linear combination of all the diagonal forms.
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A.2 G2

Let’s now look at the corresponding G2. Joyce showed [38, 39] that one can construct a G2

manifold via T 7/Z3
2, where the Z3

2 acts via

α : (x1, x2, x3, x4, x5, x6, x7) 7→ (+x1,+x2,−x3, a4 − x4,−x5, a6 − x6, x7)

β : (x1, x2, x3, x4, x5, x6, x7) 7→ (−x1, b2 − x2,+x3,+x4, b5 − x5, b6 − x6, x7)

σ : (x1, x2, x3, x4, x5, x6, x7) 7→ (x1,−x2, x3,−x4, x5,−x6,−x7),

(A.40)

where ai, bi = 0, 1/2. The α and β action here are simply the extension of Equation (A.1) to

include the x7 coordinate. We note that σ acts with a minus on x2,4,6, which in the complex

structure of our T 6/Z2
2 discussion, is nothing but complex conjugation. From here we see that

we can identity2

T 7

Z3
2

=

(
T 6

(α,β)

)
× S1

σ
=

MT 6 × S1

σ
, (A.41)

Hence we can apply our logic in order to check the involution carries through as we would

like.

A.2.1 Antiholomorphic Involution

Before discussing the R ground states of our G2 theory, we first want to ask how the anti-

holomorphic involution acts on the states in our Calabi-Yau theory. This is particularly easy

to do here: our complex structure is given by zi = x2i−1 + ix2i, and so complex conjugation

simply acts via

σ : (x1, x2, x3, x4, x5, x6) 7→ (x1,−x2, x3,−x4, x5,−x6). (A.42)

This mapping is translated directly to the fermions, i.e. we map ψ2,4,6
+ 7→ −ψ2,4,6

+ and the

others are left alone. From here we see that our diagonal and non-diagonal states have the

desired behaviour, when compared to their differential forms: the (0, 0) and (2, 2) forms are

invariant, the (1, 1) and (3, 3) forms are odd, and the 3-forms are mapped in pairs (m, 3−m) 7→
(3 − m,m). In particular complex conjugation acts simply on the i appearing in our non-

diagonal states, Equation (A.14).

However we note that the diagonal eigenstates in Table A.1 are not invariant but are also

mapped via complex conjugation on the i factors. Note that this tells us that the real parts
2Strictly speaking we need to resolve the (α, β) action in T 6 to obtain the Calabi-Yau. We return to this

shortly.
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of diagonal states are the even forms while the imaginary parts are the odd forms. Putting

this together with the non-diagonal states, we see that our charges are mapped via

σ : (qL, qR) 7→ (−qL,−qR). (A.43)

This is exactly the result we were expecting.

A.2.2 Untwisted Sector

We start by looking at the untwisted sector of this theory. Here the values of the ai and

bi don’t matter (as they only effect the fixed points), and so we can ignore them. It is

straightforward to check that the invariant states are given by

|0⟩ , |ijk⟩ , |ijkℓ⟩ , |1234567⟩ (A.44)

where

(ijk) ∈
{
(127), (347), (567), (135), (146), (236), (245)

}
,

(ijkℓ) ∈
{
(1234), (3456), (1256), (1367), (1457), (2357), (2467)

}
.

(A.45)

We now note these take the exact form needed to be the extension of our states from our T 6/Z2
2

calculation: everything that was odd under the antiholomorphic involution is paired with a

ψ7
+ here. Geometrically, this is the statement that forms that are odd under the involution

need to be wedged with dθ. In particular, notice that for our 3-forms, Equation (A.14), we

must now work with the real and imaginary parts. For example,

(ω1 + ω̄1) and (ω1 − ω̄1) |7⟩ (A.46)

are the invariant states. This corresponds to taking the real and imaginary linear combinations

of a (2, 1) and (1, 2) form and wedging the imaginary part with dθ. Equally for the diagonal

states, those corresponding to (1, 1) and (3, 3) forms come with a |7⟩, while the (0, 0) and

(2, 2) forms are invariant by themselves.

Additionally we note that the G2 3-form and dual 4-form (X := ⋆Φ) are expressed in the

CFT as

Φ = |135⟩ − |245⟩ − |146⟩ − |236⟩+ |127⟩+ |347⟩+ |567⟩

X = |1457⟩+ |1367⟩+ |2357⟩ − |2467⟩+ |1234⟩+ |3456⟩+ |1256⟩
(A.47)
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which matches the geometrical decomposition Φ = Re(Ω)+J∧dθ andX = Im(Ω)∧dθ+ 1
2J∧J .

A.2.3 Twisted Sector

We now want to investigate the twisted sector of our action, and ask how this changes the

cohomology of our G2. This problem has been studied from the perspective of the Joyce

orbifold T 7/Z3
2 in [39] and then explained at the level of discrete torsion in [77]. Here we take

a slighly different approach, and instead we want to consider

Mσ =

(̃
T 6

(α,β)

)
× S1

σ
, (A.48)

where the tilde means we resolve the (α, β) action. This will, of course, give the same result

as the references above.

Here the choice of the ai, bi in Equation (A.40) matters. We will work with a4 = b6 = 1/2

and others vanishing, i.e.

α : (x1, x2, x3, x4, x5, x6, x7) 7→ (+x1,+x2,−x3,
1

2
− x4,−x5,−x6, x7)

β : (x1, x2, x3, x4, x5, x6, x7) 7→ (−x1,−x2,+x3,+x4,−x5,
1

2
− x6, x7)

σ : (x1, x2, x3, x4, x5, x6, x7) 7→ (x1,−x2, x3,−x4, x5,−x6,−x7),

(A.49)

First we want to consider the Calabi-Yau given by the resolution of T 6/(α, β). We know from

our previous discussion that the untwisted sector gives contributions to the Hodge numbers

(h0,0, h1,1, h2,1, h3,0) = (1, 3, 3, 1), (A.50)

along with their matching Hodge duals, hm,n = h3−m,3−n. The contribution from the twisted

sector comes from considering the fixed points. Both α and β have 16 fixed points, however

the action of the other on these fixed points leaves 8 in each case. We show this graphically

in Figure A.1. Locally these fixed points are modelled by T 2 ×C2/{±1}, and as standard we

can choose to either blow up or deform the C2/{±1}. In either case the Hodge numbers are

the same, and each fixed point contributes one to both h1,1 and h2,1 (and their Hodge duals).

So in total our Calabi-Yau has (h1,1, h2,1) = (19, 19), and so is self-mirror. This is a special

case and is known as the Schoen Calabi-Yau, and we shall denote it MS . In terms of Betti
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numbers, we have

b2(MS) = 3
T 2

+ 8
α
+ 8
β
= 19 and b3(MS) = 8

T 2
+ 16

α
+ 16

β
= 40. (A.51)

We now want to consider the action of σ in Mσ = (MS × S1)/σ, i.e. we want to

compute b2±(MS) and b3±(MS) and use them to compute the Betti numbers for the smoothing

MG2 = M̃σ via

b2(MG2) = b2+(MS) + e2 and b3(MG2) = b3+(MS) + b2−(MS) + e3, (A.52)

where e2,3 denotes the contributions from the fixed points of σ.

Let’s start with b2(MS). It is clear that the 3 contribution from T 2 are all odd. The 8

that arises from the fixed points of α gives 4 even and 4 odd: the fixed points are identified

in pairs (see Figure A.1) and so we can form one even and one odd combination. The 8

from the β fixed points are more subtle: here σ acts trivially (as its action is equivalent to

βs action, but we have modded out by β), and so introduces discrete torsion. As detailed in

[77], if we resolved the singularity in β via a blow up then σ will preserve the orientation of

the exceptional divisor and so the ground state (1, 1)-form is invariant. However, if we had

deformed the β-singularity, then σ reverses the orientation and so our (1, 1)-form is odd. Each

of the 8 fixed points can be blown up or deformed independently, and so we have the above

choice for each one. Therefore, if ℓ ∈ {0, ..., 8} denotes the number of blow ups, then we get

a contribution of ℓ to b2+(MS) and (8− ℓ) to b2−(MS).

Now let’s discuss b3±(MS). The story is very similar to above: the 8+16 = 24 that comes

from T 2 and α are identified in pairs and so we have 12 even and 12 odd contributions. The

16 from β is dependent on the discrete torsion, and contributes (8 − ℓ) to b3+(MS) and ℓ to

b3−(MS).

Finally we need to add in the contributions from the σ fixed points, of which there are 4

independent ones. This is easily seen from the fact that in T 7/σ we have 16 fixed points, but

these are reduced to 4 under (α, β), which are modded out to define MS . These four fixed

points are T 3s and give contributions of 4 to b2(M) and 12 to b3(M). In total, then, our G2

have Betti numbers

b2(M) = 8 + ℓ and b3(M) = 47− ℓ, (A.53)

which is in agreement with [39, 77].
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Figure A.1: Fixed points in T 6/(α, β) and how they are mapped under (α, β, σ).
All red objects correspond to α, blue to β and green to σ. The graphs indicate a
decomposition of T 6 = T 2 × T 2 × T 2, and the number of fixed points understood
multiplicitivly. The 16 fixed points of α are reduced to 4 under the action of (β, σ).
However α and σ act on the fixed points of β in the same manner and so βσ acts
trivially. This leads to the introduction of discrete torsion in the G2 manifold.

A.2.4 Mirror Symmetry

As detailed in [77], here we have 4 notions of mirror symmetry. Just as with the Calabi-Yau

torodial orbifold considered previously, these take the form of T-dualities:

T +
3 = {(3, 4, 7), (2, 4, 5), (1, 4, 6)}

T −
3 = {(2, 3, 6), (5, 6, 7), (1, 2, 7), (1, 3, 5)}

T +
4 = {(1, 2, 5, 6), (1, 3, 6, 7), (2, 3, 5, 7)}

T −
4 = {(1, 4, 5, 7), (1, 2, 3, 4), (3, 4, 5, 6), (2, 4, 6, 7)}.

(A.54)

We note that the combinations appearing in here are exactly the terms that appear in Φ and

X above. The subscripts indicate how many T -dualities we do, and from chirality arguments

we can see that T ±
3 map compactifications on Type IIA/B to those on Type IIB/A, while T ±

4

map Type IIA/B to Type IIA/B. The ± superscript indicates whether the discrete torsion

signs are reversed or not, i.e. whether we blow up or deform the fixed points of β. This

changes the topology of the resulting G2 manifold, i.e. ℓ 7→ (8− ℓ) in Equation (A.53).

The key thing we want to notice is that within the T4 actions we have (1, 3, 6, 7), (2, 3, 5, 7),

(1, 4, 5, 7) and (2, 4, 6, 7) which have the effect of mirroring the Calabi-Yau plus a T -duality
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in the additional S1 direction. That is we can take our Calabi-Yau mirror maps in Equa-

tion (A.31) and add on a T-dual along the S1 direction and generate a G2 mirror map.3

Here we want to ask how the mirror maps effect the involution action σ. Namely we want

to ask how σ∨ is related to σ. It is clear from the above calculation that(
MS × S1

σ

)∨
=

M∨
S × (S1)T

σ
, (A.55)

and so we can set σ∨ = σ. There are 9 independent G2 manifolds we can form via the

resolution of these spaces, labelled by the number of blow ups, ℓ. These blow ups appear in

MS , and so we can label the 9 G2s via

Mℓ
G2

=
˜(

Mℓ
S × S1

σ

)
. (A.56)

Mirror symmetry maps Mℓ
G2

either back to itself or to M8−ℓ
G2

, depending on whether we use

T +
4 or T −

4 , respectively.

The interesting thing in this case is that MS is self mirror, and so even though the Mℓ
S

look different, they are all diffeomorphic. This diffeomorphism alters the action of σ in the

required way, namely we give σ an ℓ index and obtain

Mℓ
G2

=
˜(

MS × S1

σℓ

)
(A.57)

We can therefore take two viewpoints on the situation: we either have a collection of different

Calabi-Yaus, or we have a collection of different antiholomorphic involtuions.

3We note that, just as in the Calabi-Yau case, mirror symmetry does not simply map a 4-form to a 3-form,
and vice versa. This we can see from the fact that our 4-form X contains exactly the terms that appear
in T4, and so these terms will be mapped to the vacuum. For example, if we did the (1, 3, 6, 7) map, then
X ∋ |1367⟩ 7→ |0⟩, which geometrically is the 0-form. Similarly Φ ∋ − |245⟩ 7→ |1234567⟩. It is then easy to
see that under any of the maps we actually exchange Φ + |0⟩ and X + |1234567⟩. This is just the equivalent
of the fact that a 3-form in the Calabi-Yau is mapped to a linear combination of the diagonal forms.
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B | Rational Forms & The Griffiths

Residue

Here we discuss the notion of rational forms and residues in higher dimensions. The content

is based on [97], and more details can be found there.

B.0.1 Rational Forms

Rational forms are essentially the higher degree equivalent to a rational function (which is just

a (0, 0)-form), i.e. they are forms that contain poles. We will be mostly interested in middle

cohomology forms on CPn+1. It can be shown – see Theorem 2.9 of [97] for the general result

– that any rational (n+ 1)-form on CPn+1 can be written in terms of a unique holomorphic

(n+ 1)-form (the hatted notation means we omit that element)

Ω0 :=

n+1∑
j=0

(−1)jzjdz0 ∧ ... ∧ d̂zj ∧ ... ∧ dzn+1, (B.1)

where {zi} are the coordinates of CPn+1. Our rational (n+ 1)-forms are then given by

φ =
P (z)

R(z)
Ω0, (B.2)

where P (z) and R(z) are homogeneous polynomials with

degR = degP + (n+ 2). (B.3)

This condition is simply needed to ensure that φ is projectively well defined. Let V ⊂ CPn+1

be the hypersurface defined by the zero locus R(z) = 0. We call V the polar locus of φ, and

we similarly define the pole order of φ along V , in the obvious way. Our rational (n+1)-forms

are clearly elements of Hn+1(CPn+1 \ V ).
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These rational forms also obey two important properties:

(i) For any rational (n + 1)-form, φ, there exists an n-form, η, such that φ + dη is an

(n+ 1)-form with pole order n+ 1 along V .

(ii) If φ has pole order k along V , then there exists an n-form η with pole order (k − 1)

such that φ+ dη has pole order (k − 1).

A detailed explanation of these results can be found in [97], but here we just give a general

idea. We first look at condition (ii): If φ has pole order k along V , then its leading term is of

the form

φ ∼ 1

zk
Ω0. (B.4)

The idea is to pick a n-form η such that

dη ∼ − 1

zk
Ω0, (B.5)

so that this leading order term cancels. Well we note that

d

(
1

zk−1

)
= −(k − 1)

1

zk
dz, (B.6)

so if we simply pick η to have leading term

η ∼ 1

zk−1
Ω, (B.7)

where Ω is an appropriately chosen n-form, then we can cancel our 1/zk term in φ.

For condition (i), we note that it follows from Equation (B.3) that φ can have at most

pole order (n + 2), i.e. degP = 0. However, we then use that we can reduce the pole order

of φ by one, as per condition (ii), to see that the maximum pole order is (n+ 1).

What is going to be of main interest to us is the case when we have a Calabi-Yau MCY ⊂
CPn+1 defined by the zero locus Q(z) = 0, with degQ = n + 2. From now on we assume

such a situation, although a lot of the results will hold for general polar locus V . A rational

(n+ 1)-form with pole order k along MCY then takes the form

φ =
P (z)

Qk(z)
Ω0. (B.8)

Here condition (ii) takes the form of the following proposition.1

1This proposition follows roughly from our calculation above, but a more explicit derivation/proof can be
found in [97]: see the discussion leading up to Proposition 4.6.
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Proposition B.0.1. Let φ = P (z)
Qk(z)

Ω0 be a rational (n + 1)-form with pole order k along

MCY , then we can reduce the pole order to (k − 1) using an exact form dη, where η is a

rational n-form of pole order k− 1, if, and only if, P belongs to the Jacobi ideal, i.e. the ideal

generated by { ∂Q
∂zj

}.

Note that in this situation, our degree condition, Equation (B.3), becomes

degP = k degQ− (n+ 2)

= (k − 1)(n+ 2).
(B.9)

B.0.2 Residue Map

We now want to employ our knowledge/intuition from complex analysis, in particular we want

to look for the higher dimensional equivalent of the residue theorem

1

2πi

∫
γ

dz

z
= 1 (B.10)

where γ is a closed path in C encircling the pole point, i.e. the origin here. We want to

extended this idea to higher dimensions and write down something like

1

2πi

∫
γ

dz ∧ α
z

= α, (B.11)

where α is some smooth form.

In order to understand how we do this, let’s recast Equation (B.10) in a more easily

extendable language. Firstly we note that CP1 ∼= C ∪ {∞}, which is just the familiar result

CP1 ∼= S2. The extension in what follows will be that CPn can be identified as Cn with the

hyperplane CPn−1 added at infinity. Now, in the language of homology, our closed curve

γ ⊂ C is simply (homologous to) a circle around a 0-cycle, the point z = 0.

If we are working with our notational convention above of labelling our ambient space by

CPn+1, we see for the case above, i.e. n = 0, our path is a circle over an n-cycle. We then

generalise this to n ≥ 0 by saying that we want to consider a circle bundle over an n-cycle.

We denote the n-cycle by Γ and the circle bundle by T (Γ), as it corresponds geometrically to

a tube about Γ.2

The geometrical picture here is as follows: we consider our ambient CPn+1 and the polar
2In a more detailed derivation, we actually consider an (n+ 1)-cycle in (CPn+1 \MCY ). However it turns

out that all such (n + 1)-cycles are homologous to a tube over an n-cycle Γ ⊂ MCY , see (3.3) of [97] for
details.
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locus MCY ⊂ CPn+1. Within this polar locus we consider an n-cycle Γ ⊂ MCY ,3 and we

integrate our rational (n + 1)-form, φ ∈ Hn+1(CPn+1 \MCY ), over the tube T (Γ). At each

point p ∈ Γ, this picture simply reduces to integrating over a circle around a polar point,

and so corresponds to the familiar case Equation (B.10). We have tried to depict this in

Figure B.1 below. We are then left with a smooth n-form on Γ ⊂ MCY .

×

Figure B.1: Pictorial depiction of the extension of the residue theorem to higher
degree forms. Left: The familiar case of a pole on C (red cross) and a closed
contour around it (blue dashed line). Right: the higher dimensional idea (where
most dimensions are suppressed for obvious reasons); here the red line is meant to
represent our n-cycle Γ and the dashed blue lines the tube T (Γ). Every point along
Γ has a circle around it, and can be thought of in the context of the left diagram.

It turns out that the above procedure actually only gives us primitive n-forms on MCY ,

i.e. n-forms such that φ ∧ ω = 0 where ω is the Kähler form.4 We thus are left with the

mapping

Res : Hn+1
(
CPn+1 \MCY

)
→ Hn

Prim.(MCY ), (B.12)

where ∫
Γ

Res(φ) =
∫
T (Γ)

φ. (B.13)

It can be shown that the residue map is in fact surjective.

B.0.3 Filtration

Next, we introduce a cohomology of rational forms. Let An+1
k denote the additive group of

rational (n + 1)-forms forms of pole order k along MCY . Then we define the cohomology
3We of course want Γ to be contained in MCY , as this is where we expect a non-vanishing residue.
4We can think of this in terms of homology by considering the dual: here ω becomes the hyperplane class

and the wedge product the intersection number, so the vanishing result is the requirement that they don’t
intersect.
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group

Hk(MCY ) :=
An+1
k (MCY )

dAnk−1(MCY )
, (B.14)

where we note that d changes both the form degree as well as the pole order. These groups

obey a clear filtration:

H0(MCY ) ⊂ H1(MCY ) ⊂ ... ⊂ Hn+1(MCY ). (B.15)

We can use our residue map to map this to a filtration of primitive cohomology. In particular,

we have5

Res
(
Hk(MCY )

)
= Fn+1−kHn

Prim.(MCY ) (B.16)

where we have introduced

Fn+1−kHn
Prim.(MCY ) =

⊕
i≥n+1−k

H i,n−i
Prim.(MCY ), (B.17)

subject to the obvious constraint 0 ≤ i ≤ n. This gives us the mapping

H1(MCY ) 7→ Hn,0
Prim.(MCY )

H2(MCY ) 7→ Hn,0
Prim.(MCY )⊕Hn−1,1

Prim. (MCY )

...

Hn+1(MCY ) 7→ Hn,0
Prim.(MCY )⊕Hn−1,1

Prim. (MCY )⊕ ...⊕H1,n−1
Prim. (MCY )⊕H0,n

Prim.(MCY )

= Hn
Prim.(MCY )

(B.18)

We, of course, want to isolate a specific cohomology (e.g. H2,1
Prim.(MCY )), and the above

filtration makes it clear that we can achieve this via forming the quotients

Hp,n−p
Prim. (MCY ) =

FpHn
Prim.(MCY )

Fp+1Hn
Prim.(MCY )

=
Hn+1−p(MCY )

Hn−p(MCY )
, with p = 0, 1, ..., n. (B.19)

Here p is related to the pole order k via k = (n+1−p). It then follows from Equation (B.9)

that

degP = (n− p)(n+ 2). (B.20)

For Calabi-Yau 3-folds, n = 3 and so degP = 5(3−p). In particular we notice that p = 2 gives
5The fact that we end up with a mixed degree form, i.e. we break holomorphicity, comes from iterating

the reducing of the degree of our rational form. Details of this can be seen, e.g., in appendix A of [98].
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degP = 5 = degQ. This is the statement that a primitive (2, 1)-form has a corresponding

polynomial of the same degree as the defining polynomial Q(z), modulo the Jacobian, as per

Proposition B.0.1. Here we have focused on a hypersurface in a single CPn, but the argument

can be extended to more general hypersurfaces in projective spaces.

We note that the above result is related to restriction on allowed states in a Gepner model.

Namely, recall Equation (3.83):
5∑
i=1

li
ki + 2

= 0, 1, 2, 3 (B.21)

where li is the power of the chiral field Φi. In particular, the right-hand side corresponds

to degree 0, H, 2H and 3H monomials, where H is the degree of the defining polynomial.

We also had the Jacobi ideal restraint Φki+1
i = 0. These are exactly the conditions for our

primitive forms, and we could have written

5∑
i=1

li
ki + 2

= 3− p, (B.22)

where p is as above.

We now address the issue of Hn
Prim.(MCY ) ⊆ Hn(MCY ), i.e. there could be a form

who’s wedge with the Kähler form doesn’t vanish. We call such forms "non-polynomial".

Fortunately for us, this is not the case, which we shall now explain: we are dealing with

Calabi-Yau 3-folds, so our middle cohomology are 3-forms. Taking the wedge with the Kähler

form, which is a 2-form, would give us a 5-form. However the fifth cohomology group of a

Calabi-Yau 3-fold is trivial. In the language of (r, s)-forms, we have, using that the Kähler

form is a (1, 1)-form,

(3, 0) 7→ (4, 1)

(2, 1) 7→ (3, 2)

(1, 2) 7→ (2, 3)

(0, 3) 7→ (1, 4),

(B.23)

but there is no (4, 1) and (1, 4) cohomolgy groups for complex 3-dimensional spaces, and for a

Calabi-Yau 3-fold we have h3,2 = h2,3 = 0. We therefore conclude that all middle cohmology

forms are in fact primitive.

We note that this equality does not hold in general. For example, for a K3 surface, the

middle cohomology are 2-forms, and the Kähler form itself is a 2-form, but is not primitive.

Indeed, a general K3 surfaces always has b2 = h2,0 + h1,1 + h0,2 = 1 + 20 + 1 = 22, while
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the residue calculation for the quartic in CP3 will give you 21 2-forms, the missing one is

exactly the Kähler form. Note that we expect the primitive groups of (2, 0) and (0, 2)-forms

to saturate all such forms, as wedging with ω would give a (3, 1) or (1, 3)-form. This general

idea holds for all far left and far right (w.r.t. Hodge diamond) middle cohomology groups.

If were to consider the K3 surface in CP2 × CP1, the residue would give 20 2-forms, the

missing two corresponding to the hyplerplane divisors (i.e. the homology equivalent of our

Kähler form) of the two factors in the product.

It is hopefully clear that a similar argument can be applied to any Calabi-Yau of even

complex dimension, say dimC MCY = 2m: the middle cohomology contains ωm, where ω

is the Kähler form, which is not primitive. For example, the Calabi-Yau 4-fold made from

the sextic in CP5, it turns out that h2,2 = 1752, but the primitive subspace has dimension

1751, the missing term being exactly ω2. As the second K3 examples above demonstrates,

it is possible that the difference is more than just 1, however the key point is that if the

Calabi-Yau has even complex dimension then the primitive cohomology is a proper subset.
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C | Quintic Quotients

In this appendix, we look at quotients of Landau-Ginzburg (LG) orbifolds by a discrete group,

namely the one that gives mirror symmetry. In particular, let’s look at quotients of the orbifold

LG quintic by a G = Zm5 for m = 0, 1, 2, 3, i.e. look at

(
LG(Quintic)/Γ

)
/G, (C.1)

where the Γ is the U(1)-projection on the LG model, in order to try reproduce Table 1 on page

78 of [61]. We look at this from the perspective of the Gepner model, in order to demonstrate

how G changes the notion of untwisted and twisted states of the Gepner model.

C.1 General Picture

First let’s look at the problem in a little more generality. We want to quotient our LG/Γ by a

group G. This group is denoted in the notation of [61] as γ = [n1, ..., n5], where the notation

means ni ∼= e2πiniJ0 , subject to ∑
i

ni
ki + 2

∈ Z. (C.2)

This condition is basically the requirement that the holomorphic 3-form is conserved, i.e. we

still have a Calabi-Yau after quotient.

As we are taking two quotients of our original LG theory, we are going to generate a

total of four sectors: untwisted-untwisted, untwisted-twisted, twisted-untwisted and twisted-

twisted. We shall denote these as (u,u), (u,t), (t,u) and (t,t) from now on, with the first entry

corresponding to our Γ action and the second the G action. What do these different sectors

give us in terms of cohomology? We can make the educated guess that1

• (u,u): these will be the (2, 1)-forms that survive both quotients, i.e. completely invariant

monomials. In this sense they give the value of h2,1 in the singular space before we deal
1Here we focus on the (2, 1)-forms and (1, 1)-forms, but of course it is really middle and diagonal cohomology

they generate. However the point is still made clearly this way.
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with the fixed points of G, i.e. they give h2,1singular.

• (t,u): these are the (1, 1)-forms that are invariant under G, so correspond to (1, 1)-forms

that don’t come from a blow up of the singularities of G, i.e. they give h1,1singular.

• (u,t): these are the (2, 1)-forms we get by resolving the fixed point locus of G, so they

give h2,1res = h2,1 − h2,1singular. These are the non-polynomial deformations of our defining

equation.

• (t,t): these are the (1, 1)-forms we get by blowing up the fixed points of G, so they give

h1,1blowup = h1,1 − h1,1singular. These correspond to divisors that are reducible.

C.1.1 Singular Cohomology

So, how do we go about finding the twisted states of our G action? Well, we note that if

ni = 1 for all i, then we would just be considering exactly the quotient of the Gepner models

discussed in Section 3.3.3, i.e. γ = [g0, ..., g0] with g0 = e2πiJ0 . We can use this to essentially

"copy-paste" the previous derivation but now for different ni values. The first two cases, (u,u)

and (t,u), are easy to calculate: we simply work through the derivation of Equation (3.86),

and then impose the requirement that

∑
i

niℓ
(ν)
i

ki + 2
∈ Z ν = 0, ...,H − 1, (C.3)

where ν = 0 is the untwisted case. For the (2, 1)-forms this is the statement that we are

considering monomials that are γ invariant. Note that for the quintic all the (1, 1)-forms will

obey this as they have ℓ(ν)1 = ... = ℓ
(ν)
5 , so it follows from Equation (C.2) that our condition

is met. This has the geometrical interpretation that we must preserve the Kähler form of our

Calabi-Yau.

C.1.2 Non-Polynomial Deformations

Let’s now deal with the remaining two cases in turn. Let’s start with the non-polynomial

deformations, (u,t). As we are untwisted w.r.t. our Γ action, this sector is actually quite easy

to work out, once we make the observation above that we can simply consider the previous

calculations as a special case of ni = 1 for all i.

To start with let’s work with the case that our G action only has one generator (e.g.

for the quintic we have Z5). Here, we essentially replace ν with niτ , where τ is our twist
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parameter. We then get that the twisted state is given by

(Qτtot)L =
∑
i

niτ∈(ki+2)Z

(
ℓi + 1

ki + 2
− 1

2

)
+

∑
i

niτ /∈(ki+2)Z

(
niτ

ki + 2
−
[
niτ

ki + 2

]
− 1

2

)
, (C.4)

subject to the usual half integral charge requirement. For the right charges, we simply include

a sign in front of the second sum, i.e.

(Qτtot)R =
∑
i

niτ∈(ki+2)Z

(
ℓi + 1

ki + 2
− 1

2

)
−

∑
i

niτ /∈(ki+2)Z

(
niτ

ki + 2
−
[
niτ

ki + 2

]
− 1

2

)
, (C.5)

We shall return to the case when G has multiple generators (e.g. Z2
5 and Z3

5 for the quintic)

in a moment.

C.1.3 Blow Ups

We now just need to account for the blow up terms, i.e. the (t,t) terms. These are also not

too hard to account for: the idea is to again note that both the Γ and G actions go like g0,

and so here we simply consider twisting by e2πi(ν+niτ)J0 . Therefore we take our result and

replace ν 7→ ν + niτ to give us

(Qν,τtot)L =
∑
i

ν+niτ∈(ki+2)Z

(
ℓi + 1

ki + 2
− 1

2

)
+

∑
i

ν+niτ /∈(ki+2)Z

(
ν + niτ

ki + 2
−
[
ν + niτ

ki + 2

]
− 1

2

)
. (C.6)

and

(Qν,τtot)R =
∑
i

ν+niτ∈(ki+2)Z

(
ℓi + 1

ki + 2
− 1

2

)
−

∑
i

ν+niτ /∈(ki+2)Z

(
ν + niτ

ki + 2
−
[
ν + niτ

ki + 2

]
− 1

2

)
. (C.7)

We note here that the change in sign of the second term between the above two expressions

looks like it might be a problem (as we only want to consider states with QL = ±QR), but we

shall see that in all cases where both sums in QL are not identically zero (in the sense that

some i in the sum is hit) that one of the sums actually gives gives a zero contribution.

These formulas can be adapted to give us the states in the (u,t) sector where G has

multiple generators: if we had 2 generators just replace ν with miρ where mi are the integers

characterising the generator and ρ is the associated twist parameter. The extension to more

generators should be clear.

185



C.1.4 The Master Formula

We can combine the above results to give a "master formula". We basically just take the

results of the (t,t) sector but now allow for ν, τ = 0 corresponding to untwisted sectors.

We generalise for G as well to have multiple generators as follows: we denote the different

generators via γ(µ) = [nµ1 , ..., n
µ
5 ], and denote the associated twist parameters via τµ. We then

get the overall formula

(Qν,τ⃗tot)L,R =
∑
i

ν+nµ
i τ

µ∈(ki+2)Z

(
ℓi + 1

ki + 2
− 1

2

)
±

∑
i

ν+nµ
i τ

µ /∈(ki+2)Z

(
ν + nµi τ

µ

ki + 2
−
[
ν + nµi τ

µ

ki + 2

]
− 1

2

)
.

(C.8)

where a sum is assumed in nµi τ
µ. For states that are in the fully untwisted sector, we impose

the requirement that ∑
i

nµi ℓi
ki + 2

∈ Z ∀µ. (C.9)

As before, we can present the two sums above in a more symmetrical manner by defining

l
(ν,τ⃗)
i as follows:

(Qν,τ⃗tot)L =
5∑
i=1

(
ℓ
(ν,τ⃗)
i + 1

ki + 2
− 1

2

)
where ℓ

(ν,τ⃗)
i + 1 := ν + nµi τ

µ mod (ki + 2). (C.10)

The right charge is then give by changing the sign of any states with ν+nµi τ
µ ̸= 0 mod (ki+2).

C.2 Quintic Calculation

We know that the orbifolded LG for the quintic is given by the product of minimal models

(ki + 2) = (5, 5, 5, 5, 5). The (2, 1)-forms are given by finding the states such that

5∑
i=1

ℓi = 5 subject to ℓi ≤ 3 ∀i. (C.11)

Linking this to the fact that |ℓi⟩ ∼= Φℓii , this is just the criteria that we are considering the

monomials of degree 5, i.e. the possible deformations of the Fermat equation. The theory
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before we include G (i.e. the "uneffected Quintic") has the available states:

(3, 2, 0, 0, 0) =⇒ 5× 4 = 20 terms

(3, 1, 1, 0, 0) =⇒ 5× 4× 3

2!
= 30 terms

(2, 2, 1, 0, 0) =⇒ 5× 4× 3

2!
= 30 terms

(2, 1, 1, 1, 0) =⇒ 5× 4× 3× 2

3!
= 20 terms

(1, 1, 1, 1, 1) =⇒ 5× 4× 3× 2× 1

5!
= 1 term

for a total of 101 terms, as expected. The (1, 1)-form is then given by the twisted state with

ν = 2, of which there is exactly 1 term.

We now want to account for the action of G. We know what the available actions are as

they are presented in the table of [61]. Let’s look at a few cases.

C.2.1 The [0, 1, 2, 3, 4] Action

Let’s start by looking at the Z5 action [0, 1, 2, 3, 4] = [0, 1, 2,−2,−1], where equality follows

from mod 5 in each ni. This is the only example of a free action, so we expect no states to

come from twisting by our G action.

First let’s find the (u,u) states. The criteria Equation (C.9) becomes ℓ2+2ℓ3−2ℓ4−ℓ5 = 0

mod 5, which gives a a total of h2,1singular = 21, as shown in the Table C.1 below.

For the (t,u) states we simply get that our single form carries over to give h1,1singular = 1.

From here we already see that we expect this action to be free as these results agree with

those in the table of [61]. However we can check this is indeed the case.

Let’s look for (u,t) states using Equations (C.4) and (C.5). For this involution we have

(Qτtot)L =
ℓ1 + 1

5
− 1

2
+ 2τ − 2−

[
2τ

5

]
−
[
3τ

5

]
−
[
4τ

5

]
. (C.12)

We now note that

2τ − 2−
[
2τ

5

]
−
[
3τ

5

]
−
[
4τ

5

]
= 2 (C.13)

for τ = 1, 2, 3, 4, so we are left with

(Qτtot)L =
ℓ1 + 1

5
− 1

2

!
= −3

2
,−1

2
,
1

2
,
3

2
(C.14)

where the requirement is our usual half-integral charge requirement. Using finally that ℓi ≤ 3

for all i, we see that we cannot satisfy any of these, and so there are no twisted states of this
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(ℓ2, ℓ3, ℓ4, ℓ5) ℓ1
(3, 0, 1, 1) 0
(1, 3, 1, 0) 0
(0, 1, 3, 1) 0
(1, 1, 0, 3) 0
(2, 2, 0, 1) 0
(1, 0, 2, 2) 0
(2, 1, 2, 0) 0
(0, 2, 1, 2) 0
(3, 1, 0, 0) 1
(0, 3, 0, 1) 1
(1, 0, 3, 0) 1
(0, 0, 1, 3) 1
(2, 0, 0, 2) 1
(0, 2, 2, 0) 1
(1, 1, 1, 1) 1
(2, 0, 1, 0) 2
(1, 2, 0, 0) 2
(0, 0, 2, 1) 2
(0, 1, 0, 2) 2
(1, 0, 0, 1) 3
(0, 1, 1, 0) 3

Table C.1: The possible untwisted (2, 1)-forms for the quotient of the quintic LG
orbifold by the [0, 1, 2, 3, 4] action.

form.

Finally we look for (t,t) states. These are a little tedious to compute by hand, but let’s

look at the case with ν = 1. Then τ = 1 results in n5 = 4 becoming untwisted, τ = 2 results

in n3 = 2 being untwisted, τ = 3 results in n4 = 3 being untwisted and τ = 4 results in

n2 = 1 being untwisted. n1 = 0 is always twisted. We therefore have

(Q1,1
tot)L =

(
ℓ5 + 1

5
− 1

2

)
+

6 + 4

5
− 2 =

(
ℓ5 + 1

5
− 1

2

)
(Q1,2

tot)L =

(
ℓ3 + 1

5
− 1

2

)
+

16 + 4

5
− 2−

[
6 + 1

5

]
−
[
8 + 1

5

]
=

(
ℓ3 + 1

5
− 1

2

)
(Q1,3

tot)L =

(
ℓ4 + 1

5
− 1

2

)
+

21 + 4

5
− 2−

[
6 + 1

5

]
−
[
12 + 1

5

]
=

(
ℓ4 + 1

5
− 1

2

)
(Q1,4

tot)L =

(
ℓ2 + 1

5
− 1

2

)
+

36 + 4

5
− 2−

[
8 + 1

5

]
−
[
12 + 1

5

]
−
[
16 + 1

5

]
=

(
ℓ2 + 1

5
− 1

2

)
(C.15)
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which we have already shown has no allowed solutions. Similar results will follow for the other

values of ν.

So in total we have (h1,1, h2,1)[0,1,2,3,4] = (21, 1).

C.2.2 The [0, 0, 0, 1, 4] Action

Let’s also just look at the [0, 0, 0, 1, 4] action. We can easily show that h2,1singular = 25 and

h1,1singular = 1 via the above procedure. We now want to compute the (u,t) and (t,t) states.

For (u,t) we have

(Qτtot)L =
3∑
i=1

(
ℓi + 1

5
− 1

2

)
+ τ − 1−

[
4τ

5

]
, (C.16)

again we can easily compute that

τ −
[
4τ

5

]
= 1 ∀τ = 1, 2, 3, 4. (C.17)

We are then left with

(Qτtot)L =
3∑
i=1

ℓi + 1

5
− 3

2

!
= −3

2
,−1

2
,
1

2
,
3

2
(C.18)

which amounts to ℓ1 + ℓ2 + ℓ3 = −3, 2, 7, 12, respectively. Combining this with the fact that

0 ≤ ℓi ≤ 3 again, we can only meet the middle two conditions2 as

ℓ1 + ℓ2 + ℓ3 = 2 : 3× (2, 0, 0) and 3× (1, 1, 0)

ℓ1 + ℓ2 + ℓ3 = 7 : 3× (3, 3, 1) and 3× (3, 2, 2).
(C.19)

We now note that the twisted states actually make no contribution to the charge, as τ always

comes with −1 here and we showed τs contribution was 1, and so we have (Qτtot)R = (Qτtot)L.

So we see that, in total, we get 4 × 6 = 24 twisted (2, 1) and (1, 2) forms. This gives us a

total of 25 + 24 = 49, which is what is required as per the table in [61].

Finally we need to calculate the (t,t) states. For ν = 1 we get that n4 = 1 becomes

untwisted when τ = 4 and n5 = 4 becomes untwisted when τ = 1. Let’s deal with the
2Note this makes sense: otherwise we would be getting additional (3, 0) and (0, 3) forms, which would break

our Calabi-Yau-ness.
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remaining cases first, τ = 2, 3. Here we have

(Q1,τ=2,3
tot )L =

5τ + 5

5
−
[
4τ + 1

5

]
− 5

2
= −1

2
=⇒ (Q1,τ=2,3

tot )R = +
1

2
(C.20)

so these are both (2, 2)-forms. Now let’s look at the cases τ = 1, 4:

(Q1,1
tot)L =

(
ℓ5 + 1

5
− 1

2

)
+

1 + 4

5
− 2 =

ℓ5 + 1

5
− 3

2

(Q1,4
tot)L =

(
ℓ4 + 1

5
− 1

2

)
+

16 + 4

5
−
[
16 + 1

5

]
− 2 =

ℓ4 + 1

5
− 3

2

(C.21)

but this is required to be in {−3/2,−1/2, 1/2, 3/2} but ℓ5 ≤ 3 so we can’t satisfy any of these.

Similar calculations can be done for the other ν values, and we just state the results here:

(Q2,τ=1,4
tot )L = −(Q2,τ=1,4

tot )R = −1

2

(Q3,τ=1,4
tot )L = −(Q3,τ=1,4

tot )R = +
1

2

(Q4,τ=2,3
tot )L = −(Q4,τ=2,3

tot )R = +
1

2

(C.22)

with all other terms not being allowed. So we get a total of h1,1blowup = 4 (and same for

(2, 2)-forms).

So in total we have (h1,1, h2,1)[0,0,0,1,4] = (49, 5), which is exactly what is required as per

[61].

C.2.3 The [0, 1, 1, 4, 4] Action

Finally let’s consider the [0, 1, 1, 4, 4] action. Once we have considered this, we will have

worked out the Hodge numbers of one of the Calabi-Yaus in each mirror pair, so we can

simply state the remaining results by mirror map.

Here we can show that the (u,u) sector gives h2,1singular = 17 and h1,1singular = 1.

For the (u,t) states we have

(Qτtot)L =

(
ℓ1 + 1

5
− 1

2

)
+ 2τ − 2

[
4τ

5

]
− 2 =

(
ℓ1 + 1

5
− 1

2

)
(C.23)

where the second equality follows from

2τ − 2

[
4τ

5

]
= 2, τ = 1, 2, 3, 4. (C.24)
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So we see that there are no new twisted (2, 1)-forms.

We just have to work out the (t,t) states now. For ν = 1 we get that n2,3 = 1 become

untwisted when τ = 4 and n4,5 = 4 become untwisted when τ = 1. If we consider the

remaining cases, τ = 2, 3, we can easily show that

(Q1,τ=2,3
tot )L = −(Q1,τ=2,3

tot )R =
1

2
. (C.25)

Let’s look at the case τ = 1 now. We then have

(Q1,1
tot)L =

(
ℓ4 + ℓ5 + 2

5
− 1

)
+

2 + 3

5
− 3

2

=
ℓ4 + ℓ5 + 2

5
− 3

2
!
= −3

2
,−1

2
,
1

2
,
3

2

=⇒ ℓ4 + ℓ5
!
= −2, 3, 8, 13.

(C.26)

Finally using that 0 ≤ ℓ4, ℓ5 ≤ 3, we see that we can only satisfy the 3 condition in 4 ways:

2 × (3, 0) and 2 × (2, 1). This corresponds to QL = −1/2. Now note that the untwisted

contribution to this actually vanishes as

ℓ4 + ℓ5 + 2

5
− 1 =

3 + 2

5
− 1 = 0, (C.27)

so we have QR = −QL, and so these states correspond to (2, 2)-forms. We can similarly show

that

(Q1,4
tot)L =

ℓ2 + ℓ3 + 2

5
− 3

2
, (C.28)

so we get a further four twisted (2, 2)-forms.

So in total the ν = 1 sector gives us two twisted (1, 1)-forms and eight twisted (2, 2)-forms.

By similar calculations we can show that the remaining sectors give

• ν = 2: two twisted (2, 2)-forms and eight twisted (1, 1)-forms,

• ν = 3: two twisted (1, 1)-forms and eight twisted (2, 2)-forms, and

• ν = 4: two twisted (2, 2)-forms and eight twisted (1, 1)-forms.

so in total we have 2+2+8+8 = 20 twisted (1, 1)-forms (and same for twisted (2, 2)-forms).

Therefore in total we have (h1,1, h2,1)[0,1,1,4,4] = (21, 17), which agrees with [61].
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C.3 The Mirrors

In principal we could now apply the same logic in order to obtain the remaining quotients,

i.e. those where G has more than one generator. This calculation is of course a little messy

and so is not included here. We summarise the results (including the value of h2,1untwisted) in

the following table.3

We see that only two cases contain twisted (2, 1)-forms: the (49, 5) must have 49−25 = 24

and the (21, 17) must have 21 − 5 = 16 twisted states. From a geometrical point of view,

we can account for these twisted states: the latter is considered on pages 28 & 29 of [11],

the former we can describe now. The fixed point set of a [1, 0,−1, 0, 0] action is given by

[0 : z2 : 0 : z4 : z5], which is simply a copy of CP2. Considering the intersection of this

with our Calabi-Yau (i.e. the Fermat equation), we are left with considering the degree 5

polynomial z52 + z54 + z55 = 0 inside CP2. Such a curve has genus

g =
(5− 1)(5− 2)

2
= 6, (C.29)

which means that h1,0 = 6 on this curve. Locally the curve looks like C2/Z5, and such a

space has, upon resolution, 4 (1, 1)-forms, so in total this gives us 6× 4 = 24 (2, 1)-forms, as

required. Note that this 6× 4 decomposition appeared also in our CFT computation above.

This suggests to a nice way to "see the geomtry" from the CFT.

3This table was generated using methods of toric geometry and the Sage programming software.
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G-action (v1, v2, v3, v4, v5) (h2,1, h1,1) h2,1untwisted

[1, 0,−1, 0, 0]

4 −1 −1 −1 −1
−1 −1 −1 −1 4
0 1 0 0 −1
0 0 0 1 −1

(49,5) 25

[0, 1,−1, 2,−2]

−1 −1 −1 4 −1
−1 −1 −1 −1 4
1 2 1 −1 −3
2 1 1 −2 −2

(21,1) 21

[1,−1,−1, 0, 1]

[1,−2,−1, 0, 2]

4 −1 −1 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4
1 2 1 −1 −3

(21,17) 5

[1, 0,−1,−1, 1]

1 0 0 0 −1
0 1 0 2 −3
0 0 1 4 −5
0 0 0 5 −5

(17,21) 17

[−2, 1, 1, 0, 0]

[1, 1, 0,−2, 0]

1 0 2 3 −6
0 1 4 3 −8
0 0 5 0 −5
0 0 0 5 −5

(1,21) 1

[0, 1,−1, 0, 0]

[0,−2, 0, 1, 1]

0 0 0 1 −1
1 1 1 0 −3
0 5 0 0 −5
0 0 5 0 −5

(5,49) 5

[1, 2, 0,−2,−1]

[1, 1, 0,−1,−1]

[0, 0, 0, 1,−1]

4 −1 −1 −1 −1
−1 4 −1 −1 −1
−1 −1 −1 4 −1
−1 −1 −1 −1 4

(1,101) 1
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