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Abstract: Amorphous materials span a wide range of systems, including foam

bubbles, colloidal molecules, and polymer strands. Regardless of their composition,

they all share the common feature of structural disorder. This results in universal

flow behaviour. The yielding, relaxation and recovery of these systems are relevant to

widespread processes, from spreading mayonnaise to flowing magma. Studying their

behaviour under rheological shear protocols, by imposing loads and deformations of

various forms, reveals fascinating phenomena that challenge the conventional notions

of solid and liquid properties. Utilising theoretical mesoscopic models can help in

understanding experimentally observed behaviours, and also predict new ones. The

work in this thesis consists of three distinct studies into the material responses to

imposed shear, and the exploration of their origins and consequences.

The first study researches the stress relaxation of an amorphous material after the

imposition of a step strain within two mesoscopic models. The key finding is that

a catastrophic shear instability can occur at a long delay time after the initial

strain application, under conditions that might intuitively be presumed stable. This

failure event is then studied in detail, by analysing its origins in the slow build-up

of mesoscopic yield events leading to a shear localisation avalanche, and examining



how the delay time before failure occurs depends on the relevant control parameters

of the protocol and system.

Following that study, the yielding of an amorphous protein gel under the imposition

of a step stress is simulated using a modification, newly introduced in this work,

of an established model. More specifically, introducing permanent breaking of the

mesoscopic substructures into the model replicates phenomena found experimentally,

including the Basquin law of fatigue, Monkman-Grant relation, and three creep

regimes. In addition, the study explores the precursors to failure under creep, and

how the time of fluidisation can be influenced by the properties of the material and

protocol.

The final study investigates the yielding, relaxation, and recovery of an amorphous

material under the creep-recovery test protocol through mesoscopic simulation. The

primary focus is on recoverable strain, where strain that arises during the stress

application can be recovered after the stress is switched off. High levels of strain

recovery are predicted, and its dependence on system parameters is explored. An

important new discovery is that the recoverable strain in the model system is a result

of plastic events, a phenomenon known as reversible plasticity.
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Chapter 1

Introduction

Ketchup contained in an open glass bottle will remain so when inverted, and yet upon

shaking will douse a meal with its full contents [1, 2]. A sloped region of hard clay

soil can be built upon, but then suddenly fail and become a dangerous landslide [3,4].

Epithelial tissue can form a solid protective layer on the outer surfaces of organs,

but then quickly fluidise when cut to facilitate wound healing [5–7]. The remarkable

ability of these materials to transition between apparently solid and liquid states is

a consequence of their structural disorder, or amorphous nature [1, 5, 6, 8–12].

The study of these amorphous materials is a far-reaching topic of high importance in

the modern day, with many reviews outlining the uses and applications of research

in this area [8–11]. They appear in many commercial applications, from toothpaste

to tarmac [9,13–16]. Examples can also be found in nature, with geological materials

such as magma [17], and in biological systems, such as in blood and collagen [5–7,18–

22]. Therefore, the range and impact of research in this area cannot be understated.

The class of amorphous materials is extremely broad. They range from dense

particle suspensions [8, 23–25], to low density cross-linked structures with attractive

interactions [26–33]. There are numerous subsets of amorphous materials, variously

defined in the literature, such as elasto-plastic [9], visco-elastic [10], paste [34, 35]

and yield stress materials [3, 11, 36–40]. There is variation even within amorphous
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material classes, such as between soft [6,7,20,41–44] and metallic [45–49] glasses, or

between micro-gels [36, 50,51], hydrogels [52–55] and colloidal gels [56–59].

Depending on the imposed load, amorphous materials can display properties that

are conventionally considered distinct solid and liquid properties, such as elastic

deformation and viscous flow respectively [1,5,6,9,12]. This study of the deformation

and flow of soft matter is called rheology [60,61].

Studying the rheology of amorphous materials reveals the phenomenon of yielding,

localised events within the system that function to relax the imposed load [8,9,49,62].

This yielding can be reversible, such as in soft dilute polymer [9, 10] or colloidal

glass systems [6, 7, 20, 41–44,62], or irreversible, such as in dense entangled polymer

[9, 10, 22, 33, 63–69] or metallic glass systems [45–49]. It can also result in yielding

transitions between solid-like and liquid-like behaviour [9,10,70]. One well established

example is the occurrence of a stress overshoot, where a material under a constant

rate of deformation experiences an initially solid-like response before a yielding

transition under which the system fluidises [9, 11,71].

Some amorphous materials require a certain minimum load to be able to experience

a yielding transition, these are called yield stress materials [3, 11, 36–40]. The devel-

opment of this yield stress is generally system dependent [11]. For example, in soft

colloidal systems, increasing the particle density results in the glass transition, from

a viscous suspension to an amorphous solid with glassy dynamics [11, 72]. A similar

transition, the jamming transition, which depends on the packing fraction, involves

hard particle systems [11, 73]. In polymeric systems, a change in concentration

can transition a viscous dilute unentangled solution into a concentrated entangled

gel [10]. The development of a yield stress can also occur with the introduction of

new mediums. The liquid-like independent components of mayonnaise (egg yolk,

oil, and vinegar) form a yield stress emulsion when mixed together [9, 74] and the

aeration caused by whipping gas bubbles into cream, a viscous liquid, creates a yield

stress material [11,35,75].

The details of these amorphous material systems, such as the chemical components,



19

system structures, and thermal properties, can vary significantly. For example,

entangled strand-like polymer systems [22, 33, 63–69] appear to be highly distinct

from jammed suspensions of colloidal particles [62, 76–80]. However, recent research

in this area has reached a remarkable consensus, that despite the variations in

system details, there are several unifying features in the way that all amorphous

materials behave, suggestive of a common underlying cause [9,23,81]. Each system’s

composition can be described in terms of mesoscopic substructures that, though not

universal in size, all display structural disorder and metastability [25,71,81]. These

substructures generally exist in configurations that are not the state of minimum free

energy. However, in many systems the energy barriers to escape these configurations

are too large to overcome through thermal motion, halting rearrangement to a

state of complete structural relaxation. The material is therefore trapped in a

non-equilibrium disordered metastable state [25,51,71,82].

The unifying features of these amorphous materials result in universal physical

properties. Particularly significant to the research featured in this thesis is the

phenomenon of rheological ageing, which occurs in many amorphous materials [9,

11,71,81,83]. This is where an initially liquid-like sample slowly evolves towards an

ever more solid-like state as a function of the time since it was prepared [23]. Ageing

can impact many rheological effects, including the occurrence of shear banding

[11,24,84–86], one of the primary focuses of this thesis.

Shear banding is a heterogeneity in the flow profile of a fluid which takes the form

of macroscopic bands of different viscosity within a planar shear cell [9, 25]. This

heterogeneous shear-banded flow state often arises when aged materials are subject

to an imposed shear flow. Evidence for these localised heterogeneous flows has been

found theoretically in many complex fluids under various shear conditions [9,25,84,87–

89]. Experimental evidence for shear banding can be found in gels, colloidal glasses,

clay suspensions, carbopol microgels, and domestic products (ketchup, mustard,

mayonnaise and hair gel) [3, 36–38]. It has also been suggested that landslides are a

direct consequence of shear banding [3,4]. Shear banding can cause systems under
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shear to fail, fluidise and fracture, which makes it an important phenomenon to

study [8–11,84–86,90].

This thesis will describe the results of three distinct but related projects completed

during the course of the author’s PhD.

The first project, the results of which are discussed in Chapter 4, studies the response

of an amorphous material to the step strain protocol, where a constant deformation

is applied. This project builds upon work completed during the author’s Masters

project, which found that a catastrophic shear banding instability can arise in a

soft glassy material at indefinitely long delay times [91]. This instability occurs

even though the material is subjected to no further external deformation, following

a sudden shear at a much earlier time. This prior work utilised the Soft Glassy

Rheology (SGR) Model [13, 23–25, 71, 81, 92], which has been shown to capture a

range of amorphous material rheological behaviour [9, 11,13,23,25,40,71,81,93].

The work presented in Chapter 4 studies the same step strain protocol as previous

work [91], but simulated using a Thermal Elasto-Plastic (TEP) model [9, 94–105],

described in Section 2.3. It also expands on the previous work within the SGR model

to study the effects of the amplitude of the imposed step strain and the working

temperature on the time at which catastrophic banding occurs. Uncovering the

predicted phenomenon of highly delayed catastrophic shear banding in two theoretical

models, in addition to work by a collaborator on a third fluidity model [91], implies

that it may be universal across amorphous materials. It is hoped that the strength

of this theoretical prediction will stimulate experimentalists to test this conclusion.

The second project, the results of which are discussed in Chapter 5, modifies the

SGR model to expand its influence beyond the ‘soft glassy materials’ it was originally

intended to describe [13]. Disrupting the reformation of elements within the model

simulates the process of strand breaking in low density attractive gels. This is

reminiscent of behaviour seen in fibre bundle models [9, 106–109], which have had

some success in simulating these gels [110]. By modelling a creep protocol that

is well documented in the literature, this project aims to understand experimental
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fluidisation and failure behaviour and by doing so provide an accurate physical model

for the simulation of these gels.

Creep is the response to the application of a constant load onto a material. The

standard material response is to initially strain slowly, and at a slowing rate over time

(hence, ‘creep’) [11,36,87]. In certain cases, creep can end in a sudden fluidisation,

fracture or material failure [9,11,19,36,51,111,112]. The study of creep is widespread

in the computational and experimental literature on amorphous materials [9, 11,

25, 28, 36, 81, 87, 107–109, 112–116]. Practical applications include studying yield

stresses [11, 36, 87], material failure times [9, 107, 114], and even natural disasters

such as earthquakes [98,113,117–119]. There are many examples of the effectiveness

of mesoscopic models in simulating creep [98,111,117] including in the SGR model [25,

87]. The work in Chapter 5 builds on this success by introducing a new modification

to the SGR model to more closely simulate the behaviour of protein gels under the

creep protocol. In particular, there will be a focus on comparisons to experimental

papers [28,110], which study the deformation of low density protein gels under creep

deformation.

The rheological behaviours of protein (or biopolymeric) gels [26–32, 120], such as

gelatine, agar and casein gels, are of great interest. They have relevance not only in

biology [27–30,32], in areas such as muscle protein [28] and cellular tissue mechanics

[27], but also in the processing and texturing areas of the food industry [31, 120–

122]. Understanding how, when and why these materials fail is therefore of high

significance.

The third project, the results of which are discussed in Chapter 6, explores the strain

recovery of an amorphous material under the creep-recovery test protocol. The creep-

recovery test features the creep protocol just described, followed by a switch-off of the

stress after a certain time. After the stress is switched off, some of the forward strain

gained during creep can be recovered in the reverse direction [123]. This protocol has

been studied experimentally [50, 53, 77], with some theoretical modelling for specific

material systems [124,125]. There is also a wider range of studies on modelling strain
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recovery in other protocols such as an oscillating shear [126–129]. This work puts

forward the SGR model as a candidate that can produce complex strain recovery

behaviours applicable to a wider range of materials than that seen before, and also

explain how the material response depends on input parameters.

The focus of Chapter 6 is on the recoverable strain, an important property in

hydrogels [52–55, 127, 130, 131], shape memory polymers [132–139], and polymer

melts [128, 140, 141]. These materials have a wide range of applications [133, 134,

141, 142], for example, shape memory polymers are used in medical tools such as

synthetic cardiovascular devices [142]. The recoverable strain of a material allows

categorisation of its elastic and viscous properties, and also enables an understanding

of its behaviour when approaching fluidisation [53, 129, 143, 144]. Using the SGR

model, the mesoscopic response can be studied, and reveals that, perhaps counter-

intuitively, recoverable strain can in fact be a result of the plastic events within the

material, a concept known as reversible plasticity [58,135–139,145–151].

Chapter 6 not only finds significant recoverable strain in these materials for a range of

input parameters, but also some interesting non-monotonic strain relaxation. It also

elucidates the general dependencies of the recoverable strain on the relevant protocol

input parameters, which are comparable to experimental results [57,124,140,152,153].

It sets the foundation for future work in refining the model towards a universal model

for the recoverability of amorphous materials.

The outline of this thesis is as follows: Chapter 2 introduces rheology and the models

used in this thesis; Chapter 3 outlines their implementation; Chapters 4 to 6 present

and discuss the results of the three different projects just described; and Chapter 7

summarises the findings and provides concluding remarks.



Chapter 2

Theory

2.1 An Introduction to Rheology

Rheological studies concern the deformation and flow of soft matter. A common

example involves sandwiching a material between two plates, one fixed so that it

remains stationary and one experiencing a horizontal force Fx, in a process known

as shearing, as shown in Fig. 2.1 [60, 61]. This diagram allows three important

macroscopic variables to be defined [61,154–156]:

(i) The shear stress Σ = Fx/A.

(ii) The shear strain γ = ∆x/Ly.

(iii) The shear strain rate γ̇ = dγ/dt.

Throughout this thesis, the ‘shear’ designation will be dropped because this work

will not consider other macroscopic tensorial components such as the normal stress,

which measures the intensity of internal forces acting on a material perpendicular

to a given cross-sectional area [61, 156]. In addition, the protocols explored in this

work will also be restricted to the application of shear, as in Fig. 2.1, and will not

consider other imposed stresses such as tensile or compressive stresses [60, 61]. This
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will therefore in effect ignore any influence of non-shear flow, such as turbulence or

rotational flows, or indeed wall slip, where the flow of a material can occur at the

point of contact between the rheometer wall and the material [11,66,157,158]. This

one-dimensional application of shear will also apply to the fluid elements, which can

only strain along the flow direction xaxis. This allows the use of a simplified scalar

approach [61,154–156].

Figure 2.1: a) A material sandwiched between two plates of area A
separated by distance Ly experiencing a shearing force
Fx (red arrow) which has sheared the top plate by a
distance ∆x. The black lines represent the unsheared
material, the blue lines the outline of the sheared mater-
ial. Also highlighted are the axes representing the flow,
xaxis, flow-gradient, yaxis, and vorticity, zaxis, directions.
b) The diagram in (a) shown in 2D, in the xaxis − yaxis
plane, to highlight the shear flow of a material between
two plates. In this case, the shearing is homogeneous,
with a constant shear rate across the system, equal to
that of the imposed shear rate γ̇0.
c) The diagram in (b), but the shearing is now hetero-
geneous, displaying shear banding, where one band has
shear rate γ̇1 and the other γ̇2.

This work also studies variation in the internal stresses and strains of the material.

When variation in the flow field is allowed, it is restricted to the flow-gradient

direction yaxis. Therefore, the internal shear strain can be defined as a function of the

flow gradient γ(y). When no internal variation is allowed, shear homogeneity across

the system is enforced γ(y) = γ. Both approaches assume the flow to be uniform

along the flow direction xaxis and along the vorticity direction zaxis [61, 154–156].

In computational simulations one notionally considers the dimensions in which the

length is not specified as infinite (in the case of Fig. 2.1, the xaxis and zaxis direc-
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tions) which is clearly not possible in experiments. In addition, the one-dimensional

horizontal geometry in the parallel plate protocol, though easier to model theoret-

ically, is less practical in a laboratory scenario. Therefore, it is more common to

see the Taylor-Couette protocol, where the material is located between concentric

cylinders [10, 159]. However, this does not invalidate the parallel plate geometry

presented here: in the limit of large cylinder radius relative to the plate spacing, the

parallel plate geometry is recovered. This approximation is common in theoretical

simulations [6, 9, 67,160,161].

Parts (b) and (c) of Fig. 2.1 show the difference between homogeneous shear flow

and shear banding, as introduced in Chapter 1. Homogeneous shear flow, as in part

(b), features one macroscopic strain rate γ̇0, which is universal across the system.

When shear banding occurs, as in part (c), the shear flow becomes heterogeneous,

with the example in Fig. 2.1 showing two bands of different strain rates γ̇1 and

γ̇2. Experimental evidence for shear banding can be seen in a range of amorphous

materials, from colloids to clays [3,36–38], and has been shown in some systems to

result in catastrophic failure [8–11,84–86,90,110].

Measuring stress Σ and strain γ variables over multiple experiments/simulations

allows the plotting of the steady state relationship between the stress and strain

rate, known as the flow curve [61, 162]. This relationship can be seen for different

materials in the top panels of Fig. 2.2, where the resultant steady state strain rate

from an applied constant shear stress has been sketched. Note that it is also possible

to apply a constant strain rate and measure the resultant steady state stress, in the

simple example materials presented in Fig. 2.2 the result will be the same regardless

of the method. Below the flow curves in Fig. 2.2 are example strain-time plots for a

specified constant stress application.

The first part (a) of Fig. 2.2 displays the behaviour of a viscous Newtonian fluid,

where the flow curve (top panel, black line) is linear Σ0 = ηγ̇, where η is the

Newtonian viscosity. The viscosity of a material is defined as the gradient of its flow

curve, or equivalently, the resistance to deformation at a given strain rate [61,67,70,
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Figure 2.2: Schematic of the rheological behaviour of four different
idealised materials: (a) Newtonian fluid, (b) Hookean
solid, (c) shear thickening (yellow) and thinning (green)
fluids, (d) visco-elastic fluid.
The top panels show the steady state flow curves of
the material (black lines), the relationship between the
steady state strain rate γ̇ and the applied stress Σ0,
along with selected stresses (coloured circles) which cor-
respond to single experiments/simulations where the
selected stress has been held constant from time t = 0.
The bottom panels show the strain response as a func-
tion of time of these selected points on the flow curve.
Also highlighted in (d) are the yield stress of the ma-
terial Σy and the relaxation timescale of the purple line
response τ .
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154]. The strain response over time is plotted in the bottom panel of (a) following

the imposition at time t = 0 of a constant stress of amplitude indicated by the blue

circle in the top panel. This response shows a constant strain increase, with gradient

Σ0/η. Therefore, a Newtonian fluid is defined by a constant strain rate proportional

to a constant applied stress. Although no fluid is truly Newtonian, common liquids

such as water can be assumed to be Newtonian in many circumstances [61,162].

Part (b) of Fig. 2.2 displays the curves for the opposite extreme: an elastic Hookean

solid. The flow curve (top panel, black line) has zero steady state strain rate γ̇ = 0 for

all values of the imposed stress Σ0. This can be understood by observing the strain

as a function of time (bottom panel, red line), as the strain is constant at equilibrium.

Thus, a Hookean solid initially shears an amount proportional to the imposed stress

γ = Σ0/G0, with the shear modulus G0 acting as the constant of proportionality.

After this, it maintains that constant strain, resulting in an equilibrium strain rate of

zero γ̇ = 0. The linear Hookean approximation only works experimentally at small

stresses in elastic materials such as rubber [61, 162].

Many real soft materials do not follow either of these extremes, and they are classified

as non-Newtonian fluids [61,163]. For example, the assumption of a constant viscosity

in Newtonian liquids does not hold for the curves shown in part (c) of Fig. 2.2, which

display shear thickening/thinning behaviour, in which the apparent material viscosity

increases/decreases as the imposed stress increases [63,76,164–166].

There are also non-Newtonian materials that express very different behaviours de-

pending on the imposed stress and the timescale that the material response is

measured over. An example can be seen in part (d) of Fig. 2.2, which represents

a simple visco-elastic material. The material appears to be solid up to a certain

stress Σy and a liquid above it. This value is called the yield stress Σy. At imposed

stresses below Σy the material behaves as an elastic solid, as can be seen from the

cyan line strain response. Above the yield stress (the purple line strain response)

the behaviour is more complex, initially reflecting that of a solid, elastically shearing

to a constant strain. However, after a relaxation time τ , unable to hold the stress
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any longer, the material fluidises to a viscous liquid state (hence the term visco(us)-

elastic) [9, 60, 167, 168]. Bingham and Herschel-Bulkley fluids are two examples of

yield stress materials [11,39,40].

There are, of course, a huge number of other non-Newtonian fluid behaviours not

discussed here, and rarely do any materials conform to these ideal limiting cases.

For example, there are generally a range of relaxation times in a system, rather than

one τ as in the example above [169, 170]. The deviation from idealised behaviour

is particularly relevant when discussing amorphous materials, which display a level

of structure, but lack the long-range order of crystalline solids [34, 167, 168]. This

intrinsic disorder leads to many interesting phenomena that expand beyond the

somewhat simplified behaviours described above. One example of complex amorph-

ous material behaviour relevant to the work in this thesis is the phenomenon of

rheological ageing and annealing [9, 11, 71,81,83].

The concept of ageing, where an initially liquid-like sample slowly evolves towards

an ever more solid-like state as a function of the time since it was prepared [23],

was introduced in Chapter 1. Ageing generally occurs in a sample at rest, where a

material is aged for a certain time before the application of shear [13,23,51,83,93].

How the ageing process affects materials is system dependent. For example, if there

are unresolved strains within a soft system, then ageing can allow the time for these

defects to resolve [11, 48]. Defects can function as weak points through which the

system can more easily fail [28, 110]. Therefore, ageing in this context results in a

strengthened system. In a polymeric system, ageing can allow the system to increase

connectivity, which reinforces the cross-linked network over time [10,51,53,66,157].

Annealing also causes the solidification of amorphous systems, but through a different

process [9]. An amorphous material is initially equilibrated at a high temperature,

generally causing the system to be liquid-like. Then the temperature is reduced,

decreasing particle energy, slowing the system down, and causing the material to

become increasingly solid-like [9, 103, 104, 171]. Similar to ageing, the annealing

process can affect the distribution of strain throughout the material through defects
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[9, 11, 48, 103, 171]. It can also affect the relaxation times present in amorphous

materials [169, 170]. The annealing process is common in glassy systems, where a

change in temperature can affect the glass transition [11, 72, 73], as discussed in

Chapter 1. Experimentally, the degree of annealing can be tuned by the size of

the temperature difference and the rate at which the temperature is changed, for

example in the annealing of metallic glasses [48,169–171].

Complex amorphous material behaviours like ageing and annealing require theoretical

models more advanced than the simplified examples presented above. The rest of

this chapter is dedicated to describing the models that are used in this work.
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2.2 The Soft Glassy Rheology (SGR) Model

2.2.1 With Enforced Homogeneity in Shear

First proposed by Sollich and others in 1997 [92], the Soft Glassy Rheology (SGR)

model [13, 23–25, 71, 81, 92, 172] is a powerful tool in investigating the behaviour

of a range of amorphous materials, such as colloidal dispersions and gel networks

[13, 24, 173]. It forms the foundation upon which the simulations of this thesis are

built.

It is a trap model [9, 11] that considers splitting the material into a number, m =

1 . . . M , of local mesoscopic ‘elements’ whose size fit the following criteria [71]:

(i) Small enough to allow the macroscopic behaviour to be described by an average

over multiple elements.

(ii) Large enough so that deformations on the scale of an element can be described

by local continuum elastic strain and stress variables (average over a single

element).

Note that this division into mesoscopic elements is a largely conceptual tool and

should not be thought of as corresponding to tightly defined physical areas or bound-

aries of a material. However, each element may notionally be thought of as rep-

resenting a cluster of particles or molecules. For example, a few droplets in an

emulsion or colloidal system, or several hundred metallic glass particles [49,62]. In

the simulation, the elements have no spatial dependence on each other, and are all

restricted to move only in the flow direction xaxis.

The SGR model takes inspiration from Bouchaud’s glass model [174, 175], which

considers an ensemble of elements that explore an energy landscape of traps of

various depths. These elements can ‘hop’ between traps via an activation process.

These hops can be considered as a plastic rearrangement of the cluster of particles
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or molecules. Localised rearrangements have been seen experimentally to occur

on the scale of a group of a few colloidal [62] or several hundred metallic [49]

glass particles. Bouchaud assumed that the activation of these hops was caused by

thermal fluctuations. However, the trap depths in the materials the SGR model

generally simulates are large compared to kBT , so this is unlikely to be the cause

in this case [82]. The SGR model instead attributes the activation to interactions

between elements; a rearrangement takes place somewhere in the material which

can then propagate and cause rearrangements elsewhere [71]. This coupling between

elements is represented by a constant effective noise temperature x, which provides

the activation energy for elements to hop [8, 71,92].

The SGR model incorporates strain degrees of freedom into this glass model to

explore the consequences of deformation and flow [71]. Each element (with index

m) is assigned a local strain lm, elastic constant k (the same for all elements),

corresponding stress klm, and stored elastic energy Eel(lm) = 1
2kl2

m. These qualities

describe deformation away from some local position of unstressed equilibrium relative

to neighbouring elements [81]. Each element is also placed in an energy well of depth

Em.

Following the insight from Bouchaud [174], the model can capture a glass transition

if the prior distribution ρ0(E) of element trap depth energies E across the landscape

follows the exponential form

ρ0(E) = 1
xg

exp
(

− E

xg

)
, (2.2.1)

where the glass transition occurs at noise temperature x = xg [71,174]. The effects

of structural disorder are modelled by assuming trap depth energies follow this

distribution [71]. ρ0(E) represents the distribution of E across the landscape that the

elements explore. It is labelled the ‘prior’ distribution due to the fact that elements

are initialised with energy well depths taken from this distribution. However, the

distribution of energy well depths across elements will change when elements start

experiencing yield events, because yield events result in hops to new energy wells.
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A yield event occurs when an element under a strain lm releases its stored elastic

energy Eel(lm) through a spontaneous local rearrangement that reduces the element’s

stress. The probability that, within a time interval ∆t, a given element yields, has

previously been given as

p(Em, lm) = r(Em, lm)∆t = Γ0 exp
[
−(Em − Eel(lm))

x

]
∆t , (2.2.2)

where r(Em, lm) is the yielding rate of element m with energy well depth Em and

strain lm. Γ0 represents the attempt frequency. Eq. (2.2.2) envisages the trap that

the element experiences as an exponential harmonic well [71,81,92].

This research utilises a slight variation on the yielding probability, where an upper

limit is placed on the rate of yielding [91]

p(Em, lm) = r(Em, lm)∆t =


Γ0 exp

[
− (Em−Eel(lm))

x

]
∆t, if Eel(lm) < Em

Γ0∆t, if Eel(lm) ≥ Em

. (2.2.3)

This alteration implies that once the stored elastic energy becomes larger than the

trap depth energy - essentially once the element has ‘escaped’ the trap - the probab-

ility of yielding is constant with increasing strain, rather than rising indefinitely as

in the original form in Eq. (2.2.2) [91]. This previous definition in Eq. (2.2.2) also

requires an infinitely small timestep to ensure that all probabilities of yielding are

less than one, which is not necessary in the alternate version. Regardless, elements

rarely explore strains that are large enough to probe this difference, so results should

be similar irrespective of the modelling of yielding probabilities at extreme strains.

For a newly prepared, undeformed sample, it is assumed that lm = 0 for each

element [71,81]. Although in a real experimental study it is possible that there could

be a distribution of local strains within the material before shear, it can be argued

that the disorder caused by these defects and impurities are modelled in this case

by the distribution of energy well depths E [71, 81,174].
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The subsequent application of a macroscopic stress or strain will initially deform

each element elastically from its local equilibrium configuration, giving rise to a

non-zero local strain lm ̸= 0. This will result in a non-zero stored elastic energy

Eel(lm) = 1
2kl2

m > 0 which will increase the probability of yielding according to

Eq. (2.2.3). At some point, determined by a stochastic process described further in

Section 3.1.3, the element will yield, rearranging itself to a configuration in which it

is no longer deformed, thus relaxing stress and returning lm to 0 [92].

This yield event is modelled as a hop to a new trap. Note that this yield event can

occur without any strain imposed, as r(Em, lm) in Eq. (2.2.3) is non-zero even when

lm = 0 for x > 0. This is because an element’s yielding process can be activated

either through an imposed strain as described above, or caused by interactions with

other yielding elements represented by x. The SGR model treats both cases in a

unified fashion via Eq. (2.2.3). This concept will be discussed further in Section

3.1.1, where element hopping between energy wells in a system under no strain

results in rheological ageing.

A key assumption of this model is that, after yielding, the energy depth of the new

trap is completely independent of the old one, randomly chosen from the prior trap

depth energy distribution ρ0(E) specified in Eq. (2.2.1) [71,81,92]. The process of

selecting a new trap is assumed to be instantaneous, and therefore the timescale

for element reformation τreform can be considered to be zero, τreform = 0. See Fig.

2.3 for a diagram representing the process of element straining, rearrangement, and

hopping into a new well.

It is assumed, informed by the literature [71, 91,92], that the behaviour of elements

between yield events represents elastic deformation. Therefore, the local element

strain rate is equal to the macroscopic strain rate l̇m = γ̇ ∀ m, meaning the shear rate

is homogeneous throughout the material and equal to the imposed strain rate. This

restriction enforces homogeneous shear within the system, as discussed in Section

2.1. This means that there is no variation in the flow profile across the flow gradient

direction yaxis.
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Figure 2.3: A diagram outlining the behaviour of the elements in the
SGR model, which hop between energy wells of depth
E. Increasing the element strain l pushes the element
up the well, increasing its probability of yielding per
unit time according to Eq. (2.2.3). By random noise
activation, the element can yield, resetting its strain to
l = 0 and choosing a new energy well. This process is
shown in the red arrows, with the red and green wells
examples of new wells that might be chosen from the
prior distribution ρ0(E) of element trap depth energies.
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The macroscopic total visco-elastic stress σ is assumed to be the average of all the

individual element stresses

σ = k

M

M∑
m=0

lm . (2.2.4)

The total macroscopic stress Σ is then assumed to be the sum of the visco-elastic

stress σ and the Newtonian viscous stress of the background solvent, the solvent

viscosity η multiplied by the macroscopic strain rate γ̇ [64, 71,81,92]

Σ = σ + ηγ̇ . (2.2.5)

The background solvent is present to enable the calculation of the strain rate γ̇,

otherwise the system will have the capacity for unphysical infinite strain rates where

the total stress Σ changes instantaneously with the visco-elastic stress σ. However,

the behaviour of this Newtonian background solvent that the mesoscopic elements

exist within is not the primary interest of these simulations, so its viscosity η is

generally given a small value to minimise the impact of the solvent [67,70]. Removing

the solvent entirely, by setting the viscosity to zero, η = 0, requires a different

algorithm, which is introduced in Section 2.2.3.

The SGR model, even with enforced homogeneity in shear, is powerful in the sense

that it accurately captures many phenomena displayed by amorphous materials,

including ageing, yield events, yield stresses, and a stress overshoot under shear star-

tup [71,93]. However, due to the enforcement of homogeneous strain rate throughout

the material, it cannot display the macroscopic shear heterogeneity that arises in

shear banding [13, 24, 25]. Despite this, the work in this thesis will utilise the

model as just described where the assumption of homogeneity in shear is valid, and

additionally as a control tool to compare with the heterogeneous shear case.
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2.2.2 With Allowed Heterogeneity in Shear

The extension of the SGR model to allow for heterogeneity in shear, and therefore

shear banding, is sketched in Fig. 2.4 [13,24,25].

Figure 2.4: A diagram to outline the element distribution in the
SGR model, where elements are organised into S (s =
1 . . . S) number of streamlines, with M elements per
streamline. All elements on a streamline have the same
strain rate γ̇s, which is allowed to vary across stream-
lines. Homogeneous shear can be enforced by setting
the number of streamlines to S = 1. There is no spatial
dependence between elements within streamlines, the
two rows and regular order per streamline are simply
for visual purposes. Additionally, the top and bottom
plates are purely diagrammatic, as the models presen-
ted in this thesis use periodic boundary conditions. The
application of strain is shown through the red arrow.

The flow-gradient coordinate yaxis is discretised into S (s = 1 . . . S) streamlines,

equally spaced by distance ∆y = Ly/S, where Ly is the width of the sample in the

yaxis direction, equal to the distance between the two plates, see Fig. 2.1 and Fig.

2.4 [13, 24,25].

Each streamline is then assigned M (m = 1 . . . M) SGR elements which, within
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each streamline, follow the behaviour described in Section 2.2.1. This means that,

within each streamline s, the elements have a distribution of trap depth energies

Esm, and experience the straining and yielding described in Section 2.2.1. Indeed,

they are all forced to experience the same strain rate of their streamline l̇sm = γ̇s ∀

m. Accordingly, the SGR model with homogeneous shear enforced is recovered by

simulating the entire material as one streamline, by setting S = 1.

Importantly, to allow shear heterogeneity, the streamline strain rate γ̇s can vary

across streamlines. The model is thus capable of capturing heterogeneous flow, with

streamlines shearing at different rates. This extension allows spatial variation in the

flow-gradient direction yaxis, with translational invariance still assumed in the flow

xaxis and vorticity zaxis directions [25]. Note that there is still no spatial dependence

between elements within streamlines. Periodic boundary conditions are used, with

the assumption that all fields are smooth at the edge of each sample [160,161,176].

This removes any influence external to the material or edge effects, such as wall

slip [42, 66,157,158].

The process of allowing shear heterogeneity into the SGR model enables almost all

of the physics described in the previous section to stay the same with just a few

modifications. The total visco-elastic stress in Eq. (2.2.4) is now the streamline

visco-elastic stress σs with the total visco-elastic stress σ now represented by the

average σ̄ of the streamline visco-elastic stresses

σ = σ̄ = 1
S

S∑
s=0

σs , σs = k

M

M∑
m=0

lsm . (2.2.6)

Force balance imposes continuity in total stress across the flow-gradient direction

yaxis. Therefore, the average Σ̄ and streamline Σs total stresses can be equated

Σ̄ = σ̄ + ηγ̇ , Σs = σs + ηγ̇s , Σ̄ = Σs . (2.2.7)

Rearranging then provides an equation for the streamline strain rate
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γ̇s = γ̇ + σ̄ − σs

η
. (2.2.8)

In a shear protocol where the strain or strain rate is controlled, the total average

strain rate γ̇ = 1
S

∑S
s=0 γ̇s is specified by the imposed strain rate γ̇ = γ̇0. For a

stress-controlled protocol, it is the total stress that is specified by the imposed stress

Σ = Σ0.

With allowed shear heterogeneity, the SGR model has been shown to capture many

phenomena in the heterogeneous flows of dense amorphous materials [13, 24,25].

2.2.3 With Zero Viscosity

In the work in this thesis, the SGR model with zero solvent viscosity η = 0 is only

utilised under a stress-controlled protocol and with homogeneity enforced. Hence,

the theory under these conditions will be the focus in this section.

In Eq. (2.2.5), the solvent viscosity η allows the calculation of the strain rate γ̇

of the system, and removes the potential for infinite strain rates. However, it is

possible to implement zero viscosity η = 0 through a change to the calculation of

the macroscopic strain rate γ̇ [16, 177].

When viscosity is non-zero η > 0, the amount of yielded strain through element

rearrangement events defines the visco-elastic stress σ, as in Eq. (2.2.4), which then

defines the macroscopic strain rate γ̇ through Eq. (2.2.5). When viscosity is set to

zero η → 0 in this scenario, the strain rate tends to infinity γ̇ → ∞ [16, 177]. To

allow zero viscosity without a divergence in γ̇, the system must effectively predict

the amount of yielded strain within a timestep by taking the average of the element

yield rates r(Em, lm) multiplied by their strain lm [177]

γ̇ = 1
M

M∑
m=0

r(Em, lm)lm . (2.2.9)
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This variant of the SGR model has been presented with shear homogeneity enforced

through only one streamline S = 1, as that is the only context under which it is used

in this thesis. It can however be adapted to allow shear heterogeneity by making

the calculation in Eq. (2.2.9) equal instead to the streamline strain rate γ̇s.

2.2.4 Limitations

One limitation of the SGR model is the lack of a comprehensive or universal physical

interpretation for the effective noise temperature x or attempt frequency Γ0 in

Eq. (2.2.3). Both parameters have been considered as constant in much of the

literature [13, 24, 71, 81, 92], though some studies have considered a dependence on

the imposed shear or state of the system [71,92]. There has also been some discussion

on whether x can be considered a thermal temperature for systems where the energy

depths of the mesoscopic elements are on the scale of kbT [70, 178]. Nonetheless, to

date, x and Γ0 remain phenomenological parameters that cannot be derived from

first principles [13, 24,71,81]. However, the wide-ranging success of the SGR model

in simulating the behaviour of amorphous materials, even when x and Γ0 are taken

to be constant [24,71,81,92], is sufficient to justify its use.

A feature of the SGR model often lauded as an advantage but that could also be seen

as a limitation is the fact that its mesoscopic physics is highly generic. The generic

nature of the model makes it versatile, and it can be used for a large number of

different material applications. However, the lack of specificity means there is little

indication of how the parameters of the model should be varied to address different

classes of physical systems [13]. Part of the motivation for using alternative models

and modifications of the SGR model, as in the first two projects of this thesis and

described in the following two sections, is to explore how increasing the specificity

of the SGR model can strengthen it as a tool for modelling amorphous materials.
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2.3 The Thermal Elasto-Plastic (TEP) Model

2.3.1 Element-Based Model

Thermal Elasto-Plastic (TEP) models cover a huge range of mesoscopic models

[9, 11, 94–105,171]. They are widely discussed in literature, particularly in the stat-

istical physics community, as simple and effective models for simulating amorphous

materials [9, 111, 117]. The TEP model used in this project is in fact very similar

to the SGR model. However, the energy landscape of traps for elements and the

lengthy ageing process are removed and replaced with physics more representative

of annealing.

The primary difference between this TEP model and the SGR model is that the

distribution of element energy depths Esm in Eq. (2.2.1) is removed. Instead, each

element trap is assumed to have the same energy depth Esm = 1, effectively nullifying

the influence of this variable. Also, upon a yielding event, a new energy depth is no

longer chosen from Eq. (2.2.1), the element simply hops to a new well that has the

same depth Esm = 1.

This change to the energy depth distribution will interrupt the ageing process that

was present in the SGR model, which relies on the changing of energy depths (further

discussed in Section 3.1.1). It is replaced with an initialisation of the system with

a distribution P0(lsm) of element strains lsm randomly chosen from a normalised

Gaussian

P0(l) = 1√
2x0π

exp
(

− l2

2x0

)
, (2.3.1)

prior to the application of shear [9, 103, 104]. This initial distribution of element

strains for different values of x0 can be seen in the left panel of Fig. 2.5. Note that

in the SGR model, the equivalent initial distribution of element strains is a delta

function P0(l) = δ(l), where all elements have lsm = 0.
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Figure 2.5: Left panel: The initial distribution of element strains
P0(l) in strain space l, a Gaussian with width defined
by the pre-shear equilibrium temperature x0, as in Eq.
(2.3.1). The different colours represent different values
of x0 = [0.01, 0.05, 0.1, 0.2, 0.4] (from the thin and tall
Gaussian in dark blue to the shorter wider Gaussian in
orange).
Right panel: The yielding rate function r(l) in strain
space l for different values of the working temperature
x = [0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0] (from the steep
function in dark blue to the shallow function in red).
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The width of the Gaussian in Eq. (2.3.1), x0, models the preshear equilibrium

temperature, and dictates the effective annealing of the material. In this case, the

smaller values of x0 correspond to a better annealed material, because the strain

distribution is more uniform across the system [171]. In this work, the polar form of

the Box-Muller Transform [179] is used to select randomly from this distribution.

The replacement of the distribution of energy depths with a universal one Esm = 1

also means that the yielding rate r(Esm, lsm) (Eq. (2.2.3)) no longer depends on the

element energy depth Esm

r(Esm, lsm) = r(lsm) =


Γ0 exp

[
− (1−Eel(lsm))

x

]
, if Eel(lsm) < 1

Γ0, if Eel(lsm) ≥ 1
. (2.3.2)

This function is plotted in the right panel of Fig. 2.5 for different values of the

working temperature x, which defines the slope of the yielding rate r(lsm) below the

Eel(lsm) = 1
2 l2 = 1 (or equivalently, l =

√
2) threshold.

Aside from the above changes, the simulation proceeds as described in the SGR model,

elements in streamlines elastically deforming (lsm → lsm > 0 =⇒ Eel(lsm) > 0),

plastically yielding (lsm → 0), and rearranging/reforming to repeat the process.

2.3.2 Fokker-Planck Equation

It is possible to describe the TEP model through continuum equations rather than

considering individual elements. With all elements in the TEP model in identical

traps Esm = 1, the only difference between elements is in the element strain lsm.

Therefore, the distribution of the element strains on a streamline P (lsm), initially

a Gaussian distribution P0(lsm) as in Fig. 2.5 and Eq. (2.3.1), is equivalent to a

probability density function of the strain of that streamline P (lsm) ≃ Ps(l) in strain

space l. This approximation is valid in the limit of large number of elements M ≫ 1.
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Ps(l) has an equation of motion given by the Fokker Planck equation [180,181]

dPs(l, t)
dt

= − r(l)Ps(l, t)︸ ︷︷ ︸
‘death’

+ YsP0(l)︸ ︷︷ ︸
‘rebirth’

− γ̇s

dPs(l, t)
dl︸ ︷︷ ︸

advective streamline strain rate

, (2.3.3)

where

Ys =
∫

r(l)Ps(l, t) dl , (2.3.4)

σs =
∫

lPs(l, t) dl , (2.3.5)

1 =
∫

Ps(l, t) dl . (2.3.6)

The first term on the right hand side of Eq. (2.3.3) implements yielding, or the

‘death’, of the strain distribution Ps(l, t), the multiplication of the yielding rate

function r(l) (Eq. (2.3.2)) and Ps(l, t) denoting the level of yielding. The second

term models the reformation, or ‘rebirth’, of Ps(l, t) after yielding. The third term

outlines the effect of the strain rate, encoding which way the streamline is straining

and how the resultant value of Ps(l, t) changes.

With a definition for the visco-elastic streamline stress σs in Eq. (2.3.5), the rest

of the calculations required for the continuum simulation are identical to that of

the element model, using Eq. (2.2.6) and Eq. (2.2.8) for the stress and strain rates

respectively.

This method is marginally more efficient numerically than evolving an ensemble of

elements. However, the results produced are identical to the element model within

numerical error, so either can be used in practice.

2.4 Modification to the SGR Model to Address

Gel Fracture

The SGR model has been applied to a wide range of materials, such as foams,

emulsions, colloidal glasses and suspensions [9,13,23–25,71,92]. Indeed, the materials

studied to date with the SGR model are mostly densely packed jammed and glassy
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systems, which tend to rejuvenate under shear [9, 13,23–25,71,92]. Localised yield

events that relax strain involve the rearrangement of a cluster of particles or molecules

which are subsequently capable of straining again [6, 7, 9, 10, 20, 41–44, 62]. In the

SGR model, this process is simulated through plastic element yield events followed

by reformation [71,81,92]. An element yield event models a local rearrangement that

results in the relaxation of stress but also the reformation of the element with a new

energy depth E, as described in Section 2.2.1. The timescale for this reformation

is zero, τreform = 0, the process of reformation post-yield is instantaneous. This

reformation allows reversible yielding transitions between solid-like and fluid-like

states which applies to a range of soft materials [9, 10,27,70].

This reversibility does not, however, apply to protein gels. These low-density polymer

gels can be described as ‘brittle-like soft solids’ that experience irreversible rupture

[110]. Numerous literature studies, experimental and theoretical, have shown that

when strong interparticle bonds are involved, as in protein gels, soft solids develop

fractures and irreversibly break under stress [27, 110, 182–184]. In addition, these

fractures are due to the build-up of plastic deformations within individual gel strands

[182,183]. Fibre bundle models, which simulate a group of fibres that can irreversibly

‘snap’, have had some success in modelling protein gels [106, 110]. Clearly, the

SGR model requires a modification if it is to accurately simulate these protein

gels [19, 27,59,182].

The modification, new to the field, takes the framework of the standard SGR model

but considers a permanent ‘breaking’ of elements, similar to the ‘snapping’ of fibres

in fibre bundle models [9, 106]. Within the framework of the SGR model, this

irreversible snapping of fibres is modelled by prohibiting the post-yield reformation

of elements. To do this, the timescale for reformation is set to infinity, τreform = ∞.

In practice this means that, when an element yields, its modulus is set permanently

to zero. The element is therefore ’broken’, and can no longer contribute to the stress

within the system.

The consequence of this modification is to limit the lifetime of the material. An
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element that experiences a yield event breaks irreversibly and can no longer sustain an

elastic stress. Once all the elements have yielded, all that remains is the background

Newtonian solvent. As will be discussed in Chapter 5, the gel component is considered

to have ‘broken’ at this point.

The other aspects of the SGR model, beyond the reformation of elements, do not

require modification. The mesoscopic structure of elements is reminiscent of the

globular nature of protein gels [184], and the stochastic structure of protein gels is

similar to the random-number based computational processes present in the SGR

model [183]. In addition, protein gels have been found to contain a wide range

of bonds with different energies and lifetimes, comparable to the range of element

energy wells E [28]. Therefore, with just the modification described above, the SGR

model becomes a prime candidate for simulating protein gels.

2.5 Shear Protocols

2.5.1 Step Strain

The step strain protocol is the focus of Chapter 4. It was one of the shear protocols

in an early SGR paper [71], where the response to this protocol was explored with

shear homogeneity enforced.

A step strain is modelled in this work as follows: after any ageing processes, a strain

of amplitude γ0 is instantaneously applied at t = 0 and is held constant until the end

of the simulation time. One can represent this mathematically as a Heaviside step

function for strain γ(t) = H(t)γ0, corresponding to a Dirac delta function for strain

rate γ̇(t) = δ(t)γ0. The applied strain and a typical stress response are sketched in

the top panel of Fig. 2.6.

Of course, reproducing this idealised step strain experimentally is physically im-

possible, because any real rheological device is limited by inertia. However, it can

be argued that within the time scales relevant to the material, particularly for a
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well-aged material, a swiftly applied step strain can be modelled effectively as an

instantaneous one. This process of an experimental ‘rapid strain ramp’ has been

explored in literature, for example in polymer melts [66,185–187].

In preparation for the work presented here, the process of applying a rapid strain

ramp was tested for both the SGR and TEP model simulations and it is found that as

long as the material maintains a fully elastic reaction to the strain over the duration

of its application, the strain application can be considered instantaneous. In other

words, there is negligible difference between simulations with an instantaneous step

in the strain and those with a rapid strain ramp, as long as the ramp is fast compared

to the intrinsic relaxation timescales of the material [188].

This statement can be understood by considering a strain ramp of rate γ̇0 that stops

once it reaches the target strain γ0. Recall the fact that outside of yield events the

elements behave elastically l̇sm = γ̇0, meaning the element strain rate is equal to the

imposed ramp strain rate. As long as no element has experienced a yield event by

the end of the ramp (i.e. the strain ramp has been fast enough), all elements will

have a resulting strain lsm = γ0. This is equivalent to simply setting this condition

at the start of the simulation, as done in the instantaneous step strain protocol.

From this work and others [24,25,91,185,186], it should be possible to calculate how

these conditions can be met experimentally by studying the response to a constant

strain rate, of which the rapid strain ramp will be an extremely steep and temporary

version.

2.5.2 Step Stress

The step stress protocol is the focus of Chapter 5. It has been widely studied, both

in the SGR model [25, 87] and for a range of amorphous materials [9, 11, 28, 36, 43,

81,107–109,112–116], for example in protein gels [28, 110,189].

A step stress is modelled in this work as follows: after any ageing processes, a stress

of amplitude Σ0 is instantaneously applied at t = 0 and is held constant until the end
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Figure 2.6: Diagrams showing the three shear protocols studied in
this thesis as a function of time. The imposed variable
is shown in the solid black line, and an example meas-
ured material response is shown in the dashed red line.
Top panel: The step strain protocol. A constant strain
of amplitude γ0 is applied at time t = 0 and held con-
stant until the end of the simulation t = tend. An ex-
ample stress response Σ(t) to the protocol is shown in
the red dashed line.
Middle panel: The step stress protocol. A constant
stress of amplitude Σ0 is applied at time t = 0 and held
constant until the end of the simulation t = tend. An
example strain response γ(t) to the protocol is shown
in the red dashed line.
Bottom panel: The creep-recovery test protocol. A
constant stress of amplitude Σ0 is applied at time t = 0
and held constant until a time t = tstop, where the stress
is switched off and remains at zero until the end of the
simulation t = tend. The switch-off time is defined as
the time at which the strain reaches a certain value
tstop = t(γ = γ0 + ∆γf). An example strain response
γ(t) to the protocol is shown in red dashed line.
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of the simulation time. One can represent this mathematically as a Heaviside step

function for stress Σ(t) = H(t)Σ0. The applied stress and a typical strain response

are sketched in the middle panel of Fig. 2.6. In experimental practice, this protocol

also requires a ramp up to the required stress, but this process is more established

than the rapid strain ramp described in Section 2.5.1 [36,51,59].

At low stresses around the yield stress Σy of the material (see Section 2.1), the

standard response is that of a strain that increases at an ever-decreasing rate, hence

the common term for this protocol ‘creep’. In practice, when Σ0 < Σy, the system

creeps indefinitely [36, 87, 157]. However, when Σ0 > Σy, this creep regime can

end with a failure event in which the strain rate suddenly increases dramatically

[9, 19, 28,36,51,110–112].

2.5.3 Creep-Recovery Test

The creep-recovery protocol is the focus of Chapter 6. It has been studied experi-

mentally for a range of amorphous materials [50, 53, 77, 123–125, 140, 141, 190, 191],

and modelled theoretically for materials such as cold-set gels and concrete [124,125].

The creep-recovery test is initially identical to that of the step stress: after any

ageing processes, a stress of amplitude Σ0 is instantaneously applied at t = 0 and

held constant. However, at a time t = tstop, the stress is switched off, and the system

is allowed to relax. The applied stress and a typical strain response are sketched in

the bottom panel of Fig. 2.6. The time at which the stress is switched off, tstop, is

defined in this work as the time at which the strain reaches γ = γ0 + ∆γf , where γ0

is the initial strain immediately after the imposition of the step stress, and ∆γf is

the controlled forward strain. The dependence of tstop on strain allows the control of

the amount that the system strains forward under the step stress ∆γf . The strain

recovered after the stress switch-off can then be measured and compared to ∆γf .

An alternative would be to instead impose a given stress switch-off time tstop, which

has been utilised experimentally [123]. However, the results must be presented with
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some caution, because the amount the system has strained forward ∆γf over the

fixed time tstop will be different for, say, different values of the imposed step stress

Σ0. This can be managed by plotting the recoverable strain relative to the forward

strain ∆γf , as presented in this work. Either method for defining tstop will produce

the same results, provided the change in strain is accounted for.

A typical strain response to this protocol is that, during the step stress, the system

creeps forward with a small-scale increasing strain as described in the above section.

When the stress is switched off, the strain drops by some amount, and the system

begins to relax [123]. The size of the subsequent strain relaxation defines the

recoverable strain.

2.6 Stress Diffusion

Stress diffusion is the process through which a localised yield event somewhere in the

material affects behaviour elsewhere [192]. This concept was introduced in the SGR

model through the noise temperature x in which noise in the system is generated

by the propagation of stress from yield events [8, 71, 92] (Section 2.2.1). However, x

functions as a temperature and does not explicitly simulate the diffusion of stress

from specific yield events. In the absence of non-local stress diffusion, shear banding

in systems has been shown to become history dependent and less reproducible with

respect to noise [84,192,193]. Therefore, it has been suggested that a realistic model

depiction of banded flow as strongly inhomogeneous regions should contain stress

diffusion [192].

Although there is no exact stress diffusion in the models as described above, there

is a diffusive effect from yield events already embedded within the foundations of

the models through the force balance described in Section 2.2.2 and Eq. (2.2.7).

When an element in a streamline yields, it relaxes its local element strain, causing

the streamline visco-elastic stress σs, equal to the average element strain on that

streamline as in Eq. (2.2.6), to fall. By imposing force balance, as in Eq. (2.2.7)
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and Eq. (2.2.8), the fall in σs causes the streamline strain rate γ̇s to increase. This

will in turn cause the other elements in that streamline to experience a larger strain

rate, and therefore make them more likely to yield. Hence, the relaxation of stress

from the element yielding event propagates through the streamline to other elements.

The effect of a changing γ̇s will also affect other streamline strain rates through force

balance (Eq. (2.2.7) and Eq. (2.2.8)). However, these diffusion-like processes either

affect just one streamline, or all streamlines equally. This means that there is no

spatial corelation to the diffusion. Therefore, an explicit stress diffusion should be

introduced into the model.

To implement a definitive stress diffusion into the models described above, a stochastic

straining of elements is implemented on neighbouring streamlines after each yield

event, as seen in other mesoscopic model simulations [24,177]. Suppose element m

on streamline s with local strain lsm = l∗ yields, this causes an adjustment in the

strain of three randomly chosen elements on each of the adjacent streamlines s ± 1

by l∗w (−1, 2, −1). The stress diffusion factor w dictates what fraction of the strain

that the yielded element has lost l∗ is diffused to these randomly selected elements

in neighbouring streamlines.

This 1D approximation of the Eshelby stress propagator couples adjacent streamlines

together, meaning heterogeneous shear effects occur in spatially localised regions

[160,194]. Physically, this stress-diffusion term has been compared to the Brownian

movement of polymer chains in response to a nearby rearrangement event [192].

2.7 Conclusion

This chapter has introduced the rheological concepts that form the foundation of

this work, outlining essential macroscopic variables and shear protocol geometry.

It has described the Soft Glassy Rheology (SGR) model, which is the primary

simulation tool used in this thesis, where mesoscopic elements strain and yield on

streamlines that allow heterogeneity in shear. Finally, it has provided a description
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of two modifications of the SGR model. The first, a simplification of the energy

well landscape which results in a simple Thermal Elasto-Plastic (TEP) model, which

can be solved either as a discrete element model or as a Fokker-Planck equation.

The second, new to the field, prohibits the reformation of elements, and in doing so

becomes a candidate for simulating protein gels. These models form the theoretical

base for understanding the behaviour of amorphous materials in this thesis.





Chapter 3

Methodology

3.1 Computational Method

When the mesoscopic models described in Chapter 2 were first introduced, con-

stitutive equations were derived and solved analytically [71, 92]. More recently,

hopping algorithms have been introduced [13, 24, 25, 81] to solve the equations nu-

merically. The details of the computational methods used in this thesis are outlined

below.

3.1.1 Ageing and Annealing

Ageing in the SGR model is simulated as follows. Before the material is subject to

any strain, it is allowed to age undisturbed for a waiting time tw. The sample is

initialised at t = −tw as a fresh sample by process of a ‘deep quench’, meaning the

distribution of element trap depth energies E corresponds to the prior distribution

ρ0(E) of Eq. (2.2.1). It is further assumed that all element strains are equal to zero

lsm = 0 ∀ m, s [81]. The distribution of trap depth energies E for a freshly prepared

(tw = 0) sample can be seen in the dark blue line at the left of the top panel of Fig.

3.1 which shows the distribution of element energy well depths P (E), equal to the

prior distribution ρ0(E).
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Figure 3.1: The normalised distribution P (E) of element trap depth
energies E after waiting time tw at noise temperature
x in the SGR model. The dark blue lines on the left
represent a distribution equal to the prior distribution
ρ0(E) of Eq. (2.2.1).
Top panel: At fixed noise temperature x = 0.3 and a
range of waiting times tw = [0, 103, 106, 109, 1012] (from
dark blue to orange or left to right). Note that the
average trap depth energy increases with increasing tw.
Bottom panel: At fixed waiting time tw = 103 and a
range of noise temperatures x = [0.0, 0.1, ..., 1.0] (from
dark blue to red or tall function to flat function). Note
that the distribution of trap depth energies becomes
broader with increasing x.
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Throughout the ageing process, for time −tw < t < 0 the system experiences no

imposed stress or strain but its elements are still able to hop between traps through

mechanical noise activation, as modelled via the effective noise temperature x in

Eq. (2.2.3). Note the choice of starting time t = −tw is defined such that the shear

protocol begins at t = 0.

To implement the ageing described above, a Waiting Time Monte Carlo (WTMC)

algorithm [195–198] is used to predict when a particular element will next yield

[13, 24, 25]. The time at which the element will next yield, the yielding time tY , is

stochastically chosen from the distribution

Y (tY ) = exp [−r(E, 0)tY ] , (3.1.1)

which depends on the yielding rate r(Esm, lsm) in Eq. (2.2.3) at zero element strain

lsm = 0. Recall that r(Esm, 0) ∝ exp(−Esm/x) in Eq.(2.2.3), meaning an element

with a larger value of Esm has a smaller yielding rate during ageing r(Esm, 0).

Therefore, through Eq. (3.1.1), a larger trap depth energy Esm also implies a longer

yielding time tY .

Once the element’s yielding time has been calculated, the algorithm then skips to

this time, yields the element and gives it a new energy well Esm selected from the

prior distribution ρ0(E). It then uses Eq. (3.1.1) again to select its next yielding

time with its new energy well Esm. This process is repeated until the total elapsed

time for ageing is equal to the waiting time tw. Note that it is possible to treat

elements independently during the ageing process, because there is no consequence of

element yield events on surrounding elements as all element strains are zero lsm = 0.

In practice, this means that for longer waiting times tw the elements will, on average,

have evolved into deeper traps. Recalling that elements in deeper traps have a

lower probability of yielding per unit time when experiencing a certain strain, as

in Eq. (2.2.3), the longer the material is given to age, the more solid-like the

material [13,23,83,93]. It can also be considered as increasing the average relaxation



56 3.1. Computational Method

time within the systems, reflecting annealing in metallic glasses [169,170] or increased

connectivity in polymer melts [66]. The increase in average element energy well depth

with increasing waiting time tw is shown in the top panel of Fig. 3.1.

Because the yielding rate also depends on the noise temperature r(Esm, lsm) ∝

exp(−1/x), as in Eq.(2.2.3), the ageing process will also depend on x. This can be

seen in the bottom panel of Fig. 3.1, where the distribution of energy well depths

P (E) after a fixed waiting time tw = 103 is shown for a range of noise temperatures x.

It can be seen that the distribution of energy depths P (E) spreads out as the noise

temperature x increases. The extreme of this behaviour is at the largest temperature

x = 1.0, where P (E) is almost an even distribution between 0 < E ≲ 8. The large

temperature allows the elements to explore the full energy well landscape during

ageing.

At the opposite extreme of zero noise temperature x = 0, the prior distribution ρ0(E)

of Eq. (2.2.1) is obtained. This is because all elements have zero strain during ageing

lsm = 0 ∀ m, s, and the yielding rate goes to zero r(Esm, 0) ∝ exp(−1/x) → 0 as

x → 0. Therefore, at x = 0, no yield events happen during ageing, and consequently

no ageing occurs, regardless of the waiting time tw. The athermal limit x = 0 will

be discussed further in Section 3.1.4.

Note that this ageing process relies on elements yielding and reforming. When setting

the timescale for reformation to infinity τreform = ∞ as in the gel modification of

the SGR model described in Section 2.4, this ageing process will actually result in

a weaker material. This is because as elements yield at their yielding time tY they

will not reform with a new energy well and will instead be permanently broken. For

this reason, during the ageing process the timescale for reformation is always set

to zero τreform(t < 0) = 0. Though this results in a discontinuous change in τreform

when the shear protocol starts at t = 0, the process of forming gels can be extremely

complicated and also specific to the type of gel [28,53,59,112,120,131,153,157]. In

keeping the standard ageing process found in the SGR model, the model maintains

its generality to apply to all low-density gels, and also keeps the focus on what
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happens to the materials after ageing when under shear. Exploring how to simulate

the gelation process in mesoscopic models deserves its own study.

Where the annealing of a material is pre-imposed by a variable, as with the pre-shear

equilibrium temperature x0 in the TEP model described in Section 2.3, there is

no need to go through the ageing process [103, 104, 171]. Instead, the material is

initialised at t = 0 with the Gaussian strain distribution P0(l) given by Eq. (2.3), with

width defined by the pre-shear equilibrium temperature x0, and then subsequently

simulated at working temperature x. This can be considered physically as a material

initially equilibrated at a temperature represented by x0, causing a distribution of

strains within the material. The system is then suddenly quenched to the working

temperature x at t = 0 and the shearing protocol is started. Note that a smaller

value of x0 corresponds to a better annealed system, because this results in a more

consistent distribution of strains. Because of the difference in process between the

ageing and annealing in the SGR and TEP models, the parameters x0 and tw are

only loosely comparable.

The process of implementing ageing and annealing experimentally depends on the

material. For example, the degree of annealing can be tuned for metallic glasses

[48,169–171], but is more difficult to vary for softer materials such as emulsions [48].

Other studies have replicated the waiting time tw described above, by allowing a

microgel to relax for a given time tw after pre-shearing [51]. Ageing can also be

considered comparable to system connectivity, an important parameter in polymeric

materials [53, 66,157].

The theoretical work in this study is intended to model a range of systems, from

entangled polymers to densely packed colloidal particles [9]. Therefore, to produce

predictions for this wide span of materials the models used must be highly generic.

The ageing and annealing processes in this work are consequently oversimplifications

of a complex and diverse process [13, 24, 71, 81, 92]. However, these models have

shown great success in simulating the behaviour of a range of amorphous materials

under shear, with the ageing and annealing described above well established in the
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literature [13, 24, 25, 103, 104, 171]. The work in this thesis will focus primarily on

material behaviour under shear, with the degree of ageing or annealing an influencing

variable.

3.1.2 Seeding Shear Heterogeneity

As discussed in Chapter 1, shear banding corresponds to heterogeneous flow beha-

viour within the material, with varying shear rates across the flow gradient direction

yaxis. In experimental studies, banding is seeded by disorder and noise within the

material. These instabilities within the system then become amplified by the im-

position of shearing, resulting in shear banding [11,67,112,199,200]. In theoretical

studies, this disorder is partly modelled through stochastic processes, where the

random probabilities inherent to the model cause a variance in streamlines across

the flow-gradient direction yaxis. However, in the limit of a large number of elements

per streamline M → ∞ (further discussion on the choice of M can be found in

Section 3.2), the average behaviour of elements across streamlines becomes uniform.

Consequently, the stochastic nature of the simulations is nullified by averaging over

a large number of elements.

Therefore, in this regime of large M , an additional contribution is required to model

the initial disorder inherent to amorphous materials. This takes the form of a

perturbation that seeds shear heterogeneity within the material. Options in the

existing literature include perturbing the initial visco-elastic stress of each element

lsm [24,172], or the waiting time tw [25,87]. The effect of the two methods is similar.

Therefore, where the waiting time is a relevant parameter, as in the SGR model

and its extensions, this work will follow the latter example. The waiting time tw is

perturbed across the flow-gradient of the material, such that the waiting time that

elements on streamline s experience, is given by

tws = tw

[
1 + ϵ cos

(
2πs∆y

)]
. (3.1.2)
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The strength of the perturbation is represented by ϵ, which determines what fraction

of the overall waiting time tw is added/removed as a perturbation. The consequence

of this perturbation is that, prior to the application of the shear protocol, some

streamlines are better aged than others. This creates an intrinsic heterogeneity in

the element energy depth distributions between streamlines which will provide the

initial seed for the formation of shear bands. The visual representation of the effect

of Eq. 3.1.2 on tws can be found in Fig. 3.2.

Figure 3.2: Top panel: The perturbed streamline waiting time tws

as a function of the streamline number s for total num-
ber of streamlines S = 10, as specified by Eq. (3.1.2).
Bottom panel: The perturbed element strain lsm as
a function of the streamline number s for total number
of streamlines S = 10, as specified by Eq. (3.1.3).

Alternatively, in simulations where tw is not a relevant parameter, as in the TEP

model, the initial visco-elastic stress of each element lsm is perturbed instead. This

is implemented in a similar way



60 3.1. Computational Method

lsm = γ0

[
1 + δ cos

(
2πs∆y

)]
, (3.1.3)

where the size of the perturbation is given by the strain heterogeneity factor δ, which

determines what fraction of the initial strain γ0 is added/removed as a perturbation.

There is no element m dependency in Eq. (3.1.3), so all elements on a streamline

will have their local strain perturbed by the same value. This creates an intrinsic

heterogeneity in the average element strain between streamlines, which will provide

an initial small seed for the formation of shear bands. Note that this perturbation

is in addition to the Gaussian initialisation of the element strain in the TEP model,

outlined in Eq. (2.3.1), which is used to model the effect of annealing rather than to

seed the formation of shear bands. The perturbation in Eq. (3.1.3) effectively shifts

the centre of this Gaussian for different streamlines.

In physical terms, the perturbations just discussed are intended to model the thermal

and mechanical noise of an experimental sample. There are many circumstances

under which real samples are seeded with intrinsic heterogeneities, such as in im-

perfections in rheometer devices or residual defects that remain following sample

preparation [67]. Indeed, the importance of sample preparation on behaviour under

shear is gaining recognition in the literature [161, 201–203], and these perturba-

tions (along with their associated ageing processes) show how variations in sample

preparation can be modelled theoretically.

3.1.3 Simulating Shear

Fixed Timestep

The simulations in this thesis use a time discretisation method during the imposition

of shear, after the initial ageing. For a fixed timestep, the time during which

measurements are taken 0 < t < tend is discretised into N timesteps, each of length

∆t. At each timestep the relevant model dynamics are implemented, determining
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which elements yield and what effect that has on the rheological properties of the

material.

For the element-based algorithms, this involves the following processes:

(i) Implementing the elastic straining of elements by their streamline’s strain rate

l̇sm = γ̇s using the explicit Euler Method lsm (t + ∆t) = lsm (t) + γ̇s∆t [67,204].

(ii) Deciding which elements yield using a random number generator and the

probability of yielding p in Eq. (2.2.3). If a random number R, selected from a

top hat distribution between 0 < R < 1, is smaller than p for a given element,

then that element yields. The stress diffusion from the yield event described

in Section 2.6 is implemented. The element then reforms on the timescale for

reformation τreform. If the model contains a distribution of energy wells E, the

element transitions to a new energy well when it reforms, randomly chosen

from the prior distribution ρ0(E) of Eq. (2.2.1). Otherwise, the element hops

to a well with identical energy depth to its previous well. This process is then

repeated for all elements.

(iii) Evaluating the subsequent element/streamline/material stresses and strain

rates through force balance, as discussed in Section 2.2. The total and stream-

line visco-elastic stresses are calculated using Eq. (2.2.6), and the strain rates

using Eq. (2.2.8). The macroscopic stress or strain rate can then be calculated

using Eq. (2.2.5). When viscosity is zero η = 0, the macroscopic strain rate is

instead given by Eq. (2.2.9).

The time is then advanced by ∆t and the process is repeated.

For the Fokker-Planck equation solution to the TEP model described in Section

2.3.2, the distribution of the element strains on a streamline P (lsm) is modelled as a

probability density function of the strain of that streamline P (lsm) ≃ Ps(l) in strain

space l. Numerically, a change of variables to the co-shearing frame can be used

l = l̃ + γs, which effectively centres the strain space l on the average strain for that
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streamline. The differential equations are then solved by discretising the strain space

on a grid of M values of l, spaced linearly between l = −lmax and l = +lmax. The

value of lmax is chosen to be large enough such that the entire strain distribution

P (l) is encompassed.

The simulation per timestep then involves the following processes:

(i) Implementing the Fokker-Planck equation in Eq. (2.3.3) using the explicit

Euler Method Ps(l, t + ∆t) = Ps(l, t) + dPs(l,t)
dt

∆t [67, 204].

(ii) Evaluating the average yielding rate Ys, visco-elastic stress σs, and strain rate

for each streamline using Eqs. (2.3.4), (2.3.5) and (2.2.8). The macroscopic

stress or strain rate can then be calculated using Eq. (2.2.5).

The time is then advanced by ∆t and the process is repeated.

Adaptive Timestep

It is possible to simulate the systems studied in this thesis using an adaptive timestep

[13, 24, 25]. This features a similar concept to that used during ageing, discussed

in Section 3.1.1, where time during which no yielding is predicted can be skipped

to improve efficiency. However, a Waiting Time Monte Carlo algorithm like that

used for ageing, which considers each element individually for the whole time, is

not appropriate under shear, as yield events of elements with non-zero strain will

affect the predicted yielding time of other elements. Instead, the average predicted

yielding time over all elements must be calculated

∆tad = ∆t/rav , rav = 1
M

∑
m

r(Em, lm) , (3.1.4)

where rav is the average yielding rate over the entire system.

At the end of each time iteration, the new timestep ∆tad is calculated using Eq.

(3.1.4), and it is by that timestep that time is advanced before the process repeats.

Aside from this change, all calculations follow the steps provided for the fixed
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timestep. Using an adaptive timestep is more computationally efficient [13, 24, 25],

but can produce inaccuracies when modelling the short timescales introduced by

heterogeneous flows [197, 198]. For this reason, an adaptive timestep will only be

used in this thesis when shear homogeneity is enforced.

3.1.4 Athermal Limit

The SGR and TEP models presented here are both thermal models, in the sense of

having thermally activated hopping of elements between energy wells. The original

interpretation of the origin of the working temperature x in the SGR model was in

noise from other rearrangements, but it acts as an effective temperature [13,24,71,

81,92]. In practice, the working temperature x is modelled in the same way for all

simulations in this thesis, through Eq. (2.2.3). It is possible to explore the athermal

limit of these models by taking x → 0 [70, 94,101,177,203].

The probability of yielding p in Eq. (2.2.3), when evaluated at x = 0, becomes a

step function [8, 9]

p(Em, lm) = r(Em, lm)∆t =


0, if Eel(lm) < Em

Γ0∆t, if Eel(lm) > Em

. (3.1.5)

The work in this thesis predominantly simulates thermal systems, with some explor-

ation of the athermal limit.

3.2 Parameter Values

As in almost all studies that utilise the SGR model [13,23–25,71,81,92], this work will

choose, without loss of generality, units of length, time and stress in which Ly = 1,

Γ0 = 1 and k = 1. In addition, the glass transition temperature is given as xg = 1.

Although these choices are purely a matter of convention [24,71,81,172], the choice

should be kept in mind when interpreting results and is the reason why all reported
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quantities are dimensionless. This means that the element strain l is defined in such a

way that an element, drawn at random from the prior distribution, will yield at strains

of order one on timescales of order one. It is therefore important to acknowledge

that where key behaviour occurs at strains of a certain scale, this is relative to the

material specific element strain, which the model does not specifcy [71,81].

Any numerical results obtained with the fixed timestep method described in Section

3.1.3 should be converged to the limit of ∆t → 0. Likewise, results should also

be converged with increasing number of elements M → ∞, or equivalently with

increasing number of discretisation points in strain space in the continuum version

M → ∞, as described in Section 2.3.2. Indeed, the adaptive timestep method

described in Section 3.1.3 should also be converged with the variation of its minimum

∆t. These true limits are of course not computationally achievable, but efforts have

been made to ensure that the results presented in this thesis are as accurate as

possible within computational limits. To that end, the following parameters have

been used:

• The numerical time discretisation step is set to ∆t = 0.01.

• The number of discretisation points in strain space is set to M = 105.

• The number of elements per streamline is set to M = 105.

As outlined in Appendix A, simulations with ∆t = 0.005 and M = 106 produced

negligibly more accurate results, verifying good convergence with respect to these

quantities.

As mentioned previously, in the limit of large M , heterogeneity in shear between

streamlines arising from stochasticity is lost, and a perturbation must be imple-

mented to seed heterogeneity. This process is described in Section 3.1.2, where the

perturbation size is defined by ϵ or δ. Small amplitudes of ϵ = 0.1 and δ = 0.05 were

chosen, similar to values in the literature [25,87,91,176].
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Convergence analysis also found that the difference in measurement errors between

number of streamlines S = 10 and S = 100 simulations is effectively negligible, and

therefore for computational ease S = 10 was chosen.

3.3 Measured Quantities

3.3.1 Macroscopic Variables

The most common quantity that is measured in rheological studies is the macroscopic

rheological variable. This will depend on the imposed protocol:

(i) For protocols that impose a strain, such as step strain, the subsequent evolution

of the stress Σ is measured.

(ii) For protocols that impose a stress, such as step stress and the creep-recovery

test, the subsequent evolution of the strain γ, or the time-differential of this

quantity, the strain rate γ̇, is measured.

These measurements form the foundation of most studies in rheology, recordable

both experimentally and computationally, and give a clear overview of the overall

behaviour of the material over time.

3.3.2 Degree of Banding

One of the advantages of computational simulations is the ability to look inside

the system and take mesoscopic measurements that may be difficult to achieve

experimentally. Experimental practice has made significant advances in recent years

with techniques such as ultrasonic imaging [27, 110], confocal microscopy [30, 205],

and light scattering [72, 112, 206, 207]. Simulation results that look at internal

system behaviour can help understand the results provided by these techniques.

The mesoscopic models used in this work have the ability to describe the element
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behaviour within the material. In particular, simulations can track the degree

to which the flow or deformation profile is shear banded across the flow gradient

direction yaxis. One of the common ways of doing this is to measure the standard

deviation of the strain and strain rate across the flow-gradient yaxis direction

∆γ(t) =

√√√√ 1
S

S∑
s=0

(γs(t) − γ(t))2 , (3.3.1)

∆γ̇(t) =

√√√√ 1
S

S∑
s=0

(γ̇s(t) − γ̇(t))2 , (3.3.2)

where γ0(t) and γ̇0(t) represent the average strain and strain rate across the material

at time t. These quantities report how far away, on average, from the macroscopic

strain γ and strain rate γ̇ the individual streamline strains γs and strain rates γ̇s are.

In doing so, they effectively measure the degree of strain and strain rate banding

across the sample, and allow the locating, analysing and quantifying of the shear

banding process.

3.3.3 Displacement Profile

It is possible to visualise the shear banding process by looking at the intrinsic

behaviour of the material across the shear profile over time. This can be done by

utilising the integral of the strain with respect to the distance along the flow gradient

direction

U(y, t) =
∫

γ dy =
∫∫

γ̇ dt dy , (3.3.3)

where y = s∆y = sLy/S is the distance along the flow gradient direction yaxis. This

gives the profile of the displacement across the flow-gradient direction yaxis, equal to

the velocity profile integrated over time.
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3.3.4 Yielding Integral

As mentioned in Sections 2.2.3 and 2.3.2, the rate of yielding in the system, repres-

ented by the last component in Eq. (2.3.3), is equal to the average of the yielding

rate function r(l) across the strain distribution P (l). This is also true when defined

in terms of elements P (Em, lm), even when they have different energy wells Em and

therefore different yielding functions r(Em, lm).

For this reason, the yielding integral can be used to study the yielding within the

simulations:

I =
∫

r(l)P (l)l dl , (3.3.4)

where the integral is taken over the strain space l. This integral measures the average

strain relaxation across the system caused by yielding by taking the overlap of P (l)

and r(l), given by the multiplication of the two functions, and taking the average

value integral over the strain space l.

Alternatively, in terms of elements, the integral can be considered as a summation:

I = 1
M

∑
m

r(Em, lm)lm , (3.3.5)

where the summation is taken over all elements m = 1 . . . M .

This is an important variable in understanding how systems yield, and will be used

to analyse the quantity of strain relaxation occurring in the system at different times.

Recall that, in all the models introduced in Chapter 2, material behaviour is dictated

by two processes: elastic straining and plastic yield events. Without plasticity, the

system would simply behave as an elastic solid as described in Section 2.1. It is the

localised yielding in the system that gives amorphous materials complex behavioural

properties [8, 9, 49,62]. The yielding integral I quantifies the strain relaxation from

these local yield events, and therefore provides a measure of the yielding that dictates

material behaviour.
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3.4 Conclusion

This chapter has outlined how the theoretical models used in this work can be

implemented computationally to simulate amorphous materials. It has described

in detail the simulation algorithms, from pre-shear ageing to the application of a

perturbation to seed shear heterogeneity to the calculations under shear. Finally,

the parameter input and measurement output variables were discussed, summarising

how the simulations presented are initialised, and also how they are subsequently

analysed. The contents of this chapter, combined with the theoretical understanding

provided by Chapter 2, should provide the reader with all the requisite knowledge

to understand and interpret the following results chapters.



Chapter 4

Delayed Shear Banding and

Material Failure After Imposition

of Step Strain

4.1 Introduction

This chapter studies the behaviour of amorphous materials under the step strain

protocol outlined in Section 2.5.1. In particular, there will be a focus on the occur-

rence of a delayed dramatic shear banding instability causing material failure, a long

time after the initial imposition of the strain.

The work presented here can be found in a pre-print [188], which features alongside

work done by Emily Carrington on a Fluidity Model under step strain. Also in the

publication is work completed by the author during his Masters year at Durham

University under the supervision of Prof. Suzanne Fielding, which also has a pre-

print [91]. That work explored the how the time and degree of banding varies

with the age of the material in the Soft Glassy Rheology (SGR) model. No work

completed during that time features in this chapter, but references will be made to

it due to the connections between the two studies.
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Shear banding, as outlined in Chapter 1, has been widely studied, both experiment-

ally [3,8–11,36–38] and theoretically [9,13,23,25,47,87], and has been shown to result

in the failure of a range of amorphous materials [8–11,84–86,90]. The occurrence of

this shear localisation phenomenon has been studied under protocols such as shear

startup (where a constant strain rate γ̇0 is applied) [9,67,71,87], step stress (where a

constant stress Σ0 is applied) [9,11,25,28,36,81,87,107–109,112–116], and cyclically

repeating shear (where an oscillating strain γ = γ0 cos(ωt) or stress Σ = Σ0 cos(ωt)

is applied) [41,159,208–211]. Generally, a shear localisation instability involves the

build-up of plastic yield events during the imposed shear, which eventually avalanche

into shear banding and material failure [9,11,28,36,67,70,71,87,110,111,171,212].

In shear startup, the stress tends to initially increase linearly with time before the

system fluidises to a steady state stress. The stress can overshoot the steady state

stress before fluidisation [9, 11,71], and it has been predicted through linear stabil-

ity analysis that the occurrence of shear banding between the overshoot and the

steady state may occur generically [67, 87]. Under step stress, a protocol which

will be explored in detail in Chapter 5, shear banding during failure is also well

established [9, 28, 36, 110, 111]. Delayed shear banding has also been studied under

oscillatory shear protocols, where changing the protocol parameters can signific-

antly affect the delay time [70,171,212], similar to behaviour seen in the step strain

protocol in this work.

Step strain is a less commonly studied protocol than those described above. It has

been studied within the SGR model, but only with enforced shear homogeneity

which is unable to simulate shear banding [71, 81]. Other theoretical studies have

explored shear rate heterogeneity during stress relaxation after a step strain similar

to that found in this work [67,69,87,213]. However, these studied generally focus on

the appearance of banding within short timescales in contrast to the highly delayed

banding found in this work. Experimental studies into the step strain protocol,

through the ‘rapid strain ramp’ discussed in Section 2.5.1 [185,186], can be found in

polymer melts [65,66,185–187], where again the focus is generally on short timescale
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banding that arises almost immediately after the application of the step strain. One

of these studies found that the banding could be delayed, creating experimental

results comparable to those presented here [66]. This study also discussed the need

for a physical model based on yielding to describe the effect, which the work here

presents, because the tube theory generally associated with polymer melts is unable

to provide a full description of the delayed physics [66]. In addition, one experimental

study on hydrogels has found preliminary evidence for the highly delayed fracture

under step strain outlined in this work [214]. However, the step strain protocol

remains generally less explored in the literature than other protocols, a situation

which this work hopes to motivate to change.

Given the absence of any final flowing state (as in shear startup) or repeating strain

(as in oscillatory shear) in the step strain scenario, it has perhaps been assumed that

stress relaxation after the imposition of strain will take place in an uncomplicated

way, with the material slowly returning to a homogeneous relaxed state. On the

contrary, the central contribution of this work will be to show that, for a range

of parameters, an amorphous material will instead suffer a dramatic internal shear

banding instability. The strain field suddenly becomes highly heterogeneous across

the flow-gradient, leading to a precipitous stress drop and catastrophic material

failure. Crucially, this instability can be delayed for an arbitrarily long time through

changes to the protocol and system.

The finding of catastrophic material failure arising at a potentially indefinitely long

time after a material was last (externally) deformed is somewhat counter-intuitive.

Indeed, an observer lacking knowledge of the strain history could not predict the

occurrence of this instability, with far reaching consequences for material processing

and performance [158]. This could have implications for the manufacture and use of

the wide range of amorphous materials that can be simulated with these models, such

as condiments, gels and clays [3,9,13,23–25,37,71,92]. This research aims to predict

and explore theoretically how this failure occurs in amorphous materials under the

step strain protocol, and motivate further experiments to test these conclusions.
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All results presented in this section are from simulations using the Thermal Elasto-

Plastic (TEP) model and the Soft Glassy Rheology (SGR) model, outlined in Sections

2.3 and 2.2 respectively. They are simple mesoscopic models, which use the straining

and yielding of elements to simulate the physics of amorphous materials. To provide

an understanding of the key physics at play, the shear banding discovered will be

analysed through the bulk rheological properties and internal strain fields that can

be computed in these simulations. These measured properties are:

• The bulk shear stress Σ response to the strain-controlled protocol.

• The standard deviation in the strain across the system ∆γ. This is a measure of

the scale of the heterogeneity in the strain field γ(y) across the shear-gradient

direction yaxis, and effectively measures the magnitude of strain banding across

the system. This value is only non-zero when heterogeneity in shear is allowed,

or equivalently, when the number of streamlines S > 1, see Section 2.2.2.

• The displacement profile U(y), equal to the integral of the strain γ(y) along

the shear-gradient direction yaxis, which gives a visual representation of the

internal state of the material.

There will also be some discussion, when analysing the TEP model results, on

how the distribution P (l) of local element strains l interacts with the yielding rate

function r(l), parameters described in Section 2.3.2.

These measurements will be explored as a function of the relevant input parameters

for these models under the step strain protocol, which are as follows:

• The amplitude of the imposed step strain γ0.

• The age of the material, or the extent of annealing. Defined by the waiting

time tw in the SGR model and the pre-shear equilibrium temperature x0 in

the TEP model.
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• The working temperature of the system x, generally called the noise temperat-

ure in the SGR model and the post-shear equilibrium temperature in the TEP

model, but implemented in the same way.

Unless specified otherwise, the following parameter values will be applied across all

the simulations in this chapter:

• Working temperature x = 0.01 in the TEP model and x = 0.3 in the SGR

model.

• Number of streamlines S = 10 when heterogeneity across the flow gradient is

allowed, and S = 1 when homogeneity is enforced.

• Solvent viscosity η = 0.05.

• Perturbation size, shet = 0.05 in the TEP model (where the element strain l

is perturbed) and ϵ = 0.1 in the SGR model (where the waiting time tw is

perturbed).

• Numerical time step ∆t = 0.01.

• Range of element strains from lmin = −10.0 to lmax = 10.0 (TEP model only).

• Number of discretisation points in strain space M = 105 (TEP model only).

• Number of elements per streamline M = 105 (SGR model only).

All of the parameters listed above are explained in more detail in Chapter 3.

The TEP model for x > 0 is discussed first in Section 4.2, followed by a discussion

in the athermal (x = 0) limit in Section 4.2.6. A comparison of these findings to

results obtained for the SGR Model, additional to those in [91], will be explored in

Section 4.3. The chapter will finish with some concluding remarks and comments

on avenues for future work in Section 4.4. This project shows the generality and

strength of the conclusions reached previously by the author within the protocol of
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step strain [91]. It also expands on that work by exploring a much larger parameter

space, most notably the variation in behaviour with temperature and magnitude

of imposed strain. This research finds that an amorphous material, subject to an

imposed step strain protocol, can exhibit catastrophic banding, a long delay time

after the initial strain imposition.

4.2 The Thermal Elasto-Plastic Model

4.2.1 Stress Decay and Strain Response

The step strain protocol, in which a strain of amplitude γ0 is applied and held

constant, was simulated within the TEP model, solved using the Fokker-Planck

method as outlined in Section 2.3.2. Results for a fixed strain amplitude γ0 = 1.2

and a range of preshear equilibrium temperatures x0 = [0.01, ..., 0.02] are plotted in

Fig. 4.1.

The measured stress decay Σ is plotted in the top panel of Fig. 4.1. The solid lines

show the results of calculations in which the strain field γ(y) is allowed to become

heterogeneous across the shear-gradient direction yaxis. The dashed lines show the

results of calculations in which it is artificially constrained to remain homogeneous,

γ(y) = γ0, independent of y. The stress at t = 0 is equal to the imposed step strain

Σ(t = 0) = Σ0 = γ0 = 1.2, because the material displays purely elastic behaviour

at the instant the strain is imposed (where Σ0 = G0γ0 and G0 = 1 in this work).

The stress decay is then extremely slow for some time, before a deviation occurs

between the behaviour of the model with allowed shear heterogeneity (S = 10 - solid

lines), where stress drops dramatically, and that with enforced homogeneity (S = 1

- dashed lines), where stress continues to decay slowly. The shape of this stress

decay closely corresponds with that in the aforementioned experimental discovery

of delayed fracture in a hydrogel after the imposition of a step strain [214]. This

sudden drop in stress indicates the formation of shear bands.
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Figure 4.1: Top panel: Stress decay Σ as a function of time t after
the imposition of a step strain of amplitude γ0 = 1.2, as
simulated within the Thermal Elasto-Plastic model, for
a range of pre-shear equilibrium temperatures x0=[0.02,
0.019, ..., 0.01] (in order from grey to red or left to right
in the sudden stress drop). Simulations with allowed
shear heterogeneity (S = 10 - solid lines) as well as with
enforced homogeneity (S = 1 - dashed lines) are shown.
Middle panel: Standard deviation in the strain across
the sample ∆γ, as a function of time. This measures
the degree to which the sample is strain banding. The
banding time t∗, defined as the time where the strain
standard deviation reaches the value ∆γ = 0.1, is high-
lighted.
Bottom panel: The size of the stress difference
between the homogeneous and heterogeneous simula-
tions ∆Σ as a function of time.
Key result: Dramatic drop in Σ and increase in ∆γ
and ∆Σ implies a delayed banding event after the im-
position of a step strain.
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The presence of shear banding in this work is confirmed by the response of the

standard deviation in the strain ∆γ (effectively measuring the degree of strain

banding across the sample) for the simulations with heterogeneity allowed, plotted in

the middle panel of Fig. 4.1, which rises sharply during this stress drop. The bottom

panel of Fig. 4.1 plots another measure of the magnitude of shear banding ∆Σ,

equal to the size of the stress difference between the homogeneous and heterogeneous

simulations. This value also rises sharply during the stress drop.

Fig. 4.2 provides further evidence for the presence of shear banding. It plots the

displacement profile U(y) (see Section 3.3.3) for a single simulation in Fig. 4.1 at

different values of time t since the step strain was applied. At the start of the

simulation (the dark blue line), the displacement profile is homogeneous: a straight

line between U(0) = 0 and U(Ly) = U(1) = γ0 = 1.2. By the end of the simulation

(the dark red line) the profile is highly heterogeneous, evidence of a catastrophic

shear banding instability. Therefore, the formation of shear bands in amorphous

materials under step strain is predicted in the TEP model, as predicted within the

SGR model in previous work by the author [91].

The shape of this localised heterogeneity in Fig. 4.2 is a consequence of the shape

of the small perturbation used to seed heterogeneity at the start of the simulations,

outlined in Section 3.1.2. In the TEP model, the initial element strains are perturbed

by a cosine function across streamlines (along the flow gradient direction yaxis), as in

Fig. 3.2. This means that the elements in the streamlines on the edge of the material

are on average further strained than those in the middle. This creates an increased

probability that the banding will occur on the edge of the material, as it does in Fig.

4.2. The shape of this banding is similar to that seen in a polymer melt when banding

under the application of a step strain [65], and can also be seen in simulations of

short timescale banding under step strain [69]. The form of the banding in Fig.

4.2 is reminiscent of wall slip, where the failure of the material occurs at the point

of contact between the rheometer wall and the material. Although wall slip is an

important consideration in experimental studies [11,66,157,158], this model does not
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Figure 4.2: The displacement profile U(y) as a function of the dis-
tance along the flow gradient y. The colour change of
blue to red signifies increasing time, with the selected
times indicated by crosses in the inset. The simulation
corresponds to that in Fig. 4.1 with pre-shear equilib-
rium temperature x0 = 0.015 and step strain amplitude
γ0 = 1.2. Highlighted by the black arrows is the flow
direction xaxis.
Bottom panel: Stress decay Σ as a function of time
t after the imposition of a step strain of amplitude
γ0 = 1.2, as simulated within the Thermal Elasto-
Plastic model, for a single pre-shear equilibrium temper-
atures x0 = 0.015 and with allowed shear heterogeneity
(S = 10). Also highlighted are a selection of times with
coloured crosses (from blue to red in increasing time)
for a single simulation where x0 = 0.015 and γ0 = 1.2,
for which the displacement profile U(y) is plotted in the
main figure.
Key result: Shape of U(y) evidence of catastrophic
banding.
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take into account its effects. However, the shape of the banded profile just described

does highlight the importance of sample preparation in experimental and theoretical

studies, an issue that is gaining recognition in the literature [161,201–203].

The behaviour of the strain distribution P (l) during the stress relaxation can be seen

in Fig. 4.3. The inset is a reminder of the influence of the input variables outlined

in Section 2.3. This can be summarised as follows:

• The amplitude of the imposed step strain γ0 determines the mean of the initial

strain Gaussian P0(γ0, x0).

• The pre-shear equilibrium temperature x0 determines the width of the initial

strain Gaussian P0(γ0, x0).

• The working temperature of the system x determines the slope of the yielding

rate r(l).

The effect of these input variables will be crucial to understanding the complex

behaviour exhibited by the TEP model systems in this work.

The main plot in Fig. 4.3 outlines the general behaviour of the strain distribution

under the step strain protocol. The example simulation used in Fig. 4.3 is the same

as that seen in Fig. 4.2, with the colours corresponding to times consistent across

the plots. The dark blue line shows the initial strain Gaussian P0(γ0, x0), and the

black line represents the yielding rate function r(l). The overlap of these functions

is highlighted in yellow. As discussed in Section 2.3.2, this overlap represents what

fraction of the strain distribution will contribute to yielding.

As this part of the distribution on a particular streamline yields, its visco-elastic stress

σs, equal to the integral of lPs(l) (see Section 2.3.2), will decrease. Considering the

force balance outlined by Eqs. (2.2.7) and (2.2.8) and the imposition of a macroscopic

strain rate of zero γ̇ = 0, this will cause an increase in the streamline strain rate

γ̇s so that the total shear stress remains uniform across streamlines. Hence, that

streamline starts straining forward, seen in the forward movement of the strain
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Figure 4.3: The response of the strain distribution P (l) of a stream-
line to a step strain of amplitude γ0 = 1.2 with pre-shear
equilibrium temperature x0 = 0.015 and working tem-
perature x = 0.01, as simulated by the TEP model. The
initial Gaussian distribution of strain P0(γ0, x0) at time
t = 0 is plotted (dark blue, tallest peak), then P (l) at
t = 148 (light blue, second tallest peak) and at t = 153
(light green, right-most peak). The colours represent
the times that correspond to the crosses in the same
simulation in Fig. 4.2. Also plotted is the yielding rate
function r(l) (black line). Shaded in yellow is the area
where the multiple r(l)P0(γ0, x0) will be non-zero, cor-
responding to the region of strain that contributes to
the initial yielding integral I(t = 0) in Eq. (4.2.4).
Inset: The initial strain distribution probability density
Gaussian function P0(γ0, x0) as a function of strain l for
the above simulation. Also plotted is the yielding rate
function r(l) for a larger working temperature x = 0.15
than in the above simulation to highlight its shape on
a visible scale relative to the width of P0(γ0, x0). This
inset is intended to highlight the effects of the imposed
step strain amplitude γ0 (the mean of the Gaussian),
the pre-shear equilibrium temperature x0 (the width
of the Gaussian), and the working temperature x (the
penetration of the yielding rate function).
Key result: Banding event after step strain dependent
on initial parameters γ0, x0 and x.
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distributions from the blue to the green line in Fig. 4.3. Note that the yielding

of this part of the strain distribution causes an increase in the strain distribution

around zero, as part of the ‘rebirth’ after yielding discussed in Section 2.3.2, which

can be seen in Fig. 4.3.

Recall in Section 2.2.2, the macroscopic strain rate is equal to the average of the

streamline strain rates γ̇ = 1
S

∑S
s=0 γ̇s = 0, therefore the other streamlines compensate

for this forward straining streamline by straining backwards. In these backwards

straining streamlines, the bulk of the distribution of local strains remains below

the threshold for local yielding, leading to a predominantly elastic response. These

streamlines do not contribute to yielding and so the discussion will henceforth only

focus on the streamline that is straining forward, and it is this streamline strain

distribution that is plotted in Fig. 4.3.

The forward strain rate on this key streamline just identified causes the region of

the initial strain Gaussian P0(γ0, x0) that previously had a negligible yielding rate

r(l ≪
√

2) ≈ 0 to move into values of strain where the rate of yielding is significant

r(l ≈
√

2) > 0 (the light blue line in Fig. 4.3), which then begins to yield. This

consequent yielding accelerates the forward strain rate on this important streamline,

pushing even more of the initial strain Gaussian into values of strain with a non-zero

yielding rate (the green line in Fig. 4.3). This process then repeats, resulting in

an accelerating avalanche of yielding, leading to shear banding. The final strain

distribution (green line) in Fig. 4.3 highlights the moment where the entirety of the

remaining original distribution is over the yielding threshold, and is therefore likely

to yield on a small timescale. The time that this distribution is taken is at the point

of banding, as can be seen by the corresponding coloured cross in Fig. 4.1.

The general process just described above is universal across all the simulations

seen in this chapter. The differences in simulation results are therefore entirely a

consequence of the input parameters.

Having demonstrated the formation of shear bands and explained its origin, it is

logical to next analyse its extent and delay time. Previous work by the author on
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the SGR model [91] suggests that these instabilities occur on a catastrophic scale,

and can happen after a long delay time. Corroboration of this with the TEP model

results would lend this finding greater weight.

4.2.2 Degree of Shear Banding

One way to quantify the degree of shear banding is ∆Σ, defined as the difference in

the stress response between the simulation with enforced shear homogeneity (S = 1)

and that with allowed heterogeneity (S > 1) [91]. Results for this quantity are

plotted as a function of time in the bottom panel in Fig. 4.1. While results from the

SGR model found no upper limit to the degree of banding [91], the results here for

the TEP model show a convergence to a constant degree of banding. This effect can

also be seen in the standard deviation in strain ∆γ in the middle panel of Fig. 4.1,

which produces another measure of the degree of strain banding in the material.

It is surprising that the degree of shear banding that develops is roughly independent

of the degree of sample annealing prior to shear. This contrasts with comparable

simulations in previous work by the author [91] on the SGR model, which showed

an increase in the magnitude of banding with increased age of the sample prior to

shear. This implies that it is a consequence of the TEP model, but it is not exactly

clear how the model settles on this consistent value.

Despite this, Fig. 4.1 shows that the scale of this banding is large relative to the

imposed parameters. The stress drop in Σ and the rise in the standard deviation in

the strain ∆γ are on the order of the size of the imposed step strain γ0. This means

that the instability is pronounced enough to be visible and cause material failure. A

stress drop on a similar scale to that seen here in an experimental scenario caused

complete material fracture [214]. Due to the consistency in degree of banding, the

rest of this study will focus on the time at which shear banding takes place.
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4.2.3 Banding Time t∗ and the Imposed Step Strain γ0

The banding time t∗ at which these shear banding instabilities occur is defined as

the time at which the standard deviation in the strain ∆γ reaches 0.1 (as highlighted

in Fig. 4.1). This corresponds to the degree of strain banding across the sample

reaching roughly 10% of the overall imposed step strain (as the imposed step strain

values range between 1 − 1.3). As seen in Fig. 4.1, this definition captures the time

at which the standard deviation in strain increases rapidly. Previous studies have

used different definitions for the banding time, such as the time of the peak in the

strain rate standard deviation ∆γ̇ [91]. The definition used in this study captures

a similar time to these definitions, but due to the small amount of noise present in

∆γ̇, defining the banding time relative to its integral ∆γ is more consistent.

The banding time t∗ is plotted as a function of the amplitude of the imposed step

strain γ0 in Fig. 4.4 for a range of pre-shear equilibrium temperatures x0. These

curves show a clear trend: the banding time increases dramatically as the size of the

step strain decreases for all values of x0 explored. This general behaviour corresponds

with step strain experiments on a polymer melt which found the induction time for

a shear banding event increases with decreasing step strain amplitude [66]. Within

the scope of the TEP model: for smaller γ0, the distribution of local strains P (l)

will initially be located at strains where the yielding rate r(l) is smaller. This means

less initial yielding, and so the avalanche effect of shear banding described above

will take longer to occur. With values of t∗ up to 104 in Fig. 4.4, the TEP model

has found highly delayed shear banding under the step strain protocol, in addition

to that found previously in the SGR model [91].

The behaviour in Fig. 4.4 is particularly interesting because the banding time

t∗ appears to be diverging at a non-zero step strain amplitude γ0. The shape is

reminiscent of the divergence in relaxation time τ at the glass transition temperature

T0 as modelled by the Vogel-Fulcher-Tamman (VFT) law [72, 215–218], which has
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Figure 4.4: The banding time t∗ as a function of the imposed step
strain γ0 for a range of pre-shear equilibrium temper-
atures x0=[0.05, 0.04, ..., 0.01] (in order from purple
to red or stars to circles). The dashed lines correspond
to fitting to an exponential function of the form given
in Eq. (4.2.2). The inset shows how the value of the
critical strain γ0c in the fitting varies with x0.
Key result: t∗ increases exponentially with decreasing
γ0.
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the following form

τ = Ae
B

T0−T , (4.2.1)

where the relaxation time diverges as temperature T approaches T0. Although the

VFT law was originally designed to describe divergence with temperature, it has

been adapted by other studies. Some studies have replaced the temperature with

other variables, such as the packing fraction [218], and others have used the VFT

relaxation time τ to model the stress and strain responses to shear protocols [217].

This work takes inspiration from VFT, and fits the banding time to a similar expo-

nential function, now as a function of imposed strain

t∗ = Ae
B

γ0−γ0c , (4.2.2)

where γ0c is the critical step strain below which no banding occurs, and A and B are

fitting parameters. This is an extrapolation of the original VFT law, but it can be

argued that the banding time t∗ diverging is comparable to the VFT law’s relaxation

time τ in the system diverging. In both scenarios, the material is unable to relax

stress following the application of strain.

The dependence of the critical step strain amplitude γ0c on the pre-shear equilibrium

temperature x0 can be seen in the inset of Fig. 4.4. As x0 decreases, γ0c increases.

Recall that x0 defines the width of the initial strain Gaussian P0(γ0, x0), and γ0

defines its mean location. For banding to occur, the initial overlap of the strain

Gaussian P0(γ0, x0) with the yielding rate function r(l) must be large enough such

that some yielding is probable within the computational limits of the simulation. In

the instance that the width of the Gaussian, x0, is chosen to be small, the location

of that Gaussian, γ0, must be large to maintain that initial overlap and vice versa.

Hence the dependence of the critical step strain amplitude γ0c on x0.

The fitting in Eq. (4.2.2) implies that the banding time diverges at a non-zero step

strain γ0c. This can be understood within the model as follows: the yielding rate

function r(l) ∝ exp(−1−l
2

x
) at small values of l is very close to zero for small x. If the
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centre of the initial Gaussian strain distribution P0(γ0, x0), given by the mean of the

distribution γ0, is small enough, the overlap of the distribution P0(γ0, x0) with the

yielding rate function r(l) is equal to zero within computational accuracy. Therefore,

there is zero probability of yielding for all elements and consequently, there is no

banding. A similar non-zero divergence for the banding time at a critical amplitude

was found under the Large Amplitude Oscillatory Strain protocol for a similar TEP

model [70, 212], with a fitting directly comparable to the results found here.

With increasing computational accuracy, the overlap of P0(γ0, x0) and r(l) would

actually be non-zero; the banding time may therefore only strictly diverge at a

step strain of zero. Indeed, it is impossible to fully establish if the banding time is

curving up to reach a constant gradient (and therefore divergent at zero), because

simulation times exceeding t∗ = 104 cannot be accessed computationally. It would

also be difficult to test whether this non-zero divergence is a physical effect, because

these exponentially increasing banding times would quickly fall outside sensible

experimental timescales. As such it is concluded that, within measurable timescales,

the banding time increases exponentially with decreasing step strain.

4.2.4 Banding Time t∗ and the Pre-shear Equilibrium

Temperature x0

A similar divergence to that found in Section 4.2.3 is encountered when studying the

variation of the banding time t∗ with the pre-shear equilibrium temperature x0. This

is plotted in Fig. 4.5 for a range of step strain amplitudes γ0. Recall that an increase

in 1/x0 is comparable to increasing the degree of annealing of the material [9, 171],

and this can be seen to result in an exponential increase in the banding time for small

x0 in Fig. 4.5. This correlates with results found in previous work by the author

in the SGR model, where increasing the age of the material increased the banding

time without limit [91]. The degree of annealing can be tuned for some amorphous

materials, such as metallic glasses [48, 169–171], but is more difficult to vary for
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others, such as emulsions [48]. An experimental study on a polymer melt found that

the induction time for shear banding under a step strain increased with increasing

number of connected polymer chains, which is comparable as a consequence of an

increased age or annealing [66].

Recalling the divergence in the banding time t∗ at non-zero step strain γ0 in Section

4.2.3, where γ0 sets the mean location of the initial Gaussian distribution of local

strains P0(γ0, x0), a divergence in t∗ at non-zero x0, which defines the width of

P0(γ0, x0), might also be expected. Indeed, a similar exponential function to Eq.

(4.2.2) is found to fit the behaviour in Fig. 4.5. This again takes inspiration from

Vogel-Fulcher-Tamman (VFT) law [72,215–218], by fitting to the form

t∗ = Ae
B

x
−1
0 −x

−1
0c , (4.2.3)

where x0c is the critical pre-shear equilibrium temperature at which the banding time

diverges, and A and B are fitting parameters. This use of a VFT-like fitting more

closely resembles the original VFT law, because x0 represents a temperature. Indeed,

x0 has been used in this context for metallic glasses [170]. The main comparison is

the same as in Eq. (4.2.2), the relaxation time τ diverging in the original VFT law

is comparable to the banding time t∗ diverging here. In both scenarios, the material

is unable to relax stress following the application of strain.

The dependence of the critical pre-shear equilibrium temperature x0c on the step

strain amplitude γ0 can be seen in the inset of Fig. 4.5. These results correlate with

the dependence of the critical step strain amplitude γ0c with x0 in Fig. 4.4, discussed

in Section 4.2.3. As γ0 decreases, x0c increases, and vice versa.

The divergence in t∗ at a non-zero value of x0 contrasts with the earlier work done

by the author on the SGR model, which found a divergence in t∗ with the waiting

time tw at tw → ∞ [91]. Although the preshear-equilibrium temperature x0 in the

TEP model is not directly comparable to the waiting time tw in the SGR model, the

difference in divergence is interesting, and will be discussed further when analysing

the SGR model results in Section 4.3.
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Figure 4.5: The banding time t∗ as a function of the inverse of
the preshear equilibrium temperature x0 for a range
of imposed strain amplitudes γ0=[1.12,1.13,...,1.2] (in
order from mustard to orange or hexagons to left-facing
tri-lines). The dashed line corresponds to fitting to
an exponential function as in Eq. (4.2.3). The inset
shows how the value of the critical preshear equilibrium
temperature x0c in the fitting varies with γ0. Note that
the plotting against the inverse of x0 is used to show
the increase in banding time t∗ with increasing degree
of sample annealing prior to shear, as characterised by
1/x0.
Key result: t∗ increases exponentially with 1/x0.
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It can be argued that the curves in Fig. 4.5 appear to be linear, where a constant

gradient would suggest a divergence at x0 → 0. Certainly, as γ0 increases, the critical

x0c drops logarithmically towards zero. However, the VFT-like fitting in Eq. (4.2.3)

produces a more accurate fit than a simple exponential (where t∗ ∝ e1/x0) for the

values found in Fig. 4.5. In addition, the divergence in Eq. (4.2.3) is similar to the

disappearance of banding found in a similar TEP model under shear startup at a

critical level of annealing, represented by x0 in this model [171].

As noted above, it is not feasible computationally to access times above t∗ ≈ 104.

Therefore, any true divergence is difficult to establish. Regardless, the divergence

is an interesting feature of the TEP model and must be considered when using this

model for any extreme timescale studies.

4.2.5 Banding Time t∗ and Temperature x

The dependence of the banding time t∗ on the working temperature x is plotted

in Fig. 4.6. An exponential increase in t∗ with 1/x, as seen in the variation with

pre-shear equilibrium temperature x0, may be expected because both x and x0 are

forms of temperature. This is present in the small values of 1/x, where the banding

time t∗ increases exponentially with 1/x. However, for values of the step strain

amplitude γ0 > 1.225, the increase in t∗ with increasing 1/x is seen to taper off,

before decreasing, eventually resolving to a consistent value at large 1/x.

For large values of 1/x, the banding time t∗ is constant for simulations with γ0 >

1.225, despite changes in x. The cause of this effect is that x is so small (x ≈ 10−5),

that it is effectively zero under computational accuracy. Recall from Eq. (2.2.3) that

the yielding rate r(l) is dependent on exp(−(1 − l2/2)/x). Therefore, changing the

working temperature x at these small values has no impact on the banding time.

The behaviour of individual simulations must be examined to understand how the

banding time t∗ is affected by the change from finite x to zero within computational

accuracy.
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Figure 4.6: The banding time t∗ as a function of the inverse of the
temperature x for a single pre-shear equilibrium temper-
ature x0 = 0.01 and a range of step strain amplitudes
γ0=[1.215,1.22,...,1.24] (in order from red to yellow or
circles to crosses). Highlighted by circling the relevant
t∗ value are three simulations studied further in Fig.
4.7 and Fig. 4.9, where x = 10−2 (black dashed line),
x = 10−3 (black line with circles) and x = 10−4 (black
solid line).
Key result: t∗ displays an unexpected non-monotonic
relationship with x.
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To explore this in more detail, simulations for three different values of the working

temperature x have been selected to focus on. These are highlighted by circling the

relevant value of t∗ in Fig. 4.6 at a step strain amplitude of γ0 = 1.23 and pre-shear

equilibrium temperature x0 = 0.01. These summarise the behaviour in the three

regimes of x:

• Large x (x = 10−2 – Dashed line in Fig. 4.6) where the banding time is small

due to x being large.

• Medium x (x = 10−3 – Line with circles in Fig. 4.6) where the decrease in x

has caused an increase in the banding time.

• Small x (x = 10−4 – Solid line in Fig. 4.6) where the decrease in x has caused

a decrease in the banding time.

The top panel of Fig. 4.7 shows the scale of strain banding across the material (the

standard deviation in strain ∆γ) as a function of time t for each of these three values

of x. The overall behaviour appears to be very similar for the three values of x

that are explored. Initially, the scale of strain banding ∆γ is small, it then slowly

increases as the system yields and the strain field becomes more heterogeneous. The

slow increase in ∆γ concludes in a sudden avalanche of yielding causing a dramatic

increase in ∆γ, which corresponds to a catastrophic shear banding instability. The

similar behaviour in the three simulations in Fig. 4.7 indicates that there is no

difference in the overarching behaviour leading up to banding. Instead, the variation

in x changes the rate at which this behaviour occurs.

As discussed previously, the banding time t∗ is strongly connected to the overlap of

the strain distribution P (l) and the yielding rate function r(l). For this reason, the

yielding integral can be used to gain further insight. Recall that

I =
∫

r(l)P (l)l dl , (4.2.4)
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Figure 4.7: Top panel: The standard deviation in strain across
the sample ∆γ as a function of time t for three simula-
tions highlighted in Fig. 4.6, where x = 10−2 (dashed),
x = 10−3 (circles) and x = 10−4 (solid) (γ0 = 1.23 and
x0 = 0.01).
Bottom panel: The corresponding yielding integral I
(Eq. (4.2.4)) over time. The coloured crosses are taken
at logarithmically equal spaces in ∆γ between 10−3 and
10−2 for each simulation, corresponding to the lines in
Fig. 4.9.
Key result: The behaviour of ∆γ is intrinsically con-
nected to the behaviour of I.
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where the integral is taken over the strain space l, as described in Section 3.3.4.

This integral measures the average rate of stress relaxation across the system by

computing the average of lr(l) across the distribution P (l).

The behaviour of this yielding integral I as a function of time is plotted in the

bottom panel of Fig. 4.7. Again, the overall behaviour is the same for the three

simulations considered: initially, I is large, followed by a decrease as the material

begins to yield, before finally rising as shear banding occurs. This can be understood

in more detail by returning to Fig. 4.3 and studying the behaviour of the strain

distribution over time.

Initially there is some fraction of the Gaussian of strain values P0(γ0, x0) overlapping

the region of non-zero yielding rate r(l) (shaded in yellow), giving a non-zero yielding

integral I > 0. As this fraction progressively yields and resets to l = 0, this

overlap decreases and therefore so does the yielding integral I. However, because the

average strain across streamlines is held constant in a step strain simulation, this

yielding causes a forward strain rate on the streamline which is perturbed forward

the most. This combined effect is shown in the decreased height and positive strain

of distributions at later times (light blue and green lines). As discussed previously,

this analysis will only focus on the forward straining streamline relevant to banding.

The forward strain rate on this key streamline causes the overlap between the strain

distribution P (l) and the yielding rate function r(l) to increase, leading to a larger

value for the yielding integral. Therefore, the behaviour of the yielding integral can

be summarised by the competition between two effects:

(i) The yielding of the strain distribution P (l) that overlaps with the yielding rate

function r(l) will cause I to decrease.

(ii) The forward strain rate caused by the yielding in (i) will result in more of

the strain distribution P (l) being pushed into regions where the yielding rate

function r(l) is significant, causing I to increase.
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While the overall process leading to shear banding is universal across the simulations,

Fig. 4.7 highlights the differences between the three simulations.

The first indication of differences between these three simulations appears in the top

panel of Fig. 4.7, where the gradient of the aforementioned slow increase is clearly

larger for the large value of x = 10−2 (dashed line). This can be understood physically,

by recognising that the larger available thermal energy allows more yielding leading

to an earlier banding event.

This behaviour is also clear in the bottom panel of Fig. 4.7. The x = 10−2 (dashed

line) simulation starts with a large yielding integral I which, despite following the

overall behaviour described above, does not decrease to a significant minimum. This

implies that there is a large initial rate of yielding which causes a large forward

strain rate. Then, over the time building up to banding, this strain rate provides

a regular supply to the system of yielding, leading to a large acceleration, and

consequently a short time before banding. This can be seen in Fig. 4.3, where the

initial overlap between the strain distribution P (l) and the yielding function r(l)

(the yellow shading), and consequently the yielding integral I, is large. The strain

distribution at a later time (the green line) has dropped in height due to the large

amount of yielding and has also consequently strained forward significantly. In the

aforementioned competition between the two effects, the forward strain rate in (ii)

dominates over the yielding in (i) for the x = 10−2 (dashed line) simulation.

Note that the initial strain distribution P0(γ0, x0) is the same for all three values of x,

because the step strain amplitude γ0 and pre-shear equilibrium temperature x0 are

the same. However, the yielding function r(l) is different, with a broader distribution

for large x. As x decreases, there is less overlap between the initial strain Gaussian

P0(γ0, x0) and the yielding function r(l), and therefore less initial yielding. This

leads to a smaller forward strain rate, and should consequently cause the avalanche

effect to be delayed. However, in the bottom panel of Fig. 4.7, when x = 10−4 (black

solid line), the value of the yielding integral I increases to the banding event at an

earlier time than when x = 10−3 (black line with circles), despite having a smaller
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initial forward strain rate. This implies there is another effect dominating when x is

small.

This is further explored in Fig. 4.8, whose top panel replots the data in the bottom

panel of Fig. 4.7 relative to steps in the strain standard deviation ∆γ instead of time.

The x = 10−4 (black solid line) simulation is unable to attain as small a value of I

as the x = 10−3 (black line with circles) simulation. Therefore, despite the slower

initial forward strain rate, at the turning point where the yielding integral reaches

its minimum Imin, there is a larger amount of yielding occurring for the small x.

The reason for this is plotted in Fig. 4.9. These show the strain distribution P (l)

on the forward straining streamline at different times in the simulation. For the

x = 10−3 simulation in the bottom panel of Fig. 4.9, the two effects discussed

previously occur simultaneously:

(i) A fraction of the strain distribution P (l) with a non-zero yielding rate r(l) > 0

yields, decreasing in size.

(ii) The yielding in part (i) causes the streamline to strain forward with an accel-

erating strain rate.

Initially (the blue to the green lines in the bottom panel of Fig. 4.9), the effect

described in (i) dominates, which makes the distribution look as if it is receding.

This is because the initial forward strain rate is small relative to the rate of yielding.

The effect described in (ii) only becomes clear in the later times (the yellow to the

red lines in Fig. 4.9) where the strain distribution P (l) has an accelerating strain

rate which then dominates over the rate of yielding causing the distribution to strain

forward. This acceleration leads to an avalanche of yielding which corresponds to

the catastrophic banding event.

There is a very different picture when observing the x = 10−4 distributions in the top

panel of Fig. 4.9. The critical difference is the effect described in (i). In the x = 10−3

simulation in the bottom panel of Fig. 4.9, the yielding of the effect described in
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Figure 4.8: The yielding integral I (Eq. (4.2.4)) as a function of
the standard deviation in strain across the sample ∆γ
for the simulation where γ0 = 1.23 and x0 = 0.01.
Top panel: The three simulations that are highlighted
in Fig. 4.6, where x = 10−2 (dashed), x = 10−3 (circles)
and x = 10−4 (solid). The coloured crosses are taken at
logarithmically equal spaces in ∆γ between 10−3 and
10−2 for each simulation, corresponding to the lines in
Fig. 4.9.
Bottom panel: A range of working temperatures x =
[10−5,10−4.9,...,10−2] (in order from dark blue to yellow).
Highlighted by the dashed line is the minimum value of
the yielding integral Imin for each value of x.
Key result: The behaviour of I is dramatically
changed by the variation in x.
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Figure 4.9: The probability density function P (l) of local strain l
for several values of time for a small x = 10−4 (top
panel) and medium x = 10−3 (bottom panel). Time in-
creases from blue to red (from the sharp drop-off to the
broader distribution in the top panel), with the colours
corresponding to the crosses in Fig. 4.7 and Fig. 4.8.
Plotted in the black line is the yielding rate function r.
The horizontal axis has been focussed as to highlight the
behaviour around the threshold for yielding (l =

√
2).

Key result: The behaviour of P (l) close to the
threshold l =

√
2 is key to understanding the variation

of t∗ with x.
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(i) caused a smooth distribution to appear to recede. In the x = 10−4 simulation in

the top panel of Fig. 4.9, the yielding of the strain distribution in effect (i) instead

causes the strain distribution to form a steep drop off at the yielding rate threshold

of l =
√

2 (the blue to green lines). Consequently, as the distribution strains forward,

the fraction of the distribution being pushed into a non-negligible yielding rate is

large. This large amount of yielding accelerates the effect described in (ii), and

therefore the banding happens earlier.

This means that, despite the small initial strain rate at such a small x, the shape of

the forward straining distribution is such that the amount of yielding is relatively

high. This yielding causes an acceleration in the forward strain rate which causes

the time before banding to decrease.

This effect can be summarised by the two competing factors that govern the behaviour

of the banding time t∗ with x:

• A smaller x results in a smaller initial yielding integral I(t = 0), meaning a

smaller initial forward strain rate which increases the time for the eventual

banding avalanche t∗.

• A smaller x causes the shape of the yielding strain distribution to be steeper.

This means, despite the small initial forward strain rate at small x in the point

above, there is a larger yielding integral I over time as the distribution strains

forward. This results in an increased acceleration which decreases the time for

the eventual banding avalanche t∗.

These competing factors effectively control what fraction of the strain distribution

is yielding and therefore accelerating the forward strain rate. This fraction is equal

to the overlap of the strain distribution P (l) and the yielding rate function r(l), and

therefore the average strain relaxation given by the yielding integral I provides a

measure for this as well as an important statement: The smaller the value of I,

the less yielding is occurring, and therefore the longer that the eventual

banding is delayed.
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This conclusion is clear from the top panel of Fig. 4.7, where the most delayed

banding simulation (x = 10−3 - line with circles) is also the one that achieves the

lowest value of I. The cause of the small minimum value of I in this simulation can

be seen in the green lines of the bottom panel of Fig. 4.9, where the overlap between

the strain distribution P (l) and the yielding rate r(l) is small.

This argument can be expanded to look at how the variation of I as a function of

∆γ changes with more gradual x variation, as plotted with the dashed line in the

bottom panel of Fig. 4.8. Here, the overall shape changes continuously in x, the

minimum of the yielding integral Imin is initially large with large x, decreases with

decreasing x, and then begins to increase again.

The variation of this minimum Imin with x can be compared to the variation in t∗, as

plotted in Fig. 4.10. This provides the clearest connection between the mesoscopic

behaviour intrinsic to the system (I) and the macroscopic effect (t∗). It is clear that

the banding time is a direct consequence of the size of the minimum yielding integral

Imin that the simulation can achieve.

The analysis above has outlined the origins of the unexpected variation of the banding

time t∗ with the working temperature x. In addition, the exploration of the yielding

integral I has made it possible to quantify an earlier statement on the non-zero

divergence in the banding time t∗ with the step strain amplitude γ0 and pre-shear

equilibrium temperature x0. Previously, this was explained as the overlap between

the strain distribution P (l) and the yielding rate function r(l) going to zero within

computational accuracy. This divergence can be equivalently described as where the

yielding integral I reaches zero.

The work in this section has also highlighted wider issues on the effective range of

TEP models more generally. When exploring extreme timescales and temperatures,

TEP model systems become extremely sensitive to small value calculations. This

can result in surprising behaviours, such as the non-zero divergences in t∗ with γ0

and x0, or the non-monotonic dependence of t∗ on x. They can also be limited

by computational capacity, as in the case of x being so small (x ≈ 10−5), that
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Figure 4.10: Top panel: The banding time t∗ as a function of the
inverse of temperature x for a pre-shear equilibrium
temperature x0 = 0.01 and step strain amplitude γ0 =
1.23 (the colour and marker correspond to the same
data plotted in Fig. 4.6).
Bottom panel: The minimum value of the yielding
integral Imin for each of the above simulations.
Key result: The behaviour of t∗ directly correllates
with that of Imin.
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it is effectively zero. These factors must be taken into account when simulating

amorphous material behaviour using TEP models.

4.2.6 The Athermal Limit

The results in the TEP model for the variation of temperature x presented in Fig. 4.6

indicate that, in the athermal limit x = 0, the highly delayed banding after imposition

of a step strain seen when x > 0, is not possible. There are two behaviours present

in Fig. 4.6. For the smaller values of γ0 explored, t∗ increases exponentially with

increasing 1/x, before becoming larger than can be explored numerically. For the

larger values of γ0, the dependence of t∗ on 1/x is non-monotonic, resolving to a

small banding time t∗ < 102 as x becomes small. These results imply that in the

athermal limit x = 0, the banding time will either be infinite, or small and finite.

Outside the athermal limit (for any finite but small x), highly delayed banding is

dependent on a small but non-zero overlap between the strain distribution P (l) and

the yielding rate function r(l), both of which are sloping functions. In the athermal

limit, the yielding rate becomes a step function, as in Eq. (3.1.5) [9], so a long

lasting small but non-zero overlap between these functions becomes impossible. In

this scenario, the banding either occurs early, or not at all. This effect can be seen in

the top panel of Fig. 4.11, where no banding times t∗ beyond 102 are found, despite

the exploration of a range of imposed step strains γ0. Note that this is not an upper

limit based on computation time, below a certain value of γ0 for a given x0, the

system does not show any stress relaxation at all because the entire simulated strain

distribution P (l) is below the yielding rate function threshold and therefore where

r(l) = 0.

Consequently, similar to the divergences of the banding time t∗ outside the athermal

limit with γ0 (Fig. 4.4) and x0 (Fig. 4.5), the divergence in t∗ in the athermal

limit can be seen as where the value of the yielding integral I reaches zero within

computational accuracy. This corresponds to the overlap of the strain distribution
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Figure 4.11: Top panel: The banding time t∗ as a function of
the imposed step strain γ0 for the TEP model in the
athermal x = 0 limit for a range of preshear equi-
librium temperatures x0=[0.03 (blue hexagons), 0.05
(purple stars), 0.08 (yellow crosses)].
Bottom panel: The minimum value of the yielding
function Imin for each of the above simulations.
Key result: A significantly delayed t∗ is not possible
in the athermal x = 0 limit and the divergence in t∗

correllates with Imin reaching zero.
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P (l) and the yielding rate function r(l) reaching zero. This is confirmed by the

bottom panel of Fig. 4.11, where the minimum value of the yielding integral Imin

drops exponentially towards zero as the corresponding banding time t∗ reaches its

upper limit.

A critical strain under which no banding is seen is not surprising, as multiple studies

into athermal systems under an oscillatory shear protocol find shear banding only

above a certain critical strain amplitude [46,212,219]. In addition, other studies have

also shown critical points for shear banding in the athermal limit above finite shear

strengths [47,104,220]. Despite this, with greater computational accuracy, even for

very small x0 and γ0 there will be a non-zero overlap causing a non-zero yielding

integral I. However, the timescales associated with these scenarios fall way outside

the scale of any real systems, so this becomes a philosophical question as opposed

to a physical one.

Regardless, real athermal systems are often comprised of macroscopic granular

particles that tend to be dominated by frictional forces [9,80,199,219,221]. When a

mesoscopic cluster of molecules or particles (represented in models by an element)

yields, the system isn’t able to redistribute the strain change caused by the rearrange-

ment without creating a huge avalanche of yield events which is more reminiscent of

brittle fracture rather than fluidisation [161].

This can be considered within the framework of the TEP model, where all the energy

depths of the elements are equal and shallow (E = 1). Therefore, when one element

yields, it causes a dissipation throughout the material which causes other elements

to yield that might not have done so if they had a larger energy depth E ≫ 1.

In the athermal limit, the banding event is followed by no subsequent stress relaxation

(unlike that found outside the athermal limit). This reflects a fractured material,

unable to relax any further, as opposed to a thermal material that is able to fully

relax. This work predicts that, in the athermal limit where frictional forces dominate,

the slow rearrangement events building to an eventual avalanche that would produce

delayed banding are less likely than either the material failing quickly or not at all.
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4.3 Comparisons to the SGR Model

As mentioned in Section 4.1, earlier work by the author found a linear increase in

the banding time t∗ under step strain with increasing age, as characterised by the

waiting time tw, within the SGR model [91]. However, that study did not explore

the variation in t∗ with the other important variables in the SGR model: the initial

imposed step strain amplitude γ0 and the noise temperature x. The first of these

can be seen in Fig. 4.12, where the variation of t∗ with γ2
0 is plotted for a range of

waiting times tw. These results are qualitatively comparable to the TEP model (Fig.

4.4): as the size of the step strain decreases, the banding time increases exponentially.

However, whereas in the TEP model t∗ appears to diverge at a non-zero step strain

amplitude γ0, the SGR model appears to obey a simpler relationship, fitting to

t∗ = ce−mγ
2
0 , (4.3.1)

where m and c are parameters fit to the gradient and intercept respectively of the

straight line when displayed logarithmically, as in Fig. 4.12.

The difference in range of imposed step strain amplitudes between Fig. 4.4 and

Fig. 4.12 is a consequence of the models, with the range of energy depths E in the

SGR model allowing a wide range of large step strain amplitudes to be explored. In

the TEP model, all energy depths are restricted to E = 1, meaning any step strain

significantly larger than γ0 > 1 will cause the system to fail almost instantly, as no

element will be able to sustain that strain without rapidly yielding.

The variation of t∗ with 1/x in the SGR model is plotted in Fig. 4.13, which is

comparable to Fig. 4.6 in the TEP model. The SGR model shows a Boltzmann

dependence [8, 222] of t∗ on temperature, with t∗ diverging as x → 0, fitting to the

plot

t∗ = cem/x , (4.3.2)

where m and c are parameters fit to the gradient and intercept respectively of the

straight line when displayed logarithmically, as in Fig. 4.13. A smaller range of 1/x
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Figure 4.12: Top panel: The banding time t∗ as a function of the
square of the imposed step strain amplitude γ0 for a
working temperature x = 0.3, and a range of waiting
times tw=[106,106.5,...,108] (in order from red to purple
or circles to stars).
Bottom panel: The same data, scaled by the waiting
time tw. The dashed line shows the fit to an exponen-
tial function as in Eq. (4.3.3).
Key result: t∗ increases exponentially with decreas-
ing γ0.
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Figure 4.13: Left panel: The banding time t∗ as a function of
the working temperature x for a waiting time tw =
108, and a range of imposed step strain amplitudes
γ0=[2.5,2.6,...,3.0] (in order from red to yellow or circles
to crosses). The dashed line shows the fit to an expo-
nential function as in Eq. (4.3.2).
Right panel: The same data, as a function of 1/x.
Key result: t∗ increases exponentially with 1/x.
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than explored in the TEP model is plotted in Fig. 4.13. This is because the SGR

model does not display the same non-monotonic relationship between t∗ and 1/x as

found in the TEP model, meaning that SGR model simulations with smaller values

of x result in banding times beyond the computational limit of this work.

It is possible to combine the dependence of the banding time t∗ on the imposed step

strain γ0 (Eq. (4.3.1)), the working temperature x (Eq. (4.3.2)) and the waiting

time tw (work completed during the author’s previous work found that t∗ ∝ tw [91]).

Note that the gradient of the lines in Fig. 4.12 remain approximately constant for a

single x (m ≈ 2 = α/2x, where α ≈ 1.2) across the different values of tw. Therefore,

the behaviour of the banding time t∗ can be summarised as

t∗ = ktwe−αγ
2
0/2x , (4.3.3)

where k = 6.3 is a fitting parameter and α ≈ 1.2. When the banding time t∗ is

plotted relative to the waiting time, as in the bottom panel of Fig. 4.12, there is good

agreement with this fitting function. This functional form has precedent in the SGR

model, as it has been shown that the stress relaxation after a step strain scales as

twe−γ
2
0/2x when under enforced shear homogeneity [81]. It is not surprising therefore,

that when allowed shear heterogeneity, the time of the shear banding occurrence

during stress relaxation is connected to this scaling.

Eq. (4.3.3) implies a divergence in t∗ → ∞ as γ0 → 0, as opposed to the non-zero

divergence found in the TEP model (Eq. (4.2.2)). Any question into the quantitative

difference in model response must first be prefaced by acknowledging the difficulty of

numerically fitting divergences from computational data that can only be obtained

over a finite range. However, as explained previously, in order to capture extremely

long banding times, the TEP model requires an extremely small overlap between the

strain distribution P (l) and the yielding function r(l). The SGR model on the other

hand, has the added feature of a distribution of energy well depths E (discussed in

Section 2.2). This allows even very small step strains to cause the elements in shallow

wells to yield, eventually accelerating into banding after a long delay time. This
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makes the scenario of infinite banding times, where the probability of any yielding

in the system becomes zero within computational accuracy, less likely than in the

TEP model. This is a potential explanation for the difference in divergence between

the two models.

Eq. (4.3.3) also implies that an athermal (x = 0) sample under any size step strain

will never show shear banding in the SGR model. Indeed, when the SGR model is

simulated with x = 0, there are no parameter inputs under which significant delayed

shear banding can be seen (data not shown here). This correlates with the results

for the TEP model at low step strain amplitudes γ0 < 1.225 in Fig. 4.6 in which t∗

appears to diverge with x → 0. For higher step strain amplitudes in the TEP model,

t∗ resolves to a constant value with decreasing x, an effect that has only been found

in the TEP model. Regardless of this slight difference, the important prediction

made by both models is that highly delayed shear banding after the imposition of

a step strain is not possible in the athermal x → 0 limit. This finding correlates

with a study of athermal systems under oscillatory shear, which found that ultra

delayed yielding is only possible with a small but non-zero temperature [212]. In

athermal systems, the displacement effect from a plastic rearrangement event has

been shown to be large, even on elements far from the event centre [9, 47]. In the

athermal limit, there is no thermal noise to smear out this spatial correlation [9,47],

meaning that athermal materials are intrinsically unstable when plastic events occur,

and therefore unable to significantly delay entire system yielding [223].

The question of what happens at these extreme banding timescales and athermal

limits is however secondary to the important finding of catastrophic banding events

occurring at long (but not infinite times) after the initial imposition of a step

strain. There is qualitative agreement between the TEP and SGR models in how the

banding time t∗ depends on the variation of step strain (γ0), age/annealing (tw/x0)

and temperature (x).
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4.4 Conclusion

This chapter has shown that the TEP and SGR models both display dramatic

ultra-delayed shear banding instabilities following the imposition of a step strain,

in which strain suddenly strongly localises within the material, associated with a

precipitous stress drop. Despite the differences in how the degree and time of this

banding depend on the relevant control parameters, strong qualitative comparisons

can be made between the two models. Studies prior to this work have predominantly

focussed on the appearance of banding within short timescales [65–67,69,87,185–187,

213]. However, experimental evidence for the highly delayed catastrophic banding

predicted in this work has been seen in a hydrogel after the imposition of a step

strain [214].

A key contribution of the work in this chapter is demonstrating that the delay

time of catastrophic banding after an applied step strain increases steeply with

decreasing amplitude of the (long historical) imposed strain γ0, with decreasing

working temperature x, and with increasing levels of sample age and annealing prior

to shear, characterised by tw and 1/x0 in the SGR and TEP models respectively.

In addition, thorough model analysis has revealed an understanding of how shear

bands forms in these models, and how changing the system and protocol parameters

can alter the behaviour. The introduction of the yielding integral I, to analyse

the mesoscopic element response, has allowed insight into the differences in model

behaviour, and also highlighted the limitations of the models when exploring the

extremes of parameter space.

Demonstrating the same basic physics within two different constitutive models (in

addition to correlating studies within a Fluidity model, made by a collaborator [91]),

subject to two different methods of sample annealing prior to shear (tw, x0), and

with two different methods of seeding the instability with a small amplitude initial

heterogeneity (Eqs. (3.1.2) and (3.1.3)), suggests that the phenomenon of delayed

banding – which is directly testable experimentally and in particle-based simulations
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– may be generic across amorphous materials.

This finding could be crucial for the wide range of materials that these models have

been shown to simulate, from gels and emulsions [3,36–38], to domestic products such

as condiments and clays [3,37]. In the processing and production of these materials,

stresses and strains are often applied, and the lack of research into the long timescale

effect of a constant strain on these materials has led to an implicit assumption that

the sample remains homogeneous as the stress relaxes. The fact that they can fail

catastrophically with large strain heterogeneities under these conditions could have

wide ranging implications for the industrial processing of amorphous materials [158].

Further work in this area could include:

• Further theoretical study into the TEP model divergences in t∗ -

Improving the efficiency of the code, perhaps with parallelization, would allow

for longer simulations, pushing the maximum achievable banding time higher.

This would allow more confidence in whether there truly is divergence at

non-zero step strain amplitude γ0 and pre-shear equilibrium temperature x0.

It would also be interesting to find a quantifiable connection between the

critical values for these two variables, γ0c and x0c, beyond the assertion made

in this work that when one increases the other decreases. In addition, this

research has featured some critical analysis of how the TEP model functions,

particularly when varying the working temperature x and analysing the value

of the yielding integral I. There is scope to continue this research to allow a

better understanding of behaviour in the TEP model.

• Analytical studies with the TEP model - The simplicity of the TEP

model used means that, in the athermal limit, it can be solved analytically.

Even with a non-zero temperature there is scope for other analytical tools such

as linear stability analysis, which could give a mathematical perspective on

the behaviours explored here.
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• Testing the conclusions made in this research with other models

- There are many different models for simulating amorphous materials. It

would be particularly interesting to see if atomistic simulations [224] and other

microscale models can replicate the results found in mesoscopic (SGR and

TEP) and macroscopic (Fluidity) models. In addition, the generalised form of

the models used so far have suggested that delayed banding might occur in a

wide range of materials, but seeing this effect simulated in models designed for

a specific subset of amorphous materials, such as the one outlined in Section

2.4 for breakable protein gels, could strengthen this statement.

• Experimental studies within the protocol of step strain - The current

experimental literature on the step strain protocol is generally limited to studies

on short timescale banding in polymer melts [65,66,185–187]. The SGR model

is applicable to a much wider range of materials, such as emulsions and colloidal

systems [3,9,13,23–25,37,71,92], and therefore this work predicts catastrophic

delayed banding in these systems as well. With applications in a range of soft

material manufacturing industries, it is important to test this experimentally.

This is achievable by implementing a ‘rapid strain ramp’ to access the step

in strain, as discussed in Section 2.5.1 [185, 186]. Some parameterisation

will be required to ensure that the banding during the relaxation occurs early

enough to be within experimental timescales, but also late enough to be defined

as delayed as opposed to immediate failure. The most accessible variable to

experimentalists studied in this chapter is likely to be the step strain amplitude

γ0, but depending on the experimental system, age and temperature could

also be varied to explore the banding time. Some preliminary collaboration

with experimentalists has produced some evidence of the delayed banding

phenomenon under a step strain in a hydrogel [214], but there is lots of scope

for further experimentation on testing materials under step strain.



Chapter 5

Creep and Failure of a Protein Gel

After Imposition of Step Stress

5.1 Introduction

This chapter studies the behaviour of amorphous materials under the step stress pro-

tocol, as simulated by the Soft Glassy Rheology (SGR) model where the reformation

of elements is disallowed, as described in Section 2.4. There will be a focus on the

creep and failure of these systems, and how these results correlate with experimental

studies on protein gels. The work presented here can be found in a pre-print [225].

The step stress protocol is the application of a constant stress, as outlined in Section

2.5.2. There is a large body of literature on the study of creep and yielding under a

step stress in the computational and experimental studies of amorphous materials

[9, 11, 25, 28, 36,81, 87, 107–109,112–116]. Theoretical models that have explored the

step stress protocol include the SGR model [25,87] and elasto-plastic models similar

to the TEP model described in Section 2.3 [9,111]. Experimental studies of the step

stress protocol include materials such as colloidal gels [59, 157], microgels [36, 51],

and biological collagen [19].

The initial material response to a step stress, as discussed in Section 2.5.2, is a strain

that increases at an ever decreasing rate. This slowing of the strain rate often follows
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a power law over time γ̇ ∝ t−α, γ ∝ t1−α, where α < 1. This phenomenon is known

as Andrade creep [9, 25, 28, 36, 51, 59, 81, 87, 110–112, 114]. When the amplitude of

the step stress is less than the yield stress Σy of the system, the decreasing strain

rate creep continues indefinitely, as seen in experiments on gels [36,157], as well as

in simulations [87].

When the amplitude of the step stress is larger than the yield stress Σy of the

system (or indeed when the system does not possess a yield stress), the creep ends

with a yielding process in which the strain rate suddenly rises [9, 19, 36,51,111,112].

The consequence of this yielding event is system-dependent, with some systems

fluidising to a steady flow [19,36,51,111], and others displaying complete material

failure [110,112]. The occurrence of shear banding during this yielding process has

been predicted theoretically [67,87] and seen experimentally [19, 36,51,112].

The time at which fluidisation or failure occurs under step stress is of interest,

and produces several interesting phenomena universal to a range of soft systems.

One example is the power law relationship between the fluidisation time and the

amplitude of the step stress, also known as the Basquin law of fatigue [19,36,111,157,

226–228]. In addition, many systems under step stress display a linear relationship

between the fluidisation time and the time at which the strain rate displays a

minimum (the turning point between creep and yielding). This relationship is known

as the Monkman-Grant relation [189], and has been seen experimentally in fibre

composite materials [114], colloidal gels [157] and in fibre bundle model simulations

of amorphous materials [107]. Exploring the shear banding of these systems under

step stress can also explain why failure occurs, and help predict when it might

occur [9, 112, 158]. This is important in a range of applications, for example when

considering that landslides feature a slow build-up of strain under a gravitational

stress which eventually fails with a large shear banding event [3, 4].

Previous studies of the SGR model under the step stress protocol assumed the

reformation of the mesoscopic elements, which models the behaviour of a wide range

of materials, including foams, emulsions, and colloids [9, 13,23–25,71,92]. However,
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studies of protein gels under shear show a breaking of network bonds which do not

instantly reform, suggesting a modification of the SGR model is needed to accurately

simulate these gels [19,27,59,182].

This modification, outlined in Section 2.4 and newly introduced to the field in this

work, takes the framework of the SGR model but integrates the ‘breaking’ of elements,

similar to the ‘snapping’ of fibres in protein gels [19, 27, 59, 182], and inspired by

the failure process in fibre bundle models [9, 106]. The work in this chapter uses

this model to understand the results from experimental step stress studies of protein

gels [28,110], with the eventual goal of creating an accurate physical model for the

simulation of protein gels.

Protein (or biopolymeric) gels [26–32, 120] are variously defined in the literature,

but are generally considered to be polymeric systems comprised of chains of amino

acid residues (proteins) [120]. It is important to note that when discussing the

fracturing of protein gels under shear, this is generally referring to the breakage of

noncovalent bonds between cross-linked polymer strands, as opposed to the breakage

of individual proteins [26,29,120]. Protein gels have applications not only in biological

systems [27–30,32] but also in the food industry [31,120]. For example, the rheological

properties of the protein gels in bread dough can determine loaf volume and crumb

structure [121,122]. Studying the way these materials behave under a simple protocol

will allow insight into how these materials fail, and under what conditions.

Protein gels under the step stress protocol display a range of phenomena, including

Andrade creep, Basquin law of fatigue, and Monkman-Grant relation described

above [9, 28, 110, 189]. There has been some success in modelling these effects

theoretically with fibre bundle models [107, 110, 157, 227, 228], which simulate two

material blocks connected by spring-like fibres [9, 106]. However, these models are

incapable of the spatial dependence required to simulate heterogeneous behaviour

and, consequently, shear banding [158]. This work highlights the importance of shear

banding to the process of failure under step stress, correlating with that found in

experiments, and therefore suggests the mesoscopic model used here to be a more
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accurate model for the simulating of protein gels.

This chapter also explores the build-up of heterogeneity during creep to study the

precursors to failure, a topic of interest in the literature [9, 112,158]. This is a diffi-

cult topic to study experimentally, because easily measurable macroscopic variables

rarely provide insight into the spatial details of system failure [158]. Experimental

procedures can study the system on a smaller scale, with such tools as light scatter-

ing and others, but are limited by resolution [27,30,72,110,112,158,205–207]. The

simulations presented here can replicate experimental results with a high mesoscopic

resolution that can provide additional insight into the behaviour leading up to failure.

All results presented in this section are from simulations using the Soft Glassy

Rheology (SGR) model with element reformation disallowed, as outlined in Section

2.4. The creep and failure of these systems will be analysed through the following

macroscopic rheological properties and mesoscopic strain fields that can be tracked

in these simulations. These measured properties are:

• The macroscopic strain γ response to the stress-controlled protocol.

• The macroscopic strain rate γ̇ = dγ/dt response to the stress-controlled pro-

tocol.

• The standard deviation in the strain across the system ∆γ, which calculates

the scale of the heterogeneity in the strain field γ(y) across the shear-gradient

direction yaxis. This effectively measures the magnitude of strain banding

across the system.

• The displacement profile U(y), equal to the integral of the strain γ(y) along

the shear-gradient direction yaxis, which gives a visual representation of the

internal state of the material.

These measurements will be explored as a function of the relevant input parameters

for the SGR model under the step stress protocol, which are as follows:
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• The amplitude of the macroscopic imposed step stress Σ0.

• The age of the material, given by the waiting time tw.

• The working temperature of the system, given by the noise temperature x.

Unless specified otherwise, the following parameter values will be applied across all

the simulations in this chapter:

• Working temperature x = 0.3.

• Number of streamlines S = 10, meaning shear heterogeneity across the flow

gradient is allowed.

• Numerical time step ∆t = 0.01.

• Solvent viscosity η = 0.05.

• Size of the perturbation in the waiting time ϵ = 0.1.

• Number of elements per streamline M = 105.

All of the parameters listed above are explained in more detail in Chapter 3.

This chapter will begin by outlining the general strain and strain rate response of

the system to the step stress protocol in Section 5.2. This is followed by analysis

of the fluidisation time in Sections 5.3 and 5.4. Section 5.5 will analyse how well

the strain rate response of the simulation matches with an experimental fitting, and

Section 5.6 will provide some concluding remarks. This research finds that the SGR

model, when modified to disallow the reformation of elements, provides a strong

modelling tool for protein gels with results that match closely with experiments.

5.2 Strain and Strain Rate Response

The top two panels of Fig. 5.1 show the macroscopic strain γ and strain rate γ̇

responses to the step stress protocol for a range of imposed step stresses Σ0. These
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plots display an overall shape recognisable from other creep studies [9, 19, 28, 36,

51, 110–112, 157], described in Section 5.1 above. Upon the application of the step

stress at t = 0 (after ageing for a time tw), there is an instantaneous elastic response

in the strain proportional to the applied stress γ(t = 0) = γ0 = Σ0/G0 where

G0 = 1 (see Section 2.2.1). This instantaneous jump is seen in creep experiments

[9,19,51,112,157], including in protein gels [28,110], though in this work the modulus

is a dimensionless parameter set to unity G0 = 1, which will not be the case in

physical systems. The G0 = 1 displayed here is simply a consequence of the choice

of units, which is discussed further in Section 3.2. The initial strain γ0 has been

subtracted from the time-dependent strain γ in the top panel of Fig. 5.1 to highlight

the behaviour after this instantaneous response.

After the instantaneous elastic response, the system begins to strain forward very

slowly, with a small and decreasing strain rate. This slow straining is the origin of the

term ‘creep’ used to describe this protocol. This creep regime terminates when the

strain rate reaches a minimum, after which it increases suddenly, causing the strain to

increase dramatically. This initial creep followed by a sudden large straining leading

to fluidisation or failure is seen in a wide range of literature [9, 19, 36, 51, 111, 112],

including in the experimental protein gel studies that motivate this project [28,110].

The element behaviour that causes the macroscopic response described above can

be understood by considering the elastic and plastic behaviour of elements outlined

in Section 2.2.1. Upon the application of the step stress, the instantaneous element

response is elastic. Therefore, immediately after the stress imposition, all element

strains are equal to the imposed step stress lm = Σ0 ∀ m (recall from Section 3.2

that elements have modulus k = 1).

For elements in shallow energy wells E, this new strain means a large rate of yielding

r(l) and these elements will subsequently yield over a short timescale. As discussed

in Section 2.2.1, when an element on a streamline yields, it relaxes its stress and

causes the visco-elastic stress of that streamline σs to decrease, because σs is equal to

the average of the element strains on that streamline. Considering the imposition of
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Figure 5.1: Top panel: The strain response γ as a function of time
t following the imposition of a range of constant step
stresses Σ0 = [1.0, 1.2, ..., 2.0] (from bottom to top or
red to yellow) after a waiting time tw = 105. γ is plotted
relative to the initial strain, equal to the imposed stress
γ0 = Σ0. The black dotted line highlights γ − γ0 = 1.
The time at which the strain reaches this value defines
the fluidisation time τf = t(γ − γ0 = 1).
Middle panel: The corresponding strain rate response
γ̇. The black crosses in the bottom panel highlight the
minimum value of the strain rate γ̇min, and its corres-
ponding time τmin, for each simulation.
Bottom panel: The corresponding standard deviation
in the strain across the sample ∆γ, a measure of the
degree of strain banding, relative to the scale of the
strain γ, as a function of time.
Key result: Simulations follow the experimental ob-
servations of primary creep followed by fluidisation.
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force balance outlined in Eq. (2.2.7) and Eq. (2.2.8) (Σ0 = Σs = σs + ηγ̇s), this will

cause an increase in the streamline strain rate γ̇s. The streamline will accordingly

start straining forward. However, the remaining elements that have not yet yielded

are in, on average, deeper traps, and so have a smaller rate of yielding r(l), even

though the strain is increasing. Therefore, over time the elements in shallow wells

yield and only elements with deep wells remain. This causes the slowing of the initial

strain rate, the creep, because fewer elements are yielding per unit time.

In the standard SGR model, the elements that yield will instantly reform and begin

straining again as the system shifts forward. However, in this modified SGR model,

when an element yields it breaks permanently due to the infinite timescale for

reformation τreform = ∞, and is no longer able to support stress. This means those

elements that have not yet yielded are forced to share a greater stress.

Eventually, the greater stress on the unbroken elements causes some of them to

yield, which results in further forward straining. However, because these elements

now have large strains, the yielding contributes a large step forward in strain for

the remaining elements. This perpetuates the conditions under which they yielded,

causing others to yield. This process then repeats, and consequently, over a relatively

short period of time, an avalanche of yielding elements has resulted in the fluidisation

of the system.

This process of fluidisation or failure, as a result of an avalanche of propagating

plastic events, is seen in the accumulation of microscopic defects and crack growth

in the reference protein gel experiments [28,110].

Labelled on Fig. 5.1 are also some protocol specific measurements:

• The minimum time (called the ‘dip’ time in some literature), τmin, defined as

the time at which the strain rate as a function of time reaches a minimum
dγ̇
dt

= 0 (Black crosses in middle panel of Fig. 5.1).

• The fluidisation (or failure) time, τf, given as the time at which the change in

strain reaches a value γ − γ0 = 1 (Black dashed line in top panel of Fig. 5.1).
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These definitions are similar to those adopted in an experimental study on protein

gels [110], and provide appropriate parameters with which to study the behaviour

of these systems under step stress.

It is somewhat surprising that all the simulations appear to fluidise at a given

value of the change in strain γ − γ0 = 1, yet this behaviour is seen in protein

gel experiments [110]. This implies that failure in protein gels is dependent on a

macroscopic variable which can be easily measured experimentally. While it does

not provide any information on how the system is failing, this finding does outline a

general rule for the failure of protein gels, consistent with experimental results [110].

The fluidisation observed in these simulations is of key interest in this work. In the

modified SGR model used here, once all the elements have permanently broken, the

system behaves as a Newtonian fluid with a large constant steady state strain rate

γ̇ = Σ0/η, set by the solvent viscosity η. This resolution to a steady state is seen in

creep experiments on microgels [36, 51]. However, in creep experiments on protein

gels, the yielding process results in the total failure of the system [28, 110]. The

difference is that stresses arising through the viscosity of the experimental solvent

that the protein gel bonds within are likely to be very small compared to the elasticity

of the gel bonds themselves. Therefore, the stress required for the gel to fluidise

will cause a large steady state flow rate for the solvent, so high in fact, that it is

likely the experimental setup fails before that limit is reached. The simulations, on

the other hand, have no upper limit to stress. In addition, the experimental sample

is likely to physically break apart upon failure with air entering these cracks, and

inertia may start to play a role. The introduction of a third medium and inertia

effects are not considered in the model.

However, the interesting physics is not in the behaviour of the solvent, so the

simulations have been cut-off before the full fluidisation. Despite the cut off, the

effects of this fluidisation can still be seen in Fig. 5.1 in the very large values of

strain and strain rate, particularly in the simulations performed at a larger imposed

step stress Σ0. It is important to note this effect, because it will have relevance when
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trying to fit the fluidisation to an experimental model in Section 5.5.

So far, only the globally observed strain γ and strain rate γ̇ responses have been

considered. An additional question concerns whether shear banding, as discussed

in Chapter 1, occurs during this failure and fluidisation process. The bottom panel

of Fig. 5.1 plots the standard deviation in strain across the sample ∆γ, effectively

measuring the strain banding. This measurement of the degree of banding rises

sharply during the fluidisation process, reaching the same order of magnitude as

the overall strain before the cut-off. The presence of shear banding is confirmed

by Fig. 5.2, which plots the normalised displacement profile U(y) observed in one

of the simulations seen in Fig. 5.1 (Σ0 = 1.6 and tw = 105). Initially, and during

the primary creep (from blue to yellow), the displacement profile is a straight line,

showing homogeneous shearing across the system. However, during the fluidisa-

tion (orange to red), the displacement profile becomes non-linear, the strain profile

becomes highly heterogeneous, and shear banding is clearly visible.

Shear banding during the fluidisation of amorphous materials under an imposed

step stress is well established [9, 36, 111], including in the reference protein gel

studies [28,110]. This has also been predicted under linear stability analysis, which

suggests that the occurrence of these shear localisation effects during fluidisation

under step stress is fluid-universal, independent of the constitutive law and internal

state variables of the particular fluid [67,87]. Therefore, any theoretical study of the

fluidisation of systems under step stress must have the capacity for displaying shear

banding, which is lacking in the theoretical fibre bundle model simulations conducted

so far [158]. Fig. 5.2 shows how the work in this thesis can simulate the shear banding

in protein gels predicted theoretically [87] and seen experimentally [28,110].

The shape of shear banding in Fig. 5.2 is sinusoidal, which is a consequence of the

form of the imposed perturbation, as outlined in Section 3.1.2. In the SGR model,

the waiting time experienced by each streamline is perturbed by a cosine function

across streamlines (along the flow gradient direction yaxis), as in Eq. 3.1.2. This

means the weakest area, corresponding to the most poorly aged, is at the centre of
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Figure 5.2: The displacement profile U(y) normalised by its value
at y = 1 as a function of the distance along the flow
gradient y for a simulation with Σ0 = 1.6 and tw = 105.
The colour change of blue to red or increasing hetero-
geneity signifies increasing time. The normalisation is
used to show the homogeneous profile and the hetero-
geneous banded profile on the same scale, as U(1) = γ.
Highlighted by the black arrows is the flow direction
xaxis. The inset shows the macroscopic strain response
γ of the same simulation, with crosses whose colour
corresponds to the time at which the lines in the main
figure are taken.
Key result: Fluidisation of the system is accompanied
by large scale banding.
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the system. Consequently, the failure of the system and the separation of the shear

bands is most likely to originate there, which can be seen in Fig. 5.2.

Experiments on protein gels found the origination of cracks on the outer edges of the

material which eventually propagate through the middle of the system at the point

of failure [110]. Therefore, the eventual failed system of the simulations is similar to

that in experiments, with differences in the way the shear banding builds. The way

the perturbation is applied defines the shape of the perturbation, as can be seen in

Chapter 4, where the use of a different perturbation in the Thermal Elasto-Plastic

model causes a different shear banding shape. Therefore, future work could consider

how the perturbation changes the shape of the heterogeneity that arises during shear,

and whether this could be tuned to more closely model experimental observations.

In addition, the experimental study found crack propagation along the vorticity

direction zaxis, so an expansion to 2D could also improve analysis of how the shear

bands form.

Sample preparation, in both experimental and theoretical studies, including how

intrinsic material heterogeneity is modelled in a system, has a significant impact

on the failure of systems [161, 201–203]. However, despite the small differences in

shear banding shape, the behaviour of the simulations closely matches that seen

experimentally in protein gels [28,110]. In addition, the large scale of the banding,

with ∆γ increasing to the order of the overall strain γ before the cut-off, is likely

to result in the material failure present in experiments [28, 110]. Therefore, this

modified SGR model is shown to be a strong candidate for simulating the shear

banding and failure of protein gels under the step stress protocol.

5.3 Fluidisation Time

A key variable of interest in this research is the fluidisation (or failure) time τf. This

is plotted in Fig. 5.3 as a function of the imposed step stress Σ0 for a number of

different waiting time tw. It can be seen that τf increases with decreasing Σ0, as found
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experimentally for protein gels [28,110] and other systems [19,36,111,157,226]. This

can be understood within the model. A small imposed stress causes the elements

to have small initial strains, and hence a small rate of yielding r(l), as in Eq. 2.2.3.

The fluidisation of the system requires an avalanche of yielding, as described above,

and hence this will take longer at smaller imposed stresses.

The left panel of Fig. 5.3 shows a linear behaviour on the log-log scale for the lower

values of Σ0 which corresponds to a power law dependence of τf on Σ0. Noting the

collapse of simulations with different ages given by the waiting time tw, it can be

seen that τf ∝ twΣβ
0 , where β is the power law gradient. This power law behaviour

appears in many creep studies [19,36,111,157,226], including in protein gels [28,110]

and is reminiscent of the Basquin Law of Fatigue, originally discussed in the context

of solids but since found in many soft materials [157,227,228].

This power law implies that the system will fail catastrophically under any stress,

however small. Therefore, even a very small applied stress will eventually cause the

material to fail, albeit on extremely long timescales. This conclusion could have

important implications for industries that utilise protein gels, particularly where long

timescales are involved, given that materials are inevitably subject to gravitational

stresses at least.

The divergence in the fluidisation time τf in the limit of zero step stress Σ0 → 0 is

seen in experiments on protein gels [110]. However, in another study on a different

protein gel, τf diverges at a step stress equal to a yield stress Σ0 = Σy [28], behaviour

that is also seen in colloidal gels [157] and microgels [36]. This work suggests that the

difference lies in the timescale for reformation τreform in these systems. When the SGR

model is simulated with instantaneous reformation τreform = 0, the fluidisation time

τf diverges as Σ0 approaches Σy from above, where Σy is a non-zero yield stress [87].

In the work presented here there is no yield stress, due to the permanent breaking

of elements τreform = ∞. The study that showed a protein gel with a yield stress

discusses a long but non-infinite timescale for reformation during shear [28], whereas

the study on a protein gel with a divergence at zero discusses irreversible crack and
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Figure 5.3: The fluidisation time τf as a function of the imposed
step stress Σ0, for a range of simulations over waiting
times tw = 103 - red circles, tw = 104 - green triangles,
tw = 105 - blue squares, tw = 106 - cyan pentagons, at
noise temperature x = 0.3.
Left Panel: On a log-log scale, τf displays a power law
dependence for small Σ0. The exponent of this power
law, β, is indicated by the black dashed line. The inset
shows how this gradient β varies with noise temperature
x.
Right Panel: On a log-linear scale, τf displays an ex-
ponential law dependence for large Σ0. The exponent
of this exponential law, m, is indicated by the black
dashed lines. The inset shows how this gradient m var-
ies with noise temperature x.
Key result: τf displays a Basquin law dependence on
Σ0.
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fracture growth [110], implying an infinite timescale for reformation τreform = ∞,

as considered in the simulations in this work. This highlights the timescale for

reformation τreform as an important variable when simulating protein gels. To the

author’s knowledge, this is the first study to consider the variation of τreform in the

context of mesoscopic models. Values of τreform outside of zero and infinity are not

studied in this work, but their potential effects are discussed in Section 5.6.

In the right panel of Fig. 5.3, a change of scale allows observation of a different fitting.

It is clear that the behaviour of τf at larger values of Σ0 follows an exponential law

of the form τf ∝ twemΣ0 , where m is the exponential law gradient. This two-region

effect for the dependency of the fluidisation time τf on the imposed stress Σ0 is seen

in experiments on protein gels [28], as well as theoretical and experimental studies

on colloidal gels [116, 157, 229]. This exponential decrease of τf with increasing Σ0

implies that at large values of imposed step stress, the material will fluidise or fail

quickly, as might be expected intuitively.

The influence of the working temperature x on the fluidisation time τf can be seen

in the insets of Fig. 5.3. In particular, the exponent of the power law (β) and

exponential law (m) become less negative (the gradient decreases) with increasing

temperature. This is logical because a smaller temperature will result in less ac-

tivation of yielding and therefore delay the eventual fluidisation. The temperature

will also affect the ageing of the material, with a larger temperature resulting in a

broader distribution of element energy depths E, as discussed in Section 3.1.1. In

some protein gels, the temperature can have a significant effect on ageing in systems

with long but finite reformation timescales τreform [28]. In this work, the impact of a

smaller working temperature x during the ageing and subsequent stress application

causes the fluidisation time to be delayed.

The effect of the age of the system prior to shear, represented in the SGR model by

the waiting time tw, on the fluidisation time τf can be seen in Fig. 5.3. It is found that

τf ∝ tw. This direct proportionality implies that as the age of the system increases,

the fluidisation time is delayed. This relation is alluded to by another theoretical
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study, which found that an increased system age will delay system failure, but not

with the detail or range of input variables covered here [158]. Although the ageing

or annealing of a system is not always easy to control experimentally, it clearly has a

significant effect on the failure of these systems under creep. One option is to look at

the gelation process, as discussed in Section 3.1.1 where a strongly connected gel is

similar to a well-aged system, or indeed the time allowed for gelation as comparable

to the waiting time [51].

This section has shown clear dependencies of the fluidisation time τf on the applied

step stress Σ0, working temperature x, and waiting time tw for breakable gels.

5.4 Fluidisation Time and Minimum Time

Relationship

The relationship between the minimum time τmin, the time at which the macroscopic

strain rate response γ̇ reaches a minimum, and the fluidisation time τf, is plotted

in Fig. 5.4. Also plotted is a fitting from experimental results on protein gels,

which found τmin = 0.56τf [110]. There is good agreement between the two results,

particularly for the larger values of τf. This correlates with the results found in

Fig. 5.3, where the large values of τf in the left panel matched the power law found

in [110]. This linear relationship between τmin and τf, also known as the Monkman-

Grant relation [189], is also seen experimentally in other gel systems [114,157].

It is sometimes claimed in the literature that failure is not possible to detect through

macroscopic variables, such as strain and stress [158]. While it can be argued that

by the time a shear rate minimum is reached, the system is already failing, the

Monkman-Grant relation can give powerful predictive powers when monitoring the

failure of materials undergoing creep. This suggests that once a minimum time has

been measured, the time of fluidisation or failure can be estimated.
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Figure 5.4: The relationship between the fluidisation time τf and
the minimum time τmin for a range of simulations over
noise temperatures x = 0.3 - circles, x = 0.35 - triangles,
x = 0.4 - squares, x = 0.45 - pentagons, x = 0.5 - stars,
x = 0.55 - crosses, waiting times tw = 103 - red, tw = 104

- green, tw = 105 - blue, tw = 106 - cyan, and imposed
step stresses Σ0 = [0.05, 0.1, 0.15, ..., 2.0] (from right to
left in coloured symbols). Each symbol corresponds to
a single simulation. The black dashed line shows the
result from experimental protein gel literature [110].
Key result: τf displays the Monkman-Grant relation
with τmin.
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5.5 Primary, Secondary, and Tertiary Creep

Regimes

The three creep regimes in the strain rate γ̇ response of the system to a step stress,

as simulated by the modified SGR model, are shown in Fig. 5.5. A fitting from

experimental results for a protein gel [110] is also plotted. The fit is the superposition

of two physical processes

γ̇

˙γmin
= λ

(
t

τf

)−α

︸ ︷︷ ︸
Primary Creep

+ µ

1 − t/τf︸ ︷︷ ︸
Fracture Growth

. (5.5.1)

In this equation, the first term on the right-hand side represents the aforementioned

primary creep with exponent α = 0.3 in Fig. 5.5. The second term, which models a

divergence in γ̇ as t → τf, corresponds to the final growth of the fractures leading to

material failure [110]. λ and µ are fitting parameters, which for the data in Fig. 5.5

take values λ = 0.35 and µ = 0.4. Exploring how these fitting parameters depend

on the model and protocol variables is not within the scope of this project, but is

discussed as a potential topic for future work in Section 5.6.

The top panel of Fig. 5.5 highlights primary creep, and shows a good fitting to Eq.

(5.5.1) in this regime. This power law creep γ̇ ∝ t−α, also referred to as Andrade

creep [9, 28, 36, 51, 110, 114], represents a progressive slowing of the dynamics over

time, with a gradual decrease in the strain rate γ̇. Andrade creep has been seen in

numerous creep experiments and simulations [25,27,28,36,51,59,81,87,111,112,114].

The fitting matches α ≈ x, a result seen in other simulations of the original SGR

model in which elements are allowed to reform [25,87]. This is interesting, and implies

that primary creep is predominantly a cause of elements that have yielded once, or

not at all. This is logical, as the strain rate is small during primary creep, such that

even if a yielded element did reform, its strain would be unlikely to subsequently

reach a value where its yielding rate is significant. The primary creep exponent α

is also independent of the age of the material, given by the waiting time tw. The
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Figure 5.5: The strain rate γ̇ normalised by its minimum γ̇min for
the simulations presented in Fig. 5.1 where tw = 105

and x = 0.3. The range of constant step stresses
Σ0 = [1.2, 1.4, ..., 2.0] are represented by the same col-
ours as that in Fig. 5.1 (from green to yellow or left to
right in the starting strain rate). Note that the Σ0 = 1.0
simulation in Fig. 5.1 (red line) is not shown here be-
cause it does not reach its fluidisation time within the al-
lowed computational time. The black dashed line shows
a fitting of the same form used to fit experimental res-
ults (Eq. (5.5.1)) [110].
Top Panel: On a log-log scale to highlight the primary
creep.
Middle Panel: On a log-linear scale to highlight the
secondary creep.
Bottom Panel: On a reversed log-log scale to high-
light the tertiary creep.
Key result: Simulations display the experimentally
observed three creep regimes.
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lack of influence of material age on primary creep has been shown in experimental

studies on microgels and colloidal gels [51,59].

The secondary creep regime is highlighted in the middle panel of Fig. 5.5 and shows

a good fitting to Eq. (5.5.1) for t ≲ 0.9τf. In this regime, there is a departure

from power law creep, with the strain rate reaching a minimum at time τmin, after

which it starts to increase. There is significant evidence in the literature for this

quasistationary creep where heterogeneity begins to form within the material [9,

19, 110, 114, 158]. This behaviour can be seen Fig. 5.2, where the colours that

represent the times where the strain begins to curve upwards in the inset (light green

to light orange) show a displacement profile U(y) that is beginning to increase in

heterogeneity.

The final regime is highlighted in the bottom panel of Fig. 5.5. The aforementioned

indicators of material failure during secondary creep suddenly accelerate, leading

to full macroscopic rupture or fluidisation. This is called the tertiary creep regime,

appearing for times t ≳ 0.9τf [110, 157]. The shear rate diverges as (τf − t)−1 and

the presence of shear banding is clear in Fig. 5.2, where the colours that represent

the times where the strain is rising rapidly in the inset (orange to red) show a

displacement profile U(y) that is highly heterogeneous. This corresponds to the

large positive and negative velocities present in the velocity profiles of protein gel

experiments during tertiary creep [110]. It is this catastrophic shear banding, with a

scale on the order of the strain γ, that causes the experimental systems to fail [28,110].

The deviation between the simulations and the fitting in this regime is interesting.

The clearest difference between the simulations and the fitting appears in the Σ0 = 2.0

simulation, but all the simulations begin curving away from the fitting during the

tertiary creep regime. This is due to the difference in fluidisation, as discussed in

Section 5.2. Approaching fluidisation, the simulations tend towards the large but

finite constant strain rate γ̇ = Σ0/η of the Newtonian solvent with viscosity η. The

experimental fitting, on the other hand, diverges to an infinite strain rate as t → τf.

There have been studies that show the substantial effect the solvent viscosity can have
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on crack growth, where increasing the solvent viscosity can suppress the development

of fractures [10,31]. Therefore, it is possible that the simulations would better fit Eq.

(5.5.1) with zero viscosity η = 0. Indeed, the strain rate of the Newtonian fluid that

the simulations resolves to γ̇ = Σ0/η → ∞ as η → 0. It is possible to implement

η = 0 in the SGR model, as described in Section 2.2.3, and so this hypothesis can

be tested. However, this is outside the scope of this project.

This detailed study into the three creep regimes of the macroscopic strain rate

response γ̇ show a good fitting to experimental results for protein gels [110], outside

of the behaviour just before failure.

5.6 Conclusion

In this chapter, the SGR model, modified to disallow reformation of elements, has

been used to study the creep and failure of irreversibly breakable gels under the step

stress protocol. The modification, inspired by fibre bundle models [9, 106], aims to

simulate the permanent breaking of fibres in protein gels under shear [19,27,59,182].

This work expands beyond prior SGR model studies that focus on systems in which

the mesoscopic substructures reform after yielding [25,81,87], and also beyond fibre

bundle models unable to simulate shear banding [158].

The simulations produce results that correlate well with experimental studies [28,110].

This includes good fittings to the Basquin law of fatigue [227,228], primary Andrade

creep [9, 28, 36, 51, 110, 114], Monkman-Grant relation [189], and the three creep

regimes of the strain rate response (Eq. (5.5.1)) [110,157]. In addition, studying the

behaviour of the mesoscopic SGR elements and the strain profile across the material

shows a slow building of heterogeneity during primary creep, which then avalanches

into the catastrophic shear banding that leads to the fluidisation or failure of these

systems. This allows insight into the precursors to failure under creep, which is of

interest in the literature [9, 112,158].
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The SGR model therefore appears a strong candidate for modelling the behaviour

of these protein gels, and for interpreting experimental results. In addition, the

results presented here, along with their experimental counterparts, provide a good

understanding of the behaviour of protein gels under step stress, which are important

in both biological systems [27–30, 32] and the food and cosmetic industries [27, 31,

120–122].

Further work in this area could include:

• Exploration of other protocols using this modified SGR model -

Studying this model under shear startup [9, 67, 71, 87], oscillatory shear [41,

159,208–211], and other rheological protocols could reveal further interesting

phenomena and discoveries on how protein gels might react to other stimuli.

• Comparing the results presented here to the same simulations but

setting η = 0 - The agreement between the simulations and experimental

fitting in Fig. 5.5 could be improved by simulating the SGR model with zero

solvent viscosity η = 0, as described in Section 2.2.3. In addition, once the sim-

ulations more closely match the experimental fitting, the system dependencies

of the fitting parameters λ and µ could be explored, as discussed in Section

5.5.

• Changing the perturbation - As discussed in Section 5.2, the perturbation

that seeds strain heterogeneity is not expected to significantly impact the flu-

idisation time τf. However, the shape of the shear banding in Fig. 5.2 is a

direct consequence of the shape of the perturbation. In addition, sample pre-

paration is increasingly being recognised as an important factor in rheological

behaviour [161, 201–203]. Consequently, experimenting with the shape and

size of the perturbation could provide some interesting points of discussion for

how, why and where the shear banding forms, beyond those discussed here.

• Varying the reformation timescale τreform - The SGR model has been

simulated here for τreform = ∞, effectively disallowing elements to reform after
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yielding (see Section 2.4). In all previous studies of the SGR model, elements

have reformed instantly after yielding τreform = 0. There is therefore scope in

future studies to vary this parameter and explore the consequences of a long

but non-infinite reformation time. As discussed in Section 5.3, this would give

the system a yield stress, as the reformation of elements can then delay the

fluidisation time τf indefinitely for a small enough stress. This could cause a

divergence in the fluidisation time at a non-zero stress, which would match

some experiments on protein gels, which found that bonds can reform broken

strand connections under strain, but can only do so over long timescales [28].

The reformation timescale τreform could then be tuned to accurately model

the specific type of gel. In addition, this would also alleviate the need for

a discontinuity of τreform at t = 0 (discussed in Section 3.1.1), as the ageing

process can be simulated as long as τreform is finite.

• Investigating other ways to add specificity to the SGR model - One

of the SGR model’s biggest strengths is its generality, its ability to apply

its findings to a wide range of amorphous materials. However, this project

highlights the ability to innovate with the model and increase the specificity of

the model to apply to a more complex group, protein gels. This is not the only

way the SGR model could be adapted to apply to more specific material types,

for example, a different energy well landscape could be used, and exploring

this could expand the strength of the SGR model as a tool for simulating

amorphous materials.

• Expanding the simulation dimensionality - This work has shown the

power of the SGR model in simulating the failure of protein gels, even when

spatial variations are allowed only in the flow-gradient direction yaxis. However,

as discussed previously, experimental analysis into the tertiary creep regime

found fracture growth along the vorticity direction zaxis [110]. Therefore, sim-

ulating the SGR model with the no element reformation modification in 2D
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or 3D could more accurately reproduce the formation of shear bands found in

experiments.



Chapter 6

Recoverable Strain and Reversible

Plasticity Under Creep-Recovery

Test

6.1 Introduction

This chapter studies the behaviour of amorphous materials under the creep-recovery

test protocol. The Soft Glassy Rheology (SGR) model is used, which provides a

generalised description for studying the response of these materials. There will be a

focus on the amount of strain the system is able to recover, how the relaxation can

exhibit non-monotonicity, and the origins of this recoverable strain.

The amount of strain that a system can recover after shearing, the recoverable

strain, is widely studied for protocols including oscillatory shear [126, 143, 144],

shear startup [57,153], and the protocol studied in this chapter: the creep-recovery

test [50, 53, 77, 123]. In these studies, the imposition of shear is removed after

some time, the system subsequently recovers by straining in the opposite direction

to that of the strain acquired during shearing. The degree of recoverable strain

is shown to correlate with the temporal evolution of microstructure under shear,
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where rearrangements can affect recoverability [144]. Under the creep-recovery test

protocol, it has also been suggested that the recoverable strain can aid in analysing

the material behaviour that leads to fluidisation [143]. Recoverable strain is a

particularly important property in hydrogels, with many studies on these materials

into the conditions under which recoverable strain is maximised [52–55,127,130,131].

Hydrogels have applications in tissue engineering, vehicles for drug delivery, and

actuators for optics and fluidics [52]. Understanding their material properties is

therefore of high importance.

The recoverable strain of a system also provides an indication of the overall propensity

of a material towards elastic deformation or viscous flow [53,129]. Elastic straining is,

by definition, reversible and therefore recoverable [61,162]. Small scale deformations,

such as to the configuration of a cluster of particles, are generally elastic [147–149].

Plastic events, such as the large scale rearrangement of a cluster of particles [49,62],

cause straining that has been assumed to be irrecoverable [45, 125, 152, 190, 214].

This work will show evidence to contradict this assumption. The strain gained in

the system through plasticity during shear is reversible, in a process comparable to

reversible plasticity [58,135–139,145–151].

Reversible plasticity is a topic gaining interest in the amorphous materials literature

[58, 135–139, 145–151]. It has generally been found to occur on the microscale

and mesoscale [58, 145, 147, 149, 150], where a group of particles or molecules that

plastically rearrange under a forward strain can return to their original configuration

when a backwards strain is subsequently applied via a secondary path different from

the initial rearrangement [147–149]. It has been suggested that this small-scale

reversible plasticity only translates to irreversible macroscopic plastic flow when the

elastic regions surrounding the plastic zones fail [149]. This implies that the number

of plastic events in a system must remain small, and the surrounding behaviour

predominantly elastic, for the plasticity to be on a scale necessary to be reversible.

The study of reversible plasticity is common in the shape memory polymer literature,

where a specific class of materials called reversible plasticity shape memory polymers
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have been developed [135–139]. Reversibility can be activated, such as by shear,

temperature or submersion in water [135,136,138,139], the latter an effect that has

also been seen in a hydrogel [146]. These systems have applications in self-healing

materials, where cracks or fractures in a material can be repaired [135,136,138,139].

Theoretical studies into reversible plasticity have primarily studied the process under

oscillating shear, where the regularly reversing nature of the protocol assists in the

creation of reversible plastic events [58,147–150]. Indeed, to the author’s knowledge,

this is the first theoretical exploration of reversible plasticity in amorphous materials

under the creep-recovery protocol.

A study of reversible plasticity in solid copper [145], a crystalline solid, highlighted its

connection to the Bauschinger effect, where the material’s stress/strain characterist-

ics change as a result of the microscopic stress distribution of the material [230–232].

A common example of this effect is an increase in tensile yield strength occur-

ring at the expense of compressive yield strength [232]. While this effect is gener-

ally attributed to solid materials, there is experimental evidence for the presence

of the Bauschinger effect in soft amorphous materials such as in dense suspen-

sions [78,233]. Theoretical studies have considered its origins in glassy and polymer

systems [8, 79,234–236], such as in the alignment of covalent bonds [234]. However,

none of these studies make the connection between the Bauschinger effect and re-

versible plasticity that is made here, inspired by the insights from the study into

copper mentioned above [145].

The protocol studied in this work, the creep-recovery test, involves the application

of a step shear stress for some time before it is switched off and the relaxation

of the strain is studied [123], as outlined in Section 2.5.3. It has been explored

experimentally for a range of materials including colloidal systems [59,77], microgels

[50], shape memory polymers [136], and the protein gels studied closely in Chapter

5 [152]. The theoretical studies of this protocol are generally specific to the material,

with simulations for concrete [124] and cold-set gels [125] in the literature, which both

predict significant recoverable strain for these systems. This work aims to explore
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the phenomenon of recoverable strain under the creep-recovery test protocol for a

more generalised model, with the aim of making predictions that apply generically

across a range of materials.

The work in this chapter studies the behaviour of amorphous materials under the

creep-recovery test as simulated by the SGR model with shear homogeneity enforced,

outlined in Section 2.2.1. A lot of the early work in the SGR model used enforced

homogeneity in shear. Indeed, even within these simplifying assumptions, the model

is able to explore many phenomena shown in amorphous materials [71,81,92]. How-

ever, when behaviour is likely to involve significant material heterogeneity, enforced

shear homogeneity is no longer an appropriate approximation [13, 24, 25]. For this

reason, it is important to note that the results presented in this chapter are only

relevant physically under conditions where the influence of heterogeneity in shear is

minimal.

The influence of shear heterogeneity is likely to be most important during the creep

portion of the creep-recovery test, where a constant stress is applied. The creep

protocol is explored thoroughly in Chapter 5, and finds that under the primary

creep regime, minimal shear heterogeneity forms. This finding is replicated in

many creep studies, where significant heterogeneity in shear only builds up during

the secondary and tertiary creep regime, as the material moves towards failure

[25,27,28,36,51,81,87,111,112,114,157]. Experiments concerning the creep-recovery

test generally stay in the primary creep regime, because after the full failure or

fluidisation of the material there is unlikely to be any significant strain recovery

[50,77,152,157]. Therefore, the SGR model with enforced homogeneity in shear is

predicted to be a good candidate for modelling the creep-recovery test protocol, as

long as the system remains in the primary creep regime during the stress application.

It is also important to acknowledge that a build-up of shear heterogeneity can also

occur during relaxation, as explored in Chapter 4. Although the creep-recovery test

is a stress-controlled protocol, the results from Chapter 4 in the step strain protocol

can provide insight into the conditions under which significant heterogeneity in shear
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can form during relaxation. For small strains γ0 < 2, significant shear heterogeneity

in the SGR model occurs only over extremely long timescales, before which the

relaxation is generally homogeneous in shear. Therefore, as long as the values of

strain remain small, the relaxation should also stay homogeneous in shear. Indeed,

this condition is also enforced by remaining in primary creep, as Chapter 5 revealed

that, under a shear stress, a system approaching a change in strain larger than

γ − γ0 ≈ 2 is likely to be outside the primary creep regime. Therefore, enforced

homogeneity in shear is likely to be an appropriate approximation for this work

under these conditions. The introduction of heterogeneity in shear into the model is

suggested for future work in Section 6.7.

An important benefit of enforced shear homogeneity is the simplicity of the simu-

lations, allowing a full analysis into the complex relaxation behaviour that occurs

under the protocol for the various input parameters. With substantial recoverable

strain discovered, including some interesting non-monotonic behaviour, this work

lays the foundations for the SGR model to become a tool for modelling the recover-

ability of amorphous materials. In addition, the exploration of reversible plasticity

in SGR model systems could change the established understanding on the origins of

recoverable strain.

Because the creep-recovery test is a stress-controlled protocol, the creep and recovery

of these systems will be analysed primarily through the macroscopic strain γ(t)

response. Note that because there is enforced shear homogeneity (through restricting

the system to one streamline S = 1), there is no shear heterogeneity in the flow-

gradient direction yaxis, hence there is no analysis of standard deviations or strain

profiles, in contrast to previous chapters.

These strain γ measurements will be explored as a function of the relevant input

parameters, these being:

• The amplitude of the temporarily imposed macroscopic step stress Σ0.
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• The controlled forward strain ∆γf, the maximum strain accumulated during

creep, which defines the stress switch-off time tstop.

• The age or annealing of the material, given by the waiting time tw.

Unless specified otherwise, the following parameter values will be applied across all

the simulations in this chapter:

• The working temperature of the system, given by the noise temperature x =

0.3.

• Number of streamlines S = 1, meaning homogeneity in shear is enforced.

• Adaptive numerical timestep ∆tad, with minimum ∆t = 0.01.

• Solvent viscosity η = 0.

• Number of elements M = 105.

All of the parameters listed above are explained in more detail in Chapter 3.

This chapter will begin by outlining the general strain response of the system to

the creep-recovery test protocol in Section 6.2, along with the mesoscopic element

response in Section 6.3. Section 6.3 will also look more closely at some of the

interesting behaviour of the strain relaxation after the stress switch-off, including (in

some parameter regimes) a non-monotonic dependence on time. This is followed by

an analysis of the recoverable strain ∆γrec and its relationship with the imposed stress

Σ0 (Section 6.4), the controlled forward strain ∆γf (Section 6.5) and the waiting

time tw (Section 6.6). Finally, Section 6.7 will provide some concluding remarks and

suggest avenues of investigation to expand beyond this work. This research finds

significant recoverable strain under the creep-recovery test protocol for the SGR

model, and explores its origins, providing the foundations for modelling amorphous

materials with high strain recoverability.
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6.2 Strain Response

The stress application of the creep-recovery protocol is shown in the top panel of

Fig. 6.1. After ageing the material for a waiting time tw, a constant stress is applied

at time t = 0 and then switched off at time tstop. A typical strain response γ to

this protocol is shown in the bottom panel of Fig. 6.1 for parameters Σ0 = 1.0,

∆γf = 0.5, and tw = 103. There are four distinct regimes in the strain response:

• The instantaneous response to the application of the step stress at t = 0 is

elastic, with the strain jump equal to the applied stress γ(t = 0+) = γ0 = Σ0/G0

and G0 = 1 (see Section 2.2.1). This effect under a step stress is seen in

experiments [9,19,28,51,112,157], though in these cases the modulus is generally

not equal to one G0 ̸= 1. The G0 = 1 displayed here is simply a consequence

of the choice of units, which is discussed further in Section 3.2.

• The subsequent behaviour during the stress application is that of creep, where

the strain slowly increases as the system strains forward under the applied

stress, seen in a wide range of studies [25,27,28,36,51,81,87,111,112,114]. As

mentioned previously, for the approximation of homogeneous shear made in

these simulations to be valid, the system must stay in primary creep during

the stress application.

• At the switch-off of the stress at time t = tstop = t(γ = γ0 + ∆γf), the

instantaneous response is again elastic and the strain drops by the size of the

imposed step stress/initial strain Σ0 = γ0. Note that this makes the value of

the strain just after the removal of the stress equal to the controlled forward

strain γ(t+
stop) = ∆γf.

• There is then some amount of strain relaxation before the system eventually

reaches a steady state [123]. Generally, this post-stress straining results in

a steady state strain below that of the strain immediately after the removal

of the stress, with the system having recovered in the reverse direction some
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of the strain that arose in the forward direction during the stress application.

This is the recoverable strain, which forms the key focus of this work.

The behaviour described here is also widely seen in experimental creep-recovery test

studies [59, 77, 124, 152]. However, the instantaneous drop in strain is not always

equal to the initial strain increase. In creep-recovery tests on concrete and fractal

gels they are identical within experimental error [59, 124], but those on colloidal

dispersions and protein gels found a significant disparity, with the instantaneous

drop up to 50% smaller in size [77, 152], despite a quick removal of stress. In the

SGR model, the element response to any instantaneous change in stress or strain

will always be elastic, because no plastic yielding arises instantaneously (see Section

2.2.1). Therefore, as long as the timestep is small enough to ensure no elements are

yielding in the timestep where the stress is switched off, all elements will behave

elastically, with each local element stress dropping by the value of the stress that is

being removed.

This equality between the instantaneous changes in strain could, however, be a feature

of the enforced homogeneity in the model system used here. In these simulations all

elements are governed by the same strain rate γ̇, which becomes large and negative

when the stress is removed, shifting all elements back by the same amount. Allowing

strain rate heterogeneity across the system by introducing multiple streamlines could

cause some streamlines to shift back further than others, as long as the average stress

drop is equal to the overall stress drop Σ0. In addition, if permanent breakage of

elements was introduced into the model, as in the modification of the SGR model

described in Section 2.4, the strain drop could be changed by broken elements.

The effects of shear heterogeneity and broken elements are not studied here, but

a discussion on their possible effects can be found in Section 6.7. Regardless, the

general finding of significant recoverable strain within the SGR model is expected

to remain a feature of these systems.

Also outlined in the bottom panel of Fig. 6.1 is the definition of the recoverable

strain ∆γrec, which follows that adopted in other studies [50, 77,123]. ∆γrec is equal
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Figure 6.1: Top Panel: The stress Σ applied as a function of time
for the creep-recovery test protocol. This features the
preparation of the sample at t = −tw, which then ages
undisturbed for a time −tw < t < 0. At t = 0, a step
stress is applied and then subsequently removed at a
time tstop = t(γ = γ0 + ∆γf). Note that the initial
strain response is equal to that of the imposed step
stress γ0 = Σ0.
Bottom panel: The strain γ response over time t
as simulated by the SGR model with homogeneity en-
forced, where Σ0 = 1.0, ∆γf = 0.5, and tw = 103. High-
lighted are the controlled forward strain ∆γf, the imme-
diate strain drop after the stress is removed equal to the
initial imposed step stress γ0 = Σ0, and the degree of
recoverable strain ∆γrec measured from t+

stop. The col-
oured crosses highlight the instances in time at which
the normalised distribution of element strains P (l) are
plotted in Fig. 6.2.
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to the difference between the strain immediately after the stress removal, equal to

the controlled forward strain γ(t+
stop) = γ0 + ∆γf − γ0 = ∆γf, and the steady state

strain γss = γ(t → ∞). This value is positive when γss is smaller than ∆γf. In

mathematical terms

∆γrec = ∆γf − γss . (6.2.1)

6.3 Element Distribution Analysis

6.3.1 General Element Response

Fig. 6.2 displays the response of the distribution of element strains P (l) to the

creep-recovery test protocol for the simulation featured in the bottom panel of Fig.

6.1. The coloured crosses in the bottom panel of Fig. 6.1 correspond to the instances

in the simulation where P (l) has been plotted in Fig. 6.2.

The top panel of Fig. 6.2 shows the behaviour before the stress is switched off, for

times t < tstop, and the bottom panel for times after switch-off t > tstop. Recall that

the SGR model features a number of elements M , each with a strain l and energy

well E, which in this case all exist on a single streamline due to the enforced shear

homogeneity (see Section 2.2). The distribution of element strains P (l) plots the

histogram of element strain frequencies.

The initial distribution of element strains P0(l) at time t = 0 is a delta function

at the value of the imposed step stress l = Σ0, represented by the dark blue line

in top panel of Fig. 6.2. Note that this is artificially represented in this figure as

a peak with finite height and width, because a true delta function is impossible to

plot. All the element strains are equal to the imposed step stress lm = Σ0 ∀ m. As

explained previously, the instantaneous application of stress has caused an elastic

element response. Note that in a real experimental study, there could be a range of

strains within the material before shear, whereas here it is assumed that for a newly
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Figure 6.2: Top Panel: The normalised distribution of element
strains P (l) at several times during the simulation in
Fig. 6.1, for which Σ0 = 1.0, ∆γf = 0.5, and tw = 103.
The different colours (from dark blue to turquoise or
left to right in the peaks in the right panel) represent
different instances in time before the stress has been
switched off (t < tstop), highlighted by crosses in the
bottom panel of Fig. 6.1.
Bottom Panel: The measurement described above,
but for times after the stress has been switched off (t >
tstop). The different colours (from green to red or right to
left in the peaks in the middle panel) represent different
instances in time, highlighted by crosses in the bottom
panel of Fig. 6.1.
Highlighted is the instantaneous strain shift in the entire
system by ∆l(tstop) = −Σ0 at time t = tstop, caused by
the switch-off of the stress. This shift occurs between
the turquoise plot in the top panel and the green plot in
the bottom panel. Also note that the narrow peaks on
the right-hand side of both panels are representative of
single-value functions, as all elements in practice have
the same strain value in these peaks.
Key result: Recoverable strain depends on the yielding
of elements with positive and negative strains.
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prepared, undeformed sample, all element strains are zero l = 0, following previous

studies [9, 71,81].

After some time (the dark blue to light blue lines), some of the elements in the delta

function begin to yield. This can be seen in the decreasing area within the thin

peak. As discussed in Section 2.2.1, when an element yields, it relaxes its strain l

and its contribution to the visco-elastic stress σ, equal to the average of the element

strains, becomes zero. Considering Eq. (2.2.5) and the imposition of a constant

stress Σ = Σ0, this decrease in σ will cause an increase in the strain rate γ̇. Hence,

the system starts straining forward, seen in the rightward shift of the thin peaks in

the top panel of Fig. 6.2 for increasing times. In other words, for the total stress to

remain constant, when an element relaxes its strain through a yield event, the other

elements must compensate by straining forward.

The consequence of yielding elements on the macroscopic strain rate γ̇ is an important

part of the recoverable strain process and will be discussed in detail in this chapter.

To summarise, when a positively strained (lm > 0) element yields, it provides a

positive contribution to the macroscopic strain rate γ̇.

When elements yield, their strain drops to zero lm → 0. This explains the second

part of the strain distribution in the middle of the top panel of Fig. 6.2, which sees

an increasing group of elements around zero strain l = 0. However, after yielding,

this group also strains forward due to the macroscopic forward strain rate caused

by the yielding elements. The smearing of the element strains in this group is a

consequence of elements yielding at different times, and therefore straining forward

by different amounts.

Once the system has strained forward by a value equal to the controlled forward

strain ∆γf, the stress is switched off. There are therefore two groups of elements

that can be seen in the top panel of Fig. 6.2 at the switch-off time:

(i) A delta function of elements that have not yet yielded, all with strain l =

Σ0 + ∆γf, represented by the turquoise line in the right of the top panel of Fig.
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6.2.

(ii) A spread of elements that have yielded during the imposed step stress, with

smallest strain l = 0 and largest strain l = ∆γf, represented by the turquoise

line in the middle of the top panel of Fig. 6.2.

When the stress is switched off, the macroscopic strain rate is instantaneously large

and negative, straining the whole system backwards by the amplitude of the removed

stress ∆l(tstop) = −Σ0. As mentioned previously, the elements respond elastically to

this change and all strain backwards by this same amount l → l − Σ0. This causes

the two aforementioned groups of elements to assume new strains:

(i) The delta function of elements that have not yet yielded now all have strain

l = Σ0 + ∆γf − Σ0 = ∆γf, represented by the green line in the right of the

bottom panel of Fig. 6.2.

(ii) The spread of elements that had yielded during the imposed step stress have

also been strained backwards by Σ0. This gives a distribution of strain values

with minimum value l = 0−Σ0 = −Σ0 and maximum l = ∆γf −Σ0, represented

by the green line in the left of the bottom panel of Fig. 6.2.

Once the stress is removed, with no external factors, these two groups (i) and (ii)

determine how the system relaxes. To exhibit recoverable strain, the system needs

to strain backwards. This is achieved in an analogous way to that in which the

forward straining was achieved during the application of the step stress. Elements

in group (ii) will yield to zero strain lm → 0. However, they are now yielding from a

negative strain lm < 0. This means the visco-elastic stress σ (equal to the average of

the element strains) will increase, causing the strain rate γ̇ to decrease. If enough

yielding occurs from negatively strained elements, then the strain rate will decrease

enough to become negative, and the system will strain backwards.

This process is important, because it is the origin of recoverable strain in the SGR
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model. To summarise, when a negatively strained (lm < 0) element yields, it provides

a negative contribution to the macroscopic strain rate γ̇.

This yielding of negatively strained elements can be seen in the bottom panel of Fig.

6.2, where the distribution on the left, representing group (ii), decreases in height

over time (from green to red lines) causing the system to strain backwards. These

yielding elements then form a third group, with strains around zero. The elements

in this group then also strain backwards due to the negative macroscopic strain rate

just discussed.

This behaviour is interesting, because element yield events correspond to plastic

rearrangements, yet it is these elements that form group (ii) that cause the backwards

straining that leads to recoverable strain. Therefore, it can be concluded from this

study that, in the SGR model, any strain recovery that occurs after the initial elastic

response at t = tstop is a direct consequence of plastic events. This is in contrast to

the interpretation in some of the literature, which assumes the recoverability of a

material to be a consequence of elastic straining [45, 125, 152, 190, 214]. The effect

instead resembles the phenomenon of reversible plasticity [58, 135–139, 145–151],

which has not before been seen in the SGR model or predicted theoretically in the

creep-recovery protocol.

Some studies define reversible plasticity as rearrangements that return to their

exact pre-yield configuration in space [147–149]. This definition requires microscopic

accuracy of individual particle trajectories [147,149], which is not possible with this

model. The reversible plasticity observed here is more closely aligned with that

defined in the polymer literature, where plastically breaking bonds can reform, but

the resulting configuration is not identical to that pre-yield [136, 137, 139]. This

definition generally focusses on the reversibility of plastic strain rather than particle

behaviour, similar to that seen in metallic glasses [150], which is more relevant

in applications in reversible plasticity shape memory polymers [136, 137] and in

hydrogels [146].

Reversible plasticity has also been connected to the Bauschinger effect in the crys-
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talline solid literature [145]. This is where the material response to external forces

changes as a result of the microscopic stress distribution of the material [230–232].

The effect is highly directional, for example, a forward stress causes rearrangements

that then resist further forward loading but are less resistant to reversing the direction

of the applied load [230,231].

While the Bauschinger effect is generally attributed to solid materials, it is relevant

to the example shown in Fig. 6.2. The elements in group (ii) that have experienced

a plastic rearrangement event have reformed and continued straining forward under

the step stress, relieving the other elements of some of the overall load, effectively

resisting further forward loading. However, when the stress is switched off, the system

shifts back suddenly, and the elements are in configurations which are negatively

strained. These elements, whose subsequent yielding leads to the reversible plasticity

observed, have a high rate of yielding. This reversal of shear direction causes a large

amount of yielding showing a low resistance of these elements to a change in strain

direction, reminiscent of the Bauschinger effect.

This mechanical polarisation in shear strength through reversible plasticity has

been seen under cyclic shear in a TEP model similar to that discussed in Section

2.3, but was not recognised as Bauschinger-like behaviour [148]. The work here

therefore provides a new perspective on the origin of recoverable strain, where

plastic rearrangement events that relax strain locally in a system can contribute to

the recoverability of the system through reversible plasticity caused by a Bauschinger-

like effect.

It should be noted that in Fig. 6.2 the area within the delta function of elements

representing group (i), is decreasing, though by an amount not visible on the scale

shown. Therefore, there are elements in group (i) that are yielding in addition to

those in group (ii). This is despite the system straining backwards, decreasing the

probability of yielding for these elements. These elements have a positive strain, and

so will provide a positive contribution to the strain rate. In the case of the example

in Fig. 6.2, the yielding from group (ii) dominates over the yielding from group (i)
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and so the system strains backwards. However, in other cases that will be seen in

this chapter, this positively strained group (i) of elements can limit the amount of

backwards straining, and sometimes cause further forward straining after the stress

switch-off.

What is important from this discussion of the time evaluation of the distribution of

local strains is that the behaviour after the removal of stress is the consequence of a

competition between the two groups of elements already discussed:

• Group (i): The positively strained elements, with a delta function distribu-

tion of strains, which have not yet yielded. When these elements yield they

contribute a forward strain.

• Group (ii): The negatively strained elements, with a smeared distribution of

strains, which had yielded during the imposed step stress. When these elements

yield they contribute a backwards (or reverse) strain, contributing to strain

recovery.

It is also important to acknowledge how the various input parameters affect these

competing groups, because this will aid in understanding the relaxation behaviours

that will be discussed in the rest of this chapter:

• The imposed step stress Σ0. This determines the minimum strain of group (ii).

The effects of Σ0 will be explored further in Section 6.4.

• The controlled forward strain ∆γf. This determines the strain of the elements

in group (i), the maximum strain of the elements in group (ii), and the relative

numbers of elements in the two groups. A larger ∆γf will result in a larger

group (ii) and a smaller group (i), and vice versa for a smaller ∆γf. The effects

of ∆γf will be explored further in Section 6.5.

• The waiting time tw. This determines the depths of the energy wells occupied

by elements in group (i). The effects of tw will be explored further in Section

6.6.
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Note that both the imposed stress Σ0 and the waiting time tw will also determine

the rate at which the system reaches the controlled forward strain, ∆γf, which could

change the shape of the group (ii) strain distribution. However, this effect is not

studied here. In addition, there will be results presented for the case in which ∆γf is

larger than Σ0, which will mean a fraction of the elements in group (ii) will actually

have positive strains after the stress switch-off. However, there will always be some

proportion of elements in group (ii) with negative strains, so the recoverable strain

mechanism still works in the same way as described above. For this reason, when

analysing the way in which the behaviour of elements governs strain recovery in

Sections 6.3.2 to 6.3.4, there will be a simple distinction between elements with

positive strain, and those with negative strain.

To analyse the behaviour described above, this study will consider a slight variation

on the yielding integral I described in Section 3.3.4, where the contributions to

I from positively and negatively strained elements are now considered separately.

Therefore, the yielding integral of positively strained elements is defined as

I+ =
∫ ∞

0
r(l)P (l)l dl , (6.3.1)

and the yielding integral of negatively strained elements as

I− =
∫ 0

−∞
r(l)P (l)l dl . (6.3.2)

The total yielding integral I effectively measures the average rate of strain relaxation

across the system from yielding by taking the average value integral over the strain

space l of the multiplication of the strain distribution P (l) and the yielding rate r(l).

What splitting this integral into its positive I+ and negative I− parts does is inform

the average strain relaxation rate for elements with positive and negative strains

separately. These variables effectively measure the competition in yielding between

the positively strained group (i) with I+ and the negatively strained group (ii) with

I−. Note that once elements in these two groups have yielded for times after the

stress switch-off, they provide only a small contribution to I because their strains
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are small and their energy wells are generally shallow. Therefore, the contributions

of elements that have yielded after the stress switch-off to I+ and I− are negligible

in comparison to the contribution of elements in groups (i) and (ii), and so the

corresponding pairs (I+ ∼ (i) and I− ∼ (ii)) will be discussed interchangeably.

In addition, the proportion of elements with positive or negative strains can be

measured using

ρ+ =
∫ ∞

0
P (l) dl , (6.3.3)

and

ρ− =
∫ 0

−∞
P (l) dl . (6.3.4)

This normalised proportion of elements simply reflects the number of elements with

positive or negative strains relative to the total number of elements.

The next three sections will present the results of three representative numerical

simulations that summarise the responses of the SGR model to the creep-recovery

test protocol. For each of these simulations, the underlying behaviour in terms of

the dynamics of the mesoscopic elements will be explored using the above variables.

6.3.2 Significant Recoverable Strain

A representative simulation is chosen to outline how the element behaviour described

in the previous section contributes to significant strain recovery after the stress is

switched off. The results are presented in Fig. 6.3. The top panel shows the strain

decay γ as a function of time. Note that the strain is normalised by the controlled

forward strain ∆γf. The time is plotted relative to the stress switch-off time tstop to

remove the time during the stress application 0 < t < tstop and focus only on the

strain relaxation for times t > t+
stop.

The observed behaviour closely reflects that described in Section 6.2 and Section 6.3.1.

At short times there is a negative strain rate in the system which eventually tends

to zero as the system reaches a steady state. Important to note is the observation
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Figure 6.3: Top panel: The strain response γ normalised by the
controlled forward strain ∆γf as a function of time after
the stress switch-off for an imposed step stress Σ0 = 1.0,
controlled forward strain ∆γf = 0.1, and waiting time
tw = 103.
Middle panel: For the above simulation, the pro-
portion of elements with positive (blue, top line at
t − t+

stop = 10−1) and negative (green, bottom line at
t − t+

stop = 10−1) strains.
Bottom panel: For the above simulation, the yield-
ing integral over positive I+ (blue, bottom line at
t − t+

stop = 10−1) and negative I− (green, top line at
t − t+

stop = 10−1) strains.
Key result: Simulations display significant recoverable
strain, dependent on the yielding of elements with pos-
itive and negative strains.
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of significant recoverable strain. Indeed, in this simulation, the system recovers 80%

of the strain from its value at time t = t+
stop just after the stress has been removed.

This displays the capacity of the SGR model to simulate materials that exhibit a

high degree of recoverable strain.

Observing the two contributions I+ and I− to the yielding integral I in the bottom

panel of Fig. 6.3 makes clear how this recoverable strain is achieved. The yielding

integral for negative strains I− (green line, bottom panel) is initially large, meaning

there are a lot of negatively strained elements in group (ii) that are yielding, causing

a negative strain rate. Over time, I− drops as the number of elements in group (ii)

with significant negative strains decreases due to yielding. As the yielding integral

for negative strains I− drops towards a value similar to the yielding integral for

positive strains I+ (blue line, bottom panel), the strain γ (top panel) decrease starts

to slow, eventually reaching a steady state.

The tending to a steady state is due to the yielding of the elements in group (i), the

positively strained delta function, whose yielding is represented by I+. I+ is a flat

function at early times, implying a small but steady amount of yielding of positively

strained elements. However, the effect of this yielding is initially nullified by the large

amount of yielding of negatively strained elements in group (ii), shown by the large

disparity between I+ and I− at early times. The strain rate starts tending towards

zero when I+ and I− are closer in value, showing that the yielding of elements in

group (i), represented by I+, becomes significant. When I− drops below I+, the

yielding of positively strained elements is now dominating. This dominance is short-

lived however, and both yielding integrals then tend towards zero causing the strain

to reach a steady state value.

The behaviour described above is not immediately obvious from the proportion of

positively (ρ+) and negatively (ρ−) strained elements in the middle panel of Fig.

6.3, because the fraction of positively strained elements is initially much larger

than those with negative strain. However, it is important to remember that the

positive strain of the elements in group (i) is defined by the controlled forward strain
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∆γf = 0.1, whereas the maximum negative strain of elements in group (ii) is given

by the imposed step stress Σ0 = 1.0. Therefore, although in this instance group

(i) has a large number of elements, their strain is small (l = 0.1) compared to the

large negative strain of the small number of negatively strained elements in group

(ii) (−1.0 < l < −0.9). In addition, the influence of the waiting time tw = 103

means that the elements in group (i) are also in deeper energy wells on average than

those in group (ii). Taken together, this means that when the yielding integral is

calculated for the positively strained elements in group (i), the low rate of yielding

causes I+ to be small, despite the large number of elements.

There is also some noise in ρ in the middle panel of Fig. 6.3 towards the end of

the simulation. This is because, by this time, the majority of the finite number of

elements have yielded, clear from the small yielding integral I for both positively

and negatively strained elements. Therefore, all elements have a strain around or

equal to zero l ∼ 0, meaning even a small shift in the system can cause elements

to go from positive to negative strain. The values for the proportions ρ must be

considered with the perspective provided by the yielding integral I. Repeating the

simulations for a larger number of elements M would reduce this noise but this was

not possible within the timescales for this project.

Behaviour of the kind described above can demonstrate significant recoverable strain,

and is the most common type of behaviour seen across the parameter regimes explored

in this work.

6.3.3 Recoverable Strain with a Non-Monotonic Strain

Response

Fig. 6.4 shows another representative example of the recovery behaviour predicted

by the SGR model. The strain decay γ in the top panel of Fig. 6.4 is very similar

to that in Fig. 6.3, with one important difference. The strain decay in Fig. 6.3 is

monotonic as a function of time, whereas the strain in Fig. 6.4 appears to reach
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Figure 6.4: Top panel: The strain response γ normalised by the
controlled forward strain ∆γf as a function of time after
the stress switch-off for an imposed step stress Σ0 = 1.0,
controlled forward strain ∆γf = 0.03, and waiting time
tw = 103. The dashed line highlights the minimum
value that the strain achieves.
Middle panel: For the above simulation, the pro-
portion of elements with positive (blue, top line at
t − t+

stop = 10−1) and negative (green, bottom line at
t − t+

stop = 10−1) strains.
Bottom panel: For the above simulation, the yielding
integral over positive (blue, bottom line at t − t+

stop =
10−1) and negative (green, top line at t − t+

stop = 10−1)
strains.
Key result: Simulations can display non-monotonic
strain responses.
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a minimum before rising and then subsequently settling to a steady state. This

non-monotonic strain recovery is surprising considering the simple nature of the

model. It shows that the SGR model has the capacity to simulate complex memory

effects in recoverable amorphous materials.

The non-monotonic behaviour can be understood as follows. The behaviour of the

strain at early times in Fig. 6.4 is similar to that discussed in Section 6.3.2. The

yielding of negatively strained elements in group (ii) dominates the small rate of

yielding of positively strained elements in group (i), as seen in the orders of magnitude

difference in the sizes of I+ and I−. However, the point at which I+ and I− cross

over is earlier in time than for the example in Fig. 6.3 and I+ is significantly larger

than I− for a longer period of time. This means that the yielding of elements in

group (i) dominates enough during this time not just to bring the negative strain

rate back to zero, but actually enough to cause the strain rate to become positive.

The system then attains a steady state as both I+ and I− drop towards zero. In this

simulation, the competition between group (i) and group (ii) described in Section

6.3.1 has resulted in a non-monotonic strain response.

The behaviour of the proportions ρ+ and ρ− are very similar to that in Fig. 6.3,

except that when the system starts straining forward, ρ+ increases, leaving a larger

steady state separation between ρ+ and ρ−.

The discovery of non-monotonicity in the strain response as a function of time is an

exciting result. Complex material memory and non-monotonic rheological responses

are areas of significant current interest in the rheology literature [28,44,56,57,158,

173, 237–240]. The non-monotonic relaxation behaviour of strain with time here

is reminiscent of experiments on colloidal gels showing non-monotonic stress decay

after the removal of a constant strain rate [57]. However, as will be shown in Sections

6.4 to 6.6, this particular non-monotonicity in strain recovery is only visible for a

small range of parameter space, discovered as a consequence of a fine preliminary

sampling of the parameter space. For the majority of the parameters explored, the

behaviour generally follows that described in Section 6.3.2, where I− dominates
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such that the only influence of I+ is to reach a steady state, and the strain recovers

monotonically. Regardless, the discovery of non-monotonicity in strain recovery in

the SGR model, even when restricted to enforced shear homogeneity, shows the

potential for simulating complex recoverable strain behaviour.

6.3.4 Negative Recoverable Strain

The third representative example of the predictions of the SGR model under the

creep-recovery test protocol is shown in Fig. 6.5. This shows two simulations, with

identical imposed step stress Σ0 = 2.0 and controlled forward strain ∆γf = 3.0, but

different waiting times tw = 103 (solid lines) and tw = 106 (dashed lines).

Considering first the tw = 106 (dashed line) simulation, the observed behaviour is

recognisable as an extreme version of that described in Section 6.3.2. The initial

state sees a dominance of I− over I+ and therefore a negative strain rate produced

by the yielding of group (ii) dominating over that of group (i). This is then followed

by an approach to steady state when I+ and I− reach similar values. This can also

be seen in the response of ρ+ and ρ−, as the system strains backwards the proportion

of negatively strained elements ρ− increases.

The tw = 103 (solid line) simulation, on the other hand, displays a new phe-

nomenon. In this case, the strain first increases, before reaching a maximum, and

then subsequently decreases to a steady strain that remains above the starting strain

γss > ∆γf.

The behaviour of the two populations of elements in this simulation is much more

complex than those previously characterised, but can still be summarised by the

competition of yielding between positively and negatively strained elements. The

initial system state sees I+ and I− almost equal (bottom panel of Fig. 6.5, solid

lines), but with I+ marginally larger. This means that the yielding of positively

strained elements in group (i) dominates over that of the negatively strained elements

in group (ii). This results in a positive strain rate. However, at a time around t ∼ 101,
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Figure 6.5: Top panel: The strain response γ normalised by the
controlled forward strain ∆γf as a function of time after
the stress switch-off for an imposed step stress Σ0 = 2.0,
controlled forward strain ∆γf = 3.0, and for two waiting
times tw = 103 (solid lines) and tw = 106 (dashed lines).
Note the separation of axes with different scales to high-
light the two simulation responses. The thin dashed line
highlights the maximum value that the strain achieves.
Middle panel: For the above simulations, the pro-
portion of elements with positive (blue, bottom group
at t − t+

stop = 10−1) and negative (green, top group at
t − t+

stop = 10−1) strains.
Bottom panel: For the above simulations, the yield-
ing integral over positive (blue, bottom dashed line at
t − t+

stop = 10−1) and negative (green, top dashed line
at t − t+

stop = 10−1) strains.
Key result: Simulations can display negative recover-
able strain.
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I− begins to dominate, causing the strain rate to decrease (with the strain attaining a

maximum) and eventually become negative. At a time around t ∼ 103, I+ dominates,

which brings the negative strain rate back up towards zero after which it settles to

a steady state. The response of ρ+ and ρ− mirrors the behaviour of the strain, with

the proportion of positively strained elements ρ+ increasing to reach a maximum

before decreasing to reach a steady state.

This is another example of non-monotonic strain behaviour in creep recovery. Ex-

periments on colloidal gels found that the steady state residual stress after shear

startup could be higher than the stress immediately after the switch-off of the strain

rate, providing a counterpart to the scenario found here [57]. This again shows the

capability of the SGR model to predict complex behaviour during creep recovery.

It is important to note that the behaviour just described leads to a negative recov-

erable strain ∆γrec = ∆γf − γss < 0, implying that the system has not only failed to

recover any of the strain gained during the stress application, but has managed to

gain additional strain after the removal of stress. Note that the elastic contributions

to the strain are ignored here, because the strain gained instantaneously upon the

stress application and recovered upon its removal is equal. As will be discussed when

looking more broadly across the parameter space, this particular behaviour only

occurs when the imposed step stress Σ0 and controlled forward strain ∆γf are both

large. This therefore can be argued that the system has been strained so severely

during the imposition of the step stress that even when the stress is switched off the

system continues to feel its effects.

What is also interesting to note in Fig. 6.5 is the impact of the waiting time tw.

In Section 6.3.1, it was argued that the only significant impact of tw was on the

average energy depth of the positively strained elements in group (i). This impact

can be seen in the bottom panel of Fig. 6.5, where there is a significant difference in

the starting values of I+ for the two different waiting times (blue dashed and solid

lines), representing the yielding integral for these elements. The larger tw causes the

elements in group (i) to be in deeper traps. This in turn causes their rate of yielding
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r(l), and consequently the yielding integral I+, to be smaller. However, there is

almost no difference in the behaviour of I− between the two different waiting times

(green dashed and solid lines), representing the yielding integral for the negatively

strained elements in group (ii). This shows that tw can have a significant impact,

but only on the group (i) of positively strained elements.

6.3.5 Summary

The above discussions have explored how the strain recovery predicted by the SGR

model stems from the dynamics of its mesoscopic elements. This behaviour can be

highly complex, but is summarised by the competition between the yielding of the

positively strained elements in group (i), which contribute a forward strain, and the

negatively strained elements in group (ii) which contribute a reverse strain.

The three representative simulations just described provide a general overview of

the three types of responses seen across all the simulations explored in this work.

The following sections will consider the dependence of strain recovery on the input

parameters, referencing back to the discussions of the preceding sections where

appropriate.

6.4 Dependence of recoverable strain on Σ0

The strain decay γ as a function of time for several different amplitudes of the

temporarily imposed stress Σ0 is shown in Fig. 6.6. Note that the strain plotted is

normalised by the controlled forward strain ∆γf (although in this case the value is

constant ∆γf = 0.5 for these results). The time is plotted relative to the time tstop

at which the stress is switched off to remove the time during the stress application

0 < t < tstop and focus only on the strain relaxation.

The behaviour observed in these simulations reflects that described in Section 6.2,

Section 6.3.1 and Section 6.3.2. In particular, there is a negative strain rate due
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Figure 6.6: The strain response γ normalised by the controlled
forward strain ∆γf as a function of time after the
stress switch-off for a single controlled forward strain
∆γf = 0.5, waiting time tw = 103 and a range of im-
posed step stresses Σ0 = [0.3, 0.5, ..., 1.9] (from top to
bottom or dark blue to red).
Key result: Strain recovery increases with increasing
Σ0.
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to the yielding of the negatively strained elements in group (ii), which eventually

resolves to a steady strain as the yielding of elements with positive strain in group

(i) eventually equals that of elements in group (ii).

The simulations in Fig. 6.6 display significant recoverable strain. Some have re-

covered over 90% of the strain from its value at t = t+
stop (just after the stress has

been removed). These high values of recoverable strain are similar to those found in

literature for protein gels [152] and colloidal gels [57, 59].

It is clear from these results how the imposed stress Σ0 affects the degree of re-

coverable strain under the creep-recovery test. Specifically, as Σ0 increases, the

recoverable strain ∆γrec increases. This relationship between the recoverable strain

∆γrec and the imposed stress Σ0 was found experimentally for a polymer melt under

an elongation creep-recovery test [140]. This may initially seem counter-intuitive,

because one might expect a larger imposed stress to result in less recoverable strain.

However, because the forward strain is controlled, all systems experience the same

strain change ∆γf regardless of the size of the imposed stress. This means that

smaller stresses are held for longer before being switched off, in order to acquire the

same amount of forward strain.

As discussed in Section 6.3, the value of the imposed stress Σ0 controls the backwards

shift that the system experiences upon the removal of the stress. The larger Σ0,

the more negative the minimum strain of the elements in group (ii) is. When the

elements in group (ii) have a more negative strain, the yielding from this group will

be more significant, resulting in a larger negative strain rate.

Also notable in Fig. 6.6 is the simulation with Σ0 = 1.7 (the orange line), in which

the strain increases slightly before settling to a steady value. This is an example of

the recoverable strain with non-monotonicity discussed in Section 6.3.3.

The dependence of recoverable strain ∆γrec on the imposed step stress Σ0 is explored

further in Fig. 6.7. The recoverable strain ∆γrec is plotted normalised by the

controlled forward strain ∆γf to provide the proportion of recoverable strain. Note
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Figure 6.7: Top Panel: The proportion of recoverable strain
∆γrec normalised by the controlled forward strain
∆γf, as a function of the imposed stress Σ0
for a range of controlled forward strains ∆γf =
[0.1, 0.5, 1.0, 1.5, 2.0, 2.2, 2.5, 3.0] (from blue to orange
or top to bottom) and waiting time tw = 103.
Bottom Panel: The measurement described above,
but for two controlled forward strains ∆γf = 0.1 (top
group) and ∆γf = 3.0 (bottom group) and a range of
waiting times tw = [101, 101.5, ..., 106] (from black to yel-
low or bottom to top in the bottom group of lines).
Key result: Outside of extremes, ∆γf increases with
increasing Σ0.
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that ∆γrec/∆γf = 1 corresponds to full recovery, and that ∆γrec/∆γf = 0 corresponds

to zero recovery.

The data sets for ∆γf ≤ 2.2 in the top panel of Fig. 6.7 show the general behaviour

described earlier, where ∆γrec increases as Σ0 increases. However, this behaviour

changes significantly when ∆γf > 2.2 (the orange and red lines), where the recover-

able strain ∆γrec initially increases before decreasing, with one line reaching negative

values ∆γrec < 0.

Recalling the definition of ∆γrec in Eq. (6.2.1), it is clear that for ∆γrec to become

negative, the steady state strain γss must be larger than the strain immediately after

the stress is switched off, equal to ∆γf. This is the effect of negative recoverable

strain discussed in Section 6.3.4. It is clear from the bottom panel of Fig. 6.7 that

this effect is suppressed by increasing the waiting time tw, as previously argued.

Despite the outliers, it is clear from these results that generally, outside the extreme

values of the controlled forward strain ∆γf, the recoverable strain ∆γrec increases

with increasing step stress amplitude Σ0.

6.5 Dependence of recoverable strain on ∆γf

The strain decay γ as a function of the time after the stress switch-off is shown for a

range of controlled forward strains ∆γf in Fig. 6.8. Note that the strain is normalised

by the controlled forward strain ∆γf, which is equal to the strain immediately after

the stress switch-off. This allows the different starting positions to be super-imposed

and a focus on the proportion of recoverable strain over time. The general behaviour

of the majority of these simulations again reflects that described in Section 6.2,

Section 6.3.1 and Section 6.3.2, with significant recoverable strain present.

The overall relationship between the controlled forward strain ∆γf and the recoverable

strain ∆γrec appears to be the inverse of that between the imposed stress Σ0 and ∆γrec.

Indeed, as ∆γf increases, ∆γrec decreases. This is a more intuitive result, because with
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Figure 6.8: The strain response γ normalised by the con-
trolled forward strain ∆γf as a function of time
after the stress switch-off for a single imposed
step stress Σ0 = 1.0, waiting time tw = 103

and a range of controlled forward strains ∆γf =
[10−2, 10−1.75, 10−1.5, 10−1, 10−0.5, 100, 100.5, 101] (from
bottom to top or dark blue to red).
Key result: Strain recovery decreases with increasing
∆γf.
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a large forward strain, one might expect the material to be too damaged to recover.

Indeed, this general relationship between recoverable strain and the change in strain

was found experimentally for bread dough and collagen under the creep-recovery

test [19, 122], and for protein gels and colloidal gels under shear startup [51, 57, 131].

The reversible plasticity literature also finds a similar trend in other rheological

protocols, for example, high levels of reversible plasticity are seen in small strain

amplitude oscillatory shear, which is gradually overwhelmed by irreversibility for

increasing strains, in experiments on dense jammed suspensions [147] and bubble

systems [149]. Increasing irreversibility translates to the failing of the elastic regions

that surround the small-scale reversible plasticity, where the plasticity grows to

scales where it is no longer reversible [149].

As discussed in Section 6.3, the cause of the relationship between ∆γrec and ∆γf

in the SGR model is that ∆γf determines the strain of elements in group (i). If

∆γf is large, the positively strained elements in group (i) will have a large strain.

Consequently, there will be a high rate of yielding from this group causing a forward

straining that will limit the amount of backwards straining the system is able to

achieve. In addition, the larger ∆γf will smooth out the distribution of group (ii),

and if larger than the imposed stress Σ0, will make a proportion of its elements

positively strained. This will also help to limit the amount of backwards strain

recovery.

The non-monotonic strain behaviour that was discussed in Section 6.3.3 is clear in

the simulation with ∆γf = 10−1.5 in Fig. 6.8. This strain response clearly increases

with time after a substantial initial decrease before finally settling to a steady state.

The important result here is that the recoverable strain ∆γrec increases with decreas-

ing controlled forward strain ∆γf. This is shown more fully in the top panel of Fig.

6.9, where this dependence is plotted for a range of imposed stresses Σ0. However,

again, at the extreme values of ∆γf ≳ 3 and Σ0 ≳ 2, the recoverable strain drops

past zero and into negative values. This effect is again suppressed by increasing tw,

as can be seen in the bottom panel of Fig. 6.9.
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Figure 6.9: Top Panel: The proportion of recoverable strain ∆γrec
normalised by the controlled forward strain ∆γf, as a
function of the controlled forward strain ∆γf for a range
of imposed step stresses Σ0 = [0.5, 1.0, 1.5, 2.0, 3.0]
(from blue to orange or bottom to top at ∆γf = 1)
and waiting time tw = 103.
Bottom Panel: The measurement described above,
but for two imposed step stresses Σ0 = 0.5 (left group)
and Σ0 = 2.0 (right group) and a range of waiting times
tw = [101, 101.5, ..., 106] (from black to yellow or left to
right in the right group of lines).
Key result: Outside of extremes, ∆γf decreases with
increasing ∆γf.
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What is also interesting about the top panel of Fig. 6.9 is the overlap of lines for

different Σ0, which occurs around ∆γf ∼ 3, in the same region where the surprising

non-monotonic behaviour of ∆γrec with Σ0 behaviour started in Fig. 6.7. All of this

behaviour is a consequence of the negative recoverable strain (at large values of ∆γf

and Σ0) discussed in Section 6.3.4.

Despite the negative recoverable strain, it is clear from these results that generally,

outside these extreme values, the recoverable strain ∆γrec decreases with increasing

controlled forward strain ∆γf.

6.6 Dependence of recoverable strain on tw

The strain decay γ as a function of time is shown for a range of waiting times tw in

Fig. 6.10. The overall relationship between the waiting time tw and the recoverable

strain ∆γrec is the same as between the imposed stress Σ0 and ∆γrec. As tw increases,

∆γrec increases. This can be understood intuitively in terms of a better aged material

being more resistant to strain and therefore more likely to recover lost strain after

creep.

As discussed in Section 6.3, tw determines the depths of the energy wells of elements

in group (i). If tw is large, the elements in group (i) have, on average, large energy

well depths E ≫ 1, as explained in Section 3.1.1. This means that the timescales

for relaxation of this group of positively strained elements is long. Consequently,

elements in group (ii) are likely to yield on a shorter timescale, creating a negative

strain rate that results in significant recoverable strain. Note that the waiting time

tw has no effect on the energy well depths of group (ii) because they have yielded

since the ageing process, and have therefore left their age-dependent energy well.

The converse of this argument can explain the surprising result for the low values

of tw in Fig. 6.10 (dark purple lines), where the strain increases after the stress

switch-off. In this case, a small waiting time tw causes the average element energy
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Figure 6.10: The strain response γ normalised by the controlled
forward strain ∆γf as a function of time after the stress
switch-off for a single imposed step stress Σ0 = 2.0,
controlled forward strain ∆γf = 3.0, and a range of
waiting times tw = [101, 101.5, ..., 106] (from black to
yellow or top to bottom).
Key result: Strain recovery increases with increasing
tw.
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well depth E of group (i) to be small, meaning a small timescale for relaxation. The

element yielding in group (i) therefore initially dominates over the yielding of group

(ii), causing a positive strain rate. This is later balanced by the yielding in group

(ii) leading to an ultimate strain that is larger than the initial strain after the stress

removal γss > γ(t+
stop) = ∆γf. This behaviour is the cause of the negative recoverable

strains ∆γrec seen in Fig. 6.7, Fig. 6.9 and discussed further in Section 6.3.4.

Figure 6.11: Top Panel: The proportion of recoverable strain ∆γrec
normalised by the controlled forward strain ∆γf, as a
function of the waiting time tw for a range of imposed
step stresses Σ0 = [0.5, 1.0, 1.5, 2.0, 3.0, 4.0] (from blue
to red or bottom to top at tw = 106) and controlled
forward strain ∆γf = 3.0.
Bottom Panel: The measurement described above,
but for an imposed step stress Σ0 = 2.0 and a range of
controlled forward strains ∆γf = [0.1, 0.5, 1.0, 2.0, 3.0]
(from blue to orange or top to bottom).
Key result: ∆γf increases with increasing tw.

The effect of the waiting time tw for a range of imposed stresses Σ0 and controlled
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forward strains ∆γf is shown in Fig. 6.11. Generally, it is clear that increasing

tw also increases the amount of recoverable strain ∆γrec. However, it is also clear

that tw has a much more significant effect when Σ0 and ∆γf are large, because the

variation in the curves is much larger for the yellow and orange lines. This highlights

the behaviour also found in the bottom panels of Fig. 6.7 and Fig. 6.9, where the

variation of tw has minimal effect on ∆γrec for small values of Σ0 and ∆γf, but has

a significant impact when these values are large.

The effect of tw only becomes apparent at these extremes because generally the

behaviour is dominated by the negatively strained elements in group (ii), which have

no knowledge of the value of tw. Only when the yielding of the positively strained

elements in group (i) becomes relevant does tw have a significant impact.

In addition, the effect of rising strain causing negative recoverable strain ∆γrec < 0,

though interesting, is also only seen at the extreme values of ∆γf ≳ 3.0 and Σ0 ≳ 1.5

(see Fig. 6.7 and Fig. 6.9). This brings into question how physical the results are

at these values. There is some experimental evidence for this kind of effect in other

rheological protocols, a residual stress higher than the stress immediately after the

removal of a strain rate was observed in a colloidal gel [57]. However, part of the

rationale for using the SGR model with enforced shear homogeneity is that generally

for the controlled forward strains considered here ∆γf, the system would have built

up minimal heterogeneity, so the approximation to homogeneous behaviour is valid.

However, for strains around ∆γf ≳ 3.0, under step stress, a system can build-up

significant heterogeneities in shear [9, 19, 110, 114, 158]. This can be seen in the

results in Chapter 5 which, although using a modified SGR model, show significant

shear heterogeneity build-up for forward strain values γ ≳ 2.0. Also, relaxation

from values of step strains on this scale γ0 ≳ 2.0 in Chapter 4 resulted in highly

heterogeneous flows after a delay time.

Therefore, while the surprising behaviour at large values of Σ0 and ∆γf can be

understood through the model, it should be tested with allowed shear heterogeneity

before any statement on its physicality can be made. This is outside the scope for
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this project, but is discussed as future work in Section 6.7.

The conclusion from this section is that, outside of extreme values, an increase in

the age of the material represented by the waiting time tw has a small but positive

effect on the recoverable strain ∆γrec.

6.7 Conclusion

This chapter has shown that the SGR model under enforced homogeneity can display

significant (over 90%) recoverable strain under the creep-recovery test protocol. In

addition, strong dependencies for the degree of recoverable strain ∆γrec on the

relevant input parameters have been predicted. Typically, ∆γrec increases with

increasing imposed step stress Σ0, with decreasing controlled forward strain ∆γf,

and with increasing age or annealing, represented by the waiting time tw.

Analysis of the element behaviour during relaxation shows that, contrary to ex-

pectation, any recoverable strain is a direct consequence of plastic rearrangement

events in the system, a concept known as reversible plasticity [58,135–139,145–151].

This could dramatically change how the origins of recoverable strain are understood.

Despite the simplicity of the SGR model, complex element behaviour also results

in non-monotonic strain responses in creep recovery. The non-monotonic time de-

pendence of rheological response functions is an area of interest in the amorphous

materials literature [28, 44,56,57,158,173,237–240].

Significant recoverable strain has been found experimentally in several gel systems

[57,59,152]. One of these studies showed non-monotonic stress responses after the

switch-off of a shear startup in which the stress grew during recovery, which provides

an experimental counterpart to the complex behaviour predicted in this work [57].

The dependencies for the degree of recoverable strain ∆γrec predicted in this work

are also evidenced experimentally, the increase in ∆γrec with increasing stress Σ0 in

a low density polymer melt [140] and with decreasing controlled forward strain ∆γf

in a range of systems [19,51,57,122,131].
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The SGR model has been successful modelling a wide range of dense complex mater-

ials, from colloidal dispersions to emulsions [13,24,25]. Now that the phenomenon of

significant recoverable strain has been found in the SGR model, it is hoped that this

will motivate experimental studies to explore it in these materials. This could then

lead to new applications for highly recoverable amorphous materials. In addition,

modern experimental tools allow the study of internal dynamics of systems, which

could help illuminate the origins of this recoverable strain, which this work predicts

to be a consequence of reversible plasticity in a Bauschinger-like effect.

This work lays the foundation for the SGR model to become a tool in the simulation of

amorphous materials where strain recovery is important. These include hydrogels [52–

55,127,130,131], shape memory polymers [132–139], and polymer melts [128,140,141].

Such materials have applications in medical tools and material processing, with their

recoverability an important property in these applications [133,134,141,142]. This

work increases understanding in not only the dependencies of recoverable strain on

the relevant control parameters, but also how and why recoverability occurs.

Further work in this area could include:

• Including shear heterogeneity - As mentioned previously, the results presen-

ted can only be considered physical under conditions where the assumption to

homogeneous shear is valid. This is true for values of the controlled forward

strain small enough to ensure the system stays in primary creep ∆γf ≲ 2.0,

where the build-up of shear heterogeneity is minimal. For these values, the

results are not expected to change even if heterogeneity was allowed, because

the system remains approximately homogeneous in shear. However, for values

of ∆γf larger than this, significant heterogeneity is expected to form. This

could change how the system relaxes once the stress has been switched off.

This regime is also where the surprising negative recoverable strain ∆γrec < 0

appeared. It is worth investigating this regime to see if this behaviour remains

when heterogeneity in shear is allowed, or if even more interesting behaviour
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arises. In addition, allowing shear heterogeneity could also present the added

complexity of significant shear bands forming. These could form during the

application of the stress, similar to that seen in Chapter 5, or could even form

during the relaxation, similar to the relaxation from a step strain found in

Chapter 4.

• Other recovery test protocols - As outlined in the introduction, the creep-

recovery test is not the only way of testing the recoverability of amorphous

materials. Simulating the SGR model for other protocols, such as relaxation

from an oscillatory shear [126, 143, 144] or shear startup [153], could further

expand on the results presented here, and would allow for further experimental

comparison. In addition, the creep-recovery test protocol presented here can

be extended to multi-stress creep recovery, which has been experimentally

explored for protein gels [152] and is an important regulation test for asphalt

production [190,191]. Also, the work in this chapter presented an explanation

of the reversible plasticity seen in the process of recovering strain, and likened

it to the Bauschinger effect of solids [230–232]. It would be interesting to

see whether the phenomena presented in this work remain under alternative

protocols.

• Changing the timescale for reformation - In this work, the usual as-

sumption in the SGR model of instantaneous reformation of an element post-

yield has been made, meaning the timescale for element reformation is zero

τreform = 0. However, part of the inspiration for this work came from the sup-

plementary material [152] of a key reference [110] in Chapter 5, which found

that protein gels under creep could recover over 90% of their strain if the stress

was switched off after some time. In Chapter 5 it was argued that the SGR

model with breakable elements, using an infinite timescale for reformation

τreform = ∞, was a good model for protein gels. Therefore, it is logical to test

how the degree to which strain is recoverable in SGR-like systems changes
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when elements are no longer allowed to reform, more accurately reflecting

the recovery of protein (and other irreversibly breakable) gels [19,27,59,182].

This would significantly change the process through which recoverable strain

is achieved, because the elements that yield during the step stress would not

be able to reform. Therefore, when the stress is switched off, these broken

elements that previously (with element reformation) contributed to recoverable

strain by relaxing their negative strains would be unable to support the strain

and would relax immediately, creating an interesting scenario for recoverable

strain.

• Investigating temperature variation - This work has not studied the

variation of recoverable strain ∆γrec on the working temperature x. However,

this could significantly impact the strain recovery of these systems, because the

general impact of increasing x is to increase the rate of yielding. There is also

experimental motivation to explore this variable, with variation in temperature

having a significant impact on the recoverability of shape memory polymers

[132] and the rheology of polymer melts [141]. In addition, research into

creep-recovery tests on collagen suggest working temperatures above the glass

temperature x > xg [19], which this study does not explore. Also, the reversible

plasticity in some shape memory polymers is activated by temperature [135,

136, 138, 139]. Indeed, there could be even more interesting behaviour in the

athermal limit x → 0, where the yielding rate function r(l) becomes a step

function, as analysed in Chapter 4, which also looked at relaxation, but of

systems under a step strain.

• Exploring other non-monotonic behaviour - The SGR model has been

shown to simulate complex non-monotonic strain recovery behaviour. Accord-

ingly, it would be interesting to investigate whether it is possible that other

non-monotonicities such as those discovered under the relaxation of a colloidal

gel from a constant strain rate could be captured within the SGR model [57].
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• Testing the timescales - The time to reach the controlled forward strain ∆γf

and the time to reach the steady state strain γss were not studied in this work.

However, the observed increase in strain recovery with increasing tw implies that

the longer it takes to reach ∆γf the more recoverable strain, because a larger

tw will delay the time taken to reach ∆γf. On the other hand, the observed

increase in strain recovery with increasing Σ0 implies that the longer it takes to

reach ∆γf the less recoverable strain, because a larger Σ0 will decrease the time

taken to reach ∆γf. This is an interesting juxtaposition, and the conclusion

from this work is that the other impacts of these variables are more important,

particularly when the amount of strain change is controlled. However, it is

possible that there is more complex behaviour in the build-up to the stress

removal than accounted for in this work. In addition, the rate of recoverable

strain is an important variable in the processing of hydrogels, polymer melts,

and asphalt, and so is also a worthy avenue of investigation [131,141,190].

• Varying the viscosity - The work in this chapter features a solvent viscosity

set to zero. Testing the phenomena with a small but non-zero solvent viscosity

does not change the results presented. However, this has only been tested for

increasingly small viscosities, as is standard in the SGR model to minimise

the effect of the solvent. One study has suggested that the irrecoverable

strain present in protein gels under the creep-recovery test protocol could be

attributed to viscous solvent flow within the porous structure of the gel [152].

Making the solvent viscosity significant could therefore affect the levels of

recoverable strain and would test this experimental finding.

• Experimental exploration - As mentioned previously, it would be interest-

ing to perform experimental studies into recoverable strain on a wider range of

materials. Experiments could also attempt to observe the mesoscopic rearrange-

ment events described above, to investigate whether reversible plasticity and

the Bauschinger effect can be connected to the concept of recoverable strain
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in soft matter, as predicted here. This finding could provide a clear explana-

tion for the origin of recoverable strain, and create a connection between the

appearance of the Bauschinger effect in crystalline solids and amorphous fluids.



Chapter 7

Conclusion

This thesis has explored the yielding, relaxation and recovery of amorphous ma-

terial through three rheological shear protocols. The mesoscopic models used to

computationally simulate these systems have been shown to replicate experimentally

observed phenomena, and also predict new ones. The applications of amorphous

materials have been outlined throughout, from the biological systems essential to

life [5–7,20–22], to manufacturing industries [9,13–15] and geological systems [3,17].

By utilising and expanding on simple generic models in the literature [9], this

work is intended to apply to a wide range of amorphous materials, from dense

suspensions [8,23–25] to low density structures [26–33]. This is because the disordered

mesoscopic substructures present in the models are universal in amorphous materials

[9, 23, 25, 71, 81, 81]. Consequently, rheological effects such as ageing [71, 81, 83],

non-monotonic strain curves [28, 44, 56, 57, 158, 173, 237–240], and shear banding

[8–11,84–86,90] can be simulated. These effects are important not only in a material’s

shear properties but also because, particularly in the latter case, they can lead to

failure, fluidisation and fracture [8–11,84–86,90].

Scientific progress is founded on collaboration between experimental and theoretical

study. Theoretical work can reveal insights into material behaviour, experimental

results, and manufacturing processes. In particular, the stresses and strains found in

the physical applications of these materials can be simulated under common shear
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protocols. Simulations can also predict new phenomena, and suggest avenues for

experimental exploration. The work in this thesis is therefore a contribution, upon

which further experimental and theoretical work can be built.

In Chapter 4, amorphous materials were simulated with the Soft Glassy Rheology

(SGR) and Thermal Elasto-Plastic (TEP) models outlined in Sections 2.2 and 2.3

under the step strain protocol described in Section 2.5.1. The key result was the

discovery of highly delayed catastrophic shear banding, a long time after the initial

imposition of the strain. Theoretical and experimental studies prior to this work

have generally focussed on the appearance of banding within short timescales [65–67,

69, 87, 185–187,213]. It has perhaps been assumed, due to the absence of any final

flowing state, that the stress relaxation at long times after the initial step strain will

take place homogeneously in shear. However, data from a step strain experiment on

a hydrogel found preliminary evidence for the highly delayed banding predicted in

this work [214].

The work in Chapter 4 not only predicts the delayed banding described above,

but also demonstrates strong parameter dependencies for the time of banding. In

particular, the simulations show that the banding time increases dramatically with

decreasing amplitude of the (long historical) imposed strain, with decreasing working

temperature, and with increasing levels of sample annealing or ageing prior to shear.

These ultra-delayed flow-gradient heterogeneities are predicted by both the SGR and

TEP models, in addition to correlating with studies within a continuum fluidity model

from a collaborator [91]. The qualitative agreement of these models, which are widely

used in literature, in addition to the different sample preparation protocols utilised

in each, imply that the phenomena may be generic across amorphous materials.

This finding could have wide implications for the processing and use of amorphous

materials [158]. For example, in manufacturing, amorphous materials can be stored

for large periods of time [74, 75]. If there are unresolved strains within a material,

it could catastrophically fail after a long delay time, which could not be predicted

without knowledge of its strain history. The research provided in this study of how
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instabilities form within systems and how the delay time of the consequential failure

depends on the material parameters could potentially help these industries predict

or diagnose problems and apply preventative measures.

Further work in this study, detailed in Section 4.4, could include using a range

of other theoretical models within the amorphous material literature to further

strengthen the predictions made by the mesoscopic and macroscopic models used

already [9, 224]. However, this research is primarily intended to motivate targeted

experimental studies for finding this delayed banding phenomena. The work in this

chapter makes clear how this might be achieved experimentally, by outlining the

parameter dependence of banding, and how a ‘rapid strain ramp’ can access the step

in strain, as discussed in Section 2.5.1 [185,186].

In Chapter 5, amorphous materials were simulated with a modified SGR model

under the step stress protocol described in Section 2.5.2. The modification, new

in this work and outlined in Section 2.4, disallows the reformation of mesoscopic

elements, with the aim of more closely simulating the permanent breaking of fibres

in protein gels [19,27,59,182]. Protein gels are of interest for their applications both

in biological systems [27–30, 32], such as in fish protein [28], and also in the food

industry [31,120–122].

Although the step stress protocol has been thoroughly studied for amorphous ma-

terials [9, 11, 25, 25, 28, 36, 81, 87, 87, 107–109, 112–116], theoretical research prior to

this one generally focusses on systems in which the mesoscopic substructures reform

after yielding. Studies into protein gels show the breaking of network bonds that do

not reform [19,27,59,182], of which the breakable spring-like system in fibre bundle

models provide a simplified representation [9, 106, 107, 110, 157, 227, 228]. Taking

inspiration from these studies, combining the breakability of the fibre bundle mod-

els [9,106] with the complex energy landscape and capacity for shear banding of the

SGR model [13,23–25,71,81,92,172] creates a system aimed at simulating the failure

of protein gels under creep.

The key results correlate closely with experimental observations and the predictions of
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fibre bundle models [28,110]. This includes good fittings to the Basquin law of fatigue

[227, 228], primary Andrade creep [9, 28, 36, 51, 110, 114], Monkman-Grant relation

[189], and the three creep regimes of the strain rate response [110,157]. It advances

beyond the results of the fibre bundle models by providing an understanding of the

build-up of heterogeneity during creep. In replicating experimental observations,

while also allowing a spatial resolution of the strain field across the material, the

results reveal an insight into the precursors to failure, of interest in the literature

[9, 112,158]

By prohibiting element reformation, the SGR model becomes a strong candidate for

simulating protein gels, and for understanding experimental results. Further work,

as detailed in Section 5.6, could include expanding on this study by exploring other

rheological protocols with this new model, such as in shear startup [9, 67, 71, 87].

Alternatively, making further changes to the model could target the modelling of

specific protein gels, for example by changing the reformation time of elements. In

addition, this work has shown the capacity for the SGR model to be adapted to model

materials outside of its originally designed systems, and this could be expanded on

to further establish it as a tool for simulating a wide range of amorphous materials.

In Chapter 6, amorphous materials were simulated with the SGR model, outlined in

Section 2.2, under the creep-recovery test protocol, the application of a step stress

for some time before it is switched off, described in Section 2.5.3. The key result

was the discovery of significant recoverable strain, an important property in a range

of amorphous materials [9, 52–55,127,128,130–141].

The work in Chapter 6 also found strong dependencies for the degree of recoverable

strain on input parameters, comparable to experimental studies [57,124,140,152,153].

In particular, the degree of recoverable strain increases with increasing imposed

stress, decreasing forward strain, and increasing age or annealing. In addition, non-

monotonic strain responses as a function of time were discovered as a consequence

of the complex behaviour of the mesoscopic elements in the SGR model.

Theoretical studies of the creep-recovery test prior to this one have generally been
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material specific [124,125]. In contrast, the SGR model used here is generic to a wide

range of amorphous materials, from emulsions to colloidal suspensions [13,23–25,71,

81, 92, 172], in which it predicts high levels of recoverable strain. The recoverable

strain of a material is an important property to study, as it has been shown to

provide insights into the microstructural evolution of systems under shear [144], and

is relevant to many amorphous material applications [52–55,127,128,130–141], such

as in biological collagen [19].

The detailed study into the mesoscopic origins of recoverable strain presented in

Chapter 6 reveals a potentially surprising finding. It has generally been assumed

that recoverable strain is a consequence of reversible elastic straining, and that

plasticity only restricts the recoverability of amorphous systems [45,125,152,190,214].

However, the work here suggests that recoverable strain is actually a result of

plastic events, through a process known in the literature as reversible plasticity

[58,135–139,145–151].

This new discovery of reversible plasticity in the SGR model has the capacity to

change the understanding of the origins of recoverable strain in amorphous materials.

With its origins primarily in the hard matter literature [145, 230, 231], reversible

plasticity has only recently been recognised in soft matter, predominantly through

the study of shape memory polymers [135–139]. This study therefore extends the

applicability of reversible plasticity as a concept to soft matter more broadly, in

particular in the context of amorphous materials with recoverable strain.

Chapter 6 outlines how the SGR model can simulate the strain recovery of amorph-

ous materials, and suggests it as a candidate for future theoretical studies in this

area. This further work, outlined in Section 6.7, could include an increased spa-

tial dimensionality, other recovery protocols such as the relaxation from oscillatory

shear [41, 159,208–211], and further model variation, for instance in the exploration

of how temperature affects recoverable strain. In addition, experimental studies

could reveal the behaviours predicted here in amorphous materials not traditionally

expected to be capable of strain recovery.
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To conclude, this thesis has explored a range of phenomenological behaviours of

amorphous materials under shear protocols. The simulations have captured existing

experimental observations, and predicted new phenomena. Nevertheless, from may-

onnaise to magma [17, 74], there is still more to discover about this diverse group

of disordered systems and multiple avenues of possible future work have been sug-

gested. It is hoped that the results obtained in this thesis, and any of the follow-up

studies proposed, will advance insight into the yielding, relaxation and recovery of

amorphous materials.



Appendix A

Convergence Checks

In Fig. A.1, Fig. A.2, and Fig. A.3, the results of some of the convergence tests

carried out for the work in this thesis can be seen. These show the variation of

the number of elements (or the number of discretisation points in strain space,

depending on the model) M and the timestep ∆t. These are the two key parameters

for determining convergence and ensuring that the results are consistent across

different seeding for the random number generation involved in the model.

Across all of these figures, it is clear that there is a high consistency between the

simulations with M = 105 and M = 106, and similarly with ∆t = 0.01 and ∆t =

0.005. Although there are slight differences between the plots, assumed to be a result

of noise originating from the random probabilities associated with the models, the

differences are negligible, and are not clearly visible on the scale of the simulation.

This confirms good convergence for these values.

For all the results presented in this thesis, convergence tests have been carried

out to ensure that no behaviour is a result of finite system size or computational

randomness.



186

Figure A.1: Stress decay Σ as a function of time t after the imposi-
tion of a step strain of amplitude γ0 = 1.2, as simulated
within the Thermal Elasto-Plastic model, for a range of
pre-shear equilibrium temperatures x0=[0.02, 0.019, ...,
0.01] (in order from grey to red or left to right in the sud-
den stress drop). For each x0, the solid line represents
the simulation with M = 105 and ∆t = 0.01, the line
with triangles represents simulations with M = 106,
and the line with circles represents simulations with
∆t = 0.005. Each of these three lines has also been
plotted for five different seeds of the random number
generator used in the model. Although there are differ-
ences between the fifteen lines for each x0, the difference
is negligble, and cannot be clearly seen on the scale of
the simulation, confirming good convergence with these
simulation parameters.
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Figure A.2: The strain response γ relative to the initial strain as a
function of time t following the imposition of a range
of constant step stresses Σ0 = [1.0, 1.2, ..., 2.0] (from
bottom to top or red to yellow) after a waiting time
tw = 105. For each Σ0, the solid line represents the
simulation with M = 105 and ∆t = 0.01, the line with
triangles represents simulations with M = 106, and the
line with circles represents simulations with ∆t = 0.005.
Each of these three lines has also been plotted for five
different seeds of the random number generator used
in the model. Although there are differences between
the fifteen lines for each Σ0, the difference is negligble,
and cannot be clearly seen on the scale of the simula-
tion, confirming good convergence with these simula-
tion parameters.
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Figure A.3: The strain response γ normalised by the controlled
forward strain ∆γf as a function of time after the
stress switch-off for a single controlled forward strain
∆γf = 0.5, waiting time tw = 103 and a range of im-
posed step stresses Σ0 = [0.3, 0.5, ..., 1.9] (from top
to bottom or dark blue to red). For each Σ0, the
solid line represents the simulation with M = 105 and
∆t = 0.01, the line with triangles represents simulations
with M = 106, and the line with circles represents sim-
ulations with ∆t = 0.005. Each of these three lines
has also been plotted for five different seeds of the ran-
dom number generator used in the model. Although
there are differences between the fifteen lines for each
Σ0, the difference is negligble, and cannot be clearly
seen on the scale of the simulation, confirming good
convergence with these simulation parameters.
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