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ABSTRACT 

In recent years, massive open online courses (MOOCs) have become universal knowledge 

resources and arguably one of the most exciting innovations in e-learning environments. 

MOOC platforms comprise numerous courses covering a wide range of subjects and domains. 

Thousands of learners around the world enrol on these online platforms to satisfy their learning 

needs (mostly) free of charge. However, the retention rates of MOOC courses (i.e., those who 

successfully complete a course of study) are low (around 10% on average); dropout rates tend 

to be very high (around 90%). The principal channel via which MOOC learners can 

communicate their difficulties with the learning content and ask for assistance from instructors 

is by posting in a dedicated MOOC forum. Importantly, in the case of learners who are suffering 

from burnout or stress, some of these posts require urgent intervention. 

Given the above, urgent instructor intervention regarding learner requests for assistance via 

posts made on MOOC forums has become an important topic for research among researchers. 

Timely intervention by MOOC instructors may mitigate dropout issues and make the difference 

between a learner dropping out or staying on a course. However, due to the typically extremely 

high learner-to-instructor ratio in MOOCs and the often-huge numbers of posts on forums, 

while truly urgent posts are rare, managing them can be very challenging –– if not sometimes 

impossible. Instructors can find it challenging to monitor all existing posts and identify which 

posts require immediate intervention to help learners, encourage retention, and reduce the 

current high dropout rates.  

The main objective of this research project, therefore, was thus to mine and analyse learners’ 

MOOC posts as a fundamental step towards understanding their need for instructor 

intervention. To achieve this, the researcher proposed and built comprehensive classification 

models to predict the need for instructor intervention. The ultimate goal is to help instructors 

by guiding them to posts, topics, and learners that require immediate interventions. 
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Given the above research aim the researcher conducted different experiments to fill the gap 

in literature based on different platform datasets (the FutureLearn platform and the Stanford 

MOOCPosts dataset 1) in terms of the former, three MOOC corpora were prepared: two of them 

gold-standard MOOC corpora to identify urgent posts, annotated by selected experts in the 

field; the third is a corpus detailing learner dropout. Based in these datasets, different 

architectures and classification models based on traditional machine learning, and deep 

learning approaches were proposed.  

In this thesis, the task of determining the need for instructor intervention was tackled from 

three perspectives: (i) identifying relevant posts, (ii) identifying relevant topics, and (iii) 

identifying relevant learners. Posts written by learners were classified into two categories: (i) 

(urgent) intervention and (ii) (non-urgent) intervention. Also, learners were classified into: (i) 

requiring instructor intervention (at risk of dropout) and (ii) no need for instructor intervention 

(completer).  

In identifying posts, two experiments were used to contribute to this field. The first is a 

novel classifier based on a deep learning model that integrates novel MOOC post dimensions 

such as numerical data in addition to textual data; this represents a novel contribution to the 

literature as all available models at the time of writing were based on text-only. The results 

demonstrate that the combined, multidimensional features model proposed in this project is 

more effective than the text-only model. The second contribution relates to creating various 

simple and hybrid deep learning models by applying plug & play techniques with different 

types of inputs (word-based or word-character-based) and different ways of representing target 

input words as vector representations of a particular word. According to the experimental 

findings, employing Bidirectional Encoder Representations from Transformers (BERT) for 

word embedding rather than word2vec as the former is more effective at the intervention task 

than the latter across all models. Interestingly, adding word-character inputs with BERT does 

not improve performance as it does for word2vec. Additionally, on the task of identifying 

topics, this is the first time in the literature that specific language terms to identify the need for 

urgent intervention in MOOCs were obtained. This was achieved by analysing learner MOOC 

posts using latent Dirichlet allocation (LDA) and offers a visualisation tool for instructors or 

learners that may assist them and improve instructor intervention. In addition, this thesis 

 
1 https://datastage.stanford.edu/StanfordMoocPosts/ 
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contributes to the literature by creating mechanisms for identifying MOOC learners who may 

need instructor intervention in a new context, i.e., by using their historical online forum posts 

as a multi-input approach for other deep learning architectures and Transformer models. The 

findings demonstrate that using the Transformer model is more effective at identifying MOOC 

learners who require instructor intervention. 

Next, the thesis sought to expand its methodology to identify posts that relate to learner 

behaviour, which is also a novel contribution, by proposing a novel priority model to identify 

the urgency of intervention building based on learner histories. This model can classify learners 

into three groups: low risk, mid risk, and high risk. The results show that the completion rates 

of high-risk learners are very low, which confirms the importance of this model. Next, as 

MOOC data in terms of urgent posts tend to be highly unbalanced, the thesis contributes by 

examining various data balancing methods to spot situations in which MOOC posts urgently 

require instructor assistance. This included developing learner and instructor models to assist 

instructors to respond to urgent MOOCs posts. The results show that models with 

undersampling can predict the most urgent cases; 3x augmentation + undersampling usually 

attains the best performance. Finally, for the first time, this thesis contributes to the literature 

by applying text classification explainability (eXplainable Artificial Intelligence (XAI)) to an 

instructor intervention model, demonstrating how using a reliable predictor in combination 

with XAI and colour-coded visualisation could be utilised to assist instructors in deciding when 

posts require urgent intervention, as well as supporting annotators to create high-quality, gold-

standard datasets to determine posts cases where urgent intervention is required. 
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CHAPTER 1: INTRODUCTION 

 

 

An introduction to the topic of this thesis is provided in this chapter and has been organised as 

follows. Firstly, it presents a brief introduction to MOOCs (Section 1.1), followed by an outline 

of the research problem (Section 1.2), the motivations for this work (Section 1.3), an 

explanation of the research scope (Section 1.4), the research questions (Section 1.5), the 

research objectives (Section 1.6), and an outline of the research contributions (Section 1.7). 

Finally, it offers a comprehensive outline and structure (Section 1.8) of the current thesis. 

1.1.  Introduction 

Massive open online courses (MOOCs) are a subset of information systems known as open 

distance online learning environments with large-scale enrolment (Arguello and Shaffer, 

2015). In recent years, Coursera2, edX3, Udacity4, and FutureLearn5 have emerged as popular 

platforms (Joseph, 2020). Since their emergence as a popular global mode of learning in 2012 

(Yan et al., 2019), MOOCs have been providing substantial support to learners  by offering and 

delivering global, high-quality, education via a wide variety of online courses across numerous 

domains and subjects. MOOCs are provided by numerous universities, institutions, companies, 

and ventures (Chaturvedi, Goldwasser and Daumé III, 2014) to cater for a wide range and 

unlimited number of learners. Most of these courses are offered at no cost (free) or extremely 

cheaply (Yang et al., 2017; McAuley et al., 2010) and some have no prerequisite for enrolment 

 
2 www.coursera.org 
3 

www.edx.org 
4 

www.udacity.com 
5 

www.FutureLearn.com 

 

http://www.coursera.org/
http://www.edx.org/
http://www.udacity.com/
http://www.futurelearn.com/
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and low access barriers; as a result, these courses have helped attract a large learner cohort and 

reach hundreds of thousands of learners (Wise, Cui and Vytasek, 2016); at the end of 2021, 

about 220 million people were enrolled on MOOCs (Shah, 2021) to improve their lifelong 

learning in flexible way and improve their knowledge at their convenience (Yang et al., 2015). 

Further, MOOC learners live all over the world and come from diverse knowledge backgrounds 

and education systems, and have a huge range of abilities, goals, and motivations.  

1.2.  Research Problem 

MOOC courses offered by leading universities are playing an increasingly vital role in 

education; this was compounded during the recent COVID pandemic and lockdown as most 

educational institutions around the world turned to online study (Soni, 2020). MOOCs continue 

to grow and proliferate dramatically; however, the completion rates for MOOC courses are 

extremely low (Crossley et al., 2016): only 3–5% on two MOOCs on the University of 

Melbourne platform (Coffrin et al., 2014) and just 10% on the FutureLearn platform (Alamri 

et al., 2019) –– which is low enough to be a serious problem. There are several ongoing 

educational debates about the reasons for these low completion rates. One of the most critical 

factors identified is missing real-time direct interaction in terms of face-to-face 

communication, support, and collaboration, which leads online learners to feel isolated and 

suffer from a lack of meaningful human interaction compared with other educational 

environments. Because of this, some learners may feel stuck, confused, need clarification, and 

may struggle to stay on their course; if these issues are not addressed, they can ultimately lead 

to dropout (Yang et al., 2015; Kizilcec and Halawa, 2015). Also, (Gütl et al., 2014; Onah, 

Sinclair and Boyatt, 2014a) found that this issue was related to the lack of sufficient learner 

support and interaction with course instructors.  

The primary way for learners to communicate, interact and express their feelings about 

MOOC content, learning progress, and highlight concerns, questions, and desire for help is via 

forum posts (comments). It needs to be noted that here the terminology posts is used 

interchangeably with comments in the scope of this thesis (for more details see Section 2.2.1.3); 

the two terms are used interchangeably in the literature to represent indirect interaction on 

asynchronous online discussion forum platforms (Chen et al., 2019). Posts connect learners to 

learners, or learners to instructors. In general, such communication can have significant 

learning impacts (Ntourmas et al., 2019); learners who participate in forum discussions are 

more likely to finish (parts of) a course (Klusener and Fortenbacher, 2015). However, a lack of 
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receiving responses and feedback on their problems from instructors or peers may cause 

learners to develop negative feelings about their studies, thus hindering their learning progress 

and ultimately causing them to drop out of the course (Yang et al., 2015; Park and Choi, 2009), 

which therefore highlights the need for urgent instructor intervention (Almatrafi, Johri and 

Rangwala, 2018). Instructor intervention is one critical solution for reducing learner dropout. 

In addition, some types of learner queries and requests for support can only be answered by an 

instructor (Macina et al., 2017). 

From an instructor’s perspective, intervention to address learners’ questions in online 

learning is a central and essential teaching activity (Chandrasekaran et al., 2017) and could 

make the difference between a learner completing the course or not. While instructors have 

limited time and bandwidth (Chandrasekaran et al., 2015b), they try to assist, encourage, 

motivate, and support learners and tend to respond to their questions as much as possible. 

However, due to the tremendous number of learners enrolled on these platforms and the 

extremely high ratio of learners to instructors, it is very hard for instructors to commit to 

monitoring all learners’ textual forum posts and determine when to intervene (Wei et al., 2017). 

Therefore, instructors need to be selective in their interventions (Chaturvedi, Goldwasser and 

Daumé III, 2014). In addition, the massive amounts of posts on MOOCs, most of which are 

general discussion and forging social connections that do not involve any urgent issues or 

require intervention, mean that it is difficult and time-consuming (effort-intensive) for 

instructors to effectively manage to monitor and review all existing posts, which may number 

in the millions, and find cases where it is necessary to engage in meaningful interactions to 

resolve issues and provide feedback. Also, such intervention is often preferred to be performed 

in real-time (Chandrasekaran et al., 2015b). This challenging research problem has encouraged 

research on instructor intervention in MOOC discussion forums.  

1.3.  Research Motivations 

On MOOC platforms, struggling learners often describe their need for help via forum posts. 

However, the often-huge numbers of posts on forums make it unlikely that instructors can 

capture these posts and respond to all learners; many of these urgent posts are overlooked or 

discarded. 

Natural language processing (NLP) which began in the 1950s (Kalyanathaya, Akila and 

Rajesh, 2019) is an exciting research direction in computer science for analysing large datasets 
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such as those associated with MOOCs. The main goal of NLP is processing ‘natural language’ 

using computers to analyse the data, extract information or even represent information in 

different ways (Conneau et al., 2016). NLP is a prominent area of both the fields of 

computational linguistics and artificial intelligence (AI) (Garousi, Bauer and Felderer, 2019). 

NLP has been revolutionised with the emergence of machine learning (ML), neural networks 

(NNs) and deep neural networks (DNNs), particularly in relation to DNNs due to their 

significant performance and fewer requirement for engineered features (Yin et al., 2017). Deep 

learning (DL) is an efficient approach for use in NLP (Wei et al., 2017). One significant topic 

for NLP is text classification, which assigns an unstructured text to predefined categories 

(Zhang, Zhao and LeCun, 2015); it is considered a supervised machine learning model 

(Agarwal and Mittal, 2014). Text classification is an important area that renders itself 

appropriate for the problem addressed in the current thesis.  

Since MOOCs contain a massive amount of data (big data) produced by huge numbers of 

learners, they are appropriate for study with learning analytics (LA) (Khalil and Ebner, 2017). 

LA is a crucial field of technology-enhanced learning (Ferguson, 2012) and defined in (Slade 

and Prinsloo, 2013) as student-generated, actionable data that are gathered, analysed, used, and 

properly disseminated with the aim of providing learners with appropriate administrative, 

cognitive, and instructional support. Therefore, the development of LA methods is also useful 

in addressing intervention issues to investigate learner data and how learners behave to improve 

and optimise instructor interventions.  

Thus, the aim of this research project is to reduce the effort required by MOOC instructors 

and support them by (i) automatically exploring whether MOOC posts need urgent instructor 

attention and intervention, (ii) extracting language that highlights the need for urgent MOOC 

instructor intervention, and (iii) discovering when MOOC learners tend to drop out. In addition, 

the current thesis sought to expand the identification of urgent posts by proposing three research 

directions: (i) offering an automated intervention priority model built on learners’ histories, (ii) 

solving the imbalanced data issue related to MOOCs and presenting an automatic intervention 

detection method to flag up when instructor assistance is required based on user modelling, and 

(iii) employing XAI to improve general instructor intervention in MOOC environments as well 

as annotators. This was achieved by analysing the textual content of learners’ MOOC posts 

using NLP techniques as a text classification task, and clustering and proposing, designing and 

developing robust and useful supervised and unsupervised ML algorithms and models. In 

supervised algorithms, traditional ML, and DL were applied.  



5 
 

The main motivation of this research is to help instructional staff to better utilise their time 

by easily identifying and filtering learner posts from discussion forums in MOOCs, extracting 

urgent language terms that may help instructors to improve the quality of their interventions, 

and recognising dropout learners so that intervention can be provided before dropout using an 

automated system based on learner posts. The filtering of posts categorises interventions into 

urgent and non-urgent while of learners into dropout or completers. Then, assigning priority 

and adding adaption to the interventions to improve the quality of such interactions. In addition, 

applying XAI to assist both instructors and annotators and thus improving the process of 

instructor intervention in MOOC environments. 

1.4.  Research Scope 

Researchers, MOOCs designers, universities, and educational institutions have begun to pay 

more attention to instructors’ presence and interventions in online discussion forums 

(Mazzolini and Maddison, 2007) and MOOC-based environments specifically. To date, many 

researchers in this area (Khodeir, 2021; Sun et al., 2019; Guo et al., 2019) and others as 

discussed later in Chapter 2, have focused on the instructor intervention in MOOC 

environments based on posts without any focus on learners and their behaviours. However, this 

thesis tackled the problem of the instructor intervention task in MOOCs beyond that by 

identifying three key perspectives as follows: 

• Posts: building supervised prediction models to predict urgent posts. 

• Topics: building unsupervised prediction models to identify topics based on posts 

and correlate such topics with urgent posts. 

• Learners: building supervised prediction models to predict learners who need urgent 

intervention by utilising the temporal history of learner post content.  

Next, the task was to expand the efficacy with which urgent posts are identified by 

incorporating learner- and instructor-based models. Lastly, the task was to use an XAI approach 

to understand the supervised classification model and employ XAI to assist both instructor and 

annotators.  

To conduct the above experiments, two dataset sources were included: (i) the FutureLearn 

platform (a course with 5790 forum posts) and the Stanford (11 courses with about 29,604 

forum posts) (Agrawal et al., 2015; Agrawal and Paepcke, 2019). Both datasets were annotated 

manually by human coders (for more details see Chapter 3).  
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Please also note that learners who need intervention but do not use forum posts as a 

communication means are not the target of this research project; identifying such learners 

would require an alternative approach.  

1.5.  Research Questions 

The aim of this thesis was to address the problem of when instructor intervention is required 

based on MOOC learners’ posts and address the gap in the existing literature on this area as 

described in Chapter 2; this was achieved by defining the following umbrella research question 

(RQ):  

• RQ: How can the need for urgent instructor intervention be automatically and 

realistically detected based on learner posts in MOOC environments? 

To help with answering this wide research question, the following sub-RQs were formulated: 

• RQ1: What are the most appropriate choices when classifying urgent posts that need 

instructor intervention in terms of: (i) their various dimensions; (ii) deep learning 

approaches; (iii) word- or word-character-based approaches? 

This RQ represents the first attempt to better understand how the problem of classifying urgent 

posts is to be tackled, and what methods can be used. This RQ is answered in Chapter 4. 

• RQ2: Can the language of urgency be detected from learner posts and can it be 

visualised simply and intuitively? 

After finding performant models as a result of RQ1, the next step was to look more deeply into 

the language contained in the posts themselves in Chapter 5.  

• RQ3: Can learners who may drop out be predicted from the history of their most recent 

posts? 

Dropout is one of the main causes of the need for instructor intervention in MOOCs. This 

research question sought to analyse this cause in a more in-depth way (further details are 

provided in Chapter 6).                   

• RQ4: Can the behaviour of learners who need an urgent intervention be analysed to 

lead to an effective intervention priority framework? 
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This RQ seeks to analyse another aspect related to the urgent instructor intervention need 

problem: the relationship with learner behaviour, which brings the work one step closer to the 

intervention, by creating an intervention priority framework (details in more depth in Chapter 

7).  

• RQ5: How can the prediction model for urgency detection be further improved to be 

applicable to adaptive intervention? 

This RQ attempts the final (and comprehensive) modifications to the prediction model for 

urgent instructor intervention need by addressing other issues found such as data imbalance (in 

Chapter 8).  

• RQ6: How can a transparent XAI model be constructed to detect urgent intervention 

need to support instructors' decisions to intervene in posts as well as improve human 

annotators' decisions on urgent posts intervention? 

The research on urgent intervention need detection on MOOCs has shown that understanding 

posts urgency is challenging both for machines and humans. To further help the process of 

urgent intervention, as presented in Chapter 9. 

1.6.  Research Objectives 

This study aimed to investigate the possibility of developing ML models that predict the need 

for instructor intervention based on learners’ posts on MOOC discussion forums. To achieve 

this and address the above RQs, the following research objectives (ROs) were formulated:  

• RO1: To systematically review current models that predict instructor intervention need 

based on learner posts in MOOCs, analyse the findings for in-depth understanding of 

this topic, clarify the limitations of these models, and suggest some areas for 

development. The main (umbrella) RQ was formulated based on the findings related to 

this objective (Chapter 2). 

• RO2: To create a new corpus for instructor intervention in MOOC forum discussion 

posts derived from the FutureLearn platform which is manually annotated by experts 

in the domain. This is important to represent different types of platforms and address 

the current shortage in the available dataset Stanford MOOCPosts (Chapter 3).  

• RO3: To classify learners’ urgent posts that need instructor intervention based on two 

methods: (i) using several dimensions to analyse posts as features in addition to textual 
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data, and (ii) using different levels and representation of textual inputs via the use of 

different DL approaches. This addresses RQ1 (Chapter 4).  

• RO4: To extract from posts language that highlights the need for urgent instructor 

intervention using topic modelling and visualisation. This objective addresses RQ2 

(Chapter 5). 

• RO5: To examine the capability to predict which learners may drop out and need 

instructor intervention in MOOCs based on their textual post history using ML 

approaches. This objective is achieved by addressing RQ3 (Chapter 6). 

• RO6: To enhance instructor intervention in relation to learner posts by introducing an 

effective priority intervention model based on learner behaviour. This addresses RQ4 

(Chapter 7). 

• RO7: To solve the highly unbalanced data issue in MOOCs datasets by using NLP 

approaches and automate the urgent-post identification process based on learner 

modelling to provide automatic and adaptive recommendations to instructors. This 

objective is achieved by addressing RQ5 (Chapter 8).   

• RO8: To apply XAI techniques to interpret a MOOC intervention model to support 

instructors' decisions to intervene in posts and improve human annotators’ decisions on 

urgent posts intervention processes. RQ6 addresses this objective (Chapter 9). 

1.7.  Research Contributions 

This thesis provides several novel contributions to the instructor intervention problem in 

MOOC discussion forums by proposing different models (post-based: 2 models; topic-based: 

1 model; learner-based: 1 model; post- and learner-based (adding priority): 1 model; post-based 

and user modelling (solving the imbalanced): 1 model; XAI: 1 model).  

The key contributions are as follows: 

 

• Systematically reviewing the available research on instructor intervention in MOOC 

discussion forums using preferred reporting items for systematic review and a meta-

analysis (PRISMA) protocol (Chapter 2). 

• Creating a Gold-standard corpus for instructor intervention on MOOC discussion forum 

environments (posts gathered from the FutureLearn platform) which is annotated by 

expert human annotators and analysed in terms of intervention (Chapter 3). 
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• Building a novel classifier for this problem based on a DL model that incorporates 

different dimensions of MOOC posts (i.e., numerical data in addition to textual data) to 

classify urgent posts (Chapter 4). 

• Constructing different simple and hybrid deep learning models by applying plug & play 

techniques with various types of inputs and representing words to establish good 

combinations in terms of performance (Chapter 4). 

• Extracting the language highlighting the need for urgent intervention in MOOCs by 

analysing text posts and proposing visualisation tools (Chapter 5).  

• Identifying MOOC learners who may dropout and need instructor intervention by using 

their historical online forum posts as data and constructing a multi-input approach for 

siamese and dual BERT with binary text classification, with the resulting integrated 

networks being termed multi-siamese BERT and multiple BERT, respectively (Chapter 

6). 

• Proposing a novel priority model to identify posts that need urgent intervention based 

on learner histories; namely, past urgency, sentiment analysis, and step access (Chapter 

7). 

• Applying different data-balancing techniques for traditional and deep ML to identify 

instances when urgent instructor intervention is required in MOOC environments and 

proposing several new pipelines to generate more data for text augmentation (Chapter 

8). 

• Creating the first learner, instructor, and adaptation models to support instructors to deal 

with urgent posts in MOOCs (Chapter 8). 

• Applying text classification explainability (XAI) to an instructor intervention model. 

Also, connecting the AI prediction error to a lack of human confidence, to be used for 

annotator support for creating high-standard corpora (Chapter 9). 

1.8.  Thesis Outline 

The thesis is structured and organised into eleven chapters as follows: 

• Chapter 1: Introduction: This chapter presents the research problem, motivations, scope, 

RQs, ROs, and contributions.  
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• Chapter 2: Background and Literature Review: This chapter introduces the background to 

the main topics and systematically reviews the literature on instructor intervention related 

to learner posts in MOOC environments. 

• Chapter 3: Methodology: This chapter outlines the methodology used to address the RQs 

of this thesis. This discusses several data sources and how different datasets can be 

formulated, as well as performance evaluations, ethical issues, and overall experiments.  

• Chapter 4: Intervention Prediction: Post-Based Model: This chapter describes the two 

experiments (a multidimensional deep learning model and plug & play model with DNNs) 

used to identify posts that need urgent intervention. In each experiment, the related works 

are provided. It then describes the models and discusses the results.   

• Chapter 5: Analysing Text Posts using Modelling to Extract Urgent Language: This chapter 

provides an analysis of learner’s text posts. It discusses the related research before 

describing the methodology and presenting the results. 

• Chapter 6: Intervention Prediction: Learner-Post-Based Model: This chapter illustrates the 

experiment designed to detect learners at risk of dropping out by discussing the related 

research, methodology, and results. 

• Chapter 7: Intervention Prediction: Post- and Learner-Based Model (Adding Priority in 

Intervention): This chapter explains the framework used to add priority for instructor 

intervention. It provides the methodology and discusses the results.  

• Chapter 8: Intervention Prediction: Posts-Based and User Modelling (Solving the 

Imbalanced Data Issue): This chapter explains the experiment designed to solve the 

problem of imbalanced data and propose an adaption model. It describes the related work, 

methodology, and results. 

• Chapter 9: An Explainable Artificial Intelligence (XAI) Approach for Urgent Instructor 

Intervention Models: This chapter clarifies how XAI can be employed to the instructor 

intervention task. It presents the related work followed by the methodology and results. 

• Chapter 10: Discussion: This chapter discusses the important topics of the current thesis in 

relation to the obtained results; it also outlines the limitations and future research avenues.  

• Chapter 11: Conclusion: This chapter concludes and summarises the key contributions and 

findings.  

The thesis summary workflow is shown in Figure 1.1 (below). 
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Figure 1.1: Thesis summary workflow. 

The next chapter provides background on the thesis’s main topics including MOOCs, NLP, and 

ML. In addition, it reviews the literature on instructor intervention related to learner posts in 

MOOC contexts. 
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CHAPTER 2: BACKGROUND AND LITERATURE 

REVIEW 

 

 

2.1.  Prologue 

It is noteworthy that in any research project, the background and literature review is a crucial 

stage since it helps the researcher understand the subject, include important ideas for 

consideration, and identify the gaps in previous works. The literature review marks the starting 

point of a research project and identifies research gaps and questions that the thesis could 

address (Kraus, Breier and Dasí-Rodríguez, 2020). Thus, the purpose of this chapter is to 

introduce the thesis topic by outlining and understanding the background around the three main 

topics of this research project: (i) MOOCs, (ii) NLP, and (iii) ML (see Section 2.2). In addition, 

it reviews the literature covering these topics (see Section 2.3). Moreover, it provides a 

systematic review of instructor intervention need in MOOC discussion forums with the goal of 

analysing the extant research (see Section 2.3.4). The results of the systematic literature review 

will help to identify gaps in the current literature and aid the design, creation, and development 

of models that can address these research gaps. 

2.2.  Background 

This section outlines the main theoretical background and provides brief definitions of the 

concepts related to the three main topics: (i) MOOCs (and a variety of similar platforms); (ii) 

NLP approaches; (iii) ML methods relevant to this thesis. 
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2.2.1. MOOCs 

In 2008, the term MOOC was coined for the first time by George Siemens and David Cormier 

to describe an open online course: Connectivism and Connective Knowledge (CCK08) 

(Downes, 2008) launched by Siemen and Stephen Downes at the University of Manitoba, 

Canada (Liyanagunawardena, Adams and Williams, 2013; De Notaris, 2019). MOOCs then 

received great media coverage when the New York Times announced that 2012 was ‘The Year 

of the MOOC’ (Pappano, 2012). MOOCs are defined according to EU-funded MOOC projects 

and OpenupEd as  

Online courses designed for large numbers of participants, that can be accessed by anyone and 

anywhere as long as they have an internet connection, are open to everyone without entry 

qualifications, and offer a full/complete course experience online for free (Jansen and Schuwer, 

2015).  

(Khalil and Ebner, 2017; Wulf et al., 2014) define the four words which comprise the term 

MOOC as:  

• Massive (M): representing that there are significantly more learners enrolled than in 

usual distance-learning courses. 

• Open (O): explaining the concept of openness as there tend to be no (or very few) 

requirements to participate and (mostly) free access is provided to everyone. 

• Online (O): referring to the fact that courses are delivered across the global Internet and 

are not location-specific.  

• Courses (C): constituting structured learning content according to the concept that 

primarily takes the form of articles, interactive social media channels, and video 

lectures. 

Following that, MOOCs can be divided into two main learning paradigms: cMOOCs and 

xMOOCs: the former are connectivism-based while the latter lie closer to more traditional 

behaviourist models (Kesim and Altınpulluk, 2015). Most common MOOC platforms belong 

to xMOOCs where the responsibility of the participants is minimal and limited to their 

contributions to a forum (Borrás-Gené, 2019). xMOOCs differ significantly from cMOOCs as 

they focus on participation in online discussions (Daniel, 2012).   

Meanwhile, there is a lot of interest in online courses as the majority of them do not require 

prerequisite qualifications to participate. These courses are taught by academics at top-ranking 
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universities since they offer a full distance learning environment with videos, assignments, 

presentations, and other course materials (Kesim and Altınpulluk, 2015) and are constantly 

growing, as shown in Figure 2.1 (below) (Shah, 2021). These online MOOCs courses are 

frequently created independently by academics and published by third-party online venues 

(Baturay, 2015). 

 

Figure 2.1: The number of courses in MOOCs during the years (Shah, 2021). 

According to (Brahimi and Sarirete, 2015), there are many MOOC providers from different 

countries, including the United States (Coursera, Edx, Udacity), Europe (FUN, Iversity), the 

United Kingdom (FutureLearn), the Middle East (Rawaq, Edraak), and Australia 

(Open2Study). In recent years, millions of learners around the world have used MOOCs as a 

result of the increased popularity of these types of courses (Ipaye and Ipaye, 2013). In 2021, 

about 220 million learners joined MOOC platforms (Shah, 2021). Although each platform has 

its advantages and disadvantages, they all provide a wide range of academic courses from 

providers around the globe (Reutemann, 2016). Different platforms provide different structures 

of courses and discussion forum posts. For example, the accepted length of each post varies 

with different platforms settings. The next sections introduce the different platforms related to 

this thesis.  

2.2.1.1. Stanford University Online  

Stanford University, an elite, cutting-edge institution, created an educational initiative called 

Stanford Online which provides a variety of professional and academic educational 
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opportunities. Over 10 million learners in 190 countries are able to take more than 200 free and 

open online courses through Stanford Online using its Open edX technology. In 2011, in the 

early stages of MOOC at Stanford University, 160,000 learners from more than 190 nations 

enrolled on a course on artificial intelligence that was introduced by Peter Norvig and Sebastian 

Thrun (Voudoukis and Pagiatakis, 2022). Similarly, in October 2011, Andrew Ng, another 

Stanford University professor, conducted an online course with 100,000 learners (Herman, 

2012). This clarifies the huge numbers of learners studying on MOOCs even at the beginning 

of the era. At the time of writing (2023) nearly 78 free online courses are available from 

Stanford University.   

2.2.1.2. FutureLearn 

Futurelearn is a European online learning information system that facilitates remote and online 

learning from top universities; it is similar to the American platform, Coursera (Reutemann, 

2016), and offers free (or partly free) learning. According to the number of learners registered, 

FutureLearn in 2016 is the fourth largest MOOC provider in the world with 5.3 million learners 

(Shah, 2016). In 2012, FutureLearn began as a collaboration between numerous leading UK 

universities, the BBC, and the British Library; this platform later expanded to include courses 

from other schools, NGOs, and companies (Cristea et al., 2018). To offer online courses and 

degrees, FutureLearn collaborates with around 300 leading international institutions and 

specialised organisations6. FutureLearn courses cover a wide range of topics and many of them 

are offered periodically as iterations (referred to as "runs"). The structure of these courses is 

hierarchical, with weeks and steps as shown in Figure 2.2 (Chitsaz, Vigentini and Clayphan, 

2016). Each week contains several steps that represent a single learning unit including videos 

and assignments, etc. The step type can be recognised by its title (Chitsaz, Vigentini and 

Clayphan, 2016). Most courses run for six to ten weeks; others run for only two or three weeks 

(Using FutureLearn, 2020). In November 2019, FutureLearn announced on its website that ten 

million learners have officially studied on FutureLearn on over 2,400 courses.  

 
6 Current partners - FutureLearn 

https://www.futurelearn.com/partners
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Figure 2.2: An overview of the FutureLearn course structure (Chitsaz, Vigentini and Clayphan, 2016). 

2.2.1.3. Discussion Forums in MOOCs 

Since the early 1990s, discussion forums have been utilised as online learning tools (Onah, 

Sinclair and Boyatt, 2014b). In MOOCs, discussion forums are one of the important  

components (Bonafini, 2017); these forums are crucial channels that allow learners to interact 

with their peers and instructors asynchronously. These interactions represent a form of social 

networking that include requests for help, clarification about course topics, as well as general 

communication. 

Different MOOC platforms implement different structures and settings (Gardner and 

Brooks, 2018). For instance, on the FutureLearn platform, which follows a social-constructivist 

pedagogy, the discussion forum is a highly important element (Ferguson and Clow, 2015); thus, 

the discussion forums on the FutureLearn platform feature comments from participants under 

every step in a week; each comment posted can be replied to by any participant, except in the 

case of quizzes and exercises (Chua et al., 2017), for formal discussion and commenting 

(Vigentini, León Urrutia and Fields, 2017). Thus, such forums allow participants to post at any 

step and at any time. The comments posted in such forums tend to be brief with a 1200-

character limit and can be categorised into two types: (i) new posts as comments and (ii) replies 

to other posts.  

Meanwhile, on the Coursera platform, which is the largest MOOC platform (Wu, 2021), 

discussion forums are constructed using special sections (Drobot, 2023). The instructor can 

divide the forums listed in the discussion forum tab into sub-forums to organise discussions 

(Chandrasekaran et al., 2015a). Discussion forums on Coursera are composed of three levels: 
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(i) threads, (ii) posts, and (iii) comments, structured as follows. The forum contains several 

threads; each learner can create new threads or add content to pre-existing threads. These 

threads consist of one or more posts, arranged in temporal order (a new post is added to the 

thread under the most recent). The person who created the thread writes the initial post. A 

participant can reply to a thread (add a new post) or reply to a post (add a new comment). Some 

researchers propose that posts and comments can be used interchangeably (Brinton et al., 

2014), while others distinguish between posts and comments (Rossi and Gnawali, 2014). 

The OpenEdX platform, which some related work used data from, is structured in a three-

level hierarchy (Ntourmas et al., 2019) as Figure 2.3 (below) shows. Discussions-responses-

comments is the terminology utilised on this platform while in Coursera, as mentioned, the 

three levels are referred to as threads-posts-comments. 

 

Figure 2.3: An overview of the OpenEdX discussion forum structure (Ntourmas et al., 2019). 

The focus of the current thesis is to identify posts on The Stanford MOOCPosts dataset in terms 

of two levels (commentThread or comment); on the FutureLearn, two levels (comment or reply) 

are used to identify if there is a need for intervention or not. As shown, different platforms use 

different terms; thus, here for simplicity and consistency, the term post is used to define such 

comments and replies on all platforms as the goal here is to identify posts that require instructor 

intervention regardless of if they are threads, posts, comments, or replies.    

2.2.1.4. Instructor Intervention in MOOCs Corpora 

The current interest in the instructor intervention problem in MOOCs led researchers of 

previous works to use different corpora. For example, the Anonymized Coursera Discussion 

Threads dataset (Rossi, 2023; Rossi and Gnawali, 2014) collected data from 60 courses on the 

Coursera platform with about 100,000 threads. Despite being huge in size, it does not contain 

the textual content of posts; it only provides metadata for linguistic analysis (about posts) such 
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as num_words (number of words). Another available dataset is the Stanford MOOCPosts 

dataset (Agrawal et al., 2015; Agrawal and Paepcke, 2019) which is available on request for 

researchers; it contains 29,604 learner forum posts that include the text of posts. Although this 

dataset is large and widely used in researching the instructor intervention problem in MOOCs, 

it is limited to the textual content of posts along with some metadata; however, it does not 

include information about learners that can be used to study behaviours or dropout rates. This 

thesis applied experiments such as text classification and topic modelling using The Stanford 

MOOCPosts dataset. Then, a new dataset was created that gathered posts from the FutureLearn 

platform to conduct different experiments related to learner behaviour to identify urgent posts 

requests and MOOC learners at risk of dropping out.  

2.2.2. NLP 

NLP is a common topic in computer science literature. The study of NLP began in the 1950s 

(Kalyanathaya, Akila and Rajesh, 2019) from the intersection of linguistics and AI (Nadkarni, 

Ohno-Machado and Chapman, 2011). NLP uses computer methods, algorithms, and tools to 

learn, understand, process, and create human language content (Hirschberg and Manning, 

2015). NLP’s main goal is to process text computationally so that it can be analysed in terms 

of natural language data which can then be represented in different ways (Conneau et al., 2016). 

The use of NLP has developed over recent years into research and technology domains because 

of its computational power, its capacity to process large amounts of linguistic data, and its 

ability to create effective ML models to help understand the structure of human language use 

(Hirschberg and Manning, 2015). 

One significant topic and application of NLP is text classification which assigns an 

unstructured text according to its content to predefined categories (Zhang, Zhao and LeCun, 

2015). Various ML models have been applied to text classification with a wide range of 

applications including sentiment analysis (Dawei et al., 2021) and spam detection (Sharmin 

and Zaman, 2017).  

Numerous methods exist for extracting information from unstructured text input and using 

it to train classification models. To represent words as numerical vectors, techniques include 

the Bag-of-Words (BoW) model, the Word Embedding model, and state-of-the-art Language 

models. The BoW model is relatively simple; it relies on the presence or absence of a word in 

a document by generating a vocabulary from a corpus of documents; it then tracks the 
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frequency of the use of each target word. The dimension of vector is fixed with the same length 

of the vocabulary featured in all the target documents. The term frequency (TF) representation 

counts words by giving words different weights based on how frequently they occur in each 

document. In the TF case, each word is counted as equally important. Thus, there are common 

words with the highest frequencies of use but that are assigned little importance (e.g., and, is, 

that, etc.). Meanwhile, term frequency-inverse document frequency (TF-IDF) is used to display 

the importance of a word in relation to a particular document in a collection or corpus. In vector 

representation, a word's value increases proportionally to its count, but a word’s importance is 

inversely proportional to its frequency in the corpus. In other words, more frequently used 

words are weighted more lightly and less frequently used words are weighted more heavily.   

The term word embedding was first used in 2003 by Bengio et al. (Bengio et al., 2003) to 

explain the process by which words are mapped to fixed-length vectors of real numbers. The 

probability distribution for each word appearing before or after another is used to calculate 

these vectors. Thus, words associated with particular related contexts normally appear together 

in a corpus and thus they will be closer to one another in their vectors. Different popular word 

embedding techniques include word2vec (Mikolov et al., 2013), GloVe (Pennington, Socher 

and Manning, 2014), and Fast Text (Bojanowski et al., 2017). In language models such as 

BERT, which uses contextual dynamic embedding, each word has a representation that is a 

function of the entire input sequence. As a result, depending on the context, a word may have 

different vectors. 

In this thesis word2vec and BERT were used as word embedding tools in different 

experiments. Therefore, the difference between them must be clarified. Both are used for 

generating vector representations of words. However, while word2vec vector representations 

are static, they capture contextual information about a particular word in relation to the corpus 

used to train them. Also, word2vec vector representations are context-independent: a word's 

embedding will be the same regardless of the context in which it was used as each word has a 

single vector (numeric) representation. BERT, meanwhile, is based on the context of a given 

word: it creates context-aware embeddings that enable each word to have various 

representations (each representation in this case is a different vector). 
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2.2.3. Machine Learning 

ML is a field of computer science and AI that focuses on developing models that can learn 

independently from data and make decisions and predictions (Naqvi et al., 2023). ML is defined 

by Arthur Samuel as a field that enables computers to learn without being explicitly 

programmed (Mahesh, 2020). Supervised, semi-supervised, and unsupervised techniques are 

the three main approaches used in ML-type learning algorithms. One might be selected for use 

over another depending on the nature of the research problem and the data available for 

analysis. Also, ML algorithms are employed in many different applications such as computer 

vision and NLP. The two main types of ML models are traditional machine learning and neural 

networks. The theoretical backgrounds of ML algorithms employed in this thesis are clarified 

in the following sections. 

2.2.3.1. Traditional Machine Learning 

In traditional ML approaches, features must be manually extracted by subject matter experts 

through a procedure called feature engineering. These features are fed to simple-structure ML 

algorithms. Feature engineering is crucial in the beginning to allow an algorithm to decide on 

outputs depending on what it has discovered from the given features. A brief overview of the 

traditional ML models used in this thesis is provided below; all of them are based on supervised 

learning. In Chapter 8 to classify urgent posts, the traditional ML used were naive Bayes, 

logistic regression, support vector machine, random forest, and boosting (extreme gradient 

boosting). 

2.2.3.1.1. Naive Bayes 

Naive Bayes (NB) (independent Bayes) classifiers (also referred to as probabilistic classifiers) 

were developed based on applying Bayes’ theorem. NB is the simplest form of Bayesian 

network models (Jiang, Zhang and Cai, 2008). In Bayesian networks, features are assumed to 

be independent of one another; the naive classifier assumption holds that the presence of a 

feature in one category has no relevance to the presence of other features. NB models are easy 

to create; at the same time, NB models offer good performance and are particularly useful for 

use in classification tasks with large data sets to provide effective text classification.  
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2.2.3.1.2. Logistic Regression  

Logistic regression (LR) (or the logit regression model) has been used since 1845 when 

population growth in the period was being studied mathematically (Cokluk, 2010). LR is a 

widely used statistical model used to calculate the probability that a given instance belongs to 

a certain class. Although LR is called regression, it is not regression per se; rather, LR is a 

classification algorithm which is based on the logistic function that has an output value of 

between 0 and 1. LR is commonly employed to address binary classification tasks. 

2.2.3.1.3. Support Vector Machine 

The support vector machine (SVM) (or support vector network) is widely employed for solving 

classification problems such as text classification. SVM is based on statistical learning theory 

and the structural risk minimisation principle (Kamath, Bukhari and Dengel, 2018). Finding a 

hyperplane in an N-dimensional space (N denotes the number of features) that categorises the 

data points (support vectors) clearly into distinctive groups in regions (one for each class) is 

the objective of SVM. There are numerous possible hyperplanes that might be chosen to split 

two groups of data points but the objective is to find the maximum distance between data points 

of both classes (the margin). Figure 2.4 (below) shows an overview of SVM with support 

vectors, hyperplanes, and margins. 

 

Figure 2.4: An overview of SVM - support vectors, hyperplanes, and margins. 

2.2.3.1.4. Decision Tree 

A decision tree (DT) operates on a hierarchical tree-like model of decisions and is used for both 

classification and regression tasks. The success of the DT method can be primarily attributed 
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to its simplicity of use and capacity to produce precise predictive models with comprehensible 

and interpretable structures (Yu et al., 2010). 

The structure of a DT consists of three major types of nodes: (i) the root node (the starting 

node of the tree that represents the data and is divided into different distinctive sets depending 

on specific features), (ii) the leaf node (the node at the end of the chain that represents the final 

outcome), and (iii) the internal node (a node other than a leaf node that represents a "decision") 

(Ali et al., 2012). The pathways from root to leaf represent classification rules; to find the 

optimal split points inside a tree, a so-called greedy approach is conducted. The splitting 

process continues until the predefined stopping criteria are met. Random forest (RF) (discussed 

later) is an extended version of DT. 

2.2.3.1.5. Random Forest  

The random forest (RF) algorithm is a collection of decision trees known as forests as each tree 

is dependent on a random vector's values (Breiman, 2001). RF is an ensemble method that 

combines the results of many various decision tree classifiers to arrive at a single result rather 

than depending on one decision tree. The class that most of the trees chose (votes) is the output 

of the RF model in classification problems. Figure 2.5 (below) illustrates a RF voting system 

and an RF structure, where n is the number of trees. To achieve good performance, the number 

of trees should be selected through trial and error since there is no optimal number of trees that 

applies to all models. 

 

Figure 2.5: An overview of RF. 
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2.2.3.1.6. Boosting Model –– Extreme Gradient Boosting 

(XGBoost) 

XGBoost (which stands for extreme gradient boosting) was initially created in 2014. It is an 

extended, optimised, distributed, flexible, and fast technique for gradient boosting (Chen and 

Guestrin, 2016). XGBoost is a class of ensemble machine learning techniques (tree-based) that 

can be applied to classification or regression predictive modelling tasks. XGBoost is regarded 

as one of the best algorithms for supervised learning (Osman et al., 2021). XGBoost supports 

parallel processing which is more advantageous than traditional boosting algorithms 

(sequential) and better results are obtained with sparse data. The main benefit of using 

XGBoost is that it successfully prevents overfitting (Zhang et al., 2023) by offering a number 

of parameters of regularisation, such as gamma, alpha, and lambda. 

2.2.3.2. Deep Learning 

Deep learning (DL) is the most recent achievement of the ML era; DL is based on neural 

networks with complex structures. The main significant distinction between traditional ML and 

DL is the method of extracting features from data inputs. In DL, features are extracted by the 

algorithm itself from vast amounts of data (big data) with a lesser need for feature engineering 

(Whang et al., 2023). Figure 2.6 (below) provides an overview of the differences between these 

two models. 

 

Figure 2.6: An overview of the difference between extracting features in traditional ML and DL. 
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Artificial neural networks (ANNs) are the backbone of deep learning algorithms; DL contains 

ANNs with many layers. Hence in the following sub-sections, the ANN and the major DL 

architectures used in this thesis: multi-layer perceptron (MLP), convolutional neural network 

(CNN) and recurrent neural network (RNN) are provided. 

2.2.3.2.1. Artificial Neural Network 

The primary goal of an ANN construction was to mimic the functioning of the human brain 

(Bashar, 2019) and understand how information is processed by biological nervous systems 

composed of neurons. ANNs have artificial neurons that are linked to one another in various 

layers of networks like a human brain that has neurons interconnected to each other. In the 

training of ANNs, the input is provided and the network is ‘told’ what the output should be. 

The network then assigns various weights between its neurons. 

The training phase in a single neuron can be clarified as shown in Figure 2.7 (below) as a 

set of input values (X1, X2, X3, …Xn), associated weights (W1, W2, W3, …Wn), and a function 

that sums the weights, adds a bias (constant) parameter, and maps the results through the 

activation function to an output (y).  

 

Figure 2.7: An overview of a artificial neural network neuron in the training phase. 

This is described mathematically as follows:    

                                                                      𝑠 = ∑ (𝑤𝑖 𝑥𝑖)
𝑛
𝑖=1 + 𝑏                                                              (2.1) 

 

b 
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2.2.3.2.2. Multi-Layer Perceptron 

The multi-layer perceptron (MLP) is a typical example of feedforward ANN class that is fully 

connected with multi-layered. MLP is simple and one of the most widely used DL algorithms. 

The three essential layers used to define MLP architectures are the input, one or more hidden, 

and output layers as the output of one layer serves as the input for the next layer as depicted in 

Figure 2.8 (below). Each neuron is ‘fully connected’: nodes in each layer are connected to all 

other nodes in the previous and next layers as shown in Figure 2.8 (below).  

 

Figure 2.8: An overview of a multi-layer fully connected MLP. 

Three main steps are involved in MLP training: (i) forward pass and prediction, (ii) a loss 

function is used to compare the prediction with the actual value, and (iii) backpropagation 

which determines the gradients for each node in the network, using the provided error value. 

The gradient is the quantity utilised to modify the internal weights of the network, thus enabling 

‘learning’ to occur. The MLP used in this thesis is further explained in Chapter 4, in the first 

experiment (multi-dimensional deep learning model) to train the numerical data (multiple 

dimensions) as the sub-model from the overall model. 

2.2.3.2.3. Convolutional Neural Networks 

Convolutional neural networks (CNNs) (LeCun et al., 1998) are one of the most important 

ANNs and an impressive form of DL; CNNs include neurons with their own respective biases 

and weights in several layers. The term CNN derives from a mathematical linear procedure 

between matrixes called convolution (Albawi, Mohammed and Al-Zawi, 2017) which is a 

process involving the sliding or convolution of a predetermined window of data. The network 

consists of multiple weights and biases in layers, but the features exist in the form of spatial 

structures. Three layers make the fundamental structure of a CNN: (i) a convolutional layer, 



26 
 

(ii) a pooling layer, and (iii) a fully connected layer. An overview of the structure of a CNN is 

shown in Figure 2.9 (below). The filters in the convolutional layer transform the large amount 

of data into feature maps. The pooling layer then processes these feature maps, reducing the 

parameters. The fully connected layer is processed using the output features from the pooling 

layer (see Figure 2.9 below). In NLP, the motivation for employing CNNs is to locate more 

complex features from constituting words or n-grams (Young et al., 2018), and to obtain the 

hierarchical, high-level semantic representation of the selected input words (Gu et al., 2018; 

Guo et al., 2019). 

 

Figure 2.9: An overview of CNN structure. 

CNN architecture was used in this thesis in three different experiments: in Chapter 4 in both 

experiments (i) the multi-dimensional deep learning model, (ii) plug & play with deep neural 

networks to predict urgent posts from text, and (iii) in Chapter 6 to predict dropout learners.  

2.2.3.2.4. Recurrent Neural Networks 

Recurrent neural networks (RNNs) (Elman, 1990) are a class of ANNs and one of the most 

widely used DL architectures. RNNs are capable of modelling sequential data or time series 

data types. RNNs handle inputs differently with a state that is not ‘lost’ (as in a normal ANNs) 

as the state is lost when an input is processed. Each current state's output is processed and 

concatenated with the input of the following step in sequence to extract information. In NLP, 

the motivation for using RNNs is their ability to capture text sequentially (Young et al., 2018).  

In RNNs, the gradient value is transmitted to an earlier state; however, this raises a problem 

known as the vanishing gradient problem, which gradually vanishes (i.e., gets smaller) as the 

number of time steps in the series increases. Long short-term memory (LSTM) and gated 

recurrent units (GRUs) are the two main varieties of RNNs that have emerged as a result of the 
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development of gating mechanisms to address some of RNN's limitations, as explained in the 

next sections. 

2.2.3.2.4.1. Long Short-Term Memory 

The Long short-term memory (LSTM) (Hochreiter, urgen Schmidhuber and Elvezia, 1997) is 

an enhanced RNN architecture that deals with dependence sequences of data with feedback 

connections; it has attained unprecedented performance in several fields. LSTM was developed 

to overcome the exploding/vanishing gradient problem faced by RNNs when learning long-

term dependencies in datasets (Van Houdt, Mosquera and Nápoles, 2020) by adding a new 

component known as cell state and internal mechanisms called gates, namely: forget, input and 

output gates with a range of functions. The cell state recalls values over time intervals while 

gates control the flow of information into and out of the cell. The information flow in an LSTM 

cell is illustrated in Figure 2.10 (below).  

 

Figure 2.10: An overview of LSTM cell. 

The flow of information in a LSTM cell is as follows:  

• Forget gate: which information should be forgotten in the current cell state is decided 

by this gate. Information is derived from both the previous hidden state ht-1 and the 

current input xt through the sigmoid function (σ) that generates an output value of ft 

between 0 and 1. To forget means getting closer to 0, and to keep means getting closer 

to 1. This is illustrated in the following formula (2.2): 

                                              𝑓𝑡  =  𝜎 (𝑤𝑓 . [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑓)                                                    (2.2) 

 

• Input gate: which new input data should be included in the new cell state is decided by 

the input gate; this is done by following two steps. First, the previous hidden state ht-1 
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and the current input xt are passed through the sigmoid function (σ), which decides 

which values will be updated by generating values between 0 and 1. 1 denotes 

importance and 0 indicates it is non-importance. Second, the hidden state ht-1 and the 

current input xt are also passed through the tanh function which generates values (𝐶̃𝑡) 

of between -1 and 1 to help regulate the network. This is mathematically expressed as 

follows (2.3) and (2.4). Then the output from tanh is multiplied (element-wise 

multiplication) by the output from sigmoid. 

                                          𝑖𝑡  =  𝜎 (𝑤𝑖 . [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑖)                                                      (2.3) 

                                          𝐶̃𝑡  =  𝑡𝑎𝑛ℎ (𝑤𝑐 . [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑐)                                              (2.4) 

 

• Cell state: which updates the previous cell state, Ct-1, to the present cell state, Ct. First, 

the previous cell state is multiplied (element-wise multiplication) by the forget value. 

Then the output from 𝑖𝑡 × 𝐶̃𝑡 is added (element-wise addition) following Equation 

(2.5): 

                                              𝐶𝑡  = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶̃𝑡                                                      (2.5) 

 

• Output gate: which information should be passed to the next hidden state; it manages 

the output flow to other cells or as the final results. The previous hidden state ht-1 and 

the current input xt are passed into the sigmoid function (σ) as shown in Equation (2.6). 

Then the newly modified cell state is then passed to the tanh function. Then the output 

from tanh is multiplied by the output from sigmoid (element-wise multiplication) to 

obtain a final decision as shown in Equation (2.7).  

                                           𝑜𝑡  =  𝜎 (𝑤𝑜 . [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑜)                                                   (2.6) 

                                             ℎ𝑡  = 𝑜𝑡  × 𝑡𝑎𝑛ℎ(𝐶𝑡)                                                               (2.7) 

 

This model is applied in Chapter 4 in the second experiment (plug & play with deep neural 

networks) to predict posts. 

2.2.3.2.4.2. Gated Recurrent Unit 

The gated recurrent unit (GRU) (Cho et al., 2014) is another type of RNN and represents the 

most up-to-date generation introduced in 2014. GRU is an updated version of LSTM with a 
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simplified configuration and fewer parameters which leads to faster processing by combining 

both the forget gate and the input gate into a single unit gate called an update gate as shown in 

Figure 2.11 (below). 

 

Figure 2.11: An overview of GRU cell. 

GRU contains two gates (an update gate and a reset gate); it does not contain a cell state as in 

LSTM. Instead, GRU uses hidden states to transport information. The following explains the 

processing of a single unit in GRU and the basic workflow:  

• Update gate: like the forget and input gates, the update gate decides which information 

should be forgotten and which new input data should be included in the current cell 

state. The update gate is calculated using the formula (2.8): 

                                         𝑧𝑡 =  𝜎 (𝑤𝑧 . [ℎ(𝑡−1), 𝑥𝑡 ]  + 𝑏z)                                                (2.8) 

 

• Reset gate: how much of the past information from the previous hidden state to forget 

is decided by reset gate as in Equation (2.9). 

                                          𝑟𝑡 =  𝜎 (𝑤𝑟 . [ℎ(𝑡−1), 𝑥𝑡]  + 𝑏r)                                                   (2.9) 

 

• Current memory: the rest gate is used to keep the relevant past information. The 

respective equation is as follows: 

                                 ℎ̃𝑡 =  𝑡𝑎𝑛ℎ (𝑤ℎ̃𝑡
 . [𝑟𝑡 × ℎ(𝑡−1), 𝑥𝑡]  + 𝑏ℎ̃𝑡

)                                       (2.10) 

• Final memory: to calculate the information for the current hidden state ( ℎ𝑡) to pass it 

on, as shown in Equation (2.11). 

                                           ℎ𝑡 =  𝑧𝑡  ×  ℎ(𝑡−1)  +  (1 −  𝑧𝑡)  ×  ℎ̃𝑡                                    (2.11) 
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This algorithm is used in Chapter 4 in the second experiment (plug & play with deep neural 

networks) to meet the objective of predicting urgent posts.  

2.2.3.2.4.3. Bidirectional RNNs 

Bidirectional RNNs (Bi-RNNs) (Schuster and Paliwal, 1997) are an expanded version of 

unidirectional RNNs which uses a combination of two standard RNN layers. Bidirectional 

RNNs process the input sequences on both sides, past to future (forward) and on the opposite 

direction, future to past (backward) as shown in Figure 2.12 (below) to predict the data using 

contextual information. In NLP, the motivation for utilising Bi-RNNs is that it can understand 

a comprehensive sentence and has complete sequential knowledge of all words occurring 

before and after each word in a given sentence. 

Two types of such Bi-RNNs were used in this thesis, namely, Bi-LSTM and Bi-GRU, in the 

second experiment (plug & play with deep neural networks) in Chapter 4 to classify posts (see 

Chapter 4) and in Chapter 6 to identify dropout learners. 

 

Figure 2.12: An overview of the Bi-RNN model. 

2.2.3.2.5. Transformer Architecture 

A recent development in attention mechanisms is the invention of Transformer architecture 

(Vaswani et al., 2017) which has emerged as a promising method and a powerful DL algorithm. 

Transformer architecture is supported by an attention mechanism based on an encoder-decoder 

type of architecture. The encoder, which is the encoding layer, converts a series of input data 

into an abstract continuous representation. The decoder (the decoding layers) then takes the 

continuous representation and generates a single output. Each encoder and decoder layer 

employs an attention mechanism to assess the relative weight of each individual input item of 
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data. Transformers have extremely long-term memory which is made possible by the attention 

mechanism and processing all inputs simultaneously. Transformers are context-dependant and 

can understand the context given to each word with its meaning in the text. 

BERT is the most powerful Transformer model and has been extremely popular, being 

applied in text classification models with high performance, such as in (Fonseca et al., 2020) 

and (Pereira et al., 2021). According to (Rogers, Kovaleva and Rumshisky, 2021), in 2020, 

BERT established itself as a common baseline in NLP experiments, with over 150 research 

publications analysing and enhancing the model. 

2.2.3.2.5.1. BERT 

BERT (Devlin et al., 2018) which was launched in 2018 by Google AI researchers based on 

the Transformer architecture developed for NLP is an advanced language representation model 

pre-trained on a large amount of textual data. BERT uses context-dependent embedding to find 

the relationships between words and understand sentences. It can be used as pre-trained or fine-

tuned by customising it to the specific NLP task as illustrated in Figure 2.13 (below). Two 

versions of BERT architecture are available (BERTbase and BERTlarge). The settings of 

BERTbase version are as follows: (layers=12, hidden states=768, heads=12, and parameters 

=110M) while in the BERTlarge version they are as follows: (layers=24, hidden states=1024, 

heads=16 and parameters =340M).  

 

Figure 2.13: General pre-training and fine-tuning procedures for BERT (Devlin et al., 2018). 

BERT is based on a multi-layer approach and works as an attention mechanism that learns the 

contextual relationships between words or sub-words in a text. The Transformer encoder reads 

the entire sequence of words at once, in contrast to directional models, which read the text input 
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sequentially (from right to left or left to right). BERT uses a combination of two unsupervised 

training techniques: masked language modelling and next sentence prediction. 

In the masked language model (MLM) approach, random word sequences are changed with 

a [MASK] token for 15% of the words in each sequence before being fed into the BERT. Based 

on the context offered by the other, non-masked, words in the sequence, the model then tries to 

predict the original value of the masked words. 

In the next sentence prediction (NSP) mechanism, during the training phase, the model 

learns to predict whether the second sentence in a pair will come after another in the original 

document by receiving pairs of sentences as input. During training, 50% of the inputs are pairs 

in which the second sentence is the next one in the original text, and in the remaining 50%, the 

second sentence is a randomly selected sentence from the corpus. The underlying assumption 

is that the second phrase will not be connected to the first. This captures more long-term 

information. 

BERT is used in this thesis in different experiments depending on the experimental settings: 

as embedding, in Chapter 4 with the second experiment (plug & play with deep neural 

networks) and in Chapter 6 which proposed multi-siamese BERT and multiple BERT, that 

accept more than two posts’ inputs, which are discussed in detail in Chapter 6. Moreover, BERT 

is used to predict urgency in Chapters 7, 8, and 9.    

2.3.  Literature Review 

MOOC providers, MOOC courses, MOOC learners, and even MOOC researcher numbers have 

grown dramatically in recent years. There has been a huge recent research interest in addressing 

the challenges faced by MOOCs; one of the central challenges is the point at which instructor 

intervention is needed. (Chaturvedi, Goldwasser and Daumé III, 2014) observed that, after 

instructor intervention in a thread, the thread increased its posting/viewing, indicating the 

importance of the instructor’s intervention. However, given the huge number of posts on 

MOOCs, varying from 103 to 9300 (as shown in Figure 2.14 below) (Rossi and Gnawali, 

2014), as well as the enormous learner-to-instructor ratio in MOOCs, it would be time-

consuming and often impossible for an instructor to read all posts and then determine which 

posts required attention (Litman, 2016).  
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Figure 2.14: Number of threads versus course identifiers (Rossi and Gnawali, 2014). 

The above challenge has been confirmed  by an instructor from Vanderbilt University who 

claimed it is impossible to navigate such forum discussions after three days and suggested using 

NLP to reorganise forums (Hollands and Tirthali, 2014). Also, as another instructor, Dr. 

Williams (Zheng et al., 2016), mentioned, 

Although it’s impossible to take care of every student in my course given the huge population, 

I still feel bad when I cannot finish going through all the discussion on the forum or answering 

all the questions they raised. I know I shouldn’t feel guilty. But as a teacher, I feel like it’s my 

responsibility to help everyone in my class.  

This clarifies how it is a challenge for instructors to identify the need for urgent instructor 

intervention in MOOC environments. Therefore, automatic identification of urgent cases to 

address instructor overload in MOOCs contexts is required. 

This section gives a brief review of related works linked to the current thesis. First, it 

describes studies that have been performed to solve some of the challenges of MOOCs using 

NLP. Then, it describes previous studies on categorising posts on discussion forums. Following 

this, it explains the types of intervention possible, such as via automatic tools or human 

intervention. Finally, it systematically reviews previous studies on instructor intervention 

models. 

2.3.1. MOOCs and NLP 

NLP appeared in the 1950s; from its inception, researchers focused on different applications 

including educational ones, such as automatically scoring student texts and text-based dialogue 
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tutoring systems. Later, they concentrated on spoken language technologies. Although NLP 

and these applications are still attracting many researchers, recent phenomena have appeared, 

such as big data, and MOOCs. Researchers have focused on the related challenges and some 

even on combining AI approaches with NLP to study the big data produced by MOOCs 

(Litman, 2016). 

Analysis of discussion forum content data from MOOC platforms offers the opportunity to 

understand learners and their behaviours (Gardner and Brooks, 2018) including sentiment 

(Wen, Yang and Rose, 2014) and confusion (Agrawal et al., 2015) and so on. These methods 

include statistical analysis, and traditional ML and DNNs. There has been considerable 

research on MOOCs that use NLP as an analysis tool; for example, (Crossley et al., 2016) used 

some NLP tools, such as the Writing Assessment Tool (WAT), Tool for the Automatic Analysis 

of Lexical Sophistication (TAALES), Tool for the Automatic Analysis of Cohesion (TAACO), 

ReaderBench (RB), and Sentiment Analysis and Cognition Engine (SEANCE) to understand 

learner completion. Other research has focussed on the prediction of course completion and 

success (Robinson et al., 2016); here, the authors established NLP models using unigram and 

bigram features to parse text and make predictions. 

The creation of sentiment recognition was explored by (Liu et al., 2016) selected features 

for a prediction model using multi-swarm optimisation to recognise online course reviewers in 

MOOCs. Another study in sentiment analysis was conducted by (Wen, Yang and Rose, 2014), 

who mined learner opinions about a course and found a correlation between the sentiment ratio 

and learner dropout. In addressing confusion from posts, (Yang et al., 2015) used NLP features 

(Linguistic Inquiry and Word Count (LIWC) and several question marks and sentences 

beginning with a confusing expression) and user click patterns, which were applied in a 

classification model. In addition, (Agrawal et al., 2015) investigated identifying confusion by 

using three inputs, namely, post content (bag of words – BoW), post metadata, and classifier 

combinations. 

(Wise et al., 2017) proposed that NLP analysis in general and classification of posts in 

particular appear to be robust methods of solving the problem of instructor overload in MOOC 

environments. They applied 2410 features, including linguistic features (unigrams and 

bigrams) and the number of views and votes features to automatically predict content-related 

posts. (Arguello and Shaffer, 2015) incorporated linguistic and other features to predict speech 

acts in MOOC posts. They used 201 features including LIWC (60 features), sentiment (4 
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features), unigram (100 features), text similarity (6 features), temporal features (3 features), 

sequential correlation (7 features), author (1 feature), links (1 feature), modals (2 features), 

position (2 features), post comments (1 feature), punctuation (1 feature), and votes (1 feature). 

Previous studies have shown that NLP techniques can be used to address different 

challenges facing MOOCs to enhance learner performance and learning outcomes. 

2.3.2. Categories of Posts on Discussion Forums in MOOCs 

Different previous studies and efforts have addressed discussion forum data in MOOC 

environments; posts have been categorised in different ways for different purposes. For 

example, (Stump et al., 2013) classified every learner post in relation to the topic of posts and 

the role of posters into a manageable number of categories. They classified topics into content, 

other coursework, social/affective, course website/technology, course structure/policies, other, 

missing data and non-English, and classified the role of posters (help-seeker (or information-

seeker), help-giver (or information giver) and other) to develop a framework to classify posts. 

Meanwhile, (Rossi and Gnawali, 2014) classified thread-based discussions into the types of 

communications between users such as social talk, open-ended topics, (un)resolved issues, and 

course logistics, etc., by utilising five types of language-independent features except word 

count.  

(Arguello and Shaffer, 2015) classified posts into speech acts categorised to describe the 

purpose of a MOOC post to predict instructor intervention, assignment completion and 

assignment performance. They focused on seven speech act categories (question, answer, issue, 

issue resolution, positive acknowledgement, negative acknowledgment and other). An 

alternative approach by (Wise et al., 2017) attempted to classify starting posts according to 

whether they were content-related posts (binary dimension: if the content of the post is related 

to the course material or not); their aim was to support instructors and learners in finding 

appropriate posts. The study also revealed that using quantity of views and votes as features 

was useless for identifying content-related posts.  

(Yang et al., 2015) and (Agrawal et al., 2015) categorised posts based on confusion. Yang 

et al. (2015) classified each post according to different levels of confusion on a four-point 

Likert scale defined as no confusion, slightly confused, moderately confused, and seriously 

confused. In contrast, Agrawal et al. (2015) categorised every post in relation to the six 

following dimensions: question, answer, opinion, confusion, sentiment and urgency. The first 
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three dimensions were binary (0 or 1), while the last three dimensions took a discrete value 

from a scale (0–7). 

Several studies, and the current thesis, built models based on Agrawal et al.’s (2015) data 

which is the Stanford MOOCPosts dataset. As shown later in the systematic literature review, 

various studies used The Stanford MOOCPosts dataset to classify different dimensions or only 

urgent dimension.  

2.3.3. Categories of Types of Interventions 

Prior efforts to solve the problem of determining when instructor intervention is required in 

MOOC contexts fall into two main categories (Wise, Cui and Vytasek, 2016): (i) automatic 

tools to provide specific solutions which are a type of recommendation system, and (ii) 

predicting the need for instructor intervention automatically with the goal of supporting and 

facilitating human interaction. In providing a specific solution using the first type of 

intervention, Agrawal et al. (2015) recommended showing video clips to confused learners as 

an intelligent intervention. Other research (Rossi et al., 2022) used the Conversational Agent 

in an Educational Recommender System (CAERS) which, when a post on a discussion forum 

shows that pedagogical intervention is necessary, the topic of such a message is recognised and 

then suitable educational content is suggested to answer learner queries. Although 

recommendation systems provide learners with automated interventions and solutions, there 

are cases that require direct interaction by humans, hence the importance of this thesis. The 

next section provides a systematic review of studies on the intervention problem in MOOCs 

related to the second approach: predicting the need for instructor intervention automatically. 

2.3.4. Systematic Literature Review of Identifying Instructor 

Intervention Need in MOOC Discussion Forums 

While the literature on the proposing an intervention model that helps instructors to decide 

when intervention is needed has been continuously proliferating over the past few years, to 

date and to the best of the author’s knowledge, no studies designed to survey these works have 

been conducted. A systematic literature review (SLR), as the name infers, provides a collection, 

evaluation, integration, and presentation of findings from various research on a particular 

research topic (Pati and Lorusso, 2018) through transparent and reproducible methods (Clark 

et al., 2020) –– unlike traditional literature reviews (Kraus, Breier and Dasí-Rodríguez, 2020). 
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This work aims to categorise academic studies on instructor intervention in MOOCs based on 

discussion forum posts using a systematic analysis of the available peer-reviewed works. The 

preliminary screening covered 414 abstracts published from 2014 –– when the first abstract 

screened was published –– until the end of 2022. The PRISMA protocol (Moher et al., 2009) 

was followed to identify relevant papers to ensure rigour in the study selection and the reporting 

of findings. To the best of the author’s knowledge, identifying the need for instructor 

intervention in MOOCs has not yet been addressed in extant MOOC-related SLRs, making the 

present SLR both timely and significant. 

2.3.4.1. Systematic Literature Review Motivations 

Although MOOCs have been around for a decade (Pappano, 2012), several platforms are 

noticeably lagging in dealing with the massive numbers of learners they attract; especially in 

terms of learner-instructor interaction and the provision of timely intervention. Thus, the 

current SLR is essential as it highlights the gaps in the extant research on these issues through 

surveying the literature and exploring how the surveyed studies have identified, modelled, and 

provided results and recommendations on MOOC discussion forum-based instructor 

intervention. While these studies are initially expected to share heterogeneous definitions of 

intervention, datasets, methodologies, and approaches for reporting results, an explicit 

exploration of the extent to which the surveyed models are similar/different based on the type 

of intervention(s) addressed is considered appealing. 

2.3.4.2. Previous Surveys on MOOCs 

The present SLR study was attractive to the researcher due to the limitations of the current 

systematic research about instructor intervention in MOOCs. (Meet and Kala, 2021) SLR 

highlighted that just (7%) of the research on MOOCs was instructor focused, which indicates 

the need for additional research on the role of instructor intervention. Thus, the importance of 

the current research project lies in its novelty in analysing research devoted to the problem of 

instructor intervention in MOOCs. Previous SLR research has concentrated on a variety of 

literature on different aspects of MOOCs during given periods (see Table 2.1 below).  

Therefore, a systematic analysis of instructor intervention in MOOC studies to date is required. 

To the best of the author’s knowledge, this SLR is the first attempt at a comprehensive 

evaluation of the literature on instructor intervention in MOOC discussion forums. 
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Table 2.1. Previous SLRs on MOOCs, distributed by publication year, aims, focus, and period covered. 

Reference Year 

published 

Aims and focus Period covered 

MOOCs in general 

(Liyanagunawardena, 

Adams and Williams, 

2013) 

2013 Reported on the concepts, case studies, and 

educational theories of published MOOC literature 

and classified these studies into different categories. 

2008–2012 

(Kennedy, 2014) 2014 Investigated the characteristics of MOOCs from three 

perspectives: (i) definitions of openness, (ii) barriers to 

persistence, and (iii) a distinct structure of two 

pedagogical approaches. 

2009–2012 

(Raffaghelli, Cucchiara 

and Persico, 2015) 

2015 Explored and examined the trends in methodological 

approaches used in MOOC research. 

January 2008– 

May 2014 

(Veletsianos and 

Shepherdson, 2015) 

2015 Explored interdisciplinarity in MOOC research. 2013–2015 

(Veletsianos and 

Shepherdson, 2016) 

2016 Presented a comprehensive picture of the literature by 

examining geographic distribution, publication 

outlets, citations, data collection, analysis methods, 

and research strands of empirical research on MOOCs. 

2013–2015 

(Bozkurt, Akgün-Özbek 

and Zawacki-Richter, 

2017) 

2017 Explored the trends and patterns in research on 

MOOCs. 

2008–2015 

(Moreno-Marcos et al., 

2018b) 

2018 Surveyed prediction in MOOCs via characteristics of 

the MOOCs used for prediction, prediction outcomes, 

classifying the prediction features, techniques used to 

predict the variables and metrics used to evaluate the 

predictive models. 

No initial date– 

2017 

(Sanchez-Gordon and 

Luján-Mora, 2018) 

2018 Investigated research challenges in MOOCs. 2008–2016 

(Joksimović et al., 

2018) 

2018 Surveyed the approaches followed in relation to model 

learning and assessment in MOOCs and analysed 

learning-related constructs used in the prediction and 

measurement of student engagement and learning 

outcomes. 

2012–2015 

(Van de Oudeweetering 

and Agirdag, 2018) 

2018 Investigated the accelerators of social mobility. 2013–2015 

(Paton, Fluck and 

Scanlan, 2018) 

2018 Evaluated engagement and retention in vocational 

education and training (VET) in MOOCs and online 

courses. 

2013–2017 

(Zhu, Sari and Lee, 

2018) 

2018 Studied publication outlets, research methods, and 

topics of empirical MOOCs. 

October 2014– 

November 2016 

(Wong et al., 2019) 2019 Studied methods to support self-regulated learning. 

Also, the effect of human factors is examined. 

2006–2016 

(Lee, Watson and 

Watson, 2019) 

2019 Reviewed research on self-regulated learning in 

MOOCs. 

2008–2016 

(Zhu, Sari and Lee, 

2020) 

2020 Studied the research methods, topics, and trends of 

empirical MOOC research. 

2009–2019 

(Palacios Hidalgo, 

Huertas Abril and 

Gómez Parra, 2020) 

2020 Surveyed MOOCs’ origins and definition, their 

typologies and platforms, strengths and limitations, the 

concept of specialisation courses, and their didactic 

applications for foreign language learning. 

2012–2019 

(Jarnac de Freitas and 

Mira da Silva, 2020) 

2020 Explored gamification in MOOCs. 2014–July 2019 

(Lambert, 2020) 2020 Investigated how MOOCs contribute to student equity 

and social inclusion. 

2014–2018 

(Meet and Kala, 2021) 2021 Surveyed the trends and future prospects of MOOC 

research. 

2013–2020 
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(Mehrabi, Safarpour 

and Keshtkar, 2022) 

2022 Determined the global MOOC dropout rate and the 

variables influencing this frequency. 

2000–2021 

(Sallam, Martín-Monje 

and Li, 2022) 

2022 Explored the current published research on Language 

MOOCs (LMOOCs), outlining the types of papers, 

countries where studies were performed, and 

institutions devoted to this field. 

2012–2018 

(Najmani et al., 2022; 

Sallam, Martín-Monje 

and Li, 2022) 

2022 Reviewed MOOCs recommender systems. 2012–2022 

(Badali et al., 2022) 2022 Determined the roles of motivating factors and 

theories that affect participant retention in MOOCs. 

2015–2020 

MOOCs + discussion forums 

(Almatrafi and Johri, 

2018) 

2018 Descriptive analysis and content analysis of discussion 

forums in MOOCs. 

2013–2017 

However, to the best of the author’s knowledge, synthesising previous studies on instructor 

intervention –– with a major focus on discussion forum-based works –– has not yet been carried 

out. Since the emergence of MOOCs and their unprecedented proliferation over the past 

decade, different studies have dealt with estimating (or at least providing an insight into) the 

need for instructor intervention in MOOCs, and consequently deserve a separate survey to 

explore and synthesise these works. Thus, the present SLR contributes to the current literature 

by providing a promising synthesis of extant state-of-the-art studies on MOOC discussion 

forum-based instructor intervention by assessing the methodologies of the surveyed works 

from the data pre-processing stage to the performance metrics reported and highlighting some 

research opportunities and directions.  

2.3.4.3. Survey Methodology 

This SLR primarily covers the previous works on instructor intervention in MOOC discussion 

forums published since the emergence of MOOCs in 2011 (Ng and Widom, 2014) up until the 

end of 2022. Additionally, the inclusion and exclusion criteria were defined (see Section 

2.3.4.3.2), describing the standards upon which the decision for including a given study was 

made. The inclusion criteria are intended to be as inclusive as possible while conducting the 

present survey to investigate the included works while keeping in mind the need to exclude any 

irrelevant prior work that does not meet the inclusion criteria. 
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2.3.4.3.1. Surveyed Resources 

Two frequently used databases (Scopus7 and Web of Science (WoS)8) were adopted as they are 

the two most comprehensive abstract and citation bibliographic databases of peer-reviewed 

scientific journals and conference proceedings. These databases contain over three billion cited 

references combined (Zhu, Sari and Lee, 2020; Pranckutė, 2021), including major publishers 

in the area of educational technology and e-learning. This includes the Association for 

Computing Machinery (ACM), Taylor & Francis Group, ELSEVIER, the Institute of Electrical 

and Electronic Engineers (IEEE), Xplore, ERIC, and Springer. Many typical venues for MOOC 

instructor intervention are also indexed within the above two databases including the British 

Journal of Educational Technology (BJET), the Journal of Learning Analytics (JLA), the 

Journal of Educational Data Mining (JEDM), the International Journal of Artificial Intelligence 

in Education (IJAIED), the International Conference on Learning at Scale (L@S), the 

International Conference on Learning Analytics and Knowledge (LAK), the International 

Conference on Artificial Intelligence in Education (AIED), and the International Conference 

on Educational Data Mining (EDM). 

2.3.4.3.2. Eligible Studies: Inclusion and Exclusion Criteria 

This survey includes works that meet certain requirements, such as: (i) being authored in 

English only, (ii) being peer-reviewed to ensure research rigour, and (iii) providing a sufficient 

elaboration on the methodology followed. The latter includes explaining the data used, the 

feature engineering approach followed, the learning algorithms adopted, and the results 

achieved. The present study disregards non-peer-reviewed types of publications, e.g., book 

chapters, magazines, and pre-print works. 

The keywords and the Boolean operators that were used to search for the surveyed studies 

are as follows: (massive AND open AND online AND course* OR mooc*) AND (interven* 

OR urgen*) per appearance within the titles, abstracts, or keywords. Since the searched 

databases (Scopus and WoS) are case-insensitive, terms such as ‘MOOCs’ and ‘moocs’, were 

treated alike. Wildcards like the asterisk (*) were used after the root forms of the search terms 

to include any possible forms of the search terms. Additionally, parentheses were used to 

prioritise the order of precedence and search executions accordingly. The functionality of these 

 
7  https://www.scopus.com 
8 https://www.webofscience.com 

https://www.scopus.com/
https://www.webofscience.com/
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wildcards is typically standard within the databases used for retrieving surveyed works in the 

present review (ACM Advanced Search; Springer Link Search Tips; IEEE Explore Search 

Tips; Web of Science Core Collection: Search Tips; Scpus: Tips and Tricks). 

The initial search retrieved 673 studies (352 from WoS and 321 from Scopus). However, 

removing duplicates (223), non-English-authored (16) and non-peer-reviewed (20) studies 

resulted in a total of 414 abstracts for screening.  

2.3.4.3.3. Screening Process 

During the abstract screening process, three PhD-holding independent annotators, all with 

previous research experience, labelled the shortlisted abstracts (as included or excluded) based 

on the following criteria: 

2.3.4.3.3.1. Inclusion Criteria 

• Written in English. 

• Appears in a peer-reviewed journal article/conference paper proceedings to guarantee 

the highest levels of rigour. 

• Focuses on research related to identifying at least one of: posts/comments, learners 

(dropout), topics that need instructor intervention or urgent intervention based on 

learners’ text inputs in MOOC discussion forums. 

• In terms of identifying urgent posts, it can be a standalone task or one of a set of 

different tasks. 

2.3.4.3.3.2. Exclusion Criteria 

• Research on irrelevant topics that do not meet the inclusion criteria. 

• Some types of publications, including books, book chapters, magazines, and pre-print 

works. 

These criteria were considered when the studies were retrieved from the databases and then 

were checked by the reviewers. Figure 2.15 (below) illustrates the outcomes of the screening 

conducted by each annotator along with the number of sessions and the time taken using the 

Rayyan9 platform, which is an interactive AI-based website for abstract screening in a blind-

 
9 https://rayyan.ai 

https://rayyan.ai/
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reviewing environment (Ouzzani et al., 2016). It is a free online tool for academics to help 

them perform systematic reviews by significantly speeding up the selection and screening of 

research. 

The three reviewers worked independently (blind) to reduce bias; each abstract was triple-

evaluated and checked. After finishing the screening process of the 414 articles by each 

annotator, the blinding status was changed to blind-off which allows reviewers to see the 

decisions of the other reviewers. Next, the annotators discussed any conflicts using Rayyan’s 

reviewing chat; this resulted in more agreement between annotators on some conflicting 

studies. 

 

Figure 2.15: Summary of study screening conducted by the three annotators. 

This step resulted in the exclusion of 372 abstracts and the inclusion of 25 abstracts 

unanimously based on the annotators’ agreement, whereas 17 abstracts were further revised 

due to conflict between annotators.  

This review was guided by the stepwise PRISMA10 framework (Moher et al., 2009), the 

most frequently used, prominent, and most-cited guideline for conducting systematic reviews 

and meta-analyses (Kite et al., 2015; Sitanggang et al., 2021; Page and Moher, 2017; O'Dea et 

al., 2021; Fleming, Koletsi and Pandis, 2014). A PRISMA flowchart illustrating the sequential 

process of applying inclusion and exclusion criteria of each stage was used to produce a final 

number of studies for systematic review analysis which illustrates the exploration and 

screening of potentially suitable research studies (Harris et al., 2014). It contains four 

successive phases (identification, screening, eligibility, included) to increase the transparency 

 
10 http://www.prisma-statement.org  

http://www.prisma-statement.org/
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and quality of the systematic review’s reporting (Liberati et al., 2009). Figure 2.16 (below) 

shows the protocol’s four phases along with the outcomes of each stage. 

 

Figure 2.16: PRISMA flowchart diagram. 

2.3.4.3.4. Excluded Studies 

A further full-manuscript reading through of the conflicting studies was conducted for definite 

inclusion (or exclusion) of these studies. Out of the total number of 17 conflicting studies, 15 

were excluded whereas two studies were included, rendering the final total number of studies 

selected for inclusion (n = 27). Then, from these included studies, three studies were excluded 

after reading the full articles because they were not related to identifying instructor intervention 

need. Thus, the final number of included studies for synthesis was (n = 24). 

There were various reasons why some studies were excluded. This included not being based 

on discussion forums (Borrella, Caballero-Caballero and Ponce-Cueto, 2022; Sciarrone and 

Temperini, 2019; Sun et al., 2021; Meier et al., 2015; Kurtz et al., 2022; He et al., 2015; 
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Haniya, 2019; Itani, Brisson and Garlatti, 2018; Yang, 2022; Amarasinghe and Hernandez-

Leo, 2019). Other reasons included investigating how to change learner behaviours rather than 

tackling intervention need when learners faced any questions (Schutzberg, 2019). This study 

used ‘tough love’ to guide learners to engage with help resources such as forums and learn how 

they seek answers to their questions independently. Another study (Alshehri and Cristea, 2022) 

predicted learners’ certificate purchasing decisions using data from FutureLearn MOOC 

discussion forums and therefore was excluded. Another article (Sinha T, 2015) tracked learner 

interaction over time through video viewing and navigational and forum posting to predict the 

series of grades achieved by a learner in different MOOCs by using the probabilistic framework 

of conditional random fields (CRF). Regarding learning interaction and the development of 

social knowledge in MOOCs, (Chen and Yeh, 2021) used three types of role-assignment 

strategies to study knowledge construction and interaction patterns in asynchronous MOOC 

discussion forums. Another study (Koné et al., 2020) offered a novel methodology to compute 

a collective activity indicator to address the issue of identifying and displaying the collective 

dynamics resulting from the interactions in MOOC forums. This would assist instructors to 

intervene in the course structure or course design, but it does not help them to intervene on 

posts or learners. Thus, based on all these reasons, all the above studies were excluded. 

The three included studies by the same authors (Ntourmas et al., 2018; Ntourmas et al., 

2019; Ntourmas et al., 2022) do not intend to propose an approach to identify interventions; 

rather, they focus on instructor intervention from other perspectives. In the first study 

(Ntourmas et al., 2018), the goal was to examine the characteristics of teaching assistant 

interventions and compare two MOOCs on different subjects (technology and humanities). The 

study aims to provide crucial information on the behaviour of teaching assistants (TAs) in 

online discussion forums and inspire the creation of efficient support and automatic responses 

to learners in the future. They used a Greek MOOCs platform (mathesis.cup.gr) which is based 

on OpenEdX. The findings showed some quite variations in the language employed, message 

lengths, response times, and discourse lengths between the two courses' TA interventions. In 

the second study (Ntourmas et al., 2019), the authors evaluated a discussion forum design and 

found some issues. A mixed-methods study was conducted on two MOOCs offered via the 

OpenEdX platform. The findings of this study show that there are several usability problems 

with the OpenEdX forum design that negatively impact learners’ support and therefore the 

course designers need to take this into account. Also, the study found that intervention is 

correlated with the number of participants as they revealed that instructors evolved more 
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complex tactics to support learners when the number of learners in the forum increased. In the 

last and very recent study (Ntourmas et al., 2022), instructional strategies used by instructors 

(TAs) in two MOOCs covering various subject areas were investigated using a mixed-methods 

approach. The study aimed to assess the pedagogies used by TAs to support learners using a 

widely used methodology for evaluating the instructional quality of MOOCs. The TAs' 

intervention strategies were explored through content analysis and interviews, and the results 

were enhanced by linguistic and social network analysis. The findings of this study indicate 

some significant limitations in instructional design and emphasise the importance of making 

learner facilitation a central component of MOOCs' instructional design. The findings also 

highlight the requirement for guidelines which TAs should follow to take the most proper 

intervention decisions. The creation of tools is also discussed as being necessary for MOOC 

instructors to assist them in improving and maintaining the instructional design of their courses. 

2.3.4.4. Instructor Intervention in MOOCs 

The surveyed research concerning instructor intervention in MOOCs was categorised based on 

three main axes: identifying (i) posts, (ii) learners (dropouts), and (iii) topics. Then further sub-

categorisation was performed on post-based studies based on the platform from which the 

studies were sourced as shown in Figure 2.17 (below). The surveyed studies were published 

between 2014–2022 and are chronologically ordered in the figure below. 
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Figure 2.17: Categories of the surveyed studies. 

2.3.4.4.1. Post-Based Identification 

Most research on instructor intervention in MOOCs is based on identifying the need for 

intervention via posts, which account for about 70% of the surveyed studies. It is noted that the 

development of studies and their association with each other is within the same platforms and 

databases. Thus, it further categorises research into different MOOC platforms from which the 

datasets are sourced. In this section, all the included studies that used ML to predict posts that 

need instructor intervention were reviewed and clarified based on the following: MOOC 

platforms, intervention labels, classification models, performance evaluation and data splitting 

mechanisms, as described below. 
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2.3.4.4.1.1. Coursera 

Various studies used datasets which are collected and offered by Coursera; the largest MOOC 

platform (Wu, 2021). This includes (Chaturvedi, Goldwasser and Daumé III, 2014) who were 

among the first researchers to present the problem of prediction for instructor intervention in 

the MOOC forum environment using course information, forum structure, and post content 

from two Coursera MOOCs from various fields (science and humanities). Their models use 

latent categories to abstract the contents of individual posts into threads. The problem to 

address was a binary prediction task based on instructors’ intervention histories; they labelled 

data automatically, as follows: positive (1) if instructors had posted replies; negative (0) 

otherwise. The three employed models (logistic regression, linear chain Markov model, and 

global chain model) to determine whether or not an instructor would intervene in threads or 

posts. They reported the precision, recall and F-measure of the positive class to measure the 

performance of their models. They split and evaluated data using ten-fold cross-validation. 

They concluded that it is important to use a thread structure in predicting instructor intervention 

behaviour. However, they did not directly use the posts (textual inputs) for training their 

predictive model. 

Several research studies on instructor intervention in MOOC discussion forums have been 

authored by one research team. (Chandrasekaran et al., 2015a) proposed a taxonomy of 

pedagogical feasible instructor interventions for automated assistance on when and how to 

intervene in discussion forums that would maximally benefit learners’ studies. They used 61 

courses from Coursera encompassing different academic fields including sciences, humanities, 

and engineering. Their label is a type of intervention that promotes learner learning by 

annotating the contents of discussion forums. To predict intervention, they used CRF which is 

a probabilistic model. As the research is still in progress, they will measure learner performance 

in terms of quantitative and qualitative measures. 

The next research study (Chandrasekaran et al., 2017) investigated discourse relations and 

used Penn Discourse Treebank (PDTB) based features to predict the need for instructor 

intervention. Data from 14 Coursera MOOCs across 7 courses were used as the corpus for this 

study. They set labels wherein intervened threads are considered as positive and non-intervened 

threads as negative. They used three different models: (i) a maximum entropy classifier as a 

baseline with a set of features; (ii) only PDTB discourse relations as features; (iii) baseline + 

PDTB. They discussed the models' performance in terms of recall, precision, and F1 for the 
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positive class using two assessment schemes of in-domain and out-of-domain schemes. They 

show that using PDTB relation-based features resulted in better classifier performance 

compared to the baseline model. 

For position bias in the intervention setting, (Chandrasekaran and Kan, 2018) used a corpus 

that includes discussion forum threads from 14 MOOCs on Coursera. The dataset used covers 

a range of subject areas and courses offered by different universities across the world and taught 

by instructor teams of diverse sizes. In this study, they showed that there is strong position bias 

in instructor intervention based on where the thread appeared on the forum at the time the 

intervention occurred as they are ordered by their last update time. When bias from the training 

data was removed, the performance of the de-biased intervention classifier improved. 

2.3.4.4.1.2. Stanford 

In 2015, the Stanford MOOCPosts dataset was made available for researchers upon request 

which was manually labelled by nine consultants (three per field) and published by (Agrawal 

et al., 2015). The dataset includes about 29,604 learners’ posts in total, gathered from 11 online 

courses offered by Stanford University in the humanities/sciences, medicine, and education 

fields. Six categories, including confusion, sentiment, urgency, question, answer, and opinion 

were used to classify each post on these courses. Urgency was defined as: How urgent is it that 

this post should be seen by an instructor?; this dimension was used to describe instructor 

intervention in this survey. The following studies used this dataset to identify urgency, either 

as one of a set of different tasks or as a standalone task. 

The review began with studies that detected urgency within different tasks. In terms of the 

transfer learning model and cross-domain MOOC forum post classification, (Bakharia, 2016) 

was the first to consider this matter, conducting preliminary research on cross-domain 

classification. This was achieved by training different classifiers to classify forum posts into 

three different categories, specifically, confusion, urgency, and sentiment. Next, validation of 

the classification was performed via different unseen domain areas. The author constructed 

labels by transforming a 7-point scale of three different categories to a binary (Yes/No) 

classification, with values greater than 4 signifying the presence of a category. The 

classification algorithms adopted were naive Bayes, SVM (using different kernels: radial basis 

function (RBF) and linear), AdaBoost, and random forest. The findings indicate low cross-

domain classification accuracy; nevertheless, the author stated that transfer learning should be 

given more consideration in the context of education. 
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In a follow-up study, along with transfer learning, (Wei et al., 2017) proposed a model for 

classification and transfer learning approaches of cross-domain MOOC forum posts based on 

DNNs. The proposed model combined a CNN and LSTM (called ConvL) to identify three 

tasks: confusion, urgency, and sentiment in posts using textual data only. They fed the feature 

representation for each word as the local contextual feature via CNN; from these features, the 

posts’ representations as semantic relationships of features were learnt via LSTM. They framed 

the label as posts with a score greater than 4 were positive and used accuracy as a performance 

metric. 

(Capuano et al., 2021) proposed a multi-attribute text categorisation tool based on attention 

hierarchical recurrent neural networks for word encoding and attention for word aggregation 

at different levels (sentence and document). Various attributes were used in text categorisation 

tool –– among them urgency. To classify urgency, three levels were used (low, medium, and 

high) where scores below 3 were mapped to the negative/low class, scores above 5 were 

transferred to the positive/high class, and the remaining scores were mapped to the 

neutral/medium class. They reported the average results as follows: precision (%) recall (%) F-

score (%) in addition to loss. Four-fold cross-validation was then carried out to evaluate model 

performance. 

In terms of proposing an automatic solution rather than real instructor intervention, (Rossi 

et al., 2022) suggested an architecture known as CAERS which is a combination of a 

conversational agent and an educational recommendation system. The conversational agent 

provides intervention to support learners and instructors to develop their knowledge through 

autonomous interference and resource recommendations. Posts are classified into three 

categories (question, answer, and opinion) and three parameters (sentiment, confusion, and 

urgency). However, they used confusion to train the predictive model. 

The following studies deal with intervention as a standalone task; they used the urgency 

dimension to represent intervention: (Almatrafi, Johri and Rangwala, 2018) built a generalised 

model to identify reliably urgent posts regardless of the content of the course by implementing 

different linguistic features and metadata as features to train different traditional ML models. 

They inspected various feature sets (an NLP tool which features LIWC and three metadata 

which are up_count, reads, post_type, and TF) with different classification models (naive 

Bayes, SVM, random forests, AdaBoost (decision trees as base estimators) and logistic 

regression). They defined the labels as follows: posts with a score of 4 or higher were urgent; 
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otherwise, the post was not considered urgent. They used weighted F1 and Cohen's Kappa as 

evaluation metrics. Also, precision, recall and F1 were reported for each class. 

In addition, (Sun et al., 2019) distinguished potentially important urgent posts by presenting 

a DL model as an improved recurrent convolutional neural network (RCNN) method to obtain 

contextual information. They specified that posts with a score of 4 or more are deemed urgent, 

whilst posts with a value of less than 4 are regarded as non-urgent. Their model achieved higher 

performance in identifying urgent intervention-needed posts compared to other models (naive 

Bayes, SVM (RBF), random forest, CNN, RNN, LSTM, GRU, and RCNN). The evaluation 

metrics used include accuracy, precision, recall and macro F-score (F1). 

(Guo et al., 2019) is another study that used a combination of DL models (CNN + GRU) to 

extract semantic and structural information to detect posts that needed urgent responses. This 

was performed by applying attention to develop a hybrid character/word neural network. The 

Char-CNN was proposed to capture noise information. The course information associated with 

a given post was proposed for contextualisation. Posts with a score higher than 4 on the urgency 

dimension were considered urgent in this study. They calculated the weighted F-score to assess 

the performance of their model. Also, they reported precision, recall and F-score (F1) on both 

the urgent and non-urgent classes. 

Another study by (Alrajhi, Alharbi and Cristea, 2020) focused on predicting urgent posts. 

They found significant correlations between different dimensions (sentiment scale, confusion 

scale, opinion value, question value, and answer value) and the need for urgent intervention. 

Thus, they constructed a multidimensional DL intervention model that combines different 

dimensions as numerical features with text. They trained the text data (learners’ posts) with a 

CNN model and the numerical data (multiple dimensions) with a MLP model. They defined 

the urgent label when post scores were > 4 (required urgent intervention). They used the 

average accuracy, precision, recall and F1-score (F1) per class (0 as non-urgent; 1 as urgent) 

to measure performance. The results demonstrated that the combined, multidimensional 

features model outperforms a text-only model. 

(Khodeir, 2021) developed a multi-layer Bi-GRU based on BERT as a pre-trained 

embedding layer to classify learners’ urgent/non-urgent posts. The author used BERT for word 

embedding to represent words in their context considering that urgent posts scored 4 or above; 

otherwise, the post was deemed non-urgent. The performance metrics used were F1-weighted 
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and precision verse recall (PR) curves as metrics for model evaluation. In addition, precision, 

recall and F1-score (F1) for each class were also reported. 

(Yu et al., 2021) adopted Bayesian deep learning for the first time in MOOC forums to 

identify the need for urgent instructor intervention using two techniques: (i) Monte Carlo 

Dropout, and (ii) Variational Inference, as a novel approach to determine whether a learner's 

post requires instructor interventions. A threshold of 4 was used to categorise the need for 

intervention into two categories: (i) need for urgent intervention (value > 4) with label 1, and 

(ii) no need for intervention (values <= 4) with label 0. They applied RNNs with attention 

mechanisms as a baseline model. Following that, they presented two methods for using 

Bayesian DL with this baseline model: Monte Carlo Dropout and Variational Inference. They 

provided mean accuracy, F1 score, precision score, recall score under each class, and entropy 

based on the prediction layer. They ran two different sets of experiments. In the first, they 

divided the data into training and testing sets with a ratio of 80% and 20%, respectively, using 

stratified sampling. In the second experiment, they used a split of 40% and 60% for training 

and testing, respectively. The findings suggest that Bayesian deep learning provided a critical 

uncertainty measure that could not be obtained by traditional neural networks. 

2.3.4.4.1.3. FutureLearn 

The research below from the same authors used data from a FutureLearn platform which is 

manually labelled by domain experts, following Agrawal et al.’s  (Agrawal and Paepcke, 2019) 

instructions.  

(Alrajhi et al., 2021) proposed a new automated intervention priority model for MOOCs 

based on learner histories in terms of urgency, sentiment analysis, and step access. They 

classified posts with a score of 4 and above as urgent (1) and non-urgent (0) otherwise. Their 

model contains two phases ((i) prediction, and (ii) intervention priority). In the prediction 

phase, they used BERT to classify urgent posts; in the intervention priority phase, they 

suggested a priority of intervention to help high-risk learners first. They reported results from 

the predictive phase model based on average accuracy over the two classes, recall, precision 

and F1-score for the minority (urgent class). 

Next, a study by (Alrajhi et al., 2022) used an EXplainable artificial intelligence (XAI) 

approach to develop an urgent instructor intervention model that can interpret the model 

outputs and potentially assist MOOC instructors to provide effective intervention. They 
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demonstrated how combining a predictor with the findings of XAI, particularly colour-coded 

visualisation, can be utilised to assist instructors in deciding on intervention as they used text 

classification explainability. The label is the same as in their previous work: a binary scale (1:3 

to 0 and 4:7 to 1). Using BERT, they developed an automatic urgent intervention model. Then 

the Captum package was used to interpret the BERT model outputs (average accuracy, 

precision, recall, and F1-score) for each class which were employed to evaluate the classifier’s 

performance. Using the stratify method, they divided the data into training and testing sets 

(80% and 20%, respectively). Then, they divided the training set once more, with 90% 

allocated to training and 10% to validation. 

2.3.4.4.1.4. EdX 

Within the surveyed studies, one research project employed data from a major Greek MOOC 

platform on Mathesis (mathesis.cup.gr) which is based on EdX (OpenEdX). 

(Ntourmas et al., 2021) proposed and evaluated an alternative method for developing two 

classifier forum posts models that identify the need for intervention by utilising the semantic 

similarity of the forum transcripts with training features from MOOC corpora. They centred 

their attention on the feasibility of transferring such support between two MOOCs in distinct 

academic fields (humanities and technology). The manual labelling of the starting posts for 

both courses was carried out by two coders with the guidelines for three categorisations ((i) 

problem related to the course material, (ii) problem related to the course logistics, and (iii) no 

action required: discussion related to community building). A support vector classifier (SVC) 

was the classification algorithm employed. They performed predictions on the beginning posts 

of the second course using the classifier (SVC model) from the first course, and vice versa. 

They used accuracy, precision, recall and F1 score for evaluation metrics. Using stratified 

sampling, the dataset was divided into 75% for training and 25% for testing. 

2.3.4.4.2. Learner-Based Identification 

Some studies on instructor intervention in MOOCs sought to identify learners at risk of 

dropping out. These learners are detected based directly on their posts on discussion forums or 

as a feature in addition to other features as follows: 

The first study by (Klusener and Fortenbacher, 2015) predicted learner success based on 

three MOOC forum activities wherein unsuccessful learners are considered to be at-risk 
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learners. The features of successful learners were obtained from forum activities and blended 

into a learning profile based on Iversity’s MOOC. Feedback could be produced for learners 

who are labelled as at-risk learners based on their learning profile. They established an analytics 

tool based on ML which can classify learners using different features such as the number of 

answers in a forum or the number of up-votes. At least 80% of all video lessons for a course 

must be watched by a learner for the learner to be considered successful. The algorithms used 

for identifying successful learners include decision trees, random forest, decision rules, step 

regression, and logistic regression. They used ten-fold cross-validation with accuracy and recall 

of both classes (unsuccessful and successful learners) to evaluate the model’s performance. 

(Xing et al., 2016) identified learners who are at risk of dropping out by proposing a 

temporal modelling approach to predict learner dropout behaviour. Then, the historical features 

were appended, which outperform the simple temporal features. The data used in this study 

were collected from a specific course on the Canvas platform. The dropout label for each 

learner is determined by looking at whether they would be active in the coming week and any 

of the following weeks. As a result, the labels are generated thus: 0 denotes dropout and 1 

denotes active. The general Bayesian network (GBN) and decision tree (C4.5) were the only 

two algorithms used in this study. The performance was calculated based on ten-fold cross-

validation using area under the curve (AUC) and precision as performance measures. 

(Borrella, Caballero-Caballero and Ponce-Cueto, 2019) developed a method for identifying 

learners who are at risk of dropping out of a course by targeting learners who skipped the 

midterm or final exam; they created and tested an intervention aimed at reducing that risk. To 

predict dropout, they used different clickstream features such as clicks in the forums. Data from 

the MITx MicroMasters MOOC were used along with random forest and logistic regression to 

create the predictive models used in their experiment. They tested these algorithms based on 

the recall values. In addition, they reported precision value. This study provided 

recommendations for MOOC designers and instructors on how to increase completion rates 

and improve learner motivation and engagement. 

(Ramesh et al., 2020) developed an interpretable statistical relational learning model that 

can understand learner participation in online courses using a combination of behavioural, 

linguistic, structural, and temporal features. The data used for building the model was gathered 

from seven Coursera courses. Various traditional ML models were trained including SVM, 

logistic regression, multi-layer perceptron, linear regression, and decision trees. They evaluated 
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their model using various metrics including area under the precision-recall curve for positive 

and negative labels and area under the ROC curve using ten-fold cross-validation. 

(Alrajhi, Alamri and Cristea, 2022) predicted the need for intervention based on temporal 

history by combining the sequence of posts written by learners using data from FutureLearn. 

Other DL and Transformer techniques were adopted to train the model. They followed the 

approach of (Alamri et al., 2021) in their definition of dropout: learners are likely to drop out 

if they did not access 80% of the topics in the following week. The metrics they used are 

accuracy and precision, recall, and F1-score (F1) for each class to evaluate the performance (in 

percentages) of the various models. The data were divided into training and testing (80% and 

20%, respectively). The training data was then divided into training data (80%) and validation 

data (20%), respectively. 

2.3.4.4.3. Topic-Based Identification  

Extracting topics related to intervention may improve the intervention process. This section 

reviews two studies that are concerned with identifying topics that need intervention. 

(Atapattu T, 2016) used three Coursera MOOCs featuring different disciplines (machine 

learning, statistics, and psychology) to classify, analyse, and visualise topics from MOOC 

discussion forums. They used LDA to detect topic clusters. By linking the topics with the 

relevant weekly lectures as a graph of connections between topics and threads, this study made 

it easier for instructors to identify and navigate the most significant topic clusters and 

discussions. 

(Yang, Ren and Wu, 2022) proposed a new method that identifies topic attention based on 

the TEAM model that is combined with data characteristics regarding the behaviour and 

content present on a MOOC discussion forum. The dataset was gathered from a Chinese 

MOOC entitled Microcourse Design and Production.  

2.3.4.5. Synthesis of the Surveyed Works 

One of the most crucial aspects of conducting a SLR is data synthesis (Kraus, Breier and Dasí-

Rodríguez, 2020). An analysis of the surveyed instructor intervention in MOOCs based on 

discussion forum models is presented in this section. For better categorisation and a synthesised 

analysis of the surveyed studies, the data sources (platforms and numbers of courses, threads, 

and posts) and adopted methodologies (data labelling ‘ground truth’, prediction models and 
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algorithms, training and testing splitting techniques, and performance metrics) were reported. 

In addition, the use of XAI is discussed where applicable. 

2.3.4.5.1. Data Sources 

2.3.4.5.1.1. Platforms 

The sources of the data used in the existing intervention models can be better understood by 

looking at the platforms that were used to develop them. According to the analysis, the Stanford 

platform was the most prominent with 41.6% (n = 10) of the surveyed works using it (see 

Figure 2.18 below). This trend is likely because the Stanford MOOCPosts dataset is available 

for researchers upon request and is a valuable resource as it contains different courses (11 

courses) from three different domains with manually labelled features. Regarding other 

platforms, Coursera comes second with six where in most of the studies the labelling is based 

on the actual intervention offered (as discussed later in Section 2.3.4.5.2.1). Following that, 

FutureLearn featured in three studies by the same authors. The remaining (less represented) 

platforms with only one study are OpenEdx, Iversity, MITx MicroMasters, Chinese University, 

and Canvas. 

 

Figure 2.18: Number of surveyed studies across platforms. 
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by all the surveyed studies. The interpretation of this large variation is associated with how the 

intervention is defined. For example, in post-based identification, while some studies predict 

intervention need from posts, they do not use extensive human effort for post labelling since 

they consider the real intervention by an instructor as the label. Also, in some studies, semi-

supervised learning was employed to annotate the unlabelled data to enable the easier 

compilation of many courses and threads. One example of a study that followed this approach 

is (Chandrasekaran et al., 2015a), which will be further discussed in Section 2.3.4.5.2.1. 

In the Stanford dataset which contains 29604 posts from 11 courses, each researcher carried 

out some specific pre-processing which led to the exclusion of very few posts; in this review, 

however, it will consider that all studies were carried out under the same number (29604) as 

represented in the following figures for the Stanford platform (all studies). In contrast, some 

researchers used subsets of these data (e.g., (Bakharia, 2016; Wei et al., 2017; Sun et al., 2019)) 

as they selected for evaluation the three courses with the most forum posts from each domain 

area. Therefore, Figures 2.19, 2.20, and 2.21 (below) clarify these studies as Stanford 

(Bakharia, 2016; Wei et al., 2017; Sun et al., 2019).  

 

Figure 2.19: Number of courses across platforms and studies. 
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Figure 2.20: Number of threads across platforms and studies. 

 

Figure 2.21: Number of posts across platforms and studies. 

2.3.4.5.2. Adopted Methodologies 

2.3.4.5.2.1. Data Labelling (Ground Truth) 

The topic of instructor intervention in MOOCs is complex; as mentioned before, it involves 

the consideration of posts, learners, and topics. To identify posts and learners, researchers 

typically used supervised learning while unsupervised learning was used to identify topics. In 

0

5,000

10,000

15,000

20,000

25,000

30,000

35,000

N
u

m
b

er
 o

f 
th

re
ad

s

Platforms and studies

0

5,000

10,000

15,000

20,000

25,000

30,000

N
u

m
b

er
 o

f 
p

o
st

s

Platforms and studies



58 
 

supervised learning, models are constructed with known labels, thus, labelled data is needed to 

predict posts and learners. 

Researchers used two methods to define labels related to intervention decisions to identify 

posts. The first method was defining posts that need intervention as when instructors have 

intervened in posts in actual MOOCs, where each thread is labelled as to be intervened or not 

intervened. It should be noted that this labelling technique may be inaccurate due to annotators’ 

potential subjectivity. Also, there may have been posts where the instructor needed to intervene 

but did not (either because they missed it or did not have enough time, etc.). Conversely, there 

may have been unnecessary interventions because instructors occasionally employ various 

teaching and intervention techniques. The second method is when the labels are set manually 

by humans to decide a ground truth as in the Stanford and FutureLearn datasets. Table 2.2 

(below) categorises the surveyed studies based on the method of label definition mentioned 

above. 

Table 2.2: Studies taken by each method for labelling data to identify posts. 

Method to define label Platforms Studies 

Real intervention Coursera Chaturvedi et al., 2014 

Chandrasekaran et al., 2017 

Chandrasekaran and Kan, 2018 

Human coding Coursera Chandrasekaran et al., 2015a 

 Stanford Bakharia, 2016 

Wei et al., 2017 

Almatrafi et al., 2018 

Sun et al., 2019 

Guo et al., 2019 

Alrajhi et al., 2020 

Capuano et al., 2021 

Khodeir, 2021 

Yu et al., 2021 

Rossi et al., 2022 

 FututrLearn Alrajhi et al., 2021 

Alrajhi et al., 2022 

 OpenEdX Ntourmas et al., 2021 

 

Table 2.2 (above) illustrates that the four platforms (Coursera, Stanford, Futurelearn, and 

OpenEdX) that the posts were driven from them, the researchers used human coding to define 

labels for classification. In Coursera, there is only one research study (Chandrasekaran et al., 

2015a) that manually annotated discussion forum via two groups, (1) crowdsourced human 

annotators (Amazon Mechanical Turk11) and also (2) physically via the use of on-site human 

 
11 Amazon Mechanical Turk (mturk.com) 

https://www.mturk.com/
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annotators. As the annotation process is time- and effort-consuming, they used limited human 

annotation with a seed corpus and used semi-supervised learning to label unlabeled data in 

order to increase the size of the corpus. 

In contrast, all the studies that used the Stanford or Futurelearn platforms followed Agrawal 

and Paepcke’s instructions as clarified on their website (Agrawal and Paepcke, 2019). The 

urgency for intervention was rated on a Likert scale from 1–7, where 1 indicates that there is 

no need for the instructor to read the post and 7 indicates that it is extremely urgent to intervene. 

While posts from the Stanford and Futurelearn platforms were evaluated following the same 

instructions, they are different in terms of the number of coders (in the Stanford data, urgency 

evaluation was performed by two coders while in the FutureLearn data scoring was performed 

by three coders), calculating the urgency scores of the gold-standard datasets; thus different 

techniques were used to construct gold-standard corpora (for more details see Section 3.2).  

In the Stanford dataset, different studies used different methods to classify posts, most of 

them deal with the problem as a binary task while others used multilabel tasks. In the former, 

a score of 4 was deemed to be neutral; some researchers set the threshold as >4 as needing 

urgent intervention and others set the threshold as >=4 as needing urgent intervention. While 

two studies from the same authors (Alrajhi et al., 2021; Alrajhi et al., 2022) used the 

FutureLearn dataset problem as a binary task with ground truth for intervention >=4. A 

summary of all the studies along with their respective techniques of defining labels is presented 

in Table 2.3 (below).  

Table 2.3: Definition of intervention labels in the listed studies. 

Type of 

classification  

Categories Threshold  Platform Studies 

Binary 

Urgent and need intervention.  

Non-urgent and no need for 

intervention. 

Urgent >4 Stanford 

Bakharia (2016) 

Wei et al. (2017) 

Guo et al. (2019) 

Alrajhi et al. (2020) 

Yu et al. (2021) 

Urgent >=4 

Stanford 

Almatrafi et al. (2018) 

Sun et al. (2019) 

Khodeir (2021) 

FutureLearn 
Alrajhi et al. (2021) 

Alrajhi et al. (2022) 

Multi-Class 

Low 

Medium 

High 

 Urgent <3 

Urgent = 3,4,5 

Urgent >5 

Stanford Capuano et al. (2021) 
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Using the OpenEdX dataset, (Ntourmas et al., 2021) addressed a multi-class classification 

problem. Two coders categorised the starting post based on the following: no action required 

(NAR), content-related problem (CR) or logistics-related problem (LR). Several factors that 

may be more appropriate for identifying intervention need are connected to these categories. 

From these categories, CR signals that the instructor should intervene. 

In contrast, research that identified at-risk learners who need intervention found it generally 

straightforward to set labels by identifying learner dropout. Researchers used different 

definitions to predict dropout as there is no formal definition of dropping out (Sunar et al., 

2016). (Xing et al., 2016) determined the status of learners as dropouts (label = 0) or active 

(label = 1) by how active they will be throughout the upcoming week. Another study (Borrella, 

Caballero-Caballero and Ponce-Cueto, 2019) defined dropout based on learners discontinuing 

submitting graded problems on a course; corresponding to this definition, any learner who does 

not complete the midterm or final test is deemed to have dropped out at some point during the 

course. Another definition proposed by (Alrajhi, Alamri and Cristea, 2022) defined dropout as 

failing to access 80% of the topics in the next week, which considered such learners to be 

dropouts following the approach of (Alamri et al., 2021). 

Other researchers sought to predict successful learners in contrast to at-risk learners. 

(Klusener and Fortenbacher, 2015) assumed that at least 80% of all video lessons must be 

watched by a learner for the learner to be considered successful. Another study (Ramesh et al., 

2020), took into account two indicators to identify successful learners: (i) performance 

(whether the learner gains a certificate at the end of the course), and (ii) survival (whether the 

learner completes the course).  

2.3.4.5.2.2. Prediction Models and Algorithms 

Various supervised and unsupervised ML prediction models were adopted within the surveyed 

studies. The supervised approach involves both traditional and DL models as employed in the 

surveyed papers. In DL, there is a tendency to build hybrid models such as CNN+GRU with 

Char-CNN. Also, some used Transformer models (BERT). Figure 2.22 (below) provides a 

summary of the various predictive algorithms used in the surveyed studies. 
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Figure 2.22: Number of surveyed studies across prediction models and algorithms. 

2.3.4.5.2.3. Training and Testing Splitting Techniques 

In ML, the data is typically split into a training set and a testing set to train and evaluate the 

model. As shown in Figure 2.23 (below), most of the surveyed studies used either the k-fold 

cross-validation or the percentage-splitting techniques to split the data. The reason why some 

researchers used percentage-splitting techniques rather than k-fold cross-validation is that with 

DL models that contain numerous parameters, k-fold cross-validation is unnecessary because 

it makes training more complex (Aljohani, 2022). 

Using k-fold cross-validation techniques, eight out of 11 studies used ten-fold cross-

validation (the most common splitting ratio) (Chaturvedi, Goldwasser and Daumé III, 2014; 

Bakharia, 2016; Almatrafi, Johri and Rangwala, 2018; Sun et al., 2019; Klusener and 

Fortenbacher, 2015; Xing et al., 2016; Ramesh et al., 2020; Rossi et al., 2022), whereas the 

remaining studies used lower number folds, specifically four (Capuano et al., 2021) or five 

(Chandrasekaran et al., 2017; Alrajhi et al., 2021) folds. The reason for minimising the number 

of k and not using the frequently used ten-fold approach is because of the very low numbers in 

minority classes. Meanwhile, in the percentage-splitting technique, different percentages 

(training/testing) were applied such as 0.75/0.25 (Ntourmas et al., 2021), 0.66/0.34 (Almatrafi, 

Johri and Rangwala, 2018; Guo et al., 2019; Khodeir, 2021), 0.80/0.20 (Rossi et al., 2022; 
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Alrajhi, Alharbi and Cristea, 2020; Yu et al., 2021; Alrajhi, Alamri and Cristea, 2022; Alrajhi 

et al., 2022), and 0.40/0.60 (Yu et al., 2021). Some research mentions validation with 

percentages of 20% (Alrajhi, Alamri and Cristea, 2022) and 10% (Alrajhi et al., 2022) for 

training. As MOOC data for posts and learners is unbalanced (please note that it is to be 

expected that any such dataset would be unbalanced, with the non-urgent posts and dropouts 

being the predominant class), some researchers (Chandrasekaran et al., 2017; Ntourmas et al., 

2021; Almatrafi, Johri and Rangwala, 2018; Guo et al., 2019; Alrajhi, Alharbi and Cristea, 

2020; Khodeir, 2021; Yu et al., 2021; Alrajhi et al., 2021; Alrajhi et al., 2022) adopted stratified 

techniques (Farias, Ludermir and Bastos-Filho, 2020) to guarantee that each set has the same 

sample of both positive and negative instances. Also, they applied the cross-domain approach 

(Bakharia, 2016; Wei et al., 2017; Almatrafi, Johri and Rangwala, 2018; Guo et al., 2019; 

Khodeir, 2021; Ntourmas et al., 2021) where model training is performed in a specific domain 

and testing is performed in another domain. (Khodeir, 2021) used a validation figure of 30% 

from testing in both the percentage-splitting technique and the cross-domain technique. 

Another study that sought to identify learners (Borrella, Caballero-Caballero and Ponce-Cueto, 

2019) used older runs of the course for training and recent runs for testing. 

 

Figure 2.23: Number of surveyed studies across training and testing splitting techniques. 

2.3.4.5.2.4. Performance Metrics 

Researchers employed and reported various metrics to assess the model's performance and 

quality. Some researchers considered evaluating models and selecting the metrics as the MOOC 

0

2

4

6

8

10

12

N
u

m
b

er
 o

f 
st

u
d

ie
s

Training and testing splitting techniques



63 
 

data for posts and learners are unbalanced. Please note that here all the metrics that the authors 

reported are considered, regardless of what metrics they used to assess their models’ 

performance. Precision (P), recall (R), and F1 are the most commonly used metrics in the 

surveyed papers (Chaturvedi, Goldwasser and Daumé III, 2014; Chandrasekaran et al., 2017; 

Ntourmas et al., 2021; Capuano et al., 2021; Almatrafi, Johri and Rangwala, 2018; Sun et al., 

2019; Guo et al., 2019; Alrajhi, Alharbi and Cristea, 2020; Khodeir, 2021; Yu et al., 2021; 

Alrajhi et al., 2021; Alrajhi et al., 2022; Alrajhi, Alamri and Cristea, 2022; Chandrasekaran and 

Kan, 2018; Klusener and Fortenbacher, 2015; Xing et al., 2016; Borrella, Caballero-Caballero 

and Ponce-Cueto, 2019; Atapattu T, 2016) as these papers use all or some of these metrics to 

evaluate models (see Figure 2.24 below). These relate to gaining a more detailed understanding 

of a classifier’s performance rather than focusing only on overall accuracy as the data are 

unbalanced. Some research reported values for these metrics as averages (Chandrasekaran and 

Kan, 2018; Ntourmas et al., 2021; Bakharia, 2016; Wei et al., 2017; Capuano et al., 2021; Rossi 

et al., 2022; Sun et al., 2019; Xing et al., 2016; Borrella, Caballero-Caballero and Ponce-Cueto, 

2019; Atapattu T, 2016), others focused only on the important targeted class (Chaturvedi, 

Goldwasser and Daumé III, 2014; Chandrasekaran et al., 2017; Alrajhi et al., 2021) and more 

specifically reported on more details for each class (Almatrafi, Johri and Rangwala, 2018; Guo 

et al., 2019; Alrajhi, Alharbi and Cristea, 2020; Khodeir, 2021; Yu et al., 2021; Alrajhi et al., 

2022; Klusener and Fortenbacher, 2015; Alrajhi, Alamri and Cristea, 2022; Ramesh et al., 

2020). Some studies (Bakharia, 2016; Wei et al., 2017; Rossi et al., 2022) reported model 

accuracy only, but this is not appropriate for unbalanced data as it might assign high values to 

a weak classifier which is misleading. Other, less common metrics were used such as weighted-

F1 (Almatrafi, Johri and Rangwala, 2018; Guo et al., 2019; Khodeir, 2021), precision verse 

recall curves (PR) (Khodeir, 2021; Ramesh et al., 2020), loss (Capuano et al., 2021), Cohen's 

Kappa (Almatrafi, Johri and Rangwala, 2018), etc., as shown in Figure 2.24 (below). 
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Figure 2.24: Number of surveyed studies across performance metrics. 

2.3.4.5.3. EXplainable Artificial Intelligence 

As shown before in Section 2.3.4.5.2.2, most papers adopted DL for prediction. The nature of 

these models is characterised as ‘black-box’ and their results are unclear to humans in terms of 

exploring how these internal models behave and explain their decisions due to the complexity 

of these models. Understanding such black-box approaches is currently an active and 

significant area of research. XAI aims to increase confidence in decisions made based on AI 

and more specifically ML models. Only one research intervention (Alrajhi et al., 2022) applied 

the XAI approach to explain the model’s outputs for instructors. They demonstrated how a 

good predictor could be used in conjunction with XAI, particularly colour-coded visualisation, 

to assist instructors in taking decisions on intervention. Table 2.4 (below) introduces a general 

outline of the surveyed studies. 
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Table 2.4: Outline of previous studies on MOOC instructor intervention among three main axes: identify (posts or learners or topics) (NA denotes missing; 

other abbreviations are explained in the following tables). 

Identify Author  

 

  

Platform #Courses/ 

#Threads/ 

#Posts 

Intervention 

label 

Type of 

classification 

Data types as 

features 

Models Splitting techniques Performance 

metrics 

P
o

st
s 

(Chaturvedi, 

Goldwasser and 

Daumé III, 2014) 

Coursera 2/ 

1780/ 

7700 

Real 

intervention 

Binary Linguistic (about 

posts) + metadata as 

numerical 

LR, 

LCMM, 

GCM 

10-fold cross-

validation 

P,  

R,  

F1,   

(Positive class) 

(Chandrasekaran et 

al., 2015a) 

Coursera 61/ 

33665/ 

NA 

Human 

coding 

Multi-Class  Linguistic (about 

dialogue and 

discourse analysis) 

CRF NA Research in 

progress (they will 

measure learner 

performance in 

terms of 

quantitative and 

qualitative) 

(Chandrasekaran et 

al., 2017) 

Coursera 14/ 

11554/ 

NA 

Real 

intervention 

Binary Linguistic (about 

posts) + post 

discourse from the 

PDTB-based 

discourse parser 

MaxEnt Stratified 5-fold 

cross-validation 

P,   

R,   

F1,   

(Positive class) 

(Chandrasekaran and 

Kan, 2018) 

Coursera 14/ 

7219/ 

NA 

Real 

intervention 

Binary Linguistic (posts 

contents as 

unigrams with Tf-

idf score + about 

posts) + metadata as 

numerical 

SVM NA P, 

R,   

F1, 

(Average) 

(Bakharia, 2016) Stanford 3/ 

NA/ 

18093 

Human 

coding 

Binary Linguistic (posts 

contents as 

unigrams with Tf-

idf score) 

NB, 

SVM, 

AdaB, 

RF 

10-fold cross- 

validation + 

transfer learning 

Acc, 

(Average) 

(Wei et al., 2017) Stanford 3/ 

NA/ 

18093 

Human 

coding 

Binary Linguistic (posts 

contents) 

CNN-NTL, 

CNN-TL, 

LSTM-

NTL, 

LSTM-TL, 

Transfer learning Acc,   

(Average) 
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CIMM-TL, 

LM-CNN-

LB, 

ConvL-

NTL, 

ConvL, 

ConvL-in 

domain 

(Capuano et al., 2021) Stanford 11/ 

NA/ 

29604 

Human 

coding 

Multi-Class Linguistic (posts 

contents) 

bow-ff, 

cnn-we-ff, 

convL, 

HAN 

4-fold cross-

validation 

P, 

R,   

F1, 

(Average) 

Loss 

(Rossi et al., 2022) Stanford 11/ 

NA/ 

29604 

Human 

coding 

NA Linguistic (posts 

contents) 

LR Percentage-splitting  

(training 80%, testing 

20%) + 10-fold cross- 

validation 

Acc, 

(Average) 

(Almatrafi, Johri and 

Rangwala, 2018) 

Stanford 11/ 

NA/ 

29604 

Human 

coding 

Binary Linguistic (posts 

contents as 

unigrams with Tf 

score + LIWC) + 

metadata as 

numerical 

(up_count + reads + 

post_type) 

 

NB, 

SVM, 

RF, 

AdaB, 

LR 

10-fold cross- 

validation + 

stratified percentage-

splitting (training 

66%, testing 34%) + 

transfer learning 

(courses based) + 

transfer learning 

(domain-based) 

P,   

R,   

F1,   

(Each class) 

Weighted-F1,   

Cohen's Kappa 

(Sun et al., 2019) Stanford 3/ 

NA/ 

18093 

Human 

coding 

Binary Linguistic (posts 

contents) 

CNN, 

RNN, 

LSTM, 

GRU, 

RCNN, 

improved 

RCNN 

10-fold cross- 

validation 

Acc,  

P,  

R,  

Macro F1, 

(Average) 

(Guo et al., 2019) Stanford 11/ 

NA/ 

29604 

Human 

coding 

Binary Linguistic (posts 

contents) + 

metadata as 

Char-CNN, 

TextCNN, 

LSTM, 

CNN + 

Stratified percentage-

splitting (training 

66%, testing 34%) + 

P, 

R, 

F1,   

(Each class)  
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linguistic 

(course_display_ 

name) 

LSTM, 

Bi-LSTM, 

RCNN, 

AttBLSTM, 

DPCNN, 

TextCNN + 

Char-CNN, 

CNN + 

GRU - 

Char-CNN 

transfer learning 

(courses based) + 

transfer learning 

(domain-based) 

Weighted-F1 

(Alrajhi, Alharbi and 

Cristea, 2020) 

Stanford 11/ 

NA/ 

29604 

Human 

coding 

Binary Linguistic (posts 

contents) + 

metadata as 

numerical 

(sentiment, 

confusion, opinion, 

questions, and 

answers) 

CNN, 

CNN + 

MLP 

Stratified percentage-

splitting (training 

80% + testing 20%) 

Acc,  

(Average) 

P,  

R,  

F1  

(Each class) 

(Khodeir, 2021) Stanford 11/ 

NA/ 

29604 

Human 

coding 

Binary Linguistic (posts 

contents) + 

metadata as 

linguistic 

(course_display_ 

name) 

RNN, 

CNN, 

FASTTEXT, 

LSTM, 

Bi-GRU 

Based on 

BERT 

Stratified percentage-

splitting (training 

66%, testing 34%) + 

transfer learning 

(courses based) + 

transfer learning 

(domain-based) 

In all validation 30% 

from testing 

P, 

R, 

F1,   

(Each class) 

Weighted-F1,  

PR 

(Yu et al., 2021) Stanford 11/ 

NA/ 

29604 

Human 

coding 

Binary Linguistic (posts 

contents) 

RNN, 

MCD,  

VI 

Stratified percentage-

splitting (training 

80%, testing 20%) + 

percentage-splitting  

(training 40%, testing 

60%) 

Acc, 

(Average)  

P,  

R, 

F1,    

(Each class) 

Entropy  

(Alrajhi et al., 2021) FutureLearn 1/ 

NA/ 

5786 

Human 

coding 

Binary Prediction: 

linguistic (posts 

contents) 

BERT Stratified 5-fold 

cross-validation 

Acc,   

(Average) 

P,  
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Priority: numerical 

(urgency + 

sentiment analysis + 

step access) 

R, 

F1,  

(Positive class) 

(Alrajhi et al., 2022) FutureLearn 1/ 

NA/ 

5786 

Human 

coding 

Binary Linguistic (posts 

contents) 

BERT Stratified percentage-

splitting (training 

80%, testing 20%) 

validation 10% from 

training 

Acc, 

(Average) 

P,  

R,  

F1,  

(Each class) 

 (Ntourmas et al., 

2021) 

OpenEdX 2/ 

NA/ 

1977- 

starting 

posts 

Human 

coding 

Multi-Class Calculation of the 

semantic similarities 

with two corpora. 

SVC Stratified percentage-

splitting (training 

75%, testing 25%) + 

transfer learning 

Acc, 

P,   

R, 

F1, 

(Average) 

L
ea

rn
er

 

(Klusener and 

Fortenbacher, 2015) 

Iversity 3/ 

NA/ 

21825 

Successful 

learners 

Binary 14 features as 

numerical such as 

(number of answers 

+ up-votes) 

DT, 

RF, 

DR, 

SR, 

LR 

10-fold cross- 

validation 

Acc, 

(Average) 

R,  

(Each class) 

(Xing et al., 2016) Canvas 1/ 

NA/ 

NA 

Dropout Binary 6 features as 

numerical such as 

(number of 

discussion posts + 

number of forum 

views) 

GBN, 

DT(C4.5) 

10-fold cross- 

validation 

AUC, 

P, 

(Average) 

(Borrella, Caballero-

Caballero and Ponce-

Cueto, 2019) 

MITx 

MicroMasters 

5/ 

NA/ 

NA 

Dropout Binary 14 features as 

numerical such as 

(number of clicks in 

the course and 

discussion forum) 

RF, 

LR 

Training older runs, 

testing recent runs 

R,  

P, 

(Average) 

(Ramesh et al., 2020) Coursera 7/ 

NA/ 

NA 

Successful 

learners 

Binary Different features as 

numerical such as 

(forum content and 

interaction: 

linguistic as 

SVM, 

LR, 

MLP, 

LiR, 

DT 

10-fold cross- 

validation 

PR, 

(Each class) 

ROC 
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sentiment analysis 

and structure) 

(Alrajhi, Alamri and 

Cristea, 2022) 

FutureLearn 1/ 

NA/ 

5786 

Dropout Binary Linguistic (posts 

contents) 

CNN, 

LSTM, 

Bi-LSTM, 

GRU, 

Bi-GRU, 

Multi-

siamese 

BERT, 

Multiple 

BERT 

Percentage-splitting  

(training 80%, testing 

20%) 

validation 20% from 

training 

Acc, 

(Average) 

P,  

R,  

F1, 

(Each class) 

T
o

p
ic

 

(Atapattu T, 2016) Coursera 3/ 

15894/ 

17362 

NA NA Linguistic (posts 

contents) 

LDA 

NB 

NA F1, 

(Average) 

MAP 

(Yang, Ren and Wu, 

2022) 

Chinese 

University 

1/ 

NA/ 

5325 

Topic 

attention 

NA Linguistic (posts 

contents + 

behaviour about 

posts)  

TEAM NA PS2EK 
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Table 2.5: List of features abbreviations and acronyms. 

Abbreviation /Acronym Description 

LIWC Linguistic Inquiry and Word Count 

PDTB Penn Discourse Treebank 

Tf Term Frequency 

Tf-idf Term Frequency - Inverse Document Frequency 

Table 2.6: List of models’ abbreviations and acronyms. 

Abbreviation /Acronym Description 

AdaB AdaBoost 

AttBLSTM Attention Bidirectional Long Short-term Memory 

BERT Bidirectional Encoder Representations from Transformers 

Bi-GRU Bi-directional Gated Recurrent Unit 

Bi-LSTM Bidirectional Long Short-term Memory  

Bow-ff Bag of Words- feed forward neural network 

Char-CNN Character-level Convolutional Neural Networks 

CIMM-TL Consumption Intention Mining Model- Transfer Learning 

CNN Convolutional Neural Network 

CNN-TL Convolutional Neural Network- Transfer Learning 

Cnn-we-ff Convolutional Neural Network- feed forward neural network 

ConvL Convolutional Neural Network Long Short-term Memory 

CRF Conditional Random Fields 

DR Decision Rules 

DT Decision Tree 

GBN General Bayesian Network 

GCM Global Chain Model 

GRU Gated Recurrent Unit 

HAN Hierarchical Attention Network 

LCMM Linear Chain Markov Model 

LiR Linear Regression 

LR Logistic Regression 

LSTM Long Short-term Memory 

LSTM-TL Long Short-term Memory- Transfer Learning 

MAP Mean Average Precision 

MaxEnt Maximum Entropy 

MCD 

MLP 

Monte Carlo Dropout 

Multi-Layer Perceptron 

NB Naive Bayes 

RCNN Recurrent Convolutional Neural Network 

RF Random Forests 

RNN Recurrent Neural Network 

SR Step Regression 

SVC Support Vector Classifier 

SVM 

VI 

Support Vector Machine 

Variational Inference 

Table 2.7: List of metric abbreviations and acronyms. 

Abbreviation /Acronym Description 

Acc Accuracy 

AUC Area Under Curve 

F1 F1-score 

P Precision 

PR Precision verse Recall curves  

R Recall 

ROC Receiver Operating Characteristic Curve 
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2.3.4.6. Critical Evaluation and Limitations 

Based on the current systematic review, the limitations and potential suggested improvements 

for the present MOOC instructor intervention models and several research directions that are 

presented in this thesis to fill the identified gap in current models are highlighted in this section. 

Please note that the surveyed research includes the experiments done by the author of this 

thesis, which were published up until the end of 2022, but it is considered to fill the gap in the 

currently available research. 

As mentioned before, the surveyed research was categorised into three identification 

intervention models: (i) posts, (ii) learners, and (iii) topics; thus the limitations in this section 

may be observed for all kinds of models or in relation to the specific categories used. 

The most emphasised limitation in the surveyed research on identifying posts is the lack of 

data available for researchers. More data would enable a higher level of model generalisation 

and further validate the achieved results. It is challenging to consider the results of the present 

models as generalisable because, as shown earlier in Figure 2.18, a significant number of 

research studies that identify posts used only one source of data, namely the Stanford dataset. 

Even though this dataset is a good resource because it contains 11 courses with 29604 posts 

from different domains, it still only represents one platform. As a result, the literature must be 

expanded to include additional platforms to adequately represent the huge variety of real-world 

MOOC environments that exist today. This is because different platforms have different 

structures and allow different word counts for posts. Additionally, due to the nature of the 

Stanford dataset, which only contains learner posts, studying further behaviours related to the 

need for intervention such as dropout is not possible. Therefore, constructing a new model 

using a more diverse dataset would improve the generalisability and reliability of the results. 

This was improved in this thesis by creating a new corpus from another platform (FutureLearn) 

which is further clarified in Chapter 3. 

Another challenge is the difficulty of comparing the results of the present studies at the level 

of performance achieved. This is due to the inconsistent identification of posts that need 

intervention introduced by each study. Moreover, each study has different methodologies such 

as pre-processing, number of posts analysed, how labels are constructed, and splitting data into 

training and testing sets. To make a comparison of the literature findings, the same data with 

the same characteristics should be used. Therefore, the data proposed for researchers should be 

split into training and testing sets to allow comparison between different proposed models. 
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Therefore, with the available data, the suggestion for any experiment is to apply a baseline 

model and make a comparison with the proposed model; it is believed that this is the best 

solution for conducting a reliable comparison. This was achieved in different experiments in 

this thesis. The only research that the author was able to compare with existing research (Guo 

et al., 2019) is the plug & play with deep neural networks experiment (Alrajhi and Cristea, 

2023). This is because the Stanford data was used in this experiment, and the same method of 

splitting the data was applied, as clarified in Chapter 4, Section 4.3. Therefore, it is possible to 

compare the same data in the two training and testing sets. 

In terms of identifying posts, recent models use DL based on text-only without combined 

mixed data such as text data with metadata. Thus, this thesis proposed an experiment using a 

novel multi-dimensional DL model as clarified in Chapter 4 in the first experiment: the multi-

dimensional deep learning model. Also, different current DL models using hybrid models with 

different levels of input, word-based or character-word-based and different embeddings such 

as BERT or word2vec were used. However, no research has examined character-word-based 

embedding with BERT to represent words. Thus, in Chapter 4, the second experiment plug & 

play with deep neural networks was performed to examine this assumption. 

The research presented in the field of identifying topics is very scant: only two research 

papers address this issue (Atapattu T, 2016; Yang, Ren and Wu, 2022). Thus, there is a need for 

more research in this field and linking it to intervention by extracting language which indicates 

a request for intervention. Also, adding visualisation to topics of posts is another promising 

approach considering that most individuals are visually oriented. This was implemented in the 

experiment presented in Chapter 5 of this thesis.  

To identify at-risk learners, among the surveyed studies, there is no research dealing with 

text directly and studying the historical content of learner posts: all the proposed models used 

numerical features about posts and do not focus on post content. This thesis proposed an 

experiment on intervention prediction based on learners’ posts as explained in Chapter 6.  

Another limitation in identifying posts is that there is no research focusing on identifying 

posts that relate to learners’ behaviour or adding any priority for intervention. In this thesis, 

this was proposed in the experiment in Chapter 7 as learner histories were studied based on 

three features for assigning priority (past urgency, sentiment analysis, and step access). Then, 

an automated intervention priority model was proposed based on these variables.  
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The other unexplored research direction that requires attention is the fact that most datasets 

sourced from MOOCs tend to be imbalanced. This imbalance can be shown in terms of the 

number of posts that need intervention. Of the surveyed papers, none tackles the imbalanced 

data issue. Some studies (Almatrafi, Johri and Rangwala, 2018; Khodeir, 2021) briefly consider 

some common techniques such as splitting data and metric selection but do not address the 

issue of improving data to overcome the data-imbalance problem. Therefore, there is a need to 

deal with imbalanced data by applying data balancing techniques such as oversampling and 

undersampling. This limitation has been tackled in the experiment for solving the imbalanced 

data issue in Chapter 8.  

Regarding XAI (as it is useful in deep learning to understand model decisions), there is no 

research applied to the instructor intervention task. However, the experiment presented in 

Chapter 9 applied XAI in a novel way to fill the gap in the literature by assisting both instructors 

and annotators.  

2.4.  Epilogue 

Researchers have attempted to address the issue of instructor intervention in MOOCs using 

techniques from both NLP and ML. This chapter provided background information that relates 

to this thesis on MOOCs, NLP, and ML. In addition, a literature review of MOOCs and NLP 

was presented. Specifically, the SLR identified and reviewed instructor intervention need in 

MOOC discussion forums. For the first time, it gathered several research studies on instructor 

intervention in MOOCs based on discussion forums by identifying three different perspectives: 

(i) posts, (ii) topics, and (iii) learners. The current thesis helps to focus on the unexplored and 

unfilled gaps in the literature to advance the field of instructor intervention in MOOC 

discussion forums.  

The following chapter provides the methodology for how this thesis contributes to the field 

of instructor intervention in MOOC discussion forums. 
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CHAPTER 3: METHODOLOGY 

 

 

3.1.  Prologue 

This thesis sought to enhance the quality of determining instructor intervention needs in 

MOOCs and investigate the feasibility of using NLP and ML to predict when instructor 

intervention in MOOC environments is necessary based on asynchronous discussion forums 

using learner language from posts. To address and answer the RQs and achieve the specified 

objectives of this thesis, the research methodologies are outlined and explained in detail in this 

chapter. This involves presenting several datasets used in the experiments featured in this thesis 

which were collected and extracted from posts on discussion forums of different MOOC 

platforms (Section 3.2) and how different corpora can be created based on these datasets. 

Additionally, the overall process and experimental framework are described and summarised 

to enhance the detection of the need for instructor intervention involving posts, topics, and 

learners by implementing different ML approaches as clarified in Section 3.3 (for more details 

see the main chapters featuring the experiments: Chapters 4–9). Also, the performance 

evaluations are provided in Section 3.4. Moreover, Section 3.5 discusses the ethical issues 

considered in the current research project.  

3.2.  Datasets 

Nowadays, public datasets with labelled MOOC forum discussion posts that contain learners’ 

textual data for use in solving the instructor intervention task are quite limited (Guo et al., 

2019) (to the best of the author’s knowledge, there is only one suitable dataset, The Stanford 

MOOCPost dataset; notably, most of the studies surveyed in Chapter 2 used this dataset). This 
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thesis involved different experiments to address the RQs and objectives by using four corpora 

to conduct the analysis and identify the need for instructor intervention. It is better to use 

different datasets that employ diverse datasets to contribute to the robustness, generalisation, 

bias, and reliability of ML models as the results are based on data-driven findings. The data 

source originates from two educational MOOC platforms (Stanford and FutureLearn) to 

represent different types of platforms. As mentioned previously, different platforms have 

various discussion forum structure formats and different numbers of words (allowed) per post. 

In addition, the Stanford dataset lacks data about learner behaviours (e.g., step access). Thus, 

it is better to create another dataset to fill this gap.    

In particular, one corpus (the Stanford MOOCPost dataset) retrieved from the Stanford 

platform is available for researchers on request and three new corpora derived from 

FutureLearn which are manually annotated and built were used. Two FutureLearn corpora are 

similar in purpose and the difference is in the methods used to obtain posts urgent class labels 

as one of the challenges of creating an instructor intervention need dataset is how to define an 

urgent intervention label. The third corpus, meanwhile, relates to learner dropout or completion 

and intervention need. Understanding the nature of the data is essential since it influences the 

research plan. In the following sub-sections further explanations of the datasets are provided.   

3.2.1. Stanford MOOCPost Dataset  

This research project used the Stanford MOOC benchmark posts dataset (Agrawal and 

Paepcke, 2019), which is available to academic researchers on request. It covers three different 

areas with a variety of courses: education (1 course), humanities/sciences (6 courses), and 

medicine (4 courses), resulting in a total of 29,604 anonymised learners’ forum posts that are 

spread across 11 Stanford courses (Agrawal et al., 2015). Each post was manually coded and 

labelled by three independent human consultants’ coders (ODesk) to create a gold-standard 

dataset. Each post was evaluated against six categories/dimensions (sentiment, confusion, 

urgency, opinion, question, and answer). Opinion, question, and answer were assigned binary 

values while sentiment, confusion and urgency were rated values based on a scale of 1–7. To 

explain, for sentiment, 1 = extremely negative and 7 = extremely positive; for confusion, 1 = 

extremely knowledgeable and 7 = extremely confused; for urgency (which describes how urgent 

the post is with respect to a required response (intervention) from the instructor), 1 = no reason 

to read the post and 7 = extremely urgent, the instructor definitely needs to reply. For more 

detail on the scales of urgency see Figure 3.1 (below).  
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Figure 3.1: The scale of urgency applied (1–7). 

The final gold-standard dataset contains, in addition to textual posts, a column for each 

dimension, based on computing scores between optimal coders and other metadata. The label 

scores are computed as the average between the optimal agreement combination of coders. For 

more additional information about the coding method and the creation of the gold-standard 

dataset see the website of (Agrawal and Paepcke, 2019) 12. 

In terms of urgency, agreement was calculated between the optimal coders (number of 

coders = 2) and in combination with the Likert variables (1–7). Krippendorff alphas were 

computed; their results in each domain were: 

• Medicine: 0.625 

• Education: 0.142 

• Humanities/Sciences: 0.517 

To create a gold-standard dataset for urgency of instructor intervention, the urgency score was 

computed as an average between two coders. Thus, the results contain the following values: 

1/1.5/2/2.5/3/3.5/4/4.5/5/5.5/6/6.5/7. In this thesis, the author believes that two coders are not 

enough to make a label decision. As (Snow et al., 2008) found, an average of four non-experts 

are equivalent in quality to one expert-level annotator in labelling data. Thus, to create new 

corpora for this thesis as explained next in Section 3.2.2, the decision to intervene is based on 

experts and more than two coders to improve the quality of the annotation task. Table 3.1 

(below) shows some randomly selected samples of post content along with their urgency 

ratings. 

 
12 https://datastage.stanford.edu/StanfordMoocPosts/ 
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Table 3.1:  Examples of postings' content and their ratings for urgency. 

Sample Urgency Ratings 

Great 1 

Interesting! How often we say those things to others without really understanding what we are 

saying. That must have been a powerful experience! Excellent! 
1.5 

Sometimes parents and teachers also expose children to negative messages about math. 2 

Mistakes give our brains something to CHEW on! 2.5 

Great ideas. Asking students to illustrate how mistakes can lead to their learning is normalizing 

and encouraging to others. 
3 

What is \Algebra as a Math Game\" or are you just saying you create games that incorporate 

algebra." 
3.5 

I have tried to submit a document form of my response, but still nothing happens... 4 

I'm Brazilian, but I read very well in English, so it would be good that all videos have subtitles.  

thank's [sic] 13 
4.5 

Session 2 is not working for me (progress) - none of my assignments have shown up as complete. 5 

What happened to sessions 5 & 6? I finished 5 yesteday [sic], now can't find it or 6 (that I wanted 

to work on today)? 
5.5 

Pls help!!!  I clicked on \submit\" by mistake and now it has been sent to peer assessment!! My 

answer is completely blank!!! how do I undo it??" 
6 

Anybody from staff course could provide us a response? 6.5 

I hope any course staff member can help us to solve this confusion asap!!! 7 

 

Although the original dataset is multivalued, in order not to add additional complexity, an 

instructor’s decision whether to intervene or not is a binary one; thus the seven-point scale is 

superfluous. Moreover, other text classification research on identifying urgent learner posts has 

often converted the scales used to a binary categorisation (Almatrafi, Johri and Rangwala, 

2018; Guo et al., 2019) as explained in detail in Section 2.3.4.5.2.1 on SLR in Chapter 2. Thus, 

the approach of (Guo et al., 2019) was followed in the current thesis to structure the problem 

of detecting urgent posts as a binary classification task by converting the 1–7 scale into binary 

values:  

• Urgent intervention required > 4  Need for urgent intervention (1)  

• Otherwise  No need for intervention (0) 

As clarified in literature review, different researchers use different thresholds to construct 

urgent scales (urgency>4 or urgency>=4). In the Stanford dataset used in the current thesis, the 

decision to intervene was set at >4, this is further supported by the analysis findings (Chapter 

4, Section 4.2.3.1) and in (Alrajhi, Alharbi and Cristea, 2020) as a correlation was found 

between specific values (4 and 4.5) for the sentiment and confusion scales.  

 
13 Sic, adverb, used in brackets after a copied or quoted word that appears odd or erroneous to show that the word is quoted 

exactly as it stands in the original. 
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Ultimately, the experimental data was prepared by excluding posts that contained 

unmeaningful content, as in (Wei et al., 2017) and (Almatrafi, Johri and Rangwala, 2018), (e.g., 

only numbers or the automated anonymisation of signs was used (<redacted>); thus, across the 

whole dataset, non-urgent cases represented 81% (23991 posts) and urgent cases accounted for 

19% (5606 posts) (with urgent posts having urgency>4), as shown in Figure 3.2 (below). In 

general, urgency data are notoriously skewed (with urgent posts being significantly fewer than 

non-urgent ones). 

 

Figure 3.2: The distribution of the two classes (urgent, non-urgent) in the Stanford dataset. 

To inspect the distribution of each class on each field and course, 13 posts with an empty course 

name in the Humanities/Sciences course type ‘Course display name’ were removed. As in some 

experiments in this thesis ‘course_display_name’ was used as metadata in the classification 

model following (Guo et al., 2019). Then, each class was represented as shown in Figure 3.3, 

Figure 3.4, and Figure 3.5 (below). 

 

Figure 3.3: The distribution of the two classes (urgent, non-urgent) in the Stanford dataset 

(Humanities/Sciences) field. 

 

Figure 3.4: The distribution of the two classes (urgent, non-urgent) in the Stanford dataset (Medicine) 

field. 
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Figure 3.5: The distribution of the two classes (urgent, non-urgent) in the Stanford dataset (Education) 

field. 

The vast majority of recently published research on urgent post classification employed the 

Stanford MOOC Post dataset as the data source as clarified in Chapter 2. This dataset was used 

in different thesis experiments (Chapter 4) as all the experiments were related to identifying 

posts only; in Chapter 5 the experiment was to identify topics in specific courses which 

contained a high percentage of urgent posts. Also, this dataset was used in Chapter 8 to further 

validate the proposed solution as clarified in detail in each chapter. However, even though this 

dataset is an excellent resource, it still represents just one platform; hence other platforms need 

to be investigated to represent the current wide range of real-life MOOC environments. This is 

because different platforms have different structures and (minimum) numbers of words per 

posts. In addition, the nature of the data does not allow the study of learner behaviour in terms 

of step access or predicting dropout. To address these research gaps and investigate other data 

sources, creating new data with the required information is still necessary to ensure that a 

diversity of data is used, broad coverage of different platforms is achieved, and knowledge of 

this field is enriched. Thus, the present thesis provides an analysis of the FutureLearn platform 

(which requires additional effort to complete the manual annotation) as discussed in the next 

sub-section. 

3.2.2. FutureLearn Dataset  

The raw benchmark corpus dataset utilised consisted of real MOOC forum posts (textual data) 

for a specific course. In addition to the textual data, data on learner behaviour features (step, 

visit time, etc.) were used as they are associated with individual learner IDs. Data from 

FutureLearn’s MOOC platform course entitled Big Data (Run 2) was produced and provided 

by the University of Warwick, UK. This course was selected because it is rich in posts 

(comments), was popular and dealt with a novel subject. These characteristics mean that this 

dataset would likely include an adequate number of urgent posts, as big data is arguably a 

challenging topic. In addition, it contains a high percentage of learners who dropped out 

(Alamri et al., 2020). The course was conducted in 2016 over a nine-week period; it contains 

8263 English-language text posts. The objectives of this research project were to classify urgent 
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posts in MOOC discussion forums gathered during the first half of the course; this was because 

other previous research indicated that most learners who dropped out were likely to do so in 

the early stages (Cristea et al., 2018; Alamri et al., 2019); therefore, intervention, if it was 

required, would be likely be needed early on before dropout. In this regard, the following steps 

were taken to select suitable instances from the original data and prepare them for the 

annotation process. Learner posts within the first half of the course (weeks 1–5) of the long 

course were extracted and prepared, representing approximately half of the nine-week course 

(≈ 50%). After this point, all instructors’ posts were excluded. This resulted in a total of 5790 

posts. 

Considering the hardship of using manual annotation to obtain posts, 5790 posts was 

considered sufficient for this research project. These collected text posts were prepared and 

manually labelled to assign urgency and annotated by domain experts. This task proved to be 

quite challenging even for human annotators, which confirms the findings of previous 

researchers (Chandrasekaran et al., 2015b) who noted that it is difficult for humans to create 

such a gold-standard data set via manually labelling individual cases requiring instructor 

intervention since different instructors have varying preferences and strategies for responding 

to their learners' questions in practice.   

The annotation process was performed independently and manually by four computer 

science experts; of them, three are instructors at the Department of Computer Science at the 

University; in addition, one is the author of this thesis. In labelling the MOOC urgency corpus, 

as in the Stanford dataset, (Agrawal and Paepcke, 2019) instructions were given to annotators 

(as shown in Appendix A), who were asked to manually classify each learner post using the 

seven-point Likert urgency scale (1–7), representing the range of urgency level (1: no reason 

to read the post – 7: extremely urgent: instructor definitely needs to reply) as clarified in 

Section 3.2.1. Nevertheless, determining which posts require urgent responses is difficult, as 

selection can be a subjective issue; for example, at present, instructors tend to rely on their own 

judgement, however, this approach may omit potentially urgent posts thus reducing the 

effectiveness of the support offered (Chandrasekaran et al., 2015b). After completing the 

annotations, as a cleaning process (four) posts containing anything other than values from 1–7 

were excluded.  

Then, the quality of the manually labelled posts was validated and evaluated by using the 

Krippendorff's alpha (Hayes and Krippendorff, 2007). The resulting agreement between all 

annotators was low (Krippendorff's alpha=0.33); meanwhile, the Stanford dataset suffered 
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partially from similar issues as explained in Section 3.2.1; the agreement between the optimal 

coder combination for the Likert variables (1-7) varied considerably per domain (Education: 

0.14; Humanities/Sciences: 0.52; Medicine: 0.63). 

Therefore, to address this problem, firstly the 1-7 scale was converted into a simplified scale 

(1–3), as per Figure 3.6 (below). This meant, for example, mapping 1, 2, and 3 as non-urgent 

together –– as they all are non-actionable, into (1). 

 

Figure 3.6: Dimensionality reduction: converting the (1-7) scale into a (1-3) scale. 

From the obtained annotated data, two datasets were created as follows: (i) the Urgent 

iNstructor InTErvention (UNITE), and (ii) the Gold-standard corpus. The differences in their 

respective data creation strategies are explained in the following sub-sections. 

3.2.2.1. Urgent iNstructor InTErvention (UNITE) 

To create the UNITE dataset and be able to use the data reliably, identifying a dependable sub-

set was decided; this sub-set was selected by including only posts that have a level of agreement 

between annotators of >75%; in other words, at least three annotators (out of four) must have 

agreed on the post’s label. Thus, a voting method was used, which is considered the most 

appropriate way to integrate different opinions about the same task (Troyano et al., 2004). In 

this case, only 4622 reliable posts could be included in the gold-standard dataset 

(approximately 80% of the original data). 

The aim here was to obtain as many potentially urgent posts as possible, thus, the problem 

was framed as a binary classification problem with outputs urgent and non-urgent, by 

converting and ranking the gold-standard labels as: 

• Scale = 2 or 3     → Urgent. 

• Scale = 1            → Non-urgent.  
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Figure 3.7: Final gold-standard labels for the UNITE corpus. 

Figure 3.7 (above) depicts the final gold-standard labels generated for this corpus. Please note 

that it erred on the side of caution in this final step by including neutral posts (urgency = 4) as 

urgent. This is because, for the Stanford data (Section 3.2.1), while some researchers supposed 

that urgency≥4 represents urgent posts (Almatrafi, Johri and Rangwala, 2018), others regard 

urgency>4 as urgent (Guo et al., 2019). As here it was only working with integer values for 

labels, it was deemed that a value of 4 and above signifies urgent. This is also in line with the 

researcher’s protocol on favouring recall and false positives (FP). 

Unsurprisingly, for the UNITE dataset, this division still resulted in a very high proportion 

of posts being categorised as non-urgent (93%, i.e., 4,292 posts with only 330 urgent posts: 

7%, see Figure 3.8 below), thus illustrating a high degree of imbalance. For this reason, this 

dataset data was employed in Chapter 8 in dealing with solving the imbalanced data issue. 

 

Figure 3.8: The distribution of the two classes (urgent, non-urgent) in the UNITE dataset. 

3.2.2.2. Gold-Standard Corpus  

To build the Gold-standard corpus and be able to increase the reliability of the data based on 

the raw data, an annotator who disagreed strongly with other annotators was dropped. From 

the remaining three annotators, a label value was calculated by converting the scale to binary 

(1–3→0, 4–7→1). Then, a voting process was applied between the three remaining annotators, 

resulting in a binary-class label as: 0 → non-urgent; 1 → urgent. This resulted in 5786 posts in 
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a class size of 5786 (‘0’ non-urgent → 4903 (84 %), ‘1’ urgent → 883 (15 %)) as shown in 

Figure 3.9 (below). This dataset was used in Chapter 7 because the proposed priority model 

was built on learner histories and this aspect can be studied based on these data. Also, this 

dataset was used in Chapter 9 because it allowed the study of agreement between human 

annotators. This information is not available in the Stanford dataset.  

 

Figure 3.9: The distribution of the two classes (urgent, non-urgent) in the gold standard corpus dataset. 

3.2.2.3. Dropout  

This corpus dataset was created to identify learners at risk of dropping out and who may need 

instructor intervention based on their forum posts. The dropout data was collected in the same 

way as in the FutureLearn (UNITE and gold-standard datasets) corpora (i.e., during the first 

five weeks). Upon exploring the data, it included about 871 active learners, who were defined 

as those who participated in the discussion forums and had written at least one text post  (Yang 

et al., 2015; Wen, Yang and Rosé, 2014) from a total of 11281 enrolled learners and 4683 

accessed learners. Enrolled learners refers to those who registered on the course; accessed 

learners are those who both enrolled and accessed the course at least once during the first five 

weeks (Alamri et al., 2021).  

To create a corpus for all commenters, the histories of learner posts were collected (their 

most recent posts made during the first five weeks). Then, learners needing intervention were 

defined as those who dropped out after week 5. Dropout was defined following the approach 

of (Alamri et al., 2021) on their weekly prediction of dropout: they supposed that learners are 

considered to have dropped out if, in the following week, they did not access 80% of the 

available topics. Therefore, for each learner, dropout was defined as accessing less than 80% 

of the available topics in week 6, therefore, the dropout rate was 66% (574 learners needed 

instructor intervention) while 34% of learners (297) completed the course; this distribution is 

illustrated in Figure 3.10 (below). 
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Figure 3.10: The distribution of the two classes (completers, dropout) in the Dropout dataset. 

3.3.  Experiments Architecture 

The methodology was designed to address the problem of identifying when an instructor needs 

to intervene as instructors are primary target users based on posts written by learners (learners 

are potential secondary target users). The focus was on three main different aspects: posts, 

topics, and learners. Then, this was expanded to identify posts considering two attributes: (i) 

learner modelling and (ii) user modelling (instructors and learners) as shown in Figure 3.11 

(below).  

 

Figure 3.11: Different aspects of instructor intervention in the thesis. 

In addition, using XAI to assist instructors in making decisions on when urgent intervention is 

required, also supports annotators in creating high-quality, gold-standard datasets for the urgent 

intervention problem.  

Thus, the experiments performed in this thesis were based on different levels of 

identification and XAI, as discussed in the following sub-sections. 
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3.3.1. Posts (Chapter 4) 

To determine if a MOOC forum post highlighted a need for urgent instructor intervention, 

different binary classifiers were developed. 

• Analysis combining several different dimensional values of learners’ posts with their 

textual data and proposing a multidimensional deep learning model (CNN+MLP) to 

predict posts that require urgent intervention in a MOOC environment. 

• Constructing hybrid neural networks using different deep learning models for word-

based and word-character-based inputs, comparing word2vec with BERT as an 

embedding approach to provide a more comprehensive overview of the construction 

of models to predict the urgency of intervention in MOOC forums. 

3.3.2. Topics (Chapter 5) 

To explore the urgent-like language that learners use to express their need for immediate 

intervention: 

• Create a text post analysis framework using topic modelling via LDA to identify urgent 

language and visualise it with the aim of supporting instructors and learners. 

3.3.3. Learners (Chapter 6) 

To identify learners who need intervention and may drop out and alert instructors about them:  

• Propose the prediction model architecture to identify learners’ need for instructor 

intervention based on learners’ posting history by integrating the most recent sequence 

of posts written by learners. Other deep learning architectures and Transformer models 

were constructed; for the Transformer model specifically, the siamese and dual 

temporal multi-input approaches were proposed. 

3.3.4. Posts + Learner Modelling (Chapter 7) 

To add priority in posts requiring intervention based on learners’ modelling and their 

behaviours: 
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• Propose a new intervention framework designed to add the feature of prioritising urgent 

posts based on learners’ history to assist instructors in making effective decisions to 

intervene, and ability to adapt their interventions. 

3.3.5. Posts + User Modelling (Chapter 8) 

To solve the imbalanced data issue and propose adaptive intervention models based on user 

modelling: 

• Automatically classify if a MOOC learner’s post is urgent using traditional ML 

algorithms and Transformers (BERT) requires flagging for instructor intervention based 

on the instructor and learner models to drive such recommendations to instructors and 

tackle the imbalance problem.  

3.3.6. EXplainable artificial intelligence (XAI) (Chapter 9) 

To understand the ‘black-box’ models of urgent instructor-intervention models in MOOCs: 

• Provide an explanation of ML decisions using the Captum tool that explains individual 

predictions in the urgent intervention task in a MOOC environment to support both 

instructors and annotators. 

3.4.  Performance Evaluations 

An evaluation metric is a tool for measuring how well a classifier and model perform when 

tested on unseen data (testing set) (Hossin and Sulaiman, 2015). It is essential for the creation, 

evaluation, and selection of ML models and there are several ways to evaluate performance. 

In this thesis, as the different data considered were highly unbalanced, using accuracy (Acc) 

is ineffective for measuring performance as the data could be biased towards the majority class 

in the imbalanced class dataset (Gong, 2021). Thus, to achieve more accurate results, other 

metrics were used to measure the performance of the models per class (negative and positive) 

that represent non-urgent and urgent and completers and dropouts, such as precision (P), recall 

(R) and F1 score (F1) derived from the true positive (TP), true negative (TN), false positive 

(FP), and false negatives (FN) of the confusion matrix which was used as the basis of these 

different metrics (see Figure 3.12). 
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Figure 3.12: Confusion matrix. 

To explain in more detail, TP = predicted positive and is actually positive; TN = predicted 

negative and is actually negative; FP = predicted positive and is actually negative; FN = 

predicted negative and is actually positive.  

Precision refers to analysing the proportion of positively predicted cases, whereas recall 

assesses how effectively a model predicts positive instances. Thus, the metrics (P, R, F1, and 

Acc) are calculated as the following equations: 

                                                                  𝑃 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                          (3.1)  

                                                                𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                          (3.2)                                                                                                 

𝐹1 =  
2  .  𝑃 .  𝑅

𝑃 + 𝑅
                                                          (3.3) 

                                                        𝐴𝑐𝑐 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝑇𝑁 + 𝐹𝑃
                                                (3.4)                                                                                                  

Here, a discussion of what constitutes a good classifier of urgent intervention in posts is 

required, in terms of the best trade-off between false positives (incorrectly identifying posts 

requiring urgent intervention) and false negatives (failing to identify posts that require urgent 

intervention). This was interpreted as giving priority to intervention in urgent cases; hence, 

false negatives were more problematic than false positives. Thus, recall (R) was prioritised to 

ensure the capture of all urgent cases as well as balance accuracy (BA) (Brodersen et al., 2010) 

(which refers to the average recall for each class and is equal to the mean of the sensitivity (true 

positive rate) and specificity (true negative rate)); its use is especially useful when the classes 

are imbalanced. It can be calculated as: 

                                                        𝐵𝐴 =  
𝑇𝑃/ (𝑇𝑃+𝐹𝑁) + 𝑇𝑁 / (𝑇𝑁+𝐹𝑃)

2
                                              (3.5)     
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3.5.  Ethical Considerations 

The data used in this research project is intended for research purposes only. In addition, the 

necessary usage permits required for this thesis were all obtained. This included permission 

to use FutureLearn data as during registration, learners give their permission and consent to 

the use of their information for research purposes. In addition, the annotation process for 

labelling posts has received ethical approval from the University.  

3.6.  Epilogue 

Numerous research has investigated instructor intervention in MOOC forum posts. However, 

the literature has failed to consider aspects such as the topics and language used by learners to 

express their urgency, learners’ post history to identify potential dropouts, prioritise 

intervention based on learner modelling and behaviour, solving the imbalanced data issue, and 

automating the urgent-posts-identification process based on user modelling and the use of XAI 

to comprehend model decisions to support both instructors and annotators. This thesis covers 

instructor intervention in MOOC forums from different perspectives. It also covers the 

identification of urgent posts as a main objective. Therefore, different datasets were used to 

complete these objectives. One of them is available on request (Stanford) and the other was 

derived from the FutureLearn platform which required additional effort for labelling. 

The methodology and architecture of the experiments to fill the mentioned gaps in the 

literature were provided in this chapter; this covered the different classification and clustering 

models. It also covered classifying posts as urgent or non-urgent, clustering and analysing 

topics in learners’ posts, and classifying learners as completers or dropouts based on their post 

history. Then, it covered expanding the classification of posts to add priority for intervention 

based on learners’ behaviour and classifying posts by considering user modelling and solving 

the imbalanced data problem. In addition, it covered using XAI to help instructors as well as 

annotators by identifying urgent posts to create high-quality datasets. The following chapters 

discuss these experiments in more detail. 
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CHAPTER 4: INTERVENTION PREDICTION: POST-

BASED MODEL  

 

 

4.1.  Prologue 

Most posts in asynchronous MOOC discussion forums feature general communication; among 

them, some posts request help from instructors. Instructor intervention is important to address 

struggling learners’ needs by replying to their questions and requests for help as learners often 

describe feelings of confusion and express their need for help via forum posts. However, the 

often-huge numbers of posts on forums present in MOOCs make it unlikely that instructors can 

monitor all posts and respond to those requesting help which means that many of these urgent 

posts are overlooked or discarded. This is exacerbated by the high ratio of learners to instructors 

in MOOC environments. Thus, capturing target posts that need intervention is a critical yet 

challenging task. To overcome this, the best solution is to propose classification models that 

identify posts that require urgent instructor intervention. The main aim of this chapter is to 

recognise urgent posts on MOOCs by constructing two novel experiments on this domain as 

shown in Figure 4.1 (below) using the Stanford dataset as explained in Section 3.2.1. This can 

help guide instructors to identify posts that need intervention.  
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Figure 4.1: Urgent posts prediction experiments. 

The first experiment (multidimensional deep learning model) aimed to construct a classifier to 

identify the need for instructor intervention on posts based on DL models that integrates 

different aspects of MOOC posts (sentiment, confusion, opinion, question, and answer) with 

text to classify urgent posts as numerical data and textual data.   

The second experiment (plug & play with deep neural networks) sought to discover what 

the preferable combination is between different (hybrid) DL models to construct the best 

predictor model for classifying posts that need instructor intervention. It applies the plug & 

play technique for word-based and word-character-based input, as it is expected that adding 

additional character-sequence information may increase performance. These models were 

constructed based on different embeddings (word2vec or BERT) to represent the words used 

in posts.  

4.2.  A Multidimensional Deep Learning Model 

Mining raw data on MOOC learners’ posts may provide a helpful way of classifying posts 

where learners require urgent intervention from instructors. In this experiment, a method based 

on the correlations of five different dimensions of learner posts (sentiment, confusion, opinion, 

question, and answer) to determine the need for urgent intervention was proposed. Then, a 

multidimensional DL model was developed which contributes to the intervention task based 

on the above five dimensions in addition to learners’ posts texts to determine the need for urgent 

instructor intervention.  

This model is a novel classifier for this area; many recent studies have focused on detecting 

struggling learners’ posts using different methods as clarified in Chapter 2. Some of these 

approaches use features extracted from the properties of posts (Chaturvedi, Goldwasser and 

Daumé III, 2014) while others are based on text-only features with DL (Guo et al., 2019; Sun 

et al., 2019). However, few studies have combined mixed data such as text data with metadata 

First expirement

multidimensional deep learning  model

• Prediction posts based on
combining:

• Text data as word level (learner posts) +

• Numerical data (multiple diemention of
learner posts).

Second expirement 

plug & play with deep neural networks

• Prediction posts based on text only:

• Different level (‘word-based’ or ‘word-
character based’).

• Different word representation word2vec
or BERT.
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(Chandrasekaran et al., 2015b; Almatrafi, Johri and Rangwala, 2018); such studies are limited 

as they are all based on traditional ML only. Thus, this experiment to classify urgent posts is 

based on a DL model containing sub-models to investigate different aspects of MOOC posts 

(sentiment, confusion, opinion, question, and answer) as numerical data and textual data.   

Thus, the first goal of this chapter is to show how MOOC posts can be mined and create 

urgent instructor intervention prediction models based on correlations of different dimensions 

of learners’ posts in an attempt to answer the following two RQs:  

  

• RQ1.1: Is there a relationship between the various dimensions of the learners’ posts 

and their need for urgent instructor intervention? 

• RQ1.2: Does using several dimensions as features in addition to textual data increase 

the model’s predictive power for identifying posts that require the need for urgent 

instructor intervention when using deep learning? 

The following are the main contributions of this experiment: (i) exploring the statistical 

analysis of different dimensions of MOOC learners’ posts in relation to non-urgent and urgent 

posts, and (ii) building a novel classifier for this area based on DL models that incorporates 

different dimensions of MOOC posts to classify urgent posts, i.e., numerical data in addition 

to textual data. 

4.2.1. Related Work on MOOC Analysis  

Recently, data from MOOC discussion forums has been subject to significant research efforts 

to study, analyse, and evaluate different learners-related aspects including sentiment (Wen, 

Yang and Rose, 2014), confusion (Agrawal et al., 2015), and the need for urgent intervention 

(Almatrafi, Johri and Rangwala, 2018) to improve the educational quality of MOOC 

environments and improve the overall educational outcomes of MOOC learners. 

Researchers have employed sentiment analysis for different purposes; for instance, they 

used it to predict attrition (Chaplot, Rhim and Kim, 2015), performance and learning outcomes 

(Tucker, Pursel and Divinsky, 2014), emotions (Moreno-Marcos et al., 2018a) and dropout 

(Wen, Yang and Rose, 2014) by using different ML approaches. These methods include 

statistical analysis and traditional ML and DL. A growing number of researchers have studied 

confusion; For example, (Yang et al., 2015) explored click patterns to identify the impact of 

confusion on learner dropout; (Agrawal et al., 2015) attempted to assist confused learners by 
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developing a tool that recommends relevant video clips to learners who had submitted posts 

that indicated learner confusion.     

However, while all these studies focused mainly on employing learner sentiment and 

confusion to achieve different goals, they do not exploit sentiment and confusion indicators to 

predict urgent instructor intervention. Therefore, the current research project seeks to use these 

aspects as metadata in addition to other aspects such as opinion, question, and answer to predict 

the urgency posts, which represents a new model in the MOOC instructor intervention 

prediction field.    

4.2.2. Methodology 

The main aim of this experiment was to analyse the effect of combining several different 

dimensions with textual data to predict posts where learners require urgent intervention in a 

MOOC environment. In the next sub-sections, the pre-processing techniques used with the 

dataset for this experiment are introduced. In addition, the exploratory statistical analysis and 

models’ architectures are discussed. 

4.2.2.1. Dataset 

In this study, the Stanford MOOC benchmark posts (Section 3.2.1) dataset was used; it is a 

large data size featuring 11 courses. The experimental data was prepared as follows: noisy data 

was cleaned up by removing automated anonymisation (e.g., <nameredac>, <phoneredaci>, 

<zipredaci>) and removing punctuation and hyperlinks as in (Wei et al., 2017). Case-folding 

and lemmatisation were also applied (Guo et al., 2019). However, the stopwords were kept, as 

recommended by (Wise et al., 2017) to improve performance. 

4.2.2.2. Exploratory Statistical Analysis 

The relationship between the ratio number of non-urgent and urgent posts using the five 

dimensions (sentiment, confusion, opinion, question, and answer) for these posts was 

calculated. For the first two dimensions (sentiment and confusion), the values to integers were 

rounded down merely for visualisation purposes (e.g., 1 and 1.5 to 1; 2 and 2.5 to 2; etc.). Then, 

the mean value (µ) was calculated for each of the different aspects (sentiment for non-urgent 

versus urgent posts; confusion with urgency and without; etc.). This aimed to discover if the 

data were normally distributed; the commonly used Kolmogorov-Smirnov (K-S) test was 
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applied. As the data were not normally distributed, a Mann-Whitney U test was used to check 

if the differences were significant (Massimiani et al., 2019). Then, the Bonferroni correction 

was calculated as multiple comparisons were conducted. Finally, Pearson product-moment 

correlations were calculated (Cohen et al., 2009) between non-urgent and urgent posts and were 

then measured over the other dimensions. For the correlation between non-urgent/urgent posts 

with sentiment and confusion values, the scale was converted to positive/negative: positive if 

the value was > 4 and negative otherwise. 

4.2.2.3. A Multidimensional Deep Learning: Predictive 

Intervention Models 

The first step was to develop a basic model based on text-only data and then incorporate other 

dimensions (sentiment scale, confusion scale, opinion value, question value, and answer value) 

as numerical features. In general, the text data (learner posts) was trained with a CNN model 

and the numerical data (multiple dimensions) with a MLP model (see Figure 4.2 below). CNN 

was selected to classify text by following (Guo et al., 2019) as they reported that TextCNN 

outperforms LSTM. Note though that the goal was to show the power of the multidimensional 

approach and not optimise the individual parts of the classifier. 

 

Figure 4.2: Different types of data with different networks. 

The data were divided into two distinct sets: one for training and the other for testing (80% and 

20%, respectively) using stratified sampling (Farias, Ludermir and Bastos-Filho, 2020). This 

was to ensure that the training and testing sets had approximately the same distributions of the 

different classes (non-urgent and urgent), although the dataset has many non-urgent posts. The 

training set was split into two sets: training and validation (80% and 20%).  

4.2.2.3.1. Text Model 

As shown in Figure 4.3 (below), in the text model, the first layer is the input layer, with a 

maximum length = 200, as each post was padded out to a predetermined length (200 words) by 

following (Guo et al., 2019) to control the length of the input sequence to the model. Then, the 
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embedding layer reused the pre-trained word embeddings (Word2vec-GoogleNews-vectors-

negative300) (Mikolov et al., 2013) and was fine-tuned during training. Word2vec was selected 

as the pre-trained model, as (Guo et al., 2019) showed that it outperformed GloVe on urgency 

classification tasks. Next, for the CNN layer, 1D Convolution was applied (128 filters, kernel 

size of {3,4,5} and Rectified Linear Unit (ReLU) as the activation function) as in (Guo et al., 

2019) to derive interesting features, followed by 1D global max pooling to produce final 

features. Then, for the drop-out layer, a drop-out rate of 0.5 was used as in (Guo et al., 2019) 

to prevent overfitting. Then, the fully connected layer with the sigmoid as an activation function 

was used to classify output I as: 1- needs urgent intervention or 0 – no intervention required: 

                                                               𝐼 = {
1, 𝑖𝑓 > .5
0, 𝑖𝑓 ≤ .5

                                                      (4.1)                                                  

After constructing the model, it was trained using the Adam optimisation algorithm as in (Guo 

et al., 2019). Binary cross-entropy was used as a loss function because this problem involves 

binary decisions, and the popular metric accuracy was used to report performance. In addition, 

for a more comprehensive result and to deal with potential majority class bias, the P, R and F1 

for each class were calculated. In addition, due to the class imbalance, the BAs were measured 

for model evaluation. 

4.2.2.3.2. Overall Model (Text Model + Other Dimensions 

Model) 

The overall model is a general model that contains mixed data to predict urgent learner posts. 

Here, numerical data as features were added in addition to text. As an initial study, the text data 

was combined with meta-data in one single model; however, the model’s performance was 

unsatisfactory. As the model combines multiple inputs and mixed data, therefore two different 

sub-models were constructed (see Figure 4.3 below), with the first sub-model being the text-

only model. 

The second sub-model is a MLP neural network with five inputs that represent the five 

dimensions (sentiment, confusion, opinion, question, and answer). Then, these features were 

added one by one to the MLP model as single inputs (one dimension at a time) to check the 

individual effect of each particular dimension. The next layer is a hidden layer with 64 neurons. 

This is followed by a fully connected layer with the sigmoid as an activation function to classify 

the posts as in the text model. The outputs from these two sub-models were combined via 
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concatenation to construct the overall model. Finally, a fully connected layer that consists of 

one neuron with the sigmoid activation function was used at the end of the network to classify 

the output as in the sub-models. 

 

Figure 4.3: Overall model. 

After training, McNemar's statistical hypothesis test (McNemar, 1947) was applied to check if 

the observed differences between any two classifiers were statistically significant. Also, the 

Bonferroni correction was applied to compensate for multiple comparisons. 

4.2.3. Results and Discussion 

In this section, the charts and results of the analysis of the relations between non-urgent and 

urgent posts with different dimensions are presented to address RQ1.1. Then, the results 

obtained after training each model were reviewed (text only and overall model) to address 

RQ1.2. 

4.2.3.1. Statistical Analysis 

The relationship between the rates of non-urgent/urgent posts across the five different 

dimensions was analysed. As shown in Figure 4.4 (below; left: sentiment (1–7)), the number 

of urgent posts exceeded the number of non-urgent posts in the negative sentiment scale (1–3) 

and vice-versa: the number of urgent posts was less than that of non-urgent posts on the positive 
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sentiment scale (5–7). Sentiment (4) was interpreted as neutral. To reach this conclusion, the 

values of (4) and (4.5) on the sentiment scale were compared; there were a higher proportion 

of non-urgent with a sentiment of (4.5). Figure 4.4 also shows that (right: confusion (1–7)) the 

ratio of non-urgent posts was higher than that of urgent posts for non-confused posts, i.e., with 

a confusion value of between 1–3 in contrast to confused posts (5–7). The values (4) and (4.5) 

for confusion were compared as well; here, unlike for sentiment, the results showed a higher 

number requiring urgent attention for the (4.5) value. 

 

Figure 4.4: The relationship between the ratio of the number of (non-urgent & urgent) posts and 

sentiment scale (1-7) (left), confusion scale (1-7) (right). 

A similar analysis for the remaining dimensions was performed (opinion, question, and 

answer), which are binary (Figure 4.5). For opinion, most of the posts were non-urgent. For 

question, there were more urgent posts; this highlights that questions often represent posts 

where learners require urgent intervention. In answer, in general, most posts are not answered, 

indicating that most learners do not like to answer their peer’s questions; this highlights the 

importance of instructor intervention. Answer posts, as expected normally represent non-urgent 

posts. 

 

Figure 4.5: The relationship between the ratio of the number of (non-urgent & urgent) posts and opinion 

(1/0) (left), question (1/0) (middle) and answer (1/0) right. 
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Next, the averages of the sentiment dimensions were computed: the mean of the urgency 

sentiment was 3.83 and the mean of non-urgency sentiment was 4.25 (see Table 4.1 below). 

Importantly, this difference is statistically significant (Mann-Whitney U test: p < 0.05). Then, 

the same steps were repeated for all dimensions, as shown in Table 4.1. Then, a Bonferroni 

correction was applied (p < 0.01) indicating that the set of all comparisons is significant. 

Table 4.1: Average different dimensions with (non-urgent/urgent). 

Dimension Mean (non-urgent) Mean (urgent) P 

Sentiment 4.25 3.83 p <  0.01 

Confusion 3.75 4.59 p <  0.01 

Opinion 0.61 0.29 p <  0.01 

Question 0.06 0.77 p <  0.01 

Answer 0.23 0.05 p <  0.01 

 

Next, as explained in the methodology, the dimensions were compared. Correlation results are 

shown in Table 4.2 (below), suggesting a strong correlation between urgency and confusion 

and between urgency and question. 

Table 4.2: Correlations between non-urgent/urgent posts reflected on different dimensions. 

Dimension Non-urgent/urgent 

Sentiment -0.244 

Confusion  0.571 

Opinion -0.253 

Question 0.691 

Answer -0.177 

4.2.3.2. A Multidimensional Deep Learning: Predictive 

Intervention Models 

Table 4.3 (below) reports the performance of every trained model as a comparison between 

different inputs. The average Acc and P, R, and F1 per every class category (0 as non-urgent) 

and (1 as urgent) were calculated. In addition, as the dataset for this study is imbalanced, BAs 

were calculated to measure the performance of models. The results revealed that adding all 

features as other dimensions (sentiment scale, confusion scale, opinion value, question value 
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and answer value) in addition to texts increases classifier performance in BA for classifying 

urgent posts. In addition, R for the minority class as 'Recall' is a more crucial metric because it 

ensured the capture of all urgent posts. 

 Table 4.3: The performance results for different inputs (Acc, P, R, F1 %), Bold: best performance of 

BA and best performance of R for class 1 (Urgent). 

  

Next, the differences were checked if these were statically significant (McNemar's test: p < 

0.05) as shown in Table 4.4 (√ indicates a statistically significant difference in the 

disagreements between the two models while × signifies a statistically non-significant 

difference in the disagreements between the two models). The results confirm that there are 

differences between the (text + all features) model and the other models as they have different 

proportions of errors. Then a Bonferroni correction was used between (text + all features) and 

different models; and found that p < 0.008, meaning the set of all comparisons is significant. 

Table 4.4:  McNemar’s test results between models. 

 Text Text+ 

all 

features 

Text+ 

sentiment 

Text+ 

confusion 

Text+ 

opinion 

Text+ 

question 

Text+ 

answer 

Text        

Text+all 

features 
√ 

      

Text+  

sentiment 
√ √     

 

Text+ 

confusion 
× √ √    

 

Text+ 

opinion 
× √ × ×   

 

Text+ 

question 
√ √ √ √ √  

 

Text+   

answer 
√ √ √ √ √ √ 

 

Inputs      Acc 

Non-urgent  

(0) 

Urgent 

 (1) BA 

P R F1 P R F1 

Text 0.88 0.90 0.95 0.93 0.73 0.56 0.64 0.76 

Text + all features 0.91 0.93 0.97 0.95 0.84 0.67 0.74 0.82 

Text + sentiment 0.88 0.91 0.95 0.93 0.73 0.57 0.64 0.76 

Text + confusion 0.87 0.90 0.95 0.92 0.73 0.52 0.61 0.74 

Text + opinion 0.87 0.90 0.95 0.92 0.71 0.57 0.63 0.76 

Text + question 0.90 0.91 0.98 0.94 0.86 0.59 0.70 0.78 

Text + answer 0.89 0.92 0.95 0.93 0.73 0.64 0.69 0.79 
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4.3.  Plug & Play with Deep Neural Networks  

The second experiment proposed a classification model for identifying when a given post needs 

intervention from an instructor based on a hybrid DNN with different levels of inputs. These 

deep models cannot deal directly with word content, working instead on word embeddings, to 

produce word vectors (Rani and Kumar, 2019) as clarified in detail in Section 2.2.2. Currently, 

BERT has become popular as a word embedding tool because it produces word embeddings 

based on their context –– unlike existing word embedding models, which embed each word in 

a single vector, without taking into account the different contexts of use (Mazari, Boudoukhani 

and Djeffal, 2023). In addition, (Khodeir, 2021) showed that using BERT to represent words 

improved performance in detecting urgent posts. 

This research project was inspired by the work of two researchers: (Guo et al., 2019) and 

(Khodeir, 2021). Guo et al., (2019) used DL models combining (CNN + GRU) that extract 

semantic information and structural information to detect posts that needed urgent responses 

by applying attention to develop a hybrid character/word neural network. Meanwhile, Khodeir 

(2021) utilised a multi-layer (Bi-GRU) based on BERT as an embedding layer to classify 

learners’ urgent posts. She used BERT as a word embedding to represent words in context. 

However, the novelty of this research project is the application of using a plug & play approach 

in a DL model based on word2vec or BERT for different word-based or word-character-based 

inputs to provide a more comprehensive view of constructing models designed to predict the 

urgency of intervention need in MOOC forums.  

Thus, constructing different hybrid (deep) neural networks that integrate various DNNs with 

word-based or word-character-based inputs using two different methods to represent word 

input (word2vec or BERT) addresses the second goal of this chapter as illustrated in the 

following RQs: 

• RQ1.3: What is the preferable combination between different deep learning models to 

construct the best predictor model amongst them to identify posts that need instructor 

intervention? 

• RQ1.4: Do word-character-based approaches outperform word-based approaches for 

the post urgency problem and is this different when using BERT for word embedding, 

compared to more traditional models (e.g., word2vec)? 

The key contributions of this experiment are the following: (i) analysing and exploring for the 

first time MOOC post data in terms of length (number of words and characters per post), (ii) 
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constructing different simple and hybrid deep learning models by applying plug & play 

techniques to establish good combinations in terms of performance, (iii) applying an attention 

mechanism that considers word-based input only by using a separate attention score for every 

word according to their importance, (iv) for the first time, showing the quality of BERT and its 

sufficiency when using word-based input only without adding word-character-based input. 

4.3.1. Related Work on Towards Plug & Play: Combinations in 

Deep Learning 

For text classification, CNNs are known to be better at extracting local and position-invariant 

features while RNNs are effective at modelling units in sequence due to the latter’s different 

architecture –– since CNNs are hierarchical, while RNNs are sequential (Yin et al., 2017). 

Whilst DL has been proven to be performant, recently, a great amount of research has 

focused on combining two or more types of DNNs to produce a more effective combined 

model. This is specifically prominent in the computer vision field (Zhao, Han and Xu, 2018; 

Ullah et al., 2017; Tsironi et al., 2017). Recently, many researchers have also applied 

combinations of different DNN models to text analysis and classification tasks. For example, 

(Wang, Jiang and Luo, 2016) introduced a technique to combine CNN and RNN models to 

perform sentiment analysis on short texts; their results showed that this approach leads to 

improvements in accuracy. (Lai et al., 2015) proposed a RCNN which involved applying a 

RNN to capture contextual information followed by a CNN to obtain the final representation 

for sentence classification. 

Another study by (Zhang, Robinson and Tepper, 2018) combined CNN and GRU to detect 

hate speech on Twitter. Their model outperforms existing models on six out of seven datasets 

with F1 scores of between 1%–13%. Also, as mentioned in Chapter 2, (Wei et al., 2017) 

proposed a framework for transfer learning based on CNN and LSTM and showed the 

effectiveness of their model on the Stanford MOOCPosts dataset. 

All previous studies have combined different types of DNNs for word-level inputs only. In 

addition to combining different layers at the word-level, other researchers have combined 

characters with words as input. For example, (Liang, Xu and Zhao, 2017) used word-level and 

character-level representation as input to classify informal text. Their results are competitive 

in relation to other studies on the SemEval-2010 Task8 and outperform existing models on the 

KBP-SF48 dataset by achieving better learning of character features. Also, (Yenigalla et al., 
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2018) proposed a method to integrate both character- and word-based models for text 

classification to address the problem of unseen words in word-based models. Their results 

showed that this approach resulted in accuracy being improved. 

(Guo et al., 2019) proposed an attention-based model that concatenates word-level and 

character-level representation to extract semantic and structural information. They clarified that 

the MOOC posts contain a lot of noise; this problem can be overcome by adding character-

level input to capture this special information. 

As mentioned earlier, this experiment was built based on Guo et al.’s (2019) research; 

however, they used semantic and structural information to classify posts that need intervention. 

Semantic information was learned by applying a CNN while structural information was learned 

by using the last hidden state of the GRU. Then, they used an attention mechanism to learn the 

weights of the word-character representations. In contrast, in the current experiment, a CNN 

was used to extract local features and investigate different types of RNNs (plug & play) to 

model units in sequence by returning all the hidden states to the attention mechanism to allocate 

weights to every word. The attention mechanism was applied only to word-based input before 

character-based input was added to improve noisy data such as misspellings. In addition, the 

words were represented using two methods: (i) BERT as in (Khodeir, 2021) in contrast to (ii) 

(Guo et al., 2019) who used word2vec (google-news Vectors). 

4.3.2. Methodology 

This experiment seeks to identify posts that need urgent intervention by using a plug & play 

technique with a multi-layered DNN. The pre-processing of the dataset for this experiment is 

introduced in the following sub-section. This is followed by an exploration of the dataset in 

terms of length (number of words and characters per post). Finally, it proposes the architectures 

of the predictive intervention models.  

4.3.2.1. Dataset 

In this experiment, the Stanford MOOC posts dataset (see Section 3.2.1) was also used. Further 

pre-processing was applied as mentioned above, including data cleaning and all automated 

anonymisation tags were removed (e.g., <zipredaci>, <phoneredaci>) (Wei et al., 2017). Next, 

the text was converted to lowercase. As in the previous experiment, the stopwords were kept 

because, as (Wise et al., 2017) noted, model performance can improve if stopwords are 
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included. Next, the final input was prepared by adding the name and the domain of the course 

to the text input. This approach followed (Guo et al., 2019) who argued that to understand the 

information contained in posts, one should connect the course and domain information of the 

post to the text of the post. Thus, 13 posts with an empty course name were removed, leaving 

29,584 posts. 

4.3.2.2. Exploring the Dataset 

As an essential step, the dataset was explored and analysed to understand the data. Here, the 

analysis focused on the number of words and characters in all posts; the use of DL models 

requires that the length of the input sequence to these models should be specified. As mentioned 

in Section 4.3.2.1, the input to these models was the text in the posts and the name and domain 

of the course; therefore, this information had to be considered in the following calculations. As 

shown in Figure 4.6 (below), A is the distribution of the number of words per post (mean = 

60.36 words, minimum = 2 words; maximum = 498 words). B is the distribution of the number 

of characters per post (mean = 380.28 characters, minimum = 29 characters; maximum = 2556 

characters). 

 

Figure 4.6: Distributions of posts: A = number of words per post – B = number of characters per post. 

To understand the behaviour of learners and how many words they write when they need urgent 

intervention (Label = 1) or not (Label = 0), the representation of the number of words per label 

was visualised (see Figure 4.7 below). To check if any statistically significant differences 

between the two populations were present, the Mann-Whitney U test was used. It was found 

that p < 0.05, meaning that statistically significant differences were evident in terms of the 

length of posts (number of words). 
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Figure 4.7: Box plot for number of words per post written by learners needing intervention (Label = 1) 

or not needing intervention (Label = 0). 

Following this, posts written by learners who need urgent intervention were analysed. As 

depicted in Figure 4.8 (below), A is the distribution of the number of words per urgent post 

(mean = 59.63 words; minimum = 2 words; maximum = 450 words). On the right side, B shows 

the distribution of the number of characters per urgent post (mean = 372.12 characters; 

minimum = 32 characters; maximum = 2556 characters). 

 

Figure 4.8: Distributions of urgent posts: A = number of words per urgent posts – B = Number of 

characters per urgent posts. 

Finally, to discover which words were most frequently used by learners in urgent posts, the top 

30 most frequent words in these posts were calculated after removing stopwords; see Figure 

4.9 (below).  
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Figure 4.9: The top 30 frequency words in urgent posts. 

4.3.2.3. Plug & Play: Predictive Intervention Models 

The input of these models is posts from each learner; the output is the classification (if the post 

needs intervention or not) according to its urgency (binary prediction). Words were presented 

in numerical form (word embedding) using (i) word2vec as in (Guo et al., 2019), which 

converts words into vectors that depict semantics; and (ii) BERT as in (Khodeir, 2021), which 

generates contextual representations for each word. Two different training models were 

implemented: (i) using word-based input, and (ii) using character-based input in addition to 

word-based input to configure what is called in this research project word-character-based 

input. Figure 4.10 (below) illustrates the general architectures of these two cases (word-based 

input and word-character-based input). Word2vec or BERT were selected as a word embedding 

tool, a CNN was used to extract local complex context features, a RNN was used to model 

units in sequence and learn feature structures, and an attention mechanism was used to give 

higher weight to keywords. In word-character-based models, in addition to the DNN layers for 

words, a CNN was applied to select the features for characters. 

The dataset was split into training, validation, and testing as follows: training and testing 

(80% and 20%, respectively); it was divided by using stratified sampling (Farias, Ludermir and 

Bastos-Filho, 2020) to select a sample that is representative of different classes (urgent 

intervention needed and no intervention needed). After that, the training data was split into 

training and validation sets (80% and 20%, respectively). 
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Figure 4.10: Deep learning as a puzzle: general architectures for two cases (word-based input and word-

character-based input). 

4.3.2.3.1. Word-Based Input 

Different basic and combined DL models were constructed to select features by applying plug 

& play approaches (i.e., CNN, RNN (LSTM, Bi-LSTM, GRU and Bi-GRU)) as they represent 

modifications of RNN. These models are based on word2vec or BERT. In the following, the 

general word-based architecture is explained; however, during the implementation, some layers 

were removed and other layers were added, such as different types of RNN and attention layers. 

In word2vec, (Word2vec-GoogleNews-vectors-negative300) was applied as in (Guo et al., 

2019) as mentioned before, they showed this renders better results than using GloVe on the 

Stanford dataset. In addition to pre-trained embedding, the word embeddings were trained 

during the NN training (fine-tuning). 

In BERT, the BERT tokeniser was used to tokenise sentences into tokens using bert-base-

uncased; this means that there is no difference between a letter written as a capital or lowercase. 

The sentence is split into tokens which represent the original words; BERT's tokenizer uses a 

WordPiece model, which breaks down words into subwords. Also, special tokens [CLS] and 

[SEP] were added; [CLS] is inserted at the start of the text and [SEP] is inserted at the end; or 

if there are more sentences, [SEP] are used to separate these sentences (Clark et al., 2019). 
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The maximum length of each post was constrained by following (Khodeir, 2021) to 512 

tokens since 512 tokens is the maximum model input size for BERT. Thus, sequences of less 

than 512 were padded out with zeroes and the rest which contained more than 512 tokens were 

trimmed down to ensure that each sequence has the same length. 

As Figure 4.10 (above) shows, the first layer (the input layer), followed by the embedding 

layer which maps the words onto vectors. The output from these layers is passed onto the 1D 

convolution layer as an input (with 128 filters, a kernel size of {3,4,5}, and ReLU as the 

activation function) as in (Guo et al., 2019) to derive interesting features. Then, the produced 

features are further compressed by using a pooling layer (max pooling). These features feed 

into one of a set of different RNN layers (LSTM, Bi-LSTM, GRU and Bi-GRU) with 128 

hidden units, which helps to determine the relationship between words.  

The next layer is the attention layer, which learns the weighting for each word. The attention 

with a context mechanism (Yang et al., 2016) was used. That is, through a series of 

mathematical formulas, a context vector is randomly initialised and multiplied by each word, 

to generate the importance score. 

Next, for the following drop-out layer, a drop-out rate of 0.5 was used as recommended by 

(Guo et al., 2019) by randomly dropping out nodes during the training phase and using an early 

stopping mechanism to alleviate overfitting. Then, the fully connected layer is used to classify 

the output (1 = needs urgent intervention or 0 = no intervention needed) by calculating the 

probability (PRO) thus: 

                                                              𝑃𝑅𝑂 = {
1, 𝑖𝑓 > .5
0, 𝑖𝑓 ≤ .5

                                                                 (4.2)      

After the model was created based on different word embeddings, it was trained by using the 

Adam optimiser, as in (Guo et al., 2019). Binary cross-entropy was used as a loss function 

because the problems involve binary decisions. The batch size was set to 64 and automatic 

early stopping was employed to stop training after five epochs when there no progress in 

performance was evident.   

4.3.2.3.2. Word-Character Based Input 

In the second case, characters were added in addition to words. The length of each input post 

was set at 1024 as recommended by (Guo et al., 2019) because most posts had fewer than 1024 

characters. Next, the characters were encoded and character embedding was applied as per 
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Johnb30/py_crepe code on GitHub, which is a reimplemented version of the Crepe character-

level convolutional neural net model originally shown in (Zhang, Zhao and LeCun, 2015). 

To select the most important features, a standard 1D convolutional and pooling layer was 

selected, respectively. Convolution with a filter = 128 and a kernel size of {5,7,9} and the ReLU 

activation function were used, following the recommendations of (Guo et al., 2019). The 

selected features were concatenated with the features from the word-based input and the rest 

followed the processing approach explained in the word-based input section. 

4.3.3. Results and Discussion 

This section presents the results obtained after training every model to answer both RQ1.3 and 

RQ1.4. The average ACC and P, R and F1 for each class and the BA are reported for the word-

based approach using the various DL models (first row); then it reports the combined results 

(word- and character-based results) (second row) as shown in Table 4.5 (below). In this 

research project, the models were compared based on their respective BA scores as this is a 

widely used metric for binary classification in imbalanced datasets (Alamri et al., 2021).  

From these results, the BA scores for models using BERT for word embedding outperformed 

all the models based on word2vec. That means it is better to represent words using BERT. The 

best value from all the models in terms of BA is 0.875 and for R for (1) class is 0.81 in CNN + 

LSTM + Attention model based on BERT at word-level. The interesting point is that a Bi-

LSTM performed worse than an LSTM; this is dependent on the nature of the data and task as 

utilising bidirectional information might introduce noise and thus hinder performance.   

In terms of the word-based vs word-character-based approaches, it was observed that if 

word2vec is used as a word embedding, the word-character method often outperforms word-

based ones (these improvements are statistically significant using McNemar's test: p < 0.05, as 

shown in Table 4.5 below). In contrast, for models using BERT for word embedding, there is 

no improvement between the use of the different approaches i.e., word-only and word-

character-based. Also, the difference between these models is not always statistically 

significant which means BERT is good enough to represent words without any support. 
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Table 4.5: The performance results of word2vec and BERT for word embedding for word-based and 

word-character-based approaches for the different models (Acc, P, R, F1, BA %) and P.V value, Bold: 

best performance of BA and best performance of R for class 1 (Urgent), Italic: statistically significant. 

Model 
Word 

Embedding 
Level Acc 

Non-urgent  

 (0) 

Urgent 

(1) BA P.V 

P R F1 P R F1  

CNN 

Word2vec 
Word 0.87 0.89 0.96 0.92 0.74 0.51 0.60 0.732 P ≤ 

0.05 Word+Char 0.90 0.92 0.95 0.94 0.77 0.66 0.71 0.807 

BERT 
Word 0.91 0.93 0.96 0.95 0.82 0.69 0.75 0.826 P > 

0.05 Word+Char 0.91 0.92 0.97 0.95 0.84 0.66 0.74 0.815 

CNN + 

GRU 

Word2vec 
Word 0.87 0.90 0.95 0.92 0.72 0.55 0.62 0.749 P ≤ 

0.05 Word+Char 0.91 0.93 0.96 0.95 0.82 0.68 0.74 0.823 

BERT 
Word 0.91 0.95 0.94 0.95 0.76 0.79 0.77 0.865 P ≤ 

0.05 Word+Char 0.92 0.95 0.96 0.95 0.80 0.76 0.78 0.860 

CNN + 

Bi-GRU 

Word2vec 
Word 0.88 0.92 0.93 0.93 0.68 0.67 0.68 0.798 P ≤ 

0.05 Word+Char 0.90 0.92 0.96 0.94 0.80 0.65 0.71 0.803 

BERT 
Word 0.92 0.94 0.96 0.95 0.82 0.74 0.78 0.851 P ≤ 

0.05 Word+Char 0.93 0.94 0.97 0.95 0.84 0.75 0.79 0.856 

CNN + 

GRU + 

Attention 

Word2vec 
Word 0.88 0.92 0.93 0.93 0.69 0.67 0.68 0.800 P ≤ 

0.05 Word+Char 0.91 0.93 0.96 0.95 0.81 0.70 0.75 0.829 

BERT 
Word 0.92 0.95 0.96 0.95 0.80 0.76 0.78 0.859 P > 

0.05 Word+Char 0.92 0.94 0.97 0.95 0.83 0.74 0.79 0.854 

CNN + 

Bi-GRU + 

Attention 

Word2vec 
Word 0.88 0.90 0.95 0.93 0.74 0.56 0.64 0.755 P ≤ 

0.05 Word+Char 0.91 0.93 0.96 0.94 0.80 0.67 0.73 0.816 

BERT 
Word 0.92 0.95 0.94 0.95 0.77 0.80 0.78 0.872 P > 

0.05 Word+Char 0.92 0.95 0.96 0.95 0.81 0.78 0.80 0.868 

CNN + 

LSTM 

Word2vec 
Word 0.81 0.81 1.00 0.90 0.00 0.00 0.00 0.5 P ≤ 

0.05 Word+Char 0.91 0.92 0.97 0.95 0.82 0.66 0.73 0.814 

BERT 
Word 0.92 0.95 0.94 0.95 0.77 0.79 0.78 0.869 P ≤ 

0.05 Word+Char 0.92 0.95 0.95 0.95 0.80 0.78 0.79 0.869 

CNN + 

Bi-LSTM 

Word2vec 
Word 0.88 0.89 0.96 0.93 0.77 0.51 0.61 0.738 P ≤ 

0.05 Word+Char 0.90 0.93 0.95 0.94 0.77 0.69 0.73 0.821 

BERT 
Word 0.92 0.94 0.96 0.95 0.81 0.76 0.78 0.857 P > 

0.05 Word+Char 0.92 0.95 0.96 0.95 0.81 0.77 0.79 0.865 

CNN + 

LSTM + 

Attention 

Word2vec 
Word 0.88 0.92 0.94 0.93 0.71 0.65 0.68 0.795 P ≤ 

0.05 Word+Char 0.90 0.92 0.97 0.94 0.83 0.62 0.71 0.794 

BERT 
Word 0.92 0.95 0.94 0.95 0.77 0.81 0.79 0.875 P ≤ 

0.05 Word+Char 0.92 0.95 0.95 0.95 0.80 0.79 0.80 0.874 

CNN + 

Bi-LSTM 

+ 

Attention 

Word2vec 
Word 0.88 0.91 0.95 0.93 0.73 0.61 0.66 0.777 P ≤ 

0.05 Word+Char 0.91 0.92 0.97 0.95 0.83 0.66 0.74 0.815 

BERT 
Word 0.92 0.95 0.95 0.95 0.79 0.78 0.78 0.863 P > 

0.05 Word+Char 0.92 0.95 0.95 0.95 0.78 0.79 0.78 0.868 
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 To evaluate the proposed model and compare it with others in the literature, the best model 

performance was compared with the state-of-the-art model (Guo et al., 2019) with the same 

label (urgent>4). Guo et al. (2019) used the Stanford dataset and applied three different 

methods to split the data into training and testing sets. However, the author believes that it is 

not valid to compare the current model with those proposed by other researchers even if the 

same data with a random split is used: the same data in both the training and testing sets should 

be used. Thus, one of the methods called Group C that Guo et al. (2019) used to split data is 

suitable for comparison with the current model which is drawn from a specific MOOC domain 

(the humanities) for testing while the data from the other two MOOC domains (medicine and 

education) are kept for training. This ensures that the same data occurs in both datasets. Also, 

using this method of performing cross-domain (i.e., not testing a model on the domain in which 

it was trained) is a useful way of evaluating models.   

 Therefore, this research project conducted the experiment with the best performing model 

CNN + LSTM + Attention based on BERT at word-level by splitting the data following the 

Group C as in Guo et al. (2019). Table 4.6 (below) reveals that the proposed model (CNN + 

LSTM + Attention) outperforms the state-of-the-art model in R and weighted-F1. Here, the 

weighted-F1 value was calculated for comparison purposes. 

Table 4.6: Comparison between the proposed model (CNN + LSTM + Attention (word)) and Guo et 

al.’s (2019) state-of-the-art model. Bold: Best performance in BA and best R for class 1 (Urgent). 

4.4.  Epilogue 

Identifying the need for instructor intervention is a crucial issue in MOOC environments. Many 

researchers have tried to predict when an intervention is needed in MOOC post forums by 

implementing different prediction models which have rendered different levels of performance. 

In this chapter, the problem of identifying when instructors should intervene in a particular post 

has been tackled by implementing two different experiments. In the first experiment, a 

multidimensional post-based learner model was developed by exploring DL approaches.  

Specifically, it compared text-based models with enriched models with five different 

dimensions (sentiment, confusion, opinion, question, and answer). The relationships between 

Model 

Non-urgent  

(0) 

Urgent  

(1) Weighted F1 

P R F1 P R F1 

Guo et al.’s (2019) 0.907 0.945 0.926 0.807 0.731 0.767 0.884 

CNN + LSTM + Attention (word) 0.93 0.94 0.93 0.75 0.74 0.74 0.894 
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urgent post rates and these dimensions were also observed. The results show that learners’ 

negative feelings, misunderstandings, lack of desire to express an opinion, number of 

questions, and decreasing number of answers increase in learners in need of urgent 

intervention, possibly due to the psychological effects of stress. The contributions of this 

research project include showing that adding these dimensions as features, in addition to text, 

leads to better predictive performance in DL models. Moreover, a new architecture based on 

sub-models was constructed to train this multidimensional, mixed data.    

In the second experiment, this research project has explored MOOC posts needing urgent 

instructor attention and intervention (or not), by analysing the textual contents of learners’ posts 

and information about the related MOOC courses. To reach this goal, the current study attempts 

to discover the best way of constructing DL models, by using different inputs (word-based or 

word-character based) based on word2vec or BERT as word embedding. Then, a combination 

of models was presented by applying the plug & play technique. This concretely means adding 

different inputs, stacking multiple layers, connecting layers, etc. The conclusion is that using 

BERT for word-embedding is more effective as a stand-alone method without the need for any 

addition of character-based input. 

The next chapter analyses text posts to identify topics and extract urgent language. This is 

the first time the language of the need for urgent intervention in MOOCs was obtained. 
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CHAPTER 5: ANALYSING TEXT POSTS USING TOPIC 

MODELLING TO EXTRACT URGENT LANGUAGE 

  

 

5.1.  Prologue 

Discussion forums on MOOCs are a major communication tool between learners and 

instructors (Onah, Sinclair and Boyatt, 2014b), generating large amounts of posts which are 

exchanged as unstructured textual content. With the increasing number of text posts from 

learners communicating in MOOCs (Tucker, Pursel and Divinsky, 2014), it is very challenging, 

effort-intensive, and time-consuming for an instructor to monitor all the available posts and 

then detect and respond to those learners who need urgent intervention (Almatrafi, Johri and 

Rangwala, 2018). Moreover, learners may inadvertently make posts that may appear to be more 

urgent than they are. As clarified previously recent solutions based on supervised ML  (Khodeir, 

2021; Guo et al., 2019; Sun et al., 2019) have achieved remarkable performance. However, 

whilst these approaches have focused on identifying urgent posts, they have not sought to 

extract urgency-related topics that learners mention in their posts or identify urgent language 

in posts.  

This chapter aims to analyse learner posts in MOOCs forums from the perspective of 

urgency, and, importantly, to extract the language used by learners to express urgency via the 

use of an automatised approach. In this research project, urgent language was defined as the 

most frequently encountered words and phrases that learners use in their posts to signal the 

need for urgent attention and intervention. To identify words (topics), topic modelling using 

the widely used LDA (Blei, Ng and Jordan, 2003) was applied. 

The aim was to not only detect urgent intervention but also to establish if there is a way to 

make language signalling the need for urgent intervention explicit by providing a visual 

representation for instructors. As most people are visual, creating visual aids for instructors (or 
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learners) is expected to help instructors decide when and where to intervene, and help learners 

to potentially use language that clearly signals their need for assistance. Thus, the following 

RQs were formulated: 

• RQ2.1: Can the language of urgency be detected from learners’ posts? 

• RQ2.2: Can the language of urgency be visualised simply and intuitively? 

The main contributions of this chapter are: (i) to the best of the researcher’s knowledge, this is 

the first work to automatically detect the language of urgency in MOOC posts by modelling 

text posts and relating them to urgent posts; (ii) showing that the majority of urgent posts for 

specific urgent topics begin with new threads; (iii) designing an urgency visualisation tool for 

instructors, and providing suggestions for learners on how to signal the need for intervention. 

5.2.  Related Work 

To date, topic analysis, modelling, and visualisation in the context of instructor intervention in 

MOOCs has received little attention from researchers. In the next sub-sections, the most 

important studies on MOOC-related topic modelling and visualisation will be presented and 

discussed. 

5.2.1. Topic Modelling in MOOCs 

With the emergence of topic modelling, several studies have focused on modelling posts from 

discussion forums in MOOCs using LDA. (Atapattu and Falkner, 2016) used LDA to identify 

the main weekly topics of discussion in MOOCs and labelled them to provide a framework that 

can be effectively used to locate and navigate informational need. (Ezen-Can et al., 2015) 

applied an unsupervised algorithm to group similar posts, and then found the top topic words 

using LDA to better support learner outcomes. (Robinson, 2015) used LDA to extract topics 

that learners mentioned in their discussions on Cartograph. They revealed the most popular 

places learners talked about in class to improve the future development of the course. In fact, 

LDA has become one of the most popular and widely used topic modelling tools.  

Thus, the current study also used LDA, albeit to identify the words learners use when they 

need urgent intervention, as further explained in Section 5.3.2. 
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5.2.2. Visualisation in MOOCs 

In many recent visualisation-based works related to MOOC discussion forums, researchers 

aimed at assisting instructors. For example, recently, (Almatrafi and Johri, 2022) proposed an 

experimental approach to improve MOOCs based on summaries of learners’ opinions about 

the course extracted from discussion forums. The visual results were meant to allow both expert 

and non-expert gain an understanding of different aspects of the course. (Wong, 2018) 

constructed a visual analytics tool (MessageLens) using different visualisation tools to assist 

MOOC instructors in better understanding forum discussions from three perspectives: 

discussion topics, learner attitudes, and learner communication.  

Here, visualisation for instructors was employed to help them understand topics that learners 

use in their discussions on a specific course and colour-code posts based on these topics to 

assist both instructors and learners (see Section 5.3.3). 

5.3.  Methodology 

In this section, as shown in Figure 5.1 (below), the framework design of an analysis model to 

identify urgent language is explained and visualised. The dataset used in this research project 

sourced from the Stanford MOOC platform was analysed to select the appropriate course as 

this research project seeks to identify topics based on the course level. Then, how the textual 

data of posts were processed to provide input for the analysis model is described. After that, 

the unsupervised approaches used are discussed to analyse and mine learners’ textual posts and 

extract useful urgent-language patterns. Also, several visualisation aids are introduced, mainly 

for instructors, but also for learners.   

 

Figure 5.1: An analysis model of urgent language and an instructor visualisation aid for learner posts. 
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5.3.1. Dataset 

The Stanford MOOCPost dataset was used for this research project. As an initial step, 13 posts 

with an empty course title in the humanities course type in the dataset were removed. The 

number of posts with the percentage of urgent and non-urgent numbers of posts respectively in 

each course are reported in Table 5.1 (below). 

Table 5.1: The number of urgent and non-urgent posts for all courses in the Stanford MOOCPosts 

dataset. Bold: Large number of posts and large percentage of posts that represent urgent intervention. 

 Course Posts number Non-Urgent number Urgent number 

H
u

m
an

it
ie

s/
S

ci
en

ce
s 

WomensHealth 2141 
1863 

(87.0%) 

278 

(13.0%) 

StatLearning 3029 
2191 

(72.3%) 

838 

(27.7%) 

Stats216 327 
204 

(62.4%) 

123 

(37.6%) 

Environmental_Physiology 2467 
2048 

(83.0%) 

419 

(17.0%) 

Econ-1 1583 
1249 

(78.9%) 

334 

(21.1%) 

Econ1V 160 
150 

(93.8%) 

10 

(6.2%) 

M
ed

ic
in

e 

Statistics_in_Medicine 3320 
2276 

(68.6%) 

1044 

(31.4%) 

MedStats 1218 
802 

(65.8%) 

416 

(34.2%) 

SciWrite 5181 
3407 

(65.8%) 

1774 

(34.2%) 

Managing_Emergencies_What 

_Every_Doctor_Must_Know 
279 

231 

(82.8%) 

48 

(17.2%) 

E
d

u
ca

ti
o
n
 

How_to_Learn_Math 9879 
9559 

(96.8%) 

320 

(3.2%) 
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Next, a particular course (SciWrite) in the medical field was chosen as a case study for analysis. 

The reason for selecting this course is because it contains a large number of posts (5181) and a 

high percentage of posts that require urgent intervention (34.2%) compared to the rest of the 

courses as shown in Table 5.1. Therefore, it provides good data on urgent posts. 

To prepare the SciWrite course dataset, various preprocessing was performed. This included 

splitting and tokenising the sentences into a list of words, then performing cleaning, such as 

removing unnecessary parts, including those that may lead to the identification of the learners 

(emails, some characters, quotes, anonymisation). Next, tokens were converted into lists. Then, 

stopwords were removed. Afterwards, the phrase models based on bigrams (two words often 

appearing together in the post) and trigrams (three words appearing together) were built, after 

which lemmatisation was applied; finally, stopwords were removed once more after 

lemmatisation. 

5.3.2. Extracting Urgent Language 

To extract urgent language as a starting point for the automated language analysis (text-

document modelling), words from forum posts were clustered into different topics based on 

the unsupervised statistical model (LDA), as explained in Section 5.3.2.1. This was followed 

by associating topic lists and trending terms within urgent posts as potentially useful indicators 

for identifying and giving an overview of urgent language. The next sub-sections explain the 

follow-up steps. 

5.3.2.1. Topic Modelling (LDA) Setup 

In NLP, topic modelling is an unsupervised technique commonly used for analysing a 

collection of textual documents (Xiong and Litman, 2013). It offers a convenient way to 

classify, extract, and discover hidden topics from the keywords associated with each topic 

(Wang, Wen and Rosé, 2016) and recognise latent patterns from unstructured text (Sharma and 

Sharma, 2017; Jacobi, Van Atteveldt and Welbers, 2016).  

The generative probabilistic topic‐modelling model LDA has emerged as one of the most 

popular algorithms; it is utilised for modelling texts to extract topics from unlabelled texts 

(Geng et al., 2020) as a set of documents. LDA was originally proposed by (Blei, Ng and 

Jordan, 2003) to overcome some limitations of prior models, as mentioned in (Huang and 

Wang, 2021) such as semantic ambiguity. 
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The LDA model assumes that each document features a mix of different topics; a topic is a 

theme comprised of a collection of words that frequently appear together (Nanda et al., 2021). 

To explain, the model processes a document term matrix by supposing that each document (d) 

contains different topics (t) as a probability distribution 𝑝(𝑡|𝑑). In turn, each topic (t) contains 

different words (w), with t a probability distribution over w 𝑝(𝑤|𝑡) (Prabhakar Kaila and Prasad, 

2020; Nikolaev et al., 2019). The input of this model is a bag-of-words model (Curiskis et al., 

2020) and the output is represented by different topics, each with lists of terms (words) which 

are ordered from having the highest relevance to the topic to the lowest (Wong, Wong and 

Hindle, 2019). 

In this research project, the Gensim package written in Python was used to train the LDA 

model. This model only needs feeding with the number of topics (k), which is a free parameter 

that can be tuned (Abebe et al., 2019) and can be considered as a hyperparameter. It is a 

challenging task (Ni Ki et al., 2021) as there is no optimal way to choose this number. Choosing 

a low number of topics tends to produce more general output whereas using a higher number 

of topics provides more detailed output (Asmussen and Møller, 2019). Many researchers 

proposed different techniques to select k:  

i. Topic coherence, which is one of the main techniques used to find the number of topics.  

ii. LDA visualisation tool pyLDAvis, a web-based exploration tool for interactive topic 

modelling visualisation (Onah and Pang, 2021) which applies a different number of 

topics and compares the results.  

iii. Human interpretation and judgment are used as criteria.  

In this research project, a coherence metric was applied by computing c_v coherence (Syed 

and Spruit, 2017) for various numbers of topics to obtain a number close to the optimal one. 

Thus, several models were built with different k, starting from 2–20 at intervals of 1; all the 

parameters of the models were kept at their default values. Then, based on the coherence score, 

the best value was selected. Next, parameters (passes and iterations) were tuned to achieve the 

best topics, where passes refers to the total number of passes through the corpus during training, 

and iterations refers to controlling the maximum number of iterations through the corpus when 

inferring the topic distribution of a corpus. These two parameters were set and tuned to passes 

= 50 and iterations = 200. 
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5.3.2.2. Extracting Urgent Language via LDA 

To inspect and provide an overview of the terms (words and phrases), the top ten terms on each 

topic were presented. After that, t-distributed stochastic neighbour embedding (t-SNE) (Van 

der Maaten and Hinton, 2008) was used, which is a cutting-edge unsupervised technique for 

dimensionality reduction to visualise clusters with high dimensions in 2D space. The final aim 

was to reveal and capture the key language MOOC learners use to express their need for urgent 

intervention. To reach this primary goal, the most dominant topic for every post was found (as 

every post is composed of a mixture of words) and each word was drawn from one topic, as 

shown in Figure 5.2 (below). This enabled the identification of the most representative post for 

each topic as an example to understand each topic. 

 

Figure 5.2: Each post is a collection of words that belongs to a specific topic. 

Next, to find the most discussed topics in the posts for the whole course, the number of posts 

by dominant topic was plotted. 

Finally, for each topic, the percentage of posts with predominantly urgent posts was 

calculated, and the same with non-urgent posts. A threshold of more than 80% inclusion of 

dominant topics was set; under the assumption of this ensuring that they were the most 

representative posts of that particular topic. 

5.3.3. Instructor Visualisation Aid   

To further support the instructor intervention task, different visualisation aids were proposed 

as potentially powerful tools to allow instructors to become aware of learners’ use of particular 

topics in the discussion forums as well as to help learners to become aware of their own use of 

language in MOOC forum posts to signal the need for instructor intervention. Thus, based on 



118 
 

the results of LDA analysis, the instructor can focus on specific topics that represent the 

language of urgency. Specifically, three different aids in this work were applied as follows: 

i. Wordclouds: the top ten terms in each topic were visualised using wordclouds, which 

is a visual representation of topics in a cloud-shaped format that are depicted in different 

sizes based on the probability of each term (word) (instructors only). 

ii. pyLDAvis: used to represent, distinguish, and interpret topics (instructors). 

iii. Coloured posts: each token in the post was coloured with the topic colour to help 

instructors or learners to determine urgent words.    

5.4.  Results and Discussion 

In this section, the overall results are presented and interpreted, taking into account the LDA 

results and exploring how urgent language can be extracted via LDA to answer RQ2.1. 

Additionally, the varying visualisation aid was shown to answer RQ2.2, to help instructors 

develop an intuitive sense about urgent posts language and help learners to become more 

conscious of their language use. 

5.4.1. Topic Modelling (LDA) 

As discussed in Section 5.3.2.1, the optimal number of topics (k) was estimated based on the 

coherence score (see Figure 5.3 below); the number of topics (num topics) was based on the 

coherence score. Selecting six topics rendered the highest coherence score on the y-axis. 

 

Figure 5.3: Selecting the optimal number of LDA topics. 
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5.4.2. Extracting Urgent Language via LDA 

The results of the ten most relevant terms generated and the highest probability for every topic 

output as per the LDA with k = 6 in this experiment are presented in Table 5.2. Identifying 

these terms is sufficient to understand the terms that belong to a specific topic. Some words 

appeared in different topics: course appeared in topic 0, topic 3, and topic 4. 

Table 5.2: Most relevant terms with their probability distribution over topics for the six topics identified 

by LDA. 

Topic 0 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 

0.021*course14  

0.013*time 

0.011*certificate 

0.008*page 

0.007*hope 

0.007*continue 

0.007*take 

0.006*good 

0.006*hour 

0.006work 

0.008*change 

0.007*risk 

0.007*use  

0.007*com   

0.007*think  

0.006*study  

0.006*different   

0.005*effect   

0.005*mean   

0.005*include 

0.023*use  

0.021*write  

0.015*paper 

0.013*sentence  

  0.011*word 

0.010*writing 

0.009*think  

0.008*example 

0.008*scientific 

0.007*make 

0.042*thank 

0.033*course  

0.022*answer 

0.014*question   

0.013*homework 

0.012*get 

0.010*quiz 

 0.010*post 

0.010*video 

0.009*problem 

0.022*reviewer 

0.021*get 

0.020*peer 

0.020*score 

0.020*review  

0.018*course  

0.017*comment 

0.016*give 

0.012*grade 

0.011*think 

0.076*essay  

0.060*grade  

0.044*submit  

0.037*peer 

  0.035*review  

0.029*assignment  

0.018*submission  

0.017*problem 

0.016*score 

0.014*get 

 

Figure 5.4 visualises the higher dimensional data in lower dimensions using the t-SNE 

algorithm for topic-based exploration as explained in Section 5.3.2.2. Here, the different topics 

are mapped onto two dimensions and each topic is denoted by a specific colour label. 

 

Figure 5.4: t-SNE clustering of six LDA topics. 

 
14 For the “course” term, it has a probability of 0.021 distribution over topic 0. 

Topic 0 

Topic 1 

Topic 2 

Topic 3 

Topic 4 

Topic 5 
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As an example of the most dominant topic, Table 5.3 (below) shows the dominant topic as a 

percentage, with the terms (keywords) for the first ten posts in the corpus. For all these ten 

posts, topic 3 was the dominant one, with different contributions counting towards it. 

Table 5.3: Dominating topic for the first 10 posts. 

Dominant 

topic 

Topic 

percentage 

contribution 

Keywords Tokens of posts 

3 0.53 thank, course, answer, question, 

homework ... 

[hope, useful, place, discuss, related, 

course... 

3 0.47 thank, course, answer, question, 

homework … 

[video, unit, work, however, one, work, 

perfec... 

3 0.49 thank, course, answer, question, 

homework ... 

[think, question, ask, profession, radio, 

butt... 

3 0.42 thank, course, answer, question, 

homework … 

[head, use, cap, answer, quiz, type, 

lowercase... 

3 0.93 thank, course, answer, question, 

homework ... 

[know, contact, get, mark, ill, even, email, 

s... 

3 0.58 thank, course, answer, question, 

homework ... 

[open] 

3 0.83 thank, course, answer, question, 

homework ... 

[thank, link, able, view, first, video, rest, ... 

3 0.61 thank, course, answer, question, 

homework ... 

[video, lecture, show, unavailable]  

3 0.72 thank, course, answer, question, 

homework ... 

[access, youtube] 

3 0.72 thank, course, answer, question, 

homework ... 

[sorry, trouble, video, incorrect, correct, av...

  

 

Table 5.4 (below) shows the most representative tokens from posts for each topic as a sample 

of what a topic is about. The minimum contribution was about 0.97, which shows that these 

tokens represent the topic almost perfectly.  
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Table 5.4: The most representative tokens of posts for each topic. 

Topic 

number 

Topic 

percentage 

contribution 

Keywords Tokens of posts 

0 0.97 
course, time, certificate, page, hope, 

continue, take, good, hour, work 

[make, follow, revision, dedicated, prosthesis, 

allow, sprinter, run, low, metabolic_cost, ... 

1 0.99 
change, risk, use, com, think, study, 

different, effect, mean, include 

[immortality, alluring, concept, scientist, believe, 

possible, upload, mind, recreate, ... 

2 0.99 
use, write, paper, sentence, word, 

writing, think, example, scientific, make 

[note, necessarily, right, way, way, protective, 

occurrence, inhibit, reoccurrence, estimate, ... 

3 0.97 

thank, course, answer, question, 

homework, get, quiz, post, video, 

problem 

[subtitle, video, available, download, soon, 

meanwhile, view, video, course, webpage, 

youtube, ... 

4 0.98 
reviewer, get, peer, score, review, 

course, comment, give, grade, think [thank, elfatih, point, review, student, paper, 

helpful, receive, excellent, feedback, first, ... 

5 0.99 

essay, grade, submit, peer, review, 

assignment, submission, problem, score, 

get 

[dear, problem, want, post, rd, assignment, order, 

take, look, feedback, essay, go, section, ... 

 

Figure 5.5 (below) depicts the distribution of posts by dominant topic. Topic 3 (thank, course, 

answer, …) has the highest number of posts as a dominant topic; followed by topic 2 (use, 

write, paper, …), and topic 5 (essay, grade, submit, …). 

 

Figure 5.5: Number of posts by dominating topics. 

Table 5.5 (below) shows the percentage of urgent and non-urgent posts where the contribution 

of the dominant topics was more than 80%. The total number of posts with a topic percentage 
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contribution of > 80% was 1218 posts. Topic 5 covered about 58% of urgent posts. That means 

the most important words that learners used and expressed in texts when they need urgent 

intervention can be found in topic 5. These include: essay, grade, submit, peer, review, 

assignment, submission, problem, score, get etc. Analysing them, these terms make sense as 

illustrators of urgent language, as an imminent test can provoke a sense of urgency. Also, 

despite topic 2 and topic 3 being associated with many posts, the urgent posts only accounted 

for 26% and 32% of posts, respectively.  

Table 5.5: The percentage of urgent and non-urgent posts for each topic where the dominant 

contribution was more than 80%. Bold: large percentage of posts that represent urgent intervention. 

Topic 

number 

Posts 

number 

Urgent 

number 

Urgent 

% 

Non-

urgent 

number 

Non-

urgent 

% 

0 44 13 30 % 31 70 % 

1 55 11 20 % 44 80 % 

2 298 76 26 % 222 74 % 

3 320 102 32 % 218 68 % 

4 171 42 25 % 129 75 % 

5 330 190 58 % 140 42 % 

 

Next, the posts were manually inspected in which the dominant topics belonged to topic 5. For 

further illustration of why dominant topics for topic 5 only accounted for 58% of the urgent 

posts, the post type was reviewed. In MOOC discussion forums, as clarified in Section 2.2.1.3, 

there are two types of posts in the Stanford dataset: commentThread (the first post) and 

comment (a reply to a specific post). (Chaturvedi, Goldwasser and Daumé III, 2014) supposed 

that the first post tends be a question and the reply might be the answer to the question or a 

comment about the question. The same scenario was assumed in the present study where the 

commentThread tended to be urgent while the comment was likely non-urgent. Therefore, 

urgent and non-urgent posts were analysed in topic 5 from the point of view of the post being 

a commentThread or a comment. As shown in Table 5.5 (above), the number of posts in topic 

5 was 330. These posts were classified based on post type (commentThread or comment); 101 

posts were commentThreads, with 96% urgent posts; 229 were comments, with just 40% urgent 

posts, as per Table 5.6. This further explains why the language used in these non-urgent 

comments imitates urgent language: when replying to threads, learners used similar terms and 

language as that of the original thread, the writer of which may have been in urgent need of 
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intervention; however, their reply (comment), albeit written in similar language, did not need 

urgent intervention . 

Table 5.6: The percentage of urgent and non-urgent posts for thread and comment in Topic 5. 

Type of posts 
Posts 

number 

Urgent 

number 

Urgent 

% 

Non-

urgent 

number 

Non-

urgent 

% 

CommentThread 101 97 96 % 4 3.9 % 

Comment 229 93 40.6 % 136 59 % 

5.4.3. Instructor Visualisation Aid 

To enlighten instructors as to when intervention is required and provide an overview of the 

different topics and the probability of each term occurring in each topic, wordcloud 

visualisations that represented each topic in a distinct colour were created and each term 

appeared in a different size representing the probability of each term (word) appearing, as 

shown in Figure 5.6 (below). 

 

Figure 5.6: Word cloud visualisation (top ten terms) for each topic. 

To enable instructors to interpret the topics simply and interactively, pyLDAvis was used (see 

Figure 5.7). Every topic is represented as a bubble, the size of which represents the percentage 

of the number of posts about this topic. The largest bubble means that it contains the highest 

percentage of posts about this topic. The distance between the centre of the bubbles indicates 
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the similarity between the topics. The bar chart illustrates the top 30 terms for specific topics. 

For example, in Figure 5.7, these terms are the most useful for the current topic selected. 

 

Figure 5.7: pyLDAvis - top 30 terms for each topic. 

To further help both instructors and potentially learners, the tokens of the posts were 

additionally coloured with the topic colour, as illustrated in Figure 5.8 (below). For example, 

post 1 (first post) contains different colours (red, purple, and green) belonging to topic 3, topic 

4, and topic 2, respectively. Therefore, if the instructor finds a brown colour (topic 5) and it is 

a thread, this indicates that this post needs urgent intervention.   

 

Figure 5.8: Topic colouring for the first 5 posts tokens. 
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5.5.  Epilogue 

The main challenge for instructor intervention in MOOCs is the nature of discussion forums as 

they contain many posts, and a low number thereof require urgent intervention. This chapter 

showed that learners often express their need for urgent intervention via discussion forums 

using special linguistic terms. It is possible to extract this language to help instructors decide 

when intervention is required as well as learners when writing posts to request intervention. In 

addition, visualisation can be employed to aid in the comprehension of a learner's language, 

allowing the instructor to potentially intervene more effectively. In this research project, 

learners’ posts were analysed to explore the language used to express their need for urgent 

intervention using a course from the Stanford dataset as a case study. The analysis shows that 

some words are related to each other and express the need for urgent intervention, especially 

in posts as a thread type.  

Importantly, for the first time, this study has proposed a context-dependent urgency 

language criteria using language highlighting the need for urgent intervention in a MOOC 

environment and showed some straightforward and easily reproducible ways to extract and 

visualise the need for such intervention. 

The next chapter seeks to identify at-risk MOOC learners who may need instructor 

intervention in a new way by using their historical online forum posts as data and a novel multi-

input approach for other deep learning architectures and Transformer models. 
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CHAPTER 6: INTERVENTION PREDICTION: LEARNER-

POST-BASED MODEL 

 

 

6.1.  Prologue 

The problem of high learner dropout rates in online MOOC-based education contexts is one of 

the most long-standing challenges of such learning environments (Cristea et al., 2018). This 

topic has attracted many researchers to explore this problem and propose different intervention 

models. This chapter seeks to address the problem of high learner dropout rates in MOOCs, 

which can reach 90% (Rivard, 2013) by proposing a learner-post-based model. Interaction with 

an instructor is considered one of the most important factors for mitigating dropout among 

MOOC learners (Hone and El Said, 2016). Thus, it might be helpful to consider the sequence 

of learners’ textual posts to identify learners who require instructor intervention to reduce 

dropout rates and improve the quality of the interventions offered. Therefore, the proposed 

learner-post-based intervention model is described in this chapter.  

The aim of this study was to develop a ML model to identify learners who require 

intervention by an instructor based on the sequence of learner posts to predict and mitigate 

learner dropout on MOOC-based courses. This is because an absence of interaction and 

feedback by instructors on discussion forums has been associated with increased dropout rates 

(Hone and El Said, 2016; Wei et al., 2017). Thus, this chapter proposes an intelligent 

intervention model to help instructors. This challenge was formalised as a text classification 

problem by developing and employing a supervised binary classification model with multiple 

text inputs based on learner posts. 

The input consists of learners’ most recent posts (as further defined in Section 6.3.2) and the 

output is the predicted dropout. Two recent popular types of classifiers: other DL (Young et al., 
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2018) and Transformer (Vaswani et al., 2017) were applied and trained, and examined various 

numbers of inputs for prediction. Therefore, the following RQs were investigated: 

• RQ3.1: Which multi-input models (processing several recent posts) are useful for 

predicting learners who may drop out (thus may need instructor intervention)? 

• RQ3.2: Does clustering learners based on their number of posts prior to the prediction 

step improve prediction outcomes? 

The key contributions of this chapter are as follows. (i) to the best of the researcher’s 

knowledge, the current literature does not investigate the history of learners’ written MOOC 

posts; this is the first study to attempt to identify MOOC learners who may need instructor 

intervention by using their historical online forum posts as data. (ii) the other contribution of 

this work is the use of a multi-input approach for siamese and dual BERT with binary text 

classification, with the resulting integrated networks being termed multi-siamese BERT and 

multiple BERT, respectively. 

6.2.  Related Work on Dropout 

The issue of intervention to help prevent learners from dropping out of MOOC course 

environments is an interesting area for many research communities (Whitehill et al., 2015; 

Cobos and Ruiz‐Garcia, 2021; Xing and Du, 2018; Borrella, Caballero-Caballero and Ponce-

Cueto, 2019) and an important research direction. In prior literature as shown in SLR in Chapter 

2, instructor intervention in MOOCs has been demonstrated and studied from two main 

perspectives: (i) posts on discussion forums, and (ii) learners. 

The use of posts on discussion forums for intervention prediction has received considerable  

focus as discussed in detail in the SLR in Section 2.3.4.4.1; researchers have attempted to 

establish and provide different intervention models as a text classification task (Sun et al., 2019; 

Almatrafi, Johri and Rangwala, 2018; Khodeir, 2021; Guo et al., 2019), or used posts features 

as an input for the classifier (Chandrasekaran et al., 2015b; Chaturvedi, Goldwasser and Daumé 

III, 2014). 

From a learner perspective, prevalent studies have addressed intervention and dropout rates 

using  learner characteristics, learning activity or clickstream data, such as predicting dropouts 

per week based on the weekly history of the learner (Kloft et al., 2014). Also, (Xing and Du, 

2018) created a similar weekly prediction mechanism by applying a DL approach. 
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In contrast, there is limited research on intervention based on the posts of learners who are 

likely to drop out (Prenkaj et al., 2020). This is due to the low percentage of learners who enrol 

on a MOOC course and write posts (only around 5–10%) (Rose and Siemens, 2014). For 

example, (Gitinabard et al., 2018) showed that out of 55,013 and 10,190 learners who had 

registered and enrolled on courses, only 750 and 519 engaged with discussion forums by 

making posts, respectively. Among the few pieces of research on this topic, (Crossley et al., 

2015) used NLP tools to predict learners who completed a MOOC course with an accuracy of 

67.8 %. Other researchers combined clickstream data with discussion forum data. For example, 

(Crossley et al., 2016) predicted learner completion by employing clickstream data and 

language in a discussion forum with a 78% accuracy rate. In addition, some additional research 

has been discussed before in detail in the SLR. 

Furthermore, using sentiment analysis gathered from learners’ posts, (Chaplot, Rhim and 

Kim, 2015) predicted attrition based on different features including sentiment analysis using a 

neural network and achieved 72.1% accuracy. Using the same method, (Mrhar, Douimi and 

Abik, 2021) predicted dropout rates based on sentiment analysis and clickstream data. Also, 

(Wen, Yang and Rose, 2014) found a significant correlation between sentiment and attrition. 

As previously stated, this study aimed to develop an intelligent intervention system to reduce 

learner dropout in MOOC courses. The proposed model offers a novel approach that predicts 

learner dropout (need for intervention) based on learner post history as a multi-input text 

classification task to improve instructor intervention and reduce dropout rates. 

6.3.  Methodology 

The core aim of this experiment was to construct a temporal multi-input approach using other 

deep learning architectures and Transformer models. In the next sub-sections, the dataset used 

in this research and the intervention models (other deep learning architectures and Transformer) 

will be discussed in detail.  

6.3.1. Dataset 

The dataset investigated for this research project was the Dropout dataset (clarified in Chapter 

3, Section 3.2.2.3). These data include the history of learners’ posts in discussion forums and 

flags if they (i) complete the course (no need for intervention) or (ii) dropout (need 

intervention). The number of posts written by these learners varied from 1–209. To explore the 
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number of words featured in each post, Figure 6.1 shown the distribution of the number of 

words per post (mean = 53.21 words, minimum = 1 word; maximum = 226 words). 

 

Figure 6.1: Distribution of number of words per post. 

6.3.2. Intervention Models 

To identify the learners’ need for instructor intervention, the general architecture of the 

prediction model was proposed as shown in Figure 6.2 (below). The input of this model is the 

most recent sequence of learner posts while the output is the prediction of if a learner needs 

instructor intervention (dropout) or not (completer). 

 

Figure 6.2: Architecture of the intervention prediction model. 
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For the number of inputs, i.e., the most recent sequence of learner posts, it was assumed that 

the learner writes multiple posts and that the number of such posts is an unknown value and 

may differ from one learner to another. Therefore, in this experiment, an incremental number 

of posts ranging from 3–7 was examined; however, as mentioned, the total number of posts 

ranged from 1–209. Hence, further experimentation was needed to cluster learners based on 

their respective number of posts to analyse if grouping as a pre-processing step improved the 

results. 

Thus, the commenters were clustered into three groups (which identified that the optimal 

number of clusters was three using the silhouette method (Rousseeuw, 1987)), based on the 

number of posts written, using the Fisher Jenk algorithm (North, 2009), as shown below in 

Table 6.1. Next, the focus was on group 1, as it contained the highest number of learners (797 

commenters) and was thus the most representative of the average number of posts written by 

learners. Of these learners, 557 (69.8% ≈ 70%) dropped out and 240 (30%) completed the 

course. After that, the same experiments were repeated for the best intervention models using 

group 1 (797 commenters) with the mean input rounded up from 3.66 to 4 and excluding the 

other two groups. Please note that group 1 also had the smallest standard deviation (Std) of 

3.43. 

Table 6.1: Statistics of each cluster group. 

Group Count Mean Std Minimum Maximum 

1 797 3.66 3.43 1 16 

2 65 28.89 12.24 17 62 

3 9 108 43.40 71 209 

 

The prediction models were developed based on two main types of algorithms: other deep 

learning architectures and Transformer. The reason for using these models is because they 

represent the cutting-edge in NLP and eliminate the need for specific feature engineering 

because they can extract features. The two types are illustrated in the following sub-sections. 

6.3.2.1. Other Deep Learning Architectures 

The two cutting-edge DL algorithms were applied: CNN and RNN. For RNN, Bi-LSTM and 

Bi-GRU were used. Each input was treated as a sub-model before these sub-models were 

concatenated to build the main model. The prediction for the output of the final/output layer 
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was a probability value where if the value was equal or larger than 0.5, it was deemed positive 

(1). The outcomes of (1) indicate a potential dropout and that urgent intervention is required; 

an outcome of (0) represents a completer and that no intervention is required. 

The general architectures are the same for all models. As a pre-processing step to prepare 

the data for input, a dictionary for each input that contains unique vocabulary words was built. 

To specify the length of the word sequences, (Guo et al., 2019) approach was followed, 

constraining the length of each input to 200 words; also the fact that most posts were ≤200 

words was explored in Figure 6.1, which means just 1.3% of posts were affected by truncation. 

The shortest sequence was padded by 0 and posts >200 words were trimmed. The next layer 

after the input layer is the embedding layer. This layer obtains dense vector representations for 

words, which was used and fine-tuned during training, starting with pre-trained word 

embedding using word2vec (Mikolov, Le and Sutskever, 2013) (Word2vec GoogleNews-

vectors-negative300). Then, the following layers differed according to the different networks 

(CNN and RNN). 

The data were split into training data and testing data (80% and 20%, respectively, 

equivalent to 696 and 175 learners, respectively). Then, the training data was split into training 

data and validation data (80% and 20%, respectively, equivalent to 556 and 140 samples, 

respectively). Lastly, the model was trained using the Adam optimiser (batch size = 64; epochs 

= 20). 

6.3.2.1.1. CNN 

The general architecture is shown in Figure 6.3. In the convolutional layers, for each input, 

three Conv1Ds were applied with 128 units and different kernel sizes (3, 4, and 5) following 

(Guo et al., 2019). These layers go through a (ReLu) activation, followed by a max-pooling 

layer to further compress features. Then, the output from each input was concatenated. Next, 

all the outputs for all the inputs were concatenated. This is then passed to the dense layer with 

64 neurons and ReLu activation. Then, a dropout layer is employed to avoid overfitting (Otter, 

Medina and Kalita, 2020) as a regularisation technique. Finally, the output layer has 1 unit with 

a sigmoid activation function because it performs a binary classification task. 
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Figure 6.3: The general architecture of the CNN with multi-input. 

6.3.2.1.2. RNN 

These two different networks share the same architecture (see Figure 6.4 below), the Bi-LSTM 

and Bi-GRU contain two layers which were trained by adding another hidden layer to reverse 

to the first layer as discussed in detail in Chapter 2. Thus, as the next layer after the embedding 

layer, the RNN layer is Bi-LSTM or Bi-GRU (128 units). Afterwards, the output for each input 

was concatenated. Then, a dense layer and dropout layer were added as in the CNN. Finally, to 

obtain the classification, the sigmoid as an activation function was applied to the output layer. 

 

Figure 6.4: The general architecture of the RNN with multi-input. 
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6.3.2.2. Transformer 

Two different models were developed and built upon the siamese and dual Transformers BERT 

networks to enable the insertion of more than two inputs into the BERT model. The inspiration 

to use these two techniques was Marco Cerliani’s code on GitHub, which was consequently 

modified and to which more than two inputs were added (3–7 inputs); additionally, these two 

multiclass classification models were converted into two binary classification models: multi-

siamese BERT and multiple BERT. The structure of these models is presented in Figure 6.5 

(below). Each text input was converted to Transformer inputs with the special tokens ([CLS] 

and [SEP]). Then, BERTbase was utilised, as the training time for this version is less than for 

the BERTlarge. The same training and testing data as in the DL models were used. Then, these 

models were trained using the Adam optimiser, batch size = 6 and epochs = 3. The same went 

for the DL model: the prediction was calculated, where if the value was equal or larger than 

0.5, it was deemed positive (1). The (1) denotes a potential dropout who needs urgent 

intervention and (0) denotes a completer and no intervention is required. 

 

Figure 6.5: The general architecture of a) multi-siamese BERT and b) multiple BERT. 
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6.3.2.2.1. Multi-Siamese BERT 

In this model, the different text input passes to the same Transformer. Then, the output is 

compressed with a global average pooling. After that, the outputs were concatenated and passed 

to the dense, dropout, and output layers as in DL. 

6.3.2.2.2. Multiple BERT 

In this model, each input passes to different Transformers and is reduced via average pooling; 

then, all the outputs of the global average pooling were concatenated; after that, as in the multi-

siamese BERT, the output is passed to the dense, dropout, and output layers. 

6.4.  Results and Discussion 

The experimental results of the multi-input model predictions to address RQ3.1 are presented 

in Table 6.2 (below). In addition to accuracy Acc, P, R and F1 metrics for each class and BA 

for both classes were also used to comprehensively assess the performance (in percentages) of 

the different models. 

In this experiment, the models were evaluated and compared based on BA as the data classes 

are imbalanced. The results reveal that multi-siamese BERT and multiple BERT outperform all 

the DL models in BA (0.698, 0.696 respectively ≈ 70.0).   
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Table 6.2: The performance results of the different multi-input models with different inputs (all 

learners), Bold: best performance of BA, Italic: optimal number of inputs per model based on BA. 

Type 

Input 

Acc 

Completer  

(0) 

Dropout  

(1) BA 

P R F1 P R F1 

Other Deep Learning Architectures  

CNN 

3 0.66 0.44 0.43 0.44 0.76 0.76 0.76 0.598 

4 0.69 0.49 0.43 0.46 0.77 0.80 0.78 0.618 

5 0.67 0.31 0.08 0.12 0.70 0.93 0.80 0.500 

6 0.66 0.42 0.32 0.37 0.73 0.81 0.77 0.566 

7 0.64 0.40 0.38 0.39 0.74 0.75 0.74 0.598 

Bi-LSTM 

3 0.65 0.41 0.36 0.38 0.74 0.78 0.76 0.568 

4 0.73 0.61 0.26 0.37 0.74 0.93 0.82 0.595 

5 0.67 0.44 0.36 0.40 0.74 0.80 0.77 0.580 

6 0.71 0.53 0.32 0.40 0.75 0.88 0.81 0.598 

7 0.65 0.39 0.28 0.33 0.72 0.81 0.76 0.547 

Bi-GRU 

3 0.67 0.44 0.36 0.40 0.74 0.80 0.77 0.580 

4 0.63 0.39 0.38 0.38 0.73 0.75 0.74 0.561 

5 0.67 0.45 0.43 0.44 0.76 0.77 0.76 0.602 

6 0.63 0.42 0.51 0.46 0.76 0.69 0.72 0.598 

7 0.69 0.49 0.47 0.48 0.77 0.79 0.78 0.629 

  Transformer  

Multi-Siamese BERT 

3 0.71 0.52 0.58 0.55 0.81 0.76 0.78 0.673 

4 0.63 0.44 0.75 0.56 0.85 0.58 0.69 0.668 

5 0.69 0.49 0.72 0.58 0.85 0.68 0.75 0.698 

6 0.65 0.45 0.75 0.56 0.85 0.60 0.70 0.676 

7 0.65 0.45 0.72 0.55 0.83 0.61 0.71 0.665 

Multiple BERT 

3 0.67 0.47 0.55 0.50 0.79 0.73 0.76 0.638 

4 0.67 0.47 0.68 0.55 0.83 0.66 0.74 0.671 

5 0.65 0.46 0.81 0.59 0.88 0.58 0.70 0.696 

6 0.71 0.52 0.60 0.56 0.81 0.75 0.78 0.678 

7 0.67 0.46 0.49 0.48 0.77 0.75 0.76 0.622 

 

To address RQ3.2, how the best-performing algorithms (Transformers) performed in the 

given group (group 1), Table 6.3 (below) shows that the performance of all commenters 

outperforms group 1 in the multi-siamese BERT in BA as well as in the multiple BERT. 

Therefore, it provided negative values on prediction outcomes, contrary to expectations, 

especially in R in class (0). 
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Table 6.3: Comparison between the performance results of different multi-input transformer models 

with 4 inputs (all learners and group 1), Bold: best performance in BA. 

 

 

 

 

 

 

  

6.5.  Epilogue 

Although MOOCs have had a significant impact on facilitating learning, they suffer from 

unacceptable dropout rates. Previous studies have explored how to identify when learners need 

intervention based on learner behaviour to estimate the risk of dropping out. This chapter 

investigated instructor intervention by attempting to predict dropouts from learners' most recent 

posts to enable instructors to better identify learners requiring assistance and intervene 

effectively. It established various ML models including other deep learning architectures and 

Transformer with multi-input. The Transformer models were developed based on siamese and 

dual BERT to insert more than two inputs for the Transformer models. The multi-input consists 

of the most recent learner posts. 

The results indicate that the intervention model can predict dropout and the need for 

intervention with more accuracy and better detect at-risk learners with the Transformer models. 

However, contrary to expectations, grouping learners before prediction might harm prediction 

outcomes, particularly in the minority class. 

The following chapter proposes a novel priority model for the urgency of intervention based 

on learner histories. 

 

 

 

Type Group Acc 

Completer  

(0) 

Dropout  

(1) BA 

P R F1 P R F1 

  Transformer  

Multi-siamese BERT 
All 0.63 0.44 0.75 0.56 0.85 0.58 0.69 0.668 

Group 1 0.68 0.59 0.24 0.34 0.70 0.91 0.79 0.575 

Multiple BERT 
All 0.67 0.47 0.68 0.55 0.83 0.66 0.74 0.671 

Group 1 0.69 0.64 0.25 0.36 0.70 0.92 0.80 0.589 
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CHAPTER 7: INTERVENTION PREDICTION: POST- AND 

LEARNER-BASED MODEL (ADDING PRIORITY IN 

INTERVENTION) 

 

 

7.1.  Prologue 

Usually, researchers attempt to focus on identifying learners’ posts using different methods as 

a solution to the instructor intervention problem. However, such approaches have not yet 

considered the study of learner behaviour in the context of instructor intervention prediction in 

MOOCs. To improve instructor intervention, the nature of an intervention can be tailored based 

on learner behaviour. On this basis, the main aim of this chapter is the development of 

intervention prediction models that focus on both posts and learner behaviours by creating an 

automated intervention priority model.  

Analysing and mining learners’ urgent posts is a fundamental step towards understanding 

learners’ need for instructor intervention in MOOC environments. Additionally, it is 

conjectured that it is essential to understand learners’ behaviours before proposing a particular 

intervention to ensure that the latter is the most appropriate. Thus, in this research project, the 

distribution of posts that need intervention were analysed. Then, the relationship between high-

frequency commenters and their behaviours in terms of number of posts written by them, their 

access rates, and completion rates were explored. High-frequency (HF) commenters were 

defined as learners who make many posts that need intervention. The end goal was to propose 

an automated intelligent intervention priority model built on learner histories –– past urgency, 

sentiment analysis, and step access. The research questions formulated in this chapter are as 

follows: 
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• RQ4.1: Is there a relationship between the number of posts written by learners who 

need urgent intervention and the average number of posts?   

• RQ4.2: Is there a relationship between high-frequency (HF) commenter learners who 

require urgent intervention and their average number of step access instances? 

• RQ4.3: Is there a relationship between the number of HF commenter learners and 

completion-rates? 

• RQ4.4: How can an intervention priority framework based on behaviour be designed? 

The main novel contributions of this study, to the best of the researcher knowledge, are the 

filtering system and the priority-in-intervention approach shown in this chapter.  

7.2.  Methodology 

The main objective of this study was to propose an automated intervention priority model based 

on learner behaviour. Therefore, this section presents the statistics on the dataset used in this 

chapter, explores urgency and learner behaviour, and offers a novel priority-in-urgent- 

intervention framework. 

7.2.1. Dataset and Statistics 

The raw corpus dataset utilised here was provided by the FutureLearn platform (Gold-standard 

corpus) as explained in Section 3.2.2.2. The 5786 learner posts were created in 5 weeks. The 

number of steps (that represent a single learning unit including videos and assignments, etc.) 

and posts per week appear in Table 7.1 (below). 

Table 7.1: Weekly statistics on the Gold-standard corpus. 

Week # of steps # of posts # of active learners Average posts per learner 

1 11 2130 749 2.84 

2 12 1600 419 3.81 

3 15 1123 236 4.75 

4 11 753 180 4.18 

5 4 180 92 1.95 

 

Figure 7.1. (below, left) illustrates the number of posts written over five weeks. This number 

decreased gradually, dropping to 180 posts in the last week, from 2130 posts in the first week 
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(-99.9%). Every week has a different number of steps for learners to complete. Thus, the 

number of posts per step were also represented (Figure 7.1, right, below) on the temporal axis. 

These numbers oscillate more –– showing that some topics trigger more posts than others –– 

although the overall numbers follow a downwards trend. 

 

Figure 7.1: The number of posts in every week (left) and in every step (right). 

Who is, however, writing these posts? The distribution of the number of active learners 

(commenters) is examined in Figure 7.2 (below); it provides a visual representation of active 

learners every week and at every step.  

 

Figure 7.2: Active learners (commenters) in every week (left) and in every step (right). 

Next, the posts that need urgent intervention were observed, to focus on this trend. Hence, a 

line graph over the five weeks was visualised to explore how urgency changed over time 



140 
 

(Figure 7.3, left, below). Overall, the first few weeks had a higher percentage of posts needing 

intervention (Figure 7.3, left, below), drawn from a higher number of posts (Figure 7.1, left, 

above). The fluctuation from week 4 to 5 is due to the drastic drop in overall posts. Also, the 

percentages of urgent posts for every step were visualised, (Figure 7.3, right, below), which 

showed high fluctuation. Further graphic comparisons of the results between the number of 

urgent and non-urgent posts across weeks and steps are shown in Figure 7.4 (left, right, below).  

 

Figure 7.3: The percentage of urgent posts for every week (left) and for every step (right). 

 

Figure 7.4: Comparing urgent and non-urgent post numbers for every week (left) and every step (right). 
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7.2.2. Exploring Urgency and Learner Behaviour 

As an initial step, to understand learner behaviour in writing MOOC posts, the relationship 

between the number of posts written by learners who need urgent intervention with the average 

number of posts were explored. Then, to study the effect of urgency on learner behaviour, the 

relationship between HF commenters and their learning behaviour were explored –– here, this 

involved simply comparing the number of step accesses made by learners. A learner who needs 

urgent intervention (HF commenters) was defined as per equation 7.1; let n = number of posts, 

u(p) = urgent posts, and p = a post. 

                                     𝐻𝐹 𝐶𝑜𝑚𝑚𝑒𝑛𝑡𝑒𝑟𝑠 =
∑ 𝑢(𝑝)

∞

𝑛=1

∑ (𝑝)
∞

𝑛=1

= 100%                                        (7.1) 

 

The average number of step accesses for each group (non-urgent) and HF commenters (urgent) 

were calculated to track how every group behaves on the platform. 

Finally, completers were addressed with respect to their need for intervention. Completers 

were defined according to equation 7.2, where total access steps = number of total access per 

learner, total course steps = total number of steps in a course. 

          𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑟 = 𝑡𝑜𝑡𝑎𝑙 𝑎𝑐𝑐𝑒𝑠𝑠 𝑠𝑡𝑒𝑝𝑠 ≥ 𝑡𝑜𝑡𝑎𝑙 𝑐𝑜𝑢𝑟𝑠𝑒 𝑠𝑡𝑒𝑝𝑠 ∗ 0.80                                 (7.2) 

 

Completers were defined as in Eq. 7.2 because, in spite of the large number of previous studies, 

a formal definition of learner dropout is lacking (Sunar et al., 2016). Therefore, the definition 

in (Alamri et al., 2019) was applied, namely, that completers were defined as learners who 

accessed a number of steps equal to or higher than 80%. 

7.2.3. Priority in Urgent Intervention 

In this study, a new intervention framework designed was proposed to add prioritisation to 

urgent posts based on learner history to assist instructors’ decisions to intervene and optimise 

their time and ability to adapt their intervention as needed. It begins by supposing that, when 

an instructor intervened, some of these posts were potentially urgent. Then, for these potentially 

urgent instances, priority (high-, mid-, or low-) was added, depending on the learner risk level. 
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The idea is to focus on learners, understand their behaviours, and perform segmentation based 

on three variables (urgency, sentiment analysis, and number of step accesses). 

The model includes two phases (see Figure 7.5 below), In the first phase (prediction phase), 

a supervised classifier is used to predict if posts need a response urgently or not. In the second 

phase (intervention priority phase), the output of the previous phase (urgent posts) is taken as 

input. Then, priority is added to these posts based on the history of the learners who wrote these 

posts using unsupervised ML (clustering). Therefore, based on these groups, different priorities 

were assigned to posts. 

 

Figure 7.5: Priority in urgent intervention framework. 

7.2.3.1. Prediction Phase 

In this phase, the state-of-the-art text classification (BERT) model at the time of writing was 

applied to predict urgency. The 'bert-base-uncased' (L=12, H=768, A=12, Total 

Parameters=110M) version was used and the model was trained by setting batch size = 32 and 

epochs = 4. 

7.2.3.2. Intervention Priority Phase 

The behaviour of learners based on three variables (urgency, sentiment analysis, and step 

access) were studied. These three variables were studied because they address RQ4.2 and 

RQ4.3. Moreover, as clarified in Section 4.2.3.1, a sentiment analysis study found a negative 
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correlation between urgency and sentiment analysis; meaning urgent posts correlate with 

negative sentiments. The processing was as follows: 

i. Urgency. To find the learners for whom most of their posts need intervention, the 

number of urgent posts for each learner was calculated. After that, all the learners 

were clustered in an unsupervised manner into three groups by assigning each 

learner to a specific cluster based on their number of urgent posts.  

ii. Sentiment Analysis. To extract sentiment polarity, every post was analysed into three 

sentiment categories (positive, negative, and neutral) using the VADER tool (Hutto 

and Gilbert, 2014). This tool was selected because it is well-known and some 

research has shown that VADER outperforms Text Blob (Loria, 2018) in social 

media sentiment categorisation (Bonta and Janardhan, 2019; Min and Zulkarnain, 

2020). Then, the overall average value of sentiments for each learner was found and 

sentiment clusters were created where a low sentiment number indicates high-risk 

learners. 

iii. Step Access. For each learner, the number of step accesses was calculated. Then, 

learners were clustered into three groups based on these values. A high step access 

number is an important indicator of learning activity, possibly connected to high 

motivation. 

For every variable (urgency, sentiment analysis, and step access), all learners were clustered 

into three groups by applying natural breaks optimisation with the Fisher Jenks algorithm 

(North, 2009) as it works on one dimensional data. Therefore, every learner has three scores 

that represent the three clusters’ variables (urgency, sentiment analysis, and steps access). An 

overall score for every learner was calculated as in Eq. 7.3. 

Overallscore = urgencycluster-score+sentimentAnalysiscluster-score+stepAccesscluster-score       (7.3) 

 

Thus, the overall score will be between 0–6. Then, the overall score was mapped onto different 

levels of risks:  

• Higher than 3→ High risk;  

• Higher than 1 and lower than or equal to 3→ Mid risk;  

• Others → Low risk.  

Then, learners were segmented as below: 
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• High-risk. Learners who had a high overall score based on the three variables (urgency, 

sentiment analysis, and access steps).  

• Mid-risk. Learners who had a medium overall score based on the three variables.  

• Low-risk. Learners who had a low overall score based on the three variables.                                                                     

Based on these levels of risks, the priorities for intervention for all potentially urgent posts were 

calculated –– see Algorithm 7.1. 

Algorithm 7.1. Priority of Intervention (P, U, S, A) 

Input:  

• P: Stream of potentially urgent post instances. 

• U: Number of urgent posts for each learner.  

• S:  Average value of posts’ sentiment for each learner. 

• A: Number of steps access for each learner. 

 

Output: 

i) Urgent posts with the priority intervention results. 

 

Method: 

   Build 3 learner clusters for Urgency. 

   Build 3 learner clusters for Sentiment Analysis. 

   Build 3 learner clusters for Steps Access. 

   Compute the Overall Score. 

   if Overall Score is higher than 3 then  

      High risk learner.  

      Urgent post = high priority intervention. 

   else if Overall Score is higher than 1 then   

      Mid risk learner. 

      Urgent post = mid priority intervention. 

  else 

      Low risk learner.  

     Urgent post = low priority intervention. 

  end if 

End Algorithm 

7.3.  Results and Discussions 

In this section, the charts and the results of exploring urgency and learner behaviours are 

depicted to answer the following research questions, RQ4.1, RQ4.2 and RQ4.3. Then, the 
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results of the proposed priority framework along with its confirmed effectiveness are proposed 

to address RQ4.4.  

7.3.1. Exploring Urgency and Learner Behaviour 

To inspect learners' writing behaviour, an average number of posts were transformed into an 

urgency bar chart (1 urgent post, 2 urgent posts, etc), as shown in Figure 7.6 (below). 

Interestingly, it was observed that, usually (but not always), if a learner writes more posts that 

need intervention, they tend to write more posts in total. This is useful in that they do not ‘give 

up’ and present for longer time which allows instructors a better opportunity to offer 

intervention.  

 

Figure 7.6: Relationship between urgent posts (urgency) and average number of posts. 

For the relationship between HF commenters and the number of steps accessed, as (Figure 7.7, 

left, below) shows, the average numbers of steps accessed were calculated for HF learners 

(urgent group) and the non-urgent group. The findings were as follows: in general, both groups 

accessed learning materials, but the average number of step accesses in the urgent group was 

lower (33 steps). This difference is statistically significant (Mann-Whitney U test: p < 0.05). 

Consequently, the key observation here indicates that learners who make posts not needing 

intervention were likely to have potentially high levels of motivation and so engage in more 

learning activity.  
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The results on the relationship between urgency and completion is shown in Figure 7.7 

(right, below). As seen, HF learners who require urgent intervention are less likely to complete 

the course (13 %). This difference is statistically significant (Mann-Whitney U test: p < 0.05). 

From this result, it can be concluded that learners who need intervention tend not to complete 

the course, which may be one of the reasons for the high dropout rate and so confirms the need 

for instructor intervention in urgent posts. 

 

Figure 7.7: For each group: average number of steps accessed (left), completion rate (right). 

7.3.2. Priority in Urgent Intervention 

As per Section 7.2.3, a framework containing two phases was proposed. It supposed that the 

instructor can decide to intervene after five weeks (original data). In the prediction phase, a 

stratified five-fold cross-validation was used to estimate the performance of the classification 

model. To evaluate BERT, accuracy averaged over two classes was measured (urgent, non-

urgent), recall, precision, and F1-score for the important and minority urgent classes (Table 7.2 

below). The recall metric was prioritised that gave us the rare urgent cases rather than precision 

–– preferring to ensure that all urgent cases were captured. 

Table 7.2: The results of the BERT model Average Acc, P, R, F1 % for class 1 (Urgent). 

Acc P R F1 

0.90 0.65 0.72 0.68 

In the intervention priority phase, there were 387 commenters who had at least one post that 

needed urgent intervention. Table 7.3 (below) shows the minimum (min) and maximum (max) 
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for each variable in every cluster. For urgency labelling, the label resulting from the manual 

annotators with a voting mechanism was used, not the one predicted by a classifier, to increase 

accuracy. 

Table 7.3: The minimum (min) and maximum (max) for each variable in every cluster. 

Cluster 
Urgency 

‘min : max’ 

Sentiment Analysis  

‘min : max’ 

Steps Access 

‘min : max’ 

0 ‘1 : 3’ ‘27 : 75’ ‘35 : 52’ 

1 ‘4 : 9’ ‘7 : 24’ ‘15 : 34’ 

2 ‘10 : 28’ ‘-3 : 6’ ‘0 : 14’ 

 

Finally, to further validate the effectiveness of this proposed model, the relationship between 

different risk groups of learners (high, mid, low) was identified and their completion-rates were 

computed. The distributions are visualised in Figure 7.8 (below). From this box plot, it can be 

noted that most completion-rates of high-risk learners are very low, whilst mid-risk learners 

have average completion-rates and those of low-risk learners are very high. This is further 

confirmation that the proposed risk model, based on data from the first half of the course, and 

refining the potential urgency model, can correctly predict learners at risk of not completing 

their course and separate them from the other two milder risk groups. 

 

Figure 7.8: Box plot for groups of learners’ risk and their completion-rates. 
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7.4.  Epilogue 

In this chapter the problem of making automatic, intelligent intervention in MOOCs posts for 

learners who require attention was addressed. The analysis of learner posts for urgency 

demonstrated that learners with high step access rates require less instructor intervention, whilst 

the step access of HF commenters is less than that of other commenters. This might be due to 

a decrease in learners’ motivation to continue accessing the course material when they have 

many posts that need intervention. In addition, the results confirmed that most course 

completers did not need much intervention to their posts. Based on these findings, a framework 

and algorithm for prioritising intervention was constructed to encourage instructors to help 

their learners and support them by focusing on high-risk learners first to improve the potential 

outcomes of the intervention. This framework can be used as part of an intelligent system in 

MOOC environments.  

The following chapter examines various data balancing methods to solve the imbalanced 

data issue and apply different traditional and Transformer models to identify urgent posts. In 

addition, it develops learner and instructor models to assist instructors in responding to urgent 

posts in MOOCs. 
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CHAPTER 8: INTERVENTION PREDICTION: POST-

BASED AND USER MODELLING (SOLVING THE 

IMBALANCED DATA ISSUE) 

 

 

8.1.  Prologue 

In MOOCs, identifying urgent posts on discussion forums is an ongoing challenge. Whilst 

urgent posts require immediate reactions from instructors to improve interaction with their 

learners, the task is difficult as truly urgent posts are rare. From a data analytics perspective, 

this represents a highly unbalanced (sparse) dataset.  

This chapter aimed to automate the urgent-post identification process based on fine-

grained learner modelling for use in generating automatic intervention recommendations for 

instructors. To showcase and compare these models, the models were applied to the first gold-

standard dataset for Urgent iNstructor InTErvention (UNITE) which was created by labelling 

FutureLearn MOOC data (Section 3.2.2.1). Both benchmark traditional classifiers and 

Transformer were implemented.  

The core problem with MOOC data is that it is intrinsically imbalanced; such datasets are 

characterised by a highly skewed class distribution due to the (naturally) small number of 

instances of urgent posts. In text classification tasks, performance often depends on the quality 

of the data (Wei and Zou, 2019). Therefore, to tackle the imbalanced data problem and improve 

the size and quality of the training data, the dataset was manipulated by comparing, for the first 

time for the unbalanced data problem, three data balancing techniques: (i) text augmentation, 

(ii) text augmentation with undersampling, and (iii) undersampling. Also, several new pipelines 

for combining different augmenters for text augmentation are proposed. 
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To illustrate the usage of the fine-grained learner models to provide adaptive support for 

instructor intervention in MOOC environments, an adaptation case is described where 

instructors can decrease their workload by using one of the proposed models. Also, an 

expanded model is illustrated that uses more extensive learner knowledge (based on the number 

of posts per learner) to discuss how such adaptation models can be further expanded. 

This chapter addresses the following two RQs:  

• RQ5.1: How can the data imbalance issue (urgent versus non-urgent) in learners’ posts 

be addressed? 

• RQ5.2: What would an adaptive intervention model to assist instructors in dealing 

with urgent posts look like? 

The main contributions of this chapter are: (i) for the first time in the literature, applying data 

balancing techniques for traditional ML and Transformer models to identify instances when 

urgent instructor intervention is required in MOOC environments. These techniques include 

text augmentation, text augmentation with undersampling, and undersampling to overcome the 

imbalanced data problem and improve performance; (ii) proposing several new pipelines (3X 

and 9X) to generate more data for text augmentation by incorporating different NLP 

augmenters and providing a range of approaches; (iii) creating the first learner, instructor, and 

adaptation models to support instructors to deal with urgent posts in MOOCs; (iv) showcasing 

the challenges and difficulties involved in instructor-intervention decisions in MOOC 

environments by manually inspecting and analysing the (relatively small) set of errors 

generated by the best classifier, along with the best data balancing and text augmentation 

solutions. 

8.2.  Related Work  

An obvious issue related to the instructor intervention problem in MOOC environments is that 

for urgent posts, imbalanced data is a characteristic of the data itself (as there are fewer urgent 

posts than non-urgent, normally). This fact has been largely overlooked in urgent post 

detection: the closest research to this (Almatrafi, Johri and Rangwala, 2018; Khodeir, 2021) 

which considered some standard techniques, e.g., data-splitting, model-training, and 

evaluation-metric selection; however, it failed to deal with improving the data imbalance. In 

addition, while available intervention models for urgent posts concentrated on classifying posts 

as clarified before in SLR Chapter 2 (post-based identification), they did not pay any attention 

to the behaviours of learners or designed adaptive instructor intervention models based on 
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learner (or instructor) models. Therefore, this section reviews the literature closest to this 

chapter’s proposal: (i) the area of text augmentation, specifically for balancing data, and (ii) 

adaptive models in MOOCs. 

8.2.1. Text Augmentation 

This section presents related works on text augmentation in NLP. The aim of text augmentation 

is to expand data (Liu et al., 2020) by providing and applying a set of techniques that create 

synthetic data from an existing dataset (Shorten, Khoshgoftaar and Furht, 2021). The 

performance of model predictions on a number of NLP tasks can be enhanced by text 

augmentation and this prevents overfitting (Li et al., 2022). Text augmentation is used to 

alleviate the issue of limited or scarce labelled training data (Anaby-Tavor et al., 2020), which 

leads to low accuracy and recall for the minority class (Liu et al., 2020). 

The existing literature shows that previous researchers utilised NLP augmentation 

approaches; for example, (Wang and Yang, 2015) applied text augmentation by performing 

synonym replacement and identifying similar words based on lexical and semantic embedding. 

Another study by (Kobayashi, 2018) proposed a new word-based approach for text 

augmentation based on contextual augmentation; they applied synonym replacement by using 

a bi-directional predictive language model. Next, (Wei and Zou, 2019) explored 

straightforward text editing techniques for augmentation using one of four simple techniques 

(synonym replacement, random insertion, random swap, and random deletion). Recent work 

(Xiang et al., 2020) proposed a part-of-speech-focused lexical substitution for data 

augmentation (PLSDA) approach to generate more instances via word substitution. Another 

augmentation work was applied in translation: (Yu et al., 2018) generated new data to enhance 

their training data using back-translation with two translation models: the first translates 

sentences from English to French, while the second translates from French to English. 

Some researchers tackled augmentation by using text augmentation libraries (NLPAug) for 

specific tasks. (Jungiewicz and Smywiński-Pohl, 2020) used a range of augmentation 

techniques for sentiment analysis, including (NLPAug) based on BERT and WordNet. More 

recently, (Pereira et al., 2021) used the same BERT-based library and contextual word 

embedding augmenter to generate more programming problem statements on a training dataset. 

In this experiment, the text data were also augmented based on the NLPAug library. Unlike 

in prior research which usually focuses on the word-level for augmented data, several different 

levels (character, word, sentence) were used. Different techniques were applied based on word 
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embedding: word2vec (using words as a target), contextual word embedding: BERT, 

DistilBERT, RoBERTa, and XLNet (using words or sentences as a target), and OCR engine 

error (using characters as a target). In addition, various pipelines were created based on 

sequential flow. Three different approaches were constructed because, in textual augmentation, 

the best approach is based on the dataset; if any approach improved on performance for specific 

data, this may be detrimental to other data (Qiu et al., 2020). 

8.2.2. Adaptive Models in MOOCs 

The other branch of prior research relevant to this chapter is adaptation and adaptive models 

implemented in MOOCs. As MOOCs are a rather recent addition as clarified in Section 2.2.1, 

with the term MOOC coined in 2008 (Stracke and Bozkurt, 2019), and their launch in 2012 

(Jordan and Goshtasbpour, 2022), adaptation has been slow to be introduced to MOOC data, 

with most approaches still being designed using a one-size-fits-all basis (Shimabukuro, 2016; 

Rizvi et al., 2022) to some extent, despite the decades of research in adaptive educational 

hypermedia (Ahmadaliev et al., 2019), intelligent tutoring systems (Mousavinasab et al., 2021; 

Hodgson et al., 2021), and the like. Nevertheless, a few researchers have started proposing 

adaptation in MOOCs. For instance, (Alzetta et al., 2018) designed a customised learning path 

in an interactive and mobile learning environment and MOOCs using a question/answer (QA) 

system. Another work on adaptive models in MOOCs (Lallé and Conati, 2020) created a 

framework for user modelling and adaptation (FUMA) to provide adaptive support for learners’ 

during video usage. They used video watching and interaction behaviours as features to reveal 

inactive learners. Another very recent work proposes an optimal learning path to prevent 

MOOC learners from dropping out (Smaili et al., 2022); they provide each learner with an 

adaptive appropriate path based on interaction with the environment using particle swarm 

optimisation (PSO). 

In this research, unlike in previous research, the building of adaptive models was enabled 

based on learner posts with the aim of improving communication with instructors. 

8.3.  Methodology 

This study aimed to automatically classify if a MOOC learner’s post is urgent and so requires 

flagging for instructor intervention. This means modelling learner data (their posts) to 

recommend an action to the instructor (here, reply). This is called a fine-grained learner model, 
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as each learner is represented by the set of their posts. More formally, it can be written that for 

learner l1, their learner model L between time points t1 and t2 is given by: 

                                     L(l1,t1,t2)= {F t(p)[t1,t2] (urgency (l1,p))}                                           (8.1) 

 

Where F(.) can be any function aggregating the urgency for a given interval (e.g. a sum of 

urgency), and urgency (l1,p) represents the fine-grained learner information at the level of a 

single post p of learner l1, made during the given time interval [t1,t2]. This learner model L(.) 

is used to generate recommendations for instructors (see Section 8.3.3). To achieve this 

objective, the FutureLearn corpus was manually annotated (as discussed in Section 3.2.2.1); 

additionally, the highly popular and well-used benchmark Stanford dataset was used (Section 

3.2.1) to validate the best model, thus demonstrating the generalisability of the proposed 

approach and its applicability across courses and domains. 

To determine the most appropriate method, NLP techniques were used to construct a diverse 

predictive model for text classification. Two main types of supervised classifiers were 

employed: 

1. A traditional ML approach with handcrafted features as a baseline model; and 

2. A fine-tuned version of BERT, representing the latest advance in NLP at the time of 

writing (2021) as a powerful supervised Transformer model, as discussed in Section 

2.2.3.2.5.1. 

To tackle the imbalance problem, several different techniques were employed (see Section 

8.3.2.2). One technique that was considered is text augmentation; here, different approaches 

were relied upon (see Text Augmentation Section 8.3.2.2.2) and the minority-class data were 

augmented with various multipliers (such as 3x and 9x). The reason for using text augmentation 

is that it prevents overfitting; it is considered a crucial regularisation technique (Coulombe, 

2018). 

8.3.1. Dataset 

This research was conducted on the FutureLearn and Stanford MOOC-based platform datasets. 

In FutureLearn, Urgent iNstructor InTErvention (UNITE) was used because it contains a very 

limited number of urgent cases (7%) which represent unbalanced data. Then, as mentioned, the 

best model from FutureLearn (UNITE) was validated using the Stanford MOOC-based dataset. 
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8.3.2. Experiments for Imbalanced Data 

To achieve a comprehensive understanding of the best way to automatically identify the 

urgency of posts on MOOCs, as mentioned, two common supervised ML strategies were used 

(traditional ML and Transformer with BERT) to automatically classify posts. Additionally, as 

urgency-detection is a typically imbalanced data problem, hence any MOOC provider would 

need to take this data imbalance into account –– various techniques to deal with input data were 

experimented on, as per Figure 8.1 (below). 

 

Figure 8.1: The proposed pre-processing (data balancing) and ML pipeline combinations. 

First, several training models were applied to the original data on the UNITE corpus. Then, to 

improve performance, three solutions were designed and developed to handle imbalanced data: 

(i) text augmentation; (ii) text augmentation + undersampling; (iii) undersampling (for details 

see Section 8.3.2.2). Text augmentation involves using a range of approaches in different 

combinations to augment the minority class in the training data. In undersampling, randomly 

selected instances from the majority class were used, while in text augmentation + 

undersampling involves using a combination of the two previous techniques. All the 

experiments were conducted using a stratified 4-fold cross-validation approach to ensure 

representative results. The general architecture of the proposal classification model is shown 

in Figure 8.2 (below). 
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Figure 8.2: The general architecture of the classification model. 

8.3.2.1. Classifiers 

As mentioned, two major classification model types were compared to classify the posts: (i) 

traditional ML (a basic model typically used by ML algorithms), and (ii) BERT (one of the 

most popular Transformer models, as further explained). 

8.3.2.1.1. Traditional Machine Learning 

Several ML models were applied (see Figure 8.3 below) to the classification task, each with 

different fundamental mechanisms for feature engineering. This includes count vector and term 

frequency-inverse document frequency (TF-IDF) to find an adequate classifier to predict urgent 

posts. Different feature sets were extracted via four different classical methods: (i) count vector; 

(ii) TF-IDF vector (word-level); (iii) TF-IDF vector (n-gram word-level); and (iv) TF-IDF 

vector (n-gram character level). Then, different popular classifiers were built across these 

different sets of features (naive Bayes, logistic regression, support vector machine, random 

forest, and boosting model –– extreme gradient boosting (XGBoost)), as displayed in Figure 

8.3 (below). 
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Figure 8.3: The framework of the traditional ML classifiers using different features. 

Each post was represented with a specific vector; the count-vector counts the frequency of 

every given word in every post. TF-IDF calculates the score in the form of a numerical statistic 

to evaluate the degree of relatedness between a particular word and a specific post in a 

collection of posts; it thus represents a measure of how important a word is in a collection of 

posts. Three different levels of TF-IDF were considered as tokens: (i) word, (ii) n-gram word 

with range (2,3), and (iii) n-gram character with a range of (2,3) with the maximum number of 

features (5000 applied to each level). 

8.3.2.1.2. BERT 

For Transformers, the currently most popular and competitive approach in text classification 

tasks, BERT, was employed. Using BERT enabled feature engineering to be avoided as a well-

known approach in deep learning. A pre-trained BERT was fine-tuned with one additional layer 

for the classification task. The version of BERT classifier used was the BERT-base-uncased 

(L=12, H=768, A=12, Total Parameters=110M) and it is the smaller model of the two available 

(as explained in Section 2.2.3.2.5.1) and it was selected due to shorter training time. For the 

BERT input, which is a sequence of tokens, each post was limited to the final 128 tokens. This 

decision on the final tokens and size was based on various pre-experiment trials (final/first 

tokens; different sizes) that rendered this number (128 tokens) as the most suitable. The Adam 

optimiser was used to tune BERT over four iterations. 
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8.3.2.2. Text Balancing Techniques 

Several classifier models were developed based on different techniques for manipulating the 

data. First, each of the models was run using the original UNITE corpus. Then, to tackle the 

imbalance problem, the following approaches were independently applied: (i) text 

augmentation, (ii) combined text augmentation then undersampling, and (iii) resampling using 

undersampling. 

8.3.2.2.1. Original Data Usage (UNITE Corpus) 

As an initial experiment, all models were implemented directly with original UNITE data. The 

dataset was split into four groups using stratified k-fold cross-validation, choosing a value of k 

= 4 (four folds) as in (Capuano and Caballé, 2019; Capuano et al., 2021). The k-fold cross-

validation-run approach was chosen because it allowed results with less bias to specific data to 

be obtained (Berrar, 2019). Stratification in the dataset was used: the selection of data led to an 

equal distribution of every class in every set. Thus, every fold contained the same percentage 

of samples from each class (see Figure 8.4 below) as follows: training fold 3466 or 3467 

samples (3219 as class 0, i.e. non-urgent, and 247 or 248 as class 1); testing fold 1156 or 1155 

samples (1073 as 0 and 83 or 82 as 1) in each iteration (see Table 8.1 below). Please note that 

the more frequently encountered 10-fold validation was not used, as, due to the very low 

number of urgent cases, this would have resulted in a too-low value per stratum for efficient 

stratification. 

 

Figure 8.4: Splitting the data using 4-fold cross-validation and stratification. 
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Table 8.1: Number of cases for every class in (training, testing) sets in each iteration: original data. 

# of iteration 
Training set Testing set 

0 1 0 1 

1 3219 247 1073 83 

2 3219 247 1073 83 

3 3219 248 1073 82 

4 3219 248 1073 82 

For the training with BERT, the training data were divided into 90% training (0=2897, 1=222 

or 223) and 10% validation (0=322 1=25), as well as the use of stratification. 

However, it was found that the results were unsatisfactory for the various classifiers (see 

Section 8.4) due to class imbalance. To overcome this issue and enhance prediction 

performance, alternative techniques were employed as discussed in the next sections. 

8.3.2.2.2. Text Augmentation 

To manage the class imbalance problem and boost performance, the data instead was pre-

processed using artificial resampling (augmentation) to generate more minority-class cases for 

the training set of each fold, resulting in an almost balanced dataset. Every instance was 

augmented in the minority class into three and nine instances, respectively. These values were 

chosen based on literature reporting that for some databases, a low number of repetitions might 

not be sufficient to decrease the bias of the model in indiscriminately predicting the majority 

class; however, a higher repetition value might also render the data non-representative 

(Haixiang et al., 2017; Madabushi, Kochkina and Castelle, 2020; Fonseca et al., 2020), so 

experimentation was necessary. Thus, in this work, experimentation was performed at every 

iteration, with the number of items in the training and testing set for 3x and 9x augmentation, 

as shown in Table 8.2 (below). 

Table 8.2: Number of cases for every class in (training, testing) sets in each iteration: text augmentation 

(3x – 9x). 

Quantities # of iteration 
Training set Testing set 

0 1 0 1 

3x 

1 3219 988 1073 83 

2 3219 988 1073 83 

3 3219 992 1073 82 

4 3219 992 1073 82 

9x 

1 3219 2470 1073 83 

2 3219 2470 1073 83 

3 3219 2480 1073 82 

4 3219 2480 1073 82 
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To achieve the augmentation goal, common, easy-to-implement techniques for text 

augmentation were applied using the public NLPAug library. The text augmentation library 

(NLPAug) is a Python library dedicated to augmentation (Raghu and Schmidt, 2020). The 

simple code via the Edward Makcedward Github repository (Makcedward, 2020) was 

accessed. Three different hybrid approaches were used: (i) word-level with the same type 

(BERT), (ii) word-level with different types, and (iii) different levels (character, word, 

sentence), as shown in Table 8.3 (below). 

Table 8.3: The approaches using different augmenters. 

Approach Level Augmenter Type Action 

1 Word ContextualWordEmbsAug 
BERT 

Insert 

Substitute 

DistilBERT Substitute 

2 Word 

WordEmbsAug Word2vec Substitute 

ContextualWordEmbsAug 
BERT Substitute 

RoBERTa Substitute 

3 

Character OcrAug OCR Substitute 

Word ContextualWordEmbsAug BERT Substitute 

Sentence ContextualWordEmbsForSentenceAug XLNet Insert 

 

In the first, a hybrid approach consisting of three different actions 3x in a 

ContextualWordEmbsAug augmenter based on BERT was applied –– by inserting and 

substituting with BERT and substituting with DistilBERT –– to discover the most appropriate 

word for augmentation, as shown in Table 8.4 (below). 

Table 8.4: An example of different augmenters for 3x in the first approach on a post in UNITE. 

Type Text 

Original I hope any course staff member can help us to solve this confusion asap!!! 

BERT (insert) i hope any course support staff member can come help enable us to solve this current 

confusion case asap ! ! ! 

BERT 

(substitute) 

our trust one important staff member can help us to solve this confusion slowly ! ! ! 

DistilBERT 

(substitute) 

i hope any course faculty member should teach us to alleviate problem confusion asap ! ! ! 
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Then, the 3x method was built, and the number of instances was increased to 9x by generating 

an additional 3x more instances for every instance. This was achieved by constructing six 

sequential pipelines, each representing a multi-augmenter (bi- or tri-augmenter), as shown in 

Table 8.5 (below). Table 8.6 (below) provides examples of 9x augmentation. From this table, 

it can be noticed that there is an issue with the quality of augmented text on some pipelines. 

Despite this issue, the performance is improved, as discussed in the results section.  

Table 8.5: Different pipelines to generate 9x in the first approach. 

Pipeline Type Action 

Pipeline 1 
BERT Insert 

BERT Substitute 

Pipeline 2 
BERT Insert 

DistilBERT Substitute 

Pipeline 3 

BERT Substitute 

BERT Insert 

DistilBERT Substitute 

Pipeline 4 
BERT Substitute 

DistilBERT Substitute 

Pipeline 5 

DistilBERT Substitute 

BERT Substitute 

BERT Insert 

Pipeline 6 
DistilBERT Substitute 

BERT Insert 

 

Table 8.6: An example of different augmenters for 9x in the first approach. 

Type Text 

Original I hope any course staff member can help us to solve this confusion asap!!! 

BERT     

(insert) 

i hope any acting course staff member can help us financially to solve these this ... 

confusion situation asap ! ! ! 

BERT 

(substitute) 

i recommend a course staff member can help our all solve this confusion tonight ! ! !   

DistilBERT 

(substitute) 

i hope any helpful staff member may help us to unlock the mystery asap ! ! ! 

Pipeline 1 
the four know some successful course change group member can even get us this solve 

this global confusion asap ! ! ! 
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Pipeline 2 
as i hope any course staff staff experienced can somehow help inspire us and suggest 

solving this puzzle asap ! ! ! 

Pipeline 3 
i wonder if various further course instructors or volunteers could employ yo                                                                

`u might ultimately solve this particular trouble indeed ! ! ! 

Pipeline 4 we hope only one staff volunteer to help us both solve their confusion immediately ! ! ! 

Pipeline 5 
sincerely hope any new permanent staff department member cannot aid me by easily in 

solve this time at crisis ! ! ! 

Pipeline 6 
and i hope for any facebook staff member member can persuade them to quickly solve this 

situation well together ! ! ! 

 

Next, the second approach was conducted, another augmentation procedure, by mixing several 

augmenter functions based on the word-level (see Table 8.3 above): WordEmbsAug (substitute 

word2vec) and ContextualWordEmbsAug (substitute BERT and substitute RoBERTa). 

Lastly, as per Table 8.3 (above), the third approach was constructed, which is based on three 

different levels of augmenter (character, word, and sentence). For character-level, OcrAug (a 

substitute for OCR) was used. For word-level, ContextualWordEmbsAug (a substitute for 

BERT) was used. For sentence-level, ContextualWordEmbsForSentenceAug (insert XLNet) 

was used. 

Then, the traditional ML and BERT models were applied, as explained in Section 8.3.2.1, 

based on 3x and 9x augmentations. 

8.3.2.2.3. Text Augmentation + Undersampling 

By creating nine new artificial instances in the training set, an almost-balanced dataset was 

obtained, albeit with a concern about its non-representativity. However, by creating three new 

instances, the data variation was moderately increased and a smaller move towards balancing 

the dataset was performed. Hence, the concern of minimising model errors was addressed by 

frequently predicting the majority class, achieving instead high accuracy yet low recall and 

precision for the minority class. These two concerns were dealt with by applying a hybrid 

resampling method combining this augmentation technique with undersampling. 

In these experiments, the aim was to balance the datasets by combining both text 

augmentation and undersampling methods as follows. First, by increasing instances to 3x or 9x 

in the minority class. Second, in undersampling, randomly reducing the number of elements in 

the majority class to be equal to the minority class in every fold. Therefore, the numbers of 
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samples for each pipeline in the urgent and non-urgent classes were approximately 990 for 3x 

and 2475 for 9x. 

8.3.2.2.4. Undersampling (Random) 

To balance the class distribution in the original data, an alternative popular method was 

performed –– the undersampling technique for imbalanced data classification –– by randomly 

removing instances in the majority class. Thus, in this case, the numbers of samples for each 

class were 247 or 248, respectively. 

8.3.2.2.5. FutureLearn and Stanford Datasets 

As explained, the distribution of the urgent class in the FutureLearn dataset (7%) was different 

than in the Stanford dataset (19%). Therefore, the effect of these different techniques to handle 

imbalanced data were expected to affect the performance results of the different datasets. 

Figures 8.5 and 8.6 (below) show the distribution of every class in every fold for every method 

for UNITE and 3x for the Stanford dataset, respectively. 

 

Figure 8.5: The distribution of every class in every fold in every method for UNITE: FutureLearn 

dataset. 

 

Figure 8.6: The distribution of every class in every fold for every method for the Stanford dataset. 



163 
 

8.3.3. Illustration of Adaptive Intervention Models 

This section introduces the design of illustrative adaptive intervention models for instructor 

interaction based on the automatic urgency detection approach. These models showcase how 

the user model parameters proposed by this study can fit into simpler or, gradually, more 

complex user models; here, the term users means instructors, as the primary target users, and 

learners, as the potential secondary target users. Specifically, two practical scenarios for semi-

automatic instructor intervention were provided: (i) semi-automatic intervention that tackles 

unbalanced data with a classification model, and (ii) filtering posts that improve instructor 

intervention by filtering the results based on learners, their number of posts, and time of 

posting.  

8.3.3.1. Semi-automatic Instructor Intervention: Basic Scenario 

The first scenario introduces an artificial support instructor model as a pipeline incorporating 

the classification model to represent the learner model using additional information on the 

instructor (the instructor model), as shown in Figure 8.7 (below). 

 

Figure 8.7: The adaptive intervention model based on learners' posts; note how the proposed predicted 

urgency becomes a (derived, fine-grained) learner model variable, together with the posts per learner. 

A basic instructor model would minimally contain variables such as the available time 

instructors have for a specific session, and a time for reading per post, or, alternatively, a 

maximum number of posts to read in that session (hence, a simple two-variable user model for 
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the instructor). The learner model also contains two variables: (i) learner posts, and (ii) urgency 

of posts at post-level (fine-grained). Based on this information, the adaptive intervention model 

can automatically retrieve the top-most urgent posts, depending on their ranking (e.g., from a 

probability score given by a classification model), thus reducing overload on instructors.  

For example, instructor Laura has answered all yesterday's posts from learners. She wishes 

to know if there are any urgent posts today as she has only 30 minutes, after which she needs 

to teach another course. All this information represents the instructor model. The MOOC 

webpage for today has three items, each has acquired an average total of 150 posts. She thinks 

that she would be able to answer a maximum of about 10–15 posts (and adds this information 

to her instructor model15). Thus, the artificial support instructor recommends Laura to answer 

the most urgent top five posts for each of the three items from today’s class. This 

recommendation represents the adaptive model, which is the combination of the classification 

model and the proposed technique to deal with imbalanced data, which automatically classifies 

posts and detects urgent posts thus adapting to the instructor’s needs, helping Laura to avoid 

reading all the posts, and improving her interaction with the learners. 

8.3.3.2. Semi-adaptive Instructor Intervention: Expanded 

Scenario based on Coarse Granularity and Expanded 

Learner Models 

The first scenario deals with the recommended urgent posts, as per the pipeline proposed in 

this research project. However, this model can be further improved. Next, how posts can be 

grouped to further refine the learner model and deal with urgency at (higher granularity) learner 

level (instead of the post level) is described. This may show if a learner is generally in trouble 

and needs support, which may make dealing with that learner more useful. This is consistent 

with findings of a study by (Alrajhi et al., 2021) and clarified in Chapter 7, which showed that 

learners write more posts overall when they require urgent intervention. 

For example, instructor John wishes to use Laura’s system for classifying posts but has 

noticed that learners tend to either make many urgent posts when they are in trouble or are 

overall happy, and thus make fewer posts. He would like his workload reduced and hence avoid 

answering to seemingly urgent posts made by users with very few posts. Thus, he wishes 

learners to be grouped into urgent and non-urgent learners, as shown in Figure 8.8 (below). 

 
15 Alternatively, the system could automatically convert Laura’s available time (of 30 minutes) into a number of questions to 

be answered. 
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John will now be able to answer urgent learners first, even if some of the non-urgent learners 

may have posted posts that sound urgent but who may have less need for intervention. 

 

Figure 8.8: Refining the learning modelling of urgency based on two learner groups (non-

urgent/urgent). 

An extension to the learner model would be to add this coarse-grained, learner-level 

classification to the learner model, the number of posts, and then to further cluster them based 

on this. The correlation between the number of written posts per learner versus the number of 

posts made by those who need urgent intervention was computed using Pearson’s correlation. 

Therefore, first, silhouette analysis was applied, to check the number of clusters, then the 

Fisher-Jenks algorithm was used (because it only works on one-dimensional data) to perform 

the clustering. These clusters were then merged into two groups that differentiate between 

learners with a high number of posts and learners with a low number of posts (urgent/ non-

urgent learners).   

In addition, the intervention was further adapted based on the time stamp of the posts of 

each of these learners to provide John with posts of the urgent learners, ordered on a first-come-

first-served (FCFS) basis. Thus, number of posts and time stamps are variables added to the 

extended learner model in this example. The overall adaptive model is summarised in Figure 

8.9 (below) using the same instructor model as previously, but here an expanded, three-variable 

learner model was used: (i) coarse-grained learner-level urgency, (ii) fine-grained post-level 

urgency, and (iii) learner posts. 
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Figure 8.9: The adaptive intervention model based on coarse-grained, expanded learner modelling with 

two learner groups based on number of posts (low/high); here, the instructor model is the same as in 

Figure 8.7 but the learner model has been expanded with an additional variable (coarse-grained learner-

level urgency). 

8.4.  Results and Discussion 

This section presents and offers an interpretation of the overall results considering the 

experiments for imbalanced data to address RQ5.1. Additionally, adaptive intervention models 

were applied to two scenarios to address RQ5.2. 

8.4.1. Experiments for Imbalanced Data 

This section provides a discussion of the experimental results for the two main types of 

classifiers (traditional ML and Transformer). 

8.4.1.1. Traditional Machine Learning on the UNITE Dataset 

In traditional ML, five different classifiers were tested with different types of feature 

engineering in three different augmentation approaches (Approach #1: word-level, with the 

same type (BERT), Approach #2: word-level with different types (word2vec, BERT and 

RoBERTa), and Approach #3: different levels (character, word, sentence) with different types 

(OCR, BERT and XLNet) as discussed in Section 8.3.2.2.2 Text Augmentation. Table 8.7 

(below) shows the results of the comparison between the accuracy (ACC) of the basic classifier 
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(naive Bayes) with the count vector as features. Despite some of these models obtaining around 

90% accuracy (see Table 8.7 below), this does not mean that they are good models; they could 

be biased towards the majority class on the imbalanced class dataset. Thus, to achieve more 

accurate results as explained before, the other metrics were used to measure performance, such 

as P, R and F1 for each class.  

The data in the testing set is a highly imbalanced with skewed class proportions to non-

urgent (0) and a very small proration of urgent (1) (only 7%). Therefore, this research project 

aimed to correctly classify urgent cases represented by recall (R). It proposes to use recall as the 

main evaluation metric for urgent posts, as recall (the correct identification of most of the 

urgent cases, preferably all, allowing for false positives) ensures that all urgent cases have 

precedence, which is more important than precision (the correct identification of only urgent 

cases, but possibly missing some, thus allowing for false negatives). Specifically, it tries to 

improve the outcome of R for the positive class. In addition, it separately shows how filtering 

can be added as a process to retrieve the most urgent posts that obtained priority from their 

probability in the classification models. This approach potentially reduces the instructor effort 

required to review and read many posts (see Section 8.4.2.1). 

Table 8.7 (below) shows the count-vector feature as a case study. The evaluation of R for 

class 1 (urgent), based on the original data was very low (0.05). Improved performance was 

achieved by applying different approaches to enhance the data and address the imbalance 

problem. The best result was obtained using undersampling (Under) (0.82), but the results 

dramatically decreased for class 0 (non-urgent) to 0.49 (from 0.99). In contrast, the 

performance of the manipulated data with 3x augmentation + undersampling achieved the best 

performance, achieving a balance between class 1 and class 0. Most of the three approaches 

for augmentation run on the same scenario, albeit with some exceptions which will be discussed 

later in this section. 

The aim was to find the best techniques to deal with the imbalanced data problem between 

the three different approaches for augmentation (not to find the best feature engineering 

approach). The reason for using different features was to confirm which imbalanced data 

technique is better across all feature sets and to make the experiments more generalisable. 

Therefore, the findings can be generalised to (i) all approaches on specific features, (ii) all 

features on a specific classifier, and (iii) all classifiers, since the effectiveness of the proposed 

methods of data manipulation were similar for most classifiers (as shown in Appendix B). For 
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conciseness, it was decided to report and discuss only one of these classifiers (naive Bayes) 

with one feature (count vector); the results of the other types of classifiers are provided in the 

Appendix B. However, the exceptions are discussed in the next paragraph. 

Table 8.7: The performance results of the naive Bayes model with count-vector feature engineering with 

original data, with three approaches to augmentation (see Table 8.3 above) using 3x and 9x (see Table 

8.2 above) with and without undersampling and with undersampling without augmentation. Underlined: 

best performance of R for class 1 (urgent), Bold: best performance of R, balancing between class 1 

(urgent) and class 0 (non-urgent) in the UNITE dataset. 

Feature 

Engineering 
Augmentation Undersampling Acc 

Non-urgent 

0 

Urgent 

1 

P R F1 P R F1 

Count vector 

× × 0.92 0.93 0.99 0.96 0.29 0.05 0.08 

A
p

p
ro

ac
h
  

#
1
 

3X × 0.90 0.94 0.95 0.94 0.26 0.24 0.25 

9X × 0.84 0.95 0.88 0.91 0.21 0.44 0.29 

3X √ 0.75 0.96 0.76 0.85 0.16 0.57 0.25 

9X √ 0.81 0.96 0.84 0.89 0.19 0.50 0.28 

A
p

p
ro

ac
h
  

#
2
 

3X × 0.91 0.94 0.97 0.95 0.29 0.18 0.22 

9X × 0.90 0.94 0.95 0.95 0.25 0.21 0.23 

3X √ 0.79 0.96 0.81 0.88 0.17 0.51 0.26 

9X √ 0.88 0.94 0.93 0.94 0.24 0.28 0.26 

A
p

p
ro

ac
h
  

#
3
 

3X × 0.90 0.94 0.96 0.95 0.28 0.21 0.24 

9X × 0.87 0.95 0.92 0.93 0.23 0.31 0.26 

3X √ 0.78 0.96 0.80 0.87 0.17 0.55 0.26 

9X √ 0.85 0.95 0.89 0.92 0.20 0.36 0.25 

× √ 0.52 0.97 0.49 0.65 0.11 0.82 0.19 

 

Whilst most of the findings were the same, there were a few exception cases; for example, (i) 

the strongest predictors for recall were mostly those with undersampling (Under). However, 

some models (random forest and boosting (XGBoost)) with TF-IDF vectors (n-gram word-

level) were better in other approaches for text augmentation than undersampling (see Table 8.8 

below).  

(ii) the best performance was often obtained from the data with 3x augmentation + 

undersampling, achieving a balance between class 1 and class 0 levels, but some models 9x 

augmentation + undersampling outperformed 3x augmentation + undersampling, as shown in 

Table 8.9 (below).  
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Table 8.8: Cases in which the results performance of R for class 1 (urgent) of the text augmentation 

techniques were higher than the results performance of R for class 1 (urgent) for the undersampling 

technique. 

Classifier 
Feature 

Engineering 
Augmentation Under Acc 

Non-urgent 

0 

Urgent 

1 

P R F1 P R F1 

 

 

 

 

 

Random 

Forest 

TF-IDF 

vectors (n 

gram word- 

level) 

A
p

p
ro

ac
h
  

#
1
 

9X × 0.91 0.95 0.95 0.95 0.36 0.39 0.38 

3X √ 0.90 0.95 0.94 0.95 0.33 0.40 0.36 

9X √ 0.89 0.95 0.93 0.94 0.30 0.41 0.34 
A

p
p

ro
ac

h
  

#
2
 

3X √ 0.89 0.95 0.93 0.94 0.30 0.39 0.34 

9X √ 0.88 0.95 0.93 0.94 0.27 0.36 0.31 

A
p

p
ro

ac
h
 

 #
3
 

9X × 0.91 0.95 0.95 0.95 0.38 0.41 0.39 

3X √ 0.90 0.95 0.94 0.95 0.34 0.41 0.37 

9X √ 0.90 0.95 0.93 0.94 0.33 0.42 0.37 

× √ 0.86 0.95 0.90 0.92 0.21 0.36 0.26 

Boosting 

(XGBoost) 

A
p

p
ro

ac
h
  

#
1
 

9X √ 0.70 0.95 0.71 0.81 0.12 0.53 0.20 

A
p

p
ro

ac
h
 

 #
2
 

9X √ 0.66 0.95 0.67 0.79 0.11 0.55 0.19 

× √ 0.74 0.95 0.76 0.84 0.14 0.49 0.21 

 

(iii) in terms of approaches, the goal of building more than one approach was to generalise the 

results of the technique used in data manipulation. Thus, the results of the different approaches 

revealed that no single approach can be considered to be the best approach. However, 

interestingly, Approach 3, which is based on different levels (character, word, sentence) always 

obtained the best results for R if TF-IDF vectors (n-gram character level) as a feature were 

used, across all experiments (as shown in Appendix B).  
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Table 8.9: Cases in which the results performance of R for class 1 (urgent) of the 9x augmentation + 

undersampling were higher than the results performance of R for class 1 (urgent) for 3x augmentation 

+ undersampling. 

Classifier 
Feature 

Engineering 
Augmentation Under Acc 

Non-urgent 

0 

Urgent 

1 

P R F1 P R F1 

 

 

 

 

 

SVM 

TF-IDF 

vectors (n 

gram word- 

level) 

A
p

p
ro

ac
h
  

#
1
 

3X √ 0.91 0.95 0.95 0.95 0.34 0.33 0.34 

9X √ 0.89 0.95 0.93 0.94 0.27 0.35 0.31 
A

p
p

ro
ac

h
  

#
2
 

3X √ 0.90 0.95 0.95 0.95 0.31 0.30 0.30 

9X √ 0.88 0.95 0.93 0.94 0.25 0.32 0.28 

A
p

p
ro

ac
h
 

 #
3
 

3X √ 0.92 0.94 0.97 0.96 0.38 0.20 0.26 

9X √ 0.91 0.94 0.97 0.95 0.35 0.24 0.28 

 

 

Random 

Forest 

 

 

 

 

A
p

p
ro

ac
h
 

 #
1
 

3X √ 0.90 0.95 0.94 0.95 0.33 0.40 0.36 

9X √ 0.89 0.95 0.93 0.94 0.30 0.41 0.34 

A
p

p
ro

ac
h
  

#
3
 

3X √ 0.90 0.95 0.94 0.95 0.34 0.41 0.37 

9X √ 0.90 0.95 0.93 0.94 0.33 0.42 0.37 

Boosting 

(XGBoost) 

A
p

p
ro

ac
h
 

 #
1
 

3X √ 0.85 0.95 0.88 0.92 0.20 0.38 0.26 

9X √ 0.70 0.95 0.71 0.81 0.12 0.53 0.20 

A
p

p
ro

ac
h
 

#
2
 

3X √ 0.77 0.95 0.80 0.87 0.14 0.42 0.21 

9X √ 0.66 0.95 0.67 0.79 0.11 0.55 0.19 

A
p

p
ro

ac
h
 

#
3
 

3X √ 0.85 0.95 0.89 0.92 0.20 0.38 0.27 

9X √ 0.87 0.95 0.91 0.93 0.25 0.40 0.31 

 

8.4.1.2. BERT on the UNITE Dataset 

When using BERT, Table 8.10 (below) shows the prediction performance for the different 

methods of manipulating the data. As mentioned, only augmentation was performed; no feature 

engineering was necessary. The performance of R for class 1 in BERT with the original data 

was not too low in comparison with the traditional ML results. Although it rose from (0.52) to 

0.82 with the undersampling technique. However, for the negative class, recall decreased from 
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0.98 to 0.86. To achieve more balance between the two classes, 3x augmentation + 

undersampling was used (see Table 8.10 below).   

Table 8.10: The performance results of the BERT model with original data, with three approaches to 

augmentation (see Table 8.3 above) using 3x and 9x (see Table 8.2 above) with and without 

undersampling and with undersampling without augmentation. Underlined: best performance of R for 

class 1 (urgent), Bold: best performance, balancing between class 1 (urgent) and class 0 (non-urgent) 

in the UNITE dataset. 

Augmentation Under Acc 

Non-urgent 

0 

Urgent 

1 

P R F1 P R F1 

× × 0.95 0.96 0.98 0.97 0.67 0.52 0.58 

A
p

p
ro

ac
h
 

 #
1
 

3X × 0.95 0.97 0.97 0.97 0.62 0.63 0.63 

9X × 0.94 0.97 0.96 0.97 0.54 0.59 0.57 

3X √ 0.92 0.98 0.93 0.96 0.46 0.75 0.57 

9X √ 0.93 0.97 0.95 0.96 0.50 0.63 0.56 

A
p

p
ro

ac
h
  

#
2
 

3X × 0.95 0.97 0.97 0.97 0.62 0.62 0.62 

9X × 0.94 0.97 0.97 0.97 0.57 0.57 0.57 

3X √ 0.91 0.98 0.92 0.95 0.41 0.77 0.54 

9X √ 0.94 0.97 0.96 0.97 0.55 0.62 0.58 

A
p

p
ro

ac
h
  

#
3
 

3X × 0.94 0.97 0.97 0.97 0.60 0.59 0.59 

9X × 0.94 0.97 0.97 0.97 0.61 0.59 0.60 

3X √ 0.89 0.98 0.89 0.94 0.36 0.79 0.50 

9X √ 0.94 0.97 0.97 0.97 0.57 0.58 0.58 

× √ 0.86 0.98 0.86 0.92 0.32 0.82 0.46 

 

Hence, the best classifier performance on the UNITE dataset was obtained with BERT using 

Approach 3 with 3x augmentation + undersampling.  

To verify the effectiveness of the different data manipulation techniques to deal with the 

imbalanced data problem, the same methods were utilised on the Stanford dataset. In these 

experiments, augmentation was limited to 3x only, since 9x would have generated more 

instances in the minority class than in the majority class. Also, only Approach 3 was applied 

(see Table 8.3 above), which provided the best performance for the 3x augmentation + 

undersampling technique on the UNITE dataset. 

8.4.1.3. BERT on the Stanford Dataset 

Table 8.11 (below) shows the results of BERT on the Stanford dataset. Similar results were 

obtained for the UNITE dataset; the only difference being in the performance of the two 

techniques with 3x augmentation with and without undersampling. This is possibly because the 

distribution of non-urgent cases differs between the two datasets (see Figures 8.5 and 8.6 



172 
 

above). Whereas, as clarified in Figure 8.6 (above), the distribution of non-urgent cases for 3x 

achieved almost the same as the distribution of non-urgent cases for 3x + undersampling. 

Table 8.11: The performance results of the BERT model with original data, with three approaches to 

augmentation (see Table 8.3 above) using 3x (see Table 8.2 above) with and without undersampling and 

with undersampling without augmentation. Underlined: best performance of R for class 1 (urgent), Bold: 

best performance of R, balancing between class 1 (urgent) and class 0 (non-urgent) for the Stanford 

dataset. 

Augmentation Under Acc 

Non-urgent 

0 

Urgent 

1 

P R F1 P R F1 

× × 0.91 0.94 0.96 0.95 0.80 0.73 0.76 

A
p

p
r

o
ac

h
 

#
3
 3X × 0.91 0.95 0.94 0.94 0.75 0.78 0.77 

3X √ 0.91 0.95 0.94 0.95 0.76 0.78 0.77 

× √ 0.89 0.97 0.89 0.93 0.65 0.89 0.75 

8.4.2. Adaptive Intervention Models 

This section provides a discussion of the experimental results for the results related to the 

example adaptation intervention models.  

8.4.2.1. Basic Adaptation Scenario 

In this scenario, depending on urgent posts ranking (probability score given by the 

classification model), the aim was for the adaptive intervention model to automatically retrieve 

the most important urgent posts and reduce the number of posts that are read by an instructor. 

In this case, the naive Bayes with count vector was used with Approach #1 for 3X augmentation 

with the undersampling model (the best performance among different approaches in naive 

Bayes with count vector) as a case study. For example, if the time available for an instructor to 

read posts is limited to five posts, then the model will retrieve only five posts. Table 8.12 

(below) presents the results of the comparison between the basic model (all posts) and the 

adaptive model that selects only the (five) most urgent posts for the urgent class (1), which 

clearly outperformed the basic model on all evaluation criteria. 

Table 8.12: The performance results of the naive Bayes model with count vector as feature engineering 

with Approach #1 to augmentation (see Table 8.3 above) using 3x with undersampling. First row: basic 

model with all data; second row: filtering model with the top five most urgent posts for class 1 (urgent) 

in the UNITE dataset. 

 1 

# Posts P R F1 
All 0.16 0.59 0.25 

5 0.40 1.00 0.57 
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8.4.2.2. Expanded Adaptation Scenario 

In the second scenario, an adaptation filtering model was proposed based on the number of 

learner posts. Pearson's correlation was used to calculate the correlation between the number 

of posts written per learner and the number of posts from those who require immediate 

attention. This process resulted in a strong correlation (0.65).  

The results of the Fisher-Jenks algorithm to cluster learners are shown in Table 8.13 (below). 

To obtain the two groups (for urgent/ non-urgent learners), clusters 1 and 2 were merged to 

reflect learners with a high number of posts as these are significantly more communicative than 

learners in cluster 0.     

Table 8.13: Clustering learners based on their number of posts. 

Cluster Count Mean Std Minimum Maximum 

0 734 3.30 3.06 1 15 

1 57 27.26 12.50 16 62 

2 6 107.16 34.31 84 173 

 

Posts from the low-number-of-posts group (non-urgent learners) were removed from each fold 

(using stratified four-fold cross-validation). The number of posts in the testing set is shown in 

Table 8.14 (below) for both: (i) the basic model, which contains all learners; and (ii) the filtering 

model, which only contains learners with a high number of posts (urgent learners). Hence, the 

number of posts in the filtering model was much lower than for the basic model. For example, 

in fold 1, the number of posts dropped from 1156 to 533 basic to filtering, reducing the number 

of posts the instructor needs to read. Thus, whilst the overall recall was somewhat reduced (by 

11%), the load on the instructor was also significantly reduced (p<<0.5). 

Table 8.14: Number of posts in the testing set. First row: basic models; second row: filtering models on 

the UNITE dataset. 

Fold Model Number of posts in testing set 

1 
Basic 1156 

Filtering 533 

2 
Basic 1156 

Filtering 561 

3 
Basic 1155 

Filtering 551 

4 
Basic 1155 

Filtering 552 
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8.4.3. Discussion 

Finding urgent messages is vital for instructors involved in running MOOC courses. However, 

this is a daunting prospect for MOOC instructors due to the sheer volume of posts that need to 

be read. Thus, classification models for automatically analysing posts and predicting their 

urgency are very much needed; some accurate models have been proposed in the past (Khodeir, 

2021; Alrajhi and Cristea, 2023; Guo et al., 2019). Whilst some of these models have obtained 

cutting-edge performance, the performance dips somewhat for the underrepresented class. 

Please note that it is to be expected that any such dataset would be unbalanced, with the non-

urgent posts being the predominant class, in practically any online learning system. However, 

simply increasing performance may not be enough, and indeed, perhaps impossible for highly 

unbalanced data. Dealing with class imbalances is the best way to improve data and therefore 

improve performance by proposing different methods to tackle the issues of class imbalance 

and resampling data. 

Here the model first considered fine-grained learner modelling that deems each post as a 

feature of a learner, which, if urgent, needs to be dealt with on its own. Next, as recent research 

has shown correlations between urgency and the number of posts made by learners, this 

indicates that learners posting urgent posts are likely to make many posts which enables such 

learners to be classified at the macro-scale as an 'urgent learner' (Alrajhi et al., 2021). Such 

learners would need to be treated as a priority by instructors. 

Modelling learners based on posts only is a simplification of the learner model; any model 

is a simplification of real-world conditions. However, the author believes that the posts of 

learners can provide insight into specific learner characteristics and needs. For instance, the 

language of the post can reveal anxiety or a certain level of background knowledge or 

impatience, thus covering various learner-model variables.  

Learner models can contain several parameters and be simpler or richer. Indeed, learner 

models can reflect various aspects of a learner; they often include various parameters such as 

current level of confusion, motivation, understanding, etc. Interventions to reduce learner 

dropout from MOOCs could include changing the difficulty or type of problems, referring the 

learner to modules for missing prerequisite knowledge, peer referrals, encouraging 

communications, etc. In this research project, the author adds to this rich tapestry of user model 

dimensions by extracting urgency based directly on user posts, an approach that has been 

overlooked in previous user modelling. Importantly, the richness of data obtained by using 

post-based user modelling was considered, in the sense that posts may reflect various aspects 
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of a learner such as boredom, interest, knowledge, fluency, etc. This learner model can be used 

by itself or in conjunction with other user parameters (if known) to further enrich the user 

model. This, however, does not detract from the merit of the parameters introduced with this 

approach. 

Finally, whilst the current results are very specific to MOOC posts analysis, the proposed 

techniques may serve as a template for other similar NLP classification tasks using ML with 

severely skewed datasets. 

8.5.  Error Analysis 

To understand the reasons for the errors obtained in the testing set in every fold, an in-depth 

re-analysis of the model was conducted. To achieve this, the examples of mistakes that the best 

algorithm (BERT - Text Augmentation + Undersampling) made on UNITE data were manually 

inspected. Specifically, false negatives (FN), which the model categorised as non-urgent 

(although they are labelled as urgent), were considered to be the most critical errors, as the aim 

was to capture all urgent cases. To put the results and especially the errors in context, the miss-

predictions of the classifier with human-level performance for the different folds (using 

stratified k-fold cross-validation, choosing a value of k = 4 (four folds)) were compared as 

explained in the methodology under Section 8.3.2.2.1. The results are shown in Table 8.15 

(below).  

Table 8.15: FN results for the best algorithm versus disagreement between human annotators. 

Fold FN (Total) Human disagreement 

1 23 19 

2 14 11 

3 19 16 

4 14 13 

 

The results revealed that most of the FN cases were also mirrored in the disagreement between 

annotators (i.e., for 19/23 false negatives misclassified by the classifier, the human annotators 

also disagreed for fold 1, etc., see Table 8.15 above). This further supports the notion that 

decision-making among annotators is difficult, as well as that the more difficult cases are both 

hard for humans and classifiers to categorise; examples of each fold are shown in Table 8.16 

(below). 
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Table 8.16: Anonymised examples of FN results and disagreement between human annotators on 

UNITE data. 

Fold Example 

1 
I have some difficulties to understand diagrams. But it seems very important to give a meaning and a 

context to words used in analysis. 

2 
I had done this, the [programming-platform]  is going on. But I need also the [other-platform]. I installed 

a old Version [other-platform], also the Newest. I couldn't found the [other-platform] for [setup]. 

3 Further to my comment on the previous "step" I am yet to be convinced! 

4 
I don't understand the reason of this message  when I type [code-removed] 

Warning message:[error-message-removed] 

 

Table 8.16 provides a better understanding of why humans and ML struggle in certain cases. 

For example, in fold 1, the learner does not understand the diagram, but s/he is happy about 

providing a meaning and context for the words used in the analysis. Some annotators believe 

that this post is non-urgent because the learner did not request assistance. However, another 

annotator may find that the learner has difficulty understanding the concept and so the post is 

urgent and requires an intervention. Such clashes may explain why the model was unable to 

detect the above-mentioned urgent cases. 

8.6.  Epilogue 

On MOOC platforms, deciding the right moment for instructor intervention is an important 

challenge to be overcome to better support learners. Building an automated model to detect 

posts that require urgent intervention represents a promising solution to this problem. However, 

the available MOOC post datasets naturally contain only a few urgent cases, leading to 

imbalanced data, which explains the difficulty in creating models to detect such cases 

accurately. In this chapter, three techniques (text augmentation, text augmentation + 

undersampling, and undersampling) were analysed and compared to improve the quality of 

such data. Also, several new pipelines incorporating different text augmenters were provided. 

The results show that an increase in model performance can be obtained via undersampling, 

and a combination of text augmentation + undersampling achieves the best performance in 

balancing between the two classes. 

These results help automatically retrieve the most-urgent posts for instructors to consider. 

To show how this can be applied, two adaptive models were used for illustration based on two 

types of user models: (i) personalised instructor intervention based on a fine-granularity learner 

model, and (ii) filtering results based on a higher granularity learner model.   
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It further inspected wrongly classified urgent instances and found that the problem does not 

simply lie with the classifier: it also stems from the data, which humans also find difficult to 

annotate. This indicates that the difficulties faced by human annotators in classifying such posts 

are also faced by these models. 

The next chapter shows how (XAI) techniques can be applied to interpret a MOOC 

intervention model for urgent-post detection by analysing learner posts to help instructors 

determine when posts need immediate attention and to aid annotators in producing high-quality 

datasets.  
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CHAPTER 9: AN EXPLAINABLE ARTIFICIAL 

INTELLIGENCE (XAI) APPROACH FOR URGENT 

INSTRUCTOR-INTERVENTION MODELS 

 

 

9.1.  Prologue 

Deciding when instructor intervention is needed based on learners’ posts and their urgency in 

the context of MOOC environments is a known challenge (Almatrafi, Johri and Rangwala, 

2018). To solve this challenge as clarified in SLR in Chapter 2, prior approaches used automatic 

ML models to predict urgency with more accurate performance achieved when DL methods 

are applied. These models are characterised as ‘black-box’ approaches as the results are opaque 

to humans (Von Eschenbach, 2021) and it is not easy to explain such models’ prediction results, 

especially those of DNNs (Lipton, 2018). Therefore, XAI is used in general to understand such 

results to enhance trust in AI-based decision-making. Although instructor intervention models 

need to be accurate in their decisions, it is difficult to achieve this as urgency decisions are hard 

to make, even for humans (Chandrasekaran et al., 2015b). This difficulty concurred with the 

author’s experience with the data labelling process for this task. Also, the large number of 

observations that need to be performed may increase the cognitive overload on annotators 

(Dong et al., 2020) (including physical consequences such as eye strain/blurry vision), which 

causes them to struggle to make an appropriate decision. As the advancement of AI is allowing 

humans and machines to collaborate to solve complex issues, XAI can be increasingly used to 

support MOOC instructors and annotators.  

This chapter deals with the intervention problem by showing how XAI techniques can be 

applied to interpret a MOOC intervention model for urgent-posts detection by analysing learner 

posts as posts were selected from a MOOC course and annotated using human experts. The 
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initial goal is establishing proof of concept using explainable AI for the task of urgent 

intervention as this had not been done before in this research area. In NLP, correct labelling 

and annotating text data correctly are critical issues which play an important role in supervised 

ML model prediction. Therefore, considering that making urgency decisions has recently been 

confirmed to be hard for humans (Chandrasekaran et al., 2015b), the current research project  

evaluated and studied the confidence levels between human annotators’ decisions (annotator 

agreement confidence) and compared these with the ML model’s decisions on every instance 

of learner posts. To understand how and why the model decisions are made, intervention model 

prediction was explained and compared with human decision-making using Captum 

(Kokhlikyan et al., 2020) as an interpretation tool, which is a state-of-the-art approach for 

interpreting Transformer models (Bennetot et al., 2021). 

This chapter showed how pairing a good predictor such as BERT (as a widely used language 

model in the field of NLP) with XAI results and especially colour-coded visualisation can be 

used to support instructors make decisions on urgent intervention. Also, it showed that XAI 

can be used not only to support instructors making decisions on urgent intervention but also 

further used to support annotators in creating high-quality, gold-standard datasets for urgent 

intervention. Thus, the RQs were formalised as follows:  

• RQ6.1: How can a transparent XAI model be constructed to further support instructors' 

decisions to intervene based on an urgent-posts-intervention-need-detection model?   

• RQ6.2: How can XAI be employed to improve human annotators’ decisions about the 

urgency of posts (i.e., deciding on which posts need intervention)? 

The following are the most important contributions of this chapter; to the best of the author’s 

knowledge, this is the first time that: (i) text classification explainability has been applied to an 

instructor intervention model, (ii) the AI prediction error has been shown to be connected to 

human (lack of) confidence (i.e., appearing for the same instances, here, posts), and (iii) how 

explainable models can be used for annotator support to for creating high-standard corpora. 

9.2.  Related Work on Explainable Artificial Intelligence 

A review of the literature on urgent instructor intervention in MOOCs shows that the area has 

recently gained great momentum. A variety of text classification models have been proposed 

to classify urgent posts ranging from traditional ML (Almatrafi, Johri and Rangwala, 2018) to 

other DL (Guo et al., 2019) and Transformers as embedding (Khodeir, 2021) with different 
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levels of inputs (Alrajhi and Cristea, 2023). That said, none of these works sought to interpret 

and explain the model's decision-making. In general, even though some traditional ML 

approaches such as classification trees and naive Bayes algorithms are simple to understand 

and interpret, they are less accurate than other approaches (Kowsari et al., 2017), especially for 

large data sets. Therefore, in intervention task complex models which achieve better 

performance have been proposed (Guo et al., 2019; Sun et al., 2019; Khodeir, 2021). These 

models are considered to offer ‘black-box’ approaches and are consequently difficult for end-

users to understand, as depicted in Figure 9.1 (below) (Kumar, Dikshit and Albuquerque, 2021), 

although some large models are interpretable (Rudin, 2019).  

 

Figure 9.1: Predictive ability vs interpretability trade-off (Kumar, Dikshit and Albuquerque, 2021). 

Recently, outside of our specific area, a new research direction has become very active: aiming 

to explain and interpret ‘black-box’ predictions and ML models in general for different sectors. 

Model interpretability is a field of XAI that attempts to explain model internals and results in 

human-understandable terms (Gilpin et al., 2018; Adadi and Berrada, 2018). A wide range of 

powerful tools have been proposed; for example, Local Interpretable Model-Agnostic 

Explanations (LIME) (Ribeiro, Singh and Guestrin, 2016), the SHapley Additive exPlanations 

(SHAP) (Lundberg and Lee, 2017), InterpretML (Nori et al., 2019), and Captum (Kokhlikyan 

et al., 2020). Explainability in AI is essential to enable developers to understand and improve 

their models and for end-users to increase model-decision trust (Confalonieri et al., 2021). 

Please note that while interpretability and explainability are often used interchangeably, some 

papers distinguish between them (Došilović, Brčić and Hlupić, 2018). Here, however, for 

simplicity, the current work does not make that distinction. 



181 
 

The BERT model has been extremely popular within the NLP domain, being applied in high-

performance text classification models e.g., (Fonseca et al., 2020; Pereira et al., 2021). The 

architecture of BERT consists of a deep layer which can lead to the results being difficult to 

interpret. Importantly, in relation to the current research project, recent studies have proposed 

techniques for using XAI combined with BERT, which, as mentioned recently, is applied in 

text classification models to achieve high performance. (Kokalj et al., 2021) proposed 

Transformer-SHAP (TransSHAP) by adapting and extending SHAP (Lundberg and Lee, 2017) 

to operate on BERT by building custom functions and visualising the results sequentially. They 

demonstrated that the visualisation approach used on TransSHAP was simpler than that of other 

tools (LIME and SHAP). However, this approach is considered limited in terms of only 

supporting random word sampling, which may result in unintelligible and grammatically 

incorrect sentences and wholly uninformative texts. Another study by (Szczepański et al., 

2021) proposed a new approach for explainable BERT-based fake news detectors using two 

XAI techniques (LIME and Anchors) on the Kaggle dataset. Their findings support the use of 

multiple methods to construct explanations. However, there is a problem with Anchor as it is 

not always able to find an explanation. 

In contrast, Captum is an open-source multi-modal (image, text, audio, video) library for 

Transformer model interpretability (Bennetot et al., 2021; Kokhlikyan et al., 2020). Captum is 

an open-source library developed by Facebook AI and offers cutting-edge techniques such as 

integrated gradients that make it simple for researchers and developers to identify which 

features contribute to a model's decision and output (Captum, 2021). This package has been 

drawing great attention from researchers some of whom have used this package in their 

applications. For instance, (Levy et al., 2022) utilised Captum to interpret a BERT model that 

was used as one of a set of different ML models to predict primary current procedural 

terminology (CPT) codes from pathology reports. 

Hence, this research project built an explainable instructor intervention classifier model as 

a text classification task by deploying the Captum package as it is one of the most commonly 

used tools for use with Transformer models (Bennetot et al., 2021). 

The work that lies closest to the current project is that of (Hu, Mello and Gašević, 2021) 

which used XAI to analyse online discussions. However, no methods of XAI have been applied 

yet to urgent intervention to support instructors in MOOC environments. Moreover, none of 
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these works clearly explain how to connect AI prediction error to human (lack of) confidence 

or use explainable models for annotator support in creating high-standard corpora. 

9.3.  Methodology  

This section summarises the methods used to generate the Gold-standard corpus with 

consideration of the measure of confidence between annotators, together with the tool and 

technique used to explain the ML model. Thus, this research project consists of four basic 

stages (see Figure 9.2 below) as follows: 

• First, construct an ‘urgent’ gold-standard dataset via the use of human experts 

annotating posts and computing their label confidence levels (Section 9.3.1). 

• Second, use BERT to build an automatic urgent intervention model (Section 9.3.2).  

• Third, automatically explain the model as a local explanation and calculate the 

probability and word attribution of urgency (Section 9.3.3).   

• Fourth, visualise the importance of words in post, compare the two approaches 

(machine and confidence), and discuss the results (Section 9.3.4 and Section 9.4). 

 

Figure 9.2: Human annotator vs machine pipeline: basic stages. 



183 
 

9.3.1. Adding Confidence Level to the Gold-Standard Dataset 

In this research project, the Gold-standard corpus (as explained in Section 3.2.2.2) was used as 

a case study. To add the annotator agreement confidence level, the three annotators’ decisions 

were considered after converting them to a binary value. Therefore, the annotator agreement 

confidence level was calculated thus (Figure 9.2, step 1): 

• If the three annotators agreed → 100% agreement confidence.  

• Otherwise → < 100% agreement confidence (i.e., ∼67% = 2/3 agreement). 

9.3.2. Fine-tuning the BERT Model 

As a preprocessing step, the data were split into training and testing sets using the stratify 

method (Farias, Ludermir and Bastos-Filho, 2020) to preserve the percentage of samples for 

each class (80% training and 20% testing). Thus, the distribution of the training set was 0: 

3922, 1: 706 and that of the testing set was 0: 981, 1: 177. Then, the training set was then split 

again: 90% of the data were used for training and 10% for validation. 

BERT was fine-tuned, as mentioned before, without any engineering features. The 'bert-

base-uncased' version was used, which means there is no distinction between capital letters and 

lowercase letters. Next, the text input was prepared, and the model was trained by defining the 

batch size = 8, number of training epochs = 4. Finally, the prediction model performance on 

the testing set was evaluated, and the pre-trained model was saved for later use in interpretation 

(Figure 9.2, step 2).  

9.3.3. Interpreting the BERT Model 

After training the model, the prediction of the BERT model was automatically interpreted and 

explained by using the Captum package which supports classification models. The predictions 

were interpreted via the BertForSequenceClassification in Captum from Captum_BERT colab 

(Captum, 2022). This was achieved by creating the layer-integrated gradients explainer and 

attribute methods to generate feature importance and identify which words (tokens) have the 

highest attribution to the model's output. Based on the gradient of the model's output 

(prediction) with respect to the input, integrated gradients (Sundararajan, Taly and Yan, 2017) 

provide a way to calculate the attribution score of each input feature of a deep learning model 

(here, BERT). This attribution score can be used to determine which words are important to the 
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outcome that the model predicts. The final attribution score is calculated by the average value 

for each word (Figure 9.2, step 3).  

In this experiment, three posts with < 100% confidence between annotators were inspected, 

which means the final label was set by majority voting (2/3, with one annotator disagreeing). 

These posts were selected to showcase three scenarios reflecting the differences in agreement 

between the human annotators: 1: large difference; 2: slight difference; 3: in-between. This will 

be further clarified in Section 9.4. 

9.3.4. Visualising and Comparing 

The final step was to visualise the explainability results with the attribution score and highlight 

the word importance as input for use by instructors and annotators and potential future 

decision-making support methods. The visualisation was performed by using 

VisualizationDataRecord method. Green highlights are used to indicate the tokens that 

contribute positively to the model’s prediction (i.e., features that have a positive impact on 

pushing the prediction towards a specific class); red highlights indicate tokens that have a 

negative impact on the model’s prediction (i.e., those which push the prediction towards a 

different class) (see Figure 9.2, step 4). 

9.4. Results and Discussion 

This section presents the results obtained from BERT to predict urgent posts and how learner- 

posts decisions can be evaluated and explained using Captum to further support instructors' 

decision-making and address RQ6.1. Then, the results on the agreement (confidence) between 

the annotators were illustrated using three scenarios based on agreement with the end goal to 

improve the human annotators' decisions and address RQ 6.2. 

The results obtained from BERT to predict urgent posts show that the average accuracy 

score was high (0.92). However, as explained before, as the data is extremely unbalanced, 

additional metrics were used to evaluate the classifier (precision, recall and F1-score) for every 

class to achieve a comprehensive understanding of the outcomes (see Table 9.1 below). Please 

note that here, whilst working with a decent classifier, the focus is not on the optimisation of 

the classifier but on the explanation of the obtained results. Thus, BERT has been selected here 

as it is one of the state-of-the-art classifiers; however, the method of explainable decisions 
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about urgent posts for instructors and comparing machine prediction to human classification is 

generalisable, and so can be used with other DL models. 

Table 9.1: The results of the BERT classifier. 

 Precision Recall F1-score 

0 0.95 0.95 0.95 

1 0.73 0.71 0.72 

 

These measurements are based on the confusion matrix, as explained in Section 3.4, which is 

depicted as a table with four different combinations of predicted and true values: TN, FP, FN, 

and TP, as the results from the BERT classifier reported (see Figure 9.3 below). 

 

Figure 9.3: Confusion matrix of the BERT classifier. 

As previously mentioned, one of the goals was to analyse learner posts and explain the text 

classification decisions using Captum to understand the reasons behind the predictions and help 

instructors with their decision-making process in relation to offering intervention. Here a 

random post prediction from the test set was chosen; then, the explainability results were 

illustrated with highlighted text (see Figure 9.4 below). The attribution score = 1.45 and the 

different colours reflect the effect of word attribution towards the prediction; the level of 

highlighting depicts the importance of the feature for the classification. Specifically, the green 

highlight depicts a positive contribution (got, looking, understanding, be, …), whilst the red 

highlight contributes by decreasing the prediction score (forward, useful, …). In the case of the 

example below, it was found that the predicted label is non-urgent (0) and the true label is also 

non-urgent (0) with a confidence level of 100% between annotators. Such visualisation can 

further be used by an instructor to understand the decisions and recommendations of a classifier 

for urgency detection in learners’ MOOC forum posts. 
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Figure 9.4: Screenshots of Captum explanations. 

Then, the agreement between the three annotators was calculated, as previously explained; it 

was found that the number of posts that have 100% confidence between annotators was 4190; 

in contrast, the number of posts < 100% confidence was 1596 from the total data. From the 

testing data, the total number of posts among annotators with 100% confidence was 833. 

However, there were 325 posts with < 100% confidence.  

The second goal of this research project was to help annotators with data labelling decision-

making. Thus, the relationship between machine-produced (BERT model) results and the 

confidence agreement level between human annotators was also analysed. Using the confusion 

matrix, different cases can be studied (see Table 9.2. below). 

Table 9.2. Machine prediction correctness (from the BERT confusion matrix), vs human annotator 

classification correctness, with (binary) confidence between (human) annotators and number of posts 

for each case, Bold/Italics: cases that should/could be explained to annotators. 

Cases 

True class 

(human 

annotators) 

BERT 

confusion  

BERT 

prediction 

Confidence 

between human 

annotators 

Number of 

posts 

1 1 

TP 

1 100% 79 

2 1 1 < 100% 47 

3 0 

FP 

1 100% 17 

4 0 1 < 100% 30 

5 1 FN 0 100% 17 

6 1  0 < 100% 34 

7 0 TN 0 100% 741 

8 0  0 < 100% 193 
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The aim here is to help annotators to find urgent cases that BERT can classify as urgent. Thus, 

the focus here is on true positives (TP), especially in case 2 where the confidence level between 

human annotators was < 100%. The reason for focusing on TP is that it was desirable for 

instances of TP to be found by both the algorithm and the annotators. There were 126 TP cases, 

as reported in Figure 9.3 (above). Interestingly, the experimental and investigation results show 

that for 79 out of the 126 instances, the classifier and the annotators agreed that the posts need 

urgent intervention with a confidence level = 100%. For the remaining 47 cases (case 2), it was 

found that the confidence level between annotators was < 100%. Therefore, 47 cases need 

explanation and visualisation to the annotator who disagreed with the other two annotators to 

potentially change their minds. In addition, FP, where a post is considered by the algorithm 

(BERT) as urgent, but not by the annotators, may be a potential issue if the label should be True 

but is not. The number of FPs was 47 with 17 cases with a confidence level = 100% and 30 

cases with a confidence level of < 100% (case 4). That means that at least one of the annotators 

from 30 cases believes it is urgent, like BERT. Thus, these are the cases that should be explained 

and shown to annotators, especially with the highlights illustrating the reason for BERT’s 

decision, to help the human annotators to refine their decisions. In general, however, any of the 

posts where annotators disagree could potentially be reinspected by the annotators to ensure 

that they increase their confidence levels. 

Next, some of these posts were inspected from those deemed TPs to interpret the probability 

of predicting urgency by the classifier and to understand if and how this may be related to the 

disagreement between annotators. 

To better understand in-depth the findings, three scenarios based on the agreement between 

human annotators were considered and studied as shown in Table 9.3 (below); these three cases 

were selected, according to the level of annotation (large difference, slight difference, or in 

between). Please note that in Table 9.3, the annotators’ rating is shown before conversion to 

binary as urgent or non-urgent to understand their real decisions. 
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Table 9.3: Three scenarios based on TP with agreement between human annotators: 1: large difference; 

2: slight difference; 3: in-between. 

# Text 
First  

annotator 

Second  

annotator 

Third  

annotator 

1 
What's the shortcomings of the crowdsourced data? It's hard for 

me to understand. 
1 6 7 

2 

I wonder if there is also a correlation between future orientation 

index and GDP per capita when the search terms are two years 

ahead and two years before (e.g. search terms "2009" and "2013" 

in the search year 2011). 

3 4 4 

3 

I am seeking to build the following: 1-Multiple big data DB on 

VPS over the internet so they will be MySQL on CentOS. 2-

Multiple DB manipulation engines that will Read or write on 

them from the BigData source. 3-Multi-agent simulations on a 

given basemap  4-The data model running on the simulation and 

DB manipulation engines will be an XML based model. Can 

anyone help me to build this environment? 

2 6 4 

 

9.4.1. Scenario 1 (Large Difference) 

In this scenario, the observation was that some posts led to large differences between 

annotators. Therefore, the model was interpreted and the important words were highlighted, as 

shown in Figure 9.5 (below). The words ‘hard for me’ are the most important words that affect 

the decision. Thus, this may draw the attention of the annotator and lead them to making a 

correct decision. 

 

Figure 9.5: Screenshots of Captum explanations for scenario 1 (large difference and < 100% confidence 

between annotators). 

9.4.2. Scenario 2 (Slight Difference) 

In this scenario, the agreement is strong on being a threshold case (between urgent and non-

urgent). When visualising (see Figure 9.6 below), it finds that the words ‘I wonder if’ are 
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important. The meaning of ‘wonder’ involves asking for help, but also thinking. Thus, this 

scenario can be used as a confirmatory analysis for annotators. 

 

Figure 9.6: Screenshots of Captum explanations for scenario 2 (slight difference and < 100% confidence 

between annotators). 

9.4.3. Scenario 3 (In-Between) 

In this scenario, the score was incremental (2, 4, 6). To understand it, visualisation (see Figure 

9.7 below) shows that the words ‘can anyone help’ and the punctuation mark ‘?’ are important 

words for the algorithmic decision. The annotator difference may be due to some annotators 

considering that by using the word ‘anyone’, the learner is asking for help from their peers, not 

the instructor.  

 

Figure 9.7: Screenshots of Captum explanations for scenario 3 (in-between and < 100% confidence 

between annotators). 

9.4.4. Discussion 

There is a need for classification algorithms that can automatically analyse posts and determine 

how urgent they are, and some reliable models have previously been offered as shown before 

in the SLR. However, the story does not end here as with any black-box system, explainability 

is key and related to trust in the system. Moreover, correct labels are crucial. However, the type 

of posts appearing in a learning system are hard even for experts to reliably classify, as the 

experiments with annotators show. This further supports the addition of (automatic) 

explanations for the recommendation to better contextualise the information presented for 
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instructors. Indeed, highlighting the most important words would potentially simplify the 

intervention detection process for instructors, which is important in an educational context, 

such as for MOOCs, in which many posts are available for the instructors’ evaluation. 

Similarly, this approach could facilitate the annotators’ work on deciding whether a post is 

urgent or not. That is, this method can facilitate the work of instructors and annotators, leading 

to further improvements in instructor intervention and the dataset annotation process. 

Here, thus, XAI was used in a novel way by turning around the approach to explain not the 

errors in the algorithm but the errors in human annotation (which may well lead to or explain 

errors in the algorithm16). Thus, three scenarios were analysed based on TPs. As explained, 

these are the cases it really wants to deal with and help the disagreeing annotator to check their 

decision to increase the quality of the dataset. 

The results show how the colour-based highlighting functionality of XAI can provide an in-

depth understanding of where the different decisions of annotators, as well as those of the 

algorithm, may stem from. Such explanations can be of use for instructors as well as for 

annotators. Thus, whilst searching for the best algorithms for urgent instructor-intervention and 

explainable models to support instructor decision-making, it also found serendipitous gains in 

the automatic explanations of annotators. Such systems could thus support annotators in 

facilitating/fast-tracking their work in detecting intervention points, bringing them to a 

common denominator, and helping them make informed decisions on a sample of pre-labelled 

data to then be able to confidently label new, unseen data rigorous and systematically.  

9.5.  Epilogue 

Today, with the advent of DL, these models are showing remarkable performance in many tasks 

such as NLP. The problem with these models, however, is a lack of transparency and 

interpretability (Došilović, Brčić and Hlupić, 2018). Explainability in AI is crucial for end users 

to increase model-decision trust as well as for developers to understand and improve models 

(Confalonieri et al., 2021).  

The objective of this research project was to provide an explanation of the ML decision as 

a local explanation method for a specific text classification problem; namely, that of explaining 

 
16

 Please note that it was not considered here that the algorithm is incapable of making errors. However, being able to compare 

their own decision(s) against the algorithm may give human annotators additional insight to revise (some of) their decisions. 
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individual predictions in the urgent intervention task in a MOOC environment to assist 

instructors with making appropriate interventions. Additionally, it aimed to evaluate the 

annotators’ agreement confidence obtained from labelling an urgent instructor intervention task 

in a MOOC environment. In particular, the author would like to highlight the contribution of 

explaining individual predictions in the urgent intervention task and assessing annotators’ 

decisions when labelling a MOOC post corpus. A BERT model was presented to classify urgent 

post cases. To better understand what causes labelling errors, an interesting discovery was made 

on the relationship between the ability of the classifier to find urgent cases and the confidence 

level between human annotators on making a data-labelling decision. Moreover, a new method 

for supporting annotators was offered. Here, the field of urgency prediction was advanced by 

proposing a method for potentially supporting instructor intervention as well as annotators’ 

decision-making in data labelling tasks. 

The next chapter discusses the general findings of the thesis along with its limitations and 

potential avenues for future work. 
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CHAPTER 10: DISCUSSION 

 

 

10.1. Prologue 

In this thesis, the need for instructor intervention in MOOC environments is explored by 

detecting the need for intervention based on text content posted to discussion forums by MOOC 

learners. It sought to detect the need for instructor intervention by using three research 

perspectives: (i) posts, topics, and learners using several ML approaches, (ii) detecting posts in 

new contexts to add priority to an intervention strategy based on learner behaviour, and (iii) 

adding user modelling to make intervention models more adaptable based on both learners and 

instructors. Furthermore, amongst other approaches, XAI was employed to make it easier for 

instructors and annotators to detect when interventions may be required. As a result, the models 

presented in this study can assist in the process of identifying when instructor intervention is 

required in MOOC environments based on textual content gathered from MOOC discussion 

forums.  

First, this chapter covers the different fundamental aspects related to this thesis, such as 

demonstrating the importance and effect of instructor intervention in MOOC environments, 

discussing issues related to instructor intervention, and clarifying the normality of the data 

associated with MOOCs. Then, it moves on to discuss the findings presented in the literature. 

A summary of the thesis’s outcomes with its overall findings and contributions is also provided. 

Furthermore, it considers the limitations related to intervention-prediction data and models. 

Finally, opportunities for additional future research are identified. 
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10.2. The Impact of Instructor Intervention in MOOCs 

In MOOC discussion forums, instructors play a critical role: communicating and offering real-

time intervention to help solve MOOC learners’ problems by providing insightful responses.  

Such communication can have a significant learning impact (Ntourmas et al., 2019) and is 

related to the retention of learners on MOOC courses.  

Many researchers have investigated learner engagement, retention, and dropout in 

traditional online courses in general and MOOC environments specifically, focusing on 

different factors, one of which is instructors. In online courses, (Das, 2012) discussed the 

importance of the online presence of course instructors to facilitate learner engagement. Among 

MOOC researchers, (Hew, 2016) proposed investigating different features, one of which was 

instructor accessibility and passion in prompting learner engagement. Furthermore, as (Hone 

and El Said, 2016) clarified, one of the most significant predictors of MOOC learner retention 

was interaction with the course instructor. Therefore, there is an urgent need to better enable 

MOOC instructors to identify urgent posts and at-risk learners and provide help to them via 

discussion forums. 

There is a call to cancel the role of manual instructor intervention and create an automatic 

intervention system. Although this solution may be useful in reducing the burden on instructors, 

the author believes that in certain intervention cases, there must be direct interaction with 

humans (i.e., instructor intervention). 

10.3. The Issue of Instructor Intervention in MOOCs 

As reviewed in the previous section, instructor intervention in MOOCs is a crucial area. 

However, instructor intervention in MOOCs in terms of identifying urgent posts and at-risk 

learners is a daunting prospect for instructors due to the sheer volume of posts and the fact that 

urgent cases requiring intervention are rare compared to non-urgent ones. The greater the 

number of participants in a MOOC forum, the harder it is for instructors to offer timely 

assistance (Ntourmas et al., 2022). In addition, the decision to offer intervention is a subjective 

decision (Chandrasekaran et al., 2015b) that is associated with instructors’ personal 

preferences. This was highlighted by (Ntourmas et al., 2018) who demonstrated that instructors' 

interventions in the discussion forums of the two different MOOC courses varied to some 

extent based on subjective factors. Also, usability issues related to discussion forum design are 

an issue; (Ntourmas et al., 2019) revealed that in the OpenEdX discussion forum, course 
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designers must consider several issues when deciding on how instructor intervention is to be 

facilitated. Therefore, there is a need to develop new intervention systems for MOOCs that 

help instructors to identify posts/learners who require intervention and make these processes 

more adaptive to help both instructors and learners. 

10.4. The Nature of MOOCs Data (Imbalanced Nature) 

Generally, the nature of the data collected from MOOC courses is expected to have similar 

characteristics in that most aspects of such MOOC datasets would be imbalanced. For example, 

(i) the distribution of urgent posts on discussion forums vs non-urgent posts is unequal with the 

latter being the predominant class (Almatrafi, Johri and Rangwala, 2018); (ii) in the case of 

learners dropping out, many more MOOC learners drop out (around 90%) vs the 7–10% who 

complete their courses (Malliga, 2013); (iii)  there is a very low level of course buy-in: less 

than 1% of all learners enrolled on an online course choose to purchase the final certificate 

(Alshehri et al., 2021).  

This thesis focuses on identifying posts on discussion forums that need intervention and 

learners at risk of dropping out using different ML approaches while considering the 

imbalanced nature of the data classifier which is biased toward predicting the dominant class. 

Thus, in this thesis, selecting an appropriate evaluation metric was considered when evaluating 

these models. The most common classifier measures were reported as average Acc, P, R, and 

F1 scores for each class. Also, BA was used to identify posts; one of the target classes, non-

urgent, appears much more frequently than other classes like urgent, and in identifying at-risk 

learner dropout which outnumbered completers. 

In addition, the performance of the proposed model falls somewhat for the underrepresented 

class, hence, there is a need to improve the data. Thus, in this thesis, to alleviate the problem 

of imbalanced data in identifying urgent posts as discussed in Chapter 8, different data 

balancing techniques were proposed; namely, text augmentation, text augmentation with 

undersampling, and undersampling to improve the quality of text data as an input to the 

classifier that identifies posts requiring intervention. 

10.5. Literature Findings 

As shown in the literature review (Chapter 2), all the previous research focused on identifying 

posts that need instructor intervention by following a one-size-fits-all approach, without any 
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personalisation in an intervention based on learners, despite long-term personalisation research 

in education. In addition, the other issue due to the nature of MOOCs is that urgent instances 

for intervention are less frequent than non-urgent ones, which leads to unbalanced data. In the 

case of urgent-post detection, this aspect has been neglected. The studies that came closest to 

this (Almatrafi, Johri and Rangwala, 2018) and (Khodeir, 2021) took into account various 

common techniques such as data splitting and evaluation metrics but failed to address this issue 

by improving data imbalance.   

In identifying topics, one previous study focused on assisting instructors to understand, find, 

and navigate the most important topic clusters by linking the topics discussed in the forum 

posts in relation to the relevant weekly lectures (Atapattu T, 2016). Also, a recent study (Yang, 

Ren and Wu, 2022) determined learners’ topic attention by utilising a technique based on the 

TEAM model, and then visualised the topic attention of different learner groups. However, 

these studies did not analyse the text of posts to extract urgent language by correlating topics 

with urgent posts.   

From a learner perspective, the literature identified dropout by using post features in 

addition to other features (Borrella, Caballero-Caballero and Ponce-Cueto, 2019; Xing et al., 

2016). However, these studies did not inspect the posts written by learners or their written post 

history to identify learners at risk of dropout.  

10.6. Thesis Findings 

This section describes the numerous ways in which the current thesis has advanced the extant 

literature. As shown in the literature review, most previous research has focused on identifying 

posts that need instructor intervention. Also, there have been some attempts to analyse topics 

and identify potential dropout learners based on discussion forums. However, this thesis has 

expanded the research approach by seeking to identify posts, topics, and learners, proposing a 

new direction for intervention in MOOCs by adding learner behaviours and user modelling to 

offer a more effective intervention model.  

The umbrella research question in this thesis (How can urgent instructor intervention need 

be detected based on learner posts in MOOC environments?) was addressed by applying NLP 

techniques and different ML models using supervised and unsupervised algorithms. This 

includes supporting instructors in three main ways: (i) keeping track of discussions and 

building models that automatically identify urgent posts; (ii) analysing and visualising topics 
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about which learners posted on specific courses to identify urgent language; (iii) detecting at-

risk learners from their temporal posts. In addition, among these models, the current thesis 

proposes models that can also be adapted to both instructors and learners. Moreover, it applies 

XAI to help both instructors and annotators. All these tools will help instructors to provide 

effective intervention to learners who may require it.   

The first main research question tackles the classification of urgent posts that need instructor 

intervention based on different features about various dimensions of posts in addition to textual 

data and different textual inputs using several ML approaches. This research question was 

addressed by conducting two experiments: the first focused on the text-only content of posts 

and then added other numerical data dimensions (sentiment, confusion, opinion, question and 

answer) in addition to text. The second experiment moved to focus on the text-only content of 

posts and added the name and the domain of the course to the text input. The inputs are different 

types of text data e.g., word-only or word with character, used two different embedding 

approaches (BERT or word2vec) to represent words. The Stanford MOOCPosts dataset was 

used because it contains 11 courses that cover three different domains. Also, the proposed 

models can be compared with other available (state-of-the-art) models as most researchers used 

this data (as explained in the SLR). However, in the second experiment, some posts were 

removed because they contained an empty course name; as mentioned, the name and the 

domain of the course were added to the text input. RQ1 is split into four sub-questions, RQ1.1 

and RQ1.2 for the first experiment, and RQ1.3 and RQ1.4 for the second experiment, as 

follows: 

 

• RQ1.1: Is there a relationship between the various dimensions of the learners’ posts 

and their need for urgent instructor intervention? 

 

This was addressed by analysing and visualising the relationship between the ratio number of 

urgent and non-urgent posts across the five dimensions (sentiment, confusion, opinion, 

question, and answer). The results emphasised that there is an association between the 

percentages of non-urgent/urgent posts and these dimensions. Interestingly, it focused on four 

(neutral) scales and compared the values of (4) and (4.5) for sentiment with the rates of non-

urgent/urgent; also, for confusion with the rates of non-urgent/urgent. This showed that there is 

a relationship between specific values (4 and 4.5) for the sentiment and confusion scales with 

the proportion of urgent/urgent posts. As explained previously (Chapter 4, Section 4.2.3.1), this 
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is the reason for choosing >4 as the threshold to define urgent posts in the Stanford dataset. 

The results also indicate that there is a significant correlation between urgency and confusion 

as well as question. 

 

• RQ1.2: Does using several dimensions as features in addition to textual data increase 

the model’s predictive power for identifying posts that require the need for urgent 

instructor intervention when using deep learning? 

 

This was addressed by developing and training different models as a basic model (text-only) 

and a multidimensional model that integrates different numerical features (which are the five 

dimensions: sentiment, confusion, opinion, question, and answer) in relation to posts in 

addition to text features. The findings are interesting and highlight that combining several 

dimensions as features in addition to textual data (multidimensional model) increases the DL 

model's ability to identify when urgent instructor intervention is required (see Section 4.2.3.2). 

This is because using different characteristics about posts facilitates the detection of urgent 

posts. 

 

• RQ1.3: What is the preferable combination between different deep learning models to 

construct the best predictor model amongst them to identify posts that need instructor 

intervention? 

 

This was addressed by applying different simple and hybrid deep neural networks (known as 

the ‘plug & play’ technique) for different input levels (word-based and word-character based), 

based on different embeddings (word2vec or BERT). Based on the results (Chapter 4, Section 

4.3.3), models using BERT for word embedding outperformed all the word2vec-based models. 

That implies that using BERT to represent words is preferable. The best value from all the 

models for R for class (1) is 0.81 and BA is 0.872 in CNN + LSTM + Attention model based 

on BERT at the word-level. Here, it is preferred to detect all urgent cases that should be focused 

on R. Also, it focuses on BA which is a widely used metric for the binary classification of 

imbalanced datasets.  

 

• RQ1.4: Do word-character-based approaches outperform word-based approaches for 

the post urgency problem and is this different when using BERT for word embedding, 

compared to more traditional models (e.g., word2vec)? 
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This was addressed by comparing two input levels (word-based versus word-character based) 

with two different embeddings (word2vec or BERT). The models that employed word-

character-based input with word2vec for word embedding tend to outperform those using word-

based input. In contrast, there is no improvement for models that use BERT for word 

embedding in different base inputs (word only and word-character) (see Table 4.5). In other 

words, BERT is capable of representing words on its own without any support. 

Another main research question that this thesis attempted to answer is related to topics and 

extracting the language of urgency by analysing text posts across a specific course and 

providing a visual representation of these topics. One course (SciWrite) from The Stanford 

MOOCPosts dataset was used as a case study because it contains a large number of posts with 

a high proportion of urgent posts. The sub-questions for the main question RQ2 are as follows: 

 

• RQ2.1: Can the language of urgency be detected from learners’ posts? 

 

To extract urgent language and understand the topics, LDA was used to cluster words from 

forum posts into different topics. Then, these topic lists and trending terms were linked with 

urgent posts as it is a useful indicator for exploring urgent language. The results showed the 

top ten terms on six topics (the optimal number of LDA topics in this experiment). Then, under 

the assumption that this ensured that they were the most representative posts of that particular 

topic, the proportions of urgent and non-urgent posts for each topic with a dominant 

contribution of more than 80% were calculated. Furthermore, this shows why these non-urgent 

statements utilise wording that appears to be urgent (as explained further in Chapter 5, Section 

5.4.2).  

 

• RQ2.2: Can the language of urgency be visualised simply and intuitively? 

 

This was addressed by using different simple aids: (i) displaying word cloud visualisations (top 

ten terms) for each topic represented by a different colour; (ii) adding pyLDAvis interactively 

to provide instructors with a summary and interpretation of topics. To further assist instructors 

(and perhaps learners), (iii) the post tokens for each post were coloured according to the specific 

topic. 

The other major research question was concerned with predicting learners who might drop 

out and may need intervention based on their posting history. The dataset used to implement 
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this experiment was the Dropout dataset from FutureLearn (as clarified in Section 3.2.2.3). The 

sub-questions for this question RQ3 are as follows: 

  

• RQ3.1: Which multi-input models (processing several recent posts) are useful for 

predicting learners who may drop out (thus may need instructor intervention)? 

 

This was addressed by establishing several intervention models that utilise two forms of 

supervised multi-input ML classification models (other deep learning architectures and 

Transformer). In the Transformer model, an approach for siamese and dual BERT was used to 

create multi-inputs with binary text classification which were termed multi-siamese BERT and 

multiple BERT, respectively. The results (see Table 6.2) showed that the intervention model 

represented by the Transformer models (multi-siamese BERT and multiple BERT) can more 

accurately identify at-risk learners, predict dropout learners, and determine the need for 

intervention. 

 

• RQ3.2: Does clustering learners based on their number of posts prior to the prediction 

step improve prediction outcomes? 

 

This was explored by clustering learners based on their number of posts before prediction. 

Then, the same experiments were examined for the best previous intervention models 

(Transformer-based) with specific groups of learners. According to the results and against this 

assumption, it provided negative values for predicted outcomes (as discussed in Chapter 6, 

Section 6.4, Table 6.3).  

Another main research question was analysing the behaviour of learners who need urgent 

intervention and the possibility of designing an architecture for prioritising instructor 

intervention based on learner behaviour. The Gold-standard corpus from Futurelearn was used 

because this data enables the study of learner behaviour in terms of step access. RQ4 was 

divided into four sub-questions, as follows: 

 

• RQ4.1: Is there a relationship between the number of posts written by learners who 

need urgent intervention and the average number of posts?   

 

The observation from inspecting learners' writing behaviour illustrated that learners often tend 

to write more posts overall if they write more posts that require intervention (as represented in 
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Figure 7.6, Chapter 7, Section 7.3.1); there tends to be a positive relationship between the 

average number of posts and the urgency of the posts. 

 

• RQ4.2: Is there a relationship between high-frequency (HF) commenter learners who 

require urgent intervention and their average number of step access instances? 

 

A study of the number of step(s) accessed by the urgent (HF commenters) group and the non-

urgent group was achieved by calculating the average number of steps accessed. The urgent 

group's step access had a lower average count than the other group (see Figure 7.7 - left). 

 

• RQ4.3: Is there a relationship between the number of HF commenter learners and 

completion-rates? 

 

This was addressed by visualising the relationship between different learner groups and the 

completion rates. The results revealed that only 13% of HF commenters who need immediate 

assistance are expected to finish the course as opposed to 27% of the non-urgent group (see 

Figure 7.7 - right). This, in the researcher’s opinion, is one of the causes of the high dropout 

rate. 

 

• RQ4.4: How can an intervention priority framework based on behaviour be designed? 

 

This was achieved by proposing a novel framework to provide an automated intervention 

priority model for MOOCs containing two phases: (i) a prediction phase by using BERT as a 

classifier model; (ii) an intervention priority phase that adds priority (high, mid or low) based 

on different risk-level groups. To further confirm the efficacy of the proposed model, the 

relationship between the different risk groups of learners identified (high, mid, and low) and 

their completion rates was computed. As a result, most completion rates for high-risk learners 

were quite low, while those for mid-risk learners were average; those for low-risk learners were 

very high (as depicted in Figure 7.8. Chapter 7, Section 7.3).  

For the other main research question, to improve prediction models for instructor 

intervention based on posts and make these models more personalised and adaptive, user 

modelling (specifically learner and instructor modelling) was added to enable an instructor to 

decide when to intervene. These adaptive models are based on proposing a solution for 

unbalanced data which is one of the issues affecting MOOC discussion forums. The UNITE 
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dataset was used (which was derived from FutureLearn) because it contains very rare urgent 

cases (only 7%). RQ5 was divided into two sub-questions, as follows: 

 

• RQ5.1: How can the data imbalance issue (urgent versus non-urgent) in learners’ posts 

be addressed? 

 

This was addressed by applying comprehensive data balancing techniques comprising text 

augmentation, text augmentation with undersampling, and undersampling (see Section 

8.3.2.2). Also, several new pipelines for combining different augmenters for text augmentation 

were proposed. Among these models, combining 3x augmentation + undersampling usually 

achieves the best performance (see Section 8.4.1).  

 

• RQ5.2: What would an adaptive intervention model to assist instructors in dealing with 

urgent posts look like? 

 

To improve the intervention task, the adaptive intervention models (interactive systems that 

can be adapted or adapt themselves to their current users) were constructed based on the 

instructor and learner models. Two scenarios were suggested (see Section 8.3.3): the basic one 

(semi-automatic instructor intervention) then an expanded scenario was used based on coarse 

granularity and expanded learner models (semi-adaptive instructor intervention). This 

personalises (by automatic adaptation) the identification process of urgent posts in MOOCs for 

instructors, the primary users who need to manage their workloads, as well as, indirectly, 

catering for the needs of learners as secondary users, to have their urgent messages identified 

(and ultimately, resolved). As the results show, this approach will improve the instructor 

intervention process, reduce the number of posts that instructors need to read, and enhance the 

quality of instructor interactions with learners.  

Also, this research project attempted to answer the final main research question in this thesis 

which is related to creating a transparent XAI model to detect urgent intervention to support 

instructors’ decisions to intervene in posts as well as annotators’ decisions. The Gold-standard 

corpus from Futurelearn was applied because it is manually labelled which provides an 

opportunity to study the annotation process. The sub-questions of RQ 6 are as follows: 
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• RQ6.1: How can a transparent XAI model be constructed to further support instructors' 

decisions to intervene based on an urgent posts-intervention-need detection model? 

 

This was answered by developing a BERT-based automatic urgent intervention model. Next, 

the model was explained by visualising important words using the Captum tool (as shown in 

Figure 9.4). An instructor can use this visualisation to better comprehend the decision and 

suggestions made by a classifier to detect urgency in learner discussions on MOOCs. 

 

• RQ6.2: How can XAI be employed to improve human annotators’ decisions about the 

urgency of posts (i.e., deciding on which posts need intervention)? 

 

This was addressed by connecting AI prediction error to human (lack of) confidence, focusing 

on (TP) and (FP) (as explained in Section 9.4). Thus, three scenarios with < 100% confidence 

between annotators were analysed, based on true positives (TP). Therefore, this shows how the 

colour-based highlighting functionality of XAI can provide an in-depth understanding of the 

algorithm’s decision-making process. Emphasising the key phrases could make it easier for 

annotators to determine whether a post is urgent. 

10.7. Limitations 

In any academic research, the limitations must be clarified to improve them in future work. 

Thus, the main limitations of the current thesis are highlighted as follows:   

First, although the instructor intervention task in MOOC discussion forums is very 

important, it is not easy as such decisions are very subjective (Chandrasekaran et al., 2015b). 

Thus, creating data that serves this field of research is very challenging. It can be seen in the 

literature that researchers used different methods to create datasets: (i) labelling data as the 

instructor’s decision to intervene in threads as guided by a data-driven approach in which 0 = 

if the instructor did not respond to the thread and 1 = an intervention occurred. The author 

believes that this method is inaccurate because there might have been some posts where the 

instructor decided that an intervention was required but did not intervene (because they missed 

the post or ran out of time, etc.); similarly, there may be unnecessary interventions to posts due 

to subjective issues; (ii) using crowdsourcing to label data as in the Standford MOOCpost 

dataset which hired three coders to label each domain, then they set the label of urgency as an 

unweighted average of the two scores from two coders; still, their agreement is not very high 

(as clarified in Section 3.2.1). In this thesis, the author followed the Stanford approach but used 
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four experts in the field; three of them are university computer science instructors in addition 

to the author of this thesis. That said, the presented data labelled by experts still had a low level 

of agreement. Thus, creating a gold standard data set is very challenging due to the subjectivity 

involved in making a decision to intervene as well as being time-consuming. However, a plan 

to create a gold standard data set with high agreement between annotators and rich data is a 

request for future researchers.  

Second, some of the models proposed in this thesis such as automatic classification in 

general and the potential solution for unbalanced data or extracting urgent language may not 

be general enough for all online courses and MOOC platforms as it has been applied to only 

one specific course (i.e., from the FutureLearn dataset to solve unbalanced data or to predict 

dropout learners, and from the Stanford dataset to extract urgent language). However, for the 

unbalanced problem as shown in Chapter 8 for the course from FutureLearn, further validation 

of the best solution on the highly popular and well-used Stanford dataset was provided, thus 

strengthening the case for the generalisability of this approach and its applicability across other 

MOOC courses and domains. 

10.8. Future Work 

Although the current research project contributes to predicting instructor intervention need 

based on MOOC discussion forums, there is still room for future work to improve on the 

intervention predicting task, as described in the following:  

• In general, utilising other datasets, as well as other courses and environments, to further 

generalise the findings and evaluate whether implementing other NN models or 

combining other different NN can increase performance in terms of classifying urgent 

posts or identifying dropout learners.  

• Other general further work can link with the work on pedagogical interventions for 

automated guidance to instructors  (Chandrasekaran et al., 2015a). 

• Another future direction is considering communication on posts in MOOC platforms in 

other languages (i.e., non-English); for example, Chinese, Hindi, and Arabic, etc. This 

approach seeks to make the findings of this thesis more generalisable to MOOCs 

operating in other countries and languages.    

• In analysing topics, analysing other courses remains an avenue for future research. In 

addition, further research can consider using other tools for topic modelling. 
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• In identifying learners based on their temporal sequence of posts, plan to replicate the 

proposed models with other courses and different numbers of posts to further explore 

the generalisability of these findings. Moreover, add clickstream data as additional 

features.  

10.9. Epilogue 

The literature review highlighted the importance of instructor intervention in MOOC 

environments. Recently, researchers have paid attention to the problem of intervention and 

developed a set of computational models that help mitigate this problem. However, there is still 

much work to do in terms of improving models’ performance, extracting urgent language, 

inspecting learners’ posting history, studying learner behaviour, and making models better 

adapted to the needs of instructors and learners. This thesis fills this gap by considering 

different aspects of instructor interventions in MOOCs based on discussion forums beginning 

with basic features like posts, topics, and learners, and then expanding to study learner 

behaviour and adaptions. This research project also contributes to dealing with the imbalanced 

data issue which is one of the characteristics of MOOC environments. In addition, it has 

proposed how XAI can be used in addressing the instructor intervention problem. The 

outcomes of these contributions have been discussed in this chapter along with 

recommendations for future opportunities for development. The beneficiaries of the findings 

of the thesis in terms of its outputs are MOOC instructors (primary users), MOOC learners 

(secondary users), and MOOC providers. The following chapter concludes this thesis. 
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CHAPTER 11: CONCLUSION 

 

 

Determining the need for instructor intervention in MOOC discussion forums has become an 

extremely important issue in distance education due to the commitment to openness and the 

need to cater for huge numbers of learners and vast numbers of posts. Such intervention is 

required to support learners and thus may reduce drop-out rates. However, the critical challenge 

here is the extremely high ratios of learners to instructors and the nature of MOOC discussion 

forums in terms of the vast number of posts of which only a low number thereof require urgent 

intervention. Thus, this thesis tackled the intervention problem from three main perspectives: 

(i) posts, (ii) topics, and (iii) learners to improve on the extant intervention models. Then, it 

sought to expand the identification of posts based on (iv) posts with learner behaviour and 

adding priority in intervention and (iv) posts with user modelling and solving one of the main 

issues of highly unbalanced post data. Finally, it applied XAI to improve not only the instructor 

intervention task but also the annotators’ decision-making issue. The above was achieved by 

implementing different architectures, models, and experiments using the two different MOOC 

platforms (Stanford MOOCPosts and FutureLearn). These proposed models can be applied as 

intelligent systems in MOOC environments.  

The Stanford corpus was the foundation for the majority of earlier studies on instructor 

intervention, as clarified in the SLR. In this thesis, in addition to employing the Stanford 

corpus, a new instructor intervention corpus was created based on the FutureLearn platform 

which was annotated by human experts similar to the previous Stanford MOOCPosts dataset 

in how it annotated intervention decisions. Different ways of constructing a gold standard 

corpus were proposed (as clarified in detail in Chapter 3). 
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Note that this study is the first to conduct a SLR in the field of instructor intervention in 

MOOC discussion forums to identify and analyse the extant studies in this field (Chapter 2). 

To overcome the limitations in the extant literature, the current research project inspected novel 

approaches. The initial approach to resolving the intervention issue involved considering posts 

(Chapter 4). Two experiments were conducted using the Stanford MOOCPosts dataset. In the 

first experiment, the purpose of the research was to predict automatic intervention based on 

learner post content incorporating NLP and other features captured from the posts (sentiment, 

confusion, opinion, question, and answer), the research looked at how these dimensions related 

to the rate of the number of urgent posts. The findings demonstrate that including these 

dimensions as features in addition to text features improves DL models’ performance and 

makes intervention more accurate. To construct and train this multidimensional DL, a novel 

architecture based on sub-models was developed.  

The second experiment in classifying posts used a ‘plug & play’ approach by proposing a 

classification model for identifying when a given post needs instructor intervention. This was 

based on various simple and hybrid neural networks with different types of inputs: (i) word-

based level input; (ii) configuring what is referred to as word-character-based input by adding 

character-based input in addition to word-based input. The words were represented using 

different word embedding (word2vec or BERT). The end goal is to establish a good 

combination in terms of performance. The results show that the BERT-based models 

outperformed the models that used word2vec for word embedding with word input only. The 

best model is the CNN + LSTM + Attention model based on BERT at the word-level which 

achieves promising results (BA = 0.875). It is noteworthy to mention that the proposed model 

outperformed the cutting-edge model. Also, the results show that it is preferable to utilise BERT 

as a standalone tool for embedding without any additional input in the form of characters. 

In relation to topics (Chapter 5), the findings highlight that learners express their need for 

urgent intervention via discussion forums using special language. Thus, it is useful to extract 

this language to (i) help instructors in their intervention and (ii) learners when writing such 

content. The instructor may be able to assist more successfully if visualisation is used. Using a 

course from the Stanford MOOCPosts dataset as a case study, learner posts were analysed to 

investigate the language signalling that urgent intervention is needed. The analysis revealed 

that some words are connected to one another and reflect a demand for quick action, 

particularly in posts at the thread level. It is significant here that this research project is the first 

to propose a context-dependent urgency language; that is, a language expressing the need for 
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urgent intervention in a MOOC, and that also it demonstrated some simple and easily 

reproducible methods for extracting and visualising the above. 

In terms of learners (Chapter 6), the research project attempted to predict learner dropout 

and their need for intervention from their most recent posts. Various ML models were built 

using the FutureLearn dataset (Dropout) including other deep learning architectures and 

Transformer with multi-input to enable instructors to intervene more effectively. To add more 

than two inputs to the Transformer models, multi-siamese BERT and multiple BERT based on 

siamese and dual BERT were developed. The findings show that the intervention model may 

identify at-risk learners more accurately with the inclusion of the Transformer model. 

To provide more valuable interventions (Chapter 7), priority of intervention was included 

using the FutureLearn dataset (Gold-standard corpus). Firstly, an analysis of learner posts for 

urgency was offered showing that learners with high step access rates require less intervention 

to their posts. This might be because if they have written several posts that require attention, 

learners may become less motivated to access the course materials. Also, it verified that the 

majority of course completers did not require significant intervention with regard to their posts. 

Based on these findings, a framework and algorithm were developed to prioritise instructor 

intervention, encouraging instructors to support and assist their learners by concentrating on 

high-risk learners first, thus improving the possible outcomes of such valuable interventions. 

The results demonstrate that most completion rates for high-risk learners are quite low, while 

those for mid-risk learners are average, and those for low-risk learners are very high. 

The difficulty in developing models to effectively recognise urgent cases is explained by the 

fact that MOOC post datasets only include a small number of urgent cases, leading to 

imbalanced data (Chapter 8). In this study, the issue of imbalanced data was solved by applying 

different strategies. Also, the study makes instructor intervention more valuable by adding 

adaptation based on instructors’ and learners’ models using the UNITE dataset. To enhance the 

quality of such data, three strategies (data augmentation, data augmentation+undersampling, 

and undersampling) were employed and compared. Additionally, several new pipelines that 

included various data augmenters were offered. The results demonstrate that undersampling 

can improve model performance to detect urgent cases, and that combining data augmentation 

and undersampling yields the best results in achieving class balance. Adding adaptation with 

two different scenarios will improve instructor tasks. Finally, incorrectly classified urgent cases 

were investigated in more detail; it was discovered that the issue is not limited to the classifier; 
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it also originates from the intervention task, which is immensely challenging for humans to 

annotate. 

Finally, the goal of the research on XAI was to explain the ML decisions made for a 

particular text classification problem by explaining individual prediction in the urgent 

intervention task in a MOOC environment that may help instructors with their interventions 

(Chapter 9). In addition, the field of urgency prediction was advanced by proposing a new 

method for supporting annotators.  
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APPENDIX A 

Manually classify comments from online classes 

You are asked to analyse 5790 comments which have been written on a 

FutureLearn MOOC (Massive Open Online Courses) platform for several of their courses. For 

each such course, there are thousands of learners and their comments to each step of the 

course, and it is difficult for the instructor to answer to all of them. Other learners can see the 

comments and answer them as well, or express their ‘like’-ing of a specific comment. However, 

the retention on such MOOC courses is low (in average, around 10%). You need to evaluate 

if the comments posted need instructor intervention or not – i.e., if the instructor needs to 

respond to that comment or question (How urgent is it that the instructor get involved in 

response to the post?). Urgency indicates the degree to which the instructor(s) should be 

concerned with the content of the post. If a post is very urgent, then the instructor should 

respond to the post as soon as possible. If a post is not urgent, then the instructor might not 

have to respond to the post at all. For this purpose, you will be labelling the 

comments/questions with ratings from 1 to 7. We ask you to use your own judgement. You will 

enter your results in a spreadsheet.  

To help in the task, different degrees of urgency *to the instructor* are mapped to scores 

as follows: 

• No reason to read the post             → 1  

• Not actionable; read if time           → 2  

• Not actionable; maybe interesting      → 3  

• Neutral: respond if spare time         → 4  

• Somewhat urgent: good idea to reply teaching assistant might suffice.    → 5    

• Very urgent: good idea for instructor to reply. → 6        

• Extremely urgent: instructor definitely needs to reply               → 7  

Finally, we need you to pay attention to two important points: 

• You should take enough time to read and understand each comment, make your own 
decision. 

• If you find by chance any personal information in any comment, treat it in a confidential way 
and do not store or use it in any way. 

Note: 

The course name is: Big Data. 

Instructions: 

• Open your spreadsheet.  

• You care only about the text column.  
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• The text cell in each row contains one forum posts (comment). 

• In post_type column, Comment mean ‘main comment’ while subComment mean 

‘reply to other comment’.   

• The cell with column header 'Urgency(1-7)' need ratings from 1 to 7.  
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APPENDIX B 

 

The results on naive Bayes with other feature engineering and the other traditional models 

(logistic regression, support vector machine, random forest and boosting model - extreme 

gradient boosting (XGBoost)) rendered similar results as those shown in the results section 

(naive Bayes model with count vector as a feature engineering) in the UNITE dataset.  

Table B.1: The performance results of the naive Bayes model with various types of feature engineering 

with original data, with three approaches to augmentation (see Table 8.3 above) using 3x and 9x (see 

Table 8.2 above) with and without undersampling and with undersampling without augmentation in the 

UNITE dataset. 

Feature Engineering Augmentation Under Acc 

Non urgent 

0 

Urgent 

1 

P R F1 P R F1 

TF-IDF vectors (word 

level) 

× × 0.93 0.93 1.00 0.96 0.00 0.00 0.00 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.62 0.05 0.10 

9X × 0.89 0.94 0.94 0.94 0.26 0.26 0.26 

3X √ 0.77 0.96 0.79 0.86 0.17 0.57 0.26 

9X √ 0.84 0.95 0.87 0.91 0.20 0.43 0.28 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.69 0.05 0.10 

9X × 0.91 0.94 0.97 0.95 0.31 0.20 0.25 

3X √ 0.79 0.96 0.81 0.88 0.18 0.53 0.27 

9X √ 0.88 0.95 0.92 0.93 0.24 0.32 0.27 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.72 0.05 0.10 

9X × 0.91 0.94 0.96 0.95 0.30 0.21 0.24 

3X √ 0.80 0.96 0.82 0.89 0.19 0.52 0.27 

9X √ 0.87 0.95 0.92 0.93 0.24 0.35 0.28 

× √ 0.47 0.98 0.44 0.60 0.11 0.90 0.19 

TF-IDF vectors (n gram 

word level) 

× × 0.93 0.93 1.00 0.96 1.00 0.00 0.01 

A
p

p
ro

ac
h
 

#
1
 

3X × 0.93 0.94 0.99 0.96 0.52 0.13 0.21 

9X × 0.90 0.95 0.94 0.95 0.30 0.31 0.31 

3X √ 0.86 0.95 0.89 0.92 0.24 0.45 0.31 
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9X √ 0.87 0.95 0.91 0.93 0.24 0.39 0.30 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.94 0.99 0.96 0.52 0.12 0.20 

9X × 0.90 0.95 0.95 0.95 0.31 0.29 0.30 

3X √ 0.85 0.95 0.89 0.92 0.23 0.45 0.30 

9X √ 0.88 0.95 0.92 0.93 0.26 0.36 0.30 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.94 0.99 0.96 0.47 0.13 0.20 

9X × 0.90 0.95 0.95 0.95 0.30 0.30 0.30 

3X √ 0.86 0.95 0.89 0.92 0.24 0.42 0.30 

9X √ 0.87 0.95 0.91 0.93 0.25 0.38 0.30 

× √ 0.63 0.97 0.62 0.76 0.13 0.72 0.22 

TF-IDF vectors (n gram 

character level) 

× × 0.93 0.93 1.00 0.96 0.31 0.02 0.03 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.57 0.06 0.11 

9X × 0.92 0.94 0.99 0.96 0.39 0.12 0.19 

3X √ 0.88 0.95 0.92 0.94 0.28 0.40 0.33 

9X √ 0.91 0.94 0.97 0.95 0.34 0.20 0.25 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.57 0.06 0.11 

9X × 0.93 0.93 0.99 0.96 0.41 0.08 0.13 

3X √ 0.90 0.95 0.95 0.95 0.32 0.33 0.33 

9X √ 0.92 0.93 0.99 0.96 0.35 0.10 0.16 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.56 0.07 0.12 

9X × 0.93 0.94 0.99 0.96 0.48 0.14 0.21 

3X √ 0.89 0.96 0.92 0.94 0.31 0.44 0.36 

9X √ 0.92 0.94 0.98 0.96 0.39 0.18 0.25 

× √ 0.56 0.98 0.53 0.69 0.13 0.87 0.22 
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Table B.2: The performance results of the logistic regression model with various types of feature 

engineering with original data, with three approaches to augmentation (see Table 8.3 above) using 3x 

and 9x (see Table 8.2 above) with and without undersampling and with undersampling without 

augmentation in the UNITE dataset. 

Feature 

Engineering 
Augmentation Under Acc 

Non urgent 

0 

Urgent 

1 

P R F1 P R F1 

Count vector 

× × 0.92 0.94 0.98 0.96 0.38 0.14 0.21 

A
p

p
ro

ac
h
 #

1
 

3X × 0.91 0.94 0.96 0.95 0.34 0.24 0.28 

9X × 0.89 0.95 0.94 0.94 0.28 0.32 0.30 

3X √ 0.84 0.95 0.87 0.91 0.21 0.45 0.29 

9X √ 0.88 0.95 0.92 0.93 0.26 0.38 0.31 

A
p

p
ro

ac
h
 #

2
 

3X × 0.91 0.94 0.96 0.95 0.33 0.25 0.28 

9X × 0.89 0.95 0.94 0.94 0.28 0.30 0.29 

3X √ 0.83 0.96 0.86 0.90 0.21 0.51 0.30 

9X √ 0.88 0.95 0.92 0.93 0.26 0.36 0.30 

A
p

p
ro

ac
h
 #

3
 

3X × 0.91 0.94 0.97 0.95 0.35 0.24 0.28 

9X × 0.90 0.94 0.95 0.95 0.28 0.28 0.28 

3X √ 0.84 0.96 0.87 0.91 0.23 0.50 0.32 

9X √ 0.88 0.95 0.93 0.94 0.26 0.34 0.29 

× √ 0.71 0.96 0.72 0.82 0.15 0.64 0.24 

TF-IDF 

vectors (word 

level) 

× × 0.93 0.93 1.00 0.96 0.00 0.00 0.00 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.94 0.99 0.96 0.49 0.15 0.24 

9X × 0.89 0.95 0.93 0.94 0.29 0.35 0.32 

3X √ 0.83 0.96 0.86 0.91 0.22 0.52 0.31 

9X √ 0.87 0.95 0.90 0.93 0.25 0.44 0.32 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.94 0.99 0.96 0.56 0.16 0.25 

9X × 0.91 0.95 0.96 0.95 0.34 0.29 0.31 

3X √ 0.83 0.96 0.85 0.90 0.22 0.55 0.31 

9X √ 0.88 0.95 0.92 0.94 0.26 0.35 0.30 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.94 0.99 0.96 0.52 0.16 0.24 

9X × 0.90 0.95 0.95 0.95 0.31 0.30 0.30 

3X √ 0.85 0.96 0.88 0.91 0.23 0.49 0.31 

9X √ 0.88 0.95 0.92 0.93 0.27 0.40 0.32 

× √ 0.72 0.97 0.72 0.83 0.16 0.68 0.26 

× × 0.93 0.93 1.00 0.96 1.00 0.00 0.01 
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TF-IDF 

vectors (n 

gram word 

level) 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.69 0.09 0.17 

9X × 0.90 0.95 0.94 0.94 0.30 0.35 0.32 

3X √ 0.86 0.96 0.89 0.92 0.25 0.46 0.32 

9X √ 0.86 0.95 0.89 0.92 0.24 0.45 0.32 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.60 0.08 0.14 

9X × 0.90 0.95 0.94 0.94 0.29 0.32 0.30 

3X √ 0.85 0.96 0.88 0.92 0.23 0.46 0.31 

9X √ 0.85 0.95 0.88 0.92 0.22 0.43 0.29 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.65 0.09 0.16 

9X × 0.90 0.95 0.95 0.95 0.33 0.34 0.33 

3X √ 0.87 0.95 0.91 0.93 0.26 0.43 0.33 

9X √ 0.88 0.95 0.91 0.93 0.28 0.42 0.33 

× √ 0.74 0.96 0.75 0.84 0.16 0.62 0.25 

TF-IDF 

vectors (n 

gram character 

level) 

× × 0.93 0.93 1.00 0.96 1.00 0.01 0.01 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.65 0.04 0.07 

9X × 0.93 0.93 0.99 0.96 0.58 0.09 0.16 

3X √ 0.93 0.95 0.97 0.96 0.46 0.28 0.35 

9X √ 0.93 0.94 0.99 0.96 0.53 0.12 0.19 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.72 0.05 0.10 

9X × 0.93 0.93 1.00 0.96 0.64 0.09 0.16 

3X √ 0.93 0.95 0.97 0.96 0.48 0.32 0.39 

9X √ 0.93 0.94 0.99 0.96 0.58 0.14 0.22 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.94 1.00 0.97 0.71 0.13 0.22 

9X × 0.93 0.94 0.99 0.97 0.63 0.16 0.26 

3X √ 0.91 0.95 0.94 0.95 0.36 0.41 0.38 

9X √ 0.93 0.94 0.99 0.96 0.57 0.25 0.34 

× √ 0.75 0.97 0.76 0.85 0.18 0.69 0.29 
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Table B.3: The performance results of the support vector machine model with various types of feature 

engineering with original data, with three approaches to augmentation (see Table 8.3 above) using 3x 

and 9x (see Table 8.2 above) with and without undersampling and with undersampling without 

augmentation in the UNITE dataset. 

Feature 

Engineering 
Augmentation Under Acc 

Non urgent 

0 

Urgent 

1 

P R F1 P R F1 

Count vector 

× × 0.93 0.93 1.00 0.96 0.00 0.00 0.00 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.62 0.08 0.14 

9X × 0.91 0.94 0.96 0.95 0.34 0.25 0.28 

3X √ 0.88 0.95 0.92 0.93 0.25 0.36 0.30 

9X √ 0.89 0.95 0.94 0.94 0.27 0.29 0.28 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.57 0.07 0.12 

9X × 0.92 0.94 0.98 0.96 0.39 0.20 0.26 

3X √ 0.86 0.95 0.90 0.92 0.22 0.37 0.27 

9X √ 0.91 0.94 0.96 0.95 0.33 0.27 0.29 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.57 0.08 0.13 

9X × 0.92 0.94 0.98 0.96 0.42 0.21 0.28 

3X √ 0.87 0.95 0.91 0.93 0.25 0.38 0.30 

9X √ 0.91 0.95 0.96 0.95 0.35 0.29 0.32 

× √ 0.66 0.95 0.66 0.78 0.12 0.58 0.19 

TF-IDF 

vectors (word 

level) 

× × 0.93 0.93 1.00 0.96 0.00 0.00 0.00 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.64 0.09 0.15 

9X × 0.92 0.94 0.98 0.96 0.38 0.20 0.26 

3X √ 0.91 0.95 0.96 0.95 0.34 0.29 0.32 

9X √ 0.91 0.94 0.96 0.95 0.33 0.25 0.28 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.59 0.09 0.15 

9X × 0.93 0.94 0.98 0.96 0.46 0.20 0.28 

3X √ 0.90 0.95 0.94 0.95 0.32 0.34 0.33 

9X √ 0.92 0.94 0.97 0.96 0.38 0.24 0.29 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.71 0.07 0.13 

9X × 0.93 0.94 0.99 0.96 0.51 0.16 0.25 

3X √ 0.92 0.94 0.97 0.96 0.38 0.26 0.31 

9X √ 0.93 0.94 0.98 0.96 0.46 0.21 0.29 

× √ 0.72 0.96 0.73 0.83 0.16 0.65 0.25 

× × 0.93 0.93 1.00 0.96 0.50 0.00 0.01 
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TF-IDF 

vectors (n 

gram word 

level) 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.56 0.07 0.12 

9X × 0.91 0.95 0.96 0.95 0.34 0.28 0.30 

3X √ 0.91 0.95 0.95 0.95 0.34 0.33 0.34 

9X √ 0.89 0.95 0.93 0.94 0.27 0.35 0.31 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 0.99 0.96 0.55 0.08 0.14 

9X × 0.91 0.94 0.96 0.95 0.31 0.23 0.26 

3X √ 0.90 0.95 0.95 0.95 0.31 0.30 0.30 

9X √ 0.88 0.95 0.93 0.94 0.25 0.32 0.28 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.55 0.05 0.09 

9X × 0.92 0.94 0.98 0.96 0.41 0.18 0.25 

3X √ 0.92 0.94 0.97 0.96 0.38 0.20 0.26 

9X √ 0.91 0.94 0.97 0.95 0.35 0.24 0.28 

× √ 0.67 0.96 0.66 0.79 0.14 0.68 0.23 

TF-IDF 

vectors (n 

gram character 

level) 

× × 0.93 0.93 1.00 0.96 1.00 0.00 0.01 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.67 0.02 0.05 

9X × 0.93 0.93 1.00 0.96 0.74 0.06 0.11 

3X √ 0.93 0.94 0.99 0.97 0.61 0.23 0.33 

9X √ 0.93 0.93 1.00 0.96 0.73 0.08 0.15 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.73 0.05 0.09 

9X × 0.93 0.93 1.00 0.96 0.68 0.07 0.13 

3X √ 0.94 0.95 0.99 0.97 0.60 0.27 0.37 

9X √ 0.93 0.94 1.00 0.96 0.67 0.11 0.19 

A
p

p
ro

ac
h
 #

3
 

3X × 0.94 0.94 1.00 0.97 0.81 0.13 0.22 

9X × 0.93 0.94 1.00 0.97 0.70 0.14 0.24 

3X √ 0.93 0.95 0.97 0.96 0.51 0.34 0.41 

9X √ 0.94 0.94 0.99 0.97 0.69 0.18 0.29 

× √ 0.76 0.97 0.76 0.85 0.18 0.70 0.29 
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Table B.4: The performance results of the random forest model with various types of feature 

engineering with original data, with three approaches to augmentation (see Table 8.3 above) using 3x 

and 9x (see Table 8.2 above) with and without undersampling and with undersampling without 

augmentation in the UNITE dataset. 

Feature 

Engineering 
Augmentation Under Acc 

Non urgent 

0 

Urgent 

1 

P R F1 P R F1 

Count vector 

× × 0.93 0.93 1.00 0.96 0.80 0.01 0.02 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.54 0.04 0.07 

9X × 0.93 0.94 0.98 0.96 0.46 0.19 0.27 

3X √ 0.88 0.95 0.91 0.93 0.27 0.41 0.33 

9X √ 0.90 0.95 0.95 0.95 0.33 0.34 0.34 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.64 0.05 0.09 

9X × 0.92 0.94 0.98 0.96 0.40 0.14 0.21 

3X √ 0.87 0.95 0.90 0.93 0.24 0.41 0.31 

9X √ 0.92 0.94 0.97 0.96 0.37 0.25 0.30 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.67 0.04 0.08 

9X × 0.93 0.93 0.99 0.96 0.42 0.09 0.15 

3X √ 0.90 0.95 0.93 0.94 0.32 0.40 0.35 

9X √ 0.92 0.94 0.97 0.96 0.41 0.25 0.31 

× √ 0.68 0.96 0.68 0.80 0.14 0.68 0.23 

TF-IDF 

vectors (word 

level) 

× × 0.93 0.93 1.00 0.96 0.67 0.01 0.01 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 1.00 0.96 0.62 0.04 0.07 

9X × 0.92 0.94 0.98 0.96 0.41 0.20 0.27 

3X √ 0.88 0.95 0.92 0.94 0.29 0.43 0.35 

9X √ 0.89 0.95 0.93 0.94 0.28 0.34 0.31 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 1.00 0.96 0.58 0.05 0.08 

9X × 0.92 0.94 0.98 0.96 0.41 0.20 0.27 

3X √ 0.87 0.95 0.91 0.93 0.25 0.41 0.31 

9X √ 0.90 0.95 0.95 0.95 0.32 0.33 0.32 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.93 1.00 0.96 0.67 0.04 0.08 

9X × 0.93 0.94 0.99 0.96 0.50 0.18 0.27 

3X √ 0.89 0.95 0.93 0.94 0.31 0.41 0.36 

9X √ 0.92 0.95 0.97 0.96 0.42 0.32 0.36 

× √ 0.71 0.96 0.71 0.82 0.14 0.63 0.24 

× × 0.93 0.93 1.00 0.96 0.59 0.05 0.09 
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TF-IDF 

vectors (n 

gram word 

level) 

A
p

p
ro

ac
h
 #

1
 

3X × 0.92 0.94 0.98 0.96 0.45 0.23 0.31 

9X × 0.91 0.95 0.95 0.95 0.36 0.39 0.38 

3X √ 0.90 0.95 0.94 0.95 0.33 0.40 0.36 

9X √ 0.89 0.95 0.93 0.94 0.30 0.41 0.34 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.95 0.98 0.96 0.47 0.26 0.34 

9X × 0.91 0.95 0.95 0.95 0.33 0.31 0.32 

3X √ 0.89 0.95 0.93 0.94 0.30 0.39 0.34 

9X √ 0.88 0.95 0.93 0.94 0.27 0.36 0.31 

A
p

p
ro

ac
h
 r

#
3

 

3X × 0.93 0.94 0.98 0.96 0.48 0.25 0.32 

9X × 0.91 0.95 0.95 0.95 0.38 0.41 0.39 

3X √ 0.90 0.95 0.94 0.95 0.34 0.41 0.37 

9X √ 0.90 0.95 0.93 0.94 0.33 0.42 0.37 

× √ 0.86 0.95 0.90 0.92 0.21 0.36 0.26 

TF-IDF 

vectors (n 

gram character 

level) 

× × 0.93 0.93 1.00 0.96 0.69 0.03 0.05 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.93 0.99 0.96 0.48 0.06 0.11 

9X × 0.93 0.93 0.99 0.96 0.34 0.05 0.08 

3X √ 0.93 0.94 0.98 0.96 0.51 0.22 0.31 

9X √ 0.93 0.93 0.99 0.96 0.43 0.07 0.12 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.93 0.99 0.96 0.38 0.06 0.10 

9X × 0.93 0.93 0.99 0.96 0.38 0.08 0.13 

3X √ 0.93 0.95 0.98 0.96 0.46 0.26 0.34 

9X √ 0.92 0.93 0.99 0.96 0.40 0.10 0.16 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.94 0.99 0.96 0.57 0.14 0.23 

9X × 0.93 0.94 0.99 0.96 0.51 0.15 0.23 

3X √ 0.92 0.95 0.97 0.96 0.46 0.33 0.39 

9X √ 0.93 0.94 0.99 0.96 0.48 0.18 0.26 

× √ 0.67 0.97 0.66 0.79 0.15 0.75 0.24 
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Table B.5: The performance results of the boosting model (XGBoost) with various types of feature 

engineering with original data, with three approaches to augmentation (see Table 8.3 above) using 3x 

and 9x (see Table 8.2 above) with and without undersampling and with undersampling without 

augmentation in the UNITE dataset. 

Feature 

Engineering 
Augmentation Under Acc 

Non urgent 

0 

Urgent 

1 

P R F1 P R F1 

Count vector 

× × 0.93 0.93 1.00 0.96 0.74 0.04 0.08 

A
p

p
ro

ac
h
 #

1
 

3X × 0.92 0.94 0.98 0.96 0.43 0.17 0.24 

9X × 0.88 0.95 0.92 0.93 0.24 0.34 0.28 

3X √ 0.81 0.96 0.83 0.89 0.19 0.51 0.27 

9X √ 0.83 0.95 0.86 0.91 0.20 0.43 0.27 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.94 0.99 0.96 0.48 0.17 0.25 

9X × 0.91 0.94 0.96 0.95 0.34 0.25 0.29 

3X √ 0.81 0.96 0.83 0.89 0.19 0.53 0.28 

9X √ 0.89 0.95 0.93 0.94 0.27 0.32 0.29 

A
p

p
ro

ac
h
 #

3
 

3X × 0.92 0.94 0.98 0.96 0.41 0.14 0.21 

9X × 0.91 0.94 0.96 0.95 0.31 0.25 0.28 

3X √ 0.82 0.95 0.84 0.89 0.19 0.48 0.27 

9X √ 0.88 0.95 0.92 0.93 0.26 0.36 0.30 

× √ 0.72 0.96 0.73 0.83 0.14 0.58 0.23 

TF-IDF 

vectors (word 

level) 

× × 0.93 0.93 1.00 0.96 0.67 0.04 0.08 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.94 0.98 0.96 0.45 0.17 0.25 

9X × 0.87 0.95 0.91 0.93 0.23 0.33 0.27 

3X √ 0.80 0.96 0.83 0.89 0.18 0.51 0.27 

9X √ 0.83 0.95 0.86 0.91 0.20 0.45 0.28 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.94 0.99 0.96 0.45 0.15 0.23 

9X × 0.91 0.95 0.96 0.95 0.37 0.27 0.31 

3X √ 0.79 0.95 0.82 0.88 0.16 0.47 0.24 

9X √ 0.89 0.95 0.93 0.94 0.28 0.34 0.31 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.94 0.99 0.96 0.50 0.16 0.25 

9X × 0.91 0.94 0.96 0.95 0.32 0.26 0.29 

3X √ 0.81 0.95 0.84 0.89 0.18 0.48 0.27 

9X √ 0.88 0.95 0.91 0.93 0.25 0.38 0.30 

× √ 0.69 0.96 0.70 0.81 0.13 0.60 0.22 

× × 0.93 0.93 1.00 0.96 0.62 0.04 0.07 
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TF-IDF 

vectors (n 

gram word 

level) 

A
p

p
ro

ac
h
#

1
 

3X × 0.93 0.94 0.99 0.96 0.51 0.14 0.22 

9X × 0.92 0.95 0.96 0.96 0.40 0.31 0.35 

3X √ 0.85 0.95 0.88 0.92 0.20 0.38 0.26 

9X √ 0.70 0.95 0.71 0.81 0.12 0.53 0.20 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.94 0.99 0.96 0.54 0.15 0.23 

9X × 0.92 0.94 0.97 0.96 0.40 0.26 0.32 

3X √ 0.77 0.95 0.80 0.87 0.14 0.42 0.21 

9X √ 0.66 0.95 0.67 0.79 0.11 0.55 0.19 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.94 0.99 0.96 0.51 0.15 0.23 

9X × 0.90 0.95 0.95 0.95 0.32 0.30 0.31 

3X √ 0.85 0.95 0.89 0.92 0.20 0.38 0.27 

9X √ 0.87 0.95 0.91 0.93 0.25 0.40 0.31 

× √ 0.74 0.95 0.76 0.84 0.14 0.49 0.21 

TF-IDF 

vectors (n 

gram character 

level) 

× × 0.93 0.94 0.99 0.97 0.65 0.15 0.24 

A
p

p
ro

ac
h
 #

1
 

3X × 0.93 0.94 0.99 0.97 0.61 0.20 0.31 

9X × 0.93 0.94 0.99 0.96 0.53 0.19 0.28 

3X √ 0.92 0.95 0.96 0.96 0.44 0.39 0.42 

9X √ 0.93 0.94 0.98 0.96 0.53 0.24 0.33 

A
p

p
ro

ac
h
 #

2
 

3X × 0.93 0.94 0.99 0.97 0.61 0.21 0.31 

9X × 0.93 0.94 0.99 0.96 0.53 0.18 0.26 

3X √ 0.91 0.95 0.95 0.95 0.39 0.40 0.39 

9X √ 0.93 0.94 0.98 0.96 0.47 0.23 0.31 

A
p

p
ro

ac
h
 #

3
 

3X × 0.93 0.95 0.98 0.96 0.56 0.29 0.39 

9X × 0.93 0.95 0.98 0.96 0.49 0.29 0.37 

3X √ 0.91 0.96 0.94 0.95 0.38 0.51 0.44 

9X √ 0.92 0.95 0.97 0.96 0.46 0.36 0.40 

× √ 0.77 0.97 0.78 0.86 0.18 0.65 0.29 
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